Sample records for study dynamic behavior

  1. Spatiotemporal properties of microsaccades: Model predictions and experimental tests

    NASA Astrophysics Data System (ADS)

    Zhou, Jian-Fang; Yuan, Wu-Jie; Zhou, Zhao

    2016-10-01

    Microsaccades are involuntary and very small eye movements during fixation. Recently, the microsaccade-related neural dynamics have been extensively investigated both in experiments and by constructing neural network models. Experimentally, microsaccades also exhibit many behavioral properties. It’s well known that the behavior properties imply the underlying neural dynamical mechanisms, and so are determined by neural dynamics. The behavioral properties resulted from neural responses to microsaccades, however, are not yet understood and are rarely studied theoretically. Linking neural dynamics to behavior is one of the central goals of neuroscience. In this paper, we provide behavior predictions on spatiotemporal properties of microsaccades according to microsaccade-induced neural dynamics in a cascading network model, which includes both retinal adaptation and short-term depression (STD) at thalamocortical synapses. We also successfully give experimental tests in the statistical sense. Our results provide the first behavior description of microsaccades based on neural dynamics induced by behaving activity, and so firstly link neural dynamics to behavior of microsaccades. These results indicate strongly that the cascading adaptations play an important role in the study of microsaccades. Our work may be useful for further investigations of the microsaccadic behavioral properties and of the underlying neural dynamical mechanisms responsible for the behavioral properties.

  2. A longitudinal study of the sociosexual dynamics in a captive family group of wolves: the University of Connecticut wolf project.

    PubMed

    Jenks, Susan M

    2011-11-01

    An interest in the role of the social environment on the evolution of behavior led Professor Benson Ginsburg to studies of wolf social behavior. He initiated the University of Connecticut wolf project with a family group of wolves housed in a protected enclosure in an isolated area of campus. One aim of this project was to conduct a longitudinal study of a family group of wolves in order to understand the proximate behavioral mechanisms underlying mating dynamics with a degree of control and opportunistic observation that could not be achieved through field studies. The development of social relationships and the dynamics of mating were observed for 9 years. As in nature, agonistic relationships strongly influenced reproductive success, successful breeding was limited to a single pair each season, and the behavioral dynamics included status transitions with breeder rotations. Our work, when combined with the results of other captive wolf studies, has contributed valuable information to the general understanding of wolf social behavior, especially regarding the proximate behavior patterns underlying group social interactions and reproduction. This understanding has broadened perspectives on the dynamic interplay between social behavior and evolutionary processes.

  3. Dynamic hysteresis behaviors in the kinetic Ising system on triangular lattice

    NASA Astrophysics Data System (ADS)

    Kantar, Ersin; Ertaş, Mehmet

    2018-04-01

    We studied dynamic hysteresis behaviors of the spin-1 Blume-Capel (BC) model in a triangular lattice by means of the effective-field theory (EFT) with correlations and using Glauber-type stochastic dynamics. The effects of the exchange interaction (J), crystal field (D), temperature (T) and oscillating frequency (w) on the hysteresis behaviors of the BC model in a triangular lattice are investigated in detail. Results are compared with some other dynamic studies and quantitatively good agreement is found.

  4. Structural versus dynamical origins of mean-field behavior in a self-organized critical model of neuronal avalanches

    NASA Astrophysics Data System (ADS)

    Moosavi, S. Amin; Montakhab, Afshin

    2015-11-01

    Critical dynamics of cortical neurons have been intensively studied over the past decade. Neuronal avalanches provide the main experimental as well as theoretical tools to consider criticality in such systems. Experimental studies show that critical neuronal avalanches show mean-field behavior. There are structural as well as recently proposed [Phys. Rev. E 89, 052139 (2014), 10.1103/PhysRevE.89.052139] dynamical mechanisms that can lead to mean-field behavior. In this work we consider a simple model of neuronal dynamics based on threshold self-organized critical models with synaptic noise. We investigate the role of high-average connectivity, random long-range connections, as well as synaptic noise in achieving mean-field behavior. We employ finite-size scaling in order to extract critical exponents with good accuracy. We conclude that relevant structural mechanisms responsible for mean-field behavior cannot be justified in realistic models of the cortex. However, strong dynamical noise, which can have realistic justifications, always leads to mean-field behavior regardless of the underlying structure. Our work provides a different (dynamical) origin than the conventionally accepted (structural) mechanisms for mean-field behavior in neuronal avalanches.

  5. Dynamics of Numerics & Spurious Behaviors in CFD Computations. Revised

    NASA Technical Reports Server (NTRS)

    Yee, Helen C.; Sweby, Peter K.

    1997-01-01

    The global nonlinear behavior of finite discretizations for constant time steps and fixed or adaptive grid spacings is studied using tools from dynamical systems theory. Detailed analysis of commonly used temporal and spatial discretizations for simple model problems is presented. The role of dynamics in the understanding of long time behavior of numerical integration and the nonlinear stability, convergence, and reliability of using time-marching approaches for obtaining steady-state numerical solutions in computational fluid dynamics (CFD) is explored. The study is complemented with examples of spurious behavior observed in steady and unsteady CFD computations. The CFD examples were chosen to illustrate non-apparent spurious behavior that was difficult to detect without extensive grid and temporal refinement studies and some knowledge from dynamical systems theory. Studies revealed the various possible dangers of misinterpreting numerical simulation of realistic complex flows that are constrained by available computing power. In large scale computations where the physics of the problem under study is not well understood and numerical simulations are the only viable means of solution, extreme care must be taken in both computation and interpretation of the numerical data. The goal of this paper is to explore the important role that dynamical systems theory can play in the understanding of the global nonlinear behavior of numerical algorithms and to aid the identification of the sources of numerical uncertainties in CFD.

  6. Nonlinear dynamics and numerical uncertainties in CFD

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Sweby, P. K.

    1996-01-01

    The application of nonlinear dynamics to improve the understanding of numerical uncertainties in computational fluid dynamics (CFD) is reviewed. Elementary examples in the use of dynamics to explain the nonlinear phenomena and spurious behavior that occur in numerics are given. The role of dynamics in the understanding of long time behavior of numerical integrations and the nonlinear stability, convergence, and reliability of using time-marching, approaches for obtaining steady-state numerical solutions in CFD is explained. The study is complemented with spurious behavior observed in CFD computations.

  7. The Developmental Dynamics of Task-Avoidant Behavior and Math Performance in Kindergarten and Elementary School

    ERIC Educational Resources Information Center

    Hirvonen, Riikka; Tolvanen, Asko; Aunola, Kaisa; Nurmi, Jari-Erik

    2012-01-01

    Besides cognitive factors, children's learning at school may be influenced by more dynamic phenomena, such as motivation and achievement-related task-avoidant behavior. The present study examined the developmental dynamics of task-avoidant behavior and math performance from kindergarten to Grade 4. A total of 225 children were tested for their…

  8. Assessing the Dynamic Behavior of Online Q&A Knowledge Markets: A System Dynamics Approach

    ERIC Educational Resources Information Center

    Jafari, Mostafa; Hesamamiri, Roozbeh; Sadjadi, Jafar; Bourouni, Atieh

    2012-01-01

    Purpose: The objective of this paper is to propose a holistic dynamic model for understanding the behavior of a complex and internet-based kind of knowledge market by considering both social and economic interactions. Design/methodology/approach: A system dynamics (SD) model is formulated in this study to investigate the dynamic characteristics of…

  9. The behavioral dynamics of clinical trials.

    PubMed

    Leventhal, H; Nerenz, D R; Leventhal, E A; Love, R R; Bendena, L M

    1991-01-01

    Two ways of approaching the design of long-term clinical trials are presented and contrasted. The first, termed the "static" view, emphasizes close adherence to formal rules of study design. The second, termed the "dynamic" view, emphasizes the behavioral aspects of patient participation in trials of long duration. The dynamic view is discussed in detail, with discussion of how recruitment of participants, random assignment to conditions, compliance with protocol, and measurement of outcomes are affected by behavioral dynamics. Data from a recently completed tamoxifen toxicity trial are used to illustrate the points and to focus the discussion of behavioral dynamics on the design of a chemoprevention trial for breast cancer using tamoxifen.

  10. Modeling behavior dynamics using computational psychometrics within virtual worlds.

    PubMed

    Cipresso, Pietro

    2015-01-01

    In case of fire in a building, how will people behave in the crowd? The behavior of each individual affects the behavior of others and, conversely, each one behaves considering the crowd as a whole and the individual others. In this article, I propose a three-step method to explore a brand new way to study behavior dynamics. The first step relies on the creation of specific situations with standard techniques (such as mental imagery, text, video, and audio) and an advanced technique [Virtual Reality (VR)] to manipulate experimental settings. The second step concerns the measurement of behavior in one, two, or many individuals focusing on parameters extractions to provide information about the behavior dynamics. Finally, the third step, which uses the parameters collected and measured in the previous two steps in order to simulate possible scenarios to forecast through computational models, understand, and explain behavior dynamics at the social level. An experimental study was also included to demonstrate the three-step method and a possible scenario.

  11. Targeting Feeding and Eating Behaviors: Development of the Feeding Dynamic Intervention for Caregivers of 2- to 5-Year-Old Children

    PubMed Central

    Eneli, Ihuoma U.; Watowicz, Rosanna P.; Hummel, Jessica; Ritter, Jan; Lumeng, Julie C.

    2015-01-01

    Targeting feeding dynamics, a concept centered on the roles and interaction of the caregiver and child in a feeding relationship, may have significant potential for obesity intervention. The aim of this paper is to describe the 3-phase development of the Feeding Dynamics Intervention (FDI), an acceptability and feasibility study on implementing the feeding dynamic roles (Study 1), development of the FDI content (Study 2), and a pilot study on use of the 6-lesson FDI to promote behaviors consistent with a feeding dynamic approach (Study 3). Sample population was mothers with young children, 2–5 years old. An effect size (Hedges' g) greater than 0.20 was seen in more than half (57%) of maternal feeding behaviors, with the largest effect sizes (Hedges' g ≥ 0.8) occurring with behaviors that represent the mother adopting her roles of determining what food is served, not using food as a reward, and not controlling her child's intake. There was a significant decline in Pressure to Eat behaviors (2.9 versus 2.2, p < 0.01) and Monitoring (4.1 versus 3.5, p < 0.001). The FDI emerged as an acceptable and implementable intervention. Future studies need to investigate effects of the FDI on the child's eating behaviors, self-regulation of energy intake, and anthropometrics. PMID:26199741

  12. Some Aspects of Nonlinear Dynamics and CFD

    NASA Technical Reports Server (NTRS)

    Yee, Helen C.; Merriam, Marshal (Technical Monitor)

    1996-01-01

    The application of nonlinear dynamics to improve the understanding of numerical uncertainties in computational fluid dynamics (CFD) is reviewed. Elementary examples in the use of dynamics to explain the nonlinear phenomena and spurious behavior that occur in numerics are given. The role of dynamics in the understanding of long time behavior of numerical integrations and the nonlinear stability, convergence, and reliability of using time-marching approaches for obtaining steady-state numerical solutions in CFD is explained. The study is complemented with examples of spurious behavior observed in CFD computations.

  13. Behavioral compliance for dynamic versus static signs in an immersive virtual environment.

    PubMed

    Duarte, Emília; Rebelo, Francisco; Teles, Júlia; Wogalter, Michael S

    2014-09-01

    This study used an immersive virtual environment (IVE) to examine how dynamic features in signage affect behavioral compliance during a work-related task and an emergency egress. Ninety participants performed a work-related task followed by an emergency egress. Compliance with uncued and cued safety signs was assessed prior to an explosion/fire involving egress with exit signs. Although dynamic presentation produced the highest compliance, the difference between dynamic and static presentation was only statistically significant for uncued signs. Uncued signs, both static and dynamic, were effective in changing behavior compared to no/minimal signs. Findings are explained based on sign salience and on task differences. If signs must capture attention while individuals are attending to other tasks, salient (e.g., dynamic) signs are useful in benefiting compliance. This study demonstrates the potential for IVEs to serve as a useful tool in behavioral compliance research. Copyright © 2013 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  14. Dynamic behavior of a magnetic bearing supported jet engine rotor with auxiliary bearings

    NASA Technical Reports Server (NTRS)

    Homaifar, Abdollah (Editor); Kelly, John C., Jr. (Editor); Flowers, G. T.; Xie, H.; Sinha, S. C.

    1994-01-01

    This paper presents a study of the dynamic behavior of a rotor system supported by auxiliary bearings. The steady-state behavior of a simulation model based upon a production jet engine is explored over a wide range of operating conditions for varying rotor imbalance, support stiffness and damping. Interesting dynamical phenomena, such as chaos, subharmonic responses, and double-valued responses, are presented and discussed.

  15. Dynamic behavior of a magnetic bearing supported jet engine rotor with auxiliary bearings

    NASA Technical Reports Server (NTRS)

    Flowers, George T.; Xie, Huajun; Sinha, S. C.

    1995-01-01

    This paper presents a study of the dynamic behavior of a rotor system supported by auxiliary bearings. The steady-state behavior of a simulation model based upon a production jet engine is explored over a wide range of operating conditions for varying rotor imbalance, support stiffness, and damping. Interesting dynamical phenomena, such as chaos, subharmonic responses, and double-valued responses, are presented and discussed.

  16. Nonlinear electromechanical modelling and dynamical behavior analysis of a satellite reaction wheel

    NASA Astrophysics Data System (ADS)

    Aghalari, Alireza; Shahravi, Morteza

    2017-12-01

    The present research addresses the satellite reaction wheel (RW) nonlinear electromechanical coupling dynamics including dynamic eccentricity of brushless dc (BLDC) motor and gyroscopic effects, as well as dry friction of shaft-bearing joints (relative small slip) and bearing friction. In contrast to other studies, the rotational velocity of the flywheel is considered to be controllable, so it is possible to study the reaction wheel dynamical behavior in acceleration stages. The RW is modeled as a three-phases BLDC motor as well as flywheel with unbalances on a rigid shaft and flexible bearings. Improved Lagrangian dynamics for electromechanical systems is used to obtain the mathematical model of the system. The developed model can properly describe electromechanical nonlinear coupled dynamical behavior of the satellite RW. Numerical simulations show the effectiveness of the presented approach.

  17. Dynamical aspects of behavior generation under constraints

    PubMed Central

    Harter, Derek; Achunala, Srinivas

    2007-01-01

    Dynamic adaptation is a key feature of brains helping to maintain the quality of their performance in the face of increasingly difficult constraints. How to achieve high-quality performance under demanding real-time conditions is an important question in the study of cognitive behaviors. Animals and humans are embedded in and constrained by their environments. Our goal is to improve the understanding of the dynamics of the interacting brain–environment system by studying human behaviors when completing constrained tasks and by modeling the observed behavior. In this article we present results of experiments with humans performing tasks on the computer under variable time and resource constraints. We compare various models of behavior generation in order to describe the observed human performance. Finally we speculate on mechanisms how chaotic neurodynamics can contribute to the generation of flexible human behaviors under constraints. PMID:19003514

  18. Development of a dynamic computational model of social cognitive theory.

    PubMed

    Riley, William T; Martin, Cesar A; Rivera, Daniel E; Hekler, Eric B; Adams, Marc A; Buman, Matthew P; Pavel, Misha; King, Abby C

    2016-12-01

    Social cognitive theory (SCT) is among the most influential theories of behavior change and has been used as the conceptual basis of health behavior interventions for smoking cessation, weight management, and other health behaviors. SCT and other behavior theories were developed primarily to explain differences between individuals, but explanatory theories of within-person behavioral variability are increasingly needed as new technologies allow for intensive longitudinal measures and interventions adapted from these inputs. These within-person explanatory theoretical applications can be modeled as dynamical systems. SCT constructs, such as reciprocal determinism, are inherently dynamical in nature, but SCT has not been modeled as a dynamical system. This paper describes the development of a dynamical system model of SCT using fluid analogies and control systems principles drawn from engineering. Simulations of this model were performed to assess if the model performed as predicted based on theory and empirical studies of SCT. This initial model generates precise and testable quantitative predictions for future intensive longitudinal research. Dynamic modeling approaches provide a rigorous method for advancing health behavior theory development and refinement and for guiding the development of more potent and efficient interventions.

  19. Maternal Depressive Symptomatology and Child Behavior: Transactional Relationship with Simultaneous Bidirectional Coupling

    PubMed Central

    Nicholson, Jody S.; Deboeck, Pascal; Farris, Jaelyn R.; Boker, Steven M.; Borkowski, John G.

    2011-01-01

    The present study investigated reciprocal relationships between adolescent mothers and their children’s well-being through an analysis of the coupling relationship of mothers’ depressive symptomatology and children’s internalizing and externalizing behaviors. Unlike studies using discrete time analyses, the present study used dynamical systems to model time continuously, which allowed for the study of dynamic, transactional effects between members of each dyad. Findings provided evidence of coupling between maternal depressive symptoms and children’s behaviors. The most robust finding was that as maternal depressive symptoms became more or less severe, children’s behavior problems increased or decreased in a reciprocal manner. Results from this study extended upon theoretical contributions of authors such as Richters (1997) and Granic and Hollenstein (2003), providing empirical validation from a longitudinal study for understanding the ongoing, dynamic relationships between at-risk mothers and their children. PMID:21639624

  20. Characterization of Bitumen Micro-Mechanical Behaviors Using AFM, Phase Dynamics Theory and MD Simulation.

    PubMed

    Hou, Yue; Wang, Linbing; Wang, Dawei; Guo, Meng; Liu, Pengfei; Yu, Jianxin

    2017-02-21

    Fundamental understanding of micro-mechanical behaviors in bitumen, including phase separation, micro-friction, micro-abrasion, etc., can help the pavement engineers better understand the bitumen mechanical performances at macroscale. Recent researches show that the microstructure evolution in bitumen will directly affect its surface structure and micro-mechanical performance. In this study, the bitumen microstructure and micro-mechanical behaviors are studied using Atomic Force Microscopy (AFM) experiments, Phase Dynamics Theory and Molecular Dynamics (MD) Simulation. The AFM experiment results show that different phase-structure will occur at the surface of the bitumen samples under certain thermodynamic conditions at microscale. The phenomenon can be explained using the phase dynamics theory, where the effects of stability parameter and temperature on bitumen microstructure and micro-mechanical behavior are studied combined with MD Simulation. Simulation results show that the saturates phase, in contrast to the naphthene aromatics phase, plays a major role in bitumen micro-mechanical behavior. A high stress zone occurs at the interface between the saturates phase and the naphthene aromatics phase, which may form discontinuities that further affect the bitumen frictional performance.

  1. Characterization of Bitumen Micro-Mechanical Behaviors Using AFM, Phase Dynamics Theory and MD Simulation

    PubMed Central

    Hou, Yue; Wang, Linbing; Wang, Dawei; Guo, Meng; Liu, Pengfei; Yu, Jianxin

    2017-01-01

    Fundamental understanding of micro-mechanical behaviors in bitumen, including phase separation, micro-friction, micro-abrasion, etc., can help the pavement engineers better understand the bitumen mechanical performances at macroscale. Recent researches show that the microstructure evolution in bitumen will directly affect its surface structure and micro-mechanical performance. In this study, the bitumen microstructure and micro-mechanical behaviors are studied using Atomic Force Microscopy (AFM) experiments, Phase Dynamics Theory and Molecular Dynamics (MD) Simulation. The AFM experiment results show that different phase-structure will occur at the surface of the bitumen samples under certain thermodynamic conditions at microscale. The phenomenon can be explained using the phase dynamics theory, where the effects of stability parameter and temperature on bitumen microstructure and micro-mechanical behavior are studied combined with MD Simulation. Simulation results show that the saturates phase, in contrast to the naphthene aromatics phase, plays a major role in bitumen micro-mechanical behavior. A high stress zone occurs at the interface between the saturates phase and the naphthene aromatics phase, which may form discontinuities that further affect the bitumen frictional performance. PMID:28772570

  2. Dynamics of Self-Injurious Behaviors.

    ERIC Educational Resources Information Center

    Newell, Karl M.; Sprague, Robert L.; Pain, Matthew T.; Deutsch, Katherine M.; Meinhold, Patricia

    1999-01-01

    Self-injurious behavior was examined in a case study of head-banging by an 8-year-old girl with profound mental retardation and an autistic disorder. Trajectories of arm movements and impact forces were determined from dynamic analysis of videotapes. Cycle-to-cycle consistency in the qualitative dynamics of the limb motions and impact forces…

  3. Empirical modeling of dynamic behaviors of pneumatic artificial muscle actuators.

    PubMed

    Wickramatunge, Kanchana Crishan; Leephakpreeda, Thananchai

    2013-11-01

    Pneumatic Artificial Muscle (PAM) actuators yield muscle-like mechanical actuation with high force to weight ratio, soft and flexible structure, and adaptable compliance for rehabilitation and prosthetic appliances to the disabled as well as humanoid robots or machines. The present study is to develop empirical models of the PAM actuators, that is, a PAM coupled with pneumatic control valves, in order to describe their dynamic behaviors for practical control design and usage. Empirical modeling is an efficient approach to computer-based modeling with observations of real behaviors. Different characteristics of dynamic behaviors of each PAM actuator are due not only to the structures of the PAM actuators themselves, but also to the variations of their material properties in manufacturing processes. To overcome the difficulties, the proposed empirical models are experimentally derived from real physical behaviors of the PAM actuators, which are being implemented. In case studies, the simulated results with good agreement to experimental results, show that the proposed methodology can be applied to describe the dynamic behaviors of the real PAM actuators. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  4. A nonlinear dynamical system for combustion instability in a pulse model combustor

    NASA Astrophysics Data System (ADS)

    Takagi, Kazushi; Gotoda, Hiroshi

    2016-11-01

    We theoretically and numerically study the bifurcation phenomena of nonlinear dynamical system describing combustion instability in a pulse model combustor on the basis of dynamical system theory and complex network theory. The dynamical behavior of pressure fluctuations undergoes a significant transition from steady-state to deterministic chaos via the period-doubling cascade process known as Feigenbaum scenario with decreasing the characteristic flow time. Recurrence plots and recurrence networks analysis we adopted in this study can quantify the significant changes in dynamic behavior of combustion instability that cannot be captured in the bifurcation diagram.

  5. The impact of family violence, family functioning, and parental partner dynamics on Korean juvenile delinquency.

    PubMed

    Kim, Hyun-Sil; Kim, Hun-Soo

    2008-12-01

    The present study was aimed at determining the family factors related to juvenile delinquency and identifying the effect of family violence, family functioning, parental partner dynamics, and adolescents' personality on delinquent behavior among Korean adolescents. A cross-sectional study was performed using an anonymous, self-reporting questionnaire. The subjects for this study consisted of 1,943 Korean adolescents, including 1,236 students and 707 juvenile delinquents, using a proportional stratified random sampling method. Compared to student adolescents, delinquent adolescents perceived their parents as having a higher level of dysfunctional parental partner dynamics, poorer family functioning, and a higher level of family violence. Furthermore, delinquent adolescents were more likely to report a greater incidence of antisocial personality tendencies, a higher level of psychosomatic symptoms and frustration, and higher frequencies of delinquent behavior compared to student adolescents. Antisocial personality tendency and gender had the largest significant total effects on delinquent behavior, followed by family violence, psychosomatic symptoms, family functioning, parental partner dynamics and need frustration. On the other hand, family functioning and parental partner dynamics had the largest indirect effect on delinquent behavior. Gender, antisocial personality tendency, and family violence, in that order, had the largest direct effects on delinquent behavior. In conclusion, it is apparent from the results of the present study that delinquent Korean adolescents perceived and experienced significantly more family dysfunction, family violence, and poor parental partner dynamics than did non-delinquents.

  6. Linear-Nonlinear-Poisson Models of Primate Choice Dynamics

    ERIC Educational Resources Information Center

    Corrado, Greg S.; Sugrue, Leo P.; Seung, H. Sebastian; Newsome, William T.

    2005-01-01

    The equilibrium phenomenon of matching behavior traditionally has been studied in stationary environments. Here we attempt to uncover the local mechanism of choice that gives rise to matching by studying behavior in a highly dynamic foraging environment. In our experiments, 2 rhesus monkeys ("Macacca mulatta") foraged for juice rewards by making…

  7. Teacher Behavior and Student Outcomes: Results of a European Study

    ERIC Educational Resources Information Center

    Panayiotou, Anastasia; Kyriakides, Leonidas; Creemers, Bert P. M.; McMahon, Léan; Vanlaar, Gudrun; Pfeifer, Michael; Rekalidou, Galini; Bren, Matevž

    2014-01-01

    This study investigates the extent to which the factors included in the dynamic model of educational effectiveness are associated with student achievement gains in six different European countries. At classroom level, the dynamic model refers to eight factors relating to teacher behavior in the classroom: orientation, structuring, questioning,…

  8. Dynamics of macroautophagy: Modeling and oscillatory behavior

    NASA Astrophysics Data System (ADS)

    Han, Kyungreem; Kwon, Hyun Woong; Kang, Hyuk; Kim, Jinwoong; Lee, Myung-Shik; Choi, M. Y.

    2012-02-01

    We propose a model for macroautophagy and study the resulting dynamics of autophagy in a system isolated from its extra-cellular environment. It is found that the intracellular concentrations of autophagosomes and autolysosomes display oscillations with their own natural frequencies. Such oscillatory behaviors, which are interrelated to the dynamics of intracellular ATP, amino acids, and proteins, are consistent with the very recent biological observations. Implications of this theoretical study of autophagy are discussed, with regard to the possibility of guiding molecular studies of autophagy.

  9. Nonlinear dynamics in the study of birdsong

    NASA Astrophysics Data System (ADS)

    Mindlin, Gabriel B.

    2017-09-01

    Birdsong, a rich and complex behavior, is a stellar model to understand a variety of biological problems, from motor control to learning. It also enables us to study how behavior emerges when a nervous system, a biomechanical device and the environment interact. In this review, I will show that many questions in the field can benefit from the approach of nonlinear dynamics, and how birdsong can inspire new directions for research in dynamics.

  10. A Formal Investigation of the Organization of Guidance Behavior: Implications for Humans and Autonomous Guidance

    NASA Astrophysics Data System (ADS)

    Kong, Zhaodan

    Guidance behavior generated either by artificial agents or humans has been actively studied in the fields of both robotics and cognitive science. The goals of these two fields are different. The former is the automatic generation of appropriate or even optimal behavior, while the latter is the understanding of the underlying mechanism. Their challenges, though, are closely related, the most important one being the lack of a unified, formal and grounded framework where the guidance behavior can be modeled and studied. This dissertation presents such a framework. In this framework, guidance behavior is analyzed as the closed-loop dynamics of the whole agent-environment system. The resulting dynamics give rise to interaction patterns. The central points of this dissertation are that: first of all, these patterns, which can be explained in terms of symmetries that are inherent to the guidance behavior, provide building blocks for the organization of behavior; second, the existence of these patterns and humans' organization of their guidance behavior based on these patterns are the reasons that humans can generate successful behavior in spite of all the complexities involved in the planning and control. This dissertation first gives an overview of the challenges existing in both scientific endeavors, such as human and animal spatial behavior study, and engineering endeavors, such as autonomous guidance system design. It then lays out the foundation for our formal framework, which states that guidance behavior should be interpreted as the collection of the closed-loop dynamics resulting from the agent's interaction with the environment. The following, illustrated by examples of three different UAVs, shows that the study of the closed-loop dynamics should not be done without the consideration of vehicle dynamics, as is the common practice in some of the studies in both autonomous guidance and human behavior analysis. The framework, the core concepts of which are symmetries and interaction patterns, is then elaborated on with the example of Dubins' vehicle's guidance behavior. The dissertation then describes the details of the agile human guidance experiments using miniature helicopters, the technique that is developed for the analysis of the experimental data and the analysis results. The results confirm that human guidance behavior indeed exhibits invariance as defined by interaction patterns. Subsequently, the behavior in each interaction pattern is investigated using piecewise affine model identification. Combined, the results provide a natural and formal decomposition of the behavior that can be unified under a hierarchical hidden Markov model. By employing the languages of dynamical system and control and by adopting algorithms from system identification and machine learning, the framework presented in this dissertation provides a fertile ground where these different disciplines can meet. It also promises multiple potential directions where future research can be headed.

  11. Double dynamic scaling in human communication dynamics

    NASA Astrophysics Data System (ADS)

    Wang, Shengfeng; Feng, Xin; Wu, Ye; Xiao, Jinhua

    2017-05-01

    In the last decades, human behavior has been deeply understanding owing to the huge quantities data of human behavior available for study. The main finding in human dynamics shows that temporal processes consist of high-activity bursty intervals alternating with long low-activity periods. A model, assuming the initiator of bursty follow a Poisson process, is widely used in the modeling of human behavior. Here, we provide further evidence for the hypothesis that different bursty intervals are independent. Furthermore, we introduce a special threshold to quantitatively distinguish the time scales of complex dynamics based on the hypothesis. Our results suggest that human communication behavior is a composite process of double dynamics with midrange memory length. The method for calculating memory length would enhance the performance of many sequence-dependent systems, such as server operation and topic identification.

  12. Study of tethered satellite active attitude control

    NASA Technical Reports Server (NTRS)

    Colombo, G.

    1982-01-01

    Existing software was adapted for the study of tethered subsatellite rotational dynamics, an analytic solution for a stable configuration of a tethered subsatellite was developed, the analytic and numerical integrator (computer) solutions for this "test case' was compared in a two mass tether model program (DUMBEL), the existing multiple mass tether model (SKYHOOK) was modified to include subsatellite rotational dynamics, the analytic "test case,' was verified, and the use of the SKYHOOK rotational dynamics capability with a computer run showing the effect of a single off axis thruster on the behavior of the subsatellite was demonstrated. Subroutines for specific attitude control systems are developed and applied to the study of the behavior of the tethered subsatellite under realistic on orbit conditions. The effect of all tether "inputs,' including pendular oscillations, air drag, and electrodynamic interactions, on the dynamic behavior of the tether are included.

  13. Exploring Behavioral Markers of Long-Term Physical Activity Maintenance: A Case Study of System Identification Modeling within a Behavioral Intervention

    ERIC Educational Resources Information Center

    Hekler, Eric B.; Buman, Matthew P.; Poothakandiyil, Nikhil; Rivera, Daniel E.; Dzierzewski, Joseph M.; Aiken Morgan, Adrienne; McCrae, Christina S.; Roberts, Beverly L.; Marsiske, Michael; Giacobbi, Peter R., Jr.

    2013-01-01

    Efficacious interventions to promote long-term maintenance of physical activity are not well understood. Engineers have developed methods to create dynamical system models for modeling idiographic (i.e., within-person) relationships within systems. In behavioral research, dynamical systems modeling may assist in decomposing intervention effects…

  14. Coupled disease-behavior dynamics on complex networks: A review

    NASA Astrophysics Data System (ADS)

    Wang, Zhen; Andrews, Michael A.; Wu, Zhi-Xi; Wang, Lin; Bauch, Chris T.

    2015-12-01

    It is increasingly recognized that a key component of successful infection control efforts is understanding the complex, two-way interaction between disease dynamics and human behavioral and social dynamics. Human behavior such as contact precautions and social distancing clearly influence disease prevalence, but disease prevalence can in turn alter human behavior, forming a coupled, nonlinear system. Moreover, in many cases, the spatial structure of the population cannot be ignored, such that social and behavioral processes and/or transmission of infection must be represented with complex networks. Research on studying coupled disease-behavior dynamics in complex networks in particular is growing rapidly, and frequently makes use of analysis methods and concepts from statistical physics. Here, we review some of the growing literature in this area. We contrast network-based approaches to homogeneous-mixing approaches, point out how their predictions differ, and describe the rich and often surprising behavior of disease-behavior dynamics on complex networks, and compare them to processes in statistical physics. We discuss how these models can capture the dynamics that characterize many real-world scenarios, thereby suggesting ways that policy makers can better design effective prevention strategies. We also describe the growing sources of digital data that are facilitating research in this area. Finally, we suggest pitfalls which might be faced by researchers in the field, and we suggest several ways in which the field could move forward in the coming years.

  15. Analysis of the dynamic behavior of structures using the high-rate GNSS-PPP method combined with a wavelet-neural model: Numerical simulation and experimental tests

    NASA Astrophysics Data System (ADS)

    Kaloop, Mosbeh R.; Yigit, Cemal O.; Hu, Jong W.

    2018-03-01

    Recently, the high rate global navigation satellite system-precise point positioning (GNSS-PPP) technique has been used to detect the dynamic behavior of structures. This study aimed to increase the accuracy of the extraction oscillation properties of structural movements based on the high-rate (10 Hz) GNSS-PPP monitoring technique. A developmental model based on the combination of wavelet package transformation (WPT) de-noising and neural network prediction (NN) was proposed to improve the dynamic behavior of structures for GNSS-PPP method. A complicated numerical simulation involving highly noisy data and 13 experimental cases with different loads were utilized to confirm the efficiency of the proposed model design and the monitoring technique in detecting the dynamic behavior of structures. The results revealed that, when combined with the proposed model, GNSS-PPP method can be used to accurately detect the dynamic behavior of engineering structures as an alternative to relative GNSS method.

  16. Variable threshold algorithm for division of labor analyzed as a dynamical system.

    PubMed

    Castillo-Cagigal, Manuel; Matallanas, Eduardo; Navarro, Iñaki; Caamaño-Martín, Estefanía; Monasterio-Huelin, Félix; Gutiérrez, Álvaro

    2014-12-01

    Division of labor is a widely studied aspect of colony behavior of social insects. Division of labor models indicate how individuals distribute themselves in order to perform different tasks simultaneously. However, models that study division of labor from a dynamical system point of view cannot be found in the literature. In this paper, we define a division of labor model as a discrete-time dynamical system, in order to study the equilibrium points and their properties related to convergence and stability. By making use of this analytical model, an adaptive algorithm based on division of labor can be designed to satisfy dynamic criteria. In this way, we have designed and tested an algorithm that varies the response thresholds in order to modify the dynamic behavior of the system. This behavior modification allows the system to adapt to specific environmental and collective situations, making the algorithm a good candidate for distributed control applications. The variable threshold algorithm is based on specialization mechanisms. It is able to achieve an asymptotically stable behavior of the system in different environments and independently of the number of individuals. The algorithm has been successfully tested under several initial conditions and number of individuals.

  17. The developmental dynamics of behavioral growth processes in rodent egocentric and allocentric space.

    PubMed

    Golani, Ilan

    2012-06-01

    In this review I focus on how three methodological principles advocated by Philip Teitelbaum influenced my work to this day: that similar principles of organization should be looked for in ontogeny and recovery of function; that the order of emergence of behavioral components provides a view on the organization of that behavior; and that the components of behavior should be exhibited by the animal itself in relatively pure form. I start by showing how these principles influenced our common work on the developmental dynamics of rodent egocentric space, and then proceed to describe how these principles affected my work with Yoav Benjamini and others on the developmental dynamics of rodent allocentric space. We analyze issues traditionally addressed by physiological psychologists with methods borrowed from ethology, EW (Eshkol-Wachman) movement notation, dynamical systems and exploratory data analysis. Then we show how the natural origins of axes embodied by the behavior of the organism itself, are used by us as the origins of axes for the measurement of the developmental moment-by-moment dynamics of behavior. Using this methodology we expose similar principles of organization across situations, species and preparations, provide a developmental view on the organization of behavior, expose the natural components of behavior in relatively pure form, and reveal how low level primitives generate higher level constructs. Advances in tracking technology should allow us to study how movements in egocentric and allocentric spaces interlace. Tracking of multi-limb coordination, progress in online recording of neural activity in freely moving animals, and the unprecedented accumulation of genetically engineered mouse preparations makes the behavioral ground plan exposed in this review essential for a systematic study of the brain/behavior interface. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Possibilities of fractal analysis of the competitive dynamics: Approaches and procedures

    NASA Astrophysics Data System (ADS)

    Zagornaya, T. O.; Medvedeva, M. A.; Panova, V. L.; Isaichik, K. F.; Medvedev, A. N.

    2017-11-01

    The possibilities of the fractal approach are used for the study of non-linear nature of the competitive dynamics of the market of trading intermediaries. Based on a statistical study of the functioning of retail indicators in the region, the approach to the analysis of the characteristics of the competitive behavior of market participants is developed. The authors postulate the principles of studying the dynamics of competition as a result of changes in the characteristics of the vector and the competitive behavior of market agents.

  19. Optical vortices as potential indicators of biophysical dynamics

    NASA Astrophysics Data System (ADS)

    Majumdar, Anindya; Kirkpatrick, Sean J.

    2017-03-01

    Laser speckle patterns are granular patterns produced as a result of random interference of light waves. Optical vortices (OVs) are phase singularities in such speckle fields, characterized by zero intensity and an undefined phase. Decorrelation of the speckle fields causes these OVs to move in both time and space. In this work, a variety of parameters of these OVs have been studied. The speckle fields were simulated to undergo three distinct decorrelation behaviors- Gaussian, Lorentzian and constant decorrelations. Different decorrelation behaviors represent different dynamics. For example, Lorentzian and Gaussian decorrelations represent Brownian and ordered motions, respectively. Typical dynamical systems in biophysics are generally argued to be a combination of these. For each of the decorrelation behaviors under study, the vortex trails were tracked while varying the rate of decorrelation. Parameters such as the decorrelation length, average trail length and the deviation of the vortices as they traversed in the speckle field, were studied. Empirical studies were also performed to define the distinction between trails arising from different speckle decorrelation behaviors. The initial studies under stationary speckle fields were followed up by similar studies on shifting fields. A new idea to employ Poincaŕe plots in speckle analysis has also been introduced. Our studies indicate that tracking OVs can be a potential method to study cell and tissue dynamics.

  20. Interaction Dynamics Between a Flexible Rotor and an Auxiliary Clearance Bearing

    NASA Technical Reports Server (NTRS)

    Lawen, James L., Jr.; Flowers, George T.

    1996-01-01

    This study investigates the application of synchronous interaction dynamics methodology to the design of auxiliary bearing systems. The technique is applied to a flexible rotor system and comparisons are made between the behavior predicted by this analysis method and the observed simulation response characteristics. Of particular interest is the influence of coupled shaft/bearing vibration modes on rotordynamical behavior. Experimental studies are also perFormed to validate the simulation results and provide insight into the expected behavior of such a system.

  1. Critical Behaviors in Contagion Dynamics.

    PubMed

    Böttcher, L; Nagler, J; Herrmann, H J

    2017-02-24

    We study the critical behavior of a general contagion model where nodes are either active (e.g., with opinion A, or functioning) or inactive (e.g., with opinion B, or damaged). The transitions between these two states are determined by (i) spontaneous transitions independent of the neighborhood, (ii) transitions induced by neighboring nodes, and (iii) spontaneous reverse transitions. The resulting dynamics is extremely rich including limit cycles and random phase switching. We derive a unifying mean-field theory. Specifically, we analytically show that the critical behavior of systems whose dynamics is governed by processes (i)-(iii) can only exhibit three distinct regimes: (a) uncorrelated spontaneous transition dynamics, (b) contact process dynamics, and (c) cusp catastrophes. This ends a long-standing debate on the universality classes of complex contagion dynamics in mean field and substantially deepens its mathematical understanding.

  2. Coupled disease-behavior dynamics on complex networks: A review.

    PubMed

    Wang, Zhen; Andrews, Michael A; Wu, Zhi-Xi; Wang, Lin; Bauch, Chris T

    2015-12-01

    It is increasingly recognized that a key component of successful infection control efforts is understanding the complex, two-way interaction between disease dynamics and human behavioral and social dynamics. Human behavior such as contact precautions and social distancing clearly influence disease prevalence, but disease prevalence can in turn alter human behavior, forming a coupled, nonlinear system. Moreover, in many cases, the spatial structure of the population cannot be ignored, such that social and behavioral processes and/or transmission of infection must be represented with complex networks. Research on studying coupled disease-behavior dynamics in complex networks in particular is growing rapidly, and frequently makes use of analysis methods and concepts from statistical physics. Here, we review some of the growing literature in this area. We contrast network-based approaches to homogeneous-mixing approaches, point out how their predictions differ, and describe the rich and often surprising behavior of disease-behavior dynamics on complex networks, and compare them to processes in statistical physics. We discuss how these models can capture the dynamics that characterize many real-world scenarios, thereby suggesting ways that policy makers can better design effective prevention strategies. We also describe the growing sources of digital data that are facilitating research in this area. Finally, we suggest pitfalls which might be faced by researchers in the field, and we suggest several ways in which the field could move forward in the coming years. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Time Reparametrization Group and the Long Time Behavior in Quantum Glassy Systems

    NASA Astrophysics Data System (ADS)

    Kennett, Malcolm P.; Chamon, Claudio

    2001-02-01

    We study the long time dynamics of a quantum version of the Sherrington-Kirkpatrick model. Time reparametrizations of the dynamical equations have a parallel with renormalization group transformations; in this language the long time behavior of this model is controlled by a reparametrization group ( RpG) fixed point of the classical dynamics. The irrelevance of quantum terms in the dynamical equations in the aging regime explains the classical nature of the out of equilibrium fluctuation-dissipation relation.

  4. Dynamic magnetic hysteresis properties of two-dimensional ferrimagnetic structures containing high-spin (S = 5/2) and low-spin (S = 1/2)

    NASA Astrophysics Data System (ADS)

    Batı, Mehmet; Ertaş, Mehmet

    2017-09-01

    The dynamic hysteresis behaviors of a containing high spin-5/2 and low spin-1/2 Ising ferrimagnetic system on a square lattice are studied by using the dynamic mean-field approximation. The influences of the temperature, the single-ion anisotropy and the frequency on dynamic hysteresis behaviors are investigated in detail. Somewhat characteristic behaviors are found, such as the presence of triple hysteresis loop for appropriate values of the crystal field or temperature. Besides, we observed that, hysteresis loop area and phase transition points are very sensitive to changes in frequency and thus have profound importance in device application.

  5. Universality in the Self Organized Critical behavior of a cellular model of superconducting vortex dynamics

    NASA Astrophysics Data System (ADS)

    Sun, Yudong; Vadakkan, Tegy; Bassler, Kevin

    2007-03-01

    We study the universality and robustness of variants of the simple model of superconducting vortex dynamics first introduced by Bassler and Paczuski in Phys. Rev. Lett. 81, 3761 (1998). The model is a coarse-grained model that captures the essential features of the plastic vortex motion. It accounts for the repulsive interaction between vortices, the pining of vortices at quenched disordered locations in the material, and the over-damped dynamics of the vortices that leads to tearing of the flux line lattice. We report the results of extensive simulations of the critical ``Bean state" dynamics of the model. We find a phase diagram containing four distinct phases of dynamical behavior, including two phases with distinct Self Organized Critical (SOC) behavior. Exponents describing the avalanche scaling behavior in the two SOC phases are determined using finite-size scaling. The exponents are found to be robust within each phase and for different variants of the model. The difference of the scaling behavior in the two phases is also observed in the morphology of the avalanches.

  6. The Behavioral Type of a Top Predator Drives the Short-Term Dynamic of Intraguild Predation.

    PubMed

    Michalko, Radek; Pekár, Stano

    2017-03-01

    Variation in behavior among individual top predators (i.e., the behavioral type) can strongly shape pest suppression in intraguild predation (IGP). However, the effect of a top predator's behavioral type-namely, foraging aggressiveness (number of killed divided by prey time) and prey choosiness (preference degree for certain prey type)-on the dynamic of IGP may interact with the relative abundances of top predator, mesopredator, and pest. We investigated the influence of the top predator's behavioral type on the dynamic of IGP in a three-species system with a top predator spider, a mesopredator spider, and a psyllid pest using a simulation model. The model parameters were estimated from laboratory experiments and field observations. The top predator's behavioral type altered the food-web dynamics in a context-dependent manner. The system with an aggressive/nonchoosy top predator, without prey preferences between pest and mesopredator, suppressed the pest more when the top predator to mesopredator abundance ratio was high. In contrast, the system with a timid/choosy top predator that preferred the pest to the mesopredator was more effective when the ratio was low. Our results show that the behavioral types and abundances of interacting species need to be considered together when studying food-web dynamics, because they evidently interact. To improve biocontrol efficiency of predators, research on the alteration of their behavioral types is needed.

  7. Shock Response and Dynamic Failure of Spatially Tailored Aero-Thermal Structures

    DTIC Science & Technology

    2012-09-15

    Deformation Behavior of Nanolaminated Titanium Aluminum Carbide. 36th International Conference and Exposition on Advanced Ceramics and Composites ...Deformation Behavior of Nanolaminated Titanium Aluminum Carbide. Effect of Strain-rate and Temperature on Dynamic Deformation of Nanolaminated...conditions, we are unaware of any studies published in the open literature on the effect of high strain rate deformation behavior of Ti2AlC at room or

  8. Geometry of behavioral spaces: A computational approach to analysis and understanding of agent based models and agent behaviors

    NASA Astrophysics Data System (ADS)

    Cenek, Martin; Dahl, Spencer K.

    2016-11-01

    Systems with non-linear dynamics frequently exhibit emergent system behavior, which is important to find and specify rigorously to understand the nature of the modeled phenomena. Through this analysis, it is possible to characterize phenomena such as how systems assemble or dissipate and what behaviors lead to specific final system configurations. Agent Based Modeling (ABM) is one of the modeling techniques used to study the interaction dynamics between a system's agents and its environment. Although the methodology of ABM construction is well understood and practiced, there are no computational, statistically rigorous, comprehensive tools to evaluate an ABM's execution. Often, a human has to observe an ABM's execution in order to analyze how the ABM functions, identify the emergent processes in the agent's behavior, or study a parameter's effect on the system-wide behavior. This paper introduces a new statistically based framework to automatically analyze agents' behavior, identify common system-wide patterns, and record the probability of agents changing their behavior from one pattern of behavior to another. We use network based techniques to analyze the landscape of common behaviors in an ABM's execution. Finally, we test the proposed framework with a series of experiments featuring increasingly emergent behavior. The proposed framework will allow computational comparison of ABM executions, exploration of a model's parameter configuration space, and identification of the behavioral building blocks in a model's dynamics.

  9. Geometry of behavioral spaces: A computational approach to analysis and understanding of agent based models and agent behaviors.

    PubMed

    Cenek, Martin; Dahl, Spencer K

    2016-11-01

    Systems with non-linear dynamics frequently exhibit emergent system behavior, which is important to find and specify rigorously to understand the nature of the modeled phenomena. Through this analysis, it is possible to characterize phenomena such as how systems assemble or dissipate and what behaviors lead to specific final system configurations. Agent Based Modeling (ABM) is one of the modeling techniques used to study the interaction dynamics between a system's agents and its environment. Although the methodology of ABM construction is well understood and practiced, there are no computational, statistically rigorous, comprehensive tools to evaluate an ABM's execution. Often, a human has to observe an ABM's execution in order to analyze how the ABM functions, identify the emergent processes in the agent's behavior, or study a parameter's effect on the system-wide behavior. This paper introduces a new statistically based framework to automatically analyze agents' behavior, identify common system-wide patterns, and record the probability of agents changing their behavior from one pattern of behavior to another. We use network based techniques to analyze the landscape of common behaviors in an ABM's execution. Finally, we test the proposed framework with a series of experiments featuring increasingly emergent behavior. The proposed framework will allow computational comparison of ABM executions, exploration of a model's parameter configuration space, and identification of the behavioral building blocks in a model's dynamics.

  10. Dynamic route and departure time choice model based on self-adaptive reference point and reinforcement learning

    NASA Astrophysics Data System (ADS)

    Li, Xue-yan; Li, Xue-mei; Yang, Lingrun; Li, Jing

    2018-07-01

    Most of the previous studies on dynamic traffic assignment are based on traditional analytical framework, for instance, the idea of Dynamic User Equilibrium has been widely used in depicting both the route choice and the departure time choice. However, some recent studies have demonstrated that the dynamic traffic flow assignment largely depends on travelers' rationality degree, travelers' heterogeneity and what the traffic information the travelers have. In this paper, we develop a new self-adaptive multi agent model to depict travelers' behavior in Dynamic Traffic Assignment. We use Cumulative Prospect Theory with heterogeneous reference points to illustrate travelers' bounded rationality. We use reinforcement-learning model to depict travelers' route and departure time choosing behavior under the condition of imperfect information. We design the evolution rule of travelers' expected arrival time and the algorithm of traffic flow assignment. Compared with the traditional model, the self-adaptive multi agent model we proposed in this paper can effectively help travelers avoid the rush hour. Finally, we report and analyze the effect of travelers' group behavior on the transportation system, and give some insights into the relation between travelers' group behavior and the performance of transportation system.

  11. Dynamic Light Scattering Study of Pig Vitreous Body

    NASA Astrophysics Data System (ADS)

    Matsuura, Toyoaki; Idota, Naokazu; Hara, Yoshiaki; Annaka, Masahiko

    The phase behaviors and dynamical properties of pig vitreous body were studied by macroscopic observation of swelling behavior and dynamic light scattering under various conditions. From the observations of the dynamics of light scattered by the pig vitreous body under physiological condition, intensity autocorrelation functions that revealed two diffusion coefficients, D fast and D slow were obtained. We developed the theory for describing the density fluctuation of the entities in the vitreous gel system with sodium hyaluronate filled in the meshes of collagen fiber network. The dynamics of collagen and sodium hyaluronate explains two relaxation modes of the fluctuation. The diffusion coefficient of collagen obtained from D fast and D slow is very close to that in aqueous solution, which suggests the vitreous body is in the swollen state. Divergent behavior in the measured total scattered light intensities and diffusion coefficients upon varying the concentration of salt (NaCl and CaCl2) was observed. Namely, a slowing down of the dynamic modes accompanied by increased “static” scattered intensities was observed. This is indicative of the occurrence of a phase transition upon salt concentration.

  12. Information driven self-organization of complex robotic behaviors.

    PubMed

    Martius, Georg; Der, Ralf; Ay, Nihat

    2013-01-01

    Information theory is a powerful tool to express principles to drive autonomous systems because it is domain invariant and allows for an intuitive interpretation. This paper studies the use of the predictive information (PI), also called excess entropy or effective measure complexity, of the sensorimotor process as a driving force to generate behavior. We study nonlinear and nonstationary systems and introduce the time-local predicting information (TiPI) which allows us to derive exact results together with explicit update rules for the parameters of the controller in the dynamical systems framework. In this way the information principle, formulated at the level of behavior, is translated to the dynamics of the synapses. We underpin our results with a number of case studies with high-dimensional robotic systems. We show the spontaneous cooperativity in a complex physical system with decentralized control. Moreover, a jointly controlled humanoid robot develops a high behavioral variety depending on its physics and the environment it is dynamically embedded into. The behavior can be decomposed into a succession of low-dimensional modes that increasingly explore the behavior space. This is a promising way to avoid the curse of dimensionality which hinders learning systems to scale well.

  13. Dynamic response of underpasses for high-speed train lines

    NASA Astrophysics Data System (ADS)

    Vega, J.; Fraile, A.; Alarcon, E.; Hermanns, L.

    2012-11-01

    Underpasses are common in modern railway lines. Wildlife corridors and drainage conduits often fall into this category of partially buried structures. Their dynamic behavior has received far less attention than that of other structures such as bridges, but their large number makes their study an interesting challenge from the viewpoint of safety and cost savings. Here, we present a complete study of a culvert, including on-site measurements and numerical modeling. The studied structure belongs to the high-speed railway line linking Segovia and Valladolid in Spain. The line was opened to traffic in 2004. On-site measurements were performed for the structure by recording the dynamic response at selected points of the structure during the passage of high-speed trains at speeds ranging between 200 and 300 km/h. The measurements provide not only reference values suitable for model fitting, but also a good insight into the main features of the dynamic behavior of this structure. Finite element techniques were used to model the dynamic behavior of the structure and its key features. Special attention is paid to vertical accelerations, the values of which should be limited to avoid track instability according to Eurocode. This study furthers our understanding of the dynamic response of railway underpasses to train loads.

  14. Relaxation mechanisms in glassy dynamics: the Arrhenius and fragile regimes.

    PubMed

    Hentschel, H George E; Karmakar, Smarajit; Procaccia, Itamar; Zylberg, Jacques

    2012-06-01

    Generic glass formers exhibit at least two characteristic changes in their relaxation behavior, first to an Arrhenius-type relaxation at some characteristic temperature and then at a lower characteristic temperature to a super-Arrhenius (fragile) behavior. We address these transitions by studying the statistics of free energy barriers for different systems at different temperatures and space dimensions. We present a clear evidence for changes in the dynamical behavior at the transition to Arrhenius and then to a super-Arrhenius behavior. A simple model is presented, based on the idea of competition between single-particle and cooperative dynamics. We argue that Arrhenius behavior can take place as long as there is enough free volume for the completion of a simple T1 relaxation process. Once free volume is absent one needs a cooperative mechanism to "collect" enough free volume. We show that this model captures all the qualitative behavior observed in simulations throughout the considered temperature range.

  15. Smoking Behavior and Friendship Formation: The Importance of Time Heterogeneity in Studying Social Network Dynamics

    DTIC Science & Technology

    2010-01-01

    Smoking Behavior and Friendship Formation: The Importance of Time Heterogeneity in Studying Social Network Dynamics Joshua A. Lospinoso Department of...djsatchell@gmail.com Abstract—This study illustrates the importance of assessing and accounting for time heterogeneity in longitudinal social net- work...analysis. We apply the time heterogeneity model selection procedure of [1] to a dataset collected on social tie formation for university freshman in the

  16. Comparison of the Single Molecule Dynamics of Linear and Circular DNAs in Planar Extensional Flows

    NASA Astrophysics Data System (ADS)

    Li, Yanfei; Hsiao, Kai-Wen; Brockman, Christopher; Yates, Daniel; McKenna, Gregory; Schroeder, Charles; San Francisco, Michael; Kornfield, Julie; Anderson, Rae

    2015-03-01

    Chain topology has a profound impact on the flow behaviors of single macromolecules. The absence of free ends separates circular polymers from other chain architectures, i.e., linear, star, and branched. In the present work, we study the single chain dynamics of large circular and linear DNA molecules by comparing the relaxation dynamics, steady state coil-stretch transition, and transient molecular individualism behaviors for the two types of macromolecules. To this end, large circular DNA molecules were biologically synthesized and studied in a microfluidic device that has a cross-slot geometry to develop a stagnation point extensional flow. Although the relaxation time of rings scales in the same way as for the linear analog, the circular polymers show quantitatively different behaviors in the steady state extension and qualitatively different behaviors during a transient stretch. The existence of some commonality between these two topologies is proposed. Texas Tech University John R. Bradford Endowment.

  17. Self-spreading of the wetting ridge during stick-slip on a viscoelastic surface

    DOE PAGES

    Park, S. J.; Bostwick, J. B.; De Andrade, V.; ...

    2017-10-23

    Dynamic wetting behaviors on soft solids are important to interpret complex biological processes from cell–substrate interactions. Despite intensive research studies over the past half-century, the underlying mechanisms of spreading behaviors are not clearly understood. The most interesting feature of wetting on soft matter is the formation of a “wetting ridge”, a surface deformation by a competition between elasticity and capillarity. Dynamics of the wetting ridge formed at the three-phase contact line underlies the dynamic wetting behaviors, but remains largely unexplored mostly due to limitations in indirect observation. Here, we directly visualize wetting ridge dynamics during continuous- and stick-slip motions onmore » a viscoelastic surface using X-ray microscopy. Strikingly, we discover that the ridge spreads spontaneously during stick and triggers contact line depinning (stick-to-slip transition) by changing the ridge geometry which weakens the contact line pinning. Finally, we clarify ‘viscoelastic-braking’, ‘stick-slipping’, and ‘stick-breaking’ spreading behaviors through the ridge dynamics. In stick-breaking, no ridge-spreading occurs and contact line pinning (hysteresis) is enhanced by cusp-bending while preserving a microscopic equilibrium at the ridge tip. We have furthered the understanding of spreading behaviors on soft solids and demonstrated the value of X-ray microscopy in elucidating various dynamic wetting behaviors on soft solids as well as puzzling biological issues.« less

  18. Seasonal frost effects on the dynamic behavior of a twenty-story office building

    USGS Publications Warehouse

    Yang, Z.; Dutta, U.; Xiong, F.; Biswas, N.; Benz, H.

    2008-01-01

    Studies have shown that seasonal frost can significantly affect the seismic behavior of a bridge foundation system in cold regions. However, little information could be found regarding seasonal frost effects on the dynamic behavior of buildings. Based on the analysis of building vibration data recorded by a permanent strong-motion instrumentation system, the objective of this paper is to show that seasonal frost can impact the building dynamic behavior and the magnitude of impact may be different for different structures. Ambient noise and seismic data recorded on a twenty-story steel-frame building have been analyzed to examine the building dynamic characteristics in relationship to the seasonal frost and other variables including ground shaking intensity. Subsequently, Finite Element modeling of the foundation-soil system and the building superstructure was conducted to verify the seasonal frost effects. The Finite Element modeling was later extended to a reinforced-concrete (RC) type building assumed to exist at a similar site as the steel-frame building. Results show that the seasonal frost has great impact on the foundation stiffness in the horizontal direction and a clear influence on the building dynamic behavior. If other conditions remain the same, the effects of seasonal frost on structural dynamic behavior may be much more prominent for RC-type buildings than for steel-frame buildings. ?? 2007 Elsevier B.V. All rights reserved.

  19. A nonlinear dynamics of trunk kinematics during manual lifting tasks.

    PubMed

    Khalaf, Tamer; Karwowski, Waldemar; Sapkota, Nabin

    2015-01-01

    Human responses at work may exhibit nonlinear properties where small changes in the initial task conditions can lead to large changes in system behavior. Therefore, it is important to study such nonlinearity to gain a better understanding of human performance under a variety of physical, perceptual, and cognitive tasks conditions. The main objective of this study was to investigate whether the human trunk kinematics data during a manual lifting task exhibits nonlinear behavior in terms of determinist chaos. Data related to kinematics of the trunk with respect to the pelvis were collected using Industrial Lumbar Motion Monitor (ILMM), and analyzed applying the nonlinear dynamical systems methodology. Nonlinear dynamics quantifiers of Lyapunov exponents and Kaplan-Yorke dimensions were calculated and analyzed under different task conditions. The study showed that human trunk kinematics during manual lifting exhibits chaotic behavior in terms of trunk sagittal angular displacement, velocity and acceleration. The findings support the importance of accounting for nonlinear dynamical properties of biomechanical responses to lifting tasks.

  20. Emergence of scaling in human-interest dynamics.

    PubMed

    Zhao, Zhi-Dan; Yang, Zimo; Zhang, Zike; Zhou, Tao; Huang, Zi-Gang; Lai, Ying-Cheng

    2013-12-11

    Human behaviors are often driven by human interests. Despite intense recent efforts in exploring the dynamics of human behaviors, little is known about human-interest dynamics, partly due to the extreme difficulty in accessing the human mind from observations. However, the availability of large-scale data, such as those from e-commerce and smart-phone communications, makes it possible to probe into and quantify the dynamics of human interest. Using three prototypical "Big Data" sets, we investigate the scaling behaviors associated with human-interest dynamics. In particular, from the data sets we uncover fat-tailed (possibly power-law) distributions associated with the three basic quantities: (1) the length of continuous interest, (2) the return time of visiting certain interest, and (3) interest ranking and transition. We argue that there are three basic ingredients underlying human-interest dynamics: preferential return to previously visited interests, inertial effect, and exploration of new interests. We develop a biased random-walk model, incorporating the three ingredients, to account for the observed fat-tailed distributions. Our study represents the first attempt to understand the dynamical processes underlying human interest, which has significant applications in science and engineering, commerce, as well as defense, in terms of specific tasks such as recommendation and human-behavior prediction.

  1. Correlation between dynamic wetting behavior and chemical components of thermally modified wood

    NASA Astrophysics Data System (ADS)

    Wang, Wang; Zhu, Yuan; Cao, Jinzhen; Sun, Wenjing

    2015-01-01

    In order to investigate the dynamic wetting behavior of thermally modified wood, Cathay poplar (Populus cathayana Rehd.) and Scots pine (Pinus sylvestris L.) samples were thermally modified in an oven at 160, 180, 200, 220 or 240 °C for 4 h in this study. The dynamic contact angles and droplet volumes of water droplets on modified and unmodified wood surfaces were measured by sessile drop method, and their changing rates (expression index: K value and wetting slope) calculated by wetting models were illustrated for mapping the dynamic wetting process. The surface chemical components were also measured by X-ray photoelectron spectroscopy analysis (XPS), thus the relationship between dynamic wetting behavior and chemical components of thermally modified wood were determined. The results indicated that thermal modification was capable of decreasing the dynamic wettability of wood, expressed in lowing spread and penetration speed of water droplets on wood surfaces. This change was more obvious with the increased heating temperature. The K values varied linearly with the chemical components parameter (mass loss, O/C ratio, and C1/C2 ratio), indicating a strong correlation between dynamic wetting behavior and chemical components of thermally modified wood.

  2. Emergence of scaling in human-interest dynamics

    NASA Astrophysics Data System (ADS)

    Zhao, Zhi-Dan; Yang, Zimo; Zhang, Zike; Zhou, Tao; Huang, Zi-Gang; Lai, Ying-Cheng

    2013-12-01

    Human behaviors are often driven by human interests. Despite intense recent efforts in exploring the dynamics of human behaviors, little is known about human-interest dynamics, partly due to the extreme difficulty in accessing the human mind from observations. However, the availability of large-scale data, such as those from e-commerce and smart-phone communications, makes it possible to probe into and quantify the dynamics of human interest. Using three prototypical ``Big Data'' sets, we investigate the scaling behaviors associated with human-interest dynamics. In particular, from the data sets we uncover fat-tailed (possibly power-law) distributions associated with the three basic quantities: (1) the length of continuous interest, (2) the return time of visiting certain interest, and (3) interest ranking and transition. We argue that there are three basic ingredients underlying human-interest dynamics: preferential return to previously visited interests, inertial effect, and exploration of new interests. We develop a biased random-walk model, incorporating the three ingredients, to account for the observed fat-tailed distributions. Our study represents the first attempt to understand the dynamical processes underlying human interest, which has significant applications in science and engineering, commerce, as well as defense, in terms of specific tasks such as recommendation and human-behavior prediction.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhai, Liangjun; Zheng, Yujun, E-mail: yzheng@sdu.edu.cn

    In the present study, the dynamical behaviors of tripartite entanglement of vibrations in triatomic molecules are studied based on the Lie algebraic models of molecules. The dynamical behaviors of tripartite entanglement of the local mode molecule H{sub 2}O and normal mode molecule NO{sub 2} are comparatively studied for different initial states by employing the general concurrence. Our results show that the dynamics of tripartite entanglement are relied on the dynamics of intramolecular energy distribution. The local mode molecule is more suitable to construct the tripartite entangled states. Also, the greater degree of tripartite entanglement can be obtained if the stretchingmore » vibration is first excited. These results shed new light on the understanding of quantum multipartite entanglement of vibrations in the polyatomic molecules.« less

  4. Mouse Social Network Dynamics and Community Structure are Associated with Plasticity-Related Brain Gene Expression

    PubMed Central

    Williamson, Cait M.; Franks, Becca; Curley, James P.

    2016-01-01

    Laboratory studies of social behavior have typically focused on dyadic interactions occurring within a limited spatiotemporal context. However, this strategy prevents analyses of the dynamics of group social behavior and constrains identification of the biological pathways mediating individual differences in behavior. In the current study, we aimed to identify the spatiotemporal dynamics and hierarchical organization of a large social network of male mice. We also sought to determine if standard assays of social and exploratory behavior are predictive of social behavior in this social network and whether individual network position was associated with the mRNA expression of two plasticity-related genes, DNA methyltransferase 1 and 3a. Mice were observed to form a hierarchically organized social network and self-organized into two separate social network communities. Members of both communities exhibited distinct patterns of socio-spatial organization within the vivaria that was not limited to only agonistic interactions. We further established that exploratory and social behaviors in standard behavioral assays conducted prior to placing the mice into the large group was predictive of initial network position and behavior but were not associated with final social network position. Finally, we determined that social network position is associated with variation in mRNA levels of two neural plasticity genes, DNMT1 and DNMT3a, in the hippocampus but not the mPOA. This work demonstrates the importance of understanding the role of social context and complex social dynamics in determining the relationship between individual differences in social behavior and brain gene expression. PMID:27540359

  5. Unraveling dynamics of human physical activity patterns in chronic pain conditions

    NASA Astrophysics Data System (ADS)

    Paraschiv-Ionescu, Anisoara; Buchser, Eric; Aminian, Kamiar

    2013-06-01

    Chronic pain is a complex disabling experience that negatively affects the cognitive, affective and physical functions as well as behavior. Although the interaction between chronic pain and physical functioning is a well-accepted paradigm in clinical research, the understanding of how pain affects individuals' daily life behavior remains a challenging task. Here we develop a methodological framework allowing to objectively document disruptive pain related interferences on real-life physical activity. The results reveal that meaningful information is contained in the temporal dynamics of activity patterns and an analytical model based on the theory of bivariate point processes can be used to describe physical activity behavior. The model parameters capture the dynamic interdependence between periods and events and determine a `signature' of activity pattern. The study is likely to contribute to the clinical understanding of complex pain/disease-related behaviors and establish a unified mathematical framework to quantify the complex dynamics of various human activities.

  6. Dynamic and static fatigue behavior of sintered silicon nitrides

    NASA Technical Reports Server (NTRS)

    Chang, J.; Khandelwal, P.; Heitman, P. W.

    1987-01-01

    The dynamic and static fatigue behavior of Kyocera SN220M sintered silicon nitride at 1000 C was studied. Fractographic analysis of the material failing in dynamic fatigue revealed the presence of slow crack growth (SCG) at stressing rates below 41 MPa/min. Under conditions of static fatigue this material also displayed SCG at stresses below 345 MPa. SCG appears to be controlled by microcracking of the grain boundaries. The crack velocity exponent (n) determined from both dynamic and static fatigue tests ranged from 11 to 16.

  7. Boldness by habituation and social interactions: a model.

    PubMed

    Oosten, Johanneke E; Magnhagen, Carin; Hemelrijk, Charlotte K

    2010-04-01

    Most studies of animal personality attribute personality to genetic traits. But a recent study by Magnhagen and Staffan (Behav Ecol Sociobiol 57:295-303, 2005) on young perch in small groups showed that boldness, a central personality trait, is also shaped by social interactions and by previous experience. The authors measured boldness by recording the duration that an individual spent near a predator and the speed with which it fed there. They found that duration near the predator increased over time and was higher the higher the average boldness of other group members. In addition, the feeding rate of shy individuals was reduced if other members of the same group were bold. The authors supposed that these behavioral dynamics were caused by genetic differences, social interactions, and habituation to the predator. However, they did not quantify exactly how this could happen. In the present study, we therefore use an agent-based model to investigate whether these three factors may explain the empirical findings. We choose an agent-based model because this type of model is especially suited to study the relation between behavior at an individual level and behavioral dynamics at a group level. In our model, individuals were either hiding in vegetation or feeding near a predator, whereby their behavior was affected by habituation and by two social mechanisms: social facilitation to approach the predator and competition over food. We show that even if we start the model with identical individuals, these three mechanisms were sufficient to reproduce the behavioral dynamics of the empirical study, including the consistent differences among individuals. Moreover, if we start the model with individuals that already differ in boldness, the behavioral dynamics produced remained the same. Our results indicate the importance of previous experience and social interactions when studying animal personality empirically.

  8. Tendon exhibits complex poroelastic behavior at the nanoscale as revealed by high-frequency AFM-based rheology.

    PubMed

    Connizzo, Brianne K; Grodzinsky, Alan J

    2017-03-21

    Tendons transmit load from muscle to bone by utilizing their unique static and viscoelastic tensile properties. These properties are highly dependent on the composition and structure of the tissue matrix, including the collagen I hierarchy, proteoglycans, and water. While the role of matrix constituents in the tensile response has been studied, their role in compression, particularly in matrix pressurization via regulation of fluid flow, is not well understood. Injured or diseased tendons and tendon regions that naturally experience compression are known to have alterations in glycosaminoglycan content, which could modulate fluid flow and ultimately mechanical function. While recent theoretical studies have predicted tendon mechanics using poroelastic theory, no experimental data have directly demonstrated such behavior. In this study, we use high-bandwidth AFM-based rheology to determine the dynamic response of tendons to compressive loading at the nanoscale and to determine the presence of poroelastic behavior. Tendons are found to have significant characteristic dynamic relaxation behavior occurring at both low and high frequencies. Classic poroelastic behavior is observed, although we hypothesize that the full dynamic response is caused by a combination of flow-dependent poroelasticity as well as flow-independent viscoelasticity. Tendons also demonstrate regional dependence in their dynamic response, particularly near the junction of tendon and bone, suggesting that the structural and compositional heterogeneity in tendon may be responsible for regional poroelastic behavior. Overall, these experiments provide the foundation for understanding fluid-flow-dependent poroelastic mechanics of tendon, and the methodology is valuable for assessing changes in tendon matrix compressive behavior at the nanoscale. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Chaotic behaviors of operational amplifiers.

    PubMed

    Yim, Geo-Su; Ryu, Jung-Wan; Park, Young-Jai; Rim, Sunghwan; Lee, Soo-Young; Kye, Won-Ho; Kim, Chil-Min

    2004-04-01

    We investigate nonlinear dynamical behaviors of operational amplifiers. When the output terminal of an operational amplifier is connected to the inverting input terminal, the circuit exhibits period-doubling bifurcation, chaos, and periodic windows, depending on the voltages of the positive and the negative power supplies. We study these nonlinear dynamical characteristics of this electronic circuit experimentally.

  10. Mathematical modelling and linear stability analysis of laser fusion cutting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hermanns, Torsten; Schulz, Wolfgang; Vossen, Georg

    A model for laser fusion cutting is presented and investigated by linear stability analysis in order to study the tendency for dynamic behavior and subsequent ripple formation. The result is a so called stability function that describes the correlation of the setting values of the process and the process’ amount of dynamic behavior.

  11. Noise-driven switching and chaotic itinerancy among dynamic states in a three-mode intracavity second-harmonic generation laser operating on a Λ transition

    NASA Astrophysics Data System (ADS)

    Otsuka, Kenju; Ohtomo, Takayuki; Maniwa, Tsuyoshi; Kawasaki, Hazumi; Ko, Jing-Yuan

    2003-09-01

    We studied the antiphase self-pulsation in a globally coupled three-mode laser operating in different optical spectrum configurations. We observed locking of modal pulsation frequencies, quasiperiodicity, clustering behaviors, and chaos, resulting from the nonlinear interaction among modes. The robustness of [p:q:r] three-frequency locking states and quasiperiodic oscillations against residual noise has been examined by using joint time-frequency analysis of long-term experimental time series. Two sharply antithetical types of switching behaviors among different dynamic states were observed during temporal evolutions; noise-driven switching and self-induced switching, which manifests itself in chaotic itinerancy. The modal interplay behind observed behaviors was studied by using the statistical dynamic quantity of the information circulation. Well-organized information flows among modes, which correspond to the number of degeneracies of modal pulsation frequencies, were found to be established in accordance with the inherent antiphase dynamics. Observed locking behaviors, quasiperiodic motions, and chaotic itinerancy were reproduced by numerical simulation of the model equations.

  12. Periodic, Quasi-periodic and Chaotic Dynamics in Simple Gene Elements with Time Delays

    PubMed Central

    Suzuki, Yoko; Lu, Mingyang; Ben-Jacob, Eshel; Onuchic, José N.

    2016-01-01

    Regulatory gene circuit motifs play crucial roles in performing and maintaining vital cellular functions. Frequently, theoretical studies of gene circuits focus on steady-state behaviors and do not include time delays. In this study, the inclusion of time delays is shown to entirely change the time-dependent dynamics for even the simplest possible circuits with one and two gene elements with self and cross regulations. These elements can give rise to rich behaviors including periodic, quasi-periodic, weak chaotic, strong chaotic and intermittent dynamics. We introduce a special power-spectrum-based method to characterize and discriminate these dynamical modes quantitatively. Our simulation results suggest that, while a single negative feedback loop of either one- or two-gene element can only have periodic dynamics, the elements with two positive/negative feedback loops are the minimalist elements to have chaotic dynamics. These elements typically have one negative feedback loop that generates oscillations, and another unit that allows frequent switches among multiple steady states or between oscillatory and non-oscillatory dynamics. Possible dynamical features of several simple one- and two-gene elements are presented in details. Discussion is presented for possible roles of the chaotic behavior in the robustness of cellular functions and diseases, for example, in the context of cancer. PMID:26876008

  13. Periodic, Quasi-periodic and Chaotic Dynamics in Simple Gene Elements with Time Delays

    NASA Astrophysics Data System (ADS)

    Suzuki, Yoko; Lu, Mingyang; Ben-Jacob, Eshel; Onuchic, José N.

    2016-02-01

    Regulatory gene circuit motifs play crucial roles in performing and maintaining vital cellular functions. Frequently, theoretical studies of gene circuits focus on steady-state behaviors and do not include time delays. In this study, the inclusion of time delays is shown to entirely change the time-dependent dynamics for even the simplest possible circuits with one and two gene elements with self and cross regulations. These elements can give rise to rich behaviors including periodic, quasi-periodic, weak chaotic, strong chaotic and intermittent dynamics. We introduce a special power-spectrum-based method to characterize and discriminate these dynamical modes quantitatively. Our simulation results suggest that, while a single negative feedback loop of either one- or two-gene element can only have periodic dynamics, the elements with two positive/negative feedback loops are the minimalist elements to have chaotic dynamics. These elements typically have one negative feedback loop that generates oscillations, and another unit that allows frequent switches among multiple steady states or between oscillatory and non-oscillatory dynamics. Possible dynamical features of several simple one- and two-gene elements are presented in details. Discussion is presented for possible roles of the chaotic behavior in the robustness of cellular functions and diseases, for example, in the context of cancer.

  14. Conceptual shifts needed to understand the dynamic interactions of genes, environment, epigenetics, social processes, and behavioral choices.

    PubMed

    Jackson, Fatimah L C; Niculescu, Mihai D; Jackson, Robert T

    2013-10-01

    Social and behavioral research in public health is often intimately tied to profound, but frequently neglected, biological influences from underlying genetic, environmental, and epigenetic events. The dynamic interplay between the life, social, and behavioral sciences often remains underappreciated and underutilized in addressing complex diseases and disorders and in developing effective remediation strategies. Using a case-study format, we present examples as to how the inclusion of genetic, environmental, and epigenetic data can augment social and behavioral health research by expanding the parameters of such studies, adding specificity to phenotypic assessments, and providing additional internal control in comparative studies. We highlight the important roles of gene-environment interactions and epigenetics as sources of phenotypic change and as a bridge between the life and social and behavioral sciences in the development of robust interdisciplinary analyses.

  15. Inclusion Complexes Behavior at the Air-Water Interface. Molecular Dynamic Simulation Study.

    NASA Astrophysics Data System (ADS)

    Gargallo, L.; Vargas, D.; Sandoval, C.; Saavedra, M.; Becerra, N.; Leiva, A.; Radić, D.

    2008-08-01

    The interfacial properties of the inclusion complexes (ICs), obtained from the threading of α-cyclodextrin (α-CD) onto poly(ethylene-oxide)(PEO), poly(ɛ-caprolactone)(PEC) and poly(tetrahydrofuran)(PTHF) and their precursor homopolymers (PHPoly), were studied at the air-water interface. The free surface energy was determined by wettability measurements. The experimental behavior of these systems was described by an atomistic molecular dynamics simulation (MDS).

  16. Gender consistency and flexibility: using dynamics to understand the relationship between gender and adjustment.

    PubMed

    DiDonato, Matthew D; Martin, Carol L; Hessler, Eric E; Amazeen, Polemnia G; Hanish, Laura D; Fabes, Richard A

    2012-04-01

    Controversy surrounds questions regarding the influence of being gender consistent (i.e., having and expressing gendered characteristics that are consistent with one's biological sex) versus being gender flexible (i.e., having and expressing gendered characteristics that vary from masculine to feminine as circumstances arise) on children's adjustment outcomes, such as self-esteem, positive emotion, or behavior problems. Whereas evidence supporting the consistency hypothesis is abundant, little support exists for the flexibility hypothesis. To shed new light on the flexibility hypothesis, we explored children's gendered behavior from a dynamical perspective that highlighted variability and flexibility in addition to employing a conventional approach that emphasized stability and consistency. Conventional mean-level analyses supported the consistency hypothesis by revealing that gender atypical behavior was related to greater maladjustment, and dynamical analyses supported the flexibility hypothesis by showing that flexibility of gendered behavior over time was related to positive adjustment. Integrated analyses showed that gender typical behavior was related to the adjustment of children who were behaviorally inflexible, but not for those who were flexible. These results provided a more comprehensive understanding of the relation between gendered behavior and adjustment in young children and illustrated for the first time the feasibility of applying dynamical analyses to the study of gendered behavior.

  17. Dynamic mechanical characterization of aluminum: analysis of strain-rate-dependent behavior

    NASA Astrophysics Data System (ADS)

    Rahmat, Meysam

    2018-05-01

    A significant number of materials show different mechanical behavior under dynamic loads compared to quasi-static (Salvado et al. in Prog. Mater. Sci. 88:186-231, 2017). Therefore, a comprehensive study of material dynamic behavior is essential for applications in which dynamic loads are dominant (Li et al. in J. Mater. Process. Technol. 255:373-386, 2018). In this work, aluminum 6061-T6, as an example of ductile alloys with numerous applications including in the aerospace industry, has been studied under quasi-static and dynamic tensile tests with strain rates of up to 156 s^{-1}. Dogbone specimens were designed, instrumented and tested with a high speed servo-hydraulic load frame, and the results were validated with the literature. It was observed that at a strain rate of 156 s^{-1} the yield and ultimate strength increased by 31% and 33% from their quasi-static values, respectively. Moreover, the failure elongation and fracture energy per unit volume also increased by 18% and 52%, respectively. A Johnson-Cook model was used to capture the behavior of the material at different strain rates, and a modified version of this model was presented to enhance the capabilities of the original model, especially in predicting material properties close to the failure point. Finally, the fracture surfaces of specimens tested under quasi-static and dynamic loads were compared and conclusions about the differences were drawn.

  18. Fractional Relativistic Yamaleev Oscillator Model and Its Dynamical Behaviors

    NASA Astrophysics Data System (ADS)

    Luo, Shao-Kai; He, Jin-Man; Xu, Yan-Li; Zhang, Xiao-Tian

    2016-07-01

    In the paper we construct a new kind of fractional dynamical model, i.e. the fractional relativistic Yamaleev oscillator model, and explore its dynamical behaviors. We will find that the fractional relativistic Yamaleev oscillator model possesses Lie algebraic structure and satisfies generalized Poisson conservation law. We will also give the Poisson conserved quantities of the model. Further, the relation between conserved quantities and integral invariants of the model is studied and it is proved that, by using the Poisson conserved quantities, we can construct integral invariants of the model. Finally, the stability of the manifold of equilibrium states of the fractional relativistic Yamaleev oscillator model is studied. The paper provides a general method, i.e. fractional generalized Hamiltonian method, for constructing a family of fractional dynamical models of an actual dynamical system.

  19. Chromogenic behaviors of the Humboldt squid (Dosidicus gigas) studied in situ with an animal-borne video package.

    PubMed

    Rosen, Hannah; Gilly, William; Bell, Lauren; Abernathy, Kyler; Marshall, Greg

    2015-01-15

    Dosidicus gigas (Humboldt or jumbo flying squid) is an economically and ecologically influential species, yet little is known about its natural behaviors because of difficulties in studying this active predator in its oceanic environment. By using an animal-borne video package, National Geographic's Crittercam, we were able to observe natural behaviors in free-swimming D. gigas in the Gulf of California with a focus on color-generating (chromogenic) behaviors. We documented two dynamic displays without artificial lighting at depths of up to 70 m. One dynamic pattern, termed 'flashing' is characterized by a global oscillation (2-4 Hz) of body color between white and red. Flashing was almost always observed when other squid were visible in the video frame, and this behavior presumably represents intraspecific signaling. Amplitude and frequency of flashing can be modulated, and the phase relationship with another squid can also be rapidly altered. Another dynamic display termed 'flickering' was observed whenever flashing was not occurring. This behavior is characterized by irregular wave-like activity in neighboring patches of chromatophores, and the resulting patterns mimic reflections of down-welled light in the water column, suggesting that this behavior may provide a dynamic type of camouflage. Rapid and global pauses in flickering, often before a flashing episode, indicate that flickering is under inhibitory neural control. Although flashing and flickering have not been described in other squid, functional similarities are evident with other species. © 2015. Published by The Company of Biologists Ltd.

  20. Behavior generation strategy of artificial behavioral system by self-learning paradigm for autonomous robot tasks

    NASA Astrophysics Data System (ADS)

    Dağlarli, Evren; Temeltaş, Hakan

    2008-04-01

    In this study, behavior generation and self-learning paradigms are investigated for the real-time applications of multi-goal mobile robot tasks. The method is capable to generate new behaviors and it combines them in order to achieve multi goal tasks. The proposed method is composed from three layers: Behavior Generating Module, Coordination Level and Emotion -Motivation Level. Last two levels use Hidden Markov models to manage dynamical structure of behaviors. The kinematics and dynamic model of the mobile robot with non-holonomic constraints are considered in the behavior based control architecture. The proposed method is tested on a four-wheel driven and four-wheel steered mobile robot with constraints in simulation environment and results are obtained successfully.

  1. Chaos for cardiac arrhythmias through a one-dimensional modulation equation for alternans

    PubMed Central

    Dai, Shu; Schaeffer, David G.

    2010-01-01

    Instabilities in cardiac dynamics have been widely investigated in recent years. One facet of this work has studied chaotic behavior, especially possible correlations with fatal arrhythmias. Previously chaotic behavior was observed in various models, specifically in the breakup of spiral and scroll waves. In this paper we study cardiac dynamics and find spatiotemporal chaotic behavior through the Echebarria–Karma modulation equation for alternans in one dimension. Although extreme parameter values are required to produce chaos in this model, it seems significant mathematically that chaos may occur by a different mechanism from previous observations. PMID:20590327

  2. A numerical and experimental study of temperature effects on deformation behavior of carbon steels at high strain rates

    NASA Astrophysics Data System (ADS)

    Pouya, M.; Winter, S.; Fritsch, S.; F-X Wagner, M.

    2017-03-01

    Both in research and in the light of industrial applications, there is a growing interest in methods to characterize the mechanical behavior of materials at high strain rates. This is particularly true for steels (the most important structural materials), where often the strain rate-dependent material behavior also needs to be characterized in a wide temperature range. In this study, we use the Finite Element Method (FEM), first, to model the compressive deformation behavior of carbon steels under quasi-static loading conditions. The results are then compared to experimental data (for a simple C75 steel) at room temperature, and up to testing temperatures of 1000 °C. Second, an explicit FEM model that captures wave propagation phenomena during dynamic loading is developed to closely reflect the complex loading conditions in a Split-Hopkinson Pressure Bar (SHPB) - an experimental setup that allows loading of compression samples with strain rates up to 104 s-1 The dynamic simulations provide a useful basis for an accurate analysis of dynamically measured experimental data, which considers reflected elastic waves. By combining numerical and experimental investigations, we derive material parameters that capture the strain rate- and temperature-dependent behavior of the C75 steel from room temperature to 1000 °C, and from quasi-static to dynamic loading.

  3. Active assistance technology for health-related behavior change: an interdisciplinary review.

    PubMed

    Kennedy, Catriona M; Powell, John; Payne, Thomas H; Ainsworth, John; Boyd, Alan; Buchan, Iain

    2012-06-14

    Information technology can help individuals to change their health behaviors. This is due to its potential for dynamic and unbiased information processing enabling users to monitor their own progress and be informed about risks and opportunities specific to evolving contexts and motivations. However, in many behavior change interventions, information technology is underused by treating it as a passive medium focused on efficient transmission of information and a positive user experience. To conduct an interdisciplinary literature review to determine the extent to which the active technological capabilities of dynamic and adaptive information processing are being applied in behavior change interventions and to identify their role in these interventions. We defined key categories of active technology such as semantic information processing, pattern recognition, and adaptation. We conducted the literature search using keywords derived from the categories and included studies that indicated a significant role for an active technology in health-related behavior change. In the data extraction, we looked specifically for the following technology roles: (1) dynamic adaptive tailoring of messages depending on context, (2) interactive education, (3) support for client self-monitoring of behavior change progress, and (4) novel ways in which interventions are grounded in behavior change theories using active technology. The search returned 228 potentially relevant articles, of which 41 satisfied the inclusion criteria. We found that significant research was focused on dialog systems, embodied conversational agents, and activity recognition. The most covered health topic was physical activity. The majority of the studies were early-stage research. Only 6 were randomized controlled trials, of which 4 were positive for behavior change and 5 were positive for acceptability. Empathy and relational behavior were significant research themes in dialog systems for behavior change, with many pilot studies showing a preference for those features. We found few studies that focused on interactive education (3 studies) and self-monitoring (2 studies). Some recent research is emerging in dynamic tailoring (15 studies) and theoretically grounded ontologies for automated semantic processing (4 studies). The potential capabilities and risks of active assistance technologies are not being fully explored in most current behavior change research. Designers of health behavior interventions need to consider the relevant informatics methods and algorithms more fully. There is also a need to analyze the possibilities that can result from interaction between different technology components. This requires deep interdisciplinary collaboration, for example, between health psychology, computer science, health informatics, cognitive science, and educational methodology.

  4. Active Assistance Technology for Health-Related Behavior Change: An Interdisciplinary Review

    PubMed Central

    Kennedy, Catriona M; Powell, John; Payne, Thomas H; Ainsworth, John; Boyd, Alan

    2012-01-01

    Background Information technology can help individuals to change their health behaviors. This is due to its potential for dynamic and unbiased information processing enabling users to monitor their own progress and be informed about risks and opportunities specific to evolving contexts and motivations. However, in many behavior change interventions, information technology is underused by treating it as a passive medium focused on efficient transmission of information and a positive user experience. Objective To conduct an interdisciplinary literature review to determine the extent to which the active technological capabilities of dynamic and adaptive information processing are being applied in behavior change interventions and to identify their role in these interventions. Methods We defined key categories of active technology such as semantic information processing, pattern recognition, and adaptation. We conducted the literature search using keywords derived from the categories and included studies that indicated a significant role for an active technology in health-related behavior change. In the data extraction, we looked specifically for the following technology roles: (1) dynamic adaptive tailoring of messages depending on context, (2) interactive education, (3) support for client self-monitoring of behavior change progress, and (4) novel ways in which interventions are grounded in behavior change theories using active technology. Results The search returned 228 potentially relevant articles, of which 41 satisfied the inclusion criteria. We found that significant research was focused on dialog systems, embodied conversational agents, and activity recognition. The most covered health topic was physical activity. The majority of the studies were early-stage research. Only 6 were randomized controlled trials, of which 4 were positive for behavior change and 5 were positive for acceptability. Empathy and relational behavior were significant research themes in dialog systems for behavior change, with many pilot studies showing a preference for those features. We found few studies that focused on interactive education (3 studies) and self-monitoring (2 studies). Some recent research is emerging in dynamic tailoring (15 studies) and theoretically grounded ontologies for automated semantic processing (4 studies). Conclusions The potential capabilities and risks of active assistance technologies are not being fully explored in most current behavior change research. Designers of health behavior interventions need to consider the relevant informatics methods and algorithms more fully. There is also a need to analyze the possibilities that can result from interaction between different technology components. This requires deep interdisciplinary collaboration, for example, between health psychology, computer science, health informatics, cognitive science, and educational methodology. PMID:22698679

  5. Natural neural projection dynamics underlying social behavior

    PubMed Central

    Gunaydin, Lisa A.; Grosenick, Logan; Finkelstein, Joel C.; Kauvar, Isaac V.; Fenno, Lief E.; Adhikari, Avishek; Lammel, Stephan; Mirzabekov, Julie J.; Airan, Raag D.; Zalocusky, Kelly A.; Tye, Kay M.; Anikeeva, Polina; Malenka, Robert C.; Deisseroth, Karl

    2014-01-01

    Social interaction is a complex behavior essential for many species, and is impaired in major neuropsychiatric disorders. Pharmacological studies have implicated certain neurotransmitter systems in social behavior, but circuit-level understanding of endogenous neural activity during social interaction is lacking. We therefore developed and applied a new methodology, termed fiber photometry, to optically record natural neural activity in genetically- and connectivity-defined projections to elucidate the real-time role of specified pathways in mammalian behavior. Fiber photometry revealed that activity dynamics of a ventral tegmental area (VTA)-to-nucleus accumbens (NAc) projection could encode and predict key features of social but not novel-object interaction. Consistent with this observation, optogenetic control of cells specifically contributing to this projection was sufficient to modulate social behavior, which was mediated by type-1 dopamine receptor signaling downstream in the NAc. Direct observation of projection-specific activity in this way captures a fundamental and previously inaccessible dimension of circuit dynamics. PMID:24949967

  6. Poverty dynamics in Germany: Evidence on the relationship between persistent poverty and health behavior.

    PubMed

    Aue, Katja; Roosen, Jutta; Jensen, Helen H

    2016-03-01

    Previous studies have found poverty to be related to lower levels of health due to poor health behavior such as unhealthy eating, smoking or less physical activity. Longer periods of poverty seem to be especially harmful for individual health behavior. Studies have shown that poverty has a dynamic character. Moreover, poverty is increasingly regarded as being a multidimensional construct and one that considers more aspects than income alone. Against this background this paper analyzes the relationship between health behavior and persistent spells of income poverty as well as a combined poverty indicator using data of the German Socio-Economic Panel (2000-2010). Next to cross-sectional logistic regression models we estimate fixed-effects models to analyze the effect of persistent poverty on dietary behavior, tobacco consumption, and physical activity. Cross-sectional results suggest that persistent poverty is related to poor health behavior, particularly regarding tobacco consumption and physical activity. Results also show that multidimensional and dynamic aspects of poverty matter. Complementary panel analyses reveal negative effects for the combined poverty indicator only for dietary behavior in the total sample. However, by analyzing the sample by gender we identify further effects of persistent poverty on health behavior. The analyses show that not only do individuals in poverty but also those in precarious situations show health-damaging behavior more often. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Using nonlinear methods to quantify changes in infant limb movements and vocalizations.

    PubMed

    Abney, Drew H; Warlaumont, Anne S; Haussman, Anna; Ross, Jessica M; Wallot, Sebastian

    2014-01-01

    The pairing of dynamical systems theory and complexity science brings novel concepts and methods to the study of infant motor development. Accordingly, this longitudinal case study presents a new approach to characterizing the dynamics of infant limb and vocalization behaviors. A single infant's vocalizations and limb movements were recorded from 51-days to 305-days of age. On each recording day, accelerometers were placed on all four of the infant's limbs and an audio recorder was worn on the child's chest. Using nonlinear time series analysis methods, such as recurrence quantification analysis and Allan factor, we quantified changes in the stability and multiscale properties of the infant's behaviors across age as well as how these dynamics relate across modalities and effectors. We observed that particular changes in these dynamics preceded or coincided with the onset of various developmental milestones. For example, the largest changes in vocalization dynamics preceded the onset of canonical babbling. The results show that nonlinear analyses can help to understand the functional co-development of different aspects of infant behavior.

  8. Using nonlinear methods to quantify changes in infant limb movements and vocalizations

    PubMed Central

    Abney, Drew H.; Warlaumont, Anne S.; Haussman, Anna; Ross, Jessica M.; Wallot, Sebastian

    2014-01-01

    The pairing of dynamical systems theory and complexity science brings novel concepts and methods to the study of infant motor development. Accordingly, this longitudinal case study presents a new approach to characterizing the dynamics of infant limb and vocalization behaviors. A single infant's vocalizations and limb movements were recorded from 51-days to 305-days of age. On each recording day, accelerometers were placed on all four of the infant's limbs and an audio recorder was worn on the child's chest. Using nonlinear time series analysis methods, such as recurrence quantification analysis and Allan factor, we quantified changes in the stability and multiscale properties of the infant's behaviors across age as well as how these dynamics relate across modalities and effectors. We observed that particular changes in these dynamics preceded or coincided with the onset of various developmental milestones. For example, the largest changes in vocalization dynamics preceded the onset of canonical babbling. The results show that nonlinear analyses can help to understand the functional co-development of different aspects of infant behavior. PMID:25161629

  9. Spatiotemporal behavior and nonlinear dynamics in a phase conjugate resonator

    NASA Technical Reports Server (NTRS)

    Liu, Siuying Raymond

    1993-01-01

    The work described can be divided into two parts. The first part is an investigation of the transient behavior and stability property of a phase conjugate resonator (PCR) below threshold. The second part is an experimental and theoretical study of the PCR's spatiotemporal dynamics above threshold. The time-dependent coupled wave equations for four-wave mixing (FWM) in a photorefractive crystal, with two distinct interaction regions caused by feedback from an ordinary mirror, was used to model the transient dynamics of a PCR below threshold. The conditions for self-oscillation were determined and the solutions were used to define the PCR's transfer function and analyze its stability. Experimental results for the buildup and decay times confirmed qualitatively the predicted behavior. Experiments were carried out above threshold to study the spatiotemporal dynamics of the PCR as a function of Pragg detuning and the resonator's Fresnel number. The existence of optical vortices in the wavefront were identified by optical interferometry. It was possible to describe the transverse dynamics and the spatiotemporal instabilities by modeling the three-dimensional-coupled wave equations in photorefractive FWM using a truncated modal expansion approach.

  10. Steady-State Dynamic Behavior of a Flexible Rotor With Auxiliary Support From a Clearance Bearing

    NASA Technical Reports Server (NTRS)

    Xie, Huajun; Flowers, George T.; Feng, Li; Lawrence, Charles T.

    1996-01-01

    This paper investigates the steady-state responses of a rotor system supported by auxiliary bearings in which there is a clearance between the rotor and the inner race of the bearing. A simulation model based upon the rotor of a production jet engine is developed and its steady-state behavior is explored over a wide range of operating conditions for various parametric configurations. Specifically, the influence of rotor imbalance, clearance, support stiffness and damping is studied. Bifurcation diagrams are used as a tool to examine the dynamic behavior of this system as a function of the afore mentioned parameters. The harmonic balance method is also employed for synchronous response cases. The observed dynamical responses is discussed and some insights into the behavior of such systems are presented.

  11. Pilot-Induced Oscillations and Human Dynamic Behavior

    NASA Technical Reports Server (NTRS)

    McRuer, Duane T.

    1995-01-01

    This is an in-depth survey and study of pilot-induced oscillations (PIO's) as interactions between human pilot and vehicle dynamics; it includes a broad and comprehensive theory of PIO's. A historical perspective provides examples of the diversity of PIO's in terms of control axes and oscillation frequencies. The constituents involved in PIO phenomena, including effective aircraft dynamics, human pilot dynamic behavior patterns, and triggering precursor events, are examined in detail as the structural elements interacting to produce severe pilot-induced oscillations. The great diversity of human pilot response patterns, excessive lags and/or inappropriate gain in effective aircraft dynamics, and transitions in either the human or effective aircraft dynamics are among the key sources implicated as factors in severe PIO's. The great variety of interactions which may result in severe PIO's is illustrated by examples drawn from famous PIO's. These are generalized under a pilot-behavior-theory-based set of categories proposed as a classification scheme pertinent to a theory of PIO's. Finally, a series of interim prescriptions to avoid PIO is provided.

  12. Dynamical Systems in Psychology: Linguistic Approaches

    NASA Astrophysics Data System (ADS)

    Sulis, William

    Major goals for psychoanalysis and psychology are the description, analysis, prediction, and control of behaviour. Natural language has long provided the medium for the formulation of our theoretical understanding of behavior. But with the advent of nonlinear dynamics, a new language has appeared which offers promise to provide a quantitative theory of behaviour. In this paper, some of the limitations of natural and formal languages are discussed. Several approaches to understanding the links between natural and formal languages, as applied to the study of behavior, are discussed. These include symbolic dynamics, Moore's generalized shifts, Crutchfield's ɛ machines, and dynamical automata.

  13. Emergence of scaling in human-interest dynamics

    PubMed Central

    Zhao, Zhi-Dan; Yang, Zimo; Zhang, Zike; Zhou, Tao; Huang, Zi-Gang; Lai, Ying-Cheng

    2013-01-01

    Human behaviors are often driven by human interests. Despite intense recent efforts in exploring the dynamics of human behaviors, little is known about human-interest dynamics, partly due to the extreme difficulty in accessing the human mind from observations. However, the availability of large-scale data, such as those from e-commerce and smart-phone communications, makes it possible to probe into and quantify the dynamics of human interest. Using three prototypical “Big Data” sets, we investigate the scaling behaviors associated with human-interest dynamics. In particular, from the data sets we uncover fat-tailed (possibly power-law) distributions associated with the three basic quantities: (1) the length of continuous interest, (2) the return time of visiting certain interest, and (3) interest ranking and transition. We argue that there are three basic ingredients underlying human-interest dynamics: preferential return to previously visited interests, inertial effect, and exploration of new interests. We develop a biased random-walk model, incorporating the three ingredients, to account for the observed fat-tailed distributions. Our study represents the first attempt to understand the dynamical processes underlying human interest, which has significant applications in science and engineering, commerce, as well as defense, in terms of specific tasks such as recommendation and human-behavior prediction. PMID:24326949

  14. Numerical investigation of bubble nonlinear dynamics characteristics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Jie, E-mail: shijie@hrbeu.edu.cn; Yang, Desen; Shi, Shengguo

    2015-10-28

    The complicated dynamical behaviors of bubble oscillation driven by acoustic wave can provide favorable conditions for many engineering applications. On the basis of Keller-Miksis model, the influences of control parameters, including acoustic frequency, acoustic pressure and radius of gas bubble, are discussed by utilizing various numerical analysis methods, Furthermore, the law of power spectral variation is studied. It is shown that the complicated dynamic behaviors of bubble oscillation driven by acoustic wave, such as bifurcation and chaos, further the stimulated scattering processes are revealed.

  15. Dynamic control and information processing in chemical reaction systems by tuning self-organization behavior

    NASA Astrophysics Data System (ADS)

    Lebiedz, Dirk; Brandt-Pollmann, Ulrich

    2004-09-01

    Specific external control of chemical reaction systems and both dynamic control and signal processing as central functions in biochemical reaction systems are important issues of modern nonlinear science. For example nonlinear input-output behavior and its regulation are crucial for the maintainance of the life process that requires extensive communication between cells and their environment. An important question is how the dynamical behavior of biochemical systems is controlled and how they process information transmitted by incoming signals. But also from a general point of view external forcing of complex chemical reaction processes is important in many application areas ranging from chemical engineering to biomedicine. In order to study such control issues numerically, here, we choose a well characterized chemical system, the CO oxidation on Pt(110), which is interesting per se as an externally forced chemical oscillator model. We show numerically that tuning of temporal self-organization by input signals in this simple nonlinear chemical reaction exhibiting oscillatory behavior can in principle be exploited for both specific external control of dynamical system behavior and processing of complex information.

  16. Review: mechanical behavior of metal/ceramic interfaces in nanolayered composites—experiments and modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Nan; Liu, Xiang-Yang

    In this study, recent experimental and modeling studies in nanolayered metal/ceramic composites are reviewed, with focus on the mechanical behaviors of metal/nitrides interfaces. The experimental and modeling studies of the slip systems in bulk TiN are reviewed first. Then, the experimental studies of interfaces, including co-deformation mechanism by micropillar compression tests, in situ TEM straining tests for the dynamic process of the co-deformation, thickness-dependent fracture behavior, and interrelationship among the interfacial bonding, microstructure, and mechanical response, are reviewed for the specific material systems of Al/TiN and Cu/TiN multilayers at nanoscale. The modeling studies reviewed cover first-principles density functional theory-based modeling,more » atomistic molecular dynamics simulations, and mesoscale modeling of nanolayered composites using discrete dislocation dynamics. The phase transformation between zinc-blende and wurtzite AlN phases in Al/AlN multilayers at nanoscale is also reviewed. Finally, a summary and perspective of possible research directions and challenges are given.« less

  17. Review: mechanical behavior of metal/ceramic interfaces in nanolayered composites—experiments and modeling

    DOE PAGES

    Li, Nan; Liu, Xiang-Yang

    2017-11-03

    In this study, recent experimental and modeling studies in nanolayered metal/ceramic composites are reviewed, with focus on the mechanical behaviors of metal/nitrides interfaces. The experimental and modeling studies of the slip systems in bulk TiN are reviewed first. Then, the experimental studies of interfaces, including co-deformation mechanism by micropillar compression tests, in situ TEM straining tests for the dynamic process of the co-deformation, thickness-dependent fracture behavior, and interrelationship among the interfacial bonding, microstructure, and mechanical response, are reviewed for the specific material systems of Al/TiN and Cu/TiN multilayers at nanoscale. The modeling studies reviewed cover first-principles density functional theory-based modeling,more » atomistic molecular dynamics simulations, and mesoscale modeling of nanolayered composites using discrete dislocation dynamics. The phase transformation between zinc-blende and wurtzite AlN phases in Al/AlN multilayers at nanoscale is also reviewed. Finally, a summary and perspective of possible research directions and challenges are given.« less

  18. Short-term dynamic behavior of Escherichia coli in response to successive glucose pulses on glucose-limited chemostat cultures.

    PubMed

    Sunya, Sirichai; Bideaux, Carine; Molina-Jouve, Carole; Gorret, Nathalie

    2013-04-15

    The effect of repeated glucose perturbations on dynamic behavior of Escherichia coli DPD2085, yciG::LuxCDABE reporter strain, was studied and characterized on a short-time scale using glucose-limited chemostat cultures at dilution rates close to 0.18h(-1). The substrate disturbances were applied on independent steady-state cultures, firstly using a single glucose pulse under different aeration conditions and secondly using repeated glucose pulses under fully aerobic condition. The dynamic responses of E. coli to a single glucose pulse of different intensities (0.25 and 0.6gL(-1)) were significantly similar at macroscopic level, revealing the independency of the macroscopic microbial behavior to the perturbation intensity in the range of tested glucose concentrations. The dynamic responses of E. coli to repeated glucose pulses to simulate fluctuating environments between glucose-limited and glucose-excess conditions were quantified; similar behavior regarding respiration and by-product formations was observed, except for the first perturbation denoted by an overshoot of the specific oxygen uptake rate in the first minutes after the pulse. In addition, transcriptional induction of yciG promoter gene involved in general stress response, σ(S), was monitored through the bioluminescent E. coli strain. This study aims to provide and compare short-term quantitative kinetics data describing the dynamic behavior of E. coli facing repeated transient substrate conditions. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Resilience and Controllability of Dynamic Collective Behaviors

    PubMed Central

    Komareji, Mohammad; Bouffanais, Roland

    2013-01-01

    The network paradigm is used to gain insight into the structural root causes of the resilience of consensus in dynamic collective behaviors, and to analyze the controllability of the swarm dynamics. Here we devise the dynamic signaling network which is the information transfer channel underpinning the swarm dynamics of the directed interagent connectivity based on a topological neighborhood of interactions. The study of the connectedness of the swarm signaling network reveals the profound relationship between group size and number of interacting neighbors, which is found to be in good agreement with field observations on flock of starlings [Ballerini et al. (2008) Proc. Natl. Acad. Sci. USA, 105: 1232]. Using a dynamical model, we generate dynamic collective behaviors enabling us to uncover that the swarm signaling network is a homogeneous clustered small-world network, thus facilitating emergent outcomes if connectedness is maintained. Resilience of the emergent consensus is tested by introducing exogenous environmental noise, which ultimately stresses how deeply intertwined are the swarm dynamics in the physical and network spaces. The availability of the signaling network allows us to analytically establish for the first time the number of driver agents necessary to fully control the swarm dynamics. PMID:24358209

  20. Spin dynamics of random Ising chain in coexisting transverse and longitudinal magnetic fields

    NASA Astrophysics Data System (ADS)

    Liu, Zhong-Qiang; Jiang, Su-Rong; Kong, Xiang-Mu; Xu, Yu-Liang

    2017-05-01

    The dynamics of the random Ising spin chain in coexisting transverse and longitudinal magnetic fields is studied by the recursion method. Both the spin autocorrelation function and its spectral density are investigated by numerical calculations. It is found that system's dynamical behaviors depend on the deviation σJ of the random exchange coupling between nearest-neighbor spins and the ratio rlt of the longitudinal and the transverse fields: (i) For rlt = 0, the system undergoes two crossovers from N independent spins precessing about the transverse magnetic field to a collective-mode behavior, and then to a central-peak behavior as σJ increases. (ii) For rlt ≠ 0, the system may exhibit a coexistence behavior of a collective-mode one and a central-peak one. When σJ is small (or large enough), system undergoes a crossover from a coexistence behavior (or a disordered behavior) to a central-peak behavior as rlt increases. (iii) Increasing σJ depresses effects of both the transverse and the longitudinal magnetic fields. (iv) Quantum random Ising chain in coexisting magnetic fields may exhibit under-damping and critical-damping characteristics simultaneously. These results indicate that changing the external magnetic fields may control and manipulate the dynamics of the random Ising chain.

  1. Structural and dynamical characterization of water on the Au (100) and graphene surfaces: A molecular dynamics simulation approach

    NASA Astrophysics Data System (ADS)

    Foroutan, Masumeh; Darvishi, Mehdi; Fatemi, S. Mahmood

    2017-09-01

    The positioning, adsorption, and movement of water on substrates is dependent upon the chemical nature and arrangement of the atoms of the surface. Therefore the behavior of water molecules on a substrate is a reflection of properties of the surface. Based on this premise, graphene and gold substrates were chosen to study this subject from a molecular perspective. In this work, the structural and dynamical behaviors of a water nanodroplet on Au (100) and the graphene interfaces have been studied by molecular dynamics simulation. The results have shown how the structural and dynamical behaviors of water molecules at the interface reflect the characteristics of these surfaces. The results have demonstrated that residence time and hydrogen bonds' lifetime at the water-Au (100) interface are bigger than at the water-graphene interface. Energy contour map analysis indicates a more uniform surface energy on graphene than on the gold surface. The obtained results illustrate that water clusters on gold and graphene form tetramer and hexamer structures, respectively. Furthermore, the water molecules are more ordered on the gold surface than on graphene. The study of hydrogen bonds showed that the order, stability, and the number of hydrogen bonds is higher on the gold surface. The positioning pattern of water molecules is also similar to the arrangement of gold atoms while no regularity was observed on graphene. The study of dynamical behavior of water molecules revealed that the movement of water on gold is much less than on graphene which is in agreement with the strong water-gold interaction in comparison to the water-graphene interaction.

  2. In vitro studying corrosion behavior of porous titanium coating in dynamic electrolyte.

    PubMed

    Chen, Xuedan; Fu, Qingshan; Jin, Yongzhong; Li, Mingtian; Yang, Ruisong; Cui, Xuejun; Gong, Min

    2017-01-01

    Porous titanium (PT) is considered as a promising biomaterials for orthopedic implants. Besides biocompatibility and mechanical properties, corrosion resistance in physiological environment is the other important factor affecting the long stability of an implant. In order to investigate the corrosion behavior of porous titanium implants in a dynamic physiological environment, a dynamic circle system was designed in this study. Then a titanium-based implant with PT coating was fabricated by plasma spraying. The corrosion resistance of PT samples in flowing 0.9% NaCl solution was evaluated by electrochemical measurements. Commercial pure solid titanium (ST) disc was used as a control. The studies of potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) show that the pores in the PT play a negetive part in corrosion resistance and the flowing electrolyte can increase the corrosive rate of all titanium samples. The results suggest that pore design of titanium implants should pay attention to the effect of dynamic process of a physiological environment on the corrosion behavior of implants. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Synergistic interactions promote behavior spreading and alter phase transitions on multiplex networks

    NASA Astrophysics Data System (ADS)

    Liu, Quan-Hui; Wang, Wei; Cai, Shi-Min; Tang, Ming; Lai, Ying-Cheng

    2018-02-01

    Synergistic interactions are ubiquitous in the real world. Recent studies have revealed that, for a single-layer network, synergy can enhance spreading and even induce an explosive contagion. There is at the present a growing interest in behavior spreading dynamics on multiplex networks. What is the role of synergistic interactions in behavior spreading in such networked systems? To address this question, we articulate a synergistic behavior spreading model on a double layer network, where the key manifestation of the synergistic interactions is that the adoption of one behavior by a node in one layer enhances its probability of adopting the behavior in the other layer. A general result is that synergistic interactions can greatly enhance the spreading of the behaviors in both layers. A remarkable phenomenon is that the interactions can alter the nature of the phase transition associated with behavior adoption or spreading dynamics. In particular, depending on the transmission rate of one behavior in a network layer, synergistic interactions can lead to a discontinuous (first-order) or a continuous (second-order) transition in the adoption scope of the other behavior with respect to its transmission rate. A surprising two-stage spreading process can arise: due to synergy, nodes having adopted one behavior in one layer adopt the other behavior in the other layer and then prompt the remaining nodes in this layer to quickly adopt the behavior. Analytically, we develop an edge-based compartmental theory and perform a bifurcation analysis to fully understand, in the weak synergistic interaction regime where the dynamical correlation between the network layers is negligible, the role of the interactions in promoting the social behavioral spreading dynamics in the whole system.

  4. Evacuation dynamics with smoking diffusion in three dimension based on an extended Floor-Field model

    NASA Astrophysics Data System (ADS)

    Zheng, Ying; Li, Xingang; Zhu, Nuo; Jia, Bin; Jiang, Rui

    2018-10-01

    This paper proposes an extended Floor-Field (FF) model to study the pedestrian evacuation dynamics under the influence of smoke diffusing in three-dimension (3D). In addition to static and dynamic fields, the extended model adopts the smoke and herding fields to reflect pedestrian's smoke-avoiding behavior and herding behavior. The impact of smoke on pedestrians' health is also considered. The smoke will reduce the pedestrians' health point and finally impact their moving ability. Numerical simulations were carried out to study the evacuation dynamics. The influence of the smoke particles producing rate, the initial health point, the critical smoke concentration value, and the herding field on evacuation dynamics were analyzed in detail. Those results could bring some guidance to make the evacuation strategy in the smoke diffusing environment.

  5. Influence of backup bearings and support structure dynamics on the behavior of rotors with active supports

    NASA Technical Reports Server (NTRS)

    Flowers, George T.

    1995-01-01

    This semiannual status report lists specific accomplishments made on the research of the influence of backup bearings and support structure dynamics on the behavior of rotors with active supports. Papers have been presented representing work done on the T-501 engine model; an experimental/simulation study of auxiliary bearing rotordynamics; and a description of a rotordynamical model for a magnetic bearing supported rotor system, including auxiliary bearing effects. A finite element model for a foil bearing has been developed. Additional studies of rotor/bearing/housing dynamics are currently being performed as are studies of the effects of sideloading on auxiliary bearing rotordynamics using the magnetic bearing supported rotor model.

  6. Facilitating Students' Interaction with Real Gas Properties Using a Discovery-Based Approach and Molecular Dynamics Simulations

    ERIC Educational Resources Information Center

    Sweet, Chelsea; Akinfenwa, Oyewumi; Foley, Jonathan J., IV

    2018-01-01

    We present an interactive discovery-based approach to studying the properties of real gases using simple, yet realistic, molecular dynamics software. Use of this approach opens up a variety of opportunities for students to interact with the behaviors and underlying theories of real gases. Students can visualize gas behavior under a variety of…

  7. Application of Dynamic Mode Decomposition: Temporal Evolution of Flow Structures in an Aneurysm

    NASA Astrophysics Data System (ADS)

    Conlin, William; Yu, Paulo; Durgesh, Vibhav

    2017-11-01

    An aneurysm is an enlargement of a weakened arterial wall that can be fatal or debilitating on rupture. Aneurysm hemodynamics is integral to developing an understanding of aneurysm formation, growth, and rupture. The flow in an aneurysm exhibits complex fluid dynamics behavior due to an inherent unsteady inflow condition and its interactions with large-scale flow structures present in the aneurysm. The objective of this study is to identify the large-scale structures in the aneurysm, study temporal behavior, and quantify their interaction with the inflow condition. For this purpose, detailed Particle Image Velocimetry (PIV) measurements were performed at the center plane of an idealized aneurysm model for a range of inflow conditions. Inflow conditions were precisely controlled using a ViVitro SuperPump system. Dynamic Modal Decomposition (DMD) of the velocity field was used to identify coherent structures and their temporal behavior. DMD was successful in capturing the large-scale flow structures and their temporal behavior. A low dimensional approximation to the flow field was obtained with the most relevant dynamic modes and was used to obtain temporal information about the coherent structures and their interaction with the inflow, formation, evolution, and growth.

  8. Dynamical heterogeneity in a glass-forming ideal gas.

    PubMed

    Charbonneau, Patrick; Das, Chinmay; Frenkel, Daan

    2008-07-01

    We conduct a numerical study of the dynamical behavior of a system of three-dimensional "crosses," particles that consist of three mutually perpendicular line segments of length sigma rigidly joined at their midpoints. In an earlier study [W. van Ketel, Phys. Rev. Lett. 94, 135703 (2005)] we showed that this model has the structural properties of an ideal gas, yet the dynamical properties of a strong glass former. In the present paper we report an extensive study of the dynamical heterogeneities that appear in this system in the regime where glassy behavior sets in. On the one hand, we find that the propensity of a particle to diffuse is determined by the structure of its local environment. The local density around mobile particles is significantly less than the average density, but there is little clustering of mobile particles, and the clusters observed tend to be small. On the other hand, dynamical susceptibility results indicate that a large dynamical length scale develops even at moderate densities. This suggests that propensity and other mobility measures are an incomplete measure of the dynamical length scales in this system.

  9. Predicting Adaptive Behavior in the Environment from Central Nervous System Dynamics

    PubMed Central

    Proekt, Alex; Wong, Jane; Zhurov, Yuriy; Kozlova, Nataliya; Weiss, Klaudiusz R.; Brezina, Vladimir

    2008-01-01

    To generate adaptive behavior, the nervous system is coupled to the environment. The coupling constrains the dynamical properties that the nervous system and the environment must have relative to each other if adaptive behavior is to be produced. In previous computational studies, such constraints have been used to evolve controllers or artificial agents to perform a behavioral task in a given environment. Often, however, we already know the controller, the real nervous system, and its dynamics. Here we propose that the constraints can also be used to solve the inverse problem—to predict from the dynamics of the nervous system the environment to which they are adapted, and so reconstruct the production of the adaptive behavior by the entire coupled system. We illustrate how this can be done in the feeding system of the sea slug Aplysia. At the core of this system is a central pattern generator (CPG) that, with dynamics on both fast and slow time scales, integrates incoming sensory stimuli to produce ingestive and egestive motor programs. We run models embodying these CPG dynamics—in effect, autonomous Aplysia agents—in various feeding environments and analyze the performance of the entire system in a realistic feeding task. We find that the dynamics of the system are tuned for optimal performance in a narrow range of environments that correspond well to those that Aplysia encounter in the wild. In these environments, the slow CPG dynamics implement efficient ingestion of edible seaweed strips with minimal sensory information about them. The fast dynamics then implement a switch to a different behavioral mode in which the system ignores the sensory information completely and follows an internal “goal,” emergent from the dynamics, to egest again a strip that proves to be inedible. Key predictions of this reconstruction are confirmed in real feeding animals. PMID:18989362

  10. Sleeping of a Complex Brain Networks with Hierarchical Organization

    NASA Astrophysics Data System (ADS)

    Zhang, Ying-Yue; Yang, Qiu-Ying; Chen, Tian-Lun

    2009-01-01

    The dynamical behavior in the cortical brain network of macaque is studied by modeling each cortical area with a subnetwork of interacting excitable neurons. We characterize the system by studying how to perform the transition, which is now topology-dependent, from the active state to that with no activity. This could be a naive model for the wakening and sleeping of a brain-like system, i.e., a multi-component system with two different dynamical behavior.

  11. Web-based experiments for the study of collective social dynamics in cultural markets.

    PubMed

    Salganik, Matthew J; Watts, Duncan J

    2009-07-01

    Social scientists are often interested in understanding how the dynamics of social systems are driven by the behavior of individuals that make up those systems. However, this process is hindered by the difficulty of experimentally studying how individual behavioral tendencies lead to collective social dynamics in large groups of people interacting over time. In this study, we investigate the role of social influence, a process well studied at the individual level, on the puzzling nature of success for cultural products such as books, movies, and music. Using a "multiple-worlds" experimental design, we are able to isolate the causal effect of an individual-level mechanism on collective social outcomes. We employ this design in a Web-based experiment in which 2,930 participants listened to, rated, and downloaded 48 songs by up-and-coming bands. Surprisingly, despite relatively large differences in the demographics, behavior, and preferences of participants, the experimental results at both the individual and collective levels were similar to those found in Salganik, Dodds, and Watts (2006). Further, by comparing results from two distinct pools of participants, we are able to gain new insights into the role of individual behavior on collective outcomes. We conclude with a discussion of the strengths and weaknesses of Web-based experiments to address questions of collective social dynamics. Copyright © 2009 Cognitive Science Society, Inc.

  12. Organization of excitable dynamics in hierarchical biological networks.

    PubMed

    Müller-Linow, Mark; Hilgetag, Claus C; Hütt, Marc-Thorsten

    2008-09-26

    This study investigates the contributions of network topology features to the dynamic behavior of hierarchically organized excitable networks. Representatives of different types of hierarchical networks as well as two biological neural networks are explored with a three-state model of node activation for systematically varying levels of random background network stimulation. The results demonstrate that two principal topological aspects of hierarchical networks, node centrality and network modularity, correlate with the network activity patterns at different levels of spontaneous network activation. The approach also shows that the dynamic behavior of the cerebral cortical systems network in the cat is dominated by the network's modular organization, while the activation behavior of the cellular neuronal network of Caenorhabditis elegans is strongly influenced by hub nodes. These findings indicate the interaction of multiple topological features and dynamic states in the function of complex biological networks.

  13. Health behavior change in advance care planning: an agent-based model.

    PubMed

    Ernecoff, Natalie C; Keane, Christopher R; Albert, Steven M

    2016-02-29

    A practical and ethical challenge in advance care planning research is controlling and intervening on human behavior. Additionally, observing dynamic changes in advance care planning (ACP) behavior proves difficult, though tracking changes over time is important for intervention development. Agent-based modeling (ABM) allows researchers to integrate complex behavioral data about advance care planning behaviors and thought processes into a controlled environment that is more easily alterable and observable. Literature to date has not addressed how best to motivate individuals, increase facilitators and reduce barriers associated with ACP. We aimed to build an ABM that applies the Transtheoretical Model of behavior change to ACP as a health behavior and accurately reflects: 1) the rates at which individuals complete the process, 2) how individuals respond to barriers, facilitators, and behavioral variables, and 3) the interactions between these variables. We developed a dynamic ABM of the ACP decision making process based on the stages of change posited by the Transtheoretical Model. We integrated barriers, facilitators, and other behavioral variables that agents encounter as they move through the process. We successfully incorporated ACP barriers, facilitators, and other behavioral variables into our ABM, forming a plausible representation of ACP behavior and decision-making. The resulting distributions across the stages of change replicated those found in the literature, with approximately half of participants in the action-maintenance stage in both the model and the literature. Our ABM is a useful method for representing dynamic social and experiential influences on the ACP decision making process. This model suggests structural interventions, e.g. increasing access to ACP materials in primary care clinics, in addition to improved methods of data collection for behavioral studies, e.g. incorporating longitudinal data to capture behavioral dynamics.

  14. Impact compaction of a granular material

    DOE PAGES

    Fenton, Gregg; Asay, Blaine; Dalton, Devon

    2015-05-19

    The dynamic behavior of granular materials has importance to a variety of engineering applications. Structural seismic coupling, planetary science, and earth penetration mechanics, are just a few of the application areas. Although the mechanical behavior of granular materials of various types have been studied extensively for several decades, the dynamic behavior of such materials remains poorly understood. High-quality experimental data are needed to improve our general understanding of granular material compaction physics. This study will describe how an instrumented plunger impact system can be used to measure pressure-density relationships for model materials at high and controlled strain rates and subsequentlymore » used for computational modeling.« less

  15. The Sensorial Effect: Dynamics of Emotion in Pro-Environmental Behavior

    ERIC Educational Resources Information Center

    Hipolito, Joana

    2011-01-01

    In this article, sensorial effects are introduced as emotional stimuli for shaping environmentally significant behaviors. This research provides a link between sensorial effect as ubiquitous environmental behavior feedback and the effect of sensorial stimuli on emotions that trigger individuals' pro-environment behavior. A case study of using…

  16. Vehicle dynamic analysis using neuronal network algorithms

    NASA Astrophysics Data System (ADS)

    Oloeriu, Florin; Mocian, Oana

    2014-06-01

    Theoretical developments of certain engineering areas, the emergence of new investigation tools, which are better and more precise and their implementation on-board the everyday vehicles, all these represent main influence factors that impact the theoretical and experimental study of vehicle's dynamic behavior. Once the implementation of these new technologies onto the vehicle's construction had been achieved, it had led to more and more complex systems. Some of the most important, such as the electronic control of engine, transmission, suspension, steering, braking and traction had a positive impact onto the vehicle's dynamic behavior. The existence of CPU on-board vehicles allows data acquisition and storage and it leads to a more accurate and better experimental and theoretical study of vehicle dynamics. It uses the information offered directly by the already on-board built-in elements of electronic control systems. The technical literature that studies vehicle dynamics is entirely focused onto parametric analysis. This kind of approach adopts two simplifying assumptions. Functional parameters obey certain distribution laws, which are known in classical statistics theory. The second assumption states that the mathematical models are previously known and have coefficients that are not time-dependent. Both the mentioned assumptions are not confirmed in real situations: the functional parameters do not follow any known statistical repartition laws and the mathematical laws aren't previously known and contain families of parameters and are mostly time-dependent. The purpose of the paper is to present a more accurate analysis methodology that can be applied when studying vehicle's dynamic behavior. A method that provides the setting of non-parametrical mathematical models for vehicle's dynamic behavior is relying on neuronal networks. This method contains coefficients that are time-dependent. Neuronal networks are mostly used in various types' system controls, thus being a non-linear process identification algorithm. The common use of neuronal networks for non-linear processes is justified by the fact that both have the ability to organize by themselves. That is why the neuronal networks best define intelligent systems, thus the word `neuronal' is sending one's mind to the biological neuron cell. The paper presents how to better interpret data fed from the on-board computer and a new way of processing that data to better model the real life dynamic behavior of the vehicle.

  17. Terminal Model Of Newtonian Dynamics

    NASA Technical Reports Server (NTRS)

    Zak, Michail

    1994-01-01

    Paper presents study of theory of Newtonian dynamics of terminal attractors and repellers, focusing on issues of reversibility vs. irreversibility and deterministic evolution vs. probabilistic or chaotic evolution of dynamic systems. Theory developed called "terminal dynamics" emphasizes difference between it and classical Newtonian dynamics. Also holds promise for explaining irreversibility, unpredictability, probabilistic behavior, and chaos in turbulent flows, in thermodynamic phenomena, and in other dynamic phenomena and systems.

  18. A coupled human-water system from a systems dynamics perspective

    NASA Astrophysics Data System (ADS)

    Kuil, Linda; Blöschl, Günter; Carr, Gemma

    2013-04-01

    Traditionally, models used in hydrological studies have frequently assumed stationarity. Moreover, human-induced water resources management activities are often included as external forcings in water cycle dynamics. However, considering humans' current impact on the water cycle in terms of a growing population, river basins increasingly being managed and a climate considerably changing, it has recently been questioned whether this is still correct. Furthermore, research directed at the evolution of water resources and society has shown that the components constituting the human-water system are changing interdependently. Goal of this study is therefore to approach water cycle dynamics from an integrated perspective in which humans are considered as endogenous forces to the system. The method used to model a coupled, urban human-water system is system dynamics. In system dynamics, particular emphasis is placed on feedback loops resulting in dynamic behavior. Time delays and non-linearity can relatively easily be included, making the method appropriate for studying complex systems that change over time. The approach of this study is as follows. First, a conceptual model is created incorporating the key components of the urban human-water system. Subsequently, only those components are selected that are both relevant and show causal loop behavior. Lastly, the causal narratives are translated into mathematical relationships. The outcome will be a simple model that shows only those characteristics with which we are able to explore the two-way coupling between the societal behavior and the water system we depend on.

  19. Dynamic Variation in Sexual Contact Rates in a Cohort of HIV-Negative Gay Men.

    PubMed

    Romero-Severson, E O; Volz, E; Koopman, J S; Leitner, T; Ionides, E L

    2015-08-01

    Human immunodeficiency virus (HIV) transmission models that include variability in sexual behavior over time have shown increased incidence, prevalence, and acute-state transmission rates for a given population risk profile. This raises the question of whether dynamic variation in individual sexual behavior is a real phenomenon that can be observed and measured. To study this dynamic variation, we developed a model incorporating heterogeneity in both between-person and within-person sexual contact patterns. Using novel methodology that we call iterated filtering for longitudinal data, we fitted this model by maximum likelihood to longitudinal survey data from the Centers for Disease Control and Prevention's Collaborative HIV Seroincidence Study (1992-1995). We found evidence for individual heterogeneity in sexual behavior over time. We simulated an epidemic process and found that inclusion of empirically measured levels of dynamic variation in individual-level sexual behavior brought the theoretical predictions of HIV incidence into closer alignment with reality given the measured per-act probabilities of transmission. The methods developed here provide a framework for quantifying variation in sexual behaviors that helps in understanding the HIV epidemic among gay men. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health 2015. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  20. Local orientational mobility in regular hyperbranched polymers.

    PubMed

    Dolgushev, Maxim; Markelov, Denis A; Fürstenberg, Florian; Guérin, Thomas

    2016-07-01

    We study the dynamics of local bond orientation in regular hyperbranched polymers modeled by Vicsek fractals. The local dynamics is investigated through the temporal autocorrelation functions of single bonds and the corresponding relaxation forms of the complex dielectric susceptibility. We show that the dynamic behavior of single segments depends on their remoteness from the periphery rather than on the size of the whole macromolecule. Remarkably, the dynamics of the core segments (which are most remote from the periphery) shows a scaling behavior that differs from the dynamics obtained after structural average. We analyze the most relevant processes of single segment motion and provide an analytic approximation for the corresponding relaxation times. Furthermore, we describe an iterative method to calculate the orientational dynamics in the case of very large macromolecular sizes.

  1. Solar Dynamics Observatory Briefing

    NASA Image and Video Library

    2010-01-21

    Madhulika Guhathakurta, SDO Program Scientist, speaks during a briefing to discuss the upcoming launch of NASA's Solar Dynamic Observatory, or SDO, Thursday, Jan. 21, 2010, at NASA Headquarters in Washington. The mission is to study the Sun and its dynamic behavior. Photo Credit: (NASA/Paul E. Alers)

  2. High strain rate behavior of saturated and non-saturated sandstone: implications for earthquake mechanisms.

    NASA Astrophysics Data System (ADS)

    Aben, F. M.; Doan, M. L.; Gratier, J. P.; Renard, F.

    2015-12-01

    Damage zones of active faults control their resistance to rupture and transport properties. Hence, knowing the damage's origin is crucial to shed light on the (paleo)seismic behavior of the fault. Coseismic damage in the damage zone occurs by stress-wave loading of a passing earthquake rupture tip, resulting in dynamic (high strain rate) loading and subsequent dynamic fracturing or pulverization. Recently, interest in this type of damage has increased and several experimental studies were performed on dry rock specimens to search for pulverization-controlling parameters. However, the influence of fluids in during dynamic loading needs to be constrained. Hence, we have performed compressional dynamic loading experiments on water saturated and oven dried Vosges sandstone samples using a Split Hopkinson Pressure Bar apparatus. Due to the high porosity in these rocks, close to 20%, the effect of fluids should be clear. Afterwards, microstructural analyses have been applied on thin sections. Water saturated samples reveal dynamic mechanical behavior that follows linear poro-elasticity for undrained conditions: the peak strength of the sample decreases by 30-50% and the accumulated strain increases relative to the dry samples that were tested under similar conditions. The mechanical behavior of partially saturated samples falls in between. Microstructural studies on thin section show that fractures are restricted to some quartz grains while other quartz grains remain intact, similar to co-seismically damaged sandstones observed in the field. Most deformation is accommodated by inter-granular processes, thereby appointing an important role to the cement matrix in between grains. Intra-granular fracture damage is highest for the saturated samples. The presence of pore fluids in the rocks lower the dynamic peak strength, especially since fast dynamic loading does not allow for time-dependent fluid dissipation. Thus, fluid-saturated rocks would show undrained mechanical behavior, creating local overpressure in the pore that breaks the inter-granular cement. This strength-decreasing effect provides an explanation for the presence of pulverized and coseismically damaged rocks at depth and extends the range of dynamic stress where dynamic damage can occur in fault zones.

  3. Periodic or chaotic bursting dynamics via delayed pitchfork bifurcation in a slow-varying controlled system

    NASA Astrophysics Data System (ADS)

    Yu, Yue; Zhang, Zhengdi; Han, Xiujing

    2018-03-01

    In this work, we aim to demonstrate the novel routes to periodic and chaotic bursting, i.e., the different bursting dynamics via delayed pitchfork bifurcations around stable attractors, in the classical controlled Lü system. First, by computing the corresponding characteristic polynomial, we determine where some critical values about bifurcation behaviors appear in the Lü system. Moreover, the transition mechanism among different stable attractors has been introduced including homoclinic-type connections or chaotic attractors. Secondly, taking advantage of the above analytical results, we carry out a study of the mechanism for bursting dynamics in the Lü system with slowly periodic variation of certain control parameter. A distinct delayed supercritical pitchfork bifurcation behavior can be discussed when the control item passes through bifurcation points periodically. This delayed dynamical behavior may terminate at different parameter areas, which leads to different spiking modes around different stable attractors (equilibriums, limit cycles, or chaotic attractors). In particular, the chaotic attractor may appear by Shilnikov connections or chaos boundary crisis, which leads to the occurrence of impressive chaotic bursting oscillations. Our findings enrich the study of bursting dynamics and deepen the understanding of some similar sorts of delayed bursting phenomena. Finally, some numerical simulations are included to illustrate the validity of our study.

  4. Altruism: A natural strategy for enhancing survival

    NASA Astrophysics Data System (ADS)

    Rozenfeld, Alejandro F.; Luis Gruver, José; Albano, Ezequiel V.; Havlin, Shlomo

    2006-09-01

    We study the influence of altruistic behavior in a prey-predator model permitting the preys to commit suicide by confronting the predators instead of escaping. Surprising, altruistic behavior at microscopic (local) scale, leads to the emergence of new complex macroscopic (global) phenomena characterized by dramatic changes in the dynamic topology of the prey-predator spatiotemporal distribution, yielding spiral patterns. We show that such dynamics enhances the prey's survivability.

  5. The Dynamical Behaviors for a Class of Immunogenic Tumor Model with Delay

    PubMed Central

    Muthoni, Mutei Damaris; Pang, Jianhua

    2017-01-01

    This paper aims at studying the model proposed by Kuznetsov and Taylor in 1994. Inspired by Mayer et al., time delay is introduced in the general model. The dynamic behaviors of this model are studied, which include the existence and stability of the equilibria and Hopf bifurcation of the model with discrete delays. The properties of the bifurcated periodic solutions are studied by using the normal form on the center manifold. Numerical examples and simulations are given to illustrate the bifurcation analysis and the obtained results. PMID:29312457

  6. Comparision on dynamic behavior of diesel spray and rapeseed oil spray in diesel engine

    NASA Astrophysics Data System (ADS)

    Sapit, Azwan; Azahari Razali, Mohd; Faisal Hushim, Mohd; Jaat, Norrizam; Nizam Mohammad, Akmal; Khalid, Amir

    2017-04-01

    Fuel-air mixing is important process in diesel combustion. It significantly affects the combustion and emission of diesel engine. Biomass fuel has high viscosity and high distillation temperature and may negatively affect the fuel-air mixing process. Thus, study on the spray development and atomization of this type of fuel is important. This study investigates the atomization characteristics and droplet dynamic behaviors of diesel engine spray fuelled by rapeseed oil (RO) and comparison to diesel fuel (GO). Optical observation of RO spray was carried out using shadowgraph photography technique. Single nano-spark photography technique was used to study the characteristics of the spray while dual nano-spark shadowgraph technique was used to study the spray droplet behavior. Using in-house image processing algorithm, the images were processed and the boundary condition of each spray was also studied. The results show that RO has very poor atomization due to the high viscosity nature of the fuel when compared to GO. This is in agreement with the results from spray droplet dynamic behavior studies that shows due to the high viscosity, the RO spray droplets are large in size and travel downward, with very little influence of entrainment effect due to its large kinematic energy.

  7. A study of dynamical behavior of space environment

    NASA Technical Reports Server (NTRS)

    Wu, S. T.

    1974-01-01

    Studies have covered a wide range of problems in the space environment, such as the problems of the dynamical behavior of the thermosphere, hydromagnetic wave propagation in the ionosphere, and interplanetary space environment. The theories used to analyze these problems range from a continuum theory of magnetohydrodynamics to the kinetic theory of free molecular flow. This is because the problems encountered covered the entire range of the Knudsen number (i.e., the ratio of mean free path to the characteristic length). Significant results are summarized.

  8. Dynamic Fracture Behavior of Plastic-Bonded Explosives

    NASA Astrophysics Data System (ADS)

    Fu, Hua; Li, Jun-Ling; Tan, Duo-Wang; Ifp, Caep Team

    2011-06-01

    Plastic-Bonded Explosives (PBX) are used as important energetic materials in nuclear or conventional weapons. Arms Warhead in the service process and the ballistic phase, may experience complex process such as long pulse and higher loading, compresson, tension and reciprocating compression - tension, friction with the projectile shell, which would lead to explosive deformation and fracture.And the dynamic deformation and fracture behavior of PBX subsequently affect reaction characteristics and initiation mechanism in explosives, then having influence on explosives safety. The dynamic fracure behavior of PBX are generally complex and not well studied or understood. In this paper, the dynamic fracture of explosives are conducted using a Kolsky bar. The Brazilian test, also known as a indirect tensile test or splitting test, is chosen as the test method. Tensile strength under different strain rates are obtained using quartz crystal embedded in rod end. The dynamic deformation and fracture process are captured in real-time by high-speed digital camera, and the displacement and strain fields distribution before specimen fracture are obtained by digital correlation method. Considering the non-uniform microstructure of explosives,the dynamic fracture behavior of explosive are simulated by discrete element method, the simulation results can reproduce the deformation and fracture process in Brazilian test using a maximum tensile strain criterion.

  9. Learning of Chunking Sequences in Cognition and Behavior

    PubMed Central

    Rabinovich, Mikhail

    2015-01-01

    We often learn and recall long sequences in smaller segments, such as a phone number 858 534 22 30 memorized as four segments. Behavioral experiments suggest that humans and some animals employ this strategy of breaking down cognitive or behavioral sequences into chunks in a wide variety of tasks, but the dynamical principles of how this is achieved remains unknown. Here, we study the temporal dynamics of chunking for learning cognitive sequences in a chunking representation using a dynamical model of competing modes arranged to evoke hierarchical Winnerless Competition (WLC) dynamics. Sequential memory is represented as trajectories along a chain of metastable fixed points at each level of the hierarchy, and bistable Hebbian dynamics enables the learning of such trajectories in an unsupervised fashion. Using computer simulations, we demonstrate the learning of a chunking representation of sequences and their robust recall. During learning, the dynamics associates a set of modes to each information-carrying item in the sequence and encodes their relative order. During recall, hierarchical WLC guarantees the robustness of the sequence order when the sequence is not too long. The resulting patterns of activities share several features observed in behavioral experiments, such as the pauses between boundaries of chunks, their size and their duration. Failures in learning chunking sequences provide new insights into the dynamical causes of neurological disorders such as Parkinson’s disease and Schizophrenia. PMID:26584306

  10. Dynamics of Robertson–Walker spacetimes with diffusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alho, A., E-mail: aalho@math.ist.utl.pt; Calogero, S., E-mail: calogero@chalmers.se; Machado Ramos, M.P., E-mail: mpr@mct.uminho.pt

    2015-03-15

    We study the dynamics of spatially homogeneous and isotropic spacetimes containing a fluid undergoing microscopic velocity diffusion in a cosmological scalar field. After deriving a few exact solutions of the equations, we continue by analyzing the qualitative behavior of general solutions. To this purpose we recast the equations in the form of a two dimensional dynamical system and perform a global analysis of the flow. Among the admissible behaviors, we find solutions that are asymptotically de-Sitter both in the past and future time directions and which undergo accelerated expansion at all times.

  11. Impacts of Stratospheric Dynamics on Atmospheric Behavior from the Ground to Space Solar Minimum and Solar Maximum

    DTIC Science & Technology

    2015-12-15

    from the ground to space solar minimum and solar maximum 5a. CONTRACT NUMBER BAA-76-11-01 5b. GRANT NUMBER N00173-12-1G010 5c. PROGRAM ELEMENT...atmospheric behavior from the ground to space under solar minimum and solar maximum conditions (Contract No.: N00173-12-1-G010 NRL) Project Summary...Dynamical response to solar radiative forcing is a crucial and poorly understood mechanisms. We propose to study the impacts of large dynamical events

  12. Dynamical transitions in large systems of mean field-coupled Landau-Stuart oscillators: Extensive chaos and cluster states.

    PubMed

    Ku, Wai Lim; Girvan, Michelle; Ott, Edward

    2015-12-01

    In this paper, we study dynamical systems in which a large number N of identical Landau-Stuart oscillators are globally coupled via a mean-field. Previously, it has been observed that this type of system can exhibit a variety of different dynamical behaviors. These behaviors include time periodic cluster states in which each oscillator is in one of a small number of groups for which all oscillators in each group have the same state which is different from group to group, as well as a behavior in which all oscillators have different states and the macroscopic dynamics of the mean field is chaotic. We argue that this second type of behavior is "extensive" in the sense that the chaotic attractor in the full phase space of the system has a fractal dimension that scales linearly with N and that the number of positive Lyapunov exponents of the attractor also scales linearly with N. An important focus of this paper is the transition between cluster states and extensive chaos as the system is subjected to slow adiabatic parameter change. We observe discontinuous transitions between the cluster states (which correspond to low dimensional dynamics) and the extensively chaotic states. Furthermore, examining the cluster state, as the system approaches the discontinuous transition to extensive chaos, we find that the oscillator population distribution between the clusters continually evolves so that the cluster state is always marginally stable. This behavior is used to reveal the mechanism of the discontinuous transition. We also apply the Kaplan-Yorke formula to study the fractal structure of the extensively chaotic attractors.

  13. Dynamical transitions in large systems of mean field-coupled Landau-Stuart oscillators: Extensive chaos and cluster states

    NASA Astrophysics Data System (ADS)

    Ku, Wai Lim; Girvan, Michelle; Ott, Edward

    2015-12-01

    In this paper, we study dynamical systems in which a large number N of identical Landau-Stuart oscillators are globally coupled via a mean-field. Previously, it has been observed that this type of system can exhibit a variety of different dynamical behaviors. These behaviors include time periodic cluster states in which each oscillator is in one of a small number of groups for which all oscillators in each group have the same state which is different from group to group, as well as a behavior in which all oscillators have different states and the macroscopic dynamics of the mean field is chaotic. We argue that this second type of behavior is "extensive" in the sense that the chaotic attractor in the full phase space of the system has a fractal dimension that scales linearly with N and that the number of positive Lyapunov exponents of the attractor also scales linearly with N. An important focus of this paper is the transition between cluster states and extensive chaos as the system is subjected to slow adiabatic parameter change. We observe discontinuous transitions between the cluster states (which correspond to low dimensional dynamics) and the extensively chaotic states. Furthermore, examining the cluster state, as the system approaches the discontinuous transition to extensive chaos, we find that the oscillator population distribution between the clusters continually evolves so that the cluster state is always marginally stable. This behavior is used to reveal the mechanism of the discontinuous transition. We also apply the Kaplan-Yorke formula to study the fractal structure of the extensively chaotic attractors.

  14. Patient-specific modeling and analysis of dynamic behavior of individual sickle red blood cells under hypoxic conditions

    NASA Astrophysics Data System (ADS)

    Li, Xuejin; Du, E.; Li, Zhen; Tang, Yu-Hang; Lu, Lu; Dao, Ming; Karniadakis, George

    2015-11-01

    Sickle cell anemia is an inherited blood disorder exhibiting heterogeneous morphology and abnormal dynamics under hypoxic conditions. We developed a time-dependent cell model that is able to simulate the dynamic processes of repeated sickling and unsickling of red blood cells (RBCs) under physiological conditions. By using the kinetic cell model with parameters derived from patient-specific data, we present a mesoscopic computational study of the dynamic behavior of individual sickle RBCs flowing in a microfluidic channel with multiple microgates. We investigate how individual sickle RBCs behave differently from healthy ones in channel flow, and analyze the alteration of cellular behavior and response to single-cell capillary obstruction induced by cell rheologic rigidification and morphological change due to cell sickling under hypoxic conditions. We also simulate the flow dynamics of sickle RBCs treated with hydroxyurea (HU) and quantify the relative enhancement of hemodynamic performance of HU. This work was supported by the National Institutes of Health (NIH) Grant U01HL114476.

  15. The effect of the behavior of an average consumer on the public debt dynamics

    NASA Astrophysics Data System (ADS)

    De Luca, Roberto; Di Mauro, Marco; Falzarano, Angelo; Naddeo, Adele

    2017-09-01

    An important issue within the present economic crisis is understanding the dynamics of the public debt of a given country, and how the behavior of average consumers and tax payers in that country affects it. Starting from a model of the average consumer behavior introduced earlier by the authors, we propose a simple model to quantitatively address this issue. The model is then studied and analytically solved under some reasonable simplifying assumptions. In this way we obtain a condition under which the public debt steadily decreases.

  16. Neural mechanisms of movement planning: motor cortex and beyond.

    PubMed

    Svoboda, Karel; Li, Nuo

    2018-04-01

    Neurons in motor cortex and connected brain regions fire in anticipation of specific movements, long before movement occurs. This neural activity reflects internal processes by which the brain plans and executes volitional movements. The study of motor planning offers an opportunity to understand how the structure and dynamics of neural circuits support persistent internal states and how these states influence behavior. Recent advances in large-scale neural recordings are beginning to decipher the relationship of the dynamics of populations of neurons during motor planning and movements. New behavioral tasks in rodents, together with quantified perturbations, link dynamics in specific nodes of neural circuits to behavior. These studies reveal a neural network distributed across multiple brain regions that collectively supports motor planning. We review recent advances and highlight areas where further work is needed to achieve a deeper understanding of the mechanisms underlying motor planning and related cognitive processes. Copyright © 2017. Published by Elsevier Ltd.

  17. Analysis of dynamic cantilever behavior in tapping mode atomic force microscopy.

    PubMed

    Deng, Wenqi; Zhang, Guang-Ming; Murphy, Mark F; Lilley, Francis; Harvey, David M; Burton, David R

    2015-10-01

    Tapping mode atomic force microscopy (AFM) provides phase images in addition to height and amplitude images. Although the behavior of tapping mode AFM has been investigated using mathematical modeling, comprehensive understanding of the behavior of tapping mode AFM still poses a significant challenge to the AFM community, involving issues such as the correct interpretation of the phase images. In this paper, the cantilever's dynamic behavior in tapping mode AFM is studied through a three dimensional finite element method. The cantilever's dynamic displacement responses are firstly obtained via simulation under different tip-sample separations, and for different tip-sample interaction forces, such as elastic force, adhesion force, viscosity force, and the van der Waals force, which correspond to the cantilever's action upon various different representative computer-generated test samples. Simulated results show that the dynamic cantilever displacement response can be divided into three zones: a free vibration zone, a transition zone, and a contact vibration zone. Phase trajectory, phase shift, transition time, pseudo stable amplitude, and frequency changes are then analyzed from the dynamic displacement responses that are obtained. Finally, experiments are carried out on a real AFM system to support the findings of the simulations. © 2015 Wiley Periodicals, Inc.

  18. Inferring the Limit Behavior of Some Elementary Cellular Automata

    NASA Astrophysics Data System (ADS)

    Ruivo, Eurico L. P.; de Oliveira, Pedro P. B.

    Cellular automata locally define dynamical systems, discrete in space, time and in the state variables, capable of displaying arbitrarily complex global emergent behavior. One core question in the study of cellular automata refers to their limit behavior, that is, to the global dynamical features in an infinite time evolution. Previous works have shown that for finite time evolutions, the dynamics of one-dimensional cellular automata can be described by regular languages and, therefore, by finite automata. Such studies have shown the existence of growth patterns in the evolution of such finite automata for some elementary cellular automata rules and also inferred the limit behavior of such rules based upon the growth patterns; however, the results on the limit behavior were obtained manually, by direct inspection of the structures that arise during the time evolution. Here we present the formalization of an automatic method to compute such structures. Based on this, the rules of the elementary cellular automata space were classified according to the existence of a growth pattern in their finite automata. Also, we present a method to infer the limit graph of some elementary cellular automata rules, derived from the analysis of the regular expressions that describe their behavior in finite time. Finally, we analyze some attractors of two rules for which we could not compute the whole limit set.

  19. Dissipative gravitational bouncer on a vibrating surface

    NASA Astrophysics Data System (ADS)

    Espinoza Ortiz, J. S.; Lagos, R. E.

    2017-12-01

    We study the dynamical behavior of a particle flying under the influence of a gravitational field, with dissipation constant λ (Stokes-like), colliding successive times against a rigid surface vibrating harmonically with restitution coefficient α. We define re-scaled dimensionless dynamical variables, such as the relative particle velocity Ω with respect to the surface’s velocity; and the real parameter τ accounting for the temporal evolution of the system. At the particle-surface contact point and for the k‧th collision, we construct the mapping described by (τk ; Ω k ) in order to analyze the system’s nonlinear dynamical behavior. From the dynamical mapping, the fixed point trajectory is computed and its stability is analyzed. We find the dynamical behavior of the fixed point trajectory to be stable or unstable, depending on the values of the re-scaled vibrating surface amplitude Γ, the restitution coefficient α and the damping constant λ. Other important dynamical aspects such as the phase space volume and the one cycle vibrating surface (decomposed into absorbing and transmitting regions) are also discussed. Furthermore, the model rescues well known results in the limit λ = 0.

  20. Convective dynamics and chemical disequilibrium in the atmospheres of substellar objects

    NASA Astrophysics Data System (ADS)

    Bordwell, Baylee; Brown, Benjamin P.; Oishi, Jeffrey S.

    2017-11-01

    The thousands of substellar objects now known provide a unique opportunity to test our understanding of atmospheric dynamics across a range of environments. The chemical timescales of certain species transition from being much shorter than the dynamical timescales to being much longer than them at a point in the atmosphere known as the quench point. This transition leads to a state of dynamical disequilibrium, the effects of which can be used to probe the atmospheric dynamics of these objects. Unfortunately, due to computational constraints, models that inform the interpretation of these observations are run at dynamical parameters which are far from realistic values. In this study, we explore the behavior of a disequilibrium chemical process with increasingly realistic planetary conditions, to quantify the effects of the approximations used in current models. We simulate convection in 2-D, plane-parallel, polytropically-stratified atmospheres, into which we add reactive passive tracers that explore disequilibrium behavior. We find that as we increase the Rayleigh number, and thus achieve more realistic planetary conditions, the behavior of these tracers does not conform to the classical predictions of disequilibrium chemistry.

  1. Many-body dynamics of chemically propelled nanomotors

    NASA Astrophysics Data System (ADS)

    Colberg, Peter H.; Kapral, Raymond

    2017-08-01

    The collective behavior of chemically propelled sphere-dimer motors made from linked catalytic and noncatalytic spheres in a quasi-two-dimensional confined geometry is studied using a coarse-grained microscopic dynamical model. Chemical reactions at the catalytic spheres that convert fuel to product generate forces that couple to solvent degrees of freedom as a consequence of momentum conservation in the microscopic dynamics. The collective behavior of the many-body system is influenced by direct intermolecular interactions among the motors, chemotactic effects due to chemical gradients, hydrodynamic coupling, and thermal noise. Segregation into high and low density phases and globally homogeneous states with strong fluctuations are investigated as functions of the motor characteristics. Factors contributing to this behavior are discussed in the context of active Brownian models.

  2. Dynamic phase transitions of the Blume-Emery-Griffiths model under an oscillating external magnetic field by the path probability method

    NASA Astrophysics Data System (ADS)

    Ertaş, Mehmet; Keskin, Mustafa

    2015-03-01

    By using the path probability method (PPM) with point distribution, we study the dynamic phase transitions (DPTs) in the Blume-Emery-Griffiths (BEG) model under an oscillating external magnetic field. The phases in the model are obtained by solving the dynamic equations for the average order parameters and a disordered phase, ordered phase and four mixed phases are found. We also investigate the thermal behavior of the dynamic order parameters to analyze the nature dynamic transitions as well as to obtain the DPT temperatures. The dynamic phase diagrams are presented in three different planes in which exhibit the dynamic tricritical point, double critical end point, critical end point, quadrupole point, triple point as well as the reentrant behavior, strongly depending on the values of the system parameters. We compare and discuss the dynamic phase diagrams with dynamic phase diagrams that were obtained within the Glauber-type stochastic dynamics based on the mean-field theory.

  3. Influence of dynamic compressive loading on the in vitro degradation behavior of pure PLA and Mg/PLA composite.

    PubMed

    Li, Xuan; Qi, Chenxi; Han, Linyuan; Chu, Chenglin; Bai, Jing; Guo, Chao; Xue, Feng; Shen, Baolong; Chu, Paul K

    2017-12-01

    The effects of dynamic compressive loading on the in vitro degradation behavior of pure poly-lactic acid (PLA) and PLA-based composite unidirectionally reinforced with micro-arc oxidized magnesium alloy wires (Mg/PLA) are investigated. Dynamic compressive loading is shown to accelerate degradation of pure PLA and Mg/PLA. As the applied stress is increased from 0.1MPa to 0.9MPa or frequency from 0.5Hz to 2.5Hz, the overall degradation rate goes up. After immersion for 21days at 0.9MPa and 2.5Hz, the bending strength retention of the composite and pure PLA is 60.1% and 50%, respectively. Dynamic loading enhances diffusion of small acidic molecules resulting in significant pH decrease in the immersion solution. The synergistic reaction between magnesium alloy wires and PLA in the composite is further clarified by electrochemical tests. The degradation behavior of the pure PLA and PLA matrix in the composite under dynamic conditions obey the first order degradation kinetics and a numerical model is postulated to elucidate the relationship of the bending strength, stress, frequency, and immersion time under dynamic conditions. We systematically study the influence of dynamic loading on the degradation behavior of pure PLA and Mg/PLA. Dynamic compressive loading is shown to accelerate degradation of pure PLA and Mg/PLA. The synergistic reaction between magnesium alloy wires and PLA in the composite is firstly clarified by electrochemical tests. The degradation behavior of the pure PLA and PLA matrix in the composite under dynamic conditions obey the first order degradation kinetics. Then, a numerical model is postulated to elucidate the relationship of the bending strength, stress, frequency, and immersion time under dynamic conditions. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  4. MODEL CORRELATION STUDY OF A RETRACTABLE BOOM FOR A SOLAR SAIL SPACECRAFT

    NASA Technical Reports Server (NTRS)

    Adetona, O.; Keel, L. H.; Oakley, J. D.; Kappus, K.; Whorton, M. S.; Kim, Y. K.; Rakpczy, J. M.

    2005-01-01

    To realize design concepts, predict dynamic behavior and develop appropriate control strategies for high performance operation of a solar-sail spacecraft, we developed a simple analytical model that represents dynamic behavior of spacecraft with various sizes. Since motion of the vehicle is dominated by retractable booms that support the structure, our study concentrates on developing and validating a dynamic model of a long retractable boom. Extensive tests with various configurations were conducted for the 30 Meter, light-weight, retractable, lattice boom at NASA MSFC that is structurally and dynamically similar to those of a solar-sail spacecraft currently under construction. Experimental data were then compared with the corresponding response of the analytical model. Though mixed results were obtained, the analytical model emulates several key characteristics of the boom. The paper concludes with a detailed discussion of issues observed during the study.

  5. Web-based experiments for the study of collective social dynamics in cultural markets

    PubMed Central

    Salganik, Matthew J.; Watts, Duncan J.

    2013-01-01

    Social scientists are often interested in understanding how the dynamics of social systems are driven by the behavior of individuals that make up those systems. However, this process is hindered by the difficulty of experimentally studying how individual behavioral tendencies lead to collective social dynamics in large groups of people interacting over time. In this paper we investigate the role of social influence, a process well studied at the individual level, on the puzzling nature of success for cultural products such as books, movies, and music. Using a “multiple-worlds” experimental design we are able to isolate the causal effect of an individual level mechanism on collective social outcomes. We employ this design in a web-based experiment in which 2,930 participants listened to, rated, and download 48 songs by up-and-coming bands. Surprisingly, despite relatively large differences in the demographics, behavior, and preferences of participants, the experimental results at both the individual and collective level were similar to those found in Salganik, Dodds, and Watts (2006). Further, by comparing results from two distinct pools of participants we are able to gain new insights into the role of individual behavior on collective outcomes. We conclude with a discussion of the strengths and weaknesses of web-based experiments to address questions of collective social dynamics. PMID:25164996

  6. Scaling behavior of online human activity

    NASA Astrophysics Data System (ADS)

    Zhao, Zhi-Dan; Cai, Shi-Min; Huang, Junming; Fu, Yan; Zhou, Tao

    2012-11-01

    The rapid development of the Internet technology enables humans to explore the web and record the traces of online activities. From the analysis of these large-scale data sets (i.e., traces), we can get insights about the dynamic behavior of human activity. In this letter, the scaling behavior and complexity of human activity in the e-commerce, such as music, books, and movies rating, are comprehensively investigated by using the detrended fluctuation analysis technique and the multiscale entropy method. Firstly, the interevent time series of rating behaviors of these three types of media show similar scaling properties with exponents ranging from 0.53 to 0.58, which implies that the collective behaviors of rating media follow a process embodying self-similarity and long-range correlation. Meanwhile, by dividing the users into three groups based on their activities (i.e., rating per unit time), we find that the scaling exponents of the interevent time series in the three groups are different. Hence, these results suggest that a stronger long-range correlations exist in these collective behaviors. Furthermore, their information complexities vary in the three groups. To explain the differences of the collective behaviors restricted to the three groups, we study the dynamic behavior of human activity at the individual level, and find that the dynamic behaviors of a few users have extremely small scaling exponents associated with long-range anticorrelations. By comparing the interevent time distributions of four representative users, we can find that the bimodal distributions may bring forth the extraordinary scaling behaviors. These results of the analysis of the online human activity in the e-commerce may not only provide insight into its dynamic behaviors but may also be applied to acquire potential economic interest.

  7. Influence of human behavior on cholera dynamics

    PubMed Central

    Wang, Xueying; Gao, Daozhou; Wang, Jin

    2015-01-01

    This paper is devoted to studying the impact of human behavior on cholera infection. We start with a cholera ordinary differential equation (ODE) model that incorporates human behavior via modeling disease prevalence dependent contact rates for direct and indirect transmissions and infectious host shedding. Local and global dynamics of the model are analyzed with respect to the basic reproduction number. We then extend the ODE model to a reaction-convection-diffusion partial differential equation (PDE) model that accounts for the movement of both human hosts and bacteria. Particularly, we investigate the cholera spreading speed by analyzing the traveling wave solutions of the PDE model, and disease threshold dynamics by numerically evaluating the basic reproduction number of the PDE model. Our results show that human behavior can reduce (a) the endemic and epidemic levels, (b) cholera spreading speeds and (c) the risk of infection (characterized by the basic reproduction number). PMID:26119824

  8. Cortical oscillatory dynamics in a social interaction model.

    PubMed

    Knyazev, Gennady G; Slobodskoj-Plusnin, Jaroslav Y; Bocharov, Andrey V; Pylkova, Liudmila V

    2013-03-15

    In this study we sought to investigate cortical oscillatory dynamics accompanying three major kinds of social behavior: aggressive, friendly, and avoidant. Behavioral and EEG data were collected in 48 participants during a computer game modeling social interactions with virtual 'persons'. 3D source reconstruction and independent component analysis were applied to EEG data. Results showed that social behavior was partly reactive and partly proactive with subject's personality playing an important role in shaping this behavior. Most salient differences were found between avoidance and approach behaviors, whereas the two kinds of approach behavior (i.e., aggression and friendship) did not differ from each other. Comparative to avoidance, approach behaviors were associated with higher induced responses in most frequency bands which were mostly observed in cortical areas overlapping with the default mode network. The difference between approach- and avoidance-related oscillatory dynamics was more salient in subjects predisposed to approach behaviors (i.e., in aggressive or sociable subjects) and was less pronounced in subjects predisposed to avoidance behavior (i.e., in high trait anxiety scorers). There was a trend to higher low frequency phase-locking in motor area in approach than in avoid condition. Results are discussed in light of the concept linking induced responses with top-down and evoked responses with bottom-up processes. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Rhythm is it: effects of dynamic body feedback on affect and attitudes

    PubMed Central

    Koch, Sabine C.

    2014-01-01

    Body feedback is the proprioceptive feedback that denominates the afferent information from position and movement of the body to the central nervous system. It is crucial in experiencing emotions, in forming attitudes and in regulating emotions and behavior. This paper investigates effects of dynamic body feedback on affect and attitudes, focusing on the impact of movement rhythms with smooth vs. sharp reversals as one basic category of movement qualities. It relates those qualities to already explored effects of approach vs. avoidance motor behavior as one basic category of movement shape. Studies 1 and 2 tested the effects of one of two basic movement qualities (smooth vs. sharp rhythms) on affect and cognition. The third study tested those movement qualities in combination with movement shape (approach vs. avoidance motor behavior) and the effects of those combinations on affect and attitudes toward initially valence-free stimuli. Results suggest that movement rhythms influence affect (studies 1 and 2), and attitudes (study 3), and moderate the impact of approach and avoidance motor behavior on attitudes (study 3). Extending static body feedback research with a dynamic account, findings indicate that movement qualities – next to movement shape – play an important role, when movement of the lived body is an independent variable. PMID:24959153

  10. Postnatal brain development: Structural imaging of dynamic neurodevelopmental processes

    PubMed Central

    Jernigan, Terry L.; Baaré, William F. C.; Stiles, Joan; Madsen, Kathrine Skak

    2013-01-01

    After birth, there is striking biological and functional development of the brain’s fiber tracts as well as remodeling of cortical and subcortical structures. Behavioral development in children involves a complex and dynamic set of genetically guided processes by which neural structures interact constantly with the environment. This is a protracted process, beginning in the third week of gestation and continuing into early adulthood. Reviewed here are studies using structural imaging techniques, with a special focus on diffusion weighted imaging, describing age-related brain maturational changes in children and adolescents, as well as studies that link these changes to behavioral differences. Finally, we discuss evidence for effects on the brain of several factors that may play a role in mediating these brain–behavior associations in children, including genetic variation, behavioral interventions, and hormonal variation associated with puberty. At present longitudinal studies are few, and we do not yet know how variability in individual trajectories of biological development in specific neural systems map onto similar variability in behavioral trajectories. PMID:21489384

  11. Nonlinear problems in flight dynamics

    NASA Technical Reports Server (NTRS)

    Chapman, G. T.; Tobak, M.

    1984-01-01

    A comprehensive framework is proposed for the description and analysis of nonlinear problems in flight dynamics. Emphasis is placed on the aerodynamic component as the major source of nonlinearities in the flight dynamic system. Four aerodynamic flows are examined to illustrate the richness and regularity of the flow structures and the nature of the flow structures and the nature of the resulting nonlinear aerodynamic forces and moments. A framework to facilitate the study of the aerodynamic system is proposed having parallel observational and mathematical components. The observational component, structure is described in the language of topology. Changes in flow structure are described via bifurcation theory. Chaos or turbulence is related to the analogous chaotic behavior of nonlinear dynamical systems characterized by the existence of strange attractors having fractal dimensionality. Scales of the flow are considered in the light of ideas from group theory. Several one and two degree of freedom dynamical systems with various mathematical models of the nonlinear aerodynamic forces and moments are examined to illustrate the resulting types of dynamical behavior. The mathematical ideas that proved useful in the description of fluid flows are shown to be similarly useful in the description of flight dynamic behavior.

  12. Influence of changes in initial conditions for the simulation of dynamic systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kotyrba, Martin

    2015-03-10

    Chaos theory is a field of study in mathematics, with applications in several disciplines including meteorology, sociology, physics, engineering, economics, biology, and philosophy. Chaos theory studies the behavior of dynamical systems that are highly sensitive to initial conditions—a paradigm popularly referred to as the butterfly effect. Small differences in initial conditions field widely diverging outcomes for such dynamical systems, rendering long-term prediction impossible in general. This happens even though these systems are deterministic, meaning that their future behavior is fully determined by their initial conditions, with no random elements involved. In this paperinfluence of changes in initial conditions will bemore » presented for the simulation of Lorenz system.« less

  13. Interaction dynamics of multiple mobile robots with simple navigation strategies

    NASA Technical Reports Server (NTRS)

    Wang, P. K. C.

    1989-01-01

    The global dynamic behavior of multiple interacting autonomous mobile robots with simple navigation strategies is studied. Here, the effective spatial domain of each robot is taken to be a closed ball about its mass center. It is assumed that each robot has a specified cone of visibility such that interaction with other robots takes place only when they enter its visibility cone. Based on a particle model for the robots, various simple homing and collision-avoidance navigation strategies are derived. Then, an analysis of the dynamical behavior of the interacting robots in unbounded spatial domains is made. The article concludes with the results of computer simulations studies of two or more interacting robots.

  14. Complexity multiscale asynchrony measure and behavior for interacting financial dynamics

    NASA Astrophysics Data System (ADS)

    Yang, Ge; Wang, Jun; Niu, Hongli

    2016-08-01

    A stochastic financial price process is proposed and investigated by the finite-range multitype contact dynamical system, in an attempt to study the nonlinear behaviors of real asset markets. The viruses spreading process in a finite-range multitype system is used to imitate the interacting behaviors of diverse investment attitudes in a financial market, and the empirical research on descriptive statistics and autocorrelation behaviors of return time series is performed for different values of propagation rates. Then the multiscale entropy analysis is adopted to study several different shuffled return series, including the original return series, the corresponding reversal series, the random shuffled series, the volatility shuffled series and the Zipf-type shuffled series. Furthermore, we propose and compare the multiscale cross-sample entropy and its modification algorithm called composite multiscale cross-sample entropy. We apply them to study the asynchrony of pairs of time series under different time scales.

  15. The theory of reasoned action as parallel constraint satisfaction: towards a dynamic computational model of health behavior.

    PubMed

    Orr, Mark G; Thrush, Roxanne; Plaut, David C

    2013-01-01

    The reasoned action approach, although ubiquitous in health behavior theory (e.g., Theory of Reasoned Action/Planned Behavior), does not adequately address two key dynamical aspects of health behavior: learning and the effect of immediate social context (i.e., social influence). To remedy this, we put forth a computational implementation of the Theory of Reasoned Action (TRA) using artificial-neural networks. Our model re-conceptualized behavioral intention as arising from a dynamic constraint satisfaction mechanism among a set of beliefs. In two simulations, we show that constraint satisfaction can simultaneously incorporate the effects of past experience (via learning) with the effects of immediate social context to yield behavioral intention, i.e., intention is dynamically constructed from both an individual's pre-existing belief structure and the beliefs of others in the individual's social context. In a third simulation, we illustrate the predictive ability of the model with respect to empirically derived behavioral intention. As the first known computational model of health behavior, it represents a significant advance in theory towards understanding the dynamics of health behavior. Furthermore, our approach may inform the development of population-level agent-based models of health behavior that aim to incorporate psychological theory into models of population dynamics.

  16. The Theory of Reasoned Action as Parallel Constraint Satisfaction: Towards a Dynamic Computational Model of Health Behavior

    PubMed Central

    Orr, Mark G.; Thrush, Roxanne; Plaut, David C.

    2013-01-01

    The reasoned action approach, although ubiquitous in health behavior theory (e.g., Theory of Reasoned Action/Planned Behavior), does not adequately address two key dynamical aspects of health behavior: learning and the effect of immediate social context (i.e., social influence). To remedy this, we put forth a computational implementation of the Theory of Reasoned Action (TRA) using artificial-neural networks. Our model re-conceptualized behavioral intention as arising from a dynamic constraint satisfaction mechanism among a set of beliefs. In two simulations, we show that constraint satisfaction can simultaneously incorporate the effects of past experience (via learning) with the effects of immediate social context to yield behavioral intention, i.e., intention is dynamically constructed from both an individual’s pre-existing belief structure and the beliefs of others in the individual’s social context. In a third simulation, we illustrate the predictive ability of the model with respect to empirically derived behavioral intention. As the first known computational model of health behavior, it represents a significant advance in theory towards understanding the dynamics of health behavior. Furthermore, our approach may inform the development of population-level agent-based models of health behavior that aim to incorporate psychological theory into models of population dynamics. PMID:23671603

  17. Thermal Fatigue and Fracture Behavior of Ceramic Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Zhu, Dong-Ming; Choi, Sung R.; Miller, Robert A.

    2001-01-01

    Thermal fatigue and fracture behavior of plasma-sprayed ceramic thermal barrier coatings has been investigated under high heat flux and thermal cyclic conditions. The coating crack propagation is studied under laser heat flux cyclic thermal loading, and is correlated with dynamic fatigue and strength test results. The coating stress response and inelasticity, fatigue and creep interactions, and interface damage mechanisms during dynamic thermal fatigue processes are emphasized.

  18. Modeling the heterogeneity of human dynamics based on the measurements of influential users in Sina Microblog

    NASA Astrophysics Data System (ADS)

    Wang, Chenxu; Guan, Xiaohong; Qin, Tao; Yang, Tao

    2015-06-01

    Online social network has become an indispensable communication tool in the information age. The development of microblog also provides us a great opportunity to study human dynamics that play a crucial role in the design of efficient communication systems. In this paper we study the characteristics of the tweeting behavior based on the data collected from Sina Microblog. The user activity level is measured to characterize how often a user posts a tweet. We find that the user activity level follows a bimodal distribution. That is, the microblog users tend to be either active or inactive. The inter-tweeting time distribution is then measured at both the aggregate and individual levels. We find that the inter-tweeting time follows a piecewise power law distribution of two tails. Furthermore, the exponents of the two tails have different correlations with the user activity level. These findings demonstrate that the dynamics of the tweeting behavior are heterogeneous in different time scales. We then develop a dynamic model co-driven by the memory and the interest mechanism to characterize the heterogeneity. The numerical simulations validate the model and verify that the short time interval tweeting behavior is driven by the memory mechanism while the long time interval behavior by the interest mechanism.

  19. Hot Deformation and Dynamic Recrystallization Behavior of the Cu-Cr-Zr-Y Alloy

    NASA Astrophysics Data System (ADS)

    Zhang, Yi; Huili, Sun; Volinsky, Alex A.; Tian, Baohong; Chai, Zhe; Liu, Ping; Liu, Yong

    2016-03-01

    To study the workability and to optimize the hot deformation processing parameters of the Cu-Cr-Zr-Y alloy, the strain hardening effect and dynamic softening behavior of the Cu-Cr-Zr-Y alloy were investigated. The flow stress increases with the strain rate and stress decreases with deformation temperature. The critical conditions, including the critical strain and stress for the occurrence of dynamic recrystallization, were determined based on the alloy strain hardening rate. The critical stress related to the onset of dynamic recrystallization decreases with temperature. The evolution of DRX microstructure strongly depends on the deformation temperature and the strain rate. Dynamic recrystallization appears at high temperatures and low strain rates. The addition of Y can refine the grain and effectively accelerate dynamic recrystallization. Dislocation generation and multiplication are the main hot deformation mechanisms for the alloy. The deformation temperature increase and the strain rate decrease can promote dynamic recrystallization of the alloy.

  20. A dynamic parking charge optimal control model under perspective of commuters' evolutionary game behavior

    NASA Astrophysics Data System (ADS)

    Lin, XuXun; Yuan, PengCheng

    2018-01-01

    In this research we consider commuters' dynamic learning effect by modeling the trip mode choice behavior from a new perspective of dynamic evolutionary game theory. We explore the behavior pattern of different types of commuters and study the evolution path and equilibrium properties under different traffic conditions. We further establish a dynamic parking charge optimal control (referred to as DPCOC) model to alter commuters' trip mode choice while minimizing the total social cost. Numerical tests show. (1) Under fixed parking fee policy, the evolutionary results are completely decided by the travel time and the only method for public transit induction is to increase the parking charge price. (2) Compared with fixed parking fee policy, DPCOC policy proposed in this research has several advantages. Firstly, it can effectively turn the evolutionary path and evolutionary stable strategy to a better situation while minimizing the total social cost. Secondly, it can reduce the sensitivity of trip mode choice behavior to traffic congestion and improve the ability to resist interferences and emergencies. Thirdly, it is able to control the private car proportion to a stable state and make the trip behavior more predictable for the transportation management department. The research results can provide theoretical basis and decision-making references for commuters' mode choice prediction, dynamic setting of urban parking charge prices and public transit induction.

  1. Comparing the Cognitive Process of Circular Causality in Two Patients with Strokes through Qualitative Analysis.

    PubMed

    Derakhshanrad, Seyed Alireza; Piven, Emily; Ghoochani, Bahareh Zeynalzadeh

    2017-10-01

    Walter J. Freeman pioneered the neurodynamic model of brain activity when he described the brain dynamics for cognitive information transfer as the process of circular causality at intention, meaning, and perception (IMP) levels. This view contributed substantially to establishment of the Intention, Meaning, and Perception Model of Neuro-occupation in occupational therapy. As described by the model, IMP levels are three components of the brain dynamics system, with nonlinear connections that enable cognitive function to be processed in a circular causality fashion, known as Cognitive Process of Circular Causality (CPCC). Although considerable research has been devoted to study the brain dynamics by sophisticated computerized imaging techniques, less attention has been paid to study it through investigating the adaptation process of thoughts and behaviors. To explore how CPCC manifested thinking and behavioral patterns, a qualitative case study was conducted on two matched female participants with strokes, who were of comparable ages, affected sides, and other characteristics, except for their resilience and motivational behaviors. CPCC was compared by matrix analysis between two participants, using content analysis with pre-determined categories. Different patterns of thinking and behavior may have happened, due to disparate regulation of CPCC between two participants.

  2. Solar Dynamics Observatory Briefing

    NASA Image and Video Library

    2010-01-21

    Richard Fisher, Heliophysics Division Director at NASA Headquarters, speaks during a briefing to discuss the upcoming launch of NASA's Solar Dynamic Observatory, or SDO, Thursday, Jan. 21, 2010, at NASA Headquarters in Washington. The mission is to study the Sun and its dynamic behavior. Photo Credit: (NASA/Paul E. Alers)

  3. Watching cellular machinery in action, one molecule at a time.

    PubMed

    Monachino, Enrico; Spenkelink, Lisanne M; van Oijen, Antoine M

    2017-01-02

    Single-molecule manipulation and imaging techniques have become important elements of the biologist's toolkit to gain mechanistic insights into cellular processes. By removing ensemble averaging, single-molecule methods provide unique access to the dynamic behavior of biomolecules. Recently, the use of these approaches has expanded to the study of complex multiprotein systems and has enabled detailed characterization of the behavior of individual molecules inside living cells. In this review, we provide an overview of the various force- and fluorescence-based single-molecule methods with applications both in vitro and in vivo, highlighting these advances by describing their applications in studies on cytoskeletal motors and DNA replication. We also discuss how single-molecule approaches have increased our understanding of the dynamic behavior of complex multiprotein systems. These methods have shown that the behavior of multicomponent protein complexes is highly stochastic and less linear and deterministic than previously thought. Further development of single-molecule tools will help to elucidate the molecular dynamics of these complex systems both inside the cell and in solutions with purified components. © 2017 Monachino et al.

  4. Dynamic Connectivity Patterns in Conscious and Unconscious Brain

    PubMed Central

    Ma, Yuncong; Hamilton, Christina

    2017-01-01

    Abstract Brain functional connectivity undergoes dynamic changes from the awake to unconscious states. However, how the dynamics of functional connectivity patterns are linked to consciousness at the behavioral level remains elusive. In this study, we acquired resting-state functional magnetic resonance imaging data during wakefulness and graded levels of consciousness in rats. Data were analyzed using a dynamic approach combining the sliding window method and k-means clustering. Our results demonstrate that whole-brain networks contained several quasi-stable patterns that dynamically recurred from the awake state into anesthetized states. Remarkably, two brain connectivity states with distinct spatial similarity to the structure of anatomical connectivity were strongly biased toward high and low consciousness levels, respectively. These results provide compelling neuroimaging evidence linking the dynamics of whole-brain functional connectivity patterns and states of consciousness at the behavioral level. PMID:27846731

  5. Assessing the Extent of Influence Subglacial Hydrology Has on Dynamic Ice Sheet Behavior

    NASA Astrophysics Data System (ADS)

    Babonis, G. S.; Csatho, B. M.

    2012-12-01

    Numerous recent studies have done an excellent job capturing and quantifying the complex pattern of dynamic changes of the Greenland Ice Sheet (GrIS) over the past several decades. The timing of changes in ice velocities and mass balance indicate that the mechanisms controlling these behaviors, both external and internal, act over variable spatial and temporal regimes, can change in rapid and complex fashion, and have significant effect on ice sheet behavior as well as sea level rise. With roughly half of the estimated ice loss from the GrIS attributed to dynamic processes, these changes account for about 250 Gt/yr (2003-2008), equivalence to 0.6 mm/yr sea level rise. One of the primary influences of dynamic ice behavior is ice sheet hydrology, including the storage and transport of water from the supraglacial to subglacial environment, and the subsequent development of water transport pathways, thus demonstrating the need for further characterization of the subglacial environment. Enhanced dynamic flow of ice due to the influence of meltwater distribution on the subglacial environment has been reported, including In-SAR observations of large velocity increases over short periods of time, suggesting regions where dynamic changes are likely being caused by changes in hydrology. Additionally, building upon the 1993-2011 laser altimetry record, analyzed by our Surface Elevation Reconstruction And Change detection (SERAC) procedure, we have detected complex patterns of rapid thickening and thinning patterns over several outlet glaciers. This study presents a comprehensive investigation of hydrologic control on dynamic glacier behavior for several key sites in Greenland. We combine a high resolution surface digital elevation model (DEM) derived by fusing space- and airborne laser altimetry observations and SPIRIT SPOT DEMs, with a high resolution, hydrologically-corrected bedrock DEM derived from a combination of CResIS and Operation Icebridge ice penetrating radar data for generating potentiometric maps for each region of interest. Using these potentiometric maps, along with surficial DEMs, supra- and subglacial routing paths, as well as potential sites for discrete supraglacial hydrologic input sources are identified. Comparison of hydrologic drainage networks with the spatial distribution of recent rapid dynamic changes detected by altimetry allows for the assessment of the extent of influence that subglacial hydrology has on ice sheet behavior.

  6. Dynamic mechanical control of local vacancies in NiO thin films

    NASA Astrophysics Data System (ADS)

    Seol, Daehee; Yang, Sang Mo; Jesse, Stephen; Choi, Minseok; Hwang, Inrok; Choi, Taekjib; Park, Bae Ho; Kalinin, Sergei V.; Kim, Yunseok

    2018-07-01

    The manipulation of local ionic behavior via external stimuli in oxide systems is of great interest because it can help in directly tuning material properties. Among external stimuli, mechanical force has attracted intriguing attention as novel stimulus for ionic modulation. Even though effectiveness of mechanical force on local ionic modulation has been validated in terms of static effect, its real-time i.e., dynamic, behavior under an application of the force is barely investigated in spite of its crucial impact on device performance such as force or pressure sensors. In this study, we explore dynamic ionic behavior modulated by mechanical force in NiO thin films using electrochemical strain microscopy (ESM). Ionically mediated ESM hysteresis loops were significantly varied under an application of mechanical force. Based on these results, we were able to investigate relative relationship between the force and voltage effects on ionic motion and, further, control effectively ionic behavior through combination of mechanical and electrical stimuli. Our results can provide comprehensive information on the effect of mechanical forces on ionic dynamics in ionic systems.

  7. Experimental Investigation of Spectra of Dynamical Maps and their Relation to non-Markovianity

    NASA Astrophysics Data System (ADS)

    Yu, Shang; Wang, Yi-Tao; Ke, Zhi-Jin; Liu, Wei; Meng, Yu; Li, Zhi-Peng; Zhang, Wen-Hao; Chen, Geng; Tang, Jian-Shun; Li, Chuan-Feng; Guo, Guang-Can

    2018-02-01

    The spectral theorem of von Neumann has been widely applied in various areas, such as the characteristic spectral lines of atoms. It has been recently proposed that dynamical evolution also possesses spectral lines. As the most intrinsic property of evolution, the behavior of these spectra can, in principle, exhibit almost every feature of this evolution, among which the most attractive topic is non-Markovianity, i.e., the memory effects during evolution. Here, we develop a method to detect these spectra, and moreover, we experimentally examine the relation between the spectral behavior and non-Markovianity by engineering the environment to prepare dynamical maps with different non-Markovian properties and then detecting the dynamical behavior of the spectral values. These spectra will lead to a witness for essential non-Markovianity. We also experimentally verify another simplified witness method for essential non-Markovianity. Interestingly, in both cases, we observe the sudden transition from essential non-Markovianity to something else. Our work shows the role of the spectra of evolution in the studies of non-Makovianity and provides the alternative methods to characterize non-Markovian behavior.

  8. Dynamic mechanical control of local vacancies in NiO thin films.

    PubMed

    Seol, Daehee; Yang, Sang Mo; Jesse, Stephen; Choi, Minseok; Hwang, Inrok; Choi, Taekjib; Park, Bae Ho; Kalinin, Sergei V; Kim, Yunseok

    2018-07-06

    The manipulation of local ionic behavior via external stimuli in oxide systems is of great interest because it can help in directly tuning material properties. Among external stimuli, mechanical force has attracted intriguing attention as novel stimulus for ionic modulation. Even though effectiveness of mechanical force on local ionic modulation has been validated in terms of static effect, its real-time i.e., dynamic, behavior under an application of the force is barely investigated in spite of its crucial impact on device performance such as force or pressure sensors. In this study, we explore dynamic ionic behavior modulated by mechanical force in NiO thin films using electrochemical strain microscopy (ESM). Ionically mediated ESM hysteresis loops were significantly varied under an application of mechanical force. Based on these results, we were able to investigate relative relationship between the force and voltage effects on ionic motion and, further, control effectively ionic behavior through combination of mechanical and electrical stimuli. Our results can provide comprehensive information on the effect of mechanical forces on ionic dynamics in ionic systems.

  9. A Mathematical Model to study the Dynamics of Epithelial Cellular Networks

    PubMed Central

    Abate, Alessandro; Vincent, Stéphane; Dobbe, Roel; Silletti, Alberto; Master, Neal; Axelrod, Jeffrey D.; Tomlin, Claire J.

    2013-01-01

    Epithelia are sheets of connected cells that are essential across the animal kingdom. Experimental observations suggest that the dynamical behavior of many single-layered epithelial tissues has strong analogies with that of specific mechanical systems, namely large networks consisting of point masses connected through spring-damper elements and undergoing the influence of active and dissipating forces. Based on this analogy, this work develops a modeling framework to enable the study of the mechanical properties and of the dynamic behavior of large epithelial cellular networks. The model is built first by creating a network topology that is extracted from the actual cellular geometry as obtained from experiments, then by associating a mechanical structure and dynamics to the network via spring-damper elements. This scalable approach enables running simulations of large network dynamics: the derived modeling framework in particular is predisposed to be tailored to study general dynamics (for example, morphogenesis) of various classes of single-layered epithelial cellular networks. In this contribution we test the model on a case study of the dorsal epithelium of the Drosophila melanogaster embryo during early dorsal closure (and, less conspicuously, germband retraction). PMID:23221083

  10. Dynamically analyzing cell interactions in biological environments using multiagent social learning framework.

    PubMed

    Zhang, Chengwei; Li, Xiaohong; Li, Shuxin; Feng, Zhiyong

    2017-09-20

    Biological environment is uncertain and its dynamic is similar to the multiagent environment, thus the research results of the multiagent system area can provide valuable insights to the understanding of biology and are of great significance for the study of biology. Learning in a multiagent environment is highly dynamic since the environment is not stationary anymore and each agent's behavior changes adaptively in response to other coexisting learners, and vice versa. The dynamics becomes more unpredictable when we move from fixed-agent interaction environments to multiagent social learning framework. Analytical understanding of the underlying dynamics is important and challenging. In this work, we present a social learning framework with homogeneous learners (e.g., Policy Hill Climbing (PHC) learners), and model the behavior of players in the social learning framework as a hybrid dynamical system. By analyzing the dynamical system, we obtain some conditions about convergence or non-convergence. We experimentally verify the predictive power of our model using a number of representative games. Experimental results confirm the theoretical analysis. Under multiagent social learning framework, we modeled the behavior of agent in biologic environment, and theoretically analyzed the dynamics of the model. We present some sufficient conditions about convergence or non-convergence and prove them theoretically. It can be used to predict the convergence of the system.

  11. Dynamics and Collapse in a Power System Model with Voltage Variation: The Damping Effect.

    PubMed

    Ma, Jinpeng; Sun, Yong; Yuan, Xiaoming; Kurths, Jürgen; Zhan, Meng

    2016-01-01

    Complex nonlinear phenomena are investigated in a basic power system model of the single-machine-infinite-bus (SMIB) with a synchronous generator modeled by a classical third-order differential equation including both angle dynamics and voltage dynamics, the so-called flux decay equation. In contrast, for the second-order differential equation considering the angle dynamics only, it is the classical swing equation. Similarities and differences of the dynamics generated between the third-order model and the second-order one are studied. We mainly find that, for positive damping, these two models show quite similar behavior, namely, stable fixed point, stable limit cycle, and their coexistence for different parameters. However, for negative damping, the second-order system can only collapse, whereas for the third-order model, more complicated behavior may happen, such as stable fixed point, limit cycle, quasi-periodicity, and chaos. Interesting partial collapse phenomena for angle instability only and not for voltage instability are also found here, including collapse from quasi-periodicity and from chaos etc. These findings not only provide a basic physical picture for power system dynamics in the third-order model incorporating voltage dynamics, but also enable us a deeper understanding of the complex dynamical behavior and even leading to a design of oscillation damping in electric power systems.

  12. The Study of Intelligent Vehicle Navigation Path Based on Behavior Coordination of Particle Swarm.

    PubMed

    Han, Gaining; Fu, Weiping; Wang, Wen

    2016-01-01

    In the behavior dynamics model, behavior competition leads to the shock problem of the intelligent vehicle navigation path, because of the simultaneous occurrence of the time-variant target behavior and obstacle avoidance behavior. Considering the safety and real-time of intelligent vehicle, the particle swarm optimization (PSO) algorithm is proposed to solve these problems for the optimization of weight coefficients of the heading angle and the path velocity. Firstly, according to the behavior dynamics model, the fitness function is defined concerning the intelligent vehicle driving characteristics, the distance between intelligent vehicle and obstacle, and distance of intelligent vehicle and target. Secondly, behavior coordination parameters that minimize the fitness function are obtained by particle swarm optimization algorithms. Finally, the simulation results show that the optimization method and its fitness function can improve the perturbations of the vehicle planning path and real-time and reliability.

  13. The Study of Intelligent Vehicle Navigation Path Based on Behavior Coordination of Particle Swarm

    PubMed Central

    Han, Gaining; Fu, Weiping; Wang, Wen

    2016-01-01

    In the behavior dynamics model, behavior competition leads to the shock problem of the intelligent vehicle navigation path, because of the simultaneous occurrence of the time-variant target behavior and obstacle avoidance behavior. Considering the safety and real-time of intelligent vehicle, the particle swarm optimization (PSO) algorithm is proposed to solve these problems for the optimization of weight coefficients of the heading angle and the path velocity. Firstly, according to the behavior dynamics model, the fitness function is defined concerning the intelligent vehicle driving characteristics, the distance between intelligent vehicle and obstacle, and distance of intelligent vehicle and target. Secondly, behavior coordination parameters that minimize the fitness function are obtained by particle swarm optimization algorithms. Finally, the simulation results show that the optimization method and its fitness function can improve the perturbations of the vehicle planning path and real-time and reliability. PMID:26880881

  14. Maternal Depressive Symptomatology and Child Behavior: Transactional Relationship with Simultaneous Bidirectional Coupling

    ERIC Educational Resources Information Center

    Nicholson, Jody S.; Deboeck, Pascal R.; Farris, Jaelyn R.; Boker, Steven M.; Borkowski, John G.

    2011-01-01

    The present study investigated reciprocal relationships between adolescent mothers and their children's well-being through an analysis of the coupling relationship of mothers' depressive symptomatology and children's internalizing and externalizing behaviors. Unlike studies using discrete time analyses, the present study used dynamical systems to…

  15. Study nonlinear dynamics of stratospheric ozone concentration at Pakistan Terrestrial region

    NASA Astrophysics Data System (ADS)

    Jan, Bulbul; Zai, Muhammad Ayub Khan Yousuf; Afradi, Faisal Khan; Aziz, Zohaib

    2018-03-01

    This study investigates the nonlinear dynamics of the stratospheric ozone layer at Pakistan atmospheric region. Ozone considered now the most important issue in the world because of its diverse effects on earth biosphere, including human health, ecosystem, marine life, agriculture yield and climate change. Therefore, this paper deals with total monthly time series data of stratospheric ozone over the Pakistan atmospheric region from 1970 to 2013. Two approaches, basic statistical analysis and Fractal dimension (D) have adapted to study the nature of nonlinear dynamics of stratospheric ozone level. Results obtained from this research have shown that the Hurst exponent values of both methods of fractal dimension revealed an anti-persistent behavior (negatively correlated), i.e. decreasing trend for all lags and Rescaled range analysis is more appropriate as compared to Detrended fluctuation analysis. For seasonal time series all month follows an anti-persistent behavior except in the month of November which shown persistence behavior i.e. time series is an independent and increasing trend. The normality test statistics also confirmed the nonlinear behavior of ozone and the rejection of hypothesis indicates the strong evidence of the complexity of data. This study will be useful to the researchers working in the same field in the future to verify the complex nature of stratospheric ozone.

  16. Emergent user behavior on Twitter modelled by a stochastic differential equation.

    PubMed

    Mollgaard, Anders; Mathiesen, Joachim

    2015-01-01

    Data from the social-media site, Twitter, is used to study the fluctuations in tweet rates of brand names. The tweet rates are the result of a strongly correlated user behavior, which leads to bursty collective dynamics with a characteristic 1/f noise. Here we use the aggregated "user interest" in a brand name to model collective human dynamics by a stochastic differential equation with multiplicative noise. The model is supported by a detailed analysis of the tweet rate fluctuations and it reproduces both the exact bursty dynamics found in the data and the 1/f noise.

  17. Emergent User Behavior on Twitter Modelled by a Stochastic Differential Equation

    PubMed Central

    Mollgaard, Anders; Mathiesen, Joachim

    2015-01-01

    Data from the social-media site, Twitter, is used to study the fluctuations in tweet rates of brand names. The tweet rates are the result of a strongly correlated user behavior, which leads to bursty collective dynamics with a characteristic 1/f noise. Here we use the aggregated "user interest" in a brand name to model collective human dynamics by a stochastic differential equation with multiplicative noise. The model is supported by a detailed analysis of the tweet rate fluctuations and it reproduces both the exact bursty dynamics found in the data and the 1/f noise. PMID:25955783

  18. Universality and critical behavior of the dynamical Mott transition in a system with long-range interactions

    DOE PAGES

    Rademaker, Louk; Vinokur, Valerii M.; Galda, Alexey

    2017-03-16

    Here, we study numerically the voltage-induced breakdown of a Mott insulating phase in a system of charged classical particles with long-range interactions. At half-filling on a square lattice this system exhibits Mott localization in the form of a checkerboard pattern. We find universal scaling behavior of the current at the dynamic Mott insulator-metal transition and calculate scaling exponents corresponding to the transition. Our results are in agreement, up to a difference in universality class, with recent experimental evidence of a dynamic Mott transition in a system of interacting superconducting vortices.

  19. Universality and critical behavior of the dynamical Mott transition in a system with long-range interactions.

    PubMed

    Rademaker, Louk; Vinokur, Valerii M; Galda, Alexey

    2017-03-16

    We study numerically the voltage-induced breakdown of a Mott insulating phase in a system of charged classical particles with long-range interactions. At half-filling on a square lattice this system exhibits Mott localization in the form of a checkerboard pattern. We find universal scaling behavior of the current at the dynamic Mott insulator-metal transition and calculate scaling exponents corresponding to the transition. Our results are in agreement, up to a difference in universality class, with recent experimental evidence of a dynamic Mott transition in a system of interacting superconducting vortices.

  20. Dynamics of early planetary gear trains

    NASA Technical Reports Server (NTRS)

    August, R.; Kasuba, R.; Frater, J. L.; Pintz, A.

    1984-01-01

    A method to analyze the static and dynamic loads in a planetary gear train was developed. A variable-variable mesh stiffness (VVMS) model was used to simulate the external and internal spur gear mesh behavior, and an equivalent conventional gear train concept was adapted for the dynamic studies. The analysis can be applied either involute or noninvolute spur gearing. By utilizing the equivalent gear train concept, the developed method may be extended for use for all types of epicyclic gearing. The method is incorporated into a computer program so that the static and dynamic behavior of individual components can be examined. Items considered in the analysis are: (1) static and dynamic load sharing among the planets; (2) floating or fixed Sun gear; (3) actual tooth geometry, including errors and modifications; (4) positioning errors of the planet gears; (5) torque variations due to noninvolute gear action. A mathematical model comprised of power source, load, and planetary transmission is used to determine the instantaneous loads to which the components are subjected. It considers fluctuating output torque, elastic behavior in the system, and loss of contact between gear teeth. The dynamic model has nine degrees of freedom resulting in a set of simultaneous second order differential equations with time varying coefficients, which are solved numerically. The computer program was used to determine the effect of manufacturing errors, damping and component stiffness, and transmitted load on dynamic behavior. It is indicated that this methodology offers the designer/analyst a comprehensive tool with which planetary drives may be quickly and effectively evaluated.

  1. Dynamical transitions in large systems of mean field-coupled Landau-Stuart oscillators: Extensive chaos and cluster states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ku, Wai Lim; Girvan, Michelle; Ott, Edward

    In this paper, we study dynamical systems in which a large number N of identical Landau-Stuart oscillators are globally coupled via a mean-field. Previously, it has been observed that this type of system can exhibit a variety of different dynamical behaviors. These behaviors include time periodic cluster states in which each oscillator is in one of a small number of groups for which all oscillators in each group have the same state which is different from group to group, as well as a behavior in which all oscillators have different states and the macroscopic dynamics of the mean field ismore » chaotic. We argue that this second type of behavior is “extensive” in the sense that the chaotic attractor in the full phase space of the system has a fractal dimension that scales linearly with N and that the number of positive Lyapunov exponents of the attractor also scales linearly with N. An important focus of this paper is the transition between cluster states and extensive chaos as the system is subjected to slow adiabatic parameter change. We observe discontinuous transitions between the cluster states (which correspond to low dimensional dynamics) and the extensively chaotic states. Furthermore, examining the cluster state, as the system approaches the discontinuous transition to extensive chaos, we find that the oscillator population distribution between the clusters continually evolves so that the cluster state is always marginally stable. This behavior is used to reveal the mechanism of the discontinuous transition. We also apply the Kaplan-Yorke formula to study the fractal structure of the extensively chaotic attractors.« less

  2. Modeling crystal growth from solution with molecular dynamics simulations: approaches to transition rate constants.

    PubMed

    Reilly, Anthony M; Briesen, Heiko

    2012-01-21

    The feasibility of using the molecular dynamics (MD) simulation technique to study crystal growth from solution quantitatively, as well as to obtain transition rate constants, has been studied. The dynamics of an interface between a solution of Lennard-Jones particles and the (100) face of an fcc lattice comprised of solute particles have been studied using MD simulations, showing that MD is, in principle, capable of following growth behavior over large supersaturation and temperature ranges. Using transition state theory, and a nearest-neighbor approximation growth and dissolution rate constants have been extracted from equilibrium MD simulations at a variety of temperatures. The temperature dependence of the rates agrees well with the expected transition state theory behavior. © 2012 American Institute of Physics

  3. Discotic columnar liquid crystal studied in the bulk and nanoconfined states by molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Busselez, Rémi; Cerclier, Carole V.; Ndao, Makha; Ghoufi, Aziz; Lefort, Ronan; Morineau, Denis

    2014-10-01

    A prototypical Gay Berne discotic liquid crystal was studied by means of molecular dynamics simulations both in the bulk state and under confinement in a nanoporous channel. The phase behavior of the confined system strongly differs from its bulk counterpart: the bulk isotropic-to-columnar transition is replaced by a continuous ordering from a paranematic to a columnar phase. Moreover, a new transition is observed at a lower temperature in the confined state, which corresponds to a reorganization of the intercolumnar order. It reflects the competing effects of pore surface interaction and genuine hexagonal packing of the columns. The translational molecular dynamics in the different phases has been thoroughly studied and discussed in terms of collective relaxation modes, non-Gaussian behavior, and hopping processes.

  4. Ionospheric and satellite observations for studying the dynamic behavior of typhoons and the detection of severe storms and tsunamis

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Smith, R. E.

    1978-01-01

    Atmospheric acoustic-gravity waves associated with severe thunderstorms, tornadoes, typhoons (hurricanes) and tsunamis can be studied through the coupling between the ionosphere and the troposphere. Reverse ray tracing computations of acoustic-gravity waves observed by an ionospheric Doppler sounder array show that wave sources are in the nearby storm systems and that the waves are excited prior to the storms. Results show that ionospheric observations, together with satellite observations, can contribute to the understanding of the dynamical behavior of typhoons, severe storms and tsunamis.

  5. A study of the dynamics of rotating space stations with elastically connected counterweight and attached flexible appendages. Volume 1: Theory

    NASA Technical Reports Server (NTRS)

    Austin, F.; Markowitz, J.; Goldenberg, S.; Zetkov, G. A.

    1973-01-01

    The formulation of a mathematical model for predicting the dynamic behavior of rotating flexible space station configurations was conducted. The overall objectives of the study were: (1) to develop the theoretical techniques for determining the behavior of a realistically modeled rotating space station, (2) to provide a versatile computer program for the numerical analysis, and (3) to present practical concepts for experimental verification of the analytical results. The mathematical model and its associated computer program are described.

  6. Conceptualizing intragroup and intergroup dynamics within a controlled crowd evacuation.

    PubMed

    Elzie, Terra; Frydenlund, Erika; Collins, Andrew J; Robinson, R Michael

    2015-01-01

    Social dynamics play a critical role in successful pedestrian evacuations. Crowd modeling research has made progress in capturing the way individual and group dynamics affect evacuations; however, few studies have simultaneously examined how individuals and groups interact with one another during egress. To address this gap, the researchers present a conceptual agent-based model (ABM) designed to study the ways in which autonomous, heterogeneous, decision-making individuals negotiate intragroup and intergroup behavior while exiting a large venue. A key feature of this proposed model is the examination of the dynamics among and between various groupings, where heterogeneity at the individual level dynamically affects group behavior and subsequently group/group interactions. ABM provides a means of representing the important social factors that affect decision making among diverse social groups. Expanding on the 2013 work of Vizzari et al., the researchers focus specifically on social factors and decision making at the individual/group and group/group levels to more realistically portray dynamic crowd systems during a pedestrian evacuation. By developing a model with individual, intragroup, and intergroup interactions, the ABM provides a more representative approximation of real-world crowd egress. The simulation will enable more informed planning by disaster managers, emergency planners, and other decision makers. This pedestrian behavioral concept is one piece of a larger simulation model. Future research will build toward an integrated model capturing decision-making interactions between pedestrians and vehicles that affect evacuation outcomes.

  7. On the spatial dynamics and oscillatory behavior of a predator-prey model based on cellular automata and local particle swarm optimization.

    PubMed

    Molina, Mario Martínez; Moreno-Armendáriz, Marco A; Carlos Seck Tuoh Mora, Juan

    2013-11-07

    A two-dimensional lattice model based on Cellular Automata theory and swarm intelligence is used to study the spatial and population dynamics of a theoretical ecosystem. It is found that the social interactions among predators provoke the formation of clusters, and that by increasing the mobility of predators the model enters into an oscillatory behavior. © 2013 Elsevier Ltd. All rights reserved.

  8. Model systems for single molecule polymer dynamics

    PubMed Central

    Latinwo, Folarin

    2012-01-01

    Double stranded DNA (dsDNA) has long served as a model system for single molecule polymer dynamics. However, dsDNA is a semiflexible polymer, and the structural rigidity of the DNA double helix gives rise to local molecular properties and chain dynamics that differ from flexible chains, including synthetic organic polymers. Recently, we developed single stranded DNA (ssDNA) as a new model system for single molecule studies of flexible polymer chains. In this work, we discuss model polymer systems in the context of “ideal” and “real” chain behavior considering thermal blobs, tension blobs, hydrodynamic drag and force–extension relations. In addition, we present monomer aspect ratio as a key parameter describing chain conformation and dynamics, and we derive dynamical scaling relations in terms of this molecular-level parameter. We show that asymmetric Kuhn segments can suppress monomer–monomer interactions, thereby altering global chain dynamics. Finally, we discuss ssDNA in the context of a new model system for single molecule polymer dynamics. Overall, we anticipate that future single polymer studies of flexible chains will reveal new insight into the dynamic behavior of “real” polymers, which will highlight the importance of molecular individualism and the prevalence of non-linear phenomena. PMID:22956980

  9. The dynamic failure behavior of tungsten heavy alloys subjected to transverse loads

    NASA Astrophysics Data System (ADS)

    Tarcza, Kenneth Robert

    Tungsten heavy alloys (WHA), a category of particulate composites used in defense applications as kinetic energy penetrators, have been studied for many years. Even so, their dynamic failure behavior is not fully understood and cannot be predicted by numerical models presently in use. In this experimental investigation, a comprehensive understanding of the high-rate transverse-loading fracture behavior of WHA has been developed. Dynamic fracture events spanning a range of strain rates and loading conditions were created via mechanical testing and used to determine the influence of surface condition and microstructure on damage initiation, accumulation, and sample failure under different loading conditions. Using standard scanning electron microscopy metallographic and fractographic techniques, sample surface condition is shown to be extremely influential to the manner in which WHA fails, causing a fundamental change from externally to internally nucleated failures as surface condition is improved. Surface condition is characterized using electron microscopy and surface profilometry. Fracture surface analysis is conducted using electron microscopy, and linear elastic fracture mechanics is used to understand the influence of surface condition, specifically initial flaw size, on sample failure behavior. Loading conditions leading to failure are deduced from numerical modeling and experimental observation. The results highlight parameters and considerations critical to the understanding of dynamic WHA fracture and the development of dynamic WHA failure models.

  10. Effect of Fractal Dimension on the Strain Behavior of Particulate Media

    NASA Astrophysics Data System (ADS)

    Altun, Selim; Sezer, Alper; Goktepe, A. Burak

    2016-12-01

    In this study, the influence of several fractal identifiers of granular materials on dynamic behavior of a flexible pavement structure as a particulate stratum is considered. Using experimental results and numerical methods as well, 15 different grain-shaped sands obtained from 5 different sources were analyzed as pavement base course materials. Image analyses were carried out by use of a stereomicroscope on 15 different samples to obtain quantitative particle shape information. Furthermore, triaxial compression tests were conducted to determine stress-strain and shear strength parameters of sands. Additionally, the dynamic response of the particulate media to standard traffic loads was computed using finite element modeling (FEM) technique. Using area-perimeter, line divider and box counting methods, over a hundred grains for each sand type were subjected to fractal analysis. Relationships among fractal dimension descriptors and dynamic strain levels were established for assessment of importance of shape descriptors of sands at various scales on the dynamic behavior. In this context, the advantage of fractal geometry concept to describe irregular and fractured shapes was used to characterize the sands used as base course materials. Results indicated that fractal identifiers can be preferred to analyze the effect of shape properties of sands on dynamic behavior of pavement base layers.

  11. The dynamics of human behavior in the public goods game with institutional incentives.

    PubMed

    Dong, Yali; Zhang, Boyu; Tao, Yi

    2016-06-24

    The empirical research on the public goods game (PGG) indicates that both institutional rewards and institutional punishment can curb free-riding and that the punishment effect is stronger than the reward effect. Self-regarding models that are based on Nash equilibrium (NE) strategies or evolutionary game dynamics correctly predict which incentives are best at promoting cooperation, but individuals do not play these rational strategies overall. The goal of our study is to investigate the dynamics of human decision making in the repeated PGG with institutional incentives. We consider that an individual's contribution is affected by four factors, which are self-interest, the behavior of others, the reaction to rewards, and the reaction to punishment. We find that people on average do not react to rewards and punishment, and that self-interest and the behavior of others sufficiently explain the dynamics of human behavior. Further analysis suggests that institutional incentives promote cooperation by affecting the self-regarding preference and that the other-regarding preference seems to be independent of incentive schemes. Because individuals do not change their behavioral patterns even if they were not rewarded or punished, the mere potential to punish defectors and reward cooperators can lead to considerable increases in the level of cooperation.

  12. Calculation of noncontact forces between silica nanospheres.

    PubMed

    Sun, Weifu; Zeng, Qinghua; Yu, Aibing

    2013-02-19

    Quantification of the interactions between nanoparticles is important in understanding their dynamic behaviors and many related phenomena. In this study, molecular dynamics simulation is used to calculate the interaction potentials (i.e., van der Waals attraction, Born repulsion, and electrostatic interaction) between two silica nanospheres of equal radius in the range of 0.975 to 5.137 nm. The results are compared with those obtained from the conventional Hamaker approach, leading to the development of modified formulas to calculate the van der Waals attraction and Born repulsion between nanospheres, respectively. Moreover, Coulomb's law is found to be valid for calculating the electrostatic potential between nanospheres. The developed formulas should be useful in the study of the dynamic behaviors of nanoparticle systems under different conditions.

  13. Experimental studies on the tripping behavior of narrow T-stiffened flat plates subjected to hydrostatic pressure and underwater shock

    NASA Technical Reports Server (NTRS)

    Budweg, H. L.; Shin, Y. S.

    1987-01-01

    An experimental investigation was conducted to determine the static and dynamic responses of a specific stiffened flat plate design. The air-backed rectangular flat plates of 6061-T6 aluminum with an externally machined longitudinal narrow-flanged T-stiffener and clamped boundary conditions were subjected to static loading by water hydropump pressure and shock loading from an eight pound TNT charge detonated underwater. The dynamic test plate was instrumented to measure transient strains and free field pressure. The static test plate was instrumented to measure transient strains, plate deflection, and pressure. Emphasis was placed upon forcing static and dynamic stiffener tripping, obtaining relevant strain and pressure data, and studying the associated plate-stiffener behavior.

  14. Dynamics and Instabilities of Acoustically Stressed Interfaces

    NASA Astrophysics Data System (ADS)

    Shi, William Tao

    An intense sound field exerts acoustic radiation pressure on a transitional layer between two continuous fluid media, leading to the unconventional dynamical behavior of the interface in the presence of the sound field. An understanding of this behavior has applications in the study of drop dynamics and surface rheology. Acoustic fields have also been utilized in the generation of interfacial instability, which may further encourage the dispersion or coalescence of liquids. Therefore, the study of the dynamics of the acoustically stressed interfaces is essential to infer the mechanism of the various phenomena related to interfacial dynamics and to acquire the properties of liquid surfaces. This thesis studies the dynamics of acoustically stressed interfaces through a theoretical model of surface interactions on both closed and open interfaces. Accordingly, a boundary integral method is developed to simulate the motions of a stressed interface. The method has been employed to determine the deformation, oscillation and instability of acoustically levitated drops. The generalized computations are found to be in good agreement with available experimental results. The linearized theory is also derived to predict the instability threshold of the flat interface, and is then compared with experiments conducted to observe and measure the unstable motions of the horizontal interface. This thesis is devoted to describing and classifying the simplest mechanisms by which acoustic fields provide a surface interaction with a fluid. A physical picture of the competing processes introduced by the evolution of an interface in a sound field is presented. The development of an initial small perturbation into a sharp form is observed on either a drop surface or a horizontal interface, indicating a strong focusing of acoustic energy at certain spots of the interface. Emphasis is placed on understanding the basic coupling mechanisms, rather than on particular applications that may involve this coupling. The dynamical behavior of a stressed drop can be determined in terms of a given form of an incident sound field and three dimensionless quantities. Thus, the behavior of a complex dynamic system has been clarified, permitting the exploration and interpretation of the nature of liquid surface phenomena.

  15. Contact stiffness and damping of liquid films in dynamic atomic force microscope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Rong-Guang; Leng, Yongsheng, E-mail: leng@gwu.edu

    2016-04-21

    The mechanical properties and dissipation behaviors of nanometers confined liquid films have been long-standing interests in surface force measurements. The correlation between the contact stiffness and damping of the nanoconfined film is still not well understood. We establish a novel computational framework through molecular dynamics (MD) simulation for the first time to study small-amplitude dynamic atomic force microscopy (dynamic AFM) in a simple nonpolar liquid. Through introducing a tip driven dynamics to mimic the mechanical oscillations of the dynamic AFM tip-cantilever assembly, we find that the contact stiffness and damping of the confined film exhibit distinct oscillations within 6-7 monolayermore » distances, and they are generally out-of-phase. For the solid-like film with integer monolayer thickness, further compression of the film before layering transition leads to higher stiffness and lower damping, while much lower stiffness and higher damping occur at non-integer monolayer distances. These two alternating mechanisms dominate the mechanical properties and dissipation behaviors of simple liquid films under cyclic elastic compression and inelastic squeeze-out. Our MD simulations provide a direct picture of correlations between the structural property, mechanical stiffness, and dissipation behavior of the nanoconfined film.« less

  16. Transformation of Context-dependent Sensory Dynamics into Motor Behavior

    PubMed Central

    Latorre, Roberto; Levi, Rafael; Varona, Pablo

    2013-01-01

    The intrinsic dynamics of sensory networks play an important role in the sensory-motor transformation. In this paper we use conductance based models and electrophysiological recordings to address the study of the dual role of a sensory network to organize two behavioral context-dependent motor programs in the mollusk Clione limacina. We show that: (i) a winner take-all dynamics in the gravimetric sensory network model drives the typical repetitive rhythm in the wing central pattern generator (CPG) during routine swimming; (ii) the winnerless competition dynamics of the same sensory network organizes the irregular pattern observed in the wing CPG during hunting behavior. Our model also shows that although the timing of the activity is irregular, the sequence of the switching among the sensory cells is preserved whenever the same set of neurons are activated in a given time window. These activation phase locks in the sensory signals are transformed into specific events in the motor activity. The activation phase locks can play an important role in motor coordination driven by the intrinsic dynamics of a multifunctional sensory organ. PMID:23459114

  17. Influence of backup bearings and support structure dynamics on the behavior of rotors with active supports

    NASA Technical Reports Server (NTRS)

    Flowers, George T.

    1995-01-01

    Progress made in the current year is listed, and the following papers are included in the appendix: Steady-State Dynamic Behavior of an Auxiliary Bearing Supported Rotor System; Dynamic Behavior of a Magnetic Bearing Supported Jet Engine Rotor with Auxiliary Bearings; Dynamic Modelling and Response Characteristics of a Magnetic Bearing Rotor System with Auxiliary Bearings; and Synchronous Dynamics of a Coupled Shaft/Bearing/Housing System with Auxiliary Support from a Clearance Bearing: Analysis and Experiment.

  18. Gender, Health Behavior, and Intimate Relationships: Lesbian, Gay, and Straight Contexts

    PubMed Central

    Reczek, Corinne; Umberson, Debra

    2012-01-01

    Many studies focus on health behavior within the context of intimate ties. However, this literature is limited by reliance on gender socialization theory and a focus on straight (i.e., heterosexual) marriage. We extend this work with an analysis of relationship dynamics around health behavior in 20 long-term straight marriages as well as 15 gay and 15 lesbian long-term cohabiting partnerships in the United States (N=100 individual in-depth interviews). We develop the concept of “health behavior work” to align activities done to promote health behavior with theories on unpaid work in the home. Respondents in all couple types describe specialized health behavior work, wherein one partner works to shape the other partner’s health behavior. In straight couples, women perform the bulk of specialized health behavior work. Most gay and lesbian respondents—but few straight respondents—also describe cooperative health behavior work, wherein partners mutually influence one another’s health behaviors. Findings suggest that the gendered relational context of an intimate partnership shapes the dynamics of and explanations for health behavior work. PMID:22227238

  19. New optomechanical approach to quantitative characterization of fatigue behavior of dynamically loaded structures

    NASA Astrophysics Data System (ADS)

    Furlong, Cosme; Pryputniewicz, Ryszard J.

    1995-06-01

    The basic relationships between stress and strain under cyclic conditions of loading are not at present well understood. It would seem that information of this type is vital for a fundamental approach to understand the fatigue behavior of dynamically loaded structures. In this paper, experimental and computational methods are utilized to study the fatigue behavior of a thin aluminum cantilever plate subjected to dynamic loading. The studies are performed by combining optomechanical and finite element methods. The cantilever plate is loaded periodically by excitation set at a fixed amplitude and at a specific resonance frequency of the plate. By continuously applying this type of loading and using holographic interferometry, the behavior of the plate during a specific period of time is investigated. Quantitative information is obtained from laser vibrometry data which are utilized by a finite element program to calculate strains and stresses assuming a homogeneous and isotropic material and constant strain elements. It is shown that the use of experimental and computational hybrid methodologies allows identification of different zones of the plate that are fatigue critical. This optomechanical approach proves to be a viable tool for understanding of fatigue behavior of mechanical components and for performing optimization of structures subjected to fatigue conditions.

  20. Study of percolation behavior depending on molecular structure design

    NASA Astrophysics Data System (ADS)

    Yu, Ji Woong; Lee, Won Bo

    Each differently designed anisotropic nano-crystals(ANCs) are studied using Langevin dynamic simulation and their percolation behaviors are presented. Popular molecular dynamics software LAMMPS was used to design the system and perform the simulation. We calculated the minimum number density at which percolation occurs(i.e. percolation threshold), radial distribution function, and the average number of ANCs for a cluster. Electrical conductivity is improved when the number of transfers of electrons between ANCs, so called ''inter-hopping process'', which has the considerable contribution to resistance decreases and the number of inter-hopping process is directly related with the concentration of ANCs. Therefore, with the investigation of relationship between molecular architecture and percolation behavior, optimal design of ANC can be achieved.

  1. A Study of Bubble and Slug Gas-Liquid Flow in a Microgravity Environment

    NASA Technical Reports Server (NTRS)

    McQuillen, J.

    2000-01-01

    The influence of gravity on the two-phase flow dynamics is obvious.As the gravity level is reduced,there is a new balance between inertial and interfacial forces, altering the behavior of the flow. In bubbly flow,the absence of drift velocity leads to spherical-shaped bubbles with a rectilinear trajectory.Slug flow is a succession of long bubbles and liquid slug carrying a few bubbles. There is no flow reversal in the thin liquid film as the long bubble and liquid slug pass over the film. Although the flow structure seems to be simpler than in normal gravity conditions,the models developed for the prediction of flow behavior in normal gravity and extended to reduced gravity flow are unable to predict the flow behavior correctly.An additional benefit of conducting studies in microgravity flows is that these studies aide the development of understanding for normal gravity flow behavior by removing the effects of buoyancy on the shape of the interface and density driven shear flows between the gas and the liquid phases. The proposal calls to study specifically the following: 1) The dynamics of isolated bubbles in microgravity liquid flows will be analyzed: Both the dynamics of spherical isolated bubbles and their dispersion by turbulence, their interaction with the pipe wall,the behavior of the bubbles in accelerated or decelerated flows,and the dynamics of isolated cylindrical bubbles, their deformation in accelerated/decelerated flows (in converging or diverging channels), and bubble/bubble interaction. Experiments will consist of the use of Particle Image Velocimetry (PIV) and Laser Doppler Velocimeters (LDV) to study single spherical bubble and single and two cylindrical bubble behavior with respect to their influence on the turbulence of the surrounding liquid and on the wall 2) The dynamics of bubbly and slug flow in microgravity will be analyzed especially for the role of the coalescence in the transition from bubbly to slug flow (effect of fluid properties and surfactant), to identify clusters that promote coalescence and transition the void fraction distribution in bubbly and slug flow,to measure the wall friction in bubbly flow. These experiments will consist of multiple bubbles type flows and will utilize hot wire and film anemometers to measure liquid velocity and wall shear stress respectively and double fiber optic probes to measure bubble size and velocity as a function of tube radius and axial location.

  2. Model-based functional neuroimaging using dynamic neural fields: An integrative cognitive neuroscience approach

    PubMed Central

    Wijeakumar, Sobanawartiny; Ambrose, Joseph P.; Spencer, John P.; Curtu, Rodica

    2017-01-01

    A fundamental challenge in cognitive neuroscience is to develop theoretical frameworks that effectively span the gap between brain and behavior, between neuroscience and psychology. Here, we attempt to bridge this divide by formalizing an integrative cognitive neuroscience approach using dynamic field theory (DFT). We begin by providing an overview of how DFT seeks to understand the neural population dynamics that underlie cognitive processes through previous applications and comparisons to other modeling approaches. We then use previously published behavioral and neural data from a response selection Go/Nogo task as a case study for model simulations. Results from this study served as the ‘standard’ for comparisons with a model-based fMRI approach using dynamic neural fields (DNF). The tutorial explains the rationale and hypotheses involved in the process of creating the DNF architecture and fitting model parameters. Two DNF models, with similar structure and parameter sets, are then compared. Both models effectively simulated reaction times from the task as we varied the number of stimulus-response mappings and the proportion of Go trials. Next, we directly simulated hemodynamic predictions from the neural activation patterns from each model. These predictions were tested using general linear models (GLMs). Results showed that the DNF model that was created by tuning parameters to capture simultaneously trends in neural activation and behavioral data quantitatively outperformed a Standard GLM analysis of the same dataset. Further, by using the GLM results to assign functional roles to particular clusters in the brain, we illustrate how DNF models shed new light on the neural populations’ dynamics within particular brain regions. Thus, the present study illustrates how an interactive cognitive neuroscience model can be used in practice to bridge the gap between brain and behavior. PMID:29118459

  3. Sequence and Temperature Dependence of the End-to-End Collision Dynamics of Single-Stranded DNA

    PubMed Central

    Uzawa, Takanori; Isoshima, Takashi; Ito, Yoshihiro; Ishimori, Koichiro; Makarov, Dmitrii E.; Plaxco, Kevin W.

    2013-01-01

    Intramolecular collision dynamics play an essential role in biomolecular folding and function and, increasingly, in the performance of biomimetic technologies. To date, however, the quantitative studies of dynamics of single-stranded nucleic acids have been limited. Thus motivated, here we investigate the sequence composition, chain-length, viscosity, and temperature dependencies of the end-to-end collision dynamics of single-stranded DNAs. We find that both the absolute collision rate and the temperature dependencies of these dynamics are base-composition dependent, suggesting that base stacking interactions are a significant contributor. For example, whereas the end-to-end collision dynamics of poly-thymine exhibit simple, linear Arrhenius behavior, the behavior of longer poly-adenine constructs is more complicated. Specifically, 20- and 25-adenine constructs exhibit biphasic temperature dependencies, with their temperature dependences becoming effectively indistinguishable from that of poly-thymine above 335 K for 20-adenines and 328 K for 25-adenines. The differing Arrhenius behaviors of poly-thymine and poly-adenine and the chain-length dependence of the temperature at which poly-adenine crosses over to behave like poly-thymine can be explained by a barrier friction mechanism in which, at low temperatures, the energy barrier for the local rearrangement of poly-adenine becomes the dominant contributor to its end-to-end collision dynamics. PMID:23746521

  4. Evaluating the Effectiveness of Dynamic Speed Display Signs

    DOT National Transportation Integrated Search

    2012-09-01

    This study investigates the impact of dynamic speed display signs (DSDSs) on drivers speed-related : behavior. A survey questionnaire regarding attitudes and reactions to DSDSs on different road : classes was distributed to Maryland drivers of dif...

  5. A system dynamics approach to analyze laboratory test errors.

    PubMed

    Guo, Shijing; Roudsari, Abdul; Garcez, Artur d'Avila

    2015-01-01

    Although many researches have been carried out to analyze laboratory test errors during the last decade, it still lacks a systemic view of study, especially to trace errors during test process and evaluate potential interventions. This study implements system dynamics modeling into laboratory errors to trace the laboratory error flows and to simulate the system behaviors while changing internal variable values. The change of the variables may reflect a change in demand or a proposed intervention. A review of literature on laboratory test errors was given and provided as the main data source for the system dynamics model. Three "what if" scenarios were selected for testing the model. System behaviors were observed and compared under different scenarios over a period of time. The results suggest system dynamics modeling has potential effectiveness of helping to understand laboratory errors, observe model behaviours, and provide a risk-free simulation experiments for possible strategies.

  6. Solar Dynamics Observatory Briefing

    NASA Image and Video Library

    2010-01-21

    Richard Fisher, Heliophysics Division Director at NASA Headquarters, left, speaks during a briefing to discuss the upcoming launch of NASA's Solar Dynamic Observatory, or SDO, Thursday, Jan. 21, 2010, as Madhulika Guhathakurta, SDO Program Scientist looks on at NASA Headquarters in Washington. The mission is to study the Sun and its dynamic behavior. Photo Credit: (NASA/Paul E. Alers)

  7. Predicting chaos for infinite dimensional dynamical systems: The Kuramoto-Sivashinsky equation, a case study

    NASA Technical Reports Server (NTRS)

    Smyrlis, Yiorgos S.; Papageorgiou, Demetrios T.

    1991-01-01

    The results of extensive computations are presented in order to accurately characterize transitions to chaos for the Kuramoto-Sivashinsky equation. In particular, the oscillatory dynamics in a window that supports a complete sequence of period doubling bifurcations preceding chaos is followed. As many as thirteen period doublings are followed and used to compute the Feigenbaum number for the cascade and so enable, for the first time, an accurate numerical evaluation of the theory of universal behavior of nonlinear systems, for an infinite dimensional dynamical system. Furthermore, the dynamics at the threshold of chaos exhibit a fractal behavior which is demonstrated and used to compute a universal scaling factor that enables the self-similar continuation of the solution into a chaotic regime.

  8. New approach to study mobility in the vicinity of dynamical arrest; exact application to a kinetically constrained model

    NASA Astrophysics Data System (ADS)

    DeGregorio, P.; Lawlor, A.; Dawson, K. A.

    2006-04-01

    We introduce a new method to describe systems in the vicinity of dynamical arrest. This involves a map that transforms mobile systems at one length scale to mobile systems at a longer length. This map is capable of capturing the singular behavior accrued across very large length scales, and provides a direct route to the dynamical correlation length and other related quantities. The ideas are immediately applicable in two spatial dimensions, and have been applied to a modified Kob-Andersen type model. For such systems the map may be derived in an exact form, and readily solved numerically. We obtain the asymptotic behavior across the whole physical domain of interest in dynamical arrest.

  9. Modeling, numerical simulation, and nonlinear dynamic behavior analysis of PV microgrid-connected inverter with capacitance catastrophe

    NASA Astrophysics Data System (ADS)

    Li, Sichen; Liao, Zhixian; Luo, Xiaoshu; Wei, Duqu; Jiang, Pinqun; Jiang, Qinghong

    2018-02-01

    The value of the output capacitance (C) should be carefully considered when designing a photovoltaic (PV) inverter since it can cause distortion in the working state of the circuit, and the circuit produces nonlinear dynamic behavior. According to Kirchhoff’s laws and the characteristics of an ideal operational amplifier for a strict piecewise linear state equation, a circuit simulation model is constructed to study the system parameters (time, C) for the current passing through an inductor with an inductance of L and the voltage across the capacitor with a capacitance of C. The developed simulation model uses Runge-Kutta methods to solve the state equations. This study focuses on predicting the fault of the circuit from the two aspects of the harmonic distortion and simulation results. Moreover, the presented model is also used to research the working state of the system in the case of a load capacitance catastrophe. The nonlinear dynamic behaviors in the inverter are simulated and verified.

  10. Neural Mechanism for Stochastic Behavior During a Competitive Game

    PubMed Central

    Soltani, Alireza; Lee, Daeyeol; Wang, Xiao-Jing

    2006-01-01

    Previous studies have shown that non-human primates can generate highly stochastic choice behavior, especially when this is required during a competitive interaction with another agent. To understand the neural mechanism of such dynamic choice behavior, we propose a biologically plausible model of decision making endowed with synaptic plasticity that follows a reward-dependent stochastic Hebbian learning rule. This model constitutes a biophysical implementation of reinforcement learning, and it reproduces salient features of behavioral data from an experiment with monkeys playing a matching pennies game. Due to interaction with an opponent and learning dynamics, the model generates quasi-random behavior robustly in spite of intrinsic biases. Furthermore, non-random choice behavior can also emerge when the model plays against a non-interactive opponent, as observed in the monkey experiment. Finally, when combined with a meta-learning algorithm, our model accounts for the slow drift in the animal’s strategy based on a process of reward maximization. PMID:17015181

  11. Aging and loading rate effects on the mechanical behavior of equine bone

    NASA Astrophysics Data System (ADS)

    Kulin, Robb M.; Jiang, Fengchun; Vecchio, Kenneth S.

    2008-06-01

    Whether due to a sporting accident, high-speed impact, fall, or other catastrophic event, the majority of clinical bone fractures occur under dynamic loading conditions. However, although extensive research has been performed on the quasi-static fracture and mechanical behavior of bone to date, few high-quality studies on the fracture behavior of bone at high strain rates have been performed. Therefore, many questions remain regarding the material behavior, including not only the loading-rate-dependent response of bone, but also how this response varies with age. In this study, tests were performed on equine femoral bone taken post-mortem from donors 6 months to 28 years of age. Quasi-static and dynamic tests were performed to determine the fracture toughness and compressive mechanical behavior as a function of age at varying loading rates. Fracture paths were then analyzed using scanning confocal and scanning-electron microscopy techniques to assess the role of various microstructural features on toughening mechanisms.

  12. The nonlinear dynamics of family problem solving in adolescence: the predictive validity of a peaceful resolution attractor.

    PubMed

    Dishion, Thomas J; Forgatch, Marion; Van Ryzin, Mark; Winter, Charlotte

    2012-07-01

    In this study we examined the videotaped family interactions of a community sample of adolescents and their parents. Youths were assessed in early to late adolescence on their levels of antisocial behavior. At age 16-17, youths and their parents were videotaped interacting while completing a variety of tasks, including family problem solving. The interactions were coded and compared for three developmental patterns of antisocial behavior: early onset, persistent; adolescence onset; and typically developing. The mean duration of conflict bouts was the only interaction pattern that discriminated the 3 groups. In the prediction of future antisocial behavior, parent and youth reports of transition entropy and conflict resolution interacted to account for antisocial behavior at age 18-19. Families with low entropy and peaceful resolutions predicted low levels of youth antisocial behavior at age 18-19. These findings suggest the need to study both attractors and repellers to understand family dynamics associated with health and social and emotional development.

  13. The Nonlinear Dynamics of Family Problem Solving in Adolescence: The Predictive Validity of a Peaceful Resolution Attractor

    PubMed Central

    Dishion, Thomas J.; Forgatch, Marion; Van Ryzin, Mark; Winter, Charlotte

    2012-01-01

    In this study we examined the videotaped family interactions of a community sample of adolescents and their parents. Youths were assessed in early to late adolescence on their levels of antisocial behavior. At age 16–17, youths and their parents were videotaped interacting while completing a variety of tasks, including family problem solving. The interactions were coded and compared for 3 developmental patterns of antisocial behavior: early onset, persistent; adolescence onset; and typically developing. The mean duration of conflict bouts was the only interaction pattern that discriminated the 3 groups. In the prediction of future antisocial behavior, parent and youth reports of transition entropy and conflict resolution interacted to account for antisocial behavior at age 18–19. Families with low entropy and peaceful resolutions predicted low levels of youth antisocial behavior at age 18–19. These findings suggest the need to study both attractors and repellers to understand family dynamics associated with health and social and emotional development. PMID:22695152

  14. Long-Term Dynamics of Autonomous Fractional Differential Equations

    NASA Astrophysics Data System (ADS)

    Liu, Tao; Xu, Wei; Xu, Yong; Han, Qun

    This paper aims to investigate long-term dynamic behaviors of autonomous fractional differential equations with effective numerical method. The long-term dynamic behaviors predict where systems are heading after long-term evolution. We make some modification and transplant cell mapping methods to autonomous fractional differential equations. The mapping time duration of cell mapping is enlarged to deal with the long memory effect. Three illustrative examples, i.e. fractional Lotka-Volterra equation, fractional van der Pol oscillator and fractional Duffing equation, are studied with our revised generalized cell mapping method. We obtain long-term dynamics, such as attractors, basins of attraction, and saddles. Compared with some existing stability and numerical results, the validity of our method is verified. Furthermore, we find that the fractional order has its effect on the long-term dynamics of autonomous fractional differential equations.

  15. Preliminary design, analysis, and costing of a dynamic scale model of the NASA space station

    NASA Technical Reports Server (NTRS)

    Gronet, M. J.; Pinson, E. D.; Voqui, H. L.; Crawley, E. F.; Everman, M. R.

    1987-01-01

    The difficulty of testing the next generation of large flexible space structures on the ground places an emphasis on other means for validating predicted on-orbit dynamic behavior. Scale model technology represents one way of verifying analytical predictions with ground test data. This study investigates the preliminary design, scaling and cost trades for a Space Station dynamic scale model. The scaling of nonlinear joint behavior is studied from theoretical and practical points of view. Suspension system interaction trades are conducted for the ISS Dual Keel Configuration and Build-Up Stages suspended in the proposed NASA/LaRC Large Spacecraft Laboratory. Key issues addressed are scaling laws, replication vs. simulation of components, manufacturing, suspension interactions, joint behavior, damping, articulation capability, and cost. These issues are the subject of parametric trades versus the scale model factor. The results of these detailed analyses are used to recommend scale factors for four different scale model options, each with varying degrees of replication. Potential problems in constructing and testing the scale model are identified, and recommendations for further study are outlined.

  16. Modeling workplace bullying using catastrophe theory.

    PubMed

    Escartin, J; Ceja, L; Navarro, J; Zapf, D

    2013-10-01

    Workplace bullying is defined as negative behaviors directed at organizational members or their work context that occur regularly and repeatedly over a period of time. Employees' perceptions of psychosocial safety climate, workplace bullying victimization, and workplace bullying perpetration were assessed within a sample of nearly 5,000 workers. Linear and nonlinear approaches were applied in order to model both continuous and sudden changes in workplace bullying. More specifically, the present study examines whether a nonlinear dynamical systems model (i.e., a cusp catastrophe model) is superior to the linear combination of variables for predicting the effect of psychosocial safety climate and workplace bullying victimization on workplace bullying perpetration. According to the AICc, and BIC indices, the linear regression model fits the data better than the cusp catastrophe model. The study concludes that some phenomena, especially unhealthy behaviors at work (like workplace bullying), may be better studied using linear approaches as opposed to nonlinear dynamical systems models. This can be explained through the healthy variability hypothesis, which argues that positive organizational behavior is likely to present nonlinear behavior, while a decrease in such variability may indicate the occurrence of negative behaviors at work.

  17. Non-stationary dynamics in the bouncing ball: A wavelet perspective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Behera, Abhinna K., E-mail: abhinna@iiserkol.ac.in; Panigrahi, Prasanta K., E-mail: pprasanta@iiserkol.ac.in; Sekar Iyengar, A. N., E-mail: ansekar.iyengar@saha.ac.in

    2014-12-01

    The non-stationary dynamics of a bouncing ball, comprising both periodic as well as chaotic behavior, is studied through wavelet transform. The multi-scale characterization of the time series displays clear signatures of self-similarity, complex scaling behavior, and periodicity. Self-similar behavior is quantified by the generalized Hurst exponent, obtained through both wavelet based multi-fractal detrended fluctuation analysis and Fourier methods. The scale dependent variable window size of the wavelets aptly captures both the transients and non-stationary periodic behavior, including the phase synchronization of different modes. The optimal time-frequency localization of the continuous Morlet wavelet is found to delineate the scales corresponding tomore » neutral turbulence, viscous dissipation regions, and different time varying periodic modulations.« less

  18. Investigating the Structural Impacts of I64T and P311S Mutations in APE1-DNA Complex: A Molecular Dynamics Approach

    PubMed Central

    Doss, C. George Priya; NagaSundaram, N.

    2012-01-01

    Background Elucidating the molecular dynamic behavior of Protein-DNA complex upon mutation is crucial in current genomics. Molecular dynamics approach reveals the changes on incorporation of variants that dictate the structure and function of Protein-DNA complexes. Deleterious mutations in APE1 protein modify the physicochemical property of amino acids that affect the protein stability and dynamic behavior. Further, these mutations disrupt the binding sites and prohibit the protein to form complexes with its interacting DNA. Principal Findings In this study, we developed a rapid and cost-effective method to analyze variants in APE1 gene that are associated with disease susceptibility and evaluated their impacts on APE1-DNA complex dynamic behavior. Initially, two different in silico approaches were used to identify deleterious variants in APE1 gene. Deleterious scores that overlap in these approaches were taken in concern and based on it, two nsSNPs with IDs rs61730854 (I64T) and rs1803120 (P311S) were taken further for structural analysis. Significance Different parameters such as RMSD, RMSF, salt bridge, H-bonds and SASA applied in Molecular dynamic study reveals that predicted deleterious variants I64T and P311S alters the structure as well as affect the stability of APE1-DNA interacting functions. This study addresses such new methods for validating functional polymorphisms of human APE1 which is critically involved in causing deficit in repair capacity, which in turn leads to genetic instability and carcinogenesis. PMID:22384055

  19. Simulating the Interactions Among Land Use, Transportation ...

    EPA Pesticide Factsheets

    In most transportation studies, computer models that forecast travel behavior statistics for a future year use static projections of the spatial distribution of future population and employment growth as inputs. As a result, they are unable to account for the temporally dynamic and non-linear interactions among transportation, land use, and socioeconomic systems. System dynamics (SD) provides a common framework for modeling the complex interactions among transportation and other related systems. This study uses a SD model to simulate the cascading impacts of a proposed light rail transit (LRT) system in central North Carolina, USA. The Durham-Orange Light Rail Project (D-O LRP) SD model incorporates relationships among the land use, transportation, and economy sectors to simulate the complex feedbacks that give rise to the travel behavior changes forecasted by the region’s transportation model. This paper demonstrates the sensitivity of changes in travel behavior to the proposed LRT system and the assumptions that went into the transportation modeling, and compares those results to the impacts of an alternative fare-free transit system. SD models such as the D-O LRP SD model can complement transportation studies by providing valuable insight into the interdependent community systems that collectively contribute to travel behavior changes. Presented at the 35th International Conference of the System Dynamics Society in Cambridge, MA, July 18th, 2017

  20. A suggestion to improve a day keeps your depletion away: Examining promotive and prohibitive voice behaviors within a regulatory focus and ego depletion framework.

    PubMed

    Lin, Szu-Han Joanna; Johnson, Russell E

    2015-09-01

    One way that employees contribute to organizational effectiveness is by expressing voice. They may offer suggestions for how to improve the organization (promotive voice behavior), or express concerns to prevent harmful events from occurring (prohibitive voice behavior). Although promotive and prohibitive voices are thought to be distinct types of behavior, very little is known about their unique antecedents and consequences. In this study we draw on regulatory focus and ego depletion theories to derive a theoretical model that outlines a dynamic process of the antecedents and consequences of voice behavior. Results from 2 multiwave field studies revealed that promotion and prevention foci have unique ties to promotive and prohibitive voice, respectively. Promotive and prohibitive voice, in turn, were associated with decreases and increases, respectively, in depletion. Consistent with the dynamic nature of self-control, depletion was associated with reductions in employees' subsequent voice behavior, regardless of the type of voice (promotive or prohibitive). Results were consistent across 2 studies and remained even after controlling for other established antecedents of voice and alternative mediating mechanisms beside depletion. (c) 2015 APA, all rights reserved).

  1. Daily Interpersonal and Affective Dynamics in Personality Disorder

    PubMed Central

    Wright, Aidan G.C.; Hopwood, Christopher J.; Simms, Leonard J.

    2015-01-01

    In this naturalistic study we adopt the lens of interpersonal theory to examine between-and within-person differences in dynamic processes of daily affect and interpersonal behaviors among individuals (N = 101) previously diagnosed with personality disorders who completed daily diaries over the course of 100 days. Dispositional ratings of interpersonal problems and measures of daily stress were used as predictors of daily shifts in interpersonal behavior and affect in multilevel models. Results indicate that ~40%–50% of the variance in interpersonal behavior and affect is due to daily fluctuations, which are modestly related to dispositional measures of interpersonal problems but strongly related to daily stress. The findings support conceptions of personality disorders as a dynamic form of psychopathology involving the individuals interacting with and regulating in response to the contextual features of their environment. PMID:26200849

  2. The dynamic behavior of mortar under impact-loading

    NASA Astrophysics Data System (ADS)

    Kawai, Nobuaki; Inoue, Kenji; Misawa, Satoshi; Tanaka, Kyoji; Hayashi, Shizuo; Kondo, Ken-Ichi; Riedel, Werner

    2007-06-01

    Concrete and mortar are the most fundamental structural material. Therefore, considerable interest in characterizing the dynamic behavior of them under impact-loading exists. In this study, plate impact experiments have been performed to determine the dynamic behavior of mortar. Longitudinal and lateral stresses have been directly measured by means of embedded polyvinylidene fluoride (PVDF) gauges up to 1 GPa. A 200 mm-cal. powder gun enable us to measure longitudinal and lateral stresses at several point from the impact surface, simultaneously. The shear strength under impact-loading has been obtained from measured longitudinal and lateral stresses. The longitudinal stress profile shows a two-wave structure. It is indicated that this structure is associated with the onset of pore compaction and failure of mortar by comparing with hydrocode simulations using an elastic-plastic damage model for concrete.

  3. Dynamics of polymerization induced phase separation in reactive polymer blends

    NASA Astrophysics Data System (ADS)

    Lee, Jaehyung

    Mechanisms and dynamics of phase decomposition following polymerization induced phase separation (PIPS) of reactive polymer blends have been investigated experimentally and theoretically. The phenomenon of PIPS is a non-equilibrium and non-linear dynamic process. The mechanism of PIPS has been thought to be a nucleation and growth (NG) type originally, however, newer results indicate spinodal decomposition (SD). In PIPS, the coexistence curve generally passes through the reaction temperature at off-critical compositions, thus phase separation has to be initiated first in the metastable region where nucleation occurs. When the system farther drifts from the metastable to unstable region, the NG structure transforms to the SD bicontinuous morphology. The crossover behavior of PIPS may be called nucleation initiated spinodal decomposition (NISD). The formation of newer domains between the existing ones is responsible for the early stage of PIPS. Since PIPS is non- equilibrium kinetic process, it would not be surprising to discern either or both structures. The phase separation dynamics of DGEBA/CTBN mixtures having various kinds of curing agents from low reactivity to high reactivity and various amount of curing agents were examined at various reaction temperatures. The phase separation behavior was monitored by a quantity of scattered light intensity experimentally and by a quantity of collective structure factor numerically. Prior to the study of phase separation dynamics, a preliminary investigation on the isothermal cure behavior of the mixtures were executed in order to determine reaction kinetics parameters. The cure behavior followed the overall second order reaction kinetics. Next, based on the knowledge obtained from the phase separation dynamics study of DGEBA/CTBN mixtures, the phase separation dynamics of various composition of DGEBA/R45EPI mixtures having MDA as a curing agent were investigated. The phase separation behavior was quite dependent upon the composition variation. R45EPI itself can react with itself or with DGEBA without curing, therefore three-component system was considered in this mixture. For the numerical studies of this three- component mixture, a system that is composed of a reactive component-1 that is miscible with its growing molecules and another reactive component-2 that is not miscible with its growing molecules was considered with crosslinking reaction kinetics of the each component.

  4. Spatial structure favors cooperative behavior in the snowdrift game with multiple interactive dynamics

    NASA Astrophysics Data System (ADS)

    Su, Qi; Li, Aming; Wang, Long

    2017-02-01

    Spatial reciprocity is generally regarded as a positive rule facilitating the evolution of cooperation. However, a few recent studies show that, in the snowdrift game, spatial structure still could be detrimental to cooperation. Here we propose a model of multiple interactive dynamics, where each individual can cooperate and defect simultaneously against different neighbors. We realize individuals' multiple interactions simply by endowing them with strategies relevant to probabilities, and every one decides to cooperate or defect with a probability. With multiple interactive dynamics, the cooperation level in square lattices is higher than that in the well-mixed case for a wide range of cost-to-benefit ratio r, implying that spatial structure favors cooperative behavior in the snowdrift game. Moreover, in square lattices, the most favorable strategy follows a simple relation of r, which confers theoretically the average evolutionary frequency of cooperative behavior. We further extend our study to various homogeneous and heterogeneous networks, which demonstrates the robustness of our results. Here multiple interactive dynamics stabilizes the positive role of spatial structure on the evolution of cooperation and individuals' distinct reactions to different neighbors can be a new line in understanding the emergence of cooperation.

  5. Change Detection, Multiple Controllers, and Dynamic Environments: Insights from the Brain

    ERIC Educational Resources Information Center

    Pearson, John M.; Platt, Michael L.

    2013-01-01

    Foundational studies in decision making focused on behavior as the most accessible and reliable data on which to build theories of choice. More recent work, however, has incorporated neural data to provide insights unavailable from behavior alone. Among other contributions, these studies have validated reinforcement learning models by…

  6. A Mathematical Framework for the Complex System Approach to Group Dynamics: The Case of Recovery House Social Integration.

    PubMed

    Light, John M; Jason, Leonard A; Stevens, Edward B; Callahan, Sarah; Stone, Ariel

    2016-03-01

    The complex system conception of group social dynamics often involves not only changing individual characteristics, but also changing within-group relationships. Recent advances in stochastic dynamic network modeling allow these interdependencies to be modeled from data. This methodology is discussed within a context of other mathematical and statistical approaches that have been or could be applied to study the temporal evolution of relationships and behaviors within small- to medium-sized groups. An example model is presented, based on a pilot study of five Oxford House recovery homes, sober living environments for individuals following release from acute substance abuse treatment. This model demonstrates how dynamic network modeling can be applied to such systems, examines and discusses several options for pooling, and shows how results are interpreted in line with complex system concepts. Results suggest that this approach (a) is a credible modeling framework for studying group dynamics even with limited data, (b) improves upon the most common alternatives, and (c) is especially well-suited to complex system conceptions. Continuing improvements in stochastic models and associated software may finally lead to mainstream use of these techniques for the study of group dynamics, a shift already occurring in related fields of behavioral science.

  7. Stability and diversity in collective adaptation

    NASA Astrophysics Data System (ADS)

    Sato, Yuzuru; Akiyama, Eizo; Crutchfield, James P.

    2005-10-01

    We derive a class of macroscopic differential equations that describe collective adaptation, starting from a discrete-time stochastic microscopic model. The behavior of each agent is a dynamic balance between adaptation that locally achieves the best action and memory loss that leads to randomized behavior. We show that, although individual agents interact with their environment and other agents in a purely self-interested way, macroscopic behavior can be interpreted as game dynamics. Application to several familiar, explicit game interactions shows that the adaptation dynamics exhibits a diversity of collective behaviors. The simplicity of the assumptions underlying the macroscopic equations suggests that these behaviors should be expected broadly in collective adaptation. We also analyze the adaptation dynamics from an information-theoretic viewpoint and discuss self-organization induced by the dynamics of uncertainty, giving a novel view of collective adaptation.

  8. Serration Behavior of a Zr-Based Metallic Glass Under Different Constrained Loading Conditions

    NASA Astrophysics Data System (ADS)

    Yang, G. N.; Gu, J. L.; Chen, S. Q.; Shao, Y.; Wang, H.; Yao, K. F.

    2016-11-01

    To understand the plastic behavior and shear band dynamics of metallic glasses (MGs) being tuned by the external constraint, uniaxial compression tests were performed on Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 MG samples with aspect ratios of 0.5:1, 1:1, 1.5:1, 2:1, 2.5:1, and 3:1. Better plasticity was observed for the samples with smaller aspect ratio (under higher constraint degree). In the beginning of yielding, increasing serration (jerky stress drop) size on the loading curves was noticed for all samples. Statistical analysis of the serration patterns indicated that the small stress-drop serrations and large stress-drop serrations follow self-organized critical and chaotic dynamics, respectively. Under constrained loading, the large stress-drop serrations are depressed, while the small stress-drop serrations are less affected. When changing the external constraint level by varying the sample aspect ratio, the serration pattern, shear band dynamics, and plastic behavior will change accordingly. This study provides a perspective from tuning shear band dynamics to understand the plastic behavior of MGs under different external constraint.

  9. Bifurcation and Stability Analysis of the Equilibrium States in Thermodynamic Systems in a Small Vicinity of the Equilibrium Values of Parameters

    NASA Astrophysics Data System (ADS)

    Barsuk, Alexandr A.; Paladi, Florentin

    2018-04-01

    The dynamic behavior of thermodynamic system, described by one order parameter and one control parameter, in a small neighborhood of ordinary and bifurcation equilibrium values of the system parameters is studied. Using the general methods of investigating the branching (bifurcations) of solutions for nonlinear equations, we performed an exhaustive analysis of the order parameter dependences on the control parameter in a small vicinity of the equilibrium values of parameters, including the stability analysis of the equilibrium states, and the asymptotic behavior of the order parameter dependences on the control parameter (bifurcation diagrams). The peculiarities of the transition to an unstable state of the system are discussed, and the estimates of the transition time to the unstable state in the neighborhood of ordinary and bifurcation equilibrium values of parameters are given. The influence of an external field on the dynamic behavior of thermodynamic system is analyzed, and the peculiarities of the system dynamic behavior are discussed near the ordinary and bifurcation equilibrium values of parameters in the presence of external field. The dynamic process of magnetization of a ferromagnet is discussed by using the general methods of bifurcation and stability analysis presented in the paper.

  10. Socio-economic Aspects of Health-Related Behaviors and Their Dynamics: A Case Study for the Netherlands

    PubMed Central

    Rezayatmand, Reza; Pavlova, Milena; Groot, Wim

    2016-01-01

    Background: Previous studies have mostly focused on socio-demographic and health-related determinants of health-related behaviors. Although comprehensive health insurance coverage could discourage individual lifestyle improvement due to the ex-ante moral hazard problem, few studies have examined such effects. This study examines the association of a comprehensive set of factors including socio-demographic, health status, health insurance, and perceived change in health insurance coverage with health-related behaviors and their dynamics (ie, changes in behavior). Methods: Using Survey of Health, Aging, and Retirement in Europe (SHARE) data (a European aging survey among 50+ years old) for the Netherlands in 2004 and 2007 (sample size: 1745), binary and multinomial logit models are employed to study health-related behaviors (daily smoking, excessive alcohol use, and physical inactivity in 2004) and their corresponding changes (stopping or starting unhealthy behavior between 2004 and 2007). Results: Our findings show that being older, being female, having higher education and living with a partner increase the likelihood not to be a daily smoker or to stop daily smoking. At the same time, being older (OR = 3.02 [1.31, 6.95]) and being female (OR = 1.77 [1.05, 2.96]) increases the likelihood to be or to become physically inactive. We also find that worse perceived health insurance coverage in 2007 is associated with a lower likelihood (OR = 0.19 [0.06, 0.57]) of stopping excessive alcohol use in that year. However, we do not find a strong association between the type of health insurance and health behavior. Conclusion: Our findings show that all above mentioned factors (ie, socio-demographic and health status factors) are associated with health-related behavior but not in a consistent way across all behaviors. Moreover, the dynamics of each behavior (positive or negative change) is not necessarily determined by the same factors that determine the state of that behavior. We also find that better perceived health insurance coverage is associated with a healthier lifestyle which is not compatible with an ex-ante moral hazard interpretation. Our results provide input to target policies towards elderly individuals in need of lifestyle change. However, further research should be done to identify the causal effect of health insurance on health-related behavior. PMID:27239865

  11. Coupled binding-bending-folding: The complex conformational dynamics of protein-DNA binding studied by atomistic molecular dynamics simulations.

    PubMed

    van der Vaart, Arjan

    2015-05-01

    Protein-DNA binding often involves dramatic conformational changes such as protein folding and DNA bending. While thermodynamic aspects of this behavior are understood, and its biological function is often known, the mechanism by which the conformational changes occur is generally unclear. By providing detailed structural and energetic data, molecular dynamics simulations have been helpful in elucidating and rationalizing protein-DNA binding. This review will summarize recent atomistic molecular dynamics simulations of the conformational dynamics of DNA and protein-DNA binding. A brief overview of recent developments in DNA force fields is given as well. Simulations have been crucial in rationalizing the intrinsic flexibility of DNA, and have been instrumental in identifying the sequence of binding events, the triggers for the conformational motion, and the mechanism of binding for a number of important DNA-binding proteins. Molecular dynamics simulations are an important tool for understanding the complex binding behavior of DNA-binding proteins. With recent advances in force fields and rapid increases in simulation time scales, simulations will become even more important for future studies. This article is part of a Special Issue entitled Recent developments of molecular dynamics. Copyright © 2014. Published by Elsevier B.V.

  12. Simple deterministic models and applications. Comment on "Coupled disease-behavior dynamics on complex networks: A review" by Z. Wang et al.

    NASA Astrophysics Data System (ADS)

    Yang, Hyun Mo

    2015-12-01

    Currently, discrete modellings are largely accepted due to the access to computers with huge storage capacity and high performance processors and easy implementation of algorithms, allowing to develop and simulate increasingly sophisticated models. Wang et al. [7] present a review of dynamics in complex networks, focusing on the interaction between disease dynamics and human behavioral and social dynamics. By doing an extensive review regarding to the human behavior responding to disease dynamics, the authors briefly describe the complex dynamics found in the literature: well-mixed populations networks, where spatial structure can be neglected, and other networks considering heterogeneity on spatially distributed populations. As controlling mechanisms are implemented, such as social distancing due 'social contagion', quarantine, non-pharmaceutical interventions and vaccination, adaptive behavior can occur in human population, which can be easily taken into account in the dynamics formulated by networked populations.

  13. Crustal permeability

    USGS Publications Warehouse

    Ingebritsen, Steven E.; Gleeson, Tom

    2017-01-01

    Permeability is the dominant parameter in most hydrogeologic studies. There is abundant evidence for dynamic variations in permeability in time as well as space, and throughout the crust. Whether this dynamic behavior should be included in quantitative models depends on the problem at hand.

  14. Effects of age and loading rate on equine cortical bone failure.

    PubMed

    Kulin, Robb M; Jiang, Fengchun; Vecchio, Kenneth S

    2011-01-01

    Although clinical bone fractures occur predominantly under impact loading (as occurs during sporting accidents, falls, high-speed impacts or other catastrophic events), experimentally validated studies on the dynamic fracture behavior of bone, at the loading rates associated with such events, remain limited. In this study, a series of tests were performed on femoral specimens obtained post-mortem from equine donors ranging in age from 6 months to 28 years. Fracture toughness and compressive tests were performed under both quasi-static and dynamic loading conditions in order to determine the effects of loading rate and age on the mechanical behavior of the cortical bone. Fracture toughness experiments were performed using a four-point bending geometry on single and double-notch specimens in order to measure fracture toughness, as well as observe differences in crack initiation between dynamic and quasi-static experiments. Compressive properties were measured on bone loaded parallel and transverse to the osteonal growth direction. Fracture propagation was then analyzed using scanning electron and scanning confocal microscopy to observe the effects of microstructural toughening mechanisms at different strain rates. Specimens from each horse were also analyzed for dry, wet and mineral densities, as well as weight percent mineral, in order to investigate possible influences of composition on mechanical behavior. Results indicate that bone has a higher compressive strength, but lower fracture toughness when tested dynamically as compared to quasi-static experiments. Fracture toughness also tends to decrease with age when measured quasi-statically, but shows little change with age under dynamic loading conditions, where brittle "cleavage-like" fracture behavior dominates. Copyright © 2010 Elsevier Ltd. All rights reserved.

  15. Evolutionary dynamics of social dilemmas in structured heterogeneous populations.

    PubMed

    Santos, F C; Pacheco, J M; Lenaerts, Tom

    2006-02-28

    Real populations have been shown to be heterogeneous, in which some individuals have many more contacts than others. This fact contrasts with the traditional homogeneous setting used in studies of evolutionary game dynamics. We incorporate heterogeneity in the population by studying games on graphs, in which the variability in connectivity ranges from single-scale graphs, for which heterogeneity is small and associated degree distributions exhibit a Gaussian tale, to scale-free graphs, for which heterogeneity is large with degree distributions exhibiting a power-law behavior. We study the evolution of cooperation, modeled in terms of the most popular dilemmas of cooperation. We show that, for all dilemmas, increasing heterogeneity favors the emergence of cooperation, such that long-term cooperative behavior easily resists short-term noncooperative behavior. Moreover, we show how cooperation depends on the intricate ties between individuals in scale-free populations.

  16. Nonlinear Socio-Ecological Dynamics and First Principles ofCollective Choice Behavior of ``Homo Socialis"

    NASA Astrophysics Data System (ADS)

    Sonis, M.

    Socio-ecological dynamics emerged from the field of Mathematical SocialSciences and opened up avenues for re-examination of classical problems of collective behavior in Social and Spatial sciences. The ``engine" of this collective behavior is the subjective mental evaluation of level of utilities in the future, presenting sets of composite socio-economic-temporal-locational advantages. These dynamics present new laws of collective multi-population behavior which are the meso-level counterparts of the utility optimization individual behavior. The central core of the socio-ecological choice dynamics includes the following first principle of the collective choice behavior of ``Homo Socialis" based on the existence of ``collective consciousness": the choice behavior of ``Homo Socialis" is a collective meso-level choice behavior such that the relative changes in choice frequencies depend on the distribution of innovation alternatives between adopters of innovations. The mathematical basis of the Socio-Ecological Dynamics includes two complementary analytical approaches both based on the use of computer modeling as a theoretical and simulation tool. First approach is the ``continuous approach" --- the systems of ordinary and partial differential equations reflecting the continuous time Volterra ecological formalism in a form of antagonistic and/or cooperative collective hyper-games between different sub-sets of choice alternatives. Second approach is the ``discrete approach" --- systems of difference equations presenting a new branch of the non-linear discrete dynamics --- the Discrete Relative m-population/n-innovations Socio-Spatial Dynamics (Dendrinos and Sonis, 1990). The generalization of the Volterra formalism leads further to the meso-level variational principle of collective choice behavior determining the balance between the resulting cumulative social spatio-temporal interactions among the population of adopters susceptible to the choice alternatives and the cumulative equalization of the power of elites supporting different choice alternatives. This balance governs the dynamic innovation choice process and constitutes the dynamic meso-level counterpart of the micro-economic individual utility maximization principle.

  17. Emulating a System Dynamics Model with Agent-Based Models: A Methodological Case Study in Simulation of Diabetes Progression

    DOE PAGES

    Schryver, Jack; Nutaro, James; Shankar, Mallikarjun

    2015-10-30

    An agent-based simulation model hierarchy emulating disease states and behaviors critical to progression of diabetes type 2 was designed and implemented in the DEVS framework. The models are translations of basic elements of an established system dynamics model of diabetes. In this model hierarchy, which mimics diabetes progression over an aggregated U.S. population, was dis-aggregated and reconstructed bottom-up at the individual (agent) level. Four levels of model complexity were defined in order to systematically evaluate which parameters are needed to mimic outputs of the system dynamics model. Moreover, the four estimated models attempted to replicate stock counts representing disease statesmore » in the system dynamics model, while estimating impacts of an elderliness factor, obesity factor and health-related behavioral parameters. Health-related behavior was modeled as a simple realization of the Theory of Planned Behavior, a joint function of individual attitude and diffusion of social norms that spread over each agent s social network. Although the most complex agent-based simulation model contained 31 adjustable parameters, all models were considerably less complex than the system dynamics model which required numerous time series inputs to make its predictions. In all three elaborations of the baseline model provided significantly improved fits to the output of the system dynamics model. The performances of the baseline agent-based model and its extensions illustrate a promising approach to translate complex system dynamics models into agent-based model alternatives that are both conceptually simpler and capable of capturing main effects of complex local agent-agent interactions.« less

  18. Emulating a System Dynamics Model with Agent-Based Models: A Methodological Case Study in Simulation of Diabetes Progression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schryver, Jack; Nutaro, James; Shankar, Mallikarjun

    An agent-based simulation model hierarchy emulating disease states and behaviors critical to progression of diabetes type 2 was designed and implemented in the DEVS framework. The models are translations of basic elements of an established system dynamics model of diabetes. In this model hierarchy, which mimics diabetes progression over an aggregated U.S. population, was dis-aggregated and reconstructed bottom-up at the individual (agent) level. Four levels of model complexity were defined in order to systematically evaluate which parameters are needed to mimic outputs of the system dynamics model. Moreover, the four estimated models attempted to replicate stock counts representing disease statesmore » in the system dynamics model, while estimating impacts of an elderliness factor, obesity factor and health-related behavioral parameters. Health-related behavior was modeled as a simple realization of the Theory of Planned Behavior, a joint function of individual attitude and diffusion of social norms that spread over each agent s social network. Although the most complex agent-based simulation model contained 31 adjustable parameters, all models were considerably less complex than the system dynamics model which required numerous time series inputs to make its predictions. In all three elaborations of the baseline model provided significantly improved fits to the output of the system dynamics model. The performances of the baseline agent-based model and its extensions illustrate a promising approach to translate complex system dynamics models into agent-based model alternatives that are both conceptually simpler and capable of capturing main effects of complex local agent-agent interactions.« less

  19. Job Performance as Multivariate Dynamic Criteria: Experience Sampling and Multiway Component Analysis.

    PubMed

    Spain, Seth M; Miner, Andrew G; Kroonenberg, Pieter M; Drasgow, Fritz

    2010-08-06

    Questions about the dynamic processes that drive behavior at work have been the focus of increasing attention in recent years. Models describing behavior at work and research on momentary behavior indicate that substantial variation exists within individuals. This article examines the rationale behind this body of work and explores a method of analyzing momentary work behavior using experience sampling methods. The article also examines a previously unused set of methods for analyzing data produced by experience sampling. These methods are known collectively as multiway component analysis. Two archetypal techniques of multimode factor analysis, the Parallel factor analysis and the Tucker3 models, are used to analyze data from Miner, Glomb, and Hulin's (2010) experience sampling study of work behavior. The efficacy of these techniques for analyzing experience sampling data is discussed as are the substantive multimode component models obtained.

  20. The fast kinematic magnetic dynamo and the dissipationless limit

    NASA Technical Reports Server (NTRS)

    Finn, John M.; Ott, Edward

    1990-01-01

    The evolution of the magnetic field in models that incorporate chaotic field line stretching, field cancellation, and finite magnetic Reynolds number is examined analytically and numerically. Although the models used here are highly idealized, it is claimed that they display and illustrate typical behavior relevant to fast magnetic dynamic behavior. It is shown, in particular, that consideration of magnetic flux through a finite fixed surface provides a simple and effective way of deducing fast dynamo behavior from the zero resistivity equation. Certain aspects of the fast dynamo problem can thus be reduced to a study of nonlinear dynamic properties of the underlying flow.

  1. Effect of microstructure on the static and dynamic behavior of recycled asphalt material

    DOT National Transportation Integrated Search

    2004-02-01

    This report describes the third year's research activities of a project dealing with the micromechanical behavior of asphalt materials. The project involved both theoretical/numerical modeling and experimental studies that were applied to investigate...

  2. Effect of microstructure on the static and dynamic behavior of recycled asphalt material

    DOT National Transportation Integrated Search

    2002-07-01

    This report describes the research activities of a project dealing with theoretical/numerical modeling and experimental studies of the micromechanical behavior of recycled asphalt material. The theoretical work employed finite element techniques to d...

  3. The dynamics of perception and action.

    PubMed

    Warren, William H

    2006-04-01

    How might one account for the organization in behavior without attributing it to an internal control structure? The present article develops a theoretical framework called behavioral dynamics that integrates an information-based approach to perception with a dynamical systems approach to action. For a given task, the agent and its environment are treated as a pair of dynamical systems that are coupled mechanically and informationally. Their interactions give rise to the behavioral dynamics, a vector field with attractors that correspond to stable task solutions, repellers that correspond to avoided states, and bifurcations that correspond to behavioral transitions. The framework is used to develop theories of several tasks in which a human agent interacts with the physical environment, including bouncing a ball on a racquet, balancing an object, braking a vehicle, and guiding locomotion. Stable, adaptive behavior emerges from the dynamics of the interaction between a structured environment and an agent with simple control laws, under physical and informational constraints. ((c) 2006 APA, all rights reserved).

  4. Sustainability through Dynamic Energy Management - Continuum Magazine |

    Science.gov Websites

    NREL Sustainability through Dynamic Energy Management Sustainability through Dynamic Energy Management Integrating behavior change with advanced building systems is the new model in energy efficiency , it's necessary to integrate dynamic energy management with occupant behavior change. As plans were

  5. Universal scaling in the aging of the strong glass former SiO{sub 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vollmayr-Lee, Katharina, E-mail: kvollmay@bucknell.edu; Gorman, Christopher H.; Castillo, Horacio E.

    We show that the aging dynamics of a strong glass former displays a strikingly simple scaling behavior, connecting the average dynamics with its fluctuations, namely, the dynamical heterogeneities. We perform molecular dynamics simulations of SiO{sub 2} with van Beest-Kramer-van Santen interactions, quenching the system from high to low temperature, and study the evolution of the system as a function of the waiting time t{sub w} measured from the instant of the quench. We find that both the aging behavior of the dynamic susceptibility χ{sub 4} and the aging behavior of the probability distribution P(f{sub s,r}) of the local incoherent intermediatemore » scattering function f{sub s,r} can be described by simple scaling forms in terms of the global incoherent intermediate scattering function C. The scaling forms are the same that have been found to describe the aging of several fragile glass formers and that, in the case of P(f{sub s,r}), have been also predicted theoretically. A thorough study of the length scales involved highlights the importance of intermediate length scales. We also analyze directly the scaling dependence on particle type and on wavevector q and find that both the average and the fluctuations of the slow aging dynamics are controlled by a unique aging clock, which is not only independent of the wavevector q, but is also the same for O and Si atoms.« less

  6. Dynamic modelling and response characteristics of a magnetic bearing rotor system with auxiliary bearings

    NASA Technical Reports Server (NTRS)

    Free, April M.; Flowers, George T.; Trent, Victor S.

    1995-01-01

    Auxiliary bearings are a critical feature of any magnetic bearing system. They protect the soft iron core of the magnetic bearing during an overload or failure. An auxiliary bearing typically consists of a rolling element bearing or bushing with a clearance gap between the rotor and the inner race of the support. The dynamics of such systems can be quite complex. It is desired to develop a rotordynamic model which describes the dynamic behavior of a flexible rotor system with magnetic bearings including auxiliary bearings. The model is based upon an experimental test facility. Some simulation studies are presented to illustrate the behavior of the model. In particular, the effects of introducing sideloading from the magnetic bearing when one coil fails is studied.

  7. Molecular dynamics simulations indicate that deoxyhemoglobin, oxyhemoglobin, carboxyhemoglobin, and glycated hemoglobin under compression and shear exhibit an anisotropic mechanical behavior.

    PubMed

    Yesudasan, Sumith; Wang, Xianqiao; Averett, Rodney D

    2018-05-01

    We developed a new mechanical model for determining the compression and shear mechanical behavior of four different hemoglobin structures. Previous studies on hemoglobin structures have focused primarily on overall mechanical behavior; however, this study investigates the mechanical behavior of hemoglobin, a major constituent of red blood cells, using steered molecular dynamics (SMD) simulations to obtain anisotropic mechanical behavior under compression and shear loading conditions. Four different configurations of hemoglobin molecules were considered: deoxyhemoglobin (deoxyHb), oxyhemoglobin (HbO 2 ), carboxyhemoglobin (HbCO), and glycated hemoglobin (HbA 1C ). The SMD simulations were performed on the hemoglobin variants to estimate their unidirectional stiffness and shear stiffness. Although hemoglobin is structurally denoted as a globular protein due to its spherical shape and secondary structure, our simulation results show a significant variation in the mechanical strength in different directions (anisotropy) and also a strength variation among the four different hemoglobin configurations studied. The glycated hemoglobin molecule possesses an overall higher compressive mechanical stiffness and shear stiffness when compared to deoxyhemoglobin, oxyhemoglobin, and carboxyhemoglobin molecules. Further results from the models indicate that the hemoglobin structures studied possess a soft outer shell and a stiff core based on stiffness.

  8. Modeling social crowds. Comment on "Human behaviours in evacuation crowd dynamics: From modelling to "big data" toward crisis management" by Nicola Bellomo et al.

    NASA Astrophysics Data System (ADS)

    Poyato, David; Soler, Juan

    2016-09-01

    The study of human behavior is a complex task, but modeling some aspects of this behavior is an even more complicated and exciting idea. From crisis management to decision making in evacuation protocols, understanding the complexity of humans in stress situations is more and more demanded in our society by obvious reasons [5,6,8,12]. In this context, [4] deals with crowd dynamics with special attention to evacuation.

  9. Mathematical modeling of shell configurations made of homogeneous and composite materials experiencing intensive short actions and large displacements

    NASA Astrophysics Data System (ADS)

    Khairnasov, K. Z.

    2018-04-01

    The paper presents a mathematical model for solving the problem of behavior of shell configurations under the action of static and dynamic impacts. The problem is solved in geometrically nonlinear statement with regard to the finite element method. The composite structures with different material layers are considered. The obtained equations are used to study the behavior of shell configurations under the action of dynamic loads. The results agree well with the experimental data.

  10. Nonlinear Viscoelastic Characterization of the Porcine Spinal Cord

    PubMed Central

    Shetye, Snehal; Troyer, Kevin; Streijger, Femke; Lee, Jae H. T.; Kwon, Brian K.; Cripton, Peter; Puttlitz, Christian M.

    2014-01-01

    Although quasi-static and quasi-linear viscoelastic properties of the spinal cord have been reported previously, there are no published studies that have investigated the fully (strain-dependent) nonlinear viscoelastic properties of the spinal cord. In this study, stress relaxation experiments and dynamic cycling were performed on six fresh porcine lumbar cord specimens to examine their viscoelastic mechanical properties. The stress relaxation data were fitted to a modified superposition formulation and a novel finite ramp time correction technique was applied. The parameters obtained from this fitting methodology were used to predict the average dynamic cyclic viscoelastic behavior of the porcine cord. The data indicate that the porcine spinal cord exhibited fully nonlinear viscoelastic behavior. The average weighted RMSE for a Heaviside ramp fit was 2.8kPa, which was significantly greater (p < 0.001) than that of the nonlinear (comprehensive viscoelastic characterization (CVC) method) fit (0.365kPa). Further, the nonlinear mechanical parameters obtained were able to accurately predict the dynamic behavior, thus exemplifying the reliability of the obtained nonlinear parameters. These parameters will be important for future studies investigating various damage mechanisms of the spinal cord and studies developing high resolution finite elements models of the spine. PMID:24211612

  11. Conceptualizing and Estimating Process Speed in Studies Employing Ecological Momentary Assessment Designs: A Multilevel Variance Decomposition Approach

    ERIC Educational Resources Information Center

    Shiyko, Mariya P.; Ram, Nilam

    2011-01-01

    Researchers have been making use of ecological momentary assessment (EMA) and other study designs that sample feelings and behaviors in real time and in naturalistic settings to study temporal dynamics and contextual factors of a wide variety of psychological, physiological, and behavioral processes. As EMA designs become more widespread,…

  12. Recurrence plot analyses suggest a novel reference system involved in newborn spontaneous movements.

    PubMed

    Assmann, Birte; Thiel, Marco; Romano, Maria C; Niemitz, Carsten

    2006-08-01

    The movements of newborns have been thoroughly studied in terms of reflexes, muscle synergies, leg coordination, and target-directed arm/hand movements. Since these approaches have concentrated mainly on separate accomplishments, there has remained a clear need for more integrated investigations. Here, we report an inquiry in which we explicitly concentrated on taking such a perspective and, additionally, were guided by the methodological concept of home base behavior, which Ilan Golani developed for studies of exploratory behavior in animals. Methods from nonlinear dynamics, such as symbolic dynamics and recurrence plot analyses of kinematic data received from audiovisual newborn recordings, yielded new insights into the spatial and temporal organization of limb movements. In the framework of home base behavior, our approach uncovered a novel reference system of spontaneous newborn movements.

  13. Nonequilibrium magnetic properties in a two-dimensional kinetic mixed Ising system within the effective-field theory and Glauber-type stochastic dynamics approach.

    PubMed

    Ertaş, Mehmet; Deviren, Bayram; Keskin, Mustafa

    2012-11-01

    Nonequilibrium magnetic properties in a two-dimensional kinetic mixed spin-2 and spin-5/2 Ising system in the presence of a time-varying (sinusoidal) magnetic field are studied within the effective-field theory (EFT) with correlations. The time evolution of the system is described by using Glauber-type stochastic dynamics. The dynamic EFT equations are derived by employing the Glauber transition rates for two interpenetrating square lattices. We investigate the time dependence of the magnetizations for different interaction parameter values in order to find the phases in the system. We also study the thermal behavior of the dynamic magnetizations, the hysteresis loop area, and dynamic correlation. The dynamic phase diagrams are presented in the reduced magnetic field amplitude and reduced temperature plane and we observe that the system exhibits dynamic tricritical and reentrant behaviors. Moreover, the system also displays a double critical end point (B), a zero-temperature critical point (Z), a critical end point (E), and a triple point (TP). We also performed a comparison with the mean-field prediction in order to point out the effects of correlations and found that some of the dynamic first-order phase lines, which are artifacts of the mean-field approach, disappeared.

  14. The Impact of Family Violence, Family Functioning, and Parental Partner Dynamics on Korean Juvenile Delinquency

    ERIC Educational Resources Information Center

    Kim, Hyun-Sil; Kim, Hun-Soo

    2008-01-01

    The present study was aimed at determining the family factors related to juvenile delinquency and identifying the effect of family violence, family functioning, parental partner dynamics, and adolescents' personality on delinquent behavior among Korean adolescents. A cross-sectional study was performed using an anonymous, self-reporting…

  15. Hybrid computers and simulation languages in the study of dynamics of continuous systems

    NASA Technical Reports Server (NTRS)

    Acaccia, G. M.; Lucifredi, A. L.

    1970-01-01

    A comparison is presented of the use of hybrid computers and simulation languages as a means of studying the behavior of dynamic systems. Both procedures are defined and their advantages and disadvantages at the present state of the art are discussed. Some comparison and evaluation criteria are presented.

  16. High-Speed Atomic Force Microscopy

    NASA Astrophysics Data System (ADS)

    Ando, Toshio; Uchihashi, Takayuki; Kodera, Noriyuki

    2012-08-01

    The technology of high-speed atomic force microscopy (HS-AFM) has reached maturity. HS-AFM enables us to directly visualize the structure and dynamics of biological molecules in physiological solutions at subsecond to sub-100 ms temporal resolution. By this microscopy, dynamically acting molecules such as myosin V walking on an actin filament and bacteriorhodopsin in response to light are successfully visualized. High-resolution molecular movies reveal the dynamic behavior of molecules in action in great detail. Inferences no longer have to be made from static snapshots of molecular structures and from the dynamic behavior of optical markers attached to biomolecules. In this review, we first describe theoretical considerations for the highest possible imaging rate, then summarize techniques involved in HS-AFM and highlight recent imaging studies. Finally, we briefly discuss future challenges to explore.

  17. How should we understand non-equilibrium many-body steady states?

    NASA Astrophysics Data System (ADS)

    Maghrebi, Mohammad; Gorshkov, Alexey

    : Many-body systems with both coherent dynamics and dissipation constitute a rich class of models which are nevertheless much less explored than their dissipationless counterparts. The advent of numerous experimental platforms that simulate such dynamics poses an immediate challenge to systematically understand and classify these models. In particular, nontrivial many-body states emerge as steady states under non-equilibrium dynamics. In this talk, I use a field-theoretic approach based on the Keldysh formalism to study nonequilibrium phases and phase transitions in such models. I show that an effective temperature generically emerges as a result of dissipation, and the universal behavior including the dynamics near the steady state is described by a thermodynamic universality class. In the end, I will also discuss possibilities that go beyond the paradigm of an effective thermodynamic behavior.

  18. Dynamic behavior of cellular materials and cellular structures: Experiments and modeling

    NASA Astrophysics Data System (ADS)

    Gao, Ziyang

    Cellular solids, including cellular materials and cellular structures (CMS), have attracted people's great interests because of their low densities and novel physical, mechanical, thermal, electrical and acoustic properties. They offer potential for lightweight structures, energy absorption, thermal management, etc. Therefore, the studies of cellular solids have become one of the hottest research fields nowadays. From energy absorption point of view, any plastically deformed structures can be divided into two types (called type I and type II), and the basic cells of the CMS may take the configurations of these two types of structures. Accordingly, separated discussions are presented in this thesis. First, a modified 1-D model is proposed and numerically solved for a typical type II structure. Good agreement is achieved with the previous experimental data, hence is used to simulate the dynamic behavior of a type II chain. Resulted from different load speeds, interesting collapse modes are observed, and the parameters which govern the cell's post-collapse behavior are identified through a comprehensive non-dimensional analysis on general cellular chains. Secondly, the MHS specimens are chosen as an example of type I foam materials because of their good uniformity of the cell geometry. An extensive experimental study was carried out, where more attention was paid to their responses to dynamic loadings. Great enhancement of the stress-strain curve was observed in dynamic cases, and the energy absorption capacity is found to be several times higher than that of the commercial metal foams. Based on the experimental study, finite elemental simulations and theoretical modeling are also conducted, achieving good agreements and demonstrating the validities of those models. It is believed that the experimental, numerical and analytical results obtained in the present study will certainly deepen the understanding of the unsolved fundamental issues on the mechanical behavior of cellular solids and make substantial contributions to the theoretical advance of impact dynamics.

  19. Application of largest Lyapunov exponent analysis on the studies of dynamics under external forces

    NASA Astrophysics Data System (ADS)

    Odavić, Jovan; Mali, Petar; Tekić, Jasmina; Pantić, Milan; Pavkov-Hrvojević, Milica

    2017-06-01

    Dynamics of driven dissipative Frenkel-Kontorova model is examined by using largest Lyapunov exponent computational technique. Obtained results show that besides the usual way where behavior of the system in the presence of external forces is studied by analyzing its dynamical response function, the largest Lyapunov exponent analysis can represent a very convenient tool to examine system dynamics. In the dc driven systems, the critical depinning force for particular structure could be estimated by computing the largest Lyapunov exponent. In the dc+ac driven systems, if the substrate potential is the standard sinusoidal one, calculation of the largest Lyapunov exponent offers a more sensitive way to detect the presence of Shapiro steps. When the amplitude of the ac force is varied the behavior of the largest Lyapunov exponent in the pinned regime completely reflects the behavior of Shapiro steps and the critical depinning force, in particular, it represents the mirror image of the amplitude dependence of critical depinning force. This points out an advantage of this technique since by calculating the largest Lyapunov exponent in the pinned regime we can get an insight into the dynamics of the system when driving forces are applied. Additionally, the system is shown to be not chaotic even in the case of incommensurate structures and large amplitudes of external force, which is a consequence of overdampness of the model and the Middleton's no passing rule.

  20. Newtonian dynamics in the plane corresponding to straight and cyclic motions on the hyperelliptic curve μ2=νn-1, n∈Z: Ergodicity, isochrony and fractals

    NASA Astrophysics Data System (ADS)

    Grinevich, P. G.; Santini, P. M.

    2007-08-01

    We study the complexification of the one-dimensional Newtonian particle in a monomial potential. We discuss two classes of motions on the associated Riemann surface: the rectilinear and the cyclic motions, corresponding to two different classes of real and autonomous Newtonian dynamics in the plane. The rectilinear motion has been studied in a number of papers, while the cyclic motion is much less understood. For small data, the cyclic time trajectories lead to isochronous dynamics. For bigger data the situation is quite complicated; computer experiments show that, for sufficiently small degree of the monomial, the motion is generically isochronous with integer period, which depends in a quite sensitive way on the initial data. If the degree of the monomial is sufficiently high, computer experiments show essentially chaotic behavior. We suggest a possible theoretical explanation of these different behaviors. We also introduce a two-parameter family of two-dimensional mappings, describing the motion of the center of the circle, as a convenient representation of the cyclic dynamics; we call such a mapping the center map. Computer experiments for the center map show a typical multifractal behavior with periodicity islands. Therefore the above complexification procedure generates dynamics amenable to analytic treatment and possessing a high degree of complexity.

  1. Bursts and heavy tails in temporal and sequential dynamics of foraging decisions.

    PubMed

    Jung, Kanghoon; Jang, Hyeran; Kralik, Jerald D; Jeong, Jaeseung

    2014-08-01

    A fundamental understanding of behavior requires predicting when and what an individual will choose. However, the actual temporal and sequential dynamics of successive choices made among multiple alternatives remain unclear. In the current study, we tested the hypothesis that there is a general bursting property in both the timing and sequential patterns of foraging decisions. We conducted a foraging experiment in which rats chose among four different foods over a continuous two-week time period. Regarding when choices were made, we found bursts of rapidly occurring actions, separated by time-varying inactive periods, partially based on a circadian rhythm. Regarding what was chosen, we found sequential dynamics in affective choices characterized by two key features: (a) a highly biased choice distribution; and (b) preferential attachment, in which the animals were more likely to choose what they had previously chosen. To capture the temporal dynamics, we propose a dual-state model consisting of active and inactive states. We also introduce a satiation-attainment process for bursty activity, and a non-homogeneous Poisson process for longer inactivity between bursts. For the sequential dynamics, we propose a dual-control model consisting of goal-directed and habit systems, based on outcome valuation and choice history, respectively. This study provides insights into how the bursty nature of behavior emerges from the interaction of different underlying systems, leading to heavy tails in the distribution of behavior over time and choices.

  2. An opinion-driven behavioral dynamics model for addictive behaviors

    NASA Astrophysics Data System (ADS)

    Moore, Thomas W.; Finley, Patrick D.; Apelberg, Benjamin J.; Ambrose, Bridget K.; Brodsky, Nancy S.; Brown, Theresa J.; Husten, Corinne; Glass, Robert J.

    2015-04-01

    We present a model of behavioral dynamics that combines a social network-based opinion dynamics model with behavioral mapping. The behavioral component is discrete and history-dependent to represent situations in which an individual's behavior is initially driven by opinion and later constrained by physiological or psychological conditions that serve to maintain the behavior. Individuals are modeled as nodes in a social network connected by directed edges. Parameter sweeps illustrate model behavior and the effects of individual parameters and parameter interactions on model results. Mapping a continuous opinion variable into a discrete behavioral space induces clustering on directed networks. Clusters provide targets of opportunity for influencing the network state; however, the smaller the network the greater the stochasticity and potential variability in outcomes. This has implications both for behaviors that are influenced by close relationships verses those influenced by societal norms and for the effectiveness of strategies for influencing those behaviors.

  3. Enhanced Dynamics of Hydrated tRNA on Nanodiamond Surfaces: A Combined Neutron Scattering and MD Simulation Study.

    PubMed

    Dhindsa, Gurpreet K; Bhowmik, Debsindhu; Goswami, Monojoy; O'Neill, Hugh; Mamontov, Eugene; Sumpter, Bobby G; Hong, Liang; Ganesh, Panchapakesan; Chu, Xiang-Qiang

    2016-09-14

    Nontoxic, biocompatible nanodiamonds (ND) have recently been implemented in rational, systematic design of optimal therapeutic use in nanomedicines. However, hydrophilicity of the ND surface strongly influences structure and dynamics of biomolecules that restrict in situ applications of ND. Therefore, fundamental understanding of the impact of hydrophilic ND surface on biomolecules at the molecular level is essential. For tRNA, we observe an enhancement of dynamical behavior in the presence of ND contrary to generally observed slow motion at strongly interacting interfaces. We took advantage of neutron scattering experiments and computer simulations to demonstrate this atypical faster dynamics of tRNA on ND surface. The strong attractive interactions between ND, tRNA, and water give rise to unlike dynamical behavior and structural changes of tRNA in front of ND compared to without ND. Our new findings may provide new design principles for safer, improved drug delivery platforms.

  4. A complex systems analysis of stick-slip dynamics of a laboratory fault

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walker, David M.; Tordesillas, Antoinette, E-mail: atordesi@unimelb.edu.au; Small, Michael

    2014-03-15

    We study the stick-slip behavior of a granular bed of photoelastic disks sheared by a rough slider pulled along the surface. Time series of a proxy for granular friction are examined using complex systems methods to characterize the observed stick-slip dynamics of this laboratory fault. Nonlinear surrogate time series methods show that the stick-slip behavior appears more complex than a periodic dynamics description. Phase space embedding methods show that the dynamics can be locally captured within a four to six dimensional subspace. These slider time series also provide an experimental test for recent complex network methods. Phase space networks, constructedmore » by connecting nearby phase space points, proved useful in capturing the key features of the dynamics. In particular, network communities could be associated to slip events and the ranking of small network subgraphs exhibited a heretofore unreported ordering.« less

  5. Dynamic detailed model of a molten salt tower receiver, with ThermoSysPro library: Impacts of several failures or operational transients on the receiver dynamic behavior

    NASA Astrophysics Data System (ADS)

    Hefni, Baligh El; Bourdil, Charles

    2017-06-01

    Molten salt technology represents nowadays the most cost-effective technology for electricity generation for solar power plant. The molten salt tower receiver is based on a field of individually sun-tracking mirrors (heliostats) that reflect the incident sunshine to a receiver at the top of a centrally located tower. The objective of this study is to assess the impact of several transients issued from different scenarios (failure or normal operation mode) on the receiver dynamic behavior. A dynamic detailed model of Solar Two molten salt central receiver has been developed. The component model is meant to be used for receiver modeling with the ThermoSysPro library, developed by EDF. The paper also gives the results of the dynamic simulation for the selected scenarios on Solar Two receiver.

  6. Nonlinear modeling and dynamic analysis of a hydro-turbine governing system in the process of sudden load increase transient

    NASA Astrophysics Data System (ADS)

    Li, Huanhuan; Chen, Diyi; Zhang, Hao; Wang, Feifei; Ba, Duoduo

    2016-12-01

    In order to study the nonlinear dynamic behaviors of a hydro-turbine governing system in the process of sudden load increase transient, we establish a novel nonlinear dynamic model of the hydro-turbine governing system which considers the elastic water-hammer model of the penstock and the second-order model of the generator. The six nonlinear dynamic transfer coefficients of the hydro-turbine are innovatively proposed by utilizing internal characteristics and analyzing the change laws of the characteristic parameters of the hydro-turbine governing system. Moreover, from the point of view of engineering, the nonlinear dynamic behaviors of the above system are exhaustively investigated based on bifurcation diagrams and time waveforms. More importantly, all of the above analyses supply theoretical basis for allowing a hydropower station to maintain a stable operation in the process of sudden load increase transient.

  7. Bayesian dynamic mediation analysis.

    PubMed

    Huang, Jing; Yuan, Ying

    2017-12-01

    Most existing methods for mediation analysis assume that mediation is a stationary, time-invariant process, which overlooks the inherently dynamic nature of many human psychological processes and behavioral activities. In this article, we consider mediation as a dynamic process that continuously changes over time. We propose Bayesian multilevel time-varying coefficient models to describe and estimate such dynamic mediation effects. By taking the nonparametric penalized spline approach, the proposed method is flexible and able to accommodate any shape of the relationship between time and mediation effects. Simulation studies show that the proposed method works well and faithfully reflects the true nature of the mediation process. By modeling mediation effect nonparametrically as a continuous function of time, our method provides a valuable tool to help researchers obtain a more complete understanding of the dynamic nature of the mediation process underlying psychological and behavioral phenomena. We also briefly discuss an alternative approach of using dynamic autoregressive mediation model to estimate the dynamic mediation effect. The computer code is provided to implement the proposed Bayesian dynamic mediation analysis. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  8. A review of human factors challenges of complex adaptive systems: discovering and understanding chaos in human performance.

    PubMed

    Karwowski, Waldemar

    2012-12-01

    In this paper, the author explores a need for a greater understanding of the true nature of human-system interactions from the perspective of the theory of complex adaptive systems, including the essence of complexity, emergent properties of system behavior, nonlinear systems dynamics, and deterministic chaos. Human performance, more often than not, constitutes complex adaptive phenomena with emergent properties that exhibit nonlinear dynamical (chaotic) behaviors. The complexity challenges in the design and management of contemporary work systems, including service systems, are explored. Examples of selected applications of the concepts of nonlinear dynamics to the study of human physical performance are provided. Understanding and applications of the concepts of theory of complex adaptive and dynamical systems should significantly improve the effectiveness of human-centered design efforts of a large system of systems. Performance of many contemporary work systems and environments may be sensitive to the initial conditions and may exhibit dynamic nonlinear properties and chaotic system behaviors. Human-centered design of emergent human-system interactions requires application of the theories of nonlinear dynamics and complex adaptive system. The success of future human-systems integration efforts requires the fusion of paradigms, knowledge, design principles, and methodologies of human factors and ergonomics with those of the science of complex adaptive systems as well as modern systems engineering.

  9. Contagion of Cooperation in Static and Fluid Social Networks.

    PubMed

    Jordan, Jillian J; Rand, David G; Arbesman, Samuel; Fowler, James H; Christakis, Nicholas A

    2013-01-01

    Cooperation is essential for successful human societies. Thus, understanding how cooperative and selfish behaviors spread from person to person is a topic of theoretical and practical importance. Previous laboratory experiments provide clear evidence of social contagion in the domain of cooperation, both in fixed networks and in randomly shuffled networks, but leave open the possibility of asymmetries in the spread of cooperative and selfish behaviors. Additionally, many real human interaction structures are dynamic: we often have control over whom we interact with. Dynamic networks may differ importantly in the goals and strategic considerations they promote, and thus the question of how cooperative and selfish behaviors spread in dynamic networks remains open. Here, we address these questions with data from a social dilemma laboratory experiment. We measure the contagion of both cooperative and selfish behavior over time across three different network structures that vary in the extent to which they afford individuals control over their network ties. We find that in relatively fixed networks, both cooperative and selfish behaviors are contagious. In contrast, in more dynamic networks, selfish behavior is contagious, but cooperative behavior is not: subjects are fairly likely to switch to cooperation regardless of the behavior of their neighbors. We hypothesize that this insensitivity to the behavior of neighbors in dynamic networks is the result of subjects' desire to attract new cooperative partners: even if many of one's current neighbors are defectors, it may still make sense to switch to cooperation. We further hypothesize that selfishness remains contagious in dynamic networks because of the well-documented willingness of cooperators to retaliate against selfishness, even when doing so is costly. These results shed light on the contagion of cooperative behavior in fixed and fluid networks, and have implications for influence-based interventions aiming at increasing cooperative behavior.

  10. Moderators of the Dynamic Link between Alcohol Use and Aggressive Behavior among Adolescent Males

    ERIC Educational Resources Information Center

    White, Helene Raskin; Fite, Paula; Pardini, Dustin; Mun, Eun-Young; Loeber, Rolf

    2013-01-01

    Although longitudinal evidence has linked alcohol use with aggressive behavior during adolescence, most studies have failed to adequately control for the numerous between-individual differences that may underlie this association. In addition, few studies of adolescents have examined whether the nature of the within-individual association between…

  11. The failure of brittle materials under overall compression: Effects of loading rate and defect distribution

    NASA Astrophysics Data System (ADS)

    Paliwal, Bhasker

    The constitutive behaviors and failure processes of brittle materials under far-field compressive loading are studied in this work. Several approaches are used: experiments to study the compressive failure behavior of ceramics, design of experimental techniques by means of finite element simulations, and the development of micro-mechanical damage models to analyze and predict mechanical response of brittle materials under far-field compression. Experiments have been conducted on various ceramics, (primarily on a transparent polycrystalline ceramic, aluminum oxynitride or AlON) under loading rates ranging from quasi-static (˜ 5X10-6) to dynamic (˜ 200 MPa/mus), using a servo-controlled hydraulic test machine and a modified compression Kolsky bar (MKB) technique respectively. High-speed photography has also been used with exposure times as low as 20 ns to observe the dynamic activation, growth and coalescence of cracks and resulting damage zones in the specimen. The photographs were correlated in time with measurements of the stresses in the specimen. Further, by means of 3D finite element simulations, an experimental technique has been developed to impose a controlled, homogeneous, planar confinement in the specimen. The technique can be used in conjunction with a high-speed camera to study the in situ dynamic failure behavior of materials under confinement. AlON specimens are used for the study. The statically pre-compressed specimen is subjected to axial dynamic compressive loading using the MKB. Results suggest that confinement not only increases the load carrying capacity, it also results in a non-linear stress evolution in the material. High-speed photographs also suggest an inelastic deformation mechanism in AlON under confinement which evolves more slowly than the typical brittle-cracking type of damage in the unconfined case. Next, an interacting micro-crack damage model is developed that explicitly accounts for the interaction among the micro-cracks in brittle materials. The model incorporates pre-existing defect distributions and a crack growth law. The damage is defined as a scalar parameter which is a function of the micro-crack density, the evolution of which is a function of the existing defect distribution and the crack growth dynamics. A specific case of a uniaxial compressive loading under constant strain-rate has been studied to predict the effects of the strain-rate, defect distribution and the crack growth dynamics on the constitutive response and failure behavior of brittle materials. Finally, the effects of crack growth dynamics on the strain-rate sensitivity of brittle materials are studied with the help of the micro-mechanical damage model. The results are compared with the experimentally observed damage evolution and the rate-sensitive behavior of the compressive strength of several engineering ceramics. The dynamic failure of armor-grade hot-pressed boron carbide (B 4C) under loading rates of ˜ 5X10-6 to 200 MPa/mus is also discussed.

  12. Rules or consequences? The role of ethical mind-sets in moral dynamics.

    PubMed

    Cornelissen, Gert; Bashshur, Michael R; Rode, Julian; Le Menestrel, Marc

    2013-04-01

    Recent research on the dynamics of moral behavior has documented two contrasting phenomena-moral consistency and moral balancing. Moral balancing refers to the phenomenon whereby behaving ethically or unethically decreases the likelihood of engaging in the same type of behavior again later. Moral consistency describes the opposite pattern-engaging in ethical or unethical behavior increases the likelihood of engaging in the same type of behavior later on. The three studies reported here supported the hypothesis that individuals' ethical mind-set (i.e., outcome-based vs. rule-based) moderates the impact of an initial ethical or unethical act on the likelihood of behaving ethically on a subsequent occasion. More specifically, an outcome-based mind-set facilitated moral balancing, and a rule-based mind-set facilitated moral consistency.

  13. Brain-wide neuronal dynamics during motor adaptation in zebrafish

    PubMed Central

    Ahrens, Misha B; Li, Jennifer M; Orger, Michael B; Robson, Drew N; Schier, Alexander F; Engert, Florian; Portugues, Ruben

    2013-01-01

    A fundamental question in neuroscience is how entire neural circuits generate behavior and adapt it to changes in sensory feedback. Here we use two-photon calcium imaging to record activity of large populations of neurons at the cellular level throughout the brain of larval zebrafish expressing a genetically-encoded calcium sensor, while the paralyzed animals interact fictively with a virtual environment and rapidly adapt their motor output to changes in visual feedback. We decompose the network dynamics involved in adaptive locomotion into four types of neural response properties, and provide anatomical maps of the corresponding sites. A subset of these signals occurred during behavioral adjustments and are candidates for the functional elements that drive motor learning. Lesions to the inferior olive indicate a specific functional role for olivocerebellar circuitry in adaptive locomotion. This study enables the analysis of brain-wide dynamics at single-cell resolution during behavior. PMID:22622571

  14. Chromosome dynamics in meiotic prophase I in plants.

    PubMed

    Ronceret, A; Pawlowski, W P

    2010-07-01

    Early stages of meiotic prophase are characterized by complex and dramatic chromosome dynamics. Chromosome behavior during this period is associated with several critical meiotic processes that take place at the molecular level, such as recombination and homologous chromosome recognition and pairing. Studies to characterize specific patterns of chromosome dynamics and to identify their exact roles in the progression of meiotic prophase are only just beginning in plants. These studies are facilitated by advances in imaging technology in the recent years, including development of ultra-resolution three-dimensional and live microscopy methods. Studies conducted so far indicate that different chromosome regions exhibit different dynamics patterns in early prophase. In many species telomeres cluster at the nuclear envelope at the beginning of zygotene forming the telomere bouquet. The bouquet has been traditionally thought to facilitate chromosome pairing by bringing chromosome ends into close proximity, but recent studies suggest that its main role may rather be facilitating rapid movements of chromosomes during zygotene. In some species, including wheat and Arabidopsis, there is evidence that centromeres form pairs (couple) before the onset of pairing of chromosome arms. While significant advances have been achieved in elucidating the patterns of chromosome behavior in meiotic prophase I, factors controlling chromosome dynamics are still largely unknown and require further studies. Copyright 2010 S. Karger AG, Basel.

  15. The internal architecture of dendritic spines revealed by super-resolution imaging: What did we learn so far?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacGillavry, Harold D., E-mail: h.d.macgillavry@uu.nl; Hoogenraad, Casper C., E-mail: c.hoogenraad@uu.nl

    2015-07-15

    The molecular architecture of dendritic spines defines the efficiency of signal transmission across excitatory synapses. It is therefore critical to understand the mechanisms that control the dynamic localization of the molecular constituents within spines. However, because of the small scale at which most processes within spines take place, conventional light microscopy techniques are not adequate to provide the necessary level of resolution. Recently, super-resolution imaging techniques have overcome the classical barrier imposed by the diffraction of light, and can now resolve the localization and dynamic behavior of proteins within small compartments with nanometer precision, revolutionizing the study of dendritic spinemore » architecture. Here, we highlight exciting new findings from recent super-resolution studies on neuronal spines, and discuss how these studies revealed important new insights into how protein complexes are assembled and how their dynamic behavior shapes the efficiency of synaptic transmission.« less

  16. Influence of backup bearings and support structure dynamics on the behavior of rotors with active supports

    NASA Technical Reports Server (NTRS)

    Flowers, George T.

    1994-01-01

    Substantial progress has been made toward the goals of this research effort in the past six months. A simplified rotor model with a flexible shaft and backup bearings has been developed. The model is based upon the work of Ishii and Kirk. Parameter studies of the behavior of this model are currently being conducted. A simple rotor model which includes a flexible disk and bearings with clearance has been developed and the dynamics of the model investigated. The study consists of simulation work coupled with experimental verification. The work is documented in the attached paper. A rotor model based upon the T-501 engine has been developed which includes backup bearing effects. The dynamics of this model are currently being studied with the objective of verifying the conclusions obtained from the simpler models. Parallel simulation runs are being conducted using an ANSYS based finite element model of the T-501.

  17. Comparing the Ability of Enhanced Sampling Molecular Dynamics Methods To Reproduce the Behavior of Fluorescent Labels on Proteins.

    PubMed

    Walczewska-Szewc, Katarzyna; Deplazes, Evelyne; Corry, Ben

    2015-07-14

    Adequately sampling the large number of conformations accessible to proteins and other macromolecules is one of the central challenges in molecular dynamics (MD) simulations; this activity can be difficult, even for relatively simple systems. An example where this problem arises is in the simulation of dye-labeled proteins, which are now being widely used in the design and interpretation of Förster resonance energy transfer (FRET) experiments. In this study, MD simulations are used to characterize the motion of two commonly used FRET dyes attached to an immobilized chain of polyproline. Even in this simple system, the dyes exhibit complex behavior that is a mixture of fast and slow motions. Consequently, very long MD simulations are required to sufficiently sample the entire range of dye motion. Here, we compare the ability of enhanced sampling methods to reproduce the behavior of fluorescent labels on proteins. In particular, we compared Accelerated Molecular Dynamics (AMD), metadynamics, Replica Exchange Molecular Dynamics (REMD), and High Temperature Molecular Dynamics (HTMD) to equilibrium MD simulations. We find that, in our system, all of these methods improve the sampling of the dye motion, but the most significant improvement is achieved using REMD.

  18. The internal processes and behavioral dynamics of hospital boards: an exploration of differences between high- and low-performing hospitals.

    PubMed

    Kane, Nancy M; Clark, Jonathan R; Rivenson, Howard L

    2009-01-01

    Nonprofit hospital boards are under increasing pressure to improve financial, clinical, and charitable and community benefit performance. Most research on board effectiveness focuses on variables measuring board structure and attributes associated with competing ideal models of board roles. However, the results do not provide clear evidence that one role is superior to another and suggest that in practice boards pursue hybrid roles. Board dynamics and processes have received less attention from researchers, but emerging theoretical frameworks highlight them as key to effective corporate governance. We explored differences in board processes and behavioral dynamics between financially high- and low-performing hospitals, with the goal of developing a better understanding of the best board practices in nonprofit hospitals. A comparative case study approach allowed for in-depth, qualitative assessments of how the internal workings of boards differ between low- and high-performing facilities. Boards of hospitals with strong financial performance exhibited behavioral dynamics and internal processes that differed in important ways from those of hospitals with poor financial performance. Boards need to actively attend to key processes and foster positive group dynamics in decision making to be more effective in governing hospitals.

  19. KINETIC AND DYNAMIC ASPECTS OF ARSENIC TOXICITY

    EPA Science Inventory

    This project integrates research on aspects of the kinetic and dynamic behavior of arsenic. A PBPK model for arsenic will be developed using metabolism and disposition data from studies in mice. Retention of arsenic in the tissues following exposure to arsenic will be investigate...

  20. Exploring travelers' behavior in response to dynamic message signs (DMS) using a driving simulator.

    DOT National Transportation Integrated Search

    2013-10-01

    This research studies the effectiveness of a dynamic message sign (DMS) using a driving : simulator. Over 100 subjects from different socio-economic and age groups were recruited to : drive the simulator under different traffic and driving conditions...

  1. Dynamic Models of the U.S. Automobile Fleet

    DOT National Transportation Integrated Search

    1977-08-01

    The report examines some of the dynamic properties of the automobile fleet. The focus is not on new-car demand, but rather on the overall behavior of the system. Relationships derived from previous studies have been incorporated and integrated in a s...

  2. Microglial Morphology and Dynamic Behavior Is Regulated by Ionotropic Glutamatergic and GABAergic Neurotransmission

    PubMed Central

    Fontainhas, Aurora M.; Wang, Minhua; Liang, Katharine J.; Chen, Shan; Mettu, Pradeep; Damani, Mausam; Fariss, Robert N.; Li, Wei; Wong, Wai T.

    2011-01-01

    Purpose Microglia represent the primary resident immune cells in the CNS, and have been implicated in the pathology of neurodegenerative diseases. Under basal or “resting” conditions, microglia possess ramified morphologies and exhibit dynamic surveying movements in their processes. Despite the prominence of this phenomenon, the function and regulation of microglial morphology and dynamic behavior are incompletely understood. We investigate here whether and how neurotransmission regulates “resting” microglial morphology and behavior. Methods We employed an ex vivo mouse retinal explant system in which endogenous neurotransmission and dynamic microglial behavior are present. We utilized live-cell time-lapse confocal imaging to study the morphology and behavior of GFP-labeled retinal microglia in response to neurotransmitter agonists and antagonists. Patch clamp electrophysiology and immunohistochemical localization of glutamate receptors were also used to investigate direct-versus-indirect effects of neurotransmission by microglia. Results Retinal microglial morphology and dynamic behavior were not cell-autonomously regulated but are instead modulated by endogenous neurotransmission. Morphological parameters and process motility were differentially regulated by different modes of neurotransmission and were increased by ionotropic glutamatergic neurotransmission and decreased by ionotropic GABAergic neurotransmission. These neurotransmitter influences on retinal microglia were however unlikely to be directly mediated; local applications of neurotransmitters were unable to elicit electrical responses on microglia patch-clamp recordings and ionotropic glutamatergic receptors were not located on microglial cell bodies or processes by immunofluorescent labeling. Instead, these influences were mediated indirectly via extracellular ATP, released in response to glutamatergic neurotransmission through probenecid-sensitive pannexin hemichannels. Conclusions Our results demonstrate that neurotransmission plays an endogenous role in regulating the morphology and behavior of “resting” microglia in the retina. These findings illustrate a mode of constitutive signaling between the neural and immune compartments of the CNS through which immune cells may be regulated in concert with levels of neural activity. PMID:21283568

  3. Fractional Order and Dynamic Simulation of a System Involving an Elastic Wide Plate

    NASA Astrophysics Data System (ADS)

    David, S. A.; Balthazar, J. M.; Julio, B. H. S.; Oliveira, C.

    2011-09-01

    Numerous researchers have studied about nonlinear dynamics in several areas of science and engineering. However, in most cases, these concepts have been explored mainly from the standpoint of analytical and computational methods involving integer order calculus (IOC). In this paper we have examined the dynamic behavior of an elastic wide plate induced by two electromagnets of a point of view of the fractional order calculus (FOC). The primary focus of this study is on to help gain a better understanding of nonlinear dynamic in fractional order systems.

  4. Discrete Dynamics Lab

    NASA Astrophysics Data System (ADS)

    Wuensche, Andrew

    DDLab is interactive graphics software for creating, visualizing, and analyzing many aspects of Cellular Automata, Random Boolean Networks, and Discrete Dynamical Networks in general and studying their behavior, both from the time-series perspective — space-time patterns, and from the state-space perspective — attractor basins. DDLab is relevant to research, applications, and education in the fields of complexity, self-organization, emergent phenomena, chaos, collision-based computing, neural networks, content addressable memory, genetic regulatory networks, dynamical encryption, generative art and music, and the study of the abstract mathematical/physical/dynamical phenomena in their own right.

  5. The neural dynamics of updating person impressions

    PubMed Central

    Cai, Yang; Todorov, Alexander

    2013-01-01

    Person perception is a dynamic, evolving process. Because other people are an endless source of social information, people need to update their impressions of others based upon new information. We devised an fMRI study to identify brain regions involved in updating impressions. Participants saw faces paired with valenced behavioral information and were asked to form impressions of these individuals. Each face was seen five times in a row, each time with a different behavioral description. Critically, for half of the faces the behaviors were evaluatively consistent, while for the other half they were inconsistent. In line with prior work, dorsomedial prefrontal cortex (dmPFC) was associated with forming impressions of individuals based on behavioral information. More importantly, a whole-brain analysis revealed a network of other regions associated with updating impressions of individuals who exhibited evaluatively inconsistent behaviors, including rostrolateral PFC, superior temporal sulcus, right inferior parietal lobule and posterior cingulate cortex. PMID:22490923

  6. Effects of Voluntary Locomotion and Calcitonin Gene-Related Peptide on the Dynamics of Single Dural Vessels in Awake Mice

    PubMed Central

    Gao, Yu-Rong

    2016-01-01

    The dura mater is a vascularized membrane surrounding the brain and is heavily innervated by sensory nerves. Our knowledge of the dural vasculature has been limited to pathological conditions, such as headaches, but little is known about the dural blood flow regulation during behavior. To better understand the dynamics of dural vessels during behavior, we used two-photon laser scanning microscopy (2PLSM) to measure the diameter changes of single dural and pial vessels in the awake mouse during voluntary locomotion. Surprisingly, we found that voluntary locomotion drove the constriction of dural vessels, and the dynamics of these constrictions could be captured with a linear convolution model. Dural vessel constrictions did not mirror the large increases in intracranial pressure (ICP) during locomotion, indicating that dural vessel constriction was not caused passively by compression. To study how behaviorally driven dynamics of dural vessels might be altered in pathological states, we injected the vasodilator calcitonin gene-related peptide (CGRP), which induces headache in humans. CGRP dilated dural, but not pial, vessels and significantly reduced spontaneous locomotion but did not block locomotion-induced constrictions in dural vessels. Sumatriptan, a drug commonly used to treat headaches, blocked the vascular and behavioral the effects of CGRP. These findings suggest that, in the awake animal, the diameters of dural vessels are regulated dynamically during behavior and during drug-induced pathological states. SIGNIFICANT STATEMENT The vasculature of the dura has been implicated in the pathophysiology of headaches, but how individual dural vessels respond during behavior, both under normal conditions and after treatment with the headache-inducing peptide calcitonin gene-related peptide (CGRP), is poorly understood. To address these issues, we imaged individual dural vessels in awake mice and found that dural vessels constricted during voluntary locomotion, and this constriction did not follow locomotion-induced intracranial pressure increases. CGRP injection caused baseline dural vessel dilation and reduced locomotion but did not block locomotion-induced constrictions of dural vessels or affect pial vessels. These novel findings reveal dynamic regulation of dural vessels that are distinct from those in cerebral blood vessels during both normal behavior and after dilation by CGRP. PMID:26911696

  7. A Study Of High Speed Friction Behavior Under Elastic Loading Conditions

    NASA Astrophysics Data System (ADS)

    Crawford, P. J.; Hammerberg, J. E.

    2005-03-01

    The role of interfacial dynamics under high strain-rate conditions is an important constitutive relationship in modern modeling and simulation studies of dynamic events (<100 μs in length). The frictional behavior occurring at the interface between two metal surfaces under high elastic loading and sliding speed conditions is studied using the Rotating Barrel Gas Gun (RBGG) facility. The RBGG utilizes a low-pressure gas gun to propel a rotating annular projectile towards an annular target rod. Upon striking the target, the projectile imparts both an axial and a torsional impulse into the target. Resulting elastic waves are measured using strain gauges attached to the target rod. The kinetic coefficient of friction is obtained through an analysis of the resulting strain wave data. Experiments performed using Cu/Cu, Cu/Stainless steel and Cu/Al interfaces provide some insight into the kinetic coefficient of friction behavior at varying sliding speeds and impact loads.

  8. Engine dynamic analysis with general nonlinear finite element codes

    NASA Technical Reports Server (NTRS)

    Adams, M. L.; Padovan, J.; Fertis, D. G.

    1991-01-01

    A general engine dynamic analysis as a standard design study computational tool is described for the prediction and understanding of complex engine dynamic behavior. Improved definition of engine dynamic response provides valuable information and insights leading to reduced maintenance and overhaul costs on existing engine configurations. Application of advanced engine dynamic simulation methods provides a considerable cost reduction in the development of new engine designs by eliminating some of the trial and error process done with engine hardware development.

  9. From homeostasis to behavior: Balanced activity in an exploration of embodied dynamic environmental-neural interaction.

    PubMed

    Hellyer, Peter John; Clopath, Claudia; Kehagia, Angie A; Turkheimer, Federico E; Leech, Robert

    2017-08-01

    In recent years, there have been many computational simulations of spontaneous neural dynamics. Here, we describe a simple model of spontaneous neural dynamics that controls an agent moving in a simple virtual environment. These dynamics generate interesting brain-environment feedback interactions that rapidly destabilize neural and behavioral dynamics demonstrating the need for homeostatic mechanisms. We investigate roles for homeostatic plasticity both locally (local inhibition adjusting to balance excitatory input) as well as more globally (regional "task negative" activity that compensates for "task positive", sensory input in another region) balancing neural activity and leading to more stable behavior (trajectories through the environment). Our results suggest complementary functional roles for both local and macroscale mechanisms in maintaining neural and behavioral dynamics and a novel functional role for macroscopic "task-negative" patterns of activity (e.g., the default mode network).

  10. [The dynamics of behavioral and neuroreceptor effects after acute and long-term noopept administration in C57BL/6 and BALB/c mice].

    PubMed

    Kovalev, G I; Kondrakhin, E A; Salimov, R M; Neznamov, G G

    2014-01-01

    The effect of acute, 7-fold and 14-fold noopept (1 mg/kg/day) administration on the dynamics of anxiolitic and nootropic behavioral effects in cross-maze, as well as their correlations with NMDA- and BDZ-receptor density was studied in inbred mice strains, differing in exploratory and emotional status--C57BL/6 and BALB/c. The dipeptide failed to affect the anxiety and exploration activity in C57BL/6 mice at each of 3 steps of experimental session. In this strain the B(max) values of [3H]-MK-801 and [3H]-Flunitrazepam binding changed only after single administration. In respect to BALB/c mice noopept induced both the anxiolitic and nootropic effects reaching their maximum on 7th day. In BALB/c strain the dynamics of hippocampal NMDA-receptor binding corresponds to the dynamics of exploratory efficacy whereas the dynamics of BDZ-receptors in prefrontal cortex was reciprocally to dynamics of anxiety level.

  11. Robustness of Oscillatory Behavior in Correlated Networks

    PubMed Central

    Sasai, Takeyuki; Morino, Kai; Tanaka, Gouhei; Almendral, Juan A.; Aihara, Kazuyuki

    2015-01-01

    Understanding network robustness against failures of network units is useful for preventing large-scale breakdowns and damages in real-world networked systems. The tolerance of networked systems whose functions are maintained by collective dynamical behavior of the network units has recently been analyzed in the framework called dynamical robustness of complex networks. The effect of network structure on the dynamical robustness has been examined with various types of network topology, but the role of network assortativity, or degree–degree correlations, is still unclear. Here we study the dynamical robustness of correlated (assortative and disassortative) networks consisting of diffusively coupled oscillators. Numerical analyses for the correlated networks with Poisson and power-law degree distributions show that network assortativity enhances the dynamical robustness of the oscillator networks but the impact of network disassortativity depends on the detailed network connectivity. Furthermore, we theoretically analyze the dynamical robustness of correlated bimodal networks with two-peak degree distributions and show the positive impact of the network assortativity. PMID:25894574

  12. Evolutionary dynamics of the traveler's dilemma and minimum-effort coordination games on complex networks.

    PubMed

    Iyer, Swami; Killingback, Timothy

    2014-10-01

    The traveler's dilemma game and the minimum-effort coordination game are social dilemmas that have received significant attention resulting from the fact that the predictions of classical game theory are inconsistent with the results found when the games are studied experimentally. Moreover, both the traveler's dilemma and the minimum-effort coordination games have potentially important applications in evolutionary biology. Interestingly, standard deterministic evolutionary game theory, as represented by the replicator dynamics in a well-mixed population, is also inadequate to account for the behavior observed in these games. Here we study the evolutionary dynamics of both these games in populations with interaction patterns described by a variety of complex network topologies. We investigate the evolutionary dynamics of these games through agent-based simulations on both model and empirical networks. In particular, we study the effects of network clustering and assortativity on the evolutionary dynamics of both games. In general, we show that the evolutionary behavior of the traveler's dilemma and minimum-effort coordination games on complex networks is in good agreement with that observed experimentally. Thus, formulating the traveler's dilemma and the minimum-effort coordination games on complex networks neatly resolves the paradoxical aspects of these games.

  13. Evolutionary dynamics of the traveler's dilemma and minimum-effort coordination games on complex networks

    NASA Astrophysics Data System (ADS)

    Iyer, Swami; Killingback, Timothy

    2014-10-01

    The traveler's dilemma game and the minimum-effort coordination game are social dilemmas that have received significant attention resulting from the fact that the predictions of classical game theory are inconsistent with the results found when the games are studied experimentally. Moreover, both the traveler's dilemma and the minimum-effort coordination games have potentially important applications in evolutionary biology. Interestingly, standard deterministic evolutionary game theory, as represented by the replicator dynamics in a well-mixed population, is also inadequate to account for the behavior observed in these games. Here we study the evolutionary dynamics of both these games in populations with interaction patterns described by a variety of complex network topologies. We investigate the evolutionary dynamics of these games through agent-based simulations on both model and empirical networks. In particular, we study the effects of network clustering and assortativity on the evolutionary dynamics of both games. In general, we show that the evolutionary behavior of the traveler's dilemma and minimum-effort coordination games on complex networks is in good agreement with that observed experimentally. Thus, formulating the traveler's dilemma and the minimum-effort coordination games on complex networks neatly resolves the paradoxical aspects of these games.

  14. Interfacial water on crystalline silica: a comparative molecular dynamics simulation study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ho, Tuan A.; Argyris, Dimitrios; Papavassiliou, Dimitrios V.

    2011-03-03

    All-atom molecular dynamics simulations were conducted to study the dynamics of aqueous electrolyte solutions confined in slit-shaped silica nanopores of various degrees of protonation. Five degrees of protonation were prepared by randomly removing surface hydrogen atoms from fully protonated crystalline silica surfaces. Aqueous electrolyte solutions containing NaCl or CsCl salt were simulated at ambient conditions. In all cases, the ionic concentration was 1 M. The results were quantified in terms of atomic density distributions within the pores, and the self-diffusion coefficient along the direction parallel to the pore surface. We found evidence for ion-specific properties that depend on ion surface,more » water ion, and only in some cases ion ion correlations. The degree of protonation strongly affects the structure, distribution, and the dynamic behavior of confined water and electrolytes. Cl ions adsorb on the surface at large degrees of protonation, and their behavior does not depend significantly on the cation type (either Na+ or Cs+ ions are present in the systems considered). The cations show significant ion-specific behavior. Na+ ions occupy different positions within the pore as the degree of protonation changes, while Cs+ ions mainly remain near the pore center at all conditions considered. For a given degree of protonation, the planar self-diffusion coefficient of Cs+ is always greater than that of Na+ ions. The results are useful for better understanding transport under confinement, including brine behavior in the subsurface, with important applications such as environmental remediation.« less

  15. High-temperature dynamic behavior in bulk liquid water: A molecular dynamics simulation study using the OPC and TIP4P-Ew potentials

    NASA Astrophysics Data System (ADS)

    Gabrieli, Andrea; Sant, Marco; Izadi, Saeed; Shabane, Parviz Seifpanahi; Onufriev, Alexey V.; Suffritti, Giuseppe B.

    2018-02-01

    Classical molecular dynamics simulations were performed to study the high-temperature (above 300 K) dynamic behavior of bulk water, specifically the behavior of the diffusion coefficient, hydrogen bond, and nearest-neighbor lifetimes. Two water potentials were compared: the recently proposed "globally optimal" point charge (OPC) model and the well-known TIP4P-Ew model. By considering the Arrhenius plots of the computed inverse diffusion coefficient and rotational relaxation constants, a crossover from Vogel-Fulcher-Tammann behavior to a linear trend with increasing temperature was detected at T* ≈ 309 and T* ≈ 285 K for the OPC and TIP4P-Ew models, respectively. Experimentally, the crossover point was previously observed at T* ± 315-5 K. We also verified that for the coefficient of thermal expansion α P ( T, P), the isobaric α P ( T) curves cross at about the same T* as in the experiment. The lifetimes of water hydrogen bonds and of the nearest neighbors were evaluated and were found to cross near T*, where the lifetimes are about 1 ps. For T < T*, hydrogen bonds persist longer than nearest neighbors, suggesting that the hydrogen bonding network dominates the water structure at T < T*, whereas for T > T*, water behaves more like a simple liquid. The fact that T* falls within the biologically relevant temperature range is a strong motivation for further analysis of the phenomenon and its possible consequences for biomolecular systems.

  16. Gain dynamics of clad-pumped Yb-fiber amplifier and intensity noise control.

    PubMed

    Zhao, Jian; Guiraud, Germain; Floissat, Florian; Gouhier, Benoit; Rota-Rodrigo, Sergio; Traynor, Nicholas; Santarelli, Giorgio

    2017-01-09

    Gain dynamics study provides an attractive method to understand the intensity noise behavior in fiber amplifiers. Here, the gain dynamics of a medium power (5 W) clad-pumped Yb-fiber amplifier is experimentally evaluated by measuring the frequency domain transfer functions for the input seed and pump lasers from 10 Hz to 1 MHz. We study gain dynamic behavior of the fiber amplifier in the presence of significant residual pump power (compared to the seed power), showing that the seed transfer function is strongly saturated at low Fourier frequencies while the pump power modulation transfer function is nearly unaffected. The characterization of relative intensity noise (RIN) of the fiber amplifier is well explained by the gain dynamics analysis. Finally, a 600 kHz bandwidth feedback loop using an acoustic-optical modulator (AOM) controlling the seed intensity is successfully demonstrated to suppress the broadband laser intensity noise. A maximum noise reduction of about 30 dB is achieved leading to a RIN of -152 dBc/Hz (~1 kHz-10 MHz) at 2.5 W output power.

  17. RELATING ACCUMULATOR MODEL PARAMETERS AND NEURAL DYNAMICS

    PubMed Central

    Purcell, Braden A.; Palmeri, Thomas J.

    2016-01-01

    Accumulator models explain decision-making as an accumulation of evidence to a response threshold. Specific model parameters are associated with specific model mechanisms, such as the time when accumulation begins, the average rate of evidence accumulation, and the threshold. These mechanisms determine both the within-trial dynamics of evidence accumulation and the predicted behavior. Cognitive modelers usually infer what mechanisms vary during decision-making by seeing what parameters vary when a model is fitted to observed behavior. The recent identification of neural activity with evidence accumulation suggests that it may be possible to directly infer what mechanisms vary from an analysis of how neural dynamics vary. However, evidence accumulation is often noisy, and noise complicates the relationship between accumulator dynamics and the underlying mechanisms leading to those dynamics. To understand what kinds of inferences can be made about decision-making mechanisms based on measures of neural dynamics, we measured simulated accumulator model dynamics while systematically varying model parameters. In some cases, decision- making mechanisms can be directly inferred from dynamics, allowing us to distinguish between models that make identical behavioral predictions. In other cases, however, different parameterized mechanisms produce surprisingly similar dynamics, limiting the inferences that can be made based on measuring dynamics alone. Analyzing neural dynamics can provide a powerful tool to resolve model mimicry at the behavioral level, but we caution against drawing inferences based solely on neural analyses. Instead, simultaneous modeling of behavior and neural dynamics provides the most powerful approach to understand decision-making and likely other aspects of cognition and perception. PMID:28392584

  18. Towards representing human behavior and decision making in Earth system models - an overview of techniques and approaches

    NASA Astrophysics Data System (ADS)

    Müller-Hansen, Finn; Schlüter, Maja; Mäs, Michael; Donges, Jonathan F.; Kolb, Jakob J.; Thonicke, Kirsten; Heitzig, Jobst

    2017-11-01

    Today, humans have a critical impact on the Earth system and vice versa, which can generate complex feedback processes between social and ecological dynamics. Integrating human behavior into formal Earth system models (ESMs), however, requires crucial modeling assumptions about actors and their goals, behavioral options, and decision rules, as well as modeling decisions regarding human social interactions and the aggregation of individuals' behavior. Here, we review existing modeling approaches and techniques from various disciplines and schools of thought dealing with human behavior at different levels of decision making. We demonstrate modelers' often vast degrees of freedom but also seek to make modelers aware of the often crucial consequences of seemingly innocent modeling assumptions. After discussing which socioeconomic units are potentially important for ESMs, we compare models of individual decision making that correspond to alternative behavioral theories and that make diverse modeling assumptions about individuals' preferences, beliefs, decision rules, and foresight. We review approaches to model social interaction, covering game theoretic frameworks, models of social influence, and network models. Finally, we discuss approaches to studying how the behavior of individuals, groups, and organizations can aggregate to complex collective phenomena, discussing agent-based, statistical, and representative-agent modeling and economic macro-dynamics. We illustrate the main ingredients of modeling techniques with examples from land-use dynamics as one of the main drivers of environmental change bridging local to global scales.

  19. Dynamics of sustained use and abandonment of clean cooking systems: study protocol for community-based system dynamics modeling.

    PubMed

    Kumar, Praveen; Chalise, Nishesh; Yadama, Gautam N

    2016-04-26

    More than 3 billion of the world's population are affected by household air pollution from relying on unprocessed solid fuels for heating and cooking. Household air pollution is harmful to human health, climate, and environment. Sustained uptake and use of cleaner cooking technologies and fuels are proposed as solutions to this problem. In this paper, we present our study protocol aimed at understanding multiple interacting feedback mechanisms involved in the dynamic behavior between social, ecological, and technological systems driving sustained use or abandonment of cleaner cooking technologies among the rural poor in India. This study uses a comparative case study design to understand the dynamics of sustained use or abandonment of cleaner cooking technologies and fuels in four rural communities of Rajasthan, India. The study adopts a community based system dynamics modeling approach. We describe our approach of using community based system dynamics with rural communities to delineate the feedback mechanisms involved in the uptake and sustainment of clean cooking technologies. We develop a reference mode with communities showing the trend over time of use or abandonment of cleaner cooking technologies and fuels in these communities. Subsequently, the study develops a system dynamics model with communities to understand the complex sub-systems driving the behavior in these communities as reflected in the reference mode. We use group model building techniques to facilitate participation of relevant stakeholders in the four communities and elicit a narrative describing the feedback mechanisms underlying sustained adoption or abandonment of cleaner cooking technologies. In understanding the dynamics of feedback mechanisms in the uptake and exclusive use of cleaner cooking systems, we increase the likelihood of dissemination and implementation of efficacious interventions into everyday settings to improve the health and wellbeing of women and children most affected by household air pollution. The challenge is not confined to developing robust technical solutions to reduce household air pollution and exposure to improve respiratory health, and prevent associated diseases. The bigger challenge is to disseminate and implement cleaner cooking technologies and fuels in the context of various social, behavioral, and economic constraints faced by poor households and communities. The Institutional Review Board of Washington University in St. Louis has exempted community based system dynamics modeling from review.

  20. Dynamic analysis of heart rate may predict subsequent ventricular tachycardia after myocardial infarction

    NASA Technical Reports Server (NTRS)

    Makikallio, T. H.; Seppanen, T.; Airaksinen, K. E.; Koistinen, J.; Tulppo, M. P.; Peng, C. K.; Goldberger, A. L.; Huikuri, H. V.

    1997-01-01

    Dynamics analysis of RR interval behavior and traditional measures of heart rate variability were compared between postinfarction patients with and without vulnerability to ventricular tachyarrhythmias in a case-control study. Short-term fractal correlation of heart rate dynamics was better than traditional measures of heart rate variability in differentiating patients with and without life-threatening arrhythmias.

  1. Structural properties and glass transition in Aln clusters

    NASA Astrophysics Data System (ADS)

    Sun, D. Y.; Gong, X. G.

    1998-02-01

    We have studied the structural and dynamical properties of several Aln clusters by the molecular-dynamics method combined with simulated annealing. The well-fitted glue potential is used to describe the interatomic interaction. The obtained atomic structures for n=13, 55, and 147 are in agreement with results from ab initio calculations. Our results have demonstrated that the disordered cluster Al43 can be considered as a glass cluster. The obtained thermal properties of glass cluster Al43 are clearly different from the results for high-symmetry clusters, its melting behavior has properties similar to those of a glass solid. The present studies also show that the surface melting behavior does not exist in the studied Aln clusters.

  2. Experimental study on a comparison of typical premixed combustible gas-air flame propagation in a horizontal rectangular closed duct.

    PubMed

    Jin, Kaiqiang; Duan, Qiangling; Liew, K M; Peng, Zhongjing; Gong, Liang; Sun, Jinhua

    2017-04-05

    Research surrounding premixed flame propagation in ducts has a history of more than one hundred years. Most previous studies focus on the tulip flame formation and flame acceleration in pure gas fuel-air flame. However, the premixed natural gas-air flame may show different behaviors and pressure dynamics due to its unique composition. Natural gas, methane and acetylene are chosen here to conduct a comparison study on different flame behaviors and pressure dynamics, and to explore the influence of different compositions on premixed flame dynamics. The characteristics of flame front and pressure dynamics are recorded using high-speed schlieren photography and a pressure transducer, respectively. The results indicate that the compositions of the gas mixture greatly influence flame behaviors and pressure. Acetylene has the fastest flame tip speed and the highest pressure, while natural gas has a faster flame tip speed and higher pressure than methane. The Bychkov theory for predicting the flame skirt motion is verified, and the results indicate that the experimental data coincide well with theory in the case of equivalence ratios close to 1.00. Moreover, the Bychkov theory is able to predict flame skirt motion for acetylene, even outside of the best suitable expansion ratio range of 6

  3. Selected Problems in Nonlinear Dynamics and Sociophysics

    NASA Astrophysics Data System (ADS)

    Westley, Alexandra Renee

    This Ph.D. dissertation focuses on a collection of problems on the dynamical behavior of nonlinear many-body systems, drawn from two substantially different areas. First, the dynamical behavior seen in strongly nonlinear lattices such as in the Fermi-Pasta-Ulam-Tsingou (FPUT) system (part I) and second, time evolution behavior of interacting living objects which can be broadly considered as sociophysics systems (part II). The studies on FPUT-like systems will comprise of five chapters, dedicated to the properties of solitary and anti-solitary waves in the system, how localized nonlinear excitations decay and spread throughout these lattices, how two colliding solitary waves can precipitate highly localized and stable excitations, a possible alternative way to view these localized excitations through Duffing oscillators, and finally an exploration of parametric resonance in an FPUT-like lattice. Part II consists of two problems in the context of sociophysics. I use molecular dynamics inspired simulations to study the size and the stability of social groups of chimpanzees (such as those seen in central Africa) and compare the results with existing observations on the stability of chimpanzee societies. Secondly, I use an agent-based model to simulate land battles between an intelligent army and an insurgency when both have access to equally powerful weaponry. The study considers genetic algorithm based adaptive strategies to infer the strategies needed for the intelligent army to win the battles.

  4. Regulation of Dynamic Behavior of Retinal Microglia by CX3CR1 Signaling

    PubMed Central

    Liang, Katharine J.; Lee, Jung Eun; Wang, Yunqing D.; Ma, Wenxin; Fontainhas, Aurora M.; Fariss, Robert N.; Wong, Wai T.

    2009-01-01

    PURPOSE Microglia in the central nervous system display a marked structural dynamism in their processes in the resting state. This dynamic behavior, which may play a constitutive surveying role in the uninjured neural parenchyma, is also highly responsive to tissue injury. The role of CX3CR1, a chemokine receptor expressed in microglia, in regulating microglia morphology and dynamic behavior in the resting state and after laser-induced focal injury was examined. METHODS Time-lapse confocal imaging of retinal explants was used to evaluate the dynamic behavior of retinal microglia labeled with green fluorescent protein (GFP). Transgenic mice in which CX3CR1 signaling was ablated (CX3CR1GFP/GFP/CX3CR1−/−) and preserved (CX3CR1+/GFP/CX3CR1+/−) were used. RESULTS Retinal microglial density, distribution, cellular morphology, and overall retinal tissue anatomy were not altered in young CX3CR1−/− animals. In the absence of CX3CR1, retinal microglia continued to exhibit dynamic motility in their processes. However, rates of process movement were significantly decreased, both under resting conditions and in response to tissue injury. In addition, microglia migration occurring in response to focal laser injury was also significantly slowed in microglia lacking CX3CR1. CONCLUSIONS CX3CR1 signaling in retinal microglia, though not absolutely required for the presence of microglial dynamism, plays a role in potentiating the rate of retinal microglial process dynamism and cellular migration. CX3CL1 signaling from retinal neurons and endothelial cells likely modulates dynamic microglia behavior so as to influence the level of microglial surveillance under basal conditions and the rate of dynamic behavior in response to tissue injury. PMID:19443728

  5. Polymer models of interphase chromosomes

    PubMed Central

    Vasquez, Paula A; Bloom, Kerry

    2014-01-01

    Clear organizational patterns on the genome have emerged from the statistics of population studies of fixed cells. However, how these results translate into the dynamics of individual living cells remains unexplored. We use statistical mechanics models derived from polymer physics to inquire into the effects that chromosome properties and dynamics have in the temporal and spatial behavior of the genome. Overall, changes in the properties of individual chains affect the behavior of all other chains in the domain. We explore two modifications of chain behavior: single chain motion and chain-chain interactions. We show that there is not a direct relation between these effects, as increase in motion, doesn’t necessarily translate into an increase on chain interaction. PMID:25482191

  6. Comprehensive Analysis of Transcription Dynamics from Brain Samples Following Behavioral Experience

    PubMed Central

    Turm, Hagit; Mukherjee, Diptendu; Haritan, Doron; Tahor, Maayan; Citri, Ami

    2014-01-01

    The encoding of experiences in the brain and the consolidation of long-term memories depend on gene transcription. Identifying the function of specific genes in encoding experience is one of the main objectives of molecular neuroscience. Furthermore, the functional association of defined genes with specific behaviors has implications for understanding the basis of neuropsychiatric disorders. Induction of robust transcription programs has been observed in the brains of mice following various behavioral manipulations. While some genetic elements are utilized recurrently following different behavioral manipulations and in different brain nuclei, transcriptional programs are overall unique to the inducing stimuli and the structure in which they are studied1,2. In this publication, a protocol is described for robust and comprehensive transcriptional profiling from brain nuclei of mice in response to behavioral manipulation. The protocol is demonstrated in the context of analysis of gene expression dynamics in the nucleus accumbens following acute cocaine experience. Subsequent to a defined in vivo experience, the target neural tissue is dissected; followed by RNA purification, reverse transcription and utilization of microfluidic arrays for comprehensive qPCR analysis of multiple target genes. This protocol is geared towards comprehensive analysis (addressing 50-500 genes) of limiting quantities of starting material, such as small brain samples or even single cells. The protocol is most advantageous for parallel analysis of multiple samples (e.g. single cells, dynamic analysis following pharmaceutical, viral or behavioral perturbations). However, the protocol could also serve for the characterization and quality assurance of samples prior to whole-genome studies by microarrays or RNAseq, as well as validation of data obtained from whole-genome studies. PMID:25225819

  7. SEARCH: Spatially Explicit Animal Response to Composition of Habitat.

    PubMed

    Pauli, Benjamin P; McCann, Nicholas P; Zollner, Patrick A; Cummings, Robert; Gilbert, Jonathan H; Gustafson, Eric J

    2013-01-01

    Complex decisions dramatically affect animal dispersal and space use. Dispersing individuals respond to a combination of fine-scale environmental stimuli and internal attributes. Individual-based modeling offers a valuable approach for the investigation of such interactions because it combines the heterogeneity of animal behaviors with spatial detail. Most individual-based models (IBMs), however, vastly oversimplify animal behavior and such behavioral minimalism diminishes the value of these models. We present program SEARCH (Spatially Explicit Animal Response to Composition of Habitat), a spatially explicit, individual-based, population model of animal dispersal through realistic landscapes. SEARCH uses values in Geographic Information System (GIS) maps to apply rules that animals follow during dispersal, thus allowing virtual animals to respond to fine-scale features of the landscape and maintain a detailed memory of areas sensed during movement. SEARCH also incorporates temporally dynamic landscapes so that the environment to which virtual animals respond can change during the course of a simulation. Animals in SEARCH are behaviorally dynamic and able to respond to stimuli based upon their individual experiences. Therefore, SEARCH is able to model behavioral traits of dispersing animals at fine scales and with many dynamic aspects. Such added complexity allows investigation of unique ecological questions. To illustrate SEARCH's capabilities, we simulated case studies using three mammals. We examined the impact of seasonally variable food resources on the weight distribution of dispersing raccoons (Procyon lotor), the effect of temporally dynamic mortality pressure in combination with various levels of behavioral responsiveness in eastern chipmunks (Tamias striatus), and the impact of behavioral plasticity and home range selection on disperser mortality and weight change in virtual American martens (Martes americana). These simulations highlight the relevance of SEARCH for a variety of applications and illustrate benefits it can provide for conservation planning.

  8. Relevance of deterministic chaos theory to studies in functioning of dynamical systems

    NASA Astrophysics Data System (ADS)

    Glagolev, S. N.; Bukhonova, S. M.; Chikina, E. D.

    2018-03-01

    The paper considers chaotic behavior of dynamical systems typical for social and economic processes. Approaches to analysis and evaluation of system development processes are studies from the point of view of controllability and determinateness. Explanations are given for necessity to apply non-standard mathematical tools to explain states of dynamical social and economic systems on the basis of fractal theory. Features of fractal structures, such as non-regularity, self-similarity, dimensionality and fractionality are considered.

  9. On The Ubiquity of Nonstationary Fluvial Suspended Sediment Dynamics: A Call for Long Term Monitoring and Dynamical Sediment Management Strategies

    NASA Astrophysics Data System (ADS)

    Gray, A. B.

    2017-12-01

    Watersheds with sufficient monitoring data have been predominantly found to display nonstationary suspended sediment dynamics, whereby the relationship between suspended sediment concentration and discharge changes over time. Despite the importance of suspended sediment as a keystone of geophysical and biochemical processes, and as a primary mediator of water quality, stationary behavior remains largely assumed in the context of these applications. This study presents an investigation into the time dependent behavior of small mountainous rivers draining the coastal ranges of the western continental US over interannual to interdecadal time scales. Of the 250+ small coastal (drainage area < 2x104 km2) watersheds in this region, only 23 have discharge associated suspended sediment concentration time series with base periods of 10 years or more. Event to interdecadal scale nonstationary suspended sediment dynamics were identified throughout these systems. Temporal patterns of non-stationary behavior provided some evidence for spatial coherence, which may be related to synoptic hydro-metrological patterns and regional scale changes in land use patterns. However, the results also highlight the complex, integrative nature of watershed scale fluvial suspended sediment dynamics. This underscores the need for in-depth, forensic approaches for initial processes identification, which require long term, high resolution monitoring efforts in order to adequately inform management. The societal implications of nonstationary sediment dynamics and their controls were further explored through the case of California, USA, where over 150 impairment listings have resulted in more than 50 sediment TMDLs, only 3 of which are flux based - none of which account for non-stationary behavior.

  10. Experimental settlement and dynamic behavior of a portion of ballasted railway track under high speed trains

    NASA Astrophysics Data System (ADS)

    Al Shaer, A.; Duhamel, D.; Sab, K.; Foret, G.; Schmitt, L.

    2008-09-01

    The study of railway tracks under high speed trains is one of the most important researches in the domain of transport. A reduced scale experiment with three sleepers is presented to study the dynamic behavior and the settlement of ballasted tracks. A large number of trains passing at high speeds are simulated by signals, applied with the help of hydraulic jacks, having the shape of the letter M and representing the passages of bogies on sleepers. This experiment offers results such as displacements, accelerations, pressures and settlements that allow to better understand the dynamic behavior of a portion of a ballasted railway track at reduced scale and to estimate the settlement versus the number of load cycles. It was found that mechanical properties such as the global stiffness of the track can have important variations during the experiment. The settlement was also found to be a function of the acceleration of sleepers and above all it was observed, for accelerations above a critical value, that the increase of settlement per cycle was very high.

  11. Experimental study on dynamic mechanical behaviors of polycarbonate

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Gao, Yubo; Ye, Nan; Huang, Wei; Li, Dacheng

    2017-01-01

    Polycarbonate (PC) is a widely used engineering material in aerospace field, since it has excellent mechanical and optical property. In present study, both compressive and tensile tests of PC were conducted at high strain rates by using a split Hopkinson pressure bar. The high-speed camera and 2D Digital Image Correlation method (DIC) were used to analyze the dynamic deformation behavior of PC. Meanwhile, the plate impact experiment was carried out to measure the equation of state of PC in a single-stage gas gun, which consists of asymmetric impact technology, manganin gauges, PVDF, electromagnetic particle velocity gauges. The results indicate that the yield stress of PC increased with the strain rates in both dynamic compression and tension tests. The same phenomenon was similar to elasticity modulus at different strain rate. A constitutive model was used to describe the mechanical behaviors of PC accurately in different strain rates by contrast with the results of 2D-DIC. At last, The D-u Hugoniot curve of polycarbonate in high pressure was fitted by the least square method.

  12. Dynamic Electromechanical Characterization of the Ferroelectric Ceramic PZT 95/5

    NASA Astrophysics Data System (ADS)

    Setchell, R. E.; Chhabildas, L. C.; Furnish, M. D.; Montgomery, S. T.; Holman, G. T.

    1997-07-01

    Shock-induced depoling of the ferroelectric ceramic PZT 95/5 has been utilized in a number of pulsed power applications. The dynamic behavior of the poled ceramic is complex, with nonlinear coupling between mechanical and electrical variables. Recent efforts to improve numerical simulations of this process have been limited by the scarcity of relevant experimental studies within the last twenty years. Consequently, we have initiated an extensive experimental study of the dynamic electromechanical behavior of this material. Samples of the poled ceramic are shocked to axial stresses from 0.5 to 5 GPa in planar impact experiments and observed with laser interferometry (VISAR) to obtain transmitted wave profiles. Current generation due to shock-induced depoling is observed using different external loads to vary electric field strengths within the samples. Experimental configurations either have the remanent polarization parallel to the direction of shock motion (axially poled) or perpendicular (normally poled). Initial experiments on unpoled samples utilized PVDF stress gauges as well as VISAR, and extended prior data on shock loading and release behavior. (Supported by the U. S. Department of Energy under contract DE-AC04-94AL85000). abstract.

  13. Rethinking Adolescent Risk-Taking Behavior and the Peer Leader Dynamic.

    ERIC Educational Resources Information Center

    Carter, D. S. G.; And Others

    The nature of the interactions that occur among peer leaders, peer influence, and the dynamics of the peer reference group in the context of health, interpersonal relations and lifestyle choice were the subjects of this study. Its first stage (of two) employed a case study of a single metropolitan senior high school in Australia. Adolescent peer…

  14. Small and Medium-Sized Information Technology Firms: Assessment of Non-Local Partnership Facilitators

    ERIC Educational Resources Information Center

    Findikoglu, Melike Nur

    2012-01-01

    A two-phased qualitative study was conducted to explore the facilitators of non-local (i.e. domestic or international) partnerships formed by small- and medium-sized firms (SME). Rooted in trust, proximity and dynamic capabilities lenses, the study focused on behaviors of SMEs performing in dynamic, competitive and highly interlinked industry, the…

  15. Brief Report: Representational Momentum for Dynamic Facial Expressions in Pervasive Developmental Disorder

    ERIC Educational Resources Information Center

    Uono, Shota; Sato, Wataru; Toichi, Motomi

    2010-01-01

    Individuals with pervasive developmental disorder (PDD) have difficulty with social communication via emotional facial expressions, but behavioral studies involving static images have reported inconsistent findings about emotion recognition. We investigated whether dynamic presentation of facial expression would enhance subjective perception of…

  16. A novel simulation methodology merging source-sink dynamics and landscape connectivity

    EPA Science Inventory

    Source-sink dynamics are an emergent property of complex species-landscape interactions. This study explores the patterns of source and sink behavior that become established across a large landscape, using a simulation model for the northern spotted owl (Strix occidentalis cauri...

  17. How interactions between animal movement and landscape processes modify range dynamics and extinction risk

    EPA Science Inventory

    Range dynamics models now incorporate many of the mechanisms and interactions that drive species distributions. However, connectivity continues to be studied using overly simple distance-based dispersal models with little consideration of how the individual behavior of dispersin...

  18. Exploring travelers' behavior in response to dynamic message signs (DMS) using a driving simulator : final report.

    DOT National Transportation Integrated Search

    2013-10-01

    This research studies the effectiveness of a dynamic message sign (DMS) using a driving : simulator. Over 100 subjects from different socio-economic and age groups were recruited to : drive the simulator under different traffic and driving conditions...

  19. Dynamic Manipulation of Hydrogels to Control Cell Behavior: A Review

    PubMed Central

    Vats, Kanika

    2013-01-01

    For many tissue engineering applications and studies to understand how materials fundamentally affect cellular functions, it is important to have the ability to synthesize biomaterials that can mimic elements of native cell–extracellular matrix interactions. Hydrogels possess many properties that are desirable for studying cell behavior. For example, hydrogels are biocompatible and can be biochemically and mechanically altered by exploiting the presentation of cell adhesive epitopes or by changing hydrogel crosslinking density. To establish physical and biochemical tunability, hydrogels can be engineered to alter their properties upon interaction with external driving forces such as pH, temperature, electric current, as well as exposure to cytocompatible irradiation. Additionally, hydrogels can be engineered to respond to enzymes secreted by cells, such as matrix metalloproteinases and hyaluronidases. This review details different strategies and mechanisms by which biomaterials, specifically hydrogels, can be manipulated dynamically to affect cell behavior. By employing the appropriate combination of stimuli and hydrogel composition and architecture, cell behavior such as adhesion, migration, proliferation, and differentiation can be controlled in real time. This three-dimensional control in cell behavior can help create programmable cell niches that can be useful for fundamental cell studies and in a variety of tissue engineering applications. PMID:23541134

  20. Water drop dynamics on a granular layer

    NASA Astrophysics Data System (ADS)

    Llorens, Coraline; Biance, Anne-Laure; Ybert, Christophe; Pirat, Christophe; Liquids; Interfaces Team

    2015-11-01

    Liquid drop impacts, either on a solid surface or a liquid bath, have been studied for a while and are still subject of intense research. Less is known concerning impacts on granular layers that are shown to exhibit an intermediate situation between solid and liquid. In this study, we focus on water drop impacts on granular matter made of micrometer-sized spherical glass beads. In particular, we investigate the overall dynamics arising from the interplay between liquid and grains throughout the impact. Depending on the relevant parameters (impact velocity, drop and grain sizes, as well as their wetting properties), various behaviors are evidenced. In particular, the behavior of the beads at the liquid-gas interface (ball-bearing vs imbibition) is shown to greatly affect the spreading dynamics of the drop, as well as satellite droplets formation, beads ejection, and the final crater morphology.

  1. Experimental Characterization of Hysteresis in a Revolute Joint for Precision Deployable Structures

    NASA Technical Reports Server (NTRS)

    Lake, Mark S.; Fung, Jimmy; Gloss, Kevin; Liechty, Derek S.

    1997-01-01

    Recent studies of the micro-dynamic behavior of a deployable telescope metering truss have identified instabilities in the equilibrium shape of the truss in response to low-energy dynamic loading. Analyses indicate that these micro-dynamic instabilities arise from stick-slip friction within the truss joints (e.g., hinges and latches). The present study characterizes the low-magnitude quasi-static load cycle response of the precision revolute joints incorporated in the deployable telescope metering truss, and specifically, the hysteretic response of these joints caused by stick-slip friction within the joint. Detailed descriptions are presented of the test setup and data reduction algorithms, including discussions of data-error sources and data-filtering techniques. Test results are presented from thirteen specimens, and the effects of joint preload and manufacturing tolerances are investigated. Using a simplified model of stick-slip friction, a relationship is made between joint load-cycle behavior and micro-dynamic dimensional instabilities in the deployable telescope metering truss.

  2. Study of factors influencing the mechanical properties of polyurethane foams under dynamic compression

    NASA Astrophysics Data System (ADS)

    Linul, E.; Marsavina, L.; Voiconi, T.; Sadowski, T.

    2013-07-01

    Effect of density, loading rate, material orientation and temperature on dynamic compression behavior of rigid polyurethane foams are investigated in this paper. These parameters have a very important role, taking into account that foams are used as packing materials or dampers which require high energy impact absorption. The experimental study was carried out on closed-cell rigid polyurethane (PUR) foam specimens of different densities (100, 160 respectively 300 kg/m3), having a cubic shape. The specimens were subjected to uniaxial dynamic compression with loading rate in range of 1.37-3.25 m/s, using four different temperatures (20, 60, 90, 110°C) and two loading planes (direction (3) - rise direction and direction (2) - in plane). Experimental results show that Young's modulus, yield stress and plateau stress values increases with increasing density. One of the most significant effects of mechanical properties in dynamic compression of rigid PUR foams is the density, but also the loading speed, material orientation and temperature influences the behavior in compression

  3. Nonlinear stochastic interacting dynamics and complexity of financial gasket fractal-like lattice percolation

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Wang, Jun

    2018-05-01

    A novel nonlinear stochastic interacting price dynamics is proposed and investigated by the bond percolation on Sierpinski gasket fractal-like lattice, aim to make a new approach to reproduce and study the complexity dynamics of real security markets. Fractal-like lattices correspond to finite graphs with vertices and edges, which are similar to fractals, and Sierpinski gasket is a well-known example of fractals. Fractional ordinal array entropy and fractional ordinal array complexity are introduced to analyze the complexity behaviors of financial signals. To deeper comprehend the fluctuation characteristics of the stochastic price evolution, the complexity analysis of random logarithmic returns and volatility are preformed, including power-law distribution, fractional sample entropy and fractional ordinal array complexity. For further verifying the rationality and validity of the developed stochastic price evolution, the actual security market dataset are also studied with the same statistical methods for comparison. The empirical results show that this stochastic price dynamics can reconstruct complexity behaviors of the actual security markets to some extent.

  4. Quincke rotation of an ellipsoid

    NASA Astrophysics Data System (ADS)

    Vlahovska, Petia; Brosseau, Quentin

    2016-11-01

    The Quincke effect - spontaneous spinning of a sphere in a uniform DC electric field - has attracted considerable interest in recent year because of the intriguing dynamics exhibited by a Quincke-rotating drop and the emergent collective behavior of confined suspensions of Quincke-rotating spheres. Shape anisotropy, e.g., due to drop deformation or particle asphericity, is predicted to give rise to complex particle dynamics. Analysis of the dynamics of rigid prolate ellipsoid in a uniform DC electric field shows two possible stable states characterized by the orientation of the ellipsoid long axis relative to the applied electric field : spinless (parallel) and spinning (perpendicular). Here we report an experimental study testing the theoretical predictions. The phase diagram of ellipsoid behavior as a function of field strength and aspect ratio is in close agreement with theory. We also investigated the dynamics of the ellipsoidal Quincke "roller": an ellipsoid near a planar surface with normal perpendicular to the field direction. We find novel behaviors such as swinging (long axis oscillating around the applied field direction) and tumbling due to the confinement. Supported by NSF CBET awards 1437545 and 1544196.

  5. Analysis and Fem Simulation Methodology of Dynamic Behavior of Human Rotator Cuff in Repetitive Routines: Musician Case Study.

    PubMed

    Islan, Manuel; Blaya, Fernando; Pedro, Pilar San; D'Amato, Roberto; Urquijo, Emilio Lechosa; Juanes, Juan Antonio

    2018-02-05

    The majority of musculoskeletal injuries located in the shoulder are often due to repetitive or sustained movements that occur in work routines in different areas. In the case of musicians, such as violinists, who have long and daily training routines, the repetitive movements they perform are forced and sometimes the postures are not natural. Therefore, this article aims to study and simulate the dynamic behavior of the glenohumeral joint under repetitive conditions that represent the different postures assumed by a violinist during his daily training. For this purpose, the criteria provided by the RULA (rapid upper limb assessment) method have been used. Subsequently, by using as a reference geometry that of the articulation under study generated and modeled in CATIA®[VERSIÓN 5R21], a FEM analysis has been proposed with the software ANSYS®[VERSIÓN 17.1] simulating the short and cyclic movements of the Humerus of the violinists. With the analysis carried out, thanks to linear and isotropic approximations of the joint, it has been possible to know the approximate dynamic behavior of tissues, muscles and tendons, and the response of the joint in terms of fatigue.

  6. Dynamics of Charged Species in Ionic-Neutral Block Copolymer and Surfactant Complexes [Structural Relaxation and Dynamics of Ionic-Neutral Block Copolymer Surfactant Complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borreguero, Jose M.; Pincus, Philip A.; Sumpter, Bobby G.

    Structure–property relationships of ionic block copolymer (BCP) surfactant complexes are critical toward the progress of favorable engineering design of efficient charge-transport materials. In this paper, molecular dynamics simulations are used to understand the dynamics of charged-neutral BCP and surfactant complexes. The dynamics are examined for two different systems: charged-neutral double-hydrophilic and hydrophobic–hydrophilic block copolymers with oppositely charged surfactant moieties. The dynamics of the surfactant head, tails, and charges are studied for five different BCP volume fractions. We observe that the dynamics of the different species solely depend on the balance between electrostatic and entropic interactions between the charged species andmore » the neutral monomers. The favorable hydrophobic–hydrophobic interactions and the unfavorable hydrophobic–hydrophilic interactions determine the mobilities of the monomers. The dynamical properties of the charge species influence complex formation. Structural relaxations exhibit length-scale dependent behavior, with slower relaxation at the radius of gyration length-scale and faster relaxation at the segmental length-scale, consistent with previous results. The dynamical analysis correlates ion-exchange kinetics to the self-assembly behavior of the complexes.« less

  7. Fixation, transient landscape, and diffusion dilemma in stochastic evolutionary game dynamics

    NASA Astrophysics Data System (ADS)

    Zhou, Da; Qian, Hong

    2011-09-01

    Agent-based stochastic models for finite populations have recently received much attention in the game theory of evolutionary dynamics. Both the ultimate fixation and the pre-fixation transient behavior are important to a full understanding of the dynamics. In this paper, we study the transient dynamics of the well-mixed Moran process through constructing a landscape function. It is shown that the landscape playing a central theoretical “device” that integrates several lines of inquiries: the stable behavior of the replicator dynamics, the long-time fixation, and continuous diffusion approximation associated with asymptotically large population. Several issues relating to the transient dynamics are discussed: (i) multiple time scales phenomenon associated with intra- and inter-attractoral dynamics; (ii) discontinuous transition in stochastically stationary process akin to Maxwell construction in equilibrium statistical physics; and (iii) the dilemma diffusion approximation facing as a continuous approximation of the discrete evolutionary dynamics. It is found that rare events with exponentially small probabilities, corresponding to the uphill movements and barrier crossing in the landscape with multiple wells that are made possible by strong nonlinear dynamics, plays an important role in understanding the origin of the complexity in evolutionary, nonlinear biological systems.

  8. Dynamics of Charged Species in Ionic-Neutral Block Copolymer and Surfactant Complexes [Structural Relaxation and Dynamics of Ionic-Neutral Block Copolymer Surfactant Complexes

    DOE PAGES

    Borreguero, Jose M.; Pincus, Philip A.; Sumpter, Bobby G.; ...

    2017-06-21

    Structure–property relationships of ionic block copolymer (BCP) surfactant complexes are critical toward the progress of favorable engineering design of efficient charge-transport materials. In this paper, molecular dynamics simulations are used to understand the dynamics of charged-neutral BCP and surfactant complexes. The dynamics are examined for two different systems: charged-neutral double-hydrophilic and hydrophobic–hydrophilic block copolymers with oppositely charged surfactant moieties. The dynamics of the surfactant head, tails, and charges are studied for five different BCP volume fractions. We observe that the dynamics of the different species solely depend on the balance between electrostatic and entropic interactions between the charged species andmore » the neutral monomers. The favorable hydrophobic–hydrophobic interactions and the unfavorable hydrophobic–hydrophilic interactions determine the mobilities of the monomers. The dynamical properties of the charge species influence complex formation. Structural relaxations exhibit length-scale dependent behavior, with slower relaxation at the radius of gyration length-scale and faster relaxation at the segmental length-scale, consistent with previous results. The dynamical analysis correlates ion-exchange kinetics to the self-assembly behavior of the complexes.« less

  9. Nonlinear dynamic behaviors of permanent magnet synchronous motors in electric vehicles caused by unbalanced magnetic pull

    NASA Astrophysics Data System (ADS)

    Xiang, Changle; Liu, Feng; Liu, Hui; Han, Lijin; Zhang, Xun

    2016-06-01

    Unbalanced magnetic pull (UMP) plays a key role in nonlinear dynamic behaviors of permanent magnet synchronous motors (PMSM) in electric vehicles. Based on Jeffcott rotor model, the stiffness characteristics of the rotor system of the PMSM are analyzed and the nonlinear dynamic behaviors influenced by UMP are investigated. In free vibration study, eigenvalue-based stability analysis for multiple equilibrium points is performed which offers an insight in system stiffness. Amplitude modulation effects are discovered of which the mechanism is explained and the period of modulating signal is carried out by phase analysis and averaging method. The analysis indicates that the effects are caused by the interaction of the initial phases of forward and backward whirling motions. In forced vibration study, considering dynamic eccentricity, frequency characteristics revealing softening type are obtained by harmonic balance method, and the stability of periodic solution is investigated by Routh-Hurwitz criterion. The frequency characteristics analysis indicates that the response amplitude is limited in the range between the amplitudes of the two kinds of equilibrium points. In the vicinity of the continuum of equilibrium points, the system hardly provides resistance to bending, and hence external disturbances easily cause loss of stability. It is useful for the design of the PMSM with high stability and low vibration and acoustic noise.

  10. Dynamic Task Performance, Cohesion, and Communications in Human Groups.

    PubMed

    Giraldo, Luis Felipe; Passino, Kevin M

    2016-10-01

    In the study of the behavior of human groups, it has been observed that there is a strong interaction between the cohesiveness of the group, its performance when the group has to solve a task, and the patterns of communication between the members of the group. Developing mathematical and computational tools for the analysis and design of task-solving groups that are not only cohesive but also perform well is of importance in social sciences, organizational management, and engineering. In this paper, we model a human group as a dynamical system whose behavior is driven by a task optimization process and the interaction between subsystems that represent the members of the group interconnected according to a given communication network. These interactions are described as attractions and repulsions among members. We show that the dynamics characterized by the proposed mathematical model are qualitatively consistent with those observed in real-human groups, where the key aspect is that the attraction patterns in the group and the commitment to solve the task are not static but change over time. Through a theoretical analysis of the system we provide conditions on the parameters that allow the group to have cohesive behaviors, and Monte Carlo simulations are used to study group dynamics for different sets of parameters, communication topologies, and tasks to solve.

  11. Peer Network Dynamics and the Amplification of Antisocial to Violent Behavior among Young Adolescents in Public Middle Schools

    ERIC Educational Resources Information Center

    Kornienko, Olga; Dishion, Thomas J.; Ha, Thao

    2018-01-01

    This study examined longitudinal changes in peer network selection and influence associated with self-reported antisocial behavior (AB) and violent behavior (VB) over the course of middle school in a sample of ethnically diverse adolescents. Youth and families were randomly assigned to a school-based intervention focused on the prevention of…

  12. Uplifting behavior of shallow buried pipe in liquefiable soil by dynamic centrifuge test.

    PubMed

    Huang, Bo; Liu, Jingwen; Lin, Peng; Ling, Daosheng

    2014-01-01

    Underground pipelines are widely applied in the so-called lifeline engineerings. It shows according to seismic surveys that the damage from soil liquefaction to underground pipelines was the most serious, whose failures were mainly in the form of pipeline uplifting. In the present study, dynamic centrifuge model tests were conducted to study the uplifting behaviors of shallow-buried pipeline subjected to seismic vibration in liquefied sites. The uplifting mechanism was discussed through the responses of the pore water pressure and earth pressure around the pipeline. Additionally, the analysis of force, which the pipeline was subjected to before and during vibration, was introduced and proved to be reasonable by the comparison of the measured and the calculated results. The uplifting behavior of pipe is the combination effects of multiple forces, and is highly dependent on the excess pore pressure.

  13. Crossover from antipersistent to persistent behavior in time series possessing the generalyzed dynamic scaling law

    NASA Astrophysics Data System (ADS)

    Balankin, Alexander S.; Morales Matamoros, Oswaldo; Gálvez M., Ernesto; Pérez A., Alfonso

    2004-03-01

    The behavior of crude oil price volatility is analyzed within a conceptual framework of kinetic roughening of growing interfaces. We find that the persistent long-horizon volatilities satisfy the Family-Viscek dynamic scaling ansatz, whereas the mean-reverting in time short horizon volatilities obey the generalized scaling law with continuously varying scaling exponents. Furthermore we find that the crossover from antipersistent to persistent behavior is accompanied by a change in the type of volatility distribution. These phenomena are attributed to the complex avalanche dynamics of crude oil markets and so a similar behavior may be observed in a wide variety of physical systems governed by avalanche dynamics.

  14. Sensory flow shaped by active sensing: sensorimotor strategies in electric fish.

    PubMed

    Hofmann, Volker; Sanguinetti-Scheck, Juan I; Künzel, Silke; Geurten, Bart; Gómez-Sena, Leonel; Engelmann, Jacob

    2013-07-01

    Goal-directed behavior in most cases is composed of a sequential order of elementary motor patterns shaped by sensorimotor contingencies. The sensory information acquired thus is structured in both space and time. Here we review the role of motion during the generation of sensory flow focusing on how animals actively shape information by behavioral strategies. We use the well-studied examples of vision in insects and echolocation in bats to describe commonalities of sensory-related behavioral strategies across sensory systems, and evaluate what is currently known about comparable active sensing strategies in electroreception of electric fish. In this sensory system the sensors are dispersed across the animal's body and the carrier source emitting energy used for sensing, the electric organ, is moved while the animal moves. Thus ego-motions strongly influence sensory dynamics. We present, for the first time, data of electric flow during natural probing behavior in Gnathonemus petersii (Mormyridae), which provide evidence for this influence. These data reveal a complex interdependency between the physical input to the receptors and the animal's movements, posture and objects in its environment. Although research on spatiotemporal dynamics in electrolocation is still in its infancy, the emerging field of dynamical sensory systems analysis in electric fish is a promising approach to the study of the link between movement and acquisition of sensory information.

  15. The Role of Family Income Dynamics in Predicting Trajectories of Internalizing and Externalizing Problems.

    PubMed

    Miller, Portia; Votruba-Drzal, Elizabeth

    2017-04-01

    Economic disparities in children's behavioral functioning have been observed in prior research. Yet, studies have ignored important perspectives from developmental psychopathology and have not delineated how aspects of income dynamics (i.e., cumulative family income versus income volatility) differentially relate to behavior problems. To address these limitations, the current study examined how both cumulative income and income volatility predict trajectories of children's internalizing and externalizing problems from kindergarten through fifth grade in a nationally representative sample of 10,900 children (51.4 % male). Results showed four distinct trajectories of internalizing problems and five distinct externalizing trajectories. Family income dynamics were related to trajectory group membership. Specifically, increased cumulative income decreased risk of membership in mid-increasing and mid-stable internalizing groups, and children whose families experienced multiple waves of income loss were 2.4 times as likely to be in the mid-increasing group instead of the low-stable group. With respect to externalizing, higher cumulative income increased the likelihood of belonging in the group exhibiting stably low externalizing problems. Experiencing income loss increased the risk of belonging in the trajectory group exhibiting chronically high externalizing behaviors. These results enhance our knowledge of the role of family income in the development of behavior problems.

  16. A hybrid molecular dynamics study on the non-Newtonian rheological behaviors of shear thickening fluid.

    PubMed

    Chen, Kaihui; Wang, Yu; Xuan, Shouhu; Gong, Xinglong

    2017-07-01

    To investigate the microstructural evolution dependency on the apparent viscosity in shear-thickening fluids (STFs), a hybrid mesoscale model combined with stochastic rotation dynamics (SRD) and molecular dynamics (MD) is used. Muller-Plathe reverse perturbation method is adopted to analyze the viscosities of STFs in a two-dimensional model. The characteristic of microstructural evolution of the colloidal suspensions under different shear rate is studied. The effect of diameter of colloidal particles and the phase volume fraction on the shear thickening behavior is investigated. Under low shear rate, the two-atom structure is formed, because of the strong particle attractions in adjacent layers. At higher shear rate, the synergetic pair structure extends to layered structure along flow direction because of the increasing hydrodynamics action. As the shear rate rises continuously, the layered structure rotates and collides with other particles, then turned to be individual particles under extension or curve string structure under compression. Finally, at the highest shear rate, the strings curve more severely and get into two-dimensional cluster. The apparent viscosity of the system changes from shear-thinning behavior to the shear-thickening behavior. This work presents valuable information for further understanding the shear thickening mechanism. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Results of an Analysis of Field Studies of the Intrinsic Dynamic Characteristics Important for the Safety of Nuclear Power Plant Equipment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaznovsky, A. P., E-mail: kaznovskyap@atech.ru; Kasiyanov, K. G.; Ryasnyj, S. I.

    2015-01-15

    A classification of the equipment important for the safety of nuclear power plants is proposed in terms of its dynamic behavior under seismic loading. An extended bank of data from dynamic tests over the entire range of thermal and mechanical equipment in generating units with VVER-1000 and RBMK-1000 reactors is analyzed. Results are presented from a study of the statistical behavior of the distribution of vibrational frequencies and damping decrements with the “small perturbation” factor that affects the measured damping decrements taken into account. A need to adjust the regulatory specifications for choosing the values of the damping decrements withmore » specified inertial loads on equipment owing to seismic effects during design calculations is identified. Minimum values of the decrements are determined and proposed for all types of equipment as functions of the directions and natural vibration frequencies of the dynamic interactions to be adopted as conservative standard values in the absence of actual experimental data in the course of design studies of seismic resistance.« less

  18. Dynamics of regional brain activity in epilepsy: a cross-disciplinary study on both intracranial and scalp-recorded epileptic seizures.

    PubMed

    Minadakis, George; Ventouras, Errikos; Gatzonis, Stylianos D; Siatouni, Anna; Tsekou, Hara; Kalatzis, Ioannis; Sakas, Damianos E; Stonham, John

    2014-04-01

    Recent cross-disciplinary literature suggests a dynamical analogy between earthquakes and epileptic seizures. This study extends the focus of inquiry for the applicability of models for earthquake dynamics to examine both scalp-recorded and intracranial electroencephalogram recordings related to epileptic seizures. First, we provide an updated definition of the electric event in terms of magnitude and we focus on the applicability of (i) a model for earthquake dynamics, rooted in a nonextensive Tsallis framework, (ii) the traditional Gutenberg and Richter law and (iii) an alternative method for the magnitude-frequency relation for earthquakes. Second, we apply spatiotemporal analysis in terms of nonextensive statistical physics and we further examine the behavior of the parameters included in the nonextensive formula for both types of electroencephalogram recordings under study. We confirm the previously observed power-law distribution, showing that the nonextensive formula can adequately describe the sequences of electric events included in both types of electroencephalogram recordings. We also show the intermittent behavior of the epileptic seizure cycle which is analogous to the earthquake cycles and we provide evidence of self-affinity of the regional electroencephalogram epileptic seizure activity. This study may provide a framework for the analysis and interpretation of epileptic brain activity and other biological phenomena with similar underlying dynamical mechanisms.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borreguero, Jose M.; Pincus, Philip A.; Sumpter, Bobby G.

    Structure–property relationships of ionic block copolymer (BCP) surfactant complexes are critical toward the progress of favorable engineering design of efficient charge-transport materials. In this paper, molecular dynamics simulations are used to understand the dynamics of charged-neutral BCP and surfactant complexes. The dynamics are examined for two different systems: charged-neutral double-hydrophilic and hydrophobic–hydrophilic block copolymers with oppositely charged surfactant moieties. The dynamics of the surfactant head, tails, and charges are studied for five different BCP volume fractions. We observe that the dynamics of the different species solely depend on the balance between electrostatic and entropic interactions between the charged species andmore » the neutral monomers. The favorable hydrophobic–hydrophobic interactions and the unfavorable hydrophobic–hydrophilic interactions determine the mobilities of the monomers. The dynamical properties of the charge species influence complex formation. Structural relaxations exhibit length-scale dependent behavior, with slower relaxation at the radius of gyration length-scale and faster relaxation at the segmental length-scale, consistent with previous results. The dynamical analysis correlates ion-exchange kinetics to the self-assembly behavior of the complexes.« less

  20. Can Multilayer Networks Advance Animal Behavior Research?

    PubMed

    Silk, Matthew J; Finn, Kelly R; Porter, Mason A; Pinter-Wollman, Noa

    2018-06-01

    Interactions among individual animals - and between these individuals and their environment - yield complex, multifaceted systems. The development of multilayer network analysis offers a promising new approach for studying animal social behavior and its relation to eco-evolutionary dynamics. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Dynamic properties of combustion instability in a lean premixed gas-turbine combustor.

    PubMed

    Gotoda, Hiroshi; Nikimoto, Hiroyuki; Miyano, Takaya; Tachibana, Shigeru

    2011-03-01

    We experimentally investigate the dynamic behavior of the combustion instability in a lean premixed gas-turbine combustor from the viewpoint of nonlinear dynamics. A nonlinear time series analysis in combination with a surrogate data method clearly reveals that as the equivalence ratio increases, the dynamic behavior of the combustion instability undergoes a significant transition from stochastic fluctuation to periodic oscillation through low-dimensional chaotic oscillation. We also show that a nonlinear forecasting method is useful for predicting the short-term dynamic behavior of the combustion instability in a lean premixed gas-turbine combustor, which has not been addressed in the fields of combustion science and physics.

  2. Dynamic functional connectivity: Promise, issues, and interpretations

    PubMed Central

    Hutchison, R. Matthew; Womelsdorf, Thilo; Allen, Elena A.; Bandettini, Peter A.; Calhoun, Vince D.; Corbetta, Maurizio; Penna, Stefania Della; Duyn, Jeff H.; Glover, Gary H.; Gonzalez-Castillo, Javier; Handwerker, Daniel A.; Keilholz, Shella; Kiviniemi, Vesa; Leopold, David A.; de Pasquale, Francesco; Sporns, Olaf; Walter, Martin; Chang, Catie

    2013-01-01

    The brain must dynamically integrate, coordinate, and respond to internal and external stimuli across multiple time scales. Non-invasive measurements of brain activity with fMRI have greatly advanced our understanding of the large-scale functional organization supporting these fundamental features of brain function. Conclusions from previous resting-state fMRI investigations were based upon static descriptions of functional connectivity (FC), and only recently studies have begun to capitalize on the wealth of information contained within the temporal features of spontaneous BOLD FC. Emerging evidence suggests that dynamic FC metrics may index changes in macroscopic neural activity patterns underlying critical aspects of cognition and behavior, though limitations with regard to analysis and interpretation remain. Here, we review recent findings, methodological considerations, neural and behavioral correlates, and future directions in the emerging field of dynamic FC investigations. PMID:23707587

  3. When Art Moves the Eyes: A Behavioral and Eye-Tracking Study

    PubMed Central

    Massaro, Davide; Savazzi, Federica; Di Dio, Cinzia; Freedberg, David; Gallese, Vittorio; Gilli, Gabriella; Marchetti, Antonella

    2012-01-01

    The aim of this study was to investigate, using eye-tracking technique, the influence of bottom-up and top-down processes on visual behavior while subjects, naïve to art criticism, were presented with representational paintings. Forty-two subjects viewed color and black and white paintings (Color) categorized as dynamic or static (Dynamism) (bottom-up processes). Half of the images represented natural environments and half human subjects (Content); all stimuli were displayed under aesthetic and movement judgment conditions (Task) (top-down processes). Results on gazing behavior showed that content-related top-down processes prevailed over low-level visually-driven bottom-up processes when a human subject is represented in the painting. On the contrary, bottom-up processes, mediated by low-level visual features, particularly affected gazing behavior when looking at nature-content images. We discuss our results proposing a reconsideration of the definition of content-related top-down processes in accordance with the concept of embodied simulation in art perception. PMID:22624007

  4. Prediction of Ductile Fracture Behaviors for 42CrMo Steel at Elevated Temperatures

    NASA Astrophysics Data System (ADS)

    Lin, Y. C.; Liu, Yan-Xing; Liu, Ge; Chen, Ming-Song; Huang, Yuan-Chun

    2015-01-01

    The ductile fracture behaviors of 42CrMo steel are studied by hot tensile tests with the deformation temperature range of 1123-1373 K and strain rate range of 0.0001-0.1 s-1. Effects of deformation temperature and strain rate on the flow stress and fracture strain of the studied steel are discussed in detail. Based on the experimental results, a ductile damage model is established to describe the combined effects of deformation temperature and strain rate on the ductile fracture behaviors of 42CrMo steel. It is found that the flow stress first increases to a peak value and then decreases, showing an obvious dynamic softening. This is mainly attributed to the dynamic recrystallization and material intrinsic damage during the hot tensile deformation. The established damage model is verified by hot forging experiments and finite element simulations. Comparisons between the predicted and experimental results indicate that the established ductile damage model is capable of predicting the fracture behaviors of 42CrMo steel during hot forging.

  5. On effective temperature in network models of collective behavior

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Porfiri, Maurizio, E-mail: mporfiri@nyu.edu; Ariel, Gil, E-mail: arielg@math.biu.ac.il

    Collective behavior of self-propelled units is studied analytically within the Vectorial Network Model (VNM), a mean-field approximation of the well-known Vicsek model. We propose a dynamical systems framework to study the stochastic dynamics of the VNM in the presence of general additive noise. We establish that a single parameter, which is a linear function of the circular mean of the noise, controls the macroscopic phase of the system—ordered or disordered. By establishing a fluctuation–dissipation relation, we posit that this parameter can be regarded as an effective temperature of collective behavior. The exact critical temperature is obtained analytically for systems withmore » small connectivity, equivalent to low-density ensembles of self-propelled units. Numerical simulations are conducted to demonstrate the applicability of this new notion of effective temperature to the Vicsek model. The identification of an effective temperature of collective behavior is an important step toward understanding order–disorder phase transitions, informing consistent coarse-graining techniques and explaining the physics underlying the emergence of collective phenomena.« less

  6. Bifurcation and response analysis of a nonlinear flexible rotating disc immersed in bounded compressible fluid

    NASA Astrophysics Data System (ADS)

    Remigius, W. Dheelibun; Sarkar, Sunetra; Gupta, Sayan

    2017-03-01

    Use of heavy gases in centrifugal compressors for enhanced oil extraction have made the impellers susceptible to failures through acousto-elastic instabilities. This study focusses on understanding the dynamical behavior of such systems by considering the effects of the bounded fluid housed in a casing on a rotating disc. First, a mathematical model is developed that incorporates the interaction between the rotating impeller - modelled as a flexible disc - and the bounded compressible fluid medium in which it is immersed. The nonlinear effects arising due to large deformations of the disc have been included in the formulation so as to capture the post flutter behavior. A bifurcation analysis is carried out with the disc rotational speed as the bifurcation parameter to investigate the dynamical behavior of the coupled system and estimate the stability boundaries. Parametric studies reveal that the relative strengths of the various dissipation mechanisms in the coupled system play a significant role that affect the bifurcation route and the post flutter behavior in the acousto-elastic system.

  7. When art moves the eyes: a behavioral and eye-tracking study.

    PubMed

    Massaro, Davide; Savazzi, Federica; Di Dio, Cinzia; Freedberg, David; Gallese, Vittorio; Gilli, Gabriella; Marchetti, Antonella

    2012-01-01

    The aim of this study was to investigate, using eye-tracking technique, the influence of bottom-up and top-down processes on visual behavior while subjects, naïve to art criticism, were presented with representational paintings. Forty-two subjects viewed color and black and white paintings (Color) categorized as dynamic or static (Dynamism) (bottom-up processes). Half of the images represented natural environments and half human subjects (Content); all stimuli were displayed under aesthetic and movement judgment conditions (Task) (top-down processes). Results on gazing behavior showed that content-related top-down processes prevailed over low-level visually-driven bottom-up processes when a human subject is represented in the painting. On the contrary, bottom-up processes, mediated by low-level visual features, particularly affected gazing behavior when looking at nature-content images. We discuss our results proposing a reconsideration of the definition of content-related top-down processes in accordance with the concept of embodied simulation in art perception.

  8. Wigner flow reveals topological order in quantum phase space dynamics.

    PubMed

    Steuernagel, Ole; Kakofengitis, Dimitris; Ritter, Georg

    2013-01-18

    The behavior of classical mechanical systems is characterized by their phase portraits, the collections of their trajectories. Heisenberg's uncertainty principle precludes the existence of sharply defined trajectories, which is why traditionally only the time evolution of wave functions is studied in quantum dynamics. These studies are quite insensitive to the underlying structure of quantum phase space dynamics. We identify the flow that is the quantum analog of classical particle flow along phase portrait lines. It reveals hidden features of quantum dynamics and extra complexity. Being constrained by conserved flow winding numbers, it also reveals fundamental topological order in quantum dynamics that has so far gone unnoticed.

  9. Can Facebook Reduce Perceived Anxiety Among College Students? Randomized Controlled Exercise Trial Using the Transtheoretical Model of Behavior Change

    PubMed Central

    Frith, Emily

    2017-01-01

    Background Recent studies suggest social media may be an attractive strategy to promote mental health and wellness. There remains a need to examine the utility for individually tailored wellness messages posted to social media sites such as Facebook to facilitate positive psychological outcomes. Objective Our aim was to extend the growing body of evidence supporting the potential for social media to enhance mental health. We evaluated the influence of an 8-week social media intervention on anxiety in college students and examined the impact of dynamic (active) versus static (passive) Facebook content on physical activity behaviors. Methods Participants in the static group (n=21) accessed a Facebook page featuring 96 statuses. Statuses were intended to engage cognitive processes followed by behavioral processes of change per the transtheoretical model of behavior change. Content posted on the static Facebook page was identical to the dynamic page; however, the static group viewed all 96 statuses on the first day of the study, while the dynamic group received only 1 to 2 of these status updates per day throughout the intervention. Anxiety was measured using the Overall Anxiety Severity and Impairment Scale (OASIS). Time spent engaging in physical activity was assessed using the International Physical Activity Questionnaire (IPAQ). Results The OASIS change score for the dynamic Facebook group was statistically significant (P=.003), whereas the change score for the static group was not (P=.48). A statistically significant group-by-time interaction was observed (P=.03). The total IPAQ group-by-time interaction was not statistically significant (P=.06). Conclusions We observed a decrease in anxiety and increase in total physical activity for the dynamic group only. Dynamic social networking sites, featuring regularly updated content, may be more advantageous than websites that retain static content over time. Trial Registration ClinicalTrials.gov NCT03363737; https://clinicaltrials.gov/ct2/show/NCT03363737 (Archived by WebCite at http://www.webcitation.org/6vXzNbOWJ) PMID:29222077

  10. Structure and Dynamics of Confined C-O-H Fluids Relevant to the Subsurface: Application of Magnetic Resonance, Neutron Scattering and Molecular Dynamics Simulations

    NASA Astrophysics Data System (ADS)

    Gautam, Siddharth S.; Ok, Salim; Cole, David R.

    2017-06-01

    Geo-fluids consisting of C-O-H volatiles are the main mode of transport of mass and energy throughout the lithosphere and are commonly found confined in pores, grain boundaries and fractures. The confinement of these fluids by porous media at the length scales of a few nanometers gives rise to numerous physical and chemical properties that deviate from the bulk behavior. Studying the structural and dynamical properties of these confined fluids at the length and time scales of nanometers and picoseconds respectively forms an important component of understanding their behavior. To study confined fluids, non-destructive penetrative probes are needed. Nuclear magnetic resonance (NMR) by virtue of its ability to monitor longitudinal and transverse magnetization relaxations of spins, and chemical shifts brought about by the chemical environment of a nucleus, and measuring diffusion coefficient provides a good opportunity to study dynamics and chemical structure at the molecular length and time scales. Another technique that gives insights into the dynamics and structure at these length and time scales is neutron scattering (NS). This is because the wavelength and energies of cold and thermal neutrons used in scattering experiments are in the same range as the spatial features and energies involved in the dynamical processes occurring at the molecular level. Molecular Dynamics (MD) simulations on the other hand help with the interpretation of the NMR and NS data. Simulations can also supplement the experiments by calculating quantities not easily accessible to experiments. Thus using NMR, NS and MD simulations in conjunction, a complete description of the molecular structure and dynamics of confined geo-fluids can be obtained. In the current review, our aim is to show how a synergistic use of these three techniques has helped shed light on the complex behavior of water, CO2, and low molecular weight hydrocarbons. After summarizing the theoretical backgrounds of the techniques, we will discuss some recent examples of the use of NMR, NS, and MD simulations to the study of confined fluids.

  11. An opinion-driven behavioral dynamics model for addictive behaviors

    DOE PAGES

    Moore, Thomas W.; Finley, Patrick D.; Apelberg, Benjamin J.; ...

    2015-04-08

    We present a model of behavioral dynamics that combines a social network-based opinion dynamics model with behavioral mapping. The behavioral component is discrete and history-dependent to represent situations in which an individual’s behavior is initially driven by opinion and later constrained by physiological or psychological conditions that serve to maintain the behavior. Additionally, individuals are modeled as nodes in a social network connected by directed edges. Parameter sweeps illustrate model behavior and the effects of individual parameters and parameter interactions on model results. Mapping a continuous opinion variable into a discrete behavioral space induces clustering on directed networks. Clusters providemore » targets of opportunity for influencing the network state; however, the smaller the network the greater the stochasticity and potential variability in outcomes. Furthermore, this has implications both for behaviors that are influenced by close relationships verses those influenced by societal norms and for the effectiveness of strategies for influencing those behaviors.« less

  12. Behavioral and neural Darwinism: selectionist function and mechanism in adaptive behavior dynamics.

    PubMed

    McDowell, J J

    2010-05-01

    An evolutionary theory of behavior dynamics and a theory of neuronal group selection share a common selectionist framework. The theory of behavior dynamics instantiates abstractly the idea that behavior is selected by its consequences. It implements Darwinian principles of selection, reproduction, and mutation to generate adaptive behavior in virtual organisms. The behavior generated by the theory has been shown to be quantitatively indistinguishable from that of live organisms. The theory of neuronal group selection suggests a mechanism whereby the abstract principles of the evolutionary theory may be implemented in the nervous systems of biological organisms. According to this theory, groups of neurons subserving behavior may be selected by synaptic modifications that occur when the consequences of behavior activate value systems in the brain. Together, these theories constitute a framework for a comprehensive account of adaptive behavior that extends from brain function to the behavior of whole organisms in quantitative detail. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  13. COED Transactions, Vol. XI, No. 3, March 1979. LSSP: An Educational Aid to the Study of Linear System Dynamics.

    ERIC Educational Resources Information Center

    Mitchell, Eugene E., Ed.

    The study of the dynamics of physical systems is of importance to all engineering students. LSSP, a Linear System Simulation Program, is used to study the behavior of physical phenomena and systems which may be represented to a good degree of approximation by linear models. Emphasis is placed upon the unity resulting from the mathematical…

  14. Using a Complexity Approach to Study the Interpersonal Dynamics in Teacher-­Student Interactions: A Case Study of Two Teachers

    ERIC Educational Resources Information Center

    Pennings, Helena J. M.

    2017-01-01

    In the present study, complex dynamic systems theory and interpersonal theory are combined to describe the teacher-student interactions of two teachers with different interpersonal styles. The aim was to show and explain the added value of looking at different steps in the analysis of behavioral time-series data (i.e., observations of teacher and…

  15. High strain rate behavior of a SiC particulate reinforced Al{sub 2}O{sub 3} ceramic matrix composite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hall, I.W.; Guden, M.

    The high strain rate deformation behavior of composite materials is important for several reasons. First, knowledge of the mechanical properties of composites at high strain rates is needed for designing with these materials in applications where sudden changes in loading rates are likely to occur. Second, knowledge of both the dynamic and quasi-static mechanical responses can be used to establish the constitutive equations which are necessary to increase the confidence limits of these materials, particularly if they are to be used in critical structural applications. Moreover, dynamic studies and the knowledge gained form them are essential for the further developmentmore » of new material systems for impact applications. In this study, the high strain rate compressive deformation behavior of a ceramic matrix composite (CMC) consisting of SiC particles and an Al{sub 2}O{sub 3} matrix was studied and compared with its quasi-static behavior. Microscopic observations were conducted to investigate the deformation and fracture mechanism of the composite.« less

  16. Phase behavior of charged colloids at a fluid interface

    NASA Astrophysics Data System (ADS)

    Kelleher, Colm P.; Guerra, Rodrigo E.; Hollingsworth, Andrew D.; Chaikin, Paul M.

    2017-02-01

    We study the phase behavior of a system of charged colloidal particles that are electrostatically bound to an almost flat interface between two fluids. We show that, despite the fact that our experimental system consists of only 103-104 particles, the phase behavior is consistent with the theory of melting due to Kosterlitz, Thouless, Halperin, Nelson, and Young. Using spatial and temporal correlations of the bond-orientational order parameter, we classify our samples into solid, isotropic fluid, and hexatic phases. We demonstrate that the topological defect structure we observe in each phase corresponds to the predictions of Kosterlitz-Thouless-Halperin-Nelson-Young theory. By measuring the dynamic Lindemann parameter γL(τ ) and the non-Gaussian parameter α2(τ ) of the displacements of the particles relative to their neighbors, we show that each of the phases displays distinctive dynamical behavior.

  17. Dynamic Simulations for the Seismic Behavior on the Shallow Part of the Fault Plane in the Subduction Zone during Mega-Thrust Earthquakes

    NASA Astrophysics Data System (ADS)

    Tsuda, K.; Dorjapalam, S.; Dan, K.; Ogawa, S.; Watanabe, T.; Uratani, H.; Iwase, S.

    2012-12-01

    The 2011 Tohoku-Oki earthquake (M9.0) produced some distinct features such as huge slips on the order of several ten meters around the shallow part of the fault and different areas with radiating seismic waves for different periods (e.g., Lay et al., 2012). These features, also reported during the past mega-thrust earthquakes in the subduction zone such as the 2004 Sumatra earthquake (M9.2) and the 2010 Chile earthquake (M8.8), get attentions as the distinct features if the rupture of the mega-thrust earthquakes reaches to the shallow part of the fault plane. Although various kinds of observations for the seismic behavior (rupture process and ground motion characteristics etc.) on the shallow part of the fault plane during the mega-trust earthquakes have been reported, the number of analytical or numerical studies based on dynamic simulation is still limited. Wendt et al. (2009), for example, revealed that the different distribution of initial stress produces huge differences in terms of the seismic behavior and vertical displacements on the surface. In this study, we carried out the dynamic simulations in order to get a better understanding about the seismic behavior on the shallow part of the fault plane during mega-thrust earthquakes. We used the spectral element method (Ampuero, 2009) that is able to incorporate the complex fault geometry into simulation as well as to save computational resources. The simulation utilizes the slip-weakening law (Ida, 1972). In order to get a better understanding about the seismic behavior on the shallow part of the fault plane, some parameters controlling seismic behavior for dynamic faulting such as critical slip distance (Dc), initial stress conditions and friction coefficients were changed and we also put the asperity on the fault plane. These understandings are useful for the ground motion prediction for future mega-thrust earthquakes such as the earthquakes along the Nankai Trough.

  18. Mobbing: a problem in flocking and deterrence

    NASA Astrophysics Data System (ADS)

    Elias Tousley, M.; Glaze, Owen; Schall, Anna; Amador Kane, Suzanne

    2010-03-01

    We present experimental and theoretical studies of one type of mobbing behavior in which swarms of prey animals (e.g., tree swallows) harass a predator (e.g., a red-tailed hawk). Empirical field data were collected for tree swallows mobbing a fixed model predator; previous studies have established that this experimental design provokes the same response as actual ``perch-and-wait'' predator behavior. We extended these earlier studies using stereometric video to record the three-dimensional trajectories of prey birds and mobbing cries; we also analyzed single-angle video data taken of crows mobbing red-tailed hawks in flight. Video recordings of red-tailed hawk flight were filmed and analyzed to establish the dynamics of potential predator attacks. The trajectory analysis employed particle-tracking methods and statistical analyses to understand and model the dynamical rules governing this behavior. Swarming behavior during mobbing exhibited a high degree of periodicity and coordination both for fixed predator and in-flight mobbing attacks. The trajectories of individual mobbing birds were analyzed as a random walk superimposed on an approximately elliptical flightpath. Computer simulation studies reproduce several aspects of this behavior, in particular explaining how the mobbing strategy employed by prey birds minimizes the risk of hawk predation while optimizing the frequency of harassing attacks.

  19. Structural Transformation Detection Contributes to Screening of Behaviorally Active Compounds: Dynamic Binding Process Analysis of DhelOBP21 from Dastarcus helophoroides.

    PubMed

    Yang, Rui-Nan; Li, Dong-Zhen; Yu, Guangqiang; Yi, Shan-Cheng; Zhang, Yinan; Kong, De-Xin; Wang, Man-Qun

    2017-12-01

    In light of reverse chemical ecology, the fluorescence competitive binding assays of functional odorant binding proteins (OBPs) is a recent advanced approach for screening behaviorally active compounds of insects. Previous research on Dastareus helophoroides identified a minus-C OBP, DhelOBP21, which preferably binds to several ligands. In this study, only (+)-β-pinene proved attractive to unmated adult beetles. To obtain a more in-depth explanation of the lack of behavioral activity of other ligands we selected compounds with high (camphor) and low (β-caryophyllene) binding affinities. The structural transformation of OBPs was investigated using well-established approaches for studying binding processes, such as fluorescent quenching assays, circular dichroism, and molecular dynamics. The dynamic binding process revealed that the flexibility of DhelOBP21 seems conducive to binding specific ligands, as opposed to broad substrate binding. The compound (+)-β-pinene and DhelOBP21 formed a stable complex through a secondary structural transformation of DhelOBP21, in which its amino-terminus transformed from random coil to an α-helix to cover the binding pocket. On the other hand, camphor could not efficiently induce a stable structural transformation, and its high binding affinities were due to strong hydrogen-bonding, compromising the structure of the protein. The other compound, β-caryophyllene, only collided with DhelOBP21 and could not be positioned in the binding pocket. Studying structural transformation of these proteins through examining the dynamic binding process rather than using approaches that just measure binding affinities such as fluorescence competitive binding assays can provide a more efficient and reliable approach for screening behaviorally active compounds.

  20. Symmetry Breaking in Space-Time Hierarchies Shapes Brain Dynamics and Behavior.

    PubMed

    Pillai, Ajay S; Jirsa, Viktor K

    2017-06-07

    In order to maintain brain function, neural activity needs to be tightly coordinated within the brain network. How this coordination is achieved and related to behavior is largely unknown. It has been previously argued that the study of the link between brain and behavior is impossible without a guiding vision. Here we propose behavioral-level concepts and mechanisms embodied as structured flows on manifold (SFM) that provide a formal description of behavior as a low-dimensional process emerging from a network's dynamics dependent on the symmetry and invariance properties of the network connectivity. Specifically, we demonstrate that the symmetry breaking of network connectivity constitutes a timescale hierarchy resulting in the emergence of an attractive functional subspace. We show that behavior emerges when appropriate conditions imposed upon the couplings are satisfied, justifying the conductance-based nature of synaptic couplings. Our concepts propose design principles for networks predicting how behavior and task rules are represented in real neural circuits and open new avenues for the analyses of neural data. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Feasibility of using PZT actuators to study the dynamic behavior of a rotating disk due to rotor-stator interaction.

    PubMed

    Presas, Alexandre; Egusquiza, Eduard; Valero, Carme; Valentin, David; Seidel, Ulrich

    2014-07-07

    In this paper, PZT actuators are used to study the dynamic behavior of a rotating disk structure due to rotor-stator interaction excitation. The disk is studied with two different surrounding fluids-air and water. The study has been performed analytically and validated experimentally. For the theoretical analysis, the natural frequencies and the associated mode shapes of the rotating disk in air and water are obtained with the Kirchhoff-Love thin plate theory coupled with the interaction with the surrounding fluid. A model for the Rotor Stator Interaction that occurs in many rotating disk-like parts of turbomachinery such as compressors, hydraulic runners or alternators is presented. The dynamic behavior of the rotating disk due to this excitation is deduced. For the experimental analysis a test rig has been developed. It consists of a stainless steel disk (r = 198 mm and h = 8 mm) connected to a variable speed motor. Excitation and response are measured from the rotating system. For the rotating excitation four piezoelectric patches have been used. Calibrating the piezoelectric patches in amplitude and phase, different rotating excitation patterns are applied on the rotating disk in air and in water. Results show the feasibility of using PZT to control the response of the disk due to a rotor-stator interaction.

  2. Bursts and Heavy Tails in Temporal and Sequential Dynamics of Foraging Decisions

    PubMed Central

    Jung, Kanghoon; Jang, Hyeran; Kralik, Jerald D.; Jeong, Jaeseung

    2014-01-01

    A fundamental understanding of behavior requires predicting when and what an individual will choose. However, the actual temporal and sequential dynamics of successive choices made among multiple alternatives remain unclear. In the current study, we tested the hypothesis that there is a general bursting property in both the timing and sequential patterns of foraging decisions. We conducted a foraging experiment in which rats chose among four different foods over a continuous two-week time period. Regarding when choices were made, we found bursts of rapidly occurring actions, separated by time-varying inactive periods, partially based on a circadian rhythm. Regarding what was chosen, we found sequential dynamics in affective choices characterized by two key features: (a) a highly biased choice distribution; and (b) preferential attachment, in which the animals were more likely to choose what they had previously chosen. To capture the temporal dynamics, we propose a dual-state model consisting of active and inactive states. We also introduce a satiation-attainment process for bursty activity, and a non-homogeneous Poisson process for longer inactivity between bursts. For the sequential dynamics, we propose a dual-control model consisting of goal-directed and habit systems, based on outcome valuation and choice history, respectively. This study provides insights into how the bursty nature of behavior emerges from the interaction of different underlying systems, leading to heavy tails in the distribution of behavior over time and choices. PMID:25122498

  3. Building new computational models to support health behavior change and maintenance: new opportunities in behavioral research.

    PubMed

    Spruijt-Metz, Donna; Hekler, Eric; Saranummi, Niilo; Intille, Stephen; Korhonen, Ilkka; Nilsen, Wendy; Rivera, Daniel E; Spring, Bonnie; Michie, Susan; Asch, David A; Sanna, Alberto; Salcedo, Vicente Traver; Kukakfa, Rita; Pavel, Misha

    2015-09-01

    Adverse and suboptimal health behaviors and habits are responsible for approximately 40 % of preventable deaths, in addition to their unfavorable effects on quality of life and economics. Our current understanding of human behavior is largely based on static "snapshots" of human behavior, rather than ongoing, dynamic feedback loops of behavior in response to ever-changing biological, social, personal, and environmental states. This paper first discusses how new technologies (i.e., mobile sensors, smartphones, ubiquitous computing, and cloud-enabled processing/computing) and emerging systems modeling techniques enable the development of new, dynamic, and empirical models of human behavior that could facilitate just-in-time adaptive, scalable interventions. The paper then describes concrete steps to the creation of robust dynamic mathematical models of behavior including: (1) establishing "gold standard" measures, (2) the creation of a behavioral ontology for shared language and understanding tools that both enable dynamic theorizing across disciplines, (3) the development of data sharing resources, and (4) facilitating improved sharing of mathematical models and tools to support rapid aggregation of the models. We conclude with the discussion of what might be incorporated into a "knowledge commons," which could help to bring together these disparate activities into a unified system and structure for organizing knowledge about behavior.

  4. Identification of Time-Varying Pilot Control Behavior in Multi-Axis Control Tasks

    NASA Technical Reports Server (NTRS)

    Zaal, Peter M. T.; Sweet, Barbara T.

    2012-01-01

    Recent developments in fly-by-wire control architectures for rotorcraft have introduced new interest in the identification of time-varying pilot control behavior in multi-axis control tasks. In this paper a maximum likelihood estimation method is used to estimate the parameters of a pilot model with time-dependent sigmoid functions to characterize time-varying human control behavior. An experiment was performed by 9 general aviation pilots who had to perform a simultaneous roll and pitch control task with time-varying aircraft dynamics. In 8 different conditions, the axis containing the time-varying dynamics and the growth factor of the dynamics were varied, allowing for an analysis of the performance of the estimation method when estimating time-dependent parameter functions. In addition, a detailed analysis of pilots adaptation to the time-varying aircraft dynamics in both the roll and pitch axes could be performed. Pilot control behavior in both axes was significantly affected by the time-varying aircraft dynamics in roll and pitch, and by the growth factor. The main effect was found in the axis that contained the time-varying dynamics. However, pilot control behavior also changed over time in the axis not containing the time-varying aircraft dynamics. This indicates that some cross coupling exists in the perception and control processes between the roll and pitch axes.

  5. Risk-taking behavior in the presence of nonconvex asset dynamics.

    PubMed

    Lybbert, Travis J; Barrett, Christopher B

    2011-01-01

    The growing literature on poverty traps emphasizes the links between multiple equilibria and risk avoidance. However, multiple equilibria may also foster risk-taking behavior by some poor people. We illustrate this idea with a simple analytical model in which people with different wealth and ability endowments make investment and risky activity choices in the presence of known nonconvex asset dynamics. This model underscores a crucial distinction between familiar static concepts of risk aversion and forward-looking dynamic risk responses to nonconvex asset dynamics. Even when unobservable preferences exhibit decreasing absolute risk aversion, observed behavior may suggest that risk aversion actually increases with wealth near perceived dynamic asset thresholds. Although high ability individuals are not immune from poverty traps, they can leverage their capital endowments more effectively than lower ability types and are therefore less likely to take seemingly excessive risks. In general, linkages between behavioral responses and wealth dynamics often seem to run in both directions. Both theoretical and empirical poverty trap research could benefit from making this two-way linkage more explicit.

  6. Modeling the Complexity of Post-Treatment Drinking: It’s a Rocky Road to Relapse

    PubMed Central

    Witkiewitz, Katie; Marlatt, G. Alan

    2007-01-01

    The most widely cited road block to successful treatment outcomes for psychological and substance use disorders has been described as the return to the previous behavior, or “relapse.” The operational definition of “relapse” varies from study to study and between clinicians, but in general the term is used to indicate the return to previous levels of symptomatic behavior. One explanation for the variation in the operationalization of relapse is the wide variety of behaviors for which the term is applied, including (but not limited to): depression, substance abuse, schizophrenia, mania, sexual offending, risky sexual behavior, dieting, and the anxiety disorders. A second explanation for the multitude of definitions for relapse is the inherent complexity in the process of behavior change. In this paper we present the most recent treatment outcome research evaluating relapse rates, with a special focus on the substance use disorders. Following this review of the literature we present an argument for the operationalization of relapse as a dynamic process, which can be empirically characterized using dynamical systems theory. We support this argument by presenting results from the analysis of alcohol treatment outcomes using catastrophe modeling techniques. These results demonstrate the utility of catastrophe theory in modeling the alcohol relapse process. The implications of these analyses for the treatment of alcohol use disorders, as well as a discussion of future research incorporating nonlinear dynamical systems theory is provided. PMID:17355897

  7. Studies of social group dynamics under isolated conditions. Objective summary of the literature as it relates to potential problems of long duration space flight

    NASA Technical Reports Server (NTRS)

    Vinograd, S. P.

    1974-01-01

    Scientific literature which deals with the study of human behavior and crew interaction in situations simulating long term space flight is summarized and organized. A bibliography of all the pertinent U.S. literature available is included, along with definitions of the behavioral characteristics terms employed. The summarized studies are analyzed according to behavioral factors and environmental conditions. The analysis consist of two matrices. (1) The matrix of factors studied correlates each research study area and individual study with the behavioral factors that were investigated in the study. (2) The matrix of conclusions identifies those studies whose investigators appeared to draw specific conclusions concerning questions of importance to NASA.

  8. Oscillations and Multiple Equilibria in Microvascular Blood Flow.

    PubMed

    Karst, Nathaniel J; Storey, Brian D; Geddes, John B

    2015-07-01

    We investigate the existence of oscillatory dynamics and multiple steady-state flow rates in a network with a simple topology and in vivo microvascular blood flow constitutive laws. Unlike many previous analytic studies, we employ the most biologically relevant models of the physical properties of whole blood. Through a combination of analytic and numeric techniques, we predict in a series of two-parameter bifurcation diagrams a range of dynamical behaviors, including multiple equilibria flow configurations, simple oscillations in volumetric flow rate, and multiple coexistent limit cycles at physically realizable parameters. We show that complexity in network topology is not necessary for complex behaviors to arise and that nonlinear rheology, in particular the plasma skimming effect, is sufficient to support oscillatory dynamics similar to those observed in vivo.

  9. Dynamic coal mine model. [Generic feedback-loop model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamilton, M.S.

    1978-01-01

    This study examines the determinants of the productive life cycle of a single hypothetical coal mine. The article addresses the questions of how long the mine will operate, what its annual production will be, and what percentage of the resource base will be recovered. As greatly expanded production requires capital investment, the investment decision is singled out as the principal determinant of the mine's dynamic behavior. A simple dynamic feedback loop model was constructed, the performance of which is compared with actual data to see how well the model can reproduce known behavior. Exogenous variables, such as the price ofmore » coal, the wage rate, operating costs, and the tax structure, are then changed to see how these changes affect the mine's performance.« less

  10. Dynamical properties and transport coefficients of one-dimensional Lennard-Jones fluids: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Bazhenov, Alexiev M.; Heyes, David M.

    1990-01-01

    The thermodynamics, structure, and transport coefficients, as defined by the Green-Kubo integrals, of the one-dimensional Lennard-Jones fluid are evaluated for a wide range of state points by molecular dynamics computer simulation. These calculations are performed for the first time for thermal conductivity and the viscosity. We observe a transition from hard-rod behavior at low number density to harmonic-spring fluid behavior in the close-packed limit. The self-diffusion coefficient decays with increasing density to a finite limiting value. The thermal conductivity increases with density, tending to ∞ in the close-packed limit. The viscosity in contrast maximizes at intermediate density, tending to zero in the zero density and close-packed limits.

  11. Self-diffusion and microscopic dynamics in a gold-silicon liquid investigated with quasielastic neutron scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evenson, Zach, E-mail: Zachary.Evenson@frm2.tum.de; Institut für Materialphysik im Weltraum, Deutsches Zentrum für Luft- und Raumfahrt; Yang, Fan

    2016-03-21

    We use incoherent quasielastic neutron scattering to study the atomic dynamics of gold in a eutectic Au{sub 81}Si{sub 19} melt. Despite the glass-forming nature of this system, the gold self-diffusivity displays an Arrhenius behavior with a low activation energy characteristic of simple liquids. At high temperatures, long-range transport of gold atoms is well described by hydrodynamic theory with a simple exponential decay of the self-correlation function. On cooling towards the melting temperature, structural relaxation crosses over to a highly stretched exponential behavior. This suggests the onset of a heterogeneous dynamics, even in the equilibrium melt, and is indicative of amore » very fragile liquid.« less

  12. Dynamic behavior of the mechanical systems from the structure of a hybrid automobile

    NASA Astrophysics Data System (ADS)

    Dinel, Popa; Irina, Tudor; Nicolae-Doru, Stănescu

    2017-10-01

    In introduction are presented solutions of planetary mechanisms that can be used in the construction of the hybrid automobiles where the thermal and electrical sources must be coupled. The systems have in their composition a planetary mechanism with two degrees of mobility at which are coupled a thermal engine, two revertible electrical machines, a gear transmission with four gears and a differential mechanism which transmits the motion at the driving wheels. For the study of the dynamical behavior, with numerical results, one designs such mechanisms, models the elements with solids in AutoCAD, and obtains the mechanical properties of the elements. Further on, we present and solve the equations of motion of a hybrid automotive for which one knows the dynamical parameters.

  13. Molecular modeling of polycarbonate materials: Glass transition and mechanical properties

    NASA Astrophysics Data System (ADS)

    Palczynski, Karol; Wilke, Andreas; Paeschke, Manfred; Dzubiella, Joachim

    2017-09-01

    Linking the experimentally accessible macroscopic properties of thermoplastic polymers to their microscopic static and dynamic properties is a key requirement for targeted material design. Classical molecular dynamics simulations enable us to study the structural and dynamic behavior of molecules on microscopic scales, and statistical physics provides a framework for relating these properties to the macroscopic properties. We take a first step toward creating an automated workflow for the theoretical prediction of thermoplastic material properties by developing an expeditious method for parameterizing a simple yet surprisingly powerful coarse-grained bisphenol-A polycarbonate model which goes beyond previous coarse-grained models and successfully reproduces the thermal expansion behavior, the glass transition temperature as a function of the molecular weight, and several elastic properties.

  14. On the adaptive sliding mode controller for a hyperchaotic fractional-order financial system

    NASA Astrophysics Data System (ADS)

    Hajipour, Ahamad; Hajipour, Mojtaba; Baleanu, Dumitru

    2018-05-01

    This manuscript mainly focuses on the construction, dynamic analysis and control of a new fractional-order financial system. The basic dynamical behaviors of the proposed system are studied such as the equilibrium points and their stability, Lyapunov exponents, bifurcation diagrams, phase portraits of state variables and the intervals of system parameters. It is shown that the system exhibits hyperchaotic behavior for a number of system parameters and fractional-order values. To stabilize the proposed hyperchaotic fractional system with uncertain dynamics and disturbances, an efficient adaptive sliding mode controller technique is developed. Using the proposed technique, two hyperchaotic fractional-order financial systems are also synchronized. Numerical simulations are presented to verify the successful performance of the designed controllers.

  15. The Interplay between Language, Gesture, and Affect during Communicative Transition: A Dynamic Systems Approach

    ERIC Educational Resources Information Center

    Parlade, Meaghan V.; Iverson, Jana M.

    2011-01-01

    From a dynamic systems perspective, transition points in development are times of increased instability, during which behavioral patterns are susceptible to temporary decoupling. This study investigated the impact of the vocabulary spurt on existing patterns of communicative coordination. Eighteen typically developing infants were videotaped at…

  16. Neurodynamics in the Sensorimotor Loop: Representing Behavior Relevant External Situations

    PubMed Central

    Pasemann, Frank

    2017-01-01

    In the context of the dynamical system approach to cognition and supposing that brains or brain-like systems controlling the behavior of autonomous systems are permanently driven by their sensor signals, the paper approaches the question of neurodynamics in the sensorimotor loop in a purely formal way. This is carefully done by addressing the problem in three steps, using the time-discrete dynamics of standard neural networks and a fiber space representation for better clearness. Furthermore, concepts like meta-transients, parametric stability and dynamical forms are introduced, where meta-transients describe the effect of realistic sensor inputs, parametric stability refers to a class of sensor inputs all generating the “same type” of dynamic behavior, and a dynamical form comprises the corresponding class of parametrized dynamical systems. It is argued that dynamical forms are the essential internal representatives of behavior relevant external situations. Consequently, it is suggested that dynamical forms are the basis for a memory of these situations. Finally, based on the observation that not all brain process have a direct effect on the motor activity, a natural splitting of neurodynamics into vertical (internal) and horizontal (effective) parts is introduced. PMID:28217092

  17. Public health impact of disease-behavior dynamics. Comment on "Coupled disease-behavior dynamics on complex networks: A review" by Z. Wang et al.

    NASA Astrophysics Data System (ADS)

    Wells, Chad R.; Galvani, Alison P.

    2015-12-01

    In a loop of dynamic feedback, behavior such as the decision to vaccinate, hand washing, or avoidance influences the progression of the epidemic, yet behavior is driven by the individual's and population's perceived risk of infection during an outbreak. In what we believe will become a seminal paper that stimulates future research as well as an informative teaching aid, Wang et. al. comprehensively review methodological advances that have been used to incorporate human behavior into epidemiological models on the effects of coupling disease transmission and behavior on complex social networks [1]. As illustrated by the recent outbreaks of measles and Middle Eastern Respiratory Syndrome (MERS), here we highlight the importance of coupling behavior and disease transmission that Wang et al. address.

  18. Behavior dynamics: One perspective

    PubMed Central

    Marr, M. Jackson

    1992-01-01

    Behavior dynamics is a field devoted to analytic descriptions of behavior change. A principal source of both models and methods for these descriptions is found in physics. This approach is an extension of a long conceptual association between behavior analysis and physics. A theme common to both is the role of molar versus molecular events in description and prediction. Similarities and differences in how these events are treated are discussed. Two examples are presented that illustrate possible correspondence between mechanical and behavioral systems. The first demonstrates the use of a mechanical model to describe the molar properties of behavior under changing reinforcement conditions. The second, dealing with some features of concurrent schedules, focuses on the possible utility of nonlinear dynamical systems to the description of both molar and molecular behavioral events as the outcome of a deterministic, but chaotic, process. PMID:16812655

  19. [Three-dimensional stress analysis of periodontal ligament of mandible incisors fixed bridge abutments under dynamic loads by finite element method].

    PubMed

    Ma, Da; Tang, Liang; Pan, Yan-Huan

    2007-12-01

    Three-dimensional finite method was used to analyze stress and strain distributions of periodontal ligament of abutments under dynamic loads. Finite element analysis was performed on the model under dynamic loads with vertical and oblique directions. The stress and strain distributions and stress-time curves were analyzed to study the biomechanical behavior of periodontal ligament of abutments. The stress and strain distributions of periodontal ligament under dynamic load were same with the static load. But the maximum stress and strain decreased apparently. The rate of change was between 60%-75%. The periodontal ligament had time-dependent mechanical behaviors. Some level of residual stress in periodontal ligament was left after one mastication period. The stress-free time under oblique load was shorter than that of vertical load. The maximum stress and strain decrease apparently under dynamic loads. The periodontal ligament has time-dependent mechanical behaviors during one mastication. There is some level of residual stress left after one mastication period. The level of residual stress is related to the magnitude and the direction of loads. The direction of applied loads is one important factor that affected the stress distribution and accumulation and release of abutment periodontal ligament.

  20. New insights into sucking, swallowing and breathing central generators: A complexity analysis of rhythmic motor behaviors.

    PubMed

    Samson, Nathalie; Praud, Jean-Paul; Quenet, Brigitte; Similowski, Thomas; Straus, Christian

    2017-01-18

    Sucking, swallowing and breathing are dynamic motor behaviors. Breathing displays features of chaos-like dynamics, in particular nonlinearity and complexity, which take their source in the automatic command of breathing. In contrast, buccal/gill ventilation in amphibians is one of the rare motor behaviors that do not display nonlinear complexity. This study aimed at assessing whether sucking and swallowing would also follow nonlinear complex dynamics in the newborn lamb. Breathing movements were recorded before, during and after bottle-feeding. Sucking pressure and the integrated EMG of the thyroartenoid muscle, as an index of swallowing, were recorded during bottle-feeding. Nonlinear complexity of the whole signals was assessed through the calculation of the noise limit value (NL). Breathing and swallowing always exhibited chaos-like dynamics. The NL of breathing did not change significantly before, during or after bottle-feeding. On the other hand, sucking inconsistently and significantly less frequently than breathing exhibited a chaos-like dynamics. Therefore, the central pattern generator (CPG) that drives sucking may be functionally different from the breathing CPG. Furthermore, the analogy between buccal/gill ventilation and sucking suggests that the latter may take its phylogenetic origin in the gill ventilation CPG of the common ancestor of extant amphibians and mammals. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  1. Analytical and experimental study of vibrations in a gear transmission

    NASA Technical Reports Server (NTRS)

    Choy, F. K.; Ruan, Y. F.; Zakrajsek, J. J.; Oswald, Fred B.; Coy, J. J.

    1991-01-01

    An analytical simulation of the dynamics of a gear transmission system is presented and compared to experimental results from a gear noise test rig at the NASA Lewis Research Center. The analytical procedure developed couples the dynamic behaviors of the rotor-bearing-gear system with the response of the gearbox structure. The modal synthesis method is used in solving the overall dynamics of the system. Locally each rotor-gear stage is modeled as an individual rotor-bearing system using the matrix transfer technique. The dynamics of each individual rotor are coupled with other rotor stages through the nonlinear gear mesh forces and with the gearbox structure through bearing support systems. The modal characteristics of the gearbox structure are evaluated using the finite element procedure. A variable time steping integration routine is used to calculate the overall time transient behavior of the system in modal coordinates. The global dynamic behavior of the system is expressed in a generalized coordinate system. Transient and steady state vibrations of the gearbox system are presented in the time and frequency domains. The vibration characteristics of a simple single mesh gear noise test rig is modeled. The numerical simulations are compared to experimental data measured under typical operating conditions. The comparison of system natural frequencies, peak vibration amplitudes, and gear mesh frequencies are generally in good agreement.

  2. The coordination dynamics of social neuromarkers.

    PubMed

    Tognoli, Emmanuelle; Kelso, J A Scott

    2015-01-01

    Social behavior is a complex integrative function that entails many aspects of the brain's sensory, cognitive, emotional and movement capacities. Its neural processes are seldom simultaneous but occur according to precise spatiotemporal choreographies, manifested by the coordination of their oscillations within and between brains. Methods with good temporal resolution can help to identify so-called "neuromarkers" of social function and aid in disentangling the dynamical architecture of social brains. In our ongoing research, we have used dual-electroencephalography (EEG) to study neuromarker dynamics during synchronic interactions in which pairs of subjects coordinate behavior spontaneously and intentionally (social coordination) and during diachronic transactions that require subjects to perceive or behave in turn (action observation, delayed imitation). In this paper, after outlining our dynamical approach to the neurophysiological basis of social behavior, we examine commonalities and differences in the neuromarkers that are recruited for both kinds of tasks. We find the neuromarker landscape to be task-specific: synchronic paradigms of social coordination reveal medial mu, alpha and the phi complex as contributing neuromarkers. Diachronic tasks recruit alpha as well, in addition to lateral mu rhythms and the newly discovered nu and kappa rhythms whose functional significance is still unclear. Social coordination, observation, and delayed imitation share commonality of context: in each of our experiments, subjects exchanged information through visual perception and moved in similar ways. Nonetheless, there was little overlap between their neuromarkers, a result that hints strongly of task-specific neural mechanisms for social behavior. The only neuromarker that transcended both synchronic and diachronic social behaviors was the ubiquitous alpha rhythm, which appears to be a key signature of visually-mediated social behaviors. The present paper is both an entry point and a challenge: much work remains to determine the nature and scope of recruitment of other neuromarkers, and to create theoretical models of their within- and between-brain dynamics during social interaction.

  3. The coordination dynamics of social neuromarkers

    PubMed Central

    Tognoli, Emmanuelle; Kelso, J. A. Scott

    2015-01-01

    Social behavior is a complex integrative function that entails many aspects of the brain’s sensory, cognitive, emotional and movement capacities. Its neural processes are seldom simultaneous but occur according to precise spatiotemporal choreographies, manifested by the coordination of their oscillations within and between brains. Methods with good temporal resolution can help to identify so-called “neuromarkers” of social function and aid in disentangling the dynamical architecture of social brains. In our ongoing research, we have used dual-electroencephalography (EEG) to study neuromarker dynamics during synchronic interactions in which pairs of subjects coordinate behavior spontaneously and intentionally (social coordination) and during diachronic transactions that require subjects to perceive or behave in turn (action observation, delayed imitation). In this paper, after outlining our dynamical approach to the neurophysiological basis of social behavior, we examine commonalities and differences in the neuromarkers that are recruited for both kinds of tasks. We find the neuromarker landscape to be task-specific: synchronic paradigms of social coordination reveal medial mu, alpha and the phi complex as contributing neuromarkers. Diachronic tasks recruit alpha as well, in addition to lateral mu rhythms and the newly discovered nu and kappa rhythms whose functional significance is still unclear. Social coordination, observation, and delayed imitation share commonality of context: in each of our experiments, subjects exchanged information through visual perception and moved in similar ways. Nonetheless, there was little overlap between their neuromarkers, a result that hints strongly of task-specific neural mechanisms for social behavior. The only neuromarker that transcended both synchronic and diachronic social behaviors was the ubiquitous alpha rhythm, which appears to be a key signature of visually-mediated social behaviors. The present paper is both an entry point and a challenge: much work remains to determine the nature and scope of recruitment of other neuromarkers, and to create theoretical models of their within- and between-brain dynamics during social interaction. PMID:26557067

  4. Dynamic Socialized Gaussian Process Models for Human Behavior Prediction in a Health Social Network

    PubMed Central

    Shen, Yelong; Phan, NhatHai; Xiao, Xiao; Jin, Ruoming; Sun, Junfeng; Piniewski, Brigitte; Kil, David; Dou, Dejing

    2016-01-01

    Modeling and predicting human behaviors, such as the level and intensity of physical activity, is a key to preventing the cascade of obesity and helping spread healthy behaviors in a social network. In our conference paper, we have developed a social influence model, named Socialized Gaussian Process (SGP), for socialized human behavior modeling. Instead of explicitly modeling social influence as individuals' behaviors influenced by their friends' previous behaviors, SGP models the dynamic social correlation as the result of social influence. The SGP model naturally incorporates personal behavior factor and social correlation factor (i.e., the homophily principle: Friends tend to perform similar behaviors) into a unified model. And it models the social influence factor (i.e., an individual's behavior can be affected by his/her friends) implicitly in dynamic social correlation schemes. The detailed experimental evaluation has shown the SGP model achieves better prediction accuracy compared with most of baseline methods. However, a Socialized Random Forest model may perform better at the beginning compared with the SGP model. One of the main reasons is the dynamic social correlation function is purely based on the users' sequential behaviors without considering other physical activity-related features. To address this issue, we further propose a novel “multi-feature SGP model” (mfSGP) which improves the SGP model by using multiple physical activity-related features in the dynamic social correlation learning. Extensive experimental results illustrate that the mfSGP model clearly outperforms all other models in terms of prediction accuracy and running time. PMID:27746515

  5. Attachment and Jealousy: Understanding the Dynamic Experience of Jealousy Using the Response Escalation Paradigm.

    PubMed

    Huelsnitz, Chloe O; Farrell, Allison K; Simpson, Jeffry A; Griskevicius, Vladas; Szepsenwol, Ohad

    2018-04-01

    Jealousy is a complex, dynamic experience that unfolds over time in relationship-threatening situations. Prior research has used retrospective reports that cannot disentangle initial levels and change in jealousy in response to escalating threat. In three studies, we examined responses to the Response Escalation Paradigm (REP)-a 5-stage hypothetical scenario in which individuals are exposed to increasing levels of relationship threat-as a function of attachment orientations. Highly anxious individuals exhibited hypervigilant, slow escalation response patterns, interfered earlier in the REP, felt more jealousy, sadness, and worry when they interfered, and wanted to engage in more vigilant, destructive, and passive behaviors aimed at their partner. Highly avoidant individuals felt more anger when they interfered in the REP and wanted to engage in more partner-focused, destructive behaviors. The REP offers a dynamic method for inducing and examining jealousy and introduces a novel approach to studying other emotional experiences.

  6. The promotion of cooperation by the poor in dynamic chicken games

    NASA Astrophysics Data System (ADS)

    Ito, Hiromu; Katsumata, Yuki; Hasegawa, Eisuke; Yoshimura, Jin

    2017-02-01

    The evolution of cooperative behavior is one of the most important issues in game theory. Previous studies have shown that cooperation can evolve only under highly limited conditions, and various modifications have been introduced to games to explain the evolution of cooperation. Recently, a utility function basic to game theory was shown to be dependent on current wealth as a conditional (state) variable in a dynamic version of utility theory. Here, we introduce this dynamic utility function to several games. Under certain conditions, poor players exhibit cooperative behavior in two types of chicken games (the hawk-dove game and the snowdrift game) but not in the prisoner’s dilemma game and the stag hunt game. This result indicates that cooperation can be exhibited by the poor in some chicken games. Thus, the evolution of cooperation may not be as limited as has been suggested in previous studies.

  7. Zero-Field Ambient-Pressure Quantum Criticality in the Stoichiometric Non-Fermi Liquid System CeRhBi

    NASA Astrophysics Data System (ADS)

    Anand, Vivek K.; Adroja, Devashibhai T.; Hillier, Adrian D.; Shigetoh, Keisuke; Takabatake, Toshiro; Park, Je-Geun; McEwen, Keith A.; Pixley, Jedediah H.; Si, Qimiao

    2018-06-01

    We present the spin dynamics study of a stoichiometric non-Fermi liquid (NFL) system CeRhBi, using low-energy inelastic neutron scattering (INS) and muon spin relaxation (μSR) measurements. It shows evidence for an energy-temperature (E/T) scaling in the INS dynamic response and a time-field (t/Hη) scaling of the μSR asymmetry function indicating a quantum critical behavior in this compound. The E/T scaling reveals a local character of quantum criticality consistent with the power-law divergence of the magnetic susceptibility, logarithmic divergence of the magnetic heat capacity and T-linear resistivity at low temperature. The occurrence of NFL behavior and local criticality over a very wide dynamical range at zero field and ambient pressure without any tuning in this stoichiometric heavy fermion compound is striking, making CeRhBi a model system amenable to in-depth studies for quantum criticality.

  8. Transient dynamics of a quantum-dot: From Kondo regime to mixed valence and to empty orbital regimes

    NASA Astrophysics Data System (ADS)

    Cheng, YongXi; Li, ZhenHua; Wei, JianHua; Nie, YiHang; Yan, YiJing

    2018-04-01

    Based on the hierarchical equations of motion approach, we study the time-dependent transport properties of a strongly correlated quantum dot system in the Kondo regime (KR), mixed valence regime (MVR), and empty orbital regime (EOR). We find that the transient current in KR shows the strongest nonlinear response and the most distinct oscillation behaviors. Both behaviors become weaker in MVR and diminish in EOR. To understand the physical insight, we examine also the corresponding dot occupancies and the spectral functions, with their dependence on the Coulomb interaction, temperature, and applied step bias voltage. The above nonlinear and oscillation behaviors could be understood as the interplay between dynamical Kondo resonance and single electron resonant-tunneling.

  9. Modeling eating behaviors: The role of environment and positive food association learning via a Ratatouille effect.

    PubMed

    Murillo, Anarina L; Safan, Muntaser; Castillo-Chavez, Carlos; Phillips, Elizabeth D Capaldi; Wadhera, Devina

    2016-08-01

    Eating behaviors among a large population of children are studied as a dynamic process driven by nonlinear interactions in the sociocultural school environment. The impact of food association learning on diet dynamics, inspired by a pilot study conducted among Arizona children in Pre-Kindergarten to 8th grades, is used to build simple population-level learning models. Qualitatively, mathematical studies are used to highlight the possible ramifications of instruction, learning in nutrition, and health at the community level. Model results suggest that nutrition education programs at the population-level have minimal impact on improving eating behaviors, findings that agree with prior field studies. Hence, the incorporation of food association learning may be a better strategy for creating resilient communities of healthy and non-healthy eaters. A Ratatouille effect can be observed when food association learners become food preference learners, a potential sustainable behavioral change, which in turn, may impact the overall distribution of healthy eaters. In short, this work evaluates the effectiveness of population-level intervention strategies and the importance of institutionalizing nutrition programs that factor in economical, social, cultural, and environmental elements that mesh well with the norms and values in the community.

  10. Dynamic Tensile Experimental Techniques for Geomaterials: A Comprehensive Review

    NASA Astrophysics Data System (ADS)

    Heard, W.; Song, B.; Williams, B.; Martin, B.; Sparks, P.; Nie, X.

    2018-01-01

    This review article is dedicated to the Dynamic Behavior of Materials Technical Division for celebrating the 75th anniversary of the Society for Experimental Mechanics (SEM). Understanding dynamic behavior of geomaterials is critical for analyzing and solving engineering problems of various applications related to underground explosions, seismic, airblast, and penetration events. Determining the dynamic tensile response of geomaterials has been a great challenge in experiments due to the nature of relatively low tensile strength and high brittleness. Various experimental approaches have been made in the past century, especially in the most recent half century, to understand the dynamic behavior of geomaterials in tension. In this review paper, we summarized the dynamic tensile experimental techniques for geomaterials that have been developed. The major dynamic tensile experimental techniques include dynamic direct tension, dynamic split tension, and spall tension. All three of the experimental techniques are based on Hopkinson or split Hopkinson (also known as Kolsky) bar techniques and principles. Uniqueness and limitations for each experimental technique are also discussed.

  11. Dynamic Tensile Experimental Techniques for Geomaterials: A Comprehensive Review

    DOE PAGES

    Heard, W.; Song, B.; Williams, B.; ...

    2018-01-03

    Here, this review article is dedicated to the Dynamic Behavior of Materials Technical Division for celebrating the 75th anniversary of the Society for Experimental Mechanics (SEM). Understanding dynamic behavior of geomaterials is critical for analyzing and solving engineering problems of various applications related to underground explosions, seismic, airblast, and penetration events. Determining the dynamic tensile response of geomaterials has been a great challenge in experiments due to the nature of relatively low tensile strength and high brittleness. Various experimental approaches have been made in the past century, especially in the most recent half century, to understand the dynamic behavior ofmore » geomaterials in tension. In this review paper, we summarized the dynamic tensile experimental techniques for geomaterials that have been developed. The major dynamic tensile experimental techniques include dynamic direct tension, dynamic split tension, and spall tension. All three of the experimental techniques are based on Hopkinson or split Hopkinson (also known as Kolsky) bar techniques and principles. Finally, uniqueness and limitations for each experimental technique are also discussed.« less

  12. Dynamic Tensile Experimental Techniques for Geomaterials: A Comprehensive Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heard, W.; Song, B.; Williams, B.

    Here, this review article is dedicated to the Dynamic Behavior of Materials Technical Division for celebrating the 75th anniversary of the Society for Experimental Mechanics (SEM). Understanding dynamic behavior of geomaterials is critical for analyzing and solving engineering problems of various applications related to underground explosions, seismic, airblast, and penetration events. Determining the dynamic tensile response of geomaterials has been a great challenge in experiments due to the nature of relatively low tensile strength and high brittleness. Various experimental approaches have been made in the past century, especially in the most recent half century, to understand the dynamic behavior ofmore » geomaterials in tension. In this review paper, we summarized the dynamic tensile experimental techniques for geomaterials that have been developed. The major dynamic tensile experimental techniques include dynamic direct tension, dynamic split tension, and spall tension. All three of the experimental techniques are based on Hopkinson or split Hopkinson (also known as Kolsky) bar techniques and principles. Finally, uniqueness and limitations for each experimental technique are also discussed.« less

  13. Protein stability and dynamics influenced by ligands in extremophilic complexes - a molecular dynamics investigation.

    PubMed

    Khan, Sara; Farooq, Umar; Kurnikova, Maria

    2017-08-22

    In this study, we explore the structural and dynamic adaptations of the Tryptophan synthase α-subunit in a ligand bound state in psychrophilic, mesophilic and hyperthermophilic organisms at different temperatures by MD simulations. We quantify the global and local fluctuations in the 40 ns time scale by analyzing the root mean square deviation/fluctuations. The distinct behavior of the active site and loop 6 is observed with the elevation of temperature. Protein stability relies more on electrostatic interactions, and these interactions might be responsible for the stability of varying temperature evolved proteins. The paper also focuses on the effect of temperature on protein dynamics and stability governed by the distinct behavior of the ligand associated with its retention, binding and dissociation over the course of time. The integration of principle component analysis and a free energy landscape was useful in identifying the conformational space accessible to ligand bound homologues and how the presence of the ligand alters the conformational and dynamic properties of the protein.

  14. Multistability, local pattern formation, and global collective firing in a small-world network of nonleaky integrate-and-fire neurons.

    PubMed

    Rothkegel, Alexander; Lehnertz, Klaus

    2009-03-01

    We investigate numerically the collective dynamical behavior of pulse-coupled nonleaky integrate-and-fire neurons that are arranged on a two-dimensional small-world network. To ensure ongoing activity, we impose a probability for spontaneous firing for each neuron. We study network dynamics evolving from different sets of initial conditions in dependence on coupling strength and rewiring probability. Besides a homogeneous equilibrium state for low coupling strength, we observe different local patterns including cyclic waves, spiral waves, and turbulentlike patterns, which-depending on network parameters-interfere with the global collective firing of the neurons. We attribute the various network dynamics to distinct regimes in the parameter space. For the same network parameters different network dynamics can be observed depending on the set of initial conditions only. Such a multistable behavior and the interplay between local pattern formation and global collective firing may be attributable to the spatiotemporal dynamics of biological networks.

  15. Hybridized Kibble-Zurek scaling in the driven critical dynamics across an overlapping critical region

    NASA Astrophysics Data System (ADS)

    Zhai, Liang-Jun; Wang, Huai-Yu; Yin, Shuai

    2018-04-01

    The conventional Kibble-Zurek scaling describes the scaling behavior in the driven dynamics across a single critical region. In this paper, we study the driven dynamics across an overlapping critical region, in which a critical region (Region A) is overlaid by another critical region (Region B). We develop a hybridized Kibble-Zurek scaling (HKZS) to characterize the scaling behavior in the driven process. According to the HKZS, the driven dynamics in the overlapping region can be described by the critical theories for both Region A and Region B simultaneously. This results in a constraint on the scaling function in the overlapping critical region. We take the quantum Ising chain in an imaginary longitudinal field as an example. In this model, the critical region of the Yang-Lee edge singularity and the critical region of the ferromagnetic-paramagnetic phase transition overlap with each other. We numerically confirm the HKZS by simulating the driven dynamics in this overlapping critical region. The HKZSs in other models are also discussed.

  16. Enhanced dynamics of hydrated tRNA on nanodiamond surfaces: A combined neutron scattering and MD simulation study

    DOE PAGES

    Dhindsa, Gurpreet K.; Bhowmik, Debsindhu; Goswami, Monojoy; ...

    2016-09-01

    Nontoxic, biocompatible nanodiamonds (ND) have recently been implemented in rational, systematic design of optimal therapeutic use in nanomedicines. However, hydrophilicity of the ND surface strongly influences structure and dynamics of biomolecules that restrict in situ applications of ND. Therefore, fundamental understanding of the impact of hydrophilic ND surface on biomolecules at the molecular level is essential. For tRNA, we observe an enhancement of dynamical behavior in the presence of ND contrary to generally observed slow motion at strongly interacting interfaces. We took advantage of neutron scattering experiments and computer simulations to demonstrate this atypical faster dynamics of tRNA on NDmore » surface. The strong attractive interactions between ND, tRNA, and water give rise to unlike dynamical behavior and structural changes of tRNA in front of ND compared to without ND. As a result, our new findings may provide new design principles for safer, improved drug delivery platforms.« less

  17. Branching dynamics of viral information spreading.

    PubMed

    Iribarren, José Luis; Moro, Esteban

    2011-10-01

    Despite its importance for rumors or innovations propagation, peer-to-peer collaboration, social networking, or marketing, the dynamics of information spreading is not well understood. Since the diffusion depends on the heterogeneous patterns of human behavior and is driven by the participants' decisions, its propagation dynamics shows surprising properties not explained by traditional epidemic or contagion models. Here we present a detailed analysis of our study of real viral marketing campaigns where tracking the propagation of a controlled message allowed us to analyze the structure and dynamics of a diffusion graph involving over 31,000 individuals. We found that information spreading displays a non-Markovian branching dynamics that can be modeled by a two-step Bellman-Harris branching process that generalizes the static models known in the literature and incorporates the high variability of human behavior. It explains accurately all the features of information propagation under the "tipping point" and can be used for prediction and management of viral information spreading processes.

  18. Pore Diameter Dependence and Segmental Dynamics of Poly-Z-L-lysine and Poly-L-alanine Confined in 1D Nanocylindrical Geometry

    NASA Astrophysics Data System (ADS)

    Tuncel, Eylul; Suzuki, Yasuhito; Iossifidis, Agathaggelos; Steinhart, Martin; Butt, Hans-Jurgen; Floudas, George; Duran, Hatice

    Structure formation, thermodynamic stability, phase and dynamic behaviors of polypeptides are strongly affected by confinement. Since understanding the changes in these behaviors will allow their rational design as functional devices with tunable properties, herein we investigated Poly-Z-L-lysine (PZLL) and Poly-L-alanine (PAla) homopolypeptides confined in nanoporous alumina containing aligned cylindrical nanopores as a function of pore size by differential scanning calorimetry (DSC), Fourier Transform Infrared Spectroscopy, Solid-state NMR, X-ray diffraction, Dielectric spectroscopy(DS). Bulk PZLL exhibits a glass transition temperature (Tg) at about 301K while PZLL nanorods showed slightly lower Tg (294K). The dynamic investigation by DS also revealed a decrease (4K) in Tg between bulk and PZLL nanorods. DS is a very sensitive probe of the local and global secondary structure relaxation through the large dipole to study effect of confinement. The results revealed that the local segmental dynamics, associated with broken hydrogen bonds, and segmental dynamics speed-up on confinement.

  19. Branching dynamics of viral information spreading

    NASA Astrophysics Data System (ADS)

    Iribarren, José Luis; Moro, Esteban

    2011-10-01

    Despite its importance for rumors or innovations propagation, peer-to-peer collaboration, social networking, or marketing, the dynamics of information spreading is not well understood. Since the diffusion depends on the heterogeneous patterns of human behavior and is driven by the participants’ decisions, its propagation dynamics shows surprising properties not explained by traditional epidemic or contagion models. Here we present a detailed analysis of our study of real viral marketing campaigns where tracking the propagation of a controlled message allowed us to analyze the structure and dynamics of a diffusion graph involving over 31 000 individuals. We found that information spreading displays a non-Markovian branching dynamics that can be modeled by a two-step Bellman-Harris branching process that generalizes the static models known in the literature and incorporates the high variability of human behavior. It explains accurately all the features of information propagation under the “tipping point” and can be used for prediction and management of viral information spreading processes.

  20. Analysis of the anomalous mean-field like properties of Gaussian core model in terms of entropy

    NASA Astrophysics Data System (ADS)

    Nandi, Manoj Kumar; Maitra Bhattacharyya, Sarika

    2018-01-01

    Studies of the Gaussian core model (GCM) have shown that it behaves like a mean-field model and the properties are quite different from standard glass former. In this work, we investigate the entropies, namely, the excess entropy (Sex) and the configurational entropy (Sc) and their different components to address these anomalies. Our study corroborates most of the earlier observations and also sheds new light on the high and low temperature dynamics. We find that unlike in standard glass former where high temperature dynamics is dominated by two-body correlation and low temperature by many-body correlations, in the GCM both high and low temperature dynamics are dominated by many-body correlations. We also find that the many-body entropy which is usually positive at low temperatures and is associated with activated dynamics is negative in the GCM suggesting suppression of activation. Interestingly despite the suppression of activation, the Adam-Gibbs (AG) relation that describes activated dynamics holds in the GCM, thus suggesting a non-activated contribution in AG relation. We also find an overlap between the AG relation and mode coupling power law regime leading to a power law behavior of Sc. From our analysis of this power law behavior, we predict that in the GCM the high temperature dynamics will disappear at dynamical transition temperature and below that there will be a transition to the activated regime. Our study further reveals that the activated regime in the GCM is quite narrow.

  1. Sexual Contests in Aquatic Crustaceans: What's Physiology Got To Do with It?

    ERIC Educational Resources Information Center

    Keogh, Daniel P.; Sparkes, Timothy C.

    2003-01-01

    Describes a science laboratory on reproductive behavior and studies the dynamics in Lirceus, an aquatic crustacean of which the females evaluate the males' quality through mating contests. Explains collecting isopods and developing colonies in the lab environment. Investigates food deprivation, locomotor activity, and behavioral trials to…

  2. The Nature of Dynamic Arteriolar Vasoreactivity: A Mini-Review and A classification Scheme

    DTIC Science & Technology

    1993-06-08

    small veins. In this videomicroscopy study we always examined a junction of a true transverse (TR) and a true terminal (TE) arteriole within the muscle...by LDF), comparisons of vascular wall behavior were made from intravital videomicroscopy records. Vasoreactive behavior of the microvessels was

  3. Essays on Online Reviews: Reviewers' Strategic Behaviors and Contributions over Time

    ERIC Educational Resources Information Center

    Shen, Wenqi

    2010-01-01

    Online reviews play an important role in consumers' purchasing decisions. Researchers are increasingly interested in studying the dynamic impact of online reviews on product sales. However, the antecedent of online reviews, online reviewers' behaviors, has not been fully explored. Understanding how online reviewers make review decisions can assist…

  4. Suspended sediment behavior in a coastal dry-summer subtropical catchment: Effects of hydrologic preconditions

    EPA Science Inventory

    Variation in fluvial suspended sediment–discharge behavior is generally thought to be the product of changes in processes governing the delivery of sediment and water to the channel. The objective of this study was to infer sediment supply dynamics from the response of suspended ...

  5. Rheology and microstructure of filled polymer melts

    NASA Astrophysics Data System (ADS)

    Anderson, Benjamin John

    The states of particle dispersion in polymer nanocomposite melts are studied through rheological characterization of nanocomposite melt mechanical properties and small angle X-ray scattering measurement of the particle microstructure. The particle microstructure probed with scattering is related to bulk flow mechanics to determine the origin of slow dynamics in these complex dispersions: whether a gel or glass transition or a slowing down of dispersing phase dynamics. These studies were conducted to understand polymer mediated particle-particle interactions and potential particle-polymer phase separation. The phase behavior of the dispersion will be governed by enthalpic and entropic contributions. A variety of phases are expected: homogeneous fluid, phase separated, or non-equilibrium gel. The effects of dispersion control parameters, namely particle volume fraction, polymer molecular weight, and polymer-particle surface affinity, on the phase behavior of 44 nm silica dispersions are studied in low molecular weight polyethylene oxide (PEO), polyethylene oxide dimethylether (PEODME), and polytetrahydrofuran (PTHF). Scattering measurements of the particle second virial coefficient in PEO melts indicates repulsive particles by a value slightly greater than unity. In PEO nanocomposites, dispersion dynamics slow down witnessed by a plateau in the elastic modulus as the particle separation approaches the length scale of the polymer radius of gyration. As the polymer molecular weight is increased, the transition shifts to lower particle volume fractions. Below polymer entanglement, the slow dynamics mimics that of a colloidal glass by the appearance of two relaxation times in the viscous modulus that display power law scaling with volume fraction. Above entanglement, the slow dynamics is qualitatively different resembling the behavior of a gelled suspension yet lacking any sign of scattering from particle agglomerates. As polymer molecular weight is increased at a fixed volume fraction, two strain yielding events emerge. Further particle loading leads to the formation of a particle-polymer network and the onset of brittle mechanical behavior. The performance of PEO nanocomposites is contrasted by PEODME and PTHF nanocomposites where a change in the polymer segment-surface activity changes the slow dynamics of the nanocomposite and the microstructure of particles in the melt. Slow dynamics and the particle microstructure indicate a gelled suspension as volume fraction is raised with particles in or near contact and support the turning on of particle attractions in the melt.

  6. Uplifting Behavior of Shallow Buried Pipe in Liquefiable Soil by Dynamic Centrifuge Test

    PubMed Central

    Liu, Jingwen; Ling, Daosheng

    2014-01-01

    Underground pipelines are widely applied in the so-called lifeline engineerings. It shows according to seismic surveys that the damage from soil liquefaction to underground pipelines was the most serious, whose failures were mainly in the form of pipeline uplifting. In the present study, dynamic centrifuge model tests were conducted to study the uplifting behaviors of shallow-buried pipeline subjected to seismic vibration in liquefied sites. The uplifting mechanism was discussed through the responses of the pore water pressure and earth pressure around the pipeline. Additionally, the analysis of force, which the pipeline was subjected to before and during vibration, was introduced and proved to be reasonable by the comparison of the measured and the calculated results. The uplifting behavior of pipe is the combination effects of multiple forces, and is highly dependent on the excess pore pressure. PMID:25121140

  7. HIV Testing among Heterosexual Young Adults: The Influence of Individual Attitudes and Behaviors, Partner’s Risk-Taking and Relationship Dynamics

    PubMed Central

    Longmore, Monica A.; Johnson, Wendi L.; Manning, Wendy D.; Giordano, Peggy C.

    2012-01-01

    This study relies on survey (N=704) and in-depth qualitative (N = 100) interviews (Toledo Adolescent Relationship Study) to examine individual, partner, and relationship barriers and facilitators to HIV testing in a sample of young adults. Consistent with the public health goal of routine testing, nearly 40% of respondents had an HIV test within the context of their current sexual relationship, and women were significantly more likely to have tested within the current relationship than were men. For women, it was both their own risky behavior, and the partners’ characteristics and related relationship dynamics that distinguished testers from non-testers. In contrast, for men their own risky behavior was the most salient factor influencing their odds of being tested. These results showcase gender specific approaches to best promote sexual health, i.e., routine HIV testing among young adults. PMID:22489753

  8. Complexity analysis of dual-channel game model with different managers' business objectives

    NASA Astrophysics Data System (ADS)

    Li, Ting; Ma, Junhai

    2015-01-01

    This paper considers dual-channel game model with bounded rationality, using the theory of bifurcations of dynamical system. The business objectives of retailers are assumed to be different, which is closer to reality than previous studies. We study the local stable region of Nash equilibrium point and find that business objectives can expand the stable region and play an important role in price strategy. One interesting finding is that a fiercer competition tends to stabilize the Nash equilibrium. Simulation shows the complex behavior of two dimensional dynamic system, we find period doubling bifurcation and chaos phenomenon. We measure performances of the model in different period by using the index of average profit. The results show that unstable behavior in economic system is often an unfavorable outcome. So this paper discusses the application of adaptive adjustment mechanism when the model exhibits chaotic behavior and then allows the retailers to eliminate the negative effects.

  9. An Application of Evolutionary Game Theory to Social Dilemmas: The Traveler's Dilemma and the Minimum Effort Coordination Game

    PubMed Central

    Iyer, Swami; Reyes, Joshua; Killingback, Timothy

    2014-01-01

    The Traveler's Dilemma game and the Minimum Effort Coordination game are two social dilemmas that have attracted considerable attention due to the fact that the predictions of classical game theory are at odds with the results found when the games are studied experimentally. Moreover, a direct application of deterministic evolutionary game theory, as embodied in the replicator dynamics, to these games does not explain the observed behavior. In this work, we formulate natural variants of these two games as smoothed continuous-strategy games. We study the evolutionary dynamics of these continuous-strategy games, both analytically and through agent-based simulations, and show that the behavior predicted theoretically is in accord with that observed experimentally. Thus, these variants of the Traveler's Dilemma and the Minimum Effort Coordination games provide a simple resolution of the paradoxical behavior associated with the original games. PMID:24709851

  10. An application of evolutionary game theory to social dilemmas: the traveler's dilemma and the minimum effort coordination game.

    PubMed

    Iyer, Swami; Reyes, Joshua; Killingback, Timothy

    2014-01-01

    The Traveler's Dilemma game and the Minimum Effort Coordination game are two social dilemmas that have attracted considerable attention due to the fact that the predictions of classical game theory are at odds with the results found when the games are studied experimentally. Moreover, a direct application of deterministic evolutionary game theory, as embodied in the replicator dynamics, to these games does not explain the observed behavior. In this work, we formulate natural variants of these two games as smoothed continuous-strategy games. We study the evolutionary dynamics of these continuous-strategy games, both analytically and through agent-based simulations, and show that the behavior predicted theoretically is in accord with that observed experimentally. Thus, these variants of the Traveler's Dilemma and the Minimum Effort Coordination games provide a simple resolution of the paradoxical behavior associated with the original games.

  11. Representing Micro-Macro Linkages by Actor-Based Dynamic Network Models

    PubMed Central

    Snijders, Tom A.B.; Steglich, Christian E.G.

    2014-01-01

    Stochastic actor-based models for network dynamics have the primary aim of statistical inference about processes of network change, but may be regarded as a kind of agent-based models. Similar to many other agent-based models, they are based on local rules for actor behavior. Different from many other agent-based models, by including elements of generalized linear statistical models they aim to be realistic detailed representations of network dynamics in empirical data sets. Statistical parallels to micro-macro considerations can be found in the estimation of parameters determining local actor behavior from empirical data, and the assessment of goodness of fit from the correspondence with network-level descriptives. This article studies several network-level consequences of dynamic actor-based models applied to represent cross-sectional network data. Two examples illustrate how network-level characteristics can be obtained as emergent features implied by micro-specifications of actor-based models. PMID:25960578

  12. Molecular dynamics studies of interfacial water at the alumina surface.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Argyris, Dr. Dimitrios; Ho, Thomas; Cole, David

    2011-01-01

    Interfacial water properties at the alumina surface were investigated via all-atom equilibrium molecular dynamics simulations at ambient temperature. Al-terminated and OH-terminated alumina surfaces were considered to assess the structural and dynamic behavior of the first few hydration layers in contact with the substrates. Density profiles suggest water layering up to {approx}10 {angstrom} from the solid substrate. Planar density distribution data indicate that water molecules in the first interfacial layer are organized in well-defined patterns dictated by the atomic terminations of the alumina surface. Interfacial water exhibits preferential orientation and delayed dynamics compared to bulk water. Water exhibits bulk-like behavior atmore » distances greater than {approx}10 {angstrom} from the substrate. The formation of an extended hydrogen bond network within the first few hydration layers illustrates the significance of water?water interactions on the structural properties at the interface.« less

  13. Post-Markovian dynamics of quantum correlations: entanglement versus discord

    NASA Astrophysics Data System (ADS)

    Mohammadi, Hamidreza

    2017-02-01

    Dynamics of an open two-qubit system is investigated in the post-Markovian regime, where the environments have a short-term memory. Each qubit is coupled to separate environment which is held in its own temperature. The inter-qubit interaction is modeled by XY-Heisenberg model in the presence of spin-orbit interaction and inhomogeneous magnetic field. The dynamical behavior of entanglement and discord has been considered. The results show that quantum discord is more robust than quantum entanglement, during the evolution. Also the asymmetric feature of quantum discord can be monitored by introducing the asymmetries due to inhomogeneity of magnetic field and temperature difference between the reservoirs. By employing proper parameters of the model, it is possible to maintain nonvanishing quantum correlation at high degree of temperature. The results can provide a useful recipe for studying dynamical behavior of two-qubit systems such as trapped spin electrons in coupled quantum dots.

  14. Recurrence analysis of ant activity patterns

    PubMed Central

    2017-01-01

    In this study, we used recurrence quantification analysis (RQA) and recurrence plots (RPs) to compare the movement activity of individual workers of three ant species, as well as a gregarious beetle species. RQA and RPs quantify the number and duration of recurrences of a dynamical system, including a detailed quantification of signals that could be stochastic, deterministic, or both. First, we found substantial differences between the activity dynamics of beetles and ants, with the results suggesting that the beetles have quasi-periodic dynamics and the ants do not. Second, workers from different ant species varied with respect to their dynamics, presenting degrees of predictability as well as stochastic signals. Finally, differences were found among minor and major caste of the same (dimorphic) ant species. Our results underscore the potential of RQA and RPs in the analysis of complex behavioral patterns, as well as in general inferences on animal behavior and other biological phenomena. PMID:29016648

  15. TASI: A software tool for spatial-temporal quantification of tumor spheroid dynamics.

    PubMed

    Hou, Yue; Konen, Jessica; Brat, Daniel J; Marcus, Adam I; Cooper, Lee A D

    2018-05-08

    Spheroid cultures derived from explanted cancer specimens are an increasingly utilized resource for studying complex biological processes like tumor cell invasion and metastasis, representing an important bridge between the simplicity and practicality of 2-dimensional monolayer cultures and the complexity and realism of in vivo animal models. Temporal imaging of spheroids can capture the dynamics of cell behaviors and microenvironments, and when combined with quantitative image analysis methods, enables deep interrogation of biological mechanisms. This paper presents a comprehensive open-source software framework for Temporal Analysis of Spheroid Imaging (TASI) that allows investigators to objectively characterize spheroid growth and invasion dynamics. TASI performs spatiotemporal segmentation of spheroid cultures, extraction of features describing spheroid morpho-phenotypes, mathematical modeling of spheroid dynamics, and statistical comparisons of experimental conditions. We demonstrate the utility of this tool in an analysis of non-small cell lung cancer spheroids that exhibit variability in metastatic and proliferative behaviors.

  16. Effect of critical molecular weight of PEO in epoxy/EPO blends as characterized by advanced DSC and solid-state NMR

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoliang; Lu, Shoudong; Sun, Pingchuan; Xue, Gi

    2013-03-01

    The differential scanning calorimetry (DSC) and solid state NMR have been used to systematically study the length scale of the miscibility and local dynamics of the epoxy resin/poly(ethylene oxide) (ER/PEO) blends with different PEO molecular weight. By DSC, we found that the diffusion behavior of PEO with different Mw is an important factor in controlling these behaviors upon curing. We further employed two-dimensional 13C-{1H}PISEMA NMR experiment to elucidate the possible weak interaction and detailed local dynamics in ER/PEO blends. The CH2O group of PEO forms hydrogen bond with hydroxyl proton of cured-ER ether group, and its local dynamics frozen by such interaction. Our finding indicates that molecular weight (Mw) of PEO is a crucial factor in controlling the miscibility, chain dynamics and hydrogen bonding interaction in these blends.

  17. Coarsening Dynamics of Inclusions and Thermocapillary Phenomena in Smectic Liquid Crystal Bubbles

    NASA Astrophysics Data System (ADS)

    Park, Cheol; Maclennan, Joseph; Glaser, Matthew; Clark, Noel; Trittel, Torsten; Eremin, Alexey; Stannarius, Ralf; Tin, Padetha; Hall, Nancy

    The Observation and Analysis of Smectic Islands in Space (OASIS) project comprises a series of experiments that probe interfacial and hydrodynamic behavior of thin spherical-bubbles of smectic liquid crystal in microgravity. Smectic films are the thinnest known stable condensed phase structures, making them ideal for studies of two-dimensional (2D) coarsening dynamics and thermocapillary phenomena in microgravity. The OASIS flight hardware was launched on SpaceX-6 in April 2015 and experiments were carried out on the International Space Station using four different smectic A and C liquid crystal materials in separate sample chambers. We will describe the behavior of collective island dynamics on the bubbles, including temperature gradient-induced themomigration, and the diffusion and coalescence-driven coarsening dynamics of island emulsions in microgravity. This work was supported by NASA Grant No. NNX-13AQ81G, and NSF MRSEC Grants No. DMR-0820579 and DMR-1420736.

  18. Layered interfaces between immiscible liquids studied by density-functional theory and molecular-dynamics simulations.

    PubMed

    Geysermans, P; Elyeznasni, N; Russier, V

    2005-11-22

    We present a study of the structure in the interface between two immiscible liquids by density-functional theory and molecular-dynamics calculations. The liquids are modeled by Lennard-Jones potentials, which achieve immiscibility by suppressing the attractive interaction between unlike particles. The density profiles of the liquids display oscillations only in a limited part of the simple liquid-phase diagram (rho,T). When approaching the liquid-vapor coexistence, a significant depletion appears while the layering behavior of the density profile vanishes. By analogy with the liquid-vapor interface and the analysis of the adsorption this behavior is suggested to be strongly related to the drying transition.

  19. Strain rate sensitivity of autoclaved aerated concrete from quasi-static regime to shock loading

    NASA Astrophysics Data System (ADS)

    Mespoulet, Jérôme; Plassard, Fabien; Hereil, Pierre Louis

    2015-09-01

    The quasi-static mechanical behavior of autoclaved aerated concrete is well-known and can be expressed as a function of its density. There are however not much studies dealing with its dynamic behavior and its damping ability when subjected to a mechanical shock or a blast. This study presents experimental results obtained at the Shock Physics Laboratory of THIOT INGENIERIE company. The test specimens are made of YTONG(TM ) cellular concrete with porosity in the range of 75 to 80%. Experimental tests cover a large strain rate amplitude (higher than 104 s-1) for specimens up to 250 mm. They were carried out with a small compression press and with two facilities dedicated to dynamic material characterization: JUPITER dynamic large press (2 MN, 3 ms rising time) and TITAN multi-caliber single-stage gas gun. Results in un-confined conditions show an increase of the compressive strength when strain rate increases (45% increase at 5.102 s-1) but dynamic tests induce damage early in the experiment. This competition between dynamic strength raise and specimen fracture makes the complete compaction curve determination not to be done in unconfined dynamic condition. A 25% increase of the compressive strength has been observed between unconfined and confined condition in Q.S. regime.

  20. The long-run dynamic relationship between exchange rate and its attention index: Based on DCCA and TOP method

    NASA Astrophysics Data System (ADS)

    Wang, Xuan; Guo, Kun; Lu, Xiaolin

    2016-07-01

    The behavior information of financial market plays a more and more important role in modern economic system. The behavior information reflected in INTERNET search data has already been used in short-term prediction for exchange rate, stock market return, house price and so on. However, the long-run relationship between behavior information and financial market fluctuation has not been studied systematically. Further, most traditional statistic methods and econometric models could not catch the dynamic and non-linear relationship. An attention index of CNY/USD exchange rate is constructed based on search data from 360 search engine of China in this paper. Then the DCCA and Thermal Optimal Path methods are used to explore the long-run dynamic relationship between CNY/USD exchange rate and the corresponding attention index. The results show that the significant interdependency exists and the change of exchange rate is 1-2 days lag behind the attention index.

  1. Stalking as paranoid attachment: a typological and dynamic model.

    PubMed

    Wilson, John S; Ermshar, Annette L; Welsh, Robert K

    2006-06-01

    Stalking encompasses a wide range of behavioral patterns, risk factors, interpersonal dynamics, and dangerousness. To account for these diverse phenomena, we propose that stalking behavior is best conceptualized by a dynamic interaction of attachment styles and psychodynamic phenomena. This paper articulates a model that explains stalking behavior within the framework of attachment theory. Four prototypical configurations of stalkers and their victims are developed. Each configuration is discussed in terms of a pattern of internal representations, affective constellations, combinations of aggression and narcissism, and potential for future violence. The four configurations proposed here are maintained through stalkers' over ideational linkage fantasies and projective identifications, which range from shame-prone and needy idealization to malevolent torment of the victim. Our model arrays erotomanic, jealous, and persecutory attachments along a continuum of increasingly paranoid and pathological identifications. We argue that these prototypical attachment configurations provide a theoretically driven means of differentiating phases of stalking, and as such provide useful leads in the empirical study and clinical assessment, treatment, and management of stalkers.

  2. Fragile-to-strong transition in liquid silica

    NASA Astrophysics Data System (ADS)

    Geske, Julian; Drossel, Barbara; Vogel, Michael

    2016-03-01

    We investigate anomalies in liquid silica with molecular dynamics simulations and present evidence for a fragile-to-strong transition at around 3100 K-3300 K. To this purpose, we studied the structure and dynamical properties of silica over a wide temperature range, finding four indicators of a fragile-to-strong transition. First, there is a density minimum at around 3000 K and a density maximum at 4700 K. The turning point is at 3400 K. Second, the local structure characterized by the tetrahedral order parameter changes dramatically around 3000 K from a higher-ordered, lower-density phase to a less ordered, higher-density phase. Third, the correlation time τ changes from an Arrhenius behavior below 3300 K to a Vogel-Fulcher-Tammann behavior at higher temperatures. Fourth, the Stokes-Einstein relation holds for temperatures below 3000 K, but is replaced by a fractional relation above this temperature. Furthermore, our data indicate that dynamics become again simple above 5000 K, with Arrhenius behavior and a classical Stokes-Einstein relation.

  3. Active polar two-fluid macroscopic dynamics.

    PubMed

    Pleiner, H; Svenšek, D; Brand, H R

    2013-11-01

    We study the dynamics of systems with a polar dynamic preferred direction. Examples include the pattern-forming growth of bacteria as well as shoals of fish, flocks of birds and migrating insects. Due to the fact that the preferred direction only exists dynamically, but not statically, the macroscopic variable of choice is the macroscopic velocity associated with the motion of the active units, which are typically biological in nature. We derive the macroscopic equations for such a system and discuss novel static, reversible and irreversible cross-couplings connected to a second velocity as a variable. We analyze in detail how the macroscopic behavior of an active system with a polar dynamic preferred direction compares to other systems with two velocities including immiscible liquids and electrically neutral quantum liquids such as superfluid (4)He and (3)He . We critically discuss changes in the normal mode spectrum when comparing uncharged superfluids, immiscible liquids and active system with a polar dynamic preferred direction. We investigate the influence of a macroscopic hand (collective effects of chirality) on the macroscopic behavior of such active media.

  4. Modeling Temporal Behavior in Large Networks: A Dynamic Mixed-Membership Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rossi, R; Gallagher, B; Neville, J

    Given a large time-evolving network, how can we model and characterize the temporal behaviors of individual nodes (and network states)? How can we model the behavioral transition patterns of nodes? We propose a temporal behavior model that captures the 'roles' of nodes in the graph and how they evolve over time. The proposed dynamic behavioral mixed-membership model (DBMM) is scalable, fully automatic (no user-defined parameters), non-parametric/data-driven (no specific functional form or parameterization), interpretable (identifies explainable patterns), and flexible (applicable to dynamic and streaming networks). Moreover, the interpretable behavioral roles are generalizable, computationally efficient, and natively supports attributes. We applied ourmore » model for (a) identifying patterns and trends of nodes and network states based on the temporal behavior, (b) predicting future structural changes, and (c) detecting unusual temporal behavior transitions. We use eight large real-world datasets from different time-evolving settings (dynamic and streaming). In particular, we model the evolving mixed-memberships and the corresponding behavioral transitions of Twitter, Facebook, IP-Traces, Email (University), Internet AS, Enron, Reality, and IMDB. The experiments demonstrate the scalability, flexibility, and effectiveness of our model for identifying interesting patterns, detecting unusual structural transitions, and predicting the future structural changes of the network and individual nodes.« less

  5. Supply based on demand dynamical model

    NASA Astrophysics Data System (ADS)

    Levi, Asaf; Sabuco, Juan; Sanjuán, Miguel A. F.

    2018-04-01

    We propose and numerically analyze a simple dynamical model that describes the firm behaviors under uncertainty of demand. Iterating this simple model and varying some parameter values, we observe a wide variety of market dynamics such as equilibria, periodic, and chaotic behaviors. Interestingly, the model is also able to reproduce market collapses.

  6. The Dynamics of Perception and Action

    ERIC Educational Resources Information Center

    Warren, William H.

    2006-01-01

    How might one account for the organization in behavior without attributing it to an internal control structure? The present article develops a theoretical framework called behavioral dynamics that integrates an information-based approach to perception with a dynamical systems approach to action. For a given task, the agent and its environment are…

  7. Water infiltration in prewetted porous media: dynamic capillary pressure and Green-Ampt modeling

    NASA Astrophysics Data System (ADS)

    Hsu, S.; Hilpert, M.

    2013-12-01

    Recently, an experimental study has shown that the modified Green-Ampt (GA) model, which accounts for a velocity-dependent capillary pressure, can describe water infiltration in dry sand columns better than the classical GA model. Studies have also shown that the initial water content of prewetted porous media affects the dynamic capillary pressure during infiltration. In this study, we performed a series of downward water infiltration experiments in prewetted sand columns for four different initial water contents: 0%, 3.3%, 6.5%, and 13.8%. We also used three different ponding heights: 10 cm, 20 cm, and 40 cm. As expected, an increase in ponding height resulted in a monotonic increase in cumulative infiltration. However, we found anomalous behavior, in that the cumulative infiltration did not monotonically decrease as the initial water content increased. When modeling the experiments with the modified GA approach, we linked this anomalous behavior to the reduction factor in the model for dynamic capillary pressure that is a function of initial water content.

  8. Nano-confinement inside molecular metal oxide clusters: Dynamics and modified encapsulation behavior

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Zhe; Daemen, Luke L.; Cheng, Yongqiang

    Encapsulation behavior, as well as the presence of internal catalytically-active sites, has been spurring the applications of a 3 nm hollow spherical metal oxide cluster {Mo 132} as an encapsulation host and a nano-reactor. Due to its well-defined and tunable cluster structures, and nano-scaled internal void space comparable to the volumes of small molecules, this cluster provides a good model to study the dynamics of materials under ultra-confinement. Neutron scattering studies suggest that bulky internal ligands inside the cluster show slower and limited dynamics compared to their counterparts in the bulk state, revealing the rigid nature of the skeleton ofmore » the internal ligands. Furthermore, NMR studies indicate that the rigid internal ligands that partially cover the interfacial pore on the molybdenum oxide shells are able to block some large guest molecules from going inside the capsule cluster, which provides a convincing protocol for size-selective encapsulation and separation.« less

  9. Nano-confinement inside molecular metal oxide clusters: Dynamics and modified encapsulation behavior

    DOE PAGES

    Wang, Zhe; Daemen, Luke L.; Cheng, Yongqiang; ...

    2016-08-19

    Encapsulation behavior, as well as the presence of internal catalytically-active sites, has been spurring the applications of a 3 nm hollow spherical metal oxide cluster {Mo 132} as an encapsulation host and a nano-reactor. Due to its well-defined and tunable cluster structures, and nano-scaled internal void space comparable to the volumes of small molecules, this cluster provides a good model to study the dynamics of materials under ultra-confinement. Neutron scattering studies suggest that bulky internal ligands inside the cluster show slower and limited dynamics compared to their counterparts in the bulk state, revealing the rigid nature of the skeleton ofmore » the internal ligands. Furthermore, NMR studies indicate that the rigid internal ligands that partially cover the interfacial pore on the molybdenum oxide shells are able to block some large guest molecules from going inside the capsule cluster, which provides a convincing protocol for size-selective encapsulation and separation.« less

  10. Effect of temperature variations and thermal noise on the static and dynamic behavior of straintronics devices

    NASA Astrophysics Data System (ADS)

    Barangi, Mahmood; Mazumder, Pinaki

    2015-11-01

    A theoretical model quantifying the effect of temperature variations on the magnetic properties and static and dynamic behavior of the straintronics magnetic tunneling junction is presented. Four common magnetostrictive materials (Nickel, Cobalt, Terfenol-D, and Galfenol) are analyzed to determine their temperature sensitivity and to provide a comprehensive database for different applications. The variations of magnetic anisotropies are studied in detail for temperature levels up to the Curie temperature. The energy barrier of the free layer and the critical voltage required for flipping the magnetization vector are inspected as important metrics that dominate the energy requirements and noise immunity when the device is incorporated into large systems. To study the dynamic thermal noise, the effect of the Langevin thermal field on the free layer's magnetization vector is incorporated into the Landau-Lifshitz-Gilbert equation. The switching energy, flipping delay, write, and hold error probabilities are studied, which are important metrics for nonvolatile memories, an important application of the straintronics magnetic tunneling junctions.

  11. A cluster phase analysis for collective behavior in team sports.

    PubMed

    López-Felip, Maurici A; Davis, Tehran J; Frank, Till D; Dixon, James A

    2018-06-01

    Collective behavior can be defined as the ability of humans to coordinate with others through a complex environment. Sports offer exquisite examples of this dynamic interplay, requiring decision making and other perceptual-cognitive skills to adjust individual decisions to the team self-organization and vice versa. Considering players of a team as periodic phase oscillators, synchrony analyses can be used to model the coordination of a team. Nonetheless, a main limitation of current models is that collective behavior is context independent. In other words, players on a team can be highly synchronized without this corresponding to a meaningful coordination dynamics relevant to the context of the game. Considering these issues, the aim of this study was to develop a method of analysis sensitive to the context for evidence-based measures of collective behavior. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. The mechanisms of plastic strain accommodation and post critical behavior of heterogeneous reactive composites subject to dynamic loading

    NASA Astrophysics Data System (ADS)

    Olney, Karl L.

    The dynamic behavior of granular/porous and laminate reactive materials is of interest due to their practical applications; reactive structural components, reactive fragments, etc. The mesostructural properties control meso- and macro-scale dynamic behavior of these heterogeneous composites including the behavior during the post-critical stage of deformation. They heavily influence mechanisms of fragment generation and the in situ development of local hot spots, which act as sites of ignition in these materials. This dissertation concentrates on understanding the mechanisms of plastic strain accommodation in two representative reactive material systems with different heterogeneous mesostructrues: Aluminum-Tungsten granular/porous and Nickel-Aluminum laminate composites. The main focus is on the interpretation of results of the following dynamic experiments conducted at different strain and strain rates: drop weight tests, explosively expanded ring experiments, and explosively collapsed thick walled cylinder experiments. Due to the natural limitations in the evaluation of the mesoscale behavior of these materials experimentally and the large variation in the size scales between the mesostructural level and the sample, it is extremely difficult, if not impossible, to examine the mesoscale behavior in situ. Therefore, numerical simulations of the corresponding experiments are used as the main tool to explore material behavior at the mesoscale. Numerical models were developed to elucidate the mechanisms of plastic strain accommodation and post critical behavior in these heterogeneous composites subjected to dynamic loading. These simulations were able to reproduce the qualitative and quantitative features that were observable in the experiments and provided insight into the evolution of the mechanisms of plastic strain accommodation and post critical behavior in these materials with complex mesotructure. Additionally, these simulations provided a framework to examine the influence of various mesoscale properties such as the bonding of interfaces, the role of material properties, and the influence of mesoscale geometry. The results of this research are helpful in the design of material mesotructures conducive to the desirable behavior under dynamic loading.

  13. The Dynamics of Online User Behavior and IS Policy Implications

    ERIC Educational Resources Information Center

    Kim, Keehyung

    2016-01-01

    This dissertation, which comprises three independent essays, explores the dynamics of online user behavior and provides IS policy implications across three different applications. The first essay employs an econometric empirical analysis to examine the role of IT interventions on online users' gambling behavior, based on field data collected over…

  14. Ionic liquid structure, dynamics, and electrosorption in carbon electrodes with bimodal pores and heterogeneous surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dyatkin, Boris; Osti, Naresh C.; Zhang, Yu

    In this paper, we investigate the aggregation, diffusion, and resulting electrochemical behavior of ionic liquids inside carbon electrodes with complex pore architectures and surface chemistries. Carbide-derived carbons (CDCs) with bimodal porosities and defunctionalized or oxidized electrode surfaces served as model electrode materials. Our goal was to obtain a fundamental understanding of room-temperature ionic liquid ion orientation, mobility, and electrosorption behavior. Neat 1-octyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide confined in CDCs was studied using an integrated experimental and modeling approach, consisting of quasielastic neutron scattering, small-angle neutron scattering, X-ray pair distribution function analysis, and electrochemical measurements, which were combined with molecular dynamics simulations. Our analysismore » shows that surface oxygen groups increase the diffusion of confined electrolytes. Consequently, the ions become more than twice as mobile in oxygen-rich pores. Although greater self-diffusion of ions translates into higher electrochemical mobilities in oxidized pores, bulk-like behavior of ions dominates in the larger mesopores and increases the overall capacitance in defunctionalized pores. Experimental results highlight strong confinement and surface effects of carbon electrodes on electrolyte behavior, and molecular dynamics simulations yield insight into diffusion and capacitance differences in specific pore regions. Finally, we demonstrate the significance of surface defects on electrosorption dynamics of complex electrolytes in hierarchical pore architectures of supercapacitor electrodes.« less

  15. Ionic liquid structure, dynamics, and electrosorption in carbon electrodes with bimodal pores and heterogeneous surfaces

    DOE PAGES

    Dyatkin, Boris; Osti, Naresh C.; Zhang, Yu; ...

    2017-12-05

    In this paper, we investigate the aggregation, diffusion, and resulting electrochemical behavior of ionic liquids inside carbon electrodes with complex pore architectures and surface chemistries. Carbide-derived carbons (CDCs) with bimodal porosities and defunctionalized or oxidized electrode surfaces served as model electrode materials. Our goal was to obtain a fundamental understanding of room-temperature ionic liquid ion orientation, mobility, and electrosorption behavior. Neat 1-octyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide confined in CDCs was studied using an integrated experimental and modeling approach, consisting of quasielastic neutron scattering, small-angle neutron scattering, X-ray pair distribution function analysis, and electrochemical measurements, which were combined with molecular dynamics simulations. Our analysismore » shows that surface oxygen groups increase the diffusion of confined electrolytes. Consequently, the ions become more than twice as mobile in oxygen-rich pores. Although greater self-diffusion of ions translates into higher electrochemical mobilities in oxidized pores, bulk-like behavior of ions dominates in the larger mesopores and increases the overall capacitance in defunctionalized pores. Experimental results highlight strong confinement and surface effects of carbon electrodes on electrolyte behavior, and molecular dynamics simulations yield insight into diffusion and capacitance differences in specific pore regions. Finally, we demonstrate the significance of surface defects on electrosorption dynamics of complex electrolytes in hierarchical pore architectures of supercapacitor electrodes.« less

  16. The auditory dynamic attending theory revisited: A closer look at the pitch comparison task.

    PubMed

    Bauer, Anna-Katharina R; Jaeger, Manuela; Thorne, Jeremy D; Bendixen, Alexandra; Debener, Stefan

    2015-11-11

    The dynamic attending theory as originally proposed by Jones, 1976. Psychol. Rev. 83(5), 323-355 posits that tone sequences presented at a regular rhythm entrain attentional oscillations and thereby facilitate the processing of sounds presented in phase with this rhythm. The increased interest in neural correlates of dynamic attending requires robust behavioral indicators of the phenomenon. Here we aimed to replicate and complement the most prominent experimental implementation of dynamic attending (Jones et al., 2002. Psychol. Sci. 13(4), 313-319). The paradigm uses a pitch comparison task in which two tones, the initial and the last of a longer series, have to be compared. In-between the two, distractor tones with variable pitch are presented, at a regular pace. A comparison tone presented in phase with the entrained rhythm is hypothesized to lead to better behavioral performance. Aiming for a conceptual replication, four different variations of the original paradigm were created which were followed by an exact replication attempt. Across all five experiments, only 40 of the 140 tested participants showed the hypothesized pattern of an inverted U-shaped profile in task accuracy, and the group average effects did not replicate the pattern reported by Jones et al., 2002. Psychol. Sci. 13(4), 313-319 in any of the five experiments. However, clear evidence for a relationship between musicality and overall behavioral performance was found. This study casts doubt on the suitability of the pitch comparison task for demonstrating auditory dynamic attending. We discuss alternative tasks that have been shown to support dynamic attending theory, thus lending themselves more readily to studying its neural correlates. This article is part of a Special Issue entitled SI: Prediction and Attention. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  17. Atomic-scale dynamics of a model glass-forming metallic liquid: Dynamical crossover, dynamical decoupling, and dynamical clustering

    DOE PAGES

    Jaiswal, Abhishek; Egami, Takeshi; Zhang, Yang

    2015-04-01

    The phase behavior of multi-component metallic liquids is exceedingly complex because of the convoluted many-body and many-elemental interactions. Herein, we present systematic studies of the dynamic aspects of such a model ternary metallic liquid Cu 40Zr 51Al 9 using molecular dynamics simulation with embedded atom method. We observed a dynamical crossover from Arrhenius to super-Arrhenius behavior in the transport properties (diffusion coefficient, relaxation times, and shear viscosity) bordered at T x ~1300K. Unlike in many molecular and macromolecular liquids, this crossover phenomenon occurs in the equilibrium liquid state well above the melting temperature of the system (T m ~ 900K),more » and the crossover temperature is roughly twice of the glass-transition temperature (T g). Below T x, we found the elemental dynamics decoupled and the Stokes-Einstein relation broke down, indicating the onset of heterogeneous spatially correlated dynamics in the system mediated by dynamic communications among local configurational excitations. To directly characterize and visualize the correlated dynamics, we employed a non-parametric, unsupervised machine learning technique and identified dynamical clusters of atoms with similar atomic mobility. The revealed average dynamical cluster size shows an accelerated increase below T x and mimics the trend observed in other ensemble averaged quantities that are commonly used to quantify the spatially heterogeneous dynamics such as the non-Gaussian parameter and the four-point correlation function.« less

  18. Dynamic Modeling of ALS Systems

    NASA Technical Reports Server (NTRS)

    Jones, Harry

    2002-01-01

    The purpose of dynamic modeling and simulation of Advanced Life Support (ALS) systems is to help design them. Static steady state systems analysis provides basic information and is necessary to guide dynamic modeling, but static analysis is not sufficient to design and compare systems. ALS systems must respond to external input variations and internal off-nominal behavior. Buffer sizing, resupply scheduling, failure response, and control system design are aspects of dynamic system design. We develop two dynamic mass flow models and use them in simulations to evaluate systems issues, optimize designs, and make system design trades. One model is of nitrogen leakage in the space station, the other is of a waste processor failure in a regenerative life support system. Most systems analyses are concerned with optimizing the cost/benefit of a system at its nominal steady-state operating point. ALS analysis must go beyond the static steady state to include dynamic system design. All life support systems exhibit behavior that varies over time. ALS systems must respond to equipment operating cycles, repair schedules, and occasional off-nominal behavior or malfunctions. Biological components, such as bioreactors, composters, and food plant growth chambers, usually have operating cycles or other complex time behavior. Buffer sizes, material stocks, and resupply rates determine dynamic system behavior and directly affect system mass and cost. Dynamic simulation is needed to avoid the extremes of costly over-design of buffers and material reserves or system failure due to insufficient buffers and lack of stored material.

  19. A Long-Lived Oscillatory Space-Time Correlation Function of Two Dimensional Colloids

    NASA Astrophysics Data System (ADS)

    Kim, Jeongmin; Sung, Bong June

    2014-03-01

    Diffusion of a colloid in solution has drawn significant attention for a century. A well-known behavior of the colloid is called Brownian motion : the particle displacement probability distribution (PDPD) is Gaussian and the mean-square displacement (MSD) is linear with time. However, recent simulation and experimental studies revealed the heterogeneous dynamics of colloids near glass transitions or in complex environments such as entangled actin, PDPD exhibited the exponential tail at a large length instead of being Gaussian at all length scales. More interestingly, PDPD is still exponential even when MSD was still linear with time. It requires a refreshing insight on the colloidal diffusion in the complex environments. In this work, we study heterogeneous dynamics of two dimensional (2D) colloids using molecular dynamics simulations. Unlike in three dimensions, 2D solids do not follow the Lindemann melting criterion. The Kosterlitz-Thouless-Halperin-Nelson-Young theory predicts two-step phase transitions with an intermediate phase, the hexatic phase between isotropic liquids and solids. Near solid-hexatic transition, PDPD shows interesting oscillatory behavior between a central Gaussian part and an exponential tail. Until 12 times longer than translational relaxation time, the oscillatory behavior still persists even after entering the Fickian regime. We also show that multi-layered kinetic clusters account for heterogeneous dynamics of 2D colloids with the long-lived anomalous oscillatory PDPD.

  20. Influences of hunting on the behavior of white-tailed deer: implications for conservation of the Florida panther

    Treesearch

    John C. Kilgo; Ronald F. Labisky; Duane E. Fritzen

    1998-01-01

    The effects of deer hunting by humans on deer population dynamics and behavior may indirectly affect the population dynamics and behavior of deer predators. The authors present data on the effects of hunting on the behavior of white-tailed deer (Odocoileus virginianus) on the Osceola National Forest, a potential reintroduction site for the endangered Florida panther (...

  1. Teaching Cardiac Electrophysiology Modeling to Undergraduate Students: Laboratory Exercises and GPU Programming for the Study of Arrhythmias and Spiral Wave Dynamics

    ERIC Educational Resources Information Center

    Bartocci, Ezio; Singh, Rupinder; von Stein, Frederick B.; Amedome, Avessie; Caceres, Alan Joseph J.; Castillo, Juan; Closser, Evan; Deards, Gabriel; Goltsev, Andriy; Ines, Roumwelle Sta.; Isbilir, Cem; Marc, Joan K.; Moore, Diquan; Pardi, Dana; Sadhu, Sandeep; Sanchez, Samuel; Sharma, Pooja; Singh, Anoopa; Rogers, Joshua; Wolinetz, Aron; Grosso-Applewhite, Terri; Zhao, Kai; Filipski, Andrew B.; Gilmour, Robert F., Jr.; Grosu, Radu; Glimm, James; Smolka, Scott A.; Cherry, Elizabeth M.; Clarke, Edmund M.; Griffeth, Nancy; Fenton, Flavio H.

    2011-01-01

    As part of a 3-wk intersession workshop funded by a National Science Foundation Expeditions in Computing award, 15 undergraduate students from the City University of New York collaborated on a study aimed at characterizing the voltage dynamics and arrhythmogenic behavior of cardiac cells for a broad range of physiologically relevant conditions…

  2. Dynamics of regional brain activity in epilepsy: a cross-disciplinary study on both intracranial and scalp-recorded epileptic seizures

    NASA Astrophysics Data System (ADS)

    Minadakis, George; Ventouras, Errikos; Gatzonis, Stylianos D.; Siatouni, Anna; Tsekou, Hara; Kalatzis, Ioannis; Sakas, Damianos E.; Stonham, John

    2014-04-01

    Objective. Recent cross-disciplinary literature suggests a dynamical analogy between earthquakes and epileptic seizures. This study extends the focus of inquiry for the applicability of models for earthquake dynamics to examine both scalp-recorded and intracranial electroencephalogram recordings related to epileptic seizures. Approach. First, we provide an updated definition of the electric event in terms of magnitude and we focus on the applicability of (i) a model for earthquake dynamics, rooted in a nonextensive Tsallis framework, (ii) the traditional Gutenberg and Richter law and (iii) an alternative method for the magnitude-frequency relation for earthquakes. Second, we apply spatiotemporal analysis in terms of nonextensive statistical physics and we further examine the behavior of the parameters included in the nonextensive formula for both types of electroencephalogram recordings under study. Main results. We confirm the previously observed power-law distribution, showing that the nonextensive formula can adequately describe the sequences of electric events included in both types of electroencephalogram recordings. We also show the intermittent behavior of the epileptic seizure cycle which is analogous to the earthquake cycles and we provide evidence of self-affinity of the regional electroencephalogram epileptic seizure activity. Significance. This study may provide a framework for the analysis and interpretation of epileptic brain activity and other biological phenomena with similar underlying dynamical mechanisms.

  3. Characterization and Dynamic Behavior of Wild Yeast during Spontaneous Wine Fermentation in Steel Tanks and Amphorae

    PubMed Central

    Díaz, Cecilia; Molina, Ana María; Nähring, Jörg; Fischer, Rainer

    2013-01-01

    We studied the dynamic behavior of wild yeasts during spontaneous wine fermentation at a winery in the Valais region of Switzerland. Wild yeasts in the winery environment were characterized using a PCR-RFLP method. Up to 11 different yeast species were isolated from the vineyard air, whereas only seven were recovered from the grapes surface. We initially investigated a cultureindependent method in pilot-scale steel fermentation tanks and found a greater diversity of yeasts in the musts from two red grape varieties compared to three white grape varieties. We found that the yeasts Metschnikowia pulcherrima, Rhodotorula mucilaginosa, Pichia kluyveri, P. membranifaciens and Saccharomyces cerevisiae remained active at the end of the fermentation. We also studied the dynamic behavior of yeasts in Qvevris for the first time using a novel, highlysensitive quantitative real-time PCR method. We found that non-Saccharomyces yeasts were present during the entire fermentation process, with R. mucilaginosa and P. anomala the most prominent species. We studied the relationship between the predominance of different species and the output of the fermentation process. We identified so-called spoilage yeasts in all the fermentations, but high levels of acetic acid accumulated only in those fermentations with an extended lag phase. PMID:23738327

  4. Cooperative behavior and phase transitions in co-evolving stag hunt game

    NASA Astrophysics Data System (ADS)

    Zhang, W.; Li, Y. S.; Xu, C.; Hui, P. M.

    2016-02-01

    Cooperative behavior and different phases in a co-evolving network dynamics based on the stag hunt game is studied. The dynamical processes are parameterized by a payoff r that tends to promote non-cooperative behavior and a probability q for a rewiring attempt that could isolate the non-cooperators. The interplay between the parameters leads to different phases. Detailed simulations and a mean field theory are employed to reveal the properties of different phases. For small r, the cooperators are the majority and form a connected cluster while the non-cooperators increase with q but remain isolated over the whole range of q, and it is a static phase. For sufficiently large r, cooperators disappear in an intermediate range qL ≤ q ≤qU and a dynamical all-non-cooperators phase results. For q >qU, a static phase results again. A mean field theory based on how the link densities change in time by the co-evolving dynamics is constructed. The theory gives a phase diagram in the q- r parameter space that is qualitatively in agreement with simulation results. The sources of discrepancies between theory and simulations are discussed.

  5. The dynamics of injection drug users' personal networks and HIV risk behaviors.

    PubMed

    Costenbader, Elizabeth C; Astone, Nan M; Latkin, Carl A

    2006-07-01

    While studies of the social networks of injection drug users (IDUs) have provided insight into how the structures of interpersonal relationships among IDUs affect HIV risk behaviors, the majority of these studies have been cross-sectional. The present study examined the dynamics of IDUs' social networks and HIV risk behaviors over time. Using data from a longitudinal HIV-intervention study conducted in Baltimore, MD, this study assessed changes in the composition of the personal networks of 409 IDUs. We used a multi-nomial logistic regression analysis to assess the association between changes in network composition and simultaneous changes in levels of injection HIV risk behaviors. Using the regression parameters generated by the multi-nomial model, we estimated the predicted probability of being in each of four HIV risk behavior change groups. Compared to the base case, individuals who reported an entirely new set of drug-using network contacts at follow-up were more than three times as likely to be in the increasing risk group. In contrast, reporting all new non-drug-using contacts at follow-up increased the likelihood of being in the stable low-risk group by almost 50% and decreased the probability of being in the consistently high-risk group by more than 70%. The findings from this study show that, over and above IDUs' baseline characteristics, changes in their personal networks are associated with changes in individuals' risky injection behaviors. They also suggest that interventions aimed at reducing HIV risk among IDUs might benefit from increasing IDUs' social contacts with individuals who are not drug users.

  6. Phase behavior of metastable liquid silicon at negative pressure: Ab initio molecular dynamics

    NASA Astrophysics Data System (ADS)

    Zhao, G.; Yu, Y. J.; Yan, J. L.; Ding, M. C.; Zhao, X. G.; Wang, H. Y.

    2016-04-01

    Extensive first-principle molecular dynamics simulations are performed to study the phase behavior of metastable liquid Si at negative pressure. Our results show that the high-density liquid (HDL) and HDL-vapor spinodals indeed form a continuous reentrant curve and the liquid-liquid critical point seems to just coincide with its minimum. The line of density maxima also has a strong tendency to pass through this minimum. The phase behaviour of metastable liquid Si therefore tends to be a critical-point-free scenario rather than a second-critical-point one based on SW potential.

  7. Sudden transition and sudden change from open spin environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Zheng-Da; School of Science, Jiangnan University, Wuxi 214122; Xu, Jing-Bo, E-mail: xujb@zju.edu.cn

    2014-11-15

    We investigate the necessary conditions for the existence of sudden transition or sudden change phenomenon for appropriate initial states under dephasing. As illustrative examples, we study the behaviors of quantum correlation dynamics of two noninteracting qubits in independent and common open spin environments, respectively. For the independent environments case, we find that the quantum correlation dynamics is closely related to the Loschmidt echo and the dynamics exhibits a sudden transition from classical to quantum correlation decay. It is also shown that the sudden change phenomenon may occur for the common environment case and stationary quantum discord is found at themore » high temperature region of the environment. Finally, we investigate the quantum criticality of the open spin environment by exploring the probability distribution of the Loschmidt echo and the scaling transformation behavior of quantum discord, respectively. - Highlights: • Sudden transition or sudden change from open spin baths are studied. • Quantum discord is related to the Loschmidt echo in independent open spin baths. • Steady quantum discord is found in a common open spin bath. • The probability distribution of the Loschmidt echo is analyzed. • The scaling transformation behavior of quantum discord is displayed.« less

  8. Slow molecular dynamics of water in a lyotropic complex fluid studied by deuterium conventional and spin-lattice relaxometry NMR.

    PubMed

    Rodríguez, C R; Pusiol, D J; Figueiredo Neto, A M; Seitter, R-O

    2002-03-01

    A nuclear magnetic resonance study of protons and deuterons in the mesomorphic phases of the micellar lyotropic mixture potassium laurate/1-decanol/heavy water is reported. The slow dynamical behavior of water molecules has been investigated with deuterons spin-lattice relaxation dispersion in the Larmor frequency range 10(3)

  9. The dynamic properties behavior of high strength concrete under different strain rate

    NASA Astrophysics Data System (ADS)

    Abdullah, Hasballah; Husin, Saiful; Umar, Hamdani; Rizal, Samsul

    2005-04-01

    This paper present a number experimental data and numerical technique used in the dynamic behavior of high strength concrete. A testing device is presented for the experimental study of dynamic behavior material under high strain rates. The specimen is loaded by means of a high carbon steel Hopkinson pressure bar (40 mm diameter, 3000 mm long input bar and 1500 mm long out put bar) allowing for the testing of specimen diameter is large enough in relation to the size of aggregates. The other method also proposed for measuring tensile strength, the measurement method based on the superposition and concentration of tensile stress wave reflected both from the free-free ends of striking bar and the specimen bar. The compression Hopkinson bar test, the impact tensile test of high strength concrete bars are performed, together with compression static strength test. In addition, the relation between break position under finite element simulation and impact tensile strength are examined. The three-dimensional simulation of the specimen under transient loading are presented and comparisons between the experimental and numerical simulation on strain rate effects of constitutive law use in experimental are study.

  10. A multi-stakeholder framework for sustainable energy behavior: A multidisciplinary systems study

    NASA Astrophysics Data System (ADS)

    Khansari, Nasrin

    Growth of population and moving towards over-consumption and over-pollution are significant threats to the environment and therefore necessitate moving towards sustainability approaches. CO2 emissions are considered to be the main basis of the incredible increase in the earth's surface temperature in recent years. Most emissions result from human activities. Thus, developing a detailed framework representing the parameters affecting individuals' energy behaviors is required. This dissertation offers an integrated conceptual framework to increase the efficiency of energy systems under complex and uncertainty conditions, facilitate energy consumption problem solving, and support the development of capacities at the individual, social, and technical levels to improve managing energy consumptions in the future. This research presents a conceptual soft systems model to explore the process of individuals' energy behavior change based on socio-structural and techno-structural contexts. In addition, a comprehensive model based on systems dynamics principles is presented to address the issue of CO2 emissions related to the households' energy consumption behavior. The proposed systems dynamics model provides a broad overview of the key agents affecting energy consumption, including government/public sector, households, and power industry. The model is created based on the research in the literature discussing the causal relations between various variables. The proposed systems dynamics model is verified by simulating different scenarios. In this research a survey is designed and conducted to investigate the role of individual, social and technical behaviors in reducing energy consumption, energy costs and carbon footprints based on the energy use profile. In sum, this study investigates the process of energy behavior change based on socio-structural and techno-structural contexts.

  11. Microstructural Evolution and Dynamic Softening Mechanisms of Al-Zn-Mg-Cu Alloy during Hot Compressive Deformation

    PubMed Central

    Shi, Cangji; Lai, Jing; Chen, X.-Grant

    2014-01-01

    The hot deformation behavior and microstructural evolution of an Al-Zn-Mg-Cu (7150) alloy was studied during hot compression at various temperatures (300 to 450 °C) and strain rates (0.001 to 10 s−1). A decline ratio map of flow stresses was proposed and divided into five deformation domains, in which the flow stress behavior was correlated with different microstructures and dynamic softening mechanisms. The results reveal that the dynamic recovery is the sole softening mechanism at temperatures of 300 to 400 °C with various strain rates and at temperatures of 400 to 450 °C with strain rates between 1 and 10 s−1. The level of dynamic recovery increases with increasing temperature and with decreasing strain rate. At the high deformation temperature of 450 °C with strain rates of 0.001 to 0.1 s−1, a partially recrystallized microstructure was observed, and the dynamic recrystallization (DRX) provided an alternative softening mechanism. Two kinds of DRX might operate at the high temperature, in which discontinuous dynamic recrystallization was involved at higher strain rates and continuous dynamic recrystallization was implied at lower strain rates. PMID:28788454

  12. On the relationship between the dynamic behavior and nanoscale staggered structure of the bone

    NASA Astrophysics Data System (ADS)

    Qwamizadeh, Mahan; Zhang, Zuoqi; Zhou, Kun; Zhang, Yong Wei

    2015-05-01

    Bone, a typical load-bearing biological material, composed of ordinary base materials such as organic protein and inorganic mineral arranged in a hierarchical architecture, exhibits extraordinary mechanical properties. Up to now, most of previous studies focused on its mechanical properties under static loading. However, failure of the bone occurs often under dynamic loading. An interesting question is: Are the structural sizes and layouts of the bone related or even adapted to the functionalities demanded by its dynamic performance? In the present work, systematic finite element analysis was performed on the dynamic response of nanoscale bone structures under dynamic loading. It was found that for a fixed mineral volume fraction and unit cell area, there exists a nanoscale staggered structure at some specific feature size and layout which exhibits the fastest attenuation of stress waves. Remarkably, these specific feature sizes and layouts are in excellent agreement with those experimentally observed in the bone at the same scale, indicating that the structural size and layout of the bone at the nanoscale are evolutionarily adapted to its dynamic behavior. The present work points out the importance of dynamic effect on the biological evolution of load-bearing biological materials.

  13. Circadian clock and cardiac vulnerability: A time stamp on multi-scale neuroautonomic regulation

    NASA Astrophysics Data System (ADS)

    Ivanov, Plamen Ch.

    2005-03-01

    Cardiovascular vulnerability displays a 24-hour pattern with a peak between 9AM and 11AM. This daily pattern in cardiac risk is traditionally attributed to external factors including activity levels and sleep-wake cycles. However,influences from the endogenous circadian pacemaker independent from behaviors may also affect cardiac control. We investigate heartbeat dynamics in healthy subjects recorded throughout a 10-day protocol wherein the sleep/wake and behavior cycles are desynchronized from the endogenous circadian cycle,enabling assessment of circadian factors while controlling for behavior-related factors. We demonstrate that the scaling exponent characterizing temporal correlations in heartbeat dynamics over multiple time scales does exhibit a significant circadian rhythm with a sharp peak at the circadian phase corresponding to the period 9-11AM, and that this rhythm is independent from scheduled behaviors and mean heart rate. Our findings of strong circadian rhythms in the multi-scale heartbeat dynamics of healthy young subjects indicate that the underlying mechanism of cardiac regulation is strongly influenced by the endogenous circadian pacemaker. A similar circadian effect in vulnerable individuals with underlying cardiovascular disease would contribute to the morning peak of adverse cardiac events observed in epidemiological studies.

  14. A study of the adequacy of quasi-geostrophic dynamics for modeling the effect of frontal cyclones on the larger scale flow

    NASA Technical Reports Server (NTRS)

    Mudrick, Stephen

    1987-01-01

    The evolution of individual cyclone waves is studied in order to see how well quasi-geostrophic (QG) dynamics can simulate the behavior of primitive equations (PE) dynamics. This work is an extension of a similar study (Mudrick, 1982); emphasis is placed here on adding a frontal zone and other more diverse features to the basic states used. In addition, sets of PE integrations, with and without friction, are used to study the formation of surface occluded fronts within the evolving cyclones. Results of the study are summarized at the beginning of the report.

  15. A Bottom-Up Approach to Understanding Protein Layer Formation at Solid-Liquid Interfaces

    PubMed Central

    Kastantin, Mark; Langdon, Blake B.; Schwartz, Daniel K.

    2014-01-01

    A common goal across different fields (e.g. separations, biosensors, biomaterials, pharmaceuticals) is to understand how protein behavior at solid-liquid interfaces is affected by environmental conditions. Temperature, pH, ionic strength, and the chemical and physical properties of the solid surface, among many factors, can control microscopic protein dynamics (e.g. adsorption, desorption, diffusion, aggregation) that contribute to macroscopic properties like time-dependent total protein surface coverage and protein structure. These relationships are typically studied through a top-down approach in which macroscopic observations are explained using analytical models that are based upon reasonable, but not universally true, simplifying assumptions about microscopic protein dynamics. Conclusions connecting microscopic dynamics to environmental factors can be heavily biased by potentially incorrect assumptions. In contrast, more complicated models avoid several of the common assumptions but require many parameters that have overlapping effects on predictions of macroscopic, average protein properties. Consequently, these models are poorly suited for the top-down approach. Because the sophistication incorporated into these models may ultimately prove essential to understanding interfacial protein behavior, this article proposes a bottom-up approach in which direct observations of microscopic protein dynamics specify parameters in complicated models, which then generate macroscopic predictions to compare with experiment. In this framework, single-molecule tracking has proven capable of making direct measurements of microscopic protein dynamics, but must be complemented by modeling to combine and extrapolate many independent microscopic observations to the macro-scale. The bottom-up approach is expected to better connect environmental factors to macroscopic protein behavior, thereby guiding rational choices that promote desirable protein behaviors. PMID:24484895

  16. Emergence of airway smooth muscle mechanical behavior through dynamic reorganization of contractile units and force transmission pathways

    PubMed Central

    2014-01-01

    Airway hyperresponsiveness (AHR) in asthma remains poorly understood despite significant research effort to elucidate relevant underlying mechanisms. In particular, a significant body of experimental work has focused on the effect of tidal fluctuations on airway smooth muscle (ASM) cells, tissues, lung slices, and whole airways to understand the bronchodilating effect of tidal breathing and deep inspirations. These studies have motivated conceptual models that involve dynamic reorganization of both cytoskeletal components as well as contractile machinery. In this article, a biophysical model of the whole ASM cell is presented that combines 1) crossbridge cycling between actin and myosin; 2) actin-myosin disconnectivity, under imposed length changes, to allow dynamic reconfiguration of “force transmission pathways”; and 3) dynamic parallel-to-serial transitions of contractile units within these pathways that occur through a length fluctuation. Results of this theoretical model suggest that behavior characteristic of experimentally observed force-length loops of maximally activated ASM strips can be explained by interactions among the three mechanisms. Crucially, both sustained disconnectivity and parallel-to-serial transitions are necessary to explain the nature of hysteresis and strain stiffening observed experimentally. The results provide strong evidence that dynamic rearrangement of contractile machinery is a likely mechanism underlying many of the phenomena observed at timescales associated with tidal breathing. This theoretical cell-level model captures many of the salient features of mechanical behavior observed experimentally and should provide a useful starting block for a bottom-up approach to understanding tissue-level mechanical behavior. PMID:24481961

  17. Dynamic vapor sorption isotherms of medium grain rice varieties

    USDA-ARS?s Scientific Manuscript database

    It is known that the two popular medium rice varieties, namely M202 and M206, in California have different fissuring resistances. Therefore, the main goal of this study was to investigate the sorption behavior of these two varieties by a new approach using dynamic vapor sorption (DVS) method for elu...

  18. Dynamic loading and release in Johnson Space Center Lunar regolith simulant

    NASA Astrophysics Data System (ADS)

    Plesko, C. S.; Jensen, B. J.; Wescott, B. L.; Skinner McKee, T. E.

    2011-10-01

    The behavior of regolith under dynamic loading is important for the study of planetary evolution, impact cratering, and other topics. Here we present the initial results of explosively driven flier plate experiments and numerical models of compaction and release in samples of the JSC-1A Lunar regolith simulant.

  19. Mother-Infant Dyadic State Behaviour: Dynamic Systems in the Context of Risk

    ERIC Educational Resources Information Center

    Coburn, Shayna S.; Crnic, Keith A.; Ross, Emily K.

    2015-01-01

    Dynamic systems methods offer invaluable insight into the nuances of the early parent-child relationship. This prospective study aimed to highlight the characteristics of mother-infant dyadic behavior at 12?weeks post-partum using state space grid analysis (total n?=?322). We also examined whether maternal prenatal depressive symptoms and…

  20. A comparison of dynamic mechanical properties of processing-tomato peel as affected by hot lye and infrared radiation heating for peeling

    USDA-ARS?s Scientific Manuscript database

    This study investigated the viscoelastic characteristics of tomato skins subjected to conventional hot lye peeling and emerging infrared-dry peeling by using dynamic mechanical analysis (DMA). Three DMA testing modes, including temperature ramp, frequency sweep, and creep behavior test, were conduct...

  1. The Nonlinear Magnetosphere: Expressions in MHD and in Kinetic Models

    NASA Technical Reports Server (NTRS)

    Hesse, Michael; Birn, Joachim

    2011-01-01

    Like most plasma systems, the magnetosphere of the Earth is governed by nonlinear dynamic evolution equations. The impact of nonlinearities ranges from large scales, where overall dynamics features are exhibiting nonlinear behavior, to small scale, kinetic, processes, where nonlinear behavior governs, among others, energy conversion and dissipation. In this talk we present a select set of examples of such behavior, with a specific emphasis on how nonlinear effects manifest themselves in MHD and in kinetic models of magnetospheric plasma dynamics.

  2. An overview of the crash dynamics failure behavior of metal and composite aircraft structures

    NASA Technical Reports Server (NTRS)

    Carden, Huey D.; Boitnott, Richard L.; Fasanella, Edwin L.; Jones, Lisa E.

    1991-01-01

    An overview of failure behavior results is presented from some of the crash dynamics research conducted with concepts of aircraft elements and substructure not necessarily designed or optimized for energy absorption or crash loading considerations. Experimental and analytical data are presented that indicate some general trends in the failure behavior of a class of composite structures that includes fuselage panels, individual fuselage sections, fuselage frames, skeleton subfloors with stringers and floor beams without skin covering, and subfloors with skin added to the frame stringer structure. Although the behavior is complex, a strong similarity in the static/dynamic failure behavior among these structures is illustrated through photographs of the experimental results and through analytical data of generic composite structural models.

  3. "Is political behavior a viable coping strategy to perceived organizational politics? Unveiling the underlying resource dynamics": Correction to Sun and Chen (2017).

    PubMed

    2017-10-01

    Reports an error in "Is Political Behavior a Viable Coping Strategy to Perceived Organizational Politics? Unveiling the Underlying Resource Dynamics" by Shuhua Sun and Huaizhong Chen ( Journal of Applied Psychology , Advanced Online Publication, May 22, 2017, np). In the article, Table 1 contained a formatting error. Correlation coefficient values in the last four cells of column 6 were misplaced with correlation coefficient values in the last four cells of column 7. All versions of this article have been corrected. (The following abstract of the original article appeared in record 2017-22542-001.) We conduct a theory-driven empirical investigation on whether political behavior, as a coping strategy to perceived organizational politics, creates resource trade-offs in moderating the relationship between perceived organizational politics and task performance. Drawing on conservation of resources theory, we hypothesize that political behavior mitigates the adverse effect of perceived organizational politics on task performance via psychological empowerment, yet exacerbates its adverse effect on task performance via emotional exhaustion. Three-wave multisource data from a sample of 222 employees and their 75 supervisors were collected for hypothesis testing. Findings supported our hypotheses. Our study enhances understandings of the complex resource dynamics of using political behavior to cope with perceived organizational politics and highlights the need to move stress-coping research from a focus on the stress-buffering effect of coping on outcomes to a focus on the underlying competing resource dynamics. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  4. Self-organized Criticality in Hierarchical Brain Network

    NASA Astrophysics Data System (ADS)

    Yang, Qiu-Ying; Zhang, Ying-Yue; Chen, Tian-Lun

    2008-11-01

    It is shown that the cortical brain network of the macaque displays a hierarchically clustered organization and the neuron network shows small-world properties. Now the two factors will be considered in our model and the dynamical behavior of the model will be studied. We study the characters of the model and find that the distribution of avalanche size of the model follows power-law behavior.

  5. Dynamic Investigation of Static Divergence: Analysis and Testing

    NASA Technical Reports Server (NTRS)

    Heeg, Jennifer

    2000-01-01

    The phenomenon known as aeroelastic divergence is the focus of this work. The analyses and experiment presented here show that divergence can occur without a structural dynamic mode losing its oscillatory nature. Aeroelastic divergence occurs when the structural restorative capability or stiffness of a structure is overwhelmed by the static aerodynamic moment. This static aeroelastic coupling does not require the structural dynamic system behavior to cease, however. Aeroelastic changes in the dynamic mode behavior are governed not only by the stiffness, but by damping and inertial properties. The work presented here supports these fundamental assertions by examining a simple system: a typical section airfoil with only a rotational structural degree of freedom. Analytical results identified configurations that exhibit different types of dynamic mode behavior as the system encounters divergence. A wind tunnel model was designed and tested to examine divergence experimentally. The experimental results validate the analytical calculations and explicitly examine the divergence phenomenon where the dynamic mode persists. Three configurations of the wind tunnel model were tested. The experimental results agree very well with the analytical predictions of subcritical characteristics, divergence velocity, and behavior of the noncritical dynamic mode at divergence.

  6. Wind Turbine Structural Dynamics

    NASA Technical Reports Server (NTRS)

    Miller, D. R. (Editor)

    1978-01-01

    A workshop on wind turbine structural dynamics was held to review and document current United States work on the dynamic behavior of large wind turbines, primarily of the horizontal-axis type, and to identify and discuss other wind turbine configurations that may have lower cost and weight. Information was exchanged on the following topics: (1) Methods for calculating dynamic loads; (2) Aeroelasticity stability (3) Wind loads, both steady and transient; (4) Critical design conditions; (5) Drive train dynamics; and (6) Behavior of operating wind turbines.

  7. Impaired Object Recognition but Normal Social Behavior and Ultrasonic Communication in Cofilin1 Mutant Mice

    PubMed Central

    Sungur, A. Özge; Stemmler, Lea; Wöhr, Markus; Rust, Marco B.

    2018-01-01

    Autism spectrum disorder (ASD), schizophrenia (SCZ) and intellectual disability (ID) show a remarkable overlap in symptoms, including impairments in cognition, social behavior and communication. Human genetic studies revealed an enrichment of mutations in actin-related genes for these disorders, and some of the strongest candidate genes control actin dynamics. These findings led to the hypotheses: (i) that ASD, SCZ and ID share common disease mechanisms; and (ii) that, at least in a subgroup of affected individuals, defects in the actin cytoskeleton cause or contribute to their pathologies. Cofilin1 emerged as a key regulator of actin dynamics and we previously demonstrated its critical role for synaptic plasticity and associative learning. Notably, recent studies revealed an over-activation of cofilin1 in mutant mice displaying ASD- or SCZ-like behavioral phenotypes, suggesting that dysregulated cofilin1-dependent actin dynamics contribute to their behavioral abnormalities, such as deficits in social behavior. These findings let us hypothesize: (i) that, apart from cognitive impairments, cofilin1 mutants display additional behavioral deficits with relevance to ASD or SCZ; and (ii) that our cofilin1 mutants represent a valuable tool to study the underlying disease mechanisms. To test our hypotheses, we compared social behavior and ultrasonic communication of juvenile mutants to control littermates, and we did not obtain evidence for impaired direct reciprocal social interaction, social approach or social memory. Moreover, concomitant emission of ultrasonic vocalizations was not affected and time-locked to social activity, supporting the notion that ultrasonic vocalizations serve a pro-social communicative function as social contact calls maintaining social proximity. Finally, cofilin1 mutants did not display abnormal repetitive behaviors. Instead, they performed weaker in novel object recognition, thereby demonstrating that cofilin1 is relevant not only for associative learning, but also for “non-matching-to-sample” learning. Here we report the absence of an ASD- or a SCZ-like phenotype in cofilin1 mutants, and we conclude that cofilin1 is relevant specifically for non-social cognition. PMID:29515378

  8. Optical studies of dynamical processes in disordered materials

    NASA Astrophysics Data System (ADS)

    Yen, William M.

    1990-12-01

    The research continues to focus on the study of the structure and the dynamic behavior of insulating solids which can be activated optically. The physical processes which produce relaxation and energy transfer in the optical excited states were of particular interest. The studies were based principally on optical laser spectroscopic techniques which reveal a more detailed view of the materials of interest and which will ultimately lead to the development of more efficient optoelectronic materials.

  9. The Dynamics of the Law of Effect: A Comparison of Models

    ERIC Educational Resources Information Center

    Navakatikyan, Michael A.; Davison, Michael

    2010-01-01

    Dynamical models based on three steady-state equations for the law of effect were constructed under the assumption that behavior changes in proportion to the difference between current behavior and the equilibrium implied by current reinforcer rates. A comparison of dynamical models showed that a model based on Navakatikyan's (2007) two-component…

  10. Lattice constants of pure methane and carbon dioxide hydrates at low temperatures. Implementing quantum corrections to classical molecular dynamics studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Costandy, Joseph; Michalis, Vasileios K.; Economou, Ioannis G., E-mail: i.tsimpanogiannis@qatar.tamu.edu, E-mail: ioannis.economou@qatar.tamu.edu

    2016-03-28

    We introduce a simple correction to the calculation of the lattice constants of fully occupied structure sI methane or carbon dioxide pure hydrates that are obtained from classical molecular dynamics simulations using the TIP4PQ/2005 water force field. The obtained corrected lattice constants are subsequently used in order to obtain isobaric thermal expansion coefficients of the pure gas hydrates that exhibit a trend that is significantly closer to the experimental behavior than previously reported classical molecular dynamics studies.

  11. How to analytically characterize the epidemic threshold within the coupled disease-behavior systems?. Comment on "Coupled disease-behavior dynamics on complex networks: A review" by Z. Wang et al.

    NASA Astrophysics Data System (ADS)

    Xia, Cheng-Yi; Ding, Shuai; Sun, Shi-Wen; Wang, Li; Gao, Zhong-Ke; Wang, Juan

    2015-12-01

    As is well known, outbreak of epidemics may drive the human population to take some necessary measures to protect themselves from not being infected by infective ones, these precautions in turn will also keep from the further spreading of infectious diseases among the population. Thus, to fully comprehend the epidemic spreading behavior within real-world systems, the interplay between disease dynamics and human behavioral and social dynamics needs to be considered simultaneously, such that some effective containment-measures can be successfully developed [1-3].

  12. Quasielastic neutron scattering study of water confined in carbon nanopores

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mavila Chathoth, Suresh; Mamontov, Eugene; Kolesnikov, Alexander I

    2011-01-01

    Microscopic dynamics of water confined in nanometer and sub-nanometer pores of carbide-derived carbon (CDC) were investigated using quasielastic neutron scattering (QENS). The temperature dependence of the average relaxation time, {tau}, exhibits super-Arrhenius behavior that could be described by Vogel-Fulcher-Tammann (VFT) law in the range from 250 K to 190 K; below this temperature, {tau} follows Arrhenius temperature dependence. The temperature of the dynamic crossover between the two regimes in water confined in the CDC pores is similar to that observed for water in hydrophobic confinement of the larger size, such as 14 {angstrom} ordered mesoporous carbon (CMK) and 16 {angstrom}more » double-wall carbon nanotubes. Thus, the dynamical behavior of water remains qualitatively unchanged even in the very small hydrophobic pores.« less

  13. Simulation of noisy dynamical system by Deep Learning

    NASA Astrophysics Data System (ADS)

    Yeo, Kyongmin

    2017-11-01

    Deep learning has attracted huge attention due to its powerful representation capability. However, most of the studies on deep learning have been focused on visual analytics or language modeling and the capability of the deep learning in modeling dynamical systems is not well understood. In this study, we use a recurrent neural network to model noisy nonlinear dynamical systems. In particular, we use a long short-term memory (LSTM) network, which constructs internal nonlinear dynamics systems. We propose a cross-entropy loss with spatial ridge regularization to learn a non-stationary conditional probability distribution from a noisy nonlinear dynamical system. A Monte Carlo procedure to perform time-marching simulations by using the LSTM is presented. The behavior of the LSTM is studied by using noisy, forced Van der Pol oscillator and Ikeda equation.

  14. Creating Time: Social Collaboration in Music Improvisation.

    PubMed

    Walton, Ashley E; Washburn, Auriel; Langland-Hassan, Peter; Chemero, Anthony; Kloos, Heidi; Richardson, Michael J

    2018-01-01

    Musical collaboration emerges from the complex interaction of environmental and informational constraints, including those of the instruments and the performance context. Music improvisation in particular is more like everyday interaction in that dynamics emerge spontaneously without a rehearsed score or script. We examined how the structure of the musical context affords and shapes interactions between improvising musicians. Six pairs of professional piano players improvised with two different backing tracks while we recorded both the music produced and the movements of their heads, left arms, and right arms. The backing tracks varied in rhythmic and harmonic information, from a chord progression to a continuous drone. Differences in movement coordination and playing behavior were evaluated using the mathematical tools of complex dynamical systems, with the aim of uncovering the multiscale dynamics that characterize musical collaboration. Collectively, the findings indicated that each backing track afforded the emergence of different patterns of coordination with respect to how the musicians played together, how they moved together, as well as their experience collaborating with each other. Additionally, listeners' experiences of the music when rating audio recordings of the improvised performances were related to the way the musicians coordinated both their playing behavior and their bodily movements. Accordingly, the study revealed how complex dynamical systems methods (namely recurrence analysis) can capture the turn-taking dynamics that characterized both the social exchange of the music improvisation and the sounds of collaboration more generally. The study also demonstrated how musical improvisation provides a way of understanding how social interaction emerges from the structure of the behavioral task context. Copyright © 2017 Cognitive Science Society, Inc.

  15. Modeling detour behavior of pedestrian dynamics under different conditions

    NASA Astrophysics Data System (ADS)

    Qu, Yunchao; Xiao, Yao; Wu, Jianjun; Tang, Tao; Gao, Ziyou

    2018-02-01

    Pedestrian simulation approach has been widely used to reveal the human behavior and evaluate the performance of crowd evacuation. In the existing pedestrian simulation models, the social force model is capable of predicting many collective phenomena. Detour behavior occurs in many cases, and the important behavior is a dominate factor of the crowd evacuation efficiency. However, limited attention has been attracted for analyzing and modeling the characteristics of detour behavior. In this paper, a modified social force model integrated by Voronoi diagram is proposed to calculate the detour direction and preferred velocity. Besides, with the consideration of locations and velocities of neighbor pedestrians, a Logit-based choice model is built to describe the detour direction choice. The proposed model is applied to analyze pedestrian dynamics in a corridor scenario with either unidirectional or bidirectional flow, and a building scenario in real-world. Simulation results show that the modified social force model including detour behavior could reduce the frequency of collision and deadlock, increase the average speed of the crowd, and predict more practical crowd dynamics with detour behavior. This model can also be potentially applied to understand the pedestrian dynamics and design emergent management strategies for crowd evacuations.

  16. Dynamic recrystallization behavior of an as-cast TiAl alloy during hot compression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jianbo, E-mail: lijianbo1205@163.com; Liu, Yong, E-mail: yonliu@csu.edu.cn; Wang, Yan, E-mail: wangyan@csu.edu.cn

    2014-11-15

    High temperature compressive deformation behaviors of as-cast Ti–43Al–4Nb–1.4W–0.6B alloy were investigated at temperatures ranging from 1050 °C to 1200 °C, and strain rates from 0.001 s{sup −1} to 1 s{sup −1}. Electron back scattered diffraction technique, scanning electron microscopy and transmission electron microscopy were employed to investigate the microstructural evolutions and nucleation mechanisms of the dynamic recrystallization. The results indicated that the true stress–true strain curves show a dynamic flow softening behavior. The dependence of the peak stress on the deformation temperature and the strain rate can well be expressed by a hyperbolic-sine type equation. The activation energy decreases withmore » increasing the strain. The size of the dynamically recrystallized β grains decreases with increasing the value of the Zener–Hollomon parameter (Z). When the flow stress reaches a steady state, the size of β grains almost remains constant with increasing the deformation strain. The continuous dynamic recrystallization plays a dominant role in the deformation. In order to characterize the evolution of dynamic recrystallization volume fraction, the dynamic recrystallization kinetics was studied by Avrami-type equation. Besides, the role of β phase and the softening mechanism during the hot deformation was also discussed in details. - Highlights: • The size of DRXed β grains decreases with increasing the value of the Z. • The CDRX plays a dominant role in the deformation. • The broken TiB{sub 2} particles can promote the nucleation of DRX.« less

  17. Dynamic Response-by-Response Models of Matching Behavior in Rhesus Monkeys

    ERIC Educational Resources Information Center

    Lau, Brian; Glimcher, Paul W.

    2005-01-01

    We studied the choice behavior of 2 monkeys in a discrete-trial task with reinforcement contingencies similar to those Herrnstein (1961) used when he described the matching law. In each session, the monkeys experienced blocks of discrete trials at different relative-reinforcer frequencies or magnitudes with unsignalled transitions between the…

  18. CFD Investigation of Effect of Depth to Diameter Ratio on Dimple Flow Dynamics

    DTIC Science & Technology

    2007-06-01

    contained dynamic vortical flow structures with behavior varying between each dimple studied. This dynamic vortex activity was observed to be linked... 1 1.1 Research Goals . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Motivation for Research . . . . . . . . . . . . . . . . . . 1 1.3...59 F. 1 . Pressure tap for ReD 20500 Rex 5000 0.05 h/D dimple . . . . . 66 F.2. Pressure tap for ReD 20500 Rex 77000 0.05 h/D dimple

  19. Coagulation dynamics of a blood sample by multiple scattering analysis

    NASA Astrophysics Data System (ADS)

    Faivre, Magalie; Peltié, Philippe; Planat-Chrétien, Anne; Cosnier, Marie-Line; Cubizolles, Myriam; Nougier, Christophe; Négrier, Claude; Pouteau, Patrick

    2011-05-01

    We report a new technique to measure coagulation dynamics on whole-blood samples. The method relies on the analysis of the speckle figure resulting from a whole-blood sample mixed with coagulation reagent and introduced in a thin chamber illuminated with a coherent light. A dynamic study of the speckle reveals a typical behavior due to coagulation. We compare our measured coagulation times to a reference method obtained in a medical laboratory.

  20. New approach of financial volatility duration dynamics by stochastic finite-range interacting voter system.

    PubMed

    Wang, Guochao; Wang, Jun

    2017-01-01

    We make an approach on investigating the fluctuation behaviors of financial volatility duration dynamics. A new concept of volatility two-component range intensity (VTRI) is developed, which constitutes the maximal variation range of volatility intensity and shortest passage time of duration, and can quantify the investment risk in financial markets. In an attempt to study and describe the nonlinear complex properties of VTRI, a random agent-based financial price model is developed by the finite-range interacting biased voter system. The autocorrelation behaviors and the power-law scaling behaviors of return time series and VTRI series are investigated. Then, the complexity of VTRI series of the real markets and the proposed model is analyzed by Fuzzy entropy (FuzzyEn) and Lempel-Ziv complexity. In this process, we apply the cross-Fuzzy entropy (C-FuzzyEn) to study the asynchrony of pairs of VTRI series. The empirical results reveal that the proposed model has the similar complex behaviors with the actual markets and indicate that the proposed stock VTRI series analysis and the financial model are meaningful and feasible to some extent.

  1. Water vapor sorption properties of cellulose nanocrystals and nanofibers using dynamic vapor sorption apparatus.

    PubMed

    Guo, Xin; Wu, Yiqiang; Xie, Xinfeng

    2017-10-27

    Hygroscopic behavior is an inherent characteristic of nanocellulose which strongly affects its applications. In this study, the water vapor sorption behavior of four nanocellulose samples, such as cellulose nanocrystals and nanofibers with cellulose I and II structures (cellulose nanocrystals (CNC) I, CNC II, cellulose nanofibers (CNF) I, and CNF II) were studied by dynamic vapor sorption. The highly reproducible data including the running time, real-time sample mass, target relative humidity (RH), actual RH, and isotherm temperature were recorded during the sorption process. In analyzing these data, significant differences in the total running time, equilibrium moisture content, sorption hysteresis and sorption kinetics between these four nanocellulose samples were confirmed. It was important to note that CNC I, CNC II, CNF I, and CNF II had equilibrium moisture contents of 21.4, 28.6, 33.2, and 38.9%, respectively, at a RH of 95%. Then, the sorption kinetics behavior was accurately described by using the parallel exponential kinetics (PEK) model. Furthermore, the Kelvin-Voigt model was introduced to interpret the PEK behavior and calculate the modulus of these four nanocellulose samples.

  2. New approach of financial volatility duration dynamics by stochastic finite-range interacting voter system

    NASA Astrophysics Data System (ADS)

    Wang, Guochao; Wang, Jun

    2017-01-01

    We make an approach on investigating the fluctuation behaviors of financial volatility duration dynamics. A new concept of volatility two-component range intensity (VTRI) is developed, which constitutes the maximal variation range of volatility intensity and shortest passage time of duration, and can quantify the investment risk in financial markets. In an attempt to study and describe the nonlinear complex properties of VTRI, a random agent-based financial price model is developed by the finite-range interacting biased voter system. The autocorrelation behaviors and the power-law scaling behaviors of return time series and VTRI series are investigated. Then, the complexity of VTRI series of the real markets and the proposed model is analyzed by Fuzzy entropy (FuzzyEn) and Lempel-Ziv complexity. In this process, we apply the cross-Fuzzy entropy (C-FuzzyEn) to study the asynchrony of pairs of VTRI series. The empirical results reveal that the proposed model has the similar complex behaviors with the actual markets and indicate that the proposed stock VTRI series analysis and the financial model are meaningful and feasible to some extent.

  3. Conflict negotiation and autonomy processes in adolescent romantic relationships: an observational study of interdependency in boyfriend and girlfriend effects.

    PubMed

    McIsaac, Caroline; Connolly, Jennifer; McKenney, Katherine S; Pepler, Debra; Craig, Wendy

    2008-12-01

    This study examined the association between conflict negotiation and the expression of autonomy in adolescent romantic partners. Thirty-seven couples participated in a globally coded conflict interaction task. Actor-partner interdependence models (APIM) were used to quantify the extent to which boys' and girls' autonomy was linked solely to their own negotiation of the conflict or whether it was linked conjointly to their own and their partners' negotiation style. Combining agentic autonomy theories and peer socialization models, it was expected that boys' and girls' autonomy would be associated only with their own conflict behaviors when they employed conflict styles reflective of their same gender repertoire, and associated conjointly with self and partner behaviors when they employed gender-atypical conflict styles. Instead of an equal, albeit distinct, positioning in the autonomy dynamic, the results suggested that girls' autonomy is associated solely with their own conflict behaviors, whereas boys' autonomy is jointly associated with their own and their partners' conflict behaviors. We discuss the relative power of boys and girls in emergent dyadic contexts, emphasizing how romantic dynamics shape salient abilities.

  4. Cue Salience and Infant Perseverative Reaching: Tests of the Dynamic Field Theory

    ERIC Educational Resources Information Center

    Clearfield, Melissa W.; Dineva, Evelina; Smith, Linda B.; Diedrich, Frederick J.; Thelen, Esther

    2009-01-01

    Skilled behavior requires a balance between previously successful behaviors and new behaviors appropriate to the present context. We describe a dynamic field model for understanding this balance in infant perseverative reaching. The model predictions are tested with regard to the interaction of two aspects of the typical perseverative reaching…

  5. Dynamic evolution characteristics of a fractional order hydropower station system

    NASA Astrophysics Data System (ADS)

    Gao, Xiang; Chen, Diyi; Yan, Donglin; Xu, Beibei; Wang, Xiangyu

    2018-01-01

    This paper investigates the dynamic evolution characteristics of the hydropower station by introducing the fractional order damping forces. A careful analysis of the dynamic characteristics of the generator shaft system is carried out under different values of fractional order. It turns out the vibration state of the axis coordinates has a certain evolution law with the increase of the fractional order. Significantly, the obtained law exists in the horizontal evolution and vertical evolution of the dynamical behaviors. Meanwhile, some interesting dynamical phenomena were found in this process. The outcomes of this study enrich the nonlinear dynamic theory from the engineering practice of hydropower stations.

  6. Synchronous dynamics of a coupled shaft/bearing/housing system with auxiliary support from a clearance bearing: Analysis and experiment

    NASA Technical Reports Server (NTRS)

    Lawen, James L., Jr.; Flowers, George T.

    1995-01-01

    This study examines the response of a flexible rotor supported by load sharing between linear bearings and an auxiliary clearance bearing. The objective is to develop a better understanding of the dynamical behavior of a magnetic bearing supported rotor system interacting with auxiliary bearings during a critical operating condition. Of particular interest is the effect of coupling between the bearing/housing and shaft vibration on the rotordynamical responses. A simulation model is developed and a number of studies are performed for various parametric configurations. An experimental investigation is also conducted to compare and verify the rotordynamic behavior predicted by the simulation studies. A strategy for reducing synchronous shaft vibration through appropriate design of coupled shaft/bearing/housing vibration modes is identified.

  7. Visualizing global properties of a molecular dynamics trajectory.

    PubMed

    Zhou, Hao; Li, Shangyang; Makowski, Lee

    2016-01-01

    Molecular dynamics (MD) trajectories are very large data sets that contain substantial information about the dynamic behavior of a protein. Condensing these data into a form that can provide intuitively useful understanding of the molecular behavior during the trajectory is a substantial challenge that has received relatively little attention. Here, we introduce the sigma-r plot, a plot of the standard deviation of intermolecular distances as a function of that distance. This representation of global dynamics contains within a single, one-dimensional plot, the average range of motion between pairs of atoms within a macromolecule. Comparison of sigma-r plots calculated from 10 ns trajectories of proteins representing the four major SCOP fold classes indicates diversity of dynamic behaviors which are recognizably different among the four classes. Differences in domain structure and molecular weight also produce recognizable features in sigma-r plots, reflective of differences in global dynamics. Plots generated from trajectories with progressively increasing simulation time reflect the increased sampling of the structural ensemble as a function of time. Single amino acid replacements can give rise to changes in global dynamics detectable through comparison of sigma-r plots. Dynamic behavior of substructures can be monitored by careful choice of interatomic vectors included in the calculation. These examples provide demonstrations of the utility of the sigma-r plot to provide a simple measure of the global dynamics of a macromolecule. © 2015 Wiley Periodicals, Inc.

  8. System dynamics-based evaluation of interventions to promote appropriate waste disposal behaviors in low-income urban areas: A Baltimore case study.

    PubMed

    Guo, Huaqing; Hobbs, Benjamin F; Lasater, Molly E; Parker, Cindy L; Winch, Peter J

    2016-10-01

    Inappropriate waste disposal is a serious issue in many urban neighborhoods, exacerbating environmental, rodent, and public health problems. Governments all over the world have been developing interventions to reduce inappropriate waste disposal. A system dynamics model is proposed to quantify the impacts of interventions on residential waste related behavior. In contrast to other models of municipal solid waste management, the structure of our model is based on sociological and economic studies on how incentives and social norms interactively affect waste disposal behavior, and its parameterization is informed by field work. A case study of low-income urban neighborhoods in Baltimore, MD, USA is presented. The simulation results show the effects of individual interventions, and also identify positive interactions among some potential interventions, especially information and incentive-based policies, as well as their limitations. The model can help policy analysts identify the most promising intervention packages, and then field test those few, rather than having to pilot test all combinations. Sensitivity analyses demonstrate large uncertainties about behavioral responses to some interventions, showing where information from survey research and social experiments would improve policy making. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Symbolic dynamic filtering and language measure for behavior identification of mobile robots.

    PubMed

    Mallapragada, Goutham; Ray, Asok; Jin, Xin

    2012-06-01

    This paper presents a procedure for behavior identification of mobile robots, which requires limited or no domain knowledge of the underlying process. While the features of robot behavior are extracted by symbolic dynamic filtering of the observed time series, the behavior patterns are classified based on language measure theory. The behavior identification procedure has been experimentally validated on a networked robotic test bed by comparison with commonly used tools, namely, principal component analysis for feature extraction and Bayesian risk analysis for pattern classification.

  10. Human dynamics of spending: Longitudinal study of a coalition loyalty program

    NASA Astrophysics Data System (ADS)

    Yi, Il Gu; Jeong, Hyang Min; Choi, Woosuk; Jang, Seungkwon; Lee, Heejin; Kim, Beom Jun

    2014-09-01

    Large-scale data of a coalition loyalty program is analyzed in terms of the temporal dynamics of customers' behaviors. We report that the two main activities of a loyalty program, earning and redemption of points, exhibit very different behaviors. It is also found that as customers become older from their early 20's, both male and female customers increase their earning and redemption activities until they arrive at the turning points, beyond which both activities decrease. The positions of turning points as well as the maximum earned and redeemed points are found to differ for males and females. On top of these temporal behaviors, we identify that there exists a learning effect and customers learn how to earn and redeem points as their experiences accumulate in time.

  11. Materials science. Dynamic mechanical behavior of multilayer graphene via supersonic projectile penetration.

    PubMed

    Lee, Jae-Hwang; Loya, Phillip E; Lou, Jun; Thomas, Edwin L

    2014-11-28

    Multilayer graphene is an exceptional anisotropic material due to its layered structure composed of two-dimensional carbon lattices. Although the intrinsic mechanical properties of graphene have been investigated at quasi-static conditions, its behavior under extreme dynamic conditions has not yet been studied. We report the high-strain-rate behavior of multilayer graphene over a range of thicknesses from 10 to 100 nanometers by using miniaturized ballistic tests. Tensile stretching of the membrane into a cone shape is followed by initiation of radial cracks that approximately follow crystallographic directions and extend outward well beyond the impact area. The specific penetration energy for multilayer graphene is ~10 times more than literature values for macroscopic steel sheets at 600 meters per second. Copyright © 2014, American Association for the Advancement of Science.

  12. Development of hierarchical structures for actions and motor imagery: a constructivist view from synthetic neuro-robotics study.

    PubMed

    Nishimoto, Ryunosuke; Tani, Jun

    2009-07-01

    The current paper shows a neuro-robotics experiment on developmental learning of goal-directed actions. The robot was trained to predict visuo-proprioceptive flow of achieving a set of goal-directed behaviors through iterative tutor training processes. The learning was conducted by employing a dynamic neural network model which is characterized by their multiple time-scale dynamics. The experimental results showed that functional hierarchical structures emerge through stages of developments where behavior primitives are generated in earlier stages and their sequences of achieving goals appear in later stages. It was also observed that motor imagery is generated in earlier stages compared to actual behaviors. Our claim that manipulatable inner representation should emerge through the sensory-motor interactions is corresponded to Piaget's constructivist view.

  13. Feasibility of Using PZT Actuators to Study the Dynamic Behavior of a Rotating Disk due to Rotor-Stator Interaction

    PubMed Central

    Presas, Alexandre; Egusquiza, Eduard; Valero, Carme; Valentin, David; Seidel, Ulrich

    2014-01-01

    In this paper, PZT actuators are used to study the dynamic behavior of a rotating disk structure due to rotor-stator interaction excitation. The disk is studied with two different surrounding fluids—air and water. The study has been performed analytically and validated experimentally. For the theoretical analysis, the natural frequencies and the associated mode shapes of the rotating disk in air and water are obtained with the Kirchhoff-Love thin plate theory coupled with the interaction with the surrounding fluid. A model for the Rotor Stator Interaction that occurs in many rotating disk-like parts of turbomachinery such as compressors, hydraulic runners or alternators is presented. The dynamic behavior of the rotating disk due to this excitation is deduced. For the experimental analysis a test rig has been developed. It consists of a stainless steel disk (r = 198 mm and h = 8 mm) connected to a variable speed motor. Excitation and response are measured from the rotating system. For the rotating excitation four piezoelectric patches have been used. Calibrating the piezoelectric patches in amplitude and phase, different rotating excitation patterns are applied on the rotating disk in air and in water. Results show the feasibility of using PZT to control the response of the disk due to a rotor-stator interaction. PMID:25004151

  14. Deterministic chaos and fractal complexity in the dynamics of cardiovascular behavior: perspectives on a new frontier.

    PubMed

    Sharma, Vijay

    2009-09-10

    Physiological systems such as the cardiovascular system are capable of five kinds of behavior: equilibrium, periodicity, quasi-periodicity, deterministic chaos and random behavior. Systems adopt one or more these behaviors depending on the function they have evolved to perform. The emerging mathematical concepts of fractal mathematics and chaos theory are extending our ability to study physiological behavior. Fractal geometry is observed in the physical structure of pathways, networks and macroscopic structures such the vasculature and the His-Purkinje network of the heart. Fractal structure is also observed in processes in time, such as heart rate variability. Chaos theory describes the underlying dynamics of the system, and chaotic behavior is also observed at many levels, from effector molecules in the cell to heart function and blood pressure. This review discusses the role of fractal structure and chaos in the cardiovascular system at the level of the heart and blood vessels, and at the cellular level. Key functional consequences of these phenomena are highlighted, and a perspective provided on the possible evolutionary origins of chaotic behavior and fractal structure. The discussion is non-mathematical with an emphasis on the key underlying concepts.

  15. Deterministic Chaos and Fractal Complexity in the Dynamics of Cardiovascular Behavior: Perspectives on a New Frontier

    PubMed Central

    Sharma, Vijay

    2009-01-01

    Physiological systems such as the cardiovascular system are capable of five kinds of behavior: equilibrium, periodicity, quasi-periodicity, deterministic chaos and random behavior. Systems adopt one or more these behaviors depending on the function they have evolved to perform. The emerging mathematical concepts of fractal mathematics and chaos theory are extending our ability to study physiological behavior. Fractal geometry is observed in the physical structure of pathways, networks and macroscopic structures such the vasculature and the His-Purkinje network of the heart. Fractal structure is also observed in processes in time, such as heart rate variability. Chaos theory describes the underlying dynamics of the system, and chaotic behavior is also observed at many levels, from effector molecules in the cell to heart function and blood pressure. This review discusses the role of fractal structure and chaos in the cardiovascular system at the level of the heart and blood vessels, and at the cellular level. Key functional consequences of these phenomena are highlighted, and a perspective provided on the possible evolutionary origins of chaotic behavior and fractal structure. The discussion is non-mathematical with an emphasis on the key underlying concepts. PMID:19812706

  16. Monitoring of the microhemodynamic in an aggressive clinical behavior of cerebral hemorrhage using dynamic light scattering techniques

    NASA Astrophysics Data System (ADS)

    Vilensky, M. A.; Semyachkina-Glushkovskaya, O. V.; Timoshina, P. A.; Berdnikova, V. A.; Kuznetsova, Y. V.; Semyachkin-Glushkovsky, I. A.; Agafonov, D. N.; Tuchin, V. V.

    2012-06-01

    This paper presents the results of experimental study of full field laser speckle imaging due to cortex microcirculation state monitoring for laboratory rats under conditions of stroke and the introduction of agents. Three groups of experimental animals from five animals in each group were studied. The behavior of blood flow, studied by speckle imaging technique, matched the expected physiological response to an impact.

  17. An investigation into NVC characteristics of vehicle behaviour using modal analysis

    NASA Astrophysics Data System (ADS)

    Hanouf, Zahir; Faris, Waleed F.; Ahmad, Kartini

    2017-03-01

    NVC characterizations of vehicle behavior is one essential part of the development targets in automotive industries. Therefore understanding dynamic behavior of each structural part of the vehicle is a major requirement in improving the NVC characteristics of a vehicle. The main focus of this research is to investigate structural dynamic behavior of a passenger car using modal analysis part by part technique and apply this method to derive the interior noise sources. In the first part of this work computational modal analysis part by part tests were carried out to identify the dynamic parameters of the passenger car. Finite elements models of the different parts of the car are constructed using VPG 3.2 software. Ls-Dyna pre and post processing was used to identify and analyze the dynamic behavior of each car components panels. These tests had successfully produced natural frequencies and their associated mode shapes of such panels like trunk, hood, roof and door panels. In the second part of this research, experimental modal analysis part by part is performed on the selected car panels to extract modal parameters namely frequencies and mode shapes. The study establishes the step-by-step procedures to carry out experimental modal analysis on the car structures, using single input excitation and multi-output responses (SIMO) technique. To ensure the validity of the results obtained by the previous method an inverse method was done by fixing the response and moving the excitation and the results found were absolutely the same. Finally, comparison between results obtained from both analyses showed good similarity in both frequencies and mode shapes. Conclusion drawn from this part of study was that modal analysis part-by-part can be strongly used to establish the dynamic characteristics of the whole car. Furthermore, the developed method is also can be used to show the relationship between structural vibration of the car panels and the passengers’ noise comfort inside the cabin.

  18. Dynamical gauge effects in an open quantum network

    NASA Astrophysics Data System (ADS)

    Zhao, Jianshi; Price, Craig; Liu, Qi; Gemelke, Nathan

    2016-05-01

    We describe new experimental techniques for simulation of high-energy field theories based on an analogy between open thermodynamic systems and effective dynamical gauge-fields following SU(2) × U(1) Yang-Mills models. By coupling near-resonant laser-modes to atoms moving in a disordered optical environment, we create an open system which exhibits a non-equilibrium phase transition between two steady-state behaviors, exhibiting scale-invariant behavior near the transition. By measuring transport of atoms through the disordered network, we observe two distinct scaling behaviors, corresponding to the classical and quantum limits for the dynamical gauge field. This behavior is loosely analogous to dynamical gauge effects in quantum chromodynamics, and can mapped onto generalized open problems in theoretical understanding of quantized non-Abelian gauge theories. Additional, the scaling behavior can be understood from the geometric structure of the gauge potential and linked to the measure of information in the local disordered potential, reflecting an underlying holographic principle. We acknowledge support from NSF Award No.1068570, and the Charles E. Kaufman Foundation.

  19. Rhythm Patterns Interaction - Synchronization Behavior for Human-Robot Joint Action

    PubMed Central

    Mörtl, Alexander; Lorenz, Tamara; Hirche, Sandra

    2014-01-01

    Interactive behavior among humans is governed by the dynamics of movement synchronization in a variety of repetitive tasks. This requires the interaction partners to perform for example rhythmic limb swinging or even goal-directed arm movements. Inspired by that essential feature of human interaction, we present a novel concept and design methodology to synthesize goal-directed synchronization behavior for robotic agents in repetitive joint action tasks. The agents’ tasks are described by closed movement trajectories and interpreted as limit cycles, for which instantaneous phase variables are derived based on oscillator theory. Events segmenting the trajectories into multiple primitives are introduced as anchoring points for enhanced synchronization modes. Utilizing both continuous phases and discrete events in a unifying view, we design a continuous dynamical process synchronizing the derived modes. Inverse to the derivation of phases, we also address the generation of goal-directed movements from the behavioral dynamics. The developed concept is implemented to an anthropomorphic robot. For evaluation of the concept an experiment is designed and conducted in which the robot performs a prototypical pick-and-place task jointly with human partners. The effectiveness of the designed behavior is successfully evidenced by objective measures of phase and event synchronization. Feedback gathered from the participants of our exploratory study suggests a subjectively pleasant sense of interaction created by the interactive behavior. The results highlight potential applications of the synchronization concept both in motor coordination among robotic agents and in enhanced social interaction between humanoid agents and humans. PMID:24752212

  20. Interpersonal Coordination and Individual Organization Combined with Shared Phenomenological Experience in Rowing Performance: Two Case Studies

    PubMed Central

    Seifert, Ludovic; Lardy, Julien; Bourbousson, Jérôme; Adé, David; Nordez, Antoine; Thouvarecq, Régis; Saury, Jacques

    2017-01-01

    The principal aim of this study was to examine the impact of variability in interpersonal coordination and individual organization on rowing performance. The second aim was to analyze crew phenomenology in order to understand how rowers experience their joint actions when coping with constraints emerging from the race. We conducted a descriptive and exploratory study of two coxless pair crews during a 3000-m rowing race against the clock. As the investigation was performed in an ecological context, we postulated that our understanding of the behavioral dynamics of interpersonal coordination and individual organization and the variability in performance would be enriched through the analysis of crew phenomenology. The behavioral dynamics of individual organization were assessed at kinematic and kinetic levels, and interpersonal coordination was examined by computing the relative phase between oar angles and oar forces and the difference in the oar force impulse of the two rowers. The inter-cycle variability of the behavioral dynamics of one international and one national crew was evaluated by computing the root mean square and the Cauchy index. Inter-cycle variability was considered significantly high when the behavioral and performance data for each cycle were outside of the confidence interval. Crew phenomenology was characterized on the basis of self-confrontation interviews and the rowers' concerns were then analyzed according to course-of-action methodology to identify the shared experiences. Our findings showed that greater behavioral variability could be either “perturbing” or “functional” depending on its impact on performance (boat velocity); the rowers experienced it as sometimes meaningful and sometimes meaningless; and their experiences were similar or diverging. By combining phenomenological and behavioral data, we explain how constraints not manipulated by an experimenter but emerging from the ecological context of a race can be associated with functional adaptations or perturbations of the interpersonal coordination. PMID:28194127

Top