Sample records for study fragmentation reactions

  1. Fission fragment yields from heavy-ion-induced reactions measured with a fragment separator

    NASA Astrophysics Data System (ADS)

    Tarasov, O. B.; Delaune, O.; Farget, F.; Morrissey, D. J.; Amthor, A. M.; Bastin, B.; Bazin, D.; Blank, B.; Cacéres, L.; Chbihi, A.; Fernández-Dominguez, B.; Grévy, S.; Kamalou, O.; Lukyanov, S. M.; Mittig, W.; Pereira, J.; Perrot, L.; Saint-Laurent, M.-G.; Savajols, H.; Sherrill, B. M.; Stodel, C.; Thomas, J. C.; Villari, A. C.

    2018-04-01

    The systematic study of fission fragment yields under different initial conditions has provided valuable experimental data for benchmarking models of fission product yields. Nuclear reactions using inverse kinematics coupled to the use of a high-resolution spectrometer with good fragment identification are shown here to be a powerful tool to measure the inclusive isotopic yields of fission fragments. In-flight fusion-fission was used in this work to produce secondary beams of neutron-rich isotopes in the collisions of a 238U beam at 24 MeV/u with 9Be and 12C targets at GANIL using the LISE3 fragment separator. Unique identification of the A, Z, and atomic charge state, q, of fission products was attained with the Δ E- TKE-B ρ- ToF measurement technique. Mass, and atomic number distributions are reported for the two reactions. The results show the importance of different reaction mechanisms in the two cases. The optimal target material for higher yields of neutron-rich high- Z isotopes produced in fusion-fission reactions as a function of projectile energy is discussed.

  2. Fragment distribution in 78,86Kr+181Ta reactions

    NASA Astrophysics Data System (ADS)

    Zhang, Dong-Hong; Zhang, Feng-Shou

    2018-05-01

    Within the framework of the isospin-dependent quantum molecular dynamics model, along with the GEMINI model, the 86Kr+181Ta reaction at 80, 120 and 160 MeV/nucleon and the 78Kr+181Ta reaction at 160 MeV/nucleon are studied, and the production cross sections of the generated fragments are calculated. More inter-mediate and large mass fragments can be produced in the reactions with a large range of impact parameter. The production cross sections of nuclei such as the isotopes of Si and P generally decrease with increasing incident energy. Isotopes near the neutron drip line are produced more in the neutron-rich system 86Kr+181Ta. Supported by Youth Research Foundation of Shanxi Datong University (2016Q10)

  3. Study of Projectile Fragmentation Reactions at Intermediate Energies

    NASA Astrophysics Data System (ADS)

    Souliotis, George A.

    The experimental measurements of the present work represent a first attempt towards obtaining systematic data of projectile fragment distributions near 0 degrees produced by intermediate-energy beams delivered by the K1200 cyclotron at the NSCL. The measurements were performed with two different devices operated as 0-degree spectrometers: the K1200 interim beamline and the A1200 mass separator. Momentum distributions and limited angular distributions of projectile -like fragments (PLFs) from a ^{14} N (75 MeV/u) beam with ^{27 }Al and ^{181}Ta targets were measured using the interim K1200 beamline, but the results were of limited quality. In a first series of measurements with the A1200, the 0-degree momentum distributions of PLFs from several beams (^{20} Ne (85 MeV/u), ^{15}N (70 MeV/u) and ^{18}O (70 Mev/u)) were measured, but only a limited number of complete momentum spectra were obtained. In a second series, a detailed measurement of neutron-rich PLFs from the reaction ^{18}O (80 MeV/u) + ^{27}Al was successfully performed. Accurate measurements of 0-degree momentum distributions and relative yields of PLFs were obtained and analysed. Analysis of the centroids of the momentum-per -nucleon (velocity) distributions of the fragments indicated that, along with the fragmentation (break-up) channels, direct stripping and/or pick-up channels contribute significantly to the production of the fragments. Interestingly, the mean velocities of nucleon pick-up products were considerably lower than that of the beam, consistent with momentum conservation and the additional assumption that the nucleon(s) picked -up from the target have preferentially momenta (on average) equal to the nuclear Fermi momentum oriented in the direction of the projectile motion. The widths of the momentum distributions of both nucleon-removal and nucleon pick-up products were in agreement with the independent-particle model of Goldhaber and the cluster stripping model of Friedman. In the case of

  4. RxnFinder: biochemical reaction search engines using molecular structures, molecular fragments and reaction similarity.

    PubMed

    Hu, Qian-Nan; Deng, Zhe; Hu, Huanan; Cao, Dong-Sheng; Liang, Yi-Zeng

    2011-09-01

    Biochemical reactions play a key role to help sustain life and allow cells to grow. RxnFinder was developed to search biochemical reactions from KEGG reaction database using three search criteria: molecular structures, molecular fragments and reaction similarity. RxnFinder is helpful to get reference reactions for biosynthesis and xenobiotics metabolism. RxnFinder is freely available via: http://sdd.whu.edu.cn/rxnfinder. qnhu@whu.edu.cn.

  5. Pairing-energy coefficients of neutron-rich fragments in spallation reactions

    NASA Astrophysics Data System (ADS)

    Niu, Fei; Ma, Chun-Wang

    2018-02-01

    The ratio of pairing-energy coefficient to temperature (a p/T) of neutron-rich fragments produced in spallation reactions has been investigated by adopting an isobaric yield ratio method deduced in the framework of a modified Fisher model. A series of spallation reactions, 0.5A and 1A GeV 208Pb + p, 1A GeV 238U + p, 0.5A GeV 136Xe + d, 0.2A, 0.5A and 1A GeV 136Xe + p, and 56Fe + p with incident energy ranging from 0.3A to 1.5A GeV, has been analysed. An obvious odd-even staggering is shown in the fragments with small neutron excess (I ≡ N-Z), and in the relatively small-A fragments which have large I. The values of a p/T for the fragments, with I from 0 to 36, have been found to be in a range from -4 to 4, and most values of a p/T fall in the range from -1 to 1. It is suggested that a small pairing-energy coefficient should be considered in predicting the cross sections of fragments in spallation reactions. It is also concluded that the method proposed in this article is not good for fragments with A/A s > 85% (where A s is the mass number of the spallation system). Supported by National Natural Science Foundation of China (U1732135), Natural Science Foundation of Henan Province (162300410179) and Henan Normal University for the Excellent Youth (154100510007)

  6. Analysis of multi-fragmentation reactions induced by relativistic heavy ions using the statistical multi-fragmentation model

    NASA Astrophysics Data System (ADS)

    Ogawa, T.; Sato, T.; Hashimoto, S.; Niita, K.

    2013-09-01

    The fragmentation cross-sections of relativistic energy nucleus-nucleus collisions were analyzed using the statistical multi-fragmentation model (SMM) incorporated with the Monte-Carlo radiation transport simulation code particle and heavy ion transport code system (PHITS). Comparison with the literature data showed that PHITS-SMM reproduces fragmentation cross-sections of heavy nuclei at relativistic energies better than the original PHITS by up to two orders of magnitude. It was also found that SMM does not degrade the neutron production cross-sections in heavy ion collisions or the fragmentation cross-sections of light nuclei, for which SMM has not been benchmarked. Therefore, SMM is a robust model that can supplement conventional nucleus-nucleus reaction models, enabling more accurate prediction of fragmentation cross-sections.

  7. Things fall apart: Fragmentation reactions in the oxidative aging of organic species

    NASA Astrophysics Data System (ADS)

    Kroll, J. H.; Isaacman-VanWertz, G. A.; Wilson, K. R.; Daumit, K. E.; Kessler, S. H.; Lim, C. Y.; Worsnop, D. R.

    2016-12-01

    The atmospheric oxidation of organic compounds involves a wide array of chemical transformations, including functionalization reactions (addition of polar functional groups to the carbon skeleton), fragmentation reactions (formation of lower carbon-number products via C-C bond scission), and accretion reactions (increases in molecular weight by the combination of two chemical species). Each of these reaction classes can lead to large changes in volatility, and hence can have major implications for atmospheric organic aerosol (OA). For example, the formation of OA is predominantly driven by functionalization and accretion reactions, which generally lead to decreases in volatility. Here we describe a series of laboratory studies of the subsequent organic "aging", the multiday oxidation processes that occur after the initial OA formation and growth. In these studies, the multigenerational oxidation of organic compounds in various phases (the gas phase, the condensed OA phase, and the aqueous phase) is carried out within either an environmental chamber or a flow reactor, and monitored using various high-resolution mass spectrometric techniques. In all cases it is found that fragmentation reactions play a major role in the observed aging chemistry, dominated by the formation of small, volatile oxidation products. These results suggest that multi-day oxidative aging processes do not lead to sustained aerosol growth, but rather may serve as a chemical sink for atmospheric OA.

  8. Study of the Cross-Reactions of Hen and Duck Ovalbumins. Immunochemical Relationship between Native Proteins and Precipitating Fragments obtained after Proteolysis

    PubMed Central

    Kaminski, Marie

    1962-01-01

    The enzymatic digestion of duck ovalbumin yields precipitating fragments similar to those obtained with hen ovalbumin. In an anti-ovalbumin serum, the amount of antibody precipitating with the two fragments of degraded homologous ovalbumin and the amount of antibody precipitating with the heterologous ovalbumin are independent. The absorption of an anti-ovalbumin serum with the heterologous ovalbumin does not remove selectively the antibodies against one or another fragment of the degraded homologous antigen. The corresponding fragments obtained by digestion of hen and duck ovalbumins give cross-reactions when tested with anti-hen-ovalbumin serum, anti-duck-ovalbumin serum and anti-degraded-hen-ovalbumin serum. On double diffusion in agar, the cross-reaction between the native ovalbumin and its fragment yields a spur which is shorter than the spur formed by the two native ovalbumins or by the two corresponding fragments. ImagesFIG. 1FIG. 2FIG. 3FIG. 4FIG. 5FIG. 6FIG. 7FIG. 8FIG. 9FIG. 11FIG. 12FIG. 13 PMID:14453463

  9. Study of near-stability nuclei populated as fission fragments in heavy-ion fusion reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fotiadis, Nikolaos; Nelson, Ronald O; Devlin, Matthew

    2010-01-01

    Examples are presented to illustrate the power of prompt {gamma}-ray spectroscopy of fission fragments from compound nuclei with A {approx} 200 formed in fusion-evaporation reactions in experiments using the Gammasphere Ge-detector array. Complementary methods, such as Coulomb excitation and deep-inelastic processes, are also discussed. In other cases (n, xn{gamma}) reactions on stable isotopes have been used to establish neutron excitation functions for {gamma}-rays using a pulsed 'white'-neutron source, coupled to a high-energy-resolution germanium-detector array. The excitation functions can unambiguously assign {gamma}-rays to a specific reaction product. Results from all these methods bridge the gaps in the systematics of high-spin statesmore » between the neutron-deficient and neutron-rich nuclei. Results near shell closures should motivate new shell model calculations.« less

  10. Scleroderma Autoantigens Are Uniquely Fragmented by Metal-catalyzed Oxidation Reactions: Implications for Pathogenesis

    PubMed Central

    Casciola-Rosen, Livia; Wigley, Fredrick; Rosen, Antony

    1997-01-01

    The observation that revelation of immunocryptic epitopes in self antigens may initiate the autoimmune response has prompted the search for processes which induce novel fragmentation of autoantigens as potential initiators of autoimmunity. The reversible ischemia reperfusion which characterizes scleroderma has focused attention on reactive oxygen species as molecules which might induce autoantigen fragmentation. We demonstrate that several of the autoantigens targeted in diffuse scleroderma are uniquely susceptible to cleavage by reactive oxygen species, in a metal-dependent manner. Multiple features of the fragmentation reaction and its inhibition indicate that these autoantigens possess metal-binding sites, which focus metal-catalyzed oxidation reactions (and consequent fragmentation) to specific regions of the antigens. These data suggest that the autoantibody response in scleroderma is the immune marker of unique protein fragmentation, induced by ischemia reperfusion in the presence of appropriate metals, and focus attention on abnormal metal status as a potential pathogenic principle in this disease. PMID:8996243

  11. Fragment molecular orbital study on electron tunneling mechanisms in bacterial photosynthetic reaction center.

    PubMed

    Kitoh-Nishioka, Hirotaka; Ando, Koji

    2012-11-01

    The tunneling mechanisms of electron transfers (ETs) in photosynthetic reaction center of Blastochloris viridis are studied by the ab initio fragment molecular orbital (FMO) method combined with the generalized Mulliken-Hush (GMH) and the bridge Green function (GF) calculations of the electronic coupling T(DA) and the tunneling current method for the ET pathway analysis at the fragment-based resolution. For the ET from batctriopheophytin (H(L)) to menaquinone (MQ), a major tunneling current through Trp M250 and a minor back flow via Ala M215, Ala M216, and His M217 are quantified. For the ET from MQ to ubiquinone, the major tunneling pathway via the nonheme Fe(2+) and His L190 is identified as well as minor pathway via His M217 and small back flows involving His L230, Glu M232, and His M264. At the given molecular structure from X-ray experiment, the spin state of the Fe(2+) ion, its replacement by Zn(2+), or its removal are found to affect the T(DA) value by factors within 2.2. The calculated T(DA) values, together with experimentally estimated values of the driving force and the reorganization energy, give the ET rates in reasonable agreement with experiments.

  12. Simulations of Chemical Reactions with the Frozen Domain Formulation of the Fragment Molecular Orbital Method.

    PubMed

    Nakata, Hiroya; Fedorov, Dmitri G; Nagata, Takeshi; Kitaura, Kazuo; Nakamura, Shinichiro

    2015-07-14

    The fully analytic first and second derivatives of the energy in the frozen domain formulation of the fragment molecular orbital (FMO) were developed and applied to locate transition states and determine vibrational contributions to free energies. The development is focused on the frozen domain with dimers (FDD) model. The intrinsic reaction coordinate method was interfaced with FMO. Simulations of IR and Raman spectra were enabled using FMO/FDD by developing the calculation of intensities. The accuracy is evaluated for S(N)2 reactions in explicit solvent, and for the free binding energies of a protein-ligand complex of the Trp cage protein (PDB: 1L2Y ). FMO/FDD is applied to study the keto-enol tautomeric reaction of phosphoglycolohydroxamic acid and the triosephosphate isomerase (PDB: 7TIM ), and the role of amino acid residue fragments in the reaction is discussed.

  13. Evidence for the Role of Proton Shell Closure in Quasifission Reactions from X-Ray Fluorescence of Mass-Identified Fragments

    NASA Astrophysics Data System (ADS)

    Morjean, M.; Hinde, D. J.; Simenel, C.; Jeung, D. Y.; Airiau, M.; Cook, K. J.; Dasgupta, M.; Drouart, A.; Jacquet, D.; Kalkal, S.; Palshetkar, C. S.; Prasad, E.; Rafferty, D.; Simpson, E. C.; Tassan-Got, L.; Vo-Phuoc, K.; Williams, E.

    2017-12-01

    The atomic numbers and the masses of fragments formed in quasifission reactions are simultaneously measured at scission in 48Ti + 238U reactions at a laboratory energy of 286 MeV. The atomic numbers are determined from measured characteristic fluorescence x rays, whereas the masses are obtained from the emission angles and times of flight of the two emerging fragments. For the first time, thanks to this full identification of the quasifission fragments on a broad angular range, the important role of the proton shell closure at Z =82 is evidenced by the associated maximum production yield, a maximum predicted by time-dependent Hartree-Fock calculations. This new experimental approach gives now access to precise studies of the time dependence of the N /Z (neutron over proton ratios of the fragments) evolution in quasifission reactions.

  14. Intermediate mass fragment emission and iso-scaling in dissipative Ca+Sn reactions at 45 AMeV

    NASA Astrophysics Data System (ADS)

    Singh, H.; Quinlan, M. J.; Tõke, J.; Pawelczak, I.; Henry, E.; Schröder, W. U.; Amorini, F.; Anzalone, A.; Maiolino, C.; Auditore, L.; Loria, D.; Trifiro, A.; Trimarchi, M.; Cardella, G.; De Filippo, E.; Pagano, A.; Chatterjee, M. B.; Cavallaro, S.; Geraci, E.; Papa, M.; Pirrone, S.; Verde, G.; Grzeszczuk, A.; Guazzoni, P.; Zetta, L.; La Guidara, E.; Lanzalone, G.; Lo Nigro, S.; Politi, G.; Loria, D.; Porto, F.; Rizzo, F.; Russotto, P.; Vigilante, M.

    2013-04-01

    The production mechanism of intermediate-mass fragments (IMFs) with atomic numbers Z = 3 - 7 is explored in the intermediate energy regime, studying dissipative 48Ca+112Sn and 48Ca+124Sn reactions at E/A = 45MeV. Various aspects of IMF emission patterns point to an inelastic break-up type production mechanism involving excited projectile-like fragment from dissipative interactions. Isotopic yield ratios of identical IMFs from the above two dissipative reactions have been analysed using the "isoscaling" method. Observed trends are correlated with ground-state binding energy systematics and their relevance for an evaluation of the symmetry energy is discussed.

  15. Production of spin-polarized radioactive ion beams via projectile fragmentation reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kameda, D.; Ueno, H.; Yoshimi, A.

    2008-02-06

    Spin-polarized radioactive ion beams are produced in the projectile fragmentation reaction induced by intermediate-energy heavy ion beams. The degree of spin polarization shows characteristic dependence on the outgoing momentum of the projectile fragment in the magnitude around 1{approx}10%. The qualitative behavior is well described by the kinematical model of the fragmentation process. Recently, we have successfully produced spin-polarized beams of aluminum isotopes in the mass A{approx}30 region via the fragmentation of 95 MeV/u {sup 40}Ar projectiles. The magnetic moments of {sup 30}Al and {sup 32}Al and the electric quadrupole moments of {sup 31}Al and {sup 32}Al have been measured usingmore » the {beta}-NMR technique with the polarized RI beams of the Al isotopes.« less

  16. Study of isomeric states in 198,200,202,206Pb and 206Hg populated in fragmentation reactions

    NASA Astrophysics Data System (ADS)

    Lalović, N.; Rudolph, D.; Podolyák, Zs; Sarmiento, L. G.; Simpson, E. C.; Alexander, T.; Cortés, M. L.; Gerl, J.; Golubev, P.; Ameil, F.; Arici, T.; Bauer, Ch; Bazzacco, D.; Bentley, M. A.; Boutachkov, P.; Bowry, M.; Fahlander, C.; Gadea, A.; Gellanki, J.; Givechev, A.; Goel, N.; Górska, M.; Gottardo, A.; Gregor, E.; Guastalla, G.; Habermann, T.; Hackstein, M.; Jungclaus, A.; Kojouharov, I.; Kumar, R.; Kurz, N.; Lettmann, M.; Lizarazo, C.; Louchart, C.; Merchán, E.; Michelagnoli, C.; Moeller, Th; Moschner, K.; Patel, Z.; Pietralla, N.; Pietri, S.; Ralet, D.; Reese, M.; Regan, P. H.; Reiter, P.; Schaffner, H.; Singh, P.; Stahl, C.; Stegmann, R.; Stezowski, O.; Taprogge, J.; Thöle, P.; Wendt, A.; Wieland, O.; Wilson, E.; Wood, R.; Wollersheim, H.-J.; Birkenbach, B.; Bruyneel, B.; Burrows, I.; Clément, E.; Désesquelles, P.; Domingo-Pardo, C.; Eberth, J.; González, V.; Hess, H.; Jolie, J.; Judson, D. S.; Menegazzo, R.; Mengoni, D.; Napoli, D. R.; Pullia, A.; Quintana, B.; Rainovski, G.; Salsac, M. D.; Sanchis, E.; Simpson, J.; Valiente Dóbon, J. J.; AGATA Collaboration

    2018-03-01

    Isomeric states in isotopes in the vicinity of doubly-magic 208Pb were populated following reactions of a relativistic 208Pb primary beam impinging on a 9Be fragmentation target. Secondary beams of 198,200,202,206Pb and 206Hg were isotopically separated and implanted in a passive stopper positioned in the focal plane of the GSI Fragment Separator. Delayed γ rays were detected with the Advanced Gamma Tracking Array (AGATA). Decay schemes were re-evaluated and interpreted with shell-model calculations. The momentum-dependent population of isomeric states in the two-nucleon hole nuclei 206Pb/206Hg was found to differ from the population of multi neutron-hole isomeric states in 198,200,202Pb.

  17. Quantum Correlated Multi-Fragment Reaction Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feagin, James M.

    This grant supported research in basic atomic, molecular and optical physics related to the interactions of atoms with particles and fields. This report will focus on the 12 year period from 2004 to 2017, although the DOE–BES has supported my research every year since 1986. All of the support from the grant was used to pay summer salaries of the PI and students and travel to conferences and meetings. The results were in the form of publications in peer reviewed journals as well as conference invited talks and colloquiums. There were 12 peer reviewed publications in these 12+ years. Innovationsmore » in few-body science at molecular and nano levels are a critical component of on- going efforts to establish sustainable environmental and energy resources. The varied research paths taken will require the development of basic science on broad fronts with increasing flexi- bility to crossover technologies. We thus worked to extract understanding and quantum control of few-body microscopic systems based on our long-time experience with more conventional studies of correlated electrons and ions. Given the enormous advances over the past 20 years to our understanding of quantum cor- relations with photon interferometry, AMO collision science generally is ready to move beyond the one-particle, single-port momentum detection that has dominated collision physics since Rutherford. Nevertheless, our familiar theoretical tools for collision theory need to be up- graded to incorporate these more generalized measurement formalisms and ultimately to give incentive for a new generation of experiments. Our interest in these topics remains motivated by the recent surge in and success of exper- iments involving few-body atomic and molecular fragmentation and the detection of all the fragments. The research described here thus involved two parallel efforts with (i) emphasis on reaction imaging while (ii) pursuing longtime work on quantum correlated collective excitations.« less

  18. Tungsten fragmentation in nuclear reactions induced by high-energy cosmic-ray protons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chechenin, N. G., E-mail: chechenin@sinp.msu.ru; Chuvilskaya, T. V.; Shirokova, A. A.

    2015-01-15

    Tungsten fragmentation arising in nuclear reactions induced by cosmic-ray protons in space-vehicle electronics is considered. In modern technologies of integrated circuits featuring a three-dimensional layered architecture, tungsten is frequently used as a material for interlayer conducting connections. Within the preequilibrium model, tungsten-fragmentation features, including the cross sections for the elastic and inelastic scattering of protons of energy between 30 and 240 MeV; the yields of isotopes and isobars; their energy, charge, and mass distributions; and recoil energy spectra, are calculated on the basis of the TALYS and EMPIRE-II-19 codes. It is shown that tungsten fragmentation affects substantially forecasts of failuresmore » of space-vehicle electronics.« less

  19. Ontology aided modeling of organic reaction mechanisms with flexible and fragment based XML markup procedures.

    PubMed

    Sankar, Punnaivanam; Aghila, Gnanasekaran

    2007-01-01

    The mechanism models for primary organic reactions encoding the structural fragments undergoing substitution, addition, elimination, and rearrangements are developed. In the proposed models, each and every structural component of mechanistic pathways is represented with flexible and fragment based markup technique in XML syntax. A significant feature of the system is the encoding of the electron movements along with the other components like charges, partial charges, half bonded species, lone pair electrons, free radicals, reaction arrows, etc. needed for a complete representation of reaction mechanism. The rendering of reaction schemes described with the proposed methodology is achieved with a concise XML extension language interoperating with the structure markup. The reaction scheme is visualized as 2D graphics in a browser by converting them into SVG documents enabling the desired layouts normally perceived by the chemists conventionally. An automatic representation of the complex patterns of the reaction mechanism is achieved by reusing the knowledge in chemical ontologies and developing artificial intelligence components in terms of axioms.

  20. Spins of complex fragments in binary reactions within a dinuclear system model

    NASA Astrophysics Data System (ADS)

    Paşca, H.; Kalandarov, Sh. A.; Adamian, G. G.; Antonenko, N. V.

    2017-10-01

    The average angular momenta and widths of the spin distributions of reaction products are calculated within the dinuclear system model. The thermal excitation of rotational bearing modes is considered in the dinuclear system. The calculated fragment spins (γ multiplicities) and their variances in the reactions 20Ne (166 MeV) + 63Cu, 40Ar (280 MeV) + 58Ni, 20Ne (175 MeV) + natAg, 40Ar (237 MeV) + 89Y, 40Ar (288 and 340 MeV) + Ag,109107, and 16O (100 MeV) + 58Ni are compared with the available experimental data. The influence of the entrance channel charge (mass) asymmetry and bombarding energy on the characteristics of spin distribution is studied.

  1. Kinetics and reaction coordinates of the reassembly of protein fragments via forward flux sampling.

    PubMed

    Borrero, Ernesto E; Contreras Martínez, Lydia M; DeLisa, Matthew P; Escobedo, Fernando A

    2010-05-19

    We studied the mechanism of the reassembly and folding process of two fragments of a split lattice protein by using forward flux sampling (FFS). Our results confirmed previous thermodynamics and kinetics analyses that suggested that the disruption of the critical core (of an unsplit protein that folds by a nucleation mechanism) plays a key role in the reassembly mechanism of the split system. For several split systems derived from a parent 48-mer model, we estimated the reaction coordinates in terms of collective variables by using the FFS least-square estimation method and found that the reassembly transition is best described by a combination of the total number of native contacts, the number of interchain native contacts, and the total conformational energy of the split system. We also analyzed the transition path ensemble obtained from FFS simulations using the estimated reaction coordinates as order parameters to identify the microscopic features that differentiate the reassembly of the different split systems studied. We found that in the fastest folding split system, a balanced distribution of the original-core amino acids (of the unsplit system) between protein fragments propitiates interchain interactions at early stages of the folding process. Only this system exhibits a different reassembly mechanism from that of the unsplit protein, involving the formation of a different folding nucleus. In the slowest folding system, the concentration of the folding nucleus in one fragment causes its early prefolding, whereas the second fragment tends to remain as a detached random coil. We also show that the reassembly rate can be either increased or decreased by tuning interchain cooperativeness via the introduction of a single point mutation that either strengthens or weakens one of the native interchain contacts (prevalent in the transition state ensemble). Copyright (c) 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  2. Knockout and fragmentation reactions using a broad range of tin isotopes

    NASA Astrophysics Data System (ADS)

    Rodríguez-Sánchez, J. L.; Benlliure, J.; Bertulani, C. A.; Vargas, J.; Ayyad, Y.; Alvarez-Pol, H.; Atkinson, J.; Aumann, T.; Beceiro-Novo, S.; Boretzky, K.; Caamaño, M.; Casarejos, E.; Cortina-Gil, D.; Díaz-Cortes, J.; Fernández, P. Díaz; Estrade, A.; Geissel, H.; Kelić-Heil, A.; Litvinov, Yu. A.; Mostazo, M.; Paradela, C.; Pérez-Loureiro, D.; Pietri, S.; Prochazka, A.; Takechi, M.; Weick, H.; Winfield, J. S.

    2017-09-01

    Production cross sections of residual nuclei obtained by knockout and fragmentation reactions of different tin isotopes accelerated at 1 A GeV have been measured with the fragment separator (FRS) at GSI, Darmstadt. The new measurements are used to investigate the neutron-excess dependence of the neutron- and proton-knockout cross sections. These cross sections are compared to Glauber model calculations coupled to a nuclear de-excitation code in order to investigate the role of the remnant excitations. This bench marking shows an overestimation of the cross sections for the removal of deeply bound nucleons. A phenomenological increase in the excitation energy induced in the remnants produced in these cases allows us to reproduce the measured cross sections.

  3. Isomerization and fragmentation reactions of gaseous phenylarsane radical cations and phenylarsanyl cations. A study by tandem mass spectrometry and theoretical calculations.

    PubMed

    Letzel, Matthias; Kirchhoff, Dirk; Grützmacher, Hans-Friedrich; Stein, Daniel; Grützmacher, Hansjörg

    2006-04-28

    The unimolecular reactions of radical cations and cations derived from phenylarsane, C6H5AsH2 (1) and dideutero phenylarsane, C6H5AsD2 (1-d2), were investigated by methods of tandem mass spectrometry and theoretical calculations. The mass spectrometric experiments reveal that the molecular ion of phenylarsane, 1*+, exhibits different reactivity at low and high internal excess energy. Only at low internal energy the observed fragmentations are as expected, that is the molecular ion 1*+ decomposes almost exclusively by loss of an H atom. The deuterated derivative 1-d2 with an AsD2 group eliminates selectively a D atom under these conditions. The resulting phenylarsenium ion [C6H5AsH]+, 2+, decomposes rather easily by loss of the As atom to give the benzene radical cation [C6H6]*+ and is therefore of low abundance in the 70 eV EI mass spectrum. At high internal excess energy, the ion 1*+ decomposes very differently either by elimination of an H2 molecule, or by release of the As atom, or by loss of an AsH fragment. Final products of these reactions are either the benzoarsenium ion 4*+, or the benzonium ion [C6H7]+, or the benzene radical cation, [C6H6]*+. As key-steps, these fragmentations contain reductive eliminations from the central As atom under H-H or C-H bond formation. Labeling experiments show that H/D exchange reactions precede these fragmentations and, specifically, that complete positional exchange of the H atoms in 1*+ occurs. Computations at the UMP2/6-311+G(d)//UHF/6-311+G(d) level agree best with the experimental results and suggest: (i) 1*+ rearranges (activation enthalpy of 93 kJ mol(-1)) to a distinctly more stable (DeltaH(r)(298) = -64 kJ mol(-1)) isomer 1 sigma*+ with a structure best represented as a distonic radical cation sigma complex between AsH and benzene. (ii) The six H atoms of the benzene moiety of 1 sigma*+ become equivalent by a fast ring walk of the AsH group. (iii) A reversible isomerization 1+<==>1 sigma*+ scrambles eventually all H

  4. Fission fragments mass distributions of nuclei populated by the multinucleon transfer channels of the 18O + 232Th reaction

    NASA Astrophysics Data System (ADS)

    Léguillon, R.; Nishio, K.; Hirose, K.; Makii, H.; Nishinaka, I.; Orlandi, R.; Tsukada, K.; Smallcombe, J.; Chiba, S.; Aritomo, Y.; Ohtsuki, T.; Tatsuzawa, R.; Takaki, N.; Tamura, N.; Goto, S.; Tsekhanovich, I.; Petrache, C. M.; Andreyev, A. N.

    2016-10-01

    It is shown that the multinucleon transfer reactions is a powerful tool to study fission of exotic neutron-rich actinide nuclei, which cannot be accessed by particle-capture or heavy-ion fusion reactions. In this work, multinucleon transfer channels of the 18O + 232Th reaction are used to study fission of fourteen nuclei 231,232,233,234Th, 232,233,234,235,236Pa, and 234,235,236,237,238U. Identification of fissioning nuclei and of their excitation energy is performed on an event-by-event basis, through the measurement of outgoing ejectile particle in coincidence with fission fragments. Fission fragment mass distributions are measured for each transfer channel, in selected bins of excitation energy. In particular, the mass distributions of 231,234Th and 234,235,236Pa are measured for the first time. Predominantly asymmetric fission is observed at low excitation energies for all studied cases, with a gradual increase of the symmetric mode towards higher excitation energy. The experimental distributions are found to be in general agreement with predictions of the fluctuation-dissipation model.

  5. Experimental fission study using multi-nucleon transfer reactions

    NASA Astrophysics Data System (ADS)

    Nishio, Katsuhisa; Hirose, Kentaro; Léguillon, Romain; Makii, Hiroyuki; Orlandi, Riccardo; Tsukada, Kazuaki; Smallcombe, James; Chiba, Satoshi; Aritomo, Yoshihiro; Tanaka, Shouya; Ohtsuki, Tsutomu; Tsekhanovich, Igor; Petrache, Costel M.; Andreyev, Andrei

    2017-09-01

    It is shown that the multi-nucleon transfer reactions is a powerful tool to study fission of exotic neutron-rich actinide nuclei, which cannot be accessed by particle-capture or heavy-ion fusion reactions. In this work, multi-nucleon transfer channels of the reactions of 18O+232Th, 18O+238U and 18O+248Cm are used to study fission for various nuclei from many excited states. Identification of fissioning nuclei and of their excitation energy is performed on an event-by-event basis, through the measurement of outgoing ejectile particle in coincidence with fission fragments. Fission fragment mass distributions are measured for each transfer channel. Predominantly asymmetric fission is observed at low excitation energies for all studied cases, with a gradual increase of the symmetric mode towards higher excitation energy. The experimental distributions are found to be in general agreement with predictions of the fluctuation-dissipation model. Role of multi-chance fission in fission fragment mass distributions is discussed, where it is shown that mass-asymmetric structure remaining at high excitation energies originates from low-excited nuclei by evaporation of neutrons.

  6. Fragmentation analysis of α-induced reactions using clusterization approach

    NASA Astrophysics Data System (ADS)

    Kaur, Amandeep; Sharma, Manoj K.

    2018-01-01

    The dynamics of α-induced reactions are worked out over an incident beam energy Eα ∼ 10- 15 MeV using targets of different masses. The decay patterns of odd mass compound systems 117Sb*, 145Pm* and 191Ir* formed in α +113In, α +141Pr and α +187Re reactions are investigated in view of n-evaporation data. The methodology of collective clusterization is applied by optimizing the neck-length parameter ΔR and the DCM calculated cross-sections find nice agreement with the experimental data. The resulting compound systems with ACN = 117- 191 cover a wide range of compound nucleus mass, and hence give an opportunity to explore various aspects related to the dynamics involved. Moreover the neutron-proton asymmetry dependence is explored in terms of the Bulk constant (α) (in the liquid drop binding energy expression) and radius term Ri and its consequent influence on the fragmentation structure of these compound systems is investigated.

  7. Measurements of charge distributions of the fragments in the low energy fission reaction

    NASA Astrophysics Data System (ADS)

    Wang, Taofeng; Han, Hongyin; Meng, Qinghua; Wang, Liming; Zhu, Liping; Xia, Haihong

    2013-01-01

    The measurement for charge distributions of fragments in spontaneous fission 252Cf has been performed by using a unique style of detector setup consisting of a typical grid ionization chamber and a ΔΕ-Ε particle telescope, in which a thin grid ionization chamber served as the ΔΕ-section and the E-section was an Au-Si surface barrier detector. The typical physical quantities of fragments, such as mass number and kinetic energies as well as the deposition in the gas ΔΕ detector and E detector were derived from the coincident measurement data. The charge distributions of the light fragments for the fixed mass number A2* and total kinetic energy (TKE) were obtained by the least-squares fits for the response functions of the ΔΕ detector with multi-Gaussian functions representing the different elements. The results of the charge distributions for some typical fragments are shown in this article which indicates that this detection setup has the charge distribution capability of Ζ:ΔΖ>40:1. The experimental method developed in this work for determining the charge distributions of fragments is expected to be employed in the neutron induced fissions of 232Th and 238U or other low energy fission reactions.

  8. Recent Direct Reaction Experimental Studies with Radioactive Tin Beams

    DOE PAGES

    Jones, K. L.; Ahn, S.; Allmond, J. M.; ...

    2015-01-01

    Direct reaction techniques are powerful tools to study the single-particle nature of nuclei. Performing direct reactions on short-lived nuclei requires radioactive ion beams produced either via fragmentation or the Isotope Separation OnLine (ISOL) method. Some of the most interesting regions to study with direct reactions are close to the magic numbers where changes in shell structure can be tracked. These changes can impact the final abundances of explosive nucleosynthesis. The structure of the chain of tin isotopes is strongly influenced by the Z = 50 proton shell closure, as well as the neutron shell closures lying in the neutron-rich, Nmore » = 82, and neutron-deficient, N = 50, regions. Here, we present two examples of direct reactions on exotic tin isotopes. The first uses a one-neutron transfer reaction and a low-energy reaccelerated ISOL beam to study states in Sn-131 from across the N = 82 shell closure. The second example utilizes a one-neutron knockout reaction on fragmentation beams of neutron-deficient Sn- 106,108Sn. In conclusion, In both cases, measurements of γ rays in coincidence with charged particles proved to be invaluable.« less

  9. (Reaction mechanism studies of heavy ion induced nuclear reactions): Annual progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mignerey, A.C.

    1988-10-01

    A major experiment was performed at the Oak Ridge National Laboratory Holifield Heavy Ion Research Facility in January 1988. The primary goal of the experiment was to determine the excitation energy division in the initial stages of damped reactions. The reaction of /sup 35/Cl on /sup 209/Bi was chosen because the excited projectile-like fragments would preferentially emit light charged particles and the target-like fragments deexcite via neutron emission. This provides a means by which projectile excitations can be selected over target excitations through detection of light charged particles in coincidence with projectile-like fragments. Two experiments were performed during the pastmore » year at the Lawrence Berkeley Laboratory Bevalac in collaboration with the Wozniak-Moretto group. The first was in February 1988 and was a continuation of earlier work on La-induced reactions at intermediate energies. Beams of La with E/A = 80 and 100 MeV were used to bombard targets of C, Al, and Cu. At this time a test run was also performed using the uranium beam to see if the intensity was sufficient to use this very heavy beam for future experiments. The high intensities obtained for uranium showed that it was feasible to extend the studies of inverse reactions begun with the lanthanum beam to a heavier beam. Gold rather than uranium was chosen for our major run in August due to its low fission probability and higher beam intensity. No results are yet available for that experiment.« less

  10. Radical Abstraction Reactions with Concerted Fragmentation in the Chain Decay of Nitroalkanes

    NASA Astrophysics Data System (ADS)

    Denisov, E. T.; Shestakov, A. F.

    2018-05-01

    Reactions of the type X• + HCR2CH2NO2 → XH + R2C=CH2 + N•O2 are exothermic, due to the breaking of weak C-N bonds and the formation of energy-intensive C=C bonds. Quantum chemistry calculations of the transition state using the reactions of Et• and EtO• with 2-nitrobutane shows that such reactions can be categorized as one-step, due to the extreme instability of the intermediate nitrobutyl radical toward decay with the formation of N•O2. Kinetic parameters that allow us to calculate the energy of activation and rate constant of such a reaction from its enthalpy are estimated using a model of intersecting parabolas. Enthalpies, energies of activation, and rate constants are calculated for a series of reactions with the participation of Et•, EtO•, RO•2, N•O2 radicals on the one hand and a series of nitroalkanes on the other. A new kinetic scheme of the chain decay of nitroalkanes with the participation of abstraction reactions with concerted fragmentation is proposed on the basis of the obtained data.

  11. Global transformation and fate of SOA: Implications of Low Volatility SOA and Gas-Phase Fragmentation Reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shrivastava, ManishKumar B.; Easter, Richard C.; Liu, Xiaohong

    2015-05-16

    Secondary organic aerosols (SOA) are large contributors to fine particle loadings and radiative forcing, but are often represented crudely in global models. We have implemented three new detailed SOA treatments within the Community Atmosphere Model version 5 (CAM5) that allow us to compare the semi-volatile versus non-volatile SOA treatments (based on some of the latest experimental findings) and also investigate the effects of gas-phase fragmentation reactions. For semi-volatile SOA treatments, fragmentation reactions decrease simulated SOA burden from 7.5 Tg to 1.8 Tg. For the non-volatile SOA treatment with fragmentation, the burden is 3.1 Tg. Larger differences between non-volatile and semi-volatilemore » SOA (upto a factor of 5) correspond to continental outflow over the oceans. Compared to a global dataset of surface Aerosol Mass Spectrometer measurements and the US IMPROVE network measurements, the non-volatile SOA with fragmentation treatment (FragNVSOA) agrees best at rural locations. Urban SOA is under-predicted but this may be due to the coarse model resolution. All our three revised treatments show much better agreement with aircraft measurements of organic aerosols (OA) over the N. American Arctic and sub-Arctic in spring and summer, compared to the standard CAM5 formulation. This is due to treating SOA precursor gases from biomass burning, and long-range transport of biomass burning OA at elevated levels. The revised model configuration that include fragmentation (both semi-volatile and non-volatile SOA) show much better agreement with MODIS AOD data over regions dominated by biomass burning during the summer, and predict biomass burning as the largest global source of OA followed by biogenic and anthropogenic sources. The non-volatile and semi-volatile configuration predict the direct radiative forcing of SOA as -0.5 W m-2 and -0.26 W m-2 respectively, at top of the atmosphere, which are higher than previously estimated by most models, but in

  12. Universal odd-even staggering in isotopic fragmentation and spallation cross sections of neutron-rich fragments

    NASA Astrophysics Data System (ADS)

    Mei, B.; Tu, X. L.; Wang, M.

    2018-04-01

    An evident odd-even staggering (OES) in fragment cross sections has been experimentally observed in many fragmentation and spallation reactions. However, quantitative comparisons of this OES effect in different reaction systems are still scarce for neutron-rich nuclei near the neutron drip line. By employing a third-order difference formula, the magnitudes of this OES in extensive experimental cross sections are systematically investigated for many neutron-rich nuclei with (N -Z ) from 1 to 23 over a broad range of atomic numbers (Z ≈3 -50 ). A comparison of these magnitude values extracted from fragment cross sections measured in different fragmentation and spallation reactions with a large variety of projectile-target combinations over a wide energy range reveals that the OES magnitude is almost independent of the projectile-target combinations and the projectile energy. The weighted average of these OES magnitudes derived from cross sections accurately measured in different reaction systems is adopted as the evaluation value of the OES magnitude. These evaluated OES magnitudes are recommended to be used in fragmentation and spallation models to improve their predictions for fragment cross sections.

  13. DEATH-STAR: Silicon and Photovoltaic Fission Fragment Detector Arrays for Light-Ion Induced Fission Correlation Studies

    NASA Astrophysics Data System (ADS)

    Koglin, J. D.; Burke, J. T.; Fisher, S. E.; Jovanovic, I.

    2017-05-01

    The Direct Excitation Angular Tracking pHotovoltaic-Silicon Telescope ARray (DEATH-STAR) combines a series of 12 silicon detectors in a ΔE - E configuration for charged particle identification with a large-area array of 56 photovoltaic (solar) cells for detection of fission fragments. The combination of many scattering angles and fission fragment detectors allows for an angular-resolved tool to study reaction cross sections using the surrogate method, anisotropic fission distributions, and angular momentum transfers through stripping, transfer, inelastic scattering, and other direct nuclear reactions. The unique photovoltaic detectors efficiently detect fission fragments while being insensitive to light ions and have a timing resolution of 15.63±0.37 ns. Alpha particles are detected with a resolution of 35.5 keV 1σ at 7.9 MeV. Measured fission fragment angular distributions are also presented.

  14. Comparison of CHROMagar, polymerase chain reaction-restriction fragment length polymorphism, and polymerase chain reaction-fragment size for the identification of Candida species.

    PubMed

    Jafari, Zahra; Motamedi, Marjan; Jalalizand, Nilufar; Shokoohi, Gholam R; Charsizadeh, Arezu; Mirhendi, Hossein

    2017-09-01

    The epidemiological alteration in the distribution of Candida species, as well as the significantly increasing trend of either intrinsic or acquired resistance of some of these fungi highlights the need for a reliable method for the identification of the species. Polymerase chain reaction (PCR) is one of the methods facilitating the quick and precise identification of Candida species. The aim of this study was to compare the efficiency of CHROMagar, PCR-restriction fragment length polymorphism (PCR-RFLP), and PCR-fragment size polymorphism (PCR-FSP) assays in the identification of Candida species to determine the benefits and limitations of these methods. This study was conducted on 107 Candida strains, including 20 standard strains and 87 clinical isolates. The identification of the isolates was accomplished by using CHROMagar as a conventional method. The PCR-RFLP assay was performed on the entire internal transcribed spacer (ITS) region of ribosomal DNA (rDNA), and the consequent enzymatic digestion was compared with PCR-FSP results in which ITS1 and ITS2 regions were separately PCR amplified. In both molecular assays, yeast identification was carried out through the specific electrophoretic profiles of the PCR products. According to the results, the utilization of CHROMagar resulted in the identification of 29 (33.3%) Candida isolates, while the PCR-RFLP and PCR-FSP facilitated the identification of 83 (95.4%) and 80 (91.9%) clinical isolates, respectively. The obtained concordances between CHROMagar and PCR-RFLP, between CHROMagar and PCR-FSP, as well as between PCR-RFLP and PCR-FSP were 0.23, 0.20, and 0.77, respectively. The recognition of the benefits and limitations of PCR methods allows for the selection of the most efficient technique for a fast and correct differentiation. The PCR-RFLP and PCR-FSP assays had satisfactory concordance. The PCR-FSP provides a rapid, technically simple, and cost-effective method for the identification of Candida species

  15. Evidence for Sequence Scrambling and Divergent H/D Exchange Reactions of Doubly-Charged Isobaric b-Type Fragment Ions

    NASA Astrophysics Data System (ADS)

    Zekavat, Behrooz; Miladi, Mahsan; Al-Fdeilat, Abdullah H.; Somogyi, Arpad; Solouki, Touradj

    2014-02-01

    To date, only a limited number of reports are available on structural variants of multiply-charged b-fragment ions. We report on observed bimodal gas-phase hydrogen/deuterium exchange (HDX) reaction kinetics and patterns for substance P b10 2+ that point to presence of isomeric structures. We also compare HDX reactions, post-ion mobility/collision-induced dissociation (post-IM/CID), and sustained off-resonance irradiation-collision induced dissociation (SORI-CID) of substance P b10 2+ and a cyclic peptide with an identical amino acid (AA) sequence order to substance P b10. The observed HDX patterns and reaction kinetics and SORI-CID pattern for the doubly charged head-to-tail cyclized peptide were different from either of the presumed isomers of substance P b10 2+, suggesting that b10 2+ may not exist exclusively as a head-to-tail cyclized structure. Ultra-high mass measurement accuracy was used to assign identities of the observed SORI-CID fragment ions of substance P b10 2+; over 30 % of the observed SORI-CID fragment ions from substance P b10 2+ had rearranged (scrambled) AA sequences. Moreover, post-IM/CID experiments revealed the presence of two conformer types for substance P b10 2+, whereas only one conformer type was observed for the head-to-tail cyclized peptide. We also show that AA sequence scrambling from CID of doubly-charged b-fragment ions is not unique to substance P b10 2+.

  16. Evidence for sequence scrambling and divergent H/D exchange reactions of doubly-charged isobaric b-type fragment ions.

    PubMed

    Zekavat, Behrooz; Miladi, Mahsan; Al-Fdeilat, Abdullah H; Somogyi, Arpad; Solouki, Touradj

    2014-02-01

    To date, only a limited number of reports are available on structural variants of multiply-charged b-fragment ions. We report on observed bimodal gas-phase hydrogen/deuterium exchange (HDX) reaction kinetics and patterns for substance P b10(2+) that point to presence of isomeric structures. We also compare HDX reactions, post-ion mobility/collision-induced dissociation (post-IM/CID), and sustained off-resonance irradiation-collision induced dissociation (SORI-CID) of substance P b10(2+) and a cyclic peptide with an identical amino acid (AA) sequence order to substance P b10. The observed HDX patterns and reaction kinetics and SORI-CID pattern for the doubly charged head-to-tail cyclized peptide were different from either of the presumed isomers of substance P b10(2+), suggesting that b10(2+) may not exist exclusively as a head-to-tail cyclized structure. Ultra-high mass measurement accuracy was used to assign identities of the observed SORI-CID fragment ions of substance P b10(2+); over 30% of the observed SORI-CID fragment ions from substance P b10(2+) had rearranged (scrambled) AA sequences. Moreover, post-IM/CID experiments revealed the presence of two conformer types for substance P b10(2+), whereas only one conformer type was observed for the head-to-tail cyclized peptide. We also show that AA sequence scrambling from CID of doubly-charged b-fragment ions is not unique to substance P b10(2+).

  17. Incorporation of the statistical multi-fragmentation model in PHITS and its application for simulation of fragmentation by heavy ions and protons

    NASA Astrophysics Data System (ADS)

    Ogawa, Tatsuhiko; Sato, Tatsuhiko; Hashimoto, Shintaro; Niita, Koji

    2014-06-01

    The fragmentation reactions of relativistic-energy nucleus-nucleus and proton-nucleus collisions were simulated using the Statistical Multi-fragmentation Model (SMM) incorporated with the Particle and Heavy Ion Transport code System (PHITS). The comparisons of calculated cross-sections with literature data showed that PHITS-SMM predicts the fragmentation cross-sections of heavy nuclei up to two orders of magnitude more accurately than PHITS for heavy-ion-induced reactions. For proton-induced reactions, noticeable improvements are observed for interactions of the heavy target with protons at an energy greater than 1 GeV. Therefore, consideration for multi-fragmentation reactions is necessary for the accurate simulation of energetic fragmentation reactions of heavy nuclei.

  18. DEATH-STAR: Silicon and photovoltaic fission fragment detector arrays for light-ion induced fission correlation studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koglin, J. D.; Burke, J. T.; Fisher, S. E.

    Here, the Direct Excitation Angular Tracking pHotovoltaic-Silicon Telescope ARray (DEATH-STAR) combines a series of 12 silicon detectors in a ΔE–E configuration for charged particle identification with a large-area array of 56 photovoltaic (solar) cells for detection of fission fragments. The combination of many scattering angles and fission fragment detectors allows for an angular-resolved tool to study reaction cross sections using the surrogate method, anisotropic fission distributions, and angular momentum transfers through stripping, transfer, inelastic scattering, and other direct nuclear reactions. The unique photovoltaic detectors efficiently detect fission fragments while being insensitive to light ions and have a timing resolution ofmore » 15.63±0.37 ns. Alpha particles are detected with a resolution of 35.5 keV 1σ at 7.9 MeV. Measured fission fragment angular distributions are also presented.« less

  19. DEATH-STAR: Silicon and photovoltaic fission fragment detector arrays for light-ion induced fission correlation studies

    DOE PAGES

    Koglin, J. D.; Burke, J. T.; Fisher, S. E.; ...

    2017-02-20

    Here, the Direct Excitation Angular Tracking pHotovoltaic-Silicon Telescope ARray (DEATH-STAR) combines a series of 12 silicon detectors in a ΔE–E configuration for charged particle identification with a large-area array of 56 photovoltaic (solar) cells for detection of fission fragments. The combination of many scattering angles and fission fragment detectors allows for an angular-resolved tool to study reaction cross sections using the surrogate method, anisotropic fission distributions, and angular momentum transfers through stripping, transfer, inelastic scattering, and other direct nuclear reactions. The unique photovoltaic detectors efficiently detect fission fragments while being insensitive to light ions and have a timing resolution ofmore » 15.63±0.37 ns. Alpha particles are detected with a resolution of 35.5 keV 1σ at 7.9 MeV. Measured fission fragment angular distributions are also presented.« less

  20. Fission fragment angular distributions in the reactions {sup 16}O+{sup 188}Os and {sup 28}Si+{sup 176}Yb

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tripathi, R.; Sudarshan, K.; Sharma, S. K.

    2009-06-15

    Fission fragment angular distributions have been measured in the reactions {sup 16}O+{sup 188}Os and {sup 28}Si+{sup 176}Yb to investigate the contribution from noncompound nucleus fission. Parameters for statistical model calculations were fixed using fission cross section data in the {sup 16}O+{sup 188}Os reaction. Experimental anisotropies were in reasonable agreement with those calculated using the statistical saddle point model for both reactions. The present results are also consistent with those of mass distribution studies in the fission of {sup 202}Po, formed in the reactions with varying entrance channel mass asymmetry. However, the present studies do not show a large fusion hindrancemore » as reported in the pre-actinide region based on the measurement of evaporation residue cross section.« less

  1. Precursor Ion Scan Mode-Based Strategy for Fast Screening of Polyether Ionophores by Copper-Induced Gas-Phase Radical Fragmentation Reactions.

    PubMed

    Crevelin, Eduardo J; Possato, Bruna; Lopes, João L C; Lopes, Norberto P; Crotti, Antônio E M

    2017-04-04

    The potential of copper(II) to induce gas-phase fragmentation reactions in macrotetrolides, a class of polyether ionophores produced by Streptomyces species, was investigated by accurate-mass electrospray tandem mass spectrometry (ESI-MS/MS). Copper(II)/copper(I) transition directly induced production of diagnostic acylium ions with m/z 199, 185, 181, and 167 from α-cleavages of [macrotetrolides + Cu] 2+ . A UPLC-ESI-MS/MS methodology based on the precursor ion scan of these acylium ions was developed and successfully used to identify isodinactin (1), trinactin (2), and tetranactin (3) in a crude extract of Streptomyces sp. AMC 23 in the precursor ion scan mode. In addition, copper(II) was also used to induce radical fragmentation reactions in the carboxylic acid polyether ionophore nigericin. The resulting product ions with m/z 755 and 585 helped to identify nigericin in a crude extract of Streptomyces sp. Eucal-26 by means of precursor ion scan experiments, demonstrating that copper-induced fragmentation reactions can potentially identify different classes of polyether ionophores rapidly and selectively.

  2. Nuclear fragmentation studies for microelectronic application

    NASA Technical Reports Server (NTRS)

    Ngo, Duc M.; Wilson, John W.; Buck, Warren W.; Fogarty, Thomas N.

    1989-01-01

    A formalism for target fragment transport is presented with application to energy loss spectra in thin silicon devices. Predicted results are compared to experiments with the surface barrier detectors of McNulty et al. The intranuclear cascade nuclear reaction model does not predict the McNulty experimental data for the highest energy events. A semiempirical nuclear cross section gives an adequate explanation of McNulty's experiments. Application of the formalism to specific electronic devices is discussed.

  3. Anomalous anisotropies of fission fragments in near- and sub-barrier fusion-fussion reactions

    NASA Astrophysics Data System (ADS)

    Huanqiao, Zhang; Zuhua, Liu; Jincheng, Xu; Jun, Lu; Ming, Ruan; Kan, Xu

    1992-03-01

    Fission cross sections and angular distributions have been measured for the reactions of 16O + 232Th and238U, and19F + 208Pb and232Th at near- and sub-barrier energies. The fission excitation functions are rather well reproduced on the basis of Wong model or coupled channels theory. However, the models which reproduce the sub-barrier fusion cross sections fail to account for the experimental anisotropies of fission fragments. It is found that the observed anisotropies are much larger than expected. For the first time it has been observed that the anisotropies as a function of the center-of-mass energy show a peak centered near 4.5 MeV below the fusion barrier for several reaction systems. The present approaches fail to explain these anomalies. For 19F + 208Pb systems, our results confirm the prediction of an approximately constant value for the mean square spin of the compound nucleus produced in far sub-barrier fusion reaction.

  4. New Approach for Studying Slow Fragmentation Kinetics in FT-ICR: Surface-Induced Dissociation Combined with Resonant Ejection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laskin, Julia; Futrell, Jean H.

    2015-02-01

    We introduce a new approach for studying the kinetics of large ion fragmentation in the gas phase by coupling surface-induced dissociation (SID) in a Fourier transform ion cyclotron resonance mass spectrometer with resonant ejection of selected fragment ions using a relatively short (5 ms) ejection pulse. The approach is demonstrated for singly protonated angiotensin III ions excited by collisions with a self-assembled monolayer of alkylthiol on gold (HSAM). The overall decomposition rate and rate constants of individual reaction channels are controlled by varying the kinetic energy of the precursor ion in a range of 65–95 eV. The kinetics of peptidemore » fragmentation are probed by varying the delay time between resonant ejection and fragment ion detection at a constant total reaction time. RRKM modeling indicates that the shape of the kinetics plots is strongly affected by the shape and position of the energy deposition function (EDF) describing the internal energy distribution of the ion following ion-surface collision. Modeling of the kinetics data provides detailed information on the shape of the EDF and energy and entropy effects of individual reaction channels.« less

  5. Photodegradable, Photoadaptable Hydrogels via Radical-Mediated Disulfide Fragmentation Reaction.

    PubMed

    Fairbanks, Benjamin D; Singh, Samir P; Bowman, Christopher N; Anseth, Kristi S

    2011-04-26

    Various techniques have been adopted to impart a biological responsiveness to synthetic hydrogels for the delivery of therapeutic agents as well as the study and manipulation of biological processes and tissue development. Such techniques and materials include polyelectrolyte gels that swell and deswell with changes in pH, thermosensitive gels that contract at physiological temperatures, and peptide cross-linked hydrogels that degrade upon peptidolysis by cell-secreted enzymes. Herein we report a unique approach to photochemically deform and degrade disulfide cross-linked hydrogels, mitigating the challenges of light attenuation and low quantum yield, permitting the degradation of hydrogels up to 2 mm thick within 120 s at low light intensities (10 mW/cm(2) at 365 nm). Hydrogels were formed by the oxidation of thiol-functionalized 4-armed poly(ethylene glycol) macromolecules. These disulfide cross-linked hydrogels were then swollen in a lithium acylphosphinate photoinitiator solution. Upon exposure to light, photogenerated radicals initiate multiple fragmentation and disulfide exchange reactions, permitting and promoting photodeformation, photowelding, and photodegradation. This novel, but simple, approach to generate photoadaptable hydrogels portends the study of cellular response to mechanically and topographically dynamic substrates as well as novel encapsulations by the welding of solid substrates. The principles and techniques described herein hold implications for more than hydrogel materials but also for photoadaptable polymers more generally.

  6. Construction of a 3D-shaped, natural product like fragment library by fragmentation and diversification of natural products.

    PubMed

    Prescher, Horst; Koch, Guido; Schuhmann, Tim; Ertl, Peter; Bussenault, Alex; Glick, Meir; Dix, Ina; Petersen, Frank; Lizos, Dimitrios E

    2017-02-01

    A fragment library consisting of 3D-shaped, natural product-like fragments was assembled. Library construction was mainly performed by natural product degradation and natural product diversification reactions and was complemented by the identification of 3D-shaped, natural product like fragments available from commercial sources. In addition, during the course of these studies, novel rearrangements were discovered for Massarigenin C and Cytochalasin E. The obtained fragment library has an excellent 3D-shape and natural product likeness, covering a novel, unexplored and underrepresented chemical space in fragment based drug discovery (FBDD). Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Analyzing fragment production in mass-asymmetric reactions as a function of density dependent part of symmetry energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaur, Amandeep; Deepshikha; Vinayak, Karan Singh

    2016-07-15

    We performed a theoretical investigation of different mass-asymmetric reactions to access the direct impact of the density-dependent part of symmetry energy on multifragmentation. The simulations are performed for a specific set of reactions having same system mass and N/Z content, using isospin-dependent quantum molecular dynamics model to estimate the quantitative dependence of fragment production on themass-asymmetry factor (τ) for various symmetry energy forms. The dynamics associated with different mass-asymmetric reactions is explored and the direct role of symmetry energy is checked. Also a comparison with the experimental data (asymmetric reaction) is presented for a different equation of states (symmetry energymore » forms).« less

  8. Rational Design of High-Number dsDNA Fragments Based on Thermodynamics for the Construction of Full-Length Genes in a Single Reaction.

    PubMed

    Birla, Bhagyashree S; Chou, Hui-Hsien

    2015-01-01

    Gene synthesis is frequently used in modern molecular biology research either to create novel genes or to obtain natural genes when the synthesis approach is more flexible and reliable than cloning. DNA chemical synthesis has limits on both its length and yield, thus full-length genes have to be hierarchically constructed from synthesized DNA fragments. Gibson Assembly and its derivatives are the simplest methods to assemble multiple double-stranded DNA fragments. Currently, up to 12 dsDNA fragments can be assembled at once with Gibson Assembly according to its vendor. In practice, the number of dsDNA fragments that can be assembled in a single reaction are much lower. We have developed a rational design method for gene construction that allows high-number dsDNA fragments to be assembled into full-length genes in a single reaction. Using this new design method and a modified version of the Gibson Assembly protocol, we have assembled 3 different genes from up to 45 dsDNA fragments at once. Our design method uses the thermodynamic analysis software Picky that identifies all unique junctions in a gene where consecutive DNA fragments are specifically made to connect to each other. Our novel method is generally applicable to most gene sequences, and can improve both the efficiency and cost of gene assembly.

  9. Fragment emission from the mass-symmetric reactions 58Fe,58Ni +58Fe,58Ni at Ebeam=30 MeV/nucleon

    NASA Astrophysics Data System (ADS)

    Ramakrishnan, E.; Johnston, H.; Gimeno-Nogues, F.; Rowland, D. J.; Laforest, R.; Lui, Y.-W.; Ferro, S.; Vasal, S.; Yennello, S. J.

    1998-04-01

    The mass-symmetric reactions 58Fe,58Ni +58Fe,58Ni were studied at a beam energy of Ebeam=30 MeV/nucleon in order to investigate the isospin dependence of fragment emission. Ratios of inclusive yields of isotopic fragments from hydrogen through nitrogen were extracted as a function of laboratory angle. A moving source analysis of the data indicates that at laboratory angles around 40° the yield of intermediate mass fragments (IMF's) beyond Z=3 is predominantly from a midrapidity source. The angular dependence of the relative yields of isotopes beyond Z=3 indicates that the IMF's at more central angles originate from a source which is more neutron deficient than the source responsible for fragments emitted at forward angles. The charge distributions and kinetic energy spectra of the IMF's at various laboratory angles were well reproduced by calculations employing a quantum molecular-dynamics code followed by a statistical multifragmentation model for generating fragments. The calculations indicate that the measured IMF's originate mainly from a single source. The isotopic composition of the emitted fragments is, however, not reproduced by the same calculation. The measured isotopic and isobaric ratios indicate an emitting source that is more neutron rich in comparison to the source predicted by model calculations.

  10. Feasibility of Traveling Wave Direct Energy Conversion of Fission Reaction Fragments

    NASA Technical Reports Server (NTRS)

    Tarditi, A. G.; George, J. A.; Miley, G. H.; Scott, J. H.

    2013-01-01

    Fission fragment direct energy conversion has been considered in the past for the purpose of increasing nuclear power plant efficiency and for advanced space propulsion. Since the fragments carry electric charge (typically in the order of 20 e) and have 100 MeV-range kinetic energy, techniques utilizing very high-voltage DC electrodes have been considered. This study is focused on a different approach: the kinetic energy of the charged fission fragments is converted into alternating current by means of a traveling wave coupling scheme (Traveling Wave Direct Energy Converter, TWDEC), thereby not requiring the utilization of high voltage technology. A preliminary feasibility analysis of the concept is introduced based on a conceptual level study and on a particle simulation model of the beam dynamics.

  11. Implications of Low Volatility SOA and Gas-Phase Fragmentation Reactions on SOA Loadings and their Spatial and Temporal Evolution in the Atmosphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shrivastava, ManishKumar B.; Zelenyuk, Alla; Imre, Dan

    2013-04-27

    Recent laboratory and field measurements by a number of groups show that secondary organic aerosol (SOA) evaporates orders of magnitude slower than traditional models assume. In addition, chemical transport models using volatility basis set (VBS) SOA schemes neglect gas-phase fragmentation reactions, which are known to be extremely important. In this work, we present modeling studies to investigate the implications of non-evaporating SOA and gas-phase fragmentation reactions. Using the 3-D chemical transport model, WRF-Chem, we show that previous parameterizations, which neglect fragmentation during multi-generational gas-phase chemistry of semi-volatile/inter-mediate volatility organics ("aging SIVOC"), significantly over-predict SOA as compared to aircraft measurements downwindmore » of Mexico City. In sharp contrast, the revised models, which include gas-phase fragmentation, show much better agreement with measurements downwind of Mexico City. We also demonstrate complex differences in spatial SOA distributions when we transform SOA to non-volatile secondary organic aerosol (NVSOA) to account for experimental observations. Using a simple box model, we show that for same amount of SOA precursors, earlier models that do not employ multi-generation gas-phase chemistry of precursors ("non-aging SIVOC"), produce orders of magnitude lower SOA than "aging SIVOC" parameterizations both with and without fragmentation. In addition, traditional absorptive partitioning models predict almost complete SOA evaporation at farther downwind locations for both "non-aging SIVOC" and "aging SIVOC" with fragmentation. In contrast, in our revised approach, SOA transformed to NVSOA implies significantly higher background concentrations as it remains in particle phase even under highly dilute conditions. This work has significant implications on understanding the role of multi-generational chemistry and NVSOA formation on SOA evolution in the atmosphere.« less

  12. Structural Studies of Geosmin Synthase, a Bifunctional Sesquiterpene Synthase with Alpha-Alpha Domain Architecture that Catalyzes a Unique Cyclization-Fragmentation Reaction Sequence

    PubMed Central

    Harris, Golda G.; Lombardi, Patrick M.; Pemberton, Travis A.; Matsui, Tsutomu; Weiss, Thomas M.; Cole, Kathryn E.; Köksal, Mustafa; Murphy, Frank V.; Vedula, L. Sangeetha; Chou, Wayne K.W.; Cane, David E.; Christianson, David W.

    2015-01-01

    Geosmin synthase from Streptomyces coelicolor (ScGS) catalyzes an unusual, metal-dependent terpenoid cyclization and fragmentation reaction sequence. Two distinct active sites are required for catalysis: the N-terminal domain catalyzes the ionization and cyclization of farnesyl diphosphate to form germacradienol and inorganic pyrophosphate (PPi), and the C-terminal domain catalyzes the protonation, cyclization, and fragmentation of germacradienol to form geosmin and acetone through a retro-Prins reaction. A unique αα domain architecture is predicted for ScGS based on amino acid sequence: each domain contains the metal-binding motifs typical of a class I terpenoid cyclase, and each domain requires Mg2+ for catalysis. Here, we report the X-ray crystal structure of the unliganded N-terminal domain of ScGS and the structure of its complex with 3 Mg2+ ions and alendronate. These structures highlight conformational changes required for active site closure and catalysis. Although neither full-length ScGS nor constructs of the C-terminal domain could be crystallized, homology models of the C-terminal domain were constructed based on ~36% sequence identity with the N-terminal domain. Small-angle X-ray scattering experiments yield low resolution molecular envelopes into which the N-terminal domain crystal structure and the C-terminal domain homology model were fit, suggesting possible αα domain architectures as frameworks for bifunctional catalysis. PMID:26598179

  13. Fragmentation of mercury compounds under ultraviolet light irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kokkonen, E.; Hautala, L.; Jänkälä, K.

    2015-08-21

    Ultraviolet light induced photofragmentation of mercury compounds is studied experimentally with electron energy resolved photoelectron-photoion coincidence techniques and theoretically with computational quantum chemical methods. A high resolution photoelectron spectrum using synchrotron radiation is presented. Fragmentation of the molecule is studied subsequent to ionization to the atomic-mercury-like d orbitals. State dependent fragmentation behaviour is presented and specific reactions for dissociation pathways are given. The fragmentation is found to differ distinctly in similar orbitals of different mercury compounds.

  14. Target fragmentation in proton-nucleus and16O-nucleus reactions at 60 and 200 GeV/nucleon

    NASA Astrophysics Data System (ADS)

    Albrecht, R.; Awes, T. C.; Baktash, C.; Beckmann, P.; Claesson, G.; Berger, F.; Bock, R.; Dragon, L.; Ferguson, R. L.; Franz, A.; Garpman, S.; Glasow, R.; Gustafsson, H. Å.; Gutbrod, H. H.; Kampert, K. H.; Kolb, B. W.; Kristiansson, P.; Lee, I. Y.; Löhner, H.; Lund, I.; Obenshain, F. E.; Oskarsson, A.; Otterlund, I.; Peitzmann, T.; Persson, S.; Plasil, F.; Poskanzer, A. M.; Purschke, M.; Ritter, H. G.; Santo, R.; Schmidt, H. R.; Siemiarczuk, T.; Sorensen, S. P.; Stenlund, E.; Young, G. R.

    1988-03-01

    Target remnants with Z<3 from proton-nucleus and16O-nucleus reactions at 60 and 200 GeV/nucleon were measured in the angular range from 30° to 160° (-1.7<η<1.3) employing the Plastic Ball detector. The excitation energy of the target spectator matter in central oxygen-induced collisions is found to be high enough to allow for complete disintegration of the target nucleus into fragments with Z<3. The average longitudinal momentum transfer per proton to the target in central collisions is considerably higher in the case of16O-induced reactions (≈300 MeV/c) than in proton-induced reactions (≈130 MeV/c). The baryon rapidity distributions are roughly in agreement with one-fluid hydrodynamical calculations at 60 GeV/nucleon16O+Au but are in disagreement at 200 GeV/nucleon, indicating the higher degree of transparency at the higher bombarding energy. Both, the transverse momenta of target spectators and the entropy produced in the target fragmentation region are compared to those attained in head-on collisions of two heavy nuclei at Bevalac energies. They are found to be comparable or do even exceed the values for the participant matter at beam energies of about 1 2 GeV/nucleon.

  15. Energetics and dynamics of the fragmentation reactions of protonated peptides containing methionine sulfoxide or aspartic acid via energy- and time-resolved surface induced dissociation.

    PubMed

    Lioe, Hadi; Laskin, Julia; Reid, Gavin E; O'Hair, Richard A J

    2007-10-25

    The surface-induced dissociation (SID) of six model peptides containing either methionine sulfoxide or aspartic acid (GAILM(O)GAILR, GAILM(O)GAILK, GAILM(O)GAILA, GAILDGAILR, GAILDGAILK, and GAILDGAILA) have been studied using a specially configured Fourier transform ion-cyclotron resonance mass spectrometer (FT-ICR MS). In particular, we have investigated the energetics and dynamics associated with (i) preferential cleavage of the methionine sulfoxide side chain via the loss of CH3SOH (64 Da), and (ii) preferential cleavage of the amide bond C-terminal to aspartic acid. The role of proton mobility in these selective bond cleavage reactions was examined by changing the C-terminal residue of the peptide from arginine (nonmobile proton conditions) to lysine (partially mobile proton conditions) to alanine (mobile proton conditions). Time- and energy-resolved fragmentation efficiency curves (TFECs) reveal that selective cleavages due to the methionine sulfoxide and aspartic acid residues are characterized by slow fragmentation kinetics. RRKM modeling of the experimental data suggests that the slow kinetics is associated with large negative entropy effects and these may be due to the presence of rearrangements prior to fragmentation. It was found that the Arrhenius pre-exponential factor (A) for peptide fragmentations occurring via selective bond cleavages are 1-2 orders of magnitude lower than nonselective peptide fragmentation reactions, while the dissociation threshold (E0) is relatively invariant. This means that selective bond cleavage is kinetically disfavored compared to nonselective amide bond cleavage. It was also found that the energetics and dynamics for the preferential loss of CH3SOH from peptide ions containing methionine sulfoxide are very similar to selective C-terminal amide bond cleavage at the aspartic acid residue. These results suggest that while preferential cleavage can compete with amide bond cleavage energetically, dynamically, these processes

  16. Peptide Fragmentation by Corona Discharge Induced Electrochemical Ionization

    PubMed Central

    Lloyd, John R.; Hess, Sonja

    2010-01-01

    Fundamental studies have greatly improved our understanding of electrospray, including the underlying electrochemical reactions. Generally regarded as disadvantageous, we have recently shown that corona discharge (CD) can be used as an effective method to create a radical cation species [M]+•, thus optimizing the electrochemical reactions that occur on the surface of the stainless steel (SS) electrospray capillary tip. This technique is known as CD initiated electrochemical ionization (CD-ECI). Here, we report on the fundamental studies using CD-ECI to induce analytically useful in-source fragmentation of a range of molecules that complex transition metals. Compounds that have been selectively fragmented using CD-ECI include enolate forming phenylglycine containing peptides, glycopeptides, nucleosides and phosphopeptides. Collision induced dissociation (CID) or other activation techniques were not necessary for CD-ECI fragmentation. A four step mechanism was proposed: 1. Complexation using either Fe in the SS capillary tip material or Cu(II) as an offline complexation reagent; 2. Electrochemical oxidation of the complexed metal and thus formation of a radical cation (e.g.; Fe - e− → Fe +•); 3. Radical fragmentation of the complexed compound. 4. Electrospray ionization of the fragmented neutrals. Fragmentation patterns resembling b- and y-type ions were observed and allowed the localization of the phosphorylation sites. PMID:20869880

  17. Neutron production in coincidence with fragments from the 4Ca+H reactions at Elab=357 and 565 A MeV

    NASA Astrophysics Data System (ADS)

    Tuvà, C.; Albergo, S.; Boemi, D.; Caccia, Z.; Chen, C.-X.; Costa, S.; Crawford, H. J.; Cronqvist, M.; Engelage, J.; Greiner, L.; Guzik, T. G.; Insolia, A.; Knott, C. N.; Lindstrom, P. J.; Mitchell, J. W.; Potenza, R.; Russo, G. V.; Soutoul, A.; Testard, O.; Tricomi, A.; Tull, C. E.; Waddington, C. J.; Webber, W. R.; Wefel, J. P.

    2000-04-01

    In the frame of the Transport Collaboration neutrons in coincidence with charged fragments produced in the 40Ca+H reaction at Elab=357 and 565 A MeV have been measured at the Heavy Ion Spectrometer System (HISS) facility of the Lawrence Berkeley National Laboratory, using the multifunctional neutron spectrometer MUFFINS. The detector covered a narrow angular range about the beam in the forward direction (0°-3.2°). In this contribution we report absolute neutron production cross sections in coincidence with charged fragments (10⩽Z⩽20). The neutron multiplicities have been estimated from the comparison between the neutron cross sections, in coincidence with the fragments, and the elemental cross sections. We have found evidence for a pre-equilibrium emission of prompt neutrons in superposition to a `slower' deexcitation of the equilibrated remnant by emission of nucleons and fragments, as already seen in the inclusive rapidity distributions.

  18. Low energy electron induced fragmentation and reactions of DNA and its molecular components

    NASA Astrophysics Data System (ADS)

    Bass, Andrew

    2005-05-01

    Much research has been stimulated by the recognition that ionizing radiation can, in condensed matter, generate large numbers of secondary electrons with energies less than 20 eV [1] and by the experimental demonstration that such electrons may induce both single and double strand breaks in plasmid DNA [2]. Identifying the underlying mechanisms involves several research methodologies, from further experiments with DNA to studies of the electron interaction with the component `sub-units' of DNA in both the gas and condensed phases [3]. In particular, understanding electron-induced strand break damage, the type of damage most difficult for organisms to repair, necessitates study of the sub-units of DNA back-bone, and here Tetrahyrofuran (THF) and its derivatives, provide a useful model for the furyl ring at the centre of the deoxyribose sugar. In this contribution, we review with particular reference to DNA and related molecules, the use of electron spectroscopy and mass spectrometry to study electron-induced fragmentation and reactions in thin molecular solids. We describe a newly completed instrument that combines laser post-ionization with a time-of-flight mass analyzer for highly sensitive ion and neutral detection. Use of the instrument is illustrated with results for THF and derivatives. Anion desorption measurements reveal the role of transient negative ions (TNI) and Dissociative Electron Attachment in significant molecular fragmentation and permit effective cross sections for this electron-induced damage to be obtained. The neutral yield functions also illustrate the importance of TNI, mirroring features seen in recently measured cross sections for electron induced aldehyde production in THF [4]. 1. J. A. Laverne and S. M. Pimblott, Radiat. Res. 141, 208 (1995) 2. B. Boudaiffa, et al, Science 287, 1658 (2000) 3. L. Sanche. Physica Scripta. 68, C108, (2003) 4. S.-P. Breton, et al.,J. Chem. Phys. 121, 11240 (2004)

  19. Comprehensive Study On The Metastable Negative Ion Fragmentation Of Individual Dna Components And Larger Oligonucleotides

    NASA Astrophysics Data System (ADS)

    Ingolfsson, O.; Flosadottir, H. D.; Omarsson, B.; Ilko, B.

    2010-07-01

    Here we present a systematic study on the unimolecular decay pathways of the deprotonated building blocks of DNA and RNA to address the following questions: 1. Are the negative ion fragmentation patterns observed in the metastable decay of individual DNA components still evident when these are combined to larger oligonucleotides? 2. What is the significance of the charge location in determining the fragmentation pathways in the metastable decay process? 3. Are those metastable decay channels relevant in dissociative electron attachment to DNA components? To address these questions we have studied the fragmentation patterns of the deprotonated ribose and ribose 5'-monophosphate, the fragmentation patterns of the individual bases, all nucleosides and all 2'-deoxynucleosides as well as the individual nucleotides and several combinations of hexameric oligonucleotides. Furthermore, to understand the significance of the charge location in determining the fragmentation path in the metastable decay process of these deprotonated ions we have also studied modified uridine and guanosine. These have been modified to block different deprotonation sites and thus to control the initial step in the in the fragmentation process i.e. the site of deprotonation. In addition to our experimental approach we have also simulated the metastable fragmentation of the deprotonated uridine and 2'-deoxyguanosine to clarify the mechanisms and fragmentation patterns observed. Where data is available, the results are compared to dissociative electron attachment to DNA components and discussed in context to the underlying mechanism. Experiments on modified nucleosides where selected deprotonation sites have been blocked are used to verify the predicted reaction paths and imulations on uridine and 2'-deoxyguanosine are compared to the experimental results and used to shed light on the mechanisms involved.

  20. Study of fission using multi-nucleon transfer reactions

    NASA Astrophysics Data System (ADS)

    Nishio, Katsuhisa; Hirose, Kentaro; Mark, Vermeulen; Makii, Hiroyuki; Orlandi, Riccardo; Tsukada, Kazuaki; Asai, Masato; Toyoshima, Atsushi; Sato, Tetsuya K.; Nagame, Yuichiro; Chiba, Satoshi; Aritomo, Yoshihiro; Tanaka, Shouya; Ohtsuki, Tsutomu; Tsekhanovich, Igor; Petrache, Costel M.; Andreyev, Andrei

    2017-11-01

    It is shown that multi-nucleon transfer reaction is a powerful tool to study fission of exotic neutronrich actinide nuclei, which cannot be accessed by particle-capture or heavy-ion fusion reactions. In this work, multi-nucleon transfer channels of the reactions of 18O+232Th, 18O+238U, 18O+248Cm, and 18O+237Np were used to measure fission-fragment mass distribution for each transfer channel. Predominantly asymmetric fission is observed at low excitation energies for all the studied cases, with an increase of the symmetric fission towards high excitation energies. Experimental data are compared with predictions of the fluctuation-dissipation model, where effects of multi-chance fission (neutron evaporation prior to fission) was introduced. It is shown that mass-asymmetric structure remaining at high excitation energies originates from low-excited and less neutronrich excited nuclei due to higher-order chance fissions.

  1. On the stability of the fragments and associated properties at the peak center-of-mass energy of light fragments

    NASA Astrophysics Data System (ADS)

    Bansal, Preeti

    2016-05-01

    We simulate semi-central symmetric system reactions, for center-of-mass energies at which maximal number of light fragments (2 ≤ A ≤ 4) occurs and at a fixed Ec.m. = 60 AMeV. The study was carried out with soft EOS using isospin-dependent quantum molecular dynamics (IQMD) model. We studied various properties of fragments at peak Ec.m. and also at constant energy (Ec.m. = 60 AMeV) to find out the relative difference between the properties at both energies.

  2. Anisotropy of the angular distribution of fission fragments in heavy-ion fusion-fission reactions: The influence of the level-density parameter and the neck thickness

    NASA Astrophysics Data System (ADS)

    Naderi, D.; Pahlavani, M. R.; Alavi, S. A.

    2013-05-01

    Using the Langevin dynamical approach, the neutron multiplicity and the anisotropy of angular distribution of fission fragments in heavy ion fusion-fission reactions were calculated. We applied one- and two-dimensional Langevin equations to study the decay of a hot excited compound nucleus. The influence of the level-density parameter on neutron multiplicity and anisotropy of angular distribution of fission fragments was investigated. We used the level-density parameter based on the liquid drop model with two different values of the Bartel approach and Pomorska approach. Our calculations show that the anisotropy and neutron multiplicity are affected by level-density parameter and neck thickness. The calculations were performed on the 16O+208Pb and 20Ne+209Bi reactions. Obtained results in the case of the two-dimensional Langevin with a level-density parameter based on Bartel and co-workers approach are in better agreement with experimental data.

  3. Does the range of IMF affect rise and fall trend in fragmentation?

    NASA Astrophysics Data System (ADS)

    Sharma, Sakshi; Kumar, Rohit; Puri, Rajeev K.

    2018-05-01

    We study the rise and fall behavior in the multiplicity of intermediate mass fragments produced in the asymmetric reactions of 36S+ 198Pt using isospin-dependent quantum molecular dynamics model. We use different definitions of intermediate mass fragments according to various experimental studies. We find that the use of one or the other definition of intermediate mass fragments does not alter results significantly.

  4. Dual Fragment Impact of PBX Charges

    NASA Astrophysics Data System (ADS)

    Haskins, Peter; Briggs, Richard; Leeming, David; White, Nathan; Cheese, Philip; DE&S MoD UK Team; Ordnance Test Solutions Ltd Team

    2017-06-01

    Fragment impact can pose a significant hazard to many systems containing explosives or propellants. Testing for this threat is most commonly carried out using a single fragment. However, it can be argued that an initial fragment strike (or strikes) could sensitise the energetic material to subsequent impacts, which may then lead to a more violent reaction than would have been predicted based upon single fragment studies. To explore this potential hazard we have developed the capability to launch 2 fragments from the same gun at a range of velocities, and achieve impacts on an acceptor charge with good control over the spatial and temporal separation of the strikes. In this paper we will describe in detail the experimental techniques we have used, both to achieve the dual fragment launch and observe the acceptor charge response. In addition, we will describe the results obtained against PBX filled explosive targets; discuss the mechanisms controlling the target response and their significance for vulnerability assessment. Results of these tests have clearly indicated the potential for detonation upon the second strike, at velocities well below those needed for shock initiation by a single fragment.

  5. On the stability of the fragments and associated properties at the peak center-of-mass energy of light fragments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bansal, Preeti

    We simulate semi-central symmetric system reactions, for center-of-mass energies at which maximal number of light fragments (2 ≤ A ≤ 4) occurs and at a fixed E{sub c.m.} = 60 AMeV. The study was carried out with soft EOS using isospin-dependent quantum molecular dynamics (IQMD) model. We studied various properties of fragments at peak E{sub c.m.} and also at constant energy (E{sub c.m.} = 60 AMeV) to find out the relative difference between the properties at both energies.

  6. Target fragmentation in radiobiology

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Cucinotta, Francis A.; Shinn, Judy L.; Townsend, Lawrence W.

    1993-01-01

    Nuclear reactions in biological systems produce low-energy fragments of the target nuclei seen as local high events of linear energy transfer (LET). A nuclear-reaction formalism is used to evaluate the nuclear-induced fields within biosystems and their effects within several biological models. On the basis of direct ionization interaction, one anticipates high-energy protons to have a quality factor and relative biological effectiveness (RBE) of unity. Target fragmentation contributions raise the effective quality factor of 10 GeV protons to 3.3 in reasonable agreement with RBE values for induced micronuclei in bean sprouts. Application of the Katz model indicates that the relative increase in RBE with decreasing exposure observed in cell survival experiments with 160 MeV protons is related solely to target fragmentation events. Target fragment contributions to lens opacity given an RBE of 1.4 for 2 GeV protons in agreement with the work of Lett and Cox. Predictions are made for the effective RBE for Harderian gland tumors induced by high-energy protons. An exposure model for lifetime cancer risk is derived from NCRP 98 risk tables, and protraction effects are examined for proton and helium ion exposures. The implications of dose rate enhancement effects on space radiation protection are considered.

  7. Molecular identification of Giardia duodenalis in Ecuador by polymerase chain reaction-restriction fragment length polymorphism

    PubMed Central

    Atherton, Richard; Bhavnani, Darlene; Calvopiña, Manuel; Vicuña, Yosselin; Cevallos, William; Eisenberg, Joseph

    2013-01-01

    The aim of this study was to determine the genetic diversity of Giardia duodenalis present in a human population living in a northern Ecuadorian rain forest. All Giardia positive samples (based on an ELISA assay) were analysed using a semi-nested polymerase chain reaction-restriction fragment length polymorphism assay that targets the glutamate dehydrogenase (gdh) gene; those amplified were subsequently genotyped using NlaIV and RsaI enzymes. The gdh gene was successfully amplified in 74 of 154 ELISA positive samples; 69 of the 74 samples were subsequently genotyped. Of these 69 samples, 42 (61%) were classified as assemblage B (26 as BIII and 16 as BIV), 22 (32%) as assemblage A (3 as AI and 19 as AII) and five (7%) as mixed AII and BIII types. In this study site we observe similar diversity in genotypes to other regions in Latin America, though in contrast to some previous studies, we found similar levels of diarrheal symptoms in those individuals infected with assemblage B compared with those infected with assemblage A. PMID:23827993

  8. Fission fragment yield distribution in the heavy-mass region from the 239Pu (nth,f ) reaction

    NASA Astrophysics Data System (ADS)

    Gupta, Y. K.; Biswas, D. C.; Serot, O.; Bernard, D.; Litaize, O.; Julien-Laferrière, S.; Chebboubi, A.; Kessedjian, G.; Sage, C.; Blanc, A.; Faust, H.; Köster, U.; Ebran, A.; Mathieu, L.; Letourneau, A.; Materna, T.; Panebianco, S.

    2017-07-01

    The fission fragment yield distribution has been measured in the 239Pu(nth,f ) reaction in the mass region of A =126 to 150 using the Lohengrin recoil-mass spectrometer. Three independent experimental campaigns were performed, allowing a significant reduction of the uncertainties compared to evaluated nuclear data libraries. The long-standing discrepancy of around 10% for the relative yield of A =134 reported in JEF-2.2 and JEFF-3.1.1 data libraries is finally solved. Moreover, the measured mass distribution in thermal neutron-induced fission does not show any significant dip around the shell closure (A =136 ) as seen in heavy-ion fission data of 208Pb(18O, f ) and 238U(18O, f ) reactions. Lastly, comparisons between our experimental data and the predictions from Monte Carlo codes (gef and fifrelin) are presented and discussed.

  9. Regioselectivity of enzymatic and photochemical single electron transfer promoted carbon-carbon bond fragmentation reactions of tetrameric lignin model compounds.

    PubMed

    Cho, Dae Won; Latham, John A; Park, Hea Jung; Yoon, Ung Chan; Langan, Paul; Dunaway-Mariano, Debra; Mariano, Patrick S

    2011-04-15

    New types of tetrameric lignin model compounds, which contain the common β-O-4 and β-1 structural subunits found in natural lignins, have been prepared and carbon-carbon bond fragmentation reactions of their cation radicals, formed by photochemical (9,10-dicyanoanthracene) and enzymatic (lignin peroxidase) SET-promoted methods, have been explored. The results show that cation radical intermediates generated from the tetrameric model compounds undergo highly regioselective C-C bond cleavage in their β-1 subunits. The outcomes of these processes suggest that, independent of positive charge and odd-electron distributions, cation radicals of lignins formed by SET to excited states of sensitizers or heme-iron centers in enzymes degrade selectively through bond cleavage reactions in β-1 vs β-O-4 moieties. In addition, the findings made in the enzymatic studies demonstrate that the sterically large tetrameric lignin model compounds undergo lignin peroxidase-catalyzed cleavage via a mechanism involving preliminary formation of an enzyme-substrate complex.

  10. Isospin dependence of fragment spectra in heavy/super-heavy colliding nuclei at intermediate energies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chugh, Rajiv, E-mail: rajivchug@gmail.com; Kumar, Rohit, E-mail: rohitksharma.pu@gmail.com; Vinayak, Karan Singh, E-mail: drksvinayak@gmail.com

    2016-05-06

    Using isospin-dependent quantum molecular dynamics (IQMD) approach, we performed a theoretical investigation of the evolution of various kinds of fragments in heavy and superheavy-ion reactions in the intermediate/medium energy domain. We demonstrated direct impact of symmetry energy and Coulomb interactions on the evolution of fragments. Final fragment spectra (yields) obtained from the analysis of various heavy/super-heavy ion reactions at different reaction conditions show high sensitivity towards Coulomb interactions and less significant sensitivity to symmetry energy forms. No inconsistent pattern of fragment structure is obtained in case of super-heavy ion involved reactions for all the parameterizations of density dependence of symmetrymore » energy.« less

  11. Protein-Templated Fragment Ligations-From Molecular Recognition to Drug Discovery.

    PubMed

    Jaegle, Mike; Wong, Ee Lin; Tauber, Carolin; Nawrotzky, Eric; Arkona, Christoph; Rademann, Jörg

    2017-06-19

    Protein-templated fragment ligation is a novel concept to support drug discovery and can help to improve the efficacy of protein ligands. Protein-templated fragment ligations are chemical reactions between small molecules ("fragments") utilizing a protein's surface as a reaction vessel to catalyze the formation of a protein ligand with increased binding affinity. The approach exploits the molecular recognition of reactive small-molecule fragments by proteins both for ligand assembly and for the identification of bioactive fragment combinations. In this way, chemical synthesis and bioassay are integrated in one single step. This Review discusses the biophysical basis of reversible and irreversible fragment ligations and gives an overview of the available methods to detect protein-templated ligation products. The chemical scope and recent applications as well as future potential of the concept in drug discovery are reviewed. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Experimental and Theoretical Studies on Gas-Phase Fragmentation Reactions of Protonated Methyl Benzoate: Concomitant Neutral Eliminations of Benzene, Carbon Dioxide, and Methanol

    NASA Astrophysics Data System (ADS)

    Xia, Hanxue; Zhang, Yong; Attygalle, Athula B.

    2018-06-01

    Protonated methyl benzoate, upon activation, fragments by three distinct pathways. The m/z 137 ion for the protonated species generated by helium-plasma ionization (HePI) was mass-selected and subjected to collisional activation. In one fragmentation pathway, the protonated molecule generated a product ion of m/z 59 by eliminating a molecule of benzene (Pathway I). The m/z 59 ion (generally recognized as the methoxycarbonyl cation) produced in this way, then formed a methyl carbenium ion in situ by decarboxylation, which in turn evoked an electrophilic aromatic addition reaction on the benzene ring by a termolecular process to generate the toluenium cation (Pathway II). Moreover, protonated methyl benzoate undergoes also a methanol loss (Pathway III). However, it is not a simple removal of a methanol molecule after a protonation on the methoxy group. The incipient proton migrates to the ring and randomizes to a certain degree before a subsequent transfer of one of the ring protons to the alkoxy group for the concomitant methanol elimination. The spectrum recorded from deuteronated methyl benzoate showed two peaks at m/z 105 and 106 for the benzoyl cation at a ratio of 2:1, confirming the charge-imparting proton is mobile. However, the proton transfer from the benzenium intermediate to the methoxy group for the methanol loss occurs before achieving a complete state of scrambling. [Figure not available: see fulltext.

  13. Fundamental study of hydrogen-attachment-induced peptide fragmentation occurring in the gas phase and during the matrix-assisted laser desorption/ionization process.

    PubMed

    Asakawa, Daiki; Takahashi, Hidenori; Iwamoto, Shinichi; Tanaka, Koichi

    2018-05-09

    Mass spectrometry with hydrogen-radical-mediated fragmentation techniques has been used for the sequencing of proteins/peptides. The two methods, matrix-assisted laser desorption/ionization in-source decay (MALDI-ISD) and hydrogen attachment/abstraction dissociation (HAD) are known as hydrogen-radical-mediated fragmentation techniques. MALDI-ISD occurs during laser induced desorption processes, whereas HAD utilizes the association of hydrogen with peptide ions in the gas phase. In this study, the general mechanisms of MALDI-ISD and HAD of peptides were investigated. We demonstrated the fragmentation of four model peptides and investigated the fragment formation pathways using density functional theory (DFT) calculations. The current experimental and computational joint study indicated that MALDI-ISD and HAD produce aminoketyl radical intermediates, which immediately undergo radical-induced cleavage at the N-Cα bond located on the C-terminal side of the radical site, leading to the c'/z˙ fragment pair. In the case of MALDI-ISD, the z˙ fragments undergo a subsequent reaction with the matrix to give z' and matrix adducts of the z fragments. In contrast, the c' and z˙ fragments react with hydrogen atoms during the HAD processes, and various fragment species, such as c˙, c', z˙ and z', were observed in the HAD-MS/MS mass spectra.

  14. Neutron production in coincidence with fragments from the 40Ca + H reaction at Elab=357A and 565A MeV

    NASA Astrophysics Data System (ADS)

    Tuve, C.; Albergo, S.; Boemi, D.; Caccia, Z.; Chen, C.-X.; Costa, S.; Crawford, H. J.; Cronqvist, M.; Engelage, J.; Greiner, L.; Guzik, T. G.; Knott, C. N.; Insolia, A.; Lindstrom, P. J.; Mitchell, J. W.; Potenza, R.; Russo, G. V.; Soutoul, A.; Testard, O.; Tricomi, A.; Tull, C. E.; Waddington, C. J.; Webber, W. R.; Wefel, J. P.

    1999-01-01

    Neutron production, in coincidence with fragments emitted in the 40Ca+H reaction at Elab=357A and 565A MeV, has been measured using a 3-module version of the multifunctional neutron spectrometer MUFFINS. The mean neutron multiplicities for neutrons detected in the angular range covered by MUFFINS (0°-3.2°) have been estimated from the comparison between the neutron cross sections, in coincidence with the fragments, and the elemental cross sections. We have found evidence for a preequilibrium emission of prompt neutrons in superposition to a ``slower'' deexcitation of the equilibrated remnant by emission of nucleons and fragments, as already seen in inclusive rapidity distributions. The energy dependence of the inclusive neutron production cross sections, measured in a previous work, is here interpreted as due to the stronger neutron focusing in the forward direction at the higher energy. Comparison with a BNV+phase space coalescence model is discussed.

  15. Characteristic fragment size distributions in dynamic fragmentation

    NASA Astrophysics Data System (ADS)

    Zhou, Fenghua; Molinari, Jean-François; Ramesh, K. T.

    2006-06-01

    The one-dimensional fragmentation of a dynamically expanding ring (Mott's problem) is studied numerically to obtain the fragment signatures under different strain rates. An empirical formula is proposed to calculate an average fragment size. Rayleigh distribution is found to describe the statistical properties of the fragment populations.

  16. An (e, 2e+ ion) study of electron-impact ionization and fragmentation of tetrafluoromethane at low energies

    NASA Astrophysics Data System (ADS)

    Hossen, Khokon; Ren, Xueguang; Wang, Enliang; Kumar, S. V. K.; Dorn, Alexander

    2018-03-01

    We study ionization and fragmentation of tetrafluoromethane (CF4) molecule induced by electron impact at low energies ( E 0 = 38 and 67 eV). We use a reaction microscope combined with a pulsed photoemission electron beam for our experimental investigation. The momentum vectors of the two outgoing electrons (energies E 1, E 2) and one fragment ion are detected in triple coincidence (e, 2e+ ion). After dissociation, the fragment products observed are CF3 +, CF2 +, CF+, F+ and C+. For CF3 + and CF2 + channels, we measure the ionized orbitals binding energies, the kinetic energy (KE) of the charged fragments and the two-dimensional (2D) correlation map between binding energy (BE) and KE of the fragments. From the BE and KE spectra, we conclude which molecular orbitals contribute to particular fragmentation channels of CF4. We also measure the total ionization cross section for the formation of CF3 + and CF2 + ions as function of projectile energy. We compare our results with earlier experiments and calculations for electron-impact and photoionization. The major contribution to CF3 + formation originates from ionization of the 4t2 orbital while CF2 + is mainly formed after 3t2 orbital ionization. We also observe a weak contribution of the (4a1)-1 state for the channel CF3 +.

  17. Neutrino-nucleus reactions based on recent structure studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suzuki, Toshio; National Astronomical Observatory of Japan, Mitaka, Tokyo 181-8588

    2015-05-15

    Neutrino-nucleus reactions are studied with the use of new shell model Hamiltonians, which have proper tensor components in the interactions and prove to be successful in the description of Gamow-Teller (GT) strengths in nuclei. The new Hamiltonians are applied to obtain new neutrino-nucleus reaction cross sections in {sup 12}C, {sup 13}C, {sup 56}Fe and {sup 56}Ni induced by solar and supernova neutrinos. The element synthesis by neutrino processes in supernova explosions is discussed with the new cross sections. The enhancement of the production yields of {sup 7}Li, {sup 11}B and {sup 55}Mn is obtained while fragmented GT strength in {supmore » 56}Ni with two-peak structure is found to result in smaller e-capture rates at stellar environments. The monopole-based universal interaction with tensor force of π+ρ meson exchanges is used to evaluate GT strength in {sup 40}Ar and ν-induced reactions on {sup 40}Ar. It is found to reproduce well the experimental GT strength in {sup 40}Ar.« less

  18. Target effects in isobaric yield ratio differences between projectile fragmentation reactions

    NASA Astrophysics Data System (ADS)

    Ma, Chun-Wang; Zhang, Yan-Li; Qiao, Chun-Yuan; Wang, Shan-Shan

    2015-01-01

    Background: The isobaric yield ratio difference (IBD) between reactions is know to be sensitive to the density difference between projectiles in heavy-ion collisions around the Fermi energy. Purpose: The target effects in the isobaric yield ratio (IYR) and the IBD results have been studied. Methods: The amount of isotopes in the 140 A MeV 48 ,40Ca +181Ta /9Be and 58 ,64Ni +181Ta /9Be reactions have been previously measured with high accuracy. The IYR and IBD results have been obtained from these reactions to study the effects of the light 9Be and heavy 181Ta targets. A ratio (rΔ μ) between the IBD results for the reactions with Ta and Be targets is defined to quantitatively show the target dependence of the IBD results. Results The IYRs for reactions with symmetric projectiles are more easily affected than those for reactions with neutron-rich projectiles. The IBD results are suppressed by using the 181Ta target to different degrees. Conclusions: The IYR and IBD results are influenced by the target used. The IBD for the I =1 isobaric chain is suggested as a probe to study the difference between the neutron and proton densities of the reaction systems.

  19. Molecular typing of Iranian mycobacteria isolates by polymerase chain reaction-restriction fragment length polymorphism analysis of 360-bp rpoB gene

    PubMed Central

    Hadifar, Shima; Moghim, Sharareh; Fazeli, Hossein; GhasemianSafaei, Hajieh; Havaei, Seyed Asghar; Farid, Fariba; Esfahani, Bahram Nasr

    2015-01-01

    Background: Diagnosis and typing of Mycobacterium genus provides basic tools for investigating the epidemiology and pathogenesis of this group of bacteria. Polymerase chain reaction (PCR)-restriction fragment length polymorphism analysis (PRA) is an accurate method providing diagnosis and typing of species of mycobacteria. The present study is conducted by the purpose of determining restriction fragment profiles of common types of mycobacteria by PRA method of rpoB gene in this geographical region. Materials and Methods: Totally 60 clinical and environmental isolates from February to October, 2013 were collected and subcultured and identified by phenotypic methods. A 360 bp fragment of the rpoB gene amplified by PCR and products were digested by MspI and HaeIII enzymes. Results: In the present study, of all mycobacteria isolates identified by PRA method, 13 isolates (21.66%) were Mycobacterium tuberculosis, 34 isolates (56.66%) were rapidly growing Nontuberculosis Mycobacteria (NTM) that including 26 clinical isolates (43.33%) and 8 environmental isolates (13.33%), 11 isolates (18.33%) were clinical slowly growing NTM. among the clinical NTM isolates, Mycobacterium fortuitum Type I with the frequency of 57.77% was the most prevalent type isolates. Furthermore, an unrecorded of the PRA pattern of Mycobacterium conceptionense (HeaIII: 120/90/80, MspI: 120/105/80) was found. This study demonstrated that the PRA method was high discriminatory power for identification and typing of mycobacteria species and was able to identify 96.6% of all isolates. Conclusion: Based on the result of this study, rpoB gene could be a potentially useful tool for identification and investigation of molecular epidemiology of mycobacterial species. PMID:26380237

  20. Tissue reactions under piezoelectric shockwave application for the fragmentation of biliary calculi.

    PubMed Central

    Ell, C; Kerzel, W; Heyder, N; Rödl, W; Langer, H; Mischke, U; Giedl, J; Domschke, W

    1989-01-01

    The tissue reactions that occurred during piezoelectric shockwaves for the fragmentation of biliary calculi were investigated in 10 surgically removed stone containing human gall bladders and in acute (six dogs) and chronic (six dogs) animal experiments. Before and after shockwave (500, 1500 or 3000) in the anaesthetised dogs, computed tomography (CT), magnetic imaging (MRI) and laboratory tests were done; treatment was carried out under continuous ultrasonographic control. Shockwave applications to the human gall bladders resulted in disintegration of the stones with no macroscopically or microscopically detectable tissue changes. In acute animal experiments, small haematomas were observed in all six animals at surfaces, but also inside the liver and gall bladder (max diameter 25 mm). Perforation or intra-abdominal or pleural bleeding did not occur. In chronic experiments, no macroscopic, and only slight microscopic residual lesions (haemosiderin deposits) were seen three weeks after shockwave. In almost all instances, the lesions were detected by CT, MRI, and ultrasonography, while laboratory tests were negative. Images Fig 1 Figs. 2-4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 PMID:2731762

  1. Attosecond-recollision-controlled selective fragmentation of polyatomic molecules.

    PubMed

    Xie, Xinhua; Doblhoff-Dier, Katharina; Roither, Stefan; Schöffler, Markus S; Kartashov, Daniil; Xu, Huailiang; Rathje, Tim; Paulus, Gerhard G; Baltuška, Andrius; Gräfe, Stefanie; Kitzler, Markus

    2012-12-14

    Control over various fragmentation reactions of a series of polyatomic molecules (acetylene, ethylene, 1,3-butadiene) by the optical waveform of intense few-cycle laser pulses is demonstrated experimentally. We show both experimentally and theoretically that the responsible mechanism is inelastic ionization from inner-valence molecular orbitals by recolliding electron wave packets, whose recollision energy in few-cycle ionizing laser pulses strongly depends on the optical waveform. Our work demonstrates an efficient and selective way of predetermining fragmentation and isomerization reactions in polyatomic molecules on subfemtosecond time scales.

  2. Fragmentation mechanisms for methane induced by 55 eV, 75 eV, and 100 eV electron impact

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, B.; Zhang, Y.; Wang, X., E-mail: xinchengwang@fudan.edu.cn

    2014-03-28

    The fragmentation of CH{sub 4}{sup 2+} dications following 55 eV, 75 eV, and 100 eV electron impact double ionization of methane was studied using a cold target recoil-ion momentum spectroscopy. From the measured momentum of each recoil ion, the momentum of the neutral particles has been deduced and the kinetic energy release distribution for the different fragmentation channels has been obtained. The doubly charged molecular ions break up into three or more fragments in one or two-step processes, resulting in different signatures in the data. We observed the fragmentation of CH{sub 4}{sup 2+} dications through different mechanisms according to themore » momentum of the neutral particles. For example, our result shows that there are three reaction channels to form CH{sub 2}{sup +}, H{sup +}, and H, one synchronous concerted reaction channel and two two-step reaction channels. For even more complicated fragmentation processes of CH{sub 4}{sup 2+} dications, the fragmentation mechanism can still be identified in the present measurements. The slopes of the peak in the ion-ion coincidence spectra were also estimated here, as they are also related to the fragmentation mechanism.« less

  3. Fragmentation mechanisms for methane induced by 55 eV, 75 eV, and 100 eV electron impact.

    PubMed

    Wei, B; Zhang, Y; Wang, X; Lu, D; Lu, G C; Zhang, B H; Tang, Y J; Hutton, R; Zou, Y

    2014-03-28

    The fragmentation of CH4 (2+) dications following 55 eV, 75 eV, and 100 eV electron impact double ionization of methane was studied using a cold target recoil-ion momentum spectroscopy. From the measured momentum of each recoil ion, the momentum of the neutral particles has been deduced and the kinetic energy release distribution for the different fragmentation channels has been obtained. The doubly charged molecular ions break up into three or more fragments in one or two-step processes, resulting in different signatures in the data. We observed the fragmentation of CH4 (2+) dications through different mechanisms according to the momentum of the neutral particles. For example, our result shows that there are three reaction channels to form CH2 (+), H(+), and H, one synchronous concerted reaction channel and two two-step reaction channels. For even more complicated fragmentation processes of CH4 (2+) dications, the fragmentation mechanism can still be identified in the present measurements. The slopes of the peak in the ion-ion coincidence spectra were also estimated here, as they are also related to the fragmentation mechanism.

  4. Study the fragment size distribution in dynamic fragmentation of laser shock loding tin

    NASA Astrophysics Data System (ADS)

    He, Weihua; Xin, Jianting; Chu, Genbai; Shui, Min; Xi, Tao; Zhao, Yongqiang; Gu, Yuqiu

    2017-06-01

    Characterizing the distribution of fragment size produced from dynamic fragmentation process is very important for fundamental science like predicting material dymanic response performance and for a variety of engineering applications. However, only a few data about fragment mass or size have been obtained due to its great challenge in its dynamic measurement. This paper would focus on investigating the fragment size distribution from the dynamic fragmentation of laser shock-loaded metal. Material ejection of tin sample with wedge shape groove in the free surface is collected with soft recovery technique. Via fine post-shot analysis techniques including X-ray micro-tomography and the improved watershed method, it is found that fragments can be well detected. To characterize their size distributions, a random geometric statistics method based on Poisson mixtures was derived for dynamic heterogeneous fragmentation problem, which leads to a linear combinational exponential distribution. Finally we examined the size distribution of laser shock-loaded tin with the derived model, and provided comparisons with other state-of-art models. The resulting comparisons prove that our proposed model can provide more reasonable fitting result for laser shock-loaded metal.

  5. Identification of blood meal sources of Lutzomyia longipalpis using polymerase chain reaction-restriction fragment length polymorphism analysis of the cytochrome B gene

    PubMed Central

    Soares, Vítor Yamashiro Rocha; da Silva, Jailthon Carlos; da Silva, Kleverton Ribeiro; Cruz, Maria do Socorro Pires e; Santos, Marcos Pérsio Dantas; Ribolla, Paulo Eduardo Martins; Alonso, Diego Peres; Coelho, Luiz Felipe Leomil; Costa, Dorcas Lamounier; Costa, Carlos Henrique Nery

    2014-01-01

    An analysis of the dietary content of haematophagous insects can provide important information about the transmission networks of certain zoonoses. The present study evaluated the potential of polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis of the mitochondrial cytochrome B (cytb) gene to differentiate between vertebrate species that were identified as possible sources of sandfly meals. The complete cytb gene sequences of 11 vertebrate species available in the National Center for Biotechnology Information database were digested with Aci I, Alu I, Hae III and Rsa I restriction enzymes in silico using Restriction Mapper software. The cytb gene fragment (358 bp) was amplified from tissue samples of vertebrate species and the dietary contents of sandflies and digested with restriction enzymes. Vertebrate species presented a restriction fragment profile that differed from that of other species, with the exception of Canis familiaris and Cerdocyon thous. The 358 bp fragment was identified in 76 sandflies. Of these, 10 were evaluated using the restriction enzymes and the food sources were predicted for four: Homo sapiens (1), Bos taurus (1) and Equus caballus (2). Thus, the PCR-RFLP technique could be a potential method for identifying the food sources of arthropods. However, some points must be clarified regarding the applicability of the method, such as the extent of DNA degradation through intestinal digestion, the potential for multiple sources of blood meals and the need for greater knowledge regarding intraspecific variations in mtDNA. PMID:24821056

  6. Prompt fission neutron emission in the reaction 235U(n,f)

    NASA Astrophysics Data System (ADS)

    Göök, Alf; Hambsch, Franz-Josef; Oberstedt, Stephan

    2018-03-01

    Experimental activities at JRC-Geel on prompt fission neutron (PFN) emission in response to OECD/NEA nuclear data requests are presented in this contribution. Specifically, on-going investigations of PFN emission from the reaction 235U(n,f) in the region of the resolved resonances, taking place at the GELINA facility, are presented. The focus of this contribution lies on studies of PFN correlations with fission fragment properties. The experiment employs a scintillation detector array for neutron detection, while fission fragment properties are determined via the double kinetic energy technique using a position sensitive twin ionization chamber. This setup allows us to study several correlations between properties of neutron and fission fragments simultaneously. Results on PFN correlations with fission fragment properties from the present study differ significantly from earlier studies on this reaction, induced by thermal neutrons.

  7. Chemical reaction and dust formation studies in laboratory hydrocarbon plasmas.

    NASA Astrophysics Data System (ADS)

    Hippler, Rainer; Majumdar, Abhijit; Thejaswini, H. C.

    Plasma chemical reaction studies with relevance to, e.g., Titan's atmosphere have been per-formed in various laboratory plasmas [1,2]. Chemical reactions in a dielectric barrier discharge at medium pressure of 250-300 mbar have been studied in CH4 /N2 and CH4 /Ar gas mixtures by means of mass spectrometry. The main reaction scheme is production of H2 by fragmenta-tion of CH4 , but also production of larger hydrocarbons like Cn Hm with n up to 10 including formation of different functional CN groups is observed. [1] A. Majumdar and R. Hippler, Development of dielectric barrier discharge plasma processing apparatus for mass spectrometry and thin film deposition, Rev. Sci. Instrum. 78, 075103 (2007) [2] H.T. Do, G. Thieme, M. Frühlich, H. Kersten, and R. Hippler, Ion Molecule and Dust Particle Formation in Ar/CH4 , Ar/C2 H2 and Ar/C3 H6 Radio-frequency Plasmas, Contrib. Plasma Phys. 45, No. 5-6, 378-384 (2005)

  8. Britte reaction of a high-temperature ion melt

    NASA Astrophysics Data System (ADS)

    Zimanowski, B.; Büttner, R.; Nestler, J.

    1997-05-01

    An experimental study on explosive interaction between transparent melt (T = 1120 K) and entrapped water (T = 300 K) has been performed. Intense explosions occurred, resulting from catastrophic fragmentation of the melt and increasing heat transfer to the water in a cascading process. In earlier experiments a quasi-isochoric brittle reaction of the melt was identified to be the major explosion mechanism. Using a transparent melt, this brittle reaction could directly be observed by high-speed cinematography. The pictures revealed two fragmentation mechanisms: a) formation of leading cracks (mm to cm scale) due to excess water pressure, and b) slower μm scaled melt fragmentation induced by strain build-up in the melt during rapid cooling.

  9. Fission of actinide nuclei using multi-nucleon transfer reactions

    NASA Astrophysics Data System (ADS)

    Léguillon, Romain; Nishio, Katsuhisa; Hirose, Kentaro; Orlandi, Riccardo; Makii, Hiroyuki; Nishinaka, Ichiro; Ishii, Tetsuro; Tsukada, Kazuaki; Asai, Masato; Chiba, Satoshi; Ohtsuki, Tsutomu; Araki, Shohei; Watanabe, Yukinobu; Tatsuzawa, Ryotaro; Takaki, Naoyuki

    2014-09-01

    We are promoting a campaign to measure fission-fragment mass distributions for neutron-rich actinide nuclei populated by transfer reactions from their ground state up to an excitation energy of several tens MeV. We thus obtain the excitation energy dependence of the mass distribution. The experiment was carried out at the 20 MV JAEA tandem facility at Tokai. We report on the data obtained in the direct reaction 18 O + 232 Th . Transfer-channels and excitation energies of the fissioning nuclei were identified using silicon dE-E detectors located at forward angle. Two fission fragments were detected in coincidence using multi-wire proportional counters. Fission fragment masses were determined by kinematic consideration. We obtained the fission fragment mass distributions for 13 nuclei from actinium to uranium and some fission barrier heights. We are promoting a campaign to measure fission-fragment mass distributions for neutron-rich actinide nuclei populated by transfer reactions from their ground state up to an excitation energy of several tens MeV. We thus obtain the excitation energy dependence of the mass distribution. The experiment was carried out at the 20 MV JAEA tandem facility at Tokai. We report on the data obtained in the direct reaction 18 O + 232 Th . Transfer-channels and excitation energies of the fissioning nuclei were identified using silicon dE-E detectors located at forward angle. Two fission fragments were detected in coincidence using multi-wire proportional counters. Fission fragment masses were determined by kinematic consideration. We obtained the fission fragment mass distributions for 13 nuclei from actinium to uranium and some fission barrier heights. Present study is supported by the Ministry of Education, Culture, Sports, Science and Technology of Japan.

  10. Total reaction cross sections and neutron-removal cross sections of neutron-rich light nuclei measured by the COMBAS fragment-separator

    NASA Astrophysics Data System (ADS)

    Hue, B. M.; Isataev, T.; Erdemchimeg, B.; Artukh, A. G.; Aznabaev, D.; Davaa, S.; Klygin, S. A.; Kononenko, G. A.; Khuukhenkhuu, G.; Kuterbekov, K.; Lukyanov, S. M.; Mikhailova, T. I.; Maslov, V. A.; Mendibaev, K.; Sereda, Yu M.; Penionzhkevich, Yu E.; Vorontsov, A. N.

    2017-12-01

    Preliminary results of measurements of the total reaction cross sections σR and neutron removal cross section σ-xn for weakly bound 6He, 8Li, 9Be and 10Be nuclei at energy range (20-35) A MeV with 28Si target is presented. The secondary beams of light nuclei were produced by bombardment of the 22Ne (35 A MeV) primary beam on Be target and separated by COMBAS fragment-separator. In dispersive focal plane a horizontal slit defined the momentum acceptance as 1% and a wedge degrader of 200 μm Al was installed. The Bρ of the second section of the fragment-separator was adjusted for measurements in energy range (20-35) A MeV. Two-neutron removal cross sections for 6He and 10Be and one -neutron removal cross sections 8Li and 9Be were measured.

  11. Electromagnetic Dissociation Cross Sections for High LET Fragments

    NASA Technical Reports Server (NTRS)

    Norbury, John

    2016-01-01

    Nuclear interaction cross sections are used in space radiation transport codes to calculate the probability of fragment emission in high energy nucleus-nucleus collisions. Strong interactions usually dominate in these collisions, but electromagnetic (EM) interactions can also sometimes be important. Strong interactions typically occur when the projectile nucleus hits a target nucleus, with a small impact parameter. For impact parameters larger than the sum of the nuclear radii, EM reactions dominate and the process is called electromagnetic dissociation (EMD) if one of the nuclei undergo fragmentation. Previous models of EMD have been used to calculate single proton (p) production, single neutron (n) production or light ion production, where a light ion is defined as an isotope of hydrogen (H) or helium (He), such as a deuteron (2H), a triton (3H), a helion (3He) or an alpha particle (4He). A new model is described which can also account for multiple nucleon production, such as 2p, 2n, 1p1n, 2p1n, 2p2n, etc. in addition to light ion production. Such processes are important to include for the following reasons. Consider, for example, the EMD reaction 56Fe + Al --> 52Cr + X + Al, for a 56Fe projectile impacting Al, which produces the high linear energy transfer (LET) fragment 52Cr. In this reaction, the most probable particles representing X are either 2p2n or 4He. Therefore, production of the high LET fragment 52Cr, must include the multiple nucleon production of 2p2n in addition to the light ion production of 4He. Previous models, such as the NUCFRG3 model, could only account for the 4He production process in this reaction and could not account for 2p2n. The new EMD model presented in this work accounts for both the light ion and multiple nucleon processes, and is therefore able to correctly account for the production of high LET products such as 52Cr. The model will be described and calculations will be presented that show the importance of light ion and multiple

  12. Rock fragment movement in shallow rill flow - A laboratory study

    NASA Astrophysics Data System (ADS)

    Becker, Kerstin; Wirtz, Stefan; Seeger, Manuel; Gronz, Oliver; Remke, Alexander; Iserloh, Thomas; Brings, Christine; Casper, Markus; Ries, Johannes B.

    2014-05-01

    Studies concerning rill erosion mainly deal with the erosion and transport of fine material. The transport of rock fragments is examined mostly for mountain rivers. But there are important differences between the conditions and processes in rivers and in rills: (1) In most cases, the river cuts into a coarse substrate, where fine material is sparse, whereas rill erosion occurs on arable land. So the main part of the substrate is fine material and only single rock fragments influence the processes. (2) In rivers, the water depth is relatively high. There are a lot of studies about hydraulic parameters in such flows, but there is almost nothing known about hydraulic conditions in surface runoff events of a few centimeters. Additionally, little information exists about the rock fragment movement as a part of rill erosion processes on arable land. This knowledge should be increased because rock fragments cause non-stationary water turbulences in rills, which enhance the erosive force of flowing water. Field experiments can only show the fact that a certain rock fragment has moved: The starting point and the final position can be estimated. But the moving path and especially the initiation of the movement is not detectable under field conditions. Hence, we developed a laboratory setup to analyze the movement of rock fragments depending on rock fragment properties (size, form), slope gradient, flow velocity and surface roughness. By observing the rock fragments with cameras from two different angles we are able (1) to measure the rotation angles of a rock fragment during the experiment and (2) to deduce different rock fragment movement patterns. On this poster we want to present the experimental setup, developed within the scope of a master thesis, and the results of these experiments.

  13. The Zero-Degree Detector System for Fragmentation Studies

    NASA Technical Reports Server (NTRS)

    Adams, J. H., Jr.; Christl, M. J.; Howell, L. W.; Kuznetsov, E.

    2006-01-01

    The measurement of nuclear fragmentation cross sections requires the detection and identification of individual projectile fragments. If light and heavy fragments are recorded in 'ne same detector, it may be impossible distinguish the signal from the light fragment. To overcome this problem, we have developed the Zero-Degree Detector System. The ZDDS enables the measurement of cross sections for light fragment production by using pixelated detectors to separately measure the signals of each fragment. The system has been used to measure the fragmentation of beams as heavy as Fe at the NASA Space Radiation Laboratory at Brookhaven National Laboratory and the Heavy Ion Medical Accelerator in Chiba, Japan.

  14. Characterization of hypervelocity metal fragments for explosive initiation

    NASA Astrophysics Data System (ADS)

    Yeager, John D.; Bowden, Patrick R.; Guildenbecher, Daniel R.; Olles, Joseph D.

    2017-07-01

    The fragment impact response of two plastic-bonded explosive (PBX) formulations was studied using explosively driven aluminum fragments. A generic aluminum-capped detonator generated sub-mm aluminum particles moving at hypersonic velocities. The ability of these fragments to initiate reaction or otherwise damage two PBX materials was assessed using go/no-go experiments at standoff distances of up to 160 mm. Lower density PBX 9407 (RDX-based) was initiable at up to 115 mm, while higher density PBX 9501 (HMX-based) was only initiable at up to 6 mm. Several techniques were used to characterize the size, distribution, and velocity of the particles. Witness plate materials, including copper and polycarbonate, and backlit high speed video were used to characterize the distribution of particles, finding that the aluminum cap did not fragment homogeneously but rather with larger particles in a ring surrounding finer particles. Finally, precise digital holography experiments were conducted to measure the three-dimensional shape and size of the fastest-moving fragments, which ranged between 100 and 700 μm and traveled between 2.2 and 3.2 km/s. Crucially, these experiments showed variability in the fragmentation in terms of the number of fragments at the leading edge of the fragment field, indicating that both single and multiple shock impacts could be imparted to the target material. These types of data are critical for safety experiments and hydrocode simulations to quantify shock-to-detonation transition mechanisms and the associated risk-margins for these materials.

  15. Statistical prescission point model of fission fragment angular distributions

    NASA Astrophysics Data System (ADS)

    John, Bency; Kataria, S. K.

    1998-03-01

    In light of recent developments in fission studies such as slow saddle to scission motion and spin equilibration near the scission point, the theory of fission fragment angular distribution is examined and a new statistical prescission point model is developed. The conditional equilibrium of the collective angular bearing modes at the prescission point, which is guided mainly by their relaxation times and population probabilities, is taken into account in the present model. The present model gives a consistent description of the fragment angular and spin distributions for a wide variety of heavy and light ion induced fission reactions.

  16. Gold-Catalyzed Enantio- and Diastereoselective Syntheses of Left Fragments of Azadirachtin/Meliacarpin-Type Limonoids.

    PubMed

    Shi, Hang; Tan, Ceheng; Zhang, Weibin; Zhang, Zichun; Long, Rong; Gong, Jianxian; Luo, Tuoping; Yang, Zhen

    2016-02-05

    Meliacarpin-type limonoids are an important class of organic insecticides. Their syntheses are challenging due to their chemical complexity. Here, we report the highly enantio- and diastereoselective synthesis of the left fragments of azadirachtin I and 1-cinnamoylmelianolone, being two important family members of meliacarpin-type limonoids, via pairwise palladium- and gold-catalyzed cascade reactions. Gold-catalyzed reactions of 1,7-diynes were performed as model studies, and the efficient construction of tetracyclic late-stage intermediates was achieved on the basis of this key transformation. Our unique route gave both of the left fragments in 23 steps from the commercially available chiral starting material (-)-carvone. This study significantly advances research on the synthesis of the meliacarpin-type limonoids.

  17. Fragment-based lead generation: identification of seed fragments by a highly efficient fragment screening technology

    NASA Astrophysics Data System (ADS)

    Neumann, Lars; Ritscher, Allegra; Müller, Gerhard; Hafenbradl, Doris

    2009-08-01

    For the detection of the precise and unambiguous binding of fragments to a specific binding site on the target protein, we have developed a novel reporter displacement binding assay technology. The application of this technology for the fragment screening as well as the fragment evolution process with a specific modelling based design strategy is demonstrated for inhibitors of the protein kinase p38alpha. In a fragment screening approach seed fragments were identified which were then used to build compounds from the deep-pocket towards the hinge binding area of the protein kinase p38alpha based on a modelling approach. BIRB796 was used as a blueprint for the alignment of the fragments. The fragment evolution of these deep-pocket binding fragments towards the fully optimized inhibitor BIRB796 included the modulation of the residence time as well as the affinity. The goal of our study was to evaluate the robustness and efficiency of our novel fragment screening technology at high fragment concentrations, compare the screening data with biochemical activity data and to demonstrate the evolution of the hit fragments with fast kinetics, into slow kinetic inhibitors in an in silico approach.

  18. Gun Testing Ballistics Issues for Insensitive Munitions Fragment Impact Testing

    NASA Astrophysics Data System (ADS)

    Baker, Ernest; Schultz, Emmanuel; NATO Munitions Safety Information Analysis Centre Team

    2017-06-01

    The STANAG 4496 Ed. 1 Fragment Impact, Munitions Test Procedure is normally conducted by gun launching a projectile for attack against a munition. The purpose of this test is to assess the reaction of a munition impacted by a fragment. The test specifies a standardized projectile (fragment) with a standard test velocity of 2530+/-90 m/s, or an alternate test velocity of 1830+/-60 m/s. The standard test velocity can be challenging to achieve and has several loosely defined and undefined characteristics that can affect the test item response. This publication documents the results of an international review of the STANAG 4496 related to the fragment impact test. To perform the review, MSIAC created a questionnaire in conjunction with the custodian of this STANAG and sent it to test centers. Fragment velocity variation, projectile tilt upon impact and aim point variation were identified as observed gun testing issues. Achieving 2530 m/s consistently and cost effectively can be challenging. The aim point of impact of the fragment is chosen with the objective of obtaining the most violent reaction. No tolerance for aim point is specified, although aim point variation can be a source for IM response variation. Fragment tilt on impact is also unspecified. The standard fragment fabricated from a variety of different steels which have a significant margin for mechanical properties. These, as well as other gun testing issues, have significant implications to resulting IM response.

  19. Characterization of hypervelocity metal fragments for explosive initiation

    DOE PAGES

    Yeager, John D.; Bowden, Patrick R.; Guildenbecher, Daniel R.; ...

    2017-07-17

    The fragment impact response of two plastic-bonded explosive (PBX) formulations was studied using explosively driven aluminum fragments. A generic aluminum-capped detonator generated sub-mm aluminum particles moving at hypersonic velocities. The ability of these fragments to initiate reaction or otherwise damage two PBX materials was assessed using go/no-go experiments at standoff distances of up to 160 mm. Lower density PBX 9407 (RDX-based) was initiable at up to 115 mm, while higher density PBX 9501 (HMX-based) was only initiable at up to 6 mm. Several techniques were used to characterize the size, distribution, and velocity of the particles. Witness plate materials, includingmore » copper and polycarbonate, and backlit high speed video were used to characterize the distribution of particles, finding that the aluminum cap did not fragment homogeneously but rather with larger particles in a ring surrounding finer particles. Finally, precise digital holography experiments were conducted to measure the three-dimensional shape and size of the fastest-moving fragments, which ranged between 100 and 700 μm and traveled between 2.2 and 3.2 km/s. Crucially, these experiments showed variability in the fragmentation in terms of the number of fragments at the leading edge of the fragment field, indicating that both single and multiple shock impacts could be imparted to the target material. As a result, these types of data are critical for safety experiments and hydrocode simulations to quantify shock-to-detonation transition mechanisms and the associated risk-margins for these materials.« less

  20. Light charged particle multiplicities in fusion and quasifission reactions

    NASA Astrophysics Data System (ADS)

    Kalandarov, Sh. A.; Adamian, G. G.; Antonenko, N. V.; Lacroix, D.; Wieleczko, J. P.

    2018-01-01

    The light charged particle evaporation from the compound nucleus and from the complex fragments in the reactions 32S+100Mo, 121Sb+27Al, 40Ar+164Dy, and 40Ar+ nat Ag is studied within the dinuclear system model. The possibility to distinguish the reaction products from different reaction mechanisms is discussed.

  1. Fusion-fission and quasifission in the reactions with heavy ions leading to the formation of Hs

    NASA Astrophysics Data System (ADS)

    Itkis, I. M.; Itkis, M. G.; Knyazheva, G. N.; Kozulin, E. M.

    2012-10-01

    Mass and energy distributions of binary reaction products obtained in the reactions 22Ne+249Cf,26Mg+248Cm,36S+238U and 58Fe+208Pb leading to Hs isotopes have been measured. At energies below the Coulomb barrier the bimodal fission of Hs*, formed in the reaction 26Mg+248Cm, is observed. In the reaction 36S+238U the considerable part of the symmetric fragments arises from the quasifission process. At energies above the Coulomb barrier the symmetric fragments originate mainly from fusion-fission process for both reactions with Mg and S ions. In the case of the 58Fe+208Pb reaction the quasifission process dominates at all measured energies. The pre- and post-scission neutron multiplicities as a function of the fragment mass have been obtained for the reactions studied.

  2. [FAB immunoglobulin fragments. I. The comparative characteristics of the serological and virus-neutralizing properties of a gamma globulin against tick-borne encephalitis and of the FAB fragments isolated from it].

    PubMed

    Barban, P S; Minaeva, V M; Pantiukhina, A N; Startseva, M G

    1976-06-01

    A comparative study was made of the serological properties and virus-neutralizing activity of antiencephalitis gamma-globulin and Fab-fragments isolated from it by gel-filtration. Horse immunoglobulins against the autumno-summer tick-borne encephalitis virus could be disintegrated with the aid of papaine to monovalent Fab-fragments which (according to the complement fixation reaction, the test of suppression of the complement fixation, and the HAIT) retained the serological activity whose level was compared with that of the serological activity of gamma-globulin. Fab-fragments possessed a marked virus-neutralizing activity. The mean value of a logarithm of the neutralization index was 2.65 +/- 0.2 for Fab-fragments and 3.74 +/- 0.38 for gamma-globulin (P less than 0.01).

  3. Sub-fragmentation of structural-reactive-material casings under explosion

    NASA Astrophysics Data System (ADS)

    Zhang, Fan

    2015-06-01

    The sub-fragmentation of structural reactive material (SRM) thick-casings is to generate fine fragments during casing fragmentation under explosive loading for their efficient energy release to enhance air blast. This has been investigated using a cylindrical casing made from either rich Al-MoO3 or Al-W-based granular composites. The former composite was to study the concept of reactive hot spots where the reaction of reactive particles, which were distributed into base SRM in a fuel-rich equivalence ratio, created heat and gas products during SRM fragmentation. The expansion of these distributed hot spots initiated local fractures of the casing, leading to fine fragments. The Al-W-based composite investigated the concept of impedance mismatch, where shock dynamics at the interfaces of different impedance ingredients resulted in non-uniform, high local temperatures and stresses and late in times the dissimilar inertia resulted in different accelerations, leading to material separation and fine fragments. The casings were manufactured through both hot iso-static pressing and cold gas dynamic spray deposition. Explosion experiments were conducted in a 3 m diameter, 23 m3 cylindrical chamber for these cased charges in a casing-to-explosive mass ratio of 1.75. The results demonstrated the presence of fine fragments and more efficient fragment combustion, compared with previous results, and indicated the effectiveness of both concepts. This work was jointly funded by Defence R&D Canada and the Advanced Energetics Program of DTRA (Dr. William H. Wilson).

  4. Identification of Pork Contamination in Meatballs of Indonesia Local Market Using Polymerase Chain Reaction-Restriction Fragment Length Polymorphism (PCR-RFLP) Analysis

    PubMed Central

    Erwanto, Yuny; Abidin, Mohammad Zainal; Sugiyono, Eko Yasin Prasetyo Muslim; Rohman, Abdul

    2014-01-01

    This research applied and evaluated a polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) using cytochrome b gene to detect pork contamination in meatballs from local markets in Surabaya and Yogyakarta regions, Indonesia. To confirm the effectiveness and specificity of this fragment, thirty nine DNA samples from different meatball shops were isolated and amplified, and then the PCR amplicon was digested by BseDI restriction enzyme to detect the presence of pork in meatballs. BseDI restriction enzyme was able to cleave porcine cytochrome b gene into two fragments (131 bp and 228 bp). Testing the meatballs from the local market showed that nine of twenty meatball shops in Yogyakarta region were detected to have pork contamination, but there was no pork contamination in meatball shops in Surabaya region. In conclusion, specific PCR amplification of cytochrome b gen and cleaved by BseDI restriction enzymes seems to be a powerful technique for the identification of pork presence in meatball because of its simplicity, specificity and sensitivity. Furthermore, pork contamination intended for commercial products of sausage, nugget, steak and meat burger can be checked. The procedure is also much cheaper than other methods based on PCR, immunodiffusion and other techniques that need expensive equipment. PMID:25178301

  5. Identification of Pork Contamination in Meatballs of Indonesia Local Market Using Polymerase Chain Reaction-Restriction Fragment Length Polymorphism (PCR-RFLP) Analysis.

    PubMed

    Erwanto, Yuny; Abidin, Mohammad Zainal; Sugiyono, Eko Yasin Prasetyo Muslim; Rohman, Abdul

    2014-10-01

    This research applied and evaluated a polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) using cytochrome b gene to detect pork contamination in meatballs from local markets in Surabaya and Yogyakarta regions, Indonesia. To confirm the effectiveness and specificity of this fragment, thirty nine DNA samples from different meatball shops were isolated and amplified, and then the PCR amplicon was digested by BseDI restriction enzyme to detect the presence of pork in meatballs. BseDI restriction enzyme was able to cleave porcine cytochrome b gene into two fragments (131 bp and 228 bp). Testing the meatballs from the local market showed that nine of twenty meatball shops in Yogyakarta region were detected to have pork contamination, but there was no pork contamination in meatball shops in Surabaya region. In conclusion, specific PCR amplification of cytochrome b gen and cleaved by BseDI restriction enzymes seems to be a powerful technique for the identification of pork presence in meatball because of its simplicity, specificity and sensitivity. Furthermore, pork contamination intended for commercial products of sausage, nugget, steak and meat burger can be checked. The procedure is also much cheaper than other methods based on PCR, immunodiffusion and other techniques that need expensive equipment.

  6. A computational study of the Diels-Alder reactions between 2,3-dibromo-1,3-butadiene and maleic anhydride

    NASA Astrophysics Data System (ADS)

    Rivero, Uxía; Meuwly, Markus; Willitsch, Stefan

    2017-09-01

    The neutral and cationic Diels-Alder-type reactions between 2,3-dibromo-1,3-butadiene and maleic anhydride have been computationally explored as the first step of a combined experimental and theoretical study. Density functional theory calculations show that the neutral reaction is concerted while the cationic reaction can be either concerted or stepwise. Further isomerizations of the Diels-Alder products have been studied in order to predict possible fragmentation pathways in gas-phase experiments. Rice-Ramsperger-Kassel-Marcus (RRKM) calculations suggest that under single-collision experimental conditions the neutral product may reform the reactants and the cationic product will most likely eliminate CO2.

  7. The decay of hot nuclei formed in La-induced reactions at E/A=45 MeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Libby, Bruce

    1993-01-01

    The decay of hot nuclei formed in the reactions 139La + 27Al, 51V, natCu, and 139La were studied by the coincident detection of up to four complex fragments (Z > 3) emitted in these reactions. Fragments were characterized as to their atomic number, energy and in- and out-of-plane angles. The probability of the decay by an event of a given complex fragment multiplicity as a function of excitation energy per nucleon of the source is nearly independent of the system studied. Additionally, there is no large increase in the proportion of multiple fragment events as the excitation energy of themore » source increases past 5 MeV/nucleon. This is at odds with many prompt multifragmentation models of nuclear decay. The reactions 139La + 27Al, 51V, natCu were also studied by combining a dynamical model calculation that simulates the early stages of nuclear reactions with a statistical model calculation for the latter stages of the reactions. For the reaction 139La + 27Al, these calculations reproduced many of the experimental features, but other features were not reproduced. For the reaction 139La + 51V, the calculation failed to reproduce somewhat more of the experimental features. The calculation failed to reproduce any of the experimental features of the reaction 139La + natCu, with the exception of the source velocity distributions.« less

  8. The decay of hot nuclei formed in La-induced reactions at E/A=45 MeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Libby, B.

    1993-01-01

    The decay of hot nuclei formed in the reactions [sup 139]La + [sup 27]Al, [sup 51]V, [sup nat]Cu, and [sup 139]La were studied by the coincident detection of up to four complex fragments (Z > 3) emitted in these reactions. Fragments were characterized as to their atomic number, energy and in- and out-of-plane angles. The probability of the decay by an event of a given complex fragment multiplicity as a function of excitation energy per nucleon of the source is nearly independent of the system studied. Additionally, there is no large increase in the proportion of multiple fragment events asmore » the excitation energy of the source increases past 5 MeV/nucleon. This is at odds with many prompt multifragmentation models of nuclear decay. The reactions [sup 139]La + [sup 27]Al, [sup 51]V, [sup nat]Cu were also studied by combining a dynamical model calculation that simulates the early stages of nuclear reactions with a statistical model calculation for the latter stages of the reactions. For the reaction [sup 139]La + [sup 27]Al, these calculations reproduced many of the experimental features, but other features were not reproduced. For the reaction [sup 139]La + [sup 51]V, the calculation failed to reproduce somewhat more of the experimental features. The calculation failed to reproduce any of the experimental features of the reaction [sup 139]La + [sup nat]Cu, with the exception of the source velocity distributions.« less

  9. Fission fragment driven neutron source

    DOEpatents

    Miller, Lowell G.; Young, Robert C.; Brugger, Robert M.

    1976-01-01

    Fissionable uranium formed into a foil is bombarded with thermal neutrons in the presence of deuterium-tritium gas. The resulting fission fragments impart energy to accelerate deuterium and tritium particles which in turn provide approximately 14 MeV neutrons by the reactions t(d,n).sup.4 He and d(t,n).sup.4 He.

  10. Domino reactions initiated by intramolecular hydride transfers from tri(di)arylmethane fragments to ketenimine and carbodiimide functions.

    PubMed

    Alajarin, Mateo; Bonillo, Baltasar; Ortin, Maria-Mar; Sanchez-Andrada, Pilar; Vidal, Angel; Orenes, Raul-Angel

    2010-10-21

    The ability of triarylmethane and diarylmethane fragments to behave as hydride donors participating in thermal [1,5]-H shift/6π-ERC tandem processes involving ketenimine and carbodiimide functions is disclosed. C-Alkyl-C-phenyl ketenimines N-substituted by a triarylmethane substructure convert into a variety of 3,3,4,4-tetrasubstituted-3,4-dihydroquinolines, as structurally related carbodiimides transform into 3,4,4-trisubstituted-3,4-dihydroquinazolines via transient ortho-azaxylylenes. The first step of these one-pot conversions, the [1,5]-H shift, is considered to be a hydride migration on the basis of the known hydricity of the tri(di)arylmethane fragment and the electrophilicity of the central heterocumulenic carbon atom, whereas the final electrocyclization involves the formation of a sterically congested C-C or C-N bond. In the cases of C,C-diphenyl substituted triarylmethane-ketenimines the usual 6π-ERC becomes prohibited by the presence of two phenyl rings at each end of the azatrienic system. This situation opens new reaction channels: (a) following the initial hydride shift, the tandem sequence continues with an alternative electrocyclization mode to give 9,10-dihydroacridines, (b) the full sequence is initiated by a rare 1,5 migration of an electron-rich aryl group, followed by a 6π-ERC which leads to 2-aryl-3,4-dihydroquinolines, or (c) a different [1,5]-H shift/6π-ERC sequence involving the initial migration of a hydrogen atom from a methyl group at the ortho position to the nitrogen atom of the ketenimine function. Diarylmethane-ketenimines bearing a methyl group at the benzylic carbon atom experience a tandem double [1,5]-H shift, the first one being the usual benzylic hydride transfer whereas the second one involves the methyl group at the initial benzylic carbon atom, the reaction products being 2-aminostyrenes. Diarylmethane-ketenimines lacking such a methyl group convert into 3,4-dihydroquinolines by the habitual tandem [1,5]-H shift/6

  11. Missing Fragments: Detecting Cooperative Binding in Fragment-Based Drug Design

    PubMed Central

    2012-01-01

    The aim of fragment-based drug design (FBDD) is to identify molecular fragments that bind to alternate subsites within a given binding pocket leading to cooperative binding when linked. In this study, the binding of fragments to human phenylethanolamine N-methyltransferase is used to illustrate how (a) current protocols may fail to detect fragments that bind cooperatively, (b) theoretical approaches can be used to validate potential hits, and (c) apparent false positives obtained when screening against cocktails of fragments may in fact indicate promising leads. PMID:24900472

  12. Binding-Site Compatible Fragment Growing Applied to the Design of β2-Adrenergic Receptor Ligands.

    PubMed

    Chevillard, Florent; Rimmer, Helena; Betti, Cecilia; Pardon, Els; Ballet, Steven; van Hilten, Niek; Steyaert, Jan; Diederich, Wibke E; Kolb, Peter

    2018-02-08

    Fragment-based drug discovery is intimately linked to fragment extension approaches that can be accelerated using software for de novo design. Although computers allow for the facile generation of millions of suggestions, synthetic feasibility is however often neglected. In this study we computationally extended, chemically synthesized, and experimentally assayed new ligands for the β 2 -adrenergic receptor (β 2 AR) by growing fragment-sized ligands. In order to address the synthetic tractability issue, our in silico workflow aims at derivatized products based on robust organic reactions. The study started from the predicted binding modes of five fragments. We suggested a total of eight diverse extensions that were easily synthesized, and further assays showed that four products had an improved affinity (up to 40-fold) compared to their respective initial fragment. The described workflow, which we call "growing via merging" and for which the key tools are available online, can improve early fragment-based drug discovery projects, making it a useful creative tool for medicinal chemists during structure-activity relationship (SAR) studies.

  13. METALLOGRAPHIC STUDIES OF SPUTNIK 4 FRAGMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kammerer, O.F.; Sadofsky, J.; Gurinsky, D.H.

    1963-09-01

    Metallographic analyses were performed on a fragment of steel recovered after the disintegration of Sputnik 4 and on a melted agglomerate found on the fragment. The examination indicated that the material was a hot-rolled carbon steel similar in hardness to a structural steel with a tensile strength of 3.8 to 4.1 x 10/sup 10/ dynes/cm/sup 2/. The major portion of the fragment exhibited a banded structure characteristic of hot-rolled material. The upper surface was probably heated to the melting point which resulted in the formation of a narrow band similar to an as-cast Widmannstaettn microstructure. The melted material at themore » bottom of the specimen was a porous mass containing several different varieties of inclusions and compounds. (auth)« less

  14. Reactivity and Fragmentation of Aluminum-based Structural Energetic Materials under Explosive Loading

    NASA Astrophysics Data System (ADS)

    Glumac, Nick; Clemenson, Michael; Guadarrama, Jose; Krier, Herman

    2015-06-01

    Aluminum-cased warheads have been observed to generate enhanced blast and target damage due to reactivity of the aluminum fragments with ambient air. This effect can more than double the output of a conventional warhead. The mechanism by which the aluminum reacts under these conditions remains poorly understood. We undertake a highly controlled experimental study to investigate the phenomenon of aluminum reaction under explosive loading. Experiments are conducted with Al 6061 casings and PBX-N9 explosive with a fixed charge to case mass ratio of 1:2. Results are compared to inert casings (steel), as well as to tests performed in nitrogen environments to isolate aerobic and anaerobic effects. Padded walls are used in some tests to isolate the effects of impact-induced reactions, which are found to be non-negligible. Finally, blast wave measurements and quasi-static pressure measurements are used to isolate the fraction of case reaction that is fast enough to drive the primary blast wave from the later time reaction that generates temperature and overpressure only in the late-time fireball. Fragment size distributions, including those in the micron-scale range, are collected and quantified.

  15. Fission Fragment characterization with FALSTAFF at NFS

    NASA Astrophysics Data System (ADS)

    Doré, D.; Farget, F.; Lecolley, F.-R.; Ledoux, X.; Lehaut, G.; Materna, T.; Pancin, J.; Panebianco, S.

    2013-03-01

    The Neutrons for Science (NFS) facility will be one of the first installations of the SPIRAL2 facility. NFS will be composed of a time-of-flight baseline and irradiation stations and will allow studying neutron-induced reactions for energies going from some hundreds of keV up to 40 MeV. Continuous and quasi-monoenergetic energy neutron beams will be available. Taking advantage of this new installation, the development of an experimental setup for a full characterization of actinide fission fragments in this energy domain has been undertaken. To achieve this goal a new detection system called FALSTAFF (Four Arm cLover for the STudy of Actinide Fission Fragments) in under development. In this paper, the characteristics of the NFS facility will be exposed and the motivations for the FALSTAFF experiment will be presented. The experimental setup will be described and the expected resolutions based on realistic GEANT4 simulations will be discussed.

  16. An Experimental Study of Launch Vehicle Propellant Tank Fragmentation

    NASA Technical Reports Server (NTRS)

    Richardson, Erin; Jackson, Austin; Hays, Michael; Bangham, Mike; Blackwood, James; Skinner, Troy; Richman, Ben

    2014-01-01

    In order to better understand launch vehicle abort environments, Bangham Engineering Inc. (BEi) built a test assembly that fails sample materials (steel and aluminum plates of various alloys and thicknesses) under quasi-realistic vehicle failure conditions. Samples are exposed to pressures similar to those expected in vehicle failure scenarios and filmed at high speed to increase understanding of complex fracture mechanics. After failure, the fragments of each test sample are collected, catalogued and reconstructed for further study. Post-test analysis shows that aluminum samples consistently produce fewer fragments than steel samples of similar thickness and at similar failure pressures. Video analysis shows that there are several failure 'patterns' that can be observed for all test samples based on configuration. Fragment velocities are also measured from high speed video data. Sample thickness and material are analyzed for trends in failure pressure. Testing is also done with cryogenic and noncryogenic liquid loading on the samples. It is determined that liquid loading and cryogenic temperatures can decrease material fragmentation for sub-flight thicknesses. A method is developed for capture and collection of fragments that is greater than 97 percent effective in recovering sample mass, addressing the generation of tiny fragments. Currently, samples tested do not match actual launch vehicle propellant tank material thicknesses because of size constraints on test assembly, but test findings are used to inform the design and build of another, larger test assembly with the purpose of testing actual vehicle flight materials that include structural components such as iso-grid and friction stir welds.

  17. A LDR-PCR approach for multiplex polymorphisms genotyping of severely degraded DNA with fragment sizes <100 bp.

    PubMed

    Zhang, Zhen; Wang, Bao-Jie; Guan, Hong-Yu; Pang, Hao; Xuan, Jin-Feng

    2009-11-01

    Reducing amplicon sizes has become a major strategy for analyzing degraded DNA typical of forensic samples. However, amplicon sizes in current mini-short tandem repeat-polymerase chain reaction (PCR) and mini-sequencing assays are still not suitable for analysis of severely degraded DNA. In this study, we present a multiplex typing method that couples ligase detection reaction with PCR that can be used to identify single nucleotide polymorphisms and small-scale insertion/deletions in a sample of severely fragmented DNA. This method adopts thermostable ligation for allele discrimination and subsequent PCR for signal enhancement. In this study, four polymorphic loci were used to assess the ability of this technique to discriminate alleles in an artificially degraded sample of DNA with fragment sizes <100 bp. Our results showed clear allelic discrimination of single or multiple loci, suggesting that this method might aid in the analysis of extremely degraded samples in which allelic drop out of larger fragments is observed.

  18. Fusion-fission and quasifission of superheavy systems with Z =110 -116 formed in 48Ca-induced reactions

    NASA Astrophysics Data System (ADS)

    Kozulin, E. M.; Knyazheva, G. N.; Itkis, I. M.; Itkis, M. G.; Bogachev, A. A.; Chernysheva, E. V.; Krupa, L.; Hanappe, F.; Dorvaux, O.; Stuttgé, L.; Trzaska, W. H.; Schmitt, C.; Chubarian, G.

    2014-11-01

    Background: In heavy-ion-induced reactions the mechanism leading to the formation of the compound nucleus and the role of quasifission is still not clear. Purpose: Investigation of the quasifission process of superheavy composite systems with Z =110 -116 and comparison with properties of fusion-fission and quasifission of lighter composite systems. Method: Mass and energy distributions of fissionlike fragments formed in the reactions 48Ca+232Th, 238U , 244Pu , and 248Cm at energies near the Coulomb barrier have been measured using the double-arm time-of-flight spectrometer CORSET at the U-400 cyclotron of the FLNR JINR. Results: The most probable fragment masses as well as total kinetic energies and their dispersions in dependence on the interaction energies and ion-target combinations have been studied for asymmetric and symmetric fragments formed in the reactions. The capture cross sections were obtained for the reactions 48Ca+244Pu and 248Cm . The lower limits for fission barriers of 283 -286Cn , 289 -292Fl , and 293 -296Lv compound nuclei were estimated. Conclusions: Analysis of the properties of symmetric fragments has shown that a significant part of these fragments may be attributed to fusion-fission process for the reactions 48Ca +238U , 244Pu , and 248Cm .

  19. Angular distributions and mechanisms for light fragment formation in relativistic heavy-ion collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cumming, J.B.; Haustein, P.E.; Stoenner, R.W.

    1986-03-01

    Angular distributions are reported for /sup 37/Ar and /sup 127/Xe produced by the interaction of 8-GeV /sup 20/Ne and 25-GeV /sup 12/C ions with Au. A shift from a forward to a sideward peaked distribution is observed for /sup 37/Ar, similar to that known to occur for incident protons over the same energy interval. Analysis of these data and those for Z = 8 fragments indicate that reactions leading to heavy fragment emission become more peripheral as bombarding energies increase. A mechanistic analysis is presented which explores the ranges of applicability of several models and the reliability of their predictionsmore » to fragmentation reactions induced by both energetic heavy ions and protons.« less

  20. High Efficiency Hydrodynamic DNA Fragmentation in a Bubbling System

    PubMed Central

    Li, Lanhui; Jin, Mingliang; Sun, Chenglong; Wang, Xiaoxue; Xie, Shuting; Zhou, Guofu; van den Berg, Albert; Eijkel, Jan C. T.; Shui, Lingling

    2017-01-01

    DNA fragmentation down to a precise fragment size is important for biomedical applications, disease determination, gene therapy and shotgun sequencing. In this work, a cheap, easy to operate and high efficiency DNA fragmentation method is demonstrated based on hydrodynamic shearing in a bubbling system. We expect that hydrodynamic forces generated during the bubbling process shear the DNA molecules, extending and breaking them at the points where shearing forces are larger than the strength of the phosphate backbone. Factors of applied pressure, bubbling time and temperature have been investigated. Genomic DNA could be fragmented down to controllable 1–10 Kbp fragment lengths with a yield of 75.30–91.60%. We demonstrate that the ends of the genomic DNAs generated from hydrodynamic shearing can be ligated by T4 ligase and the fragmented DNAs can be used as templates for polymerase chain reaction. Therefore, in the bubbling system, DNAs could be hydrodynamically sheared to achieve smaller pieces in dsDNAs available for further processes. It could potentially serve as a DNA sample pretreatment technique in the future. PMID:28098208

  1. High Efficiency Hydrodynamic DNA Fragmentation in a Bubbling System.

    PubMed

    Li, Lanhui; Jin, Mingliang; Sun, Chenglong; Wang, Xiaoxue; Xie, Shuting; Zhou, Guofu; van den Berg, Albert; Eijkel, Jan C T; Shui, Lingling

    2017-01-18

    DNA fragmentation down to a precise fragment size is important for biomedical applications, disease determination, gene therapy and shotgun sequencing. In this work, a cheap, easy to operate and high efficiency DNA fragmentation method is demonstrated based on hydrodynamic shearing in a bubbling system. We expect that hydrodynamic forces generated during the bubbling process shear the DNA molecules, extending and breaking them at the points where shearing forces are larger than the strength of the phosphate backbone. Factors of applied pressure, bubbling time and temperature have been investigated. Genomic DNA could be fragmented down to controllable 1-10 Kbp fragment lengths with a yield of 75.30-91.60%. We demonstrate that the ends of the genomic DNAs generated from hydrodynamic shearing can be ligated by T4 ligase and the fragmented DNAs can be used as templates for polymerase chain reaction. Therefore, in the bubbling system, DNAs could be hydrodynamically sheared to achieve smaller pieces in dsDNAs available for further processes. It could potentially serve as a DNA sample pretreatment technique in the future.

  2. Identification of Echinococcus granulosus strains using polymerase chain reaction-restriction fragment length polymorphism amongst livestock in Moroto district, Uganda.

    PubMed

    Chamai, Martin; Omadang, Leonard; Erume, Joseph; Ocaido, Michael; Oba, Peter; Othieno, Emmanuel; Bonaventure, Straton; Kitibwa, Annah

    2016-07-29

    A descriptive study was conducted to identify the different strains of Echinococcus granulosus occurring in livestock in Moroto district, Uganda. Echinococcus cysts from 104 domestic animals, including cattle, sheep, goats and camels, were taken and examined by microscopy, polymerase chain reaction with restriction fragment length polymorphism and Sanger DNA sequencing. Echinococcus granulosus genotypes or strains were identified through use of Bioinformatics tools: BioEdit, BLAST and MEGA6. The major finding of this study was the existence of a limited number of E. granulosus genotypes from cattle, goats, sheep and camels. The most predominant genotype was G1 (96.05%), corresponding to the common sheep strain. To a limited extent (3.95%), the study revealed the existence of Echinococcus canadensis G6/7 in three (n = 3) of the E. granulosus-positive samples. No other strains of E. granulosus were identified. It was concluded that the common sheep strain of Echinococcus sensu stricto and G6/7 of E. canadensis were responsible for echinococcal disease in Moroto district, Uganda.

  3. 132Sn+96Zr reaction: A study of fusion enhancement/hindrance

    NASA Astrophysics Data System (ADS)

    Vinodkumar, A. M.; Loveland, W.; Neeway, J. J.; Prisbrey, L.; Sprunger, P. H.; Peterson, D.; Liang, J. F.; Shapira, D.; Gross, C. J.; Varner, R. L.; Kolata, J. J.; Roberts, A.; Caraley, A. L.

    2008-11-01

    Capture-fission cross sections were measured for the collision of the massive nucleus Sn132 with Zr96 at center-of-mass energies ranging from 192.8 to 249.6 MeV in an attempt to study fusion enhancement and hindrance in this reaction involving very neutron-rich nuclei. Coincident fission fragments were detected using silicon detectors. Using angle and energy conditions, deep inelastic scattering events were separated from fission events. Coupled-channels calculations can describe the data if the surface diffuseness parameter, a, is allowed to be 1.10 fm instead of the customary 0.6 fm. The measured capture-fission cross sections agree moderately well with model calculations using the dinuclear system model. If we use this model to predict fusion barrier heights for these reactions, we find the predicted fusion hindrance, as represented by the extra push energy, is greater for the more neutron-rich system, lessening the advantage of the lower interaction barriers with neutron-rich projectiles.

  4. Isobaric yield ratio difference between the 140 A MeV 58Ni + 9Be and 64Ni +9Be reactions studied by the antisymmetric molecular dynamics model

    NASA Astrophysics Data System (ADS)

    Qiao, C. Y.; Wei, H. L.; Ma, C. W.; Zhang, Y. L.; Wang, S. S.

    2015-07-01

    Background: The isobaric yield ratio difference (IBD) method is found to be sensitive to the density difference of neutron-rich nucleus induced reaction around the Fermi energy. Purpose: An investigation is performed to study the IBD results in the transport model. Methods: The antisymmetric molecular dynamics (AMD) model plus the sequential decay model gemini are adopted to simulate the 140 A MeV 58 ,64Ni +9Be reactions. A relative small coalescence radius Rc= 2.5 fm is used for the phase space at t = 500 fm/c to form the hot fragment. Two limitations on the impact parameter (b 1 =0 -2 fm and b 2 =0 -9 fm) are used to study the effect of central collisions in IBD. Results: The isobaric yield ratios (IYRs) for the large-A fragments are found to be suppressed in the symmetric reaction. The IBD results for fragments with neutron excess I = 0 and 1 are obtained. A small difference is found in the IBDs with the b 1 and b 2 limitations in the AMD simulated reactions. The IBD with b 1 and b 2 are quite similar in the AMD + GEMINI simulated reactions. Conclusions: The IBDs for the I =0 and 1 chains are mainly determined by the central collisions, which reflects the nuclear density in the core region of the reaction system. The increasing part of the IBD distribution is found due to the difference between the densities in the peripheral collisions of the reactions. The sequential decay process influences the IBD results. The AMD + GEMINI simulation can better reproduce the experimental IBDs than the AMD simulation.

  5. Transitions from functionalization to fragmentation reactions of laboratory secondary organic aerosol (SOA) generated from the OH oxidation of alkane precursors.

    PubMed

    Lambe, Andrew T; Onasch, Timothy B; Croasdale, David R; Wright, Justin P; Martin, Alexander T; Franklin, Jonathan P; Massoli, Paola; Kroll, Jesse H; Canagaratna, Manjula R; Brune, William H; Worsnop, Douglas R; Davidovits, Paul

    2012-05-15

    Functionalization (oxygen addition) and fragmentation (carbon loss) reactions governing secondary organic aerosol (SOA) formation from the OH oxidation of alkane precursors were studied in a flow reactor in the absence of NO(x). SOA precursors were n-decane (n-C10), n-pentadecane (n-C15), n-heptadecane (n-C17), tricyclo[5.2.1.0(2,6)]decane (JP-10), and vapors of diesel fuel and Southern Louisiana crude oil. Aerosol mass spectra were measured with a high-resolution time-of-flight aerosol mass spectrometer, from which normalized SOA yields, hydrogen-to-carbon (H/C) and oxygen-to-carbon (O/C) ratios, and C(x)H(y)+, C(x)H(y)O+, and C(x)H(y)O(2)+ ion abundances were extracted as a function of OH exposure. Normalized SOA yield curves exhibited an increase followed by a decrease as a function of OH exposure, with maximum yields at O/C ratios ranging from 0.29 to 0.74. The decrease in SOA yield correlates with an increase in oxygen content and decrease in carbon content, consistent with transitions from functionalization to fragmentation. For a subset of alkane precursors (n-C10, n-C15, and JP-10), maximum SOA yields were estimated to be 0.39, 0.69, and 1.1. In addition, maximum SOA yields correspond with a maximum in the C(x)H(y)O+ relative abundance. Measured correlations between OH exposure, O/C ratio, and H/C ratio may enable identification of alkane precursor contributions to ambient SOA.

  6. Fragmentation characteristics of hydroxycinnamic acids in ESI-MSn by density functional theory.

    PubMed

    Yin, Zhi-Hui; Sun, Chang-Hai; Fang, Hong-Zhuang

    2017-07-01

    This work aims to analyze the electrospray ionization multistage mass spectrometry (ESI-MS n ) fragmentation characteristics of hydroxycinnamic acids (HCAs) in negative ion mode. The geometric parameters, energies, natural bond orbitals and frontier orbitals of fragments were calculated by density functional theory (DFT) to investigate mass spectral fragmentation mechanisms. The results showed that proton transfer always occurred during fragmentation of HCAs; their quasi-molecular ions ([M - H] - ) existed in more than one form and were mainly with the lowest energy. The fragmentation characteristics included the followings: (1) according to the different substitution position of phenolic hydroxyl group, the ring contraction reaction by CO elimination from benzene was in an increasingly difficult order: m-phenolic hydroxyl > p-phenolic hydroxyl > o-phenolic hydroxyl; and (2) ortho effect always occurred in o-dihydroxycinnamic acids (o-diHCAs), i.e. one phenolic hydroxyl group offered H + , which combined with the other one to lose H 2 O. In addition, there was a nucleophilic reaction during ring contraction in diHCAs that oxygen atom attacked the carbon atom binding with the other phenolic hydroxyl to lose CO 2 . The fragmentation characteristics and mechanism of HCAs could be used for analysis and identification of such compounds quickly and effectively, and as reference for structural analogues by ESI-MS. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  7. Fragmentation Pathways of Lithiated Hexose Monosaccharides

    NASA Astrophysics Data System (ADS)

    Abutokaikah, Maha T.; Frye, Joseph W.; Tschampel, John; Rabus, Jordan M.; Bythell, Benjamin J.

    2018-05-01

    We characterize the primary fragmentation reactions of three isomeric lithiated D-hexose sugars (glucose, galactose, and mannose) utilizing tandem mass spectrometry, regiospecific labeling, and theory. We provide evidence that these three isomers populate similar fragmentation pathways to produce the abundant cross-ring cleavage peaks (0,2A1 and 0,3A1). These pathways are highly consistent with the prior literature (Hofmeister et al. J. Am. Chem. Soc. 113, 5964-5970, 1991, Bythell et al. J. Am. Soc. Mass Spectrom. 28, 688-703, 2017, Rabus et al. Phys. Chem. Chem. Phys. 19, 25643-25652, 2017) and the present labeling data. However, the structure-specific energetics and rate-determining steps of these reactions differ as a function of precursor sugar and anomeric configuration. The lowest energy water loss pathways involve loss of the anomeric oxygen to furnish B1 ions. For glucose and galactose, the lithiated α-anomers generate ketone structures at C2 in a concerted reaction involving a 1,2-migration of the C2-H to the anomeric carbon (C1). In contrast, the β-anomers are predicted to form 1,3-anhydroglucose/galactose B1 ion structures. Initiation of the water loss reactions from each anomeric configuration requires distinct reactive conformers, resulting in different product ion structures. Inversion of the stereochemistry at C2 has marked consequences. Both lithiated mannose forms expel water to form 1,2-anhydromannose B1 ions with the newly formed epoxide group above the ring. Additionally, provided water loss is not instantaneous, the α-anomer can also isomerize to generate a ketone structure at C2 in a concerted reaction involving a 1,2-migration of the C2-H to C1. This product is indistinguishable to that from α-glucose. The energetics and interplay of these pathways are discussed. [Figure not available: see fulltext.

  8. Spectroscopic studies of bacteriorhodopsin fragments dissolved in organic solution.

    PubMed Central

    Torres, J; Padrós, E

    1995-01-01

    Fourier transform infrared and UV fourth-derivative spectroscopies were used to study the secondary structure of bacteriorhodopsin and its chymotryptic and one of the sodium borohydride fragments dissolved in chloroform-methanol (1:1, v/v), 0.1 M LiClO4. The C1 fragment (helices C, D, E, F, and G) showed an alpha-helical content of about 53%, whereas C2 (helices A and B) had about 60%, and B2 (helices F and G) about 65% alpha-helix. The infrared main band indicated differences in alpha-helical properties between these fragments. These techniques were also used to obtain information on the interactions among helices. According to the results obtained from the hydrogen/deuterium exchange kinetics, about 40% of the amide protons of C2 are particularly protected against exchange, whereas for the C1 fragment this process is unexpectedly fast. UV fourth-derivative spectra of these samples were used to obtain information about the environment of Trp side chains. The results showed that the Trp residues of C2 are more shielded from the solvent than those of C1 or B2. The results of this work indicate that the specific interactions existing between the transmembrane segments induce different types of helical conformations in native bacteriorhodopsin. PMID:7612847

  9. Isolation and Characterization of the 2,2'-Azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) Radical Cation-Scavenging Reaction Products of Arbutin.

    PubMed

    Tai, Akihiro; Ohno, Asako; Ito, Hideyuki

    2016-09-28

    Arbutin, a glucoside of hydroquinone, has shown strong 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical cation-scavenging activity, especially in reaction stoichiometry. This study investigated the reaction mechanism of arbutin against ABTS radical cation that caused high stoichiometry of arbutin in an ABTS radical cation-scavenging assay. HPLC analysis of the reaction mixture of arbutin and ABTS radical cation indicated the existence of two reaction products. The two reaction products were purified and identified to be a covalent adduct of arbutin with an ABTS degradation fragment and 3-ethyl-6-sulfonate benzothiazolone. A time-course study of the radical-scavenging reactions of arbutin and the two reaction products suggested that one molecule of arbutin scavenges three ABTS radical cation molecules to generate an arbutin-ABTS fragment adduct as a final reaction product. The results suggest that one molecule of arbutin reduced two ABTS radical cation molecules to ABTS and then cleaved the third ABTS radical cation molecule to generate two products, an arbutin-ABTS fragment adduct and 3-ethyl-6-sulfonate benzothiazolone.

  10. An ab initio molecular dynamics study of S0 ketene fragmentation

    NASA Astrophysics Data System (ADS)

    Forsythe, Kelsey M.; Gray, Stephen K.; Klippenstein, Stephen J.; Hall, Gregory E.

    2001-08-01

    The dynamical origins of product state distributions in the unimolecular dissociation of S0 ketene, CH2CO (X˜ 1A1)→CH2(ã1A1)+CO, are studied with ab initio molecular dynamics. We focus on rotational distributions associated with ground vibrational state fragments. Trajectories are integrated between an inner, variational transition state (TS) and separated fragments in both the dissociative and associative directions. The average rotational energy in both CO and CH2 fragments decreases during the motion from the TS to separated fragments. However, the CO distribution remains slightly hotter than phase space theory (PST) predictions, whereas that for CH2 ends up significantly colder than PST, in good agreement with experiment. Our calculations do not, however, reproduce the experimentally observed correlations between CH2 and CO rotational states, in which the simultaneous formation of low rotational levels of each fragment is suppressed relative to PST. A limited search for nonstatistical behavior in the strong interaction region also fails to explain this discrepancy.

  11. Correlations between emission timescale of fragments and isospin dynamics in 124Sn+64Ni and 112Sn+58Ni reactions at 35A MeV

    NASA Astrophysics Data System (ADS)

    De Filippo, E.; Pagano, A.; Russotto, P.; Amorini, F.; Anzalone, A.; Auditore, L.; Baran, V.; Berceanu, I.; Borderie, B.; Bougault, R.; Bruno, M.; Cap, T.; Cardella, G.; Cavallaro, S.; Chatterjee, M. B.; Chbihi, A.; Colonna, M.; D'Agostino, M.; Dayras, R.; Di Toro, M.; Frankland, J.; Galichet, E.; Gawlikowicz, W.; Geraci, E.; Grzeszczuk, A.; Guazzoni, P.; Kowalski, S.; La Guidara, E.; Lanzalone, G.; Lanzanò, G.; Le Neindre, N.; Lombardo, I.; Maiolino, C.; Papa, M.; Piasecki, E.; Pirrone, S.; Płaneta, R.; Politi, G.; Pop, A.; Porto, F.; Rivet, M. F.; Rizzo, F.; Rosato, E.; Schmidt, K.; Siwek-Wilczyńska, K.; Skwira-Chalot, I.; Trifirò, A.; Trimarchi, M.; Verde, G.; Vigilante, M.; Wieleczko, J. P.; Wilczyński, J.; Zetta, L.; Zipper, W.

    2012-07-01

    We present a new experimental method to correlate the isotopic composition of intermediate mass fragments (IMF) emitted at midrapidity in semiperipheral collisions with the emission timescale: IMFs emitted in the early stage of the reaction show larger values of isospin asymmetry, stronger angular anisotropies, and reduced odd-even staggering effects in neutron to proton ratio distributions than those produced in sequential statistical emission. All these effects support the concept of isospin “migration”, that is sensitive to the density gradient between participant and quasispectator nuclear matter, in the so called neck fragmentation mechanism. By comparing the data to a stochastic mean field (SMF) simulation we show that this method gives valuable constraints on the symmetry energy term of nuclear equation of state at subsaturation densities. An indication emerges for a linear density dependence of the symmetry energy.

  12. Total Reaction Cross Section Excitation Function Studies for 6He Interaction with 181Ta, 59Co, natSi, 9Be Nuclei

    NASA Astrophysics Data System (ADS)

    Sobolev, Yu. G.; Penionzhkevich, Yu. E.; Borcea, C.; Demekhina, N. A.; Eshanov, A. G.; Ivanov, M. P.; Kabdrakhimova, G. D.; Kabyshev, A. M.; Kugler, A.; Kuterbekov, K. A.; Lukyanov, K. V.; Maj, A.; Maslov, V. A.; Negret, A.; Skobelev, N. K.; Testov, D.; Trzaska, W. H.; Voskobojnik, E. I.; Zemlyanaya, E. V.

    2015-06-01

    Total reaction cross section excitation functions σR(E) were measured for 6He secondary beam particles on 181Ta, 59Co, natSi and 9Be targets in a wide energy range by direct and model-independent method. This experimental method was based on prompt n-γ 4π-technique applied in event-by event mode. A high efficiency CsI(Tl) γ-spectrometer was used for the detection of reaction products (prompt γ-quanta and neutrons) accompanying each reaction event. Using the ACCULINNA fragment-separator 6He fragments (produced by 11B primary beam with 9Be target) are separated and transported to n-γ shielded experimental cave at FLNR JINR. The measured total reaction cross section data σR(E) for the above mentioned reactions are compared with a theoretical calculation based on the optical potential with the real part having the double-folding form.

  13. A Mini-Library of Sequenced Human DNA Fragments: Linking Bench Experiments with Informatics

    ERIC Educational Resources Information Center

    Dalgleish, Raymond; Shanks, Morag E.; Monger, Karen; Butler, Nicola J.

    2012-01-01

    We describe the development of a mini-library of human DNA fragments for use in an enquiry-based learning (EBL) undergraduate practical incorporating "wet-lab" and bioinformatics tasks. In spite of the widespread emergence of the polymerase chain reaction (PCR), the cloning and analysis of DNA fragments in "Escherichia coli"…

  14. Study on the isospin equilibration phenomenon in nuclear reactions 40Ca + 40Ca , 40Ca + 46Ti , 40Ca + 48Ca , 48Ca + 48Ca at 25 MeV/nucleon by using the CHIMERA multidetector

    NASA Astrophysics Data System (ADS)

    Martorana, N. S.; Auditore, L.; Berceanu, I.; Cardella, G.; Chatterjee, M. B.; De Luca, S.; De Filippo, E.; Dell'Aquila, D.; Gnoffo, B.; Lanzalone, G.; Lombardo, I.; Maiolino, C.; Norella, S.; Pagano, A.; Pagano, E. V.; Papa, M.; Pirrone, S.; Politi, G.; Porto, F.; Quattrocchi, L.; Rizzo, F.; Russotto, P.; Trifirò, A.; Trimarchi, M.; Verde, G.; Vigilante, M.

    2017-11-01

    We report on the results obtained by studying nuclear reactions between isotopes of Ca and Ti at 25 MeV/nucleon. We used the multidetector CHIMERA to detect charged reaction products. In particular, we studied two main effects: the isospin diffusion and the isospin drift. In order to study these processes we performed a moving-source analysis on kinetic energy spectra of the isobar nuclei ^{3H} and ^{3He} . This method allows to isolate the emission from the typical sources produced in reactions at Fermi energy: projectile like fragment (PLF), target like fragment (TLF), and mid-velocity (MV) emission. The obtained results are compared to previous experimental investigations and to simulations obtained with CoMD-II model.

  15. Identification of verotoxin type 2 variant B subunit genes in Escherichia coli by the polymerase chain reaction and restriction fragment length polymorphism analysis.

    PubMed Central

    Tyler, S D; Johnson, W M; Lior, H; Wang, G; Rozee, K R

    1991-01-01

    A set of synthetic oligonucleotide primers was designed for use in a polymerase chain reaction protocol to specifically detect the B subunit genes in vtx2ha and vtx2hb, which code for the production of the VT2 (Shiga-like toxin II) variant cytotoxins VT2v-a and VT2v-b, respectively. An additional set of primers amplified a fragment common to the B subunits of the VT2 and the VT2 variant genes. Subsequent restriction endonuclease digestion of this amplicon permitted prediction of specific VT2 and variant genotypes on the basis of predetermined restriction fragment length polymorphisms. Genotypes of 21 VT2-producing strains of Escherichia coli were determined using this polymerase chain reaction-restriction fragment length polymorphism procedure. Four strains contained B subunit target sequences only for VT2 genes, 9 strains contained sequences only for VT2v-a genes, and 3 strains contained sequences only for VT2v-b. For genes in combination, one strain contained B subunit genes for both VT2 and VT2v-a and two strains contained B subunit genes for VT2 and VT2v-b. Two strains of E. coli O91:H21 contained both VT2v-a and VT2v-b B subunit genes. The VT2 reference strain of E. coli, E32511, was found to contain the targeted sequences from both VT2 and VT2v-a genes, whereas the recombinant E. coli, pEB1, possessed only that of the VT2 gene. The specific activities of extracellular VT2 determined in HeLa cells ranged from 0.3 to 41.7 TCD50 per microgram of protein in strains carrying the VT2 gene target and from 0 to 50.0 TCD50 per microgram of protein in strains carrying only the VT2 variant target (TCD50 is the tissue culture dose by which 50% of the cells were affected), suggesting that phenotypic expression does not correlate with genotype. Images PMID:1679436

  16. Differentiation of canine distemper virus isolates in fur animals from various vaccine strains by reverse transcription-polymerase chain reaction-restriction fragment length polymorphism according to phylogenetic relations in china

    PubMed Central

    2011-01-01

    In order to effectively identify the vaccine and field strains of Canine distemper virus (CDV), a new differential diagnostic test has been developed based on reverse transcription-polymerase chain reaction (RT-PCR) and restriction fragment length polymorphism (RFLP). We selected an 829 bp fragment of the nucleoprotein (N) gene of CDV. By RFLP analysis using BamHI, field isolates were distinguishable from the vaccine strains. Two fragments were obtained from the vaccine strains by RT-PCR-RFLP analysis while three were observed in the field strains. An 829 nucleotide region of the CDV N gene was analyzed in 19 CDV field strains isolated from minks, raccoon dogs and foxes in China between 2005 and 2007. The results suggest this method is precise, accurate and efficient. It was also determined that three different genotypes exist in CDV field strains in fur animal herds of the north of China, most of which belong to Asian type. Mutated field strains, JSY06-R1, JSY06-R2 and JDH07-F1 also exist in Northern China, but are most closely related to the standard virulent strain A75/17, designated in Arctic and America-2 genetype in the present study, respectively. PMID:21352564

  17. Polymerization of ethylene through reversible addition-fragmentation chain transfer (RAFT).

    PubMed

    Dommanget, Cédric; D'Agosto, Franck; Monteil, Vincent

    2014-06-23

    The present paper reports the first example of a controlled radical polymerization of ethylene using reversible addition-fragmentation chain transfer (RAFT) in the presence of xanthates (Alkyl-OC(=S)S-R) as controlling agents under relative mild conditions (70 °C, <200 bars). The specific reactivity of the produced alkyl-type propagating radicals induces a side fragmentation reaction of the stabilizing O-alkyl Z group of the controlling agents. This fragmentation, rarely observed in RAFT, was proven by NMR analyses. In addition, semicrystalline copolymers of ethylene and vinyl acetate were also prepared with a similar level of control. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Cross sections of projectile-like fragments in the reaction {sup 19}F+{sup 66}Zn in the beam energy range of 3-6 MeV/nucleon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tripathi, R.; Sudarshan, K.; Sodaye, S.

    2009-06-15

    Angular distributions of projectile-like fragments (PLFs) have been measured in the reaction {sup 19}F+{sup 66}Zn at E{sub lab}=61,82,92, and 109 MeV to understand their formation in the low energy domain (< or approx. 7 MeV nucleon). In this energy range, maximum angular momentum 'l{sub max}' in the reaction is lower than or close to the critical or limiting angular momentum for complete fusion 'l{sub lim}(CF).' The sum-rule model was modified to explain the cross sections of PLFs in the present study. For the first time, the modified sum-rule model, with a competition of incomplete fusion (ICF) reaction with complete fusionmore » below l{sub lim}(CF) reasonably reproduced the cross sections of PLFs in the beam energy range of the present study. It was observed that the cross sections of lighter PLFs fall more rapidly with decreasing beam energy compared to those of heavier PLFs, suggesting a change in the reaction mechanism from heavier to lighter PLFs. Transfer probabilities for peripheral collisions were calculated within the framework of a semiclassical formalism. The parameters of the nuclear potential required for the calculation of transfer probability were obtained by fitting the elastic scattering data measured in the present work. Calculated transfer probabilities were significantly lower compared to the corresponding experimental values, suggesting a significant overlap of the projectile and the target nuclei in incomplete fusion reactions. The present analysis showed that the overlap of the projectile and the target nuclei increases with increasing mass transfer at a given beam energy and for a given PLF, overlap increases with increasing beam energy.« less

  19. An unusual fragmentation of oxetane-embedded tetracyclic ketal systems.

    PubMed

    Rao, G Hari Mangeswara; Khan, Faiz Ahmed

    2013-11-01

    An unusual route for the synthesis of functionalized cyclobutane derivatives starting from functionalized norbornane derivatives is reported. Base-induced fragmentation of an oxetanol-type moiety embedded in a tetracyclic norbornyl ketal leads to a cyclobutane-fused derivative as the major or exclusive product. The fragmentation reaction for bridgehead-bromine-substituted derivatives was much faster than for the corresponding chlorine-substituted substrates. The functionalized cyclobutane product was formed exclusively in high yield in the former case, while the latter furnished a minor uncyclized side product in varying yields.

  20. Fragmentation Patterns and Mechanisms of Singly and Doubly Protonated Peptoids Studied by Collision Induced Dissociation

    NASA Astrophysics Data System (ADS)

    Ren, Jianhua; Tian, Yuan; Hossain, Ekram; Connolly, Michael D.

    2016-04-01

    Peptoids are peptide-mimicking oligomers consisting of N-alkylated glycine units. The fragmentation patterns for six singly and doubly protonated model peptoids were studied via collision-induced dissociation tandem mass spectrometry. The experiments were carried out on a triple quadrupole mass spectrometer with an electrospray ionization source. Both singly and doubly protonated peptoids were found to fragment mainly at the backbone amide bonds to produce peptoid B-type N-terminal fragment ions and Y-type C-terminal fragment ions. However, the relative abundances of B- versus Y-ions were significantly different. The singly protonated peptoids fragmented by producing highly abundant Y-ions and lesser abundant B-ions. The Y-ion formation mechanism was studied through calculating the energetics of truncated peptoid fragment ions using density functional theory and by controlled experiments. The results indicated that Y-ions were likely formed by transferring a proton from the C-H bond of the N-terminal fragments to the secondary amine of the C-terminal fragments. This proton transfer is energetically favored, and is in accord with the observation of abundant Y-ions. The calculations also indicated that doubly protonated peptoids would fragment at an amide bond close to the N-terminus to yield a high abundance of low-mass B-ions and high-mass Y-ions. The results of this study provide further understanding of the mechanisms of peptoid fragmentation and, therefore, are a valuable guide for de novo sequencing of peptoid libraries synthesized via combinatorial chemistry.

  1. Isotopic fission-fragment distributions of 238U, 239Np, 240Pu, 244Cm, and 250Cf produced through inelastic scattering, transfer, and fusion reactions in inverse kinematics

    NASA Astrophysics Data System (ADS)

    Ramos, D.; Caamaño, M.; Farget, F.; Rodríguez-Tajes, C.; Audouin, L.; Benlliure, J.; Casarejos, E.; Clement, E.; Cortina, D.; Delaune, O.; Derkx, X.; Dijon, A.; Doré, D.; Fernández-Domínguez, B.; de France, G.; Heinz, A.; Jacquot, B.; Navin, A.; Paradela, C.; Rejmund, M.; Roger, T.; Salsac, M.-D.; Schmitt, C.

    2018-05-01

    Transfer- and fusion-induced fission in inverse kinematics has proved to be a powerful tool to investigate nuclear fission, widening information on the fission fragments and access to unstable fissioning systems with respect to other experimental approaches. An experimental campaign is being carried out at GANIL with this technique since 2008. In these experiments, a beam of 238U, accelerated to 6.1 MeV/u, impinges on a 12C target. Fissioning systems from U to Cf are populated through inelastic scattering, transfer, and fusion reactions, with excitation energies that range from a few MeV up to 46 MeV. The use of inverse kinematics, the SPIDER telescope, and the VAMOS spectrometer allow the characterization of the fissioning system in terms of mass, nuclear charge, and excitation energy, and the isotopic identification of the full fragment distribution. This work reports on new data from the second experiment of the campaign on fission-fragment yields of the heavy actinides 238U, 239Np, 240Pu, 244Cm, and 250Cf, which are of interest from both fundamental and application points of view.

  2. Anomalies in the Charge Yields of Fission Fragments from the U ( n , f ) 238 Reaction

    DOE PAGES

    Wilson, J. N.; Lebois, M.; Qi, L.; ...

    2017-06-01

    Fast-neutron-induced fission of 238U at an energy just above the fission threshold is studied with a novel technique which involves the coupling of a high-efficiency γ-ray spectrometer (MINIBALL) to an inverse-kinematics neutron source (LICORNE) to extract charge yields of fission fragments via γ-γ coincidence spectroscopy. Experimental data and fission models are compared and found to be in reasonable agreement for many nuclei; however, significant discrepancies of up to 600% are observed, particularly for isotopes of Sn and Mo. This indicates that these models significantly overestimate the standard 1 fission mode and suggests that spherical shell effects in the nascent fissionmore » fragments are less important for low-energy fast-neutron-induced fission than for thermal neutron-induced fission. Finally, this has consequences for understanding and modeling the fission process, for experimental nuclear structure studies of the most neutron-rich nuclei, for future energy applications (e.g., Generation IV reactors which use fast-neutron spectra), and for the reactor antineutrino anomaly.« less

  3. Synthetic Progress toward Azadirachtins. 1. Enantio- and Diastereoselective Synthesis of the Left-Wing Fragment of 11-epi-Azadirachtin I.

    PubMed

    Shi, Hang; Tan, Ceheng; Zhang, Weibin; Zhang, Zichun; Long, Rong; Luo, Tuoping; Yang, Zhen

    2015-05-15

    A highly enantio- and diastereoselective synthesis of the left-wing fragment of 11-epi-azadirachtin I characterized with the pairwise use of palladium- and gold-catalyzed cascade reactions is presented. By enlisting a sequence of stereocontrolled transformations, our 21-step route established the stereocenters of the left-wing fragment from one chiral starting material, (-)-carvone, which would significantly facilitate the synthetic studies of the azadirachtin-type limonoids.

  4. Effects of forest fragmentation on nocturnal Asian birds: A case study from Xishuangbanna, China.

    PubMed

    K Dayananda, Salindra; Goodale, Eben; Lee, Myung-Bok; Liu, Jia-Jia; Mammides, Christos; O Pasion, Bonifacio; Quan, Rui-Chang; W Ferry Slik, J; Sreekar, Rachakonda; W Tomlinson, Kyle; Yasuda, Mika

    2016-05-18

    Owls have the potential to be keystone species for conservation in fragmented landscapes, as the absence of these predators could profoundly change community structure. Yet few studies have examined how whole communities of owls respond to fragmentation, especially in the tropics. When evaluating the effect of factors related to fragmentation, such as fragment area and distance to the edge, on these birds, it is also important in heterogeneous landscapes to ask how 'location factors' such as the topography, vegetation and soil of the fragment predict their persistence. In Xishuangbanna, southwest China, we established 43 transects (200 m×60 m) within 20 forest fragments to sample nocturnal birds, both visually and aurally. We used a multimodel inference approach to identify the factors that influence owl species richness, and generalized linear mixed models to predict the occurrence probabilities of each species. We found that fragmentation factors dominated location factors, with larger fragments having more species, and four of eight species were significantly more likely to occur in large fragments. Given the potential importance of these birds on regulating small mammal and other animal populations, and thus indirectly affecting seed dispersal, we suggest further protection of large fragments and programs to increase their connectivity to the remaining smaller fragments.

  5. Effects of forest fragmentation on nocturnal Asian birds: A case study from Xishuangbanna, China

    PubMed Central

    DAYANANDA, Salindra K.; GOODALE, Eben; LEE, Myung-bok; LIU, Jia-Jia; MAMMIDES, Christos; PASION, Bonifacio O.; QUAN, Rui-Chang; SLIK, J. W. Ferry; SREEKAR, Rachakonda; TOMLINSON, Kyle W.; YASUDA, Mika

    2016-01-01

    Owls have the potential to be keystone species for conservation in fragmented landscapes, as the absence of these predators could profoundly change community structure. Yet few studies have examined how whole communities of owls respond to fragmentation, especially in the tropics. When evaluating the effect of factors related to fragmentation, such as fragment area and distance to the edge, on these birds, it is also important in heterogeneous landscapes to ask how ‘location factors’ such as the topography, vegetation and soil of the fragment predict their persistence. In Xishuangbanna, southwest China, we established 43 transects (200 m×60 m) within 20 forest fragments to sample nocturnal birds, both visually and aurally. We used a multimodel inference approach to identify the factors that influence owl species richness, and generalized linear mixed models to predict the occurrence probabilities of each species. We found that fragmentation factors dominated location factors, with larger fragments having more species, and four of eight species were significantly more likely to occur in large fragments. Given the potential importance of these birds on regulating small mammal and other animal populations, and thus indirectly affecting seed dispersal, we suggest further protection of large fragments and programs to increase their connectivity to the remaining smaller fragments. PMID:27265653

  6. A DNA logic gate based on strand displacement reaction and rolling circle amplification, responding to multiple low-abundance DNA fragment input signals, and its application in detecting miRNAs.

    PubMed

    Chen, Yuqi; Song, Yanyan; Wu, Fan; Liu, Wenting; Fu, Boshi; Feng, Bingkun; Zhou, Xiang

    2015-04-25

    A conveniently amplified DNA AND logic gate platform was designed for the highly sensitive detection of low-abundance DNA fragment inputs based on strand displacement reaction and rolling circle amplification strategy. Compared with others, this system can detect miRNAs in biological samples. The success of this strategy demonstrates the potential of DNA logic gates in disease diagnosis.

  7. Study of Analytic Statistical Model for Decay of Light and Medium Mass Nuclei in Nuclear Fragmentation

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Wilson, John W.

    1996-01-01

    The angular momentum independent statistical decay model is often applied using a Monte-Carlo simulation to describe the decay of prefragment nuclei in heavy ion reactions. This paper presents an analytical approach to the decay problem of nuclei with mass number less than 60, which is important for galactic cosmic ray (GCR) studies. This decay problem of nuclei with mass number less than 60 incorporates well-known levels of the lightest nuclei (A less than 11) to improve convergence and accuracy. A sensitivity study of the model level density function is used to determine the impact on mass and charge distributions in nuclear fragmentation. This angular momentum independent statistical decay model also describes the momentum and energy distribution of emitted particles (n, p, d, t, h, and a) from a prefragment nucleus.

  8. Fragmentation of whole-transcriptome RNA using E. coli RNase III.

    PubMed

    Ares, Manuel

    2013-05-01

    High-throughput sequencing (HTS) methods can provide short sequence reads for many millions of individual molecules in a sample, allowing the use of sequencing to measure the abundance of RNA molecules. To quantify the amount of a particular sequence in a sample of large RNAs (e.g., mRNAs), it is important to fragment the RNA into short pieces that can be ligated to oligonucleotides that allow polymerase chain reaction (PCR) amplification and sequencing. The most desired end structure of RNA for such ligation steps is a 5' phosphate and a 3' OH. Thus, enzymes that leave these groups after cleavage are of particular utility, avoiding the need to dephosphorylate the 3' end with phosphatases or phosphorylate the 5' end with kinase before proceeding. One such enzyme, RNase III, is widely available. Although it primarily cuts duplex RNA, this specificity is salt- and concentration-dependent, and many RNAs that lack strong extended duplexes are nonetheless susceptible to cleavage at many spots. RNA fragmentation by RNase III does not seem to grossly affect the distribution of RNA sequencing reads. Thus, it has become a standard method for creating nominally representative pools of transcriptome sequences with 5' phosphates and 3' OH for library construction. Three steps in preparing fragmented transcriptome RNA for sequencing library construction are described here: (1) fragmenting the RNA with RNase III to the extent that ~60-100-nucleotide fragments are created, (2) purifying the RNA from the RNase III reaction, and (3) analyzing the digestion products for their suitability in library production.

  9. Mass correlation between light and heavy reaction products in multinucleon transfer 197Au+130Te collisions

    NASA Astrophysics Data System (ADS)

    Galtarossa, F.; Corradi, L.; Szilner, S.; Fioretto, E.; Pollarolo, G.; Mijatović, T.; Montanari, D.; Ackermann, D.; Bourgin, D.; Courtin, S.; Fruet, G.; Goasduff, A.; Grebosz, J.; Haas, F.; Jelavić Malenica, D.; Jeong, S. C.; Jia, H. M.; John, P. R.; Mengoni, D.; Milin, M.; Montagnoli, G.; Scarlassara, F.; Skukan, N.; Soić, N.; Stefanini, A. M.; Strano, E.; Tokić, V.; Ur, C. A.; Valiente-Dobón, J. J.; Watanabe, Y. X.

    2018-05-01

    We studied multinucleon transfer reactions in the 197Au+130Te system at Elab=1.07 GeV by employing the PRISMA magnetic spectrometer coupled to a coincident detector. For each light fragment we constructed, in coincidence, the distribution in mass of the heavy partner of the reaction. With a Monte Carlo method, starting from the binary character of the reaction, we simulated the de-excitation process of the produced heavy fragments to be able to understand their final mass distribution. The total cross sections for pure neutron transfer channels have also been extracted and compared with calculations performed with the grazing code.

  10. The ^132Sn + ^96Zr reaction: a study of fusion enhancement/hindrance

    NASA Astrophysics Data System (ADS)

    Loveland, Walter; Vinodkumar, A. M.; Neeway, James; Sprunger, Peter; Prisbrey, Landon; Peterson, Donald; Liang, J. F.; Shapira, Dan; Gross, C. J.; Varner, R. L.; Kolata, J. J.; Roberts, A.; Caraley, A. L.

    2008-10-01

    Capture-fission cross sections were measured for the collision of the massive nucleus ^132Sn with ^96Zr at center of mass energies ranging from 192.8 to 249.6 MeV in an attempt to study fusion enhancement and hindrance in this reaction involving very neutron-rich nuclei. Coincident fission fragments were detected using silicon detectors. Using angle and energy conditions, deep inelastic scattering events were separated from fission events. Coupled channels calculations can describe the data if the surface diffuseness parameter, a, is allowed to be 1.10 fm, instead of the customary 0.6 fm. The measured capture-fission cross sections agree moderately well with model calculations using the dinuclear system (DNS) model. If we use this model to predict fusion barrier heights for these reactions, we find the predicted fusion hindrance, as represented by the extra push energy, is greater for the more neutron-rich system, lessening the advantage of the lower interaction barriers with neutron rich projectiles.

  11. Mixed quantum-classical studies of energy partitioning in unimolecular chemical reactions

    NASA Astrophysics Data System (ADS)

    Bladow, Landon Lowell

    A mixed quantum-classical reaction path Hamiltonian method is utilized to study the dynamics of unimolecular reactions. The method treats motion along the reaction path classically and treats the transverse vibrations quantum mechanically. The theory leads to equations that predict the disposai of the exit-channel potential energy to product translation and vibration. In addition, vibrational state distributions are obtained for the product normal modes. Vibrational excitation results from the curvature of the minimum energy reaction path. The method is applied to six unimolecular reactions: HF elimination from fluoroethane, 1,1-difluoroethane, 1,1-difluoroethene, and trifluoromethane; and HCl elimination from chloroethane and acetyl chloride. The minimum energy paths were calculated at either the MP2 or B3LYP level of theory. In all cases, the majority of the vibrational excitation of the products occurs in the HX fragment. The results are compared to experimental data and other theoretical results, where available. The best agreement between the experimental and calculated HX vibrational distributions is found for the halogenated ethanes, and the experimental deduction that the majority of the HX vibrational excitation arises from the potential energy release is supported. It is believed that the excess energy provided in experiments contributes to the poorer agreement between experiment and theory observed for HF elimination from 1,1-difluoroethene and trifluoromethane. An attempt is described to incorporate a treatment of the excess energy into the present method. However, the sign of the curvature coupling elements is then found to affect the dynamics. Overall, the method appears to be an efficient dynamical tool for modeling the disposal of the exit-channel potential energy in unimolecular reactions.

  12. Study of Electron Ionization and Fragmentation of Non-hydrated and Hydrated Tetrahydrofuran Clusters

    NASA Astrophysics Data System (ADS)

    Neustetter, Michael; Mahmoodi-Darian, Masoomeh; Denifl, Stephan

    2017-05-01

    Mass spectroscopic investigations on tetrahydrofuran (THF, C4H8O), a common model molecule of the DNA-backbone, have been carried out. We irradiated isolated THF and (hydrated) THF clusters with low energy electrons (electron energy 70 eV) in order to study electron ionization and ionic fragmentation. For elucidation of fragmentation pathways, deuterated TDF (C4D8O) was investigated as well. One major observation is that the cluster environment shows overall a protective behavior on THF. However, also new fragmentation channels open in the cluster. In this context, we were able to solve a discrepancy in the literature about the fragment ion peak at mass 55 u in the electron ionization mass spectrum of THF. We ascribe this ion yield to the fragmentation of ionized THF clusters.

  13. Universality of fragment shapes.

    PubMed

    Domokos, Gábor; Kun, Ferenc; Sipos, András Árpád; Szabó, Tímea

    2015-03-16

    The shape of fragments generated by the breakup of solids is central to a wide variety of problems ranging from the geomorphic evolution of boulders to the accumulation of space debris orbiting Earth. Although the statistics of the mass of fragments has been found to show a universal scaling behavior, the comprehensive characterization of fragment shapes still remained a fundamental challenge. We performed a thorough experimental study of the problem fragmenting various types of materials by slowly proceeding weathering and by rapid breakup due to explosion and hammering. We demonstrate that the shape of fragments obeys an astonishing universality having the same generic evolution with the fragment size irrespective of materials details and loading conditions. There exists a cutoff size below which fragments have an isotropic shape, however, as the size increases an exponential convergence is obtained to a unique elongated form. We show that a discrete stochastic model of fragmentation reproduces both the size and shape of fragments tuning only a single parameter which strengthens the general validity of the scaling laws. The dependence of the probability of the crack plan orientation on the linear extension of fragments proved to be essential for the shape selection mechanism.

  14. FragIdent--automatic identification and characterisation of cDNA-fragments.

    PubMed

    Seelow, Dominik; Goehler, Heike; Hoffmann, Katrin

    2009-03-02

    Many genetic studies and functional assays are based on cDNA fragments. After the generation of cDNA fragments from an mRNA sample, their content is at first unknown and must be assigned by sequencing reactions or hybridisation experiments. Even in characterised libraries, a considerable number of clones are wrongly annotated. Furthermore, mix-ups can happen in the laboratory. It is therefore essential to the relevance of experimental results to confirm or determine the identity of the employed cDNA fragments. However, the manual approach for the characterisation of these fragments using BLAST web interfaces is not suited for larger number of sequences and so far, no user-friendly software is publicly available. Here we present the development of FragIdent, an application for the automatic identification of open reading frames (ORFs) within cDNA-fragments. The software performs BLAST analyses to identify the genes represented by the sequences and suggests primers to complete the sequencing of the whole insert. Gene-specific information as well as the protein domains encoded by the cDNA fragment are retrieved from Internet-based databases and included in the output. The application features an intuitive graphical interface and is designed for researchers without any bioinformatics skills. It is suited for projects comprising up to several hundred different clones. We used FragIdent to identify 84 cDNA clones from a yeast two-hybrid experiment. Furthermore, we identified 131 protein domains within our analysed clones. The source code is freely available from our homepage at http://compbio.charite.de/genetik/FragIdent/.

  15. Evaluation of thermobarometry for spinel lherzolite fragments in alkali basalts

    NASA Astrophysics Data System (ADS)

    Ozawa, Kazuhito; Youbi, Nasrrddine; Boumehdi, Moulay Ahmed; McKenzie, Dan; Nagahara, Hiroko

    2017-04-01

    Geothermobarometry of solid fragments in kimberlite and alkali basalts, generally called "xenoliths", provides information on thermal and chemical structure of lithospheric and asthenospheric mantle, based on which various chemical, thermal, and rheological models of lithosphere have been constructed (e.g., Griffin et al., 2003; McKenzie et al., 2005; Ave Lallemant et al., 1980). Geothermobarometry for spinel-bearing peridotite fragments, which are frequently sampled from Phanerozoic provinces in various tectonic environments (Nixon and Davies, 1987), has essential difficulties, and it is usually believed that appropriated barometers do not exist for them (O'Reilly et al., 1997; Medaris et al., 1999). Ozawa et al. (2016; EGU) proposed a method of geothermobarometry for spinel lherzolite fragments. They applied the method to mantle fragments in alkali basalts from Bou Ibalhatene maars in the Middle Atlas in Morocco (Raffone et al. 2009; El Azzouzi et al., 2010; Witting et al., 2010; El Messbahi et al., 2015). Ozawa et al. (2016) obtained 0.5GPa pressure difference (1.5-2.0GPa) for 100°C variation in temperatures (950-1050°C). However, it is imperative to verify the results on the basis of completely independent data. There are three types of independent information: (1) time scale of solid fragment extraction, which may be provided by kinetics of reactions induced by heating and/or decompression during their entrapment in the host magma and transportation to the Earth's surface (Smith, 1999), (2) depth of the host basalt formation, which may be provided by the petrological and geochemical studies of the host basalts, and (3) lithosphere-asthenosphere boundary depths, which may be estimated by geophysical observations. Among which, (3) is shown to be consistent with the result in Ozawa et al. (2016). We here present that the estimated thermal structure just before the fragment extraction is fully supported by the information of (1) and (2). Spera (1984) reviewed

  16. Production and characterization of anti-human IgG F(ab')2 antibody fragment.

    PubMed

    Valedkarimi, Zahra; Nasiri, Hadi; Aghebati-Maleki, Leili; Abdolalizadeh, Jalal; Esparvarinha, Mojghan; Majidi, Jafar

    2018-04-10

    In present study an optimized protocol for the separation of antibodies into antigen-binding fragments F(ab')2 using pepsin digestion was investigated. The production of these fragments is a consequential step in the development of medical research, treatment and diagnosis. For production of polyclonal antibody rabbit received antigen in four steps. The rabbit serum at 1/128000 dilution showed high absorbance in reaction with human IgG at the designed ELISA method. Rabbit IgG was purified by Ion-Exchange Chromatography (IEC) method. Purity was assessed by SDS-PAGE method. In non-reduced condition only one band was seen in about 150 kDa MW position and in reduced form, two bands were seen in 50 and 25 kDa MW positions. Rabbit IgG was digested by pepsin enzyme. The antibody fragments solution was applied to Gel filtration column to isolate the F(ab')2. Non-reduced SDS-PAGE for determining the purity of F(ab')2 fragment resulted in one band in 100 kDa corresponds to F(ab')2 fragment and a band in 150 kDa MW position corresponds to undigested IgG antibodies. The activities of FITC conjugated F(ab')2 fragment and commercial ones were compared using flowcytometry method. The activity results implied that the FITC conjugated- anti human F(ab')2 fragment worked as efficiently as the commercial one.

  17. Fission fragment mass distributions from 210Po and 213At

    NASA Astrophysics Data System (ADS)

    Sen, A.; Ghosh, T. K.; Bhattacharya, S.; Banerjee, K.; Bhattacharya, C.; Kundu, S.; Mukherjee, G.; Asgar, A.; Dey, A.; Dhal, A.; Shaikh, Md. Moin; Meena, J. K.; Manna, S.; Pandey, R.; Rana, T. K.; Roy, Pratap; Roy, T.; Srivastava, V.; Bhattacharya, P.

    2017-12-01

    Background: The influence of shell effect on the dynamics of the fusion fission process and its evolution with excitation energy in the preactinide Hg-Pb region in general is a matter of intense research in recent years. In particular, a strong ambiguity remains for the neutron shell closed 210Po nucleus regarding the role of shell effect in fission around ≈30 -40 MeV of excitation energy. Purpose: We have measured the fission fragment mass distribution of 210Po populated using fusion of 4He+206Pb at different excitation energies and compare the result with recent theoretical predictions as well as with our previous measurement for the same nucleus populated through a different entrance channel. Mass distribution in the fission of the neighboring nuclei 213At is also studied for comparison. Methods: Two large area multiwire proportional counters (MWPC) were used for complete kinematical measurement of the coincident fission fragments. The time of flight differences of the coincident fission fragments were used to directly extract the fission fragment mass distributions. Results: The measured fragment mass distribution for the reactions 4He+206Pb and 4He+209Bi were symmetric and the width of the mass distributions were found to increase monotonically with excitation energy above 36.7 MeV and 32.9 MeV, respectively, indicating the absence of shell effects at the saddle. However, in the fission of 210Po, we find minor deviation from symmetric mass distributions at the lowest excitation energy (30.8 MeV). Conclusion: Persistence of shell effect in fission fragment mass distribution of 210Po was observed at the excitation energy ≈31 MeV as predicted by the theory; at higher excitation energy, however, the present study reaffirms the absence of any shell correction in the fission of 210Po.

  18. Furan Fragmentation in the Gas Phase: New Insights from Statistical and Molecular Dynamics Calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erdmann, Ewa; Labuda, Marta; Aguirre, Nestor F.

    We present a complete exploration of the different fragmentation mechanisms of furan (C 4H 4O) operating at low and high energies. Three different theoretical approaches are combined to determine the structure of all possible reaction intermediates, many of them not described in previous studies, and a large number of pathways involving three types of fundamental elementary mechanisms: isomerization, fragmentation, and H/H 2 loss processes (this last one was not yet explored). Our results are compared with the existing experimental and theoretical investigations for furan fragmentation. At low energies the first processes to appear are isomerization, which always implies the breakingmore » of one C–O bond and one or several hydrogen transfers; at intermediate energies the fragmentation of the molecular skeleton becomes the most relevant mechanism; and H/H 2 loss is the dominant processes at high energy. However, the three mechanisms are active in very wide energy ranges and, therefore, at most energies there is a competition among them.« less

  19. Furan Fragmentation in the Gas Phase: New Insights from Statistical and Molecular Dynamics Calculations

    DOE PAGES

    Erdmann, Ewa; Labuda, Marta; Aguirre, Nestor F.; ...

    2018-03-15

    We present a complete exploration of the different fragmentation mechanisms of furan (C 4H 4O) operating at low and high energies. Three different theoretical approaches are combined to determine the structure of all possible reaction intermediates, many of them not described in previous studies, and a large number of pathways involving three types of fundamental elementary mechanisms: isomerization, fragmentation, and H/H 2 loss processes (this last one was not yet explored). Our results are compared with the existing experimental and theoretical investigations for furan fragmentation. At low energies the first processes to appear are isomerization, which always implies the breakingmore » of one C–O bond and one or several hydrogen transfers; at intermediate energies the fragmentation of the molecular skeleton becomes the most relevant mechanism; and H/H 2 loss is the dominant processes at high energy. However, the three mechanisms are active in very wide energy ranges and, therefore, at most energies there is a competition among them.« less

  20. Universality of fragment shapes

    PubMed Central

    Domokos, Gábor; Kun, Ferenc; Sipos, András Árpád; Szabó, Tímea

    2015-01-01

    The shape of fragments generated by the breakup of solids is central to a wide variety of problems ranging from the geomorphic evolution of boulders to the accumulation of space debris orbiting Earth. Although the statistics of the mass of fragments has been found to show a universal scaling behavior, the comprehensive characterization of fragment shapes still remained a fundamental challenge. We performed a thorough experimental study of the problem fragmenting various types of materials by slowly proceeding weathering and by rapid breakup due to explosion and hammering. We demonstrate that the shape of fragments obeys an astonishing universality having the same generic evolution with the fragment size irrespective of materials details and loading conditions. There exists a cutoff size below which fragments have an isotropic shape, however, as the size increases an exponential convergence is obtained to a unique elongated form. We show that a discrete stochastic model of fragmentation reproduces both the size and shape of fragments tuning only a single parameter which strengthens the general validity of the scaling laws. The dependence of the probability of the crack plan orientation on the linear extension of fragments proved to be essential for the shape selection mechanism. PMID:25772300

  1. Use of ESI-MS to determine reaction pathway for hydrogen sulphide scavenging with 1,3,5-tri-(2-hydroxyethyl)-hexahydro-s-triazine.

    PubMed

    Madsen, Henrik T; Søgaard, Erik G

    2012-01-01

    To study the reaction between hydrogen sulphide and 1,3,5-tri-(2-hydroxyethyl)-hexahydro-s-triazine, which is an often used hydrogen sulphide scavenger, electro spray ionisation mass spectrometry (ESI-MS) was used. The investigation was carried out in positive mode, and tandem mass spectrometry was used to investigate the nature of unknown peaks in the mass spectra. The reaction was found to proceed as expected from theory with the triazine reacting with hydrogen sulphide to form the corresponding thiadiazine. This species subsequently reacted with a second hydrogen sulphide molecule to form the dithiazine species, hereby confirming previously obtained results and showing the ability of the ESI-MS method for studying the scavenging reaction. The final theoretical product s-trithiane was not detected. Furthermore, fragmentation products of thiadiazine and dithiazine were detected in the solution, and possible pathways and structures were suggested to describe the observed fragments. In these, thiadiazine fragmented to 2-(methylidene amino)-ethanol and 2-(1,3-thiazetidin-3-yl)-ethanol and N-(2-hydroxyethyl)-N-(sulfanylmethyl)-ethaniminium, which underwent a further fragmentation to N-methyl-N-(2-oxoethyl)-methaniminium. Dithiazine fragmented to N-methyl-N-(2-oxoethyl)-methaniminium as well. The by-product from this reaction is methanedithiol, which was not detected due to its low polarity.

  2. Embedded fragments from U.S. military personnel--chemical analysis and potential health implications.

    PubMed

    Centeno, José A; Rogers, Duane A; van der Voet, Gijsbert B; Fornero, Elisa; Zhang, Lingsu; Mullick, Florabel G; Chapman, Gail D; Olabisi, Ayodele O; Wagner, Dean J; Stojadinovic, Alexander; Potter, Benjamin K

    2014-01-23

    The majority of modern war wounds are characterized by high-energy blast injuries containing a wide range of retained foreign materials of a metallic or composite nature. Health effects of retained fragments range from local or systemic toxicities to foreign body reactions or malignancies, and dependent on the chemical composition and corrosiveness of the fragments in vivo. Information obtained by chemical analysis of excised fragments can be used to guide clinical decisions regarding the need for fragment removal, to develop therapeutic interventions, and to better anticipate future medical problems from retained fragment related injuries. In response to this need, a new U.S Department of Defense (DoD) directive has been issued requiring characterization of all removed fragments to provide a database of fragment types occurring in combat injuries. The objective of this study is to determine the chemical composition of retained embedded fragments removed from injured military personnel, and to relate results to histological findings in tissue adjacent to fragment material. We describe an approach for the chemical analysis and characterization of retained fragments and adjacent tissues, and include case examples describing fragments containing depleted uranium (DU), tungsten (W), lead (Pb), and non-metal foreign bodies composed of natural and composite materials. Fragments obtained from four patients with penetrating blast wounds to the limbs were studied employing a wide range of chemical and microscopy techniques. Available adjacent tissues from three of the cases were histologically, microscopically, and chemically examined. The physical and compositional properties of the removed foreign material surfaces were examined with energy dispersive x-ray fluorescence spectrometry (EDXRF), scanning electron microscopy (SEM), laser ablation inductively-coupled plasma mass-spectrometry (LA-ICP-MS), and confocal laser Raman microspectroscopy (CLRM). Quantitative chemical

  3. Embedded Fragments from U.S. Military Personnel—Chemical Analysis and Potential Health Implications

    PubMed Central

    Centeno, José A.; Rogers, Duane A.; van der Voet, Gijsbert B.; Fornero, Elisa; Zhang, Lingsu; Mullick, Florabel G.; Chapman, Gail D.; Olabisi, Ayodele O.; Wagner, Dean J.; Stojadinovic, Alexander; Potter, Benjamin K.

    2014-01-01

    Background: The majority of modern war wounds are characterized by high-energy blast injuries containing a wide range of retained foreign materials of a metallic or composite nature. Health effects of retained fragments range from local or systemic toxicities to foreign body reactions or malignancies, and dependent on the chemical composition and corrosiveness of the fragments in vivo. Information obtained by chemical analysis of excised fragments can be used to guide clinical decisions regarding the need for fragment removal, to develop therapeutic interventions, and to better anticipate future medical problems from retained fragment related injuries. In response to this need, a new U.S Department of Defense (DoD) directive has been issued requiring characterization of all removed fragments to provide a database of fragment types occurring in combat injuries. Objectives: The objective of this study is to determine the chemical composition of retained embedded fragments removed from injured military personnel, and to relate results to histological findings in tissue adjacent to fragment material. Methods: We describe an approach for the chemical analysis and characterization of retained fragments and adjacent tissues, and include case examples describing fragments containing depleted uranium (DU), tungsten (W), lead (Pb), and non-metal foreign bodies composed of natural and composite materials. Fragments obtained from four patients with penetrating blast wounds to the limbs were studied employing a wide range of chemical and microscopy techniques. Available adjacent tissues from three of the cases were histologically, microscopically, and chemically examined. The physical and compositional properties of the removed foreign material surfaces were examined with energy dispersive x-ray fluorescence spectrometry (EDXRF), scanning electron microscopy (SEM), laser ablation inductively-coupled plasma mass-spectrometry (LA-ICP-MS), and confocal laser Raman

  4. Healthcare Fragmentation and the Frequency of Radiology and Other Diagnostic Tests: A Cross-Sectional Study.

    PubMed

    Kern, Lisa M; Seirup, Joanna K; Casalino, Lawrence P; Safford, Monika M

    2017-02-01

    Fragmented ambulatory care has been associated with high rates of emergency department visits and hospitalizations, but effects on other types of utilization are unclear. To determine whether more fragmented care is associated with more radiology and other diagnostic tests, compared to less fragmented care. We conducted a cross-sectional study using claims from five commercial payers for 2010. The study took place in the Hudson Valley, a seven-county region in New York State. We included adult patients who were insured through the participating payers and were attributed to a primary care physician in the region. We restricted the cohort to those with ≥4 ambulatory visits, as measures of fragmentation are not reliable if based on ≤3 visits (N = 126,801). For each patient, we calculated fragmentation using a reversed Bice-Boxerman Index, which we divided into seven categories. We used negative binomial regression to determine the association between fragmentation category and rates of radiology and other diagnostic tests, stratified by number of chronic conditions and adjusting for patient age, gender, and number of visits. Patients with the most fragmented care had approximately twice as many radiology and other diagnostic tests as patients with the least fragmented care, across all groups stratified by number of chronic conditions (each adjusted p < 0.0001). For example, among patients with ≥5 chronic conditions, those with the least fragmented care had 258 tests per 100 patients, and those with the most fragmented care had 542 tests per 100 patients (+284 tests per 100 patients, or +110 %, adjusted p < 0.0001). More fragmented care was independently associated with higher rates of radiology and other diagnostic tests than less fragmented care.

  5. Preparation of core-shell molecularly imprinted polymer via the combination of reversible addition-fragmentation chain transfer polymerization and click reaction.

    PubMed

    Chang, Limin; Li, Ying; Chu, Jia; Qi, Jingyao; Li, Xin

    2010-11-08

    In this paper, we demonstrated an efficient and robust route to the preparation of well-defined molecularly imprinted polymer based on reversible addition-fragmentation chain transfer (RAFT) polymerization and click chemistry. The alkyne terminated RAFT chain transfer agent was first synthesized, and then click reaction was used to graft RAFT agent onto the surface of silica particles which was modified by azide. Finally, imprinted thin film was prepared in the presence of 2,4-dichlorophenol as the template. The imprinted beads were demonstrated with a homogeneous polymer films (thickness of about 2.27 nm), and exhibited thermal stability under 255°C. The as-synthesized product showed obvious molecular imprinting effects towards the template, fast template rebinding kinetics and an appreciable selectivity over structurally related compounds. Copyright © 2010 Elsevier B.V. All rights reserved.

  6. Fragment Couplings via CO2 Extrusion-Recombination: Expansion of a Classic Bond-Forming Strategy via Metallaphotoredox.

    PubMed

    Le, Chi Chip; MacMillan, David W C

    2015-09-23

    In this study we demonstrate that molecular fragments, which can be readily coupled via a simple, in situ RO-C═OR bond-forming reaction, can subsequently undergo metal insertion-decarboxylation-recombination to generate Csp(2)-Csp(3) bonds when subjected to metallaphotoredox catalysis. In this embodiment the conversion of a wide variety of mixed anhydrides (formed in situ from carboxylic acids and acyl chlorides) to fragment-coupled ketones is accomplished in good to high yield. A three-step synthesis of the medicinal agent edivoxetine is also described using this new decarboxylation-recombination protocol.

  7. [Comparative study of substance P and its fragments: analgesic properties, effect on behavior and monoaminergic processes].

    PubMed

    Klusha, V E; Abissova, N A; Mutsenietse, R K; Svirskis, Sh V; Binert, M

    1981-12-01

    The effect of substance P (SP) and of its fragments 5-11, 8-11, 9-11, 10-11 administered into the brain ventricles in doses of 5, 25 and 50 nM on the behavior and content of biogenic monoamines of the rat brain was studied. The analgetic properties of the substances under consideration and those of fragment SP 10-11 in doses of 5, 25, 50 and 100 nM were also subjected to examination. It was found that SP and fragment 5-11 stimulate and enhance the locomotor activity in rats, while fragments 8-11 and 9-11 provoke hypoactivity. The substances under study increase the serotonin and dopamine turnover, whereas SP and fragment 8-11 lower the serotonin content as well. After administration of SP and fragment 5-11 analgesia was seen to transform to hyperalgesia depending on the dose. Fragments 8-11 and 9-11 produce analgetic effect. It is suggested that both SP fragments and the whole SP molecule can influence the neurochemical process that regulate behavior and pain perception.

  8. Expectancies and memory for an emotional film fragment: a placebo study.

    PubMed

    Van Oorsouw, Kim; Merckelbach, Harald

    2007-01-01

    This study investigated whether positive ("memory-enhancing") and negative ("memory-impairing") placebos may enhance and undermine, respectively, memory of a film fragment. After watching an emotional film fragment, participants were assigned to a "memory-enhancing" placebo group (n = 30), control group (n = 30), or "memory-impairing" placebo group (n = 30). Only participants who believed in the placebo effect were included in the analyses. In the positive placebo group, memory for the film fragment was better than that of participants who received negative placebos or control participants. Participants in the negative placebo group made more distortion errors than participants in the positive placebo or control group. Our findings show that people's expectancies about their memory may affect their memory performance. These results may have implications for both clinical practice and the legal domain.

  9. Virtual fragment preparation for computational fragment-based drug design.

    PubMed

    Ludington, Jennifer L

    2015-01-01

    Fragment-based drug design (FBDD) has become an important component of the drug discovery process. The use of fragments can accelerate both the search for a hit molecule and the development of that hit into a lead molecule for clinical testing. In addition to experimental methodologies for FBDD such as NMR and X-ray Crystallography screens, computational techniques are playing an increasingly important role. The success of the computational simulations is due in large part to how the database of virtual fragments is prepared. In order to prepare the fragments appropriately it is necessary to understand how FBDD differs from other approaches and the issues inherent in building up molecules from smaller fragment pieces. The ultimate goal of these calculations is to link two or more simulated fragments into a molecule that has an experimental binding affinity consistent with the additive predicted binding affinities of the virtual fragments. Computationally predicting binding affinities is a complex process, with many opportunities for introducing error. Therefore, care should be taken with the fragment preparation procedure to avoid introducing additional inaccuracies.This chapter is focused on the preparation process used to create a virtual fragment database. Several key issues of fragment preparation which affect the accuracy of binding affinity predictions are discussed. The first issue is the selection of the two-dimensional atomic structure of the virtual fragment. Although the particular usage of the fragment can affect this choice (i.e., whether the fragment will be used for calibration, binding site characterization, hit identification, or lead optimization), general factors such as synthetic accessibility, size, and flexibility are major considerations in selecting the 2D structure. Other aspects of preparing the virtual fragments for simulation are the generation of three-dimensional conformations and the assignment of the associated atomic point charges.

  10. Fission-fragment detector for DANCE based on thin scintillating films

    NASA Astrophysics Data System (ADS)

    Rusev, G.; Roman, A. R.; Daum, J. K.; Springs, R. K.; Bond, E. M.; Jandel, M.; Baramsai, B.; Bredeweg, T. A.; Couture, A.; Favalli, A.; Ianakiev, K. D.; Iliev, M. L.; Mosby, S.; Ullmann, J. L.; Walker, C. L.

    2015-12-01

    A fission-fragment detector based on thin scintillating films has been built to serve as a trigger/veto detector in neutron-induced fission measurements at DANCE. The fissile material is surrounded by scintillating films providing 4 π detection of the fission fragments. The scintillation photons were registered with silicon photomultipliers. A measurement of the 235U (n , f) reaction with this detector at DANCE revealed a correct time-of-flight spectrum and provided an estimate for the efficiency of the prototype detector of 11.6(7)%. Design and test measurements with the detector are described.

  11. Hypochlorite and superoxide radicals can act synergistically to induce fragmentation of hyaluronan and chondroitin sulphates

    PubMed Central

    2004-01-01

    Activated phagocytes release the haem enzyme MPO (myeloperoxidase) and also generate superoxide radicals (O2•−), and hence H2O2, via an oxidative burst. Reaction of MPO with H2O2 in the presence of chloride ions generates HOCl (the physiological mixture of hypochlorous acid and its anion present at pH 7.4). Exposure of glycosaminoglycans to a MPO–H2O2–Cl− system or reagent HOCl generates long-lived chloramides [R-NCl-C(O)-R′] derived from the glycosamine N-acetyl functions. Decomposition of these species by transition metal ions gives polymer-derived amidyl (nitrogen-centred) radicals [R-N•-C(O)-R′], polymer-derived carbon-centred radicals and site-specific strand scission. In the present study, we have shown that exposure of glycosaminoglycan chloramides to O2•− also promotes chloramide decomposition and glycosaminoglycan fragmentation. These processes are inhibited by superoxide dismutase, metal ion chelators and the metal ion-binding protein BSA, consistent with chloramide decomposition and polymer fragmentation occurring via O2•−-dependent one-electron reduction, possibly catalysed by trace metal ions. Polymer fragmentation induced by O2•− [generated by the superoxide thermal source 1, di-(4-carboxybenzyl)hyponitrite] was demonstrated to be entirely chloramide dependent as no fragmentation occurred with the native polymers or when the chloramides were quenched by prior treatment with methionine. EPR spin-trapping experiments using 5,5-dimethyl1-pyrroline-N-oxide and 2-methyl-2-nitrosopropane have provided evidence for both O2•− and polymer-derived carbon-centred radicals as intermediates. The results obtained are consistent with a mechanism involving one-electron reduction of the chloramides to yield polymer-derived amidyl radicals, which subsequently undergo intramolecular hydrogen atom abstraction reactions to give carbon-centred radicals. The latter undergo fragmentation reactions in a site-specific manner. This synergistic

  12. Reactions of methyl groups on a non-reducible metal oxide: The reaction of iodomethane on stoichiometric α-Cr 2O 3(0001)

    DOE PAGES

    Dong, Yujung; Brooks, John D.; Chen, Tsung-Liang; ...

    2015-06-10

    The reaction of iodomethane on the nearly stoichiometric α-Cr 2O 3(0001) surface produces gas phase ethylene, methane, and surface iodine adatoms. The reaction is first initiated by the dissociation of iodomethane into surface methyl fragments, -CH 3, and iodine adatoms. Methyl fragments bound at surface Cr cation sites undergo a rate-limiting dehydrogenation reaction to methylene, =CH 2. The methylene intermediates formed from methyl dehydrogenation can then undergo coupling reactions to produce ethylene via two principle reaction pathways: (1) direct coupling of methylene and (2) methylene insertion into the methyl surface bond to form surface ethyl groups which undergo β-H eliminationmore » to produce ethylene. The liberated hydrogen also combines with methyl groups to form methane. Iodine adatoms from the dissociation of iodomethane deactivate the surface by simple site blocking of the surface Cr 3+ cations.« less

  13. National Array of Neutron Detectors (NAND): A versatile tool for nuclear reaction studies

    NASA Astrophysics Data System (ADS)

    Golda, K. S.; Jhingan, A.; Sugathan, P.; Singh, Hardev; Singh, R. P.; Behera, B. R.; Mandal, S.; Kothari, A.; Gupta, Arti; Zacharias, J.; Archunan, M.; Barua, P.; Venkataramanan, S.; Bhowmik, R. K.; Govil, I. M.; Datta, S. K.; Chatterjee, M. B.

    2014-11-01

    The first phase of the National Array of Neutron Detectors (NAND) consisting of 26 neutron detectors has been commissioned at the Inter University Accelerator Centre (IUAC), New Delhi. The motivation behind setting up of such a detector system is the need for more accurate and efficient study of reaction mechanisms in the projectile energy range of 5-8 MeV/n using heavy ion beams from a 15 UD Pelletron and an upgraded LINAC booster facility at IUAC. The above detector array can be used for inclusive as well as exclusive measurements of reaction products of which at least one product is a neutron. While inclusive measurements can be made using only the neutron detectors along with the time of flight technique and a pulsed beam, exclusive measurements can be performed by detecting neutrons in coincidence with charged particles and/or fission fragments detected with ancillary detectors. The array can also be used for neutron tagged gamma-ray spectroscopy in (HI, xn) reactions by detecting gamma-rays in coincidence with the neutrons in a compact geometrical configuration. The various features and the performance of the different aspects of the array are described in the present paper.

  14. Pre-atmospheric parameters and fragment distribution: Case study for the Kosice meteoroid

    NASA Astrophysics Data System (ADS)

    Gritsevich, M.; Vinnikov, V.; Kuznetsova, D.; Kohout, T.; Pupyrev, Y.; Peltoniemi, J.; Tóth, J.; Britt, D.; Turchak, L.; Virtanen, J.

    2014-07-01

    We present results on our investigation on the Košice meteorite --- one of the recent falls with a well-derived trajectory and large number of recovered fragments. A fireball appeared over central-eastern Slovakia on February 28, 2010. The bolide reached an absolute magnitude of at least -18, enabling radiometers of the European Fireball Network to track the fireball despite the cloudy and rainy weather. The landing area was successfully computed on the basis of data from the surveillance cameras operating in Hungary and led to a fast meteorite recovery (Borovička et al. 2013). The first reported fragment of the meteorite was located northwest of the city of Košice in eastern Slovakia (Tóth et al. 2014). 218 fragments of the Košice meteorite, with a total mass of 11.285 kg, have been documented with almost 7 kg belonging to the collection of the Comenius University in Bratislava and Astronomical Institute of Slovak Academy of Sciences (Gritsevich et al. 2014). Based on the statistical investigation of the recovered fragments, bimodal Weibull, bimodal Grady, and bimodal lognormal distributions are found to be the most appropriate distributions for describing the Košice fragmentation process. The most probable scenario suggests that the Košice meteoroid, prior to further extensive fragmentation in the lower atmosphere, was initially represented by two independent pieces with cumulative residual masses of approximately 2 kg and 9 kg respectively (Gritsevich et al. 2014). About 1/3 of the recovered Košice fragments were thoroughly studied, including magnetic susceptibility, bulk and grain density measurements reported by Kohout et al. (2014). This analysis revealed that the Košice meteorites are H5 ordinary chondrites that originated from a homogenous parent meteoroid. To estimate the dynamic mass of the main fragment, we studied the first integral of the drag and mass-loss equations, and the geometrical relation along the meteor trajectory in the atmosphere

  15. Fragmentation pathways of O-alkyl methylphosphonothionocyanidates in the gas phase: toward unambiguous structural characterization of chemicals in the Chemical Weapons Convention framework.

    PubMed

    Saeidian, Hamid; Babri, Mehran; Ashrafi, Davood; Sarabadani, Mansour; Naseri, Mohammad Taghi

    2013-08-01

    The electron-impact (EI) mass spectra of a series of O-alkyl methylphosphonothionocyanidates were studied for Chemical Weapons Convention (CWC) purposes. General EI fragmentation pathways were constructed and discussed, and collision-induced dissociation studies of the major EI ions were performed to confirm proposed fragment structures by analyzing fragment ions of deuterated analogs and by use of density functional theory (DFT) calculations. Thiono-thiolo rearrangement, McLafferty-type rearrangement, and a previously unknown intramolecular electrophilic aromatic substitution reaction were observed and confirmed. The study also focused on differentiation of isomeric compounds. Retention indices for all compounds, and an electrophilicity index for several compounds, are reported and interpreted.

  16. Luciferase assay to study the activity of a cloned promoter DNA fragment.

    PubMed

    Solberg, Nina; Krauss, Stefan

    2013-01-01

    Luciferase based assays have become an invaluable tool for the analysis of cloned promoter DNA fragments, both for verifying the ability of a potential promoter fragment to drive the expression of a luciferase reporter gene in various cellular contexts, and for dissecting binding elements in the promoter. Here, we describe the use of the Dual-Luciferase(®) Reporter Assay System created by Promega (Promega Corporation, Wisconsin, USA) to study the cloned 6.7 kilobases (kb) mouse (m) Tcf3 promoter DNA fragment in mouse embryonic derived neural stem cells (NSC). In this system, the expression of the firefly luciferase driven by the cloned mTcf3 promoter DNA fragment (including transcription initiation sites) is correlated with a co-transfected control reporter expressing Renilla luciferase from the herpes simplex virus (HSV) thymidine kinase promoter. Using an internal control reporter allows to normalize the activity of the experimental reporter to the internal control, which minimizes experimental variability.

  17. Studies of Fission Fragment Rocket Engine Propelled Spacecraft

    NASA Technical Reports Server (NTRS)

    Werka, Robert O.; Clark, Rodney; Sheldon, Rob; Percy, Thomas K.

    2014-01-01

    The NASA Office of Chief Technologist has funded from FY11 through FY14 successive studies of the physics, design, and spacecraft integration of a Fission Fragment Rocket Engine (FFRE) that directly converts the momentum of fission fragments continuously into spacecraft momentum at a theoretical specific impulse above one million seconds. While others have promised future propulsion advances if only you have the patience, the FFRE requires no waiting, no advances in physics and no advances in manufacturing processes. Such an engine unequivocally can create a new era of space exploration that can change spacecraft operation. The NIAC (NASA Institute for Advanced Concepts) Program Phase 1 study of FY11 first investigated how the revolutionary FFRE technology could be integrated into an advanced spacecraft. The FFRE combines existent technologies of low density fissioning dust trapped electrostatically and high field strength superconducting magnets for beam management. By organizing the nuclear core material to permit sufficient mean free path for escape of the fission fragments and by collimating the beam, this study showed the FFRE could convert nuclear power to thrust directly and efficiently at a delivered specific impulse of 527,000 seconds. The FY13 study showed that, without increasing the reactor power, adding a neutral gas to the fission fragment beam significantly increased the FFRE thrust through in a manner analogous to a jet engine afterburner. This frictional interaction of gas and beam resulted in an engine that continuously produced 1000 pound force of thrust at a delivered impulse of 32,000 seconds, thereby reducing the currently studied DRM 5 round trip mission to Mars from 3 years to 260 days. By decreasing the gas addition, this same engine can be tailored for much lower thrust at much higher impulse to match missions to more distant destinations. These studies created host spacecraft concepts configured for manned round trip journeys. While the

  18. Forest Fragmentation

    Treesearch

    Kurt H. Riitters

    2007-01-01

    What Is Forest Fragmentation,and Why Is It Important? Forest fragmentation refers to a loss of forest and the division of the remaining forest into smaller blocks. Fragmentation is of concern primarily because of its impact on the conservation of biological diversity. Forest fragmentation can affect the amount and quality of habitat for many wildlife species (Fahrig...

  19. Vibrations At Surfaces During Heterogeneous Catalytic Reactions

    NASA Astrophysics Data System (ADS)

    Aragno, A.; Basini, Luca; Marchionna, M.; Raffaelli, A.

    1989-12-01

    FTIR spectroscopies can be used in a wide range of temperature and pressure conditions to investigate on the chemistry and the physics of heterogeneous catalytic reactions. In this paper we have shortly discussed the spectroscopic results obtained during the study of two different reactions; the skeletal isomerization of 1-butene to obtain 2-methylpropene and the surface aggregation and fragmentation of rhodium carbonyl complexes during thermal treatments in N2, H2, CO, CH4 atmospheres. In the first case high temperature proton tran-sfer reactions are proposed to be responsible for the skeletal isomerization reaction. In the second case our experiments have shown a partial reversibility of the nucleation processes at the surfaces and revealed a low temperature reactivity of methane on rhodium car-bonyl surface complexes.

  20. Effects of charge symmetry on heavy ion reaction mechanisms

    NASA Astrophysics Data System (ADS)

    Colonna, M.; di Toro, M.; Fabbri, G.; Maccarone, S.

    1998-03-01

    We suggest several possibilities to study the properties of the symmetry term in the nuclear equation of state from radioactive beam experiments. Collision simulations with a stochastic transport approach, where asymmetry effects are suitably introduced, are presented. The dynamical response of an interacting highly asymmetric nuclear matter can be studied, taking advantage of the neutron skin structure. The main reaction mechanisms, from fusion to deep inelastic and fragmentation, appear quite sensitive to the form of the symmetry term of the effective force used, opening some new appealing experimental perspectives. Finally new features of fragment production are presented, due to the onset of chemical plus mechanical instabilities in dilute asymmetric nuclear matter.

  1. Nucleophilic substitution reaction for post-functionalization of polyoxometalates

    DOE PAGES

    Yin, Panchao; Li, Qiang; Zhang, Jin; ...

    2015-07-06

    In this study, a hexamolybdate-based organic inorganic hybrid molecule containing a chloralkane fragment is synthesized and its Cl atom can be substituted by iodine and nitrate through nucleophilic substitution reactions in high yields, which provide a post-functionalization protocol to bring in various additional functional groups into polyoxometalate-based hybrid materials under mild conditions.

  2. Assessment of fragment projection hazard: probability distributions for the initial direction of fragments.

    PubMed

    Tugnoli, Alessandro; Gubinelli, Gianfilippo; Landucci, Gabriele; Cozzani, Valerio

    2014-08-30

    The evaluation of the initial direction and velocity of the fragments generated in the fragmentation of a vessel due to internal pressure is an important information in the assessment of damage caused by fragments, in particular within the quantitative risk assessment (QRA) of chemical and process plants. In the present study an approach is proposed to the identification and validation of probability density functions (pdfs) for the initial direction of the fragments. A detailed review of a large number of past accidents provided the background information for the validation procedure. A specific method was developed for the validation of the proposed pdfs. Validated pdfs were obtained for both the vertical and horizontal angles of projection and for the initial velocity of the fragments. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Bulk plasma fragmentation in a C4F8 inductively coupled plasma: A hybrid modeling study

    NASA Astrophysics Data System (ADS)

    Zhao, Shu-Xia; Zhang, Yu-Ru; Gao, Fei; Wang, You-Nian; Bogaerts, Annemie

    2015-06-01

    A hybrid model is used to investigate the fragmentation of C4F8 inductive discharges. Indeed, the resulting reactive species are crucial for the optimization of the Si-based etching process, since they determine the mechanisms of fluorination, polymerization, and sputtering. In this paper, we present the dissociation degree, the density ratio of F vs. CxFy (i.e., fluorocarbon (fc) neutrals), the neutral vs. positive ion density ratio, details on the neutral and ion components, and fractions of various fc neutrals (or ions) in the total fc neutral (or ion) density in a C4F8 inductively coupled plasma source, as well as the effect of pressure and power on these results. To analyze the fragmentation behavior, the electron density and temperature and electron energy probability function (EEPF) are investigated. Moreover, the main electron-impact generation sources for all considered neutrals and ions are determined from the complicated C4F8 reaction set used in the model. The C4F8 plasma fragmentation is explained, taking into account many factors, such as the EEPF characteristics, the dominance of primary and secondary processes, and the thresholds of dissociation and ionization. The simulation results are compared with experiments from literature, and reasonable agreement is obtained. Some discrepancies are observed, which can probably be attributed to the simplified polymer surface kinetics assumed in the model.

  4. Fragment Couplings via CO2 Extrusion–Recombination: Expansion of a Classic Bond-Forming Strategy via Metallaphotoredox

    PubMed Central

    Le, Chi “Chip”; MacMillan, David W. C.

    2015-01-01

    In this study we demonstrate that molecular fragments, which can be readily coupled via a simple, in situ RO—C=OR bond-forming reaction, can subsequently undergo metal insertion–decarboxylation–recombination to generate Csp2–Csp3 bonds when subjected to metallaphotoredox catalysis. In this embodiment the conversion of a wide variety of mixed anhydrides (formed in situ from carboxylic acids and acyl chlorides) to fragment-coupled ketones is accomplished in good to high yield. A three-step synthesis of the medicinal agent edivoxetine is also described using this new decarboxylation–recombination protocol. PMID:26333771

  5. Computational Hydrocode Study of Target Damage due to Fragment-Blast Impact

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hatch-Aguilar, T; Najjar, F; Szymanski, E

    2011-03-24

    Arrival (TOA), Pressure-Impulse (PI) and Time of Duration (TD). Other peculiarities include the radial decrease in pressure from the source, any fireball size measurement, and subsequent increase in temperature from the passing of the shockwave through the surrounding medium. In light of all of these metrics, the loading any object receives from a blast event becomes intricately connected to the distance between itself and the source. Because of this, a clear distinction is made between close-in effects and those from a source far away from the object of interest. Explosively generated fragments on the other hand are characterized by means of their localized damage potential. Metrics such as whether the fragment penetrates or perforates a given object is quantified as well as other variables including fragment's residual velocity, % kinetic energy decrease, residual fragment mass and other exit criteria. A fragment launched under such violent conditions could easily be traveling at speeds in excess of 2500 ft/s. Given these speeds it is conceivable to imagine how any given fragment could deliver a concentrated load to a target and penetrates through walls, vehicles or even the protection systems of nearby personnel. This study will focus on the individual fragment-target impact event with the hopes of expanding it to eventually include statistical procedures. Since this is a modeling excursion into the combined frag-blast target damage effects the numerical methods used to frame this problem become important in-so-far as the simulations are done in a consistent manner. For this study a Finite-Element based Hydrocode solution called ALE3D (ALE=Arbitrary Lagrangian-Eulerian) was utilized. ALE3D is developed by Lawrence Livermore National Laboratory (Livermore, CA), and as this paper will show, successfully implemented a converged ALE formulation including as many of the different aspects needed to query the synergistic damage on a given target. Further information on the

  6. Experimental programme on absolute fission fragment yields with the lohengrin spectrometer: New optical and statistical methodologies

    NASA Astrophysics Data System (ADS)

    Abdelaziz, Chebboubi; Grégoire, Kessedjian; Olivier, Serot; Sylvain, Julien-Laferriere; Christophe, Sage; Florence, Martin; Olivier, Méplan; David, Bernard; Olivier, Litaize; Aurélien, Blanc; Herbert, Faust; Paolo, Mutti; Ulli, Köster; Alain, Letourneau; Thomas, Materna; Michal, Rapala

    2017-09-01

    The study of fission yields has a major impact on the characterization and understanding of the fission process and is mandatory for reactor applications. In the past with the LOHENGRIN spectrometer of the ILL, priority has been given for the studies in the light fission fragment mass range. The LPSC in collaboration with ILL and CEA has developed a measurement program on symmetric and heavy mass fission fragment distributions. The combination of measurements with ionisation chamber and Ge detectors is necessary to describe precisely the heavy fission fragment region in mass and charge. Recently, new measurements of fission yields and kinetic energy distributions are has been made on the 233U(nth,f) reaction. The focus of this work has been on the new optical and statistical methodology and the self-normalization of the data to provide new absolute measurements, independently of any libraries, and the associated experimental covariance matrix.

  7. A Study of Primary Collision Dynamics in Inverse-Kinematics Reaction of 78Kr on 40Ca at a Bombarding Energy of 10 MeV per Nucleon

    NASA Astrophysics Data System (ADS)

    Henry, Eric M.

    The CHIMERA multi-detector array at LNS Catania has been used to study the inverse-kinematics reaction of 78Kr + 40Ca at a bombarding energy of 10 A MeV. The multi-detector is capable of detecting individual products of the collision essential for the reconstruction of the collision dynamics. This is the first time CHIMERA has been used at low-energy, which offered a unique challenge for the calibration and interpretation of experimental data. Initial interrogation of the calibrated data revealed a class of selected events characterized by two coincident heavy fragments (atomic number Z>3) that together account for the majority of the total mass of the colliding system. These events are consistent with the complete fusion and subsequent binary split (fission) of a composite nucleus. The observed fission fragments are characterized by a broad A, Z distribution and are centered about symmetric fission while exhibiting relative velocities significantly higher than given by Viola systematics. Additional analysis of the kinematic relationship between the fission fragments was performed. Of note, is that the center-of-mass angular distribution (dsigma/dtheta) of the fission fragments exhibits an unexpected anisotropy inconsistent with a compound-nucleus reaction. This anisotropy is indicative of a dynamic fusion/fission-like process. The observed angular distribution features a forward-backward anisotropy most prevalent for mass-asymmetric events. Furthermore, the more massive fragment of mass-asymmetric events appears to emerge preferentially in the forward direction, along the beam axis. Analysis of the angular distribution of alpha particles emitted from these fission fragments suggests the events are associated mostly with central collisions. The observations associated with this subset of events are similar to those reported for dynamic fragmentation of projectile-like fragments, but have not before been observed for a fusion/fission-like process. Comparisons to

  8. Investigation on the quasifission process by theoretical analysis of experimental data of fissionlike reaction products

    NASA Astrophysics Data System (ADS)

    Giardina, G.; Nasirov, A. K.; Mandaglio, G.; Curciarello, F.; De Leo, V.; Fazio, G.; Manganaro, M.; Romaniuk, M.; Saccá, C.

    2011-02-01

    The hindrance to complete fusion is a phenomenon presenting in the most part of the capture events in reactions with massive nuclei. This phenomenon is due to the onset of the quasifission process which competes with complete fusion during the evolution of the composed system formed at capture stage. The branching ratio between quasifission and complete fusion strongly depends from different characteristics of reacting nuclei in the entrance channel. The experimental and theoretical investigations of reaction dynamics connected with the formation of composed system is nowadays the main subject of the nuclear reactions. There is ambiguity in establishment of the reaction mechanism leading to the observed binary fissionlike fragments. The correct estimation of the fusion probability is important in planning experiments for the synthesis of superheavy elements. The experimental determination of evaporation residues only is not enough to restore the true reaction dynamics. The experimental observation of fissionlike fragments only cannot assure the correct distinguishing of products of the quasifission, fast fission, and fusion-fission processes which have overlapping in the mass (angular, kinetic energy) distributions of fragments. In this paper we consider a wide set of reactions (with different mass asymmetry and mass symmetry parameters) with the aim to explain the role played by many quantities on the reaction mechanisms. We also present the results of study of the 48Ca+249Bk reaction used to synthesize superheavy nuclei with Z = 117 by the determination of the evaporation residue cross sections and the effective fission barriers < Bf > of excited nuclei formed along the de-excitation cascade of the compound nucleus.

  9. The reactions of a series of terpenoids with H(3) O(+) , NO(+) and O 2+ studied using selected ion flow tube mass spectrometry.

    PubMed

    Amadei, Gianluca; Ross, Brian M

    2011-01-15

    The reactions of H(3) O(+) , NO(+) and O 2+ with twelve terpenoids and one terpene, all of which occur naturally in plants and which possess important smell and flavourant properties, were characterized using Selected Ion Flow Tube Mass Spectrometry (SIFT-MS). The H(3) O(+) reactions resulted primarily in the formation of the proton transfer product and occasionally in a water elimination product. The NO(+) reactions instead generated the charge transfer product or NO(+) adducts, and occasionally alkyl fragments, or resulted in hydride abstraction. Reaction with O 2+ caused a higher fragmentation of the terpenoids with the molecular ion being the minor product of most reactions. Identification and quantification of each compound in complex mixtures are probably possible in most cases using the H(3) O(+) and/or NO(+) precursors while O 2+ may be useful for isomer discrimination. Our data suggests that SIFT-MS may be a useful tool for the rapid analysis of these compounds in plants and derived foodstuffs. Copyright © 2010 John Wiley & Sons, Ltd.

  10. Electron Transfer Ion/Ion Reactions in a Three-Dimensional Quadrupole Ion Trap: Reactions of Doubly and Triply Protonated Peptides with SO2·−

    PubMed Central

    Pitteri, Sharon J.; Chrisman, Paul A.; Hogan, Jason M.; McLuckey, Scott A.

    2005-01-01

    Ion–ion reactions between a variety of peptide cations (doubly and triply charged) and SO2 anions have been studied in a 3-D quadrupole ion trap, resulting in proton and electron transfer. Electron transfer dissociation (ETD) gives many c- and z-type fragments, resulting in extensive sequence coverage in the case of triply protonated peptides with SO2·−. For triply charged neurotensin, in which a direct comparison can be made between 3-D and linear ion trap results, abundances of ETD fragments relative to one another appear to be similar. Reactions of doubly protonated peptides with SO2·− give much less structural information from ETD than triply protonated peptides. Collision-induced dissociation (CID) of singly charged ions formed in reactions with SO2·− shows a combination of proton and electron transfer products. CID of the singly charged species gives more structural information than ETD of the doubly protonated peptide, but not as much information as ETD of the triply protonated peptide. PMID:15762593

  11. The investigation of substituent effects on the fragmentation pathways of pentacoordinated phenoxyspirophosphoranes by ESI-MSn.

    PubMed

    Cui, Xiaoyan; Sun, Can; Zhao, Pei; Wang, Yanyan; Guo, Yanchun; Zhao, Yufen; Cao, Shuxia

    2018-04-01

    The fragmentation pathways of pentacoordinated phenoxyspirophosphoranes were investigated in the positive mode by electrospray ionization multistage mass spectrometry. The results demonstrate that the sodium adducts of the title compounds undergo two competitive fragmentation pathways, and the fragmentation patterns are heavily dependent on the various substituent patterns at the phenolic group. An electron-withdrawing substituent at the ortho-position always results in the removal of a corresponding phenol analogue, while cleavage by spiroring opening becomes the predominant fragmentation pathway if an electron-donating substituent is at the phenolic group. The substituent effects on the competitive fragmentation pathways were further elucidated by theoretical calculations, single crystal structure analysis, and high-resolution mass spectrometry. The results contribute to the understanding of the gas-phase fragmentation reactions and the structure identification of spirophosphorane analogues by electrospray ionization multistage mass spectrometry. Copyright © 2018 John Wiley & Sons, Ltd.

  12. Predicting intensity ranks of peptide fragment ions.

    PubMed

    Frank, Ari M

    2009-05-01

    Accurate modeling of peptide fragmentation is necessary for the development of robust scoring functions for peptide-spectrum matches, which are the cornerstone of MS/MS-based identification algorithms. Unfortunately, peptide fragmentation is a complex process that can involve several competing chemical pathways, which makes it difficult to develop generative probabilistic models that describe it accurately. However, the vast amounts of MS/MS data being generated now make it possible to use data-driven machine learning methods to develop discriminative ranking-based models that predict the intensity ranks of a peptide's fragment ions. We use simple sequence-based features that get combined by a boosting algorithm into models that make peak rank predictions with high accuracy. In an accompanying manuscript, we demonstrate how these prediction models are used to significantly improve the performance of peptide identification algorithms. The models can also be useful in the design of optimal multiple reaction monitoring (MRM) transitions, in cases where there is insufficient experimental data to guide the peak selection process. The prediction algorithm can also be run independently through PepNovo+, which is available for download from http://bix.ucsd.edu/Software/PepNovo.html.

  13. Fungal Fragments in Moldy Houses: A Field Study in Homes in New Orleans and Southern Ohio

    PubMed Central

    Reponen, Tiina; Seo, Sung-Chul; Grimsley, Faye; Lee, Taekhee; Crawford, Carlos; Grinshpun, Sergey A.

    2007-01-01

    Smaller-sized fungal fragments (<1 μm) may contribute to mold-related health effects. Previous laboratory-based studies have shown that the number concentration of fungal fragments can be up to 500 times higher than that of fungal spores, but this has not yet been confirmed in a field study due to lack of suitable methodology. We have recently developed a field-compatible method for the sampling and analysis of airborne fungal fragments. The new methodology was utilized for characterizing fungal fragment exposures in mold-contaminated homes selected in New Orleans, Louisiana and Southern Ohio. Airborne fungal particles were separated into three distinct size fractions: (i) >2.25 μm (spores); (ii) 1.05–2.25 μm (mixture); and (iii) < 1.0 μm (submicrometer-sized fragments). Samples were collected in five homes in summer and winter and analyzed for (1→3)-β-D-glucan. The total (1→3)-β-D-glucan varied from 0.2 to 16.0 ng m−3. The ratio of (1→3)-β-D-glucan mass in fragment size fraction to that in spore size fraction (F/S) varied from 0.011 to 2.163. The mass ratio was higher in winter (average = 1.017) than in summer (0.227) coinciding with a lower relative humidity in the winter. Assuming a mass-based F/S-ratio=1 and the spore size = 3 μm, the corresponding number-based F/S-ratio (fragment number/spore number) would be 103 and 106, for the fragment sizes of 0.3 and 0.03 μm, respectively. These results indicate that the actual (field) contribution of fungal fragments to the overall exposure may be very high, even much greater than that estimated in our earlier laboratory-based studies. PMID:19050738

  14. Kinetics of a Migration-Driven Aggregation-Fragmentation Process

    NASA Astrophysics Data System (ADS)

    Zhuang, You-Yi; Lin, Zhen-Quan; Ke, Jian-Hong

    2003-08-01

    We propose a reversible model of the migration-driven aggregation-fragmentation process with the symmetric migration rate kernels K(k;j)=K^'(k;j)=λ kj^v and the constant aggregation rates I1, I2 and fragmentation rates J1, J2. Based on the mean-field theory, we investigate the evolution behavior of the aggregate size distributions in several cases with different values of index υ. We find that the fragmentation reaction plays a more important role in the kinetic behaviors of the system than the aggregation and migration. When J1=0 and J2 =0, the aggregate size distributions ak(t) and bk(t) obey the conventional scaling law, while when J1>0 and J2>0, they obey the modified scaling law with an exponential scaling function. The total mass of either species remains conserved. The project supported by National Natural Science Foundation of China under Grant Nos. 10275048 and 10175008, and Natural Science Foundation of Zhejiang Province of China under Grant No. 102067

  15. Excitation energy dependence of fragment-mass distributions from fission of 180,190Hg formed in fusion reactions of 36Ar + 144,154Sm

    DOE PAGES

    Nishio, K.; Andreyev, A. N.; Chapman, R.; ...

    2015-06-30

    Mass distributions of fission fragments from the compound nuclei 180Hg and 190 Hg formed in fusion reactions 36Ar + 144 Smand 36Ar + 154Sm, respectively, were measured at initial excitation energies of E*( 180Hg) = 33-66 MeV and E*( 190Hg) = 48-71 MeV. In the fission of 180Hg, the mass spectra were well reproduced by assuming only an asymmetric-mass division, with most probable light and heavy fragment masses more » $$\\overline{A}_L$$/ $$\\overline{A}_H$$ = 79/101. The mass asymmetry for 180Hg agrees well with that obtained in the low-energy β +/EC-delayed fission of 180Tl, from our earlier ISOLDE(CERN) experiment. Fission of 190Hg is found to proceed in a similar way, delivering the mass asymmetry of $$\\overline{A}_L$$/ $$\\overline{A}_H$$ = 83/107, throughout the measured excitation energy range. The persistence as a function of excitation energy of the mass-asymmetric fission for both proton-rich Hg isotopes gives strong evidence for the survival of microscopic effects up to effective excitation energies of compound nuclei as high as 40 MeV. In conclusion, this behavior is different from fission of actinide nuclei and heavier mercury isotope 198Hg.« less

  16. Insight into the kinetics and thermodynamics of the hydride transfer reactions between quinones and lumiflavin: a density functional theory study.

    PubMed

    Reinhardt, Clorice R; Jaglinski, Tanner C; Kastenschmidt, Ashly M; Song, Eun H; Gross, Adam K; Krause, Alyssa J; Gollmar, Jonathan M; Meise, Kristin J; Stenerson, Zachary S; Weibel, Tyler J; Dison, Andrew; Finnegan, Mackenzie R; Griesi, Daniel S; Heltne, Michael D; Hughes, Tom G; Hunt, Connor D; Jansen, Kayla A; Xiong, Adam H; Hati, Sanchita; Bhattacharyya, Sudeep

    2016-09-01

    The kinetics and equilibrium of the hydride transfer reaction between lumiflavin and a number of substituted quinones was studied using density functional theory. The impact of electron withdrawing/donating substituents on the redox potentials of quinones was studied. In addition, the role of these substituents on the kinetics of the hydride transfer reaction with lumiflavin was investigated in detail under the transition state (TS) theory assumption. The hydride transfer reactions were found to be more favorable for an electron-withdrawing substituent. The activation barrier exhibited a quadratic relationship with the driving force of these reactions as derived under the formalism of modified Marcus theory. The present study found a significant extent of electron delocalization in the TS that is stabilized by enhanced electrostatic, polarization, and exchange interactions. Analysis of geometry, bond-orders, and energetics revealed a predominant parallel (Leffler-Hammond) effect on the TS. Closer scrutiny reveals that electron-withdrawing substituents, although located on the acceptor ring, reduce the N-H bond order of the donor fragment in the precursor complex. Carried out in the gas-phase, this is the first ever report of a theoretical study of flavin's hydride transfer reactions with quinones, providing an unfiltered view of the electronic effect on the nuclear reorganization of donor-acceptor complexes.

  17. Chameleon fragmentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brax, Philippe; Upadhye, Amol, E-mail: philippe.brax@cea.fr, E-mail: aupadhye@anl.gov

    2014-02-01

    A scalar field dark energy candidate could couple to ordinary matter and photons, enabling its detection in laboratory experiments. Here we study the quantum properties of the chameleon field, one such dark energy candidate, in an ''afterglow'' experiment designed to produce, trap, and detect chameleon particles. In particular, we investigate the possible fragmentation of a beam of chameleon particles into multiple particle states due to the highly non-linear interaction terms in the chameleon Lagrangian. Fragmentation could weaken the constraints of an afterglow experiment by reducing the energy of the regenerated photons, but this energy reduction also provides a unique signaturemore » which could be detected by a properly-designed experiment. We show that constraints from the CHASE experiment are essentially unaffected by fragmentation for φ{sup 4} and 1/φ potentials, but are weakened for steeper potentials, and we discuss possible future afterglow experiments.« less

  18. Full-dimensional and reduced-dimensional calculations of initial state-selected reaction probabilities studying the H + CH{sub 4} → H{sub 2} + CH{sub 3} reaction on a neural network PES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Welsch, Ralph, E-mail: rwelsch@uni-bielefeld.de; Manthe, Uwe, E-mail: uwe.manthe@uni-bielefeld.de

    2015-02-14

    Initial state-selected reaction probabilities of the H + CH{sub 4} → H{sub 2} + CH{sub 3} reaction are calculated in full and reduced dimensionality on a recent neural network potential [X. Xu, J. Chen, and D. H. Zhang, Chin. J. Chem. Phys. 27, 373 (2014)]. The quantum dynamics calculation employs the quantum transition state concept and the multi-layer multi-configurational time-dependent Hartree approach and rigorously studies the reaction for vanishing total angular momentum (J = 0). The calculations investigate the accuracy of the neutral network potential and study the effect resulting from a reduced-dimensional treatment. Very good agreement is found betweenmore » the present results obtained on the neural network potential and previous results obtained on a Shepard interpolated potential energy surface. The reduced-dimensional calculations only consider motion in eight degrees of freedom and retain the C{sub 3v} symmetry of the methyl fragment. Considering reaction starting from the vibrational ground state of methane, the reaction probabilities calculated in reduced dimensionality are moderately shifted in energy compared to the full-dimensional ones but otherwise agree rather well. Similar agreement is also found if reaction probabilities averaged over similar types of vibrational excitation of the methane reactant are considered. In contrast, significant differences between reduced and full-dimensional results are found for reaction probabilities starting specifically from symmetric stretching, asymmetric (f{sub 2}-symmetric) stretching, or e-symmetric bending excited states of methane.« less

  19. Miniature reaction chamber and devices incorporating same

    DOEpatents

    Mathies, Richard A.; Woolley, Adam T.

    2000-10-17

    The present invention generally relates to miniaturized devices for carrying out and controlling chemical reactions and analyses. In particular, the present invention provides devices which have miniature temperature controlled reaction chambers for carrying out a variety of synthetic and diagnostic applications, such as PCR amplification, nucleic acid hybridization, chemical labeling, nucleic acid fragmentation and the like.

  20. Effect of Stemming to Burden Ratio and Powder Factor on Blast Induced Rock Fragmentation- A Case Study

    NASA Astrophysics Data System (ADS)

    Prasad, Sandeep; Choudhary, B. S.; Mishra, A. K.

    2017-08-01

    Rock fragmentation size is very important parameters for economical point of view in any surface mining. Rock fragment size direct effects on the costs of drilling, blasting, loading, secondary blasting and crushing. The main purpose of this study is to investigate effect of blast design parameters such as burden, blast hole length, stemming length, and powder factor on rock fragmentation. The fragment sizes (MFS, K50, m), and maximum fragment size (K95, m) of rock were determined by using the computer software. For every blast, after blasting operation, the images of whole muck pile are captured and there images were used for fragmentation analysis by using the Fragalyst software. It was observed that the optimal fragment size (MFS, K50, m and maximum fragment size, K95, m) of rock depends strongly on the blast design parameters and explosive parameters.

  1. Intraocular Lens Fragmentation Using Femtosecond Laser: An In Vitro Study

    PubMed Central

    Bala, Chandra; Shi, Jeffrey; Meades, Kerrie

    2015-01-01

    Purpose: To transect intraocular lenses (IOLs) using a femtosecond laser in cadaveric human eyes. To determine the optimal in vitro settings, to detect and characterize gasses or particles generated during this process. Methods: A femtosecond laser was used to transect hydrophobic and hydrophilic acrylic lenses. The settings required to enable easy separation of the lens fragment were determined. The gasses and particles generated were analysed using gas chromatography mass spectrometer (GC-MS) and total organic carbon analyzer (TOC), respectively. Results: In vitro the IOL fragments easily separated at the lowest commercially available energy setting of 1 μJ, 8-μm spot, and 2-μm line separation. No particles were detected in the 0.5- to 900-μm range. No significant gasses or other organic breakdown by products were detected at this setting. At much higher energy levels 12 μJ (4 × 6 μm spot and line separation) significant pyrolytic products were detected, which could be harmful to the eye. In cadaveric explanted IOL capsule complex the laser pulses could be applied through the capsule to the IOL and successfully fragment the IOL. Conclusion: IOL transection is feasible with femtosecond lasers. Further in vivo animal studies are required to confirm safety. Translational Relevance: In clinical practice there are a number of large intraocular lenses that can be difficult to explant. This in-vitro study examines the possibility of transecting the lasers quickly using femtosecond lasers. If in-vivo studies are successful, then this innovation could help ophthalmic surgeons in IOL explantation. PMID:26101721

  2. Scarless assembly of unphosphorylated DNA fragments with a simplified DATEL method.

    PubMed

    Ding, Wenwen; Weng, Huanjiao; Jin, Peng; Du, Guocheng; Chen, Jian; Kang, Zhen

    2017-05-04

    Efficient assembly of multiple DNA fragments is a pivotal technology for synthetic biology. A scarless and sequence-independent DNA assembly method (DATEL) using thermal exonucleases has been developed recently. Here, we present a simplified DATEL (sDATEL) for efficient assembly of unphosphorylated DNA fragments with low cost. The sDATEL method is only dependent on Taq DNA polymerase and Taq DNA ligase. After optimizing the committed parameters of the reaction system such as pH and the concentration of Mg 2+ and NAD+, the assembly efficiency was increased by 32-fold. To further improve the assembly capacity, the number of thermal cycles was optimized, resulting in successful assembly 4 unphosphorylated DNA fragments with an accuracy of 75%. sDATEL could be a desirable method for routine manual and automated assembly.

  3. Ion-polycyclic aromatic hydrocarbon collisions: kinetic energy releases for specific fragmentation channels

    NASA Astrophysics Data System (ADS)

    Reitsma, G.; Zettergren, H.; Boschman, L.; Bodewits, E.; Hoekstra, R.; Schlathölter, T.

    2013-12-01

    We report on 30 keV He2 + collisions with naphthalene (C10H8) molecules, which leads to very extensive fragmentation. To unravel such complex fragmentation patterns, we designed and constructed an experimental setup, which allows for the determination of the full momentum vector by measuring charged collision products in coincidence in a recoil ion momentum spectrometer type of detection scheme. The determination of fragment kinetic energies is found to be considerably more accurate than for the case of mere coincidence time-of-flight spectrometers. In fission reactions involving two cationic fragments, typically kinetic energy releases of 2-3 eV are observed. The results are interpreted by means of density functional theory calculations of the reverse barriers. It is concluded that naphthalene fragmentation by collisions with keV ions clearly is much more violent than the corresponding photofragmentation with energetic photons. The ion-induced naphthalene fragmentation provides a feedstock of various small hydrocarbonic species of different charge states and kinetic energy, which could influence several molecule formation processes in the cold interstellar medium and facilitates growth of small hydrocarbon species on pre-existing polycyclic aromatic hydrocarbons.

  4. Longitudinal study of sperm DNA fragmentation as measured by terminal uridine nick end-labelling assay.

    PubMed

    Sergerie, M; Laforest, G; Boulanger, K; Bissonnette, F; Bleau, G

    2005-07-01

    One major limitation in the use of sperm DNA fragmentation as measured by the TdT (terminal deoxynucleotidyl transferase)-mediated dUTP nick-end labelling (TUNEL) assay is the paucity of solid data on the stability of this parameter. The objective of our study was to evaluate variations in the degree of sperm DNA fragmentation, as measured by the TUNEL assay, over a 6 month period. Five donors provided semen samples (total 107) on the average three times per month, and 10 infertility patients provided semen samples every 4 weeks (total 58). The mean percentage of sperm DNA fragmentation for donors was 13.18%, the within-donor standard deviation (SD(W) = 3.79%) was small compared to between-donor (SD(B) = 17.56%). For the group of patients, the mean percentage of sperm DNA fragmentation was 22.44%, with SD(W) of 4.43% within patients and SD(B) of 29.48% between patients. No seasonal rhythm was observed during the study. The intra-class correlation coefficient for all subjects combined was 0.83. Compared to sperm concentration, individual coefficients of variation for sperm DNA fragmentation indicated less variability in four subjects, but were similar in the others. This longitudinal study shows that sperm DNA fragmentation is a parameter with good stability (repeatability) over time; it can be taken as a baseline both in healthy fertile men and in patients from infertility couples.

  5. Fragment Screening and HIV Therapeutics

    PubMed Central

    Bauman, Joseph D.; Patel, Disha; Arnold, Eddy

    2013-01-01

    Fragment screening has proven to be a powerful alternative to traditional methods for drug discovery. Biophysical methods, such as X-ray crystallography, NMR spectroscopy, and surface plasmon resonance, are used to screen a diverse library of small molecule compounds. Although compounds identified via this approach have relatively weak affinity, they provide a good platform for lead development and are highly efficient binders with respect to their size. Fragment screening has been utilized for a wide-range of targets, including HIV-1 proteins. Here, we review the fragment screening studies targeting HIV-1 proteins using X-ray crystallography or surface plasmon resonance. These studies have successfully detected binding of novel fragments to either previously established or new sites on HIV-1 protease and reverse transcriptase. In addition, fragment screening against HIV-1 reverse transcriptase has been used as a tool to better understand the complex nature of ligand binding to a flexible target. PMID:21972022

  6. Dynamic approach to description of entrance channel effects in angular distributions of fission fragments

    NASA Astrophysics Data System (ADS)

    Eremenko, D. O.; Drozdov, V. A.; Fotina, O. V.; Platonov, S. Yu.; Yuminov, O. A.

    2016-07-01

    Background: It is well known that the anomalous behavior of angular anisotropies of fission fragments at sub- and near-barrier energies is associated with a memory of conditions in the entrance channel of the heavy-ion reactions, particularly, deformations and spins of colliding nuclei that determine the initial distributions for the components of the total angular momentum over the symmetry axis of the fissioning system and the beam axis. Purpose: We develop a new dynamic approach, which allows the description of the memory effects in the fission fragment angular distributions and provides new information on fusion and fission dynamics. Methods: The approach is based on the dynamic model of the fission fragment angular distributions which takes into account stochastic aspects of nuclear fission and thermal fluctuations for the tilting mode that is characterized by the projection of the total angular momentum onto the symmetry axis of the fissioning system. Another base of our approach is the quantum mechanical method to calculate the initial distributions over the components of the total angular momentum of the nuclear system immediately following complete fusion. Results: A method is suggested for calculating the initial distributions of the total angular momentum projection onto the symmetry axis for the nuclear systems formed in the reactions of complete fusion of deformed nuclei with spins. The angular distributions of fission fragments for the 16O+232Th,12C+235,236,238, and 13C+235U reactions have been analyzed within the dynamic approach over a range of sub- and above-barrier energies. The analysis allowed us to determine the relaxation time for the tilting mode and the fraction of fission events occurring in times not larger than the relaxation time for the tilting mode. Conclusions: It is shown that the memory effects play an important role in the formation of the angular distributions of fission fragments for the reactions induced by heavy ions. The

  7. Causes of fragmented crystals in ignimbrites: a case study of the Cardones ignimbrite, Northern Chile

    NASA Astrophysics Data System (ADS)

    van Zalinge, M. E.; Cashman, K. V.; Sparks, R. S. J.

    2018-03-01

    Broken crystals have been documented in many large-volume caldera-forming ignimbrites and can help to understand the role of crystal fragmentation in both eruption and compaction processes, the latter generally overlooked in the literature. This study investigates the origin of fragmented crystals in the > 1260 km3, crystal-rich Cardones ignimbrites located in the Central Andes. Observations of fragmented crystals in non-welded pumice clasts indicate that primary fragmentation includes extensive crystal breakage and an associated ca. 5 vol% expansion of individual crystals while preserving their original shapes. These observations are consistent with the hypothesis that crystals fragment in a brittle response to rapid decompression associated with the eruption. Additionally, we observe that the extent of crystal fragmentation increases with increasing stratigraphic depth in the ignimbrite, recording secondary crystal fragmentation during welding and compaction. Secondary crystal fragmentation aids welding and compaction in two ways. First, enhanced crystal fragmentation at crystal-crystal contacts accommodates compaction along the principal axis of stress. Second, rotation and displacement of individual crystal fragments enhances lateral flow in the direction(s) of least principal stress. This process increases crystal aspect ratios and forms textures that resemble mantled porphyroclasts in shear zones, indicating lateral flow adds to processes of compaction and welding alongside bubble collapse. In the Cardones ignimbrite, secondary fragmentation commences at depths of 175-250 m (lithostatic pressures 4-6 MPa), and is modulated by both the overlying crystal load and the time spent above the glass transition temperature. Under these conditions, the existence of force-chains can produce stresses at crystal-crystal contacts of a few times the lithostatic pressure. We suggest that documenting crystal textures, in addition to conventional welding parameters, can

  8. Observation of the Hydrogen Migration in the Cation-Induced Fragmentation of the Pyridine Molecules.

    PubMed

    Wasowicz, Tomasz J; Pranszke, Bogusław

    2016-02-25

    The ability to selectively control chemical reactions related to biology, combustion, and catalysis has recently attracted much attention. In particular, the hydrogen atom relocation may be used to manipulate bond-breaking and new bond-forming processes and may hold promise for far-reaching applications. Thus, the hydrogen atom migration preceding fragmentation of the gas-phase pyridine molecules by the H(+), H2(+), He(+), He(2+), and O(+) impact has been studied experimentally in the energy range of 5-2000 eV using collision-induced luminescence spectroscopy. Formation of the excited NH(A(3)Π) radicals was observed among the atomic and diatomic fragments. The structure of the pyridine molecule is lacking of the NH group, therefore observation of its A(3)Π → X(3)Σ(-) emission bands is an evidence of the hydrogen atom relocation prior to the cation-induced fragmentation. The NH(A(3)Π) emission yields indicate that formation of the NH radicals depends on the type of selected projectile and can be controlled by tuning its velocity. The plausible collisional mechanisms as well as fragmentation channels for NH formation in pyridine are discussed.

  9. Mining chemical reactions using neighborhood behavior and condensed graphs of reactions approaches.

    PubMed

    de Luca, Aurélie; Horvath, Dragos; Marcou, Gilles; Solov'ev, Vitaly; Varnek, Alexandre

    2012-09-24

    This work addresses the problem of similarity search and classification of chemical reactions using Neighborhood Behavior (NB) and Condensed Graphs of Reaction (CGR) approaches. The CGR formalism represents chemical reactions as a classical molecular graph with dynamic bonds, enabling descriptor calculations on this graph. Different types of the ISIDA fragment descriptors generated for CGRs in combination with two metrics--Tanimoto and Euclidean--were considered as chemical spaces, to serve for reaction dissimilarity scoring. The NB method has been used to select an optimal combination of descriptors which distinguish different types of chemical reactions in a database containing 8544 reactions of 9 classes. Relevance of NB analysis has been validated in generic (multiclass) similarity search and in clustering with Self-Organizing Maps (SOM). NB-compliant sets of descriptors were shown to display enhanced mapping propensities, allowing the construction of better Self-Organizing Maps and similarity searches (NB and classical similarity search criteria--AUC ROC--correlate at a level of 0.7). The analysis of the SOM clusters proved chemically meaningful CGR substructures representing specific reaction signatures.

  10. Plasminogen fragments K 1-3 and K 5 bind to different sites in fibrin fragment DD.

    PubMed

    Grinenko, T V; Kapustianenko, L G; Yatsenko, T A; Yusova, O I; Rybachuk, V N

    2016-01-01

    Specific plasminogen-binding sites of fibrin molecule are located in Аα148-160 regions of C-terminal domains. Plasminogen interaction with these sites initiates the activation process of proenzyme and subsequent fibrin lysis. In this study we investigated the binding of plasminogen fragments K 1-3 and K 5 with fibrin fragment DD and their effect on Glu-plasminogen interaction with DD. It was shown that the level of Glu-plasminogen binding to fibrin fragment DD is decreased by 50-60% in the presence of K 1-3 and K 5. Fragments K 1-3 and K 5 have high affinity to fibrin fragment DD (Kd is 0.02 for K 1-3 and 0.054 μМ for K 5). K 5 interaction is independent and K 1-3 is partly dependent on C-terminal lysine residues. K 1-3 interacts with complex of fragment DD-immobilized K 5 as well as K 5 with complex of fragment DD-immobilized K 1-3. The plasminogen fragments do not displace each other from binding sites located in fibrin fragment DD, but can compete for the interaction. The results indicate that fibrin fragment DD contains different binding sites for plasminogen kringle fragments K 1-3 and K 5, which can be located close to each other. The role of amino acid residues of fibrin molecule Аα148-160 region in interaction with fragments K 1-3 and K 5 is discussed.

  11. Free radical reaction characteristics of coal low-temperature oxidation and its inhibition method.

    PubMed

    Li, Zenghua; Kong, Biao; Wei, Aizhu; Yang, Yongliang; Zhou, Yinbo; Zhang, Lanzhun

    2016-12-01

    Study on the mechanism of coal spontaneous combustion is significant for controlling fire disasters due to coal spontaneous combustion. The free radical reactions can explain the chemical process of coal at low-temperature oxidation. Electron spin resonance (ESR) spectroscopy was used to measure the change rules of the different sorts and different granularity of coal directly; ESR spectroscopy chart of free radicals following the changes of temperatures was compared by the coal samples applying air and blowing nitrogen, original coal samples, dry coal samples, and demineralized coal samples. The fragmentation process was the key factor of producing and initiating free radical reactions. Oxygen, moisture, and mineral accelerated the free radical reactions. Combination of the free radical reaction mechanism, the mechanical fragmentation leaded to the elevated CO concentration, fracturing of coal pillar was more prone to spontaneous combustion, and spontaneous combustion in goaf accounted for a large proportion of the fire in the mine were explained. The method of added diphenylamine can inhibit the self-oxidation of coal effectively, the action mechanism of diphenylamine was analyzed by free radical chain reaction, and this research can offer new method for the development of new flame retardant.

  12. Cationized Carbohydrate Gas-Phase Fragmentation Chemistry

    NASA Astrophysics Data System (ADS)

    Bythell, Benjamin J.; Abutokaikah, Maha T.; Wagoner, Ashley R.; Guan, Shanshan; Rabus, Jordan M.

    2017-04-01

    We investigate the fragmentation chemistry of cationized carbohydrates using a combination of tandem mass spectrometry, regioselective labeling, and computational methods. Our model system is D-lactose. Barriers to the fundamental glyosidic bond cleavage reactions, neutral loss pathways, and structurally informative cross-ring cleavages are investigated. The most energetically favorable conformations of cationized D-lactose were found to be similar. In agreement with the literature, larger group I cations result in structures with increased cation coordination number which require greater collision energy to dissociate. In contrast with earlier proposals, the B n -Y m fragmentation pathways of both protonated and sodium-cationized analytes proceed via protonation of the glycosidic oxygen with concerted glycosidic bond cleavage. Additionally, for the sodiated congeners our calculations support sodiated 1,6-anhydrogalactose B n ion structures, unlike the preceding literature. This affects the subsequent propensity of formation and prediction of B n /Y m branching ratio. The nature of the anomeric center (α/β) affects the relative energies of these processes, but not the overall ranking. Low-energy cross-ring cleavages are observed for the metal-cationized analytes with a retro-aldol mechanism producing the 0,2 A 2 ion from the sodiated forms . Theory and experiment support the importance of consecutive fragmentation processes, particularly for the protonated congeners at higher collision energies.

  13. Shuttle data book: SRM fragment velocity model. Presented to the SRB Fragment Model Review Panel

    NASA Technical Reports Server (NTRS)

    1989-01-01

    This study was undertaken to determine the velocity of fragments generated by the range safety destruction (RSD) or random failure of a Space Transportation System (STS) Solid Rocket Motor (SRM). The specific requirement was to provide a fragment model for use in those Galileo and Ulysses RTG safety analyses concerned with possible fragment impact on the spacecraft radioisotope thermoelectric generators (RTGS). Good agreement was obtained between predictions and observations for fragment velocity, velocity distributions, azimuths, and rotation rates. Based on this agreement with the entire data base, the model was used to predict the probable fragment environments which would occur in the event of an STS-SRM RSD or randon failure at 10, 74, 84 and 110 seconds. The results of these predictions are the basis of the fragment environments presented in the Shuttle Data Book (NSTS-08116). The information presented here is in viewgraph form.

  14. Hypochlorite-induced damage to proteins: formation of nitrogen-centred radicals from lysine residues and their role in protein fragmentation.

    PubMed Central

    Hawkins, C L; Davies, M J

    1998-01-01

    Stimulated monocytes and neutrophils generate hypochlorite (HOCl) via the release of the enzyme myeloperoxidase and hydrogen peroxide. HOCl damages proteins by reaction with amino acid side-chains or backbone cleavage. Little information is available about the mechanisms and intermediates involved in these reactions. EPR spin trapping has been employed to identify radicals on proteins, peptides and amino acids after treatment with HOCl. Reaction with HOCl gives both high- and low-molecular-mass nitrogen-centred, protein-derived radicals; the yield of the latter increases with both higher HOCl:protein ratios and enzymic digestion. These radicals, which arise from lysine side-chain amino groups, react with ascorbate, glutathione and Trolox. Reaction of HOCl-treated proteins with excess methionine eliminates radical formation, which is consistent with lysine-derived chloramines (via homolysis of N-Cl bonds) being the radical source. Incubation of HOCl-treated proteins, after removal of excess oxidant, gives rise to both nitrogen-centred radicals, over a period of hours, and time-dependent fragmentation of the protein. Treatment with excess methionine or antioxidants (Trolox, ascorbate, glutathione) protects against fragmentation; urate and bilirubin do not. Chloramine formation and nitrogen-centred radicals are therefore key species in HOCl-induced protein fragmentation. PMID:9620862

  15. Diastereoselective reactions in glycine templates containing an ent-ardeemin fragment.

    PubMed

    Martín-Santamaría, Sonsoles; Corzo-Suárez, Raúl; Avendaño, Carmen; Espada, Modesta; Gago, Federico; García-Granda, Santiago; Rzepa, Henry S

    2002-04-05

    Self-consistent reaction field solvation models derived from SCF-MO calculations are shown to be reliable in modeling the diastereoselectivity of the reactions of the anion and cation derived from (4S)-2,4-dimethyl-2,4-dihydro-1H-pyrazino[2,1-b]quinazoline-3,6-dione (1) at C(1) with electrophiles and nucleophiles, respectively. The found anti/syn ratio of compound 8, which is a seco-ent-ardeemin analogue obtained by alkylation of 1 with gramine methiodide, confirms this computational model. A close similarity between the calculated geometry of the piperazine ring in the anti isomers of 1,2,4-trialkyl derivatives and that deduced from their (1)H NMR (solution) and X-ray data has been also established.

  16. Production of energetic light fragments in extensions of the CEM and LAQGSM event generators of the Monte Carlo transport code MCNP6 [Production of energetic light fragments in CEM, LAQGSM, and MCNP6

    DOE PAGES

    Mashnik, Stepan Georgievich; Kerby, Leslie Marie; Gudima, Konstantin K.; ...

    2017-03-23

    We extend the cascade-exciton model (CEM), and the Los Alamos version of the quark-gluon string model (LAQGSM), event generators of the Monte Carlo N-particle transport code version 6 (MCNP6), to describe production of energetic light fragments (LF) heavier than 4He from various nuclear reactions induced by particles and nuclei at energies up to about 1 TeV/nucleon. In these models, energetic LF can be produced via Fermi breakup, preequilibrium emission, and coalescence of cascade particles. Initially, we study several variations of the Fermi breakup model and choose the best option for these models. Then, we extend the modified exciton model (MEM)more » used by these codes to account for a possibility of multiple emission of up to 66 types of particles and LF (up to 28Mg) at the preequilibrium stage of reactions. Then, we expand the coalescence model to allow coalescence of LF from nucleons emitted at the intranuclear cascade stage of reactions and from lighter clusters, up to fragments with mass numbers A ≤ 7, in the case of CEM, and A ≤ 12, in the case of LAQGSM. Next, we modify MCNP6 to allow calculating and outputting spectra of LF and heavier products with arbitrary mass and charge numbers. The improved version of CEM is implemented into MCNP6. Lastly, we test the improved versions of CEM, LAQGSM, and MCNP6 on a variety of measured nuclear reactions. The modified codes give an improved description of energetic LF from particle- and nucleus-induced reactions; showing a good agreement with a variety of available experimental data. They have an improved predictive power compared to the previous versions and can be used as reliable tools in simulating applications involving such types of reactions.« less

  17. Production of energetic light fragments in extensions of the CEM and LAQGSM event generators of the Monte Carlo transport code MCNP6 [Production of energetic light fragments in CEM, LAQGSM, and MCNP6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mashnik, Stepan Georgievich; Kerby, Leslie Marie; Gudima, Konstantin K.

    We extend the cascade-exciton model (CEM), and the Los Alamos version of the quark-gluon string model (LAQGSM), event generators of the Monte Carlo N-particle transport code version 6 (MCNP6), to describe production of energetic light fragments (LF) heavier than 4He from various nuclear reactions induced by particles and nuclei at energies up to about 1 TeV/nucleon. In these models, energetic LF can be produced via Fermi breakup, preequilibrium emission, and coalescence of cascade particles. Initially, we study several variations of the Fermi breakup model and choose the best option for these models. Then, we extend the modified exciton model (MEM)more » used by these codes to account for a possibility of multiple emission of up to 66 types of particles and LF (up to 28Mg) at the preequilibrium stage of reactions. Then, we expand the coalescence model to allow coalescence of LF from nucleons emitted at the intranuclear cascade stage of reactions and from lighter clusters, up to fragments with mass numbers A ≤ 7, in the case of CEM, and A ≤ 12, in the case of LAQGSM. Next, we modify MCNP6 to allow calculating and outputting spectra of LF and heavier products with arbitrary mass and charge numbers. The improved version of CEM is implemented into MCNP6. Lastly, we test the improved versions of CEM, LAQGSM, and MCNP6 on a variety of measured nuclear reactions. The modified codes give an improved description of energetic LF from particle- and nucleus-induced reactions; showing a good agreement with a variety of available experimental data. They have an improved predictive power compared to the previous versions and can be used as reliable tools in simulating applications involving such types of reactions.« less

  18. Structures of endothiapepsin-fragment complexes from crystallographic fragment screening using a novel, diverse and affordable 96-compound fragment library.

    PubMed

    Huschmann, Franziska U; Linnik, Janina; Sparta, Karine; Ühlein, Monika; Wang, Xiaojie; Metz, Alexander; Schiebel, Johannes; Heine, Andreas; Klebe, Gerhard; Weiss, Manfred S; Mueller, Uwe

    2016-05-01

    Crystallographic screening of the binding of small organic compounds (termed fragments) to proteins is increasingly important for medicinal chemistry-oriented drug discovery. To enable such experiments in a widespread manner, an affordable 96-compound library has been assembled for fragment screening in both academia and industry. The library is selected from already existing protein-ligand structures and is characterized by a broad ligand diversity, including buffer ingredients, carbohydrates, nucleotides, amino acids, peptide-like fragments and various drug-like organic compounds. When applied to the model protease endothiapepsin in a crystallographic screening experiment, a hit rate of nearly 10% was obtained. In comparison to other fragment libraries and considering that no pre-screening was performed, this hit rate is remarkably high. This demonstrates the general suitability of the selected compounds for an initial fragment-screening campaign. The library composition, experimental considerations and time requirements for a complete crystallographic fragment-screening campaign are discussed as well as the nine fully refined obtained endothiapepsin-fragment structures. While most of the fragments bind close to the catalytic centre of endothiapepsin in poses that have been observed previously, two fragments address new sites on the protein surface. ITC measurements show that the fragments bind to endothiapepsin with millimolar affinity.

  19. Structures of endothiapepsin–fragment complexes from crystallographic fragment screening using a novel, diverse and affordable 96-compound fragment library

    PubMed Central

    Huschmann, Franziska U.; Linnik, Janina; Sparta, Karine; Ühlein, Monika; Wang, Xiaojie; Metz, Alexander; Schiebel, Johannes; Heine, Andreas; Klebe, Gerhard; Weiss, Manfred S.; Mueller, Uwe

    2016-01-01

    Crystallographic screening of the binding of small organic compounds (termed fragments) to proteins is increasingly important for medicinal chemistry-oriented drug discovery. To enable such experiments in a widespread manner, an affordable 96-compound library has been assembled for fragment screening in both academia and industry. The library is selected from already existing protein–ligand structures and is characterized by a broad ligand diversity, including buffer ingredients, carbohydrates, nucleotides, amino acids, peptide-like fragments and various drug-like organic compounds. When applied to the model protease endothiapepsin in a crystallographic screening experiment, a hit rate of nearly 10% was obtained. In comparison to other fragment libraries and considering that no pre-screening was performed, this hit rate is remarkably high. This demonstrates the general suitability of the selected compounds for an initial fragment-screening campaign. The library composition, experimental considerations and time requirements for a complete crystallographic fragment-screening campaign are discussed as well as the nine fully refined obtained endothiapepsin–fragment structures. While most of the fragments bind close to the catalytic centre of endothiapepsin in poses that have been observed previously, two fragments address new sites on the protein surface. ITC measurements show that the fragments bind to endothiapepsin with millimolar affinity. PMID:27139825

  20. Synthesis of branched iminosugars through a hypervalent iodine(III)-mediated radical-polar crossover reaction.

    PubMed

    Santana, Andrés G; Paz, Nieves R; Francisco, Cosme G; Suárez, Ernesto; González, Concepción C

    2013-08-02

    The synthesis of a novel type of branched iminosugars is described. This synthetic strategy is based on two key reactions: first, an aldol reaction with formaldehyde in order to introduce selectively the hydroxymethyl branch, and second, a tandem β-fragmentation-intramolecular cyclization reaction. The combination of both reactions afforded a battery of compounds exhibiting a great structural complexity, with the concomitant formation of a quaternary center, starting from readily available aldoses. With this approach we have demonstrated the usefulness of the fragmentation of anomeric alkoxyl radicals (ARF) promoted by the PhIO/I2 system for the preparation of new compounds with potential interest for both medicinal and synthetic chemists.

  1. Mycobacterium avium restriction fragment length polymorphism-IS IS1245 and the simple double repetitive element polymerase chain reaction typing method to screen genetic diversity in Brazilian strains.

    PubMed

    Sequeira, Patrícia Carvalho de; Fonseca, Leila de Souza; Silva, Marlei Gomes da; Saad, Maria Helena Féres

    2005-11-01

    Simple double repetitive element polymerase chain reaction (MaDRE-PCR) and Pvu II-IS1245 restriction fragment length polymorphism (RFLP) typing methods were used to type 41 Mycobacterium avium isolates obtained from 14 AIDS inpatients and 10 environment and animals specimens identified among 53 mycobacteria isolated from 237 food, chicken, and pig. All environmental and animals strains showed orphan patterns by both methods. By MaDRE-PCR four patients, with multiple isolates, showed different patterns, suggesting polyclonal infection that was confirmed by RFLP in two of them. This first evaluation of MaDRE-PCR on Brazilian M. avium strains demonstrated that the method seems to be useful as simple and less expensive typing method for screening genetic diversity in M. avium strains on selected epidemiological studies, although with limitation on analysis identical patterns except for one band.

  2. Lyme disease with facial nerve palsy: rapid diagnosis using a nested polymerase chain reaction-restriction fragment length polymorphism analysis.

    PubMed

    Hashimoto, Y; Takahashi, H; Kishiyama, K; Sato, Y; Nakao, M; Miyamoto, K; Iizuka, H

    1998-02-01

    A 64-year-old woman with Lyme disease and manifesting facial nerve palsy had been bitten by a tick on the left frontal scalp 4 weeks previously. Erythema migrans appeared on the left forehead, accompanied by left facial paralysis. Nested polymerase chain reaction-restriction fragment length polymorphism analysis (nested PCR-RFLP) was performed on DNA extracted from a skin biopsy of the erythema on the left forehead. Borrelia flagellin gene DNA was detected and its RFLP pattern indicated that the organism was B. garinii, Five weeks later, B. garinii was isolated by conventional culture from the erythematous skin lesion, but not from the cerebrospinal fluid. After treatment with ceftriaxone intravenously for 10 days and oral administration of minocycline for 7 days, both the erythema and facial nerve palsy improved significantly. Nested PCR and culture taken after the lesion subsided, using skin samples obtained from a site adjacent to the original biopsy, were both negative. We suggest that nested PCR-RFLP analysis might be useful for the rapid diagnosis of Lyme disease and for evaluating therapy.

  3. Integrated polymerase chain reaction/electrophoresis instrument

    DOEpatents

    Andresen, Brian D.

    2000-01-01

    A new approach and instrument for field identification of micro-organisms and DNA fragments using a small and disposable device containing integrated polymerase chain reaction (PCR) enzymatic reaction wells, attached capillary electrophoresis (CE) channels, detectors, and read-out all on/in a small hand-held package. The analysis instrument may be made inexpensively, for example, of plastic, and thus is disposable, which minimizes cross contamination and the potential for false positive identification between samples. In addition, it is designed for multiple users with individual applications. The integrated PCR/CE is manufactured by the PCR well and CE channels are "stamped" into plastic depressions where conductive coatings are made in the wells and ends of the CE microchannels to carry voltage and current to heat the PCR reaction mixtures and simultaneously draw DNA bands up the CE channels. Light is transmitted through the instrument at appropriate points and detects PCR bands and identifies DNA fragments by size (retention time) and quantifies each by the amount of light generated as each phototransistor positioned below each CE channel detects a passing band. The instrument is so compact that at least 100 PCR/CE reactions/analyses can be performed easily on one detection device.

  4. Coherent control of alkali cluster fragmentation dynamics

    NASA Astrophysics Data System (ADS)

    Lindinger, Albrecht; Lupulescu, Cosmin; Bartelt, Andreas; Vajda, Štefan; Wöste, Ludger

    2003-06-01

    Metal clusters exhibit extraordinary chemical and catalytic properties, which sensitively depend upon their size. This behavior makes them interesting candidates for the real-time analysis of ultrafast photo-induced processes—ultimately leading to coherent control scenarii. We have performed transient multi-photon ionization experiments on small alkali clusters of different size in order to probe their wave packet dynamics, structural reorientations, charge transfers and dissociative events in different vibrationally excited electronic states including their ground state. The observed processes were highly dependent on the irradiated pulse parameters, like its phase, amplitude and duration; an emphasis to employ a feedback control system for generating the optimum pulse shapes. Their spectral and temporal behavior reflects interesting properties about the investigated system and the irradiated photochemical process. We present first the vibrational dynamics of bound, dissociated, and pre-dissociated electronically excited states of alkali dimers and trimers. The scheme for observing the wave packet dynamics in the electronic ground state using stimulated Raman-pumping is shown. Since the employed pulse parameters significantly influence the efficiency of the irradiated dynamic pathways photo-induced fragmentation experiments on bifurcating reaction channels were carried out. In these experiments different branching ionization and fragmentation pathways of electronically excited Na 2K were investigated. By employing an evolutionary algorithm for optimizing the phase and amplitude of the applied laser field, the yield of the resulting parent or fragment ions could significantly be influenced and interesting features could be concluded from the obtained optimum pulse shapes revealing the characteristic molecular oscillation period. Moreover, the influence on the optimal pulse shape due to fragmentation from larger clusters into NaK is obtained. The substructure of

  5. Methods for producing partially digested restriction DNA fragments and for producing a partially modified PCR product

    DOEpatents

    Wong, Kwong-Kwok

    2000-01-01

    The present invention is an improved method of making a partially modified PCR product from a DNA fragment with a polymerase chain reaction (PCR). In a standard PCR process, the DNA fragment is combined with starting deoxynucleoside triphosphates, a primer, a buffer and a DNA polymerase in a PCR mixture. The PCR mixture is then reacted in the PCR producing copies of the DNA fragment. The improvement of the present invention is adding an amount of a modifier at any step prior to completion of the PCR process thereby randomly and partially modifying the copies of the DNA fragment as a partially modified PCR product. The partially modified PCR product may then be digested with an enzyme that cuts the partially modified PCR product at unmodified sites thereby producing an array of DNA restriction fragments.

  6. Distinguishing Heterodera filipjevi and H. avenae using polymerase chain reaction-restriction fragment length polymorphism and cyst morphology.

    PubMed

    Yan, Guiping; Smiley, Richard W

    2010-03-01

    The cereal cyst nematodes Heterodera filipjevi and H. avenae impede wheat production in the Pacific Northwest (PNW). Accurate identification of cyst nematode species and awareness of high population density in affected fields are essential for designing effective control measures. Morphological methods for differentiating these species are laborious. These species were differentiated using polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP) of internal transcribed spacer (ITS)-ribosomal (r)DNA with up to six restriction endonucleases (TaqI, HinfI, PstI, HaeIII, RsaI, and AluI). The method was validated by inspecting underbridge structures of cyst vulval cones. Grid soil sampling of an Oregon field infested by both species revealed that H. filipjevi was present at most of the infested grid sites but mixtures of H. avenae and H. filipjevi also occurred. These procedures also detected and differentiated H. filipjevi and H. avenae in soil samples from nearby fields in Oregon and H. avenae in samples from Idaho and Washington. Intraspecific polymorphism was not observed within H. filipjevi or PNW H. avenae populations based on the ITS-rDNA. However, intraspecific variation was observed between H. avenae populations occurring in the PNW and France. Methods described here will improve detection and identification efficiencies for cereal cyst nematodes in wheat fields.

  7. Quantitative Mass Spectrometry by Isotope Dilution and Multiple Reaction Monitoring (MRM).

    PubMed

    Russo, Paul; Hood, Brian L; Bateman, Nicholas W; Conrads, Thomas P

    2017-01-01

    Selected reaction monitoring (SRM) is used in molecular profiling to detect and quantify specific known proteins in complex mixtures. Using isotope dilution (Barnidge et al., Anal Chem 75(3):445-451, 2003) methodologies, peptides can be quantified without the need for an antibody-based method. Selected reaction monitoring assays employ electrospray ionization mass spectrometry (ESI-MS) followed by two stages of mass selection: a first stage where the mass of the peptide ion is selected and, after fragmentation by collision-induced dissociation (CID), a second stage (tandem MS) where either a single (e.g., SRM) or multiple (multiple reaction monitoring, MRM) specific peptide fragment ions are transmitted for detection. The MRM experiment is accomplished by specifying the parent masses of the selected endogenous and isotope-labeled peptides for MS/MS fragmentation and then monitoring fragment ions of interest, using their intensities/abundances and relative ratios to quantify the parent protein of interest. In this example protocol, we will utilize isotope dilution MRM-MS to quantify in absolute terms the total levels of the protein of interest, ataxia telangiectasia mutated (ATM) serine/threonine protein kinase. Ataxia telangiectasia mutated (ATM) phosphorylates several key proteins that initiate activation of the DNA damage checkpoint leading to cell cycle arrest.

  8. Selectable fragmentation warhead

    DOEpatents

    Bryan, Courtney S.; Paisley, Dennis L.; Montoya, Nelson I.; Stahl, David B.

    1993-01-01

    A selectable fragmentation warhead capable of producing a predetermined number of fragments from a metal plate, and accelerating the fragments toward a target. A first explosive located adjacent to the plate is detonated at selected number of points by laser-driven slapper detonators. In one embodiment, a smoother-disk and a second explosive, located adjacent to the first explosive, serve to increase acceleration of the fragments toward a target. The ability to produce a selected number of fragments allows for effective destruction of a chosen target.

  9. Towards a population synthesis model of self-gravitating disc fragmentation and tidal downsizing II: the effect of fragment-fragment interactions

    NASA Astrophysics Data System (ADS)

    Forgan, D. H.; Hall, C.; Meru, F.; Rice, W. K. M.

    2018-03-01

    It is likely that most protostellar systems undergo a brief phase where the protostellar disc is self-gravitating. If these discs are prone to fragmentation, then they are able to rapidly form objects that are initially of several Jupiter masses and larger. The fate of these disc fragments (and the fate of planetary bodies formed afterwards via core accretion) depends sensitively not only on the fragment's interaction with the disc, but also with its neighbouring fragments. We return to and revise our population synthesis model of self-gravitating disc fragmentation and tidal downsizing. Amongst other improvements, the model now directly incorporates fragment-fragment interactions while the disc is still present. We find that fragment-fragment scattering dominates the orbital evolution, even when we enforce rapid migration and inefficient gap formation. Compared to our previous model, we see a small increase in the number of terrestrial-type objects being formed, although their survival under tidal evolution is at best unclear. We also see evidence for disrupted fragments with evolved grain populations - this is circumstantial evidence for the formation of planetesimal belts, a phenomenon not seen in runs where fragment-fragment interactions are ignored. In spite of intense dynamical evolution, our population is dominated by massive giant planets and brown dwarfs at large semimajor axis, which direct imaging surveys should, but only rarely, detect. Finally, disc fragmentation is shown to be an efficient manufacturer of free-floating planetary mass objects, and the typical multiplicity of systems formed via gravitational instability will be low.

  10. Fragmentation of tetrahydrofuran molecules by H(+), C(+), and O(+) collisions at the incident energy range of 25-1000 eV.

    PubMed

    Wasowicz, Tomasz J; Pranszke, Bogusław

    2015-01-29

    We have studied fragmentation processes of the gas-phase tetrahydrofuran (THF) molecules in collisions with the H(+), C(+), and O(+) cations. The collision energies have been varied between 25 and 1000 eV and thus covered a velocity range from 10 to 440 km/s. The following excited neutral fragments of THF have been observed: the atomic hydrogen H(n), n = 4-9, carbon atoms in the 2p3s (1)P1, 2p4p (1)D2, and 2p4p (3)P states and vibrationally and rotationally excited diatomic CH fragments in the A(2)Δ and B(2)Σ(-) states. Fragmentation yields of these excited fragments have been measured as functions of the projectile energy (velocity). Our results show that the fragmentation mechanism depends on the projectile cations and is dominated by electron transfer from tetrahydrofuran molecules to cations. It has been additionally hypothesized that in the C(+)+THF collisions a [C-C4H8O](+) complex is formed prior to dissociation. The possible reaction channels involved in fragmentation of THF under the H(+), C(+), and O(+) cations impact are also discussed.

  11. Fragmentation efficiency of explosive volcanic eruptions: A study of experimentally generated pyroclasts

    NASA Astrophysics Data System (ADS)

    Kueppers, Ulrich; Scheu, Bettina; Spieler, Oliver; Dingwell, Donald B.

    2006-05-01

    Products of magma fragmentation can pose a severe threat to health, infrastructure, environment, and aviation. Systematic evaluation of the mechanisms and the consequences of volcanic fragmentation is very difficult as the adjacent processes cannot be observed directly and their deposits undergo transport-related sorting. However, enhanced knowledge is required for hazard assessment and risk mitigation. Laboratory experiments on natural samples allow the precise characterization of the generated pyroclasts and open the possibility for substantial advances in the quantification of fragmentation processes. They hold the promise of precise characterization and quantification of fragmentation efficiency and its dependence on changing material properties and the physical conditions at fragmentation. We performed a series of rapid decompression experiments on three sets of natural samples from Unzen volcano, Japan. The analysis comprised grain-size analysis and surface area measurements. The grain-size analysis is performed by dry sieving for particles larger than 250 μm and wet laser refraction for smaller particles. For all three sets of samples, the grain-size of the most abundant fraction decreases and the weight fraction of newly generated ash particles (up to 40 wt.%) increases with experimental pressure/potential energy for fragmentation. This energy can be estimated from the volume of the gas fraction and the applied pressure. The surface area was determined through Argon adsorption. The fragmentation efficiency is described by the degree of fine-particle generation. Results show that the fragmentation efficiency and the generated surface correlate positively with the applied energy.

  12. Final excitation energy of fission fragments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmidt, Karl-Heinz; Jurado, Beatriz

    We study how the excitation energy of the fully accelerated fission fragments is built up. It is stressed that only the intrinsic excitation energy available before scission can be exchanged between the fission fragments to achieve thermal equilibrium. This is in contradiction with most models used to calculate prompt neutron emission, where it is assumed that the total excitation energy of the final fragments is shared between the fragments by the condition of equal temperatures. We also study the intrinsic excitation-energy partition in statistical equilibrium for different level-density descriptions as a function of the total intrinsic excitation energy of themore » fissioning system. Excitation energies are found to be strongly enhanced in the heavy fragment, if the level density follows a constant-temperature behavior at low energies, e.g., in the composed Gilbert-Cameron description.« less

  13. Reactions in 1,1,1-trifluoroacetone triggered by low energy electrons (0-10 eV): from simple bond cleavages to complex unimolecular reactions.

    PubMed

    Illenberger, Eugen; Meinke, Martina C

    2014-08-21

    The impact of low energy electrons (0-10 eV) to 1,1,1-trifluoroacetone yields a variety of fragment anions which are formed via dissociative electron attachment (DEA) through three pronounced resonances located at 0.8 eV, near 4 eV, and in the energy range 8-9 eV. The fragment ions arise from different reactions ranging from the direct cleavage of one single or double bond (formation of F(-), CF3(-), O(-), (M-H)(-), and M-F)(-)) to remarkably complex unimolecular reactions associated with substantial geometric and electronic rearrangement in the transitory intermediate (formation of OH(-), FHF(-), (M-HF)(-), CCH(-), and HCCO(-). The ion CCH(-), for example, is formed by an excision of unit from the target molecule through the concerted cleavage of four bonds and recombination to H2O within the neutral component of the reaction.

  14. Projectile fragmentation of 40,48Ca and isotopic scaling in a transport approach

    NASA Astrophysics Data System (ADS)

    Mikhailova, T. I.; Erdemchimeg, B.; Artukh, A. G.; Di Toro, M.; Wolter, H. H.

    2016-07-01

    We investigate theoretically projectile fragmentation in reactions of 40,48Ca on 9Be and 181Ta targets using a Boltzmann-type transport approach, which is supplemented by a statistical decay code to describe the de-excitation of the hot primary fragments. We determine the thermodynamical properties of the primary fragments and calculate the isotope distributions of the cold final fragments. These describe the data reasonably well. For the pairs of projectiles with different isotopic content we analyze the isotopic scaling (or isoscaling) of the final fragment distributions, which has been used to extract the symmetry energy of the primary source. The calculation exhibits isoscaling behavior for the total yields as do the experiments. We also perform an impact-parameter-dependent isoscaling analysis in view of the fact that the primary systems at different impact parameters have very different properties. Then the isoscaling behavior is less stringent, which we can attribute to specific structure effects of the 40,48Ca pair. The symmetry energy determined in this way depends on these structure effects.

  15. Partial Gene Cloning and Enzyme Structure Modeling of Exolevanase Fragment from Bacillus subtilis

    NASA Astrophysics Data System (ADS)

    Azhar, M.; Natalia, D.; Syukur, S.; Andriani, N.; Jamsari, J.

    2018-04-01

    Inulin hydrolysis thermophilic and thermotolerant bacteria are potential sources of inulin hydrolysis enzymes. Partial gene that encodes inulin hydrolysis enzymes had been isolated from Bacillus subtilis using polymerase chain reaction (PCR) method with the DPE.slFandDPE.eR degenerative primers. The partial gene was cloned into pGEM-T Easy vector with E. coli as host cells and analyzed using BLASTx, CrustalW2, and Phyre2 programs. Size of thepartial gene had been found539 bp that encoded 179aminoacid residues of protein fragment. The sequences of protein fragment was more similar to exolevanase than exoinulinase. The protein fragment had conserved motif FSGS, and specific hits GH32 β-fructosidase. It had three residues of active site and five residues of substrate binding. The active site on the protein fragment were D (1-WLNDP-5), D (125-FRDPK-129) and E (177-WEC-179). Substrate binding on the protein fragment were ND (1-WLNDP-5), Q (18-FYQY-21), FS (60-FSGS-63) RD (125-FRDPK-129) and E (177-WEC-179).

  16. The Munich accelerator for fission fragments MAFF

    NASA Astrophysics Data System (ADS)

    Habs, D.; Groß, M.; Assmann, W.; Ames, F.; Bongers, H.; Emhofer, S.; Heinz, S.; Henry, S.; Kester, O.; Neumayr, J.; Ospald, F.; Reiter, P.; Sieber, T.; Szerypo, J.; Thirolf, P. G.; Varentsov, V.; Wilfart, T.; Faestermann, T.; Krücken, R.; Maier-Komor, P.

    2003-05-01

    The Munich Accelerator for Fission Fragments MAFF has been designed for the new Munich research reactor FRM-II. It will deliver several intense beams (˜3×10 11 s -1) of very neutron-rich fission fragments with a final energy of 30 keV (low-energy beam) or energies between 3.7 and 5.9 MeV· A (high-energy beam). Such beams are of interest for the creation of super-heavy elements by fusion reactions, nuclear spectroscopy of exotic nuclei, but they also have a potential for applications, e.g. in medicine. Presently the Munich research reactor FRM-II is ready for operation, but authorities delay the final permission to turn the reactor critical probably till the end of 2002. Only after this final permission the financing of the major parts of MAFF can start. On the other hand all major components have been designed and special components have been tested in separate setups.

  17. Tooth fragment reattachment techniques-A systematic review.

    PubMed

    Garcia, Fernanda Cristina P; Poubel, Déborah L N; Almeida, Júlio César F; Toledo, Isabela P; Poi, Wilson R; Guerra, Eliete N S; Rezende, Liliana V M L

    2018-03-07

    Several strategies have been developed for tooth fragment reattachment following fracture. Although many techniques have been reported, there is no consensus on which one has the best results in terms of the bond strength between the fragment and the dentin over time. The aim of this study was to assess the currently reported tooth fragment reattachment techniques for fractured crowns of anterior teeth. The PubMed, LILACS, Web of Science, Cochrane, and Scopus databases were searched in October 2016, and the search was updated in February 2017. A search of the gray literature was performed in Google Scholar and OpenGrey. Reference lists of eligible studies were cross-checked to identify additional studies; gray literature and ongoing trials were investigated. Two authors assessed studies to determine inclusion and undertook data extraction. Case reports/series of three or more cases, cross-sectional studies, cohort studies, and in vivo clinical trials in all languages were included. Five articles remained after screening. These studies predominantly reported on fragment reattachment with composite resin and resin cement. There was little consistency among the studies in regard to the technique used for tooth fragment reattachment and length of the follow-up period. According to the evidence found in the studies included in this review, simple tooth fragment reattachment was the preferred reattachment technique. An increase in the bond strength between tooth fragment and dentin was observed when an intermediate material was used. Further investigation is needed, using standard follow-up periods and larger samples. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. The dual role of fragments in fragment-assembly methods for de novo protein structure prediction

    PubMed Central

    Handl, Julia; Knowles, Joshua; Vernon, Robert; Baker, David; Lovell, Simon C.

    2013-01-01

    In fragment-assembly techniques for protein structure prediction, models of protein structure are assembled from fragments of known protein structures. This process is typically guided by a knowledge-based energy function and uses a heuristic optimization method. The fragments play two important roles in this process: they define the set of structural parameters available, and they also assume the role of the main variation operators that are used by the optimiser. Previous analysis has typically focused on the first of these roles. In particular, the relationship between local amino acid sequence and local protein structure has been studied by a range of authors. The correlation between the two has been shown to vary with the window length considered, and the results of these analyses have informed directly the choice of fragment length in state-of-the-art prediction techniques. Here, we focus on the second role of fragments and aim to determine the effect of fragment length from an optimization perspective. We use theoretical analyses to reveal how the size and structure of the search space changes as a function of insertion length. Furthermore, empirical analyses are used to explore additional ways in which the size of the fragment insertion influences the search both in a simulation model and for the fragment-assembly technique, Rosetta. PMID:22095594

  19. Dissociation reactions of protonated anthracycline antibiotics following electrospray ionization-tandem mass spectrometry

    NASA Astrophysics Data System (ADS)

    Sleno, Lekha; Campagna-Slater, Valerie; Volmer, Dietrich A.

    2006-09-01

    Fragmentation pathways of doxorubicin, a common cancer therapy agent, and three closely related analogs (epirubicin, daunorubicin, idarubicin) were compared using electrospray ionization with tandem mass spectrometry. This class of antibiotics with anti-tumour activity has important structural features, with a tetracyclic aromatic, polyketide portion, which is glycosylated with an amino sugar in order to exhibit its biological activity. Collision-induced dissociation spectra revealed very similar product ions for each analog, however, important differences were seen in the relative abundances and the ease at which certain fragments were formed. Fragment ions observed included those from cleavage of the glycosidic bond, loss of the side chain from the aglycone moiety, water losses and loss of a methyl radical. Following cleavage of the glycosidic bond, the charge can either reside on the aglycone portion or the sugar moiety, and each of these primary fragments undergoes several secondary dissociation pathways, depending on the collision energy. By ramping the collision voltage, we were able to correlate the changes in fragmentation behavior with small alterations in the structure of the precursor ion. The detailed study of the fragmentation behavior of doxorubicin was supported by accurate mass measurements, using an electrospray-time of flight instrument, as well as MS3 data from a quadrupole-linear ion trap mass spectrometer. Computational studies were also performed to help explain the role of certain functional groups in the fragmentation reactions.

  20. Fungal Fragments as Indoor Air Biocontaminants

    PubMed Central

    Górny, Rafał L.; Reponen, Tiina; Willeke, Klaus; Schmechel, Detlef; Robine, Enric; Boissier, Marjorie; Grinshpun, Sergey A.

    2002-01-01

    The aerosolization process of fungal propagules of three species (Aspergillus versicolor, Penicillium melinii, and Cladosporium cladosporioides) was studied by using a newly designed and constructed aerosolization chamber. We discovered that fungal fragments are aerosolized simultaneously with spores from contaminated agar and ceiling tile surfaces. Concentration measurements with an optical particle counter showed that the fragments are released in higher numbers (up to 320 times) than the spores. The release of fungal propagules varied depending on the fungal species, the air velocity above the contaminated surface, and the texture and vibration of the contaminated material. In contrast to spores, the release of fragments from smooth surfaces was not affected by air velocity, indicating a different release mechanism. Correlation analysis showed that the number of released fragments cannot be predicted on the basis of the number of spores. Enzyme-linked immunosorbent assays with monoclonal antibodies produced against Aspergillus and Penicillium fungal species showed that fragments and spores share common antigens, which not only confirmed the fungal origin of the fragments but also established their potential biological relevance. The considerable immunological reactivity, the high number, and the small particle size of the fungal fragments may contribute to human health effects that have been detected in buildings with mold problems but had no scientific explanation until now. This study suggests that future fungal spore investigations in buildings with mold problems should include the quantitation of fungal fragments. PMID:12089037

  1. Fission and quasifission of composite systems with Z =108 -120 : Transition from heavy-ion reactions involving S and Ca to Ti and Ni ions

    NASA Astrophysics Data System (ADS)

    Kozulin, E. M.; Knyazheva, G. N.; Novikov, K. V.; Itkis, I. M.; Itkis, M. G.; Dmitriev, S. N.; Oganessian, Yu. Ts.; Bogachev, A. A.; Kozulina, N. I.; Harca, I.; Trzaska, W. H.; Ghosh, T. K.

    2016-11-01

    Background: Suppression of compound nucleus formation in the reactions with heavy ions by a quasifission process in dependence on the reaction entrance channel. Purpose: Investigation of fission and quasifission processes in the reactions 36S,48Ca,48Ti , and 64Ni+238U at energies around the Coulomb barrier. Methods: Mass-energy distributions of fissionlike fragments formed in the reaction 48Ti+238U at energies of 247, 258, and 271 MeV have been measured using the double-arm time-of-flight spectrometer CORSET at the U400 cyclotron of the Flerov Laboratory of Nuclear Reactions and compared with mass-energy distributions for the reactions 36S,48Ca,64Ni+238U . Results: The most probable fragment masses as well as total kinetic energies and their dispersions in dependence on the interaction energies have been investigated for asymmetric and symmetric fragments for the studied reactions. The fusion probabilities have been deduced from the analysis of mass-energy distributions. Conclusion: The estimated fusion probability for the reactions S, Ca, Ti, and Ni ions with actinide nuclei shows that it depends exponentially on the mean fissility parameter of the system. For the reactions with actinide nuclei leading to the formation of superheavy elements the fusion probabilities are of several orders of magnitude higher than in the case of cold fusion reactions.

  2. Imaging of hydrogel episcleral buckle fragmentation as a late complication after retinal reattachment surgery.

    PubMed

    Lane, J I; Randall, J G; Campeau, N G; Overland, P K; McCannel, C A; Matsko, T A

    2001-01-01

    Hydrogel encircling bands were introduced in the early 1980s as a product that was superior to bands composed of silicone rubber or silicone sponge for the surgical treatment of retinal detachment. Late complications consisting of orbital swelling and diplopia requiring band removal began to be reported in the early 1990s. Pathologic studies of these expanded fragments of hydrogel material after removal showed in vivo hydrolysis with foreign body reaction and dystrophic calcification. We report the imaging findings in five patients in whom this late complication developed. Hydrogel fragmentation has a characteristic imaging appearance consisting of a circumferential orbital mass associated with rim enhancement. This appearance should prompt inquiries regarding previous scleral buckle procedures with hydrogel bands. Familiarity with this appearance will avoid misinterpretation and unwarranted biopsy before band removal.

  3. Fragmentation of daily rhythms associates with obesity and cardiorespiratory fitness in adolescents: The HELENA study.

    PubMed

    Garaulet, Marta; Martinez-Nicolas, Antonio; Ruiz, Jonatan R; Konstabel, Kenn; Labayen, Idoia; González-Gross, Marcela; Marcos, Ascensión; Molnar, Dénes; Widhalm, Kurt; Casajús, Jose Antonio; De Henauw, Stefaan; Kafatos, Anthony; Breidenassel, Christina; Sjöström, Michael; Castillo, Manuel J; Moreno, Luis A; Madrid, Juan A; Ortega, Francisco B

    2017-12-01

    Chronobiology studies periodic changes in living organisms and it has been proposed as a promising approach to investigate obesity. We analyze the association of the characteristics of the rest-activity rhythms with obesity, cardiorespiratory fitness and metabolic risk in adolescents from nine European countries. 1044 adolescents (12.5-17.5 y) were studied. Circadian health was evaluated by actigraphy with accelerometers (Actigraph GT1M). Characteristics of the daytime activity such as fragmentation (intradaily variability), estimated acrophase, and 10 h mean daytime activity index were obtained. Body composition was assessed using Bioelectrical-Impedance-Analysis, skinfold thickness, air-displacement-plethysmography and Dual-energy-X-ray-Absorptiometry. Cardiorespiratory fitness (VO 2max ) and metabolic risk were studied. Highly fragmented activity rhythms were associated with obesity and central adiposity (P < 0.05). Obese adolescents had ∼3 times higher odds of having a high fragmentation of daytime activity compared to normal weight adolescents OR (95% CI) = 2.8 (1.170, 6.443). A highly fragmented rhythm was also related to lower cardiorespiratory fitness and higher metabolic risk (P < 0.05) so those adolescents classified as low fitness showed a significantly higher fragmentation of daytime activity than those included in the high fitness group (P < 0.0001). Other characteristics of the rhythms such as smaller 10 h daytime mean activity index and delayed estimated acrophase were also related to obesity and metabolic risk (P < 0.05). Our results indicate that the daily organization of the rest-activity cycle is more fragmented in obese and less fit adolescents and correlates with higher metabolic risk. This fact reinforces our hypothesis that disturbances in daily rhythms can be considered as sensitive markers of poorer adolescent's health. Copyright © 2016 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights

  4. Correlations between reaction product yields as a tool for probing heavy-ion reaction scenarios

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gawlikowicz, W.; Heavy-Ion Laboratory, Warsaw University, PL-02-093 Warsaw; Agnihotri, D. K.

    2010-01-15

    Experimental multidimensional joint distributions of neutrons and charged reaction products were analyzed for {sup 136}Xe + {sup 209}Bi reactions at E/A=28, 40, and 62 MeV and were found to exhibit several different types of prominent correlation patterns. Some of these correlations have a simple explanation in terms of the system excitation energy and pose little challenge to most statistical decay theories. However, several other types of correlation patterns are difficult to reconcile with some, but not other, possible reaction scenarios. In this respect, correlations between the average atomic numbers of intermediate-mass fragments, on the one hand, and light particle multiplicities,more » on the other, are notable. This kind of multiparticle correlation provides a useful tool for probing reaction scenarios, which is different from the traditional approach of interpreting inclusive yields of individual reaction products.« less

  5. Microfluidic study of fast gas-liquid reactions.

    PubMed

    Li, Wei; Liu, Kun; Simms, Ryan; Greener, Jesse; Jagadeesan, Dinesh; Pinto, Sascha; Günther, Axel; Kumacheva, Eugenia

    2012-02-15

    We present a new concept for studies of the kinetics of fast gas-liquid reactions. The strategy relies on the microfluidic generation of highly monodisperse gas bubbles in the liquid reaction medium and subsequent analysis of time-dependent changes in bubble dimensions. Using reactions of CO(2) with secondary amines as an exemplary system, we demonstrate that the method enables rapid determination of reaction rate constant and conversion, and comparison of various binding agents. The proposed approach addresses two challenges in studies of gas-liquid reactions: a mass-transfer limitation and a poorly defined gas-liquid interface. The proposed strategy offers new possibilities in studies of the fundamental aspects of rapid multiphase reactions, and can be combined with throughput optimization of reaction conditions.

  6. Heavy ion fragmentation experiments at the bevatron

    NASA Technical Reports Server (NTRS)

    Heckman, H. H.

    1976-01-01

    Collaborative research efforts to study the fragmentation processes of heavy nuclei in matter using heavy ion beams of the Bevatron/Bevalac are described. The goal of the program is to obtain the single particle inclusive spectra of secondary nuclei produced at 0 deg by the fragmentation of heavy ion beam projectiles. The process being examined is B+T yields F + anything, where B is the beam nucleus, T is the target nucleus, and F is the detected fragment. The fragments F are isotopically identified by experimental procedures involving magnetic analysis, energy loss and time-of-flight measurements. Effects were also made to: (a) study processes of heavy nuclei in matter, (b) measure the total and partial production cross section for all isotopes, (c) test the applicability of high energy multiparticle interaction theory to nuclear fragmentation, (d) apply the cross section data and fragmentation probabilities to cosmic ray transport theory, and (e) search for systematic behavior of fragment production as a means to improve existing semi-empirical theories of cross-sections.

  7. Magma Fragmentation

    NASA Astrophysics Data System (ADS)

    Gonnermann, Helge M.

    2015-05-01

    Magma fragmentation is the breakup of a continuous volume of molten rock into discrete pieces, called pyroclasts. Because magma contains bubbles of compressible magmatic volatiles, decompression of low-viscosity magma leads to rapid expansion. The magma is torn into fragments, as it is stretched into hydrodynamically unstable sheets and filaments. If the magma is highly viscous, resistance to bubble growth will instead lead to excess gas pressure and the magma will deform viscoelastically by fracturing like a glassy solid, resulting in the formation of a violently expanding gas-pyroclast mixture. In either case, fragmentation represents the conversion of potential energy into the surface energy of the newly created fragments and the kinetic energy of the expanding gas-pyroclast mixture. If magma comes into contact with external water, the conversion of thermal energy will vaporize water and quench magma at the melt-water interface, thus creating dynamic stresses that cause fragmentation and the release of kinetic energy. Lastly, shear deformation of highly viscous magma may cause brittle fractures and release seismic energy.

  8. Quark fragmentation functions in NJL-jet model

    NASA Astrophysics Data System (ADS)

    Bentz, Wolfgang; Matevosyan, Hrayr; Thomas, Anthony

    2014-09-01

    We report on our studies of quark fragmentation functions in the Nambu-Jona-Lasinio (NJL) - jet model. The results of Monte-Carlo simulations for the fragmentation functions to mesons and nucleons, as well as to pion and kaon pairs (dihadron fragmentation functions) are presented. The important role of intermediate vector meson resonances for those semi-inclusive deep inelastic production processes is emphasized. Our studies are very relevant for the extraction of transverse momentum dependent quark distribution functions from measured scattering cross sections. We report on our studies of quark fragmentation functions in the Nambu-Jona-Lasinio (NJL) - jet model. The results of Monte-Carlo simulations for the fragmentation functions to mesons and nucleons, as well as to pion and kaon pairs (dihadron fragmentation functions) are presented. The important role of intermediate vector meson resonances for those semi-inclusive deep inelastic production processes is emphasized. Our studies are very relevant for the extraction of transverse momentum dependent quark distribution functions from measured scattering cross sections. Supported by Grant in Aid for Scientific Research, Japanese Ministry of Education, Culture, Sports, Science and Technology, Project No. 20168769.

  9. Fusion and quasifission studies for the 40Ca+186W,192Os reactions

    NASA Astrophysics Data System (ADS)

    Prasad, E.; Hinde, D. J.; Williams, E.; Dasgupta, M.; Carter, I. P.; Cook, K. J.; Jeung, D. Y.; Luong, D. H.; Palshetkar, C. S.; Rafferty, D. C.; Ramachandran, K.; Simenel, C.; Wakhle, A.

    2017-09-01

    Background: All elements above atomic number 113 have been synthesized using hot fusion reactions with calcium beams on statically deformed actinide target nuclei. Quasifission and fusion-fission are the two major mechanisms responsible for the very low production cross sections of superheavy elements. Purpose: To achieve a quantitative measurement of capture and quasifission characteristics as a function of beam energy in reactions forming heavy compound systems using calcium beams as projectiles. Methods: Fission fragment mass-angle distributions were measured for the two reactions 40Ca+186W and 40C+192Os, populating 226Pu and 232Cm compound nuclei, respectively, using the Heavy Ion Accelerator Facility and CUBE spectrometer at the Australian National University. Mass ratio distributions, angular distributions, and total fission cross sections were obtained from the experimental data. Simulations to match the features of the experimental mass-angle distributions were performed using a classical phenomenological approach. Results: Both 40Ca+186W and 40C+192Os reactions show strong mass-angle correlations at all energies measured. A maximum fusion probability of 60 -70 % is estimated for the two reactions in the energy range of the present study. Coupled-channels calculations assuming standard Woods-Saxon potential parameters overpredict the capture cross sections. Large nuclear potential diffuseness parameters ˜1.5 fm are required to fit the total capture cross sections. The presence of a weak mass-asymmetric quasifission component attributed to the higher angular momentum events can be reproduced with a shorter average sticking time but longer mass-equilibration time constant. Conclusions: The deduced above-barrier capture cross sections suggest that the dissipative processes are already occurring outside the capture barrier. The mass-angle correlations indicate that a compact shape is not achieved for deformation aligned collisions with lower capture barriers

  10. Fragmentation and reactivity in collisions of protonated diglycine with chemically modified perfluorinated alkylthiolate-self-assembled monolayer surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnes, George L.; Yang Li; Hase, William L.

    2011-03-07

    Direct dynamics simulations are reported for quantum mechanical (QM)/molecular mechanical (MM) trajectories of N-protonated diglycine (gly{sub 2}-H{sup +}) colliding with chemically modified perfluorinated octanethiolate self-assembled monolayer (SAM) surfaces. The RM1 semiempirical theory is used for the QM component of the trajectories. RM1 activation and reaction energies were compared with those determined from higher-level ab initio theories. Two chemical modifications are considered in which a head group (-COCl or -CHO) is substituted on the terminal carbon of a single chain of the SAM. These surfaces are designated as the COCl-SAM and CHO-SAM, respectively. Fragmentation, peptide reaction with the SAM, and covalentmore » linkage of the peptide or its fragments with the SAM surface are observed. Peptide fragmentation via concerted CH{sub 2}-CO bond breakage is the dominant pathway for both surfaces. HCl formation is the dominant species produced by reaction with the COCl-SAM, while for the CHO-SAM a concerted H-atom transfer from the CHO-SAM to the peptide combined with either a H-atom or radical transfer from the peptide to the surface to form singlet reaction products is the dominant pathway. A strong collision energy dependence is found for the probability of peptide fragmentation, its reactivity, and linkage with the SAM. Surface deposition, i.e., covalent linkage between the surface and the peptide, is compared to recent experimental observations of such bonding by Laskin and co-workers [Phys. Chem. Chem. Phys. 10, 1512 (2008)]. Qualitative differences in reactivity are seen between the COCl-SAM and CHO-SAM showing that chemical identity is important for surface reactivity. The probability of reactive surface deposition, which is most closely analogous to experimental observables, peaks at a value of around 20% for a collision energy of 50 eV.« less

  11. Post-Fragmentation Whole Genome Amplification-Based Method

    NASA Technical Reports Server (NTRS)

    Benardini, James; LaDuc, Myron T.; Langmore, John

    2011-01-01

    This innovation is derived from a proprietary amplification scheme that is based upon random fragmentation of the genome into a series of short, overlapping templates. The resulting shorter DNA strands (<400 bp) constitute a library of DNA fragments with defined 3 and 5 termini. Specific primers to these termini are then used to isothermally amplify this library into potentially unlimited quantities that can be used immediately for multiple downstream applications including gel eletrophoresis, quantitative polymerase chain reaction (QPCR), comparative genomic hybridization microarray, SNP analysis, and sequencing. The standard reaction can be performed with minimal hands-on time, and can produce amplified DNA in as little as three hours. Post-fragmentation whole genome amplification-based technology provides a robust and accurate method of amplifying femtogram levels of starting material into microgram yields with no detectable allele bias. The amplified DNA also facilitates the preservation of samples (spacecraft samples) by amplifying scarce amounts of template DNA into microgram concentrations in just a few hours. Based on further optimization of this technology, this could be a feasible technology to use in sample preservation for potential future sample return missions. The research and technology development described here can be pivotal in dealing with backward/forward biological contamination from planetary missions. Such efforts rely heavily on an increasing understanding of the burden and diversity of microorganisms present on spacecraft surfaces throughout assembly and testing. The development and implementation of these technologies could significantly improve the comprehensiveness and resolving power of spacecraft-associated microbial population censuses, and are important to the continued evolution and advancement of planetary protection capabilities. Current molecular procedures for assaying spacecraft-associated microbial burden and diversity have

  12. Direct access to dithiobenzoate RAFT agent fragmentation rate coefficients by ESR spin-trapping.

    PubMed

    Ranieri, Kayte; Delaittre, Guillaume; Barner-Kowollik, Christopher; Junkers, Thomas

    2014-12-01

    The β-scission rate coefficient of tert-butyl radicals fragmenting off the intermediate resulting from their addition to tert-butyl dithiobenzoate-a reversible addition-fragmentation chain transfer (RAFT) agent-is estimated via the recently introduced electron spin resonance (ESR)-trapping methodology as a function of temperature. The newly introduced ESR-trapping methodology is critically evaluated and found to be reliable. At 20 °C, a fragmentation rate coefficient of close to 0.042 s(-1) is observed, whereas the activation parameters for the fragmentation reaction-determined for the first time-read EA = 82 ± 13.3 kJ mol(-1) and A = (1.4 ± 0.25) × 10(13) s(-1) . The ESR spin-trapping methodology thus efficiently probes the stability of the RAFT adduct radical under conditions relevant for the pre-equilibrium of the RAFT process. It particularly indicates that stable RAFT adduct radicals are indeed formed in early stages of the RAFT poly-merization, at least when dithiobenzoates are employed as controlling agents as stipulated by the so-called slow fragmentation theory. By design of the methodology, the obtained fragmentation rate coefficients represent an upper limit. The ESR spin-trapping methodology is thus seen as a suitable tool for evaluating the fragmentation rate coefficients of a wide range of RAFT adduct radicals. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Quantum mechanical fragment methods based on partitioning atoms or partitioning coordinates.

    PubMed

    Wang, Bo; Yang, Ke R; Xu, Xuefei; Isegawa, Miho; Leverentz, Hannah R; Truhlar, Donald G

    2014-09-16

    atoms for capping dangling bonds, and we have shown that they can greatly improve the accuracy. Finally we present a new approach that goes beyond QM/MM by combining the convenience of molecular mechanics with the accuracy of fitting a potential function to electronic structure calculations on a specific system. To make the latter practical for systems with a large number of degrees of freedom, we developed a method to interpolate between local internal-coordinate fits to the potential energy. A key issue for the application to large systems is that rather than assigning the atoms or monomers to fragments, we assign the internal coordinates to reaction, secondary, and tertiary sets. Thus, we make a partition in coordinate space rather than atom space. Fits to the local dependence of the potential energy on tertiary coordinates are arrayed along a preselected reaction coordinate at a sequence of geometries called anchor points; the potential energy function is called an anchor points reactive potential. Electrostatically embedded fragment methods and the anchor points reactive potential, because they are based on treating an entire system by quantum mechanical electronic structure methods but are affordable for large and complex systems, have the potential to open new areas for accurate simulations where combined QM/MM methods are inadequate.

  14. Explore the reaction mechanism of the Maillard reaction: a density functional theory study.

    PubMed

    Ren, Ge-Rui; Zhao, Li-Jiang; Sun, Qiang; Xie, Hu-Jun; Lei, Qun-Fang; Fang, Wen-Jun

    2015-05-01

    The mechanism of Maillard reaction has been investigated by means of density functional theory calculations in the gaseous phase and aqueous solution. The Maillard reaction is a cascade of consecutive and parallel reaction. In the present model system study, glucose and glycine were taken as the initial reactants. On the basis of previous experimental results, the mechanisms of Maillard reaction have been proposed, and the possibility for the formation of different compounds have been evaluated through calculating the relative energy changes for different steps of reaction under different pH conditions. Our calculations reveal that the TS3 in Amadori rearrangement reaction is the rate-determining step of Maillard reaction with the activation barriers of about 66.7 and 68.8 kcal mol(-1) in the gaseous phase and aqueous solution, respectively. The calculation results are in good agreement with previous studies and could provide insights into the reaction mechanism of Maillard reaction, since experimental evaluation of the role of intermediates in the Maillard reaction is quite complicated.

  15. Unusual Fragmentation of Pro-Ser/Thr-Containing Peptides Detected in Collision-Induced Dissociation Spectra

    NASA Astrophysics Data System (ADS)

    Medzihradszky, Katalin F.; Trinidad, Jonathan C.

    2012-04-01

    During collision-induced dissociation (CID)-, phosphoserine- and phosphothreonine-containing peptides frequently undergo neutral loss of phosphoric acid. Subsequent amide bond cleavage N-terminal to the site of phosphorylation results in a y ion with a mass 18 Da lower than the corresponding unmodified y fragment. We report here that when the phosphoserine or phosphothreonine is directly preceded by a proline, an unusual fragment with a mass 10 Da higher than the corresponding unmodified y ion is frequently observed. Accurate mass measurements are consistent with elimination of the phosphoric acid followed by fragmentation between the α carbon and the carbonyl group of the proline residue. We propose a cyclic oxazoline structure for this fragment. Our observation may be explained by the charge-directed SN2 neighboring group participation reaction proposed for the phosphoric acid elimination by Palumbo et al. [Palumbo, A. M., Tepe, J. J., Reid, G. E. Mechanistic Insights into the Multistage Gas-Phase Fragmentation Behavior of Phosphoserine- and Phosphothreonine-Containing Peptides. J. Protein Res. 7(2), 771-779 (2008)]. Considering such specific fragment ions for confirmation purposes after regular database searches may boost the confidence of peptide identifications as well as phosphorylation site assignments.

  16. Dynamical Aspects of Quasifission Process in Heavy-Ion Reactions

    NASA Astrophysics Data System (ADS)

    Knyazheva, G. N.; Itkis, I. M.; Kozulin, E. M.

    2015-06-01

    The study of mass-energy distributions of binary fragments obtained in the reactions of 36S, 48Ca, 58Fe and 64Ni ions with the 232Th, 238U, 244Pu and 248Cm at energies below and above the Coulomb barrier is presented. For all the reactions the main component of the distributions corresponds to asymmetrical mass division typical for asymmetric quasifission process. To describe the quasifission mass distribution the simple method has been proposed. This method is based on the driving potential of the system and time dependent mass drift. This procedure allows to estimate QF time scale from the measured mass distributions. It has been found that the QF time exponentially decreases when the reaction Coulomb factor Z1Z2 increases.

  17. Fragmentation studies of relativistic iron ions using plastic nuclear track detectors.

    PubMed

    Scampoli, P; Durante, M; Grossi, G; Manti, L; Pugliese, M; Gialanella, G

    2005-01-01

    We measured fluence and fragmentation of high-energy (1 or 5 A GeV) 56Fe ions accelerated at the Alternating Gradient Synchrotron or at the NASA Space Radiation Laboratory (Brookhaven National Laboratory, NY, USA) using solid-state CR-39 nuclear track detectors. Different targets (polyethylene, PMMA, C, Al, Pb) were used to produce a large spectrum of charged fragments. CR-39 plastics were exposed both in front and behind the shielding block (thickness ranging from 5 to 30 g/cm2) at a normal incidence and low fluence. The radiation dose deposited by surviving Fe ions and charged fragments was measured behind the shield using an ionization chamber. The distribution of the measured track size was exploited to distinguish the primary 56Fe ions tracks from the lighter fragments. Measurements of projectile's fluence in front of the shield were used to determine the dose per incident particle behind the block. Simultaneous measurements of primary 56Fe ion tracks in front and behind the shield were used to evaluate the fraction of surviving iron projectiles and the total charge-changing fragmentation cross-section. These physical measurements will be used to characterize the beam used in parallel biological experiments. c2005 COSPAR. Published by Elsevier Ltd. All rights reserved.

  18. Radial flow in 40Ar+45Sc reactions at E=35-115 MeV/nucleon

    NASA Astrophysics Data System (ADS)

    Pak, R.; Craig, D.; Gualtieri, E. E.; Hannuschke, S. A.; Lacey, R. A.; Lauret, J.; Llope, W. J.; Stone, N. T. B.; Vander Molen, A. M.; Westfall, G. D.; Yee, J.

    1996-10-01

    Collective radial flow of light fragments from 40Ar+45Sc reactions at beam energies between 35 and 115 MeV/nucleon has been investigated using the Michigan State University 4π Array. The mean transverse kinetic energy of the different fragment types increases with event centrality and increases as a function of the incident beam energy. Comparison of our measured values of shows agreement with predictions of Boltzmann-Uehling-Uhlenbeck model and WIX multifragmentation model calculations. The radial flow extracted from accounts for approximately half of the emitted particle's energy for the heavier fragments (Z>=4) at the highest beam energy studied.

  19. Driven fragmentation of granular gases.

    PubMed

    Cruz Hidalgo, Raúl; Pagonabarraga, Ignacio

    2008-06-01

    The dynamics of homogeneously heated granular gases which fragment due to particle collisions is analyzed. We introduce a kinetic model which accounts for correlations induced at the grain collisions and analyze both the kinetics and relevant distribution functions these systems develop. The work combines analytical and numerical studies based on direct simulation Monte Carlo calculations. A broad family of fragmentation probabilities is considered, and its implications for the system kinetics are discussed. We show that generically these driven materials evolve asymptotically into a dynamical scaling regime. If the fragmentation probability tends to a constant, the grain number diverges at a finite time, leading to a shattering singularity. If the fragmentation probability vanishes, then the number of grains grows monotonously as a power law. We consider different homogeneous thermostats and show that the kinetics of these systems depends weakly on both the grain inelasticity and driving. We observe that fragmentation plays a relevant role in the shape of the velocity distribution of the particles. When the fragmentation is driven by local stochastic events, the long velocity tail is essentially exponential independently of the heating frequency and the breaking rule. However, for a Lowe-Andersen thermostat, numerical evidence strongly supports the conjecture that the scaled velocity distribution follows a generalized exponential behavior f(c) approximately exp(-cn) , with n approximately 1.2 , regarding less the fragmentation mechanisms.

  20. MCNP6 Simulation of Light and Medium Nuclei Fragmentation at Intermediate Energies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mashnik, Stepan Georgievich; Kerby, Leslie Marie

    2015-05-22

    MCNP6, the latest and most advanced LANL Monte Carlo transport code, representing a merger of MCNP5 and MCNPX, is actually much more than the sum of those two computer codes; MCNP6 is available to the public via RSICC at Oak Ridge, TN, USA. In the present work, MCNP6 was validated and verified (V&V) against different experimental data on intermediate-energy fragmentation reactions, and results by several other codes, using mainly the latest modifications of the Cascade-Exciton Model (CEM) and of the Los Alamos version of the Quark-Gluon String Model (LAQGSM) event generators CEM03.03 and LAQGSM03.03. It was found that MCNP6 usingmore » CEM03.03 and LAQGSM03.03 describes well fragmentation reactions induced on light and medium target nuclei by protons and light nuclei of energies around 1 GeV/nucleon and below, and can serve as a reliable simulation tool for different applications, like cosmic-ray-induced single event upsets (SEU’s), radiation protection, and cancer therapy with proton and ion beams, to name just a few. Future improvements of the predicting capabilities of MCNP6 for such reactions are possible, and are discussed in this work.« less

  1. Fragment-based screen against HIV protease.

    PubMed

    Perryman, Alexander L; Zhang, Qing; Soutter, Holly H; Rosenfeld, Robin; McRee, Duncan E; Olson, Arthur J; Elder, John E; Stout, C David

    2010-03-01

    We have employed a fragment-based screen against wild-type (NL4-3) HIV protease (PR) using the Active Sight fragment library and X-ray crystallography. The experiments reveal two new binding sites for small molecules. PR was co-crystallized with fragments, or crystals were soaked in fragment solutions, using five crystal forms, and 378 data sets were collected to 2.3-1.3 A resolution. Fragment binding induces a distinct conformation and specific crystal form of TL-3 inhibited PR during co-crystallization. One fragment, 2-methylcyclohexanol, binds in the 'exo site' adjacent to the Gly(16)Gly(17)Gln(18)loop where the amide of Gly(17)is a specific hydrogen bond donor, and hydrophobic contacts occur with the side chains of Lys(14)and Leu(63). Another fragment, indole-6-carboxylic acid, binds on the 'outside/top of the flap' via hydrophobic contacts with Trp(42), Pro(44), Met(46), and Lys(55), a hydrogen bond with Val(56), and a salt-bridge with Arg(57). 2-acetyl-benzothiophene also binds at this site. This study is the first fragment-based crystallographic screen against HIV PR, and the first time that fragments were screened against an inhibitor-bound drug target to search for compounds that both bind to novel sites and stabilize the inhibited conformation of the target.

  2. Fragment-Based Screen against HIV Protease

    PubMed Central

    Perryman, A. L.; Zhang, Q.; Soutter, H. H.; Rosenfeld, R.; McRee, D. E.; Olson, A. J.; Elder, J. E.; Stout, C. D.

    2009-01-01

    We have employed a fragment-based screen against wild-type (NL4-3) HIV protease (PR) using the Active Sight fragment library and X-ray crystallography. The experiments reveal two new binding sites for small molecules. PR was co-crystallized with fragments, or crystals were soaked in fragment solutions, using five crystal forms, and 378 data sets were collected to 2.3-1.3 Å resolution. Fragment binding induces a distinct conformation and specific crystal form of TL-3 inhibited PR during co-crystallization. One fragment, 2-methylcyclohexanol, binds in the ‘exo site’ adjacent to the Gly16Gly17Gln18 loop where the amide of Gly17 is a specific hydrogen bond donor, and hydrophobic contacts occur with the side chains of Lys14 and Leu63. Another fragment, indole-6-carboxylic acid, binds on the ‘outside/top of the flap’ via hydrophobic contacts with Trp42, Pro44, Met46, and Lys55, a hydrogen bond with Val56, and a salt-bridge with Arg57. 2-acetyl-benzothiophene also binds at this site. This study is the first fragment-based crystallographic screen against HIV PR, and the first time that fragments were screened against an inhibitor-bound drug target to search for compounds that both bind to novel sites and stabilize the inhibited conformation of the target. PMID:20659109

  3. Projectile fragmentation of {sup 40,48}Ca and isotopic scaling in a transport approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mikhailova, T. I., E-mail: tmikh@jinr.ru; Erdemchimeg, B.; Artukh, A. G.

    2016-07-15

    We investigate theoretically projectile fragmentation in reactions of {sup 40,48}Ca on {sup 9}Be and {sup 181}Ta targets using a Boltzmann-type transport approach, which is supplemented by a statistical decay code to describe the de-excitation of the hot primary fragments. We determine the thermodynamical properties of the primary fragments and calculate the isotope distributions of the cold final fragments. These describe the data reasonably well. For the pairs of projectiles with different isotopic content we analyze the isotopic scaling (or isoscaling) of the final fragment distributions, which has been used to extract the symmetry energy of the primary source. The calculationmore » exhibits isoscaling behavior for the total yields as do the experiments. We also perform an impact-parameter-dependent isoscaling analysis in view of the fact that the primary systems at different impact parameters have very different properties. Then the isoscaling behavior is less stringent, which we can attribute to specific structure effects of the {sup 40,48}Ca pair. The symmetry energy determined in this way depends on these structure effects.« less

  4. Implanted depleted uranium fragments cause soft tissue sarcomas in the muscles of rats.

    PubMed Central

    Hahn, Fletcher F; Guilmette, Raymond A; Hoover, Mark D

    2002-01-01

    In this study, we determined the carcinogenicity of depleted uranium (DU) metal fragments containing 0.75% titanium in muscle tissues of rats. The results have important implications for the medical management of Gulf War veterans who were wounded with DU fragments and who retain fragments in their soft tissues. We compared the tissue reactions in rats to the carcinogenicity of a tantalum metal (Ta), as a negative foreign-body control, and to a colloidal suspension of radioactive thorium dioxide ((232)Th), Thorotrast, as a positive radioactive control. DU was surgically implanted in the thigh muscles of male Wistar rats as four squares (2.5 x 2.5 x 1.5 mm or 5.0 x 5.0 x 1.5 mm) or four pellets (2.0 x 1.0 mm diameter) per rat. Ta was similarly implanted as four squares (5.0 x 5.0 x 1.1 mm) per rat. Thorotrast was injected at two sites in the thigh muscles of each rat. Control rats had only a surgical implantation procedure. Each treatment group included 50 rats. A connective tissue capsule formed around the metal implants, but not around the Thorotrast. Radiographs demonstrated corrosion of the DU implants shortly after implantation. At later times, rarifactions in the radiographic profiles correlated with proliferative tissue responses. After lifetime observation, the incidence of soft tissue sarcomas increased significantly around the 5.0 x 5.0 mm squares of DU and the positive control, Thorotrast. A slightly increased incidence occurred in rats implanted with the 2.5 x 2.5 mm DU squares and with 5.0 x 5.0 mm squares of Ta. No tumors were seen in rats with 2.0 x 1.0 mm diameter DU pellets or in the surgical controls. These results indicate that DU fragments of sufficient size cause localized proliferative reactions and soft tissue sarcomas that can be detected with radiography in the muscles of rats. PMID:11781165

  5. Effect of fragmentation on the natural genetic diversity of Theobroma speciosum Willd. ex Spreng. populations.

    PubMed

    Varella, T L; Rossi, A A B; Dardengo, J F E; Silveira, G F; Souza, M D A; Carvalho, M L S

    2016-11-21

    Forest fragmentation reduces the effective size of natural populations, isolates individuals in the landscape, and, consequently, changes species' mating systems by increasing the degree of relatedness between individuals and inbreeding. Investigating the impact of habitat degradation on forest fragments helps to assess the genetic and ecological consequences of these changes, and allows the development of effective and sustainable conservation strategies to manage the genetic resources of species living in degraded landscapes. The aim of the present study was to assess the genetic diversity of fragmented Theobroma speciosum populations using microsatellite markers. Three urban forest fragments were selected in the municipality of Alta Floresta, Mato Grosso State, Brazil, namely C/E park, J park, and Zoo Botanical park. Seventy-five individuals (25 in each fragment) were sampled by collecting their leaves for genomic DNA extraction. Polymerase chain reaction amplifications were performed using nine polymorphic simple sequence repeat primers, which amplified 84 alleles. The mean expected heterozygosity was 0.970, and it was always higher than the observed heterozygosity. Analysis of molecular variance revealed that most variability occurred within populations (64%) rather than between them (36%). The Structure software and an unweighted pair group method with arithmetic mean dendrogram revealed three distinct groups, showing that individuals were allocated to their correct populations. Genotype number 3 from C/E park, number 45 from J park, and number 51 from Zoo Botanical park could be used as stock plants in breeding programs, because they were the most dissimilar within the populations studied. The high genetic diversity levels detected in all three populations studied emphasize the importance of protecting this species in its natural habitat.

  6. Comparative Evaluation of Impact Strength of Fragment Bonded Teeth and Intact Teeth: An In Vitro Study

    PubMed Central

    Venugopal, L; Lakshmi, M Narasimha; Babu, Devatha Ashok; Kiran, V Ravi

    2014-01-01

    Background: To test and compare the impact strength of fragment bonded teeth with that of intact teeth by using impact testing machine (pendulum type) as a mode of load. Materials and Methods: Forty extracted, maxillary, central incisors selected for this study (20 control group and 20 experimental group). In experimental group, teeth crowns were fractured with a microtome at 2.5 mm from mesioincisal angle cervically, fractured portion is attached to original crown portion with 3 M single bond dentin bonding agent and 3 M Z ‘100’, composite resin. Impact strength of fragment bonded teeth and intact teeth tested with impact testing machine and compared. Results: Mean impact strength of fragment bonded teeth (30.76 KJ/M2 ) is not statistically significant deferent from mean impact strength of intact teeth (31.11 KJ/M2 ). Conclusion: Mean impact strength of fragment bonded teeth is not statistically different with that of intact teeth. Hence, after fracture of teeth if it is restored with fragment reattachment by using 3 M single bond dentin bonding agent and 3 M Z ‘100’ composite resin is having impact strength like that of intact teeth. How to cite the article: Venugopal L, Lakshmi MN, Babu DA, Kiran VR. Comparative evaluation of impact strength of fragment bonded teeth and intact teeth: An in vitro study. J Int Oral Health 2014;6(3):73-6. PMID:25083037

  7. Fragmentation of structural energetic materials: implications for performance

    NASA Astrophysics Data System (ADS)

    Aydelotte, B.; Braithwaite, C. H.; Thadhani, N. N.

    2014-05-01

    Fragmentation results for structural energetic materials based on intermetallic forming mixtures are reviewed and the implications of the fragment populations are discussed. Cold sprayed Ni+Al and explosively compacted mixtures of Ni+Al+W and Ni+Al+W+Zr powders were fabricated into ring shaped samples and explosively fragmented. Ring velocity was monitored and fragments were soft captured in order to study the fragmentation process. It was determined that the fragments produced by these structural energetic materials are much smaller than those typically produced by ductile metals such as steel or aluminum. This has implications for combustion processes that may occur subsequent to the fragmentation process.

  8. Parallel theoretical study of the two components of the prompt fission neutrons: Dynamically released at scission and evaporated from fully accelerated fragments

    NASA Astrophysics Data System (ADS)

    Carjan, Nicolae; Rizea, Margarit; Talou, Patrick

    2017-09-01

    Prompt fission neutrons (PFN) angular and energy distributions for the reaction 235U(nth,f) are calculated as a function of the mass asymmetry of the fission fragments using two extreme assumptions: 1) PFN are released during the neck rupture due to the diabatic coupling between the neutron degree of freedom and the rapidly changing neutron-nucleus potential. These unbound neutrons are faster than the separation of the nascent fragments and most of them leave the fissioning system in few 10-21 sec. i.e., at the begining of the acceleration phase. Surrounding the fissioning nucleus by a sphere one can calculate the radial component of the neutron current density. Its time integral gives the angular distribution with respect to the fission axis. The average energy of each emitted neutron is also calculated using the unbound part of each neutron wave packet. The distribution of these average energies gives the general trends of the PFN spectrum: the slope, the range and the average value. 2) PFN are evaporated from fully accelerated, fully equilibrated fission fragments. To follow the de-excitation of these fragments via neutron and γ-ray sequential emissions, a Monte Carlo sampling of the initial conditions and a Hauser-Feshbach statistical approach is used. Recording at each step the emission probability, the energy and the angle of each evaporated neutron one can construct the PFN energy and the PFN angular distribution in the laboratory system. The predictions of these two methods are finally compared with recent experimental results obtained for a given fragment mass ratio.

  9. Differentiation of mixed biological traces in sexual assaults using DNA fragment analysis

    PubMed Central

    Apostolov, Аleksandar

    2014-01-01

    During the investigation of sexual abuse, it is not rare that mixed genetic material from two or more persons is detected. In such cases, successful profiling can be achieved using DNA fragment analysis, resulting in individual genetic profiles of offenders and their victims. This has led to an increase in the percentage of identified perpetrators of sexual offenses. The classic and modified genetic models used, allowed us to refine and implement appropriate extraction, polymerase chain reaction and electrophoretic procedures with individual assessment and approach to conducting research. Testing mixed biological traces using DNA fragment analysis appears to be the only opportunity for identifying perpetrators in gang rapes. PMID:26019514

  10. Fragment size distribution statistics in dynamic fragmentation of laser shock-loaded tin

    NASA Astrophysics Data System (ADS)

    He, Weihua; Xin, Jianting; Zhao, Yongqiang; Chu, Genbai; Xi, Tao; Shui, Min; Lu, Feng; Gu, Yuqiu

    2017-06-01

    This work investigates the geometric statistics method to characterize the size distribution of tin fragments produced in the laser shock-loaded dynamic fragmentation process. In the shock experiments, the ejection of the tin sample with etched V-shape groove in the free surface are collected by the soft recovery technique. Subsequently, the produced fragments are automatically detected with the fine post-shot analysis techniques including the X-ray micro-tomography and the improved watershed method. To characterize the size distributions of the fragments, a theoretical random geometric statistics model based on Poisson mixtures is derived for dynamic heterogeneous fragmentation problem, which reveals linear combinational exponential distribution. The experimental data related to fragment size distributions of the laser shock-loaded tin sample are examined with the proposed theoretical model, and its fitting performance is compared with that of other state-of-the-art fragment size distribution models. The comparison results prove that our proposed model can provide far more reasonable fitting result for the laser shock-loaded tin.

  11. Decay of excited nuclei produced in (78,82)Kr+(40)Ca reactions at 5.5 MeV/nucleon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gomez Del Campo, Jorge; Ademard, G.; Wieleczko, J. P.

    2011-01-01

    Decay modes of excited nuclei are investigated in {sup 78,82}Kr+{sup 40}Ca reactions at 5.5 MeV/nucleon. Charged products were measured by means of the 4{pi} INDRA array. Kinetic-energy spectra and angular distributions of fragments with atomic number 3 {le} Z {le} 28 indicate a high degree of relaxation and are compatible with a fissionlike phenomenon. Persistence of structure effects is evidenced from elemental cross sections ({sigma}{sub Z}) as well as a strong odd-even staggering (o-e-s) of the light-fragment yields. The magnitude of the staggering does not significantly depend on the neutron content of the emitting system. Fragment-particle coincidences suggest that themore » light partners in very asymmetric fission are emitted either cold or at excitation energies below the particle emission thresholds. The evaporation residue cross section of the {sup 78}Kr+{sup 40}Ca reaction is slightly higher than the one measured in the {sup 82}Kr+{sup 40}Ca reaction. The fissionlike component is larger by {approx}25% for the reaction having the lowest neutron-to-proton ratio. These experimental features are confronted to the predictions of theoretical models. The Hauser-Feshbach approach including the emission of fragments up to Z = 14 in their ground states as well as excited states does not account for the main features of {sigma}{sub Z}. For both reactions, the transition-state formalism reasonably reproduces the Z distribution of the fragments with charge 12 {le} Z {le} 28. However, this model strongly overestimates the light-fragment cross sections and does not explain the o-e-s of the yields for 6 {le} Z {le} 10. The shape of the whole Z distribution and the o-e-s of the light-fragment yields are satisfactorily reproduced within the dinuclear system framework which treats the competition among evaporation, fusion-fission, and quasifission processes. The model suggests that heavy fragments come mainly from quasifission while light fragments are predominantly

  12. Determination of Impact Parameters in Aligned Breakup of Projectile-like Fragments in $$^{197}$$Au + $$^{197}$$Au Collisions at 23$A$MeV

    DOE PAGES

    Cap, T.; Siwek-Wilczyńska, K.; Wilczynski, J.; ...

    2016-03-01

    Symmetric and asymmetric aligned breakup of projectile-like fragments inmore » $$^{197}$$Au + $$^{197}$$Au collisions at 23$A$,MeV was studied. Independently of the asymmetry, the reaction yields have been found peaked at a common, very narrow range of impact parameters.« less

  13. Fragmentation of cancer cells

    NASA Astrophysics Data System (ADS)

    Vanapalli, Siva; Kamyabi, Nabiollah

    Tumor cells have to travel through blood capillaries to be able to metastasize and colonize in distant organs. Among the numerous cells that are shed by the primary tumor, very few survive in circulation. In vivo studies have shown that tumor cells can undergo breakup at microcapillary junctions affecting their survival. It is currently unclear what hydrodynamic and biomechanical factors contribute to fragmentation and moreover how different are the breakup dynamics of highly and weakly metastatic cells. In this study, we use microfluidics to investigate flow-induced breakup of prostate and breast cancer cells. We observe several different modes of breakup of cancer cells, which have striking similarities with breakup of viscous drops. We quantify the breakup time and find that highly metastatic cancer cells take longer to breakup than lowly metastatic cells suggesting that tumor cells may dynamically modify their deformability to avoid fragmentation. We also identify the role that cytoskeleton and membrane plays in the breakup process. Our study highlights the important role that tumor cell fragmentation plays in cancer metastasis. Cancer Prevention and Research Institute of Texas.

  14. Temporal change in fragmentation of continental US forests

    Treesearch

    James D. Wickham; Kurt H. Riitters; Timothy G. Wade; Collin Homer

    2008-01-01

    Changes in forest ecosystem function and condition arise from changes in forest fragmentation. Previous studies estimated forest fragmentation for the continental United States (US). In this study, new temporal land-cover data from the National Land Cover Database (NLCD) were used to estimate changes in forest fragmentation at multiple scales for the continental US....

  15. Studies of fission fragment properties at the Los Alamos Neutron Science Center (LANSCE)

    NASA Astrophysics Data System (ADS)

    Tovesson, Fredrik; Mayorov, Dmitriy; Duke, Dana; Manning, Brett; Geppert-Kleinrath, Verena

    2017-09-01

    Nuclear data related to the fission process are needed for a wide variety of research areas, including fundamental science, nuclear energy and non-proliferation. While some of the relevant data have been measured to the required accuracies there are still many aspects of fission that need further investigation. One such aspect is how Total Kinetic Energy (TKE), fragment yields, angular distributions and other fission observables depend on excitation energy of the fissioning system. Another question is the correlation between mass, charge and energy of fission fragments. At the Los Alamos Neutron Science Center (LANSCE) we are studying neutron-induced fission at incident energies from thermal up to hundreds of MeV using the Lujan Center and Weapons Neutron Research (WNR) facilities. Advanced instruments such as SPIDER (time-of-flight and kinetic energy spectrometer), the NIFFTE Time Projection Chamber (TPC), and Frisch grid Ionization Chambers (FGIC) are used to investigate the properties of fission fragments, and some important results for the major actinides have been obtained.

  16. MaRaCluster: A Fragment Rarity Metric for Clustering Fragment Spectra in Shotgun Proteomics.

    PubMed

    The, Matthew; Käll, Lukas

    2016-03-04

    Shotgun proteomics experiments generate large amounts of fragment spectra as primary data, normally with high redundancy between and within experiments. Here, we have devised a clustering technique to identify fragment spectra stemming from the same species of peptide. This is a powerful alternative method to traditional search engines for analyzing spectra, specifically useful for larger scale mass spectrometry studies. As an aid in this process, we propose a distance calculation relying on the rarity of experimental fragment peaks, following the intuition that peaks shared by only a few spectra offer more evidence than peaks shared by a large number of spectra. We used this distance calculation and a complete-linkage scheme to cluster data from a recent large-scale mass spectrometry-based study. The clusterings produced by our method have up to 40% more identified peptides for their consensus spectra compared to those produced by the previous state-of-the-art method. We see that our method would advance the construction of spectral libraries as well as serve as a tool for mining large sets of fragment spectra. The source code and Ubuntu binary packages are available at https://github.com/statisticalbiotechnology/maracluster (under an Apache 2.0 license).

  17. Advances in copper-catalyzed C-C coupling reactions and related domino reactions based on active methylene compounds.

    PubMed

    Liu, Yunyun; Wan, Jie-Ping

    2012-06-01

    Active methylene compounds are a major class of reaction partners for C-C bond formation with sp(2) C-X (X = halide) fragments. As one of the most-classical versions of the Ullmann-type coupling reaction, activated-methylene-based C-C coupling reactions have been efficiently employed in a large number of syntheses. Although this type of reaction has long relied on noble-metal catalysis, the renaissance of copper catalysis at the end of last century has led to dramatic developments in Ullmann C-C coupling reactions. Owing to its low cost, abundance, as well as excellent catalytic activity, the exceptional atom economy of copper catalysis is gaining widespread attention in various organic synthesis. This review summarizes the advances in copper-catalyzed intermolecular and intramolecular C-C coupling reactions that use activated methylene species as well as in tandem reactions that are initiated by this transformation. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Fragment-based virtual screening approach and molecular dynamics simulation studies for identification of BACE1 inhibitor leads.

    PubMed

    Manoharan, Prabu; Ghoshal, Nanda

    2018-05-01

    Traditional structure-based virtual screening method to identify drug-like small molecules for BACE1 is so far unsuccessful. Location of BACE1, poor Blood Brain Barrier permeability and P-glycoprotein (Pgp) susceptibility of the inhibitors make it even more difficult. Fragment-based drug design method is suitable for efficient optimization of initial hit molecules for target like BACE1. We have developed a fragment-based virtual screening approach to identify/optimize the fragment molecules as a starting point. This method combines the shape, electrostatic, and pharmacophoric features of known fragment molecules, bound to protein conjugate crystal structure, and aims to identify both chemically and energetically feasible small fragment ligands that bind to BACE1 active site. The two top-ranked fragment hits were subjected for a 53 ns MD simulation. Principle component analysis and free energy landscape analysis reveal that the new ligands show the characteristic features of established BACE1 inhibitors. The potent method employed in this study may serve for the development of potential lead molecules for BACE1-directed Alzheimer's disease therapeutics.

  19. Determination of the Nucleon-Nucleon Interaction in the ImQMD Model by Nuclear Reactions at Fermi Energy

    NASA Astrophysics Data System (ADS)

    Li, Cheng; Tian, Jun-Long; Wang, Ning

    2013-11-01

    The nucleon-nucleon interaction is investigated by using the ImQMD model with the three sets of parameters IQ1, IQ2 and IQ3 in which the corresponding incompressibility coefficients of nuclear matter are different. Fusion excitation function and the charge distribution of fragments are calculated for reaction systems 40Ca+40Ca at different incident energies. It is found that obvious differences in the charge distribution were observed at the energy region 10-25A MeV by adopting the three sets of parameters, while the results were close to each other at energy region of 30-45A MeV for the reaction system. It indicates that the Fermi energy region is a sensitive energy region to explore the N-N interaction. The fragment multiplicity spectrum for 238U+197Au at 15A MeV are reproduced by the ImQMD model with the set of parameter IQ3. It is concluded that charge distribution of the fragments and the fragment multiplicity spectrum are good observables for studying N-N interaction, and IQ3 is a suitable set of parameters for the ImQMD model.

  20. Heavy Ion Fragmentation Experiments at the Bevatron

    NASA Technical Reports Server (NTRS)

    Heckman, H. H.

    1975-01-01

    Fragmentation processes of heavy nuclei in matter using the heavy-ion capability of the Bevatron were studied. The purpose was to obtain the single particle inclusive spectra of secondary nuclei produced at 0 deg by the fragmentation of heavy ion beam projectiles. The process being examined is B+T yields F + anything, where B is the beam nucleus, T is the target nucleus, and F is the detected fragment. The fragments F are isotopically identified by experimental procedures involving magnetic analysis, energy loss and time-of-flight measurements. Attempts were also made to: (1) measure the total and partial production cross section for all isotopes, (2) test the applicability of high-energy multi-particle interaction theory to nuclear fragmentation, (3) apply the cross-section data and fragmentation probabilities to cosmic ray transport theory, and (4) search for systematic behavior of fragment production as a means to improve existing semi-empirical theories of cross sections.

  1. Experimental determination of particle range and dose distribution in thick targets through fragmentation reactions of stable heavy ions.

    PubMed

    Inaniwa, Taku; Kohno, Toshiyuki; Tomitani, Takehiro; Urakabe, Eriko; Sato, Shinji; Kanazawa, Mitsutaka; Kanai, Tatsuaki

    2006-09-07

    In radiation therapy with highly energetic heavy ions, the conformal irradiation of a tumour can be achieved by using their advantageous features such as the good dose localization and the high relative biological effectiveness around their mean range. For effective utilization of such properties, it is necessary to evaluate the range of incident ions and the deposited dose distribution in a patient's body. Several methods have been proposed to derive such physical quantities; one of them uses positron emitters generated through projectile fragmentation reactions of incident ions with target nuclei. We have proposed the application of the maximum likelihood estimation (MLE) method to a detected annihilation gamma-ray distribution for determination of the range of incident ions in a target and we have demonstrated the effectiveness of the method with computer simulations. In this paper, a water, a polyethylene and a polymethyl methacrylate target were each irradiated with stable (12)C, (14)N, (16)O and (20)Ne beams. Except for a few combinations of incident beams and targets, the MLE method could determine the range of incident ions R(MLE) with a difference between R(MLE) and the experimental range of less than 2.0 mm under the circumstance that the measurement of annihilation gamma rays was started just after the irradiation of 61.4 s and lasted for 500 s. In the process of evaluating the range of incident ions with the MLE method, we must calculate many physical quantities such as the fluence and the energy of both primary ions and fragments as a function of depth in a target. Consequently, by using them we can obtain the dose distribution. Thus, when the mean range of incident ions is determined with the MLE method, the annihilation gamma-ray distribution and the deposited dose distribution can be derived simultaneously. The derived dose distributions in water for the mono-energetic heavy-ion beams of four species were compared with those measured with an

  2. Scalable purification of the lantibiotic nisin and isolation of chemical/enzymatic cleavage fragments suitable for semi-synthesis.

    PubMed

    Slootweg, Jack C; Liskamp, Rob M J; Rijkers, Dirk T S

    2013-11-01

    Herein, we describe a scalable purification of the lantibiotic nisin via an extraction/precipitation approach using a biphasic system, which can be carried out up to 40-80 gram scale. This approach results in an at least tenfold enrichment of commercially available preparations of nisin, which usually contain only 2.5% of the desired peptide, to allow further purification by preparative HPLC. As a follow-up study, the enriched nisin sample was digested either by trypsin or chymotrypsin, or treated by CNBr, and these reactions were monitored by LC-MS to identify and characterize the obtained fragments. Two previously unknown cleavage sites have been identified: Asn20-Met21 and Met21-Lys22 for trypsin and chymotrypsin, respectively. Furthermore, a novel and convenient enzymatic approach to isolate the native nisin C-ring [nisin fragment (13-20)] was uncovered. Finally, by means of preparative HPLC, nisin fragments (1-12), (1-20), (22-34), and (22-31) could be isolated and will be used in a semi-synthesis approach to elucidate the role of each fragment in the mode of action of nisin as an antimicrobial peptide. Copyright © 2013 European Peptide Society and John Wiley & Sons, Ltd.

  3. Fragment Size Distribution of Blasted Rock Mass

    NASA Astrophysics Data System (ADS)

    Jug, Jasmin; Strelec, Stjepan; Gazdek, Mario; Kavur, Boris

    2017-12-01

    Rock mass is a heterogeneous material, and the heterogeneity of rock causes sizes distribution of fragmented rocks in blasting. Prediction of blasted rock mass fragmentation has a significant role in the overall economics of opencast mines. Blasting as primary fragmentation can significantly decrease the cost of loading, transport, crushing and milling operations. Blast fragmentation chiefly depends on the specific blast design (geometry of blast holes drilling, the quantity and class of explosive, the blasting form, the timing and partition, etc.) and on the properties of the rock mass (including the uniaxial compressive strength, the rock mass elastic Young modulus, the rock discontinuity characteristics and the rock density). Prediction and processing of blasting results researchers can accomplish by a variety of existing software’s and models, one of them is the Kuz-Ram model, which is possibly the most widely used approach to estimating fragmentation from blasting. This paper shows the estimation of fragmentation using the "SB" program, which was created by the authors. Mentioned program includes the Kuz-Ram model. Models of fragmentation are confirmed and calibrated by comparing the estimated fragmentation with actual post-blast fragmentation from image processing techniques. In this study, the Kuz-Ram fragmentation model has been used for an open-pit limestone quarry in Dalmatia, southern Croatia. The resulting calibrated value of the rock factor enables the quality prognosis of fragmentation in further blasting works, with changed drilling geometry and blast design parameters. It also facilitates simulation in the program to optimize blasting works and get the desired fragmentations of the blasted rock mass.

  4. Momentum transfer in relativistic heavy ion charge-exchange reactions

    NASA Technical Reports Server (NTRS)

    Townsend, L. W.; Wilson, J. W.; Khan, F.; Khandelwal, G. S.

    1991-01-01

    Relativistic heavy ion charge-exchange reactions yield fragments (Delta-Z = + 1) whose longitudinal momentum distributions are downshifted by larger values than those associated with the remaining fragments (Delta-Z = 1, -2,...). Kinematics alone cannot account for the observed downshifts; therefore, an additional contribution from collision dynamics must be included. In this work, an optical model description of collision momentum transfer is used to estimate the additional dynamical momentum downshift. Good agreement between theoretical estimates and experimental data is obtained.

  5. Fragmentation of Structural Energetic Materials: Implications for Performance

    NASA Astrophysics Data System (ADS)

    Aydelotte, Brady; Braithwaite, Christopher; Thadhani, Naresh

    2013-06-01

    Fragmentation results for structural energetic materials based on intermetallic forming mixtures are reviewed and the implications of the fragment populations are discussed. Cold Sprayed Ni+Al and explosively compacted mixtures of Ni+Al+W and Ni+Al+W+Zr powders were fabricated into ring shaped samples and subjected to fragmentation tests. Ring velocity was monitored and fragments were soft captured in order to study the fragmentation process. It was determined that the fragments produced by these structural energetic materials are much smaller than those typically produced by ductile metals such as steel or aluminum. This has implications for combustion processes that may occur subsequent to the fragmentation process. ONR/MURI grant No. N00014-07-1-0740 Dr. Cliff Bedford PM.

  6. Low Mass MS/MS Fragments of Protonated Amino Acids Used for Distinction of Their 13C- Isotopomers in Metabolic Studies

    NASA Astrophysics Data System (ADS)

    Ma, Xin; Dagan, Shai; Somogyi, Árpád; Wysocki, Vicki H.; Scaraffia, Patricia Y.

    2013-04-01

    Glu, Gln, Pro, and Ala are the main amino acids involved in ammonia detoxification in mosquitoes. In order to develop a tandem mass spectrometry method (MS2) to monitor each carbon of the above isotopically-labeled 13C-amino acids for metabolic studies, the compositions and origins of atoms in fragments of the protonated amino acid should be first elucidated. Thus, various electrospray (ESI)-based MS2 tools were employed to study the fragmentation of these unlabeled and isotopically-labeled amino acids and better understand their dissociation pathways. A broad range of fragments, including previously-undescribed low m/z fragments was revealed. The formulae of the fragments (from m/z 130 down to m/z 27) were confirmed by their accurate masses. The structures and conformations of the larger fragments of Glu were also explored by ion mobility mass spectrometry (IM-MS) and gas-phase hydrogen/deuterium exchange (HDX) experiments. It was found that some low m/z fragments ( m/z 27-30) are common to Glu, Gln, Pro, and Ala. The origins of carbons in these small fragments are discussed and additional collision induced dissociation (CID) MS2 fragmentation pathways are proposed for them. It was also found that small fragments (≤ m/z 84) of protonated, methylated Glu, and methylated Gln are the same as those of the underivatized Glu and Gln. Taken together, the new approach of utilizing low m/z fragments can be applied to distinguish, identify, and quantify 13C-amino acids labeled at various positions, either in the backbone or side chain.

  7. [Understanding mitochondrial genome fragmentation in parasitic lice (Insecta: Phthiraptera)].

    PubMed

    Dong, Wen-Ge; Guo, Xian-Guo; Jin, Dao-Chao; Xue, Shi-Peng; Qin, Feng; Simon, Song; Stephen, C Barker; Renfu, Shao

    2013-07-01

    Lice are obligate ectoparasites of mammals and birds. Extensive fragmentation of mitochondrial genomes has been found in some louse species in the families Pediculidae, Pthiridae, Philopteridae and Trichodectidae. For example, the mt genomes of human body louse (Pediculus humanus), head louse (Pediculus capitis), and public louse (Pthirus pubis) have 20, 20 and 14 mini-chromosomes, respectively. These mini-chromosomes might be the results of deletion and recombination of mt genes. The factors and mechanisms of mitochondrial genome fragmentation are currently unknown. The fragmentation might be the results of evolutionary selection or random genetic drift or it is probably related to the lack of mtSSB (mitochondrial single-strand DNA binding protein). Understanding the fragmentation of mitochondrial genomes is of significance for understanding the origin and evolution of mitochondria. This paper reviews the recent advances in the studies of mito-chondrial genome fragmentation in lice, including the phenomena of mitochondrial genome fragmentation, characteristics of fragmented mitochondrial genomes, and some factors and mechanisms possibly leading to the mitochondrial genome fragmentation of lice. Perspectives for future studies on fragmented mt genomes are also discussed.

  8. Negative Ion CID Fragmentation of O-linked Oligosaccharide Aldoses—Charge Induced and Charge Remote Fragmentation

    NASA Astrophysics Data System (ADS)

    Doohan, Roisin A.; Hayes, Catherine A.; Harhen, Brendan; Karlsson, Niclas Göran

    2011-06-01

    Collision induced dissociation (CID) fragmentation was compared between reducing and reduced sulfated, sialylated, and neutral O-linked oligosaccharides. It was found that fragmentation of the [M - H]- ions of aldoses with acidic residues gave unique Z-fragmentation of the reducing end GalNAc containing the acidic C-6 branch, where the entire C-3 branch was lost. This fragmentation pathway, which is not seen in the alditols, showed that the process involved charge remote fragmentation catalyzed by a reducing end acidic anomeric proton. With structures containing sialic acid on both the C-3 and C-6 branch, the [M - H]- ions were dominated by the loss of sialic acid. This fragmentation pathway was also pronounced in the [M - 2H]2- ions revealing both the C-6 Z-fragment plus its complementary C-3 C-fragment in addition to glycosidic and cross ring fragmentation. This generation of the Z/C-fragment pairs from GalNAc showed that the charges were not participating in their generation. Fragmentation of neutral aldoses showed pronounced Z-fragmentation believed to be generated by proton migration from the C-6 branch to the negatively charged GalNAc residue followed by charge remote fragmentation similar to the acidic oligosaccharides. In addition, A-type fragments generated by charge induced fragmentation of neutral oligosaccharides were observed when the charge migrated from C-1 of the GalNAc to the GlcNAc residue followed by rearrangement to accommodate the 0,2A-fragmentation. LC-MS also showed that O-linked aldoses existed as interchangeable α/β pyranose anomers, in addition to a third isomer (25% of the total free aldose) believed to be the furanose form.

  9. Reactions of Free Radicals with Nitro-Compounds and Nitrates

    DTIC Science & Technology

    1981-03-31

    PAGE(I/hmm a•Ia ntatemd the fragment derived from the nitrates but not from the nitro-compounds could undergo exothermic rearrangement. Product analyses...compounds could undergo exothermic rearrangement. Product analyses and computer modelling were undertaken, these provided a clear explanation of why the...Nitrate 14 Reaction of Oxygen Atoms with Nitromethane 16 Reaction of Oxygen Atoms with Nitroethane 17 Products from Nitrocompounds 18 Effect of Carbon

  10. Half-life measurements of isomeric states populated in projectile fragmentation

    NASA Astrophysics Data System (ADS)

    Bowry, M.; Podolyák, Zs.; Kurcewicz, J.; Pietri, S.; Bunce, M.; Regan, P. H.; Farinon, F.; Geissel, H.; Nociforo, C.; Prochazka, A.; Weick, H.; Allegro, P.; Benlliure, J.; Benzoni, G.; Boutachkov, P.; Gerl, J.; Gorska, M.; Gottardo, A.; Gregor, N.; Janik, R.; Knöbel, R.; Kojouharov, I.; Kubo, T.; Litvinov, Y. A.; Merchan, E.; Mukha, I.; Naqvi, F.; Pfeiffer, B.; Pfützner, M.; Plaß, W.; Pomorski, M.; Riese, B.; Ricciardi, M. V.; Schmidt, K.-H.; Schaffner, H.; Kurz, N.; Denis Bacelar, A. M.; Bruce, A. M.; Farrelly, G. F.; Alkhomashi, N.; Al-Dahan, N.; Scheidenberger, C.; Sitar, B.; Spiller, P.; Stadlmann, J.; Strmen, P.; Sun, B.; Takeda, H.; Tanihata, I.; Terashima, S.; Valiente Dobon, J. J.; Winfield, J. S.; Wollersheim, H.-J.; Woods, P. J.

    2012-10-01

    The half-lives of excited isomeric states observed in 195Au, 201Tl and 215Rn are reported for the first time. Delayed γ-rays were correlated with nuclei produced in the projectile fragmentation of relativistic 238U ions, unambiguously identified in terms of their atomic number (Z) and mass-to-charge ratio (A/Q) after traversing an in-flight separator. The observation of a long-lived isomeric state in 195Au with t1/2 = 16-4+8 μs is presented. Two shorter-lived isomeric states were detected in 201Tl and 215Rn with t1/2 = 95-21+39 and 57-12+21 ns respectively. In total 24 isomeric states were identified in different nuclei from Pt to Rn (A ˜ 200) during the current study, the majority of which were previously reported. The wealth of spectroscopic data provides the opportunity to determine the isomeric ratios over a wide range of Z, A and angular momentum (I ħ) of the reaction products. In particular, high-spin states with I ≳ 18 ħ provide a robust test of theoretical models of fragmentation.

  11. A multi-particle crushing apparatus for studying rock fragmentation due to repeated impacts

    NASA Astrophysics Data System (ADS)

    Huang, S.; Mohanty, B.; Xia, K.

    2017-12-01

    Rock crushing is a common process in mining and related operations. Although a number of particle crushing tests have been proposed in the literature, most of them are concerned with single-particle crushing, i.e., a single rock sample is crushed in each test. Considering the realistic scenario in crushers where many fragments are involved, a laboratory crushing apparatus is developed in this study. This device consists of a Hopkinson pressure bar system and a piston-holder system. The Hopkinson pressure bar system is used to apply calibrated dynamic loads to the piston-holder system, and the piston-holder system is used to hold rock samples and to recover fragments for subsequent particle size analysis. The rock samples are subjected to three to seven impacts under three impact velocities (2.2, 3.8, and 5.0 m/s), with the feed size of the rock particle samples limited between 9.5 and 12.7 mm. Several key parameters are determined from this test, including particle size distribution parameters, impact velocity, loading pressure, and total work. The results show that the total work correlates well with resulting fragmentation size distribution, and the apparatus provides a useful tool for studying the mechanism of crushing, which further provides guidelines for the design of commercial crushers.

  12. Fragmentation of Massive Dense Cores Down to <~ 1000 AU: Relation between Fragmentation and Density Structure

    NASA Astrophysics Data System (ADS)

    Palau, Aina; Estalella, Robert; Girart, Josep M.; Fuente, Asunción; Fontani, Francesco; Commerçon, Benoit; Busquet, Gemma; Bontemps, Sylvain; Sánchez-Monge, Álvaro; Zapata, Luis A.; Zhang, Qizhou; Hennebelle, Patrick; di Francesco, James

    2014-04-01

    In order to shed light on the main physical processes controlling fragmentation of massive dense cores, we present a uniform study of the density structure of 19 massive dense cores, selected to be at similar evolutionary stages, for which their relative fragmentation level was assessed in a previous work. We inferred the density structure of the 19 cores through a simultaneous fit of the radial intensity profiles at 450 and 850 μm (or 1.2 mm in two cases) and the spectral energy distribution, assuming spherical symmetry and that the density and temperature of the cores decrease with radius following power-laws. Even though the estimated fragmentation level is strictly speaking a lower limit, its relative value is significant and several trends could be explored with our data. We find a weak (inverse) trend of fragmentation level and density power-law index, with steeper density profiles tending to show lower fragmentation, and vice versa. In addition, we find a trend of fragmentation increasing with density within a given radius, which arises from a combination of flat density profile and high central density and is consistent with Jeans fragmentation. We considered the effects of rotational-to-gravitational energy ratio, non-thermal velocity dispersion, and turbulence mode on the density structure of the cores, and found that compressive turbulence seems to yield higher central densities. Finally, a possible explanation for the origin of cores with concentrated density profiles, which are the cores showing no fragmentation, could be related with a strong magnetic field, consistent with the outcome of radiation magnetohydrodynamic simulations. The James Clerk Maxwell Telescope is operated by the Joint Astronomy Centre on behalf of the Science and Technology Facilities Council of the United Kingdom, the Netherlands Organisation for Scientific Research, and the National Research Council of Canada.

  13. Spatial fragment distribution from a therapeutic pencil-like carbon beam in water.

    PubMed

    Matsufuji, Naruhiro; Komori, Masataka; Sasaki, Hitomi; Akiu, Kengo; Ogawa, Masako; Fukumura, Akifumi; Urakabe, Eriko; Inaniwa, Taku; Nishio, Teiji; Kohno, Toshiyuki; Kanai, Tatsuaki

    2005-07-21

    The latest heavy ion therapy tends to require information about the spatial distribution of the quality of radiation in a patient's body in order to make the best use of any potential advantage of swift heavy ions for the therapeutic treatment of a tumour. The deflection of incident particles is described well by Molière's multiple-scattering theory of primary particles; however, the deflection of projectile fragments is not yet thoroughly understood. This paper reports on our investigation of the spatial distribution of fragments produced from a therapeutic carbon beam through nuclear reactions in thick water. A DeltaE-E counter telescope system, composed of a plastic scintillator, a gas-flow proportional counter and a BGO scintillator, was rotated around a water target in order to measure the spatial distribution of the radiation quality. The results revealed that the observed deflection of fragment particles exceeded the multiple scattering effect estimated by Molière's theory. However, the difference can be sufficiently accounted for by considering one term involved in the multiple-scattering formula; this term corresponds to a lateral 'kick' at the point of production of the fragment. This kick is successfully explained as a transfer of the intra-nucleus Fermi momentum of a projectile to the fragment; the extent of the kick obeys the expectation derived from the Goldhaber model.

  14. Experimental study on the friction effect of plastic stents for biliary stone fragmentation (with video).

    PubMed

    Kwon, Chang-Il; Kim, Gwangil; Jeong, Seok; Choi, Sung Hoon; Ko, Kwang Hyun; Lee, Don Haeng; Cho, Joo Young; Hong, Sung Pyo

    2018-01-01

    In patients with irretrievable or intractable bile duct stone, temporary insertion of a plastic stent (PS) followed by further endoscopic retrograde cholangiopancreatography (ERCP) or surgery has been recommended as a 'bridge' therapy. However, the exact mechanism of stone fragmentation has not been discovered. The aim of the present study was to evaluate whether PS shape can facilitate stone fragmentation. Using a new in vitro bile flow phantom model, we compared the friction effect among three different PS groups (straight PS group, double pigtail-shaped PS group, and screw-shaped PS group) and a control group. Each group had 10 silicon tube blocks that separately contained one stone and two PS. The control group had 10 blocks each with only a stone and no PS. We carried out analysis of the friction effect by stone weight and volume changes among the groups, excluding fragmented stones. After 8 weeks, complete fragmentation was noted in one out of 34 cholesterol stones (2.9%) and in four out of six pigmented stones (66.7%). Fragmentation tended to be more prominent in the screw-shaped PS group than in the straight PS group, double pigtail-shaped group, and control group (volume change: -11.33%, 7.94%, 4.43%, and 2.05%, respectively, P = 0.1390; weight change: -9.30%, 0.71%, -0.10%, and -1.23%, respectively, P = 0.3553). Stone fragmentation may be induced by PS friction effect. Also, screw-shaped plastic stents may improve friction effect. These results may help guide future PS development and clinical decisions. © 2017 Japan Gastroenterological Endoscopy Society.

  15. Modeling of ductile fragmentation that includes void interactions

    NASA Astrophysics Data System (ADS)

    Meulbroek Fick, J. P.; Ramesh, K. T.; Swaminathan, P. K.

    2015-12-01

    The failure and fragmentation of ductile materials through the nucleation, growth, and coalescence of voids is important to the understanding of key structural materials. In this model of development effort, ductile fragmentation of an elastic-viscoplastic material is studied through a computational approach which couples these key stages of ductile failure with nucleation site distributions and wave propagation, and predicts fragment spacing within a uniaxial strain approximation. This powerful tool is used to investigate the mechanical and thermal response of OFHC copper at a strain rate of 105. Once the response of the material is understood, the fragmentation of this test material is considered. The average fragment size as well as the fragment size distribution is formulated.

  16. Studies of fission fragment properties at the Los Alamos Neutron Science Center (LANSCE)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tovesson, Fredrik; Mayorov, Dmitriy; Duke, Dana

    Nuclear data related to the fission process are needed for a wide variety of research areas, including fundamental science, nuclear energy and non-proliferation. While some of the relevant data have been measured to the required accuracies there are still many aspects of fission that need further investigation. One such aspect is how Total Kinetic Energy (TKE), fragment yields, angular distributions and other fission observables depend on excitation energy of the fissioning system. Another question is the correlation between mass, charge and energy of fission fragments. At the Los Alamos Neutron Science Center (LANSCE) we are studying neutron-induced fission at incidentmore » energies from thermal up to hundreds of MeV using the Lujan Center and Weapons Neutron Research (WNR) facilities. Advanced instruments such as SPIDER (time-of-flight and kinetic energy spectrometer), the NIFFTE Time Projection Chamber (TPC), and Frisch grid Ionization Chambers (FGIC) are used to investigate the properties of fission fragments, and some important results for the major actinides have been obtained.« less

  17. Studies of fission fragment properties at the Los Alamos Neutron Science Center (LANSCE)

    DOE PAGES

    Tovesson, Fredrik; Mayorov, Dmitriy; Duke, Dana; ...

    2017-09-13

    Nuclear data related to the fission process are needed for a wide variety of research areas, including fundamental science, nuclear energy and non-proliferation. While some of the relevant data have been measured to the required accuracies there are still many aspects of fission that need further investigation. One such aspect is how Total Kinetic Energy (TKE), fragment yields, angular distributions and other fission observables depend on excitation energy of the fissioning system. Another question is the correlation between mass, charge and energy of fission fragments. At the Los Alamos Neutron Science Center (LANSCE) we are studying neutron-induced fission at incidentmore » energies from thermal up to hundreds of MeV using the Lujan Center and Weapons Neutron Research (WNR) facilities. Advanced instruments such as SPIDER (time-of-flight and kinetic energy spectrometer), the NIFFTE Time Projection Chamber (TPC), and Frisch grid Ionization Chambers (FGIC) are used to investigate the properties of fission fragments, and some important results for the major actinides have been obtained.« less

  18. Iron meteorite fragment studied by atomic and nuclear analytical methods

    NASA Astrophysics Data System (ADS)

    Cesnek, Martin; Štefánik, Milan; Kmječ, Tomáš; Miglierini, Marcel

    2016-10-01

    Chemical and structural compositions of a fragment of Sikhote-Alin iron meteorite were investigated by X-ray fluorescence analysis (XRF), neutron activation analysis (NAA) and Mössbauer spectroscopy (MS). XRF and NAA revealed the presence of chemical elements which are characteristic for iron meteorites. XRF also showed a significant amount of Si and Al on the surface of the fragment. MS spectra revealed possible presence of α-Fe(Ni, Co) phase with different local Ni concentration. Furthermore, paramagnetic singlet was detected in Mössbauer spectra recorded at room temperature and at 4.2 K.

  19. Matrilineage differentiation of the genus Tetragonisca using mitochondrial DNA markers and the polymerase chain reaction-restriction fragment length polymorphism technique.

    PubMed

    Santos, S A; Bronzato, A R; Moreira, B M T; Araujo, K F; Ronqui, L; Mangolin, C A; Toledo, V A A; Ruvolo-Takasusuki, M C C

    2015-10-21

    The Meliponinae are important pollinators of plant species, and one of the most managed species is Tetragonisca angustula. Initially, two subspecies were identified in T. angustula: T. angustula angustula and T. angustula fiebrigi. Subsequently, T. a. fiebrigi was considered a species, based on the coloration of its mesepisternum. The objective of the present study was to obtain genetic markers that could differentiate the two species by amplifying regions of mitochondrial DNA and conducting polymerase chain reaction-restriction fragment length polymorphism analysis. Worker bees were collected in three Brazilian states: Paraná (Maringá, Altônia, and Foz do Iguaçu), São Paulo (Dracena, São Carlos, and Santa Cruz do Rio Pardo), and Rondônia (Ariquemes). Ten pairs of insect heterologous primers were tested and four were used (primer pair 1, ND2 and COI; primer pair 2, COI; primer pair 8, 16S and 12S; and primer pair 9, COII). For the restriction analysis, 13 enzymes were tested: EcoRI, EcoRV, HindIII, HinfI, RsaI, PstI, XbaI, HaeIII, ClaI, XhoI, BglII, PvuII, and ScaI. Markers were obtained (primer pair 8 cleaved with EcoRV and XbaI and primer pair 9 cleaved with HaeIII, RsaI, and XbaI) that enabled matrilineage identification in the nests studied, which confirmed that hybridization could occur between both Tetragonisca species. The beginning of speciation was probably recent, and secondary contact has resulted in crosses between T. angustula females and T. fiebrigi males. Because of this hybridization, it would be appropriate to consider them as two subspecies of T. angustula.

  20. Partial nucleotide sequences, and routine typing by polymerase chain reaction-restriction fragment length polymorphism, of the brown trout (Salmo trutta) lactate dehydrogenase, LDH-C1*90 and *100 alleles.

    PubMed

    McMeel, O M; Hoey, E M; Ferguson, A

    2001-01-01

    The cDNA nucleotide sequences of the lactate dehydrogenase alleles LDH-C1*90 and *100 of brown trout (Salmo trutta) were found to differ at position 308 where an A is present in the *100 allele but a G is present in the *90 allele. This base substitution results in an amino acid change from aspartic acid at position 82 in the LDH-C1 100 allozyme to a glycine in the 90 allozyme. Since aspartic acid has a net negative charge whilst glycine is uncharged, this is consistent with the electrophoretic observation that the LDH-C1 100 allozyme has a more anodal mobility relative to the LDH-C1 90 allozyme. Based on alignment of the cDNA sequence with the mouse genomic sequence, a local primer set was designed, incorporating the variable position, and was found to give very good amplification with brown trout genomic DNA. Sequencing of this fragment confirmed the difference in both homozygous and heterozygous individuals. Digestion of the polymerase chain reaction products with BslI, a restriction enzyme specific for the site difference, gave one, two and three fragments for the two homozygotes and the heterozygote, respectively, following electrophoretic separation. This provides a DNA-based means of routine screening of the highly informative LDH-C1* polymorphism in brown trout population genetic studies. Primer sets presented could be used to sequence cDNA of other LDH* genes of brown trout and other species.

  1. Fission Fragment Studies by Gamma-Ray Spectrometry with the Mass Separator Lohengrin

    NASA Astrophysics Data System (ADS)

    Materna, T.; Amouroux, C.; Bail, A.; Bideau, A.; Chabod, S.; Faust, H.; Capellan, N.; Kessedjian, G.; Köster, U.; Letourneau, A.; Litaize, O.; Martin, F.; Mathieu, L.; Méplan, O.; Panebianco, S.; Régis, J.-M.; Rudigier, M.; Sage, C.; Serot, O.; Urban, W.

    2014-09-01

    A gamma spectrometric technique was implemented at the exit of the fission fragment separator of the ILL. It allows a precise measurement of isotopic yields of most important actinides in the heavy fragment region by an unambiguous identification of the nuclear charge of the fragments selected by the mass spectrometer. The status of the project and last results are reviewed. A spin-off of this activity is the identification of unknown nanosecond isomers in exotic nuclei through the observation of a disturbed ionic charge distribution. This technique has been improved to provide an estimation of the lifetime of the isomeric state.

  2. Fragmentations of [M-H]- anions of peptides containing tyrosine sulfate. Does the sulfate group rearrange? A joint experimental and theoretical study.

    PubMed

    Tran, T T Nha; Wang, Tianfang; Hack, Sandra; Bowie, John H

    2013-05-30

    To investigate the fragmentations in the negative-ion electrospray mass spectra of peptides containing tyrosine sulfate. Possible fragmentation mechanisms were explored using a Waters QTOF2 tandem mass spectrometer in concert with calculations at the CAM-B3LYP/6-311++g(d,p) level of theory. The major negative ion formed in the ESI-MS of peptides containing tyrosine sulfate is [(M-H)-SO3](-) and this process normally yields the base peak of the spectrum. The basic backbone cleavages of [(M-H)-SO3](-) allowed the sequence of the peptide to be determined. Rearrangement reactions involving the formation of HOSO3(-) and [(M-H)-H2SO4](-) yielded minor peaks with relative abundances ≤ 10% and ≤ 2%, respectively. The mass spectra of the [M-H](-) and [(M-H)-SO3](-) anions of peptides containing tyrosine sulfate allowed the position of the tyrosine sulfate group to be determined, together with the amino acid sequence of the peptide. Copyright © 2013 John Wiley & Sons, Ltd.

  3. Hypervelocity Impact Test Fragment Modeling: Modifications to the Fragment Rotation Analysis and Lightcurve Code

    NASA Technical Reports Server (NTRS)

    Gouge, Michael F.

    2011-01-01

    Hypervelocity impact tests on test satellites are performed by members of the orbital debris scientific community in order to understand and typify the on-orbit collision breakup process. By analysis of these test satellite fragments, the fragment size and mass distributions are derived and incorporated into various orbital debris models. These same fragments are currently being put to new use using emerging technologies. Digital models of these fragments are created using a laser scanner. A group of computer programs referred to as the Fragment Rotation Analysis and Lightcurve code uses these digital representations in a multitude of ways that describe, measure, and model on-orbit fragments and fragment behavior. The Dynamic Rotation subroutine generates all of the possible reflected intensities from a scanned fragment as if it were observed to rotate dynamically while in orbit about the Earth. This calls an additional subroutine that graphically displays the intensities and the resulting frequency of those intensities as a range of solar phase angles in a Probability Density Function plot. This document reports the additions and modifications to the subset of the Fragment Rotation Analysis and Lightcurve concerned with the Dynamic Rotation and Probability Density Function plotting subroutines.

  4. Are Nonadiabatic Reaction Dynamics the Key to Novel Organosilicon Molecules? The Silicon (Si(3P))-Dimethylacetylene (C4H6(X1A1g)) System as a Case Study.

    PubMed

    Thomas, Aaron M; Dangi, Beni B; Yang, Tao; Kaiser, Ralf I; Lin, Lin; Chou, Tzu-Jung; Chang, Agnes H H

    2018-06-06

    The bimolecular gas phase reaction of ground-state silicon (Si; 3 P) with dimethylacetylene (C 4 H 6 ; X 1 A 1g ) was investigated under single collision conditions in a crossed molecular beams machine. Merged with electronic structure calculations, the data propose nonadiabatic reaction dynamics leading to the formation of singlet SiC 4 H 4 isomer(s) and molecular hydrogen (H 2 ) via indirect scattering dynamics along with intersystem crossing (ISC) from the triplet to the singlet surface. The reaction may lead to distinct energetically accessible singlet SiC 4 H 4 isomers ( 1 p8- 1 p24) in overall exoergic reaction(s) (-107 -20 +12 kJ mol -1 ). All feasible reaction products are either cyclic, carry carbene analogous silylene moieties, or carry C-Si-H or C-Si-C bonds that would require extensive isomerization from the initial collision complex(es) to the fragmenting singlet intermediate(s). The present study demonstrates the first successful crossed beams study of an exoergic reaction channel arising from bimolecular collisions of silicon, Si( 3 P), with a hydrocarbon molecule.

  5. Fragment capture device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Payne, Lloyd R.; Cole, David L.

    2010-03-30

    A fragment capture device for use in explosive containment. The device comprises an assembly of at least two rows of bars positioned to eliminate line-of-sight trajectories between the generation point of fragments and a surrounding containment vessel or asset. The device comprises an array of at least two rows of bars, wherein each row is staggered with respect to the adjacent row, and wherein a lateral dimension of each bar and a relative position of each bar in combination provides blockage of a straight-line passage of a solid fragment through the adjacent rows of bars, wherein a generation point ofmore » the solid fragment is located within a cavity at least partially enclosed by the array of bars.« less

  6. Fragment capture device

    DOEpatents

    Payne, Lloyd R.; Cole, David L.

    2010-03-30

    A fragment capture device for use in explosive containment. The device comprises an assembly of at least two rows of bars positioned to eliminate line-of-sight trajectories between the generation point of fragments and a surrounding containment vessel or asset. The device comprises an array of at least two rows of bars, wherein each row is staggered with respect to the adjacent row, and wherein a lateral dimension of each bar and a relative position of each bar in combination provides blockage of a straight-line passage of a solid fragment through the adjacent rows of bars, wherein a generation point of the solid fragment is located within a cavity at least partially enclosed by the array of bars.

  7. The activation of plasminogen by Hageman factor (Factor XII) and Hageman factor fragments.

    PubMed Central

    Goldsmith, G H; Saito, H; Ratnoff, O S

    1978-01-01

    Activation of plasminogen through surface-mediated reactions is well recognized. In the presence of kaolin, purified Hageman factor (Factor XII) changed plasminogen to plasmin, as assayed upon a synthetic amide substrate and by fibrinolysis. Kinetic studies suggested an enzymatic action of Hageman factor upon its substrate, plasminogen. Hageman factor fragments, at a protein concentration equivalent to whole Hageman factor, activated plasminogen to a lesser extent. These protein preparations were not contaminated with other agents implicated in surface-mediated fibrinolysis. Diisopropyl fluorophosphate treatment of plasminogen did not inhibit its activation by Hageman factor. These studies indicate that Hageman factor has a hitherto unsuspected function, the direct activation of plasminogen. PMID:659637

  8. Theoretical Studies of Elementary Hydrocarbon Species and Their Reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, Wesley D.; Schaefer, Henry F.

    The research program supported by this DOE grant carried out both methodological development and computational applications of first-principles theoretical chemistry based on quantum mechanical wavefunctions, as directed toward understanding and harnessing the fundamental chemical physics of combustion. To build and refine the world’s database of thermochemistry, spectroscopy, and chemical kinetics, predictive and definitive computational methods are needed that push the envelope of modern electronic structure theory. The application of such methods has been made to gain comprehensive knowledge of the paradigmatic reaction networks by which the n- and i-propyl, t-butyl, and n-butyl radicals are oxidized by O 2. Numerous ROOmore » and QOOH intermediates in these R + O 2 reaction systems have been characterized along with the interconnecting isomerization transition states and the barriers leading to fragmentation. Other combustion-related intermediates have also been studied, including methylsulfinyl radical, cyclobutylidene, and radicals derived from acetaldehyde and vinyl alcohol. Theoretical advances have been achieved and made available to the scientific community by implementation into PSI4, an open-source electronic structure computer package emphasizing automation, advanced libraries, and interoperability. We have pursued the development of universal explicitly correlated methods applicable to general electronic wavefunctions, as well as a framework that allows multideterminant reference functions to be expressed as a single determinant from quasiparticle operators. Finally, a rigorous analytical tool for correlated wavefunctions has been created to elucidate dispersion interactions, which play essential roles in many areas of chemistry, but whose effects are often masked and enigmatic. Our research decomposes and analyzes the coupled-cluster electron correlation energy in molecular systems as a function of interelectronic distance. Concepts are emerging

  9. Natural-product-derived fragments for fragment-based ligand discovery

    NASA Astrophysics Data System (ADS)

    Over, Björn; Wetzel, Stefan; Grütter, Christian; Nakai, Yasushi; Renner, Steffen; Rauh, Daniel; Waldmann, Herbert

    2013-01-01

    Fragment-based ligand and drug discovery predominantly employs sp2-rich compounds covering well-explored regions of chemical space. Despite the ease with which such fragments can be coupled, this focus on flat compounds is widely cited as contributing to the attrition rate of the drug discovery process. In contrast, biologically validated natural products are rich in stereogenic centres and populate areas of chemical space not occupied by average synthetic molecules. Here, we have analysed more than 180,000 natural product structures to arrive at 2,000 clusters of natural-product-derived fragments with high structural diversity, which resemble natural scaffolds and are rich in sp3-configured centres. The structures of the cluster centres differ from previously explored fragment libraries, but for nearly half of the clusters representative members are commercially available. We validate their usefulness for the discovery of novel ligand and inhibitor types by means of protein X-ray crystallography and the identification of novel stabilizers of inactive conformations of p38α MAP kinase and of inhibitors of several phosphatases.

  10. Discriminating precursors of common fragments for large-scale metabolite profiling by triple quadrupole mass spectrometry.

    PubMed

    Nikolskiy, Igor; Siuzdak, Gary; Patti, Gary J

    2015-06-15

    The goal of large-scale metabolite profiling is to compare the relative concentrations of as many metabolites extracted from biological samples as possible. This is typically accomplished by measuring the abundances of thousands of ions with high-resolution and high mass accuracy mass spectrometers. Although the data from these instruments provide a comprehensive fingerprint of each sample, identifying the structures of the thousands of detected ions is still challenging and time intensive. An alternative, less-comprehensive approach is to use triple quadrupole (QqQ) mass spectrometry to analyze predetermined sets of metabolites (typically fewer than several hundred). This is done using authentic standards to develop QqQ experiments that specifically detect only the targeted metabolites, with the advantage that the need for ion identification after profiling is eliminated. Here, we propose a framework to extend the application of QqQ mass spectrometers to large-scale metabolite profiling. We aim to provide a foundation for designing QqQ multiple reaction monitoring (MRM) experiments for each of the 82 696 metabolites in the METLIN metabolite database. First, we identify common fragmentation products from the experimental fragmentation data in METLIN. Then, we model the likelihoods of each precursor structure in METLIN producing each common fragmentation product. With these likelihood estimates, we select ensembles of common fragmentation products that minimize our uncertainty about metabolite identities. We demonstrate encouraging performance and, based on our results, we suggest how our method can be integrated with future work to develop large-scale MRM experiments. Our predictions, Supplementary results, and the code for estimating likelihoods and selecting ensembles of fragmentation reactions are made available on the lab website at http://pattilab.wustl.edu/FragPred. © The Author 2015. Published by Oxford University Press. All rights reserved. For

  11. Fragment Length of Circulating Tumor DNA

    PubMed Central

    Underhill, Hunter R.; Kitzman, Jacob O.; Hellwig, Sabine; Welker, Noah C.; Daza, Riza; Gligorich, Keith M.; Rostomily, Robert C.; Shendure, Jay

    2016-01-01

    Malignant tumors shed DNA into the circulation. The transient half-life of circulating tumor DNA (ctDNA) may afford the opportunity to diagnose, monitor recurrence, and evaluate response to therapy solely through a non-invasive blood draw. However, detecting ctDNA against the normally occurring background of cell-free DNA derived from healthy cells has proven challenging, particularly in non-metastatic solid tumors. In this study, distinct differences in fragment length size between ctDNAs and normal cell-free DNA are defined. Human ctDNA in rat plasma derived from human glioblastoma multiforme stem-like cells in the rat brain and human hepatocellular carcinoma in the rat flank were found to have a shorter principal fragment length than the background rat cell-free DNA (134–144 bp vs. 167 bp, respectively). Subsequently, a similar shift in the fragment length of ctDNA in humans with melanoma and lung cancer was identified compared to healthy controls. Comparison of fragment lengths from cell-free DNA between a melanoma patient and healthy controls found that the BRAF V600E mutant allele occurred more commonly at a shorter fragment length than the fragment length of the wild-type allele (132–145 bp vs. 165 bp, respectively). Moreover, size-selecting for shorter cell-free DNA fragment lengths substantially increased the EGFR T790M mutant allele frequency in human lung cancer. These findings provide compelling evidence that experimental or bioinformatic isolation of a specific subset of fragment lengths from cell-free DNA may improve detection of ctDNA. PMID:27428049

  12. Fragment Length of Circulating Tumor DNA.

    PubMed

    Underhill, Hunter R; Kitzman, Jacob O; Hellwig, Sabine; Welker, Noah C; Daza, Riza; Baker, Daniel N; Gligorich, Keith M; Rostomily, Robert C; Bronner, Mary P; Shendure, Jay

    2016-07-01

    Malignant tumors shed DNA into the circulation. The transient half-life of circulating tumor DNA (ctDNA) may afford the opportunity to diagnose, monitor recurrence, and evaluate response to therapy solely through a non-invasive blood draw. However, detecting ctDNA against the normally occurring background of cell-free DNA derived from healthy cells has proven challenging, particularly in non-metastatic solid tumors. In this study, distinct differences in fragment length size between ctDNAs and normal cell-free DNA are defined. Human ctDNA in rat plasma derived from human glioblastoma multiforme stem-like cells in the rat brain and human hepatocellular carcinoma in the rat flank were found to have a shorter principal fragment length than the background rat cell-free DNA (134-144 bp vs. 167 bp, respectively). Subsequently, a similar shift in the fragment length of ctDNA in humans with melanoma and lung cancer was identified compared to healthy controls. Comparison of fragment lengths from cell-free DNA between a melanoma patient and healthy controls found that the BRAF V600E mutant allele occurred more commonly at a shorter fragment length than the fragment length of the wild-type allele (132-145 bp vs. 165 bp, respectively). Moreover, size-selecting for shorter cell-free DNA fragment lengths substantially increased the EGFR T790M mutant allele frequency in human lung cancer. These findings provide compelling evidence that experimental or bioinformatic isolation of a specific subset of fragment lengths from cell-free DNA may improve detection of ctDNA.

  13. Effect of isospin diffusion on the production of neutron-rich nuclei in multinucleon transfer reactions

    NASA Astrophysics Data System (ADS)

    Niu, Fei; Chen, Peng-Hui; Guo, Ya-Fei; Ma, Chun-Wang; Feng, Zhao-Qing

    2018-03-01

    The isospin dissipation dynamics in multinucleon transfer reactions has been investigated within the dinuclear system model. Production cross sections of neutron-rich isotopes around projectile-like and target-like fragments are estimated in collisions of Ni,6458+208Pb and 78.86,91Kr +198Pt near Coulomb barrier energies. The isospin diffusion in the nucleon transfer process is coupled to the dissipation of relative motion energy and angular momentum of colliding system. The available data of projectile-like fragments via multinucleon transfer reactions are nicely reproduced. It is found that the light projectile-like fragments are produced in the neutron-rich region because of the isospin equilibrium in two colliding nuclei. However, the heavy target-like fragments tend to be formed on the neutron-poor side above the β -stability line. The neutron-rich projectiles move the maximal yields of heavy nuclei to the neutron-rich domain and are available for producing the heavy exotic isotopes, in particular around the neutron shell closure of N =126 .

  14. An experimental study of hydromagmatic fragmentation through energetic, non-explosive magma-water mixing

    USGS Publications Warehouse

    Mastin, L.G.; Spieler, O.; Downey, W.S.

    2009-01-01

    In this paper we report the first experimental investigation of non-explosive hydromagmatic fragmentation during energetic mixing with water. We mix magma and water by two methods: (1) pouring a basaltic melt between two converging water sprays; and (2) jetting basaltic melt at high pressure (3??MPa) through a nozzle into a tank of stagnant water. These experiments involved shear at relative velocities of ~ 5-16??m/s and vigorous mixing for less than a second, providing sufficient time for glassy rinds to grow but insufficient time for clot interiors to cool. In resulting fragments, we examined the gross morphology, which reflects fluid deformation during mixing, and surface textures, which reflect the growth and disruption of glassy rinds. We find major differences in both fragment morphology and surface texture between experiments. Water-spray experiments produced Pele's hair, thin bubble shards, melt droplets, and angular, fracture-bound droplet pieces. Melt-jet experiments produced mostly coarse (> 1??mm diameter), wavy fluidal fragments with broken ends. Fluidal surfaces of fragments produced by water-spray experiments were generally shiny under reflected light and, in microscopic examination, smooth down to micron scale, implying no disruption of glassy rinds, except for (a) rare flaking on Pele's hair that was bent prior to solidification; or (b) cracking and alligator-skin textures on segments of melt balls that had expanded before complete cooling. In contrast, textures of fluidal surfaces on fragments produced by melt-jet experiments are dull in reflected light and, in scanning electron images, exhibit ubiquitous discontinuous skins ("rinds") that are flaked, peeled, or smeared away in stripes. Adhering to these surfaces are flakes, blocks, and blobs of detached material microns to tens of microns in diameter. In the water-spray fragments, we interpret the scarcity of disrupted surface rinds to result from lack of bending after surfaces formed. In the

  15. Meta-analysis of the effects of forest fragmentation on interspecific interactions.

    PubMed

    Magrach, Ainhoa; Laurance, William F; Larrinaga, Asier R; Santamaria, Luis

    2014-10-01

    Forest fragmentation dramatically alters species persistence and distribution and affects many ecological interactions among species. Recent studies suggest that mutualisms, such as pollination and seed dispersal, are more sensitive to the negative effects of forest fragmentation than antagonisms, such as predation or herbivory. We applied meta-analytical techniques to evaluate this hypothesis and quantified the relative contributions of different components of the fragmentation process (decreases in fragment size, edge effects, increased isolation, and habitat degradation) to the overall effect. The effects of fragmentation on mutualisms were primarily driven by habitat degradation, edge effects, and fragment isolation, and, as predicted, they were consistently more negative on mutualisms than on antagonisms. For the most studied interaction type, seed dispersal, only certain components of fragmentation had significant (edge effects) or marginally significant (fragment size) effects. Seed size modulated the effect of fragmentation: species with large seeds showed stronger negative impacts of fragmentation via reduced dispersal rates. Our results reveal that different components of the habitat fragmentation process have varying impacts on key mutualisms. We also conclude that antagonistic interactions have been understudied in fragmented landscapes, most of the research has concentrated on particular types of mutualistic interactions such as seed dispersal, and that available studies of interspecific interactions have a strong geographical bias (arising mostly from studies carried out in Brazil, Chile, and the United States). © 2014 Society for Conservation Biology.

  16. The time scale of quasifission process in reactions with heavy ions

    NASA Astrophysics Data System (ADS)

    Knyazheva, G. N.; Itkis, I. M.; Kozulin, E. M.

    2014-05-01

    The study of mass-energy distributions of binary fragments obtained in the reactions of 36S, 48Ca, 58Fe and 64Ni ions with the 232Th, 238U, 244Pu and 248Cm at energies below and above the Coulomb barrier is presented. These data have been measured by two time-of-flight CORSET spectrometer. The mass resolution of the spectrometer for these measurements was about 3u. It allows to investigate the features of mass distributions with good accuracy. The properties of mass and TKE of QF fragments in dependence on interaction energy have been investigated and compared with characteristics of the fusion-fission process. To describe the quasifission mass distribution the simple method has been proposed. This method is based on the driving potential of the system and time dependent mass drift. This procedure allows to estimate QF time scale from the measured mass distributions. It has been found that the QF time exponentially decreases when the reaction Coulomb factor Z1Z2 increases.

  17. Onco-Golgi: Is Fragmentation a Gate to Cancer Progression?

    PubMed Central

    Petrosyan, Armen

    2015-01-01

    The Golgi apparatus-complex is a highly dynamic organelle which is considered the “heart” of intracellular transportation. Since its discovery by Camillo Golgi in 1873, who described it as the “black reaction,” and despite the enormous volume of publications about Golgi, this apparatus remains one of the most enigmatic of the cytoplasmic organelles. A typical mammalian Golgi consists of a parallel series of flattened, disk-shaped cisternae which align into stacks. The tremendous volume of Golgi-related incoming and outgoing traffic is mediated by different motor proteins, including members of the dynein, kinesin, and myosin families. Yet in spite of the strenuous work it performs, Golgi contrives to maintain its monolithic morphology and orchestration of matrix and residential proteins. However, in response to stress, alcohol, and treatment with many pharmacological drugs over time, Golgi undergoes a kind of disorganization which ranges from mild enlargement to critical scattering. While fragmentation of the Golgi was confirmed in cancer by electron microscopy almost fifty years ago, it is only in recent years that we have begun to understand the significance of Golgi fragmentation in the biology of tumors. Below author would like to focus on how Golgi fragmentation opens the doors for cascades of fatal pathways which may facilitate cancer progression and metastasis. Among the issues addressed will be the most important cancer-specific hallmarks of Golgi fragmentation, including aberrant glycosylation, abnormal expression of the Ras GTPases, dysregulation of kinases, and hyperactivity of myosin motor proteins. PMID:27064441

  18. Critical Features of Fragment Libraries for Protein Structure Prediction

    PubMed Central

    dos Santos, Karina Baptista

    2017-01-01

    The use of fragment libraries is a popular approach among protein structure prediction methods and has proven to substantially improve the quality of predicted structures. However, some vital aspects of a fragment library that influence the accuracy of modeling a native structure remain to be determined. This study investigates some of these features. Particularly, we analyze the effect of using secondary structure prediction guiding fragments selection, different fragments sizes and the effect of structural clustering of fragments within libraries. To have a clearer view of how these factors affect protein structure prediction, we isolated the process of model building by fragment assembly from some common limitations associated with prediction methods, e.g., imprecise energy functions and optimization algorithms, by employing an exact structure-based objective function under a greedy algorithm. Our results indicate that shorter fragments reproduce the native structure more accurately than the longer. Libraries composed of multiple fragment lengths generate even better structures, where longer fragments show to be more useful at the beginning of the simulations. The use of many different fragment sizes shows little improvement when compared to predictions carried out with libraries that comprise only three different fragment sizes. Models obtained from libraries built using only sequence similarity are, on average, better than those built with a secondary structure prediction bias. However, we found that the use of secondary structure prediction allows greater reduction of the search space, which is invaluable for prediction methods. The results of this study can be critical guidelines for the use of fragment libraries in protein structure prediction. PMID:28085928

  19. Critical Features of Fragment Libraries for Protein Structure Prediction.

    PubMed

    Trevizani, Raphael; Custódio, Fábio Lima; Dos Santos, Karina Baptista; Dardenne, Laurent Emmanuel

    2017-01-01

    The use of fragment libraries is a popular approach among protein structure prediction methods and has proven to substantially improve the quality of predicted structures. However, some vital aspects of a fragment library that influence the accuracy of modeling a native structure remain to be determined. This study investigates some of these features. Particularly, we analyze the effect of using secondary structure prediction guiding fragments selection, different fragments sizes and the effect of structural clustering of fragments within libraries. To have a clearer view of how these factors affect protein structure prediction, we isolated the process of model building by fragment assembly from some common limitations associated with prediction methods, e.g., imprecise energy functions and optimization algorithms, by employing an exact structure-based objective function under a greedy algorithm. Our results indicate that shorter fragments reproduce the native structure more accurately than the longer. Libraries composed of multiple fragment lengths generate even better structures, where longer fragments show to be more useful at the beginning of the simulations. The use of many different fragment sizes shows little improvement when compared to predictions carried out with libraries that comprise only three different fragment sizes. Models obtained from libraries built using only sequence similarity are, on average, better than those built with a secondary structure prediction bias. However, we found that the use of secondary structure prediction allows greater reduction of the search space, which is invaluable for prediction methods. The results of this study can be critical guidelines for the use of fragment libraries in protein structure prediction.

  20. Hot Fusion: an efficient method to clone multiple DNA fragments as well as inverted repeats without ligase.

    PubMed

    Fu, Changlin; Donovan, William P; Shikapwashya-Hasser, Olga; Ye, Xudong; Cole, Robert H

    2014-01-01

    Molecular cloning is utilized in nearly every facet of biological and medical research. We have developed a method, termed Hot Fusion, to efficiently clone one or multiple DNA fragments into plasmid vectors without the use of ligase. The method is directional, produces seamless junctions and is not dependent on the availability of restriction sites for inserts. Fragments are assembled based on shared homology regions of 17-30 bp at the junctions, which greatly simplifies the construct design. Hot Fusion is carried out in a one-step, single tube reaction at 50 °C for one hour followed by cooling to room temperature. In addition to its utility for multi-fragment assembly Hot Fusion provides a highly efficient method for cloning DNA fragments containing inverted repeats for applications such as RNAi. The overall cloning efficiency is in the order of 90-95%.

  1. VUV photo-processing of PAH cations: quantitative study on the ionization versus fragmentation processes

    PubMed Central

    Zhen, Junfeng; Castillo, Sarah Rodriguez; Joblin, Christine; Mulas, Giacomo; Sabbah, Hassan; Giuliani, Alexandre; Nahon, Laurent; Martin, Serge; Champeaux, Jean-Philippe; Mayer, Paul M.

    2016-01-01

    Interstellar polycyclic aromatic hydrocarbons (PAHs) are strongly affected by the absorption of vacuum ultraviolet (VUV) photons in the interstellar medium (ISM), yet the branching ratio between ionization and fragmentation is poorly studied. This is crucial for the stability and charge state of PAHs in the ISM in different environments, affecting in turn the chemistry, the energy balance, and the contribution of PAHs to the extinction and emission curves. We studied the interaction of PAH cations with VUV photons in the 7 – 20 eV range from the synchrotron SOLEIL beamline, DESIRS. We recorded by action spectroscopy the relative intensities of photo-fragmentation and photo-ionization for a set of eight PAH cations ranging in size from 14 to 24 carbon atoms, with different structures. At photon energies below ~13.6 eV fragmentation dominates for the smaller species, while for larger species ionization is immediately competitive after the second ionization potential (IP). At higher photon energies, all species behave similarly, the ionization yield gradually increases, leveling off between 0.8 and 0.9 at ~18 eV. Among isomers, PAH structure appears to mainly affect the fragmentation cross section, but not the ionization cross section. We also measured the second IP for all species and the third IP for two of them, all are in good agreement with theoretical ones confirming that PAH cations can be further ionized in the diffuse ISM. Determining actual PAH dication abundances in the ISM will require detailed modeling. Our measured photo-ionization yields for several PAH cations provide a necessary ingredient for such models. PMID:27212712

  2. VUV photo-processing of PAH cations: quantitative study on the ionization versus fragmentation processes.

    PubMed

    Zhen, Junfeng; Castillo, Sarah Rodriguez; Joblin, Christine; Mulas, Giacomo; Sabbah, Hassan; Giuliani, Alexandre; Nahon, Laurent; Martin, Serge; Champeaux, Jean-Philippe; Mayer, Paul M

    2016-05-10

    Interstellar polycyclic aromatic hydrocarbons (PAHs) are strongly affected by the absorption of vacuum ultraviolet (VUV) photons in the interstellar medium (ISM), yet the branching ratio between ionization and fragmentation is poorly studied. This is crucial for the stability and charge state of PAHs in the ISM in different environments, affecting in turn the chemistry, the energy balance, and the contribution of PAHs to the extinction and emission curves. We studied the interaction of PAH cations with VUV photons in the 7 - 20 eV range from the synchrotron SOLEIL beamline, DESIRS. We recorded by action spectroscopy the relative intensities of photo-fragmentation and photo-ionization for a set of eight PAH cations ranging in size from 14 to 24 carbon atoms, with different structures. At photon energies below ~13.6 eV fragmentation dominates for the smaller species, while for larger species ionization is immediately competitive after the second ionization potential (IP). At higher photon energies, all species behave similarly, the ionization yield gradually increases, leveling off between 0.8 and 0.9 at ~18 eV. Among isomers, PAH structure appears to mainly affect the fragmentation cross section, but not the ionization cross section. We also measured the second IP for all species and the third IP for two of them, all are in good agreement with theoretical ones confirming that PAH cations can be further ionized in the diffuse ISM. Determining actual PAH dication abundances in the ISM will require detailed modeling. Our measured photo-ionization yields for several PAH cations provide a necessary ingredient for such models.

  3. Characterizing DebriSat Fragments: So Many Fragments, So Much Data, and So Little Time

    NASA Technical Reports Server (NTRS)

    Shiotani, B.; Rivero, M.; Carrasquilla, M.; Allen, S.; Fitz-Coy, N.; Liou, J.-C.; Huynh, T.; Sorge, M.; Cowardin, H.; Opiela, J.; hide

    2017-01-01

    To improve prediction accuracy, the DebriSat project was conceived by NASA and DoD to update existing standard break-up models. Updating standard break-up models require detailed fragment characteristics such as physical size, material properties, bulk density, and ballistic coefficient. For the DebriSat project, a representative modern LEO spacecraft was developed and subjected to a laboratory hypervelocity impact test and all generated fragments with at least one dimension greater than 2 mm are collected, characterized and archived. Since the beginning of the characterization phase of the DebriSat project, over 130,000 fragments have been collected and approximately 250,000 fragments are expected to be collected in total, a three-fold increase over the 85,000 fragments predicted by the current break-up model. The challenge throughout the project has been to ensure the integrity and accuracy of the characteristics of each fragment. To this end, the post hypervelocity-impact test activities, which include fragment collection, extraction, and characterization, have been designed to minimize handling of the fragments. The procedures for fragment collection, extraction, and characterization were painstakingly designed and implemented to maintain the post-impact state of the fragments, thus ensuring the integrity and accuracy of the characterization data. Each process is designed to expedite the accumulation of data, however, the need for speed is restrained by the need to protect the fragments. Methods to expedite the process such as parallel processing have been explored and implemented while continuing to maintain the highest integrity and value of the data. To minimize fragment handling, automated systems have been developed and implemented. Errors due to human inputs are also minimized by the use of these automated systems. This paper discusses the processes and challenges involved in the collection, extraction, and characterization of the fragments as well as the

  4. Addition reaction of methyl cinnamate with 2-amino-4- nitrophenol

    NASA Astrophysics Data System (ADS)

    Suryanti, Venty; Rakhman Wibowo, Fajar; Pranoto; Robingatun Isnaeni, Siti; Ratna Kumala Sari, Meiyanti; Handayani, Sekar

    2016-02-01

    A novel compound which have one N-H fragment and nitrophenyl group has been designed and synthesized from cinnamaldehyde. The reaction was conducted in 3 step reactions to give the final product. Firstly, cinnamaldehyde was converted into cinnamic acid, which was then esterified with methyl alcohol to obtained methyl cinnamate. The last step was the addition reaction between methyl cinnamate and 2-amino-4-nitrophenol to give a cinnamaldehyde derivative, namely methyl-3-(2-hidroksi-5-nitrophenyl amino)-3- phenylpropanoate.

  5. Hydrogen transfer reactions of interstellar Complex Organic Molecules

    NASA Astrophysics Data System (ADS)

    Álvarez-Barcia, S.; Russ, P.; Kästner, J.; Lamberts, T.

    2018-06-01

    Radical recombination has been proposed to lead to the formation of complex organic molecules (COMs) in CO-rich ices in the early stages of star formation. These COMs can then undergo hydrogen addition and abstraction reactions leading to a higher or lower degree of saturation. Here, we have studied 14 hydrogen transfer reactions for the molecules glyoxal, glycoaldehyde, ethylene glycol, and methylformate and an additional three reactions where CHnO fragments are involved. Over-the-barrier reactions are possible only if tunneling is invoked in the description at low temperature. Therefore the rate constants for the studied reactions are calculated using instanton theory that takes quantum effects into account inherently. The reactions were characterized in the gas phase, but this is expected to yield meaningful results for CO-rich ices due to the minimal alteration of reaction landscapes by the CO molecules. We found that rate constants should not be extrapolated based on the height of the barrier alone, since the shape of the barrier plays an increasingly larger role at decreasing temperature. It is neither possible to predict rate constants based only on considering the type of reaction, the specific reactants and functional groups play a crucial role. Within a single molecule, though, hydrogen abstraction from an aldehyde group seems to be always faster than hydrogen addition to the same carbon atom. Reactions that involve heavy-atom tunneling, e.g., breaking or forming a C-C or C-O bond, have rate constants that are much lower than those where H transfer is involved.

  6. Heart Rate Fragmentation: A Symbolic Dynamical Approach.

    PubMed

    Costa, Madalena D; Davis, Roger B; Goldberger, Ary L

    2017-01-01

    Background: We recently introduced the concept of heart rate fragmentation along with a set of metrics for its quantification. The term was coined to refer to an increase in the percentage of changes in heart rate acceleration sign, a dynamical marker of a type of anomalous variability. The effort was motivated by the observation that fragmentation, which is consistent with the breakdown of the neuroautonomic-electrophysiologic control system of the sino-atrial node, could confound traditional short-term analysis of heart rate variability. Objective: The objectives of this study were to: (1) introduce a symbolic dynamical approach to the problem of quantifying heart rate fragmentation; (2) evaluate how the distribution of the different dynamical patterns ("words") varied with the participants' age in a group of healthy subjects and patients with coronary artery disease (CAD); and (3) quantify the differences in the fragmentation patterns between the two sample populations. Methods: The symbolic dynamical method employed here was based on a ternary map of the increment NN interval time series and on the analysis of the relative frequency of symbolic sequences (words) with a pre-defined set of features. We analyzed annotated, open-access Holter databases of healthy subjects and patients with CAD, provided by the University of Rochester Telemetric and Holter ECG Warehouse (THEW). Results: The degree of fragmentation was significantly higher in older individuals than in their younger counterparts. However, the fragmentation patterns were different in the two sample populations. In healthy subjects, older age was significantly associated with a higher percentage of transitions from acceleration/deceleration to zero acceleration and vice versa (termed "soft" inflection points). In patients with CAD, older age was also significantly associated with higher percentages of frank reversals in heart rate acceleration (transitions from acceleration to deceleration and vice

  7. Fragmentation of an elastica

    NASA Astrophysics Data System (ADS)

    Vandenberghe, Nicolas; Villermaux, Emmanuel

    2009-03-01

    When a thin rod is submitted to an axial force greater than its critical buckling load it takes the shape of an elastica. As the load further increases, a rod made of a brittle material breaks suddenly. More than two fragments may be formed during this fragmentation. In this work we discuss the sequence of events that lead to the final broken state with two or more fragments. We show that the criterion for breaking is not trivial. In particular, we investigate the effect of the duration of the loading and we show that at a given load the waiting time before breaking is broadly distributed. We discuss the consequences of the time delayed breaking on the distributions of fragment sizes and fragment numbers.

  8. Physical and dynamical studies of meteors. Meteor-fragmentation and stream-distribution studies

    NASA Technical Reports Server (NTRS)

    Sekanina, Z.; Southworth, R. B.

    1975-01-01

    Population parameters of 275 streams including 20 additional streams in the synoptic-year sample were found by a computer technique. Some 16 percent of the sample is in these streams. Four meteor streams that have close orbital resemblance to Adonis cannot be positively identified as meteors ejected by Adonis within the last 12000 years. Ceplecha's discrete levels of meteor height are not evident in radar meteors. The spread of meteoroid fragments along their common trajectory was computed for most of the observed radar meteors. There is an unexpected relationship between spread and velocity that perhaps conceals relationships between fragmentation and orbits; a theoretical treatment will be necessary to resolve these relationships. Revised unbiased statistics of synoptic-year orbits are presented, together with parallel statistics for the 1961 to 1965 radar meteor orbits.

  9. Position-sensitive coincidence detection of nuclear reaction products at the Prague Van-de-Graaff accelerator

    NASA Astrophysics Data System (ADS)

    Granja, Carlos; Kraus, Vaclav; Pugatch, Valery; Kohout, Zdenek

    2017-06-01

    In low-energy nuclear reactions of astrophysical interest or fusion studies the spatial- and time-correlated detection of two and more reaction products can be a valuable tool in studies of reaction mechanisms, resolving reaction channels and measuring angular distributions of reaction products. For this purpose we constructed a configurable array of position-sensitive detectors based on the hybrid semiconductor pixel detector Timepix. Additional analog-signal electronics provide self-trigger together with extended multi-device control and synchronized readout electronics by a customized control and coincidence unit. The instrumentation, developed and used for detection of fission fragments in spontaneous and neutron induced fission as well as in charged particle detection in neutron induced reactions, is being implemented for low-energy light-ion induced nuclear reactions. Application and demonstration of the technique with two Timepix detectors on p+p elastic scattering at the Van-de-Graaff (VdG) accelerator in Prague is given.

  10. Magnetic bead purification of labeled DNA fragments forhigh-throughput capillary electrophoresis sequencing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elkin, Christopher; Kapur, Hitesh; Smith, Troy

    2001-09-15

    We have developed an automated purification method for terminator sequencing products based on a magnetic bead technology. This 384-well protocol generates labeled DNA fragments that are essentially free of contaminates for less than $0.005 per reaction. In comparison to laborious ethanol precipitation protocols, this method increases the phred20 read length by forty bases with various DNA templates such as PCR fragments, Plasmids, Cosmids and RCA products. Our method eliminates centrifugation and is compatible with both the MegaBACE 1000 and ABIPrism 3700 capillary instruments. As of September 2001, this method has produced over 1.6 million samples with 93 percent averaging 620more » phred20 bases as part of Joint Genome Institutes Production Process.« less

  11. Dual small fragment plating improves screw-to-screw load sharing for mid-diaphyseal humeral fracture fixation: a finite element study.

    PubMed

    Kosmopoulos, Victor; Luedke, Colten; Nana, Arvind D

    2015-01-01

    A smaller humerus in some patients makes the use of a large fragment fixation plate difficult. Dual small fragment plate constructs have been suggested as an alternative. This study compares the biomechanical performance of three single and one dual plate construct for mid-diaphyseal humeral fracture fixation. Five humeral shaft finite element models (1 intact and 4 fixation) were loaded in torsion, compression, posterior-anterior (PA) bending, and lateral-medial (LM) bending. A comminuted fracture was simulated by a 1-cm gap. Fracture fixation was modelled by: (A) 4.5-mm 9-hole large fragment plate (wide), (B) 4.5-mm 9-hole large fragment plate (narrow), (C) 3.5-mm 9-hole small fragment plate, and (D) one 3.5-mm 9-hole small fragment plate and one 3.5-mm 7-hole small fragment plate. Model A showed the best outcomes in torsion and PA bending, whereas Model D outperformed the others in compression and LM bending. Stress concentrations were located near and around the unused screw holes for each of the single plate models and at the neck of the screws just below the plates for all the models studied. Other than in PA bending, Model D showed the best overall screw-to-screw load sharing characteristics. The results support using a dual small fragment locking plate construct as an alternative in cases where crutch weight-bearing (compression) tolerance may be important and where anatomy limits the size of the humerus bone segment available for large fragment plate fixation.

  12. Large scale meta-analysis of fragment-based screening campaigns: privileged fragments and complementary technologies.

    PubMed

    Kutchukian, Peter S; Wassermann, Anne Mai; Lindvall, Mika K; Wright, S Kirk; Ottl, Johannes; Jacob, Jaison; Scheufler, Clemens; Marzinzik, Andreas; Brooijmans, Natasja; Glick, Meir

    2015-06-01

    A first step in fragment-based drug discovery (FBDD) often entails a fragment-based screen (FBS) to identify fragment "hits." However, the integration of conflicting results from orthogonal screens remains a challenge. Here we present a meta-analysis of 35 fragment-based campaigns at Novartis, which employed a generic 1400-fragment library against diverse target families using various biophysical and biochemical techniques. By statistically interrogating the multidimensional FBS data, we sought to investigate three questions: (1) What makes a fragment amenable for FBS? (2) How do hits from different fragment screening technologies and target classes compare with each other? (3) What is the best way to pair FBS assay technologies? In doing so, we identified substructures that were privileged for specific target classes, as well as fragments that were privileged for authentic activity against many targets. We also revealed some of the discrepancies between technologies. Finally, we uncovered a simple rule of thumb in screening strategy: when choosing two technologies for a campaign, pairing a biochemical and biophysical screen tends to yield the greatest coverage of authentic hits. © 2014 Society for Laboratory Automation and Screening.

  13. Avian persistence in fragmented rainforest.

    PubMed

    Lens, Luc; Van Dongen, Stefan; Norris, Ken; Githiru, Mwangi; Matthysen, Erik

    2002-11-08

    What factors determine the persistence of species in fragmented habitats? To address this question, we studied the relative impacts of forest deterioration and fragmentation on bird species in 12 rainforest fragments in Kenya, combining 6 years of individual capture-recapture data with measurements of current captures and museum specimens. Species mobility, as estimated from species-specific dispersal rates, and tolerance to habitat deterioration, as estimated from change in fluctuating asymmetry with increasing habitat disturbance, explained 88% of the variation in patch occupancy among eight forest bird species. Occupancy increased with mobility and with tolerance to deterioration, where both variables contributed equally to this relationship. We conclude that individual-level study, such as of dispersal behavior and phenotypic development, can predict patterns of persistence at the species level. More generally, for conservation tactics to stand a high chance of success, they should include action both within sites, to minimize habitat deterioration, and across landscapes, to maximize dispersal.

  14. Dental fragment embedded in the lower lip after facial trauma: Brief review literature and report of a case

    PubMed Central

    Lauritano, Dorina; Petruzzi, Massimo; Sacco, Gerardo; Campus, Guglielmo; Carinci, Francesco; Milillo, Lucio

    2012-01-01

    Upper incisors are the most frequently involved teeth in traumatic dental injuries. Soft tissues (lips and/or oral mucosa) adjacent to incisal edge can receive direct and/or indirect traumas. Laceration of the lower lip is a not rare eventuality and teeth fragments could be embedded in labial soft tissue. The reattachment of these fragments, if possible, is the elective treatment choice, thanks to the modern adhesive and restorative techniques. The authors present a case of a white Caucasian 10-year-old child, who attended the dental clinic for the treatment of both upper central incisors’ crown fractures. The fragment of the left incisor was retrieved embedded in the lower lip. It was successfully surgically removed and reattached using a composite adhesive technique. A careful clinical and radiographic examination with the surgical removal of tooth fragments could prevent undesirable foreign body reaction, infection and scarring. The authors also reviewed the most relevant literature concerning tooth fragment reattachment after removal from oral soft tissues. PMID:23814592

  15. Fragmentation study of iridoid glucosides through positive and negative electrospray ionization, collision-induced dissociation and tandem mass spectrometry.

    PubMed

    Es-Safi, Nour-Eddine; Kerhoas, Lucien; Ducrot, Paul-Henri

    2007-01-01

    Mass spectrometric methodology based on the combined use of positive and negative electrospray ionization, collision-induced dissociation (CID) and tandem mass spectrometry (MS/MS) has been applied to the mass spectral study of a series of six naturally occurring iridoids through in-source fragmentation of the protonated [M+H]+, deprotonated [M--H]- and sodiated [M+Na]+ ions. This led to the unambiguous determination of the molecular masses of the studied compounds and allowed CID spectra of the molecular ions to be obtained. Valuable structural information regarding the nature of both the glycoside and the aglycone moiety was thus obtained. Glycosidic cleavage and ring cleavages of both aglycone and sugar moieties were the major fragmentation pathways observed during CID, where the losses of small molecules, the cinnamoyl and the cinnamate parts were also observed. The formation of the ionized aglycones, sugars and their product ions was thus obtained giving information on their basic skeleton. The protonated, i.e. [M+H]+ and deprotonated [M--H]-, ions were found to fragment mainly by glycosidic cleavages. MS/MS spectra of the [M+Na]+ ions gave complementary information for the structural characterization of the studied compounds. Unlike the dissociation of protonated molecular ions, that of sodiated molecules also provided sodiated sugar fragments where the C0+ fragment corresponding to the glucose ion was obtained as base peak for all the studied compounds. Copyright (c) 2007 John Wiley & Sons, Ltd.

  16. Dynamics of Db isotopes formed in reactions induced by 238U, 248Cm, and 249Bk across the Coulomb barrier

    NASA Astrophysics Data System (ADS)

    Kaur, Gurjit; Sandhu, Kirandeep; Kaur, Amandeep; Sharma, Manoj K.

    2018-05-01

    The dynamical cluster decay model is employed to investigate the decay of *265Db and *267Db nuclei, formed in the 27Al+238U , 18O+249Bk , and 19F+248Cm hot fusion reactions at energies around the Coulomb barrier. First, the fission dynamics of the 27Al+238U reaction is explored by investigating the fragmentation and preformation yield of the reaction. The symmetric mass distribution of the fission fragments is observed for *265Db nucleus, when static β2 i deformations are used within hot optimum orientation approach. However, the mass split gets broaden for the use of β2 i-dynamical hot configuration of the fragments and becomes clearly asymmetric for the cold-static-deformed approach. Within the application of cold orientations of fragments, a new fission channel is observed at mass asymmetry η =0.29 . In addition to 238U-induced reaction, the work is carried out to address the fission and neutron evaporation cross sections of *267Db nucleus formed via 19F+248Cm and 18O+249Bk reactions, besides a comprehensive analysis of fusion and capture processes. Higher fusion cross sections and compound nucleus formation probabilities (PCN) are obtained for the 18O+249Bk reaction, as larger mass asymmetry in the entrance channel leads to reduced Coulomb factor. Finally, the role of sticking (IS) and nonsticking (INS) moments of inertia is analyzed for the 4 n and 5 n channels of *267Db nuclear system.

  17. Recent (2000-2015) developments in the analysis of minor unknown natural products based on characteristic fragment information using LC-MS.

    PubMed

    Cai, Tian; Guo, Ze-Qin; Xu, Xiao-Ying; Wu, Zhi-Jun

    2018-03-01

    Liquid chromatography-Mass Spectrometry (LC-MS) has been widely used in natural product analysis. Global detection and identification of nontargeted components are desirable in natural product research, for example, in quality control of Chinese herbal medicine. Nontargeted components analysis continues to expand to exciting life science application domains such as metabonomics. With this background, the present review summarizes recent developments in the analysis of minor unknown natural products using LC-MS and mainly focuses on the determination of the molecular formulae, selection of precursor ions, and characteristic fragmentation patterns of the known compounds. This review consists of three parts. Firstly, the methods used to determine unique molecular formula of unknown compounds such as accurate mass measurements, MS n spectra, or relative isotopic abundance information, are introduced. Secondly, the methods improving signal-to-noise ratio of MS/MS spectra by manual-MS/MS or workflow targeting-only signals were elucidated; pure precursor ions can be selected by changing the precursor ion isolated window. Lastly, characteristic fragmentation patterns such as Retro-Diels-Alder (RDA), McLafferty rearrangements, "internal residue loss," and so on, occurring in the molecular ions of natural products are summarized. Classical application of characteristic fragmentation patterns in identifying unknown compounds in extracts and relevant fragmentation mechanisms are presented (RDA reactions occurring readily in the molecular ions of flavanones or isoflavanones, McLafferty-type fragmentation reactions of some natural products such as epipolythiodioxopiperazines; fragmentation by "internal residue loss" possibly involving ion-neutral complex intermediates). © 2016 Wiley Periodicals, Inc. Mass Spec Rev 37:202-216, 2018. © 2016 Wiley Periodicals, Inc.

  18. Fragment-based drug design.

    PubMed

    Feyfant, Eric; Cross, Jason B; Paris, Kevin; Tsao, Désirée H H

    2011-01-01

    Fragment-based drug design (FBDD), which is comprised of both fragment screening and the use of fragment hits to design leads, began more than 15 years ago and has been steadily gaining in popularity and utility. Its origin lies on the fact that the coverage of chemical space and the binding efficiency of hits are directly related to the size of the compounds screened. Nevertheless, FBDD still faces challenges, among them developing fragment screening libraries that ensure optimal coverage of chemical space, physical properties and chemical tractability. Fragment screening also requires sensitive assays, often biophysical in nature, to detect weak binders. In this chapter we will introduce the technologies used to address these challenges and outline the experimental advantages that make FBDD one of the most popular new hit-to-lead process.

  19. Fragment informatics and computational fragment-based drug design: an overview and update.

    PubMed

    Sheng, Chunquan; Zhang, Wannian

    2013-05-01

    Fragment-based drug design (FBDD) is a promising approach for the discovery and optimization of lead compounds. Despite its successes, FBDD also faces some internal limitations and challenges. FBDD requires a high quality of target protein and good solubility of fragments. Biophysical techniques for fragment screening necessitate expensive detection equipment and the strategies for evolving fragment hits to leads remain to be improved. Regardless, FBDD is necessary for investigating larger chemical space and can be applied to challenging biological targets. In this scenario, cheminformatics and computational chemistry can be used as alternative approaches that can significantly improve the efficiency and success rate of lead discovery and optimization. Cheminformatics and computational tools assist FBDD in a very flexible manner. Computational FBDD can be used independently or in parallel with experimental FBDD for efficiently generating and optimizing leads. Computational FBDD can also be integrated into each step of experimental FBDD and help to play a synergistic role by maximizing its performance. This review will provide critical analysis of the complementarity between computational and experimental FBDD and highlight recent advances in new algorithms and successful examples of their applications. In particular, fragment-based cheminformatics tools, high-throughput fragment docking, and fragment-based de novo drug design will provide the focus of this review. We will also discuss the advantages and limitations of different methods and the trends in new developments that should inspire future research. © 2012 Wiley Periodicals, Inc.

  20. Northeastern Regional Forest Fragmentation Assessment: Rationale, Methods, and Comparisons With Other Studies

    Treesearch

    Andrew Lister; Rachel Riemann; Tonya Lister; Will McWilliams

    2005-01-01

    Forest fragmentation is thought to impact many biotic and abiotic processes important to ecosystem function. We assessed forest fragmentation in 13 Northeastern States to gain a greater understanding of the trends in and status of this region?s forests. We reclassified and then statistically filtered and updated classified Landsat imagery from the early 1990s, and...

  1. Factors affecting calcium oxalate dihydrate fragmented calculi regrowth

    PubMed Central

    Costa-Bauzá, A; Perelló, J; Isern, B; Sanchis, P; Grases, F

    2006-01-01

    Background The use of extracorporeal shock wave lithotripsy (ESWL) to treat calcium oxalate dihydrate (COD) renal calculi gives excellent fragmentation results. However, the retention of post-ESWL fragments within the kidney remains an important health problem. This study examined the effect of various urinary conditions and crystallization inhibitors on the regrowth of spontaneously-passed post-ESWL COD calculi fragments. Methods Post-ESWL COD calculi fragments were incubated in chambers containing synthetic urine varying in pH and calcium concentration: pH = 5.5 normocalciuria (3.75 mM), pH = 5.5 hypercalciuria (6.25 mM), pH = 6.5 normocalciuria (3.75 mM) or pH = 6.5 hypercalciuria (6.25 mM). Fragment growth was evaluated by measuring increases in weight. Fragment growth was standardized by calculating the relative mass increase. Results Calcium oxalate monohydrate (COM) crystals formed on COD renal calculi fragments under all conditions. Under pH = 5.5 normocalciuria conditions, only COM crystals formed (growth rate = 0.22 ± 0.04 μg/mg·h). Under pH = 5.5 hypercalciuria and under pH = 6.5 normocalciuria conditions, COM crystals and a small number of new COD crystals formed (growth rate = 0.32 ± 0.03 μg/mg·h and 0.35 ± 0.05 μg/mg·h, respectively). Under pH = 6.5 hypercalciuria conditions, large amounts of COD, COM, hydroxyapatite and brushite crystals formed (growth rate = 3.87 ± 0. 34 μg/mg·h). A study of three crystallization inhibitors demonstrated that phytate completely inhibited fragment growth (2.27 μM at pH = 5.5 and 4.55 μM at pH = 6.5, both under hypercalciuria conditions), while 69.0 μM pyrophosphate caused an 87% reduction in mass under pH = 6.5 hypercalciuria conditions. In contrast, 5.29 mM citrate did not inhibit fragment mass increase under pH = 6.5 hypercalciuria conditions. Conclusion The growth rate of COD calculi fragments under pH = 6.5 hypercalciuria conditions was approximately ten times that observed under the other three

  2. Oriented Immobilization of Fab Fragments by Site-Specific Biotinylation at the Conserved Nucleotide Binding Site for Enhanced Antigen Detection.

    PubMed

    Mustafaoglu, Nur; Alves, Nathan J; Bilgicer, Basar

    2015-09-08

    Oriented immobilization of antibodies and antibody fragments has become increasingly important as a result of the efforts to reduce the size of diagnostic and sensor devices to miniaturized dimensions for improved accessibility to the end-user. Reduced dimensions of sensor devices necessitate the immobilized antibodies to conserve their antigen binding activity for proper operation. Fab fragments are becoming more commonly used in small-scaled diagnostic devices due to their small size and ease of manufacture. In this study, we used the previously described UV-NBS(Biotin) method to functionalize Fab fragments with IBA-EG11-Biotin linker utilizing UV energy to initiate a photo-cross-linking reaction between the nucleotide binding site (NBS) on the Fab fragment and IBA-Biotin molecule. Our results demonstrate that immobilization of biotinylated Fab fragments via UV-NBS(Biotin) method generated the highest level of immobilized Fab on surfaces when compared to other typical immobilization methods while preserving antigen binding activity. UV-NBS(Biotin) method provided 432-fold, 114-fold, and 29-fold improved antigen detection sensitivity than physical adsorption, NHS-Biotin, and ε-NH3(+), methods, respectively. Additionally, the limit of detection (LOD) for PSA utilizing Fab fragments immobilized via UV-NBS(Biotin) method was significantly lower than that of the other immobilization methods, with an LOD of 0.4 pM PSA. In summary, site-specific biotinylation of Fab fragments without structural damage or loss in antigen binding activity provides a wide range of application potential for UV-NBS immobilization technique across numerous diagnostic devices and nanotechnologies.

  3. Immediate and delayed allergic reactions to Crotalidae polyvalent immune Fab (ovine) antivenom.

    PubMed

    Clark, Richard F; McKinney, Patrick E; Chase, Peter B; Walter, Frank G

    2002-06-01

    Allergic reactions are the most commonly reported adverse events after administration of antivenoms. Conventional horse serum-based crotalid antivenom used in the United States (Antivenin [Crotalidae] polyvalent) can lead to both immediate and delayed hypersensitivity reactions. Crotalidae polyvalent immune Fab (ovine) (CroFab; FabAV) has recently been approved for use in the United States. Experience from premarketing trials of this product and in the administration of other types of Fab, such as in digoxin poisoning, has demonstrated these fragments to be safe and effective, with a low incidence of sequella; however, allergic reactions can occur when any animal-protein derivatives are administered to human subjects. We report in detail the nature and course of allergic reactions that occurred in 4 patients treated with FabAV. Cases of anaphylaxis, acute urticaria, angioedema, and delayed serum sickness are described. All reactions were easily treated with some combination of antihistamines, epinephrine, and steroids, with prompt resolution of signs and symptoms enabling further dosing of antivenom as required. Several of these cases may have resulted from batches of antivenom contaminated with Fc fragments. The overall incidence of immediate and delayed allergic reactions to this product appears so far to be lower than that reported with conventional whole-immunoglobulin G (IgG) antivenom, but postmarketing surveillance is warranted.

  4. Theoretical study on production cross sections of exotic actinide nuclei in multinucleon transfer reactions

    NASA Astrophysics Data System (ADS)

    Zhu, Long

    2017-12-01

    Within the dinuclear system (DNS) model, the multinucleon transfer reactions 129,136Xe + 248Cm, 112Sn + 238U, and 144Xe + 248Cm are investigated. The production cross sections of primary fragments are calculated with the DNS model. By using a statistical model, we investigate the influence of charged particle evaporation channels on production cross sections of exotic nuclei. It is found that for excited neutron-deficient nuclei the charged particle evaporation competes with neutron emission and plays an important role in the cooling process. The production cross sections of several exotic actinide nuclei are predicted in the reactions 112Sn + 238U and 136,144Xe + 248Cm. Considering the beam intensities, the collisions of 136,144Xe projectiles with a 248Cm target for producing neutron-rich nuclei with Z=92-96 are investigated. Supported by National Natural Science Foundation of China (11605296) and Natural Science Foundation of Guangdong Province, China (2016A030310208)

  5. VUV PHOTO-PROCESSING OF PAH CATIONS: QUANTITATIVE STUDY ON THE IONIZATION VERSUS FRAGMENTATION PROCESSES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhen, Junfeng; Castillo, Sarah Rodriguez; Joblin, Christine

    2016-05-10

    Interstellar polycyclic aromatic hydrocarbons (PAHs) are strongly affected by the absorption of vacuum ultraviolet (VUV) photons in the interstellar medium (ISM), yet the branching ratio between ionization and fragmentation is poorly studied. This is crucial for the stability and charge state of PAHs in the ISM in different environments, affecting in turn the chemistry, the energy balance, and the contribution of PAHs to the extinction and emission curves. We studied the interaction of PAH cations with VUV photons in the 7–20 eV range from the synchrotron SOLEIL beamline, DESIRS. We recorded by action spectroscopy the relative intensities of photo-fragmentation andmore » photo-ionization for a set of eight PAH cations ranging in size from 14 to 24 carbon atoms, with different structures. At photon energies below ∼13.6 eV fragmentation dominates for the smaller species, while for larger species ionization is immediately competitive after the second ionization potential (IP). At higher photon energies all species behave similarly; the ionization yield gradually increases, leveling off between 0.8 and 0.9 at ∼18 eV. Among isomers, PAH structure appears to mainly affect the fragmentation cross section but not the ionization cross section. We also measured the second IP for all species and the third IP for two of them; all are in good agreement with theoretical ones, confirming that PAH cations can be further ionized in the diffuse ISM. Determining actual PAH dication abundances in the ISM will require detailed modeling. Our measured photo-ionization yields for several PAH cations provide a necessary ingredient for such models.« less

  6. Hot Fusion: An Efficient Method to Clone Multiple DNA Fragments as Well as Inverted Repeats without Ligase

    PubMed Central

    Fu, Changlin; Donovan, William P.; Shikapwashya-Hasser, Olga; Ye, Xudong; Cole, Robert H.

    2014-01-01

    Molecular cloning is utilized in nearly every facet of biological and medical research. We have developed a method, termed Hot Fusion, to efficiently clone one or multiple DNA fragments into plasmid vectors without the use of ligase. The method is directional, produces seamless junctions and is not dependent on the availability of restriction sites for inserts. Fragments are assembled based on shared homology regions of 17–30 bp at the junctions, which greatly simplifies the construct design. Hot Fusion is carried out in a one-step, single tube reaction at 50°C for one hour followed by cooling to room temperature. In addition to its utility for multi-fragment assembly Hot Fusion provides a highly efficient method for cloning DNA fragments containing inverted repeats for applications such as RNAi. The overall cloning efficiency is in the order of 90–95%. PMID:25551825

  7. Knowledge-based fragment binding prediction.

    PubMed

    Tang, Grace W; Altman, Russ B

    2014-04-01

    Target-based drug discovery must assess many drug-like compounds for potential activity. Focusing on low-molecular-weight compounds (fragments) can dramatically reduce the chemical search space. However, approaches for determining protein-fragment interactions have limitations. Experimental assays are time-consuming, expensive, and not always applicable. At the same time, computational approaches using physics-based methods have limited accuracy. With increasing high-resolution structural data for protein-ligand complexes, there is now an opportunity for data-driven approaches to fragment binding prediction. We present FragFEATURE, a machine learning approach to predict small molecule fragments preferred by a target protein structure. We first create a knowledge base of protein structural environments annotated with the small molecule substructures they bind. These substructures have low-molecular weight and serve as a proxy for fragments. FragFEATURE then compares the structural environments within a target protein to those in the knowledge base to retrieve statistically preferred fragments. It merges information across diverse ligands with shared substructures to generate predictions. Our results demonstrate FragFEATURE's ability to rediscover fragments corresponding to the ligand bound with 74% precision and 82% recall on average. For many protein targets, it identifies high scoring fragments that are substructures of known inhibitors. FragFEATURE thus predicts fragments that can serve as inputs to fragment-based drug design or serve as refinement criteria for creating target-specific compound libraries for experimental or computational screening.

  8. Knowledge-based Fragment Binding Prediction

    PubMed Central

    Tang, Grace W.; Altman, Russ B.

    2014-01-01

    Target-based drug discovery must assess many drug-like compounds for potential activity. Focusing on low-molecular-weight compounds (fragments) can dramatically reduce the chemical search space. However, approaches for determining protein-fragment interactions have limitations. Experimental assays are time-consuming, expensive, and not always applicable. At the same time, computational approaches using physics-based methods have limited accuracy. With increasing high-resolution structural data for protein-ligand complexes, there is now an opportunity for data-driven approaches to fragment binding prediction. We present FragFEATURE, a machine learning approach to predict small molecule fragments preferred by a target protein structure. We first create a knowledge base of protein structural environments annotated with the small molecule substructures they bind. These substructures have low-molecular weight and serve as a proxy for fragments. FragFEATURE then compares the structural environments within a target protein to those in the knowledge base to retrieve statistically preferred fragments. It merges information across diverse ligands with shared substructures to generate predictions. Our results demonstrate FragFEATURE's ability to rediscover fragments corresponding to the ligand bound with 74% precision and 82% recall on average. For many protein targets, it identifies high scoring fragments that are substructures of known inhibitors. FragFEATURE thus predicts fragments that can serve as inputs to fragment-based drug design or serve as refinement criteria for creating target-specific compound libraries for experimental or computational screening. PMID:24762971

  9. Isomer-dependent fragmentation dynamics of inner-shell photoionized difluoroiodobenzene

    DOE PAGES

    Ablikim, Utuq; Bomme, Cédric; Savelyev, Evgeny; ...

    2017-05-11

    The fragmentation dynamics of 2,6- and 3,5-difluoroiodobenzene after iodine 4d inner-shell photoionization with soft X-rays are studied using coincident electron and ion momentum imaging. By analyzing the momentum correlation between iodine and fluorine cations in three-fold ion coincidence events, we can distinguish the two isomers experimentally. Classical Coulomb explosion simulations are in overall agreement with the experimentally determined fragment ion kinetic energies and momentum correlations and point toward different fragmentation mechanisms and time scales. Finally, while most three-body fragmentation channels show clear evidence for sequential fragmentation on a time scale larger than the rotational period of the fragments, the breakupmore » into iodine and fluorine cations and a third charged co-fragment appears to occur within several hundred femtoseconds.« less

  10. Habitat fragmentation resulting in overgrazing by herbivores.

    PubMed

    Kondoh, Michio

    2003-12-21

    Habitat fragmentation sometimes results in outbreaks of herbivorous insect and causes an enormous loss of primary production. It is hypothesized that the driving force behind such herbivore outbreaks is disruption of natural enemy attack that releases herbivores from top-down control. To test this hypothesis I studied how trophic community structure changes along a gradient of habitat fragmentation level using spatially implicit and explicit models of a tri-trophic (plant, herbivore and natural enemy) food chain. While in spatially implicit model number of trophic levels gradually decreases with increasing fragmentation, in spatially explicit model a relatively low level of habitat fragmentation leads to overgrazing by herbivore to result in extinction of the plant population followed by a total system collapse. This provides a theoretical support to the hypothesis that habitat fragmentation can lead to overgrazing by herbivores and suggests a central role of spatial structure in the influence of habitat fragmentation on trophic communities. Further, the spatially explicit model shows (i) that the total system collapse by the overgrazing can occur only if herbivore colonization rate is high; (ii) that with increasing natural enemy colonization rate, the fragmentation level that leads to the system collapse becomes higher, and the frequency of the collapse is lowered.

  11. Preparation of next-generation sequencing libraries using Nextera™ technology: simultaneous DNA fragmentation and adaptor tagging by in vitro transposition.

    PubMed

    Caruccio, Nicholas

    2011-01-01

    DNA library preparation is a common entry point and bottleneck for next-generation sequencing. Current methods generally consist of distinct steps that often involve significant sample loss and hands-on time: DNA fragmentation, end-polishing, and adaptor-ligation. In vitro transposition with Nextera™ Transposomes simultaneously fragments and covalently tags the target DNA, thereby combining these three distinct steps into a single reaction. Platform-specific sequencing adaptors can be added, and the sample can be enriched and bar-coded using limited-cycle PCR to prepare di-tagged DNA fragment libraries. Nextera technology offers a streamlined, efficient, and high-throughput method for generating bar-coded libraries compatible with multiple next-generation sequencing platforms.

  12. Experimental modelling of fragmentation applied to volcanic explosions

    NASA Astrophysics Data System (ADS)

    Haug, Øystein Thordén; Galland, Olivier; Gisler, Galen R.

    2013-12-01

    Explosions during volcanic eruptions cause fragmentation of magma and host rock, resulting in fragments with sizes ranging from boulders to fine ash. The products can be described by fragment size distributions (FSD), which commonly follow power laws with exponent D. The processes that lead to power-law distributions and the physical parameters that control D remain unknown. We developed a quantitative experimental procedure to study the physics of the fragmentation process through time. The apparatus consists of a Hele-Shaw cell containing a layer of cohesive silica flour that is fragmented by a rapid injection of pressurized air. The evolving fragmentation of the flour is monitored with a high-speed camera, and the images are analysed to obtain the evolution of the number of fragments (N), their average size (A), and the FSD. Using the results from our image-analysis procedure, we find transient empirical laws for N, A and the exponent D of the power-law FSD as functions of the initial air pressure. We show that our experimental procedure is a promising tool for unravelling the complex physics of fragmentation during phreatomagmatic and phreatic eruptions.

  13. A spectroscopist's view of energy states, energy transfers, and chemical reactions.

    PubMed

    Moore, C Bradley

    2007-01-01

    This chapter describes a research career beginning at Berkeley in 1960, shortly after Sputnik and the invention of the laser. Following thesis work on vibrational spectroscopy and the chemical reactivity of small molecules, we studied vibrational energy transfers in my own lab. Collision-induced transfers among vibrations of a single molecule, from one molecule to another, and from vibration to rotation and translation were elucidated. My research group also studied the competition between vibrational relaxation and chemical reaction for potentially reactive collisions with one molecule vibrationally excited. Lasers were used to enrich isotopes by the excitation of a predissociative transition of a selected isotopomer. We also tested the hypotheses of transition-state theory for unimolecular reactions of ketene, formaldehyde, and formyl fluoride by (a) resolving individual molecular eigenstates above a dissociation threshold, (b) locating vibrational levels at the transition state, (c) observing quantum resonances in the barrier region for motion along a reaction coordinate, and (d) studying energy release to fragments.

  14. Fragmentation in the branching coral Acropora palmata (Lamarck): growth, survivorship, and reproduction of colonies and fragments.

    PubMed

    Lirman

    2000-08-23

    Acropora palmata, a branching coral abundant on shallow reef environments throughout the Caribbean, is susceptible to physical disturbance caused by storms. Accordingly, the survivorship and propagation of this species are tied to its capability to recover after fragmentation. Fragments of A. palmata comprised 40% of ramets within populations that had experienced recent storms. While the survivorship of A. palmata fragments was not directly related to the size of fragments, removal of fragments from areas where they settled was influenced by size. Survivorship of fragments was also affected by type of substratum; the greatest mortality (58% loss within the first month) was observed on sand, whereas fragments placed on top of live colonies of A. palmata fused to the underlying tissue and did not experience any losses. Fragments created by Hurricane Andrew on a Florida reef in August 1992 began developing new growth (proto-branches) 7 months after the storm. The number of proto-branches on fragments was dependent on size, but growth was not affected by the size of fragments. Growth-rates of proto-branches increased exponentially with time (1.7 cm year(-1) for 1993-1994, 2.7 cm year(-1) for 1994-1995, 4.2 cm year(-1) for 1995-1996, and 6.5 cm year(-1) for 1996-1997), taking over 4 years for proto-branches to achieve rates comparable to those of adult colonies on the same reef (6.9 cm year(-1)). In addition to the initial mortality and reduced growth-rates, fragmentation resulted in a loss of reproductive potential. Neither colonies that experienced severe fragmentation nor fragments contained gametes until 4 years after the initial damage. Although A. palmata may survive periodic fragmentation, the long-term effects of this process will depend ultimately on the balance between the benefits and costs of this process.

  15. On disciplinary fragmentation and scientific progress.

    PubMed

    Balietti, Stefano; Mäs, Michael; Helbing, Dirk

    2015-01-01

    Why are some scientific disciplines, such as sociology and psychology, more fragmented into conflicting schools of thought than other fields, such as physics and biology? Furthermore, why does high fragmentation tend to coincide with limited scientific progress? We analyzed a formal model where scientists seek to identify the correct answer to a research question. Each scientist is influenced by three forces: (i) signals received from the correct answer to the question; (ii) peer influence; and (iii) noise. We observed the emergence of different macroscopic patterns of collective exploration, and studied how the three forces affect the degree to which disciplines fall apart into divergent fragments, or so-called "schools of thought". We conducted two simulation experiments where we tested (A) whether the three forces foster or hamper progress, and (B) whether disciplinary fragmentation causally affects scientific progress and vice versa. We found that fragmentation critically limits scientific progress. Strikingly, there is no effect in the opposite causal direction. What is more, our results shows that at the heart of the mechanisms driving scientific progress we find (i) social interactions, and (ii) peer disagreement. In fact, fragmentation is increased and progress limited if the simulated scientists are open to influence only by peers with very similar views, or when within-school diversity is lost. Finally, disciplines where the scientists received strong signals from the correct answer were less fragmented and experienced faster progress. We discuss model's implications for the design of social institutions fostering interdisciplinarity and participation in science.

  16. On Disciplinary Fragmentation and Scientific Progress

    PubMed Central

    Balietti, Stefano; Mäs, Michael; Helbing, Dirk

    2015-01-01

    Why are some scientific disciplines, such as sociology and psychology, more fragmented into conflicting schools of thought than other fields, such as physics and biology? Furthermore, why does high fragmentation tend to coincide with limited scientific progress? We analyzed a formal model where scientists seek to identify the correct answer to a research question. Each scientist is influenced by three forces: (i) signals received from the correct answer to the question; (ii) peer influence; and (iii) noise. We observed the emergence of different macroscopic patterns of collective exploration, and studied how the three forces affect the degree to which disciplines fall apart into divergent fragments, or so-called “schools of thought”. We conducted two simulation experiments where we tested (A) whether the three forces foster or hamper progress, and (B) whether disciplinary fragmentation causally affects scientific progress and vice versa. We found that fragmentation critically limits scientific progress. Strikingly, there is no effect in the opposite causal direction. What is more, our results shows that at the heart of the mechanisms driving scientific progress we find (i) social interactions, and (ii) peer disagreement. In fact, fragmentation is increased and progress limited if the simulated scientists are open to influence only by peers with very similar views, or when within-school diversity is lost. Finally, disciplines where the scientists received strong signals from the correct answer were less fragmented and experienced faster progress. We discuss model’s implications for the design of social institutions fostering interdisciplinarity and participation in science. PMID:25790025

  17. Experimental study of acoustic agglomeration and fragmentation on coal-fired ash

    NASA Astrophysics Data System (ADS)

    Shen, Guoqing; Huang, Xiaoyu; He, Chunlong; Zhang, Shiping; An, Liansuo; Wang, Liang; Chen, Yanqiao; Li, Yongsheng

    2018-02-01

    As the major part of air pollution, inhalable particles, especially fine particles are doing great harm to human body due to smaller particle size and absorption of hazardous components. However, the removal efficiency of current particles filtering devices is low. Acoustic agglomeration is considered as a very effective pretreatment technique for removing particles. Fine particles collide, agglomerate and grow up in the sound field and the fine particles can be removed by conventional particles devices easily. In this paper, the agglomeration and fragmentation of 3 different kinds of particles with different size distributions are studied experimentally in the sound field. It is found that there exists an optimal frequency at 1200 Hz for different particles. The agglomeration efficiency of inhalable particles increases with SPL increasing for the unimodal particles with particle diameter less than 10 μm. For the bimodal particles, the optimal SPLs are 115 and 120 dB with the agglomeration efficiencies of 25% and 55%. A considerable effectiveness of agglomeration could only be obtained in a narrow SPL range and it decreases significantly over the range for the particles fragmentation.

  18. Silanol-assisted carbinolamine formation in an amine-functionalized mesoporous silica surface: Theoretical investigation by fragmentation methods

    DOE PAGES

    de Lima Batista, Ana P.; Zahariev, Federico; Slowing, Igor I.; ...

    2015-12-15

    The aldol reaction catalyzed by an amine-substituted mesoporous silica nanoparticle (amine-MSN) surface was investigated using a large molecular cluster model (Si 392O 958C 6NH 361) combined with the surface integrated molecular orbital/molecular mechanics (SIMOMM) and fragment molecular orbital (FMO) methods. Three distinct pathways for the carbinolamine formation, the first step of the amine-catalyzed aldol reaction, are proposed and investigated in order to elucidate the role of the silanol environment on the catalytic capability of the amine-MSN material. Here the computational study reveals that the most likely mechanism involves the silanol groups actively participating in the reaction, forming and breaking covalentmore » bonds in the carbinolamine step. Furthermore, the active participation of MSN silanol groups in the reaction mechanism leads to a significant reduction in the overall energy barrier for the carbinolamine formation. In addition, a comparison between the findings using a minimal cluster model and the Si 392O 958C 6NH 361 cluster suggests that the use of larger models is important when heterogeneous catalysis problems are the target.« less

  19. Initiator and Photocatalyst-Free Visible Light Induced One-Pot Reaction: Concurrent RAFT Polymerization and CuAAC Click Reaction.

    PubMed

    Wang, Jie; Wang, Xinbo; Xue, Wentao; Chen, Gaojian; Zhang, Weidong; Zhu, Xiulin

    2016-05-01

    A new, visible light-catalyzed, one-pot and one-step reaction is successfully employed to design well-controlled side-chain functionalized polymers, by the combination of ambient temperature revisible addtion-fragmentation chain transfer (RAFT) polymerization and click chemistry. Polymerizations are well controlled in a living way under the irradiation of visible light-emitting diode (LED) light without photocatalyst and initiator, using the trithiocarbonate agent as iniferter (initiator-transfer agent-terminator) agent at ambient temperature. Fourier transfer infrared spectroscopy (FT-IR), NMR, and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) data confirm the successful one-pot reaction. Compared to the reported zero-valent metal-catalyzed one-pot reaction, the polymerization rate is much faster than that of the click reaction, and the visible light-catalyzed one-pot reaction can be freely and easily regulated by turning on and off the light. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. FAST TRACK COMMUNICATION: The nonlinear fragmentation equation

    NASA Astrophysics Data System (ADS)

    Ernst, Matthieu H.; Pagonabarraga, Ignacio

    2007-04-01

    We study the kinetics of nonlinear irreversible fragmentation. Here, fragmentation is induced by interactions/collisions between pairs of particles and modelled by general classes of interaction kernels, for several types of breakage models. We construct initial value and scaling solutions of the fragmentation equations, and apply the 'non-vanishing mass flux' criterion for the occurrence of shattering transitions. These properties enable us to determine the phase diagram for the occurrence of shattering states and of scaling states in the phase space of model parameters.

  1. A comparison of total reaction cross section models used in particle and heavy ion transport codes

    NASA Astrophysics Data System (ADS)

    Sihver, Lembit; Lantz, M.; Takechi, M.; Kohama, A.; Ferrari, A.; Cerutti, F.; Sato, T.

    To be able to calculate the nucleon-nucleus and nucleus-nucleus total reaction cross sections with precision is very important for studies of basic nuclear properties, e.g. nuclear structure. This is also of importance for particle and heavy ion transport calculations because, in all particle and heavy ion transport codes, the probability function that a projectile particle will collide within a certain distance x in the matter depends on the total reaction cross sections. Furthermore, the total reaction cross sections will also scale the calculated partial fragmentation cross sections. It is therefore crucial that accurate total reaction cross section models are used in the transport calculations. In this paper, different models for calculating nucleon-nucleus and nucleus-nucleus total reaction cross sections are compared and discussed.

  2. Nucleon localization and fragment formation in nuclear fission

    DOE PAGES

    Zhang, C. L.; Schuetrumpf, B.; Nazarewicz, W.

    2016-12-27

    An electron localization measure was originally introduced to characterize chemical bond structures in molecules. Recently, a nucleon localization based on Hartree-Fock densities has been introduced to investigate α-cluster structures in light nuclei. Compared to the local nucleonic densities, the nucleon localization function has been shown to be an excellent indicator of shell effects and cluster correlations. In this work, using the spatial nucleon localization measure, we investigated the emergence of fragments in fissioning heavy nuclei using the self-consistent energy density functional method with a quantified energy density functional optimized for fission studies. We studied the particle densities and spatial nucleonmore » localization distributions along the fission pathways of 264Fm, 232Th, and 240Pu. We demonstrated that the fission fragments were formed fairly early in the evolution, well before scission. To illustrate the usefulness of the localization measure, we showed how the hyperdeformed state of 232Th could be understood in terms of a quasimolecular state made of 132Sn and 100Zr fragments. Compared to nucleonic distributions, the nucleon localization function more effectively quantifies nucleonic clustering: its characteristic oscillating pattern, traced back to shell effects, is a clear fingerprint of cluster/fragment configurations. This is of particular interest for studies of fragment formation and fragment identification in fissioning nuclei.« less

  3. Evaluation of Microbial Diversity in Wetland through Polymerase Chain Reaction (PCR) and Restriction Fragment Length Polymorphism (RFLP)

    DTIC Science & Technology

    2006-06-01

    51 Appendix C. Promega Restriction Digest Protocol ....................................................53...Rsa1 Restriction Digest Results............................................................................180 9. DNA Base Pair Comparison...particular restriction endonuclease, the length of the fragments produced will differ when the DNA is digested with a restriction enzyme (Edwards

  4. Measurement of 240Pu Angular Momentum Dependent Fission Probabilities Using the (α ,α') Reaction

    NASA Astrophysics Data System (ADS)

    Koglin, Johnathon; Burke, Jason; Fisher, Scott; Jovanovic, Igor

    2017-09-01

    The surrogate reaction method often lacks the theoretical framework and necessary experimental data to constrain models especially when rectifying differences between angular momentum state differences between the desired and surrogate reaction. In this work, dual arrays of silicon telescope particle identification detectors and photovoltaic (solar) cell fission fragment detectors have been used to measure the fission probability of the 240Pu(α ,α' f) reaction - a surrogate for the 239Pu(n , f) - and fission fragment angular distributions. Fission probability measurements were performed at a beam energy of 35.9(2) MeV at eleven scattering angles from 40° to 140°e in 10° intervals and at nuclear excitation energies up to 16 MeV. Fission fragment angular distributions were measured in six bins from 4.5 MeV to 8.0 MeV and fit to expected distributions dependent on the vibrational and rotational excitations at the saddle point. In this way, the contributions to the total fission probability from specific states of K angular momentum projection on the symmetry axis are extracted. A sizable data collection is presented to be considered when constraining microscopic cross section calculations.

  5. S-Nitroglutathione, a product of the reaction between peroxynitrite and glutathione that generates nitric oxide.

    PubMed

    Balazy, M; Kaminski, P M; Mao, K; Tan, J; Wolin, M S

    1998-11-27

    Peroxynitrite (ONOO-) has been shown in studies on vascular relaxation and guanylate cyclase activation to react with glutathione (GSH), generating an intermediate product that promotes a time-dependent production of nitric oxide (NO). In this study, reactions of ONOO- with GSH produced a new substance, which was characterized by liquid chromatography, ultraviolet spectroscopy, and electrospray tandem mass spectrometry. The mass spectrometric data provided evidence that the product of this reaction was S-nitroglutathione (GSNO2) and that S-nitrosoglutathione (GSNO) was not a detectable product of this reaction. Further evidence was obtained by comparison of the spectral and chromatographic properties with synthetic standards prepared by reaction of GSH with nitrosonium or nitronium borofluorates. Both the synthetic and ONOO-/GSH-derived GSNO2 generated a protonated ion, GSNO2H+, at m/z 353, which was unusually resistant to decomposition under collision activation, and no fragmentation was observed at collision energy of 25 eV. In contrast, an ion at m/z 337 (GSNOH+), generated from the synthetic GSNO, readily fragmented with the abundant loss of NO at 9 eV. Reactions of ONOO- with GSH resulted in the generation of NO, which was detected by the head space/NO-chemiluminescence analyzer method. The generation of NO was inhibited by the presence of glucose and/or CO2 in the buffers employed. Synthetic GSNO2 spontaneously generated NO in a manner that was not significantly altered by glucose or CO2. Thus, ONOO- reacts with GSH to form GSNO2, and GSNO2 decomposes in a manner that generates NO.

  6. Molecularly Imprinted Polymers with DNA Aptamer Fragments as Macromonomers.

    PubMed

    Zhang, Zijie; Liu, Juewen

    2016-03-01

    Molecularly imprinted polymers (MIPs) are produced in the presence of a template molecule. After removing the template, the cavity can selectively rebind the template. MIPs are attractive functional materials with a low cost and high stability, but traditional MIPs often suffer from low binding affinity. This study employs DNA aptamer fragments as macromonomers to improve MIPs. The DNA aptamer for adenosine was first split into two halves, fluorescently labeled, and copolymerized into MIPs. With a fluorescence quenching assay, the importance of imprinting was confirmed. Further studies were carried out using isothermal titration calorimetry (ITC). Compared to the mixture of the free aptamer fragments, their MIPs doubled the binding affinity. Each free aptamer fragment alone cannot bind adenosine, whereas MIPs containing each fragment are effective binders. We further shortened one of the aptamer fragments, and the DNA length was pushed to as short as six nucleotides, yielding MIPs with a dissociation constant of 27 μM adenosine. This study provides a new method for preparing functional MIP materials by combining high-affinity biopolymer fragments with low-cost synthetic monomers, allowing higher binding affinity and providing a method for signaling binding based on DNA chemistry.

  7. Cosmetic micromanipulation of vitrified-warmed cleavage stage embryos does not improve ART outcomes: An ultrastructural study of fragments.

    PubMed

    Safari, Somayyeh; Khalili, Mohammad Ali; Barekati, Zeinab; Halvaei, Iman; Anvari, Morteza; Nottola, Stefania A

    2017-09-01

    The aim was to study the ultrastructure of cytoplasmic fragments along with the effect of cosmetic micromanipulation (CM) on the morphology and development of vitrified-warmed embryos as well as assisted reproductive technology (ART) outcomes. A total of 96 frozen embryo transfer (FET) cycles were included in this prospective randomized study. They were divided into three groups of CM (n=32), sham (n=32) and control (n=32). In the CM group, the vitrified- warmed embryos were subjected to fragments and coarse granules removal (cosmetic micromanipulation) after laser assisted zona hatching (LAH); sham group subjected only to LAH and no intervention was taken for the control group. Fragmented embryo was evaluated by transmission electron microscopy (TEM). Significant improvement was observed in the morphological parameters, such as fragmentation degrees, evenness of the blastomeres and embryo grade during the subsequent development, after applying cosmetic micromanipulation, when compared to sham or control groups (P=0.00001). However, there were no differences in the clinical outcomes amongst the three studied groups e.g. the rates of clinical, ongoing and multiple pregnancies, implantation, delivery and live birth. In fine structure view, fragments exhibited uniform cytoplasmic texture containing majority of organelles that were observed in normal blastomeres including mitochondria. In conclusion, application of cosmetic micromanipulation in low-grade vitrified-warmed embryos showed significant improvement on embryo morphology parameters; however, did not result in noticeable improvements in clinical outcomes of the patients undergoing ART program. In addition, embryo vitrification had no adverse effects on fine structure of the fragments. Copyright © 2017 Society for Biology of Reproduction & the Institute of Animal Reproduction and Food Research of Polish Academy of Sciences in Olsztyn. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  8. Fragments and Coherence

    ERIC Educational Resources Information Center

    Watson, Anne

    2008-01-01

    Can teachers contact the inner coherence of mathematics while working in a context fragmented by always-new objectives, criteria, and initiatives? How, more importantly, can learners experience the inner coherence of mathematics while working in a context fragmented by testing, modular curricular, short-term learning objectives, and lessons that…

  9. An approximate classical unimolecular reaction rate theory

    NASA Astrophysics Data System (ADS)

    Zhao, Meishan; Rice, Stuart A.

    1992-05-01

    We describe a classical theory of unimolecular reaction rate which is derived from the analysis of Davis and Gray by use of simplifying approximations. These approximations concern the calculation of the locations of, and the fluxes of phase points across, the bottlenecks to fragmentation and to intramolecular energy transfer. The bottleneck to fragment separation is represented as a vibration-rotation state dependent separatrix, which approximation is similar to but extends and improves the approximations for the separatrix introduced by Gray, Rice, and Davis and by Zhao and Rice. The novel feature in our analysis is the representation of the bottlenecks to intramolecular energy transfer as dividing surfaces in phase space; the locations of these dividing surfaces are determined by the same conditions as locate the remnants of robust tori with frequency ratios related to the golden mean (in a two degree of freedom system these are the cantori). The flux of phase points across each dividing surface is calculated with an analytic representation instead of a stroboscopic mapping. The rate of unimolecular reaction is identified with the net rate at which phase points escape from the region of quasiperiodic bounded motion to the region of free fragment motion by consecutively crossing the dividing surfaces for intramolecular energy exchange and the separatrix. This new theory generates predictions of the rates of predissociation of the van der Waals molecules HeI2, NeI2 and ArI2 which are in very good agreement with available experimental data.

  10. DNA fragmentation status in patients with necrozoospermia.

    PubMed

    Brahem, Sonia; Jellad, Sonia; Ibala, Samira; Saad, Ali; Mehdi, Meriem

    2012-12-01

    The aim of this study was to determine if a relationship exists between the levels of sperm DNA fragmentation and necrospermia in infertile men. Semen samples obtained from 70 men consulting for infertility evaluation were analyzed according to World Health Organization (WHO) guidelines. Patients were subdivided into three groups according to the percentage of necrotic spermatozoa: normozoospermia (<30%; n = 20), moderate necrozoospermia (50-80%; n = 30), and severe necrozoospermia (>80%; n = 20). DNA fragmentation was detected by the terminal desoxynucleotidyl transferase-mediated deoxyuridine triphosphate biotin nick-end labeling (TUNEL) assay. The sperm DNA fragmentation index (DFI) was 9.28 ± 2.98% in patients with a normal level of necrotic spermatozoa, 20.25 ± 3.21% in patients with moderate necrozoospermia, and 35.31 ± 5.25% in patients with severe necrozoospermia. There was a statistically significant increase of DNA fragmentation in the necrozoospermic group (P < 0.01). A strong correlation was found between the degree of necrozoospermia and sperm DNA fragmentation. We concluded that patients with necrozoospermia showed a high level of DNA fragmentation compared to normozoospermic men. Severe necrozoospermia (>80%) is a predictive factor for increased sperm DNA damage.

  11. A study of the fragmentation of quarks in et- p collisions at HERA

    NASA Astrophysics Data System (ADS)

    Aid, S.; Andreev, V.; Andrieu, B.; Appuhn, R.-D.; Arpagaus, M.; Babaev, A.; Baehr, J.; Bán, J.; Ban, Y.; Baranov, P.; Barrelet, E.; Barschke, R.; Bartel, W.; Barth, M.; Bassler, U.; Beck, H. P.; Behrend, H.-J.; Belousov, A.; Berger, Ch.; Bernardi, G.; Bernet, R.; Bertrand-Coremans, G.; Besançon, M.; Beyer, R.; Biddulph, P.; Bispham, P.; Bizot, J. C.; Blobel, V.; Borras, K.; Botterweck, F.; Boudry, V.; Braemer, A.; Brasse, F.; Braunschweig, W.; Brisson, V.; Bruncko, D.; Brune, C.; Buchholz, R.; Büngener, L.; Bürger, J.; Büsser, F. W.; Buniatian, A.; Bürke, S.; Burton, M.; Buschhorn, G.; Campbell, A. J.; Carli, T.; Charles, F.; Charlet, M.; Clarke, D.; Clegg, A. B.; Clerbaux, B.; Colombo, M.; Contreras, J. G.; Cormack, C.; Coughlan, J. A.; Courau, A.; Coutures, Ch.; Cozzika, G.; Criegee, L.; Cussans, D. G.; Cvach, J.; Dagoret, S.; Dainton, J. B.; Dau, W. D.; Daum, K.; David, M.; Delcourt, B.; Del Buono, L.; De Roeck, A.; De Wolf, E. A.; Di Nezza, P.; Dollfus, C.; Dowell, J. D.; Dreis, H. B.; Droutskoi, A.; Duboc, J.; Düllmann, D.; Dünger, O.; Duhm, H.; Ebert, J.; Ebert, T. R.; Eckerlin, G.; Efremenko, V.; Egli, S.; Ehrlichmann, H.; Eichenberger, S.; Eichler, R.; Eisele, F.; Eisenhandler, E.; Ellison, R. J.; Elsen, E.; Erdmann, M.; Erdmann, W.; Evrard, E.; Favart, L.; Fedotov, A.; Feeken, D.; Felst, R.; Feltesse, J.; Ferencei, J.; Ferrarotto, F.; Flamm, K.; Fleischer, M.; Flieser, M.; Flügge, G.; Fomenko, A.; Fominykh, B.; Forbush, M.; Formánek, J.; Foster, J. M.; Franke, G.; Fretwurst, E.; Gabathuler, E.; Gabathuler, K.; Gamerdinger, K.; Garvey, J.; Gayler, J.; Gebauer, M.; Gellrich, A.; Genzel, H.; Gerhards, R.; Goerlach, U.; Goerlach, L.; Gogitidze, N.; Goldberg, M.; Goldner, D.; Gonzalez-Pineiro, B.; Gorelov, I.; Goritchev, P.; Grab, C.; Grässler, H.; Grässler, R.; Greenshaw, T.; Grindhammer, G.; Gruber, A.; Gruber, C.; Haack, J.; Haidt, D.; Hajduk, L.; Hamon, O.; Hampel, M.; Hanlon, E. M.; Hapke, M.; Haynes, W. J.; Heatherington, J.; Heinzelmann, G.; Henderson, R. C. W.; Henschel, H.; Herynek, I.; Hess, M. F.; Hildesheim, W.; Hill, P.; Hiller, K. H.; Hilton, C. D.; Hladký, J.; Hoeger, K. C.; Höppner, M.; Horisberger, R.; Hudgson, V. L.; Huet, Ph.; Hütte, M.; Hufnagel, H.; Ibbotson, M.; Itterbeck, H.; Jabiol, M.-A.; Jacholkowska, A.; Jacobsson, C.; Jaffre, M.; Janoth, J.; Jansen, T.; Jönson, L.; Johnson, D. P.; Johnson, L.; Jung, H.; Kalmus, P. I. P.; Kant, D.; Kaschowitz, R.; Kasselmann, P.; Kathage, U.; Katzy, J.; Kaufmann, H. H.; Kazarian, S.; Kenyon, I. R.; Kermiche, S.; Keuker, C.; Kiesling, C.; Klein, M.; Kleinwort, C.; Knies, G.; Ko, W.; Köhler, T.; Köhne, J. H.; Kolanoski, H.; Kole, F.; Kolya, S. D.; Korbel, V.; Korn, M.; Kostka, P.; Kotelnikov, S. K.; Krdmerkämper, T.; Krasny, M. W.; Krehbiel, H.; Krücker, D.; Krüger, U.; Krüner-Marquis, U.; Kubenka, J. P.; Küster, H.; Kuhlen, M.; Kurča, T.; Kurzhöfer, J.; Kuznik, B.; Lacour, D.; Lamarche, F.; Lander, R.; Landon, M. P. J.; Lange, W.; Lanius, P.; Laporte, J.-F.; Lebedev, A.; Leverenz, C.; Levonian, S.; Ley, Ch.; Lindner, A.; Lindström, G.; Link, J.; Linsel, F.; Lipinski, J.; List, B.; Lobo, G.; Loch, P.; Lohmander, H.; Lomas, J.; Lopez, G. C.; Lubimov, V.; Luke, D.; Magnussen, N.; Malinovski, E.; Mani, S.; Maraček, R.; Marage, P.; Marks, J.; Marshall, R.; Martens, J.; Martin, R.; Martyn, H.-U.; Martyniak, J.; Masson, S.; Mavroidis, T.; Maxfield, S. J.; McMahon, S. J.; Mehta, A.; Meier, K.; Mercer, D.; Merz, T.; Meyer, C. A.; Meyer, H.; Meyer, J.; Migliori, A.; Mikocki, S.; Milstead, D.; Moreau, F.; Morris, J. V.; Mroczko, E.; Müller, G.; Müller, K.; Murín, P.; Nagovizin, V.; Nahnhauer, R.; Naroska, B.; Naumann, Th.; Newman, P. R.; Newton, D.; Neyret, D.; Nguyen, H. K.; Nicholls, T. C.; Niebergall, F.; Niebuhr, C.; Niedzballa, Ch.; Nisius, R.; Nowak, G.; Noyes, G. W.; Nyberg-Werther, M.; Oakden, M.; Oberlack, H.; Obrock, U.; Olsson, J. E.; Ozerov, D.; Panaro, E.; Panitch, A.; Pascaud, C.; Patel, G. D.; Peppel, E.; Perez, E.; Phillips, J. P.; Pichler, Ch.; Pieuchot, A.; Pitzl, D.; Pope, G.; Prell, S.; Prosi, R.; Rabbertz, K.; Radel, G.; Raupach, F.; Reimer, P.; Reinshagen, S.; Ribarics, P.; Rick, H.; Riech, V.; Riedlberger, J.; Riess, S.; Rietz, M.; Rizvi, E.; Robertson, S. M.; Robmann, P.; Roloff, H. E.; Roosen, R.; Rosenbauer, K.; Rostovtsev, A.; Rouse, F.; Royon, C.; Rütter, K.; Rusakov, S.; Rybicki, K.; Rylko, R.; Sahlmann, N.; Sanchez, E.; Sankey, D. P. C.; Schacht, P.; Schiek, S.; Schleper, P.; von Schlippe, W.; Schmidt, C.; Schmidt, D.; Schmidt, G.; Schöning, A.; Schröder, V.; Schuhmann, E.; Schwab, B.; Schwind, A.; Sefkow, F.; Seidel, M.; Sell, R.; Semenov, A.; Shekelyan, V.; Sheviakov, I.; Shooshtari, H.; Shtarkov, L. N.; Siegmon, G.; Siewert, U.; Sirois, Y.; Skillicorn, I. O.; Smirnov, P.; Smith, J. R.; Solochenko, V.; Soloviev, Y.; Spiekermann, J.; Spielman, S.; Spitzerx, H.; Starosta, R.; Steenbock, M.; Steffen, P.; Steinberg, R.; Stella, B.; Stephens, K.; Stier, J.; Stiewe, J.; Stosslein, U.; Stolze, K.; Strachota, J.; Straumann, U.; Struczinski, W.; Sutton, J. P.; Tapprogge, S.; Tchernyshov, V.; Thiebaux, C.; Thompson, G.; Truöl, P.; Turnau, J.; Tutas, J.; Uelkes, P.; Usik, A.; Valkár, S.; Valkárová, A.; Vallée, C.; Van Esch, P.; Van Mechelen, P.; Vartapetian, A.; Vazdik, Y.; Verrecchia, P.; Villet, G.; Wacker, K.; Wagener, A.; Wagener, M.; Walker, I. W.; Walther, A.; Weber, G.; Weber, M.; Wegener, D.; Wegner, A.; Wellisch, H. P.; West, L. R.; Willard, S.; Winde, M.; Winter, G.-G.; Wittek, C.; Wright, A. E.; Wünsch, E.; Wulff, N.; Yiou, T. P.; Žáček, J.; Zarbock, D.; Zhang, Z.; Zhokin, A.; Zimmer, M.; Zimmermann, W.; Zomer, F.; Zuber, K.; H1 Collaboration

    1995-02-01

    Deep inelastic scattering (DIS) events, selected from 1993 data taken by the H1 experiment at HERA, are studied in the Breit frame of reference. The fragmentation function of the quark is compared with those of e+e- data. It is shown that certain aspects of the quarks emerging from within the proton in e-p interactions are essentially the same as those of quarks pair-created from the vacuum in e+e- annihilation. The measured area, peak position and width of the fragmentation function show that the kinematic evolution variable, equivalent to the e+e- squared centre of mass energy, is in the Breit frame the invariant square of the four-momentum transfer. We comment on the extent to which we have evidence for coherence effects in pArton showers.

  12. Processes forming Gas, Tar, and Coke in Cellulose Gasification from Gas-Phase Reactions of Levoglucosan as Intermediate.

    PubMed

    Fukutome, Asuka; Kawamoto, Haruo; Saka, Shiro

    2015-07-08

    The gas-phase pyrolysis of levoglucosan (LG), the major intermediate species during cellulose gasification, was studied experimentally over the temperature range of 400-900 °C. Gaseous LG did not produce any dehydration products, which include coke, furans, and aromatic substances, although these are characteristic products of the pyrolysis of molten LG. Alternatively, at >500 °C, gaseous LG produced only fragmentation products, such as noncondensable gases and condensable C1 -C3 fragments, as intermediates during noncondensable gas formation. Therefore, it was determined that secondary reactions of gaseous LG can result in the clean (tar- and coke-free) gasification of cellulose. Cooling of the remaining LG in the gas phase caused coke formation by the transition of the LG to the molten state. The molecular mechanisms that govern the gas- and molten-phase reactions of LG are discussed in terms of the acid catalyst effect of intermolecular hydrogen bonding to promote the molten-phase dehydration reactions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Fragment library design: using cheminformatics and expert chemists to fill gaps in existing fragment libraries.

    PubMed

    Kutchukian, Peter S; So, Sung-Sau; Fischer, Christian; Waller, Chris L

    2015-01-01

    Fragment based screening (FBS) has emerged as a mainstream lead discovery strategy in academia, biotechnology start-ups, and large pharma. As a prerequisite of FBS, a structurally diverse library of fragments is desirable in order to identify chemical matter that will interact with the range of diverse target classes that are prosecuted in contemporary screening campaigns. In addition, it is also desirable to offer synthetically amenable starting points to increase the probability of a successful fragment evolution through medicinal chemistry. Herein we describe a method to identify biologically relevant chemical substructures that are missing from an existing fragment library (chemical gaps), and organize these chemical gaps hierarchically so that medicinal chemists can efficiently navigate the prioritized chemical space and subsequently select purchasable fragments for inclusion in an enhanced fragment library.

  14. Development of procedures for the identification of human papilloma virus DNA fragments in laser plume

    NASA Astrophysics Data System (ADS)

    Woellmer, Wolfgang; Meder, Tom; Jappe, Uta; Gross, Gerd; Riethdorf, Sabine; Riethdorf, Lutz; Kuhler-Obbarius, Christina; Loening, Thomas

    1996-01-01

    For the investigation of laser plume for the existence of HPV DNA fragments, which possibly occur during laser treatment of virus infected tissue, human papillomas and condylomas were treated in vitro with the CO2-laser. For the sampling of the laser plume a new method for the trapping of the material was developed by use of water-soluble gelatine filters. These samples were analyzed with the polymerase chain reaction (PCR) technique, which was optimized in regard of the gelatine filters and the specific primers. Positive PCR results for HPV DNA fragments up to the size of a complete oncogene were obtained and are discussed regarding infectiousity.

  15. Severe Cutaneous Adverse Drug Reactions: A Clinicoepidemiological Study

    PubMed Central

    Sasidharanpillai, Sarita; Riyaz, Najeeba; Khader, Anza; Rajan, Uma; Binitha, Manikoth P; Sureshan, Deepthi N

    2015-01-01

    Background: Drug eruptions range from transient erythema to the life threatening severe cutaneous adverse reactions (SCAR) that encompass Stevens–Johnson syndrome (SJS), toxic epidermal necrolysis (TEN), acute generalized exanthematous pustulosis (AGEP) and drug reaction with eosinophilia and systemic symptoms complex (DRESS). Aims and Objectives: To study the clinical and epidemiological aspects of cutaneous adverse drug reactions (CADR). Materials and Methods: Ethical clearance was obtained from the institutional ethics committee. All patients admitted in the Dermatology ward of our tertiary care hospital with CADR (those who fit in the category of probable or possible drug reaction as per WHO casuality assessment) from first September 2011 to 31st August 2012 were included in this cross sectional study after obtaining written informed consent. The drug reaction patterns observed in the study population were determined and the common offending drugs were identified. Results: In the study, population of males outnumbered females and the majority were between 46 and 60 years of age. The commonest reaction pattern observed was SJS- TEN spectrum of illness and aromatic anticonvulsants were the common offending drugs. Prompt withdrawal of the culprit drug and administration of systemic steroids with or without I/V Ig reverted the adverse reaction in all except one. Conclusion: Severe drug reactions predominated as the study population was comprised of inpatients of a tertiary referral centre. Though; previous authors had reported a mortality rate of up to 20% in DRESS, all our patients with this reaction pattern, responded well to treatment. The mortality rate among TEN cases was much lower than the previous reports. Early diagnosis, prompt withdrawal of the suspected drug, careful monitoring for development of complications and immediate intervention can improve the prognosis of CADR. PMID:25657416

  16. The Roles of Family B and D DNA Polymerases in Thermococcus Species 9°N Okazaki Fragment Maturation*

    PubMed Central

    Greenough, Lucia; Kelman, Zvi; Gardner, Andrew F.

    2015-01-01

    During replication, Okazaki fragment maturation is a fundamental process that joins discontinuously synthesized DNA fragments into a contiguous lagging strand. Efficient maturation prevents repeat sequence expansions, small duplications, and generation of double-stranded DNA breaks. To address the components required for the process in Thermococcus, Okazaki fragment maturation was reconstituted in vitro using purified proteins from Thermococcus species 9°N or cell extracts. A dual color fluorescence assay was developed to monitor reaction substrates, intermediates, and products. DNA polymerase D (polD) was proposed to function as the replicative polymerase in Thermococcus replicating both the leading and the lagging strands. It is shown here, however, that it stops before the previous Okazaki fragments, failing to rapidly process them. Instead, Family B DNA polymerase (polB) was observed to rapidly fill the gaps left by polD and displaces the downstream Okazaki fragment to create a flap structure. This flap structure was cleaved by flap endonuclease 1 (Fen1) and the resultant nick was ligated by DNA ligase to form a mature lagging strand. The similarities to both bacterial and eukaryotic systems and evolutionary implications of archaeal Okazaki fragment maturation are discussed. PMID:25814667

  17. Universal Rim Thickness in Unsteady Sheet Fragmentation.

    PubMed

    Wang, Y; Dandekar, R; Bustos, N; Poulain, S; Bourouiba, L

    2018-05-18

    Unsteady fragmentation of a fluid bulk into droplets is important for epidemiology as it governs the transport of pathogens from sneezes and coughs, or from contaminated crops in agriculture. It is also ubiquitous in industrial processes such as paint, coating, and combustion. Unsteady fragmentation is distinct from steady fragmentation on which most theoretical efforts have been focused thus far. We address this gap by studying a canonical unsteady fragmentation process: the breakup from a drop impact on a finite surface where the drop fluid is transferred to a free expanding sheet of time-varying properties and bounded by a rim of time-varying thickness. The continuous rim destabilization selects the final spray droplets, yet this process remains poorly understood. We combine theory with advanced image analysis to study the unsteady rim destabilization. We show that, at all times, the rim thickness is governed by a local instantaneous Bond number equal to unity, defined with the instantaneous, local, unsteady rim acceleration. This criterion is found to be robust and universal for a family of unsteady inviscid fluid sheet fragmentation phenomena, from impacts of drops on various surface geometries to impacts on films. We discuss under which viscous and viscoelastic conditions the criterion continues to govern the unsteady rim thickness.

  18. Universal Rim Thickness in Unsteady Sheet Fragmentation

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Dandekar, R.; Bustos, N.; Poulain, S.; Bourouiba, L.

    2018-05-01

    Unsteady fragmentation of a fluid bulk into droplets is important for epidemiology as it governs the transport of pathogens from sneezes and coughs, or from contaminated crops in agriculture. It is also ubiquitous in industrial processes such as paint, coating, and combustion. Unsteady fragmentation is distinct from steady fragmentation on which most theoretical efforts have been focused thus far. We address this gap by studying a canonical unsteady fragmentation process: the breakup from a drop impact on a finite surface where the drop fluid is transferred to a free expanding sheet of time-varying properties and bounded by a rim of time-varying thickness. The continuous rim destabilization selects the final spray droplets, yet this process remains poorly understood. We combine theory with advanced image analysis to study the unsteady rim destabilization. We show that, at all times, the rim thickness is governed by a local instantaneous Bond number equal to unity, defined with the instantaneous, local, unsteady rim acceleration. This criterion is found to be robust and universal for a family of unsteady inviscid fluid sheet fragmentation phenomena, from impacts of drops on various surface geometries to impacts on films. We discuss under which viscous and viscoelastic conditions the criterion continues to govern the unsteady rim thickness.

  19. Fragmentation Speed at Magmatic Temperatures: an Experimental Determination

    NASA Astrophysics Data System (ADS)

    Alatorre-Ibarguengoitia, M. A.; Scheu, B.; Dingwell, D. B.

    2011-12-01

    C. To our knowledge, this is the first systematic investigation of the fragmentation speed of volcanic samples at magmatic temperatures. These results enhance our understanding of explosive volcanic eruptions. As has been shown by recent studies, a quantitative knowledge of the dynamics of magma fragmentation is critical for determining the eruptive regime.

  20. Bone as a secondary missile: an experimental study in the fragmenting of bone by high-velocity missiles.

    PubMed

    Amato, J J; Syracuse, D; Seaver, P R; Rich, N

    1989-05-01

    Destruction to soft tissues by bone fragments has been described in the literature. Civilian and military injuries have been reported in which bone fragments have acted as secondary missiles. This experimental study demonstrates, in detail, the formation of the temporary cavity within bone and the forward motion of these bone spicules. The knowledge of the ballistics will assist in the treatment of wounds caused by high-velocity missiles.

  1. CF3+ fragmentation by electron impact ionization of perfluoro-propyl-vinyl-ethers, C5F10O, in gas phase

    NASA Astrophysics Data System (ADS)

    Kondo, Yusuke; Ishikawa, Kenji; Hayashi, Toshio; Miyawaki, Yudai; Takeda, Keigo; Kondo, Hiroki; Sekine, Makoto; Hori, Masaru

    2015-04-01

    The gas phase fragmentations of perfluoro-propyl-vinyl ether (PPVE, C5F10O) are studied experimentally. Dominant fragmentations of PPVE are found to be the result of a dissociative ionization reaction, i.e., CF3+ via direct bond cleavage, and C2F3O- and C3F7O- via electron attachment. Regardless of the appearance energy of around 14.5 eV for the dissociative ionization of CF3+, the observed ion efficiency for the CF3+ ion was extremely large the order of 10-20 cm-2, compared with only 10-21 cm-2 for the other channels. PPVE characteristically generated CF3+ as the largest abundant ion are advantageous for use of feedstock gases in plasma etching processes.

  2. Energy production using fission fragment rockets

    NASA Astrophysics Data System (ADS)

    Chapline, G.; Matsuda, Y.

    1991-08-01

    Fission fragment rockets are nuclear reactors with a core consisting of thin fibers in a vacuum, and which use magnetic fields to extract the fission fragments from the reactor core. As an alternative to ordinary nuclear reactors, fission fragment rockets would have the following advantages: approximately twice the efficiency if the fission fragment energy can be directly converted into electricity; reduction of the buildup of a fission fragment inventory in the reactor could avoid a Chernobyl type disaster; and collection of the fission fragments outside the reactor could simplify the waste disposal problem.

  3. Selection of single chain antibody fragments binding to the extracellular domain of 4-1BB receptor by phage display technology.

    PubMed

    Bagheri, Salman; Yousefi, Mehdi; Safaie Qamsari, Elmira; Riazi-Rad, Farhad; Abolhassani, Mohsen; Younesi, Vahid; Dorostkar, Ruhollah; Movassaghpour, Ali Akbar; Sharifzadeh, Zahra

    2017-03-01

    The 4-1BB is a surface glycoprotein that pertains to the tumor necrosis factor-receptor family. There is compelling evidence suggesting important roles for 4-1BB in the immune response, including cell activation and proliferation and also cytokine induction. Because of encouraging results of different agonistic monoclonal antibodies against 4-1BB in the treatment of cancer, infectious, and autoimmune diseases, 4-1BB has been suggested as an attractive target for immunotherapy. In this study, single chain variable fragment phage display libraries, Tomlinson I+J, were screened against specific synthetic oligopeptides (peptides I and II) designed from 4-1BB extracellular domain. Five rounds of panning led to selection of four 4-1BB specific single chain variable fragments (PI.12, PI.42, PII.16, and PII.29) which showed specific reaction to relevant peptides in phage enzyme-linked immunosorbent assay. The selected clones were successfully expressed in Escherichia coli Rosetta-gami 2, and their expression was confirmed by western blot analysis. Enzyme-linked immunosorbent assay experiments indicated that these antibodies were able to specifically recognize 4-1BB without any cross-reactivity with other antigens. Flow cytometry analysis demonstrated an acceptable specific binding of the single chain variable fragments to 4-1BB expressed on CCRF-CEM cells, while no binding was observed with an irrelevant antibody. Anti-4-1BB single chain variable fragments enhanced surface CD69 expression and interleukin-2 production in stimulated CCRF-CEM cells which confirmed the agonistic effect of the selected single chain variable fragments. The data from this study have provided a rationale for further experiments involving the biological functions of anti-4-1BB single chain variable fragments in future studies.

  4. Effective Fragment Potential Method for H-Bonding: How To Obtain Parameters for Nonrigid Fragments.

    PubMed

    Dubinets, Nikita; Slipchenko, Lyudmila V

    2017-07-20

    Accuracy of the effective fragment potential (EFP) method was explored for describing intermolecular interaction energies in three dimers with strong H-bonded interactions, formic acid, formamide, and formamidine dimers, which are a part of HBC6 database of noncovalent interactions. Monomer geometries in these dimers change significantly as a function of intermonomer separation. Several EFP schemes were considered, in which fragment parameters were prepared for a fragment in its gas-phase geometry or recomputed for each unique fragment geometry. Additionally, a scheme in which gas-phase fragment parameters are shifted according to relaxed fragment geometries is introduced and tested. EFP data are compared against the coupled cluster with single, double, and perturbative triple excitations (CCSD(T)) method in a complete basis set (CBS) and the symmetry adapted perturbation theory (SAPT). All considered EFP schemes provide a good agreement with CCSD(T)/CBS for binding energies at equilibrium separations, with discrepancies not exceeding 2 kcal/mol. However, only the schemes that utilize relaxed fragment geometries remain qualitatively correct at shorter than equilibrium intermolecular distances. The EFP scheme with shifted parameters behaves quantitatively similar to the scheme in which parameters are recomputed for each monomer geometry and thus is recommended as a computationally efficient approach for large-scale EFP simulations of flexible systems.

  5. The Evolution of Grain Size Distribution in Explosive Rock Fragmentation - Sequential Fragmentation Theory Revisited

    NASA Astrophysics Data System (ADS)

    Scheu, B.; Fowler, A. C.

    2015-12-01

    Fragmentation is a ubiquitous phenomenon in many natural and engineering systems. It is the process by which an initially competent medium, solid or liquid, is broken up into a population of constituents. Examples occur in collisions and impacts of asteroids/meteorites, explosion driven fragmentation of munitions on a battlefield, as well as of magma in a volcanic conduit causing explosive volcanic eruptions and break-up of liquid drops. Besides the mechanism of fragmentation the resulting frequency-size distribution of the generated constituents is of central interest. Initially their distributions were fitted empirically using lognormal, Rosin-Rammler and Weibull distributions (e.g. Brown & Wohletz 1995). The sequential fragmentation theory (Brown 1989, Wohletz at al. 1989, Wohletz & Brown 1995) and the application of fractal theory to fragmentation products (Turcotte 1986, Perfect 1997, Perugini & Kueppers 2012) attempt to overcome this shortcoming by providing a more physical basis for the applied distribution. Both rely on an at least partially scale-invariant and thus self-similar random fragmentation process. Here we provide a stochastic model for the evolution of grain size distribution during the explosion process. Our model is based on laboratory experiments in which volcanic rock samples explode naturally when rapidly depressurized from initial pressures of several MPa to ambient conditions. The physics governing this fragmentation process has been successfully modelled and the observed fragmentation pattern could be numerically reproduced (Fowler et al. 2010). The fragmentation of these natural rocks leads to grain size distributions which vary depending on the experimental starting conditions. Our model provides a theoretical description of these different grain size distributions. Our model combines a sequential model of the type outlined by Turcotte (1986), but generalized to cater for the explosive process appropriate here, in particular by

  6. Magnetic moment of the fragmentation-aligned 61Fe (9/2(+)) isomer.

    PubMed

    Matea, I; Georgiev, G; Daugas, J M; Hass, M; Neyens, G; Astabatyan, R; Baby, L T; Balabanski, D L; Bélier, G; Borremans, D; Goldring, G; Goutte, H; Himpe, P; Lewitowicz, M; Lukyanov, S; Méot, V; Santos, F de Oliveira; Penionzhkevich, Yu E; Roig, O; Sawicka, M

    2004-10-01

    We report on the g factor measurement of an isomer in the neutron-rich (61)(26)Fe (E(*)=861 keV and T(1/2)=239(5) ns). The isomer was produced and spin aligned via a projectile-fragmentation reaction at intermediate energy, the time dependent perturbed angular distribution method being used for the measurement of the g factor. For the first time, due to significant improvements of the experimental technique, an appreciable residual alignment of the nuclear spin ensemble has been observed, allowing a precise determination of its g factor, including the sign: g=-0.229(2). In this way we open the possibility to study moments of very neutron-rich short-lived isomers, not accessible via other production and spin-orientation methods.

  7. Quantitative experimental modelling of fragmentation during explosive volcanism

    NASA Astrophysics Data System (ADS)

    Thordén Haug, Ø.; Galland, O.; Gisler, G.

    2012-04-01

    Phreatomagmatic eruptions results from the violent interaction between magma and an external source of water, such as ground water or a lake. This interaction causes fragmentation of the magma and/or the host rock, resulting in coarse-grained (lapilli) to very fine-grained (ash) material. The products of phreatomagmatic explosions are classically described by their fragment size distribution, which commonly follows power laws of exponent D. Such descriptive approach, however, considers the final products only and do not provide information on the dynamics of fragmentation. The aim of this contribution is thus to address the following fundamental questions. What are the physics that govern fragmentation processes? How fragmentation occurs through time? What are the mechanisms that produce power law fragment size distributions? And what are the scaling laws that control the exponent D? To address these questions, we performed a quantitative experimental study. The setup consists of a Hele-Shaw cell filled with a layer of cohesive silica flour, at the base of which a pulse of pressurized air is injected, leading to fragmentation of the layer of flour. The fragmentation process is monitored through time using a high-speed camera. By varying systematically the air pressure (P) and the thickness of the flour layer (h) we observed two morphologies of fragmentation: "lift off" where the silica flour above the injection inlet is ejected upwards, and "channeling" where the air pierces through the layer along sub-vertical conduit. By building a phase diagram, we show that the morphology is controlled by P/dgh, where d is the density of the flour and g is the gravitational acceleration. To quantify the fragmentation process, we developed a Matlab image analysis program, which calculates the number and sizes of the fragments, and so the fragment size distribution, during the experiments. The fragment size distributions are in general described by power law distributions of

  8. Reaction of the rat tissues to implantation of polyhydroxyalkanoate films and ultrafine fibers.

    PubMed

    Maiborodin, I V; Shevela, A I; Morozov, V V; Novikova, Ya V; Matveeva, V A; Drovosekov, M N; Barannik, M I

    2013-01-01

    The reaction of various tissues of rats to implantation of polyhydroxyalkanoate films and ultrafine fibers was studied by optic microscopy. Implantation of polyhydroxyalkanoate films into the abdominal cavity caused a peritoneal reaction, leading after 1 month to the formation of fibrous adhesions between polyhydroxyalkanoate and intestinal loops. Under the skin and in the muscle tissue polyhydroxyalkanoate films were encapsulated in a thick fibrous capsule. Implantation of polyhydroxyalkanoate ultrathin fibers led to formation of foreign body granulomas in all tissues with perifocal inflammation and sclerosis of the adjacent tissues. The polymer was fragmented in these granulomas and phagocytosed by macrophages with the formation of giant foreign body cells. Hence, polyhydroxyalkanoate materials implanted in vivo caused chronic granulomatous inflammatory reaction and were very slowly destroyed by macrophages.

  9. Morphological characteristics of the posterior malleolar fragment according to ankle fracture patterns: a computed tomography-based study.

    PubMed

    Yi, Young; Chun, Dong-Il; Won, Sung Hun; Park, Suyeon; Lee, Sanghyeon; Cho, Jaeho

    2018-02-13

    The posterior malleolar fragment (PMF) of an ankle fracture can have various shapes depending on the injury mechanism. The purpose of this study was to evaluate the morphological characteristics of the PMF according to the ankle fracture pattern described in the Lauge-Hansen classification by using computed tomography (CT) images. We retrospectively analyzed CT data of 107 patients (107 ankles) who underwent surgery for trimalleolar fracture from January 2012 to December 2014. The patients were divided into two groups: 76 ankles in the supination-external rotation (SER) stage IV group and 31 ankles in the pronation-external rotation (PER) stage IV group. The PMF type of the two groups was assessed using the Haraguchi and Jan Bartonicek classification. The cross angle (α), fragment length ratio (FLR), fragment area ratio (FAR), sagittal angle (θ), and fragment height (FH) were measured to assess the morphological characteristics of the PMF. The PMF in the SER group mainly had a posterolateral shape, whereas that in the PER group mainly had a posteromedial two-part shape or a large posterolateral triangular shape (P = 0.02). The average cross angle was not significantly different between the two groups (SER group = 19.4°, PER group = 17.6°). The mean FLR and FH were significantly larger in the PER group than in the SER group (P = 0.024, P = 0.006). The mean fragment sagittal angle in the PER group was significantly smaller than that in the SER group (P = 0.017). With regard to the articular involvement, volume, and vertical nature, the SER-type fracture tends to have a smaller fragment due to the rotational force, whereas the PER-type fracture tends to have a larger fragment due to the combination of rotational and axial forces.

  10. Multitemporal analysis of forest fragmentation in Hindu Kush Himalaya-a case study from Khangchendzonga Biosphere Reserve, Sikkim, India.

    PubMed

    Sharma, Mohit; Areendran, G; Raj, Krishna; Sharma, Ankita; Joshi, P K

    2016-10-01

    Forests in the mountains are a treasure trove; harbour a large biodiversity; and provide fodder, firewood, timber and non-timber forest products; all of these are essential for human survival in the highest mountains on earth. The present paper attempts a spatiotemporal assessment of forest fragmentation and changes in land use land cover (LULC) pattern using multitemporal satellite data over a time span of around a decade (2000-2009), within the third highest protected area (PA) in the world. The fragmentation analysis using Landscape Fragmentation Tool (LFT) depicts a decrease in large core, edge and patches areas by 5.93, 3.64 and 0.66 %, respectively, while an increase in non-forest and perforated areas by 6.59 and 4.01 %, respectively. The land cover dynamics shows a decrease in open forest, alpine scrub, alpine meadows, snow and hill shadow areas by 2.81, 0.39, 8.18, 3.46 and 0.60 %, respectively, and there is an increase in dense forest and glacier area by 4.79 and 10.65 %, respectively. The change analysis shows a major transformation in areas from open forest to dense forest and from alpine meadows to alpine scrub. In order to quantify changes induced by forest fragmentation and to characterize composition and configuration of LULC mosaics, fragmentation indices were computed using Fragstats at class level, showing the signs of accelerated fragmentation. The outcome of the analysis revealed the effectiveness of geospatial tools coupled with landscape ecology in characterization and quantification of forest fragmentation and land cover changes. The present study provides a baseline database for sustainable conservation planning that will benefit the subsistence livelihoods in the region. Recommendations made based on the present analysis will help to recover forest and halt the pessimistic effects of fragmentation and land cover changes on biodiversity and ecosystem services in the region.

  11. Fragmentation of cosmic-string loops

    NASA Technical Reports Server (NTRS)

    York, Thomas

    1989-01-01

    The fragmentation of cosmic string loops is discussed, and the results of a simulation of this process are presented. The simulation can evolve any of a large class of loops essentially exactly, including allowing fragments that collide to join together. Such reconnection enhances the production of small fragments, but not drastically. With or without reconnections, the fragmentation process produces a collection of nonself-intersecting loops whose typical length is on the order of the persistence length of the initial loop.

  12. Oxidative modification of methionine80 in cytochrome c by reaction with peroxides.

    PubMed

    Nugraheni, Ari Dwi; Ren, Chunguang; Matsumoto, Yorifumi; Nagao, Satoshi; Yamanaka, Masaru; Hirota, Shun

    2018-05-01

    The Met80-heme iron bond of cytochrome c (cyt c) is cleaved by the interaction of cyt c with cardiolipin (CL) in membranes. The Met80 dissociation enhances the peroxidase activity of cyt c and triggers cyt c release from mitochondrion to the cytosol at the early stage of apoptosis. This paper demonstrates the selective oxidation of Met80 for the reaction of ferric cyt c with a peroxide, meta-chloroperbenzoic acid (mCPBA), in the presence of CL-containing liposomes by formation of a ferryl species (Compound I). After the reaction of cyt c with mCPBA in the presence of 1,2-dioloeyl-sn-glycero-3-phosphocholine (DOPC) liposomes containing CL, the electrospray ionization mass spectrum of the peptide fragments, obtained by digestion of cyt c with lysyl endopeptidase, exhibited a peak at m/z = 795.45; whereas, this peak was not observed for the peptide fragments obtained after the reaction in the presence of DOPC liposomes not containing CL. According to the tandem mass spectrum of the m/z = 795.45 peptide fragment, Met80 was modified with a 16 Da mass increase. The purified Met80-modified cyt c exhibited a peroxidase activity more than 5-fold higher than that of the unmodified protein. Transient absorption bands around 650 nm were generated by the reactions with mCPBA for ferric wild-type cyt c in the presence of CL-containing DOPC liposomes and ferric Y67F cyt c in the absence of liposomes. The formation and decomposition rates of the 650-nm absorption species increased and decreased, respectively, by increasing the mCPBA concentration in the reaction, indicating transient formation of Compound I. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. OSCILLATING FILAMENTS. I. OSCILLATION AND GEOMETRICAL FRAGMENTATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gritschneder, Matthias; Heigl, Stefan; Burkert, Andreas, E-mail: gritschm@usm.uni-muenchen.de

    2017-01-10

    We study the stability of filaments in equilibrium between gravity and internal as well as external pressure using the grid-based AMR code RAMSES. A homogeneous, straight cylinder below a critical line mass is marginally stable. However, if the cylinder is bent, such as with a slight sinusoidal perturbation, an otherwise stable configuration starts to oscillate, is triggered into fragmentation, and collapses. This previously unstudied behavior allows a filament to fragment at any given scale, as long as it has slight bends. We call this process “geometrical fragmentation.” In our realization, the spacing between the cores matches the wavelength of the sinusoidalmore » perturbation, whereas up to now, filaments were thought to be only fragmenting on the characteristic scale set by the mass-to-line ratio. Using first principles, we derive the oscillation period as well as the collapse timescale analytically. To enable a direct comparison with observations, we study the line-of-sight velocity for different inclinations. We show that the overall oscillation pattern can hide the infall signature of cores.« less

  14. Recent advances in lipid separations and structural elucidation using mass spectrometry combined with ion mobility spectrometry, ion-molecule reactions and fragmentation approaches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Xueyun; Smith, Richard D.; Baker, Erin S.

    Lipids are a vital class of molecules that play important and varied roles in biological processes. Fully understanding lipid roles, however, is extremely difficult since the number and diversity of lipid species is immense, with cells expressing hundreds of enzymes that synthesize tens of thousands of different lipids. While recent advances in chromatography and high resolution mass spectrometry have greatly progressed the understanding of lipid species and functions, effectively separating many lipids still remains problematic. Isomeric lipids have made lipid characterization especially difficult and occur due to subclasses having the same chemical composition, or species having multiple acyl chains connectivitiesmore » (sn-1, sn-2, or sn-3), double bond positions and orientations (cis or trans), and functional group stereochemistry (R versus S). Fully understanding the roles of lipids in biological processes therefore requires separating and evaluating how isomers change in biological and environmental samples. To address this challenge, ion mobility spectrometry separations, ion-molecule reactions and fragmentation techniques have increasingly been added to lipid analysis workflows to improve identifications. In this manuscript, we review the current state of these approaches and their capabilities for improving the identification of specific lipid species.« less

  15. Models of fragmentation with composite power laws

    NASA Astrophysics Data System (ADS)

    Tavassoli, Z.; Rodgers, G. J.

    1999-06-01

    Some models for binary fragmentation are introduced in which a time dependent transition size produces two regions of fragment sizes above and below the transition size. In the first model we assume a fixed rate of fragmentation for the largest fragment and two different rates of fragmentation in the two regions of sizes above and below the transition size. The model is solved exactly in the long time limit to reveal stable time-invariant solutions for the fragment size and mass distributions. These solutions exhibit composite power law behaviours; power laws with two different exponents for fragments in smaller and larger regions. A special case of the model with no fragmentation in the smaller size region is also examined. Another model is also introduced which have three regions of fragment sizes with different rates of fragmentation. The similarities between the stable distributions in our models and composite power law distributions from experimental work on shock fragmentation of long thin glass rods and thick clay plates are discussed.

  16. Formation of a1 Ions Directly from Oxazolone b2 Ions: an Energy-Resolved and Computational Study

    NASA Astrophysics Data System (ADS)

    Bythell, Benjamin J.; Harrison, Alex G.

    2015-05-01

    It is well-known that oxazolone b2 ions fragment extensively by elimination of CO to form a2 ions, which often fragment further to form a1 ions. Less well-known is that some oxazolone b2 ions may fragment directly to form a1 ions. The present study uses energy-resolved collision-induced dissociation experiments to explore the occurrence of the direct b2→a1 fragmentation reaction. The experimental results show that the direct b2→a1 reaction is generally observed when Gly is the C-terminal residue of the oxazolone. When the C-terminal residue is more complex, it is able to provide increased stability of the a2 product in the b2→a2 fragmentation pathway. Our computational studies of the relative critical reaction energies for the b2→a2 reaction compared with those for the b2→a1 reaction provide support that the critical reaction energies are similar for the two pathways when the C-terminal residue of the oxazolone is Gly. By contrast, when the nitrogen of the oxazolone ring in the b2 ion does not bear a hydrogen, as in the Ala-Sar and Tyr-Sar (Sar = N-methylglycine) oxazolone b2 ions, a1 ions are not formed but rather neutral imine elimination from the N-terminus of the b2 ion becomes a dominant fragmentation reaction. The M06-2X/6-31+G(d,p) density functional theory calculations are in general agreement with the experimental data for both types of reaction. In contrast, the B3LYP/6-31+G(d,p) model systematically underestimates the barriers of these SN2-like b2→a1 reaction. The difference between the two methods of barrier calculation are highly significant ( P < 0.001) for the b2→a1 reaction, but only marginally significant ( P = 0.05) for the b2→a2 reaction. The computations provide further evidence of the limitations of the B3LYP functional when describing SN2-like reactions.

  17. The importance of hydration thermodynamics in fragment-to-lead optimization.

    PubMed

    Ichihara, Osamu; Shimada, Yuzo; Yoshidome, Daisuke

    2014-12-01

    Using a computational approach to assess changes in solvation thermodynamics upon ligand binding, we investigated the effects of water molecules on the binding energetics of over 20 fragment hits and their corresponding optimized lead compounds. Binding activity and X-ray crystallographic data of published fragment-to-lead optimization studies from various therapeutically relevant targets were studied. The analysis reveals a distinct difference between the thermodynamic profile of water molecules displaced by fragment hits and those displaced by the corresponding optimized lead compounds. Specifically, fragment hits tend to displace water molecules with notably unfavorable excess entropies-configurationally constrained water molecules-relative to those displaced by the newly added moieties of the lead compound during the course of fragment-to-lead optimization. Herein we describe the details of this analysis with the goal of providing practical guidelines for exploiting thermodynamic signatures of binding site water molecules in the context of fragment-to-lead optimization. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Studying Reaction Intermediates Formed at Graphenic Surfaces

    NASA Astrophysics Data System (ADS)

    Sarkar, Depanjan; Sen Gupta, Soujit; Narayanan, Rahul; Pradeep, Thalappil

    2014-03-01

    We report in-situ production and detection of intermediates at graphenic surfaces, especially during alcohol oxidation. Alcohol oxidation to acid occurs on graphene oxide-coated paper surface, driven by an electrical potential, in a paper spray mass spectrometry experiment. As paper spray ionization is a fast process and the time scale matches with the reaction time scale, we were able to detect the intermediate, acetal. This is the first observation of acetal formed in surface oxidation. The process is not limited to alcohols and the reaction has been extended to aldehydes, amines, phosphenes, sugars, etc., where reaction products were detected instantaneously. By combining surface reactions with ambient ionization and mass spectrometry, we show that new insights into chemical reactions become feasible. We suggest that several other chemical transformations may be studied this way. This work opens up a new pathway for different industrially and energetically important reactions using different metal catalysts and modified substrate.

  19. On the gas phase fragmentation of protonated uracil: a statistical perspective.

    PubMed

    Rossich Molina, Estefanía; Salpin, Jean-Yves; Spezia, Riccardo; Martínez-Núñez, Emilio

    2016-06-01

    The potential energy surface of protonated uracil has been explored by an automated transition state search procedure, resulting in the finding of 1398 stationary points and 751 reactive channels, which can be categorized into isomerizations between pairs of isomers, unimolecular fragmentations and bimolecular reactions. The use of statistical Rice-Ramsperger-Kassel-Marcus (RRKM) theory and Kinetic Monte Carlo (KMC) simulations allowed us to determine the relative abundances of each fragmentation channel as a function of the ion's internal energy. The KMC/RRKM product abundances are compared with novel mass spectrometry (MS) experiments in the collision energy range 1-6 eV. To facilitate the comparison between theory and experiments, further dynamics simulations are carried out to determine the fraction of collision energy converted into the ion's internal energy. The KMC simulations show that the major fragmentation channels are isocyanic acid and ammonia losses, in good agreement with experiments. The third predominant channel is water loss according to both theory and experiments, although the abundance obtained in the KMC simulations is very low, suggesting that non-statistical dynamics might play an important role in this channel. Isocyanic acid (HNCOH(+)) is also an important product in the KMC simulations, although its abundance is only significant at internal energies not accessible in the MS experiments.

  20. Determination of integron frequency by a polymerase chain reaction-restriction fragment length polymorphism method in multidrug-resistant Escherichia coli, which causes urinary tract infections.

    PubMed

    Fallah, Fatemeh; Karimi, Abdollah; Goudarzi, Mehdi; Shiva, Farideh; Navidinia, Masoumeh; Jahromi, Mana Hadipour; Sajadi Nia, Raheleh Sadat

    2012-12-01

    The purpose of this study was to determine the presence of integrons in Escherichia coli, which cause urinary tract infections, and to define the association between integrons and antimicrobial susceptibility. Susceptibility of 200 isolates from urine samples of patients suffering from urinary tract infections to 13 antibiotics was determined by the Kirby-Bauer disk diffusion method. The existence of class1 and 2 integrons in resistant isolates was assessed by polymerase chain reaction-restriction fragment length polymorphism and sequencing. Antibiotic resistance patterns were observed as follows: amoxicillin 78%, tetracycline 76.1%, co-trimoxazole 67.7%, cephalotin 60%, nalidixic acid 57.4%, chloramphenicol 49%, gentamicin 46.4%, ceftazidim 38.1%, ciprofloxacin 36.2%, nitrofurantoin 33.5%, amikacin 32.1%, norfloxacin 36.1%, and imipenem 27.1%. Of 200 isolates, 155 (77.5%) were multidrug resistant (MDR). The existence of integrons was confirmed in 50.3% of isolates. Three class 1 integron types, aadA2 being the most frequently found, and four class 2 integron types are described. Significant association between resistance to gentamicin, co-trimoxazole, cephalotin, ceftazidim, imipenem, chloramphenicol, and nalidixic acid with the existence of integrons was observed. Multidrug resistance suggests that the strategy for treatment of patients with E.coli infections needs to be revised. Furthermore, it was shown that integrons may be partly responsible for multidrug resistance. Imipenem and norfloxacin were the most effective antibiotics against isolates.

  1. Crystallographic Fragment Based Drug Discovery: Use of a Brominated Fragment Library Targeting HIV Protease

    PubMed Central

    Tiefenbrunn, Theresa; Forli, Stefano; Happer, Meaghan; Gonzalez, Ana; Tsai, Yingssu; Soltis, Michael; Elder, John H.; Olson, Arthur J.; Stout, C. David

    2013-01-01

    A library of 68 brominated fragments was screened against a new crystal form of inhibited HIV-1 protease in order to probe surface sites in soaking experiments. Often fragments are weak binders with partial occupancy, resulting in weak, difficult-to-fit electron density. The use of a brominated fragment library addresses this challenge, as bromine can be located unequivocally via anomalous scattering. Data collection was carried out in an automated fashion using AutoDrug at SSRL. Novel hits were identified in the known surface sites: 3-bromo-2,6-dimethoxybenzoic acid (Br6) in the flap site, and 1-bromo-2-naphthoic acid (Br27) in the exosite, expanding the chemistry of known fragments for development of higher affinity potential allosteric inhibitors. At the same time, mapping the binding sites of a number of weaker binding Br-fragments provides further insight into the nature of these surface pockets. PMID:23998903

  2. Advancement of magma fragmentation by inhomogeneous bubble distribution.

    PubMed

    Kameda, M; Ichihara, M; Maruyama, S; Kurokawa, N; Aoki, Y; Okumura, S; Uesugi, K

    2017-12-01

    Decompression times reported in previous studies suggest that thoroughly brittle fragmentation is unlikely in actual explosive volcanic eruptions. What occurs in practice is brittle-like fragmentation, which is defined as the solid-like fracture of a material whose bulk rheological properties are close to those of a fluid. Through laboratory experiments and numerical simulation, the link between the inhomogeneous structure of bubbles and the development of cracks that may lead to brittle-like fragmentation was clearly demonstrated here. A rapid decompression test was conducted to simulate the fragmentation of a specimen whose pore morphology was revealed by X-ray microtomography. The dynamic response during decompression was observed by high-speed photography. Large variation was observed in the responses of the specimens even among specimens with equal bulk rheological properties. The stress fields of the specimens under decompression computed by finite element analysis shows that the presence of satellite bubbles beneath a large bubble induced the stress concentration. On the basis of the obtained results, a new mechanism for brittle-like fragmentation is proposed. In the proposed scenario, the second nucleation of bubbles near the fragmentation surface is an essential process for the advancement of fragmentation in an upward magma flow in a volcanic conduit.

  3. Species-specific responses to landscape fragmentation: implications for management strategies

    PubMed Central

    Blanchet, Simon; Rey, Olivier; Etienne, Roselyne; Lek, Sovan; Loot, Géraldine

    2010-01-01

    Habitat fragmentation affects the integrity of many species, but little is known about species-specific sensitivity to fragmentation. Here, we compared the genetic structure of four freshwater fish species differing in their body size (Leuciscus cephalus; Leuciscus leuciscus; Gobio gobio and Phoxinus phoxinus) between a fragmented and a continuous landscape. We tested if, overall, fragmentation affected the genetic structure of these fish species, and if these species differed in their sensitivity to fragmentation. Fragmentation negatively affected the genetic structure of these species. Indeed, irrespective of the species identity, allelic richness and heterozygosity were lower, and population divergence was higher in the fragmented than in the continuous landscape. This response to fragmentation was highly species-specific, with the smallest fish species (P. phoxinus) being slightly affected by fragmentation. On the contrary, fish species of intermediate body size (L. leuciscus and G. gobio) were highly affected, whereas the largest fish species (L. cephalus) was intermediately affected by fragmentation. We discuss the relative role of dispersal ability and effective population size on the responses to fragmentation we report here. The weirs studied here are of considerable historical importance. We therefore conclude that restoration programmes will need to consider both this societal context and the biological characteristics of the species sharing this ecosystem. PMID:25567925

  4. EIMS Fragmentation Pathways and MRM Quantification of 7α/β-Hydroxy-Dehydroabietic Acid TMS Derivatives

    NASA Astrophysics Data System (ADS)

    Rontani, Jean-François; Aubert, Claude; Belt, Simon T.

    2015-09-01

    EI mass fragmentation pathways of TMS derivatives οf 7α/β-hydroxy-dehydroabietic acids resulting from NaBH4-reduction of oxidation products of dehydroabietic acid (a component of conifers) were investigated and deduced by a combination of (1) low energy CID-GC-MS/MS, (2) deuterium labeling, (3) different derivatization methods, and (4) GC-QTOF accurate mass measurements. Having identified the main fragmentation pathways, the TMS-derivatized 7α/β-hydroxy-dehydroabietic acids could be quantified in multiple reaction monitoring (MRM) mode in sea ice and sediment samples collected from the Arctic. These newly characterized transformation products of dehydroabietic acid constitute potential tracers of biotic and abiotic degradation of terrestrial higher plants in the environment.

  5. Macroalgal Composition Determines the Structure of Benthic Assemblages Colonizing Fragmented Habitats.

    PubMed

    Matias, Miguel G; Arenas, Francisco; Rubal, Marcos; Pinto, Isabel S

    2015-01-01

    Understanding the consequences of fragmentation of coastal habitats is an important topic of discussion in marine ecology. Research on the effects of fragmentation has revealed complex and context-dependent biotic responses, which prevent generalizations across different habitats or study organisms. The effects of fragmentation in marine environments have been rarely investigated across heterogeneous habitats, since most studies have focused on a single type of habitat or patch. In this study, we assessed the effects of different levels of fragmentation (i.e. decreasing size of patches without overall habitat loss). We measured these effects using assemblages of macro-invertebrates colonizing representative morphological groups of intertidal macroalgae (e.g. encrusting, turf and canopy-forming algae). For this purpose, we constructed artificial assemblages with different combinations of morphological groups and increasing levels of fragmentation by manipulating the amount of bare rock or the spatial arrangement of different species in mixed assemblages. In general, our results showed that 1) fragmentation did not significantly affect the assemblages of macroinvertebrates; 2) at greater levels of fragmentation, there were greater numbers of species in mixed algal assemblages, suggesting that higher habitat complexity promotes species colonization. Our results suggest that predicting the consequences of fragmentation in heterogeneous habitats is dependent on the type and diversity of morphological groups making up those habitats.

  6. Automated Discovery of New Chemical Reactions and Accurate Calculation of Their Rates

    DTIC Science & Technology

    2015-06-02

    formation of organic acids in reactions of the Criegee intermediate with aldehydes and ketones . Phys. Chem. Chem. Phys. 2013, 15, 16841-16852. [39...dioxolan-3-ol – our second case study - we confirmed that fragmentation of the cyclic peroxide leads to two possible pairs of acid and aldehyde products...Rate Prediction via Group Additivity, Part 2: H-Abstraction from Alkenes, Alkynes, Alcohols, Aldehydes , and Acids by H Atoms. J. Phys. Chem. A 2001, 105

  7. Recombinant Kinase Production and Fragment Screening by NMR Spectroscopy.

    PubMed

    Han, Byeonggu; Ahn, Hee-Chul

    2016-01-01

    During the past decade fragment-based drug discovery (FBDD) has rapidly evolved and several drugs or drug candidates developed by FBDD approach are clinically in use or in clinical trials. For example, vemurafenib, a V600E mutated BRAF inhibitor, was developed by utilizing FBDD approach and approved by FDA in 2011. In FBDD, screening of fragments is the starting step for identification of hits and lead generation. Fragment screening usually relies on biophysical techniques by which the protein-bound small molecules can be detected. NMR spectroscopy has been extensively used to study the molecular interaction between the protein and the ligand, and has many advantages in fragment screening over other biophysical techniques. This chapter describes the practical aspects of fragment screening by saturation transfer difference NMR.

  8. Electron ionisation induced fragmentation of ethyl 5(1H)-oxo- and 7(1H)-oxo-1-aryl-2,3-dihydroimidazo[1,2-a]-pyrimidine-6-carboxylates: evidence for an unusually regioselective rearrangement of M(+*) ions.

    PubMed

    Ovcharenko, V V; Pihlaja, K; Matosiuk, D

    2001-01-01

    The 70-eV electron ionisation (EI) mass spectra of the title compounds show clear differences between the 5-oxo and 7-oxo isomers due to regioselective fragmentations involving the ester function. Exceptionally abundant metastable peaks due to molecular ions fragmenting to [M -CO2](+.) were observed exclusively for the 7-oxo isomers, suggesting that the sufficiently long-lived molecular ions undergo a slow rearrangement preceding this fragmentation reaction. The results are contrasted to the available literature data on the ester group fragmentations involving the loss of CO2 and the EI mass spectrometry of pyrimidone beta-oxo esters. A reaction mechanism is proposed for the elimination of CO2 following ethyl group migration to the pyrimidone carbonyl oxygen. Copyright 2001 John Wiley & Sons, Ltd.

  9. Fragmentation of molecular tributyltin chloride

    NASA Astrophysics Data System (ADS)

    Osmekhin, S.; Caló, A.; Kisand, V.; Nõmmiste, E.; Kotilainen, H.; Aksela, H.; Aksela, S.

    2008-06-01

    Fragmentation of tributyltin chloride (TBTCl) vapour has been studied experimentally by means of time-of-flight mass spectrometry at the photon energy range of 9-25 eV of synchrotron radiation, at 21.22 eV of HeI as well as with 500 eV electron beam excitation. Branching ratios of the tributyltin chloride fragments taken with HeI and synchrotron radiation have been presented first time. Calculations based on density functional theory (DFT) were carried out for TBTCl and the ionization energies obtained were used to predict the dissociation pathways creating the observed ions.

  10. Fragment size distribution in viscous bag breakup of a drop

    NASA Astrophysics Data System (ADS)

    Kulkarni, Varun; Bulusu, Kartik V.; Plesniak, Michael W.; Sojka, Paul E.

    2015-11-01

    In this study we examine the drop size distribution resulting from the fragmentation of a single drop in the presence of a continuous air jet. Specifically, we study the effect of Weber number, We, and Ohnesorge number, Oh on the disintegration process. The regime of breakup considered is observed between 12 <= We <= 16 for Oh <= 0.1. Experiments are conducted using phase Doppler anemometry. Both the number and volume fragment size probability distributions are plotted. The volume probability distribution revealed a bi-modal behavior with two distinct peaks: one corresponding to the rim fragments and the other to the bag fragments. This behavior was suppressed in the number probability distribution. Additionally, we employ an in-house particle detection code to isolate the rim fragment size distribution from the total probability distributions. Our experiments showed that the bag fragments are smaller in diameter and larger in number, while the rim fragments are larger in diameter and smaller in number. Furthermore, with increasing We for a given Ohwe observe a large number of small-diameter drops and small number of large-diameter drops. On the other hand, with increasing Oh for a fixed We the opposite is seen.

  11. Isolator fragmentation and explosive initiation tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dickson, Peter; Rae, Philip John; Foley, Timothy J.

    2016-09-19

    Three tests were conducted to evaluate the effects of firing an isolator in proximity to a barrier or explosive charge. The tests with explosive were conducted without a barrier, on the basis that since any barrier will reduce the shock transmitted to the explosive, bare explosive represents the worst-case from an inadvertent initiation perspective. No reaction was observed. The shock caused by the impact of a representative plastic material on both bare and cased PBX 9501 is calculated in the worst-case, 1-D limit, and the known shock response of the HE is used to estimate minimum run-to-detonation lengths. The estimatesmore » demonstrate that even 1-D impacts would not be of concern and that, accordingly, the divergent shocks due to isolator fragment impact are of no concern as initiating stimuli.« less

  12. Isolator fragmentation and explosive initiation tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dickson, Peter; Rae, Philip John; Foley, Timothy J.

    2015-09-30

    Three tests were conducted to evaluate the effects of firing an isolator in proximity to a barrier or explosive charge. The tests with explosive were conducted without barrier, on the basis that since any barrier will reduce the shock transmitted to the explosive, bare explosive represents the worst-case from an inadvertent initiation perspective. No reaction was observed. The shock caused by the impact of a representative plastic material on both bare and cased PBX9501 is calculated in the worst-case, 1-D limit, and the known shock response of the HE is used to estimate minimum run-to-detonation lengths. The estimates demonstrate thatmore » even 1-D impacts would not be of concern and that, accordingly, the divergent shocks due to isolator fragment impact are of no concern as initiating stimuli.« less

  13. Isolation and characterization of a thermally stable recombinant anti-caffeine heavy-chain antibody fragment.

    PubMed

    Ladenson, Ruth C; Crimmins, Dan L; Landt, Yvonne; Ladenson, Jack H

    2006-07-01

    We have isolated and characterized a caffeine-specific, heavy-chain-only antibody fragment (V(HH)) from llama that is capable of being utilized to analyze caffeine in hot and cold beverages. Camelid species (llama and camel) were selected for immunization because of their potential to make heat-stable, heavy-chain-only antibodies. Llamas and camels were immunized with caffeine covalently linked to keyhole limpet hemocyanin, and recombinant antibody techniques were used to create phage displayed libraries of variable region fragments of the heavy-chain antibodies. Caffeine-specific V(HH) fragments were selected by their ability to bind to caffeine/bovine serum albumin (BSA) and confirmed by a positive reaction in a caffeine enzyme-linked immunosorbent assay (caffeine ELISA). One of these V(HH) fragments (VSA2) was expressed as a soluble protein and shown to recover its reactivity after exposure to temperatures up to 90 degrees C. In addition, VSA2 was able to bind caffeine at 70 degrees C. A competition caffeine ELISA was developed for the measurement of caffeine in beverages, and concentrations of caffeine obtained for coffee, Coca-Cola Classic, and Diet Coke agreed well with high performance liquid chromatography (HPLC) determination and literature values. VSA2 showed minimal cross reactivity with structurally related methylxanthines.

  14. Meteorite Falls and the Fragmentation of Meteorites

    NASA Technical Reports Server (NTRS)

    Momeni, Daniel

    2016-01-01

    In order to understand the fragmentation of objects entering the atmosphere and why some produce more fragments than others, I have searched the Meteoritical Society database for meteorites greater than 20 kilograms that fell in the USA, China, and India. I also studied the video and film records of 21 fireballs that produced meteorites. A spreadsheet was prepared that noted smell, fireball, explosion, whistling, rumbling, the number of fragments, light, and impact sounds. Falls with large numbers of fragments were examined to look for common traits. These were: the Norton County aubrite, explosion and a flare greater than 100 fragments; the Forest City H5 chondrite explosion, a flare, a dust trail, 505 specimens; the Richardton H5 chondrite explosion and light, 71 specimens; the Juancheng H5 chondrite explosion, a rumbling, a flare, a dust trail,1000 specimens; the Tagish Lake C2 chondrite explosion, flare, dust trail, 500 specimens. I conclude that fragmentation is governed by the following: (1) Bigger meteors undergo more stress which results in more specimens; (2) Harder meteorites also require more force to break them up which will cause greater fragmentation; (3) Force and pressure are directly proportional during falls. General observations made were; (1) Meteorites produce fireballs sooner due to high friction; (2) Meteors tend to explode as well because of high stress; (3) Softer meteorites tend to cause dust trails; (4) Some falls produce light as they fall at high velocity. I am grateful to NASA Ames for this opportunity and Derek Sears, Katie Bryson, and Dan Ostrowski for discussions.

  15. The roles of family B and D DNA polymerases in Thermococcus species 9°N Okazaki fragment maturation.

    PubMed

    Greenough, Lucia; Kelman, Zvi; Gardner, Andrew F

    2015-05-15

    During replication, Okazaki fragment maturation is a fundamental process that joins discontinuously synthesized DNA fragments into a contiguous lagging strand. Efficient maturation prevents repeat sequence expansions, small duplications, and generation of double-stranded DNA breaks. To address the components required for the process in Thermococcus, Okazaki fragment maturation was reconstituted in vitro using purified proteins from Thermococcus species 9°N or cell extracts. A dual color fluorescence assay was developed to monitor reaction substrates, intermediates, and products. DNA polymerase D (polD) was proposed to function as the replicative polymerase in Thermococcus replicating both the leading and the lagging strands. It is shown here, however, that it stops before the previous Okazaki fragments, failing to rapidly process them. Instead, Family B DNA polymerase (polB) was observed to rapidly fill the gaps left by polD and displaces the downstream Okazaki fragment to create a flap structure. This flap structure was cleaved by flap endonuclease 1 (Fen1) and the resultant nick was ligated by DNA ligase to form a mature lagging strand. The similarities to both bacterial and eukaryotic systems and evolutionary implications of archaeal Okazaki fragment maturation are discussed. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Fragman: an R package for fragment analysis.

    PubMed

    Covarrubias-Pazaran, Giovanny; Diaz-Garcia, Luis; Schlautman, Brandon; Salazar, Walter; Zalapa, Juan

    2016-04-21

    Determination of microsatellite lengths or other DNA fragment types is an important initial component of many genetic studies such as mutation detection, linkage and quantitative trait loci (QTL) mapping, genetic diversity, pedigree analysis, and detection of heterozygosity. A handful of commercial and freely available software programs exist for fragment analysis; however, most of them are platform dependent and lack high-throughput applicability. We present the R package Fragman to serve as a freely available and platform independent resource for automatic scoring of DNA fragment lengths diversity panels and biparental populations. The program analyzes DNA fragment lengths generated in Applied Biosystems® (ABI) either manually or automatically by providing panels or bins. The package contains additional tools for converting the allele calls to GenAlEx, JoinMap® and OneMap software formats mainly used for genetic diversity and generating linkage maps in plant and animal populations. Easy plotting functions and multiplexing friendly capabilities are some of the strengths of this R package. Fragment analysis using a unique set of cranberry (Vaccinium macrocarpon) genotypes based on microsatellite markers is used to highlight the capabilities of Fragman. Fragman is a valuable new tool for genetic analysis. The package produces equivalent results to other popular software for fragment analysis while possessing unique advantages and the possibility of automation for high-throughput experiments by exploiting the power of R.

  17. Crystallographic fragment-based drug discovery: use of a brominated fragment library targeting HIV protease.

    PubMed

    Tiefenbrunn, Theresa; Forli, Stefano; Happer, Meaghan; Gonzalez, Ana; Tsai, Yingssu; Soltis, Michael; Elder, John H; Olson, Arthur J; Stout, Charles D

    2014-02-01

    A library of 68 brominated fragments was screened against a new crystal form of inhibited HIV-1 protease in order to probe surface sites in soaking experiments. Often, fragments are weak binders with partial occupancy, resulting in weak, difficult-to-fit electron density. The use of a brominated fragment library addresses this challenge, as bromine can be located unequivocally via anomalous scattering. Data collection was carried out in an automated fashion using AutoDrug at SSRL. Novel hits were identified in the known surface sites: 3-bromo-2,6-dimethoxybenzoic acid (Br6) in the flap site and 1-bromo-2-naphthoic acid (Br27) in the exosite, expanding the chemistry of known fragments for development of higher affinity potential allosteric inhibitors. At the same time, mapping the binding sites of a number of weaker binding Br-fragments provides further insight into the nature of these surface pockets. © 2013 John Wiley & Sons A/S.

  18. Do dihydroxymagnesium carboxylates form Grignard-type reagents? A theoretical investigation on decarboxylative fragmentation.

    PubMed

    Ruf, Alexander; Kanawati, Basem; Schmitt-Kopplin, Philippe

    2018-03-27

    Dihydroxymagnesium carboxylates [(OH) 2 MgO 2 CR] were probed for decarboxylation on a theoretical level, by utilizing both Møller-Plesset perturbation theory (MP2) and density functional theory (B3LYP-DFT) computations. This study is connected to the question of whether this recently introduced, astrobiologically relevant chemical class may form Grignard-type reagent molecules. To extract trends for a broad molecular mass range, different linear alkyl chain lengths between C 4 and C 11 were computed. The forward energy barrier for decarboxylation reactions increases linearly as a function of the ligand's chain length. Decarboxylation-type fragmentations of these organomagnesium compounds seem to be improbable in non-catalytic, low energetic environments. A high forward energy barrier (E MP2  > 55 kcal mol -1 ) towards a described transition state restricts the release of CO 2 . Nevertheless, we propose the release of CO 2 on a theoretical level, as been revealed via an intramolecular nucleophilic attack mechanism. Once the challenging transition state for decarboxylation is overcome, a stable Mg-C bond is formed. These mechanistic insights were gained by help of natural bond orbital analysis. The Cα atom (first carbon atom in the ligand chain attached to the carboxyl group) is thought to prefer binding towards the electrophilic magnesium coordination center, rather than towards the electrophilic CO 2 -carbon atom. Additionally, the putatively formed Grignard-type OH-bearing product molecules possess a more polarized Mg-C bond in comparison to RMgCl species. Therefore, carbanion formation from OH-bearing Grignard-type molecules is made feasible for triggering C-C bond formation reactions. Graphical abstract This study asks whether recently introduced, astrobiologically dihydroxymagnesium carboxylates form Grignard-type reagent molecules via decarboxylative fragmentation.

  19. Nuclear reaction measurements on tissue-equivalent materials and GEANT4 Monte Carlo simulations for hadrontherapy

    NASA Astrophysics Data System (ADS)

    De Napoli, M.; Romano, F.; D'Urso, D.; Licciardello, T.; Agodi, C.; Candiano, G.; Cappuzzello, F.; Cirrone, G. A. P.; Cuttone, G.; Musumarra, A.; Pandola, L.; Scuderi, V.

    2014-12-01

    When a carbon beam interacts with human tissues, many secondary fragments are produced into the tumor region and the surrounding healthy tissues. Therefore, in hadrontherapy precise dose calculations require Monte Carlo tools equipped with complex nuclear reaction models. To get realistic predictions, however, simulation codes must be validated against experimental results; the wider the dataset is, the more the models are finely tuned. Since no fragmentation data for tissue-equivalent materials at Fermi energies are available in literature, we measured secondary fragments produced by the interaction of a 55.6 MeV u-1 12C beam with thick muscle and cortical bone targets. Three reaction models used by the Geant4 Monte Carlo code, the Binary Light Ions Cascade, the Quantum Molecular Dynamic and the Liege Intranuclear Cascade, have been benchmarked against the collected data. In this work we present the experimental results and we discuss the predictive power of the above mentioned models.

  20. Hauser-Feshbach fission fragment de-excitation with calculated macroscopic-microscopic mass yields

    NASA Astrophysics Data System (ADS)

    Jaffke, Patrick; Möller, Peter; Talou, Patrick; Sierk, Arnold J.

    2018-03-01

    The Hauser-Feshbach statistical model is applied to the de-excitation of primary fission fragments using input mass yields calculated with macroscopic-microscopic models of the potential energy surface. We test the sensitivity of the prompt fission observables to the input mass yields for two important reactions, 235U(nth,f ) and 239Pu(nth,f ) , for which good experimental data exist. General traits of the mass yields, such as the location of the peaks and their widths, can impact both the prompt neutron and γ -ray multiplicities, as well as their spectra. Specifically, we use several mass yields to determine a linear correlation between the calculated prompt neutron multiplicity ν ¯ and the average heavy-fragment mass 〈Ah〉 of the input mass yields ∂ ν ¯/∂ 〈Ah〉 =±0.1 (n /f ) /u . The mass peak width influences the correlation between the total kinetic energy of the fission fragments and the total number of prompt neutrons emitted, ν¯T(TKE ) . Typical biases on prompt particle observables from using calculated mass yields instead of experimental ones are δ ν ¯=4 % for the average prompt neutron multiplicity, δ M ¯γ=1 % for the average prompt γ -ray multiplicity, δ ɛ¯nLAB=1 % for the average outgoing neutron energy, δ ɛ¯γ=1 % for the average γ -ray energy, and δ 〈TKE 〉=0.4 % for the average total kinetic energy of the fission fragments.

  1. Does habitat fragmentation influence nest predation in the shortgrass prairie?

    USGS Publications Warehouse

    Howard, M.N.; Skagen, S.K.; Kennedy, P.L.

    2001-01-01

    We examined the effects of habitat fragmentation and vegetation structure of shortgrass prairie and Conservation Reserve Program (CRP) lands on predation rates of artificial and natural nests in northeastern Colorado. The CRP provides federal payments to landowners to take highly erodible cropland out of agricultural production. In our study area, CRP lands have been reseeded primarily with non-native grasses, and this vegetation is taller than native shortgrass prairie. We measured three indices of habitat fragmentation (patch size, degree of matrix fragmentation, and distance from edge), none of which influenced mortality rates of artificial or natural nests. Vegetation structure did influence predation rates of artificial nests; daily mortality decreased significantly with increasing vegetation height. Vegetation structure did not influence predation rates of natural nests. CRP lands and shortgrass sites did not differ with respect to mortality rates of artificial nests. Our study area is only moderately fragmented; 62% of the study area is occupied by native grassland. We conclude that the extent of habitat fragmentation in our study area does not result in increased predation in remaining patches of shortgrass prairie habitat.

  2. Long-term effects of fragmentation and fragment properties on bird species richness in Hawaiian forests

    Treesearch

    David J. Flaspohler; Christian P. Giardina; Gregory P. Asner; Patrick Hart; Jonathan Price; Cassie Ka’apu Lyons; Xeronimo Castaneda

    2010-01-01

    Forest fragmentation is a common disturbance affecting biological diversity, yet the impacts of fragmentation on many forest processes remain poorly understood. Forest restoration is likely to be more successful when it proceeds with an understanding of how native and exotic vertebrates utilize forest patches of different size. We used a system of forest fragments...

  3. Two-proton correlations in the target fragmentation region of nuclear collisions at 200 A GeV

    NASA Astrophysics Data System (ADS)

    Awes, T. C.; Barlag, C.; Berger, F.; Bloomer, M. A.; Blume, C.; Bock, D.; Bock, R.; Bohne, E.-M.; Bucher, D.; Claussen, A.; Clewing, G.; Dragon, L.; Eklund, A.; Garpman, S.; Glasow, R.; Gustafsson, H.; Gutbrod, H. H.; Hölker, G.; Idh, J.; Jacobs, P.; Kampert, K. H.; Kolb, B. W.; Löhner, H.; Lund, I.; Obenshain, F. E.; Oskarsson, A.; Otterlund, I.; Peitzmann, T.; Plasil, F.; Poskanzer, A. M.; Purschke, M.; Roters, B.; Saini, S.; Santo, R.; Schmidt, H. R.; Sørensen, S. P.; Steffens, K.; Steinhaeuser, P.; Stenlund, E.; Stüken, D.; Young, G. R.

    1995-06-01

    Correlations between protons are studied in the target fragmentation region of reactions of protons and16O with C, Cu, Ag, Au and of32S with Al and Au at 200 A GeV. The emitted protons were measured with the Plastic Ball detector in the WA80 experiment at the CERN SPS. The comparison of the correlation function with calculations, assuming a spherical, gaussian shaped source with a lifetime τ=0 fm/ c, allows the extraction of radius parameters. The values are very close to those expected from the geometry of the target nuclei and increase with the target mass as α A {Target/1/3}. Even in proton induced reactions the whole target nucleus is involved. The dependence of the radii on centrality, polar angle θ lab, and energy, and their relation to measured proton yields are presented.

  4. Mass spectrometry for fragment screening.

    PubMed

    Chan, Daniel Shiu-Hin; Whitehouse, Andrew J; Coyne, Anthony G; Abell, Chris

    2017-11-08

    Fragment-based approaches in chemical biology and drug discovery have been widely adopted worldwide in both academia and industry. Fragment hits tend to interact weakly with their targets, necessitating the use of sensitive biophysical techniques to detect their binding. Common fragment screening techniques include differential scanning fluorimetry (DSF) and ligand-observed NMR. Validation and characterization of hits is usually performed using a combination of protein-observed NMR, isothermal titration calorimetry (ITC) and X-ray crystallography. In this context, MS is a relatively underutilized technique in fragment screening for drug discovery. MS-based techniques have the advantage of high sensitivity, low sample consumption and being label-free. This review highlights recent examples of the emerging use of MS-based techniques in fragment screening. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  5. Impact fragmentation of a brittle metal compact

    NASA Astrophysics Data System (ADS)

    Tang, Megan; Hooper, Joseph P.

    2018-05-01

    The fragmentation behavior of a metal powder compact which is ductile in compression but brittle in tension is studied via impact experiments and analytical models. Consolidated metal compacts were prepared via cold-isostatic pressing of <10 μm zinc powder at 380 MPa followed by moderate annealing at 365 °C. The resulting zinc material is ductile and strain-hardening in high-rate uniaxial compression like a traditional metal, but is elastic-brittle in tension with a fracture toughness comparable to a ceramic. Cylindrical samples were launched up to 800 m/s in a gas gun into thin aluminum perforation targets, subjecting the projectile to a complex multiaxial and time-dependent stress state that leads to catastrophic fracture. A soft-catch mechanism using low-density artificial snow was developed to recover the impact debris, and collected fragments were analyzed to determine their size distribution down to 30 μm. Though brittle fracture occurs along original particle boundaries, no power-law fragmentation behavior was observed as is seen in other low-toughness materials. An analytical theory is developed to predict the characteristic fragment size accounting for both the sharp onset of fragmentation and the effect of increasing impact velocity.

  6. Supramolecular gel electrophoresis of large DNA fragments.

    PubMed

    Tazawa, Shohei; Kobayashi, Kazuhiro; Oyoshi, Takanori; Yamanaka, Masamichi

    2017-10-01

    Pulsed-field gel electrophoresis is a frequent technique used to separate exceptionally large DNA fragments. In a typical continuous field electrophoresis, it is challenging to separate DNA fragments larger than 20 kbp because they migrate at a comparable rate. To overcome this challenge, it is necessary to develop a novel matrix for the electrophoresis. Here, we describe the electrophoresis of large DNA fragments up to 166 kbp using a supramolecular gel matrix and a typical continuous field electrophoresis system. C 3 -symmetric tris-urea self-assembled into a supramolecular hydrogel in tris-boric acid-EDTA buffer, a typical buffer for DNA electrophoresis, and the supramolecular hydrogel was used as a matrix for electrophoresis to separate large DNA fragments. Three types of DNA marker, the λ-Hind III digest (2 to 23 kbp), Lambda DNA-Mono Cut Mix (10 to 49 kbp), and Marker 7 GT (10 to 165 kbp), were analyzed in this study. Large DNA fragments of greater than 100 kbp showed distinct mobility using a typical continuous field electrophoresis system. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Nudged elastic band method and density functional theory calculation for finding a local minimum energy pathway of p-benzoquinone and phenol fragmentation in mass spectrometry.

    PubMed

    Sugimura, Natsuhiko; Igarashi, Yoko; Aoyama, Reiko; Shibue, Toshimichi

    2017-02-01

    Analysis of the fragmentation pathways of molecules in mass spectrometry gives a fundamental insight into gas-phase ion chemistry. However, the conventional intrinsic reaction coordinates method requires knowledge of the transition states of ion structures in the fragmentation pathways. Herein, we use the nudged elastic band method, using only the initial and final state ion structures in the fragmentation pathways, and report the advantages and limitations of the method. We found a minimum energy path of p-benzoquinone ion fragmentation with two saddle points and one intermediate structure. The primary energy barrier, which corresponded to the cleavage of the C-C bond adjacent to the CO group, was calculated to be 1.50 eV. An additional energy barrier, which corresponded to the cleavage of the CO group, was calculated to be 0.68 eV. We also found an energy barrier of 3.00 eV, which was the rate determining step of the keto-enol tautomerization in CO elimination from the molecular ion of phenol. The nudged elastic band method allowed the determination of a minimum energy path using only the initial and final state ion structures in the fragmentation pathways, and it provided faster than the conventional intrinsic reaction coordinates method. In addition, this method was found to be effective in the analysis of the charge structures of the molecules during the fragmentation in mass spectrometry.

  8. Molecular transformations of phenolic SOA during photochemical aging in the aqueous phase: Competition among oligomerization, functionalization, and fragmentation

    DOE PAGES

    Yu, Lu; Smith, Jeremy; Laskin, Alexander; ...

    2016-04-13

    Organic aerosol is formed and transformed in atmospheric aqueous phases (e.g., cloud and fog droplets and deliquesced airborne particles containing small amounts of water) through a multitude of chemical reactions. Understanding these reactions is important for a predictive understanding of atmospheric aging of aerosols and their impacts on climate, air quality, and human health. In this study, we investigate the chemical evolution of aqueous secondary organic aerosol (aqSOA) formed during reactions of phenolic compounds with two oxidants – the triplet excited state of an aromatic carbonyl ( 3C *) and hydroxyl radical ( • OH). Changes in themore » molecular composition of aqSOA as a function of aging time are characterized using an offline nanospray desorption electrospray ionization mass spectrometer (nano-DESI MS) whereas the real-time evolution of SOA mass, elemental ratios, and average carbon oxidation state (OS C) are monitored using an online aerosol mass spectrometer (AMS). Our results indicate that oligomerization is an important aqueous reaction pathway for phenols, especially during the initial stage of photooxidation equivalent to ~2 h irradiation under midday winter solstice sunlight in Northern California. At later reaction times functionalization (i.e., adding polar oxygenated functional groups to the molecule) and fragmentation (i.e., breaking of covalent bonds) become more important processes, forming a large variety of functionalized aromatic and open-ring products with higher OS C values. Fragmentation reactions eventually dominate the photochemical evolution of phenolic aqSOA, forming a large number of highly oxygenated ring-opening molecules with carbon numbers ( n C) below 6. The average n C of phenolic aqSOA decreases while average OS C increases over the course of photochemical aging. In addition, the saturation vapor pressures ( C *) of dozens of the most abundant phenolic aqSOA molecules are estimated. A wide range of C * values is

  9. Molecular transformations of phenolic SOA during photochemical aging in the aqueous phase: Competition among oligomerization, functionalization, and fragmentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Lu; Smith, Jeremy; Laskin, Alexander

    Organic aerosol is formed and transformed in atmospheric aqueous phases (e.g., cloud and fog droplets and deliquesced airborne particles containing small amounts of water) through a multitude of chemical reactions. Understanding these reactions is important for a predictive understanding of atmospheric aging of aerosols and their impacts on climate, air quality, and human health. In this study, we investigate the chemical evolution of aqueous secondary organic aerosol (aqSOA) formed during reactions of phenolic compounds with two oxidants – the triplet excited state of an aromatic carbonyl ( 3C *) and hydroxyl radical ( • OH). Changes in themore » molecular composition of aqSOA as a function of aging time are characterized using an offline nanospray desorption electrospray ionization mass spectrometer (nano-DESI MS) whereas the real-time evolution of SOA mass, elemental ratios, and average carbon oxidation state (OS C) are monitored using an online aerosol mass spectrometer (AMS). Our results indicate that oligomerization is an important aqueous reaction pathway for phenols, especially during the initial stage of photooxidation equivalent to ~2 h irradiation under midday winter solstice sunlight in Northern California. At later reaction times functionalization (i.e., adding polar oxygenated functional groups to the molecule) and fragmentation (i.e., breaking of covalent bonds) become more important processes, forming a large variety of functionalized aromatic and open-ring products with higher OS C values. Fragmentation reactions eventually dominate the photochemical evolution of phenolic aqSOA, forming a large number of highly oxygenated ring-opening molecules with carbon numbers ( n C) below 6. The average n C of phenolic aqSOA decreases while average OS C increases over the course of photochemical aging. In addition, the saturation vapor pressures ( C *) of dozens of the most abundant phenolic aqSOA molecules are estimated. A wide range of C * values is

  10. Molecular transformations of phenolic SOA during photochemical aging in the aqueous phase: competition among oligomerization, functionalization, and fragmentation

    NASA Astrophysics Data System (ADS)

    Yu, L.; Smith, J.; Laskin, A.; George, K. M.; Anastasio, C.; Laskin, J.; Dillner, A. M.; Zhang, Q.

    2015-10-01

    Organic aerosol is formed and transformed in atmospheric aqueous phases (e.g., cloud and fog droplets and deliquesced airborne particles containing small amounts of water) through a multitude of chemical reactions. Understanding these reactions is important for a predictive understanding of atmospheric aging of aerosols and their impacts on climate, air quality, and human health. In this study, we investigate the chemical evolution of aqueous secondary organic aerosol (aqSOA) formed during reactions of phenolic compounds with two oxidants - the triplet excited state of an aromatic carbonyl (3C*) and hydroxyl radical (•OH). Changes in the molecular composition of aqSOA as a function of aging time are characterized using an offline nanospray desorption electrospray ionization mass spectrometer (nano-DESI MS) whereas the real-time evolution of SOA mass, elemental ratios, and average carbon oxidation state (OSC) are monitored using an online aerosol mass spectrometer (AMS). Our results indicate that oligomerization is an important aqueous reaction pathway for phenols, especially during the initial stage of photooxidation equivalent to ∼ 2 h irradiation under midday, winter solstice sunlight in northern California. At later reaction times functionalization (i.e., adding polar oxygenated functional groups to the molecule) and fragmentation (i.e., breaking of covalent bonds) become more important processes, forming a large variety of functionalized aromatic and open-ring products with higher OSC values. Fragmentation reactions eventually dominate the photochemical evolution of phenolic aqSOA, forming a large number of highly oxygenated open-ring molecules with carbon numbers (nC) below 6. The average nC of phenolic aqSOA decreases while average OSC increases over the course of photochemical aging. In addition, the saturation vapor pressures C*) of dozens of the most abundant phenolic aqSOA molecules are estimated. A wide range of C* values is observed

  11. Molecular transformations of phenolic SOA during photochemical aging in the aqueous phase: competition among oligomerization, functionalization, and fragmentation

    NASA Astrophysics Data System (ADS)

    Yu, Lu; Smith, Jeremy; Laskin, Alexander; George, Katheryn M.; Anastasio, Cort; Laskin, Julia; Dillner, Ann M.; Zhang, Qi

    2016-04-01

    Organic aerosol is formed and transformed in atmospheric aqueous phases (e.g., cloud and fog droplets and deliquesced airborne particles containing small amounts of water) through a multitude of chemical reactions. Understanding these reactions is important for a predictive understanding of atmospheric aging of aerosols and their impacts on climate, air quality, and human health. In this study, we investigate the chemical evolution of aqueous secondary organic aerosol (aqSOA) formed during reactions of phenolic compounds with two oxidants - the triplet excited state of an aromatic carbonyl (3C∗) and hydroxyl radical (OH). Changes in the molecular composition of aqSOA as a function of aging time are characterized using an offline nanospray desorption electrospray ionization mass spectrometer (nano-DESI MS) whereas the real-time evolution of SOA mass, elemental ratios, and average carbon oxidation state (OSC) are monitored using an online aerosol mass spectrometer (AMS). Our results indicate that oligomerization is an important aqueous reaction pathway for phenols, especially during the initial stage of photooxidation equivalent to ˜ 2 h irradiation under midday winter solstice sunlight in Northern California. At later reaction times functionalization (i.e., adding polar oxygenated functional groups to the molecule) and fragmentation (i.e., breaking of covalent bonds) become more important processes, forming a large variety of functionalized aromatic and open-ring products with higher OSC values. Fragmentation reactions eventually dominate the photochemical evolution of phenolic aqSOA, forming a large number of highly oxygenated ring-opening molecules with carbon numbers (nC) below 6. The average nC of phenolic aqSOA decreases while average OSC increases over the course of photochemical aging. In addition, the saturation vapor pressures (C∗) of dozens of the most abundant phenolic aqSOA molecules are estimated. A wide range of C∗ values is observed

  12. Unimolecular reaction energies for polycyclic aromatic hydrocarbon ions.

    PubMed

    West, Brandi; Rodriguez Castillo, Sarah; Sit, Alicia; Mohamad, Sabria; Lowe, Bethany; Joblin, Christine; Bodi, Andras; Mayer, Paul M

    2018-03-07

    Imaging photoelectron photoion coincidence spectroscopy was employed to explore the unimolecular dissociation of the ionized polycyclic aromatic hydrocarbons (PAHs) acenaphthylene, fluorene, cyclopenta[d,e,f]phenanthrene, pyrene, perylene, fluoranthene, dibenzo[a,e]pyrene, dibenzo[a,l]pyrene, coronene and corannulene. The primary reaction is always hydrogen atom loss, with the smaller species also exhibiting loss of C 2 H 2 to varying extents. Combined with previous work on smaller PAH ions, trends in the reaction energies (E 0 ) for loss of H from sp 2 -C and sp 3 -C centres, along with hydrocarbon molecule loss were found as a function of the number of carbon atoms in the ionized PAHs ranging in size from naphthalene to coronene. In the case of molecules which possessed at least one sp 3 -C centre, the activation energy for the loss of an H atom from this site was 2.34 eV, with the exception of cyclopenta[d,e,f]phenanthrene (CPP) ions, for which the E 0 was 3.44 ± 0.86 eV due to steric constraints. The hydrogen loss from PAH cations and from their H-loss fragments exhibits two trends, depending on the number of unpaired electrons. For the loss of the first hydrogen atom, the energy is consistently ca. 4.40 eV, while the threshold to lose the second hydrogen atom is much lower at ca. 3.16 eV. The only exception was for the dibenzo[a,l]pyrene cation, which has a unique structure due to steric constraints, resulting in a low H loss reaction energy of 2.85 eV. If C 2 H 2 is lost directly from the precursor cation, the energy required for this dissociation is 4.16 eV. No other fragmentation channels were observed over a large enough sample set for trends to be extrapolated, though data on CH 3 and C 4 H 2 loss obtained in previous studies is included for completeness. The dissociation reactions were also studied by collision induced dissociation after ionization by atmospheric pressure chemical ionization. When modeled with a simple temperature-based theory for the

  13. Accurate Binding Free Energy Predictions in Fragment Optimization.

    PubMed

    Steinbrecher, Thomas B; Dahlgren, Markus; Cappel, Daniel; Lin, Teng; Wang, Lingle; Krilov, Goran; Abel, Robert; Friesner, Richard; Sherman, Woody

    2015-11-23

    Predicting protein-ligand binding free energies is a central aim of computational structure-based drug design (SBDD)--improved accuracy in binding free energy predictions could significantly reduce costs and accelerate project timelines in lead discovery and optimization. The recent development and validation of advanced free energy calculation methods represents a major step toward this goal. Accurately predicting the relative binding free energy changes of modifications to ligands is especially valuable in the field of fragment-based drug design, since fragment screens tend to deliver initial hits of low binding affinity that require multiple rounds of synthesis to gain the requisite potency for a project. In this study, we show that a free energy perturbation protocol, FEP+, which was previously validated on drug-like lead compounds, is suitable for the calculation of relative binding strengths of fragment-sized compounds as well. We study several pharmaceutically relevant targets with a total of more than 90 fragments and find that the FEP+ methodology, which uses explicit solvent molecular dynamics and physics-based scoring with no parameters adjusted, can accurately predict relative fragment binding affinities. The calculations afford R(2)-values on average greater than 0.5 compared to experimental data and RMS errors of ca. 1.1 kcal/mol overall, demonstrating significant improvements over the docking and MM-GBSA methods tested in this work and indicating that FEP+ has the requisite predictive power to impact fragment-based affinity optimization projects.

  14. Highly efficient reversible addition-fragmentation chain-transfer polymerization in ethanol/water via flow chemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ye, Piaoran; Cao, Peng -Fei; Su, Zhe

    Here, utilization of a flow reactor under high pressure allows highly efficient polymer synthesis via reversible addition–fragmentation chain-transfer (RAFT) polymerization in an aqueous system. Compared with the batch reaction, the flow reactor allows the RAFT polymerization to be performed in a high-efficiency manner at the same temperature. The adjustable pressure of the system allows further elevation of the reaction temperature and hence faster polymerization. Other reaction parameters, such as flow rate and initiator concentration, were also well studied to tune the monomer conversion and the molar mass dispersity (Ð) of the obtained polymers. Gel permeation chromatography, nuclear magnetic resonance (NMR),more » and Fourier transform infrared spectroscopies (FTIR) were utilized to monitor the polymerization process. With the initiator concentration of 0.15 mmol L –1, polymerization of poly(ethylene glycol) methyl ethermethacrylate with monomer conversion of 52% at 100 °C under 73 bar can be achieved within 40 min with narrow molar mass dispersity (D) Ð (<1.25). The strategy developed here provides a method to produce well-defined polymers via RAFT polymerization with high efficiency in a continuous manner.« less

  15. Characterization of Hypervelocity Metal Fragments for Explosive Initiation

    NASA Astrophysics Data System (ADS)

    Yeager, John; Bowden, Patrick; Guildenbecher, Daniel; Olles, Joseph

    2017-06-01

    The off-normal detonation behavior of two plastic-bonded explosive (PBX) formulations was studied using explosively-driven aluminum fragments moving at hypersonic velocity. Witness plate materials, including copper and polycarbonate, were used to characterize the distribution of particles, finding that the aluminum did not fragment homogeneously but rather with larger particles in a ring surrounding finer particles. Digital holography experiments were conducted to measure three-dimensional shape and size of the fastest-moving fragments, which ranged between 100 and 700 microns and traveled between 2 and 3.5 km/s. Crucially, these experiments showed variability in the fragmentation in terms of the number of fragments at the leading edge of the fragment field, indicating that both single and multiple shock impacts could be imparted to the target material. Lower density PBX 9407 (RDX-based) was initiable at up to 4.5 inches, while higher density PBX 9501 (HMX-based) was only initiable at up to 0.25 inches. This type of data is critical for safety experiments and hydrocode simulations to quantify shock-to-detonation transition mechanisms and the associated risk-margins for these materials.

  16. Effects of target fragmentation on evaluation of LET spectra from space radiations: implications for space radiation protection studies

    NASA Technical Reports Server (NTRS)

    Cucinotta, F. A.; Wilson, J. W.; Shinn, J. L.; Badavi, F. F.; Badhwar, G. D.

    1996-01-01

    We present calculations of linear energy transfer (LET) spectra in low earth orbit from galactic cosmic rays and trapped protons using the HZETRN/BRYNTRN computer code. The emphasis of our calculations is on the analysis of the effects of secondary nuclei produced through target fragmentation in the spacecraft shield or detectors. Recent improvements in the HZETRN/BRYNTRN radiation transport computer code are described. Calculations show that at large values of LET (> 100 keV/micrometer) the LET spectra seen in free space and low earth orbit (LEO) are dominated by target fragments and not the primary nuclei. Although the evaluation of microdosimetric spectra is not considered here, calculations of LET spectra support that the large lineal energy (y) events are dominated by the target fragments. Finally, we discuss the situation for interplanetary exposures to galactic cosmic rays and show that current radiation transport codes predict that in the region of high LET values the LET spectra at significant shield depths (> 10 g/cm2 of Al) is greatly modified by target fragments. These results suggest that studies of track structure and biological response of space radiation should place emphasis on short tracks of medium charge fragments produced in the human body by high energy protons and neutrons.

  17. IMPACT fragmentation model developments

    NASA Astrophysics Data System (ADS)

    Sorge, Marlon E.; Mains, Deanna L.

    2016-09-01

    The IMPACT fragmentation model has been used by The Aerospace Corporation for more than 25 years to analyze orbital altitude explosions and hypervelocity collisions. The model is semi-empirical, combining mass, energy and momentum conservation laws with empirically derived relationships for fragment characteristics such as number, mass, area-to-mass ratio, and spreading velocity as well as event energy distribution. Model results are used for several types of analysis including assessment of short-term risks to satellites from orbital altitude fragmentations, prediction of the long-term evolution of the orbital debris environment and forensic assessments of breakup events. A new version of IMPACT, version 6, has been completed and incorporates a number of advancements enabled by a multi-year long effort to characterize more than 11,000 debris fragments from more than three dozen historical on-orbit breakup events. These events involved a wide range of causes, energies, and fragmenting objects. Special focus was placed on the explosion model, as the majority of events examined were explosions. Revisions were made to the mass distribution used for explosion events, increasing the number of smaller fragments generated. The algorithm for modeling upper stage large fragment generation was updated. A momentum conserving asymmetric spreading velocity distribution algorithm was implemented to better represent sub-catastrophic events. An approach was developed for modeling sub-catastrophic explosions, those where the majority of the parent object remains intact, based on estimated event energy. Finally, significant modifications were made to the area-to-mass ratio distribution to incorporate the tendencies of different materials to fragment into different shapes. This ability enabled better matches between the observed area-to-mass ratios and those generated by the model. It also opened up additional possibilities for post-event analysis of breakups. The paper will discuss

  18. Design of combinatorial libraries for the exploration of virtual hits from fragment space searches with LoFT.

    PubMed

    Lessel, Uta; Wellenzohn, Bernd; Fischer, J Robert; Rarey, Matthias

    2012-02-27

    A case study is presented illustrating the design of a focused CDK2 library. The scaffold of the library was detected by a feature trees search in a fragment space based on reactions from combinatorial chemistry. For the design the software LoFT (Library optimizer using Feature Trees) was used. The special feature called FTMatch was applied to restrict the parts of the queries where the reagents are permitted to match. This way a 3D scoring function could be simulated. Results were compared with alternative designs by GOLD docking and ROCS 3D alignments.

  19. Electron impact fragmentation of adenine: partial ionization cross sections for positive fragments

    NASA Astrophysics Data System (ADS)

    van der Burgt, Peter J. M.; Finnegan, Sinead; Eden, Samuel

    2015-07-01

    Using computer-controlled data acquisition we have measured mass spectra of positive ions for electron impact on adenine, with electron energies up to 100 eV. Ion yield curves for 50 ions have been obtained and normalized by comparing their sum to the average of calculated total ionization cross sections. Appearance energies have been determined for 37 ions; for 20 ions for the first time. All appearance energies are consistent with the fragmentation pathways identified in the literature. Second onset energies have been determined for 12 fragment ions (for 11 ions for the first time), indicating the occurrence of more than one fragmentation process e.g. for 39 u (C2HN+) and 70 u (C2H4N3+). Matching ion yield shapes (118-120 u, 107-108 u, 91-92 u, and 54-56 u) provide new evidence supporting closely related fragmentation pathways and are attributed to hydrogen rearrangement immediately preceding the fragmentation. We present the first measurement of the ion yield curve of the doubly charged parent ion (67.5 u), with an appearance energy of 23.5 ± 1.0 eV. Contribution to the Topical Issue "COST Action Nano-IBCT: Nano-scale Processes Behind Ion-Beam Cancer Therapy", edited by Andrey Solov'yov, Nigel Mason, Gustavo García, Eugene Surdutovich.

  20. X-ray studies of recombinant anti-testosterone Fab fragments: the use of PEG 3350 in crystallization.

    PubMed

    Valjakka, J; Hemminki, A; Teerinen, T; Takkinen, K; Rouvinen, J

    2000-02-01

    Recombinant anti-testosterone wild-type Fab fragment and mutant Fab fragments with high binding selectivity developed by protein engineering have been crystallized with and without ligands. Crystals of these Fab fragments were obtained by the vapour-diffusion technique at room temperature using solutions of PEG 3350 with various biological buffers and with a wide pH range. So far, five data sets have been collected from crystals of three Fab-antigen complexes and from two uncomplexed Fab fragments, with resolutions ranging from 2.10 to 3.1 A. Crystallization conditions for Fab fragments were found by using modifications of the low ionic strength PEG 3350 series. Suitable concentrations of PEG 400, MPD and glycerol solutions for use as cryoprotectants in PEG 3350 solutions have been determined. One useful observation was that PEG 3350 is able to work alone as a cryoprotectant. The screening protocol used requires a smaller amount of protein material to achieve auspicious pre-crystals than previously. Results support the claim that PEG 3350 is more suitable for the crystallization of Fab fragments than higher molecular weight PEGs.

  1. Further links between the maximum hardness principle and the hard/soft acid/base principle: insights from hard/soft exchange reactions.

    PubMed

    Chattaraj, Pratim K; Ayers, Paul W; Melin, Junia

    2007-08-07

    Ayers, Parr, and Pearson recently showed that insight into the hard/soft acid/base (HSAB) principle could be obtained by analyzing the energy of reactions in hard/soft exchange reactions, i.e., reactions in which a soft acid replaces a hard acid or a soft base replaces a hard base [J. Chem. Phys., 2006, 124, 194107]. We show, in accord with the maximum hardness principle, that the hardness increases for favorable hard/soft exchange reactions and decreases when the HSAB principle indicates that hard/soft exchange reactions are unfavorable. This extends the previous work of the authors, which treated only the "double hard/soft exchange" reaction [P. K. Chattaraj and P. W. Ayers, J. Chem. Phys., 2005, 123, 086101]. We also discuss two different approaches to computing the hardness of molecules from the hardness of the composing fragments, and explain how the results differ. In the present context, it seems that the arithmetic mean of fragment softnesses is the preferable definition.

  2. ACFIS: a web server for fragment-based drug discovery

    PubMed Central

    Hao, Ge-Fei; Jiang, Wen; Ye, Yuan-Nong; Wu, Feng-Xu; Zhu, Xiao-Lei; Guo, Feng-Biao; Yang, Guang-Fu

    2016-01-01

    In order to foster innovation and improve the effectiveness of drug discovery, there is a considerable interest in exploring unknown ‘chemical space’ to identify new bioactive compounds with novel and diverse scaffolds. Hence, fragment-based drug discovery (FBDD) was developed rapidly due to its advanced expansive search for ‘chemical space’, which can lead to a higher hit rate and ligand efficiency (LE). However, computational screening of fragments is always hampered by the promiscuous binding model. In this study, we developed a new web server Auto Core Fragment in silico Screening (ACFIS). It includes three computational modules, PARA_GEN, CORE_GEN and CAND_GEN. ACFIS can generate core fragment structure from the active molecule using fragment deconstruction analysis and perform in silico screening by growing fragments to the junction of core fragment structure. An integrated energy calculation rapidly identifies which fragments fit the binding site of a protein. We constructed a simple interface to enable users to view top-ranking molecules in 2D and the binding mode in 3D for further experimental exploration. This makes the ACFIS a highly valuable tool for drug discovery. The ACFIS web server is free and open to all users at http://chemyang.ccnu.edu.cn/ccb/server/ACFIS/. PMID:27150808

  3. High speed observation of fragment impact initiation of nitromethane charges

    NASA Astrophysics Data System (ADS)

    Cook, M. D.; Haskins, P. J.; Briggs, R. I.; Cheese, P.; Stennett, C.; Fellows, J.

    2000-04-01

    Ultra high-speed digital photography has been used to record the onset and build-up of reaction in nitromethane charges that have been impacted by steel fragments. The nitromethane charges were housed in PMMA cylinders and back-lit using conventional flash bulbs. Flat plates of aluminum were glued to one end of the cylinder and PMMA plates to the other. The completed charge was positioned to allow normal impact of the projectiles through the aluminum barrier plate. The events were filmed using an Imacon 468, ultra high-speed digital image system, capable of framing at up to 100 million pictures per second. Using this system it was possible to record detailed photographic information concerning the onset and growth of reaction due to shock initiation of the nitromethane charges. The results obtained to date are consistent with the established concepts for initiation of homogeneous and heterogeneous materials.

  4. A microgenetic study of learning about the molecular theory of matter and chemical reactions

    NASA Astrophysics Data System (ADS)

    Chinn, Clark Allen

    This paper reports the results of an experimental microgenetic study of children learning complex knowledge from text and experiments. The study had two goals. The first was to investigate fine-grained, moment-to-moment changes in knowledge as middle-school students learned about molecules and chemical reactions over thirteen sessions. The second was to investigate the effects of two instructional treatments, one using implicit textbook explanations and one using explicit explanations developed according to a theory of how scientific knowledge is structured. In the study, 61 sixth- and seventh-graders worked one on one with undergraduate instructors in eleven sessions of about 50 to 80 minutes. The instructors guided the students in conducting experiments and thinking out loud about texts. Topics studied included molecules, states of matter, chemical reactions, and heat transfer. A dense array of questions provided a detailed picture of children's moment-to-moment and day-to-day changes in knowledge. Three results chapters address students' preinstructional knowledge, the effects of the experimental treatment at posttest, and five detailed case studies of students' step-by-step knowledge change over eleven sessions. The chapter on preinstructional knowledge discussed three aspects of global knowledge change: conceptual change, coherence, and entrenchment. Notably, this chapter provides systematic evidence that children's knowledge was fragmented and that consistency with general unifying principles did not guarantee a highly coherent body of knowledge. The experimental manipulation revealed a strong advantage for explicit explanations over implicit textbook explanations. Multiple explicit explanations (e.g., highly explicit explanations of three or four chemical reactions) appeared to be necessary for students to master key concepts. Microgenetic analyses of five cases addressed eight empirical issues that should be addressed by any theory of knowledge acquisition

  5. Macroalgal Composition Determines the Structure of Benthic Assemblages Colonizing Fragmented Habitats

    PubMed Central

    Matias, Miguel G.; Arenas, Francisco; Rubal, Marcos; Pinto, Isabel S.

    2015-01-01

    Understanding the consequences of fragmentation of coastal habitats is an important topic of discussion in marine ecology. Research on the effects of fragmentation has revealed complex and context-dependent biotic responses, which prevent generalizations across different habitats or study organisms. The effects of fragmentation in marine environments have been rarely investigated across heterogeneous habitats, since most studies have focused on a single type of habitat or patch. In this study, we assessed the effects of different levels of fragmentation (i.e. decreasing size of patches without overall habitat loss). We measured these effects using assemblages of macro-invertebrates colonizing representative morphological groups of intertidal macroalgae (e.g. encrusting, turf and canopy-forming algae). For this purpose, we constructed artificial assemblages with different combinations of morphological groups and increasing levels of fragmentation by manipulating the amount of bare rock or the spatial arrangement of different species in mixed assemblages. In general, our results showed that 1) fragmentation did not significantly affect the assemblages of macroinvertebrates; 2) at greater levels of fragmentation, there were greater numbers of species in mixed algal assemblages, suggesting that higher habitat complexity promotes species colonization. Our results suggest that predicting the consequences of fragmentation in heterogeneous habitats is dependent on the type and diversity of morphological groups making up those habitats. PMID:26554924

  6. Dimensional crossover in fragmentation

    NASA Astrophysics Data System (ADS)

    Sotolongo-Costa, Oscar; Rodriguez, Arezky H.; Rodgers, G. J.

    2000-11-01

    Experiments in which thick clay plates and glass rods are fractured have revealed different behavior of fragment mass distribution function in the small and large fragment regions. In this paper we explain this behavior using non-extensive Tsallis statistics and show how the crossover between the two regions is caused by the change in the fragments’ dimensionality during the fracture process. We obtain a physical criterion for the position of this crossover and an expression for the change in the power-law exponent between the small and large fragment regions. These predictions are in good agreement with the experiments on thick clay plates.

  7. Searching Fragment Spaces with feature trees.

    PubMed

    Lessel, Uta; Wellenzohn, Bernd; Lilienthal, Markus; Claussen, Holger

    2009-02-01

    Virtual combinatorial chemistry easily produces billions of compounds, for which conventional virtual screening cannot be performed even with the fastest methods available. An efficient solution for such a scenario is the generation of Fragment Spaces, which encode huge numbers of virtual compounds by their fragments/reagents and rules of how to combine them. Similarity-based searches can be performed in such spaces without ever fully enumerating all virtual products. Here we describe the generation of a huge Fragment Space encoding about 5 * 10(11) compounds based on established in-house synthesis protocols for combinatorial libraries, i.e., we encode practically evaluated combinatorial chemistry protocols in a machine readable form, rendering them accessible to in silico search methods. We show how such searches in this Fragment Space can be integrated as a first step in an overall workflow. It reduces the extremely huge number of virtual products by several orders of magnitude so that the resulting list of molecules becomes more manageable for further more elaborated and time-consuming analysis steps. Results of a case study are presented and discussed, which lead to some general conclusions for an efficient expansion of the chemical space to be screened in pharmaceutical companies.

  8. Links between plant and fungal diversity in habitat fragments of coastal shrubland

    DOE PAGES

    Maltz, Mia R.; Treseder, Kathleen K.; McGuire, Krista L.

    2017-09-19

    Habitat fragmentation is widespread across ecosystems, detrimentally affecting biodiversity. Although most habitat fragmentation studies have been conducted on macroscopic organisms, microbial communities and fungal processes may also be threatened by fragmentation. This study investigated whether fragmentation, and the effects of fragmentation on plants, altered fungal diversity and function within a fragmented shrubland in southern California. Using fluorimetric techniques, we assayed enzymes from plant litter collected from fragments of varying sizes to investigate enzymatic responses to fragmentation. To isolate the effects of plant richness from those of fragment size on fungi, we deployed litter bags containing different levels of plant littermore » diversity into the largest fragment and incubated in the field for one year. Following field incubation, we determined litter mass loss and conducted molecular analyses of fungal communities. We found that leaf-litter enzyme activity declined in smaller habitat fragments with less diverse vegetation. Moreover, we detected greater litter mass loss in litter bags containing more diverse plant litter. Additionally, bags with greater plant litter diversity harbored greater numbers of fungal taxa. These findings suggest that both plant litter resources and fungal function may be affected by habitat fragmentation's constraints on plants, possibly because plant species differ chemically, and may thus decompose at different rates. Diverse plant assemblages may produce a greater variety of litter resources and provide more ecological niche space, which may support greater numbers of fungal taxa. Thus, reduced plant diversity may constrain both fungal taxa richness and decomposition in fragmented coastal shrublands. Altogether, our findings provide evidence that even fungi may be affected by human-driven habitat fragmentation via direct effects of fragmentation on plants. Our findings underscore the importance of

  9. Links between plant and fungal diversity in habitat fragments of coastal shrubland

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maltz, Mia R.; Treseder, Kathleen K.; McGuire, Krista L.

    Habitat fragmentation is widespread across ecosystems, detrimentally affecting biodiversity. Although most habitat fragmentation studies have been conducted on macroscopic organisms, microbial communities and fungal processes may also be threatened by fragmentation. This study investigated whether fragmentation, and the effects of fragmentation on plants, altered fungal diversity and function within a fragmented shrubland in southern California. Using fluorimetric techniques, we assayed enzymes from plant litter collected from fragments of varying sizes to investigate enzymatic responses to fragmentation. To isolate the effects of plant richness from those of fragment size on fungi, we deployed litter bags containing different levels of plant littermore » diversity into the largest fragment and incubated in the field for one year. Following field incubation, we determined litter mass loss and conducted molecular analyses of fungal communities. We found that leaf-litter enzyme activity declined in smaller habitat fragments with less diverse vegetation. Moreover, we detected greater litter mass loss in litter bags containing more diverse plant litter. Additionally, bags with greater plant litter diversity harbored greater numbers of fungal taxa. These findings suggest that both plant litter resources and fungal function may be affected by habitat fragmentation's constraints on plants, possibly because plant species differ chemically, and may thus decompose at different rates. Diverse plant assemblages may produce a greater variety of litter resources and provide more ecological niche space, which may support greater numbers of fungal taxa. Thus, reduced plant diversity may constrain both fungal taxa richness and decomposition in fragmented coastal shrublands. Altogether, our findings provide evidence that even fungi may be affected by human-driven habitat fragmentation via direct effects of fragmentation on plants. Our findings underscore the importance of

  10. Fragmentation pathways and structural characterization of organophosphorus compounds related to the Chemical Weapons Convention by electron ionization and electrospray ionization tandem mass spectrometry.

    PubMed

    Hosseini, Seyed Esmaeil; Saeidian, Hamid; Amozadeh, Ali; Naseri, Mohammad Taghi; Babri, Mehran

    2016-12-30

    For unambiguous identification of Chemical Weapons Convention (CWC)-related chemicals in environmental samples, the availability of mass spectra, interpretation skills and rapid microsynthesis of suspected chemicals are essential requirements. For the first time, the electron ionization single quadrupole and electrospray ionization tandem mass spectra of a series of O-alkyl N-[bis(dimethylamino)methylidene]-P-methylphosphonamidates (Scheme 1, cpd 4) were studied for CWC verification purposes. O-Alkyl N-[bis(dimethylamino)methylidene]-P-methylphosphonamidates were prepared through a microsynthetic method and were analyzed using electron ionization and electrospray ionization mass spectrometry with gas and liquid chromatography, respectively, as MS-inlet systems. General EI and ESI fragmentation pathways were proposed and discussed, and collision-induced dissociation studies of the protonated derivatives of these compounds were performed to confirm proposed fragment ion structures by analyzing mass spectra of deuterated analogs. Mass spectrometric studies revealed some interesting fragmentation pathways during the ionization process, such as McLafferty rearrangement, hydrogen rearrangement and a previously unknown intramolecular electrophilic aromatic substitution reaction. The EI and ESI fragmentation routes of the synthesized compounds 4 were investigated with the aim of detecting and identifying CWC-related chemicals during on-site inspection and/or off-site analysis and toxic chemical destruction monitoring. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  11. A molecular fragment cheminformatics roadmap for mesoscopic simulation.

    PubMed

    Truszkowski, Andreas; Daniel, Mirco; Kuhn, Hubert; Neumann, Stefan; Steinbeck, Christoph; Zielesny, Achim; Epple, Matthias

    2014-12-01

    Mesoscopic simulation studies the structure, dynamics and properties of large molecular ensembles with millions of atoms: Its basic interacting units (beads) are no longer the nuclei and electrons of quantum chemical ab-initio calculations or the atom types of molecular mechanics but molecular fragments, molecules or even larger molecular entities. For its simulation setup and output a mesoscopic simulation kernel software uses abstract matrix (array) representations for bead topology and connectivity. Therefore a pure kernel-based mesoscopic simulation task is a tedious, time-consuming and error-prone venture that limits its practical use and application. A consequent cheminformatics approach tackles these problems and provides solutions for a considerably enhanced accessibility. This study aims at outlining a complete cheminformatics roadmap that frames a mesoscopic Molecular Fragment Dynamics (MFD) simulation kernel to allow its efficient use and practical application. The molecular fragment cheminformatics roadmap consists of four consecutive building blocks: An adequate fragment structure representation (1), defined operations on these fragment structures (2), the description of compartments with defined compositions and structural alignments (3), and the graphical setup and analysis of a whole simulation box (4). The basis of the cheminformatics approach (i.e. building block 1) is a SMILES-like line notation (denoted f SMILES) with connected molecular fragments to represent a molecular structure. The f SMILES notation and the following concepts and methods for building blocks 2-4 are outlined with examples and practical usage scenarios. It is shown that the requirements of the roadmap may be partly covered by already existing open-source cheminformatics software. Mesoscopic simulation techniques like MFD may be considerably alleviated and broadened for practical use with a consequent cheminformatics layer that successfully tackles its setup subtleties and

  12. Effects of cyanoacrylate fuming, time after recovery, and location of biological material on the recovery and analysis of DNA from post-blast pipe bomb fragments*.

    PubMed

    Bille, Todd W; Cromartie, Carter; Farr, Matthew

    2009-09-01

    This study investigated the effects of time, cyanoacrylate fuming, and location of the biological material on DNA analysis of post-blast pipe bomb fragments. Multiple aliquots of a cell suspension (prepared by soaking buccal swabs in water) were deposited on components of the devices prior to assembly. The pipe bombs were then deflagrated and the fragments recovered. Fragments from half of the devices were cyanoacrylate fumed. The cell spots on the fragments were swabbed and polymerase chain reaction/short tandem repeat analysis was performed 1 week and 3 months after deflagration. A significant decrease in the amount of DNA recovered was observed between samples collected and analyzed within 1 week compared with the samples collected and analyzed 3 months after deflagration. Cyanoacrylate fuming did not have a measurable effect on the success of the DNA analysis at either time point. Greater quantities of DNA were recovered from the pipe nipples than the end caps. Undeflagrated controls showed that the majority (>95%) of the DNA deposited on the devices was not recovered at a week or 3 months.

  13. Characteristics study of projectile's lightest fragment for 84Kr36-emulsion interaction at around 1 A GeV

    NASA Astrophysics Data System (ADS)

    Marimuthu, N.; Singh, V.; Inbanathan, S. S. R.

    2017-04-01

    In this article, we present the results of our investigations on the projectile's lightest fragment (proton) multiplicity and probability distributions with 84Kr36 emulsion collision at around 1 A GeV. The multiplicity and normalized multiplicity of projectile's lightest fragment (proton) are correlated with the compound particles, shower particles, black particles, grey particles; alpha (helium nucleus) fragments and heavily ionizing charged particles. It is found that projectile's lightest fragment (proton) is strongly correlated with compound particles and shower particles rather than other particles and the average multiplicity of projectile's lightest fragment (proton) increases with increasing compound, shower and heavily ionizing charge particles. Normalized projectile's lightest fragment (proton) is strongly correlated with compound particles, shower particles and heavily ionizing charge particles. The multiplicity distribution of the projectile's lightest fragment (proton) emitted in the 84Kr36 + emulsion interaction at around 1 A GeV with different target has been well explained by KNO scaling. The mean multiplicity of projectile's lightest fragments (proton) depends on the mass number of the projectile and does not significantly dependent of the projectile energy. The mean multiplicity of projectile's lightest fragment (proton) increases with increasing the target mass number.

  14. In-gel multiple displacement amplification of long DNA fragments diluted to the single molecule level.

    PubMed

    Michikawa, Yuichi; Sugahara, Keisuke; Suga, Tomo; Ohtsuka, Yoshimi; Ishikawa, Kenichi; Ishikawa, Atsuko; Shiomi, Naoko; Shiomi, Tadahiro; Iwakawa, Mayumi; Imai, Takashi

    2008-12-15

    The isolation and multiple genotyping of long individual DNA fragments are needed to obtain haplotype information for diploid organisms. Limiting dilution of sample DNA followed by multiple displacement amplification is a useful technique but is restricted to short (<5 kb) DNA fragments. In the current study, a novel modification was applied to overcome these problems. A limited amount of cellular DNA was carefully released from intact cells into a mildly heated alkaline agarose solution and mixed thoroughly. The solution was then gently aliquoted and allowed to solidify while maintaining the integrity of the diluted DNA. Exogenously provided Phi29 DNA polymerase was used to perform consistent genomic amplification with random hexameric oligonucleotides within the agarose gels. Simple heat melting of the gel allowed recovery of the amplified materials in a solution of the polymerase chain reaction (PCR)-ready form. The haplotypes of seven SNPs spanning 240 kb of the DNA surrounding the human ATM gene region on chromosome 11 were determined for 10 individuals, demonstrating the feasibility of this new method.

  15. PHOTORESTORATION OF FRAGMENTS OF IRRADIATED AMOEBA (in French)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skreb, Y.; Bevilacqua, L.

    1962-11-01

    Studies were made on the restcration of fragments of amoeba following 1200 ergs/mm/sup 2/ ultraviolet radiation. An excellent restoration of the total quantity of RNA was found. The numbers corresponding to the nucleated fragments illuminated were even superior to those corresponding to the controls. The ratio between illuminated and irradiated fragments was 1.43 and among the anucleated was 1.25. The results confirmed the fact that photorestoration exerts some actual beneficial effects that manifest themselves with different intensity following the cellular constituent considered. It was concluded that the chromophore exists in the cytoplasm of the amoeba since the consequences of themore » photorestoration manifests itself almost in the same manner in the two types of fragments that are concerned with the evolution of RNA. (P.C.H.)« less

  16. Matrix isolation as a tool for studying interstellar chemical reactions

    NASA Technical Reports Server (NTRS)

    Ball, David W.; Ortman, Bryan J.; Hauge, Robert H.; Margrave, John L.

    1989-01-01

    Since the identification of the OH radical as an interstellar species, over 50 molecular species were identified as interstellar denizens. While identification of new species appears straightforward, an explanation for their mechanisms of formation is not. Most astronomers concede that large bodies like interstellar dust grains are necessary for adsorption of molecules and their energies of reactions, but many of the mechanistic steps are unknown and speculative. It is proposed that data from matrix isolation experiments involving the reactions of refractory materials (especially C, Si, and Fe atoms and clusters) with small molecules (mainly H2, H2O, CO, CO2) are particularly applicable to explaining mechanistic details of likely interstellar chemical reactions. In many cases, matrix isolation techniques are the sole method of studying such reactions; also in many cases, complexations and bond rearrangements yield molecules never before observed. The study of these reactions thus provides a logical basis for the mechanisms of interstellar reactions. A list of reactions is presented that would simulate interstellar chemical reactions. These reactions were studied using FTIR-matrix isolation techniques.

  17. Possible Contribution of Nuclear Fragmentation Induced by High Energy Cosmic Protons to Single Effects Transients in Modern 3D Technology On-Board Devices

    NASA Astrophysics Data System (ADS)

    Chechenin, Nikolay; Chumanov, Vladimir; Kadmenskii, Anatolii

    There is a tendency in modern integrated circuits manufacturing technology that in line with the growth of the density of transistors, the volume occupied by isolated conductive metallic layers on-chip also increases with copper and tungsten more frequently used instead of aluminum. Spallation reaction of 10 MeV to 1 GeV and above protons with tungsten and copper nuclei leads to formation of a large number of isotopes of elements from O to Ta. Experimental data on the cross sections of nuclear spallation reactions and average speed of residual nuclear fragments in inverse kinematics have been published in the last decade. In our report, we analyze the published data and evaluate ionization effects of the fragments from the reaction W (p, X) in the sensitive areas of transistors in microcircuit made by 3DIC technology with interlayer coupling by tungsten conductive pins (or vias), and metallic in-layer interconnection paths.

  18. Agricultural matrices affect ground ant assemblage composition inside forest fragments

    PubMed Central

    Dos Santos, Iracenir Andrade; Ramos, Flavio Nunes; Majer, Jonathan David; Vilela, Evaldo Ferreira

    2018-01-01

    The establishment of agricultural matrices generally involves deforestation, which leads to fragmentation of the remaining forest. This fragmentation can affect forest dynamics both positively and negatively. Since most animal species are affected, certain groups can be used to measure the impact of such fragmentation. This study aimed to measure the impacts of agricultural crops (matrices) on ant communities of adjacent lower montane Atlantic rainforest fragments. We sampled nine forest fragments at locations surrounded by different agricultural matrices, namely: coffee (3 replicates); sugarcane (3); and pasture (3). At each site we installed pitfall traps along a 500 m transect from the interior of the matrix to the interior of the fragment (20 pitfall traps ~25 m apart). Each transect was partitioned into four categories: interior of the matrix; edge of the matrix; edge of the fragment; and interior of the fragment. For each sample site, we measured ant species richness and ant community composition within each transect category. Ant richness and composition differed between fragments and matrices. Each sample location had a specific composition of ants, probably because of the influence of the nature and management of the agricultural matrices. Species composition in the coffee matrix had the highest similarity to its corresponding fragment. The variability in species composition within forest fragments surrounded by pasture was greatest when compared with forest fragments surrounded by sugarcane or, to a lesser extent, coffee. Functional guild composition differed between locations, but the most representative guild was ‘generalist’ both in the agricultural matrices and forest fragments. Our results are important for understanding how agricultural matrices act on ant communities, and also, how these isolated forest fragments could act as an island of biodiversity in an ‘ocean of crops’. PMID:29791493

  19. Agricultural matrices affect ground ant assemblage composition inside forest fragments.

    PubMed

    Assis, Diego Santana; Dos Santos, Iracenir Andrade; Ramos, Flavio Nunes; Barrios-Rojas, Katty Elena; Majer, Jonathan David; Vilela, Evaldo Ferreira

    2018-01-01

    The establishment of agricultural matrices generally involves deforestation, which leads to fragmentation of the remaining forest. This fragmentation can affect forest dynamics both positively and negatively. Since most animal species are affected, certain groups can be used to measure the impact of such fragmentation. This study aimed to measure the impacts of agricultural crops (matrices) on ant communities of adjacent lower montane Atlantic rainforest fragments. We sampled nine forest fragments at locations surrounded by different agricultural matrices, namely: coffee (3 replicates); sugarcane (3); and pasture (3). At each site we installed pitfall traps along a 500 m transect from the interior of the matrix to the interior of the fragment (20 pitfall traps ~25 m apart). Each transect was partitioned into four categories: interior of the matrix; edge of the matrix; edge of the fragment; and interior of the fragment. For each sample site, we measured ant species richness and ant community composition within each transect category. Ant richness and composition differed between fragments and matrices. Each sample location had a specific composition of ants, probably because of the influence of the nature and management of the agricultural matrices. Species composition in the coffee matrix had the highest similarity to its corresponding fragment. The variability in species composition within forest fragments surrounded by pasture was greatest when compared with forest fragments surrounded by sugarcane or, to a lesser extent, coffee. Functional guild composition differed between locations, but the most representative guild was 'generalist' both in the agricultural matrices and forest fragments. Our results are important for understanding how agricultural matrices act on ant communities, and also, how these isolated forest fragments could act as an island of biodiversity in an 'ocean of crops'.

  20. Spallation reaction study for fission products in nuclear waste: Cross section measurements for 137Cs, 90Sr and 107Pd on proton and deuteron

    NASA Astrophysics Data System (ADS)

    Wang, He; Otsu, Hideaki; Sakurai, Hiroyoshi; Ahn, DeukSoon; Aikawa, Masayuki; Ando, Takashi; Araki, Shouhei; Chen, Sidong; Chiga, Nobuyuki; Doornenbal, Pieter; Fukuda, Naoki; Isobe, Tadaaki; Kawakami, Shunsuke; Kawase, Shoichiro; Kin, Tadahiro; Kondo, Yosuke; Koyama, Shupei; Kubono, Shigeru; Maeda, Yukie; Makinaga, Ayano; Matsushita, Masafumi; Matsuzaki, Teiichiro; Michimasa, Shinichiro; Momiyama, Satoru; Nagamine, Shunsuke; Nakamura, Takashi; Nakano, Keita; Niikura, Megumi; Ozaki, Tomoyuki; Saito, Atsumi; Saito, Takeshi; Shiga, Yoshiaki; Shikata, Mizuki; Shimizu, Yohei; Shimoura, Susumu; Sumikama, Toshiyuki; Söderström, Pär-Anders; Suzuki, Hiroshi; Takeda, Hiroyuki; Takeuchi, Satoshi; Taniuchi, Ryo; Togano, Yasuhiro; Tsubota, Junichi; Uesaka, Meiko; Watanabe, Yasushi; Watanabe, Yukinobu; Wimmer, Kathrin; Yamamoto, Tatsuya; Yoshida, Koichi

    2017-09-01

    Spallation reactions for the long-lived fission products 137Cs, 90Sr and 107Pd have been studied for the purpose of nuclear waste transmutation. The cross sections on the proton- and deuteron-induced spallation were obtained in inverse kinematics at the RIKEN Radioactive Isotope Beam Factory. Both the target and energy dependences of cross sections have been investigated systematically. and the cross-section differences between the proton and deuteron are found to be larger for lighter fragments. The experimental data are compared with the SPACS semi-empirical parameterization and the PHITS calculations including both the intra-nuclear cascade and evaporation processes.

  1. Fragment-based quantitative structure-activity relationship (FB-QSAR) for fragment-based drug design.

    PubMed

    Du, Qi-Shi; Huang, Ri-Bo; Wei, Yu-Tuo; Pang, Zong-Wen; Du, Li-Qin; Chou, Kuo-Chen

    2009-01-30

    In cooperation with the fragment-based design a new drug design method, the so-called "fragment-based quantitative structure-activity relationship" (FB-QSAR) is proposed. The essence of the new method is that the molecular framework in a family of drug candidates are divided into several fragments according to their substitutes being investigated. The bioactivities of molecules are correlated with the physicochemical properties of the molecular fragments through two sets of coefficients in the linear free energy equations. One coefficient set is for the physicochemical properties and the other for the weight factors of the molecular fragments. Meanwhile, an iterative double least square (IDLS) technique is developed to solve the two sets of coefficients in a training data set alternately and iteratively. The IDLS technique is a feedback procedure with machine learning ability. The standard Two-dimensional quantitative structure-activity relationship (2D-QSAR) is a special case, in the FB-QSAR, when the whole molecule is treated as one entity. The FB-QSAR approach can remarkably enhance the predictive power and provide more structural insights into rational drug design. As an example, the FB-QSAR is applied to build a predictive model of neuraminidase inhibitors for drug development against H5N1 influenza virus. (c) 2008 Wiley Periodicals, Inc.

  2. Decay analysis of compound nuclei with masses A ≈30 - 200 formed in reactions involving loosely bound projectiles

    NASA Astrophysics Data System (ADS)

    Kaur, Mandeep; Singh, BirBikram; Sharma, Manoj K.; Gupta, Raj K.

    2015-08-01

    The dynamics of compound nuclei formed in the reactions using loosely bound projectiles are analyzed within the framework of the dynamical cluster-decay model (DCM) of Gupta and Collaborators. We have considered the reactions with neutron-rich and neutron-deficient projectiles, respectively, as 7Li , 9Be , and 7Be , on various targets at three different Elab energies, forming compound nuclei in the mass region A ˜30 - 200. For these reactions, the contributions of light-particle (LP, A ≤4 ) cross sections σLP, energetically favored intermediate-mass-fragment (IMF, 5 ≤A2≤20 ) cross sections σIMF, as well as the fusion-fission ff cross sections σff constitute the σfus(=σLP+σIMF+σff ), i.e., the contributions of the emitted LPs, IMFs, and ff fragments are added for all the angular momenta up to the ℓmax value for the respective reactions. Interestingly, we find that the empirically fitted neck-length parameter Δ Remp , the only parameter of the DCM, is uniquely fixed to address σfus for all the reactions having the same loosely bound projectile at a chosen incident laboratory energy. It may be noted that, in DCM, the dynamical collective mass motion of preformed LPs, IMFs, and ff fragments or clusters, through the modified interaction potential barrier, are treated on parallel footing. The modification of the barrier is due to nonzero Δ Remp , and the values of corresponding modified interaction-barrier heights Δ VBemp for such reactions are almost of the same order, specifically at the respective ℓmax value.

  3. Automated building of organometallic complexes from 3D fragments.

    PubMed

    Foscato, Marco; Venkatraman, Vishwesh; Occhipinti, Giovanni; Alsberg, Bjørn K; Jensen, Vidar R

    2014-07-28

    A method for the automated construction of three-dimensional (3D) molecular models of organometallic species in design studies is described. Molecular structure fragments derived from crystallographic structures and accurate molecular-level calculations are used as 3D building blocks in the construction of multiple molecular models of analogous compounds. The method allows for precise control of stereochemistry and geometrical features that may otherwise be very challenging, or even impossible, to achieve with commonly available generators of 3D chemical structures. The new method was tested in the construction of three sets of active or metastable organometallic species of catalytic reactions in the homogeneous phase. The performance of the method was compared with those of commonly available methods for automated generation of 3D models, demonstrating higher accuracy of the prepared 3D models in general, and, in particular, a much wider range with respect to the kind of chemical structures that can be built automatically, with capabilities far beyond standard organic and main-group chemistry.

  4. Adaptation to fragmentation: evolutionary dynamics driven by human influences.

    PubMed

    Cheptou, Pierre-Olivier; Hargreaves, Anna L; Bonte, Dries; Jacquemyn, Hans

    2017-01-19

    Fragmentation-the process by which habitats are transformed into smaller patches isolated from each other-has been identified as a major threat for biodiversity. Fragmentation has well-established demographic and population genetic consequences, eroding genetic diversity and hindering gene flow among patches. However, fragmentation should also select on life history, both predictably through increased isolation, demographic stochasticity and edge effects, and more idiosyncratically via altered biotic interactions. While species have adapted to natural fragmentation, adaptation to anthropogenic fragmentation has received little attention. In this review, we address how and whether organisms might adapt to anthropogenic fragmentation. Drawing on selected case studies and evolutionary ecology models, we show that anthropogenic fragmentation can generate selection on traits at both the patch and landscape scale, and affect the adaptive potential of populations. We suggest that dispersal traits are likely to experience especially strong selection, as dispersal both enables migration among patches and increases the risk of landing in the inhospitable matrix surrounding them. We highlight that suites of associated traits are likely to evolve together. Importantly, we show that adaptation will not necessarily rescue populations from the negative effects of fragmentation, and may even exacerbate them, endangering the entire metapopulation.This article is part of the themed issue 'Human influences on evolution, and the ecological and societal consequences'. © 2016 The Author(s).

  5. ACFIS: a web server for fragment-based drug discovery.

    PubMed

    Hao, Ge-Fei; Jiang, Wen; Ye, Yuan-Nong; Wu, Feng-Xu; Zhu, Xiao-Lei; Guo, Feng-Biao; Yang, Guang-Fu

    2016-07-08

    In order to foster innovation and improve the effectiveness of drug discovery, there is a considerable interest in exploring unknown 'chemical space' to identify new bioactive compounds with novel and diverse scaffolds. Hence, fragment-based drug discovery (FBDD) was developed rapidly due to its advanced expansive search for 'chemical space', which can lead to a higher hit rate and ligand efficiency (LE). However, computational screening of fragments is always hampered by the promiscuous binding model. In this study, we developed a new web server Auto Core Fragment in silico Screening (ACFIS). It includes three computational modules, PARA_GEN, CORE_GEN and CAND_GEN. ACFIS can generate core fragment structure from the active molecule using fragment deconstruction analysis and perform in silico screening by growing fragments to the junction of core fragment structure. An integrated energy calculation rapidly identifies which fragments fit the binding site of a protein. We constructed a simple interface to enable users to view top-ranking molecules in 2D and the binding mode in 3D for further experimental exploration. This makes the ACFIS a highly valuable tool for drug discovery. The ACFIS web server is free and open to all users at http://chemyang.ccnu.edu.cn/ccb/server/ACFIS/. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  6. Reframing landscape fragmentation's effects on ecosystem services.

    PubMed

    Mitchell, Matthew G E; Suarez-Castro, Andrés F; Martinez-Harms, Maria; Maron, Martine; McAlpine, Clive; Gaston, Kevin J; Johansen, Kasper; Rhodes, Jonathan R

    2015-04-01

    Landscape structure and fragmentation have important effects on ecosystem services, with a common assumption being that fragmentation reduces service provision. This is based on fragmentation's expected effects on ecosystem service supply, but ignores how fragmentation influences the flow of services to people. Here we develop a new conceptual framework that explicitly considers the links between landscape fragmentation, the supply of services, and the flow of services to people. We argue that fragmentation's effects on ecosystem service flow can be positive or negative, and use our framework to construct testable hypotheses about the effects of fragmentation on final ecosystem service provision. Empirical efforts to apply and test this framework are critical to improving landscape management for multiple ecosystem services. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Oral lead bullet fragment exposure in northern bobwhite (Colinus virginianus).

    PubMed

    Kerr, Richard; Holladay, Jeremy; Holladay, Steven; Tannenbaum, Lawrence; Selcer, Barbara; Meldrum, Blair; Williams, Susan; Jarrett, Timothy; Gogal, Robert

    2011-11-01

    Lead (Pb) is a worldwide environmental contaminant known to adversely affect multiple organ systems in both mammalian and avian species. In birds, a common route of exposure is via oral ingestion of lead particles. Data are currently lacking for the retention and clearance of Pb bullet fragments in gastrointestinal (GI) tract of birds while linking toxicity with blood Pb levels. In the present study, northern bobwhite quail fed a seed-based diet were orally gavaged with Pb bullet fragments (zero, one or five fragments/bird) and evaluated for rate of fragment clearance, and changes in peripheral blood, renal, immune, and gastrointestinal parameters. Based on radiographs, the majority of the birds cleared or absorbed the fragments by seven days, with the exception of one five-fragment bird which took between 7 and 14 days. Blood Pb levels were higher in males than females, which may be related to egg production in females. In males but not females, feed consumption, body weight gain, packed cell volume (PCV), plasma protein concentration, and δ-aminolevulinic acid dehydratase (δ-ALAD) activity were all adversely affected by five Pb fragments. Birds of both sexes that received a single Pb fragment displayed depressed δ-ALAD, suggesting altered hematologic function, while all birds dosed with five bullet fragments exhibited greater morbidity.

  8. Inner-shell excitation and ionic fragmentation of molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hitchcock, A.P.; Tyliszczak, T.; Cavell, R.G.

    1997-04-01

    Inner-shell excitation and associated decay spectroscopies are site specific probes of electronic and geometrical structure and photoionization dynamics. X-ray absorption probes the geometric and electronic structure, while time-of-flight mass spectrometry with multi-coincidence detection provides information on the photofragmentation dynamics of the initially produced inner-shell state. Auger decay of inner-shell excited and ionised states is an efficient source of multiply charged ions. The charge separation and fragmentation of these species, studied by photoelectron-photoion-photoion coincidence (also called charge separation mass spectrometry) gives insights into bonding and electronic structure. In molecules, the dependence of the fragmentation process on the X-ray energy can revealmore » cases of site and/or state selective fragmentation. At the ALS the authors have examined the soft X-ray spectroscopy and ionic fragmentation of a number of molecules, including carboranes, silylenes, phosphorus halides, SF{sub 6} and CO{sub 2}. Their work is illustrated using results from the carborane and PF{sub 3} studies.« less

  9. Structure-reactivity modeling using mixture-based representation of chemical reactions.

    PubMed

    Polishchuk, Pavel; Madzhidov, Timur; Gimadiev, Timur; Bodrov, Andrey; Nugmanov, Ramil; Varnek, Alexandre

    2017-09-01

    We describe a novel approach of reaction representation as a combination of two mixtures: a mixture of reactants and a mixture of products. In turn, each mixture can be encoded using an earlier reported approach involving simplex descriptors (SiRMS). The feature vector representing these two mixtures results from either concatenated product and reactant descriptors or the difference between descriptors of products and reactants. This reaction representation doesn't need an explicit labeling of a reaction center. The rigorous "product-out" cross-validation (CV) strategy has been suggested. Unlike the naïve "reaction-out" CV approach based on a random selection of items, the proposed one provides with more realistic estimation of prediction accuracy for reactions resulting in novel products. The new methodology has been applied to model rate constants of E2 reactions. It has been demonstrated that the use of the fragment control domain applicability approach significantly increases prediction accuracy of the models. The models obtained with new "mixture" approach performed better than those required either explicit (Condensed Graph of Reaction) or implicit (reaction fingerprints) reaction center labeling.

  10. Acoustic stimulation promotes DNA fragmentation in the Guinea pig cochlea.

    PubMed

    Kamio, Tomonobu; Watanabe, Ken-Ichi; Okubo, Kimihiro

    2012-01-01

    Apoptosis can be described as programmed cell death. Apoptosis regulates cell turnover and is involved in various pathological conditions. The characteristic features of apoptosis are shrinkage of the cell body, chromatin condensation, and nucleic acid fragmentation. During apoptosis, double-stranded DNA is broken down into single-stranded DNA (ssDNA) by proteases. Acoustic trauma is commonly encountered in otorhinolaryngology clinics. Intense noise can cause inner ear damage, such as hearing disturbance, tinnitus, ear fullness, and decreased speech discrimination. In this study, we used immunohistochemical and electrophysiological methods to examine the fragmentation of DNA in the cochleas of guinea pigs that had been exposed to intense noise. Twenty-four guinea pigs weighing 250 to 350 g were used. The animals were divided into 4 groups: (I) a control group (n=6), (II) a group that was exposed to noise for 2 hours (n=6), (III) a group that was exposed to noise for 5 hours (n=6), and (IV) a group that was exposed to noise for 20 hours. The stimulus was a pure tone delivered at a frequency of 2 kHz. The sound pressure level was 120 dBSPL. No threshold shifts were apparent in group I. Group II showed a significant elevation of the hearing threshold (ANOVA, p<0.05(*)). The ABR threshold level was also significantly elevated immediately after the acoustic stimulation in groups III and IV (ANOVA, p<0.01(**)). In groups I, II, and IV, the lateral wall of the ear did not show immunoreactivity to ssDNA but did in group III. No immunoreactivity was apparent in the organ of Corti in group I or II. However, the supporting cells and outer hair cells in groups III and IV showed reactions for ssDNA. The fine structure of the organ of Corti had been destroyed in group IV. The lateral wall showed immunoreactivity for ssDNA only in group III, whereas the organ of Corti showed reactions for ssDNA in groups III and IV. Our study suggests that apoptotic changes occur in patients that

  11. Fragment-based approaches to the discovery of kinase inhibitors.

    PubMed

    Mortenson, Paul N; Berdini, Valerio; O'Reilly, Marc

    2014-01-01

    Protein kinases are one of the most important families of drug targets, and aberrant kinase activity has been linked to a large number of disease areas. Although eminently targetable using small molecules, kinases present a number of challenges as drug targets, not least obtaining selectivity across such a large and relatively closely related target family. Fragment-based drug discovery involves screening simple, low-molecular weight compounds to generate initial hits against a target. These hits are then optimized to more potent compounds via medicinal chemistry, usually facilitated by structural biology. Here, we will present a number of recent examples of fragment-based approaches to the discovery of kinase inhibitors, detailing the construction of fragment-screening libraries, the identification and validation of fragment hits, and their optimization into potent and selective lead compounds. The advantages of fragment-based methodologies will be discussed, along with some of the challenges associated with using this route. Finally, we will present a number of key lessons derived both from our own experience running fragment screens against kinases and from a large number of published studies.

  12. Selected reaction monitoring mass spectrometry: a methodology overview.

    PubMed

    Ebhardt, H Alexander

    2014-01-01

    Moving past the discovery phase of proteomics, the term targeted proteomics combines multiple approaches investigating a certain set of proteins in more detail. One such targeted proteomics approach is the combination of liquid chromatography and selected or multiple reaction monitoring mass spectrometry (SRM, MRM). SRM-MS requires prior knowledge of the fragmentation pattern of peptides, as the presence of the analyte in a sample is determined by measuring the m/z values of predefined precursor and fragment ions. Using scheduled SRM-MS, many analytes can robustly be monitored allowing for high-throughput sample analysis of the same set of proteins over many conditions. In this chapter, fundaments of SRM-MS are explained as well as an optimized SRM pipeline from assay generation to data analyzed.

  13. Management of Fractured Inferior Vena Cava Filters: Outcomes by Fragment Location.

    PubMed

    Trerotola, Scott O; Stavropoulos, S William

    2017-09-01

    Purpose To inform the management of fractured inferior vena cava filters on the basis of results from a tertiary referral center specializing in complex filter retrieval. Materials and Methods This study had institutional review board approval and was HIPAA compliant. Retrospective analysis of all patients with fractured filters and/or filter fragments evaluated for removal in a complex filter removal program was performed. Removal was attempted when fragments were intravascular or immediately extravascular by using primarily endobronchial forceps for caval fragments and snares for cardiac and pulmonary fragments. Data collected included success rate and complications of filter and fragment removal, symptoms relating to the filter or fragment, techniques used for removal, and follow-up of retained fragments. Results Sixty-five patients (12 men, 53 women) of a total of 222 patients referred for complex retrieval had fractured filters. Of these patients, two had undergone filter removal elsewhere and had retained fragments. All 63 filters were removed successfully with forceps (n = 61), a cone (n = 1), or a snare (n = 1). There were 116 separate filter fragments; removal was attempted for 78 fragments. Removal was successful for 63 (81%) of 78 fragments and varied by location. All extravascular fragments except one were retained. In all, 63 (54%) of 116 fragments were removed percutaneously, rendering 34 (54%) of 63 patients fragment free. Five minor (7.7% [five of 65]) and four major (6.2% [four of 65]) complications occurred. Conclusion Intravascular filter fragments can be removed safely with success rates that vary according to location. Because extravascular fragments are not readily accessible for removal, many patients are not rendered fragment free. © RSNA, 2017 Online supplemental material is available for this article.

  14. Fragmentation of displacement cascades into subcascades: A molecular dynamics study

    DOE PAGES

    Antoshchenkova, E.; Luneville, L.; Simeone, D.; ...

    2014-12-12

    The fragmentation of displacement cascades into subcascades in copper and iron has been investigated through the molecular dynamics technique. A two-point density correlation function has been used to analyze the cascades as a function of the primary knock-on (PKA) energy. This approach is used as a tool for detecting subcascade formation. The fragmentation can already be identified at the end of the ballistic phase. Its resulting evolution in the peak damage state discriminates between unconnected and connected subcascades. The damage zone at the end of the ballistic phase is the precursor of the extended regions that contain the surviving defects.more » A fractal analysis of the cascade exhibits a dependence on both the stage of the cascade development and the PKA energy. This type of analysis enables the minimum and maximum displacement spike energies together with the subcascade formation threshold energy to be determined. (C) 2014 Elsevier B.V. All rights reserved.« less

  15. Fragmentation of displacement cascades into subcascades: A molecular dynamics study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antoshchenkova, E.; Luneville, L.; Simeone, D.

    The fragmentation of displacement cascades into subcascades in copper and iron has been investigated through the molecular dynamics technique. A two-point density correlation function has been used to analyze the cascades as a function of the primary knock-on (PKA) energy. This approach is used as a tool for detecting subcascade formation. The fragmentation can already be identified at the end of the ballistic phase. Its resulting evolution in the peak damage state discriminates between unconnected and connected subcascades. The damage zone at the end of the ballistic phase is the precursor of the extended regions that contain the surviving defects.more » A fractal analysis of the cascade exhibits a dependence on both the stage of the cascade development and the PKA energy. This type of analysis enables the minimum and maximum displacement spike energies together with the subcascade formation threshold energy to be determined. (C) 2014 Elsevier B.V. All rights reserved.« less

  16. Jet-A reaction mechanism study for combustion application

    NASA Technical Reports Server (NTRS)

    Lee, Chi-Ming; Kundu, Krishna; Acosta, Waldo

    1991-01-01

    Simplified chemical kinetic reaction mechanisms for the combustion of Jet A fuel was studied. Initially, 40 reacting species and 118 elementary chemical reactions were chosen based on a literature review. Through a sensitivity analysis with the use of LSENS General Kinetics and Sensitivity Analysis Code, 16 species and 21 elementary chemical reactions were determined from this study. This mechanism is first justified by comparison of calculated ignition delay time with the available shock tube data, then it is validated by comparison of calculated emissions from the plug flow reactor code with in-house flame tube data.

  17. Production mechanism of new neutron-rich heavy nuclei in the 136Xe +198Pt reaction

    NASA Astrophysics Data System (ADS)

    Li, Cheng; Wen, Peiwei; Li, Jingjing; Zhang, Gen; Li, Bing; Xu, Xinxin; Liu, Zhong; Zhu, Shaofei; Zhang, Feng-Shou

    2018-01-01

    The multinucleon transfer reaction of 136Xe +198Pt at Elab = 7.98 MeV/nucleon is investigated by using the improved quantum molecular dynamics model. The quasielastic, deep-inelastic, and quasifission collision mechanisms are studied via analyzing the angular distributions of fragments and the energy dissipation processes during the collisions. The measured isotope production cross sections of projectile-like fragments are reasonably well reproduced by the calculation of the ImQMD model together with the GEMINI code. The isotope production cross sections for the target-like fragments and double differential cross sections of 199Pt, 203Pt, and 208Pt are calculated. It is shown that about 50 new neutron-rich heavy nuclei can be produced via deep-inelastic collision mechanism, where the production cross sections are from 10-3 to 10-6 mb. The corresponding emission angle and the kinetic energy for these new neutron-rich nuclei locate at 40∘-60∘ and 100-200 MeV, respectively.

  18. Cloning, bacterial expression and crystallization of Fv antibody fragments

    NASA Astrophysics Data System (ADS)

    E´, Jean-Luc; Boulot, Ginette; Chitarra, V´ronique; Riottot, Marie-Madeleine; Souchon, H´le`ne; Houdusse, Anne; Bentley, Graham A.; Narayana Bhat, T.; Spinelli, Silvia; Poljak, Roberto J.

    1992-08-01

    The variable Fv fragments of antibodies, cloned in recombinant plasmids, can be expressed in bacteria as functional proteins having immunochemical properties which are very similar or identical with those of the corresponding parts of the parent eukaryotic antibodies. They offer new possibilities for the study of antibody-antigen interactions since the crystals of Fv fragments and of their complexes with antigen reported here diffract X-rays to a higher resolution that those obtained with the cognate Fab fragments. The Fv approach should facilitate the structural study of the combining site of antibodies and the further characterization of antigen-antibody interactions by site-directed mutagenesis experiments.

  19. High Speed Observation of Fragment Impact Initiation of Nitromethane Charges

    NASA Astrophysics Data System (ADS)

    Cook, M. D.; Briggs, R. I.; Haskins, P. J.; Stennett, C.

    1999-06-01

    Ultra high speed digital photography has been used to record the onset and build-up of reaction in nitromethane charges that have been impacted by steel fragments. The nitromethane charges were housed in perspex cylinders and back-lit using conventional flash bulbs. Flat plates of aluminium of varying thicknesses were glued to one end of the cylinder and perspex plates to the other. The completed charge was positioned to allow normal impact of the projectiles. The events were filmed using and Imacon 468, ultra high speed digital image system capable of framing at up to 100 million pictures per second, with a minimum interframe time of 10 nanoseconds, and exposure time of between 10ns and 1 millisecond. Using this system it was possible to record detailed photographic information concerning the onset and growth of reaction due to shock initiation of the nitromethane charges. The implications of these results for the ignition and growth process in nitromethane are discussed.

  20. Ab initio study of C + H3+ reactions

    NASA Technical Reports Server (NTRS)

    Talbi, D.; DeFrees, D. J.

    1991-01-01

    The reaction C + H3+ --> CH(+) + H2 is frequently used in models of dense interstellar cloud chemistry with the assumption that it is fast, i.e. there are no potential energy barriers inhibiting it. Ab initio molecular orbital study of the triplet CH3+ potential energy surface (triplet because the reactant carbon atom is a ground state triplet) supports this hypothesis. The reaction product is 3 pi CH+; the reaction is to exothermic even though the product is not in its electronic ground state. No path has been found on the potential energy surface for C + H3+ --> CH2(+) + H reaction.

  1. Variational Flooding Study of a SN2 Reaction.

    PubMed

    Piccini, GiovanniMaria; McCarty, James J; Valsson, Omar; Parrinello, Michele

    2017-02-02

    We have studied the reaction dynamics of a prototypical organic reaction using a variationally optimized truncated bias to accelerate transitions between educt and product reactant states. The asymmetric S N 2 nucleophilic substitution reaction of fluoromethane and chloromethane CH 3 F + Cl - ⇌ CH 3 Cl + F - is considered, and many independent biased molecular dynamics simulations have been performed at 600, 900, and 1200 K, collecting several hundred transitions at each temperature. The transition times and relative rate constants have been obtained for both reaction directions. The activation energies extracted from an Arrhenius plot compare well with standard static calculations.

  2. Hauser-Feshbach fission fragment de-excitation with calculated macroscopic-microscopic mass yields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jaffke, Patrick John; Talou, Patrick; Sierk, Arnold John

    The Hauser-Feshbach statistical model is applied to the de-excitation of primary fission fragments using input mass yields calculated with macroscopic-microscopic models of the potential energy surface. We test the sensitivity of the prompt fission observables to the input mass yields for two important reactions, 235U (n th, f) and 239Pu (n th, f) , for which good experimental data exist. General traits of the mass yields, such as the location of the peaks and their widths, can impact both the prompt neutron and γ-ray multiplicities, as well as their spectra. Specifically, we use several mass yields to determine a linear correlation between the calculated prompt neutron multiplicitymore » $$\\bar{v}$$ and the average heavy-fragment mass $$\\langle$$A h$$\\rangle$$ of the input mass yields ∂$$\\bar{v}$$/∂ $$\\langle$$A h$$\\rangle$$ = ± 0.1 (n / f )/u . The mass peak width influences the correlation between the total kinetic energy of the fission fragments and the total number of prompt neutrons emitted, $$\\bar{v}_T$$ ( TKE ) . Finally, typical biases on prompt particle observables from using calculated mass yields instead of experimental ones are δ$$\\bar{v}$$ = 4 % for the average prompt neutron multiplicity, δ$$\\overline{M}_γ$$ = 1% for the average prompt γ-ray multiplicity, δ$$\\bar{ε}$$ $$LAB\\atop{n}$$ = 1 % for the average outgoing neutron energy, δ$$\\bar{ε}_γ$$ = 1 % for the average γ-ray energy, and δ $$\\langle$$TKE$$\\rangle$$ = 0.4 % for the average total kinetic energy of the fission fragments.« less

  3. Hauser-Feshbach fission fragment de-excitation with calculated macroscopic-microscopic mass yields

    DOE PAGES

    Jaffke, Patrick John; Talou, Patrick; Sierk, Arnold John; ...

    2018-03-15

    The Hauser-Feshbach statistical model is applied to the de-excitation of primary fission fragments using input mass yields calculated with macroscopic-microscopic models of the potential energy surface. We test the sensitivity of the prompt fission observables to the input mass yields for two important reactions, 235U (n th, f) and 239Pu (n th, f) , for which good experimental data exist. General traits of the mass yields, such as the location of the peaks and their widths, can impact both the prompt neutron and γ-ray multiplicities, as well as their spectra. Specifically, we use several mass yields to determine a linear correlation between the calculated prompt neutron multiplicitymore » $$\\bar{v}$$ and the average heavy-fragment mass $$\\langle$$A h$$\\rangle$$ of the input mass yields ∂$$\\bar{v}$$/∂ $$\\langle$$A h$$\\rangle$$ = ± 0.1 (n / f )/u . The mass peak width influences the correlation between the total kinetic energy of the fission fragments and the total number of prompt neutrons emitted, $$\\bar{v}_T$$ ( TKE ) . Finally, typical biases on prompt particle observables from using calculated mass yields instead of experimental ones are δ$$\\bar{v}$$ = 4 % for the average prompt neutron multiplicity, δ$$\\overline{M}_γ$$ = 1% for the average prompt γ-ray multiplicity, δ$$\\bar{ε}$$ $$LAB\\atop{n}$$ = 1 % for the average outgoing neutron energy, δ$$\\bar{ε}_γ$$ = 1 % for the average γ-ray energy, and δ $$\\langle$$TKE$$\\rangle$$ = 0.4 % for the average total kinetic energy of the fission fragments.« less

  4. In situ end labeling of fragmented DNA in induced ovarian atresia.

    PubMed

    D'Herde, K; De Pestel, G; Roels, F

    1994-01-01

    Apoptosis is studied in a model of induced follicular atresia in the ovary of Japanese quail (Coturnix coturnix japonica) by in situ end labeling of DNA fragments in granulosa cells using two different techniques (incorporation of labeled nucleotides by DNA polymerase I or terminal deoxynucleotidyl transferase). The most remarkable observation related to apoptosis in this model is the predominant cytoplasmic localization of labeled DNA fragments, while DNA fragmentation appears to be absent from compacted chromatin masses of apoptotic nuclei and apoptotic nuclear fragments. Unstained apoptotic bodies are present adjacent to stained ones, so that their detection rate on hematoxylin + eosin stained sections is better than on the in situ end-labeled sections. This suggests that DNA fragmentation is a late even or not obligatory in apoptotic granulosa cell death. In contrast to similar studies on atretic granulosa in mammalian models, the process of apoptosis is asynchronous in the granulosal epithelium, with a majority of nuclei with normal chromatin configuration remaining negative for DNA fragmentation. Finally it is shown that the techniques used are not specific for apoptosis, as DNA fragmentation in necrotic granulosa cells is detected as well.

  5. Modeling spallation reactions in tungsten and uranium targets with the Geant4 toolkit

    NASA Astrophysics Data System (ADS)

    Malyshkin, Yury; Pshenichnov, Igor; Mishustin, Igor; Greiner, Walter

    2012-02-01

    We study primary and secondary reactions induced by 600 MeV proton beams in monolithic cylindrical targets made of natural tungsten and uranium by using Monte Carlo simulations with the Geant4 toolkit [1-3]. Bertini intranuclear cascade model, Binary cascade model and IntraNuclear Cascade Liège (INCL) with ABLA model [4] were used as calculational options to describe nuclear reactions. Fission cross sections, neutron multiplicity and mass distributions of fragments for 238U fission induced by 25.6 and 62.9 MeV protons are calculated and compared to recent experimental data [5]. Time distributions of neutron leakage from the targets and heat depositions are calculated. This project is supported by Siemens Corporate Technology.

  6. Analytic second derivatives of the energy in the fragment molecular orbital method

    NASA Astrophysics Data System (ADS)

    Nakata, Hiroya; Nagata, Takeshi; Fedorov, Dmitri G.; Yokojima, Satoshi; Kitaura, Kazuo; Nakamura, Shinichiro

    2013-04-01

    We developed the analytic second derivatives of the energy for the fragment molecular orbital (FMO) method. First we derived the analytic expressions and then introduced some approximations related to the first and second order coupled perturbed Hartree-Fock equations. We developed a parallel program for the FMO Hessian with approximations in GAMESS and used it to calculate infrared (IR) spectra and Gibbs free energies and to locate the transition states in SN2 reactions. The accuracy of the Hessian is demonstrated in comparison to ab initio results for polypeptides and a water cluster. By using the two residues per fragment division, we achieved the accuracy of 3 cm-1 in the reduced mean square deviation of vibrational frequencies from ab initio for all three polyalanine isomers, while the zero point energy had the error not exceeding 0.3 kcal/mol. The role of the secondary structure on IR spectra, zero point energies, and Gibbs free energies is discussed.

  7. UPLC-MS/MS quantitative analysis and structural fragmentation study of five Parmotrema lichens from the Eastern Ghats.

    PubMed

    Kumar, K; Siva, Bandi; Sarma, V U M; Mohabe, Satish; Reddy, A Madhusudana; Boustie, Joel; Tiwari, Ashok K; Rao, N Rama; Babu, K Suresh

    2018-07-15

    Comparative phytochemical analysis of five lichen species [Parmotrema tinctorum (Delise ex Nyl.) Hale, P. andinum (Mull. Arg.) Hale, P. praesorediosum (Nyl.) Hale, P. grayanum (Hue) Hale, P. austrosinense (Zahlbr.) Hale] of Parmotrema genus were performed using two complementary UPLC-MS systems. The first system consists of high resolution UPLC-QToF-MS/MS spectrometer and the second system consisted of UPLC-MS/MS in Multiple Reaction Monitoring (MRM) mode for quantitative analysis of major constituents in the selected lichen species. The individual compounds (47 compounds) were identified using Q-ToF-MS/MS, via comparison of the exact molecular masses from their MS/MS spectra, the comparison of literature data and retention times to those of standard compounds which were isolated from crude extract of abundant lichen, P. tinctorum. The analysis also allowed us to identify unknown peaks/compounds, which were further characterized by their mass fragmentation studies. The quantitative MRM analysis was useful to have a better discrimination of species according to their chemical profile. Moreover, the determination of antioxidant activities (ABTS + inhibition) and Advance Glycation Endproducts (AGEs) inhibition carried out for the crude extracts revealed a potential antiglycaemic activity to be confirmed for P. austrosinense. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Gamma rays as probe of fission and quasi-fission dynamics in the reaction 32S + 197Au near the Coulomb barrier

    NASA Astrophysics Data System (ADS)

    Pulcini, A.; Vardaci, E.; Kozulin, E.; Ashaduzzaman, M.; Borcea, C.; Bracco, A.; Brambilla, S.; Calinescu, S.; Camera, F.; Ciemala, M.; de Canditiis, B.; Dorvaux, O.; Harca, I. M.; Itkis, I.; Kirakosyan, V. V.; Knyazheva, G.; Kozulina, N.; Kolesov, I. V.; La Rana, G.; Maj, A.; Matea, I.; Novikov, K.; Petrone, C.; Quero, D.; Rath, P.; Saveleva, E.; Schmitt, C.; Sposito, G.; Stezowski, O.; Trzaska, W. H.; Wilson, J.

    2018-05-01

    Compound nucleus fission and quasi-fission are both binary decay channels whose common properties make the experimental separation between them difficult. A way to achieve this separation could be to probe the angular momentum of the binary fragments. This can be done detecting gamma rays in coincidence with the two fragments. As a case study, the reaction 32S + 197Au near the Coulomb barrier has been performed at the Tandem ALTO facility at IPN ORSAY. ORGAM and PARIS, two different gamma detectors arrays, are coupled with the CORSET detector, a two-arm time-of-flight spectrometer. TOF-TOF data were analyzed to reconstruct the mass-energy distribution of the primary fragments coupled with gamma multiplicity and spectroscopic analysis. Preliminary results of will be shown.

  9. Ab initio chemical kinetics for the HCCO + OH reaction

    NASA Astrophysics Data System (ADS)

    Mai, Tam V.-T.; Raghunath, P.; Le, Xuan T.; Huynh, Lam K.; Nam, Pham-Cam; Lin, M. C.

    2014-01-01

    The mechanism for the reaction of HCCO and OH has been investigated at different high-levels of theory. The reaction was found to occur on singlet and triplet potential energy surfaces with multiple accessible paths. Rate constants predicted by variational RRKM/ME calculations show that the reaction on both surfaces occurs primarily by barrierless OH attack at both C atoms producing excited intermediates which fragment to produce predominantly CO and 1,3HCOH with kS = 3.12 × 10-8T-0.59exp[-73.0/T] and kT = 6.29 × 10-11T0.13exp[108/T] cm3 molecule-1 s-1 at T = 300-2000 K, independent of pressure at P < 76 000 Torr.

  10. Experimental investigations of mechanical and reaction responses for drop-weight impacted energetic particles

    NASA Astrophysics Data System (ADS)

    Bao, Xiao-Wei; Wu, Yan-Qing; Wang, Ming-Yang; Huang, Feng-Lei

    2017-02-01

    Low-velocity drop-weight impact experiments on individual and multiple Cyclotetramethylene tetranitramine (HMX) energetic particles were performed using a modified drop-weight machine equipped with high-speed photography components. Multiple particles experienced more severe burning reactions than an individual particle. Comparisons between impacted salt and HMX particle show that jetting in HMX is mainly due to the motion of fragmented particles driven by gaseous reaction products. Velocity of jetting, flame propagation, and area expansion were measured via image processing, making it possible to quantify the chemical reaction or mechanical deformation violence at different stages.

  11. School social fragmentation, economic deprivation and social cohesion and adolescent physical inactivity: a longitudinal study.

    PubMed

    Pabayo, Roman; Janosz, Michel; Bisset, Sherri; Kawachi, Ichiro

    2014-01-01

    To examine the independent influence of school economic deprivation, social fragmentation, and social cohesion on the likelihood of participating in no physical activity among students. Data are from a large-scale longitudinal study of schools based in disadvantaged communities in Quebec, Canada. Questionnaires were administered every year between 2002 and 2008 among n = 14,924 students aged 12 to 18 from a sample of 70 schools. Cross-sectional and longitudinal analyses were conducted. Multilevel modeling was utilized to account for the clustering of students within schools. Schools were categorized as being low, moderate or high economic deprivation, social fragmentation and social cohesion. Those who indicated that they do no participate in any physical activity during the week were identified as being physically inactive. In baseline multilevel cross-sectional analyses, adolescents attending schools in the highest (compared to the lowest) levels of socioeconomic deprivation and social fragmentation were more likely to be physically inactive (OR = 1.33, 95% CI = 1.03, 1.72; and OR = 1.24, 95% CI = 0.98, 1.56, respectively). Conversely, students attending schools with the highest cohesion were less likely to be physically inactive (OR = 0.78, 95% CI = 0.61, 0.99). In longitudinal analysis, physically active students who attended schools with the highest social fragmentation were more likely to become physically inactive over two years (OR = 1.65, 95% CI = 1.09, 2.51). The school socioeconomic environment appears to be an important contextual influence on participation in no physical activity among adolescents. Following adolescents beyond two years is necessary to determine if these environments have a lasting effect on physical activity behavior.

  12. Cutaneous reactions to proton pump inhibitors: a case-control study.

    PubMed

    Chularojanamontri, Leena; Jiamton, Sukhum; Manapajon, Araya; Suvanasuthi, Saroj; Kulthanan, Kanokvalai; Dhana, Naruemon; Jongjarearnprasert, Kowit

    2012-10-01

    Even though proton pump inhibitors (PPIs) are commonly used in clinical practice, a limited number of studies are available about cutaneous adverse reactions from PPIs, and most of these are case reports. To demonstrate the pattern of cutaneous reactions related to PPI usage and to evaluate the risk of developing PPI drug eruptions among adult patients. We reviewed the spontaneous reports of any adverse events associated with PPI use, as reported from January 2005 through May 2010 to the Adverse Drug Reaction Center at Siriraj Hospital in Thailand. Each control was sampled from 15 patients who had consecutive hospital numbers from each study case. The prevalence of cutaneous reactions to PPIs varied, ranging from three to 20 per 100,000 of the treated population. Sixty-four patients with a history of reaction to PPIs, and 65 controls were enrolled. Most cutaneous reactions were attributed to omeprazole (n=50; 78.1%), and the most frequently observed cutaneous reaction was maculopapular rash (43.8%). None of the patients experienced a cross-reaction between individual PPIs. Cutaneous adverse reactions to PPIs range from minor drug rashes to a severe, life-threatening reaction. Individuals with a history of adverse drug reaction have an increased risk of cutaneous reaction to PPIs.

  13. A simple method for semi-random DNA amplicon fragmentation using the methylation-dependent restriction enzyme MspJI.

    PubMed

    Shinozuka, Hiroshi; Cogan, Noel O I; Shinozuka, Maiko; Marshall, Alexis; Kay, Pippa; Lin, Yi-Han; Spangenberg, German C; Forster, John W

    2015-04-11

    Fragmentation at random nucleotide locations is an essential process for preparation of DNA libraries to be used on massively parallel short-read DNA sequencing platforms. Although instruments for physical shearing, such as the Covaris S2 focused-ultrasonicator system, and products for enzymatic shearing, such as the Nextera technology and NEBNext dsDNA Fragmentase kit, are commercially available, a simple and inexpensive method is desirable for high-throughput sequencing library preparation. MspJI is a recently characterised restriction enzyme which recognises the sequence motif CNNR (where R = G or A) when the first base is modified to 5-methylcytosine or 5-hydroxymethylcytosine. A semi-random enzymatic DNA amplicon fragmentation method was developed based on the unique cleavage properties of MspJI. In this method, random incorporation of 5-methyl-2'-deoxycytidine-5'-triphosphate is achieved through DNA amplification with DNA polymerase, followed by DNA digestion with MspJI. Due to the recognition sequence of the enzyme, DNA amplicons are fragmented in a relatively sequence-independent manner. The size range of the resulting fragments was capable of control through optimisation of 5-methyl-2'-deoxycytidine-5'-triphosphate concentration in the reaction mixture. A library suitable for sequencing using the Illumina MiSeq platform was prepared and processed using the proposed method. Alignment of generated short reads to a reference sequence demonstrated a relatively high level of random fragmentation. The proposed method may be performed with standard laboratory equipment. Although the uniformity of coverage was slightly inferior to the Covaris physical shearing procedure, due to efficiencies of cost and labour, the method may be more suitable than existing approaches for implementation in large-scale sequencing activities, such as bacterial artificial chromosome (BAC)-based genome sequence assembly, pan-genomic studies and locus-targeted genotyping-by-sequencing.

  14. LC/QTOF-MS fragmentation of N-nitrosodimethylamine precursors in drinking water supplies is predictable and aids their identification.

    PubMed

    Hanigan, David; Ferrer, Imma; Thurman, E Michael; Herckes, Pierre; Westerhoff, Paul

    2017-02-05

    N-Nitrosodimethylamine (NDMA) is carcinogenic in rodents and occurs in chloraminated drinking water and wastewater effluents. NDMA forms via reactions between chloramines and mostly unidentified, N-containing organic matter. We developed a mass spectrometry technique to identify NDMA precursors by analyzing 25 model compounds with LC/QTOF-MS. We searched isolates of 11 drinking water sources and 1 wastewater using a custom MATLAB ® program and extracted ion chromatograms for two fragmentation patterns that were specific to the model compounds. Once a diagnostic fragment was discovered, we conducted MS/MS during a subsequent injection to confirm the precursor ion. Using non-target searches and two diagnostic fragmentation patterns, we discovered 158 potential NDMA precursors. Of these, 16 were identified using accurate mass combined with fragment and retention time matches of analytical standards when available. Five of these sixteen NDMA precursors were previously unidentified in the literature, three of which were metabolites of pharmaceuticals. Except methadone, the newly identified precursors all had NDMA molar yields of less than 5%, indicating that NDMA formation could be additive from multiple compounds, each with low yield. We demonstrate that the method is applicable to other disinfection by-product precursors by predicting and verifying the fragmentation patterns for one nitrosodiethylamine precursor. Copyright © 2016. Published by Elsevier B.V.

  15. Heavy residues from very mass asymmetric heavy ion reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanold, Karl Alan

    1994-08-01

    The isotopic production cross sections and momenta of all residues with nuclear charge (Z) greater than 39 from the reaction of 26, 40, and 50 MeV/nucleon 129Xe + Be, C, and Al were measured. The isotopic cross sections, the momentum distribution for each isotope, and the cross section as a function of nuclear charge and momentum are presented here. The new cross sections are consistent with previous measurements of the cross sections from similar reaction systems. The shape of the cross section distribution, when considered as a function of Z and velocity, was found to be qualitatively consistent with thatmore » expected from an incomplete fusion reaction mechanism. An incomplete fusion model coupled to a statistical decay model is able to reproduce many features of these reactions: the shapes of the elemental cross section distributions, the emission velocity distributions for the intermediate mass fragments, and the Z versus velocity distributions. This model gives a less satisfactory prediction of the momentum distribution for each isotope. A very different model based on the Boltzman-Nordheim-Vlasov equation and which was also coupled to a statistical decay model reproduces many features of these reactions: the shapes of the elemental cross section distributions, the intermediate mass fragment emission velocity distributions, and the Z versus momentum distributions. Both model calculations over-estimate the average mass for each element by two mass units and underestimate the isotopic and isobaric widths of the experimental distributions. It is shown that the predicted average mass for each element can be brought into agreement with the data by small, but systematic, variation of the particle emission barriers used in the statistical model. The predicted isotopic and isobaric widths of the cross section distributions can not be brought into agreement with the experimental data using reasonable parameters for the statistical model.« less

  16. Velocity distribution of fragments of catastrophic impacts

    NASA Technical Reports Server (NTRS)

    Takagi, Yasuhiko; Kato, Manabu; Mizutani, Hitoshi

    1992-01-01

    Three dimensional velocities of fragments produced by laboratory impact experiments were measured for basalts and pyrophyllites. The velocity distribution of fragments obtained shows that the velocity range of the major fragments is rather narrow, at most within a factor of 3 and that no clear dependence of velocity on the fragment mass is observed. The NonDimensional Impact Stress (NDIS) defined by Mizutani et al. (1990) is found to be an appropriate scaling parameter to describe the overall fragment velocity as well as the antipodal velocity.

  17. Micromachined fragment capturer for biomedical applications.

    PubMed

    Choi, Young-Soo; Lee, Dong-Weon

    2011-11-01

    Due to changes in modern diet, a form of heart disease called chronic total occlusion has become a serious disease to be treated as an emergency. In this study, we propose a micromachined capturer that is designed and fabricated to collect plaque fragments generated during surgery to remove the thrombus. The fragment capturer consists of a plastic body made by rapid prototyping, SU-8 mesh structures using MEMS techniques, and ionic polymer metal composite (IPMC) actuators. An array of IPMC actuators combined with the SU-8 net structure was optimized to effectively collect plaque fragments. The evaporation of solvent through the actuator's surface was prevented using a coating of SU-8 and polydimethylsiloxane thin film on the actuator. This approach improved the available operating time of the IPMC, which primarily depends on solvent loss. Our preliminary results demonstrate the possibility of using the capturer for biomedical applications. © 2011 American Institute of Physics

  18. Interfacial Reaction Studies Using ONIOM

    NASA Technical Reports Server (NTRS)

    Cardelino, Beatriz H.

    2003-01-01

    In this report, we focus on the calculations of the energetics and chemical kinetics of heterogeneous reactions for Organometallic vapor phase epitaxy (OMVPE). The work described in this report builds upon our own previous thermochemical and chemical kinetics studies. The first of these articles refers to the prediction of thermochemical properties, and the latter one deals with the prediction of rate constants for gaseous homolytic dissociation reactions. The calculations of this investigation are at the microscopic level. The systems chosen consisted of a gallium nitride (GaN) substrate, and molecular nitrogen (N2) and ammonia (NH3) as adsorbants. The energetics for the adsorption and the adsorbant dissociation processes were estimated, and reaction rate constants for the dissociation reactions of free and adsorbed molecules were predicted. The energetics for substrate decomposition was also computed. The ONIOM method, implemented in the Gaussian98 program, was used to perform the calculations. This approach has been selected since it allows dividing the system into two layers that can be treated at different levels of accuracy. The atoms of the substrate were modeled using molecular mechanics6 with universal force fields, whereas the adsorbed molecules were approximated using quantum mechanics, based on density functional theory methods with B3LYP functionals and 6-311G(d,p) basis sets. Calculations for the substrate were performed in slabs of several unit cells in each direction. The N2 and NH3 adsorbates were attached to a central location at the Ga-lined surface.

  19. [Fragment-based drug discovery: concept and aim].

    PubMed

    Tanaka, Daisuke

    2010-03-01

    Fragment-Based Drug Discovery (FBDD) has been recognized as a newly emerging lead discovery methodology that involves biophysical fragment screening and chemistry-driven fragment-to-lead stages. Although fragments, defined as structurally simple and small compounds (typically <300 Da), have not been employed in conventional high-throughput screening (HTS), the recent significant progress in the biophysical screening methods enables fragment screening at a practical level. The intention of FBDD primarily turns our attention to weakly but specifically binding fragments (hit fragments) as the starting point of medicinal chemistry. Hit fragments are then promoted to more potent lead compounds through linking or merging with another hit fragment and/or attaching functional groups. Another positive aspect of FBDD is ligand efficiency. Ligand efficiency is a useful guide in screening hit selection and hit-to-lead phases to achieve lead-likeness. Owing to these features, a number of successful applications of FBDD to "undruggable targets" (where HTS and other lead identification methods failed to identify useful lead compounds) have been reported. As a result, FBDD is now expected to complement more conventional methodologies. This review, as an introduction of the following articles, will summarize the fundamental concepts of FBDD and will discuss its advantages over other conventional drug discovery approaches.

  20. Hexose rearrangements upon fragmentation of N-glycopeptides and reductively aminated N-glycans.

    PubMed

    Wuhrer, Manfred; Koeleman, Carolien A M; Deelder, André M

    2009-06-01

    Tandem mass spectrometry of glycans and glycoconjugates in protonated form is known to result in rearrangement reactions leading to internal residue loss. Here we studied the occurrence of hexose rearrangements in tandem mass spectrometry of N-glycopeptides and reductively aminated N-glycans by MALDI-TOF/TOF-MS/MS and ESI-ion trap-MS/MS. Fragmentation of proton adducts of oligomannosidic N-glycans of ribonuclease B that were labeled with 2-aminobenzamide and 2-aminobenzoic acid resulted in transfer of one to five hexose residues to the fluorescently tagged innermost N-acetylglucosamine. Glycopeptides from various biological sources with oligomannosidic glycans were likewise shown to undergo hexose rearrangement reactions, resulting in chitobiose cleavage products that have acquired one or two hexose moieties. Tryptic immunoglobulin G Fc-glycopeptides with biantennary N-glycans likewise showed hexose rearrangements resulting in hexose transfer to the peptide moiety retaining the innermost N-acetylglucosamine. Thus, as a general phenomenon, tandem mass spectrometry of reductively aminated glycans as well as glycopeptides may result in hexose rearrangements. This characteristic of glycopeptide MS/MS has to be considered when developing tools for de novo glycopeptide structural analysis.