Otsuki, Tetsuji; Ota, Toshio; Nishikawa, Tetsuo; Hayashi, Koji; Suzuki, Yutaka; Yamamoto, Jun-ichi; Wakamatsu, Ai; Kimura, Kouichi; Sakamoto, Katsuhiko; Hatano, Naoto; Kawai, Yuri; Ishii, Shizuko; Saito, Kaoru; Kojima, Shin-ichi; Sugiyama, Tomoyasu; Ono, Tetsuyoshi; Okano, Kazunori; Yoshikawa, Yoko; Aotsuka, Satoshi; Sasaki, Naokazu; Hattori, Atsushi; Okumura, Koji; Nagai, Keiichi; Sugano, Sumio; Isogai, Takao
2005-01-01
We have developed an in silico method of selection of human full-length cDNAs encoding secretion or membrane proteins from oligo-capped cDNA libraries. Fullness rates were increased to about 80% by combination of the oligo-capping method and ATGpr, software for prediction of translation start point and the coding potential. Then, using 5'-end single-pass sequences, cDNAs having the signal sequence were selected by PSORT ('signal sequence trap'). We also applied 'secretion or membrane protein-related keyword trap' based on the result of BLAST search against the SWISS-PROT database for the cDNAs which could not be selected by PSORT. Using the above procedures, 789 cDNAs were primarily selected and subjected to full-length sequencing, and 334 of these cDNAs were finally selected as novel. Most of the cDNAs (295 cDNAs: 88.3%) were predicted to encode secretion or membrane proteins. In particular, 165(80.5%) of the 205 cDNAs selected by PSORT were predicted to have signal sequences, while 70 (54.2%) of the 129 cDNAs selected by 'keyword trap' preserved the secretion or membrane protein-related keywords. Many important cDNAs were obtained, including transporters, receptors, and ligands, involved in significant cellular functions. Thus, an efficient method of selecting secretion or membrane protein-encoding cDNAs was developed by combining the above four procedures.
Mochida, Keiichi; Uehara-Yamaguchi, Yukiko; Takahashi, Fuminori; Yoshida, Takuhiro; Sakurai, Tetsuya; Shinozaki, Kazuo
2013-01-01
A comprehensive collection of full-length cDNAs is essential for correct structural gene annotation and functional analyses of genes. We constructed a mixed full-length cDNA library from 21 different tissues of Brachypodium distachyon Bd21, and obtained 78,163 high quality expressed sequence tags (ESTs) from both ends of ca. 40,000 clones (including 16,079 contigs). We updated gene structure annotations of Brachypodium genes based on full-length cDNA sequences in comparison with the latest publicly available annotations. About 10,000 non-redundant gene models were supported by full-length cDNAs; ca. 6,000 showed some transcription unit modifications. We also found ca. 580 novel gene models, including 362 newly identified in Bd21. Using the updated transcription start sites, we searched a total of 580 plant cis-motifs in the −3 kb promoter regions and determined a genome-wide Brachypodium promoter architecture. Furthermore, we integrated the Brachypodium full-length cDNAs and updated gene structures with available sequence resources in wheat and barley in a web-accessible database, the RIKEN Brachypodium FL cDNA database. The database represents a “one-stop” information resource for all genomic information in the Pooideae, facilitating functional analysis of genes in this model grass plant and seamless knowledge transfer to the Triticeae crops. PMID:24130698
Takeda, Jun-ichi; Suzuki, Yutaka; Nakao, Mitsuteru; Barrero, Roberto A.; Koyanagi, Kanako O.; Jin, Lihua; Motono, Chie; Hata, Hiroko; Isogai, Takao; Nagai, Keiichi; Otsuki, Tetsuji; Kuryshev, Vladimir; Shionyu, Masafumi; Yura, Kei; Go, Mitiko; Thierry-Mieg, Jean; Thierry-Mieg, Danielle; Wiemann, Stefan; Nomura, Nobuo; Sugano, Sumio; Gojobori, Takashi; Imanishi, Tadashi
2006-01-01
We report the first genome-wide identification and characterization of alternative splicing in human gene transcripts based on analysis of the full-length cDNAs. Applying both manual and computational analyses for 56 419 completely sequenced and precisely annotated full-length cDNAs selected for the H-Invitational human transcriptome annotation meetings, we identified 6877 alternative splicing genes with 18 297 different alternative splicing variants. A total of 37 670 exons were involved in these alternative splicing events. The encoded protein sequences were affected in 6005 of the 6877 genes. Notably, alternative splicing affected protein motifs in 3015 genes, subcellular localizations in 2982 genes and transmembrane domains in 1348 genes. We also identified interesting patterns of alternative splicing, in which two distinct genes seemed to be bridged, nested or having overlapping protein coding sequences (CDSs) of different reading frames (multiple CDS). In these cases, completely unrelated proteins are encoded by a single locus. Genome-wide annotations of alternative splicing, relying on full-length cDNAs, should lay firm groundwork for exploring in detail the diversification of protein function, which is mediated by the fast expanding universe of alternative splicing variants. PMID:16914452
Subtraction of cap-trapped full-length cDNA libraries to select rare transcripts.
Hirozane-Kishikawa, Tomoko; Shiraki, Toshiyuki; Waki, Kazunori; Nakamura, Mari; Arakawa, Takahiro; Kawai, Jun; Fagiolini, Michela; Hensch, Takao K; Hayashizaki, Yoshihide; Carninci, Piero
2003-09-01
The normalization and subtraction of highly expressed cDNAs from relatively large tissues before cloning dramatically enhanced the gene discovery by sequencing for the mouse full-length cDNA encyclopedia, but these methods have not been suitable for limited RNA materials. To normalize and subtract full-length cDNA libraries derived from limited quantities of total RNA, here we report a method to subtract plasmid libraries excised from size-unbiased amplified lambda phage cDNA libraries that avoids heavily biasing steps such as PCR and plasmid library amplification. The proportion of full-length cDNAs and the gene discovery rate are high, and library diversity can be validated by in silico randomization.
Oikonomopoulos, Spyros; Wang, Yu Chang; Djambazian, Haig; Badescu, Dunarel; Ragoussis, Jiannis
2016-08-24
To assess the performance of the Oxford Nanopore Technologies MinION sequencing platform, cDNAs from the External RNA Controls Consortium (ERCC) RNA Spike-In mix were sequenced. This mix mimics mammalian mRNA species and consists of 92 polyadenylated transcripts with known concentration. cDNA libraries were generated using a template switching protocol to facilitate the direct comparison between different sequencing platforms. The MinION performance was assessed for its ability to sequence the cDNAs directly with good accuracy in terms of abundance and full length. The abundance of the ERCC cDNA molecules sequenced by MinION agreed with their expected concentration. No length or GC content bias was observed. The majority of cDNAs were sequenced as full length. Additionally, a complex cDNA population derived from a human HEK-293 cell line was sequenced on an Illumina HiSeq 2500, PacBio RS II and ONT MinION platforms. We observed that there was a good agreement in the measured cDNA abundance between PacBio RS II and ONT MinION (rpearson = 0.82, isoforms with length more than 700bp) and between Illumina HiSeq 2500 and ONT MinION (rpearson = 0.75). This indicates that the ONT MinION can sequence quantitatively both long and short full length cDNA molecules.
Edery, M; Rozakis-Adcock, M; Goujon, L; Finidori, J; Lévi-Meyrueis, C; Paly, J; Djiane, J; Postel-Vinay, M C; Kelly, P A
1993-01-01
A single point mutation in the growth hormone (GH) receptor gene generating a Phe-->Ser substitution in the extracellular binding domain of the receptor has been identified in one family with Laron type dwarfism. The mutation was introduced by site-directed mutagenesis into cDNAs encoding the full-length rabbit GH receptor and the extracellular domain or binding protein (BP) of the human and rabbit GH receptor, and also in cDNAs encoding the full length and the extracellular domain of the related rabbit prolactin (PRL) receptor. All constructs were transiently expressed in COS-7 cells. Both wild type and mutant full-length rabbit GH and PRL receptors, as well as GH and prolactin BPs (wild type and mutant), were detected by Western blot in cell membranes and concentrated culture media, respectively. Immunofluorescence studies showed that wild type and mutant full-length GH receptors had the same cell surface and intracellular distribution and were expressed with comparable intensities. In contrast, all mutant forms (full-length receptors or BPs), completely lost their modify the synthesis ligand. These results clearly demonstrate that this point mutation (patients with Laron syndrome) does not modify the synthesis or the intracellular pathway of receptor proteins, but rather abolishes ability of the receptor or BP to bind GH and is thus responsible for the extreme GH resistance in these patients. Images PMID:8450064
Zhang, Jing-Nan; Song, Ping; Hu, Jia-Rui; Mo, Sai-Jun; Peng, Mao-Yu; Zhou, Wei; Zou, Ji-Xing; Hu, Yin-Chang
2005-01-01
In this study,the full-length cDNAs of GH (Growth Hormone) gene was isolated from six important economic fishes, Siniperca kneri, Epinephelus coioides, Monopterus albus, Silurus asotus, Misgurnus anguillicaudatus and Carassius auratus gibelio Bloch. It is the first time to clone these GH sequences except E. coioides GH. The lengths of the above cDNAs are as follows: 953 bp, 1 023 bp, 825 bp, 1 082 bp, 1 154 bp and 1 180 bp. Each sequence includes an ORF of about 600 bp which encodes a protein of about 200 amino acid: S. kneri, E. coioides and M. albus GHs of 204 amino acid, S. asotus GH of 200 amino acid, M. anguillicaudatus and C. auratus gibelio GHs of 210 amino acid. Then detailed sequence analysis of the six GHs with many other fish sequences was performed. The six sequences all showed high homology to other sequences, especially to sequences within the same order, and many conserved residues were identified, most localized in five domains. The phylogenetic trees (MP and NJ) of many fish GH ORF sequences (including the new six) with Amia calva as outgroup were generally resolved and largely congruent with the morphology-based tree though some incongruities were observed, suggesting GH ORF should be paid more attention to in teleostean phylogeny.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stapleton, Mark; Liao, Guochun; Brokstein, Peter
2002-08-12
Collections of full-length nonredundant cDNA clones are critical reagents for functional genomics. The first step toward these resources is the generation and single-pass sequencing of cDNA libraries that contain a high proportion of full-length clones. The first release of the Drosophila Gene Collection Release 1 (DGCr1) was produced from six libraries representing various tissues, developmental stages, and the cultured S2 cell line. Nearly 80,000 random 5prime expressed sequence tags (EST) from these libraries were collapsed into a nonredundant set of 5849 cDNAs, corresponding to {approx}40 percent of the 13,474 predicted genes in Drosophila. To obtain cDNA clones representing the remainingmore » genes, we have generated an additional 157,835 5prime ESTs from two previously existing and three new libraries. One new library is derived from adult testis, a tissue we previously did not exploit for gene discovery; two new cap-trapped normalized libraries are derived from 0-22hr embryos and adult heads. Taking advantage of the annotated D. melanogaster genome sequence, we clustered the ESTs by aligning them to the genome. Clusters that overlap genes not already represented by cDNA clones in the DGCr1 were analyzed further, and putative full-length clones were selected for inclusion in the new DGC. This second release of the DGC (DGCr2) contains 5061 additional clones, extending the collection to 10,910 cDNAs representing >70 percent of the predicted genes in Drosophila.« less
Yang, Bing-Yan; Huo, Xiu-Ai; Li, Peng-Fei; Wang, Cui-Xia; Duan, Hui-Jun
2014-08-01
Full-length cDNAs are very important for genome annotation and functional analysis of genes. The number of full-length cDNAs from watermelon remains limited. Here we report first the construction of a full-length enriched cDNA library from Fusarium wilt stressed watermelon (Citrullus lanatus Thunb.) cultivar PI296341 root tissues using the SMART method. The titer of primary cDNA library and amplified library was 2.21 x 10(6) and 2.0 x 10(10) pfu/ml, respectively and the rate of recombinant was above 85%. The size of insert fragment ranged from 0.3 to 2.0 kb. In this study, we first cloned a gene named ClWRKY1, which was 1981 bp long and encoded a protein consisting of 394 amino acids. It contained two characteristic WRKY domains and two zinc finger motifs. Quantitative real-time PCR showed that ClWRKY1 expression levels reached maximum level at 12 h after inoculation with Fusarium oxysporum f. sp. niveum. The full-length cDNA library of watermelon root tissues is not only essential for the cloning of genes which are known, but also an initial key for the screening and cloning of new genes that might be involved in resistance to Fusarium wilt.
Kirilyuk, Alexander; Tolstonog, Genrich V; Damert, Annette; Held, Ulrike; Hahn, Silvia; Löwer, Roswitha; Buschmann, Christian; Horn, Axel V; Traub, Peter; Schumann, Gerald G
2008-02-01
LINE-1 (L1) is a highly successful autonomous non-LTR retrotransposon and a major force shaping mammalian genomes. Although there are about 600 000 L1 copies covering 23% of the rat genome, full-length rat L1s (L1Rn) with intact open reading frames (ORFs) representing functional master copies for retrotransposition have not been identified yet. In conjunction with studies to elucidate the role of L1 retrotransposons in tumorigenesis, we isolated and characterized 10 different cDNAs from transcribed full-length L1Rn elements in rat chloroleukemia (RCL) cells, each encoding intact ORF1 proteins (ORF1p). We identified the first functional L1Rn retrotransposon from this pool of cDNAs, determined its activity in HeLa cells and in the RCL cell line the cDNAs originated from and demonstrate that it is mobilized in the tumor cell line in which it is expressed. Furthermore, we generated monoclonal antibodies directed against L1Rn ORF1 and ORF2-encoded recombinant proteins, analyzed the expression of L1-encoded proteins and found ORF1p predominantly in the nucleus. Our results support the hypothesis that the reported explosive amplification of genomic L1Rn sequences after their transcriptional activation in RCL cells is based on L1 retrotransposition. Therefore, L1 activity might be one cause for genomic instability observed during the progression of leukemia.
Separating homeologs by phasing in the tetraploid wheat transcriptome.
Krasileva, Ksenia V; Buffalo, Vince; Bailey, Paul; Pearce, Stephen; Ayling, Sarah; Tabbita, Facundo; Soria, Marcelo; Wang, Shichen; Akhunov, Eduard; Uauy, Cristobal; Dubcovsky, Jorge
2013-06-25
The high level of identity among duplicated homoeologous genomes in tetraploid pasta wheat presents substantial challenges for de novo transcriptome assembly. To solve this problem, we develop a specialized bioinformatics workflow that optimizes transcriptome assembly and separation of merged homoeologs. To evaluate our strategy, we sequence and assemble the transcriptome of one of the diploid ancestors of pasta wheat, and compare both assemblies with a benchmark set of 13,472 full-length, non-redundant bread wheat cDNAs. A total of 489 million 100 bp paired-end reads from tetraploid wheat assemble in 140,118 contigs, including 96% of the benchmark cDNAs. We used a comparative genomics approach to annotate 66,633 open reading frames. The multiple k-mer assembly strategy increases the proportion of cDNAs assembled full-length in a single contig by 22% relative to the best single k-mer size. Homoeologs are separated using a post-assembly pipeline that includes polymorphism identification, phasing of SNPs, read sorting, and re-assembly of phased reads. Using a reference set of genes, we determine that 98.7% of SNPs analyzed are correctly separated by phasing. Our study shows that de novo transcriptome assembly of tetraploid wheat benefit from multiple k-mer assembly strategies more than diploid wheat. Our results also demonstrate that phasing approaches originally designed for heterozygous diploid organisms can be used to separate the close homoeologous genomes of tetraploid wheat. The predicted tetraploid wheat proteome and gene models provide a valuable tool for the wheat research community and for those interested in comparative genomic studies.
Separating homeologs by phasing in the tetraploid wheat transcriptome
2013-01-01
Background The high level of identity among duplicated homoeologous genomes in tetraploid pasta wheat presents substantial challenges for de novo transcriptome assembly. To solve this problem, we develop a specialized bioinformatics workflow that optimizes transcriptome assembly and separation of merged homoeologs. To evaluate our strategy, we sequence and assemble the transcriptome of one of the diploid ancestors of pasta wheat, and compare both assemblies with a benchmark set of 13,472 full-length, non-redundant bread wheat cDNAs. Results A total of 489 million 100 bp paired-end reads from tetraploid wheat assemble in 140,118 contigs, including 96% of the benchmark cDNAs. We used a comparative genomics approach to annotate 66,633 open reading frames. The multiple k-mer assembly strategy increases the proportion of cDNAs assembled full-length in a single contig by 22% relative to the best single k-mer size. Homoeologs are separated using a post-assembly pipeline that includes polymorphism identification, phasing of SNPs, read sorting, and re-assembly of phased reads. Using a reference set of genes, we determine that 98.7% of SNPs analyzed are correctly separated by phasing. Conclusions Our study shows that de novo transcriptome assembly of tetraploid wheat benefit from multiple k-mer assembly strategies more than diploid wheat. Our results also demonstrate that phasing approaches originally designed for heterozygous diploid organisms can be used to separate the close homoeologous genomes of tetraploid wheat. The predicted tetraploid wheat proteome and gene models provide a valuable tool for the wheat research community and for those interested in comparative genomic studies. PMID:23800085
Unit-length line-1 transcripts in human teratocarcinoma cells.
Skowronski, J; Fanning, T G; Singer, M F
1988-01-01
We have characterized the approximately 6.5-kilobase cytoplasmic poly(A)+ Line-1 (L1) RNA present in a human teratocarcinoma cell line, NTera2D1, by primer extension and by analysis of cloned cDNAs. The bulk of the RNA begins (5' end) at the residue previously identified as the 5' terminus of the longest known primate genomic L1 elements, presumed to represent "unit" length. Several of the cDNA clones are close to 6 kilobase pairs, that is, close to full length. The partial sequences of 18 cDNA clones and full sequence of one (5,975 base pairs) indicate that many different genomic L1 elements contribute transcripts to the 6.5-kilobase cytoplasmic poly(A)+ RNA in NTera2D1 cells because no 2 of the 19 cDNAs analyzed had identical sequences. The transcribed elements appear to represent a subset of the total genomic L1s, a subset that has a characteristic consensus sequence in the 3' noncoding region and a high degree of sequence conservation throughout. Two open reading frames (ORFs) of 1,122 (ORF1) and 3,852 (ORF2) bases, flanked by about 800 and 200 bases of sequence at the 5' and 3' ends, respectively, can be identified in the cDNAs. Both ORFs are in the same frame, and they are separated by 33 bases bracketed by two conserved in-frame stop codons. ORF 2 is interrupted by at least one randomly positioned stop codon in the majority of the cDNAs. The data support proposals suggesting that the human L1 family includes one or more functional genes as well as an extraordinarily large number of pseudogenes whose ORFs are broken by stop codons. The cDNA structures suggest that both genes and pseudogenes are transcribed. At least one of the cDNAs (cD11), which was sequenced in its entirety, could, in principle, represent an mRNA for production of the ORF1 polypeptide. The similarity of mammalian L1s to several recently described invertebrate movable elements defines a new widely distributed class of elements which we term class II retrotransposons. Images PMID:2454389
Bragalini, Claudia; Ribière, Céline; Parisot, Nicolas; Vallon, Laurent; Prudent, Elsa; Peyretaillade, Eric; Girlanda, Mariangela; Peyret, Pierre; Marmeisse, Roland; Luis, Patricia
2014-01-01
Eukaryotic microbial communities play key functional roles in soil biology and potentially represent a rich source of natural products including biocatalysts. Culture-independent molecular methods are powerful tools to isolate functional genes from uncultured microorganisms. However, none of the methods used in environmental genomics allow for a rapid isolation of numerous functional genes from eukaryotic microbial communities. We developed an original adaptation of the solution hybrid selection (SHS) for an efficient recovery of functional complementary DNAs (cDNAs) synthesized from soil-extracted polyadenylated mRNAs. This protocol was tested on the Glycoside Hydrolase 11 gene family encoding endo-xylanases for which we designed 35 explorative 31-mers capture probes. SHS was implemented on four soil eukaryotic cDNA pools. After two successive rounds of capture, >90% of the resulting cDNAs were GH11 sequences, of which 70% (38 among 53 sequenced genes) were full length. Between 1.5 and 25% of the cloned captured sequences were expressed in Saccharomyces cerevisiae. Sequencing of polymerase chain reaction-amplified GH11 gene fragments from the captured sequences highlighted hundreds of phylogenetically diverse sequences that were not yet described, in public databases. This protocol offers the possibility of performing exhaustive exploration of eukaryotic gene families within microbial communities thriving in any type of environment. PMID:25281543
Aoki, Koh; Yano, Kentaro; Suzuki, Ayako; Kawamura, Shingo; Sakurai, Nozomu; Suda, Kunihiro; Kurabayashi, Atsushi; Suzuki, Tatsuya; Tsugane, Taneaki; Watanabe, Manabu; Ooga, Kazuhide; Torii, Maiko; Narita, Takanori; Shin-I, Tadasu; Kohara, Yuji; Yamamoto, Naoki; Takahashi, Hideki; Watanabe, Yuichiro; Egusa, Mayumi; Kodama, Motoichiro; Ichinose, Yuki; Kikuchi, Mari; Fukushima, Sumire; Okabe, Akiko; Arie, Tsutomu; Sato, Yuko; Yazawa, Katsumi; Satoh, Shinobu; Omura, Toshikazu; Ezura, Hiroshi; Shibata, Daisuke
2010-03-30
The Solanaceae family includes several economically important vegetable crops. The tomato (Solanum lycopersicum) is regarded as a model plant of the Solanaceae family. Recently, a number of tomato resources have been developed in parallel with the ongoing tomato genome sequencing project. In particular, a miniature cultivar, Micro-Tom, is regarded as a model system in tomato genomics, and a number of genomics resources in the Micro-Tom-background, such as ESTs and mutagenized lines, have been established by an international alliance. To accelerate the progress in tomato genomics, we developed a collection of fully-sequenced 13,227 Micro-Tom full-length cDNAs. By checking redundant sequences, coding sequences, and chimeric sequences, a set of 11,502 non-redundant full-length cDNAs (nrFLcDNAs) was generated. Analysis of untranslated regions demonstrated that tomato has longer 5'- and 3'-untranslated regions than most other plants but rice. Classification of functions of proteins predicted from the coding sequences demonstrated that nrFLcDNAs covered a broad range of functions. A comparison of nrFLcDNAs with genes of sixteen plants facilitated the identification of tomato genes that are not found in other plants, most of which did not have known protein domains. Mapping of the nrFLcDNAs onto currently available tomato genome sequences facilitated prediction of exon-intron structure. Introns of tomato genes were longer than those of Arabidopsis and rice. According to a comparison of exon sequences between the nrFLcDNAs and the tomato genome sequences, the frequency of nucleotide mismatch in exons between Micro-Tom and the genome-sequencing cultivar (Heinz 1706) was estimated to be 0.061%. The collection of Micro-Tom nrFLcDNAs generated in this study will serve as a valuable genomic tool for plant biologists to bridge the gap between basic and applied studies. The nrFLcDNA sequences will help annotation of the tomato whole-genome sequence and aid in tomato functional genomics and molecular breeding. Full-length cDNA sequences and their annotations are provided in the database KaFTom http://www.pgb.kazusa.or.jp/kaftom/ via the website of the National Bioresource Project Tomato http://tomato.nbrp.jp.
Resources for Biological Annotation of the Drosophila Genome
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gerald M. Rubin
2005-08-08
This project supported seed money for the development of cDNA and genetic resources to support studies of the Drosophila melanogaster genome. Key publications supported by this work that provide additional detail: (1) ''The Drosophila gene collection: identification of putative full-length cDNAs for 70% of D. melanogaster genes''; and (2) ''The Berkeley Drosophila Genome Project gene disruption project: Single P-element insertions mutating 25% of vital Drosophila genes''.
USDA-ARS?s Scientific Manuscript database
Channel catfish, Ictalurus punctatus, T cell receptors (TCR) gamma and delta were identified by mining of expressed sequence tag databases and full length sequences were obtained by 5'-RACE and RT-PCR protocols. cDNAs for each of these TCR chains encode typical variable (V), (diversity; D), joining ...
Identification of SHIP-1 and SHIP-2 homologs in channel catfish, Ictalurus punctatus
USDA-ARS?s Scientific Manuscript database
Src homology domain 2 (SH2) domain-containing inositol 5’-phosphatases (SHIP) proteins have diverse roles in signal transduction. SHIP-1 and SHIP-2 homologs were identified in channel catfish, Ictalurus punctatus, based on sequence homology to murine and human SHIP sequences. Full-length cDNAs for ...
Rapid and efficient cDNA library screening by self-ligation of inverse PCR products (SLIP).
Hoskins, Roger A; Stapleton, Mark; George, Reed A; Yu, Charles; Wan, Kenneth H; Carlson, Joseph W; Celniker, Susan E
2005-12-02
cDNA cloning is a central technology in molecular biology. cDNA sequences are used to determine mRNA transcript structures, including splice junctions, open reading frames (ORFs) and 5'- and 3'-untranslated regions (UTRs). cDNA clones are valuable reagents for functional studies of genes and proteins. Expressed Sequence Tag (EST) sequencing is the method of choice for recovering cDNAs representing many of the transcripts encoded in a eukaryotic genome. However, EST sequencing samples a cDNA library at random, and it recovers transcripts with low expression levels inefficiently. We describe a PCR-based method for directed screening of plasmid cDNA libraries. We demonstrate its utility in a screen of libraries used in our Drosophila EST projects for 153 transcription factor genes that were not represented by full-length cDNA clones in our Drosophila Gene Collection. We recovered high-quality, full-length cDNAs for 72 genes and variously compromised clones for an additional 32 genes. The method can be used at any scale, from the isolation of cDNA clones for a particular gene of interest, to the improvement of large gene collections in model organisms and the human. Finally, we discuss the relative merits of directed cDNA library screening and RT-PCR approaches.
Bannasch, Detlev; Mehrle, Alexander; Glatting, Karl-Heinz; Pepperkok, Rainer; Poustka, Annemarie; Wiemann, Stefan
2004-01-01
We have implemented LIFEdb (http://www.dkfz.de/LIFEdb) to link information regarding novel human full-length cDNAs generated and sequenced by the German cDNA Consortium with functional information on the encoded proteins produced in functional genomics and proteomics approaches. The database also serves as a sample-tracking system to manage the process from cDNA to experimental read-out and data interpretation. A web interface enables the scientific community to explore and visualize features of the annotated cDNAs and ORFs combined with experimental results, and thus helps to unravel new features of proteins with as yet unknown functions. PMID:14681468
Generation of a reliable full-length cDNA of infectiousTembusu virus using a PCR-based protocol.
Liang, Te; Liu, Xiaoxiao; Cui, Shulin; Qu, Shenghua; Wang, Dan; Liu, Ning; Wang, Fumin; Ning, Kang; Zhang, Bing; Zhang, Dabing
2016-02-02
Full-length cDNA of Tembusu virus (TMUV) cloned in a plasmid has been found instable in bacterial hosts. Using a PCR-based protocol, we generated a stable full-length cDNA of TMUV. Different cDNA fragments of TMUV were amplified by reverse transcription (RT)-PCR, and cloned into plasmids. Fragmented cDNAs were amplified and assembled by fusion PCR to produce a full-length cDNA using the recombinant plasmids as templates. Subsequently, a full-length RNA was transcribed from the full-length cDNA in vitro and transfected into BHK-21 cells; infectious viral particles were rescued successfully. Following several passages in BKH-21 cells, the rescued virus was compared with the parental virus by genetic marker checks, growth curve determinations and animal experiments. These assays clearly demonstrated the genetic and biological stabilities of the rescued virus. The present work will be useful for future investigations on the molecular mechanisms involved in replication and pathogenesis of TMUV. Copyright © 2015 Elsevier B.V. All rights reserved.
Virtual Northern analysis of the human genome.
Hurowitz, Evan H; Drori, Iddo; Stodden, Victoria C; Donoho, David L; Brown, Patrick O
2007-05-23
We applied the Virtual Northern technique to human brain mRNA to systematically measure human mRNA transcript lengths on a genome-wide scale. We used separation by gel electrophoresis followed by hybridization to cDNA microarrays to measure 8,774 mRNA transcript lengths representing at least 6,238 genes at high (>90%) confidence. By comparing these transcript lengths to the Refseq and H-Invitational full-length cDNA databases, we found that nearly half of our measurements appeared to represent novel transcript variants. Comparison of length measurements determined by hybridization to different cDNAs derived from the same gene identified clones that potentially correspond to alternative transcript variants. We observed a close linear relationship between ORF and mRNA lengths in human mRNAs, identical in form to the relationship we had previously identified in yeast. Some functional classes of protein are encoded by mRNAs whose untranslated regions (UTRs) tend to be longer or shorter than average; these functional classes were similar in both human and yeast. Human transcript diversity is extensive and largely unannotated. Our length dataset can be used as a new criterion for judging the completeness of cDNAs and annotating mRNA sequences. Similar relationships between the lengths of the UTRs in human and yeast mRNAs and the functions of the proteins they encode suggest that UTR sequences serve an important regulatory role among eukaryotes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Culbert, A.A.; Wallis, G.A.; Kadler, K.E.
The brittleness of bone in people with lethal (type II) osteogenesis imperfecta, a heritable disorder caused by mutations in the type I collagen genes, arises from the deposition of abnormal collagen in the bone matrix. The inability of the abnormal collagen to participate in mineralization may be caused by its failure to interact with other bone proteins. Here, we have designed a strategy to isolate the genes important for mineralization of collagen during bone formation. Cells isolated from 16-day embryonic chick calvaria and seeded post-confluence in culture deposited a mineralized matrix over a period of 2 weeks. Chick skin fibroblastsmore » seeded and cultured under the same conditions did not mineralize. Using RT-PCR, we prepared short cDNAs ({approximately}300 bp) corresponding to the 3{prime} ends of mRNA from fibroblasts and separately from the mineralizing calvarial cells. Subtractive cDNA hybridization generated a pool of cDNAs that were specific to mineralizing calvarial cells but not to fibroblasts. Screening of 100,000 plaques of a chick bone ZAP Express cDNA library with this pool of mineralizing-specific cDNAs identified ten clones which comprised full-length cDNAs for the bone proteins osteopontin (eight of the ten positives), bone sialoprotein II (one of the ten positives), and cystatin (one of the ten positives). cDNAs for type I collagen, fibronectin, alkaline phosphatase, house-keeping genes, and other genes expressed in fibroblasts were not identified in this preliminary screen. The pool of short cDNAs is likely to comprise cDNAs for further bone-specific genes and will be used to screen the entire bone cDNA library of 4.2 million clones. 30 refs., 4 figs.« less
Jia, Fan; Gampala, Srinivas S.L.; Mittal, Amandeep; Luo, Qingjun; Rock, Christopher D.
2009-01-01
The 14,200 available full length Arabidopsis thaliana cDNAs in the Universal Plasmid System (UPS) donor vector pUNI51 should be applied broadly and efficiently to leverage a “functional map-space” of homologous plant genes. We have engineered Cre-lox UPS host acceptor vectors (pCR701- 705) with N-terminal epitope tags in frame with the loxH site and downstream from the maize Ubiquitin promoter for use in transient protoplast expression assays and particle bombardment transformation of monocots. As an example of the utility of these vectors, we recombined them with several Arabidopsis cDNAs encoding Ser/Thr protein phosphatase type 2C (PP2Cs) known from genetic studies or predicted by hierarchical clustering meta-analysis to be involved in ABA and stress responses. Our functional results in Zea mays mesophyll protoplasts on ABA-inducible expression effects on the Late Embryogenesis Abundant promoter ProEm:GUS reporter were consistent with predictions and resulted in identification of novel activities of some PP2Cs. Deployment of these vectors can facilitate functional genomics and proteomics and identification of novel gene activities. PMID:19499346
Wistow, Graeme; Bernstein, Steven L; Wyatt, M Keith; Behal, Amita; Touchman, Jeffrey W; Bouffard, Gerald; Smith, Don; Peterson, Katherine
2002-06-15
To explore the expression profile of the human lens and to provide a resource for microarray studies, expressed sequence tag (EST) analysis has been performed on cDNA libraries from adult lenses. A cDNA library was constructed from two adult (40 year old) human lenses. Over two thousand clones were sequenced from the unamplified, un-normalized library. The library was then normalized and a further 2200 sequences were obtained. All the data were analyzed using GRIST (GRouping and Identification of Sequence Tags), a procedure for gene identification and clustering. The lens library (by) contains a low percentage of non-mRNA contaminants and a high fraction (over 75%) of apparently full length cDNA clones. Approximately 2000 reads from the unamplified library yields 810 clusters, potentially representing individual genes expressed in the lens. After normalization, the content of crystallins and other abundant cDNAs is markedly reduced and a similar number of reads from this library (fs) yields 1455 unique groups of which only two thirds correspond to named genes in GenBank. Among the most abundant cDNAs is one for a novel gene related to glutamine synthetase, which was designated "lengsin" (LGS). Analyses of ESTs also reveal examples of alternative transcripts, including a major alternative splice form for the lens specific membrane protein MP19. Variant forms for other transcripts, including those encoding the apoptosis inhibitor Livin and the armadillo repeat protein ARVCF, are also described. The lens cDNA libraries are a resource for gene discovery, full length cDNAs for functional studies and microarrays. The discovery of an abundant, novel transcript, lengsin, and a major novel splice form of MP19 reflect the utility of unamplified libraries constructed from dissected tissue. Many novel transcripts and splice forms are represented, some of which may be candidates for genetic diseases.
Molecular cloning of pepsinogens A and C from adult newt (Cynops pyrrhogaster) stomach.
Inokuchi, Tomofumi; Ikuzawa, Masayuki; Yamazaki, Shin; Watanabe, Yukari; Shiota, Koushiro; Katoh, Takuma; Kobayashi, Ken-Ichiro
2013-08-01
The full-length cDNAs of three pepsinogens (Pgs) were cloned from the stomach of newt, Cynops pyrrhogaster, and nucleotide sequences of the full-length cDNAs were determined. Molecular phylogenetic analysis showed that two Pgs, named PgC1 and PgC2, belong to the pepsinogen C group, and one Pg, named PgA, belongs to the pepsinogen A group. The sequences contain an open reading frame (ORF) encoding 385 amino acid residues for PgC1, 383 amino acid residues for PgC2 and 377 amino acid residues for PgA. In addition, all of the three amino acid sequences conserve some unique characteristics such as six cysteine residues and putative active site two aspartic acid residues. All of the pepsinogen mRNAs were detected in the stomach by RT-PCR but not in other organs. Although a slight difference at the time of the start of expression was seen among the three pepsinogen genes, all of them were expressed in the larval stage after hatching. This is the first report on cloning of pepsinogens from urodele stomach. Copyright © 2013 Elsevier Inc. All rights reserved.
Virtual Northern Analysis of the Human Genome
Hurowitz, Evan H.; Drori, Iddo; Stodden, Victoria C.; Donoho, David L.; Brown, Patrick O.
2007-01-01
Background We applied the Virtual Northern technique to human brain mRNA to systematically measure human mRNA transcript lengths on a genome-wide scale. Methodology/Principal Findings We used separation by gel electrophoresis followed by hybridization to cDNA microarrays to measure 8,774 mRNA transcript lengths representing at least 6,238 genes at high (>90%) confidence. By comparing these transcript lengths to the Refseq and H-Invitational full-length cDNA databases, we found that nearly half of our measurements appeared to represent novel transcript variants. Comparison of length measurements determined by hybridization to different cDNAs derived from the same gene identified clones that potentially correspond to alternative transcript variants. We observed a close linear relationship between ORF and mRNA lengths in human mRNAs, identical in form to the relationship we had previously identified in yeast. Some functional classes of protein are encoded by mRNAs whose untranslated regions (UTRs) tend to be longer or shorter than average; these functional classes were similar in both human and yeast. Conclusions/Significance Human transcript diversity is extensive and largely unannotated. Our length dataset can be used as a new criterion for judging the completeness of cDNAs and annotating mRNA sequences. Similar relationships between the lengths of the UTRs in human and yeast mRNAs and the functions of the proteins they encode suggest that UTR sequences serve an important regulatory role among eukaryotes. PMID:17520019
Targeting a Complex Transcriptome: The Construction of the Mouse Full-Length cDNA Encyclopedia
Carninci, Piero; Waki, Kazunori; Shiraki, Toshiyuki; Konno, Hideaki; Shibata, Kazuhiro; Itoh, Masayoshi; Aizawa, Katsunori; Arakawa, Takahiro; Ishii, Yoshiyuki; Sasaki, Daisuke; Bono, Hidemasa; Kondo, Shinji; Sugahara, Yuichi; Saito, Rintaro; Osato, Naoki; Fukuda, Shiro; Sato, Kenjiro; Watahiki, Akira; Hirozane-Kishikawa, Tomoko; Nakamura, Mari; Shibata, Yuko; Yasunishi, Ayako; Kikuchi, Noriko; Yoshiki, Atsushi; Kusakabe, Moriaki; Gustincich, Stefano; Beisel, Kirk; Pavan, William; Aidinis, Vassilis; Nakagawara, Akira; Held, William A.; Iwata, Hiroo; Kono, Tomohiro; Nakauchi, Hiromitsu; Lyons, Paul; Wells, Christine; Hume, David A.; Fagiolini, Michela; Hensch, Takao K.; Brinkmeier, Michelle; Camper, Sally; Hirota, Junji; Mombaerts, Peter; Muramatsu, Masami; Okazaki, Yasushi; Kawai, Jun; Hayashizaki, Yoshihide
2003-01-01
We report the construction of the mouse full-length cDNA encyclopedia,the most extensive view of a complex transcriptome,on the basis of preparing and sequencing 246 libraries. Before cloning,cDNAs were enriched in full-length by Cap-Trapper,and in most cases,aggressively subtracted/normalized. We have produced 1,442,236 successful 3′-end sequences clustered into 171,144 groups, from which 60,770 clones were fully sequenced cDNAs annotated in the FANTOM-2 annotation. We have also produced 547,149 5′ end reads,which clustered into 124,258 groups. Altogether, these cDNAs were further grouped in 70,000 transcriptional units (TU),which represent the best coverage of a transcriptome so far. By monitoring the extent of normalization/subtraction, we define the tentative equivalent coverage (TEC),which was estimated to be equivalent to >12,000,000 ESTs derived from standard libraries. High coverage explains discrepancies between the very large numbers of clusters (and TUs) of this project,which also include non-protein-coding RNAs,and the lower gene number estimation of genome annotations. Altogether,5′-end clusters identify regions that are potential promoters for 8637 known genes and 5′-end clusters suggest the presence of almost 63,000 transcriptional starting points. An estimate of the frequency of polyadenylation signals suggests that at least half of the singletons in the EST set represent real mRNAs. Clones accounting for about half of the predicted TUs await further sequencing. The continued high-discovery rate suggests that the task of transcriptome discovery is not yet complete. PMID:12819125
The Roles of TGF-Beta and TGF-Beta Signaling Receptors in Breast Carcinogenesis.
1996-07-01
hybridization was at 42°C in 45% antipain, aprotinin, leupeptin, and trypsin inhibitor; 0.5 .giml formamide, 5x standard saline phosphate/EDTA ( SSPE ; 0.18...for 16-20 hr at 42°C in 50% formamide. 5x SSPE , 5x Denhardt’s solution, 0.5% SDS, and 100 Mg/ml Cloning of Dwarfin-A and Dwarfin-C. Full-length cDNAs
USDA-ARS?s Scientific Manuscript database
Two full-length complementary DNAs (cDNAs) of heat shock protein (HSP) genes (Se-hsp90 and Se-hsp70) were cloned from the beet armyworm, Spodoptera exigua, and their expression was investigated in relation to cold shock, heat shock, and development. The open reading frames of Se-hsp90 and Sehsp70 ar...
2011-01-01
Background Jatropha curcas L. is an important non-edible oilseed crop with promising future in biodiesel production. However, factors like oil yield, oil composition, toxic compounds in oil cake, pests and diseases limit its commercial potential. Well established genetic engineering methods using cloned genes could be used to address these limitations. Earlier, 10,983 unigenes from Sanger sequencing of ESTs, and 3,484 unique assembled transcripts from 454 pyrosequencing of uncloned cDNAs were reported. In order to expedite the process of gene discovery, we have undertaken 454 pyrosequencing of normalized cDNAs prepared from roots, mature leaves, flowers, developing seeds, and embryos of J. curcas. Results From 383,918 raw reads, we obtained 381,957 quality-filtered and trimmed reads that are suitable for the assembly of transcript sequences. De novo contig assembly of these reads generated 17,457 assembled transcripts (contigs) and 54,002 singletons. Average length of the assembled transcripts was 916 bp. About 30% of the transcripts were longer than 1000 bases, and the size of the longest transcript was 7,173 bases. BLASTX analysis revealed that 2,589 of these transcripts are full-length. The assembled transcripts were validated by RT-PCR analysis of 28 transcripts. The results showed that the transcripts were correctly assembled and represent actively expressed genes. KEGG pathway mapping showed that 2,320 transcripts are related to major biochemical pathways including the oil biosynthesis pathway. Overall, the current study reports 14,327 new assembled transcripts which included 2589 full-length transcripts and 27 transcripts that are directly involved in oil biosynthesis. Conclusion The large number of transcripts reported in the current study together with existing ESTs and transcript sequences will serve as an invaluable genetic resource for crop improvement in jatropha. Sequence information of those genes that are involved in oil biosynthesis could be used for metabolic engineering of jatropha to increase oil content, and to modify oil composition. PMID:21492485
Natarajan, Purushothaman; Parani, Madasamy
2011-04-15
Jatropha curcas L. is an important non-edible oilseed crop with promising future in biodiesel production. However, factors like oil yield, oil composition, toxic compounds in oil cake, pests and diseases limit its commercial potential. Well established genetic engineering methods using cloned genes could be used to address these limitations. Earlier, 10,983 unigenes from Sanger sequencing of ESTs, and 3,484 unique assembled transcripts from 454 pyrosequencing of uncloned cDNAs were reported. In order to expedite the process of gene discovery, we have undertaken 454 pyrosequencing of normalized cDNAs prepared from roots, mature leaves, flowers, developing seeds, and embryos of J. curcas. From 383,918 raw reads, we obtained 381,957 quality-filtered and trimmed reads that are suitable for the assembly of transcript sequences. De novo contig assembly of these reads generated 17,457 assembled transcripts (contigs) and 54,002 singletons. Average length of the assembled transcripts was 916 bp. About 30% of the transcripts were longer than 1000 bases, and the size of the longest transcript was 7,173 bases. BLASTX analysis revealed that 2,589 of these transcripts are full-length. The assembled transcripts were validated by RT-PCR analysis of 28 transcripts. The results showed that the transcripts were correctly assembled and represent actively expressed genes. KEGG pathway mapping showed that 2,320 transcripts are related to major biochemical pathways including the oil biosynthesis pathway. Overall, the current study reports 14,327 new assembled transcripts which included 2589 full-length transcripts and 27 transcripts that are directly involved in oil biosynthesis. The large number of transcripts reported in the current study together with existing ESTs and transcript sequences will serve as an invaluable genetic resource for crop improvement in jatropha. Sequence information of those genes that are involved in oil biosynthesis could be used for metabolic engineering of jatropha to increase oil content, and to modify oil composition.
Isolation of expressed sequences from the region commonly deleted in Velo-cardio-facial syndrome
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sirotkin, H.; Morrow, B.; DasGupta, R.
Velo-cardio-facial syndrome (VCFS) is a relatively common autosomal dominant genetic disorder characterized by cleft palate, cardiac abnormalities, learning disabilities and a characteristic facial dysmorphology. Most VCFS patients have interstitial deletions of 22q11 of 1-2 mb. In an effort to isolate the gene(s) responsible for VCFS we have utilized a hybrid selection protocol to recover expressed sequences from three non-overlapping YACs comprising almost 1 mb of the commonly deleted region. Total yeast genomic DNA or isolated YAC DNA was immobilized on Hybond-N filters, blocked with yeast and human ribosomal and human repetitive sequences and hybridized with a mixture of random primedmore » short fragment cDNA libraries. Six human short fragment libraries derived from total fetus, fetal brain, adult brain, testes, thymus and spleen have been used for the selections. Short fragment cDNAs retained on the filter were passed through a second round of selection and cloned into lambda gt10. cDNAs shown to originate from the YACs and from chromosome 22 are being used to isolate full length cDNAs. Three genes known to be present on these YACs, catechol-O-methyltransferase, tuple 1 and clathrin heavy chain have been recovered. Additionally, a gene related to the murine p120 gene and a number of novel short cDNAs have been isolated. The role of these genes in VCFS is being investigated.« less
Characterization of full-length sequenced cDNA inserts (FLIcs) from Atlantic salmon (Salmo salar)
Andreassen, Rune; Lunner, Sigbjørn; Høyheim, Bjørn
2009-01-01
Background Sequencing of the Atlantic salmon genome is now being planned by an international research consortium. Full-length sequenced inserts from cDNAs (FLIcs) are an important tool for correct annotation and clustering of the genomic sequence in any species. The large amount of highly similar duplicate sequences caused by the relatively recent genome duplication in the salmonid ancestor represents a particular challenge for the genome project. FLIcs will therefore be an extremely useful resource for the Atlantic salmon sequencing project. In addition to be helpful in order to distinguish between duplicate genome regions and in determining correct gene structures, FLIcs are an important resource for functional genomic studies and for investigation of regulatory elements controlling gene expression. In contrast to the large number of ESTs available, including the ESTs from 23 developmental and tissue specific cDNA libraries contributed by the Salmon Genome Project (SGP), the number of sequences where the full-length of the cDNA insert has been determined has been small. Results High quality full-length insert sequences from 560 pre-smolt white muscle tissue specific cDNAs were generated, accession numbers [GenBank: BT043497 - BT044056]. Five hundred and ten (91%) of the transcripts were annotated using Gene Ontology (GO) terms and 440 of the FLIcs are likely to contain a complete coding sequence (cCDS). The sequence information was used to identify putative paralogs, characterize salmon Kozak motifs, polyadenylation signal variation and to identify motifs likely to be involved in the regulation of particular genes. Finally, conserved 7-mers in the 3'UTRs were identified, of which some were identical to miRNA target sequences. Conclusion This paper describes the first Atlantic salmon FLIcs from a tissue and developmental stage specific cDNA library. We have demonstrated that many FLIcs contained a complete coding sequence (cCDS). This suggests that the remaining cDNA libraries generated by SGP represent a valuable cCDS FLIc source. The conservation of 7-mers in 3'UTRs indicates that these motifs are functionally important. Identity between some of these 7-mers and miRNA target sequences suggests that they are miRNA targets in Salmo salar transcripts as well. PMID:19878547
Metatranscriptomics of Soil Eukaryotic Communities.
Yadav, Rajiv K; Bragalini, Claudia; Fraissinet-Tachet, Laurence; Marmeisse, Roland; Luis, Patricia
2016-01-01
Functions expressed by eukaryotic organisms in soil can be specifically studied by analyzing the pool of eukaryotic-specific polyadenylated mRNA directly extracted from environmental samples. In this chapter, we describe two alternative protocols for the extraction of high-quality RNA from soil samples. Total soil RNA or mRNA can be converted to cDNA for direct high-throughput sequencing. Polyadenylated mRNA-derived full-length cDNAs can also be cloned in expression plasmid vectors to constitute soil cDNA libraries, which can be subsequently screened for functional gene categories. Alternatively, the diversity of specific gene families can also be explored following cDNA sequence capture using exploratory oligonucleotide probes.
van Gennip, H G; van Rijn, P A; Widjojoatmodjo, M N; Moormann, R J
1999-03-01
A new method for the recovery of infectious classical swine fever virus (CSFV) from full-length genomic cDNA clones of the C-strain was developed. Classical reverse genetics is based on transfection of in vitro transcribed RNA to target cells to recover RNA viruses. However, the specific infectivity of such in vitro transcribed RNA in swine kidney cells is usually low. To improve reverse genetics for CSFV, a stable swine kidney cell line was established that expresses cytoplasmic bacteriophage T7 RNA polymerase (SK6.T7). A 200-fold increased virus titre was obtained from SK6.T7 cells transfected with linearized full-length cDNA compared to in vitro transcribed RNA, whereas transfection of circular full-length cDNA resulted in 20-fold increased virus titres. Viruses generated on the SK6.T7 cells are indistinguishable from the viruses generated by the classical reverse genetic procedures. These results show the improved recovery of infectious CSFV directly from full-length cDNAs. Furthermore, the reverse genetic procedures are simplified to a faster, one step protocol. We conclude that the SK6.T7 cell line will be a valuable tool for recovering mutant CSFV and will contribute to future pestivirus research.
Recombinational Cloning Using Gateway and In-Fusion Cloning Schemes
Throop, Andrea L.; LaBaer, Joshua
2015-01-01
The comprehensive study of protein structure and function, or proteomics, depends on the obtainability of full-length cDNAs in species-specific expression vectors and subsequent functional analysis of the expressed protein. Recombinational cloning is a universal cloning technique based on site-specific recombination that is independent of the insert DNA sequence of interest, which differentiates this method from the classical restriction enzyme-based cloning methods. Recombinational cloning enables rapid and efficient parallel transfer of DNA inserts into multiple expression systems. This unit summarizes strategies for generating expression-ready clones using the most popular recombinational cloning technologies, including the commercially available Gateway® (Life Technologies) and In-Fusion® (Clontech) cloning technologies. PMID:25827088
Fidler, Justyna; Zdunek-Zastocka, Edyta; Prabucka, Beata; Bielawski, Wiesław
2016-12-01
Abscisic acid (ABA) is a plant hormone that plays a predominant role in the onset and maintenance of primary dormancy. Peak ABA accumulation in embryos of triticale grains was observed before any significant loss of water and was higher in Fredro, a cultivar less susceptible to pre-harvest sprouting (PHS), than in Leontino, a cultivar more sensitive to PHS. At full maturity, embryonic ABA content in Fredro was twice as high as in Leontino. Two full-length cDNAs of 9-cis-epoxycarotenoid dioxygenase (TsNCED1, TsNCED2), an enzyme involved in ABA biosynthesis, and two full-length cDNAs of ABA 8'-hydroxylase (TsABA8'OH1 and TsABA8'OH2), an enzyme involved in ABA catabolism, were identified in triticale grains and characterized. The maximum transcript level of both TsNCED1 and TsNCED2 preceded the peak of ABA accumulation, suggesting that both TsNCEDs contribute to reach this peak, although the expression of TsNCED1 was significantly higher in Fredro than in Leontino. High expression of TsABA8'OH2 and TsABA8'OH1 was observed long before and at the end of the ABA accumulation peak, respectively, but no differences were observed between cultivars. The obtained results suggest that mainly TsNCED1 might be related to the higher ABA content and higher resistance of Fredro to PHS. However, Fredro embryos not only have higher ABA content, but also exhibit greater sensitivity to ABA, which may also have a significant effect on grain dormancy and lower susceptibility to PHS for grains of this cultivar. Copyright © 2016 Elsevier GmbH. All rights reserved.
Integrative Annotation of 21,037 Human Genes Validated by Full-Length cDNA Clones
Imanishi, Tadashi; Itoh, Takeshi; Suzuki, Yutaka; O'Donovan, Claire; Fukuchi, Satoshi; Koyanagi, Kanako O; Barrero, Roberto A; Tamura, Takuro; Yamaguchi-Kabata, Yumi; Tanino, Motohiko; Yura, Kei; Miyazaki, Satoru; Ikeo, Kazuho; Homma, Keiichi; Kasprzyk, Arek; Nishikawa, Tetsuo; Hirakawa, Mika; Thierry-Mieg, Jean; Thierry-Mieg, Danielle; Ashurst, Jennifer; Jia, Libin; Nakao, Mitsuteru; Thomas, Michael A; Mulder, Nicola; Karavidopoulou, Youla; Jin, Lihua; Kim, Sangsoo; Yasuda, Tomohiro; Lenhard, Boris; Eveno, Eric; Suzuki, Yoshiyuki; Yamasaki, Chisato; Takeda, Jun-ichi; Gough, Craig; Hilton, Phillip; Fujii, Yasuyuki; Sakai, Hiroaki; Tanaka, Susumu; Amid, Clara; Bellgard, Matthew; Bonaldo, Maria de Fatima; Bono, Hidemasa; Bromberg, Susan K; Brookes, Anthony J; Bruford, Elspeth; Carninci, Piero; Chelala, Claude; Couillault, Christine; de Souza, Sandro J.; Debily, Marie-Anne; Devignes, Marie-Dominique; Dubchak, Inna; Endo, Toshinori; Estreicher, Anne; Eyras, Eduardo; Fukami-Kobayashi, Kaoru; R. Gopinath, Gopal; Graudens, Esther; Hahn, Yoonsoo; Han, Michael; Han, Ze-Guang; Hanada, Kousuke; Hanaoka, Hideki; Harada, Erimi; Hashimoto, Katsuyuki; Hinz, Ursula; Hirai, Momoki; Hishiki, Teruyoshi; Hopkinson, Ian; Imbeaud, Sandrine; Inoko, Hidetoshi; Kanapin, Alexander; Kaneko, Yayoi; Kasukawa, Takeya; Kelso, Janet; Kersey, Paul; Kikuno, Reiko; Kimura, Kouichi; Korn, Bernhard; Kuryshev, Vladimir; Makalowska, Izabela; Makino, Takashi; Mano, Shuhei; Mariage-Samson, Regine; Mashima, Jun; Matsuda, Hideo; Mewes, Hans-Werner; Minoshima, Shinsei; Nagai, Keiichi; Nagasaki, Hideki; Nagata, Naoki; Nigam, Rajni; Ogasawara, Osamu; Ohara, Osamu; Ohtsubo, Masafumi; Okada, Norihiro; Okido, Toshihisa; Oota, Satoshi; Ota, Motonori; Ota, Toshio; Otsuki, Tetsuji; Piatier-Tonneau, Dominique; Poustka, Annemarie; Ren, Shuang-Xi; Saitou, Naruya; Sakai, Katsunaga; Sakamoto, Shigetaka; Sakate, Ryuichi; Schupp, Ingo; Servant, Florence; Sherry, Stephen; Shiba, Rie; Shimizu, Nobuyoshi; Shimoyama, Mary; Simpson, Andrew J; Soares, Bento; Steward, Charles; Suwa, Makiko; Suzuki, Mami; Takahashi, Aiko; Tamiya, Gen; Tanaka, Hiroshi; Taylor, Todd; Terwilliger, Joseph D; Unneberg, Per; Veeramachaneni, Vamsi; Watanabe, Shinya; Wilming, Laurens; Yasuda, Norikazu; Yoo, Hyang-Sook; Stodolsky, Marvin; Makalowski, Wojciech; Go, Mitiko; Nakai, Kenta; Takagi, Toshihisa; Kanehisa, Minoru; Sakaki, Yoshiyuki; Quackenbush, John; Okazaki, Yasushi; Hayashizaki, Yoshihide; Hide, Winston; Chakraborty, Ranajit; Nishikawa, Ken; Sugawara, Hideaki; Tateno, Yoshio; Chen, Zhu; Oishi, Michio; Tonellato, Peter; Apweiler, Rolf; Okubo, Kousaku; Wagner, Lukas; Wiemann, Stefan; Strausberg, Robert L; Isogai, Takao; Auffray, Charles; Nomura, Nobuo; Sugano, Sumio
2004-01-01
The human genome sequence defines our inherent biological potential; the realization of the biology encoded therein requires knowledge of the function of each gene. Currently, our knowledge in this area is still limited. Several lines of investigation have been used to elucidate the structure and function of the genes in the human genome. Even so, gene prediction remains a difficult task, as the varieties of transcripts of a gene may vary to a great extent. We thus performed an exhaustive integrative characterization of 41,118 full-length cDNAs that capture the gene transcripts as complete functional cassettes, providing an unequivocal report of structural and functional diversity at the gene level. Our international collaboration has validated 21,037 human gene candidates by analysis of high-quality full-length cDNA clones through curation using unified criteria. This led to the identification of 5,155 new gene candidates. It also manifested the most reliable way to control the quality of the cDNA clones. We have developed a human gene database, called the H-Invitational Database (H-InvDB; http://www.h-invitational.jp/). It provides the following: integrative annotation of human genes, description of gene structures, details of novel alternative splicing isoforms, non-protein-coding RNAs, functional domains, subcellular localizations, metabolic pathways, predictions of protein three-dimensional structure, mapping of known single nucleotide polymorphisms (SNPs), identification of polymorphic microsatellite repeats within human genes, and comparative results with mouse full-length cDNAs. The H-InvDB analysis has shown that up to 4% of the human genome sequence (National Center for Biotechnology Information build 34 assembly) may contain misassembled or missing regions. We found that 6.5% of the human gene candidates (1,377 loci) did not have a good protein-coding open reading frame, of which 296 loci are strong candidates for non-protein-coding RNA genes. In addition, among 72,027 uniquely mapped SNPs and insertions/deletions localized within human genes, 13,215 nonsynonymous SNPs, 315 nonsense SNPs, and 452 indels occurred in coding regions. Together with 25 polymorphic microsatellite repeats present in coding regions, they may alter protein structure, causing phenotypic effects or resulting in disease. The H-InvDB platform represents a substantial contribution to resources needed for the exploration of human biology and pathology. PMID:15103394
Zhou, Wen-Zhao; Zhang, Yan-Mei; Lu, Jun-Ying; Li, Jun-Feng
2012-01-01
To provide a resource of sisal-specific expressed sequence data and facilitate this powerful approach in new gene research, the preparation of normalized cDNA libraries enriched with full-length sequences is necessary. Four libraries were produced with RNA pooled from Agave sisalana multiple tissues to increase efficiency of normalization and maximize the number of independent genes by SMART™ method and the duplex-specific nuclease (DSN). This procedure kept the proportion of full-length cDNAs in the subtracted/normalized libraries and dramatically enhanced the discovery of new genes. Sequencing of 3875 cDNA clones of libraries revealed 3320 unigenes with an average insert length about 1.2 kb, indicating that the non-redundancy of libraries was about 85.7%. These unigene functions were predicted by comparing their sequences to functional domain databases and extensively annotated with Gene Ontology (GO) terms. Comparative analysis of sisal unigenes and other plant genomes revealed that four putative MADS-box genes and knotted-like homeobox (knox) gene were obtained from a total of 1162 full-length transcripts. Furthermore, real-time PCR showed that the characteristics of their transcripts mainly depended on the tight expression regulation of a number of genes during the leaf and flower development. Analysis of individual library sequence data indicated that the pooled-tissue approach was highly effective in discovering new genes and preparing libraries for efficient deep sequencing. PMID:23202944
Goyal, K; Browne, J A; Burnell, A M; Tunnacliffe, A
2005-06-01
Accumulation of the non-reducing disaccharide trehalose is associated with desiccation tolerance during anhydrobiosis in a number of invertebrates, but there is little information on trehalose biosynthetic genes in these organisms. We have identified two trehalose-6-phosphate synthase (tps) genes in the anhydrobiotic nematode Aphelenchus avenae and determined full length cDNA sequences for both; for comparison, full length tps cDNAs from the model nematode, Caenorhabditis elegans, have also been obtained. The A. avenae genes encode very similar proteins containing the catalytic domain characteristic of the GT-20 family of glycosyltransferases and are most similar to tps-2 of C. elegans; no evidence was found for a gene in A. avenae corresponding to Ce-tps-1. Analysis of A. avenae tps cDNAs revealed several features of interest, including alternative trans-splicing of spliced leader sequences in Aav-tps-1, and four different, novel SL1-related trans-spliced leaders, which were different to the canonical SL1 sequence found in all other nematodes studied. The latter observation suggests that A. avenae does not comply with the strict evolutionary conservation of SL1 sequences observed in other species. Unusual features were also noted in predicted nematode TPS proteins, which distinguish them from homologues in other higher eukaryotes (plants and insects) and in micro-organisms. Phylogenetic analysis confirmed their membership of the GT-20 glycosyltransferase family, but indicated an accelerated rate of molecular evolution. Furthermore, nematode TPS proteins possess N- and C-terminal domains, which are unrelated to those of other eukaryotes: nematode C-terminal domains, for example, do not contain trehalose-6-phosphate phosphatase-like sequences, as seen in plant and insect homologues. During onset of anhydrobiosis, both tps genes in A. avenae are upregulated, but exposure to cold or increased osmolarity also results in gene induction, although to a lesser extent. Trehalose seems likely therefore to play a role in a number of stress responses in nematodes.
Teng, Siyong; Huang, Jian; Gao, Zhan; Hao, Jie; Yang, Yuejin; Zhang, Shu; Pu, Jielin; Hui, Rutai; Wu, Yongjian; Fan, Zheng
2017-01-01
Nonsense mutation readthrough is used as a gene-specific treatment in some genetic diseases. The response to readthrough treatment is determined by the readthrough efficiency of various nonsense mutations. In this manuscript, we aimed to explore the harmful effects of nonsense mutation suppression. HEK293 cells were transfected with two SCN5A (encode cardiac Na+ channel) nonsense mutations, p.R1623X and p.S1812X. We applied two readthrough-enhancing methods (either aminoglycosides or a siRNA-targeting eukaryotic release factor eRF3a (a GTPase that binds eRF1)) to suppress these SCN5A nonsense mutations. When either of readthrough methods was used, the sodium channel proteins were examined by western blot and immunoblotting and recorded by whole cell patch-clamp to observe the functional characterization of the restored channels. Upon readthrough treatment, the sodium currents were restored to the mutant cDNAs. These mutations reduced full-length sodium channel protein levels, and the sodium currents were reduced to 3% of wild-type. The mutant cDNA sodium currents were increased to 30% of wild-type, and the fulllength proteins also increased. However, the functional characterization of these channels from cDNAs carrying p.R1623X and p.S1812X exhibited abnormal biophysical properties, including a negative shift in steady-state sodium channel inactivation, a positive shift in sodium channel activation and robust late sodium currents. The ramp test showed prolonged QT intervals. These results demonstrated that readthrough-enhancing methods effectively suppressed nonsense mutations in SCN5A and restored the expression of full-length channels. However, the restored channels may increase the risk of arrhythmia. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Pollier, Jacob; González-Guzmán, Miguel; Ardiles-Diaz, Wilson; Geelen, Danny; Goossens, Alain
2011-01-01
cDNA-Amplified Fragment Length Polymorphism (cDNA-AFLP) is a commonly used technique for genome-wide expression analysis that does not require prior sequence knowledge. Typically, quantitative expression data and sequence information are obtained for a large number of differentially expressed gene tags. However, most of the gene tags do not correspond to full-length (FL) coding sequences, which is a prerequisite for subsequent functional analysis. A medium-throughput screening strategy, based on integration of polymerase chain reaction (PCR) and colony hybridization, was developed that allows in parallel screening of a cDNA library for FL clones corresponding to incomplete cDNAs. The method was applied to screen for the FL open reading frames of a selection of 163 cDNA-AFLP tags from three different medicinal plants, leading to the identification of 109 (67%) FL clones. Furthermore, the protocol allows for the use of multiple probes in a single hybridization event, thus significantly increasing the throughput when screening for rare transcripts. The presented strategy offers an efficient method for the conversion of incomplete expressed sequence tags (ESTs), such as cDNA-AFLP tags, to FL-coding sequences.
Reverse transcription polymerase chain reaction protocols for cloning small circular RNAs.
Navarro, B; Daròs, J A; Flores, R
1998-07-01
A protocol is described for general application for cloning small circular RNAs which requires only minimal amounts of template (approximately 50 ng) of unknown sequence. Both cDNA strands are synthesized with a 26-mer primer whose six 3'-terminal positions are totally degenerate in two consecutive reactions catalyzed by reverse transcriptase and DNA polymerase, respectively. The cDNAs are then PCR-amplified, using a 20-mer primer with the non-degenerate sequence of the previous primer, cloned and sequenced. This information permits the synthesis of one or more pairs of specific and adjacent primers for obtaining full-length cDNA clones by a protocol which is also described.
A Rapid Method for Engineering Recombinant Polioviruses or Other Enteroviruses.
Bessaud, Maël; Pelletier, Isabelle; Blondel, Bruno; Delpeyroux, Francis
2016-01-01
The cloning of large enterovirus RNA sequences is labor-intensive because of the frequent instability in bacteria of plasmidic vectors containing the corresponding cDNAs. In order to circumvent this issue we have developed a PCR-based method that allows the generation of highly modified or chimeric full-length enterovirus genomes. This method relies on fusion PCR which enables the concatenation of several overlapping cDNA amplicons produced separately. A T7 promoter sequence added upstream the fusion PCR products allows its transcription into infectious genomic RNAs directly in transfected cells constitutively expressing the phage T7 RNA polymerase. This method permits the rapid recovery of modified viruses that can be subsequently amplified on adequate cell-lines.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Seoung Hoon; Kim, Taesoo; Park, Eui-Soon
2008-05-02
Bone homeostasis is tightly regulated by the balanced actions of osteoblasts (OBs) and osteoclasts (OCs). We previously analyzed the gene expression profile of OC differentiation using a cDNA microarray, and identified a novel osteoclastogenic gene candidate, clone OCL-1-E7 [J. Rho, C.R. Altmann, N.D. Socci, L. Merkov, N. Kim, H. So, O. Lee, M. Takami, A.H. Brivanlou, Y. Choi, Gene expression profiling of osteoclast differentiation by combined suppression subtractive hybridization (SSH) and cDNA microarray analysis, DNA Cell Biol. 21 (2002) 541-549]. In this study, we have isolated full-length cDNAs corresponding to this clone from mice and humans to determine the functionalmore » roles of this gene in osteoclastogenesis. The full-length cDNA of OCL-1-E7 encodes 12 membrane-spanning domains that are typical of isoforms of the Na{sup +}/H{sup +} exchangers (NHEs), indicating that this clone is a novel member of the NHE family (hereafter referred to as NHE10). Here, we show that NHE10 is highly expressed in OCs in response to receptor activator of nuclear factor-{kappa}B ligand signaling and is required for OC differentiation and survival.« less
Li, Xiaolong; Zheng, Tianxiang; Zheng, Xiaowen; Han, Na; Chen, Xuexin; Zhang, Dayu
2016-01-01
Fatty acyl-CoA reductases (FARs) are key enzymes involved in fatty alcohol synthesis. Here, we cloned and characterized full-length cDNAs of two FAR genes from the cotton mealybug, Phenacoccus solenopsis. The results showed PsFAR I and PsFAR II cDNAs were 1,584 bp and 1,515 bp in length respectively. Both PsFAR I and PsFAR II were predicted to be located in the endoplasmic reticulum by Euk-mPLoc 2.0 approach. Both of them had a Rossmann folding region and a FAR_C region. Two conservative motifs were discovered in Rossmann folding region by sequence alignment including a NADPH combining motif, TGXXGG, and an active site motif, YXXXK. A phylogenetic tree made using MEGA 6.06 indicated that PsFAR I and PsFAR II were placed in two different branches. Gene expression analysis performed at different developmental stages showed that the expression of PsFar I is significantly higher than that of PsFar II in first and second instar nymphs and in male adults. Spirotetramat treatment at 125 mg/liter significantly increased the expression of PsFar I in third instar nymphs, but there was no effect in the expression of PsFar II Our results indicated these two FAR genes showed different expression patterns during insect development and after pesticide treatment, suggesting they play different roles in insect development and detoxification against pesticides. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America.
Sequencing, Analysis, and Annotation of Expressed Sequence Tags for Camelus dromedarius
Al-Swailem, Abdulaziz M.; Shehata, Maher M.; Abu-Duhier, Faisel M.; Al-Yamani, Essam J.; Al-Busadah, Khalid A.; Al-Arawi, Mohammed S.; Al-Khider, Ali Y.; Al-Muhaimeed, Abdullah N.; Al-Qahtani, Fahad H.; Manee, Manee M.; Al-Shomrani, Badr M.; Al-Qhtani, Saad M.; Al-Harthi, Amer S.; Akdemir, Kadir C.; Otu, Hasan H.
2010-01-01
Despite its economical, cultural, and biological importance, there has not been a large scale sequencing project to date for Camelus dromedarius. With the goal of sequencing complete DNA of the organism, we first established and sequenced camel EST libraries, generating 70,272 reads. Following trimming, chimera check, repeat masking, cluster and assembly, we obtained 23,602 putative gene sequences, out of which over 4,500 potentially novel or fast evolving gene sequences do not carry any homology to other available genomes. Functional annotation of sequences with similarities in nucleotide and protein databases has been obtained using Gene Ontology classification. Comparison to available full length cDNA sequences and Open Reading Frame (ORF) analysis of camel sequences that exhibit homology to known genes show more than 80% of the contigs with an ORF>300 bp and ∼40% hits extending to the start codons of full length cDNAs suggesting successful characterization of camel genes. Similarity analyses are done separately for different organisms including human, mouse, bovine, and rat. Accompanying web portal, CAGBASE (http://camel.kacst.edu.sa/), hosts a relational database containing annotated EST sequences and analysis tools with possibility to add sequences from public domain. We anticipate our results to provide a home base for genomic studies of camel and other comparative studies enabling a starting point for whole genome sequencing of the organism. PMID:20502665
Cloning of cDNAs encoding new peptides of the dermaseptin-family.
Wechselberger, C
1998-10-14
Dermaseptins are a group of basic (lysine-rich) peptides, 27-34 amino acids in length and involved in the defense of frog skin against microbial invasion. By using a degenerated oligonucleotide primer binding to the 5'-untranslated region of previously characterized cDNAs of these peptides, it was possible to identify new members of the dermaseptin family in the South American frogs Agalychnis annae and Pachymedusa dacnicolor. Amino acid alignment and secondary structure prediction reveals, that only five of the deduced peptides can be supposed to be also functional homologs to the known dermaseptins from Phyllomedusa bicolor and Phyllomedusa sauvagei. The remaining six peptides described in this paper have not been isolated and characterized yet.
Henderson, R A; Krissansen, G W; Yong, R Y; Leung, E; Watson, J D; Dholakia, J N
1994-12-02
Protein synthesis in mammalian cells is regulated at the level of the guanine nucleotide exchange factor, eIF-2B, which catalyzes the exchange of eukaryotic initiation factor 2-bound GDP for GTP. We have isolated and sequenced cDNA clones encoding the delta-subunit of murine eIF-2B. The cDNA sequence encodes a polypeptide of 544 amino acids with molecular mass of 60 kDa. Antibodies against a synthetic polypeptide of 30 amino acids deduced from the cDNA sequence specifically react with the delta-subunit of mammalian eIF-2B. The cDNA-derived amino acid sequence shows significant homology with the yeast translational regulator Gcd2, supporting the hypothesis that Gcd2 may be the yeast homolog of the delta-subunit of mammalian eIF-2B. Primer extension studies and anchor polymerase chain reaction analysis were performed to determine the 5'-end of the transcript for the delta-subunit of eIF-2B. Results of these experiments demonstrate two different mRNAs for the delta-subunit of eIF-2B in murine cells. The isolation and characterization of two different full-length cDNAs also predicts the presence of two alternate forms of the delta-subunit of eIF-2B in murine cells. These differ at their amino-terminal end but have identical nucleotide sequences coding for amino acids 31-544.
RICD: a rice indica cDNA database resource for rice functional genomics.
Lu, Tingting; Huang, Xuehui; Zhu, Chuanrang; Huang, Tao; Zhao, Qiang; Xie, Kabing; Xiong, Lizhong; Zhang, Qifa; Han, Bin
2008-11-26
The Oryza sativa L. indica subspecies is the most widely cultivated rice. During the last few years, we have collected over 20,000 putative full-length cDNAs and over 40,000 ESTs isolated from various cDNA libraries of two indica varieties Guangluai 4 and Minghui 63. A database of the rice indica cDNAs was therefore built to provide a comprehensive web data source for searching and retrieving the indica cDNA clones. Rice Indica cDNA Database (RICD) is an online MySQL-PHP driven database with a user-friendly web interface. It allows investigators to query the cDNA clones by keyword, genome position, nucleotide or protein sequence, and putative function. It also provides a series of information, including sequences, protein domain annotations, similarity search results, SNPs and InDels information, and hyperlinks to gene annotation in both The Rice Annotation Project Database (RAP-DB) and The TIGR Rice Genome Annotation Resource, expression atlas in RiceGE and variation report in Gramene of each cDNA. The online rice indica cDNA database provides cDNA resource with comprehensive information to researchers for functional analysis of indica subspecies and for comparative genomics. The RICD database is available through our website http://www.ncgr.ac.cn/ricd.
Wang, L; Eriksson, S
2000-01-01
The subcellular localization of mitochondrial thymidine kinase (TK2) has been questioned, since no mitochondrial targeting sequences have been found in cloned human TK2 cDNAs. Here we report the cloning of mouse TK2 cDNA from a mouse full-length enriched cDNA library. The mouse TK2 cDNA codes for a protein of 270 amino acids, with a 40-amino-acid presumed N-terminal mitochondrial targeting signal. In vitro translation and translocation experiments with purified rat mitochondria confirmed that the N-terminal sequence directed import of the precursor TK2 into the mitochondrial matrix. A single 2.4 kb mRNA transcript was detected in most tissues examined, except in liver, where an additional shorter (1.0 kb) transcript was also observed. There was no correlation between the tissue distribution of TK2 activity and the expression of TK2 mRNA. Full-length mouse TK2 protein and two N-terminally truncated forms, one of which corresponds to the mitochondrial form of TK2 and a shorter form corresponding to the previously characterized recombinant human TK2, were expressed in Escherichia coli and affinity purified. All three forms of TK2 phosphorylated thymidine, deoxycytidine and 2'-deoxyuridine, but with different kinetic efficiencies. A number of cytostatic pyrimidine nucleoside analogues were also tested and shown to be good substrates for the various forms of TK2. The active form of full-length mouse TK2 was a dimer, as judged by Superdex 200 chromatography. These results enhance our understanding of the structure and function of TK2, and may help to explain the mitochondrial disorder, mitochondrial neurogastrointestinal encephalomyopathy. PMID:11023833
Sun, Jie; Li, Yuan-Li; Wang, Ruo-Hai; Xia, Gui-Xian
2004-01-01
Fluorescence differential display (FDD) technique was used to identify genes that are specifically or preferentially expressed in different developmental stages of cotton fiber cells. One hundred and nine differentially displayed cDNA fragments were isolated using 9, 21 and 27 DPA (days postanthesis) fibers as experimental materials. By a combination of two rounds of reverse Northern hybridization and Northern blot analyses, a number of such cDNA fragments were proved to represent fiber-specific/preferential genes. Sequencing determination and database searching indicated that most of these genes are novel. This work is an important step towards cloning the full-length cDNAs and characterizing the cellular functions of aforementioned genes in fiber development.
Xu, Dongxue; Sun, Lina; Liu, Shilin; Zhang, Libin; Yang, Hongsheng
2016-08-01
The heat shock response (HSR) is known for the elevated synthesis of heat shock proteins (HSPs) under heat stress, which is mediated primarily by heat shock factor 1 (HSF1). Heat shock factor binding protein 1 (HSBP1) and feedback control of heat shock protein 70 (HSP70) are major regulators of the activity of HSF1. We obtained full-length cDNA of genes hsf1 and hsbp1 in the sea cucumber Apostichopus japonicus, which are the second available for echinoderm (after Strongylocentrotus purpuratus), and the first available for holothurian. The full-length cDNA of hsf1 was 2208bp, containing a 1326bp open reading frame encoding 441 amino acids. The full-length cDNA of hsbp1 was 2850bp, containing a 225bp open reading frame encoding 74 amino acids. The similarities of A. japonicus HSF1 with other species are low, and much higher similarity identities of A. japonicus HSBP1 were shared. Phylogenetic trees showed that A. japonicus HSF1 and HSBP1 were clustered with sequences from S. purpuratus, and fell into distinct clades with sequences from mollusca, arthropoda and vertebrata. Analysis by real-time PCR showed hsf1 and hsbp1 mRNA was expressed constitutively in all tissues examined. The expression of hsf1, hsbp1 and hsp70 in the intestine at 26°C was time-dependent. The results of this study might provide new insights into the regulation of heat shock response in this species. Copyright © 2016. Published by Elsevier Inc.
Uzbekova, Svetlana; Roy-Sabau, Monica; Dalbiès-Tran, Rozenn; Perreau, Christine; Papillier, Pascal; Mompart, Florence; Thelie, Aurore; Pennetier, Sophie; Cognie, Juliette; Cadoret, Veronique; Royere, Dominique; Monget, Philippe; Mermillod, Pascal
2006-01-01
Background Zygote arrest 1 (ZAR1) is one of the few known oocyte-specific maternal-effect genes essential for the beginning of embryo development discovered in mice. This gene is evolutionary conserved in vertebrates and ZAR1 protein is characterized by the presence of atypical plant homeobox zing finger domain, suggesting its role in transcription regulation. This work was aimed at the study of this gene, which could be one of the key regulators of successful preimplantation development of domestic animals, in pig and cattle, as compared with human. Methods Screenings of somatic cell hybrid panels and in silico research were performed to characterize ZAR1 chromosome localization and sequences. Rapid amplification of cDNA ends was used to obtain full-length cDNAs. Spatio-temporal mRNA expression patterns were studied using Northern blot, reverse transcription coupled to polymerase chain reaction and in situ hybridization. Results We demonstrated that ZAR1 is a single copy gene, positioned on chromosome 8 in pig and 6 in cattle, and several variants of correspondent cDNA were cloned from oocytes. Sequence analysis of ZAR1 cDNAs evidenced numerous short inverted repeats within the coding sequences and putative Pumilio-binding and embryo-deadenylation elements within the 3'-untranslated regions, indicating the potential regulation ways. We showed that ZAR1 expressed exclusively in oocytes in pig ovary, persisted during first cleavages in embryos developed in vivo and declined sharply in morulae and blastocysts. ZAR1 mRNA was also detected in testis, and, at lower level, in hypothalamus and pituitary in both species. For the first time, ZAR1 was localized in testicular germ cells, notably in round spermatids. In addition, in pig, cattle and human only shorter ZAR1 transcript variants resulting from alternative splicing were found in testis as compared to oocyte. Conclusion Our data suggest that in addition to its role in early embryo development highlighted by expression pattern of full-length transcript in oocytes and early embryos, ZAR1 could also be implicated in the regulation of meiosis and post meiotic differentiation of male and female germ cells through expression of shorter splicing variants. Species conservation of ZAR1 expression and regulation underlines the central role of this gene in early reproductive processes. PMID:16551357
Peng, Jinbiao; Han, Hongxiao; Hong, Yang; Wang, Yan; Guo, Fanji; Shi, Yaojun; Fu, Zhiqiang; Liu, Jinming; Cheng, Guofeng; Lin, Jiaojiao
2010-03-01
The present study was intend to clone and express the cDNA encoding Cyclophilin B (CyPB) of Schistosoma japonicum, its preliminary biological function and further immunoprotective effect against schistosome infection in mice. RT-PCR technique was applied to amplify a full-length cDNA encoding protein Cyclophilin B (Sj CyPB) from schistosomula cDNA. The expression profiles of Sj CyPB were determined by Real-time PCR using the template cDNAs isolated from 7, 13, 18, 23, 32 and 42 days parasites. The cDNA containing the Open Reading Frame of CyPB was then subcloned into a pGEX-6P-1 vector and transformed into competent Escherichia coli BL21 for expressing. The recombinant protein was renaturated, purified and its antigenicity were detected by Western blotting, and the immunoprotective effect induced by recombinant Sj CyPB was evaluated in Balb/C mice. The cDNA containing the ORF of Sj CyPB was cloned with the length of 672 base pairs, encoding 223 amino acids. Real-time PCR analysis revealed that the gene had the highest expression in 18-day schistosomula, suggesting that Sj CyPB was schistosomula differentially expressed gene. The recombinant protein showed a good antigenicity detected by Western blotting. Animal experiment indicated that the vaccination of recombinant CyPB protein in mice led to 31.5% worm and 41.01% liver egg burden reduction, respectively, compared with those of the control. A full-length cDNA differentially expressed in schistosomula was obtained. The recombinant Sj CyPB protein could induce partial protection against schistosome infection.
Mamidala, Praveen; Mittapelly, Priyanka; Jones, Susan C; Piermarini, Peter M; Mittapalli, Omprakash
2013-04-01
The molecular genetics of inward-rectifier potassium (Kir) channels in insects is poorly understood. To date, Kir channel genes have been characterized only from a few representative dipterans (i.e., fruit flies and mosquitoes). The goal of the present study was to characterize Kir channel cDNAs in a hemipteran, the bed bug (Cimex lectularius). Using our previously reported bed bug transcriptome (RNA-seq), we identified two cDNAs that encode putative Kir channels. One was a full-length cDNA that encodes a protein belonging to the insect 'Kir3' clade, which we designate as 'ClKir3'. The other was a partial cDNA that encodes a protein with similarity to both the insect 'Kir1' and 'Kir2' clades, which we designate as 'ClKir1/2'. Quantitative real-time PCR analysis revealed that ClKir1/2 and ClKir3 exhibited peak expression levels in late-instar nymphs and early-instar nymphs, respectively. Furthermore, ClKir3, but not ClKir1/2, showed tissue-specific expression in Malpighian tubules of adult bed bugs. Lastly, using an improved procedure for delivering double-stranded RNA (dsRNA) to male and female bed bugs (via the cervical membrane) we demonstrate rapid and systemic knockdown of ClKir3 transcripts. In conclusion, we demonstrate that the bed bug possesses at least two genes encoding Kir channels, and that RNAi is possible for at least Kir3, thereby offering a potential approach for elucidating the roles of Kir channel genes in bed bug physiology. Copyright © 2013 Elsevier Inc. All rights reserved.
Marques, M Carmen; Alonso-Cantabrana, Hugo; Forment, Javier; Arribas, Raquel; Alamar, Santiago; Conejero, Vicente; Perez-Amador, Miguel A
2009-01-01
Background Interpretation of ever-increasing raw sequence information generated by modern genome sequencing technologies faces multiple challenges, such as gene function analysis and genome annotation. Indeed, nearly 40% of genes in plants encode proteins of unknown function. Functional characterization of these genes is one of the main challenges in modern biology. In this regard, the availability of full-length cDNA clones may fill in the gap created between sequence information and biological knowledge. Full-length cDNA clones facilitate functional analysis of the corresponding genes enabling manipulation of their expression in heterologous systems and the generation of a variety of tagged versions of the native protein. In addition, the development of full-length cDNA sequences has the power to improve the quality of genome annotation. Results We developed an integrated method to generate a new normalized EST collection enriched in full-length and rare transcripts of different citrus species from multiple tissues and developmental stages. We constructed a total of 15 cDNA libraries, from which we isolated 10,898 high-quality ESTs representing 6142 different genes. Percentages of redundancy and proportion of full-length clones range from 8 to 33, and 67 to 85, respectively, indicating good efficiency of the approach employed. The new EST collection adds 2113 new citrus ESTs, representing 1831 unigenes, to the collection of citrus genes available in the public databases. To facilitate functional analysis, cDNAs were introduced in a Gateway-based cloning vector for high-throughput functional analysis of genes in planta. Herein, we describe the technical methods used in the library construction, sequence analysis of clones and the overexpression of CitrSEP, a citrus homolog to the Arabidopsis SEP3 gene, in Arabidopsis as an example of a practical application of the engineered Gateway vector for functional analysis. Conclusion The new EST collection denotes an important step towards the identification of all genes in the citrus genome. Furthermore, public availability of the cDNA clones generated in this study, and not only their sequence, enables testing of the biological function of the genes represented in the collection. Expression of the citrus SEP3 homologue, CitrSEP, in Arabidopsis results in early flowering, along with other phenotypes resembling the over-expression of the Arabidopsis SEPALLATA genes. Our findings suggest that the members of the SEP gene family play similar roles in these quite distant plant species. PMID:19747386
Molecular cloning and characterization of two novel NAC genes from Mikania micrantha (Asteraceae).
Li, D M; Wang, J H; Peng, S L; Zhu, G F; Lü, F B
2012-12-17
NAC proteins, which are plant-specific transcription factors, have been identified to play important roles in plant response to stresses and in plant development. The full-length cDNAs that encode 2 putative NAC proteins, designated as MmATAF1 and MmNAP, respectively, were cloned from Mikania micrantha by rapid amplification of cDNA ends. The full-length cDNAs of MmATAF1 and MmNAP were 1329 and 1072 bp, respectively, and they encoded deduced proteins of 260- and 278-amino acid residues, respectively. The proteins MmATAF1 and MmNAP had a calculated molecular mass of 29.81 and 32.55 kDa and a theoretical isoelectric point of 7.08 and 9.00, respectively. Nucleotide sequence data indicated that both MmATAF1 and MmNAP contained 2 introns and 3 exons and that they shared a conserved genomic organization. Multiple sequence alignments showed that MmATAF1 showed high sequence identity with ATAF1 of Arabidopsis thaliana (61%) and that MmNAP showed high sequence identity with NAP of A. thaliana (67%) and CitNAC of Citrus sinensis Osbeck (62%). Phylogenetic analysis showed that the predicted MmATAF1 and MmNAP proteins were classified into the ATAF and NAP subgroups, respectively. Transient expression analysis of onion epidermal cells indicated nuclear localization of both MmATAF1-GFP and MmNAP-GFP fusion proteins. Semi-quantitative reverse transcription polymerase chain reaction (RT-PCR) analysis indicated that MmATAF1 was expressed in all the tissues tested, but in varying abundance, while MmNAP was specifically expressed in stems, petioles, shoots, and leaves, but not in roots. The transcript levels of MmATAF1 and MmNAP in shoots and in infected stems were induced and strengthened by wounding, exogenous ZnSO(4), abscisic acid, salicylic acid, and Cuscuta campestris infection on the basis of semi-quantitative RT-PCR and real-time PCR analyses, respectively. Collectively, these results indicated that MmATAF1 and MmNAP, besides having roles in M. micrantha adaptation to C. campestris infection and abiotic stresses, also integrated signals derived from both C. campestris infection and abiotic stresses.
Jessup, R W; Burson, B L; Burow, O; Wang, Y W; Chang, C; Li, Z; Paterson, A H; Hussey, M A
2003-04-01
Linkage analyses increasingly complement cytological and traditional plant breeding techniques by providing valuable information regarding genome organization and transmission genetics of complex polyploid species. This study reports a genome map of buffelgrass (Pennisetum ciliare (L.) Link syn. Cenchrus ciliaris L.). Maternal and paternal maps were constructed with restriction fragment length polymorphisms (RFLPs) segregating in 87 F1 progeny from an intraspecific cross between two heterozygous genotypes. A survey of 862 heterologous cDNAs and gDNAs from across the Poaceae, as well as 443 buffelgrass cDNAs, yielded 100 and 360 polymorphic probes, respectively. The maternal map included 322 RFLPs, 47 linkage groups, and 3464 cM, whereas the paternal map contained 245 RFLPs, 42 linkage groups, and 2757 cM. Approximately 70 to 80% of the buffelgrass genome was covered, and the average marker spacing was 10.8 and 11.3 cM on the respective maps. Preferential pairing was indicated between many linkage groups, which supports cytological reports that buffelgrass is a segmental allotetraploid. More preferential pairing (disomy) was found in the maternal than paternal parent across linkage groups (55 vs. 38%) and loci (48 vs. 15%). Comparison of interval lengths in 15 allelic bridges indicated significantly less meiotic recombination in paternal gametes. Allelic interactions were detected in four regions of the maternal map and were absent in the paternal map.
Sakurai, Tetsuya; Kondou, Youichi; Akiyama, Kenji; Kurotani, Atsushi; Higuchi, Mieko; Ichikawa, Takanari; Kuroda, Hirofumi; Kusano, Miyako; Mori, Masaki; Saitou, Tsutomu; Sakakibara, Hitoshi; Sugano, Shoji; Suzuki, Makoto; Takahashi, Hideki; Takahashi, Shinya; Takatsuji, Hiroshi; Yokotani, Naoki; Yoshizumi, Takeshi; Saito, Kazuki; Shinozaki, Kazuo; Oda, Kenji; Hirochika, Hirohiko; Matsui, Minami
2011-02-01
Identification of gene function is important not only for basic research but also for applied science, especially with regard to improvements in crop production. For rapid and efficient elucidation of useful traits, we developed a system named FOX hunting (Full-length cDNA Over-eXpressor gene hunting) using full-length cDNAs (fl-cDNAs). A heterologous expression approach provides a solution for the high-throughput characterization of gene functions in agricultural plant species. Since fl-cDNAs contain all the information of functional mRNAs and proteins, we introduced rice fl-cDNAs into Arabidopsis plants for systematic gain-of-function mutation. We generated >30,000 independent Arabidopsis transgenic lines expressing rice fl-cDNAs (rice FOX Arabidopsis mutant lines). These rice FOX Arabidopsis lines were screened systematically for various criteria such as morphology, photosynthesis, UV resistance, element composition, plant hormone profile, metabolite profile/fingerprinting, bacterial resistance, and heat and salt tolerance. The information obtained from these screenings was compiled into a database named 'RiceFOX'. This database contains around 18,000 records of rice FOX Arabidopsis lines and allows users to search against all the observed results, ranging from morphological to invisible traits. The number of searchable items is approximately 100; moreover, the rice FOX Arabidopsis lines can be searched by rice and Arabidopsis gene/protein identifiers, sequence similarity to the introduced rice fl-cDNA and traits. The RiceFOX database is available at http://ricefox.psc.riken.jp/.
Sakurai, Tetsuya; Kondou, Youichi; Akiyama, Kenji; Kurotani, Atsushi; Higuchi, Mieko; Ichikawa, Takanari; Kuroda, Hirofumi; Kusano, Miyako; Mori, Masaki; Saitou, Tsutomu; Sakakibara, Hitoshi; Sugano, Shoji; Suzuki, Makoto; Takahashi, Hideki; Takahashi, Shinya; Takatsuji, Hiroshi; Yokotani, Naoki; Yoshizumi, Takeshi; Saito, Kazuki; Shinozaki, Kazuo; Oda, Kenji; Hirochika, Hirohiko; Matsui, Minami
2011-01-01
Identification of gene function is important not only for basic research but also for applied science, especially with regard to improvements in crop production. For rapid and efficient elucidation of useful traits, we developed a system named FOX hunting (Full-length cDNA Over-eXpressor gene hunting) using full-length cDNAs (fl-cDNAs). A heterologous expression approach provides a solution for the high-throughput characterization of gene functions in agricultural plant species. Since fl-cDNAs contain all the information of functional mRNAs and proteins, we introduced rice fl-cDNAs into Arabidopsis plants for systematic gain-of-function mutation. We generated >30,000 independent Arabidopsis transgenic lines expressing rice fl-cDNAs (rice FOX Arabidopsis mutant lines). These rice FOX Arabidopsis lines were screened systematically for various criteria such as morphology, photosynthesis, UV resistance, element composition, plant hormone profile, metabolite profile/fingerprinting, bacterial resistance, and heat and salt tolerance. The information obtained from these screenings was compiled into a database named ‘RiceFOX’. This database contains around 18,000 records of rice FOX Arabidopsis lines and allows users to search against all the observed results, ranging from morphological to invisible traits. The number of searchable items is approximately 100; moreover, the rice FOX Arabidopsis lines can be searched by rice and Arabidopsis gene/protein identifiers, sequence similarity to the introduced rice fl-cDNA and traits. The RiceFOX database is available at http://ricefox.psc.riken.jp/. PMID:21186176
Wang, Guixiang; He, Qunyan; Liu, Fan; Cheng, Zhukuan; Talbert, Paul B; Jin, Weiwei
2011-08-01
CENH3 is a centromere-specific histone H3 variant and has been used as a marker to identify active centromeres and DNA sequences associated with functional centromere/kinetochore complexes. In this study, up to four distinct CENH3 (BrCENH3) cDNAs were identified in individuals of each of three diploid species of Brassica. Comparison of the BrCENH3 cDNAs implied three related gene families: BrCENH3-A in Brassica rapa (AA), BrCENH3-B in B. nigra (BB), and BrCENH3-C in B. oleracea (CC). Each family encoded a histone fold domain and N-terminal histone tails that vary in length in all three families. The BrCENH3-B cDNAs have a deletion of two exons relative to BrCENH3-A and BrCENH3-C, consistent with the more ancient divergence of the BB genome. Chromatin immunoprecipitation and immunolabeling tests with anti-BrCENH3 antibodies indicated that both centromeric tandem repeats and the centromere-specific retrotransposons of Brassica are directly associated with BrCENH3 proteins. In three allotetraploid species, we find either co-transcription of the BrCENH3 genes of the ancestral diploid species or gene suppression of the BrCENH3 from one ancestor. Although B genome centromeres are occupied by BrCENH3-B in the ancestral species B. nigra, in allotetraploids both BrCENH3-A and BrCENH3-C proteins appear to assemble at these centromeres.
Cárdenas-Conejo, Yair; Carballo-Uicab, Víctor; Lieberman, Meric; ...
2015-10-28
Bixin or annatto is a commercially important natural orange-red pigment derived from lycopene that is produced and stored in seeds of Bixa orellana L. An enzymatic pathway for bixin biosynthesis was inferred from homology of putative proteins encoded by differentially expressed seed cDNAs. Some activities were later validated in a heterologous system. Nevertheless, much of the pathway remains to be clarified. For example, it is essential to identify the methylerythritol phosphate (MEP) and carotenoid pathways genes. In order to investigate the MEP, carotenoid, and bixin pathways genes, total RNA from young leaves and two different developmental stages of seeds frommore » B. orellana were used for the construction of indexed mRNA libraries, sequenced on the Illumina HiSeq 2500 platform and assembled de novo using Velvet, CLC Genomics Workbench and CAP3 software. A total of 52,549 contigs were obtained with average length of 1,924 bp. Two phylogenetic analyses of inferred proteins, in one case encoded by thirteen general, single-copy cDNAs, in the other from carotenoid and MEP cDNAs, indicated that B. orellana is closely related to sister Malvales species cacao and cotton. Using homology, we identified 7 and 14 core gene products from the MEP and carotenoid pathways, respectively. Surprisingly, previously defined bixin pathway cDNAs were not present in our transcriptome. Here we propose a new set of gene products involved in bixin pathway. In conclusion, the identification and qRT-PCR quantification of cDNAs involved in annatto production suggest a hypothetical model for bixin biosynthesis that involve coordinated activation of some MEP, carotenoid and bixin pathway genes. These findings provide a better understanding of the mechanisms regulating these pathways and will facilitate the genetic improvement of B. orellana.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cárdenas-Conejo, Yair; Carballo-Uicab, Víctor; Lieberman, Meric
Bixin or annatto is a commercially important natural orange-red pigment derived from lycopene that is produced and stored in seeds of Bixa orellana L. An enzymatic pathway for bixin biosynthesis was inferred from homology of putative proteins encoded by differentially expressed seed cDNAs. Some activities were later validated in a heterologous system. Nevertheless, much of the pathway remains to be clarified. For example, it is essential to identify the methylerythritol phosphate (MEP) and carotenoid pathways genes. In order to investigate the MEP, carotenoid, and bixin pathways genes, total RNA from young leaves and two different developmental stages of seeds frommore » B. orellana were used for the construction of indexed mRNA libraries, sequenced on the Illumina HiSeq 2500 platform and assembled de novo using Velvet, CLC Genomics Workbench and CAP3 software. A total of 52,549 contigs were obtained with average length of 1,924 bp. Two phylogenetic analyses of inferred proteins, in one case encoded by thirteen general, single-copy cDNAs, in the other from carotenoid and MEP cDNAs, indicated that B. orellana is closely related to sister Malvales species cacao and cotton. Using homology, we identified 7 and 14 core gene products from the MEP and carotenoid pathways, respectively. Surprisingly, previously defined bixin pathway cDNAs were not present in our transcriptome. Here we propose a new set of gene products involved in bixin pathway. In conclusion, the identification and qRT-PCR quantification of cDNAs involved in annatto production suggest a hypothetical model for bixin biosynthesis that involve coordinated activation of some MEP, carotenoid and bixin pathway genes. These findings provide a better understanding of the mechanisms regulating these pathways and will facilitate the genetic improvement of B. orellana.« less
Wu, Jinxia; Zhang, Zhiguo; Zhang, Qian; Liu, Yayun; Zhu, Butuo; Cao, Jian; Li, Zhanpeng; Han, Longzhi; Jia, Jizeng; Zhao, Guangyao; Sun, Xuehui
2015-01-01
Transcription factors (TFs) play important roles in plant growth, development, and responses to environmental stress. In this study, we collected 1,455 full-length (FL) cDNAs of TFs, representing 45 families, from wheat and its relatives Triticum urartu, Aegilops speltoides, Aegilops tauschii, Triticum carthlicum, and Triticum aestivum. More than 15,000 T0 TF FOX (Full-length cDNA Over-eXpressing) rice lines were generated; of these, 10,496 lines set seeds. About 14.88% of the T0 plants showed obvious phenotypic changes. T1 lines (5,232 lines) were screened for salt and osmotic stress tolerance using 150 mM NaCl and 20% (v/v) PEG-4000, respectively. Among them, five lines (591, 746, 1647, 1812, and J4065) showed enhanced salt stress tolerance, five lines (591, 746, 898, 1078, and 1647) showed enhanced osmotic stress tolerance, and three lines (591, 746, and 1647) showed both salt and osmotic stress tolerance. Further analysis of the T-DNA flanking sequences showed that line 746 over-expressed TaEREB1, line 898 over-expressed TabZIPD, and lines 1812 and J4065 over-expressed TaOBF1a and TaOBF1b, respectively. The enhanced salt and osmotic stress tolerance of lines 898 and 1812 was confirmed by retransformation of the respective genes. Our results demonstrate that a heterologous FOX system may be used as an alternative genetic resource for the systematic functional analysis of the wheat genome.
Tian, Wenlan; Paudel, Dev
2017-01-01
Jatropha (Jatropha curcas L.) is an economically important species with a great potential for biodiesel production. To enrich the jatropha genomic databases and resources for microgravity studies, we sequenced and annotated the transcriptome of jatropha and developed SSR and SNP markers from the transcriptome sequences. In total 1,714,433 raw reads with an average length of 441.2 nucleotides were generated. De novo assembling and clustering resulted in 115,611 uniquely assembled sequences (UASs) including 21,418 full-length cDNAs and 23,264 new jatropha transcript sequences. The whole set of UASs were fully annotated, out of which 59,903 (51.81%) were assigned with gene ontology (GO) term, 12,584 (10.88%) had orthologs in Eukaryotic Orthologous Groups (KOG), and 8,822 (7.63%) were mapped to 317 pathways in six different categories in Kyoto Encyclopedia of Genes and Genome (KEGG) database, and it contained 3,588 putative transcription factors. From the UASs, 9,798 SSRs were discovered with AG/CT as the most frequent (45.8%) SSR motif type. Further 38,693 SNPs were detected and 7,584 remained after filtering. This UAS set has enriched the current jatropha genomic databases and provided a large number of genetic markers, which can facilitate jatropha genetic improvement and many other genetic and biological studies. PMID:28154822
Ortega, Joaquín; Martín-Benito, Jaime; Zürcher, Thomas; Valpuesta, José M.; Carrascosa, José L.; Ortín, Juan
2000-01-01
Influenza virus ribonucleoproteins (RNPs) were reconstituted in vivo from cloned cDNAs expressing the three polymerase subunits, the nucleoprotein (NP), and short template RNAs. The structure of purified RNPs was studied by electron microscopy and image processing. Circular and elliptic structures were obtained in which the NP and the polymerase complex could be defined. Comparison of the structure of RNPs of various lengths indicated that each NP monomer interacts with approximately 24 nucleotides. The analysis of the amplification of RNPs with different lengths showed that those with the highest replication efficiency contained an even number of NP monomers, suggesting that the NP is incorporated as dimers into newly synthesized RNPs. PMID:10590102
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ibrahim, Amr; Present address: Genomics Facility, Agricultural Genetic Engineering Research Institute, Agricultural Research Center, Giza 12619; Hutchens, Heather M.
2012-11-25
To identify the virus components important for assembly of the Alfalfa mosaic virus replicase complex, we used live cell imaging of Arabidopsis thaliana protoplasts that expressed various virus cDNAs encoding native and GFP-fusion proteins of P1 and P2 replicase proteins and full-length virus RNAs. Expression of P1-GFP alone resulted in fluorescent vesicle-like bodies in the cytoplasm that colocalized with FM4-64, an endocytic marker, and RFP-AtVSR2, RabF2a/Rha1-mCherry, and RabF2b/Ara7-mCherry, all of which localize to multivesicular bodies (MVBs), which are also called prevacuolar compartments, that mediate traffic to the lytic vacuole. GFP-P2 was driven from the cytosol to MVBs when expressed withmore » P1 indicating that P1 recruited GFP-P2. P1-GFP localized on the tonoplast, which surrounds the vacuole, in the presence of infectious virus RNA, replication competent RNA2, or P2 and replication competent RNA1 or RNA3. This suggests that a functional replication complex containing P1, P2, and a full-length AMV RNA assembles on MVBs to traffic to the tonoplast.« less
Veiga, Ana B. G.; Ribeiro, José M. C.; Guimarães, Jorge A.; Francischetti, Ivo M.B.
2010-01-01
Accidents with the caterpillar Lonomia obliqua are often associated with a coagulation disorder and hemorrhagic syndrome in humans. In the present study, we have constructed cDNA libraries from two venomous structures of the caterpillar, namely the tegument and the bristle. High-throughput sequencing and bioinformatics analyses were performed in parallel. Over one thousand cDNAs were obtained and clustered to produce a database of 538 contigs and singletons (clusters) for the tegument library and 368 for the bristle library. We have thus identified dozens of full-length cDNAs coding for proteins with sequence homology to snake venom prothrombin activator, trypsin-like enzymes, blood coagulation factors and prophenoloxidase cascade activators. We also report cDNA coding for cysteine proteases, Group III phospholipase A2, C-type lectins, lipocalins, in addition to protease inhibitors including serpins, Kazal-type inhibitors, cystatins and trypsin inhibitor-like molecules. Antibacterial proteins and housekeeping genes are also described. A significant number of sequences were devoid of database matches, suggesting that their biologic function remains to be defined. We also report the N-terminus of the most abundant proteins present in the bristle, tegument, hemolymph, and "cryosecretion". Thus, we have created a catalog that contains the predicted molecular weight, isoelectric point, accession number, and putative function for each selected molecule from the venomous structures of L. obliqua. The role of these molecules in the coagulation disorder and hemorrhagic syndrome caused by envenomation with this caterpillar is discussed. All sequence information and the Supplemental Data, including Figures and Tables with hyperlinks to FASTA-formatted files for each contig and the best match to the Databases, are available at http://www.ncbi.nih.gov/projects/omes. PMID:16023793
Piermarini, Peter M.; Rouhier, Matthew F.; Schepel, Matthew; Kosse, Christin; Beyenbach, Klaus W.
2013-01-01
Inward-rectifying K+ (Kir) channels play critical physiological roles in a variety of vertebrate cells/tissues, including the regulation of membrane potential in nerve and muscle, and the transepithelial transport of ions in osmoregulatory epithelia, such as kidneys and gills. It remains to be determined whether Kir channels play similar physiological roles in insects. In the present study, we sought to 1) clone the cDNAs of Kir channel subunits expressed in the renal (Malpighian) tubules of the mosquito Aedes aegypti, and 2) characterize the electrophysiological properties of the cloned Kir subunits when expressed heterologously in oocytes of Xenopus laevis. Here, we reveal that three Kir subunits are expressed abundantly in Aedes Malpighian tubules (AeKir1, AeKir2B, and AeKir3); each of their full-length cDNAs was cloned. Heterologous expression of the AeKir1 or the AeKir2B subunits in Xenopus oocytes elicits inward-rectifying K+ currents that are blocked by barium. Relative to the AeKir2B-expressing oocytes, the AeKir1-expressing oocytes 1) produce larger macroscopic currents, and 2) exhibit a modulation of their conductive properties by extracellular Na+. Attempts to functionally characterize the AeKir3 subunit in Xenopus oocytes were unsuccessful. Lastly, we show that in isolated Aedes Malpighian tubules, the cation permeability sequence of the basolateral membrane of principal cells (Tl+ > K+ > Rb+ > NH4+) is consistent with the presence of functional Kir channels. We conclude that in Aedes Malpighian tubules, Kir channels contribute to the majority of the barium-sensitive transepithelial transport of K+. PMID:23085358
Freire, José E. C.; Vasconcelos, Ilka M.; Moreno, Frederico B. M. B.; Batista, Adelina B.; Lobo, Marina D. P.; Pereira, Mirella L.; Lima, João P. M. S.; Almeida, Ricardo V. M.; Sousa, Antônio J. S.; Monteiro-Moreira, Ana C. O.; Oliveira, José T. A.; Grangeiro, Thalles B.
2015-01-01
Mo-CBP3 is a chitin-binding protein from M. oleifera seeds that inhibits the germination and mycelial growth of phytopathogenic fungi. This protein is highly thermostable and resistant to pH changes, and therefore may be useful in the development of new antifungal drugs. However, the relationship of MoCBP3 with the known families of carbohydrate-binding domains has not been established. In the present study, full-length cDNAs encoding 4 isoforms of Mo-CBP3 (Mo-CBP3-1, Mo-CBP3-2, Mo-CBP3-3 and Mo-CBP3-4) were cloned from developing seeds. The polypeptides encoded by the Mo-CBP3 cDNAs were predicted to contain 160 (Mo-CBP3-3) and 163 amino acid residues (Mo-CBP3-1, Mo-CBP3-2 and Mo-CBP3-4) with a signal peptide of 20-residues at the N-terminal region. A comparative analysis of the deduced amino acid sequences revealed that Mo-CBP3 is a typical member of the 2S albumin family, as shown by the presence of an eight-cysteine motif, which is a characteristic feature of the prolamin superfamily. Furthermore, mass spectrometry analysis demonstrated that Mo-CBP3 is a mixture of isoforms that correspond to different mRNA products. The identification of Mo-CBP3 as a genuine member of the 2S albumin family reinforces the hypothesis that these seed storage proteins are involved in plant defense. Moreover, the chitin-binding ability of Mo-CBP3 reveals a novel functionality for a typical 2S albumin. PMID:25789746
Zhao, Daqiu; Tang, Wenhui; Hao, Zhaojun; Tao, Jun
2015-04-10
Tree peony (Paeonia suffruticosa Andr.) has been named the "king of flowers" because of its elegant and gorgeous flower colour. Among these colours, the molecular mechanisms of white formation and how white turned to red in P. suffruticosa is little known. In this study, flower colour variables, flavonoid accumulation and expression of flavonoid biosynthetic genes of white ('Xueta') and red ('Caihui') P. suffruticosa were investigated. The results showed that the flower colours of both cultivars were gradually deepened with the development of flowers. Moreover, two anthoxanthin compositions apigenin 7-O-glucoside together with apigenin deoxyheso-hexoside were identified in 'Xueta' and 'Caihui', but one main anthocyanin composition peonidin 3,5-di-O-glucoside (Pn3G5G) was only found in 'Caihui'. Total contents of anthocyanins in 'Caihui' was increased during flower development, and the same trend was presented in anthoxanthins and flavonoids of these two cultivars, but the contents of these two category flavonoid in 'Caihui' were always higher than those in 'Xueta'. Furthermore, nine structural genes in flavonoid biosynthetic pathway were isolated including the full-length cDNAs of phenylalanine ammonialyase gene (PAL), chalcone synthase gene (CHS) and chalcone isomerase gene (CHI), together with the partial-length cDNAs of flavanone 3-hydroxylase gene (F3H), flavonoid 3'-hydroxylase gene (F3'H), dihydroflavonol 4-reductase gene (DFR), anthocyanidin synthase gene (ANS), UDP-glucose: flavonoid 3-O-glucosyltransferase gene (UF3GT) and UDP-glucose: flavonoid 5-O-glucosyltransferase gene (UF5GT), and PAL, UF3GT and UF5GT were reported in P. suffruticosa for the first time. Their expression patterns showed that transcription levels of downstream genes in 'Caihui' were basically higher than those in 'Xueta', especially PsDFR and PsANS, suggesting that these two genes may play a key role in the anthocyanin biosynthesis which resulted in the shift from white to red in flowers. These results would provide a better understanding of the underlying molecular mechanisms of flower pigmentation in P. suffruticosa. Copyright © 2015 Elsevier Inc. All rights reserved.
Xu, Kun; Zhang, Ting Ting; Wang, Ling; Zhang, Cun Fang; Zhang, Long; Ma, Li Xia; Xin, Ying; Ren, Chong Hua; Zhang, Zhi Qiang; Yan, Qiang; Martineau, Daniel; Zhang, Zhi Ying
2013-02-01
Walleye dermal sarcoma virus (WDSV) is etiologically associated with a skin tumor, walleye dermal sarcoma (WDS), which develops in the fall and regresses in the spring. WDSV genome contains, in addition to gag, pol and env, three open reading frames (orfs) designated orf a (rv-cyclin), orf b and orf c. Unintegrated linear WDSV provirus DNA isolated from infected tumor cells was used to construct a full-length WDSV provirus clone pWDSV, while orf a was cloned into pSVK3 to construct the expression vector porfA. Stable co-transfection of a walleye cell line (W12) with pWDSV and pcDNA3 generated fewer and smaller G418-resistant colonies compared to the control. By Northern blot analysis, several small transcripts (2.8, 1.8, 1.2, and 0.8 kb) were detected using a WDSV LTR-specific probe. By RT-PCR and Southern blot analysis, three cDNAs (2.4, 1.6 and 0.8 kb) were identified, including both orf a and orf b messenger. Furthermore stable co-transfection of both a human lung adenocarcinoma cell line (SPC-A-1) and a cervical cancer cell line (HeLa) with pcDNA3 and ether porfA or pWDSV also generated fewer and smaller G418-resistant colonies. We conclude that expression of the full-length WDSV clone or the orf a gene inhibits the host fish and human tumor cell growth, and Orf A protein maybe a potential factor which contributes to the seasonal tumor development and regression. This is the first fish provirus clone that has been expressed in cell culture system, which will provide a new in vitro model for tumor research and oncotherapy study.
Jin, Zhehao; Kwon, Moonhyuk; Lee, Ah-Reum; Ro, Dae-Kyun; Wungsintaweekul, Juraithip; Kim, Soo-Un
2018-01-15
To identify terpene synthases (TPS) responsible for the biosynthesis of the sesquiterpenes that contribute to the characteristic flavors of black pepper (Piper nigrum), unripe peppercorn was subjected to the Illumina transcriptome sequencing. The BLAST analysis using amorpha-4,11-diene synthase as a query identified 19 sesquiterpene synthases (sesqui-TPSs), of which three full-length cDNAs (PnTPS1 through 3) were cloned. These sesqui-TPS cDNAs were expressed in E. coli to produce recombinant enzymes for in vitro assays, and also expressed in the engineered yeast strain to assess their catalytic activities in vivo. PnTPS1 produced β-caryophyllene as a main product and humulene as a minor compound, and thus was named caryophyllene synthase (PnCPS). Likewise, PnTPS2 and PnTPS3 were, respectively, named cadinol/cadinene synthase (PnCO/CDS) and germacrene D synthase (PnGDS). PnGDS expression in yeast yielded β-cadinene and α-copaene, the rearrangement products of germacrene D. Their k cat /K m values (20-37.7 s -1 mM -1 ) were comparable to those of other sesqui-TPSs. Among three PnTPSs, the transcript level of PnCPS was the highest, correlating with the predominant β-caryophyllene biosynthesis in the peppercorn. The products and rearranged products of three PnTPSs could account for about a half of the sesquiterpenes in number found in unripe peppercorn. Copyright © 2017 Elsevier Inc. All rights reserved.
Identification of human chromosome 22 transcribed sequences with ORF expressed sequence tags
de Souza, Sandro J.; Camargo, Anamaria A.; Briones, Marcelo R. S.; Costa, Fernando F.; Nagai, Maria Aparecida; Verjovski-Almeida, Sergio; Zago, Marco A.; Andrade, Luis Eduardo C.; Carrer, Helaine; El-Dorry, Hamza F. A.; Espreafico, Enilza M.; Habr-Gama, Angelita; Giannella-Neto, Daniel; Goldman, Gustavo H.; Gruber, Arthur; Hackel, Christine; Kimura, Edna T.; Maciel, Rui M. B.; Marie, Suely K. N.; Martins, Elizabeth A. L.; Nóbrega, Marina P.; Paçó-Larson, Maria Luisa; Pardini, Maria Inês M. C.; Pereira, Gonçalo G.; Pesquero, João Bosco; Rodrigues, Vanderlei; Rogatto, Silvia R.; da Silva, Ismael D. C. G.; Sogayar, Mari C.; de Fátima Sonati, Maria; Tajara, Eloiza H.; Valentini, Sandro R.; Acencio, Marcio; Alberto, Fernando L.; Amaral, Maria Elisabete J.; Aneas, Ivy; Bengtson, Mário Henrique; Carraro, Dirce M.; Carvalho, Alex F.; Carvalho, Lúcia Helena; Cerutti, Janete M.; Corrêa, Maria Lucia C.; Costa, Maria Cristina R.; Curcio, Cyntia; Gushiken, Tsieko; Ho, Paulo L.; Kimura, Elza; Leite, Luciana C. C.; Maia, Gustavo; Majumder, Paromita; Marins, Mozart; Matsukuma, Adriana; Melo, Analy S. A.; Mestriner, Carlos Alberto; Miracca, Elisabete C.; Miranda, Daniela C.; Nascimento, Ana Lucia T. O.; Nóbrega, Francisco G.; Ojopi, Élida P. B.; Pandolfi, José Rodrigo C.; Pessoa, Luciana Gilbert; Rahal, Paula; Rainho, Claudia A.; da Ro's, Nancy; de Sá, Renata G.; Sales, Magaly M.; da Silva, Neusa P.; Silva, Tereza C.; da Silva, Wilson; Simão, Daniel F.; Sousa, Josane F.; Stecconi, Daniella; Tsukumo, Fernando; Valente, Valéria; Zalcberg, Heloisa; Brentani, Ricardo R.; Reis, Luis F. L.; Dias-Neto, Emmanuel; Simpson, Andrew J. G.
2000-01-01
Transcribed sequences in the human genome can be identified with confidence only by alignment with sequences derived from cDNAs synthesized from naturally occurring mRNAs. We constructed a set of 250,000 cDNAs that represent partial expressed gene sequences and that are biased toward the central coding regions of the resulting transcripts. They are termed ORF expressed sequence tags (ORESTES). The 250,000 ORESTES were assembled into 81,429 contigs. Of these, 1,181 (1.45%) were found to match sequences in chromosome 22 with at least one ORESTES contig for 162 (65.6%) of the 247 known genes, for 67 (44.6%) of the 150 related genes, and for 45 of the 148 (30.4%) EST-predicted genes on this chromosome. Using a set of stringent criteria to validate our sequences, we identified a further 219 previously unannotated transcribed sequences on chromosome 22. Of these, 171 were in fact also defined by EST or full length cDNA sequences available in GenBank but not utilized in the initial annotation of the first human chromosome sequence. Thus despite representing less than 15% of all expressed human sequences in the public databases at the time of the present analysis, ORESTES sequences defined 48 transcribed sequences on chromosome 22 not defined by other sequences. All of the transcribed sequences defined by ORESTES coincided with DNA regions predicted as encoding exons by genscan. (http://genes.mit.edu/GENSCAN.html). PMID:11070084
Oliveira-Neto, Osmundo B; Batista, João A N; Rigden, Daniel J; Fragoso, Rodrigo R; Silva, Rodrigo O; Gomes, Eliane A; Franco, Octávio L; Dias, Simoni C; Cordeiro, Célia M T; Monnerat, Rose G; Grossi-De-Sá, Maria F
2004-09-01
Fourteen different cDNA fragments encoding serine proteinases were isolated by reverse transcription-PCR from cotton boll weevil (Anthonomus grandis) larvae. A large diversity between the sequences was observed, with a mean pairwise identity of 22% in the amino acid sequence. The cDNAs encompassed 11 trypsin-like sequences classifiable into three families and three chymotrypsin-like sequences belonging to a single family. Using a combination of 5' and 3' RACE, the full-length sequence was obtained for five of the cDNAs, named Agser2, Agser5, Agser6, Agser10 and Agser21. The encoded proteins included amino acid sequence motifs of serine proteinase active sites, conserved cysteine residues, and both zymogen activation and signal peptides. Southern blotting analysis suggested that one or two copies of these serine proteinase genes exist in the A. grandis genome. Northern blotting analysis of Agser2 and Agser5 showed that for both genes, expression is induced upon feeding and is concentrated in the gut of larvae and adult insects. Reverse northern analysis of the 14 cDNA fragments showed that only two trypsin-like and two chymotrypsin-like were expressed at detectable levels. Under the effect of the serine proteinase inhibitors soybean Kunitz trypsin inhibitor and black-eyed pea trypsin/chymotrypsin inhibitor, expression of one of the trypsin-like sequences was upregulated while expression of the two chymotrypsin-like sequences was downregulated. Copyright 2004 Elsevier Ltd.
High-throughput protein analysis integrating bioinformatics and experimental assays
del Val, Coral; Mehrle, Alexander; Falkenhahn, Mechthild; Seiler, Markus; Glatting, Karl-Heinz; Poustka, Annemarie; Suhai, Sandor; Wiemann, Stefan
2004-01-01
The wealth of transcript information that has been made publicly available in recent years requires the development of high-throughput functional genomics and proteomics approaches for its analysis. Such approaches need suitable data integration procedures and a high level of automation in order to gain maximum benefit from the results generated. We have designed an automatic pipeline to analyse annotated open reading frames (ORFs) stemming from full-length cDNAs produced mainly by the German cDNA Consortium. The ORFs are cloned into expression vectors for use in large-scale assays such as the determination of subcellular protein localization or kinase reaction specificity. Additionally, all identified ORFs undergo exhaustive bioinformatic analysis such as similarity searches, protein domain architecture determination and prediction of physicochemical characteristics and secondary structure, using a wide variety of bioinformatic methods in combination with the most up-to-date public databases (e.g. PRINTS, BLOCKS, INTERPRO, PROSITE SWISSPROT). Data from experimental results and from the bioinformatic analysis are integrated and stored in a relational database (MS SQL-Server), which makes it possible for researchers to find answers to biological questions easily, thereby speeding up the selection of targets for further analysis. The designed pipeline constitutes a new automatic approach to obtaining and administrating relevant biological data from high-throughput investigations of cDNAs in order to systematically identify and characterize novel genes, as well as to comprehensively describe the function of the encoded proteins. PMID:14762202
Kwok, Amy Ho Yan; Wang, Yajun; Wang, Crystal Ying; Leung, Frederick C
2008-06-01
Prostaglandin E(2) (PGE(2)) is an important chemical mediator responsible for regulation of many vital physiological processes. Four receptor subtypes have been identified to mediate its biological actions. Among these subtypes, prostaglandin E receptor subtypes 2 and 4 (EP(2) and EP(4)), both coupled to cAMP-protein kinase A (cAMP-PKA) signaling pathway, are proposed to play crucial roles under both physiological and pathological conditions. Though both receptors were extensively studied in mammals, little is known about their functionality and expression in non-mammalian species including chicken. In present study, the full-length cDNAs for chicken EP(2) and EP(4) receptors were first cloned from adult chicken ovary and testis, respectively. Chicken EP(2) is 356 amino acids in length and shows high amino acid identity to that of human (61%), mouse (63%), and rat (61%). On the other hand, the full-length cDNA of EP(4) gene encodes a precursor of 475 amino acids with a high degree of amino acid identity to that of mammals, including human (87%), mouse (86%), rat (84%), dog (85%), and cattle (83%), and a comparatively lower sequence identity to zebrafish (52%). RT-PCR assays revealed that EP(2) mRNA was expressed in all tissues examined including the oviduct, while EP(4) expression was detected only in a few tissues. Using the pGL3-CRE-luciferase reporter system, we also demonstrated that PGE(2) could induce luciferase activity in DF-1 cells expressing EP(2) and EP(4) in dose-dependent manners (EC(50): <1 nM), confirming that both receptors could be activated by PGE(2) and functionally coupled to the cAMP-PKA signaling pathway. Together, our study establishes a molecular basis to understand the physiological roles of PGE(2) in target tissues of chicken.
Zhu, Changfu; Kauder, Friedrich; Römer, Susanne; Sandmann, Gerhard
2007-02-01
Two 9-cis-epoxycarotenoid dioxygenase (NCED) cDNAs have been cloned from a petal library of Gentiana lutea. Both cDNAs carry a putative transit sequence for chloroplast import and differ mainly in their length and the 5'-flanking regions. GlNCED1 was evolutionary closely related to Arabidopsis thaliana NCED6 whereas GlNCED2 showed highest homology to tomato NCED1 and A. thaliana NCED3. The amounts of GlNCED2 transcript were below Northern detection in G. lutea. In contrast, GlNCED1 was specifically expressed at higher levels in developing flowers when petals start appearing. By genetic engineering of tobacco with coding regions of either gene under a constitutive promoter, their function was further analyzed. Although mRNA of both genes was detectable in the corresponding transgenic plants, a physiological effect was only found for GlNCED1 but not for GlNCED2. In germination experiments of GlNCED1 transgenic lines, delayed radicle formation and cotyledon appearance were observed. However, the transformants exhibited no improved tolerance against desiccation stress. In contrast to other plants with over-expressed NCEDs, prolonged delay of seed germination is the only abscisic-acid-related phenotypic effect in the GlNCED1 transgenic lines.
Zeng, Yong; Loker, Eric S.
2013-01-01
Peptidoglycan (PGN) recognition proteins (PGRPs) and gram-negative bacteria binding proteins (GNBPs) play an essential role in Toll/Imd signaling pathways in arthropods. The existence of homologous pathways involving PGRPs and GNBPs in other major invertebrate phyla such as the Mollusca remains unclear. In this paper, we report four full-length PGRP cDNAs and one full-length GNBP cDNA cloned from the snail Biomphalaria glabrata, the intermediate host of the human blood fluke Schistosoma mansoni, designated as BgPGRPs and BgGNBP, respectively. Three transcripts are generated from a long form PGRP gene (BgPGRP-LA) by alternative splicing and one from a short form PGRP gene (BgPGRP-SA). BgGNBP encodes a putative secreted protein. Northern blots demonstrated that expression of BgPGRP-SA and BgGNBP was down-regulated in B. glabrata at 6 h after exposure to three types of microbes. No significant changes in expression were observed in snails at 2 days post-exposure (dpe) to the trematodes Echinostoma paraensei or S. mansoni. However, up-regulation of BgPGRP-SA in M line snails at later time points of infection with E. paraensei (i.e., 12 and 17 dpe) was observed. Our study revealed that exposure to either microbes or trematodes did not alter the expression levels of BgPGRP-LAs, which were consistently low. This study provides new insights into the potential pathogen recognition capabilities of molluscs, indicates that further studies of the Toll/Imd pathways in this phylum are in order, and provides additional ways to judge the importance of this pathway in the evolution of internal defense across the animal phyla. PMID:17805526
Sitthithaworn, W; Kojima, N; Viroonchatapan, E; Suh, D Y; Iwanami, N; Hayashi, T; Noji, M; Saito, K; Niwa, Y; Sankawa, U
2001-02-01
cDNAs encoding geranylgeranyl diphosphate synthase (GGPPS) of two diterpene-producing plants, Scoparia dulcis and Croton sublyratus, have been isolated using the homology-based polymerase chain reaction (PCR) method. Both clones contained highly conserved aspartate-rich motifs (DDXX(XX)D) and their N-terminal residues exhibited the characteristics of chloroplast targeting sequence. When expressed in Escherichia coli, both the full-length and truncated proteins in which the putative targeting sequence was deleted catalyzed the condensation of farnesyl diphosphate and isopentenyl diphosphate to produce geranylgeranyl diphosphate (GGPP). The structural factors determining the product length in plant GGPPSs were investigated by constructing S. dulcis GGPPS mutants on the basis of sequence comparison with the first aspartate-rich motif (FARM) of plant farnesyl diphosphate synthase. The result indicated that in plant GGPPSs small amino acids, Met and Ser, at the fourth and fifth positions before FARM and Pro and Cys insertion in FARM play essential roles in determination of product length. Further, when a chimeric gene comprised of the putative transit peptide of the S. dulcis GGPPS gene and a green fluorescent protein was introduced into Arabidopsis leaves by particle gun bombardment, the chimeric protein was localized in chloroplasts, indicating that the cloned S. dulcis GGPPS is a chloroplast protein.
Novel transcripts of the estrogen receptor α gene in channel catfish
Patino, Reynaldo; Xia, Zhenfang; Gale, William L.; Wu, Chunfa; Maule, Alec G.; Chang, Xiaotian
2000-01-01
Complementary DNA libraries from liver and ovary of an immature female channel catfish were screened with a homologous ERα cDNA probe. The hepatic library yielded two new channel catfish ER cDNAs that encode N-terminal ERα variants of different sizes. Relative to the catfish ERα (medium size; 581 residues) previously reported, these new cDNAs encode Long-ERα (36 residues longer) and Short-ERα (389 residues shorter). The 5′-end of Long-ERα cDNA is identical to that of Medium-ERα but has an additional 503-bp segment with an upstream, in-frame translation-start codon. Recombinant Long-ERα binds estrogen with high affinity (Kd = 3.4 nM), similar to that previously reported for Medium-ERα but lower than reported for catfish ERβ. Short-ERα cDNA encodes a protein that lacks most of the receptor protein and does not bind estrogen. Northern hybridization confirmed the existence of multiple hepatic ERα RNAs that include the size range of the ERα cDNAs obtained from the libraries as well as additional sizes. Using primers for RT-PCR that target locations internal to the protein-coding sequence, we also established the presence of several ERα cDNA variants with in-frame insertions in the ligand-binding and DNA-binding domains and in-frame or out-of-frame deletions in the ligand-binding domain. These internal variants showed patterns of expression that differed between the ovary and liver. Further, the ovarian library yielded a full-length, ERα antisense cDNA containing a poly(A) signal and tail. A limited survey of histological preparations from juvenile catfish by in situ hybridization using directionally synthesized cRNA probes also suggested the expression of ERα antisense RNA in a tissue-specific manner. In conclusion, channel catfish seemingly have three broad classes of ERα mRNA variants: those encoding N-terminal truncated variants, those encoding internal variants (including C-terminal truncated variants), and antisense mRNA. The sense variants may encode functional ERα or related proteins that modulate ERα or ERβ activity. The existence of ER antisense mRNA is reported in this study for the first time. Its role may be to participate in the regulation of ER gene expression.
Multiple vitellogenins from the Haemaphysalis longicornis tick are crucial for ovarian development.
Boldbaatar, Damdinsuren; Umemiya-Shirafuji, Rika; Liao, Min; Tanaka, Tetsuya; Xuan, Xuenan; Fujisaki, Kozo
2010-11-01
Ovarian development and egg maturation are crucial processes for the success of reproduction in ticks. Three full-length cDNAs encoding the precursor of major yolk protein, vitellogenin, were obtained from cDNA libraries of the Haemaphysalis longicornis tick and designated as HlVg-1, HlVg-2 and HlVg-3. The HlVg mRNAs were found in fed females with major expression sites in the midgut, fat body and ovary. Native PAGE and Western blot demonstrated that HlVgs in the hemolymph, fat body and ovary of fed females consisted of four major polypeptides. RNAi results showed that HlVg dsRNA-injected ticks obtained lower body weight, egg weight and showed higher mortality of engorged females after blood sucking than control groups. Our results indicate that all HlVgs are essential for egg development and oviposition. Copyright 2010 Elsevier Ltd. All rights reserved.
Functional cDNA expression cloning: Pushing it to the limit
OKAYAMA, Hiroto
2012-01-01
The 1970s and the following decade are the era of the birth and early development of recombinant DNA technologies, which have entirely revolutionized the modern life science by providing tools that enable us to know the structures of genes and genomes and to dissect their components and understand their functions at the molecular and submolecular levels. One major objective of the life sciences is to achieve molecular and chemical understandings of the functions of genes and their encoded proteins, which are responsible for the manifestation of all biological phenomena in organisms. In the early 1980s, I developed, together with Paul Berg, a new technique that enables the cloning of full-length complementary DNAs (cDNAs) on the basis of their functional expression in a given cell of interest. I review the development, application and future implications in the life sciences of this gene-cloning technique. PMID:22450538
Breast Reference Set Application: Karen Anderson-ASU (2014) — EDRN Public Portal
In order to increase the predictive value of tumor-specific antibodies for use as immunodiagnostics, our EDRN BDL has developed a novel protein microarray technology, termed Nucleic Acid Protein Programmable Array (NAPPA), which circumvents many of the limitations of traditional protein microarrays. NAPPA arrays are generated by printing full-length cDNAs encoding the target proteins at each feature of the array. The proteins are then transcribed and translated by a cell-free system and immobilized in situ using epitope tags fused to the proteins. Sera are added, and bound IgG is detected by standard secondary reagents. Using a sequential screening strategy to select AAb from 4,988 candidate tumor antigens, we have identified 28 potential AAb biomarkers for the early detection of breast cancer, and here we propose to evaluate these biomarkers using the EDRN Breast Cancer Reference Set.
Nonoguchi, K; Itoh, K; Xue, J H; Tokuchi, H; Nishiyama, H; Kaneko, Y; Tatsumi, K; Okuno, H; Tomiwa, K; Fujita, J
1999-09-03
In mice, the Hsp110/SSE family is composed of the heat shock protein (Hsp)110/105, Apg-1 and Apg-2. In humans, however, only the Hsp110/105 homolog has been identified as a member, and two cDNAs, Hsp70RY and HS24/p52, potentially encoding proteins structurally similar to, but smaller than, mouse Apg-2 have been reported. To clarify the membership of Hsp110 family in humans, we isolated Apg-1 and Apg-2 cDNAs from a human testis cDNA library. The human Apg-1 was 100% and 91.8% identical in length and amino acid (aa) sequence, respectively, to mouse Apg-1. Human Apg-2 was one aa shorter than and 95.5% identical in sequence to mouse Apg-2. In ECV304, human endothelial cells Apg-1 but not Apg-2 transcripts were induced in 2 h by a temperature shift from 32 degrees C to 39 degrees C. As found in mice, the response was stronger than that to a 37-42 degrees C shift. The human Apg-1 and Apg-2 genes were mapped to the chromosomal loci 4q28 and 5q23.3-q31.1, respectively, by fluorescence in-situ hybridization. We isolated cDNA and genomic clones encompassing the region critical for the difference between Apg-2 and HS24/p52. Although the primer sets used were derived from the sequences common to both cDNAs, all cDNA and genomic clones corresponded to Apg-2. Using a similar approach, the relationship between Apg-2 and Hsp70RY was assessed, and no clone corresponding to Hsp70RY was obtained. These results demonstrated that the Hsp110 family consists of at least three members, Apg-1, Apg-2 and Hsp110 in humans as well as in mice. The significance of HS24/p52 and Hsp70RY cDNAs previously reported remains to be determined.
Towards a transcription map spanning a 250 kb area within the DiGeorge syndrome chromosome region
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wong, W.; Emanuel, B.S.; Siegert, J.
1994-09-01
DiGeorge syndrome (DGS) and velocardiofacial syndrome (VCFS) are congenital anomalies affecting predominantly the thymus, parathyroid glands, heart and craniofacial development. Detection of 22q11.2 deletions in the majority of DGS and VCFS patients implicate 22q11 haploinsufficiency in the etiology of these disorders. The VCFS/DGS critical region lies within the proximal portion of a commonly deleted 1.2 Mb region in 22q11. A 250 kb cosmid contig covering this critical region and containing D22S74 (N25) has been established. From this contig, eleven cosmids with minimal overlap were biotinylated by nick translation, and hybridized to PCR-amplified cDNAs prepared from different tissues. The use ofmore » cDNAs from a variety of tissues increases the likelihood of identifying low abundance transcripts and tissue-specific expressed sequences. A DGCR-specific cDNA sublibrary consisting of 670 cDNA clones has been constructed. To date, 49 cDNA clones from this sub-library have been identified with single copy probes and cosmids containing putative CpG islands. Based on sequence analysis, 25 of the clones contain regions of homology to several cDNAs which map within the proximal contig. LAN is a novel partial cDNA isolated from a fetal brain library probed with one of the cosmids in the proximal contig. Using LAN as a probe, we have found 19 positive clones in the DGCR-specific cDNA sub-library (4 clones from fetal brain, 14 from adult skeletal muscle and one from fetal liver). Some of the LAN-positive clones extend the partial cDNA in the 5{prime} direction and will be useful in assembling a full length transcript. This resource will be used to develop a complete transcriptional map of the critical region in order to identify candidate gene(s) involved in the etiology of DGS/VCFS and to determine the relationship between the transcriptional and physical maps of 22q11.« less
FBI-1, a factor that binds to the HIV-1 inducer of short transcripts (IST), is a POZ domain protein.
Morrison, D J; Pendergrast, P S; Stavropoulos, P; Colmenares, S U; Kobayashi, R; Hernandez, N
1999-01-01
The HIV-1 promoter directs the synthesis of two classes of transcripts, short, non-polyadenylated transcripts and full-length, polyadenylated transcripts. The synthesis of short transcripts is activated by a bipartite DNA element, the inducer of short transcripts or IST, located downstream of the HIV-1 transcriptional start site, while the synthesis of full-length transcripts is activated by the viral activator Tat. Tat binds to the RNA element TAR, which is encoded largely between the two IST half-elements. Upon activation by Tat, the synthesis of short RNAs is repressed. We have previously purified a factor called FBI-1 (for factor that binds to IST) whose binding to wild-type and mutated ISTs correlated well with the abilities of these ISTs to direct the synthesis of short transcripts. Here, we report the cloning of cDNAs encoding FBI-1. FBI-1 contains a POZ domain at its N-terminus and four Krüppel-type zinc fingers at its C-terminus. The C-terminus is sufficient for specific binding, and FBI-1 can form homomers through its POZ domain and, in vivo, through its zinc finger domain as well. In addition, FBI-1 associates with Tat, suggesting that repression of the short transcripts by Tat may be mediated through interactions between the two factors. PMID:9973611
FBI-1, a factor that binds to the HIV-1 inducer of short transcripts (IST), is a POZ domain protein.
Morrison, D J; Pendergrast, P S; Stavropoulos, P; Colmenares, S U; Kobayashi, R; Hernandez, N
1999-03-01
The HIV-1 promoter directs the synthesis of two classes of transcripts, short, non-polyadenylated transcripts and full-length, polyadenylated transcripts. The synthesis of short transcripts is activated by a bipartite DNA element, the inducer of short transcripts or IST, located downstream of the HIV-1 transcriptional start site, while the synthesis of full-length transcripts is activated by the viral activator Tat. Tat binds to the RNA element TAR, which is encoded largely between the two IST half-elements. Upon activation by Tat, the synthesis of short RNAs is repressed. We have previously purified a factor called FBI-1 (for factor that binds to IST) whose binding to wild-type and mutated ISTs correlated well with the abilities of these ISTs to direct the synthesis of short transcripts. Here, we report the cloning of cDNAs encoding FBI-1. FBI-1 contains a POZ domain at its N-terminus and four Krüppel-type zinc fingers at its C-terminus. The C-terminus is sufficient for specific binding, and FBI-1 can form homomers through its POZ domain and, in vivo, through its zinc finger domain as well. In addition, FBI-1 associates with Tat, suggesting that repression of the short transcripts by Tat may be mediated through interactions between the two factors.
Harrison, Robert A; Ibison, Frances; Wilbraham, Davina; Wagstaff, Simon C
2007-05-01
The immobilisation of prey by snakes is most efficiently achieved by the rapid dissemination of venom from its site of injection into the blood stream. Hyaluronidase is a common component of snake venoms and has been termed the "venom spreading factor". In the absence of nucleotide or protein sequence data to confirm the functional identity of this venom component, we interrogated a venom gland EST database for the saw-scaled viper, Echis ocellatus (Nigeria), using the gene ontology (GO) term "carbohydrate metabolism". A single hyalurononglucosaminadase-activity matching sequence (EOC00242) was found and used to design PCR primers to acquire the full-length cDNA sequence. Although very different from the bee venom and mammalian hyaluronidase sequences, the E. ocellatus sequence retained all the catalytic, positional and structural residues that characterise this class of carbohydrate metabolising hydrolases. An extraordinarily high level of sequence identity (>95%) was observed in analogous venom gland cDNA sequences isolated (by PCR) from another saw-scaled viper species, E. pyramidum leakeyi (Kenya), and from the sahara horned viper, Cerastes cerastes cerastes (Egypt) and the puff adder, Bitis arietans (Nigeria). Smaller amplicons, lacking hyaluronidase catalytic residues because of 768 bp or 855 bp central deletions, appear to encode either truncated peptides without hyaluronidase activity, or are non-translated transcripts because they lack consensus translation initiating motifs.
Du, Liming; Jiao, Fangchan; Chu, Jun; Jin, Gulei; Chen, Ming; Wu, Ping
2007-06-01
In this report we define the genes of two-component regulatory systems in rice through a comprehensive computational analysis of rice (Oryza sativa L.) genome sequence databases. Thirty-seven genes were identified, including 5 HKs (cytokinin-response histidine protein kinase) (OsHK1-4, OsHKL1), 5 HPs (histidine phosphotransfer proteins) (OsHP1-5), 15 type-A RRs (response regulators) (OsRR1-15), 7 type B RR genes (OsRR16-22), and 5 predicted pseudo-response regulators (OsPRR1-5). Protein motif organization, gene structure, phylogenetic analysis, chromosomal location, and comparative analysis between rice, maize, and Arabidopsis are described. Full-length cDNA clones of each gene were isolated from rice. Heterologous expression of each of the OsHKs in yeast mutants conferred histidine kinase function in a cytokinin-dependent manner. Nonconserved regions of individual cDNAs were used as probes in expression profiling experiments. This work provides a foundation for future functional dissection of the rice cytokinin two-component signaling pathway.
Novo-Uzal, Esther; Gutiérrez, Jorge; Martínez-Cortés, Teresa; Pomar, Federico
2014-10-01
Peroxidase isoenzymes play diverse roles in plant physiology, such as lignification and defence against pathogens. The actions and regulation of many peroxidases are not known with much accuracy. A number of studies have reported direct involvement of peroxidase isoenzymes in the oxidation of monolignols, which constitutes the last step in the lignin biosynthesis pathway. However, most of the available data concern only peroxidases and lignins from angiosperms. This study describes the molecular cloning of two novel peroxidases from the 'living fossil' Ginkgo biloba and their regulation by salt stress and salicylic acid. Suspension cell cultures were used to purify peroxidases and to obtain the cDNAs. Treatments with salicylic acid and sodium chloride were performed and peroxidase activity and gene expression were monitored. A novel peroxidase was purified, which preferentially used p-hydroxycinnamyl alcohols as substrates and was able to form dehydrogenation polymers in vitro from coniferyl and sinapyl alcohols. Two peroxidase full-length cDNAs, GbPrx09 and GbPrx10, were cloned. Both peroxidases showed high similarity to other basic peroxidases with a putative role in cell wall lignification. Both GbPrx09 and GbPrx10 were expressed in leaves and stems of the plant. Sodium chloride enhanced the gene expression of GbPrx09 but repressed GbPrx10, whereas salicylic acid strongly repressed both GbPrx09 and GbPrx10. Taken together, the data suggest the participation of GbPrx09 and GbPrx10 in the developmental lignification programme of the cell wall. Both peroxidases possess the structural characteristics necessary for sinapyl alcohol oxidation. Moreover, GbPrx09 is also involved in lignification induced by salt stress, while salicylic acid-mediated lignification is not a result of GbPrx09 and GbPrx10 enzymatic activity. © The Author 2014. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prody, C.A.; Zevin-Sonkin, D.; Gnatt, A.
1987-06-01
To study the primary structure and regulation of human cholinesterases, oligodeoxynucleotide probes were prepared according to a consensus peptide sequence present in the active site of both human serum pseudocholinesterase and Torpedo electric organ true acetylcholinesterase. Using these probes, the authors isolated several cDNA clones from lambdagt10 libraries of fetal brain and liver origins. These include 2.4-kilobase cDNA clones that code for a polypeptide containing a putative signal peptide and the N-terminal, active site, and C-terminal peptides of human BtChoEase, suggesting that they code either for BtChoEase itself or for a very similar but distinct fetal form of cholinesterase. Inmore » RNA blots of poly(A)/sup +/ RNA from the cholinesterase-producing fetal brain and liver, these cDNAs hybridized with a single 2.5-kilobase band. Blot hybridization to human genomic DNA revealed that these fetal BtChoEase cDNA clones hybridize with DNA fragments of the total length of 17.5 kilobases, and signal intensities indicated that these sequences are not present in many copies. Both the cDNA-encoded protein and its nucleotide sequence display striking homology to parallel sequences published for Torpedo AcChoEase. These finding demonstrate extensive homologies between the fetal BtChoEase encoded by these clones and other cholinesterases of various forms and species.« less
Biochemical basis for the biological clock
NASA Technical Reports Server (NTRS)
Morre, D. James; Chueh, Pin-Ju; Pletcher, Jake; Tang, Xiaoyu; Wu, Lian-Ying; Morre, Dorothy M.
2002-01-01
NADH oxidases at the external surface of plant and animal cells (ECTO-NOX proteins) exhibit stable and recurring patterns of oscillations with potentially clock-related, entrainable, and temperature-compensated period lengths of 24 min. To determine if ECTO-NOX proteins might represent the ultradian time keepers (pacemakers) of the biological clock, COS cells were transfected with cDNAs encoding tNOX proteins having a period length of 22 min or with C575A or C558A cysteine to alanine replacements having period lengths of 36 or 42 min. Here we demonstrate that such transfectants exhibited 22, 36, or 40 to 42 h circadian patterns in the activity of glyceraldehyde-3-phosphate dehydrogenase, a common clock-regulated protein, in addition to the endogenous 24 h circadian period length. The fact that the expression of a single oscillatory ECTO-NOX protein determines the period length of a circadian biochemical marker (60 X the ECTO-NOX period length) provides compelling evidence that ECTO-NOX proteins are the biochemical ultradian drivers of the cellular biological clock.
Scobey, Trevor; Yount, Boyd L; Sims, Amy C; Donaldson, Eric F; Agnihothram, Sudhakar S; Menachery, Vineet D; Graham, Rachel L; Swanstrom, Jesica; Bove, Peter F; Kim, Jeeho D; Grego, Sonia; Randell, Scott H; Baric, Ralph S
2013-10-01
Severe acute respiratory syndrome with high mortality rates (~50%) is associated with a novel group 2c betacoronavirus designated Middle East respiratory syndrome coronavirus (MERS-CoV). We synthesized a panel of contiguous cDNAs that spanned the entire genome. Following contig assembly into genome-length cDNA, transfected full-length transcripts recovered several recombinant viruses (rMERS-CoV) that contained the expected marker mutations inserted into the component clones. Because the wild-type MERS-CoV contains a tissue culture-adapted T1015N mutation in the S glycoprotein, rMERS-CoV replicated ~0.5 log less efficiently than wild-type virus. In addition, we ablated expression of the accessory protein ORF5 (rMERS•ORF5) and replaced it with tomato red fluorescent protein (rMERS-RFP) or deleted the entire ORF3, 4, and 5 accessory cluster (rMERS-ΔORF3-5). Recombinant rMERS-CoV, rMERS-CoV•ORF5, and MERS-CoV-RFP replicated to high titers, whereas MERS-ΔORF3-5 showed 1-1.5 logs reduced titer compared with rMERS-CoV. Northern blot analyses confirmed the associated molecular changes in the recombinant viruses, and sequence analysis demonstrated that RFP was expressed from the appropriate consensus sequence AACGAA. We further show dipeptidyl peptidase 4 expression, MERS-CoV replication, and RNA and protein synthesis in human airway epithelial cell cultures, primary lung fibroblasts, primary lung microvascular endothelial cells, and primary alveolar type II pneumocytes, demonstrating a much broader tissue tropism than severe acute respiratory syndrome coronavirus. The availability of a MERS-CoV molecular clone, as well as recombinant viruses expressing indicator proteins, will allow for high-throughput testing of therapeutic compounds and provide a genetic platform for studying gene function and the rational design of live virus vaccines.
Liu, Tong; Pan, Luqing; Cai, Yuefeng; Miao, Jingjing
2015-01-25
HSP70 and HSP90 are the most important heat shock proteins (HSPs), which play the key roles in the cell as molecular chaperones and may involve in metabolic detoxification. The present research has obtained full-length cDNAs of genes HSP70 and HSP90 from the clam Ruditapes philippinarum and studied the transcriptional responses of the two genes when exposed to benzo(a)pyrene (BaP). The full-length RpHSP70 cDNA was 2336bp containing a 5' untranslated region (UTR) of 51bp, a 3' UTR of 335bp and an open reading frame (ORF) of 1950bp encoding 650 amino acid residues. The full-length RpHSP90 cDNA was 2839bp containing a 107-bp 5' UTR, a 554-bp 3' UTR and a 2178-bp ORF encoding 726 amino acid residues. The deduced amino acid sequences of RpHSP70 and RpHSP90 shared the highest identity with the sequences of Paphia undulata, and the phylogenetic trees showed that the evolutions of RpHSP70 and RpHSP90 were almost in accord with the evolution of species. The RpHSP70 and RpHSP90 mRNA expressions were detected in all tested tissues in the adult clams (digestive gland, gill, adductor muscle and mantle) and the highest mRNA expression level was observed in the digestive gland compared to other tissues. Quantitative real-time RT-PCR analysis revealed that mRNA expression levels of the clam RpHSP70, RpHSP90 and other xenobiotic metabolizing enzymes (XMEs) (AhR, DD, GST, GPx) in the digestive gland of R. philippinarum were induced by benzo(a)pyrene (BaP) and the absolute expression levels of these genes showed a temporal and dose-dependent response. The results suggested that RpHSP70 and RpHSP90 were involved in the metabolic detoxification of BaP in the clam R. philippinarum. Copyright © 2014 Elsevier B.V. All rights reserved.
He, Li-hong; Chen, Jian-ye; Kuang, Jian-fei; Lu, Wang-jin
2012-07-01
Banana fruit is highly susceptible to chilling injury. In previous research it was shown that heat pretreatment of banana fruit at 38 °C for 3 days before storage at a chilling temperature of 8 °C for 12 days prevented increases in visible chilling injury index, electrolyte leakage and malondialdehyde content and also decreases in lightness and chroma, indicating that heat pretreatment could effectively alleviate chilling injury of banana fruit. However, little is known about the role of small heat shock proteins (sHSPs) in postharvest chilling tolerance of banana fruit. In the present study, three cytosolic sHSP expression profiles in peel and pulp tissues of banana fruit during heat pretreatment and subsequent chilled storage (8 °C) were investigated in relation to heat pretreatment-induced chilling tolerance. Three full-length cDNAs of cytosolic sHSP genes, including two class I sHSP (CI sHSP) and one class II sHSP (CII sHSP) cDNAs, named Ma-CI sHSP1, Ma-CI sHSP2 and Ma-CII sHSP3 respectively, were isolated and characterised from harvested banana fruit. Accumulation of Ma-CI sHSP1 mRNA transcripts in peel and pulp tissues and Ma-CII sHSP3 mRNA transcripts in peel tissue increased during heat pretreatment. Expression of all three Ma-sHSP genes in peel and pulp tissues was induced during subsequent chilled storage. Furthermore, Ma-CI sHSP1 and Ma-CII sHSP3 mRNA transcripts in pulp tissue and Ma-CI sHSP2 mRNA transcripts in peel and pulp tissues were obviously enhanced by heat pretreatment at days 6 and 9 of subsequent chilled storage. These results suggested that heat pretreatment enhanced the expression of Ma-sHSPs, which might be involved in heat pretreatment-induced chilling tolerance of banana fruit. Copyright © 2012 Society of Chemical Industry.
Messaoudi, Lydia; Yang, Yun-Gui; Kinomura, Aiko; Stavreva, Diana A; Yan, Gonghong; Bortolin-Cavaillé, Marie-Line; Arakawa, Hiroshi; Buerstedde, Jean-Marie; Hainaut, Pierre; Cavaillé, Jérome; Takata, Minoru; Van Dyck, Eric
2007-01-01
The RDM1 gene encodes a RNA recognition motif (RRM)-containing protein involved in the cellular response to the anti-cancer drug cisplatin in vertebrates. We previously reported a cDNA encoding the full-length human RDM1 protein. Here, we describe the identification of 11 human cDNAs encoding RDM1 protein isoforms. This repertoire is generated by alternative pre-mRNA splicing and differential usage of two translational start sites, resulting in proteins with long or short N-terminus and a great diversity in the exonic composition of their C-terminus. By using tagged proteins and fluorescent microscopy, we examined the subcellular distribution of full-length RDM1 (renamed RDM1alpha), and other RDM1 isoforms. We show that RDM1alpha undergoes subcellular redistribution and nucleolar accumulation in response to proteotoxic stress and mild heat shock. In unstressed cells, the long N-terminal isoforms displayed distinct subcellular distribution patterns, ranging from a predominantly cytoplasmic to almost exclusive nuclear localization, suggesting functional differences among the RDM1 proteins. However, all isoforms underwent stress-induced nucleolar accumulation. We identified nuclear and nucleolar localization determinants as well as domains conferring cytoplasmic retention to the RDM1 proteins. Finally, RDM1 null chicken DT40 cells displayed an increased sensitivity to heat shock, compared to wild-type (wt) cells, suggesting a function for RDM1 in the heat-shock response.
Lee, Soo Rin; Lee, Ji-Hyun; Kim, Ah Ran; Kim, Sanghee; Park, Hyun; Baek, Hea Ja; Kim, Hyun-Woo
2016-02-01
Three full-length cDNAs encoding lipoprotein homologs were identified in Tigriopus kingsejongensis, a newly identified copepod from Antarctica. Structural and transcriptional analyses revealed homology with two vitellogenin-like proteins, Tik-Vg1 and Tik-Vg2, which were 1855 and 1795 amino acids in length, respectively, along with a third protein, Tik-MEP, which produced a 1517-residue protein with similarity to a melanin engaging protein (MEP) in insects Phylogenetic analysis showed that Vgs in Maxillopods including two Tik-Vgs belong to the arthropod vitellogenin-like clade, which includes clottable proteins (CPs) in decapod crustaceans and vitellogenins in insects. Tik-MEP clustered together with insect MEPs, which appear to have evolved before the apoB-like and arthropod Vg-like clades. Interestingly, no genes orthologous to those found in the apoB clade were identified in Maxillopoda, suggesting that functions of large lipid transfer proteins (LLTPs) in reproduction and lipid metabolism may be different from those in insect and decapod crustaceans. As suggested by phylogenetic analyses, the two Tik-Vgs belonging to the arthropod Vg-like clade appear to play major roles in oocyte maturation, while Vgs belonging to the apoB clade function primarily in the reproduction of decapod crustaceans. Transcriptional analysis of Tik-Vg expression revealed a 24-fold increase in mature and ovigerous females compared with immature female, whereas expression of Tik-MEP remained low through all reproductive stages. Acute temperature changes did not affect the transcription of Tik-Vg genes, whereas Tik-MEP appeared to be affected by temperature change. Among the three hormones thought to be involved in molting and reproduction in arthropods, only farnesoic acid (FA) induced transcription of the two Tik-Vg genes. Regardless of developmental stage and hormone treatment, Tik-Vg1 and Tik-Vg2 exhibited a strong positive correlation in expression, suggesting that expression of these genes may be regulated by the same transcriptional machinery. Copyright © 2015 Elsevier Inc. All rights reserved.
Bouchekioua, Selma; Hur, Sung-Pyo; Takeuchi, Yuki; Lee, Young-Don; Takemura, Akihiro
2018-06-01
Most wrasses are protogynous species that swim to feed, reproduce during the daytime, and bury themselves under the sandy bottom at night. In temperate and subtropical wrasses, low temperature influences emergence from the sandy bottom in the morning, and induces a hibernation-like state in winter. We cloned and characterized the prohormone complementary DNAs (cDNAs) of arginine vasotocin (AVT) and isotocin (IT) in a temperate wrasse (Halichoeres tenuispinis) and examined the effects of day/night and temperature on their expression in the diencephalon, because these neurohypophysial peptides are related to the sex behavior of wrasses. The full-length cDNAs of pro-AVT and pro-IT were 938 base pairs (154 amino acids) and 759 base pairs (156 amino acids) in length, respectively. Both pro-peptides contained a signal sequence followed by the respective hormones and neurophysin connected by a Gly-Lys-Arg bridge. Reverse-transcription polymerase chain reaction (RT-PCR) revealed that pro-AVT mRNA expression was specifically observed in the diencephalon, whereas pro-IT mRNA expression was seen in the whole brain. Quantitative RT-PCR revealed that the mRNA abundance of pro-AVT and pro-IT was higher at midday (zeitgeber time 6; ZT6) than at midnight (ZT18) under 12 h light and 12 h darkness (LD 12:12) conditions, but not under constant light. Intraperitoneal injection of melatonin decreased the mRNA abundance of pro-AVT, but not of pro-IT. When fish were reared under LD 12:12 conditions at 25, 20, and 15 °C, day high and night low mRNA expressions of pro-AVT and pro-IT were maintained. A field survey revealed seasonal variation in the number of swimming fish at observatory sites; many fish emerged from the sandy bottom in summer, but not in winter, suggesting a hibernation-like state under the sandy bottom under low temperature conditions. We conclude that the day-night fluctuation of pro-AVT and pro-IT mRNA abundance in the brain is not affected by temperature and repeated under the sandy bottom in winter.
Substrate promiscuity of a rosmarinic acid synthase from lavender (Lavandula angustifolia L.).
Landmann, Christian; Hücherig, Stefanie; Fink, Barbara; Hoffmann, Thomas; Dittlein, Daniela; Coiner, Heather A; Schwab, Wilfried
2011-08-01
One of the most common types of modification of secondary metabolites is the acylation of oxygen- and nitrogen-containing substrates to produce esters and amides, respectively. Among the known acyltransferases, the members of the plant BAHD family are capable of acylating a wide variety of substrates. Two full-length acyltransferase cDNAs (LaAT1 and 2) were isolated from lavender flowers (Lavandula angustifolia L.) by reverse transcriptase-PCR using degenerate primers based on BAHD sequences. Recombinant LaAT1 exhibited a broad substrate tolerance accepting (hydroxy)cinnamoyl-CoAs as acyl donors and not only tyramine, tryptamine, phenylethylamine and anthranilic acid but also shikimic acid and 4-hydroxyphenyllactic acid as acceptors. Thus, LaLT1 forms esters and amides like its phylogenetic neighbors. In planta LaAT1 might be involved in the biosynthesis of rosmarinic acid, the ester of caffeic acid and 3,4-dihydroxyphenyllactic acid, a major constituent of lavender flowers. LaAT2 is one of three members of clade VI with unknown function.
Ariga, Hirotaka; Tanaka, Tomoko; Ono, Hirokazu; Sakata, Yoichi; Hayashi, Takahisa; Taji, Teruaki
2015-08-14
Eutrema salsugineum (also known as Thellungiella salsuginea and formerly Thellungiella halophila), a species closely related to Arabidopsis thaliana, shows tolerance not only to salt stress, but also to chilling, freezing, and high temperatures. To identify genes responsible for stress tolerance, we conducted Full-length cDNA Over-eXpressing gene (FOX) hunting among a collection of E. salsugineum cDNAs that were stress-induced according to gene ontology analysis or over-expressed in E. salsugineum compared with A. thaliana. We identified E. salsugineum CSP41b (chloroplast stem-loop-binding protein of 41 kDa; also known as CRB, chloroplast RNA binding; named here as EsCSP41b) as a gene that can confer heat and salinity stress tolerance on A. thaliana. A. thaliana CSP41b is reported to play an important role in the proper functioning of the chloroplast: the atcsp41b mutant is smaller and paler than wild-type plants and shows altered chloroplast morphology and photosynthetic performance. We observed that AtCSP41b-overexpressing transgenic A. thaliana lines also exhibited marked heat tolerance and significant salinity stress tolerance. The EsCSP41b-overexpressing transgenic A. thaliana lines showed significantly higher photosynthesis activity than wild-type plants not only under normal growth conditions but also under heat stress. In wild-type plants, the expression levels of both EsCSP41b and AtCSP41b were significantly reduced under heat or salinity stress. We conclude that maintenance of CSP41b expression under abiotic stresses may alleviate photoinhibition and improve survival under such stresses. Copyright © 2015 Elsevier Inc. All rights reserved.
Brown, S M; Crouch, M L
1990-01-01
We have isolated and characterized cDNA clones of a gene family (P2) expressed in Oenothera organensis pollen. This family contains approximately six to eight family members and is expressed at high levels only in pollen. The predicted protein sequence from a near full-length cDNA clone shows that the protein products of these genes are at least 38,000 daltons. We identified the protein encoded by one of the cDNAs in this family by using antibodies to beta-galactosidase/pollen cDNA fusion proteins. Immunoblot analysis using these antibodies identifies a family of proteins of approximately 40 kilodaltons that is present in mature pollen, indicating that these mRNAs are not stored solely for translation after pollen germination. These proteins accumulate late in pollen development and are not detectable in other parts of the plant. Although not present in unpollinated or self-pollinated styles, the 40-kilodalton to 45-kilodalton antigens are detectable in extracts from cross-pollinated styles, suggesting that the proteins are present in pollen tubes growing through the style during pollination. The proteins are also present in pollen tubes growing in vitro. Both nucleotide and amino acid sequences are similar to the published sequences for cDNAs encoding the enzyme polygalacturonase, which suggests that the P2 gene family may function in depolymerizing pectin during pollen development, germination, and tube growth. Cross-hybridizing RNAs and immunoreactive proteins were detected in pollen from a wide variety of plant species, which indicates that the P2 family of polygalacturonase-like genes are conserved and may be expressed in the pollen from many angiosperms. PMID:2152116
Modahl, Cassandra M.; Mackessy, Stephen P.
2016-01-01
Envenomation of humans by snakes is a complex and continuously evolving medical emergency, and treatment is made that much more difficult by the diverse biochemical composition of many venoms. Venomous snakes and their venoms also provide models for the study of molecular evolutionary processes leading to adaptation and genotype-phenotype relationships. To compare venom complexity and protein sequences, venom gland transcriptomes are assembled, which usually requires the sacrifice of snakes for tissue. However, toxin transcripts are also present in venoms, offering the possibility of obtaining cDNA sequences directly from venom. This study provides evidence that unknown full-length venom protein transcripts can be obtained from the venoms of multiple species from all major venomous snake families. These unknown venom protein cDNAs are obtained by the use of primers designed from conserved signal peptide sequences within each venom protein superfamily. This technique was used to assemble a partial venom gland transcriptome for the Middle American Rattlesnake (Crotalus simus tzabcan) by amplifying sequences for phospholipases A2, serine proteases, C-lectins, and metalloproteinases from within venom. Phospholipase A2 sequences were also recovered from the venoms of several rattlesnakes and an elapid snake (Pseudechis porphyriacus), and three-finger toxin sequences were recovered from multiple rear-fanged snake species, demonstrating that the three major clades of advanced snakes (Elapidae, Viperidae, Colubridae) have stable mRNA present in their venoms. These cDNA sequences from venom were then used to explore potential activities derived from protein sequence similarities and evolutionary histories within these large multigene superfamilies. Venom-derived sequences can also be used to aid in characterizing venoms that lack proteomic profiles and identify sequence characteristics indicating specific envenomation profiles. This approach, requiring only venom, provides access to cDNA sequences in the absence of living specimens, even from commercial venom sources, to evaluate important regional differences in venom composition and to study snake venom protein evolution. PMID:27280639
Prody, C A; Zevin-Sonkin, D; Gnatt, A; Goldberg, O; Soreq, H
1987-01-01
To study the primary structure and regulation of human cholinesterases, oligodeoxynucleotide probes were prepared according to a consensus peptide sequence present in the active site of both human serum pseudocholinesterase (BtChoEase; EC 3.1.1.8) and Torpedo electric organ "true" acetylcholinesterase (AcChoEase; EC 3.1.1.7). Using these probes, we isolated several cDNA clones from lambda gt10 libraries of fetal brain and liver origins. These include 2.4-kilobase cDNA clones that code for a polypeptide containing a putative signal peptide and the N-terminal, active site, and C-terminal peptides of human BtChoEase, suggesting that they code either for BtChoEase itself or for a very similar but distinct fetal form of cholinesterase. In RNA blots of poly(A)+ RNA from the cholinesterase-producing fetal brain and liver, these cDNAs hybridized with a single 2.5-kilobase band. Blot hybridization to human genomic DNA revealed that these fetal BtChoEase cDNA clones hybridize with DNA fragments of the total length of 17.5 kilobases, and signal intensities indicated that these sequences are not present in many copies. Both the cDNA-encoded protein and its nucleotide sequence display striking homology to parallel sequences published for Torpedo AcChoEase. These findings demonstrate extensive homologies between the fetal BtChoEase encoded by these clones and other cholinesterases of various forms and species. Images PMID:3035536
Baptiste, J; Milne Edwards, D; Delort, J; Mallet, J
1993-01-01
Among numerous applications, the polymerase chain reaction (PCR) (1,2) provides a convenient means to clone 5' ends of rare mRNAs and to generate cDNA libraries from tissue available in amounts too low to be processed by conventional methods. Basically, the amplification of cDNAs by the PCR requires the availability of the sequences of two stretches of the molecule to be amplified. A sequence can easily be imposed at the 5' end of the first-strand cDNAs (corresponding to the 3' end of the mRNAs) by priming the reverse transcription with a specific primer (for cloning the 5' end of rare messenger) or with an oligonucleotide tailored with a poly (dT) stretch (for cDNA library construction), taking advantage of the poly (A) sequence that is located at the 3' end of mRNAs. Several strategies have been devised to tag the 3' end of the ss-cDNAs (corresponding to the 55' end of the mRNAs). We (3) and others have described strategies based on the addition of a homopolymeric dG (4,5) or dA (6,7) tail using terminal deoxyribonucleotide transferase (TdT) ("anchor-PCR" [4]). However, this strategy has important limitations. The TdT reaction is difficult to control and has a low efficiency (unpublished observations). But most importantly, the return primers containing a homopolymeric (dC or dT) tail generate nonspecific amplifications, a phenomenon that prevents the isolation of low abundance mRNA species and/or interferes with the relative abundance of primary clones in the library. To circumvent these drawbacks, we have used two approaches. First, we devised a strategy based on a cRNA enrichment procedure, which has been useful to eliminate nonspecific-PCR products and to allow detection and cloning of cDNAs of low abundance (3). More recently, to avoid the nonspecific amplification resulting from the annealing of the homopolymeric tail oligonucleotide, we have developed a novel anchoring strategy that is based on the ligation of an oligonucleotide to the 35' end of ss-cDNAs. This strategy is referred to as SLIC for single-strand ligation to ss-cDNA (8).
De novo assembly of maritime pine transcriptome: implications for forest breeding and biotechnology.
Canales, Javier; Bautista, Rocio; Label, Philippe; Gómez-Maldonado, Josefa; Lesur, Isabelle; Fernández-Pozo, Noe; Rueda-López, Marina; Guerrero-Fernández, Dario; Castro-Rodríguez, Vanessa; Benzekri, Hicham; Cañas, Rafael A; Guevara, María-Angeles; Rodrigues, Andreia; Seoane, Pedro; Teyssier, Caroline; Morel, Alexandre; Ehrenmann, François; Le Provost, Grégoire; Lalanne, Céline; Noirot, Céline; Klopp, Christophe; Reymond, Isabelle; García-Gutiérrez, Angel; Trontin, Jean-François; Lelu-Walter, Marie-Anne; Miguel, Celia; Cervera, María Teresa; Cantón, Francisco R; Plomion, Christophe; Harvengt, Luc; Avila, Concepción; Gonzalo Claros, M; Cánovas, Francisco M
2014-04-01
Maritime pine (Pinus pinasterAit.) is a widely distributed conifer species in Southwestern Europe and one of the most advanced models for conifer research. In the current work, comprehensive characterization of the maritime pine transcriptome was performed using a combination of two different next-generation sequencing platforms, 454 and Illumina. De novo assembly of the transcriptome provided a catalogue of 26 020 unique transcripts in maritime pine trees and a collection of 9641 full-length cDNAs. Quality of the transcriptome assembly was validated by RT-PCR amplification of selected transcripts for structural and regulatory genes. Transcription factors and enzyme-encoding transcripts were annotated. Furthermore, the available sequencing data permitted the identification of polymorphisms and the establishment of robust single nucleotide polymorphism (SNP) and simple-sequence repeat (SSR) databases for genotyping applications and integration of translational genomics in maritime pine breeding programmes. All our data are freely available at SustainpineDB, the P. pinaster expressional database. Results reported here on the maritime pine transcriptome represent a valuable resource for future basic and applied studies on this ecological and economically important pine species. © 2013 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.
Xia, X-F; Li, Y; Yu, X-Q; Lin, J-H; Li, S-Y; Li, Q; You, M-S
2017-10-01
Antimicrobial peptides (AMPs) are small-molecule peptides that play crucial roles in insect innate immune responses. To better understand the function of AMPs in Plutella xylostella, one of the main pests of cruciferous vegetables, three full-length cDNAs encoding moricins were cloned from Pl. xylostella. Two variants of the moricin named PxMor2 and PxMor3 were heterologously expressed and purified. A secondary structure analysis using circular dichroism demonstrated that the two peptides adopted an α-helical structure in the membrane-like environment, but in aqueous solution, they were present in random coiled conformation. Antimicrobial activity assays demonstrated that PxMor2 exhibited high activity against Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli; however, PxMor3 only demonstrated high activity against E. coli. Scanning electron microscopy and confocal laser-scanning microscopy analyses suggest that PxMors can lead to the disruption of bacterial membrane, which might be the mechanism by which PxMors inhibit bacterial growth. This study contributes to the understanding of Pl. xylostella AMPs and immune responses, and also enriches the knowledge of insect moricin. © 2017 The Royal Entomological Society.
Glutathione peroxidases of the potato cyst nematode Globodera Rostochiensis.
Jones, J T; Reavy, B; Smant, G; Prior, A E
2004-01-07
We report the cloning and characterisation of full-length DNAs complementary to RNA (cDNAs) encoding two glutathione peroxidases (GpXs) from a plant parasitic nematode, the potato cyst nematode (PCN) Globodera rostochiensis. One protein has a functional signal peptide that targets the protein for secretion from animal cells while the other is predicted to be intracellular. Both genes are expressed in all parasite stages tested. The mRNA encoding the intracellular GpX is present throughout the nematode second stage juvenile and is particularly abundant in metabolically active tissues including the genital primordia. The mRNA encoding the secreted GpX is restricted to the hypodermis, the outermost cellular layer of the nematode, a location from which it is likely to be secreted to the parasite surface. Biochemical studies confirmed the secreted protein as a functional GpX and showed that, like secreted GpXs of other parasitic nematodes, it does not metabolise hydrogen peroxide but has a preference for larger hydroperoxide substrates. The intracellular protein is likely to have a role in metabolism of active oxygen species derived from internal body metabolism while the secreted protein may protect the parasite from host defences. Other functional roles for this protein are discussed.
Mita, Hajime; Koketsu, Aiko; Ishizaki, Shoichiro; Shiomi, Kazuo
2013-05-01
Sarcoplasmic calcium-binding proteins (SCPs) have recently been identified as crustacean allergens. However, information on their primary structures is very limited and no recombinant SCP (rSCP) as an alternative of natural SCP (nSCP) is available. This study was aimed to elucidate primary structures of SCPs from two species of Penaeus shrimp (black tiger shrimp and kuruma shrimp) by cDNA cloning and to produce a black tiger shrimp rSCP preparation that is comparable in IgE reactivity to nSCP. The full-length cDNAs encoding black tiger shrimp and kuruma shrimp SCPs were successfully cloned. Both SCPs are composed of 193 amino acid residues and share more than 80% sequence identity with the known crustacean SCPs. The black tiger shrimp SCP was then expressed in Escherichia coli using the pFN6A (HQ) Flexi vector system. Enzyme-linked immunosorbent assay (ELISA) and inhibition ELISA experiments demonstrated that rSCP has the same IgE reactivity as nSCP. Our results provide further evidence for the high sequence identity among crustacean SCPs. In addition, rSCP will be a useful tool in studying crustacean allergens and also in the diagnosis of crustacean allergy. © 2012 Society of Chemical Industry.
Cui, Tian Tian; Bin, Yu; Yan, Jian Hong; Mei, Peng Ying; Li, Zhong An; Zhou, Chang Yong; Song, Zhen
2018-05-04
Yellow vein clearing disease (YVCD) causes significant economic losses in lemon and other species of citrus. Usually, citrus yellow vein clearing virus (CYVCV) is considered to be the causal agent of YVCD. However, mixed infection of CYVCV and Indian citrus ringspot virus (ICRSV) or other pathogens is often detected in citrus plants with YVCD. In this study, we re-examined the causal agent of YVCD to fulfill Koch's postulates. First, the full-length genome of CYVCV isolate AY (CYVCV-AY) was amplified by long-distance RT-PCR from a Eureka lemon [Citrus limon (L) Brum. f.] tree with typical YVCD symptoms. The genomic cDNAs were then cloned into a ternary Yeast-Escherichia coli-Agrobacterium tumefaciens shuttle vector, pCY, using transformation-associated recombination (TAR) strategy, and 15 full-length cDNA clones of CYVCV-AY were obtained. Subsequently, four of these clones were selected randomly and inoculated on Jincheng [C. sinensis (L) Osbeck] seedlings through Agrobacterium-mediated vacuum-infiltration, and it was found that 80 to 100% of inoculated plants were infected with CYVCV by RT-PCR at 20 to 40 days post inoculation (dpi) and by direct tissue blot immunoassay at 60 dpi. The progeny of CYVCV-AY from cDNA clones caused typical symptoms of YVCD such as yellow vein clearing, leaf distortion, and chlorosis, which were the same as that elicited by wild-type virus. Finally, the regeneration of CYVCV-AY genome was confirmed by long-distance RT-PCR in lemon trees inoculated with the infectious cDNA clone. These results proved that CYVCV was the primary causal agent of YVCD. This is the first report on the development of infectious cDNA clones of CYVCV, which lays the foundation for further studies on viral gene functions and virus-host interactions.
Expression of three mammalian cDNAs that interfere with RAS function in Saccharomyces cerevisiae.
Colicelli, J; Nicolette, C; Birchmeier, C; Rodgers, L; Riggs, M; Wigler, M
1991-01-01
Saccharomyces cerevisiae strains expressing the activated RAS2Val19 gene or lacking both cAMP phosphodiesterase genes, PDE1 and PDE2, have impaired growth control and display an acute sensitivity to heat shock. We have isolated two classes of mammalian cDNAs from yeast expression libraries that suppress the heat shock-sensitive phenotype of RAS2Val19 strain. Members of the first class of cDNAs also suppress the heat shock-sensitive phenotype of pde1- pde2- strains and encode cAMP phosphodiesterases. Members of the second class fail to suppress the phenotype of pde1- pde2- strains and therefore are candidate cDNAs encoding proteins that interact with RAS proteins. We report the nucleotide sequence of three members of this class. Two of these cDNAs share considerable sequence similarity, but none are clearly similar to previously isolated genes. Images PMID:1849280
Characterization and mapping of cDNA encoding aspartate aminotransferase in rice, Oryza sativa L.
Song, J; Yamamoto, K; Shomura, A; Yano, M; Minobe, Y; Sasaki, T
1996-10-31
Fifteen cDNA clones, putatively identified as encoding aspartate aminotransferase (AST, EC 2.6.1.1.), were isolated and partially sequenced. Together with six previously isolated clones putatively identified to encode ASTs (Sasaki, et al. 1994, Plant Journal 6, 615-624), their sequences were characterized and classified into 4 cDNA species. Two of the isolated clones, C60213 and C2079, were full-length cDNAs, and their complete nucleotide sequences were determined. C60213 was 1612 bp long and its deduced amino acid sequence showed 88% homology with that of Panicum miliaceum L. mitochondrial AST. The C60213-encoded protein had an N-terminal amino acid sequence that was characteristic of a mitochondrial transit peptide. On the other hand, C2079 was 1546 bp long and had 91% amino acid sequence homology with P. miliaceum L. cytosolic AST but lacked in the transit peptide sequence. The homologies of nucleotide sequences and deduced amino acid sequences of C2079 and C60213 were 54% and 52%, respectively. C2079 and C60213 were mapped on chromosomes 1 and 6, respectively, by restriction fragment length polymorphism linkage analysis. Northern blot analysis using C2079 as a probe revealed much higher transcript levels in callus and root than in green and etiolated shoots, suggesting tissue-specific variations of AST gene expression.
Dubé, Marie-Pier; Castonguay, Yves; Cloutier, Jean; Michaud, Josée; Bertrand, Annick
2013-03-01
Dehydrin defines a complex family of intrinsically disordered proteins with potential adaptive value with regard to freeze-induced cell dehydration. Search within an expressed sequence tags library from cDNAs of cold-acclimated crowns of alfalfa (Medicago sativa spp. sativa L.) identified transcripts putatively encoding K(3)-type dehydrins. Analysis of full-length coding sequences unveiled two highly homologous sequence variants, K(3)-A and K(3)-B. An increase in the frequency of genotypes yielding positive genomic amplification of the K(3)-dehydrin variants in response to selection for superior tolerance to freezing and the induction of their expression at low temperature strongly support a link with cold adaptation. The presence of multiple allelic forms within single genotypes and independent segregation indicate that the two K(3) dehydrin variants are encoded by distinct genes located at unlinked loci. The co-inheritance of the K(3)-A dehydrin with a Y(2)K(4) dehydrin restriction fragment length polymorphism with a demonstrated impact on freezing tolerance suggests the presence of a genome domain where these functionally related genes are located. These results provide additional evidence that dehydrin play important roles with regard to tolerance to subfreezing temperatures. They also underscore the value of recurrent selection to help identify variants within a large multigene family in allopolyploid species like alfalfa.
Ruppert, Martin; Woll, Jörn; Giritch, Anatoli; Genady, Ezzat; Ma, Xueyan; Stöckigt, Joachim
2005-11-01
Acetylajmalan esterase (AAE) plays an essential role in the late stage of ajmaline biosynthesis. Based on the partial peptide sequences of AAE isolated and purified from Rauvolfia cell suspensions, a full-length AAE cDNA clone was isolated. The amino acid sequence of AAE has the highest level of identity of 40% to putative lipases known from the Arabidopsis thaliana genome project. Based on the primary structure AAE is a new member of the GDSL lipase superfamily. The expression in Escherichia coli failed although a wide range of conditions were tested. With a novel virus-based plant expression system, it was possible to express AAE functionally in leaves of Nicotiana benthamiana Domin. An extraordinarily high enzyme activity was detected in the Nicotiana tissue, which exceeded that in Rauvolfia serpentina (L.) Benth. ex Kurz cell suspension cultures about 20-fold. This expression allowed molecular analysis of AAE for the first time and increased the number of functionally expressed alkaloid genes from Rauvolfia now to eight, and the number of ajmaline pathway-specific cDNAs to a total of six.
Meesapyodsuk, Dauenpen; Balsevich, John; Reed, Darwin W.; Covello, Patrick S.
2007-01-01
Saponaria vaccaria (Caryophyllaceae), a soapwort, known in western Canada as cowcockle, contains bioactive oleanane-type saponins similar to those found in soapbark tree (Quillaja saponaria; Rosaceae). To improve our understanding of the biosynthesis of these saponins, a combined polymerase chain reaction and expressed sequence tag approach was taken to identify the genes involved. A cDNA encoding a β-amyrin synthase (SvBS) was isolated by reverse transcription-polymerase chain reaction and characterized by expression in yeast (Saccharomyces cerevisiae). The SvBS gene is predominantly expressed in leaves. A S. vaccaria developing seed expressed sequence tag collection was developed and used for the isolation of a full-length cDNA bearing sequence similarity to ester-forming glycosyltransferases. The gene product of the cDNA, classified as UGT74M1, was expressed in Escherichia coli, purified, and identified as a triterpene carboxylic acid glucosyltransferase. UGT74M1 is expressed in roots and leaves and appears to be involved in monodesmoside biosynthesis in S. vaccaria. PMID:17172290
Transcriptional analysis of the R locus: Progress report, September 1986 through October 1987
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wessler, S.R.
1987-11-01
The R locus controls where, when and how much anthocyanins are expressed in at least 11 different tissues of the corn plant and seed. Enormous natural variation has been seen when the phenotypes of different R alleles are compared in a common genetic background. Some alleles have been shown to have a compound structure resulting from gene duplication and divergence. In these complex alleles, each member of the duplication (called R genic elements) has a unique pattern of expression. The function of the R locus is not known; genetic and biochemical analyses suggest that it may encode a protein thatmore » regulates other genes in the anthocyanin pathway. Over the past year we have determined that the genic elements (P), (S), and (Lc) all encode a very rare 2.8 kb transcript that is present in tissue displaying anthocyanin pigmentation. cDNA libraries have been constructed using mRNA isolated from tissues shown by Northern blots to be enriched for the R transcript. Full-length cDNAs will be sequenced and compared to each other.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakamura, Tomofumi; Fukuoka Institute of Health and Environmental Sciences, 39 Mukaizano, Dazaifu-shi, Fukuoka 818-0135; Ichinose, Hirofumi
2010-04-09
We identified two aryl-aldehyde dehydrogenase proteins (PcALDH1 and PcALDH2) from the white-rot basidiomycete Phanerochaete chrysosporium. Both PcALDHs were translationally up-regulated in response to exogenous addition of vanillin, one of the key aromatic compounds in the pathway of lignin degradation by basidiomycetes. To clarify the catalytic functions of PcALDHs, we isolated full-length cDNAs encoding these proteins and heterologously expressed the recombinant enzymes using a pET/Escherichia coli system. The open reading frames of both PcALDH1 and PcALDH2 consisted of 1503 nucleotides. The deduced amino acid sequences of both proteins showed high homologies with aryl-aldehyde dehydrogenases from other organisms and contained ten conservedmore » domains of ALDHs. Moreover, a novel glycine-rich motif 'GxGxxxG' was located at the NAD{sup +}-binding site. The recombinant PcALDHs catalyzed dehydrogenation reactions of several aryl-aldehyde compounds, including vanillin, to their corresponding aromatic acids. These results strongly suggested that PcALDHs metabolize aryl-aldehyde compounds generated during fungal degradation of lignin and various aromatic xenobiotics.« less
McKiernan, C J; Friedlander, M
1999-12-31
The retinal rod Na(+)/Ca(2+),K(+) exchanger (RodX) is a polytopic membrane protein found in photoreceptor outer segments where it is the principal extruder of Ca(2+) ions during light adaptation. We have examined the role of the N-terminal 65 amino acids in targeting, translocation, and integration of the RodX using an in vitro translation/translocation system. cDNAs encoding human RodX and bovine RodX through the first transmembrane domain were correctly targeted and integrated into microsomal membranes; deletion of the N-terminal 65 amino acids (aa) resulted in a translation product that was not targeted or integrated. Deletion of the first 65 aa had no effect on membrane targeting of full-length RodX, but the N-terminal hydrophilic domain no longer translocated. Chimeric constructs encoding the first 65 aa of bovine RodX fused to globin were translocated across microsomal membranes, demonstrating that the sequence could function heterologously. Studies of fresh bovine retinal extracts demonstrated that the first 65 aa are present in the native protein. These data demonstrate that the first 65 aa of RodX constitute an uncleaved signal sequence required for the efficient membrane targeting and proper membrane integration of RodX.
Spliced leader RNA trans-splicing discovered in copepods
NASA Astrophysics Data System (ADS)
Yang, Feifei; Xu, Donghui; Zhuang, Yunyun; Yi, Xiaoyan; Huang, Yousong; Chen, Hongju; Lin, Senjie; Campbell, David A.; Sturm, Nancy R.; Liu, Guangxing; Zhang, Huan
2015-12-01
Copepods are one of the most abundant metazoans in the marine ecosystem, constituting a critical link in aquatic food webs and contributing significantly to the global carbon budget, yet molecular mechanisms of their gene expression are not well understood. Here we report the detection of spliced leader (SL) trans-splicing in calanoid copepods. We have examined nine species of wild-caught copepods from Jiaozhou Bay, China that represent the major families of the calanoids. All these species contained a common 46-nt SL (CopepodSL). We further determined the size of CopepodSL precursor RNA (slRNA; 108-158 nt) through genomic analysis and 3‧-RACE technique, which was confirmed by RNA blot analysis. Structure modeling showed that the copepod slRNA folded into typical slRNA secondary structures. Using a CopepodSL-based primer set, we selectively enriched and sequenced copepod full-length cDNAs, which led to the characterization of copepod transcripts and the cataloging of the complete set of 79 eukaryotic cytoplasmic ribosomal proteins (cRPs) for a single copepod species. We uncovered the SL trans-splicing in copepod natural populations, and demonstrated that CopepodSL was a sensitive and specific tool for copepod transcriptomic studies at both the individual and population levels and that it would be useful for metatranscriptomic analysis of copepods.
Zhang, Jianqin; Li, Daqi; Ge, Pingting; Guo, Yaping; Zhu, Kun Yan; Ma, Enbo; Zhang, Jianzhen
2014-01-01
Carboxylesterases (CarEs) belong to a superfamily of metabolic enzymes encoded by a number of genes and are widely distributed in microbes, plants and animals including insects. These enzymes play important roles in detoxification of insecticides and other xenobiotics, degradation of pheromones, regulation of neurodevelopment, and control of animal development. In this study, we characterized a total of 39 full-length cDNAs putatively encoding different CarEs from the migratory locust, Locusta migratoria, one of the most severe insect pests in many regions of the world, and evaluated the role of four CarE genes in insecticide detoxification. Our phylogenetic analysis grouped the 39 CarEs into five different clades including 20 CarEs in clade A, 3 in D, 13 in E, 1 in F and 2 in I. Four CarE genes (LmCesA3, LmCesA20, LmCesD1, LmCesE1), representing three different clades (A, D and E), were selected for further analyses. The transcripts of the four genes were detectable in all the developmental stages and tissues examined. LmCesA3 and LmCesE1 were mainly expressed in the fat bodies and Malpighian tubules, whereas LmCesA20 and LmCesD1 were predominately expressed in the muscles and hemolymph, respectively. The injection of double-stranded RNA (dsRNA) synthesized from each of the four CarE genes followed by the bioassay with each of four insecticides (chlorpyrifos, malathion, carbaryl and deltamethrin) increased the nymphal mortalities by 37.2 and 28.4% in response to malathion after LmCesA20 and LmCesE1 were silenced, respectively. Thus, we proposed that both LmCesA20 and LmCesE1 played an important role in detoxification of malathion in the locust. These results are expected to help researchers reveal the characteristics of diverse CarEs and assess the risk of insecticide resistance conferred by CarEs in the locust and other insect species. PMID:24722667
2012-01-01
Background Silene latifolia and its pollinator, the noctuid moth Hadena bicruris, represent an open nursery pollination system wherein floral volatiles, especially veratrole (1, 2-dimethoxybenzene), lilac aldehydes, and phenylacetaldehyde are of key importance for floral signaling. Despite the important role of floral scent in ensuring reproductive success in S. latifolia, the molecular basis of scent biosynthesis in this species has not yet been investigated. Results We isolated two full-length cDNAs from S. latifolia that show similarity to rose orcinol O-methyltransferase. Biochemical analysis showed that both S. latifolia guaiacol O-methyltransferase1 (SlGOMT1) &S. latifolia guaiacol O-methyltransferase2 (SlGOMT2) encode proteins that catalyze the methylation of guaiacol to form veratrole. A large Km value difference between SlGOMT1 (~10 μM) and SlGOMT2 (~501 μM) resulted that SlGOMT1 is 31-fold more catalytically efficient than SlGOMT2. qRT-PCR expression analysis showed that the SlGOMT genes are specifically expressed in flowers and male S. latifolia flowers had 3- to 4-folds higher level of GOMT gene transcripts than female flower tissues. Two related cDNAs, S. dioica O-methyltransferase1 (SdOMT1) and S. dioica O-methyltransferase2 (SdOMT2), were also obtained from the sister species Silene dioica, but the proteins they encode did not methylate guaiacol, consistent with the lack of veratrole emission in the flowers of this species. Our evolutionary analysis uncovered that SlGOMT1 and SlGOMT2 genes evolved under positive selection, whereas SdOMT1 and SdOMT2 genes show no evidence for selection. Conclusions Altogether, we report the identification and functional characterization of the gene, SlGOMT1 that efficiently catalyzes veratrole formation, whereas another copy of this gene with only one amino acid difference, SlGOMT2 was found to be less efficient for veratrole synthesis in S. latifolia. PMID:22937972
Marian, A J; Yu, Q T; Mann, D L; Graham, F L; Roberts, R
1995-07-01
Mutations in the beta-myosin heavy chain (beta MyHC) induce hypertrophic cardiomyopathy (HCM), cardiac hypertrophy, and sarcomere disarray, with the latter being the characteristic hallmark. Thus, we sought to determine whether expression of mutant beta MyHC in adult feline cardiac myocytes, a species known to develop HCM with a phenotype identical to that in humans, induces sarcomere disarray. A full-length beta MyHC cDNA was cloned from a human heart cDNA library, and an HCM-causing mutation (Arg403Gln) was induced in the beta MyHC cDNA by site-directed mutagenesis using polymerase chain reaction (PCR). The normal and mutant beta MyHC cDNAs were cloned into p delta E1spIB shuttle vector, downstream from a cytomegalovirus (CMV) promoter. Replication-deficient recombinant adenoviral constructs (Ad5/CMV/beta MyHC-N and Ad5/CMV/beta MyHC-403) were generated through homologous recombination of p delta E1spIB/CMV/beta MyHC-N or Ad5/CMV/beta MyHC-403 and pBHG10 after cotransfection in 293 host cells. Infection of COS-1 cells with the beta MyHC construct resulted in the expression of a full-length myosin protein. Efficiency of infection of isolated adult cardiac myocytes was > 95%. Expression of the beta MyHC constructs into mRNA at 48 hours after infection of feline cardiac myocytes was confirmed by reverse transcription-PCR. The net total protein and beta-myosin synthesis were determined by using the amount of incorporation of [3H]phenylalanine into total protein and beta-myosin, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)
Aoyagi, K; Beyou, A; Moon, K; Fang, L; Ulrich, T
1993-01-01
The enzyme 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR, EC 1.1.1.34) is a key enzyme in the isoprenoid biosynthetic pathway. We have isolated partial cDNAs from wheat (Triticum aestivum) using the polymerase chain reaction. Comparison of deduced amino acid sequences of these cDNAs shows that they represent a small family of genes that share a high degree of sequence homology among themselves as well as among genes from other organisms including tomato, Arabidopsis, hamster, human, Drosophila, and yeast. Southern blot analysis reveals the presence of at least four genes. Our results concerning the tissue-specific expression as well as developmental regulation of these HMGR cDNAs highlight the important role of this enzyme in the growth and development of wheat. PMID:8108513
Liu, Xuemei; Wang, Qiuyu; Chen, Pengfei; Song, Funan; Guan, Minxiao; Jin, Lihua; Wang, Yucheng; Yang, Chuanping
2012-01-01
Cellulose synthase (CESA), which is an essential catalyst for the generation of plant cell wall biomass, is mainly encoded by the CesA gene family that contains ten or more members. In this study; four full-length cDNAs encoding CESA were isolated from Betula platyphylla Suk., which is an important timber species, using RT-PCR combined with the RACE method and were named as BplCesA3, −4, −7 and −8. These deduced CESAs contained the same typical domains and regions as their Arabidopsis homologs. The cDNA lengths differed among these four genes, as did the locations of the various protein domains inferred from the deduced amino acid sequences, which shared amino acid sequence identities ranging from only 63.8% to 70.5%. Real-time RT-PCR showed that all four BplCesAs were expressed at different levels in diverse tissues. Results indicated that BplCESA8 might be involved in secondary cell wall biosynthesis and floral development. BplCESA3 appeared in a unique expression pattern and was possibly involved in primary cell wall biosynthesis and seed development; it might also be related to the homogalacturonan synthesis. BplCESA7 and BplCESA4 may be related to the formation of a cellulose synthase complex and participate mainly in secondary cell wall biosynthesis. The extremely low expression abundance of the four BplCESAs in mature pollen suggested very little involvement of them in mature pollen formation in Betula. The distinct expression pattern of the four BplCesAs suggested they might participate in developments of various tissues and that they are possibly controlled by distinct mechanisms in Betula. PMID:23202892
2013-01-01
Background Agarwood is an expensive resinous heartwood derived from Aquilaria plants that is widely used in traditional medicines, incense and perfume. Only wounded trees can produce agarwood, and the huge demand for the agarwood products has led all Aquilaria spp. being endangered and listed in the Appendix II of the CITES (http://www.cites.org). The major components of agarwood are sesquiterpenes and phenylethyl chromones. Owing to a lack of genomic information, the molecular basis of wound-induced sesquiterpenes biosynthesis and agarwood formation remains unknown. Results To identify the primary genes that maybe related to agarwood formation, we sequenced 2 cDNA libraries generated from healthy and wounded A. sinensis (Lour.) Gilg. A total of 89,137 unigenes with an average length of 678.65 bp were obtained, and they were annotated in detail at bioinformatics levels. Of those associated with agarwood formation, 30 putatively encoded enzymes in the sesquiterpene biosynthesis pathway, and a handful of transcription factors and protein kinases were related to wound signal transduction. Three full-length cDNAs of sesquiterpene synthases (ASS1-3) were cloned and expressed in Escherichia coli, and enzyme assays revealed that they are active enzymes, with the major products being δ-guaiene. A methyl jasmonate (MJ) induction experiment revealed that the expression of ASS was significantly induced by MJ, and the production of sesquiterpenes was elevated accordingly. The expression of some transcription factors and protein kinases, especially MYB4, WRKY4, MPKK2 and MAPK2, was also induced by MJ and coordinated with ASS expression, suggesting they maybe positive regulators of ASS. Conclusions This study provides extensive transcriptome information for Aquilaria spp. and valuable clues for elucidating the mechanism of wound-induced agarwood sesquiterpenes biosynthesis and their regulation. PMID:23565705
Sasaki, Katsutomo; Mitsuda, Nobutaka; Nashima, Kenji; Kishimoto, Kyutaro; Katayose, Yuichi; Kanamori, Hiroyuki; Ohmiya, Akemi
2017-09-04
Chrysanthemum morifolium is one of the most economically valuable ornamental plants worldwide. Chrysanthemum is an allohexaploid plant with a large genome that is commercially propagated by vegetative reproduction. New cultivars with different floral traits, such as color, morphology, and scent, have been generated mainly by classical cross-breeding and mutation breeding. However, only limited genetic resources and their genome information are available for the generation of new floral traits. To obtain useful information about molecular bases for floral traits of chrysanthemums, we read expressed sequence tags (ESTs) of chrysanthemums by high-throughput sequencing using the 454 pyrosequencing technology. We constructed normalized cDNA libraries, consisting of full-length, 3'-UTR, and 5'-UTR cDNAs derived from various tissues of chrysanthemums. These libraries produced a total number of 3,772,677 high-quality reads, which were assembled into 213,204 contigs. By comparing the data obtained with those of full genome-sequenced species, we confirmed that our chrysanthemum contig set contained the majority of all expressed genes, which was sufficient for further molecular analysis in chrysanthemums. We confirmed that our chrysanthemum EST set (contigs) contained a number of contigs that encoded transcription factors and enzymes involved in pigment and aroma compound metabolism that was comparable to that of other species. This information can serve as an informative resource for identifying genes involved in various biological processes in chrysanthemums. Moreover, the findings of our study will contribute to a better understanding of the floral characteristics of chrysanthemums including the myriad cultivars at the molecular level.
Zheng, X; Seiliez, I; Hastings, N; Tocher, D R; Panserat, S; Dickson, C A; Bergot, P; Teale, A J
2004-10-01
Fish are the most important dietary source of the n-3 highly unsaturated fatty acids (HUFA), eicosapentaenoic (EPA) and docosahexaenoic acid (DHA), that have particularly important roles in human nutrition reflecting their roles in critical physiological processes. The objective of the study described here was to clone, functionally characterize and compare expressed fatty acid desaturase genes involved in the production of EPA and DHA in freshwater and marine teleost fish species. Putative fatty acid desaturase cDNAs were isolated and cloned from common carp (Cyprinus carpio) and turbot (Psetta maximus). The enzymic activities of the products of these cDNAs, together with those of cDNAs previously cloned from rainbow trout (Oncorhynchus mykiss) and gilthead sea bream (Sparus aurata), were determined by heterologous expression in the yeast Saccharomyces cerevisiae. The carp and turbot desaturase cDNAs included open reading frames (ORFs) of 1335 and 1338 base pairs, respectively, specifying proteins of 444 and 445 amino acids. The protein sequences possessed all the characteristic features of microsomal fatty acid desaturases, including three histidine boxes, two transmembrane regions, and N-terminal cytochrome b(5) domains containing the haem-binding motif, HPGG. Functional expression showed all four fish cDNAs encode basically unifunctional Delta6 fatty acid desaturase enzymes responsible for the first and rate-limiting step in the biosynthesis of HUFA from 18:3n-3 and 18:2n-6. All the fish desaturases were more active towards the n-3 substrate with 59.5%, 31.5%, 23.1% and 7.0% of 18:3n-3 being converted to 18:4n-3 in the case of turbot, trout, sea bream and carp, respectively. The enzymes also showed very low, probably physiologically insignificant, levels of Delta5 desaturase activity, but none of the products showed Delta4 desaturase activity. The cloning and characterization of desaturases from these fish is an important advance, as they are species in which there is a relative wealth of data on the nutritional regulation of fatty acid desaturation and HUFA synthesis, and between which substantive differences occur.
2004-01-01
The National Institutes of Health's Mammalian Gene Collection (MGC) project was designed to generate and sequence a publicly accessible cDNA resource containing a complete open reading frame (ORF) for every human and mouse gene. The project initially used a random strategy to select clones from a large number of cDNA libraries from diverse tissues. Candidate clones were chosen based on 5′-EST sequences, and then fully sequenced to high accuracy and analyzed by algorithms developed for this project. Currently, more than 11,000 human and 10,000 mouse genes are represented in MGC by at least one clone with a full ORF. The random selection approach is now reaching a saturation point, and a transition to protocols targeted at the missing transcripts is now required to complete the mouse and human collections. Comparison of the sequence of the MGC clones to reference genome sequences reveals that most cDNA clones are of very high sequence quality, although it is likely that some cDNAs may carry missense variants as a consequence of experimental artifact, such as PCR, cloning, or reverse transcriptase errors. Recently, a rat cDNA component was added to the project, and ongoing frog (Xenopus) and zebrafish (Danio) cDNA projects were expanded to take advantage of the high-throughput MGC pipeline. PMID:15489334
cDNA cloning and analysis of betaine aldehyde dehydrogenase, a salt inducible enzyme in sugar beet
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCue, K.F.; Hanson, A.D.
1990-05-01
Betaine accumulates and serves as a compatible osmolyte in some plants subjected to drought or salinity stress. The last enzyme in the betaine biosynthetic pathway is betaine aldehyde dehydrogenase (BADH). The activity of BADH increases in response to increasing salinity levels. This increase in activity corresponds to an increase in protein detectable by immunoblotting, and to an increase in the translatable BADH mRNA. BADH was cloned from a cDNA library constructed in {lambda}gt10 using poly(A){sup +} RNA from sugar beets salinized to 500 mM NaCl. cDNAs were size selected (>1kb) before ligation into the vector, and the library was screenedmore » with a spinach BADH cDNA probe. Three nearly full length clones obtained were confirmed as BADH by their nucleotide and deduced amino acid homology to spinach BADH. Clones averaged 1.8 kb and contained open reading frames of 500 amino acids at 80% identity with spinach BADH. RNA gel blot analysis of poly(A){sup +} RNA indicated that salinization to 500 mM NaCl resulted in a 5-fold increase of BADH mRNA level.« less
Ascorbic acid metabolism during sweet cherry (Prunus avium) fruit development
Ni, Zhiyou; Lin, Lijin; Tang, Yi; Wang, Zhihui; Wang, Xun; Wang, Jin; Lv, Xiulan; Xia, Hui
2017-01-01
To elucidate metabolism of ascorbic acid (AsA) in sweet cherry fruit (Prunus avium ‘Hongdeng’), we quantified AsA concentration, cloned sequences involved in AsA metabolism and investigated their mRNA expression levels, and determined the activity levels of selected enzymes during fruit development and maturation. We found that AsA concentration was highest at the petal-fall period (0 days after anthesis) and decreased progressively during ripening, but with a slight increase at maturity. AsA did nevertheless continue to accumulate over time because of the increase in fruit fresh weight. Full-length cDNAs of 10 genes involved in the L-galactose pathway of AsA biosynthesis and 10 involved in recycling were obtained. Gene expression patterns of GDP-L-galactose phosphorylase (GGP2), L-galactono-1, 4-lactone dehydrogenase (GalLDH), ascorbate peroxidase (APX3), ascorbate oxidase (AO2), glutathione reductase (GR1), and dehydroascorbate reductase (DHAR1) were in accordance with the AsA concentration pattern during fruit development, indicating that genes involved in ascorbic acid biosynthesis, degradation, and recycling worked in concert to regulate ascorbic acid accumulation in sweet cherry fruit. PMID:28245268
Petersen, M; Sander, L; Child, R; van Onckelen, H; Ulvskov, P; Borkhardt, B
1996-06-01
Seven distinct partial cDNAs, similar in sequence to previously described polygalacturonases (PGs), were amplified from cDNA derived from rape pod wall, dehiscence zone and leaves by the polymerase chain reaction. Northern analysis showed that one clone, PG35-8, was expressed at low levels in the dehiscence zone during the first five weeks after anthesis but was very abundantly expressed at week 6. In contrast, no PG35-8-related RNA was detected in the pod wall. Our data suggest that there are temporal and spatial correlations between the breakdown of the middle lamella, of the dehiscence zone cells and the pattern of synthesis of PG35-8 transcripts which may indicate a role for this particular PG in rape pod dehiscence. PG35-8 was used to isolate five cDNA clones from a rape dehiscence zone cDNA library. Restriction enzyme analysis and partial sequencing revealed that they were derived from four highly homologous transcripts which are probably allelic forms of a single gene. One full-length clone, RDPG1, was completely sequenced. The predicted protein of RDPG1 showed its highest identity with PG from apple fruit with an identity of 52%.
Gibberellin induces alpha-amylase gene in seed coat of Ipomoea nil immature seeds.
Nakajima, Masatoshi; Nakayama, Akira; Xu, Zheng-Jun; Yamaguchi, Isomaro
2004-03-01
Two full-length cDNAs encoding gibberellin 3-oxidases, InGA3ox1 and InGA3ox2, were cloned from developing seeds of morning glory (Ipomoea nil (Pharbitis nil) Choisy cv. Violet) with degenerate-PCR and RACEs. The RNA-blot analysis for these clones revealed that the InGA3ox2 gene was organ-specifically expressed in the developing seeds at 6-18 days after anthesis. In situ hybridization showed the signals of InGA3ox2 mRNA in the seed coat, suggesting that active gibberellins (GAs) were synthesized in the tissue, although no active GA was detected there by immunohistochemistry. In situ hybridization analysis for InAmy1 (former PnAmy1) mRNA showed that InAmy1 was also synthesized in the seed coat. Both InGA3ox2 and InAmy1 genes were expressed spatially overlapped without a clear time lag, suggesting that both active GAs and InAmy1 were synthesized almost simultaneously in seed coat and secreted to the integument. These observations support the idea that GAs play an important role in seed development by inducing alpha-amylase.
The isolation of cDNAs from OATL1 at Xp11.2 using a 480-kb YAC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geraghty, M.T.; Brody, L.C.; Martin, L.S.
1993-05-01
Using an ornithine-{delta}-aminotransferase (OAT) cDNA, the authors identified five YACs that cover two nonadjacent OAT-related loci in Xp11.2-p11.3, designated OATL1 (distal) and OATL2 (proximal). Because several retinal degenerative disorders map to this region, they used YAC2 (480 kb), which covers the most distal part of OATL1, as a probe to screen a retinal cDNA library. From 8 {times} 10{sup 4} plaques screened, they isolated 13 clones. Two were OAT cDNAs. The remaining 11 were divided into eight groups by cross-hybridization. Groups 1-4 contain cDNAs that originate from single-copy X-linked genes in YAC2. Each has an open reading frame of >500more » bp and detects one or more transcripts on a Northern blot. The gene for each was sublocalized and ordered in YAC2. The cDNAs in groups 5-8 contained two or more Alu sequences, had no open reading frames, and did not detect transcripts. The cDNAs from groups 1-4 provide expressed sequence tags and identify candidate genes for the genetic disorders that map to this region. 28 refs., 5 figs., 1 tab.« less
Nishida, I; Sugiura, M; Enju, A; Nakamura, M
2000-12-01
A new isogene for acyl-(acyl-carrier-protein):glycerol-3-phosphate acyltransferase (GPAT; EC 2.3.1.15) in squash has been cloned and the gene product was identified as oleate-selective GPAT. Using PCR primers that could hybridise with exons for a previously cloned squash GPAT, we obtained two PCR products of different size: one coded for a previously cloned squash GPAT corresponding to non-selective isoforms AT2 and AT3, and the other for a new isozyme, probably the oleate-selective isoform AT1. Full-length amino acid sequences of respective isozymes were deduced from the nucleotide sequences of genomic genes and cDNAs, which were cloned by a series of PCR-based methods. Thus, we designated the new gene CmATS1;1 and the other one CmATS1;2. Genome blot analysis revealed that the squash genome contained the two isogenes at non-allelic loci. AT1-active fractions were partially purified, and three polypeptide bands were identified as being AT1 polypeptides, which exhibited relative molecular masses of 39.5-40.5 kDa, pI values of 6.75-7.15, and oleate selectivity over palmitate. Partial amino-terminal sequences obtained from two of these bands verified that the new isogene codes for AT1 polypeptides.
Lassen, Søren F.; Breinholt, Jens; Østergaard, Peter R.; Brugger, Roland; Bischoff, Andrea; Wyss, Markus; Fuglsang, Claus C.
2001-01-01
Phytases catalyze the hydrolysis of phosphomonoester bonds of phytate (myo-inositol hexakisphosphate), thereby creating lower forms of myo-inositol phosphates and inorganic phosphate. In this study, cDNA expression libraries were constructed from four basidiomycete fungi (Peniophora lycii, Agrocybe pediades, a Ceriporia sp., and Trametes pubescens) and screened for phytase activity in yeast. One full-length phytase-encoding cDNA was isolated from each library, except for the Ceriporia sp. library where two different phytase-encoding cDNAs were found. All five phytases were expressed in Aspergillus oryzae, purified, and characterized. The phytases revealed temperature optima between 40 and 60°C and pH optima at 5.0 to 6.0, except for the P. lycii phytase, which has a pH optimum at 4.0 to 5.0. They exhibited specific activities in the range of 400 to 1,200 U · mg, of protein−1 and were capable of hydrolyzing phytate down to myo-inositol monophosphate. Surprisingly, 1H nuclear magnetic resonance analysis of the hydrolysis of phytate by all five basidiomycete phytases showed a preference for initial attack at the 6-phosphate group of phytic acid, a characteristic that was believed so far not to be seen with fungal phytases. Accordingly, the basidiomycete phytases described here should be grouped as 6-phytases (EC 3.1.3.26). PMID:11571175
Huang, Jian; Chen, Feng; Del Casino, Cecilia; Autino, Antonella; Shen, Mouhua; Yuan, Shuai; Peng, Jia; Shi, Hexin; Wang, Chen; Cresti, Mauro; Li, Yiqin
2006-01-01
Exhibiting rapid polarized growth, the pollen tube delivers the male gametes into the ovule for fertilization in higher plants. To get an overall picture of gene expression during pollen germination and pollen tube growth, we profiled the transcription patterns of 1,536 pollen cDNAs from lily (Lilium longiflorum) by microarray. Among those that exhibited significant differential expression, a cDNA named lily ankyrin repeat-containing protein (LlANK) was thoroughly studied. The full-length LlANK cDNA sequence predicts a protein containing five tandem ankyrin repeats and a RING zinc-finger domain. The LlANK protein possesses ubiquitin ligase activity in vitro. RNA blots demonstrated that LlANK transcript is present in mature pollen and its level, interestingly contrary to most pollen mRNAs, up-regulated significantly during pollen germination and pollen tube growth. When fused with green fluorescent protein and transiently expressed in pollen, LlANK was found dominantly associated with membrane-enclosed organelles as well as the generative cell. Overexpression of LlANK, however, led to abnormal growth of the pollen tube. On the other hand, transient silencing of LlANK impaired pollen germination and tube growth. Taken together, these results showed that LlANK is a ubiquitin ligase associated with membrane-enclosed organelles and required for polarized pollen tube growth. PMID:16461387
Pax6 in Collembola: Adaptive Evolution of Eye Regression
Hou, Ya-Nan; Li, Sheng; Luan, Yun-Xia
2016-01-01
Unlike the compound eyes in insects, collembolan eyes are comparatively simple: some species have eyes with different numbers of ocelli (1 + 1 to 8 + 8), and some species have no apparent eye structures. Pax6 is a universal master control gene for eye morphogenesis. In this study, full-length Pax6 cDNAs, Fc-Pax6 and Cd-Pax6, were cloned from an eyeless collembolan (Folsomia candida, soil-dwelling) and an eyed one (Ceratophysella denticulata, surface-dwelling), respectively. Their phylogenetic positions are between the two Pax6 paralogs in insects, eyeless (ey) and twin of eyeless (toy), and their protein sequences are more similar to Ey than to Toy. Both Fc-Pax6 and Cd-Pax6 could induce ectopic eyes in Drosophila, while Fc-Pax6 exhibited much weaker transactivation ability than Cd-Pax6. The C-terminus of collembolan Pax6 is indispensable for its transactivation ability, and determines the differences of transactivation ability between Fc-Pax6 and Cd-Pax6. One of the possible reasons is that Fc-Pax6 accumulated more mutations at some key functional sites of C-terminus under a lower selection pressure on eye development due to the dark habitats of F. candida. The composite data provide a first molecular evidence for the monophyletic origin of collembolan eyes, and indicate the eye degeneration of collembolans is caused by adaptive evolution. PMID:26856893
Crustacean hyperglycemic and vitellogenesis-inhibiting hormones in the lobster Homarus gammarus.
Ollivaux, Céline; Vinh, Joëlle; Soyez, Daniel; Toullec, Jean-Yves
2006-05-01
Crustacean hyperglycemic hormone (CHH) and vitellogenesis-inhibiting hormone (VIH), produced by the X organ-sinus gland neurosecretory complex, belong to a peptide group referred to as the CHH family, which is widely distributed in arthropods. In this study, genetic variants and post-translationally modified isoforms of CHH and VIH were characterized in the European lobster Homarus gammarus. With the use of RP-HPLC and ELISA with specific antibodies that discriminate between stereoisomers of CHH and VIH, two groups of CHH-immunoreactive peaks were characterized from HPLC fractions of sinus gland extract (CHH A and CHH B); each group contained two variants (CHH and D-Phe3CHH). In the same way, two VIH-immunoreactive peaks (VIH and D-Trp4VIH) were demonstrated in HPLC fractions from sinus gland extract. The masses of these different neuropeptides were determined by FT-ICR MS: CHH A and CHH B spectra exhibited monoisotopic ions at 8557.05 Da and 8527.04 Da, respectively, and both VIH isomers displayed an m/z value of 9129.19 Da. Two full-length cDNAs encoding preprohomones of CHH A and CHH B and only one cDNA for VIH precursor were cloned and sequenced from X organ RNA. Comparison of CHH sequences between European lobster and other Astacoidea suggests that the most hydrophobic form appeared first during crustacean evolution.
Barley whole exome capture: a tool for genomic research in the genus Hordeum and beyond
Mascher, Martin; Richmond, Todd A; Gerhardt, Daniel J; Himmelbach, Axel; Clissold, Leah; Sampath, Dharanya; Ayling, Sarah; Steuernagel, Burkhard; Pfeifer, Matthias; D'Ascenzo, Mark; Akhunov, Eduard D; Hedley, Pete E; Gonzales, Ana M; Morrell, Peter L; Kilian, Benjamin; Blattner, Frank R; Scholz, Uwe; Mayer, Klaus FX; Flavell, Andrew J; Muehlbauer, Gary J; Waugh, Robbie; Jeddeloh, Jeffrey A; Stein, Nils
2013-01-01
Advanced resources for genome-assisted research in barley (Hordeum vulgare) including a whole-genome shotgun assembly and an integrated physical map have recently become available. These have made possible studies that aim to assess genetic diversity or to isolate single genes by whole-genome resequencing and in silico variant detection. However such an approach remains expensive given the 5 Gb size of the barley genome. Targeted sequencing of the mRNA-coding exome reduces barley genomic complexity more than 50-fold, thus dramatically reducing this heavy sequencing and analysis load. We have developed and employed an in-solution hybridization-based sequence capture platform to selectively enrich for a 61.6 megabase coding sequence target that includes predicted genes from the genome assembly of the cultivar Morex as well as publicly available full-length cDNAs and de novo assembled RNA-Seq consensus sequence contigs. The platform provides a highly specific capture with substantial and reproducible enrichment of targeted exons, both for cultivated barley and related species. We show that this exome capture platform provides a clear path towards a broader and deeper understanding of the natural variation residing in the mRNA-coding part of the barley genome and will thus constitute a valuable resource for applications such as mapping-by-sequencing and genetic diversity analyzes. PMID:23889683
Yang, Ke; He, Peng; Dong, Shuang-Lin
2014-01-01
Abstract Chemosensory proteins (CSPs) play various roles in insect physiology including olfaction and development. The brown planthopper, Nilaparvata lugens Stål , is one of the most notorious rice pests worldwide. The wing-from variation and annually long distance migration imply that olfaction would play a key role in N. lugens behavior. In this study, full-length cDNAs of nine CSPs were cloned by the rapid amplification of cDNA ends procedure, and their expression profiles were determined by the quantitative real-time Polymerase Chain Reaction (qPCR), with regard to developmental stage, wing-form, gender, and tissues of short-wing adult. These NlugCSP genes showed distinct expression patterns, indicating different roles they play. In particular, NlugCSP5 was long wing form biased and highly expressed in female wings among tissues; NlugCSP1 was mainly expressed in male adults and abdomen; NlugCSP7 was widely expressed in chemosensory tissues but little in the nonchemosensory abdomen. The function of NlugCSP7 in olfaction was further explored by the competitive fluorescence binding assay using the recombinant protein. However, the recombinant NlugCSP7 showed no obvious binding with all tested volatile compounds, suggesting that it may participate in physiological processes other than olfaction. Our results provide bases and some important clues for the function of NlugCSPs . PMID:25527582
Shanehbandi, Dariush; Majidi, Jafar; Kazemi, Tohid; Baradaran, Behzad; Aghebati-Maleki, Leili
2017-01-01
CD20-based targeting of B-cells in hematologic malignancies and autoimmune disorders is associated with outstanding clinical outcomes. Isolation and characterization of VH and VL cDNAs encoding the variable regions of the heavy and light chains of monoclonal antibodies (MAb) is necessary to produce next generation MAbs and their derivatives such as bispecific antibodies (bsAb) and single-chain variable fragments (scFv). This study was aimed at cloning and characterization of the VH and VL cDNAs from a hybridoma cell line producing an anti-CD20 MAb. VH and VL fragments were amplified, cloned and characterized. Furthermore, amino acid sequences of VH, VL and corresponding complementarity-determining regions (CDR) were determined and compared with those of four approved MAbs including Rituximab (RTX), Ibritumomab tiuxetan, Ofatumumab and GA101. The cloned VH and VL cDNAs were found to be functional and follow a consensus pattern. Amino acid sequences corresponding to the VH and VL fragments also indicated noticeable homologies to those of RTX and Ibritumomab. Furthermore, amino acid sequences of the relating CDRs had remarkable similarities to their counterparts in RTX and Ibritumomab. Successful recovery of VH and VL fragments encourages the development of novel CD20 targeting bsAbs, scFvs, antibody conjugates and T-cells armed with chimeric antigen receptors.
Capped antigenomic RNA transcript facilitates rescue of a plant rhabdovirus.
Qian, Shasha; Chen, Xiaolan; Sun, Kai; Zhang, Yang; Li, Zhenghe
2017-06-13
Recovery of recombinant negative-stranded RNA viruses from cloned cDNAs is an inefficient process as multiple viral components need to be delivered into cells for reconstitution of infectious entities. Previously studies have shown that authentic viral RNA termini are essential for efficient virus rescue. However, little is known about the activity of viral RNAs processed by different strategies in supporting recovery of plant negative-stranded RNA virus. In this study, we used several versions of hammerhead ribozymes and a truncated cauliflower mosaic virus 35S promoter to generate precise 5' termini of sonchus yellow net rhabdovirus (SYNV) antigenomic RNA (agRNA) derivatives. These agRNAs were co-expressed with the SYNV core proteins in Nicotiana benthamiana leaves to evaluate their efficiency in supporting fluorescent reporter gene expression from an SYNV minireplicon (MR) and rescue of full-length virus. Optimization of hammerhead ribozyme cleavage activities led to improved SYNV MR reporter gene expression. Although the MR agRNA processed by the most active hammerhead variants is comparable to the capped, precisely transcribed agRNA in supporting MR activity, efficient recovery of recombinant SYNV was only achieved with capped agRNA. Further studies showed that the capped SYNV agRNA permitted transient expression of the nucleocapsid (N) protein, and an agRNA derivatives unable to express the N protein in cis exhibited dramatically reduced rescue efficiency. Our study reveals superior activity of precisely transcribed, capped SYNV agRNAs to uncapped, hammerhead ribozyme-processed agRNAs, and suggests a cis-acting function for the N protein expressed from the capped agRNA during recovery of SYNV from plasmids.
Penlington, M C; Williams, M A; Sumpter, J P; Rand-Weaver, M; Hoole, D; Arme, C
1997-12-01
The complementary DNAs (cDNA) encoding the [Trp7,Leu8]-gonadotrophin-releasing hormone (salmon-type GnRH; sGnRH:GeneBank accession no. u60667) and the [His5,Trp7,Tyr8]-GnRH (chicken-II-type GnRH; cGnRH-II: GeneBank accession no. u60668) precursor in the roach (Rutilus rutilus) were isolated and sequenced following reverse transcription and rapid amplification of cDNA ends (RACE). The sGnRH and cGnRH-II precursor cDNAs consisted of 439 and 628 bp, and included open reading frames of 282 and 255 bp respectively. The structures of the encoded peptides were the same as GnRHs previously identified in other vertebrates. The sGnRH and cGnRH-II precursor cDNAs, including the non-coding regions, had 88.6 and 79.9% identity respectively, to those identified in goldfish (Carassius auratus). However, significant similarity was not observed between the non-coding regions of the GnRH cDNAs of Cyprinidae and other fish. The presumed third exon, encoding partial sGnRH associated peptide (GAP) of roach, demonstrated significant nucleotide and amino acid similarity with the appropriate regions in the goldfish, but not with other species, and this may indicate functional differences of GAP between different families of fish. cGnRH-II precursor cDNAs from roach had relatively high nucleotide similarity across this GnRH variant. Cladistic analysis classified the sGnRH and cGnRH-II precursor cDNAs into three and two groups respectively. However, the divergence between nucleotide sequences within the sGnRH variant was greater than those encoding the cGnRH-II precursors. Consistent with the consensus developed from previous studies, Northern blot analysis demonstrated that expression of sGnRH and cGnRH-II was restricted to the olfactory bulbs and midbrain of roach respectively. This work forms the basis for further study on the mechanisms by which the tapeworm, Ligula intestinalis, interacts with the pituitary-gonadal axis of its fish host.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davies, K.E.; Morrison, K.E.; Daniels, R.I.
1994-09-01
We previously reported that the 400 kb interval flanked the polymorphic loci D5S435 and D5S557 contains blocks of a chromosome 5 specific repeat. This interval also defines the SMA candidate region by genetic analysis of recombinant families. A YAC contig of 2-3 Mb encompassing this area has been constructed and a 5.5 kb conserved fragment, isolated from a YAC end clone within the above interval, was used to obtain cDNAs from both fetal and adult brain libraries. We describe the identification of cDNAs with stretches of high DNA sequence homology to exons of {beta} glucuronidase on human chromosome 7. Themore » cDNAs map both to the candidate region and to an area of 5p using FISH and deletion hybrid analysis. Hybridization to bacteriophage and cosmid clones from the YACs localizes the {beta} glucuronidase related sequences within the 400 kb region of the YAC contig. The cDNAs show a polymorphic pattern on hybridization to genomic BamH1 fragments in the size range of 10-250 kb. Further analysis using YAC fragmentation vectors is being used to determine how these {beta} glucuronidase related cDNAs are distributed within 5q13. Dinucleotide repeats within the region are being investigated to determine linkage disequilibrium with the disease locus.« less
Zhu, Genfa; Yang, Fengxi; Shi, Shanshan; Li, Dongmei; Wang, Zhen; Liu, Hailin; Huang, Dan; Wang, Caiyun
2015-01-01
The highly variable leaf color of Cymbidium sinense significantly improves its horticultural and economic value, and makes it highly desirable in the flower markets in China and Southeast Asia. However, little is understood about the molecular mechanism underlying leaf-color variations. In this study, we found the content of photosynthetic pigments, especially chlorophyll degradation metabolite in the leaf-color mutants is distinguished significantly from that in the wild type of Cymbidium sinense 'Dharma'. To further determine the candidate genes controlling leaf-color variations, we first sequenced the global transcriptome using 454 pyrosequencing. More than 0.7 million expressed sequence tags (ESTs) with an average read length of 445.9 bp were generated and assembled into 103,295 isotigs representing 68,460 genes. Of these isotigs, 43,433 were significantly aligned to known proteins in the public database, of which 29,299 could be categorized into 42 functional groups in the gene ontology system, 10,079 classified into 23 functional classifications in the clusters of orthologous groups system, and 23,092 assigned to 139 clusters of specific metabolic pathways in the Kyoto Encyclopedia of Genes and Genomes. Among these annotations, 95 isotigs were designated as involved in chlorophyll metabolism. On this basis, we identified 16 key enzyme-encoding genes in the chlorophyll metabolism pathway, the full length cDNAs and expressions of which were further confirmed. Expression pattern indicated that the key enzyme-encoding genes for chlorophyll degradation were more highly expressed in the leaf color mutants, as was consistent with their lower chlorophyll contents. This study is the first to supply an informative 454 EST dataset for Cymbidium sinense 'Dharma' and to identify original leaf color-associated genes, which provide important resources to facilitate gene discovery for molecular breeding, marketable trait discovery, and investigating various biological process in this species.
Shi, Shanshan; Li, Dongmei; Wang, Zhen; Liu, Hailin; Huang, Dan; Wang, Caiyun
2015-01-01
The highly variable leaf color of Cymbidium sinense significantly improves its horticultural and economic value, and makes it highly desirable in the flower markets in China and Southeast Asia. However, little is understood about the molecular mechanism underlying leaf-color variations. In this study, we found the content of photosynthetic pigments, especially chlorophyll degradation metabolite in the leaf-color mutants is distinguished significantly from that in the wild type of Cymbidium sinense 'Dharma'. To further determine the candidate genes controlling leaf-color variations, we first sequenced the global transcriptome using 454 pyrosequencing. More than 0.7 million expressed sequence tags (ESTs) with an average read length of 445.9 bp were generated and assembled into 103,295 isotigs representing 68,460 genes. Of these isotigs, 43,433 were significantly aligned to known proteins in the public database, of which 29,299 could be categorized into 42 functional groups in the gene ontology system, 10,079 classified into 23 functional classifications in the clusters of orthologous groups system, and 23,092 assigned to 139 clusters of specific metabolic pathways in the Kyoto Encyclopedia of Genes and Genomes. Among these annotations, 95 isotigs were designated as involved in chlorophyll metabolism. On this basis, we identified 16 key enzyme-encoding genes in the chlorophyll metabolism pathway, the full length cDNAs and expressions of which were further confirmed. Expression pattern indicated that the key enzyme-encoding genes for chlorophyll degradation were more highly expressed in the leaf color mutants, as was consistent with their lower chlorophyll contents. This study is the first to supply an informative 454 EST dataset for Cymbidium sinense 'Dharma' and to identify original leaf color-associated genes, which provide important resources to facilitate gene discovery for molecular breeding, marketable trait discovery, and investigating various biological process in this species. PMID:26042676
Shi, Daning; Hou, Xiaojuan; Wang, Lei; Gao, Yitian; Wu, Di; Xi, Xinping; Zhou, Mei; Kwok, Hang Fai; Duan, Jinao; Chen, Tianbao; Shaw, Chris
2016-05-12
The dermaseptin antimicrobial peptide family contains members of 27-34 amino acids in length that have been predominantly isolated from the skins/skin secretions of phyllomedusine leaf frogs. By use of a degenerate primer in Rapid amplification of cDNA ends (RACE) PCR designed to a common conserved domain within the 5'-untranslated regions of previously-characterized dermaseptin encoding cDNAs, two novel members of this peptide family, named dermaseptin-PD-1 and dermaseptin-PD-2, were identified in the skin secretion of the phyllomedusine frog, Pachymedusa dacnicolor. The primary structures of both peptides were predicted from cloned cDNAs, as well as being confirmed by mass spectral analysis of crude skin secretion fractions resulted from reversed-phase high-performance liquid chromatography. Chemically-synthesized replicates of dermaseptin-PD-1 and dermaseptin-PD-2 were investigated for antimicrobial activity using standard model microorganisms (Gram-positive bacteria, Gram-negative bacteria and a yeast) and for cytotoxicity using mammalian red blood cells. The possibility of synergistic effects between the two peptides and their anti-cancer cell proliferation activities were assessed. The peptides exhibited moderate to high inhibition against the growth of the tested microorganisms and cancer cell lines with low haemolytic activity. Synergistic interaction between the two peptides in inhibiting the proliferation of Escherichia coli and human neuronal glioblastoma cell line, U251MG was also manifested.
Soybean oil biosynthesis: role of diacylglycerol acyltransferases.
Li, Runzhi; Hatanaka, Tomoko; Yu, Keshun; Wu, Yongmei; Fukushige, Hirotada; Hildebrand, David
2013-03-01
Diacylglycerol acyltransferase (DGAT) catalyzes the acyl-CoA-dependent acylation of sn-1,2-diacylglycerol to form seed oil triacylglycerol (TAG). To understand the features of genes encoding soybean (Glycine max) DGATs and possible roles in soybean seed oil synthesis and accumulation, two full-length cDNAs encoding type 1 diacylglycerol acyltransferases (GmDGAT1A and GmDGAT1B) were cloned from developing soybean seeds. These coding sequences share identities of 94 % and 95 % in protein and DNA sequences. The genomic architectures of GmDGAT1A and GmDGAT1B both contain 15 introns and 16 exons. Differences in the lengths of the first exon and most of the introns were found between GmDGAT1A and GmDGAT1B genomic sequences. Furthermore, detailed in silico analysis revealed a third predicted DGAT1, GmDGAT1C. GmDGAT1A and GmDGAT1B were found to have similar activity levels and substrate specificities. Oleoyl-CoA and sn-1,2-diacylglycerol were preferred substrates over vernoloyl-CoA and sn-1,2-divernoloylglycerol. Both transcripts are much more abundant in developing seeds than in other tissues including leaves, stem, roots, and flowers. Both soybean DGAT1A and DGAT1B are highly expressed at developing seed stages of maximal TAG accumulation with DGAT1B showing highest expression at somewhat later stages than DGAT1A. DGAT1A and DGAT1B show expression profiles consistent with important roles in soybean seed oil biosynthesis and accumulation.
Francischetti, Ivo M. B.; My-Pham, Van; Harrison, Jim; Garfield, Mark K.; Ribeiro, José M. C.
2010-01-01
The venom gland of the snake Bitis gabonica (Gaboon viper) was used for the first time to construct a unidirectional cDNA phage library followed by high-throughput sequencing and bioinformatic analysis. Hundreds of cDNAs were obtained and clustered into contigs. We found mostly novel full-length cDNA coding for metalloproteases (P-II and P-III classes), Lys49-phospholipase A2, serine proteases with essential mutations in the active site, Kunitz protease inhibitors, several C-type lectins, bradykinin-potentiating peptide, vascular endothelial growth factor, nucleotidases and nucleases, nerve growth factor, and L-amino acid oxidases. Two new members of the recently described short coding region family of disintegrin, displaying RGD and MLD motifs are reported. In addition, we have identified for the first time a cytokine-like molecule and a multi-Kunitz protease inhibitor in snake venoms. The CLUSTAL alignment and the unrooted cladograms for selected families of B. gabonica venom proteins are also presented. A significant number of sequences were devoid of database matches, suggesting that their biologic function remains to be identified. This paper also reports the N-terminus of the 15 most abundant venom proteins and the sequences matching their corresponding transcripts. The electronic version of this manuscript, available on request, contains spreadsheets with hyperlinks to FASTA-formatted files for each contig and the best match to the GenBank and Conserved Domain Databases, in addition to CLUSTAL alignments of each contig. We have thus generated a comprehensive catalog of the B. gabonica venom gland, containing for each secreted protein: i) the predicted molecular weight, ii) the predicted isoelectric point, iii) the accession number, and iv) the putative function. The role of these molecules is discussed in the context of the envenomation caused by the Gaboon viper. PMID:15276202
USDA-ARS?s Scientific Manuscript database
Using suppression subtractive hybridization (SSH) and subsequent microarray analysis, expression profiles of sorghum genes responsive to greenbug phloem-feeding were obtained and identified. Among the profiles, two cDNAs designated to MM73 and MM95 were identified to encode Xa1 (Xa1) and oxysterol ...
USDA-ARS?s Scientific Manuscript database
Serine proteases, such as trypsin and chymotrypsin, are the primary digestive enzymes in lepidopteran larvae, and are also involved in Bacillus thuringiensis (Bt) protoxin activation and protoxin/toxin degradation. We isolated and sequenced 34 cDNAs putatively encoding trypsins, chymotrypsins and th...
Two Cycloartenol Synthases for Phytosterol Biosynthesis in Polygala tenuifolia Willd.
Jin, Mei Lan; Lee, Woo Moon; Kim, Ok Tae
2017-11-15
Oxidosqualene cyclases (OSCs) are enzymes that play a key role in control of the biosynthesis of phytosterols and triterpene saponins. In order to uncover OSC genes from Polygala tenuifolia seedlings induced by methyl jasmonate (MeJA), RNA-sequencing analysis was performed using the Illumina sequencing platform. A total of 148,488,632 high-quality reads from two samples (control and the MeJA treated) were generated. We screened genes related to phytosterol and triterpene saponin biosynthesis and analyzed the transcriptional changes of differentially expressed unigene (DEUG) values calculated by fragments per kilobase million (FPKM). In our datasets, two full-length cDNAs of putative OSC genes, PtCAS1 , and PtCAS2 , were found, in addition to the PtBS (β-amyrin synthase) gene reported in our previous studies and the two cycloartenol synthase genes of P. tenuifolia . All genes were isolated and characterized in yeast cells. The functional expression of the two PtCAS genes in yeast cells showed that the genes all produce a cycloartenol as the sole product. When qRT-PCR analysis from different tissues was performed, the expressions of PtCAS1 and PtCAS2 were highest in flowers and roots, respectively. After MeJA treatment, the transcripts of PtCAS1 and PtCAS2 genes increased by 1.5- and 2-fold, respectively. Given these results, we discuss the potential roles of the two PtCAS genes in relation to triterpenoid biosynthesis.
Proteome Analysis of Watery Saliva Secreted by Green Rice Leafhopper, Nephotettix cincticeps
Hattori, Makoto; Komatsu, Setsuko; Noda, Hiroaki; Matsumoto, Yukiko
2015-01-01
The green rice leafhopper, Nephotettix cincticeps, is a vascular bundle feeder that discharges watery and gelling saliva during the feeding process. To understand the potential functions of saliva for successful and safe feeding on host plants, we analyzed the complexity of proteinaceous components in the watery saliva of N. cincticeps. Salivary proteins were collected from a sucrose diet that adult leafhoppers had fed on through a membrane of stretched parafilm. Protein concentrates were separated using SDS-PAGE under reducing and non-reducing conditions. Six proteins were identified by a gas-phase protein sequencer and two proteins were identified using LC-MS/MS analysis with reference to expressed sequence tag (EST) databases of this species. Full -length cDNAs encoding these major proteins were obtained by rapid amplification of cDNA ends-PCR (RACE-PCR) and degenerate PCR. Furthermore, gel-free proteome analysis that was performed to cover the broad range of salivary proteins with reference to the latest RNA-sequencing data from the salivary gland of N. cincticeps, yielded 63 additional protein species. Out of 71 novel proteins identified from the watery saliva, about 60 % of those were enzymes or other functional proteins, including GH5 cellulase, transferrin, carbonic anhydrases, aminopeptidase, regucalcin, and apolipoprotein. The remaining proteins appeared to be unique and species- specific. This is the first study to identify and characterize the proteins in watery saliva of Auchenorrhyncha species, especially sheath-producing, vascular bundle-feeders. PMID:25909947
Xu, Bin; Zhang, Yanan; Jing, Zhao; Fan, Tingjun
2017-06-01
Bivalve hemoglobins have antibacterial activities, while the underlying mechanisms remain poorly understood. In our study, three full-length cDNAs of hemoglobins from blood clam skHbs were obtained, encoding putative polypeptides of 147, 150, and 152 amino acids, respectively. Predicted advanced protein structures showed that the skHbs had amphipathic antibacterial structures, displayed the typical structural characteristics of proteins with globin-like fold containing numerous alpha-helixes, and forming a homodimeric skHbI and a heterotetrameric skHbII complex. After injected with alive and heat-killed Gram-positive bacteria Bacillus subtilis, the mRNA levels of skHbI and skHbII were both significantly upregulated through increasing the expression of peptidoglycan recognition protein-like (PGRP-like) protein and Toll-like receptor (TLR-like) protein induced by peptidoglycan on the surface of the bacteria, but there were no obvious differences in their protein levels. Besides, reactive oxygen species (ROS) was detected to participate in the resistance to B. subtilis. These implied that skHbs could involve in the innate immune responses to Gram-positive bacterial infection directly with their amphipathic structures and indirectly by increasing ROS production through PGRP triggering Toll pathway. In conclusion, our findings reveal the structural characteristics of skHbs and their mechanism against Gram-positive bacteria thereby providing the molecular evidence for fundamental innate antibacterial activities by invoking respiratory proteins. Copyright © 2017 Elsevier B.V. All rights reserved.
Vernersson, M; Belov, K; Aveskogh, M; Hellman, L
2010-01-01
To trace the emergence of modern IgA isotypes during vertebrate evolution we have studied the immunoglobulin repertoire of a model monotreme, the platypus. Two highly divergent IgA-like isotypes (IgA1 and IgA2) were identified and their primary structures were determined from full-length cDNAs. A comparative analysis of the amino acid sequences for IgA from various animal species showed that the two platypus IgA isotypes form a branch clearly separated from their eutherian (placental) counterparts. However, they still conform to the general structure of eutherian IgA, with a hinge region and three constant domains. This indicates that the deletion of the second domain and the formation of a hinge region in IgA did occur very early during mammalian evolution, more than 166 million years ago. The two IgA isotypes in platypus differ in primary structure and appear to have arisen from a very early gene duplication, possibly preceding the metatherian eutherian split. Interestingly, one of these isotypes, IgA1, appears to be expressed in only the platypus, but is present in the echidna based on Southern blot analysis. The platypus may require a more effective mucosal immunity, with two highly divergent IgA forms, than the terrestrial echidna, due to its lifestyle, where it is exposed to pathogens both on land and in the water. Copyright 2010 Elsevier Ltd. All rights reserved.
Vaisman, Carolina E; Del Moral-Hernandez, Oscar; Moreno-Campuzano, Samadhi; Aréchaga-Ocampo, Elena; Bonilla-Moreno, Raul; Garcia-Aguiar, Israel; Cedillo-Barron, Leticia; Berumen, Jaime; Nava, Porfirio; Villegas-Sepúlveda, Nicolas
2018-03-02
The HPV-16 E6/E7 bicistronic immature transcript produces 4 mature RNAs: the unspliced HPV-16 E6/E7 pre-mRNA product and 3 alternatively spliced mRNAs. The 3 spliced mRNAs encode short forms of the E6 oncoprotein, namely E6*I, E6*II and E6^E7. In this study we showed that transfection of C-33A cells with monocistronic constructs of these cDNAs fused to GFP, produced different effects on apoptosis, after the treatment with cisplatin. Transfection of C-33A cells with the full-length E6-GFP oncoprotein resulted in a 50% decrease in cell death, while the transfection with the E6*I-GFP construct showed only a 25% of diminution of cell death, compared to the control cells. Transfection with the E6^E7-GFP or E7-GFP construct had no effect on the number of the apoptotic cells, compared with control cells. Conversely, transfection with the E6*II construct resulted in higher cell death than the control cells. Taken together, these results suggested that E6*I or E6*II, the short forms of HPV-16 E6, displayed opposite effects on cisplatin-induced apoptosis, when transfected in C-33A cells. Copyright © 2018 Elsevier B.V. All rights reserved.
Zhang, Y-N; Zhang, J; Yan, S-W; Chang, H-T; Liu, Y; Wang, G-R; Dong, S-L
2014-10-01
The sex pheromone communication system in moths is highly species-specific and extremely sensitive, and pheromone receptors (PRs) are thought to be the most important factors in males. In the present study, three full-length cDNAs encoding PRs were characterized from Sesamia inferens antennae. These three PRs were all male-specific in expression, but their relative expression levels were very different; SinfOR29 was 17- to 23-fold higher than the other two PRs. Phylogenetic and motif pattern analyses showed that these three PRs were allocated to different PR subfamilies with different motif patterns. Functional analysis using the heterologous expression system of Xenopus oocytes demonstrated that SinfOR29 specifically and sensitively responded to the major pheromone component, Z11-16:OAc [concentration for 50% of maximal effect (EC50 ) = 3.431 × 10(-7) M], while SinfOR21 responded robustly to a minor pheromone component Z11-16:OH (EC50 = 1.087 × 10(-6) M). SinfOR27, however, displayed no response to any of the three pheromone components, but, interestingly, it was sensitive to a non-sex pheromone component Z9,E12-14:OAc (EC50 = 1.522 × 10(-6) M). Our results provide insight into the molecular mechanisms of specificity and sensitivity of the sex pheromone communication system in moths. © 2014 The Royal Entomological Society.
Analysis of the Citrullus colocynthis Transcriptome during Water Deficit Stress
Wang, Zhuoyu; Hu, Hongtao; Goertzen, Leslie R.; McElroy, J. Scott; Dane, Fenny
2014-01-01
Citrullus colocynthis is a very drought tolerant species, closely related to watermelon (C. lanatus var. lanatus), an economically important cucurbit crop. Drought is a threat to plant growth and development, and the discovery of drought inducible genes with various functions is of great importance. We used high throughput mRNA Illumina sequencing technology and bioinformatic strategies to analyze the C. colocynthis leaf transcriptome under drought treatment. Leaf samples at four different time points (0, 24, 36, or 48 hours of withholding water) were used for RNA extraction and Illumina sequencing. qRT-PCR of several drought responsive genes was performed to confirm the accuracy of RNA sequencing. Leaf transcriptome analysis provided the first glimpse of the drought responsive transcriptome of this unique cucurbit species. A total of 5038 full-length cDNAs were detected, with 2545 genes showing significant changes during drought stress. Principle component analysis indicated that drought was the major contributing factor regulating transcriptome changes. Up regulation of many transcription factors, stress signaling factors, detoxification genes, and genes involved in phytohormone signaling and citrulline metabolism occurred under the water deficit conditions. The C. colocynthis transcriptome data highlight the activation of a large set of drought related genes in this species, thus providing a valuable resource for future functional analysis of candidate genes in defense of drought stress. PMID:25118696
Navarro-Ródenas, Alfonso; Ruíz-Lozano, Juan Manuel; Kaldenhoff, Ralf; Morte, Asunción
2012-02-01
Terfezia claveryi is a hypogeous mycorrhizal fungus belonging to the so-called "desert truffles," with a good record as an edible fungus and of considerable economic importance. T. claveryi improves the tolerance to water stress of the host plant Helianthemum almeriense, for which, in field conditions, symbiosis with T. claveryi is valuable for its survival. We have characterized cDNAs from T. claveryi and identified a sequence related to the aquaporin gene family. The full-length sequence was obtained by rapid amplification of cDNA ends and was named TcAQP1. This aquaporin gene encoded a functional water-channel protein, as demonstrated by heterologous expression assays in Saccharomyces cerevisiae. The mycorrhizal fungal aquaporin increased both water and CO(2) conductivity in the heterologous expression system. The expression patterns of the TcAQP1 gene in mycelium, under different water potentials, and in mycorrhizal plants are discussed. The high levels of water conductivity of TcAQP1 could be related to the adaptation of this mycorrhizal fungus to semiarid areas. The CO(2) permeability of TcAQP1 could be involved in the regulation of T. claveryi growth during presymbiotic phases, making it a good candidate to be considered a novel molecular signaling channel in mycorrhizal fungi.
Integrating alternative splicing detection into gene prediction.
Foissac, Sylvain; Schiex, Thomas
2005-02-10
Alternative splicing (AS) is now considered as a major actor in transcriptome/proteome diversity and it cannot be neglected in the annotation process of a new genome. Despite considerable progresses in term of accuracy in computational gene prediction, the ability to reliably predict AS variants when there is local experimental evidence of it remains an open challenge for gene finders. We have used a new integrative approach that allows to incorporate AS detection into ab initio gene prediction. This method relies on the analysis of genomically aligned transcript sequences (ESTs and/or cDNAs), and has been implemented in the dynamic programming algorithm of the graph-based gene finder EuGENE. Given a genomic sequence and a set of aligned transcripts, this new version identifies the set of transcripts carrying evidence of alternative splicing events, and provides, in addition to the classical optimal gene prediction, alternative optimal predictions (among those which are consistent with the AS events detected). This allows for multiple annotations of a single gene in a way such that each predicted variant is supported by a transcript evidence (but not necessarily with a full-length coverage). This automatic combination of experimental data analysis and ab initio gene finding offers an ideal integration of alternatively spliced gene prediction inside a single annotation pipeline.
Hadsbjerg, Johanne; Friis, Martin B; Fahnøe, Ulrik; Nielsen, Jens; Belsham, Graham J; Rasmussen, Thomas Bruun
2016-08-30
Classical swine fever virus (CSFV) causes an economically important disease of swine. Four different viruses were rescued from full-length cloned cDNAs derived from the Paderborn strain of CSFV. Three of these viruses had been modified by mutagenesis (with 7 or 8 nt changes) within stem 2 of the subdomain IIIf of the internal ribosome entry site (IRES) that directs the initiation of protein synthesis. Rescued viruses were inoculated into pigs. The rescued vPader10 virus, without modifications in the IRES, induced clinical disease in pigs that was very similar to that observed previously with the parental field strain and transmission to in-contact pigs occurred. Two sequence reversions, in the NS2 and NS5B coding regions, became dominant within the virus populations in these infected pigs. Rescued viruses, with mutant IRES elements, did not induce disease and only very limited circulation of viral RNA could be detected. However, the animals inoculated with these mutant viruses seroconverted against CSFV. Thus, these mutant viruses were highly attenuated in vivo. All 4 rescued viruses were also passaged up to 20 times in cell culture. Using full genome sequencing, the same two adaptations within each of four independent virus populations were observed that restored the coding sequence to that of the parental field strain. These adaptations occurred with different kinetics. The combination of reverse genetics and in depth, full genome sequencing provides a powerful approach to analyse virus adaptation and to identify key determinants of viral replication efficiency in cells and within host animals. Copyright © 2016 Elsevier B.V. All rights reserved.
Identification of MHC class I sequences in Chinese-origin rhesus macaques
Karl, Julie A.; Wiseman, Roger W.; Campbell, Kevin J.; Blasky, Alex J.; Hughes, Austin L.; Ferguson, Betsy; Read, Daniel S.
2010-01-01
The rhesus macaque (Macaca mulatta) is an excellent model for human disease and vaccine research. Two populations exhibiting distinctive morphological and physiological characteristics, Indian- and Chinese-origin rhesus macaques, are commonly used in research. Genetic analysis has focused on the Indian macaque population, but the accessibility of these animals for research is limited. Due to their greater availability, Chinese rhesus macaques are now being used more frequently, particularly in vaccine and biodefense studies, although relatively little is known about their immunogenetics. In this study, we discovered major histocompatibility complex (MHC) class I cDNAs in 12 Chinese rhesus macaques and detected 41 distinct Mamu-A and Mamu-B sequences. Twenty-seven of these class I cDNAs were novel, while six and eight of these sequences were previously reported in Chinese and Indian rhesus macaques, respectively. We then performed microsatellite analysis on DNA from these 12 animals, as well as an additional 18 animals, and developed sequence specific primer PCR (PCR-SSP) assays for eight cDNAs found in multiple animals. We also examined our cohort for potential admixture of Chinese and Indian origin animals using a recently developed panel of single nucleotide polymorphisms (SNPs). The discovery of 27 novel MHC class I sequences in this analysis underscores the genetic diversity of Chinese rhesus macaques and contributes reagents that will be valuable for studying cellular immunology in this population. PMID:18097659
Luo, Weiwei; Liang, Xiao; Huang, Songqian; Cao, Xiaojuan
2016-12-01
Vascular endothelial growth factor A (VEGFA) is the most studied and the best characterized member of the VEGF family and is a key regulator of angiogenesis via its ability to affect the proliferation, migration, and differentiation of endothelial cells. In this study, the full-length cDNAs encoding VEGFAa and VEGFAb from pond loach, Misgurnus anguillicaudatus, were isolated. The VEGFAa is constituted by an open reading frame (ORF) of 570bp encoding for a peptide of 189 amino acid residues, a 639bp 5'-untranslated region (UTR) and a 2383bp 3' UTR. The VEGFAb is constituted by an ORF of 687bp encoding for a peptide of 228 amino acid residues, a 560bp 5' UTR and a 1268bp 3' UTR. Phylogenetic analysis indicated that the VEGFAa and VEGFAb of pond loach were conserved in vertebrates. Expression levels of VEGFAa and VEGFAb were detected by RT-qPCR at different development stages of pond loach and in different tissues of 6-month-old, 12-month-old and 24-month-old pond loach. Moreover, eight predicted miRNAs (miR-200, miR-29, miR-218, miR-338, miR-103, miR-15, miR-17 and miR-223) targeting VEGFAa and VEGFAb were validated by an intestinal air-breathing inhibition experiment. This study will be of value for further studies into the function of VEGFA and its corresponding miRNAs, which will shed a light on the vascularization and accessory air-breathing process in pond loach. Copyright © 2016 Elsevier Inc. All rights reserved.
Li, Meng; Wang, Lihong; Wang, Houpeng; Liang, Hongwei; Zheng, Yao; Qin, Fang; Liu, Shaozhen; Zhang, Yingying; Wang, Zaizhao
2013-05-01
The proteins encoded by amh, dax1 and cyp19a1a play important roles in gonad differentiation. Their functions have been far less studied in teleosts. In this study, the full-length cDNAs of amh, dax1 and cyp19a1a were cloned and characterized in a triploid gynogenic fish, the Pengze crucian carp. Their expression profilings in juvenile development, adult tissues and juveniles exposed to 100 ng/L 17α-methyltestosterone (MT) were investigated. Results showed that their putative proteins shared high identities to their counterparts in cyprinid fish species, respectively. The tissue distribution results indicated that amh and cyp19a1a were predominantly expressed in the ovary and dax1 was dominantly expressed in the liver. Gene profiling in the developmental stages showed that all the three target genes had a consistent highest expression at 48 days post hatching (dph). The period of 48 dph appeared to be a key time during the process of the gonad development of Pengze crucian carp. 100 ng/L MT significantly increased the mRNA expression of amh at 2- and 4-week exposures and enhanced dax1 and cyp19a1a at 6-week exposure. The present study indicated that MT could influence the gonad development in Pengze crucian carp by disturbing sex-differentiation associated gene expression. Furthermore, the present study will be of great significance to broaden the understanding of molecular mechanisms of the physiological processes of reproduction in fish. Copyright © 2013 Elsevier Inc. All rights reserved.
PCR cloning and characterization of multiple ADP-glucose pyrophosphorylase cDNAs from tomato
NASA Technical Reports Server (NTRS)
Chen, B. Y.; Janes, H. W.; Gianfagna, T.
1998-01-01
Four ADP-glucose pyrophosphorylase (AGP) cDNAs were cloned from tomato fruit and leaves by the PCR techniques. Three of them (agp S1, agp S2, and agp S3) encode the large subunit of AGP, the fourth one (agp B) encodes the small subunit. The deduced amino acid sequences of the cDNAs show very high identities (96-98%) to the corresponding potato AGP isoforms, although there are major differences in tissue expression profiles. All four tomato AGP transcripts were detected in fruit and leaves; the predominant ones in fruit are agp B and agp S1, whereas in leaves they are agp B and agp S3. Genomic southern analysis suggests that the four AGP transcripts are encoded by distinct genes.
Zhu, Changfu; Yamamura, Saburo; Nishihara, Masashiro; Koiwa, Hiroyuki; Sandmann, Gerhard
2003-02-20
cDNAs encoding lycopene epsilon -cyclase, lycopene beta-cyclase, beta-carotene hydroxylase and zeaxanthin epoxidase were isolated from a Gentiana lutea petal cDNA library. The function of all cDNAs was analyzed by complementation in Escherichia coli. Transcript levels during different stages of flower development of G. lutea were determined and compared to the carotenoid composition. Expression of all genes increased by a factor of up to 2, with the exception of the lycopene epsilon -cyclase gene. The transcript amount of the latter was strongly decreased. These results indicate that during flower development, carotenoid formation is enhanced. Moreover, metabolites are shifted away from the biosynthetic branch to lutein and are channeled into beta-carotene and derivatives.
McPhaul, M; Berg, P
1986-01-01
The rat asialoglycoprotein receptor (ASGP-R) has been expressed in cultured rat hepatoma cells (HTC cells) after transfection with cloned cDNAs. Fluorescence-activated cell sorting of transfected cells was used to identify the functional cDNA clones and to isolate cells expressing the ASGP-R. Simultaneous or sequential transfections with two cloned cDNAs that encode related but distinctive polypeptide chains were needed to obtain ASGP-R activity; transfection with either cDNA alone failed to produce detectable ASGP-R. The affinity of transduced ASGP-R for asialo orosomucoid is less than that of the native rat ASGP-R, and the number of surface receptors in clones expressing ASGP-R is about one-fifth that found on rat hepatocytes. Images PMID:3466162
Chang, M X; Nie, P; Xie, H X; Sun, B J; Gao, Q
2005-01-01
The cDNAs and genes of two different types of leucine-rich repeat-containing proteins from grass carp (Ctenopharyngodon idellus) were cloned. Homology search revealed that the two genes, designated as GC-GARP and GC-LRG, have 37% and 32% deduced amino-acid sequence similarities with human glycoprotein A repetitions predominant precursor (GARP) and leucine-rich alpha2-glycoprotein (LRG), respectively. The cDNAs of GC-GARP and GC-LRG encoded 664 and 339 amino acid residues, respectively. GC-GARP and GC-LRG contain many distinct structural and/or functional motifs of the leucine-rich repeat (LRR) subfamily, such as multiple conserved 11-residue segments with the consensus sequence LxxLxLxxN/CxL (x can be any amino acid). The genes GC-GARP and GC-LRG consist of two exons, with 4,782 bp and 2,119 bp in total length, respectively. The first exon of each gene contains a small 5'-untranslated region and partial open reading frame. The putative promoter region of GC-GARP was found to contain transcription factor binding sites for GATA-1, IRF4, Oct-1, IRF-7, IRF-1, AP1, GATA-box and NFAT, and the promoter region of GC-LRG for MYC-MAX, MEIS1, ISRE, IK3, HOXA9 and C/EBP alpha. Phylogenetic analysis showed that GC-GARP and mammalian GARPs were clustered into one branch, while GC-LRG and mammalian LRGs were in another branch. The GC-GARP gene was only detected in head kidney, and GC-LRG in the liver, spleen and heart in the copepod (Sinergasilus major)-infected grass carp, indicating the induction of gene expression by the parasite infection. The results obtained in the present study provide insight into the structure of fish LRR genes, and further study should be carried out to understand the importance of LRR proteins in host-pathogen interactions.
Park, Jeenah; Sharma, Neeraj
2014-01-01
Melanocortin-3 receptor (MC3R) is a canonical MSH receptor that plays an essential role in energy homeostasis. Variants in MC3R have been implicated in obesity in humans and mice. However, interpretation of the functional consequences of these variants is challenging because the translational start site of MC3R is unclear. Using 5′ rapid amplification of cDNA ends, we discovered a novel upstream exon that extends the length of the 5′ untranslated region (UTR) in MC3R without changing the open-reading frame. The full-length 5′ UTR directs utilization of an evolutionarily conserved second in-frame ATG as the primary translation start site. MC3R synthesized from the second ATG is localized to apical membranes of polarized Madin-Darby canine kidney cells, consistent with its function as a cell surface mediator of melanocortin signaling. Expression of MC3R causes relocalization of melanocortin receptor accessory protein 2, an accessory factor for melanocortin-2 receptor, to the apical membrane, coincident with the location of MC3R. In contrast, protein synthesized from MC3R cDNAs lacking the 5′ UTR displayed diffuse cytosolic distribution and has no effect on the distribution of melanocortin receptor accessory protein 2. Our findings demonstrate that a previously unannotated 5′ exon directs translation of MC3R protein that localizes to apical membranes of polarized cells. Together, our work provides insight on the structure of human MC3R and reveals a new pathway for regulation of energy metabolism. PMID:25051171
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nitsche, E.M.; Moquin, A.; Adams, P.S.
1996-05-03
Male sexual differentiation is a process that involves androgen action via the androgen receptor. Defects in the androgen receptor, many resulting from point mutations in the androgen receptor gene, lead to varying degrees of impaired masculinization in chromosomally male individuals. To date no specific androgen regulated morphogens involved in this process have been identified and no marker genes are known that would help to predict further virilization in infants with partial androgen insensitivity. In the present study we first show data on androgen regulated gene expression investigated by differential display reverse transcription PCR (dd RT PCR) on total RNA frommore » human neonatal genital skin fibroblasts cultured in the presence or absence of 100 nM testosterone. Using three different primer combinations, 54 cDNAs appeared to be regulated by androgens. Most of these sequences show the characteristics of expressed mRNAs but showed no homology to sequences in the database. However 15 clones with significant homology to previously cloned sequences were identified. Seven cDNAs appear to be induced by androgen withdrawal. Of these, five are similar to ETS (expression tagged sequences) from unknown genes; the other two show significant homology to the cDNAs of ubiquitin and human guanylate binding protein 2 (GBP-2). In addition, we have identified 8 cDNA clones which show homologies to other sequences in the database and appear to be upregulated in the presence of testosterone. Three differential expressed sequences show significant homology to the cDNAs of L-plastin and one to the cDNA of testican. This latter gene codes for a proteoglycan involved in cell social behavior and therefore of special interest in this context. The results of this study are of interest in further investigation of normal and disturbed androgen-dependent gene expression. 49 refs., 2 figs., 5 tabs.« less
Verkoczy, L K; Berinstein, N L
1998-10-01
Differential display PCR (DD RT-PCR) has been extensively used for analysis of differential gene expression, but continues to be hampered by technical limitations that impair its effectiveness. In order to isolate novel genes co-expressing with human RAG1, we have developed an effective, multi-tiered screening/purification approach which effectively complements the standard DD RT-PCR methodology. In 'primary' screens, standard DD RT-PCR was used, detecting 22 reproducible differentially expressed amplicons between clonally related cell variants with differential constitutive expression of RAG mRNAs. 'Secondary' screens used differential display (DD) amplicons as probes in low and high stringency northern blotting. Eight of 22 independent DD amplicons detected nine independent differentially expressed transcripts. 'Tertiary' screens used reconfirmed amplicons as probes in northern analysis of multiple RAG-and RAG+sources. Reconfirmed DD amplicons detected six independent RAG co-expressing transcripts. All DD amplicons reconfirmed by northern blot were a heterogeneous mixture of cDNAs, necessitating further purification to isolate single cDNAs prior to subcloning and sequencing. To effectively select the appropriate cDNAs from DD amplicons, we excised and eluted the cDNA(s) directly from regions of prior northern blots in which differentially expressed transcripts were detected. Sequences of six purified cDNA clones specifically detecting RAG co-expressing transcripts included matches to portions of the human RAG2 and BSAP regions and to four novel partial cDNAs (three with homologies to human ESTs). Overall, our results also suggest that even when using clonally related variants from the same cell line in addition to all appropriate internal controls previously reported, further screening and purification steps are still required in order to efficiently and specifically isolate differentially expressed genes by DD RT-PCR.
Peral, M J; García-Delgado, M; Calonge, M L; Durán, J M; De La Horra, M C; Wallimann, T; Speer, O; Ilundáin, A A
2002-01-01
In spite of all the fascinating properties of oral creatine supplementation, the mechanism(s) mediating its intestinal absorption has(have) not been investigated. The purpose of this study was to characterize intestinal creatine transport. [14C]Creatine uptake was measured in chicken enterocytes and rat ileum, and expression of the creatine transporter CRT was examined in human, rat and chicken small intestine by reverse transcription-polymerase chain reaction, Northern blot, in situ hybridization, immunoblotting and immunohistochemistry. Results show that enterocytes accumulate creatine against its concentration gradient. This accumulation was electrogenic, Na+- and Cl−-dependent, with a probable stoichiometry of 2 Na+: 1 Cl−: 1 creatine, and inhibited by ouabain and iodoacetic acid. The kinetic study revealed a Km for creatine of 29 μm. [14C]Creatine uptake was efficiently antagonized by non-labelled creatine, guanidinopropionic acid and cyclocreatine. More distant structural analogues of creatine, such as GABA, choline, glycine, β-alanine, taurine and betaine, had no effect on intestinal creatine uptake, indicating a high substrate specificity of the creatine transporter. Consistent with these functional data, messenger RNA for CRT was detected only in the cells lining the intestinal villus. The sequences of partial clones, and of the full-length cDNA clone, isolated from human and rat small intestine were identical to previously cloned CRT cDNAs. Immunological analysis revealed that CRT protein was mainly associated with the apical membrane of the enterocytes. This study reports for the first time that mammalian and avian enterocytes express CRT along the villus, where it mediates high-affinity, Na+- and Cl−-dependent, apical creatine uptake. PMID:12433955
Alvarez, A M; Fukuhara, E; Nakase, M; Adachi, T; Aoki, N; Nakamura, R; Matsuda, T
1995-07-01
Four rice seed proteins encoded by cDNAs belonging to the alpha-amylase/trypsin inhibitor gene family were overexpressed as TrpE-fusion proteins in E. coli. The expressed rice proteins were detected by SDS-PAGE as major proteins in bacterial cell lysates. Western blot analyses showed that all the recombinant proteins were immunologically reactive to rabbit polyclonal antibodies and to a mouse monoclonal antibody (25B9) specific for a previously isolated rice allergen of 16 kDa. Some truncated proteins from deletion mutants of the cDNAs retained their reactivity to the specific antibodies. These results suggest that the cDNAs encode potential rice allergens and that some epitopes of the recombinant proteins are still immunoreactive when they are expressed as their fragments.
Wu, Fuwang; Li, Qing; Yan, Huiling; Zhang, Dandan; Jiang, Guoxiang; Jiang, Yueming; Duan, Xuewu
2016-09-09
Thioredoxins (Trxs) are small proteins with a conserved redox active site WCGPC and are involved in a wide range of cellular redox processes. However, little information on the role of Trx in regulating low-temperature stress of harvested fruit is available. In this study, three full-length Trx cDNAs, designated MaTrx6, MaTrx9 and MaTrx12, were cloned from banana (Musa acuminata) fruit. Phylogenetic analysis and protein sequence alignments showed that MaTrx6 was grouped to h2 type with a typical active site of WCGPC, whereas MaTrx9 and MaTrx12 were assigned to atypical cys his-rich Trxs (ACHT) and h3 type with atypical active sites of GCAGC and WCSPC, respectively. Subcellular localization indicated that MaTrx6 and MaTrx12 were located in the plasma membrane and cytoplasm, respectively, whereas MaTrx9 showed a dual cytoplasmic and chloroplast localization. Application of ethylene induced chilling tolerance of harvested banana fruit, whereas 1-MCP, an inhibitor of ethylene perception, aggravated the development of chilling injury. RT-qPCR analysis showed that expression of MaTrx12 was up-regulated and down-regulated in ethylene- and 1-MCP-treated banana fruit at low temperature, respectively. Furthermore, heterologous expression of MaTrx12 in cytoplasmic Trx-deficient Saccharomyces cerevisiae strain increased the viability of the strain under H₂O₂. These results suggest that MaTrx12 plays an important role in the chilling tolerance of harvested banana fruit, possibly by regulating redox homeostasis.
Wang, Qiang; Ma, Xiaonan; Qian, ShaSha; Zhou, Xin; Sun, Kai; Chen, Xiaolan; Zhou, Xueping; Jackson, Andrew O; Li, Zhenghe
2015-10-01
Reverse genetics systems have been established for all major groups of plant DNA and positive-strand RNA viruses, and our understanding of their infection cycles and pathogenesis has benefitted enormously from use of these approaches. However, technical difficulties have heretofore hampered applications of reverse genetics to plant negative-strand RNA (NSR) viruses. Here, we report recovery of infectious virus from cloned cDNAs of a model plant NSR, Sonchus yellow net rhabdovirus (SYNV). The procedure involves Agrobacterium-mediated transcription of full-length SYNV antigenomic RNA and co-expression of the nucleoprotein (N), phosphoprotein (P), large polymerase core proteins and viral suppressors of RNA silencing in Nicotiana benthamiana plants. Optimization of core protein expression resulted in up to 26% recombinant SYNV (rSYNV) infections of agroinfiltrated plants. A reporter virus, rSYNV-GFP, engineered by inserting a green fluorescence protein (GFP) gene between the N and P genes was able to express GFP during systemic infections and after repeated plant-to-plant mechanical passages. Deletion analyses with rSYNV-GFP demonstrated that SYNV cell-to-cell movement requires the sc4 protein and suggested that uncoiled nucleocapsids are infectious movement entities. Deletion analyses also showed that the glycoprotein is not required for systemic infection, although the glycoprotein mutant was defective in virion morphogenesis. Taken together, we have developed a robust reverse genetics system for SYNV that provides key insights into morphogenesis and movement of an enveloped plant virus. Our study also provides a template for developing analogous systems for reverse genetic analysis of other plant NSR viruses.
Zhou, Xin; Sun, Kai; Chen, Xiaolan; Zhou, Xueping; Jackson, Andrew O.; Li, Zhenghe
2015-01-01
Reverse genetics systems have been established for all major groups of plant DNA and positive-strand RNA viruses, and our understanding of their infection cycles and pathogenesis has benefitted enormously from use of these approaches. However, technical difficulties have heretofore hampered applications of reverse genetics to plant negative-strand RNA (NSR) viruses. Here, we report recovery of infectious virus from cloned cDNAs of a model plant NSR, Sonchus yellow net rhabdovirus (SYNV). The procedure involves Agrobacterium-mediated transcription of full-length SYNV antigenomic RNA and co-expression of the nucleoprotein (N), phosphoprotein (P), large polymerase core proteins and viral suppressors of RNA silencing in Nicotiana benthamiana plants. Optimization of core protein expression resulted in up to 26% recombinant SYNV (rSYNV) infections of agroinfiltrated plants. A reporter virus, rSYNV-GFP, engineered by inserting a green fluorescence protein (GFP) gene between the N and P genes was able to express GFP during systemic infections and after repeated plant-to-plant mechanical passages. Deletion analyses with rSYNV-GFP demonstrated that SYNV cell-to-cell movement requires the sc4 protein and suggested that uncoiled nucleocapsids are infectious movement entities. Deletion analyses also showed that the glycoprotein is not required for systemic infection, although the glycoprotein mutant was defective in virion morphogenesis. Taken together, we have developed a robust reverse genetics system for SYNV that provides key insights into morphogenesis and movement of an enveloped plant virus. Our study also provides a template for developing analogous systems for reverse genetic analysis of other plant NSR viruses. PMID:26484673
Takamitsu, Emi; Otsuka, Motoaki; Haebara, Tatsuki; Yano, Manami; Matsuzaki, Kanako; Kobuchi, Hirotsugu; Moriya, Koko; Utsumi, Toshihiko
2015-01-01
To identify physiologically important human N-myristoylated proteins, 90 cDNA clones predicted to encode human N-myristoylated proteins were selected from a human cDNA resource (4,369 Kazusa ORFeome project human cDNA clones) by two bioinformatic N-myristoylation prediction systems, NMT-The MYR Predictor and Myristoylator. After database searches to exclude known human N-myristoylated proteins, 37 cDNA clones were selected as potential human N-myristoylated proteins. The susceptibility of these cDNA clones to protein N-myristoylation was first evaluated using fusion proteins in which the N-terminal ten amino acid residues were fused to an epitope-tagged model protein. Then, protein N-myristoylation of the gene products of full-length cDNAs was evaluated by metabolic labeling experiments both in an insect cell-free protein synthesis system and in transfected human cells. As a result, the products of 13 cDNA clones (FBXL7, PPM1B, SAMM50, PLEKHN, AIFM3, C22orf42, STK32A, FAM131C, DRICH1, MCC1, HID1, P2RX5, STK32B) were found to be human N-myristoylated proteins. Analysis of the role of protein N-myristoylation on the intracellular localization of SAMM50, a mitochondrial outer membrane protein, revealed that protein N-myristoylation was required for proper targeting of SAMM50 to mitochondria. Thus, the strategy used in this study is useful for the identification of physiologically important human N-myristoylated proteins from human cDNA resources.
Takamitsu, Emi; Otsuka, Motoaki; Haebara, Tatsuki; Yano, Manami; Matsuzaki, Kanako; Kobuchi, Hirotsugu; Moriya, Koko; Utsumi, Toshihiko
2015-01-01
To identify physiologically important human N-myristoylated proteins, 90 cDNA clones predicted to encode human N-myristoylated proteins were selected from a human cDNA resource (4,369 Kazusa ORFeome project human cDNA clones) by two bioinformatic N-myristoylation prediction systems, NMT-The MYR Predictor and Myristoylator. After database searches to exclude known human N-myristoylated proteins, 37 cDNA clones were selected as potential human N-myristoylated proteins. The susceptibility of these cDNA clones to protein N-myristoylation was first evaluated using fusion proteins in which the N-terminal ten amino acid residues were fused to an epitope-tagged model protein. Then, protein N-myristoylation of the gene products of full-length cDNAs was evaluated by metabolic labeling experiments both in an insect cell-free protein synthesis system and in transfected human cells. As a result, the products of 13 cDNA clones (FBXL7, PPM1B, SAMM50, PLEKHN, AIFM3, C22orf42, STK32A, FAM131C, DRICH1, MCC1, HID1, P2RX5, STK32B) were found to be human N-myristoylated proteins. Analysis of the role of protein N-myristoylation on the intracellular localization of SAMM50, a mitochondrial outer membrane protein, revealed that protein N-myristoylation was required for proper targeting of SAMM50 to mitochondria. Thus, the strategy used in this study is useful for the identification of physiologically important human N-myristoylated proteins from human cDNA resources. PMID:26308446
Function and distribution of 5-HT2 receptors in the honeybee (Apis mellifera).
Thamm, Markus; Rolke, Daniel; Jordan, Nadine; Balfanz, Sabine; Schiffer, Christian; Baumann, Arnd; Blenau, Wolfgang
2013-01-01
Serotonin plays a pivotal role in regulating and modulating physiological and behavioral processes in both vertebrates and invertebrates. In the honeybee (Apis mellifera), serotonin has been implicated in division of labor, visual processing, and learning processes. Here, we present the cloning, heterologous expression, and detailed functional and pharmacological characterization of two honeybee 5-HT2 receptors. Honeybee 5-HT2 receptor cDNAs were amplified from brain cDNA. Recombinant cell lines were established constitutively expressing receptor variants. Pharmacological properties of the receptors were investigated by Ca(2+) imaging experiments. Quantitative PCR was applied to explore the expression patterns of receptor mRNAs. The honeybee 5-HT2 receptor class consists of two subtypes, Am5-HT2α and Am5-HT2β. Each receptor gene also gives rise to alternatively spliced mRNAs that possibly code for truncated receptors. Only activation of the full-length receptors with serotonin caused an increase in the intracellular Ca(2+) concentration. The effect was mimicked by the agonists 5-methoxytryptamine and 8-OH-DPAT at low micromolar concentrations. Receptor activities were blocked by established 5-HT receptor antagonists such as clozapine, methiothepin, or mianserin. High transcript numbers were detected in exocrine glands suggesting that 5-HT2 receptors participate in secretory processes in the honeybee. This study marks the first molecular and pharmacological characterization of two 5-HT2 receptor subtypes in the same insect species. The results presented should facilitate further attempts to unravel central and peripheral effects of serotonin mediated by these receptors.
Function and Distribution of 5-HT2 Receptors in the Honeybee (Apis mellifera)
Thamm, Markus; Rolke, Daniel; Jordan, Nadine; Balfanz, Sabine; Schiffer, Christian; Baumann, Arnd; Blenau, Wolfgang
2013-01-01
Background Serotonin plays a pivotal role in regulating and modulating physiological and behavioral processes in both vertebrates and invertebrates. In the honeybee (Apis mellifera), serotonin has been implicated in division of labor, visual processing, and learning processes. Here, we present the cloning, heterologous expression, and detailed functional and pharmacological characterization of two honeybee 5-HT2 receptors. Methods Honeybee 5-HT2 receptor cDNAs were amplified from brain cDNA. Recombinant cell lines were established constitutively expressing receptor variants. Pharmacological properties of the receptors were investigated by Ca2+ imaging experiments. Quantitative PCR was applied to explore the expression patterns of receptor mRNAs. Results The honeybee 5-HT2 receptor class consists of two subtypes, Am5-HT2α and Am5-HT2β. Each receptor gene also gives rise to alternatively spliced mRNAs that possibly code for truncated receptors. Only activation of the full-length receptors with serotonin caused an increase in the intracellular Ca2+ concentration. The effect was mimicked by the agonists 5-methoxytryptamine and 8-OH-DPAT at low micromolar concentrations. Receptor activities were blocked by established 5-HT receptor antagonists such as clozapine, methiothepin, or mianserin. High transcript numbers were detected in exocrine glands suggesting that 5-HT2 receptors participate in secretory processes in the honeybee. Conclusions This study marks the first molecular and pharmacological characterization of two 5-HT2 receptor subtypes in the same insect species. The results presented should facilitate further attempts to unravel central and peripheral effects of serotonin mediated by these receptors. PMID:24324783
Wu, Fuwang; Li, Qing; Yan, Huiling; Zhang, Dandan; Jiang, Guoxiang; Jiang, Yueming; Duan, Xuewu
2016-01-01
Thioredoxins (Trxs) are small proteins with a conserved redox active site WCGPC and are involved in a wide range of cellular redox processes. However, little information on the role of Trx in regulating low-temperature stress of harvested fruit is available. In this study, three full-length Trx cDNAs, designated MaTrx6, MaTrx9 and MaTrx12, were cloned from banana (Musa acuminata) fruit. Phylogenetic analysis and protein sequence alignments showed that MaTrx6 was grouped to h2 type with a typical active site of WCGPC, whereas MaTrx9 and MaTrx12 were assigned to atypical cys his-rich Trxs (ACHT) and h3 type with atypical active sites of GCAGC and WCSPC, respectively. Subcellular localization indicated that MaTrx6 and MaTrx12 were located in the plasma membrane and cytoplasm, respectively, whereas MaTrx9 showed a dual cytoplasmic and chloroplast localization. Application of ethylene induced chilling tolerance of harvested banana fruit, whereas 1-MCP, an inhibitor of ethylene perception, aggravated the development of chilling injury. RT-qPCR analysis showed that expression of MaTrx12 was up-regulated and down-regulated in ethylene- and 1-MCP-treated banana fruit at low temperature, respectively. Furthermore, heterologous expression of MaTrx12 in cytoplasmic Trx-deficient Saccharomyces cerevisiae strain increased the viability of the strain under H2O2. These results suggest that MaTrx12 plays an important role in the chilling tolerance of harvested banana fruit, possibly by regulating redox homeostasis. PMID:27618038
Mullen, R T; Gifford, D J
1997-03-01
Two full-length cDNAs encoding the glyoxysomal enzyme isocitrate lyase (ICL) were isolated from a lambda ZAP cDNA library prepared from megagametophyte mRNAs extracted from seeds imbibed at 30 degrees C for 8 days. The cDNAs, designated Ptbs ICL 8 and Ptbs ICL 12, have open reading frames of 1740 and 1719 bp, with deduced amino acid sequences of 580 and 573 residues, respectively. The predicted amino acid sequences of Ptbs ICL 8 and Ptbs ICL 12 exhibit a 79% identity with each other, and have a greater than 75% identity with ICLs from various angiosperm species. The C-termini of Ptbs ICL 8 and Ptbs ICL 12 terminate with the tripeptide Ser-Arg-Met and Ala-Arg-Met, respectively, both being conserved variants of the type 1 peroxisomal targeting signal. RNA blot and slot analysis revealed that Ptbs ICL 8 and Ptbs ICL 12 mRNAs were present at low levels in the megagametophyte of the mature and stratified seeds, and that the level of both transcripts increased markedly upon seed germination. Protein blot analysis indicated that the steady-state level of ICL was low in the mature and stratified seed, then increased rapidly upon seed germination, peaking at around 8-10 days after imbibition (DAI). Changes in the level of ICL activity in cell-free extracts was similar to the steady-state protein content with the exception that ICL activity was not detected in megagametophyte extracts of mature or stratified seeds. From 10-12 DAI when the megagametophyte tissue senesced, ICL activity decreased rapidly to near undetectable levels. In contrast, steady-state levels of ICL protein and mRNA remained relatively constant during megagametophyte senescence. In vivo synthesis of ICL protein was measured to shed light on these differences. ICL immunoselected from [(35)S]-methionine labelled proteins indicated that ICL was synthesized at very low levels during megagametophyte senescence. Together, the results show that loblolly pine ICL gene expression is complex. While temporal regulation appears to be primarily transcriptional, it also involves a number of post-transcriptional processes including at least one translational and/or post-translational mechanism.
A SABATH Methyltransferase from the moss Physcomitrella patens catalyzes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Nan; Ferrer, Jean-Luc; Moon, Hong S
2012-01-01
Known SABATH methyltransferases, all of which were identified from seed plants, catalyze methylation of either the carboxyl group of a variety of low molecular weight metabolites or the nitrogen moiety of precursors of caffeine. In this study, the SABATH family from the bryophyte Physcomitrella patens was identified and characterized. Four SABATH-like sequences (PpSABATH1, PpSABATH2, PpSABATH3, and PpSABATH4) were identified from the P. patens genome. Only PpSABATH1 and PpSABATH2 showed expression in the leafy gametophyte of P. patens. Full-length cDNAs of PpSABATH1 and PpSABATH2 were cloned and expressed in soluble form in Escherichia coli. Recombinant PpSABATH1 and PpSABATH2 were tested formore » methyltransferase activity with a total of 75 compounds. While showing no activity with carboxylic acids or nitrogen-containing compounds, PpSABATH1 displayed methyltransferase activity with a number of thiols. PpSABATH2 did not show activity with any of the compounds tested. Among the thiols analyzed, PpSABATH1 showed the highest level of activity with thiobenzoic acid with an apparent Km value of 95.5 lM, which is comparable to those of known SABATHs. Using thiobenzoic acid as substrate, GC MS analysis indicated that the methylation catalyzed by PpSABATH1 is on the sulfur atom. The mechanism for S-methylation of thiols catalyzed by PpSABATH1 was partially revealed by homology-based structural modeling. The expression of PpSABATH1 was induced by the treatment of thiobenzoic acid. Further transgenic studies showed that tobacco plants overexpressing PpSABATH1 exhibited enhanced tolerance to thiobenzoic acid, suggesting that PpSABATH1 have a role in the detoxification of xenobiotic thiols.« less
Bai, Xue; Sakaguchi, Mayo; Yamaguchi, Yuko; Ishihara, Shiori; Tsukada, Masuhiro; Hirabayashi, Kimio; Ohkawa, Kousaku; Nomura, Takaomi; Arai, Ryoichi
2015-08-28
Retreat-maker larvae of Stenopsyche marmorata, one of the major caddisfly species in Japan, produce silk threads and adhesives to build food capture nets and protective nests in water. Research on these underwater adhesive silk proteins potentially leads to the development of new functional biofiber materials. Recently, we identified four major S. marmorata silk proteins (Smsps), Smsp-1, Smsp-2, Smsp-3, and Smsp-4 from silk glands of S. marmorata larvae. In this study, we cloned full-length cDNAs of Smsp-2, Smsp-3, and Smsp-4 from the cDNA library of the S. marmorata silk glands to reveal the primary sequences of Smsps. Homology search results of the deduced amino acid sequences indicate that Smsp-2 and Smsp-4 are novel proteins. The Smsp-2 sequence [167 amino acids (aa)] has an array of GYD-rich repeat motifs and two (SX)4E motifs. The Smsp-4 sequence (132 aa) contains a number of GW-rich repeat motifs and three (SX)4E motifs. The Smsp-3 sequence (248 aa) exhibits high homology with fibroin light chain of other caddisflies. Gene expression analysis of Smsps by real-time PCR suggested that the gene expression of Smsp-1 and Smsp-3 was relatively stable throughout the year, whereas that of Smsp-2 and Smsp-4 varied seasonally. Furthermore, Smsps recombinant protein expression was successfully performed in Escherichia coli. The study provides new molecular insights into caddisfly aquatic silk and its potential for future applications. Copyright © 2015 Elsevier Inc. All rights reserved.
Characterization of C1q in Teleosts
Hu, Yu-Lan; Pan, Xin-Min; Xiang, Li-Xin; Shao, Jian-Zhong
2010-01-01
C1qs are key components of the classical complement pathway. They have been well documented in human and mammals, but little is known about their molecular and functional characteristics in fish. In the present study, full-length cDNAs of c1qA, c1qB, and c1qC from zebrafish (Danio rerio) were cloned, revealing the conservation of their chromosomal synteny and organization between zebrafish and other species. For functional analysis, the globular heads of C1qA (ghA), C1qB (ghB), and C1qC (ghC) were expressed in Escherichia coli as soluble proteins. Hemolytic inhibitory assays showed that hemolytic activity in carp serum can be inhibited significantly by anti-C1qA, -C1qB, and -C1qC of zebrafish, respectively, indicating that C1qA, C1qB, and C1qC are involved in the classical pathway and are conserved functionally from fish to human. Zebrafish C1qs also could specifically bind to heat-aggregated zebrafish IgM, human IgG, and IgM. The involvement of globular head modules in the C1q-dependent classical pathway demonstrates the structural and functional conservation of these molecules in the classical pathway and their IgM or IgG binding sites during evolution. Phylogenetic analysis revealed that c1qA, c1qB, and c1qC may be formed by duplications of a single copy of c1qB and that the C1q family is, evolutionarily, closely related to the Emu family. This study improves current understanding of the evolutionary history of the C1q family and C1q-mediated immunity. PMID:20615881
Dhar, Niha; Rana, Satiander; Razdan, Sumeer; Bhat, Wajid Waheed; Hussain, Aashiq; Dhar, Rekha S.; Vaishnavi, Samantha; Hamid, Abid; Vishwakarma, Ram; Lattoo, Surrinder K.
2014-01-01
Oxidosqualene cyclases (OSCs) positioned at a key metabolic subdividing junction execute indispensable enzymatic cyclization of 2,3-oxidosqualene for varied triterpenoid biosynthesis. Such branch points present favorable gene targets for redirecting metabolic flux toward specific secondary metabolites. However, detailed information regarding the candidate OSCs covering different branches and their regulation is necessary for the desired genetic manipulation. The aim of the present study, therefore, was to characterize members of OSC superfamily from Withania somnifera (Ws), a medicinal plant of immense repute known to synthesize a large array of biologically active steroidal lactone triterpenoids called withanolides. Three full-length OSC cDNAs, β-amyrin synthase (WsOSC/BS), lupeol synthase (WsOSC/LS), and cycloartenol synthase (WsOSC/CS), having open reading frames of 2289, 2268, and 2277 bp, were isolated. Heterologous expression in Schizosaccharomyces pombe, LC-MS analyses, and kinetic studies confirmed their monofunctionality. The three WsOSCs were found to be spatially regulated at transcriptional level with WsOSC/CS being maximally expressed in leaf tissue. Promoter analysis of three WsOSCs genes resulted in identification of distinct cis-regulatory elements. Further, transcript profiling under methyl jasmonate, gibberellic acid, and yeast extract elicitations displayed differential transcriptional regulation of each of the OSCs. Changes were also observed in mRNA levels under elicitations and further substantiated with protein expression levels by Western blotting. Negative regulation by yeast extract resulted in significant increase in withanolide content. Empirical evidence suggests that repression of competitive branch OSCs like WsOSC/BS and WsOSC/LS possibly leads to diversion of substrate pool toward WsOSC/CS for increased withanolide production. PMID:24770414
Functional Promiscuity of Two Divergent Paralogs of Type III Plant Polyketide Synthases1
Pandith, Shahzad A.; Dhar, Niha; Bhat, Wajid Waheed; Kushwaha, Manoj; Gupta, Ajai P.; Shah, Manzoor A.; Vishwakarma, Ram
2016-01-01
Plants effectively defend themselves against biotic and abiotic stresses by synthesizing diverse secondary metabolites, including health-protective flavonoids. These display incredible chemical diversity and ubiquitous occurrence and confer impeccable biological and agricultural applications. Chalcone synthase (CHS), a type III plant polyketide synthase, is critical for flavonoid biosynthesis. It catalyzes acyl-coenzyme A thioesters to synthesize naringenin chalcone through a polyketidic intermediate. The functional divergence among the evolutionarily generated members of a gene family is pivotal in driving the chemical diversity. Against this backdrop, this study was aimed to functionally characterize members of the CHS gene family from Rheum emodi, an endangered and endemic high-altitude medicinal herb of northwestern Himalayas. Two full-length cDNAs (1,179 bp each), ReCHS1 and ReCHS2, encoding unique paralogs were isolated and characterized. Heterologous expression and purification in Escherichia coli, bottom-up proteomic characterization, high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry analysis, and enzyme kinetic studies using five different substrates confirmed their catalytic potential. Phylogenetic analysis revealed the existence of higher synonymous mutations in the intronless divergents of ReCHS. ReCHS2 displayed significant enzymatic efficiency (Vmax/Km) with different substrates. There were significant spatial and altitudinal variations in messenger RNA transcript levels of ReCHSs correlating positively with metabolite accumulation. Furthermore, the elicitations in the form of methyl jasmonate, salicylic acid, ultraviolet B light, and wounding, chosen on the basis of identified cis-regulatory promoter elements, presented considerable differences in the transcript profiles of ReCHSs. Taken together, our results demonstrate differential propensities of CHS paralogs in terms of the accumulation of flavonoids and their relative substrate selectivities. PMID:27268960
NASA Technical Reports Server (NTRS)
Chapman, D. L.; Wolgemuth, D. J.
1992-01-01
To begin to examine the function of cyclins in mammalian germ cells, we have screened an adult mouse testis cDNA library for the presence of B-type cyclins. We have isolated cDNAs that encode a murine B-type cyclin, which has been designated cycB1. cycB1 was shown to be expressed in several adult tissues and in the midgestation mouse embryo. In the adult tissues, the highest levels of cycB1 transcripts were seen in the testis and ovary, which contain germ cells at various stages of differentiation. The major transcripts corresponding to cycB1 are 1.7 and 2.5 kb, with the 1.7 kb species being the predominant testicular transcript and the 2.5 kb species more abundant in the ovary. Examination of cDNAs corresponding to the 2.5 kb and 1.7 kb mRNAs revealed that these transcripts encode identical proteins, differing only in the polyadenylation signal used and therefore in the length of their 3' untranslated regions. Northern blot and in situ hybridization analyses revealed that the predominant sites of cycB1 expression in the testis and ovary were in the germinal compartment, particularly in early round spermatids in the testis and growing oocytes in the ovary. Thus cycB1 is expressed in both meiotic and postmeiotic cells. This pattern of cycB1 expression further suggests that cycB1 may have different functions in the two cell types, only one of which correlates with progression of the cell cycle.
Isolation and expression of three gibberellin 20-oxidase cDNA clones from Arabidopsis.
Phillips, A L; Ward, D A; Uknes, S; Appleford, N E; Lange, T; Huttly, A K; Gaskin, P; Graebe, J E; Hedden, P
1995-07-01
Using degenerate oligonucleotide primers based on a pumpkin (Cucurbita maxima) gibberellin (GA) 20-oxidase sequence, six different fragments of dioxygenase genes were amplified by polymerase chain reaction from arabidopsis thaliana genomic DNA. One of these was used to isolate two different full-length cDNA clones, At2301 and At2353, from shoots of the GA-deficient Arabidopsis mutant ga1-2. A third, related clone, YAP169, was identified in the Database of Expressed Sequence Tags. The cDNA clones were expressed in Escherichia coli as fusion proteins, each of which oxidized GA12 at C-20 to GA15, GA24, and the C19 compound GA9, a precursor of bioactive GAs; the C20 tricarboxylic acid compound GA25 was formed as a minor product. The expression products also oxidized the 13-hydroxylated substrate GA53, but less effectively than GA12. The three cDNAs hybridized to mRNA species with tissue-specific patterns of accumulation, with At2301 being expressed in stems and inflorescences, At2353 in inflorescences and developing siliques, and YAP169 in siliques only. In the floral shoots of the ga1-2 mutant, transcript levels corresponding to each cDNA decreased dramatically after GA3 application, suggesting that GA biosynthesis may be controlled, at least in part, through down-regulation of the expression of the 20-oxidase genes.
Intriguing olfactory proteins from the yellow fever mosquito, Aedes aegypti
NASA Astrophysics Data System (ADS)
Ishida, Yuko; Chen, Angela M.; Tsuruda, Jennifer M.; Cornel, Anthon J.; Debboun, Mustapha; Leal, Walter S.
2004-09-01
Four antennae-specific proteins (AaegOBP1, AaegOBP2, AaegOBP3, and AaegASP1) were isolated from the yellow fever mosquito, Aedes aegypti and their full-length cDNAs were cloned. RT-PCR indicated that they are expressed in female and, to a lesser extent, in male antennae, but not in control tissues (legs). AaegOBP1 and AaegOBP3 showed significant similarity to previously identified mosquito odorant-binding proteins (OBPs) in cysteine spacing pattern and sequence. Two of the isolated proteins have a total of eight cysteine residues. The similarity of the spacing pattern of the cysteine residues and amino acid sequence to those of previously identified olfactory proteins suggests that one of the cysteine-rich proteins (AaegOBP2) is an OBP. The other (AaegASP1) did not belong to any group of known OBPs. Structural analyses indicate that six of the cysteine residues in AaegOBP2 are linked in a similar pattern to the previously known cysteine pairing in OBPs, i.e., Cys-24 Cys-55, Cys-51 Cys-104, Cys-95 Cys-113. The additional disulfide bridge, Cys-38 Cys-125, knits the extended C-terminal segment of the protein to a predicted α2-helix. As indicated by circular dichroism (CD) spectra, the extra rigidity seems to prevent the predicted formation of a C-terminal α-helix at low pH.
Soares, Marcelo Bento; Bonaldo, Maria de Fatima
1998-01-01
This invention provides a method to normalize a cDNA library comprising: (a) constructing a directionally cloned library containing cDNA inserts wherein the insert is capable of being amplified by polymerase chain reaction; (b) converting a double-stranded cDNA library into single-stranded DNA circles; (c) generating single-stranded nucleic acid molecules complementary to the single-stranded DNA circles converted in step (b) by polymerase chain reaction with appropriate primers; (d) hybridizing the single-stranded DNA circles converted in step (b) with the complementary single-stranded nucleic acid molecules generated in step (c) to produce partial duplexes to an appropriate Cot; and (e) separating the unhybridized single-stranded DNA circles from the hybridized DNA circles, thereby generating a normalized cDNA library. This invention also provides a method to normalize a cDNA library wherein the generating of single-stranded nucleic acid molecules complementary to the single-stranded DNA circles converted in step (b) is by excising cDNA inserts from the double-stranded cDNA library; purifying the cDNA inserts from cloning vectors; and digesting the cDNA inserts with an exonuclease. This invention further provides a method to construct a subtractive cDNA library following the steps described above. This invention further provides normalized and/or subtractive cDNA libraries generated by the above methods.
Soares, M.B.; Fatima Bonaldo, M. de
1998-12-08
This invention provides a method to normalize a cDNA library comprising: (a) constructing a directionally cloned library containing cDNA inserts wherein the insert is capable of being amplified by polymerase chain reaction; (b) converting a double-stranded cDNA library into single-stranded DNA circles; (c) generating single-stranded nucleic acid molecules complementary to the single-stranded DNA circles converted in step (b) by polymerase chain reaction with appropriate primers; (d) hybridizing the single-stranded DNA circles converted in step (b) with the complementary single-stranded nucleic acid molecules generated in step (c) to produce partial duplexes to an appropriate Cot; and (e) separating the unhybridized single-stranded DNA circles from the hybridized DNA circles, thereby generating a normalized cDNA library. This invention also provides a method to normalize a cDNA library wherein the generating of single-stranded nucleic acid molecules complementary to the single-stranded DNA circles converted in step (b) is by excising cDNA inserts from the double-stranded cDNA library; purifying the cDNA inserts from cloning vectors; and digesting the cDNA inserts with an exonuclease. This invention further provides a method to construct a subtractive cDNA library following the steps described above. This invention further provides normalized and/or subtractive cDNA libraries generated by the above methods. 25 figs.
Pribat, Anne; Noiriel, Alexandre; Morse, Alison M.; Davis, John M.; Fouquet, Romain; Loizeau, Karen; Ravanel, Stéphane; Frank, Wolfgang; Haas, Richard; Reski, Ralf; Bedair, Mohamed; Sumner, Lloyd W.; Hanson, Andrew D.
2010-01-01
Tetrahydropterin-dependent aromatic amino acid hydroxylases (AAHs) are known from animals and microbes but not plants. A survey of genomes and ESTs revealed AAH-like sequences in gymnosperms, mosses, and algae. Analysis of full-length AAH cDNAs from Pinus taeda, Physcomitrella patens, and Chlamydomonas reinhardtii indicated that the encoded proteins form a distinct clade within the AAH family. These proteins were shown to have Phe hydroxylase activity by functional complementation of an Escherichia coli Tyr auxotroph and by enzyme assays. The P. taeda and P. patens AAHs were specific for Phe, required iron, showed Michaelian kinetics, and were active as monomers. Uniquely, they preferred 10-formyltetrahydrofolate to any physiological tetrahydropterin as cofactor and, consistent with preferring a folate cofactor, retained activity in complementation tests with tetrahydropterin-depleted E. coli host strains. Targeting assays in Arabidopsis thaliana mesophyll protoplasts using green fluorescent protein fusions, and import assays with purified Pisum sativum chloroplasts, indicated chloroplastic localization. Targeting assays further indicated that pterin-4a-carbinolamine dehydratase, which regenerates the AAH cofactor, is also chloroplastic. Ablating the single AAH gene in P. patens caused accumulation of Phe and caffeic acid esters. These data show that nonflowering plants have functional plastidial AAHs, establish an unprecedented electron donor role for a folate, and uncover a novel link between folate and aromatic metabolism. PMID:20959559
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kravit, Nancy G.; Schmidt, Katherine A.
The patent application relates to isolated polypeptides that specifically cleave non-glycosidic ether bonds between lignins or derivatives thereof and saccharides, and to cDNAs encoding the polypeptides. The patent application also relates to nucleic acid constructs, expression vectors and host cells comprising the cDNAs, as well as methods of producing and using the isolated polypeptides for treating pulp and biomass to increase soluble saccharide yield and enrich lignin fractions.
Liénard, Marjorie A; Lassance, Jean-Marc; Wang, Hong-Lei; Zhao, Cheng-Hua; Piskur, Jure; Johansson, Tomas; Löfstedt, Christer
2010-06-01
Sex pheromones produced by female moths of the Lasiocampidae family include conjugated 5,7-dodecadiene components with various oxygenated terminal groups. Here we describe the molecular cloning, heterologous expression and functional characterization of desaturases associated with the biosynthesis of these unusual chemicals. By homology-based PCR screening we characterized five cDNAs from the female moth pheromone gland that were related to other moth desaturases, and investigated their role in the production of the (Z)-5-dodecenol and (Z5,E7)-dodecadienol, major pheromone constituents of the pine caterpillar moth, Dendrolimus punctatus. Functional expression of two desaturase cDNAs belonging to the Delta 11-subfamily, Dpu-Delta 11(1)-APSQ and Dpu-Delta 11(2)-LPAE, showed that they catalysed the formation of unsaturated fatty acyls (UFAs) that can be chain-shortened by beta-oxidation and subsequently reduced to the alcohol components. A first (Z)-11-desaturation step is performed by Dpu-Delta 11(2)-LPAE on stearic acid that leads to (Z)-11-octadecenoic acyl, which is subsequently chain shortened to the (Z)-5-dodecenoic acyl precursor. The Dpu-Delta 11(1)-APSQ desaturase had the unusual property of producing Delta 8 mono-UFA of various chain lengths, but not when transformed yeast were grown in presence of (Z)-9-hexadecenoic acyl, in which case the biosynthetic intermediate (Z9,E11)-hexadecadienoic UFA was produced. In addition to a typical Z9 activity, a third transcript, Dpu-Delta 9-KPSE produced E9 mono-UFAs of various chain lengths. When provided with the (Z)-7-tetradecenoic acyl, it formed the (Z7,E9)-tetradecadienoic UFA, another biosynthetic intermediate that can be chain-shortened to (Z5,E7)-dodecadienoic acyl. Both Dpu-Delta 11(1)-APSQ and Dpu-Delta 9-KPSE thus exhibited desaturase activities consistent with the biosynthesis of the dienoic precursor. The combined action of three desaturases in generating a dienoic sex-pheromone component emphasizes the diversity and complexity of chemical reactions that can be catalysed by pheromone biosynthetic fatty-acyl-CoA desaturases in moths. (c) 2010 Elsevier Ltd. All rights reserved.
Inversions and Gene Order Shuffling in Anopheles gambiae and A. funestus
NASA Astrophysics Data System (ADS)
Sharakhov, Igor V.; Serazin, Andrew C.; Grushko, Olga G.; Dana, Ali; Lobo, Neil; Hillenmeyer, Maureen E.; Westerman, Richard; Romero-Severson, Jeanne; Costantini, Carlo; Sagnon, N'Fale; Collins, Frank H.; Besansky, Nora J.
2002-10-01
In tropical Africa, Anopheles funestus is one of the three most important malaria vectors. We physically mapped 157 A. funestus complementary DNAs (cDNAs) to the polytene chromosomes of this species. Sequences of the cDNAs were mapped in silico to the A. gambiae genome as part of a comparative genomic study of synteny, gene order, and sequence conservation between A. funestus and A. gambiae. These species are in the same subgenus and diverged about as recently as humans and chimpanzees. Despite nearly perfect preservation of synteny, we found substantial shuffling of gene order along corresponding chromosome arms. Since the divergence of these species, at least 70 chromosomal inversions have been fixed, the highest rate of rearrangement of any eukaryote studied to date. The high incidence of paracentric inversions and limited colinearity suggests that locating genes in one anopheline species based on gene order in another may be limited to closely related taxa.
Kim, Bo Kwang; Kim, Kyoung Sun; Oh, Chul-Woong; Mykles, Donald L; Lee, Sung Gu; Kim, Hak Jun; Kim, Hyun-Woo
2009-06-01
Lobster muscles express a diverse array of myofibrillar protein isoforms. Three fiber types (fast, slow-twitch or S1, and slow-tonic or S2) differ qualitatively and quantitatively in myosin heavy and light chains, troponin-T, -I, and -C, paramyosin, and tropomyosin variants. However, little is known about the diversity of actin isoforms present in crustacean tissues. In this report we characterized cDNAs that encode twelve actin isoforms in the American lobster, Homarus americanus: eight from skeletal muscle (Ha-ActinSK1-8), one from heart (Ha-ActinHT1), and three cytoplasmic type actins from hepatopancreas (Ha-ActinCT1-3). All twelve cDNAs were products of distinct genes, as indicated by differences in the 3'-untranslated regions (UTRs). The open reading frames specified polypeptides 376 or 377 amino acids in length. Although key amino residues are conserved in the lobster actins, variations in nearby sequences may affect actin polymerization and/or interactions with other myofibrillar proteins. Quantitative reverse transcription-polymerase chain reaction showed muscle fiber type- and tissue-specific expression patterns. Ha-Actin-HT1 was expressed exclusively in heart (87% of the total; 12% of the total was Ha-ActinCT1). Ha-ActinCT1 was expressed in all tissues, while CT2 and CT3 were expressed only in hepatopancreas, with Ha-ActinCT2 as the major isoform (93% of the total). Ha-ActinSK1 and SK2 were the major isoforms (88% and 12% of the total, respectively) in the S1 fibers of crusher claw closer muscle. Fast fibers in the cutter claw closer and deep abdominal muscles differed in SK isoforms. Ha-ActinSK3, SK4, and SK5 were the major isoforms in cutter claw closer muscle (12%, 48%, and 37% of the total, respectively). Ha-ActinSK5 and SK8 were the major isoforms in deep abdominal flexor (31% and 65% of the total, respectively) and extensor (46% and 53% of the total, respectively) muscles, with SK6 and SK7 expressed at low levels. These data indicate that fast fibers in cutter claw and abdominal muscles show a phenotypic plasticity with respect to the expression of actin isoforms and may constitute discrete subtypes that differ in contractile properties.
Gene Cloning, Expression and Enzyme Activity of Vitis vinifera Vacuolar Processing Enzymes (VvVPEs)
Gong, Peijie; Li, Shuxiu; Wang, Yuejin; Zhang, Chaohong
2016-01-01
Vacuolar processing enzymes (VPEs) have received considerable attention due to their caspase-1-like activity and ability to regulate programmed cell death (PCD), which plays an essential role in the development of stenospermocarpic seedless grapes ovules. To characterize VPEs and the relationship between stenospermocarpic grapes and the VPE gene family, we identified 3 Vitis vinifera VPE genes (VvβVPE, VvγVPE, and VvδVPE) from the PN40024 grape genome and cloned the full-length complementary DNAs (cDNAs) from the ‘Vitis vinifera cv. Pinot Noir’ and ‘Vitis vinifera cv. Thompson Seedless’ varietals. Each of the VPEs contained a typical catalytic dyad [His (177), Cys (219)] and substrate binding pocket [Arg (112), Arg (389), Ser (395)], except that Ser (395) in the VvγVPE protein sequence was replaced with alanine. Phylogenetic analysis of 4 Arabidopsis thaliana and 6 Vitis vinifera VPEs revealed that the 10 VPEs form 3 major branches. Furthermore, the 6 grapevine VPEs share a similar gene structure, with 9 exons and 8 introns. The 6 grapevine VPEs are located on 3 different chromosomes. We also tested the enzymatic activity of recombinant VPEs expressed in the Pichia Pastoris expression system and found that the VvVPEs exhibit cysteine peptidase activity. Tissue-specific expression analysis showed that VvδVPE is only expressed in flowers, buds and ovules, that VvγVPE is expressed in various tissues, and that VvβVPE was expressed in roots, flowers, buds and ovules. The results of quantitative real-time PCR (qRT-PCR) suggested that VvβVPE in seeded grapes increased significantly at 30 days after full-bloom (DAF), close to the timing of endosperm abortion at 32 DAF. These results suggested that VvβVPE is related to ovule abortion in seedless grapes. Our experiments provide a new perspective for understanding the mechanism of stenospermocarpic seedlessness and represent a useful reference for the further study of VPEs. PMID:27551866
Gene Cloning, Expression and Enzyme Activity of Vitis vinifera Vacuolar Processing Enzymes (VvVPEs).
Tang, Yujin; Wang, Ruipu; Gong, Peijie; Li, Shuxiu; Wang, Yuejin; Zhang, Chaohong
2016-01-01
Vacuolar processing enzymes (VPEs) have received considerable attention due to their caspase-1-like activity and ability to regulate programmed cell death (PCD), which plays an essential role in the development of stenospermocarpic seedless grapes ovules. To characterize VPEs and the relationship between stenospermocarpic grapes and the VPE gene family, we identified 3 Vitis vinifera VPE genes (VvβVPE, VvγVPE, and VvδVPE) from the PN40024 grape genome and cloned the full-length complementary DNAs (cDNAs) from the 'Vitis vinifera cv. Pinot Noir' and 'Vitis vinifera cv. Thompson Seedless' varietals. Each of the VPEs contained a typical catalytic dyad [His (177), Cys (219)] and substrate binding pocket [Arg (112), Arg (389), Ser (395)], except that Ser (395) in the VvγVPE protein sequence was replaced with alanine. Phylogenetic analysis of 4 Arabidopsis thaliana and 6 Vitis vinifera VPEs revealed that the 10 VPEs form 3 major branches. Furthermore, the 6 grapevine VPEs share a similar gene structure, with 9 exons and 8 introns. The 6 grapevine VPEs are located on 3 different chromosomes. We also tested the enzymatic activity of recombinant VPEs expressed in the Pichia Pastoris expression system and found that the VvVPEs exhibit cysteine peptidase activity. Tissue-specific expression analysis showed that VvδVPE is only expressed in flowers, buds and ovules, that VvγVPE is expressed in various tissues, and that VvβVPE was expressed in roots, flowers, buds and ovules. The results of quantitative real-time PCR (qRT-PCR) suggested that VvβVPE in seeded grapes increased significantly at 30 days after full-bloom (DAF), close to the timing of endosperm abortion at 32 DAF. These results suggested that VvβVPE is related to ovule abortion in seedless grapes. Our experiments provide a new perspective for understanding the mechanism of stenospermocarpic seedlessness and represent a useful reference for the further study of VPEs.
Kim, Hae Jin; Silva, Jillian E.; Vu, Hieu Sy; Mockaitis, Keithanne; Nam, Jeong-Won; Cahoon, Edgar B.
2015-01-01
Seeds of members of the genus Cuphea accumulate medium-chain fatty acids (MCFAs; 8:0–14:0). MCFA- and palmitic acid- (16:0) rich vegetable oils have received attention for jet fuel production, given their similarity in chain length to Jet A fuel hydrocarbons. Studies were conducted to test genes, including those from Cuphea, for their ability to confer jet fuel-type fatty acid accumulation in seed oil of the emerging biofuel crop Camelina sativa. Transcriptomes from Cuphea viscosissima and Cuphea pulcherrima developing seeds that accumulate >90% of C8 and C10 fatty acids revealed three FatB cDNAs (CpuFatB3, CvFatB1, and CpuFatB4) expressed predominantly in seeds and structurally divergent from typical FatB thioesterases that release 16:0 from acyl carrier protein (ACP). Expression of CpuFatB3 and CvFatB1 resulted in Camelina oil with capric acid (10:0), and CpuFatB4 expression conferred myristic acid (14:0) production and increased 16:0. Co-expression of combinations of previously characterized Cuphea and California bay FatBs produced Camelina oils with mixtures of C8–C16 fatty acids, but amounts of each fatty acid were less than obtained by expression of individual FatB cDNAs. Increases in lauric acid (12:0) and 14:0, but not 10:0, in Camelina oil and at the sn-2 position of triacylglycerols resulted from inclusion of a coconut lysophosphatidic acid acyltransferase specialized for MCFAs. RNA interference (RNAi) suppression of Camelina β-ketoacyl-ACP synthase II, however, reduced 12:0 in seeds expressing a 12:0-ACP-specific FatB. Camelina lines presented here provide platforms for additional metabolic engineering targeting fatty acid synthase and specialized acyltransferases for achieving oils with high levels of jet fuel-type fatty acids. PMID:25969557
Kim, Hae Jin; Silva, Jillian E.; Vu, Hieu Sy; ...
2015-05-11
Seeds of members of the genus Cuphea accumulate medium-chain fatty acids (MCFAs; 8:0–14:0). MCFA- and palmitic acid- (16:0) rich vegetable oils have received attention for jet fuel production, given their similarity in chain length to Jet A fuel hydrocarbons. Studies were conducted to test genes, including those from Cuphea, for their ability to confer jet fuel-type fatty acid accumulation in seed oil of the emerging biofuel crop Camelina sativa. Transcriptomes from Cuphea viscosissima and Cuphea pulcherrima developing seeds that accumulate >90% of C8 and C10 fatty acids revealed three FatB cDNAs ( CpuFatB3, CvFatB1, and CpuFatB4) expressed predominantly in seedsmore » and structurally divergent from typical FatB thioesterases that release 16:0 from acyl carrier protein (ACP). Expression of CpuFatB3 and CvFatB1 resulted in Camelina oil with capric acid (10:0), and CpuFatB4 expression conferred myristic acid (14:0) production and increased 16:0. Co-expression of combinations of previously characterized Cuphea and California bay FatBs produced Camelina oils with mixtures of C8–C16 fatty acids, but amounts of each fatty acid were less than obtained by expression of individual FatB cDNAs. Increases in lauric acid (12:0) and 14:0, but not 10:0, in Camelina oil and at the sn-2 position of triacylglycerols resulted from inclusion of a coconut lysophosphatidic acid acyltransferase specialized for MCFAs. RNA interference (RNAi) suppression of Camelina β-ketoacyl-ACP synthase II, however, reduced 12:0 in seeds expressing a 12:0-ACP-specific FatB. Here, Camelina lines presented here provide platforms for additional metabolic engineering targeting fatty acid synthase and specialized acyltransferases for achieving oils with high levels of jet fuel-type fatty acids.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Hae Jin; Silva, Jillian E.; Vu, Hieu Sy
Seeds of members of the genus Cuphea accumulate medium-chain fatty acids (MCFAs; 8:0–14:0). MCFA- and palmitic acid- (16:0) rich vegetable oils have received attention for jet fuel production, given their similarity in chain length to Jet A fuel hydrocarbons. Studies were conducted to test genes, including those from Cuphea, for their ability to confer jet fuel-type fatty acid accumulation in seed oil of the emerging biofuel crop Camelina sativa. Transcriptomes from Cuphea viscosissima and Cuphea pulcherrima developing seeds that accumulate >90% of C8 and C10 fatty acids revealed three FatB cDNAs ( CpuFatB3, CvFatB1, and CpuFatB4) expressed predominantly in seedsmore » and structurally divergent from typical FatB thioesterases that release 16:0 from acyl carrier protein (ACP). Expression of CpuFatB3 and CvFatB1 resulted in Camelina oil with capric acid (10:0), and CpuFatB4 expression conferred myristic acid (14:0) production and increased 16:0. Co-expression of combinations of previously characterized Cuphea and California bay FatBs produced Camelina oils with mixtures of C8–C16 fatty acids, but amounts of each fatty acid were less than obtained by expression of individual FatB cDNAs. Increases in lauric acid (12:0) and 14:0, but not 10:0, in Camelina oil and at the sn-2 position of triacylglycerols resulted from inclusion of a coconut lysophosphatidic acid acyltransferase specialized for MCFAs. RNA interference (RNAi) suppression of Camelina β-ketoacyl-ACP synthase II, however, reduced 12:0 in seeds expressing a 12:0-ACP-specific FatB. Here, Camelina lines presented here provide platforms for additional metabolic engineering targeting fatty acid synthase and specialized acyltransferases for achieving oils with high levels of jet fuel-type fatty acids.« less
Niu, Hui-Ran; Zi, Xiang-Dong; Xiao, Xiao; Xiong, Xian-Rong; Zhong, Jin-Cheng; Li, Jian; Wang, Li; Wang, Yong
2014-08-01
We cloned and sequenced four pivotal cDNAs involved in DNA structural maintenance (H1F0 and TOP1) and the cell cycle (CLTA and CDK1) from yak oocytes. In addition, we studied the consequences of freezing-thawing (F/T) processes on the expression of their mRNA transcripts in yak immature and in vitro matured (MII) oocytes. H1F0, TOP1, CLTA and CDK1 cDNAs were cloned from yak oocytes by reverse transcriptase-polymerase chain reaction (RT-PCR) strategy. The expression of their mRNA transcript analyses were performed upon fresh and frozen-thawed immature germinal vesicle (GV) and MII yak oocytes following normalization of transcripts with GAPDH by real-time PCR. The yak H1F0, TOP1, CLTA and CDK1 cDNA sequences were found to consist of CDK1 585, 2539, 740, and 894 bp, respectively. Their coding regions encoded 195, 768, 244, and 298 amino acids, respectively. The homology with that of cattle was very high (95.2%, 98.8%, 93.6%, and 89.5%, respectively nucleotide sequence level, and 94.3%, 98.2%, 87.7%, and 90.9%, respectively at the deduced amino acid level). The overall mRNA expression levels of these four transcripts were reduced by F/T process, albeit at different levels. TOP1 in GV-oocytes, and H1F0 and CDK1 in MII-oocytes of the yak were significantly down-regulated (P<0.05). This is the first isolation and characterization of H1F0, TOP1, CLTA, and CDK1 cDNAs from yak oocytes. The lower fertility and developmental ability of yak oocytes following fertilization after cryopreservation may be explained by the alterations to their gene expression profiles. Copyright © 2014 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loyer, M.; Leclerc, D.; Gravel, R.A.
1994-09-01
Propionic acidemia is a rare autosomal recessive disorder resulting from defects of the {alpha} or {beta} subunit of biotin-dependent propionyl-CoA carboxylase (PCC). Mutations are assigned to defects of the PCCA ({alpha} subunit) or PCCB ({beta} subunit) gene through complementation studies after somatic fusion of patient cell lines. About two-thirds of patients with {beta} subunit defects (complementation group pccBC) show interallelic complementation in cell fusion experiments (subgroups pccB and pccC), monitored by the PCC-dependent metabolisms of {sup 14}C-propionate. Most patient cell lines are heteroallelic for two different mutations, leaving ambiguous the identity of the mutation participating in interallelic complementation. To identifymore » the complementing mutations, we have expressed {beta}-subunit cDNAs containing individual mutations by microinjection of the cDNAs in recipient cells from patients with {beta} subunit defects. Correction of the PCC defect was monitored by autoradiography of {sup 14}C-propionate incorporation. In some experiments, cDNAs were co-injected with a plasmid expressing the E. coli lacZ gene as a positive control for successful injection. Two mutations from the pccB subgroup showed complementation when injected into pccC cells; dupKICK140-143 and Pro228Leu. Similarly, two mutations from the pccC subgroup complemented after injection into pccB cells; {Delta}Ile408 and Arg410Trp. No mutation complemented with mutation of the pccBC group which are classified as non-complementing in cell fusion experiments. The results show that the complementing pccB mutations are found in the N-terminal half of the {beta} subunit, while the complementing pccC mutations cluxter at a site in the C-terminal half. The latter site is a candidate for the propionyl-CoA binding site based on sequence identity with a region of transcarboxylase from Propionibacterium shermanii.« less
2013-01-01
Background Olive cDNA libraries to isolate candidate genes that can help enlightening the molecular mechanism of periodicity and / or fruit production were constructed and analyzed. For this purpose, cDNA libraries from the leaves of trees in “on year” and in “off year” in July (when fruits start to appear) and in November (harvest time) were constructed. Randomly selected 100 positive clones from each library were analyzed with respect to sequence and size. A fruit-flesh cDNA library was also constructed and characterized to confirm the reliability of each library’s temporal and spatial properties. Results Quantitative real-time RT-PCR (qRT-PCR) analyses of the cDNA libraries confirmed cDNA molecules that are associated with different developmental stages (e. g. “on year” leaves in July, “off year” leaves in July, leaves in November) and fruits. Hence, a number of candidate cDNAs associated with “on year” and “off year” were isolated. Comparison of the detected cDNAs to the current EST database of GenBank along with other non - redundant databases of NCBI revealed homologs of previously described genes along with several unknown cDNAs. Of around 500 screened cDNAs, 48 cDNA elements were obtained after eliminating ribosomal RNA sequences. These independent transcripts were analyzed using BLAST searches (cutoff E-value of 1.0E-5) against the KEGG and GenBank nucleotide databases and 37 putative transcripts corresponding to known gene functions were annotated with gene names and Gene Ontology (GO) terms. Transcripts in the biological process were found to be related with metabolic process (27%), cellular process (23%), response to stimulus (17%), localization process (8.5%), multicellular organismal process (6.25%), developmental process (6.25%) and reproduction (4.2%). Conclusions A putative P450 monooxigenase expressed fivefold more in the “on year” than that of “off year” leaves in July. Two putative dehydrins expressed significantly more in “on year” leaves than that of “off year” leaves in November. Homologs of UDP – glucose epimerase, acyl - CoA binding protein, triose phosphate isomerase and a putative nuclear core anchor protein were significant in fruits only, while a homolog of an embryo binding protein / small GTPase regulator was detected in “on year” leaves only. One of the two unknown cDNAs was specific to leaves in July while the other was detected in all of the libraries except fruits. KEGG pathway analyses for the obtained sequences correlated with essential metabolisms such as galactose metabolism, amino sugar and nucleotide sugar metabolisms and photosynthesis. Detailed analysis of the results presents candidate cDNAs that can be used to dissect further the genetic basis of fruit production and / or alternate bearing which causes significant economical loss for olive growers. PMID:23552171
Li, Qian; Li, Ping; Sun, Liang; Wang, Yanping; Ji, Kai; Sun, Yufei; Dai, Shengjie; Chen, Pei; Duan, Chaorui; Leng, Ping
2012-01-01
The aim of this study was to obtain new insights into the mechanisms that regulate endogenous abscisic acid (ABA) levels by β-glucosidase genes during the development of watermelons (Citrullus lanatus) and under drought stress conditions. In total, five cDNAs from watermelons were cloned by using reverse transcription-PCR (RT-PCR). They included three cDNAs (ClBG1, ClBG2 and ClBG3) homologous to those that encode β-glucosidase l that hydrolyzes the ABA glucose ester (ABA-GE) to release active ABA, ClNCED4, which encodes 9-cis-epoxycarotenoid dioxygenase (NCED), a key enzyme in ABA biosynthesis, and ClCYP707A1, encoding ABA 8'-hydroxylase. A BLAST homology search revealed that the sequences of cDNAs and the deduced amino acids of these genes showed a high degree of homology to comparable molecules of other plant species. During fruit development and ripening, the expressions of ClBG1, ClNCED4 and ClCYP707A1 were relatively low at an early stage, increased rapidly along with fruit ripening, and reached the highest levels at 27 days after full bloom (DAFB) at the harvest stage. This trend was consistent with the accumulation of ABA. The ClBG2 gene on the other hand was highly expressed at 5 DAFB, and then decreased gradually with fruit development. Unlike ClBG1 and ClBG2, the expression of ClBG3 was low at an early stage; its expression peak occurred at 15 DAFB and then declined to the lowest point. When watermelon seedlings were subjected to drought stress, expressions of ClBG1 and ClCYP707A1 were significantly down-regulated, while expressions of ClBG2 and ClNCED4 were up-regulated in the roots, stems and leaves. The expression of ClBG3 was down-regulated in root tissue, but was up-regulated in stems and leaves. In conclusion, endogenous ABA content was modulated by a dynamic balance between biosynthesis and catabolism regulated by ClNCED4, ClCYP707A1 and ClBGs during development and under drought stress condition. It seems likely that β-glucosidase genes are important for this regulation process. Copyright © 2011 Elsevier GmbH. All rights reserved.
Optimization of conditions to sequence long cDNAs from viruses
USDA-ARS?s Scientific Manuscript database
Fourth generation sequencing with the Minion nanopore sequencer provides opportunity to obtain deep coverage and long read for single molecules. This will benefit studies on RNA viruses. In the past, Sanger, Illumina, and Ion Torrent sequencing have been utilized to study RNA viruses. Both technique...
Bourgault, Richard; Bewley, J. Derek
2002-01-01
Endo-β-mannanase cDNAs were cloned and characterized from ripening tomato (Lycopersicon esculentum Mill. cv Trust) fruit, which produces an active enzyme, and from the tomato cv Walter, which produces an inactive enzyme. There is a two-nucleotide deletion in the gene from tomato cv Walter, which results in a frame shift and the deletion of four amino acids at the C terminus of the full-length protein. Other cultivars that produce either active or inactive enzyme show the same absence or presence of the two-nucleotide deletion. The endo-β-mannanase enzyme protein was purified and characterized from ripe fruit to ensure that cDNA codes for the enzyme from fruit. Immunoblot analysis demonstrated that non-ripening mutants, which also fail to exhibit endo-β-mannanase activity, do so because they fail to express the protein. In a two-way genetic cross between tomato cvs Walter and Trust, all F1 progeny from both crosses produced fruit with active enzyme, suggesting that this form is dominant and homozygous in tomato cv Trust. Self-pollination of a plant from the heterozygous F1 generation yielded F2 plants that bear fruit with and without active enzyme at a ratio appropriate to Mendelian genetic segregation of alleles. Heterologous expression of the two endo-β-mannanase genes in Escherichia coli resulted in active enzyme being produced from cultures containing the tomato cv Trust gene and inactive enzyme being produced from those containing the tomato cv Walter gene. Site-directed mutagenesis was used to establish key elements in the C terminus of the endo-β-mannanase protein that are essential for full enzyme activity. PMID:12427992
Navarro, B; Daròs, J A; Flores, R
1996-01-01
Two PCR-based methods are described for obtaining clones of small circular RNAs of unknown sequence and for which only minute amounts are available. To avoid introducing any assumption about the RNA sequence, synthesis of the cDNAs is initiated with random primers. The cDNA population is then PCR-amplified using a primer whose sequence is present at both sides of the cDNAs, since they have been obtained with random hexamers and then a linker with the sequence of the PCR primer has been ligated to their termini, or because the cDNAs have been synthesized with an oligonucleotide that contains the sequence of the PCR primer at its 5' end and six randomized positions at its 3' end. The procedures need only approximately 50 ng of purified RNA template. The reasons for the emergence of cloning artifacts and precautions to avoid them are discussed.
Chen, Tianbao; Walker, Brian; Zhou, Mei; Shaw, Chris
2005-07-15
Amphibian skin is a morphologically, biochemically and physiologically complex organ that performs the wide range of functions necessary for amphibian survival. Here we describe the primary structures of representatives of two novel classes of amphibian skin antimicrobials, dermatoxin and phylloxin, from the skin secretion of Phyllomedusa sauvagei, deduced from their respective precursor encoding cDNAs cloned from a lyophilized skin secretion library. A degenerate primer, designed to a highly conserved domain in the 5'-untranslated region of analogous peptide precursor cDNAs from Phyllomedusa bicolor, was employed in a 3'-RACE reaction. Peptides with molecular masses coincident with precursor-deduced mature toxin peptides were identified in LC/MS fractions of skin secretion and primary structures were confirmed by MS/MS fragmentation. This integrated experimental approach can thus rapidly expedite the primary structural characterization of amphibian skin peptides in a manner that circumvents specimen sacrifice whilst preserving robustness of scientific data.
Functional domains of the poliovirus receptor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koike, Satoshi; Ise, Iku; Nomoto, Akio
1991-05-15
A number of mutant cDNAs of the human poliovirus receptor were constructed to identify essential regions of the molecule as the receptor. All mutant cDNAs carrying the sequence coding for the entire N-terminal immunoglobulin-like domain (domain I) confer permissiveness for poliovirus to mouse L cells, but a mutant cDNA lacking the sequence for domain I does not. The transformants permissive for poliovirus were able to bind the virus and were also recognized by monoclonal antibody D171, which competes with poliovirus for the cellular receptor. These results strongly suggest that the poliovirus binding site resides in domain I of the receptor.more » Mutant cDNAs for the sequence encoding the intracellular peptide were also constructed and expressed in mouse L cells. Susceptibility of these cells to poliovirus revealed that the entire putative cytoplasmic domain is not essential for virus infection. Thus, the cytoplasmic domain of the molecule appears not to play a role in the penetration of poliovirus.« less
Molecular Characterization of Tomato 3-Dehydroquinate Dehydratase-Shikimate:NADP Oxidoreductase1
Bischoff, Markus; Schaller, Andreas; Bieri, Fabian; Kessler, Felix; Amrhein, Nikolaus; Schmid, Jürg
2001-01-01
Analysis of cDNAs encoding the bifunctional 3-dehydroquinate dehydratase-shikimate:NADP oxidoreductase (DHQase-SORase) from tomato (Lycopersicon esculentum) revealed two classes of cDNAs that differed by 57 bp within the coding regions, but were otherwise identical. Comparison of these cDNA sequences with the sequence of the corresponding single gene unequivocally proved that the primary transcript is differentially spliced, potentially giving rise to two polypeptides that differ by 19 amino acids. Quantitative real-time polymerase chain reaction revealed that the longer transcript constitutes at most 1% to 2% of DHQase-SORase transcripts. Expression of the respective polypeptides in Escherichia coli mutants lacking the DHQase or the SORase activity gave functional complementation only in case of the shorter polypeptide, indicating that skipping of a potential exon is a prerequisite for the production of an enzymatically active protein. The deduced amino acid sequence revealed that the DHQase-SORase is most likely synthesized as a precursor with a very short (13-amino acid) plastid-specific transit peptide. Like other genes encoding enzymes of the prechorismate pathway in tomato, this gene is elicitor-inducible. Tissue-specific expression resembles the patterns obtained for 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase 2 and dehydroquinate synthase genes. This work completes our studies of the prechorismate pathway in that cDNAs for all seven enzymes (including isozymes) of the prechorismate pathway from tomato have now been characterized. PMID:11299368
Molecular cloning of human protein 4.2: a major component of the erythrocyte membrane.
Sung, L A; Chien, S; Chang, L S; Lambert, K; Bliss, S A; Bouhassira, E E; Nagel, R L; Schwartz, R S; Rybicki, A C
1990-01-01
Protein 4.2 (P4.2) comprises approximately 5% of the protein mass of human erythrocyte (RBC) membranes. Anemia occurs in patients with RBCs deficient in P4.2, suggesting a role for this protein in maintaining RBC stability and integrity. We now report the molecular cloning and characterization of human RBC P4.2 cDNAs. By immunoscreening a human reticulocyte cDNA library and by using the polymerase chain reaction, two cDNA sequences of 2.4 and 2.5 kilobases (kb) were obtained. These cDNAs differ only by a 90-base-pair insert in the longer isoform located three codons downstream from the putative initiation site. The 2.4- and 2.5-kb cDNAs predict proteins of approximately 77 and approximately 80 kDa, respectively, and the authenticity was confirmed by sequence identity with 46 amino acids of three cyanogen bromide-cleaved peptides of P4.2. Northern blot analysis detected a major 2.4-kb RNA species in reticulocytes. Isolation of two P4.2 cDNAs implies existence of specific regulation of P4.2 expression in human RBCs. Human RBC P4.2 has significant homology with human factor XIII subunit a and guinea pig liver transglutaminase. Sequence alignment of P4.2 with these two transglutaminases, however, revealed that P4.2 lacks the critical cysteine residue required for the enzymatic crosslinking of substrates. Images PMID:1689063
Xu, Yongjiang; Zang, Kun; Liu, Xuezhou; Shi, Bao; Li, Cunyu; Shi, Xueying
2015-02-01
In order to elucidate the possible roles of insulin-like growth factors I and II (IGF-I and IGF-II) in the embryonic development of Platichthys stellatus, their cDNAs were isolated and their spatial expression pattern in adult organs and temporal expression pattern throughout embryonic development were examined by quantitative real-time PCR assay. The IGF-I cDNA sequence was 1,268 bp in length and contained an open reading frame (ORF) of 558 bp, which encoded 185 amino acid residues. With respect to IGF-II, the full-length cDNA was 899 bp in length and contained a 648-bp ORF, which encoded 215 amino acid residues. The amino acid sequences of IGF-I and IGF-II exhibited high identities with their fish counterparts. The highest IGF-I mRNA level was found in the liver for both sexes, whereas the IGF-II gene was most abundantly expressed in female liver and male liver, gill, and brain. The sex-specific and spatial expression patterns of IGF-I and IGF-II mRNAs are thought to be related to the sexually dimorphic growth and development of starry flounder. Both IGF-I and IGF-II mRNAs were detected in unfertilized eggs, which indicated that IGF-I and IGF-II were parentally transmitted. Nineteen embryonic development stages were tested. IGF-I mRNA level remained high from unfertilized eggs to low blastula followed by a significant decrease at early gastrula and then maintained a lower level. In contrast, IGF-II mRNA level was low from unfertilized eggs to high blastula and peaked at low blastula followed by a gradual decrease. Moreover, higher levels of IGF-I mRNA than that of IGF-II were found from unfertilized eggs to high blastula, vice versa from low blastula to newly hatched larva, and the different expression pattern verified the differential roles of IGF-I and IGF-II in starry flounder embryonic development. These results could help in understanding the endocrine mechanism involved in the early development and growth of starry flounder.
Mohuczy, Dagmara; Qian, Keping; Phillips, M Ian
2002-12-31
Cardiac cells are subjected to hypoxia in many cardiovascular diseases. We studied a broad spectrum of genes using a macroarrays-based method to analyze RNA of rat cardiac fetal cell line H9c2 after 4 h of hypoxic conditions in the incubator-1% oxygen concentration, as compared to normoxic conditions (21% oxygen). The cDNAs were prepared from total RNAs using Atlas Rat 1.2 Array (Clontech Laboratories) and hybridized to the membrane containing 1176 rat cDNAs and 9 housekeeping control cDNAs. Genes expression was analyzed using AtlasImage 1.01 software. We found over 45 genes up-regulated in a range of 1.5-2.9 times and 9 genes down-regulated to a range of 0.4-0.7 times, under hypoxia versus normoxia. Presenilin-2 (PS2) was detected in the cultured heart cells. RT-PCR confirmed the presence of PS2 in the heart of adult rats. Using quantitative real-time RT-PCR, we further studied the expression of presenilin-2 mRNA under conditions of low oxygen supply and glucose starvation. Glucose deprivation itself caused significant up-regulation of the presenilin-2 (to 160%) and with low oxygen increased presenilin-2 level to over 200% of the control. Presenilin-2 has previously been associated with intercellular signaling in the central nervous system, in Alzheimer's disease. The finding of presenilin-2 in the heart and the responsiveness to low glucose and hypoxia suggests that PS2 may be regulated by conditions of ischemia, a condition which both the heart and brain may experience.
Vanderperre, Benoît; Lucier, Jean-François; Bissonnette, Cyntia; Motard, Julie; Tremblay, Guillaume; Vanderperre, Solène; Wisztorski, Maxence; Salzet, Michel; Boisvert, François-Michel; Roucou, Xavier
2013-01-01
A fully mature mRNA is usually associated to a reference open reading frame encoding a single protein. Yet, mature mRNAs contain unconventional alternative open reading frames (AltORFs) located in untranslated regions (UTRs) or overlapping the reference ORFs (RefORFs) in non-canonical +2 and +3 reading frames. Although recent ribosome profiling and footprinting approaches have suggested the significant use of unconventional translation initiation sites in mammals, direct evidence of large-scale alternative protein expression at the proteome level is still lacking. To determine the contribution of alternative proteins to the human proteome, we generated a database of predicted human AltORFs revealing a new proteome mainly composed of small proteins with a median length of 57 amino acids, compared to 344 amino acids for the reference proteome. We experimentally detected a total of 1,259 alternative proteins by mass spectrometry analyses of human cell lines, tissues and fluids. In plasma and serum, alternative proteins represent up to 55% of the proteome and may be a potential unsuspected new source for biomarkers. We observed constitutive co-expression of RefORFs and AltORFs from endogenous genes and from transfected cDNAs, including tumor suppressor p53, and provide evidence that out-of-frame clones representing AltORFs are mistakenly rejected as false positive in cDNAs screening assays. Functional importance of alternative proteins is strongly supported by significant evolutionary conservation in vertebrates, invertebrates, and yeast. Our results imply that coding of multiple proteins in a single gene by the use of AltORFs may be a common feature in eukaryotes, and confirm that translation of unconventional ORFs generates an as yet unexplored proteome. PMID:23950983
IDENTIFICATION AND EXPRESSION OF MACROPHAGE MIGRATION INHIBITORY FACTOR IN SARCOPTES SCABIEI
COTE’, N.M.; JAWORSKI, D.C.; WASALA, N.B.; MORGAN, M.S.; ARLIAN, L. G.
2013-01-01
Macrophage migration inhibitory factor (MIF) is a pleiotropic proinflammatory cytokine produced by many mammalian tissues including skin. It is also found in many invertebrate parasites of mammals including ticks and may function to aid the parasite to evade the innate and adaptive immune responses in the host. In this study, the cDNA for a MIF gene was sequenced from Sarcoptes scabiei, the scabies mite, using RT-PCR and RACE molecular techniques. The resulting nucleotide sequence had a length of 405 base pairs and the putative amino acid sequences for the mite and tick (Dermacentor variabilis) proteins were identical. The initial steps for the project resulted in the production of expressed scabies mite cDNAs. A real time (qPCR) assay was performed with MIF from scabies mites and various tick species. Results show that mRNA encoding MIF homologues was three times more abundant in the mite samples when compared to RNA prepared from D. variabilis salivary glands and 1.3 times more abundant when compared with RNA prepared from D. variabilis midgut. PMID:23831036
Johnson, S C; Ewart, K V; Osborne, J A; Delage, D; Ross, N W; Murray, H M
2002-09-01
The salmon louse, Lepeophtheirus salmonis, is a marine ectoparasitic copepod that infects salmonid fishes. We are studying the interactions between this parasite and its salmonid hosts, as it is a common cause of disease in both wild and farmed stocks of salmon. In this paper, we report on the cloning and sequencing of seven trypsin-like enzymes from a cDNA library prepared from whole body preadult female and male L. salmonis. The predicted trypsin activation peptides are 23 or 24 residues in length, considerably longer than previously reported activation peptides of other animals. Differences in the putative signal and activation peptide sequences of the trypsin isoforms suggest that these forms differ in their regulation and function. The calculated molecular weights of the trypsins range from 23.6 to 23.7 kDa. There are eight cysteine residues, which suggest the presence of four disulfide bridges. These trypsins are very similar (>or=46% aa identity) to other crustacean trypsins and insect hypodermins. Using in situ hybridization techniques trypsinogen expression could be identified in all three cell types of the midgut.
Gilchrist, Michael J.; Sobral, Daniel; Khoueiry, Pierre; ...
2015-05-27
Genome-wide resources, such as collections of cDNA clones encoding for complete proteins (full-ORF clones), are crucial tools for studying the evolution of gene function and genetic interactions. Non-model organisms, in particular marine organisms, provide a rich source of functional diversity. Marine organism genomes are, however, frequently highly polymorphic and encode proteins that diverge significantly from those of well-annotated model genomes. The construction of full-ORF clone collections from non-model organisms is hindered by the difficulty of predicting accurately the N-terminal ends of proteins, and distinguishing recent paralogs from highly polymorphic alleles. We also report a computational strategy that overcomes these difficulties,more » and allows for accurate gene level clustering of transcript data followed by the automated identification of full-ORFs with correct 5'- and 3'-ends. It is robust to polymorphism, includes paralog calling and does not require evolutionary proximity to well annotated model organisms. Here, we developed this pipeline for the ascidian Ciona intestinalis, a highly polymorphic member of the divergent sister group of the vertebrates, emerging as a powerful model organism to study chordate gene function, Gene Regulatory Networks and molecular mechanisms underlying human pathologies. Furthermore, using this pipeline we have generated the first full-ORF collection for a highly polymorphic marine invertebrate. It contains 19,163 full-ORF cDNA clones covering 60% of Ciona coding genes, and full-ORF orthologs for approximately half of curated human disease-associated genes.« less
Recovery of Infectious Pariacoto Virus from cDNA Clones and Identification of Susceptible Cell Lines
Johnson, Karyn N.; Ball, L. Andrew
2001-01-01
Pariacoto virus (PaV) is a nodavirus that was recently isolated in Peru from the Southern armyworm, Spodoptera eridania. Virus particles are non enveloped and about 30 nm in diameter and have T=3 icosahedral symmetry. The 3.0-Å crystal structure shows that about 35% of the genomic RNA is icosahedrally ordered, with the RNA forming a dodecahedral cage of 25-nucleotide (nt) duplexes that underlie the inner surface of the capsid. The PaV genome comprises two single-stranded, positive-sense RNAs: RNA1 (3,011 nt), which encodes the 108-kDa catalytic subunit of the RNA-dependent RNA polymerase, and RNA2 (1,311 nt), which encodes the 43-kDa capsid protein precursor α. In order to apply molecular genetics to the structure and assembly of PaV, we identified susceptible cell lines and developed a reverse genetic system for this virus. Cell lines that were susceptible to infection by PaV included those from Spodoptera exigua, Helicoverpa zea and Aedes albopictus, whereas cells from Drosophila melanogaster and Spodoptera frugiperda were refractory to infection. To recover virus from molecular clones, full-length cDNAs of PaV RNAs 1 and 2 were cotranscribed by T7 RNA polymerase in baby hamster kidney cells that expressed T7 RNA polymerase. Lysates of these cells were infectious both for cultured cells from Helicoverpa zea (corn earworm) and for larvae of Galleria mellonella (greater wax moth). The combination of infectious cDNA clones, cell culture infectivity, and the ability to produce milligram amounts of virus allows the application of DNA-based genetic methods to the study of PaV structure and assembly. PMID:11711613
Guo, Yanqiong; Wu, Haihua; Zhang, Xueyao; Ma, Enbo; Guo, Yaping; Zhu, Kun Yan; Zhang, Jianzhen
2016-11-01
Many insect cytochrome P450s (CYPs) play critical roles in detoxification of insecticides. The CYP6 family is unique to the class Insecta, and its biochemical function has essentially been associated with the metabolism of xenobiotics. In this study, we sequenced and characterised the full-length cDNAs of five CYP genes from Locusta migratoria, a highly destructive agricultural pest worldwide. The five genes were predominantly expressed in brain, guts, fat bodies or Malpighian tubules. CYP6FE1, CYP6FF1 and CYP6FG1 were expressed at higher levels in fourth-instar nymphs than in other developmental stages. CYPFD2 is specifically expressed in adults, whereas CYP6FD1, CYP6FD2 and CYP6FE1 showed significantly lower expression in eggs than in other developmental stages. Deltamethrin suppressed CYP6FD1 expression in third-instar nymphs and upregulated the expression level of CYP6FD2, CYP6FF1 and CYP6FG1 at the dose of LD 10 . Efficient RNA interference-mediated gene silencing was established for four of the five CYP genes. Silencing of CYP6FF1 increased the nymphal mortality from 23 to 50% in response to deltamethrin. Silencing of CYP6FD2 and CYP6FE1 increased the nymphal mortality from 32 to 72 and 66%, respectively, to carbaryl. Three of the four CYP6F subfamily genes in L. migratoria were associated with the detoxification of deltamethrin or carbaryl. The role of CYPs in insecticide detoxification appears to be both gene and insecticide specific. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Walker, L C; Teebi, A S; Marini, J C; De Paepe, A; Malfait, F; Atsawasuwan, P; Yamauchi, M; Yeowell, H N
2004-12-01
The Ehlers-Danlos syndromes (EDS) are a heterogeneous group of inherited connective tissue disorders characterized by tissue fragility, hyperelasticity of the skin and joint hypermobility. This phenotype, accompanied by kyphoscoliosis and/or ocular fragility, is present in patients with the autosomal recessive type VI form of EDS. These patients have significantly decreased levels of lysyl hydroxylase (LH) activity, due to mutations in the LH1 gene. LH hydroxylates specific lysine residues in the collagen molecule that are precursors for the formation of cross-links which provide collagen with its tensile strength. No disorder has been directly linked to decreased expression of LH2 and LH3, two other isoforms of LH. This study describes 3 patients with mixed phenotypes of EDS, who have significantly decreased mRNAs for LH2, but normal levels of LH1 and LH3 mRNAs, in their skin fibroblasts. In contrast to the effect of LH1 deficiency in EDS VI patients, the decreased expression of LH2 does not affect LH activity, bifunctional collagen cross-links (measured after reduction as dihydroxylysinonorleucine (DHLNL) and hydroxylysinonorleucine (HLNL)), or helical lysine hydroxylation in these cell lines. Sequence analysis of full length LH2 cDNAs and 1kb of the promoter region of LH2 does not show mutations that could explain the decreased expression of LH2. These results suggest that the deficiency of LH2 in these fibroblasts may be caused by changes in other factors required for the expression of LH2.
Yang, Dong-Ye; Lu, Fang-Gen; Tang, Xi-Xiang; Zhao, Shui-Ping; Ouyang, Chun-Hui; Wu, Xiao-Ping; Liu, Xiao-Wei; Wu, Xiao-Ying
2003-01-01
AIM: To increase exogenous gene expression level by modulating molecular conformations of targeting gene drugs. METHODS: The full length cDNAs of both P40 and P35 subunits of human interleukin 12 were amplified through polymerase chain reaction (PCR) and cloned into eukaryotic expressing vectors pcDNA3.1 (±) to construct plasmids of P (+)/IL-12, P (+)/P40 and P (-)/P35. These plasmids were combined with ASOR-PLL to form two targeting gene drugs [ASOR-PLL-P (+)/IL-12 and ASOR-PLL-P (+)/P40 + ASOR-PLL-P (-)/P35] in optimal ratios. The conformations of these two drugs at various concentrations adjuvant were examined under electron microscope (EM) and the drugs were transfected into HepG2 (ASGr+) cells. Semi-quantitative reverse transcription polymerase chain reaction (RT-PCR) was performed with total RNA extracted from the transfected cells to determine the hIL12 mRNA transcript level. The hIL12 protein in the cultured supernatant was measured with enzyme-linked immunosorbent assay (ELISA) 48 hours after transfection. RESULTS: Targeting gene drugs, whose structures were granular and circle-like and diameters ranged from 25 nm to 150 nm, had the highest hIL-12 expression level. The hIL-12 expression level in the group co-transfected with ASOR-PLL-P (+)/P40 and ASOR-PLL-P (-)/P35 was higher than that of ASOR-PLL-P (+)/IL-12 transfected group. CONCLUSION: The molecular conformations of targeting gene drugs play an important role in exogenous gene expression level, the best structures are granular and circle-like and their diameters range from 25 nm to 150 nm. The sizes and linking styles of exogenous genes also have some effects on their expression level. PMID:12970883
Polymorphisms and Tissue Expression of the Feline Leukocyte Antigen Class I Loci FLAI-E, -H and -K
Holmes, Jennifer C.; Holmer, Savannah G.; Ross, Peter; Buntzman, Adam S.; Frelinger, Jeffrey A.; Hess, Paul R.
2013-01-01
Cytotoxic CD8+ T-cell immunosurveillance for intracellular pathogens, such as viruses, is controlled by classical major histocompatibility complex (MHC) class Ia molecules, and ideally, these antiviral T-cell populations are defined by the specific peptide and restricting MHC allele. Surprisingly, despite the utility of the cat in modeling human viral immunity, little is known about the Feline Leukocyte Antigen class I complex (FLAI). Only a few coding sequences with uncertain locus origin and expression patterns have been reported. Of 19 class I genes, 3 loci - FLAI-E, -H and -K – are predicted to encode classical molecules, and our objective was to evaluate their status by analyzing polymorphisms and tissue expression. Using locus-specific, PCR-based genotyping, we amplified 33 FLAI-E, -H, and -K alleles from 12 cats of various breeds, identifying, for the first time, alleles across 3 distinct loci in a feline species. Alleles shared the expected polymorphic and invariant sites in the α1/α2 domains, and full-length cDNA clones possessed all characteristic class Ia exons. Alleles could be assigned to a specific locus with reasonable confidence, although there was evidence of potentially confounding interlocus recombination between FLAI-E and -K. Only FLAI-E, -H and -K-origin alleles were amplified from cDNAs of multiple tissue types. We also defined hypervariable regions across these genes, which permitted the assignment of names to both novel and established alleles. As predicted, FLAI-E, -H, and -K fulfill the major criteria of class Ia genes. These data represent a necessary prerequisite for studying epitope-specific antiviral CD8+ T-cell responses in cats. PMID:23812210
Duval, Frédéric D; Renard, Michelle; Jaquinod, Michel; Biou, Valérie; Montrichard, Françoise; Macherel, David
2002-11-01
Implication of the ubiquitous, highly conserved, Ca2+ sensor calmodulin (CaM) in pea seed germination has been investigated. Mass spectrometry analysis of purified CaM revealed the coexistence in seeds of three protein isoforms, diverging from each other by single amino acid substitution in the N-terminal alpha-helix. CaM was shown to be encoded by a small multigenic family, and full-length cDNAs of the three isoforms (PsCaM1, 2 and 3) were isolated to allow the design of specific primers in more divergent 5' and 3' untranslated regions. Expression studies, performed by semiquantitative RT-PCR, demonstrated differential expression patterns of the three transcripts during germination. PsCaM1 and 2 were detected at different levels in dry axes and cotyledons, and they accumulated during imbibition and prior to radicle protrusion. In contrast, PsCaM3 appeared only upon radicle protrusion, then gradually increased in both tissues. To characterise the biochemical properties of the CaM isoforms, functional analyses were conducted in vitro using recombinant Strep-tagged proteins (CaM1-ST, CaM2-ST and CaM3-ST) expressed in Escherichia coli. Gel mobility shift assays revealed that CaM1-ST exhibited a stoichiometric binding of a synthetic amphiphilic CaM kinase II peptide while CaM2-ST and CaM3-ST affinities for the same peptide were reduced. Affinity differences were also observed for CaM isoform binding to Trp-3, an idealised helical CaM-binding peptide. However, the three proteins activated in the same way the CaM-dependent pea NAD kinase. Finally, the significance of the single substitutions upon CaM interaction with its targets is discussed in a structural context.
Boxall, Susanna F.; Foster, Jonathan M.; Bohnert, Hans J.; Cushman, John C.; Nimmo, Hugh G.; Hartwell, James
2005-01-01
One of the best-characterized physiological rhythms in plants is the circadian rhythm of CO2 metabolism in Crassulacean acid metabolism (CAM) plants, which is the focus here. The central components of the plant circadian clock have been studied in detail only in Arabidopsis (Arabidopsis thaliana). Full-length cDNAs have been obtained encoding orthologs of CIRCADIAN CLOCK-ASSOCIATED1 (CCA1)/LATE ELONGATED HYPOCOTYL (LHY), TIMING OF CAB EXPRESSION1 (TOC1), EARLY FLOWERING4 (ELF4), ZEITLUPE (ZTL), FLAVIN-BINDING KELCH REPEAT F-BOX1 (FKF1), EARLY FLOWERING3 (ELF3), and a partial cDNA encoding GIGANTEA in the model stress-inducible CAM plant, Mesembryanthemum crystallinum (Common Ice Plant). TOC1 and LHY/CCA1 are under reciprocal circadian control in a manner similar to their regulation in Arabidopsis. ELF4, FKF1, ZTL, GIGANTEA, and ELF3 are under circadian control in C3 and CAM leaves. ELF4 transcripts peak in the evening and are unaffected by CAM induction. FKF1 shows an abrupt transcript peak 3 h before subjective dusk. ELF3 transcripts appear in the evening, consistent with their role in gating light input to the circadian clock. Intriguingly, ZTL transcripts do not oscillate in Arabidopsis, but do in M. crystallinum. The transcript abundance of the clock-associated genes in M. crystallinum is largely unaffected by development and salt stress, revealing compensation of the central circadian clock against development and abiotic stress in addition to the well-known temperature compensation. Importantly, the clock in M. crystallinum is very similar to that in Arabidopsis, indicating that such a clock could control CAM without requiring additional components of the central oscillator or a novel CAM oscillator. PMID:15734916
Dietary Risk Assessment of v-ATPase A dsRNAs on Monarch Butterfly Larvae.
Pan, Huipeng; Yang, Xiaowei; Bidne, Keith; Hellmich, Richard L; Siegfried, Blair D; Zhou, Xuguo
2017-01-01
By suppressing the expression of genes with essential biological functions, in planta RNAi can negatively affect the development and survival of target pests. As a part of a concerted effort to assess the risks of RNAi transgenic crops on non-target organisms, we developed an in vivo toxicity assay to examine the impacts of ingested dsRNAs incurred to the monarch butterfly, Danaus plexippus (L.), an iconic eco-indicator in North America. To create the worst case scenario, the full-length v-ATPase A cDNAs from the target pest, western corn rootworm, Diabrotica virgifera virgifera , and the non-target D. plexippus were respectively cloned. A 400 bp fragment with the highest sequence similarity between the two species was used as the template to synthesize dsRNAs for the subsequent dietary RNAi toxicity assay. Specifically, newly hatched neonates were provisioned with leaf disks surface-coated with v-ATPase A dsRNAs synthesized from D. v. virgifera and D. plexippus , respectively, a control dsRNA, β -glucoruronidase , from plants, and H 2 O. The endpoint measurements included gene expressions and life history traits. The 2283 bp D. plexippus v-ATPase A cDNA contains a 99 bp 5'-untranslated region, a 330 bp 3'-untranslated region, and an 1851 bp ORF encoding 617 amino acids. The temporal RNAi study did not detect any impact to D. plexippus v-ATPase A expression by the assay days and treatments. This was reflected in the phenotypic impacts of dietary RNAi, in which both survival rate and development time were not affected by the uptake of ingested dsRNAs. These combined results suggest that D. plexippus larvae are not susceptible to dietary RNAi, therefore, the impact of transgenic RNAi plants on this non-target organism is, likely, negligible.
García de la serrana, Daniel; Codina, Marta; Capilla, Encarnación; Jiménez-Amilburu, Vanesa; Navarro, Isabel; Du, Shao-Jun; Johnston, Ian A; Gutiérrez, Joaquim
2014-01-01
The aim of this study was to characterise a primary cell culture isolated from fast skeletal muscle of the gilthead sea bream. Gene expression profiles during culture maturation were compared with those obtained from a fasting-refeeding model which is widely used to modulate myogenesis in vivo. Myogenesis is controlled by numerous extracellular signals together with intracellular transcriptional factors whose coordinated expression is critical for the appropriate development of muscle fibres. Full-length cDNAs for the transcription factors Myf5, Mrf4, Pax7 and Sox8 were cloned and sequenced for gilthead sea bream. Pax7, sox8, myod2 and myf5 levels were up-regulated during the proliferating phase of the myogenic cultures coincident with the highest expression of proliferating cell nuclear antigen (PCNA). In contrast, myogenin and mrf4 transcript abundance was highest during the differentiation phase of the culture when myotubes were present, and was correlated with increased myosin heavy chain (mhc) and desmin expression. In vivo, 30days of fasting resulted in muscle fibre atrophy, a reduction in myod2, myf5 and igf1 expression, lower number of Myod-positive cells, and decreased PCNA protein expression, whereas myogenin expression was not significantly affected. Myostatin1 (mstn1) and pax7 expression were up-regulated in fasted relative to well-fed individuals, consistent with a role for Pax7 in the reduction of myogenic cell activity with fasting. The primary cell cultures and fasting-feeding experiments described provide a foundation for the future investigations on the regulation of muscle growth in gilthead sea bream. © 2013.
Tahara, Ko; Nishiguchi, Mitsuru; Frolov, Andrej; Mittasch, Juliane; Milkowski, Carsten
2018-08-01
In the highly aluminum-resistant tree Eucalyptus camaldulensis, hydrolyzable tannins are proposed to play a role in internal detoxification of aluminum, which is a major factor inhibiting plant growth on acid soils. To understand and modulate the molecular mechanisms of aluminum detoxification by hydrolyzable tannins, the biosynthetic genes need to be identified. In this study, we identified and characterized genes encoding UDP-glucose:gallate glucosyltransferase, which catalyzes the formation of 1-O-galloyl-β-d-glucose (β-glucogallin), the precursor of hydrolyzable tannins. By homology-based cloning, seven full-length candidate cDNAs were isolated from E. camaldulensis and expressed in Escherichia coli as recombinant N-terminal His-tagged proteins. Phylogenetic analysis classified four of these as UDP glycosyltransferase (UGT) 84A subfamily proteins (UGT84A25a, -b, UGT84A26a, -b) and the other three as UGT84J subfamily proteins (UGT84J3, -4, -5). In vitro enzyme assays showed that the UGT84A proteins catalyzed esterification of UDP-glucose and gallic acid to form 1-O-galloyl-β-d-glucose, whereas the UGT84J proteins were inactive. Further analyses with UGT84A25a and -26a indicated that they also formed 1-O-glucose esters of other structurally related hydroxybenzoic and hydroxycinnamic acids with a preference for hydroxybenzoic acids. The UGT84A genes were expressed in leaves, stems, and roots of E. camaldulensis, regardless of aluminum stress. Taken together, our results suggest that the UGT84A subfamily enzymes of E. camaldulensis are responsible for constitutive production of 1-O-galloyl-β-d-glucose, which is the first step of hydrolyzable tannin biosynthesis. Copyright © 2018 Elsevier Ltd. All rights reserved.
Chen, Qiangwen; Yan, Jiaping; Meng, Xiangxiang; Xu, Feng; Zhang, Weiwei; Liao, Yongling; Qu, Jinwang
2017-01-02
Ginkgolides and bilobalide, collectively termed terpene trilactones (TTLs), are terpenoids that form the main active substance of Ginkgo biloba . Terpenoids in the mevalonate (MVA) biosynthetic pathway include acetyl-CoA C -acetyltransferase (AACT) and mevalonate kinase (MVK) as core enzymes. In this study, two full-length (cDNAs) encoding AACT ( GbAACT , GenBank Accession No. KX904942) and MVK ( GbMVK , GenBank Accession No. KX904944) were cloned from G. biloba . The deduced GbAACT and GbMVK proteins contain 404 and 396 amino acids with the corresponding open-reading frame (ORF) sizes of 1215 bp and 1194 bp, respectively. Tissue expression pattern analysis revealed that GbAACT was highly expressed in ginkgo fruits and leaves, and GbMVK was highly expressed in leaves and roots. The functional complementation of GbAACT in AACT-deficient Saccharomyces cerevisiae strain Δerg10 and GbMVK in MVK-deficient strain Δerg12 confirmed that GbAACT mediated the conversion of mevalonate acetyl-CoA to acetoacetyl-CoA and GbMVK mediated the conversion of mevalonate to mevalonate phosphate. This observation indicated that GbAACT and GbMVK are functional genes in the cytosolic mevalonate (MVA) biosynthesis pathway. After G. biloba seedlings were treated with methyl jasmonate and salicylic acid, the expression levels of GbAACT and GbMVK increased, and TTL production was enhanced. The cloning, characterization, expression and functional analysis of GbAACT and GbMVK will be helpful to understand more about the role of these two genes involved in TTL biosynthesis.
Johnson, K N; Ball, L A
2001-12-01
Pariacoto virus (PaV) is a nodavirus that was recently isolated in Peru from the Southern armyworm, Spodoptera eridania. Virus particles are non enveloped and about 30 nm in diameter and have T=3 icosahedral symmetry. The 3.0-A crystal structure shows that about 35% of the genomic RNA is icosahedrally ordered, with the RNA forming a dodecahedral cage of 25-nucleotide (nt) duplexes that underlie the inner surface of the capsid. The PaV genome comprises two single-stranded, positive-sense RNAs: RNA1 (3,011 nt), which encodes the 108-kDa catalytic subunit of the RNA-dependent RNA polymerase, and RNA2 (1,311 nt), which encodes the 43-kDa capsid protein precursor alpha. In order to apply molecular genetics to the structure and assembly of PaV, we identified susceptible cell lines and developed a reverse genetic system for this virus. Cell lines that were susceptible to infection by PaV included those from Spodoptera exigua, Helicoverpa zea and Aedes albopictus, whereas cells from Drosophila melanogaster and Spodoptera frugiperda were refractory to infection. To recover virus from molecular clones, full-length cDNAs of PaV RNAs 1 and 2 were cotranscribed by T7 RNA polymerase in baby hamster kidney cells that expressed T7 RNA polymerase. Lysates of these cells were infectious both for cultured cells from Helicoverpa zea (corn earworm) and for larvae of Galleria mellonella (greater wax moth). The combination of infectious cDNA clones, cell culture infectivity, and the ability to produce milligram amounts of virus allows the application of DNA-based genetic methods to the study of PaV structure and assembly.
Description of an elasmobranch TCR coreceptor: CD8α from Rhinobatos productus
Hansen, J.D.; Farrugia, T.J.; Woodson, J.; Laing, K.J.
2011-01-01
Cell-mediated immunity plays an essential role for the control and eradication of intracellular pathogens. To learn more about the evolutionary origins of the first signal (Signal 1) for T-cell activation, we cloned CD8α from an elasmobranch, Rhinobatos productus. Similar to full-length CD8α cDNAs from other vertebrates, Rhpr-CD8α (1800 bp) encodes a 219 amino acid open reading frame composed of a signal peptide, an extracellular IgSF V domain and a stalk/hinge region followed by a well-conserved transmembrane domain and cytoplasmic tail. Overall, the mature Rhpr-CD8α protein (201 aa) displays ~30% amino acid identity with mammalian CD8α including absolute conservation of cysteine residues involved in the IgSf V domain fold and dimerization of CD8αα and CD8αβ. One prominent feature is the absence of the LCK association motif (CXC) that is needed for achieving signal 1 in tetrapods. Both elasmobranch and teleost CD8α protein sequences possess a similar but distinctly different motif (CXH) in the cytoplasmic tail. The overall genomic structure of CD8α has been conserved during the course of vertebrate evolution both for the number of exons and phase of splicing. Finally, quantitative RTPCR demonstrated that elasmobranch CD8α is expressed in lymphoid-rich tissues similar to CD8 in other vertebrates. The results from this study indicate the existence of CD8 prior to the emergence of the gnathostomes (>450 MYA) while providing evidence that the canonical LCK association motif in mammals is likely a derived characteristic of tetrapod CD8α, suggesting potential differences for T-cell education and activation in the various gnathostomes.
Parton, Angela; Bayne, Christopher J.; Barnes, David W.
2010-01-01
Elasmobranchs are the most commonly used experimental models among the jawed, cartilaginous fish (Chondrichthyes). Previously we developed cell lines from embryos of two elasmobranchs, Squalus acanthias the spiny dogfish shark (SAE line), and Leucoraja erinacea the little skate (LEE-1 line). From these lines cDNA libraries were derived and expressed sequence tags (ESTs) generated. From the SAE cell line 4303 unique transcripts were identified, with 1848 of these representing unknown sequences (showing no BLASTX identification). From the LEE-1 cell line, 3660 unique transcripts were identified, and unknown, unique sequences totaled 1333. Gene Ontology (GO) annotation showed that GO assignments for the two cell lines were in general similar. These results suggest that the procedures used to derive the cell lines led to isolation of cell types of the same general embryonic origin from both species. The LEE-1 transcripts included GO categories “envelope” and “oxidoreductase activity” but the SAE transcripts did not. GO analysis of SAE transcripts identified the category “anatomical structure formation” that was not present in LEE-1 cells. Increased organelle compartments may exist within LEE-1 cells compared to SAE cells, and the higher oxidoreductase activity in LEE-1 cells may indicate a role for these cells in responses associated with innate immunity or in steroidogenesis. These EST libraries from elasmobranch cell lines provide information for assembly of genomic sequences and are useful in revealing gene diversity, new genes and molecular markers, as well as in providing means for elucidation of full-length cDNAs and probes for gene array analyses. This is the first study of this type with members of the Chondrichthyes. PMID:20471924
Parton, Angela; Bayne, Christopher J; Barnes, David W
2010-09-01
Elasmobranchs are the most commonly used experimental models among the jawed, cartilaginous fish (Chondrichthyes). Previously we developed cell lines from embryos of two elasmobranchs, Squalus acanthias the spiny dogfish shark (SAE line), and Leucoraja erinacea the little skate (LEE-1 line). From these lines cDNA libraries were derived and expressed sequence tags (ESTs) generated. From the SAE cell line 4303 unique transcripts were identified, with 1848 of these representing unknown sequences (showing no BLASTX identification). From the LEE-1 cell line, 3660 unique transcripts were identified, and unknown, unique sequences totaled 1333. Gene Ontology (GO) annotation showed that GO assignments for the two cell lines were in general similar. These results suggest that the procedures used to derive the cell lines led to isolation of cell types of the same general embryonic origin from both species. The LEE-1 transcripts included GO categories "envelope" and "oxidoreductase activity" but the SAE transcripts did not. GO analysis of SAE transcripts identified the category "anatomical structure formation" that was not present in LEE-1 cells. Increased organelle compartments may exist within LEE-1 cells compared to SAE cells, and the higher oxidoreductase activity in LEE-1 cells may indicate a role for these cells in responses associated with innate immunity or in steroidogenesis. These EST libraries from elasmobranch cell lines provide information for assembly of genomic sequences and are useful in revealing gene diversity, new genes and molecular markers, as well as in providing means for elucidation of full-length cDNAs and probes for gene array analyses. This is the first study of this type with members of the Chondrichthyes. Copyright 2010 Elsevier Inc. All rights reserved.
Jackson, Christopher J; Norman, John E; Schnare, Murray N; Gray, Michael W; Keeling, Patrick J; Waller, Ross F
2007-01-01
Background Dinoflagellates comprise an ecologically significant and diverse eukaryotic phylum that is sister to the phylum containing apicomplexan endoparasites. The mitochondrial genome of apicomplexans is uniquely reduced in gene content and size, encoding only three proteins and two ribosomal RNAs (rRNAs) within a highly compacted 6 kb DNA. Dinoflagellate mitochondrial genomes have been comparatively poorly studied: limited available data suggest some similarities with apicomplexan mitochondrial genomes but an even more radical type of genomic organization. Here, we investigate structure, content and expression of dinoflagellate mitochondrial genomes. Results From two dinoflagellates, Crypthecodinium cohnii and Karlodinium micrum, we generated over 42 kb of mitochondrial genomic data that indicate a reduced gene content paralleling that of mitochondrial genomes in apicomplexans, i.e., only three protein-encoding genes and at least eight conserved components of the highly fragmented large and small subunit rRNAs. Unlike in apicomplexans, dinoflagellate mitochondrial genes occur in multiple copies, often as gene fragments, and in numerous genomic contexts. Analysis of cDNAs suggests several novel aspects of dinoflagellate mitochondrial gene expression. Polycistronic transcripts were found, standard start codons are absent, and oligoadenylation occurs upstream of stop codons, resulting in the absence of termination codons. Transcripts of at least one gene, cox3, are apparently trans-spliced to generate full-length mRNAs. RNA substitutional editing, a process previously identified for mRNAs in dinoflagellate mitochondria, is also implicated in rRNA expression. Conclusion The dinoflagellate mitochondrial genome shares the same gene complement and fragmentation of rRNA genes with its apicomplexan counterpart. However, it also exhibits several unique characteristics. Most notable are the expansion of gene copy numbers and their arrangements within the genome, RNA editing, loss of stop codons, and use of trans-splicing. PMID:17897476
Larbat, Romain; Kellner, Sandra; Specker, Silvia; Hehn, Alain; Gontier, Eric; Hans, Joachim; Bourgaud, Frederic; Matern, Ulrich
2007-01-05
Ammi majus L. accumulates linear furanocoumarins by cytochrome P450 (CYP)-dependent conversion of 6-prenylumbelliferone via (+)-marmesin to psoralen. Relevant activities, i.e. psoralen synthase, are induced rapidly from negligible background levels upon elicitation of A. majus cultures with transient maxima at 9-10 h and were recovered in labile microsomes. Expressed sequence tags were cloned from elicited Ammi cells by a nested DD-RT-PCR strategy with CYP-specific primers, and full-size cDNAs were generated from those fragments correlated in abundance with the induction profile of furanocoumarin-specific activities. One of these cDNAs representing a transcript of maximal abundance at 4 h of elicitation was assigned CYP71AJ1. Functional expression in Escherichia coli or yeast cells initially failed but was accomplished eventually in yeast cells after swapping the N-terminal membrane anchor domain with that of CYP73A1. The recombinant enzyme was identified as psoralen synthase with narrow substrate specificity for (+)-marmesin. Psoralen synthase catalyzes a unique carbon-chain cleavage reaction concomitantly releasing acetone by syn-elimination. Related plants, i.e. Heracleum mantegazzianum, are known to produce both linear and angular furanocoumarins by analogous conversion of 8-prenylumbelliferone via (+)-columbianetin to angelicin, and it was suggested that angelicin synthase has evolved from psoralen synthase. However, (+)-columbianetin failed as substrate but competitively inhibited psoralen synthase activity. Analogy modeling and docked solutions defined the conditions for high affinity substrate binding and predicted the minimal requirements to accommodate (+)-columbianetin in the active site cavity. The studies suggested that several point mutations are necessary to pave the road toward angelicin synthase evolution.
Chimeras of human complement C9 reveal the site recognized by complement regulatory protein CD59.
Hüsler, T; Lockert, D H; Kaufman, K M; Sodetz, J M; Sims, P J
1995-02-24
CD59 antigen is a membrane glycoprotein that inhibits the activity of the C9 component of the C5b-9 membrane attack complex, thereby protecting human cells from lysis by human complement. The complement-inhibitory activity of CD59 is species-selective and is most effective toward C9 derived from human or other primate plasma. By contrast, rabbit C9, which can substitute for human C9 in the membrane attack complex, mediates unrestricted lysis of human cells. To identify the peptide segment of human C9 that is recognized by CD59, rabbit C9 cDNA clones were isolated, characterized, and used to construct hybrid cDNAs for expression of full-length human/rabbit C9 chimeras in COS-7 cells. All resulting chimeras were hemolytically active, when tested against chicken erythrocytes bearing C5b-8 complexes. Assays performed in the presence or absence of CD59 revealed that this inhibitor reduced the hemolytic activity of those chimeras containing human C9 sequence between residues 334-415, irrespective of whether the remainder of the protein contained human or rabbit sequence. By contrast, when this segment of C9 contained rabbit sequence, lytic activity was unaffected by CD59. These data establish that human C9 residues 334-415 contain the site recognized by CD59, and they suggest that sequence variability within this segment of C9 is responsible for the observed species-selective inhibitory activity of CD59.
Tatry, Marie-Violaine; El Kassis, Elie; Lambilliotte, Raphaël; Corratgé, Claire; van Aarle, Ingrid; Amenc, Laurie K; Alary, Rémi; Zimmermann, Sabine; Sentenac, Hervé; Plassard, Claude
2009-03-01
Ectomycorrhizal symbiosis markedly improves plant phosphate uptake, but the molecular mechanisms underlying this benefit are still poorly understood. We identified two ESTs in a cDNA library prepared from the ectomycorrhizal basidiomycete Hebeloma cylindrosporum with significant similarities to phosphate transporters from the endomycorrhizal fungus Glomus versiforme and from non-mycorrhizal fungi. The full-length cDNAs corresponding to these two ESTs complemented a yeast phosphate transport mutant (Deltapho84). Measurements of (33)P-phosphate influx into yeast expressing either cDNA demonstrated that the encoded proteins, named HcPT1 and HcPT2, were able to mediate Pi:H(+) symport with different affinities for Pi (K(m) values of 55 and 4 mum, respectively). Real-time RT-PCR showed that Pi starvation increased the levels of HcPT1 transcripts in H. cylindrosporum hyphae grown in pure culture. Transcript levels of HcPT2 were less dependent on Pi availability. The two transporters were expressed in H. cylindrosporum associated with its natural host plant, Pinus pinaster, grown under low or high P conditions. The presence of ectomycorrhizae increased net Pi uptake rates into intact Pinus pinaster roots at low or high soil P levels. The expression patterns of HcPT1 and HcPT2 indicate that the two fungal phosphate transporters may be involved in uptake of phosphate from the soil solution under the two soil P availability conditions used.
Jin, Tingting; Gao, Yulin; He, Kanglai
2018-01-01
Abstract Trehalose is the major blood sugar in insects. Physiological significance of this compound has been extensively reported. Trehalose-6-phosphate synthase (TPS) is an important enzyme in the trehalose biosynthesis pathway. Full-length cDNAs of TPS (Of tps) and its alternative splicing isoform (Of tps_isoformI) were cloned from the Asian corn borer (ACB), Ostrinia furnacalis (Guenée; Lepidoptera: Crambidae) larvae. The Of tps and Of tps_isoformI transcripts were 2913 and 1689 bp long, contained 2529 and 1293 bp open reading frames encoding proteins of 842 and 430 amino acids with a molecular mass of 94.4 and 48.6 kDa, respectively. Transcriptional profiling and response to thermal stress of Of tps gene were determined by quantitative real-time PCR showing that the Of tps was predominantly expressed in the larval fat body, significantly enhanced during molting and transformation; and thermal stress also induced Of tps expression. Gene structure analysis is indicating that one TPS domain and one trehalose-6-phosphate phosphatase (TPP) domain were located at the N- and C-termini of Of TPS, respectively, while only the TPS domain was detected in OfTPS_isoformI. Three-dimensional modeling and heterologous expression were developed to predict the putative functions of OfTPS and Of TPS_isoformI. We infer that the expression of Of tps gene is thermally induced and might be crucial for larvae survival.
Isayenkov, Stanislav; Mrosk, Cornelia; Stenzel, Irene; Strack, Dieter; Hause, Bettina
2005-01-01
During the symbiotic interaction between Medicago truncatula and the arbuscular mycorrhizal (AM) fungus Glomus intraradices, an endogenous increase in jasmonic acid (JA) occurs. Two full-length cDNAs coding for the JA-biosynthetic enzyme allene oxide cyclase (AOC) from M. truncatula, designated as MtAOC1 and MtAOC2, were cloned and characterized. The AOC protein was localized in plastids and found to occur constitutively in all vascular tissues of M. truncatula. In leaves and roots, MtAOCs are expressed upon JA application. Enhanced expression was also observed during mycorrhization with G. intraradices. A partial suppression of MtAOC expression was achieved in roots following transformation with Agrobacterium rhizogenes harboring the MtAOC1 cDNA in the antisense direction under control of the cauliflower mosaic virus 35S promoter. In comparison to samples transformed with 35S∷uidA, roots with suppressed MtAOC1 expression exhibited lower JA levels and a remarkable delay in the process of colonization with G. intraradices. Both the mycorrhization rate, quantified by fungal rRNA, and the arbuscule formation, analyzed by the expression level of the AM-specific gene MtPT4, were affected. Staining of fungal material in roots with suppressed MtAOC1 revealed a decreased number of arbuscules, but these did not exhibit an altered structure. Our results indicate a crucial role for JA in the establishment of AM symbiosis. PMID:16244141
Kim, Ju-Won; Park, Chan-Il; Hwang, Seong Don; Jeong, Ji-Min; Kim, Ki-Hyuk; Kim, Do-Hyung; Shim, Sang Hee
2013-07-01
Cathepsins are lysosomal cysteine proteases belonging to the papain family, whose members play important roles in normal metabolism for the maintenance of cellular homeostasis. Rock bream (Oplegnathus fasciatus) cathepsin H (RbCTSH) cDNAs were identified by expressed sequence tag analysis of a lipopolysaccharide-stimulated rock bream liver cDNA library. The full-length RbCTSH cDNA (1326 bp) contained an open reading frame of 978 bp encoding 325 amino acids. The presence of an ERFNIN-like motif was predicted in the propeptide region of RbCTSH. Furthermore, multiple alignments showed that the EPQNCSAT region was well conserved among other cathepsin H sequences. Phylogenetic analysis revealed that RbCTSH is most closely related to Nile tilapia cathepsin H. RbCTSH was expressed significantly in the intestine, spleen, head kidney and stomach. RbCTSH mRNA expression was also examined in several tissues under conditions of bacterial and viral challenge. All examined tissues of fish infected with Edwardsiella tarda, Streptococcus iniae and red sea bream iridovirus (RSIV) showed significant increases in RbCTSH expression compared to the control. In the kidney and spleen, RbCTSH mRNA expression was upregulated markedly following infection with bacterial pathogens. These findings indicate that RbCTSH plays an important role in the innate immune response of rock bream. Furthermore, these results provide important information for the identification of other cathepsin H genes in various fish species. Copyright © 2013 Elsevier Ltd. All rights reserved.
Wang, H; Miao, S; Chen, D; Wang, L; Koide, S S
1999-10-06
The gene (HSD-1) coding a human sperm membrane protein (hSMP-1) was isolated from a human testis cDNA expression library using antibodies found in the serum of an infertile woman. HSD-1 was localized to a single locus on chromosome 9 and assigned to band 9p12-p13 by fluorescent in situ hybridization (FISH) mapping and DAPI (4,6-diamidino-2-phenylindole) banding, using rat/human somatic cell hybrids and metaphase chromosomes of human lymphocytes. In rescreening a testis lambdagt10 cDNA expression library, the full-length cDNA (HSD-1) and several truncated cDNAs with heterologous regions were isolated from positive clones. The heterology consisted of deletion, insertion and alteration of the 5'-end. These heterologous truncated fragments may be produced by alternative splicing of mRNAs. Two recombinant prokaryotic expression vectors were constructed with one of the heterologous fragment (clone #26) with and without the alternative 5'-end. Escherichia coli transfected with the construct containing the alternative 5'-end failed to produce the recombinant product, whereas those transfected with the vector lacking the 5'-end produced hSMP-1. DNASIS analysis of the structure of #26 mRNA suggests that the 5'-end has a stable secondary configuration that may maintain the mRNA in an inactivated state, whereby hindering its translation and preventing the expression of the gene.
Bedon, Frank; Grima-Pettenati, Jacqueline; Mackay, John
2007-01-01
Background Several members of the R2R3-MYB family of transcription factors act as regulators of lignin and phenylpropanoid metabolism during wood formation in angiosperm and gymnosperm plants. The angiosperm Arabidopsis has over one hundred R2R3-MYBs genes; however, only a few members of this family have been discovered in gymnosperms. Results We isolated and characterised full-length cDNAs encoding R2R3-MYB genes from the gymnosperms white spruce, Picea glauca (13 sequences), and loblolly pine, Pinus taeda L. (five sequences). Sequence similarities and phylogenetic analyses placed the spruce and pine sequences in diverse subgroups of the large R2R3-MYB family, although several of the sequences clustered closely together. We searched the highly variable C-terminal region of diverse plant MYBs for conserved amino acid sequences and identified 20 motifs in the spruce MYBs, nine of which have not previously been reported and three of which are specific to conifers. The number and length of the introns in spruce MYB genes varied significantly, but their positions were well conserved relative to angiosperm MYB genes. Quantitative RTPCR of MYB genes transcript abundance in root and stem tissues revealed diverse expression patterns; three MYB genes were preferentially expressed in secondary xylem, whereas others were preferentially expressed in phloem or were ubiquitous. The MYB genes expressed in xylem, and three others, were up-regulated in the compression wood of leaning trees within 76 hours of induction. Conclusion Our survey of 18 conifer R2R3-MYB genes clearly showed a gene family structure similar to that of Arabidopsis. Three of the sequences are likely to play a role in lignin metabolism and/or wood formation in gymnosperm trees, including a close homolog of the loblolly pine PtMYB4, shown to regulate lignin biosynthesis in transgenic tobacco. PMID:17397551
Dou, Wei; Tian, Yi; Liu, Hong; Shi, Yan; Smagghe, Guy; Wang, Jin-Jun
2017-11-01
To explore the functions of small heat shock proteins (sHsps) in relation to thermal stress and development in Bactrocera dorsalis (Hendel), one of the most economically important pest species attacking a wide range of fruits and vegetables, six full-length cDNAs of sHsp genes (BdHsp17.7, 18.4, 20.4, 20.6, 21.6 and 23.8) were cloned, and the expression patterns in different developmental stages and tissues, as well as in response to both thermal and 20-hydroxyecdysone (20E) exposures, were examined using real time quantitative PCR. The open reading frames (ORFs) of six sHsps are 453, 489, 537, 543, 567 and 630bp in length, encoding proteins with molecular weights of 17.7, 18.4, 20.4, 20.6, 21.6 and 23.8kDa, respectively. BdHsp18.4 and BdHsp20.4 maintained lower expression levels in both eggs and larvae, whereas remarkably up-regulated after the larval-pupal transformation, suggesting that these two sHsps may be involved in metamorphosis. Significant tissue specificity exists among sHsps: the highest expression of BdHsp20.6 and BdHsp23.8 in the Malpighian tubules and ovary, respectively, versus a peak in the fat body for others. BdHsp20.4 and BdHsp20.6 were significantly up-regulated by thermal stress. In contrast, BdHsp18.4 and BdHsp23.8 reacted only to heat stress. BdHsp17.7 and BdHsp21.6 were insensitive to both heat and cold stresses. The degree of sHsps response depends on intensity of 20E treatment, i.e., dose and time. These results strongly suggest functional differentiation within the sHsp subfamily in B. dorsalis. The physiological function of sHsp members under thermal stress and normal growth remains the subjects of further investigation. Copyright © 2017 Elsevier Inc. All rights reserved.
The Odorant Receptor Co-Receptor from the Bed Bug, Cimex lectularius L
Hansen, Immo A.; Rodriguez, Stacy D.; Drake, Lisa L.; Price, David P.; Blakely, Brittny N.; Hammond, John I.; Tsujimoto, Hitoshi; Monroy, Erika Y.; Maio, William A.; Romero, Alvaro
2014-01-01
Recently, the bed bug, Cimex lectularius L. has re-emerged as a serious and growing problem in many parts of the world. Presence of resistant bed bugs and the difficulty to eliminate them has renewed interest in alternative control tactics. Similar to other haematophagous arthropods, bed bugs rely on their olfactory system to detect semiochemicals in the environment. Previous studies have morphologically characterized olfactory organs of bed bugs’ antenna and have physiologically evaluated the responses of olfactory receptor neurons (ORNs) to host-derived chemicals. To date, odorant binding proteins (OBPs) and odorant receptors (ORs) associated with these olfaction processes have not been studied in bed bugs. Chemoreception in insects requires formation of heteromeric complexes of ORs and a universal OR coreceptor (Orco). Orco is the constant chain of every odorant receptor in insects and is critical for insect olfaction but does not directly bind to odorants. Orco agonists and antagonists have been suggested as high-value targets for the development of novel insect repellents. In this study, we have performed RNAseq of bed bug sensory organs and identified several odorant receptors as well as Orco. We characterized Orco expression and investigated the effect of chemicals targeting Orco on bed bug behavior and reproduction. We have identified partial cDNAs of six C. lectularius OBPs and 16 ORs. Full length bed bug Orco was cloned and sequenced. Orco is widely expressed in different parts of the bed bug including OR neurons and spermatozoa. Treatment of bed bugs with the agonist VUAA1 changed bed bug pheromone-induced aggregation behavior and inactivated spermatozoa. We have described and characterized for the first time OBPs, ORs and Orco in bed bugs. Given the importance of these molecules in chemoreception of this insect they are interesting targets for the development of novel insect behavior modifiers. PMID:25411789
The odorant receptor co-receptor from the bed bug, Cimex lectularius L.
Hansen, Immo A; Rodriguez, Stacy D; Drake, Lisa L; Price, David P; Blakely, Brittny N; Hammond, John I; Tsujimoto, Hitoshi; Monroy, Erika Y; Maio, William A; Romero, Alvaro
2014-01-01
Recently, the bed bug, Cimex lectularius L. has re-emerged as a serious and growing problem in many parts of the world. Presence of resistant bed bugs and the difficulty to eliminate them has renewed interest in alternative control tactics. Similar to other haematophagous arthropods, bed bugs rely on their olfactory system to detect semiochemicals in the environment. Previous studies have morphologically characterized olfactory organs of bed bugs' antenna and have physiologically evaluated the responses of olfactory receptor neurons (ORNs) to host-derived chemicals. To date, odorant binding proteins (OBPs) and odorant receptors (ORs) associated with these olfaction processes have not been studied in bed bugs. Chemoreception in insects requires formation of heteromeric complexes of ORs and a universal OR coreceptor (Orco). Orco is the constant chain of every odorant receptor in insects and is critical for insect olfaction but does not directly bind to odorants. Orco agonists and antagonists have been suggested as high-value targets for the development of novel insect repellents. In this study, we have performed RNAseq of bed bug sensory organs and identified several odorant receptors as well as Orco. We characterized Orco expression and investigated the effect of chemicals targeting Orco on bed bug behavior and reproduction. We have identified partial cDNAs of six C. lectularius OBPs and 16 ORs. Full length bed bug Orco was cloned and sequenced. Orco is widely expressed in different parts of the bed bug including OR neurons and spermatozoa. Treatment of bed bugs with the agonist VUAA1 changed bed bug pheromone-induced aggregation behavior and inactivated spermatozoa. We have described and characterized for the first time OBPs, ORs and Orco in bed bugs. Given the importance of these molecules in chemoreception of this insect they are interesting targets for the development of novel insect behavior modifiers.
Ramalho-Ortigão, J M; Temporal, P; de Oliveira , S M; Barbosa, A F; Vilela, M L; Rangel, E F; Brazil, R P; Traub-Cseko, Y M
2001-01-01
Molecular studies of insect disease vectors are of paramount importance for understanding parasite-vector relationship. Advances in this area have led to important findings regarding changes in vectors' physiology upon blood feeding and parasite infection. Mechanisms for interfering with the vectorial capacity of insects responsible for the transmission of diseases such as malaria, Chagas disease and dengue fever are being devised with the ultimate goal of developing transgenic insects. A primary necessity for this goal is information on gene expression and control in the target insect. Our group is investigating molecular aspects of the interaction between Leishmania parasites and Lutzomyia sand flies. As an initial step in our studies we have used random sequencing of cDNA clones from two expression libraries made from head/thorax and abdomen of sugar fed L. longipalpis for the identification of expressed sequence tags (EST). We applied differential display reverse transcriptase-PCR and randomly amplified polymorphic DNA-PCR to characterize differentially expressed mRNA from sugar and blood fed insects, and, in one case, from a L. (V.) braziliensis-infected L. longipalpis. We identified 37 cDNAs that have shown homology to known sequences from GeneBank. Of these, 32 cDNAs code for constitutive proteins such as zinc finger protein, glutamine synthetase, G binding protein, ubiquitin conjugating enzyme. Three are putative differentially expressed cDNAs from blood fed and Leishmania-infected midgut, a chitinase, a V-ATPase and a MAP kinase. Finally, two sequences are homologous to Drosophila melanogaster gene products recently discovered through the Drosophila genome initiative.
Evolution of two Rh blood group-related genes of the amphioxus species Branchiostoma floridae.
Kitano, Takashi; Satou, Masahiro; Saitou, Naruya
2010-04-01
We determined cDNAs of two genes that belong to the Rhesus (Rh) blood group gene family in an amphioxus species (Branchiostoma floridae) and designated them Rh-related-1 (RhR-1) and Rh-related-2 (RhR-2). RhR-1 and RhR-2 consisted of 10 and 11 exons, respectively. 3' UTR sequences of RhR-1 were shorter (220-272 bp) than those of RhR-2 (1,505-1,650 bp). CDS lengths were 1,344 and 1,476 bp for RhR-1 and RhR-2, respectively, and the average nucleotide difference between their CDS regions was 0.33. The corresponding regions of Rh genes from exons 2 to 7 were relatively conserved among the chordate species examined in this study. Length difference numbers were in multiples of three, which implies that codon frames were conserved among them, and the same exon/intron boundary phases were observed in those regions. This region was used for the phylogenetic analyses. RhR-1 and RhR-2 formed a cluster on the phylogenetic tree of the Rh gene family. Gene duplication time of RhR-1 and RhR-2 was estimated to be ca. 500 million years ago. It is likely that the four Rh family genes in vertebrates emerged by gene duplications in the common ancestor of vertebrates, and functional differentiation has occurred after the first gene duplication.
cDNAs from Nylanderia sp nr pubens (Hymenoptera: Formicidae)
USDA-ARS?s Scientific Manuscript database
7 new gene sequences were identified from workers of Rasberry crazy ant, Nylanderia sp.nr. pubens, and submitted to the National Center for Biotechnology Information GenBank. GenBank accession numbers are HQ636472-HQ636478. This information will provide scientists with genetic tools to study the pop...
BIGEL analysis of gene expression in HL60 cells exposed to X rays or 60 Hz magnetic fields
NASA Technical Reports Server (NTRS)
Balcer-Kubiczek, E. K.; Zhang, X. F.; Han, L. H.; Harrison, G. H.; Davis, C. C.; Zhou, X. J.; Ioffe, V.; McCready, W. A.; Abraham, J. M.; Meltzer, S. J.
1998-01-01
We screened a panel of 1,920 randomly selected cDNAs to discover genes that are differentially expressed in HL60 cells exposed to 60 Hz magnetic fields (2 mT) or X rays (5 Gy) compared to unexposed cells. Identification of these clones was accomplished using our two-gel cDNA library screening method (BIGEL). Eighteen cDNAs differentially expressed in X-irradiated compared to control HL60 cells were recovered from a panel of 1,920 clones. Differential expression in experimental compared to control cells was confirmed independently by Northern blotting of paired total RNA samples hybridized to each of the 18 clone-specific cDNA probes. DNA sequencing revealed that 15 of the 18 cDNA clones produced matches with the database for genes related to cell growth, protein synthesis, energy metabolism, oxidative stress or apoptosis (including MYC, neuroleukin, copper zinc-dependent superoxide dismutase, TC4 RAS-like protein, peptide elongation factor 1alpha, BNIP3, GATA3, NF45, cytochrome c oxidase II and triosephosphate isomerase mRNAs). In contrast, BIGEL analysis of the same 1,920 cDNAs revealed no differences greater than 1.5-fold in expression levels in magnetic-field compared to sham-exposed cells. Magnetic-field-exposed and control samples were analyzed further for the presence of mRNA encoding X-ray-responsive genes by hybridization of the 18 specific cDNA probes to RNA from exposed and control HL60 cells. Our results suggest that differential gene expression is induced in approximately 1% of a random pool of cDNAs by ionizing radiation but not by 60 Hz magnetic fields under the present experimental conditions.
Balboni, Tania; Ianzano, Marianna L.; Laranga, Roberta; Landuzzi, Lorena; Giusti, Veronica; Ceccarelli, Claudio; Santini, Donatella; Taffurelli, Mario; Di Oto, Enrico; Asioli, Sofia; Amici, Augusto; Pupa, Serenella M.; De Giovanni, Carla; Tagliabue, Elda; Iezzi, Manuela; Nanni, Patrizia; Lollini, Pier-Luigi
2017-01-01
Full-length HER2 oncoprotein and splice variant Delta16 are co-expressed in human breast cancer. We studied their interaction in hybrid transgenic mice bearing human full-length HER2 and Delta16 (F1 HER2/Delta16) in comparison to parental HER2 and Delta16 transgenic mice. Mammary carcinomas onset was faster in F1 HER2/Delta16 and Delta16 than in HER2 mice, however tumor growth was slower, and metastatic spread was comparable in all transgenic mice. Full-length HER2 tumors contained few large vessels or vascular lacunae, whereas Delta16 tumors presented a more regular vascularization with numerous endothelium-lined small vessels. Delta16-expressing tumors showed a higher accumulation of i.v. injected doxorubicin than tumors expressing full-length HER2. F1 HER2/Delta16 tumors with high full-length HER2 expression made few large vessels, whereas tumors with low full-length HER2 and high Delta16 contained numerous small vessels and expressed higher levels of VEGF and VEGFR2. Trastuzumab strongly inhibited tumor onset in F1 HER2/Delta16 and Delta16 mice, but not in full-length HER2 mice. Addiction of F1 tumors to Delta16 was also shown by long-term stability of Delta16 levels during serial transplants, in contrast full-length HER2 levels underwent wide fluctuations. In conclusion, full-length HER2 leads to a faster tumor growth and to an irregular vascularization, whereas Delta16 leads to a faster tumor onset, with more regular vessels, which in turn could better transport cytotoxic drugs within the tumor, and to a higher sensitivity to targeted therapeutic agents. F1 HER2/Delta16 mice are a new immunocompetent mouse model, complementary to patient-derived xenografts, for studies of mammary carcinoma onset, prevention and therapy. PMID:28903354
Zavalova, L; Lukyanov, S; Baskova, I; Snezhkov, E; Akopov, S; Berezhnoy, S; Bogdanova, E; Barsova, E; Sverdlov, E D
1996-11-27
We previously detected in salivary gland secretions of the medicinal leech (Hirudo medicinalis) a novel enzymatic activity, endo-epsilon(gamma-Glu)-Lys isopeptidase, which cleaves isopeptide bonds formed by transglutaminase (Factor XIIIa) between glutamine gamma-carboxamide and the epsilon-amino group of lysine. Such isopeptide bonds, either within or between protein polypeptide chains are formed in many biological processes. However, before we started our work no enzymes were known to be capable of specifically splitting isopeptide bonds in proteins. The isopeptidase activity we detected was specific for isopeptide bonds. The enzyme was termed destabilase. Here we report the first purification of destabilase, part of its amino acid sequence isolation and sequencing of two related cDNAs derived from the gene family that encodes destabilase proteins, and the detection of isopeptidase activity encoded by one of these cDNAs cloned in a baculovirus expression vector. The deduced mature protein products of these cDNAs contain 115 and 116 amino acid residues, including 14 highly conserved Cys residues, and are formed from precursors containing specific leader peptides. No homologous sequences were found in public databases.
Do Digital Natives Differ by Computer Self-Efficacy and Experience? An Empirical Study
ERIC Educational Resources Information Center
Teo, Timothy
2016-01-01
This study serves to validate a Chinese translation of the Digital Native Assessment Scale (C-DNAS) and assess if significant differences exist between a sample of students and teachers from a culture different than the one used in the development of the DNAS. Participants were 402 university students from one province in Mainland China. Results…
Kim, Hae Jin; Silva, Jillian E; Vu, Hieu Sy; Mockaitis, Keithanne; Nam, Jeong-Won; Cahoon, Edgar B
2015-07-01
Seeds of members of the genus Cuphea accumulate medium-chain fatty acids (MCFAs; 8:0-14:0). MCFA- and palmitic acid- (16:0) rich vegetable oils have received attention for jet fuel production, given their similarity in chain length to Jet A fuel hydrocarbons. Studies were conducted to test genes, including those from Cuphea, for their ability to confer jet fuel-type fatty acid accumulation in seed oil of the emerging biofuel crop Camelina sativa. Transcriptomes from Cuphea viscosissima and Cuphea pulcherrima developing seeds that accumulate >90% of C8 and C10 fatty acids revealed three FatB cDNAs (CpuFatB3, CvFatB1, and CpuFatB4) expressed predominantly in seeds and structurally divergent from typical FatB thioesterases that release 16:0 from acyl carrier protein (ACP). Expression of CpuFatB3 and CvFatB1 resulted in Camelina oil with capric acid (10:0), and CpuFatB4 expression conferred myristic acid (14:0) production and increased 16:0. Co-expression of combinations of previously characterized Cuphea and California bay FatBs produced Camelina oils with mixtures of C8-C16 fatty acids, but amounts of each fatty acid were less than obtained by expression of individual FatB cDNAs. Increases in lauric acid (12:0) and 14:0, but not 10:0, in Camelina oil and at the sn-2 position of triacylglycerols resulted from inclusion of a coconut lysophosphatidic acid acyltransferase specialized for MCFAs. RNA interference (RNAi) suppression of Camelina β-ketoacyl-ACP synthase II, however, reduced 12:0 in seeds expressing a 12:0-ACP-specific FatB. Camelina lines presented here provide platforms for additional metabolic engineering targeting fatty acid synthase and specialized acyltransferases for achieving oils with high levels of jet fuel-type fatty acids. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.
USDA-ARS?s Scientific Manuscript database
2 new gene sequences were identified from workers of Solenopsis invicta, and submitted to the National Center for Biotechnology Information GenBank. GenBank accession numbers are HM130684-HM130685. This information will provide scientists with genetic tools to study the populations of this ant....
USDA-ARS?s Scientific Manuscript database
15 new gene sequences were identified from workers of Brachymyrmex patagonicus, and submitted to the National Center for Biotechnology Information GenBank. GenBank accession numbers are GU582126-GU582140. This information will provide scientists with genetic tools to study the development and the p...
Kojima, N; Sitthithaworn, W; Viroonchatapan, E; Suh, D Y; Iwanami, N; Hayashi, T; Sankaw, U
2000-07-01
cDNAs encoding geranylgeranyl diphosphate synthase (GGPPS) of two diterpene producing plants, Scoparia dulcis and Croton sublyratus, were isolated using the homology-based polymerase chain reaction method. Both cloned genes showed high amino acid sequence homology (60-70%) to other plant GGPPSs and contained highly conserved aspartate-rich motifs. The obtained clones were functionally expressed in Escherichia coli and showed sufficient GGPPS activity to catalyze the condensation of farnesyl diphosphate (FPP) and isopentenyl diphosphate to form geranylgeranyl diphosphate. To investigate the factor determining the product chain length of plant GGPPSs, S. dulcis GGPPS mutants in which either the small amino acids at the fourth and fifth positions before the first aspartate-rich motif (FARM) were replaced with aromatic amino acids or in which two additional amino acids in FARM were deleted were constructed. Both mutants behaved like FPPS-like enzymes and almost exclusively produced FPP when dimethylallyl diphosphate was used as a primer substrate, and failed to accept FPP as a primer substrate. These results indicate that both small amino acids at the fourth and fifth positions before FARM and the amino acid insertion in FARM play essential roles in product length determination in plant GGPPSs.
Sato, Kengo; Kuroki, Yoko; Kumita, Wakako; Fujiyama, Asao; Toyoda, Atsushi; Kawai, Jun; Iriki, Atsushi; Sasaki, Erika; Okano, Hideyuki; Sakakibara, Yasubumi
2015-11-20
The first draft of the common marmoset (Callithrix jacchus) genome was published by the Marmoset Genome Sequencing and Analysis Consortium. The draft was based on whole-genome shotgun sequencing, and the current assembly version is Callithrix_jacches-3.2.1, but there still exist 187,214 undetermined gap regions and supercontigs and relatively short contigs that are unmapped to chromosomes in the draft genome. We performed resequencing and assembly of the genome of common marmoset by deep sequencing with high-throughput sequencing technology. Several different sequence runs using Illumina sequencing platforms were executed, and 181 Gbp of high-quality bases including mate-pairs with long insert lengths of 3, 8, 20, and 40 Kbp were obtained, that is, approximately 60× coverage. The resequencing significantly improved the MGSAC draft genome sequence. The N50 of the contigs, which is a statistical measure used to evaluate assembly quality, doubled. As a result, 51% of the contigs (total length: 299 Mbp) that were unmapped to chromosomes in the MGSAC draft were merged with chromosomal contigs, and the improved genome sequence helped to detect 5,288 new genes that are homologous to human cDNAs and the gaps in 5,187 transcripts of the Ensembl gene annotations were completely filled.
de Jesus, Lázaro Wender O; Bogerd, Jan; Vieceli, Felipe M; Branco, Giovana S; Camargo, Marília P; Cassel, Mônica; Moreira, Renata G; Yan, Chao Y I; Borella, Maria I
2017-05-15
To better understand the endocrine control of reproduction in Characiformes and the reproductive dysfunctions that commonly occur in migratory fish of this order when kept in captivity, we chose Astyanax altiparanae, which has asynchronous ovarian development and multiple spawning events, as model species. From A. altiparanae pituitary total RNA, we cloned the full-length cDNAs coding for the follicle-stimulating hormone β subunit (fshb), the luteinizing hormone β subunit (lhb), and the common gonadotropin α subunit (gpha). All three sequences showed the highest degree of amino acid identity with other homologous sequences from Siluriformes and Cypriniformes. Real-time, quantitative PCR analysis showed that gpha, fshb and lhb mRNAs were restricted to the pituitary gland. In situ hybridization and immunofluorescence, using specific-developed and characterized polyclonal antibodies, revealed that both gonadotropin β subunits mRNAs/proteins are expressed by distinct populations of gonadotropic cells in the proximal pars distalis. No marked variations for lhb transcripts levels were detected during the reproductive cycle, and 17α,20β-dihydroxy-4-pregnen-3-one plasma levels were also constant, suggesting that the reproductive dysfunction seen in A. altiparanae females in captivity are probably due to a lack of increase of Lh synthesis during spawning season. In contrast, fshb transcripts changed significantly during the reproductive cycle, although estradiol-17β (E 2 ) levels remained constant during the experiment, possibly due to a differential regulation of E 2 synthesis. Taken together, these data demonstrate the putative involvement of gonadotropin signaling on the impairment of the reproductive function in a migratory species when kept in captivity. Future experimental studies must be carried to clarify this hypothesis. All these data open the possibility for further basic and applied studies related to reproduction in this fish model. Copyright © 2016 Elsevier Inc. All rights reserved.
Natural diversity of potato (Solanum tuberosum) invertases
2010-01-01
Background Invertases are ubiquitous enzymes that irreversibly cleave sucrose into fructose and glucose. Plant invertases play important roles in carbohydrate metabolism, plant development, and biotic and abiotic stress responses. In potato (Solanum tuberosum), invertases are involved in 'cold-induced sweetening' of tubers, an adaptive response to cold stress, which negatively affects the quality of potato chips and French fries. Linkage and association studies have identified quantitative trait loci (QTL) for tuber sugar content and chip quality that colocalize with three independent potato invertase loci, which together encode five invertase genes. The role of natural allelic variation of these genes in controlling the variation of tuber sugar content in different genotypes is unknown. Results For functional studies on natural variants of five potato invertase genes we cloned and sequenced 193 full-length cDNAs from six heterozygous individuals (three tetraploid and three diploid). Eleven, thirteen, ten, twelve and nine different cDNA alleles were obtained for the genes Pain-1, InvGE, InvGF, InvCD141 and InvCD111, respectively. Allelic cDNA sequences differed from each other by 4 to 9%, and most were genotype specific. Additional variation was identified by single nucleotide polymorphism (SNP) analysis in an association-mapping population of 219 tetraploid individuals. Haplotype modeling revealed two to three major haplotypes besides a larger number of minor frequency haplotypes. cDNA alleles associated with chip quality, tuber starch content and starch yield were identified. Conclusions Very high natural allelic variation was uncovered in a set of five potato invertase genes. This variability is a consequence of the cultivated potato's reproductive biology. Some of the structural variation found might underlie functional variation that influences important agronomic traits such as tuber sugar content. The associations found between specific invertase alleles and chip quality, tuber starch content and starch yield will facilitate the selection of superior potato genotypes in breeding programs. PMID:21143910
Parkinson, John; Wasmuth, James D.; Salinas, Gustavo; Bizarro, Cristiano V.; Sanford, Chris; Berriman, Matthew; Ferreira, Henrique B.; Zaha, Arnaldo; Blaxter, Mark L.; Maizels, Rick M.; Fernández, Cecilia
2012-01-01
Background The cestode Echinococcus granulosus - the agent of cystic echinococcosis, a zoonosis affecting humans and domestic animals worldwide - is an excellent model for the study of host-parasite cross-talk that interfaces with two mammalian hosts. To develop the molecular analysis of these interactions, we carried out an EST survey of E. granulosus larval stages. We report the salient features of this study with a focus on genes reflecting physiological adaptations of different parasite stages. Methodology/Principal Findings We generated ∼10,000 ESTs from two sets of full-length enriched libraries (derived from oligo-capped and trans-spliced cDNAs) prepared with three parasite materials: hydatid cyst wall, larval worms (protoscoleces), and pepsin/H+-activated protoscoleces. The ESTs were clustered into 2700 distinct gene products. In the context of the biology of E. granulosus, our analyses reveal: (i) a diverse group of abundant long non-protein coding transcripts showing homology to a middle repetitive element (EgBRep) that could either be active molecular species or represent precursors of small RNAs (like piRNAs); (ii) an up-regulation of fermentative pathways in the tissue of the cyst wall; (iii) highly expressed thiol- and selenol-dependent antioxidant enzyme targets of thioredoxin glutathione reductase, the functional hub of redox metabolism in parasitic flatworms; (iv) candidate apomucins for the external layer of the tissue-dwelling hydatid cyst, a mucin-rich structure that is critical for survival in the intermediate host; (v) a set of tetraspanins, a protein family that appears to have expanded in the cestode lineage; and (vi) a set of platyhelminth-specific gene products that may offer targets for novel pan-platyhelminth drug development. Conclusions/Significance This survey has greatly increased the quality and the quantity of the molecular information on E. granulosus and constitutes a valuable resource for gene prediction on the parasite genome and for further genomic and proteomic analyses focused on cestodes and platyhelminths. PMID:23209850
Molecular cloning, characterization and expression analysis of ATG1 in the silkworm, Bombyx mori.
Casati, Barbara; Terova, Genciana; Cattaneo, Anna Giulia; Rimoldi, Simona; Franzetti, Eleonora; de Eguileor, Magda; Tettamanti, Gianluca
2012-12-15
Atg1 is a Serine/Threonine protein kinase that plays a pivotal role in autophagy. A complete coding sequence of ATG1 is not available for the silkworm, Bombyx mori which is a good model for studying the autophagic process. In the present study we isolated two full-length cDNAs of 2175 (transcript variant A) and 2271 (transcript variant B) bases representing ATG1 in the silkworm. Phylogenetic analysis indicated that BmATG1 was closely related to orthologs of other insects. The encoded BmAtg1 proteins shared extensive homology with orthologs from yeast to mammals, showing high conservation at the N-terminal region where the catalytic domain and ATP- and Mg-binding sites are located. A de novo prediction of the three-dimensional structure for each protein is presented. We used real-time RT-PCR to quantify dynamic changes in mRNA copy number of BmATG1 in the midgut and fat body of fifth instar larvae undergoing starvation, as well as in other tissues of silkworm at the end of last larval instar. Our qPCR results revealed that BmATG1 expression levels at the end of larval life were comparable in the midgut, fat body and Malpighian tubules, while these were higher in the gonads; moreover, the mRNA copy number of ATG1 was very different among the anterior, middle and posterior silk glands. Real-time PCR analysis also showed that starvation significantly influenced BmATG1 mRNA copy number in the fat body of silkworm, inducing an upregulation 24h after food withdrawal, with only a slight effect in the midgut. Low expression levels of BmATG1 were observed in both tissues of control animals up to the second day of spinning phase. Copyright © 2012 Elsevier B.V. All rights reserved.
Wang, Shuai; Wei, Wei; Luo, Xuenong; Cai, Xuepeng
2014-01-01
Besides the complete genome, different partial genomic sequences of Hepatitis E virus (HEV) have been used in genotyping studies, making it difficult to compare the results based on them. No commonly agreed partial region for HEV genotyping has been determined. In this study, we used a statistical method to evaluate the phylogenetic performance of each partial genomic sequence from a genome wide, by comparisons of evolutionary distances between genomic regions and the full-length genomes of 101 HEV isolates to identify short genomic regions that can reproduce HEV genotype assignments based on full-length genomes. Several genomic regions, especially one genomic region at the 3'-terminal of the papain-like cysteine protease domain, were detected to have relatively high phylogenetic correlations with the full-length genome. Phylogenetic analyses confirmed the identical performances between these regions and the full-length genome in genotyping, in which the HEV isolates involved could be divided into reasonable genotypes. This analysis may be of value in developing a partial sequence-based consensus classification of HEV species.
Hong, Y K; Kim, D H; Beletskii, A; Lee, C; Memili, E; Strauss, W M
2001-04-01
Most conditional expression vectors designed for mammalian cells have been valuable systems for studying genes of interest by regulating their expressions. The available vectors, however, are reliable for the short-length cDNA clones and not optimal for relatively long fragments of genomic DNA or long cDNAs. Here, we report the construction of two bacterial artificial chromosome (BAC) vectors, capable of harboring large inserts and shuttling among Escherichia coli, yeast, and mammalian cells. These two vectors, pEYMT and pEYMI, contain conditional expression systems which are designed to be regulated by tetracycline and mouse interferons, respectively. To test the properties of the vectors, we cloned in both vectors the green fluorescence protein (GFP) through an in vitro ligation reaction and the 17.8-kb-long X-inactive-specific transcript (Xist) cDNA through homologous recombination in yeast. Subsequently, we characterized their regulated expression properties using real-time quantitative RT-PCR (TaqMan) and RNA-fluorescent in situ hybridization (FISH). We demonstrate that these two BAC vectors are good systems for recombination-based cloning and regulated expression of large genes in mammalian cells. Copyright 2001 Academic Press.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ayata, M.; Hirano, A.; Wong, T.C.
1989-03-01
Biken strain, a nonproductive measles viruslike agent isolated from a subacute sclerosing panencephalitis (SSPE) patient, contains a posttranscriptional defect affecting matrix (M) protein. A putative M protein was translated in vitro with RNA from Biken strain-infected cells. A similar protein was detected in vivo by an antiserum against a peptide synthesized from the cloned M gene of Edmonston strain measles virus. By using a novel method, full-length cDNAs of the Biken M gene were selectively cloned. The cloned Biken M gene contained an open reading frame which encoded 8 extra carboxy-terminal amino acid residues and 20 amino acid substitutions predictedmore » to affect both the hydrophobicity and secondary structure of the gene product. The cloned gene was expressed in vitro and in vivo into a 37,500 M/sub r/ protein electrophoretically and antigenically distinct from the M protein of Edmonston strain but identical to the M protein in Biken strain-infected cells. Chimeric M proteins synthesized in vitro and in vivo showed that the mutations in the carboxy-proximal region altered the local antigenicity and those in the amino region affected the overall protein conformation. The protein expressed from the Biken M gene was unstable in vivo. Instability was attributed to multiple mutations. These results offer insights into the basis of the defect in Biken strain and pose intriguing questions about the evolutionary origins of SSPE viruses in general.« less
Mandal, Manoj K; Fischer, Rainer; Schillberg, Stefan; Schiermeyer, Andreas
2014-08-01
Recombinant proteins produced in plant suspension cultures are often degraded by endogenous plant proteases when secreted into the medium, resulting in low yields. To generate protease-deficient tobacco BY-2 cell lines and to retrieve the sequence information, we cloned four different protease cDNAs from tobacco BY-2 cells (NtAP, NtCP, NtMMP1, and NtSP), which represent the major catalytic classes. The simultaneous expression of antisense RNAs against these endogenous proteases led to the establishment of cell lines with reduced levels of endogenous protease expression and activity at late stages of the cultivation cycle. One of the cell lines showing reduced proteolytic activity in the culture medium was selected for the expression of the recombinant full-length IgG1(κ) antibody 2F5, recognizing the gp41 surface protein of HIV-1. This cell line showed significantly reduced degradation of the 2F5 heavy chain, resulting in four-fold higher accumulation of the intact antibody heavy chain when compared to transformed wild type cells expressing the same antibody. N-terminal sequencing data revealed that the antibody has two cleavage sites within the CDR-H3 and one site at the end of the H4-framework region. These cleavage sites are found to be vulnerable to serine proteases. The data provide a basis for further improvement of plant cells for the production of recombinant proteins in plant cell suspension cultures. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Dusotoit-Coucaud, Anaïs; Brunel, Nicole; Kongsawadworakul, Panida; Viboonjun, Unchera; Lacointe, André; Julien, Jean-Louis; Chrestin, Hervé; Sakr, Soulaïman
2009-01-01
Background and Aims The major economic product of Hevea brasiliensis is a rubber-containing cytoplasm (latex), which flows out of laticifers (latex cells) when the bark is tapped. The latex yield is stimulated by ethylene. Sucrose, the unique precursor of rubber synthesis, must cross the plasma membrane through specific sucrose transporters before being metabolized in the laticifers. The relative importance of sucrose transporters in determining latex yield is unknown. Here, the effects of ethylene (by application of Ethrel®) on sucrose transporter gene expression in the inner bark tissues and latex cells of H. brasiliensis are described. Methods Experiments, including cloning sucrose transporters, real time RT-PCR and in situ hybridization, were carried out on virgin (untapped) trees, treated or untreated with the latex yield stimulant Ethrel. Key Results Seven putative full-length cDNAs of sucrose transporters were cloned from a latex-specific cDNA library. These transporters belong to all SUT (sucrose transporter) groups and differ by their basal gene expression in latex and inner soft bark, with a predominance of HbSUT1A and HbSUT1B. Of these sucrose transporters, only HbSUT1A and HbSUT2A were distinctly increased by ethylene. Moreover, this increase was shown to be specific to laticifers and to ethylene application. Conclusion The data and all previous information on sucrose transport show that HbSUT1A and HbSUT2A are related to the increase in sucrose import into laticifers, required for the stimulation of latex yield by ethylene in virgin trees. PMID:19567416
Chen, Shiang-Jiuun; Lin, Chien-Chung; Tuan, Wei-Cheh; Tseng, Ching-Shiow; Huang, Rong-Nan
2010-06-15
The effect of galectin-1 (GAL1) on the growth of immortal rat chondrocyte (IRC) on chitosan-modified PLGA scaffold is investigated. The experimental results showed that water absorption ratio of chitosan-modified PLGA scaffold was 70% higher than that of PLGA alone after immersion in ddH(2)O for 2 weeks, indicating that chitosan-modification significantly enhances the hydrophilicity of PLGA. The experimental results also showed that GALl efficiently and spontaneously coats the chitosan-PLGA scaffold surface to promote adhesion and growth of immortal rat chondrocyte (IRC). To investigate the effect of endogenous GAL1, the full-length GAL1 cDNAs were cloned and constructed into pcDNA3.1 vectors to generate a plasmid expressed in IRC (IRC-GAL1). The results showed that IRC-GAL1 growth was significantly higher than that of IRC on chitosan-PLGA scaffold. The GAL1-potentiated IRC growth on chitosan-PLGA scaffold was dose-dependently inhibited by TDG (specific inhibitor of GAL1 binding). These results strongly suggest that GAL1 is critical for enhancing IRC cell adhesion and growth on chitosan-PLGA scaffold. Moreover, GAL1-coating or expression tends to promote IRC cell-cell aggregation on chitosan-PLGA scaffold and significantly enhances IRC migration. These results suggest that GAL1 probably could induce tissue differentiation and facilitates cartilage reconstruction. In conclusion, the experimental results suggest that both GAL1 and chitosan are important for enhancing IRC cell adhesion and growth on PLGA scaffold, and GAL1 is a potential biomaterial for tissue engineering. (c) 2009 Wiley Periodicals, Inc.
Receptor-like genes in the major resistance locus of lettuce are subject to divergent selection.
Meyers, B C; Shen, K A; Rohani, P; Gaut, B S; Michelmore, R W
1998-01-01
Disease resistance genes in plants are often found in complex multigene families. The largest known cluster of disease resistance specificities in lettuce contains the RGC2 family of genes. We compared the sequences of nine full-length genomic copies of RGC2 representing the diversity in the cluster to determine the structure of genes within this family and to examine the evolution of its members. The transcribed regions range from at least 7.0 to 13.1 kb, and the cDNAs contain deduced open reading frames of approximately 5. 5 kb. The predicted RGC2 proteins contain a nucleotide binding site and irregular leucine-rich repeats (LRRs) that are characteristic of resistance genes cloned from other species. Unique features of the RGC2 gene products include a bipartite LRR region with >40 repeats. At least eight members of this family are transcribed. The level of sequence diversity between family members varied in different regions of the gene. The ratio of nonsynonymous (Ka) to synonymous (Ks) nucleotide substitutions was lowest in the region encoding the nucleotide binding site, which is the presumed effector domain of the protein. The LRR-encoding region showed an alternating pattern of conservation and hypervariability. This alternating pattern of variation was also found in all comparisons within families of resistance genes cloned from other species. The Ka /Ks ratios indicate that diversifying selection has resulted in increased variation at these codons. The patterns of variation support the predicted structure of LRR regions with solvent-exposed hypervariable residues that are potentially involved in binding pathogen-derived ligands. PMID:9811792
USDA-ARS?s Scientific Manuscript database
In the natural environment, the longhorned beetle, Batocera horsfieldi (Hope) (Coleoptera: Cerambycidae), finds it’s maturation-feeding and host plants by using chemical cues. In this study, we described the identification and characterization of four new cDNAs that encode Minus-C odorant binding pr...
USDA-ARS?s Scientific Manuscript database
5 new gene sequences were identified from workers of Caribbean crazy ant, Nylanderia cf. pubens, and submitted to the National Center for Biotechnology Information GenBank. GenBank accession numbers are JF815100-JF815104. This information will provide scientists with genetic tools to study the popu...
Complete cDNAs from Nylanderia sp. nr. pubens (Hymenoptera: Formicidae). GenBank GU980916-GU980928.
USDA-ARS?s Scientific Manuscript database
13 new gene sequences were identified from workers of Rasberry crazy ant, Nylanderia sp.nr. pubens, and submitted to the National Center for Biotechnology Information GenBank. GenBank accession numbers are GU980916-GU980928. This information will provide scientists with genetic tools to study the p...
Continuous in vitro evolution of bacteriophage RNA polymerase promoters
NASA Technical Reports Server (NTRS)
Breaker, R. R.; Banerji, A.; Joyce, G. F.
1994-01-01
Rapid in vitro evolution of bacteriophage T7, T3, and SP6 RNA polymerase promoters was achieved by a method that allows continuous enrichment of DNAs that contain functional promoter elements. This method exploits the ability of a special class of nucleic acid molecules to replicate continuously in the presence of both a reverse transcriptase and a DNA-dependent RNA polymerase. Replication involves the synthesis of both RNA and cDNA intermediates. The cDNA strand contains an embedded promoter sequence, which becomes converted to a functional double-stranded promoter element, leading to the production of RNA transcripts. Synthetic cDNAs, including those that contain randomized promoter sequences, can be used to initiate the amplification cycle. However, only those cDNAs that contain functional promoter sequences are able to produce RNA transcripts. Furthermore, each RNA transcript encodes the RNA polymerase promoter sequence that was responsible for initiation of its own transcription. Thus, the population of amplifying molecules quickly becomes enriched for those templates that encode functional promoters. Optimal promoter sequences for phage T7, T3, and SP6 RNA polymerase were identified after a 2-h amplification reaction, initiated in each case with a pool of synthetic cDNAs encoding greater than 10(10) promoter sequence variants.
Human brain factor 1, a new member of the fork head gene family
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murphy, D.B.; Wiese, S.; Burfeind, P.
1994-06-01
Analysis of cDNA clones that cross-hybridized with the fork head domain of the rat HNF-3 gene family revealed 10 cDNAs from human fetal brain and human testis cDNA libraries containing this highly conserved DNA-binding domain. Three of these cDNAs (HFK1, HFK2, and HFK3) were further analyzed. The cDNA HFK1 has a length of 2557 nucleotides and shows strong homology at the nucleotide level (91.2%) to brain factor 1 (BF-1) from rat. The HFK1 cDNA codes for a putative 476 amino acid protein. The homology to BF-1 from rat in the coding region at the amino acid level is 87.5%. Themore » fork head homologous region includes 111 amino acids starting at amino acid 160 and has a 97.5% homology to BF-1. Southern hybridization revealed that HFK1 is highly conserved among mammalian species and possibly birds. Northern analysis with total RNA from human tissues and poly(A)-rich RNA from mouse revealed a 3.2-kb transcript that is present in human and mouse fetal brain and in adult mouse brain. In situ hybridization with sections of mouse embryo and human fetal brain reveals that HFK1 expression is restricted to the neuronal cells in the telencepthalon, with strong expression being observed in the developing dentate gyrus and hippocampus. HFK1 was chromosomally localized by in situ hybridization to 14q12. The cDNA clones HFK2 and HFK3 were analyzed by restriction analysis and sequencing. HFK2 and HFK3 were found to be closely related but different from HFK1. Therefore, it would appear that HFK1, HFK2, HFK3, and BF-1 form a new fork head related subfamily. 33 refs., 6 figs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ploos van Amstel, H.; Reitsma, P.H.; van der Logt, C.P.
The human protein S locus on chromosome 3 consists of two protein S genes, PS{alpha} and PS{beta}. Here the authors report the cloning and characterization of both genes. Fifteen exons of the PS{alpha} gene were identified that together code for protein S mRNA as derived from the reported protein S cDNAs. Analysis by primer extension of liver protein S mRNA, however, reveals the presence of two mRNA forms that differ in the length of their 5{prime}-noncoding region. Both transcripts contain a 5{prime}-noncoding region longer than found in the protein S cDNAs. The two products may arise from alternative splicing ofmore » an additional intron in this region or from the usage of two start sites for transcription. The intron-exon organization of the PS{alpha} gene fully supports the hypothesis that the protein S gene is the product of an evolutional assembling process in which gene modules coding for structural/functional protein units also found in other coagulation proteins have been put upstream of the ancestral gene of a steroid hormone binding protein. The PS{beta} gene is identified as a pseudogene. It contains a large variety of detrimental aberrations, viz., the absence of exon I, a splice site mutation, three stop codons, and a frame shift mutation. Overall the two genes PS{alpha} and PS{beta} show between their exonic sequences 96.5% homology. Southern analysis of primate DNA showed that the duplication of the ancestral protein S gene has occurred after the branching of the orangutan from the African apes. A nonsense mutation that is present in the pseudogene of man also could be identified in one of the two protein S genes of both chimpanzee and gorilla. This implicates that silencing of one of the two protein S genes must have taken place before the divergence of the three African apes.« less
Sporophytic self-incompatibility in Senecio squalidus L (Asteraceae)--the search for S.
Hiscock, Simon J; McInnis, Stephanie M; Tabah, David A; Henderson, Catherine A; Brennan, Adrian C
2003-01-01
Senecio squalidus (Oxford Ragwort) is being used as a model species to study the genetics and molecular genetics of self-incompatibility (SI) in the Asteraceae. S. squalidus has a strong system of sporophytic SI (SSI) and populations within the UK contain very few S alleles probably due to a population bottleneck experienced on its introduction to the UK. The genetic control of SSI in S. squalidus is complex and may involve a second locus epistatic to S. Progress towards identifying the female determinant of SSI in S. squalidus is reviewed here. Research is focused on plants carrying two defined S alleles, S(1) and S(2). S(2) is dominant to S(1) in pollen and stigma. RT-PCR was used to amplify three SRK-like cDNAs from stigmas of S(1)S(2) heterozygotes, but the expression patterns of these cDNAs suggest that they are unlikely to be directly involved in SI or pollen-stigma interactions in contrast to SSI in the Brassicaceae. Stigma-specific proteins associated with the S(1) allele and the S(2) allele have been identified using isoelectric focusing and these proteins have been designated SSP1 (Stigma S-associated Protein 1) and SSP2. SSP1 and SSP2 cDNAs have been cloned by 3' and 5' RACE and shown to be allelic forms of the same gene, SSP. The expression of SSP and its linkage to the S locus are currently being investigated. Initial results show SSP to be expressed exclusively in stigmas and developmentally regulated, with maximal expression occurring at and just before anthesis when SI is fully functional, SSP expression being undetectable in immature buds. Together these data suggest that SSP is a strong candidate for a Senecio S-gene.
Robertson, S E; Li, Y; Scutt, C P; Willis, M E; Gilmartin, P M
1997-07-01
Sex determination in Silene latifolia is controlled by heteromorphic sex chromosomes. Female flowers have five fused carpels and ten arrested stamen primordia. The male-determining Y chromosome overrides female development to suppress carpel formation and promote stamen development. The isolation and characterization of two S. latifolia. Male enhanced cDNAs, Men-9a and Men-9b, which probably represent different alleles of a novel gene are reported here. Men-9a and Men-9b share 91.8% coding sequence nucleotide identity, yet only 85.4% amino acid identity. The Men-9 cDNAs are related to the previously reported MROS3 cDNA from S. latifolia. However, MROS3 is not present in the S. latifolia population used in these studies and the expression dynamics of Men-9a and Men-9b contrast dramatically with those reported for MROS3. Men-9 cDNAs are expressed primarily in anthers of young male flowers, with highest expression in 1-2 mm buds. Men-9 expression is also observed at a low level in female flowers. In situ hybridization analysis reveals two phases of Men-9 expression. The first phase is during a common stage of early stamen development in male and female flowers prior to stamen arrest in female flowers. The second phase of Men-9 expression is maximal in the epidermis and endothecium of Y chromosome- and Ustilago violacea-induced stamens; expression in male and female flowers extends to the epidermis of the staminal nectaries with strict boundaries at the second and fourth whorls, Men-9 gene expression therefore delineates the boundaries of the third floral whorl in S. latifolia flowers.
Zhu, Yu-Cheng; Yao, Jianxiu; Luttrell, Randall
2016-01-01
Saliva is known to play a crucial role in tarnished plant bug (TPB, Lygus lineolaris [Palisot de Beauvois]) feeding. By facilitating the piercing, the enzyme-rich saliva may be used for extra-oral digestion and for overcoming plant defense before the plant fluids are ingested by TPBs. To identify salivary gland genes, mRNA was extracted from salivary glands and cDNA library clones were sequenced. A de novo-assembling of 7,000 Sanger sequences revealed 666 high-quality unique cDNAs with an average size of 624 bp, in which the identities of 347 cDNAs were determined using Blast2GO. Kyoto Encyclopedia of Genes and Genomes analysis indicated that these genes participate in eighteen metabolic pathways. Identifications of large number of enzyme genes in TPB salivary glands evidenced functions for extra-oral digestion and feeding damage mechanism, including 45 polygalacturonase, two α- amylase, one glucosidase, one glycan enzyme, one aminopeptidase, four lipase, and many serine protease cDNAs. The presence of multiple transcripts, multigene members, and high abundance of cell wall degradation enzymes (polygalacturonases) indicated that the enzyme-rich saliva may cause damage to plants by breaking down plant cell walls to make nutrients available for feeding. We also identified genes potentially involved in insect adaptation and detoxifying xenobiotics that may allow insects to overcome plant defense responses, including four glutathione S-transferases, three esterases, one cytochrome P450, and several serine proteases. The gene profiles of TPB salivary glands revealed in this study provides a foundation for further understanding and potential development of novel enzymatic inhibitors, or other RNAi approaches that may interrupt or minimize TPB feeding damage. PMID:27324587
Hammel, Michal; Nemecek, Daniel; Keightley, J Andrew; Thomas, George J; Geisbrecht, Brian V
2007-12-01
The extracellular adherence protein (Eap) of Staphylococcus aureus participates in a wide range of protein-protein interactions that facilitate the initiation and dissemination of Staphylococcal disease. In this report, we describe the use of a multidisciplinary approach to characterize the solution structure of full-length Eap. In contrast to previous reports suggesting that a six-domain isoform of Eap undergoes multimerization, sedimentation equilibrium analytical ultracentrifugation data revealed that a four-domain isoform of Eap is a monomer in solution. In vitro proteolysis and solution small angle X-ray scattering studies both indicate that Eap adopts an extended conformation in solution, where the linkers connecting sequential EAP modules are solvent exposed. Construction of a low-resolution model of full-length Eap using a combination of ab initio deconvolution of the SAXS data and rigid body modeling of the EAP domain crystal structure suggests that full-length Eap may present several unique concave surfaces capable of participating in ligand binding. These results also raise the possibility that such surfaces may be held together by additional interactions between adjacent EAP modules. This hypothesis is supported by a comparative Raman spectroscopic analysis of full-length Eap and a stoichiometric solution of the individual EAP modules, which indicates the presence of additional secondary structure and a greater extent of hydrogen/deuterium exchange protection in full-length Eap. Our results provide the first insight into the solution structure of full-length Eap and an experimental basis for interpreting the EAP domain crystal structures within the context of the full-length molecule. They also lay a foundation for future studies into the structural and molecular bases of Eap-mediated protein-protein interactions with its many ligands.
Hammel, Michal; Němeček, Daniel; Keightley, J. Andrew; Thomas, George J.; Geisbrecht, Brian V.
2007-01-01
The extracellular adherence protein (Eap) of Staphylococcus aureus participates in a wide range of protein–protein interactions that facilitate the initiation and dissemination of Staphylococcal disease. In this report, we describe the use of a multidisciplinary approach to characterize the solution structure of full-length Eap. In contrast to previous reports suggesting that a six-domain isoform of Eap undergoes multimerization, sedimentation equilibrium analytical ultracentrifugation data revealed that a four-domain isoform of Eap is a monomer in solution. In vitro proteolysis and solution small angle X-ray scattering studies both indicate that Eap adopts an extended conformation in solution, where the linkers connecting sequential EAP modules are solvent exposed. Construction of a low-resolution model of full-length Eap using a combination of ab initio deconvolution of the SAXS data and rigid body modeling of the EAP domain crystal structure suggests that full-length Eap may present several unique concave surfaces capable of participating in ligand binding. These results also raise the possibility that such surfaces may be held together by additional interactions between adjacent EAP modules. This hypothesis is supported by a comparative Raman spectroscopic analysis of full-length Eap and a stoichiometric solution of the individual EAP modules, which indicates the presence of additional secondary structure and a greater extent of hydrogen/deuterium exchange protection in full-length Eap. Our results provide the first insight into the solution structure of full-length Eap and an experimental basis for interpreting the EAP domain crystal structures within the context of the full-length molecule. They also lay a foundation for future studies into the structural and molecular bases of Eap-mediated protein–protein interactions with its many ligands. PMID:18029416
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Guo-Shun; Grabowski, G.A.
1992-10-01
Gaucher disease is the most frequent lysosomal storage disease and the most prevalent Jewish genetic disease. About 30 identified missense mutations are causal to the defective activity of acid [beta]-glucosidase in this disease. cDNAs were characterized from a moderately affected 9-year-old Ashkenazi Jewish Gaucher disease type 1 patient whose 80-years-old, enzyme-deficient, 1226G (Asn[sup 370][yields]Ser [N370S]) homozygous grandfather was nearly asymptomatic. Sequence analyses revealed four populations of cDNAs with either the 1226G mutation, an exact exon 2 ([Delta] EX2) deletion, a deletion of exon 2 and the first 115 bp of exon 3 ([Delta] EX2-3), or a completely normal sequence. Aboutmore » 50% of the cDNAs were the [Delta] EX2, the [Delta] EX2-3, and the normal cDNAs, in a ratio of 6:3:1. Specific amplification and characterization of exon 2 and 5[prime] and 3[prime] intronic flanking sequences from the structural gene demonstrated clones with either the normal sequence or with a G[sup +1][yields]A[sup +1] transition at the exon 2/intron 2 boundary. This mutation destroyed the splice donor consensus site (U1 binding site) for mRNA processing. This transition also was present at the corresponding exon/intron boundary of the highly homologous pseudogene. This new mutation, termed [open quotes]IVS2 G[sup +1],[close quotes] is the first in the Ashkenazi Jewish population. The occurrence of this [open quotes]pseudogene[close quotes]-type mutation in the structural gene indicates the role of acid [beta]-glucosidase pseudogene and structural gene rearrangements in the pathogenesis of this disease. 33 refs., 8 figs., 1 tab.« less
Production of Fatty Acid Components of Meadowfoam Oil in Somatic Soybean Embryos
Cahoon, Edgar B.; Marillia, Elizabeth-France; Stecca, Kevin L.; Hall, Sarah E.; Taylor, David C.; Kinney, Anthony J.
2000-01-01
The seed oil of meadowfoam (Limnanthes alba) and other Limnanthes spp. is enriched in the unusual fatty acid Δ5-eicosenoic acid (20:1Δ5). This fatty acid has physical and chemical properties that make the seed oil of these plants useful for a number of industrial applications. An expressed sequence tag approach was used to identify cDNAs for enzymes involved in the biosynthesis of 20:1Δ5). By random sequencing of a library prepared from developing Limnanthes douglasii seeds, a class of cDNAs was identified that encode a homolog of acyl-coenzyme A (CoA) desaturases found in animals, fungi, and cyanobacteria. Expression of a cDNA for the L. douglasii acyl-CoA desaturase homolog in somatic soybean (Glycine max) embryos behind a strong seed-specific promoter resulted in the accumulation of Δ5-hexadecenoic acid to amounts of 2% to 3% (w/w) of the total fatty acids of single embryos. Δ5-Octadecenoic acid and 20:1Δ5 also composed <1% (w/w) each of the total fatty acids of these embryos. In addition, cDNAs were identified from the L. douglasii expressed sequence tags that encode a homolog of fatty acid elongase 1 (FAE1), a β-ketoacyl-CoA synthase that catalyzes the initial step of very long-chain fatty acid synthesis. Expression of the L. douglassi FAE1 homolog in somatic soybean embryos was accompanied by the accumulation of C20 and C22 fatty acids, principally as eicosanoic acid, to amounts of 18% (w/w) of the total fatty acids of single embryos. To partially reconstruct the biosynthetic pathway of 20:1Δ5 in transgenic plant tissues, cDNAs for the L. douglasii acyl-CoA desaturase and FAE1 were co-expressed in somatic soybean embryos. In the resulting transgenic embryos, 20:1Δ5 and Δ5-docosenoic acid composed up to 12% of the total fatty acids. PMID:10982439
Production of fatty acid components of meadowfoam oil in somatic soybean embryos.
Cahoon, E B; Marillia, E F; Stecca, K L; Hall, S E; Taylor, D C; Kinney, A J
2000-09-01
The seed oil of meadowfoam (Limnanthes alba) and other Limnanthes spp. is enriched in the unusual fatty acid Delta(5)-eicosenoic acid (20:1Delta(5)). This fatty acid has physical and chemical properties that make the seed oil of these plants useful for a number of industrial applications. An expressed sequence tag approach was used to identify cDNAs for enzymes involved in the biosynthesis of 20:1Delta(5)). By random sequencing of a library prepared from developing Limnanthes douglasii seeds, a class of cDNAs was identified that encode a homolog of acyl-coenzyme A (CoA) desaturases found in animals, fungi, and cyanobacteria. Expression of a cDNA for the L. douglasii acyl-CoA desaturase homolog in somatic soybean (Glycine max) embryos behind a strong seed-specific promoter resulted in the accumulation of Delta(5)-hexadecenoic acid to amounts of 2% to 3% (w/w) of the total fatty acids of single embryos. Delta(5)-Octadecenoic acid and 20:1Delta(5) also composed <1% (w/w) each of the total fatty acids of these embryos. In addition, cDNAs were identified from the L. douglasii expressed sequence tags that encode a homolog of fatty acid elongase 1 (FAE1), a beta-ketoacyl-CoA synthase that catalyzes the initial step of very long-chain fatty acid synthesis. Expression of the L. douglassi FAE1 homolog in somatic soybean embryos was accompanied by the accumulation of C(20) and C(22) fatty acids, principally as eicosanoic acid, to amounts of 18% (w/w) of the total fatty acids of single embryos. To partially reconstruct the biosynthetic pathway of 20:1Delta(5) in transgenic plant tissues, cDNAs for the L. douglasii acyl-CoA desaturase and FAE1 were co-expressed in somatic soybean embryos. In the resulting transgenic embryos, 20:1Delta(5) and Delta(5)-docosenoic acid composed up to 12% of the total fatty acids.
Ning, ZhongHua; Hincke, Maxwell T.; Yang, Ning; Hou, ZhuoCheng
2014-01-01
Efficiently obtaining full-length cDNA for a target gene is the key step for functional studies and probing genetic variations. However, almost all sequenced domestic animal genomes are not ‘finished’. Many functionally important genes are located in these gapped regions. It can be difficult to obtain full-length cDNA for which only partial amino acid/EST sequences exist. In this study we report a general pipeline to obtain full-length cDNA, and illustrate this approach for one important gene (Ovocleidin-17, OC-17) that is associated with chicken eggshell biomineralization. Chicken OC-17 is one of the best candidates to control and regulate the deposition of calcium carbonate in the calcified eggshell layer. OC-17 protein has been purified, sequenced, and has had its three-dimensional structure solved. However, researchers still cannot conduct OC-17 mRNA related studies because the mRNA sequence is unknown and the gene is absent from the current chicken genome. We used RNA-Seq to obtain the entire transcriptome of the adult hen uterus, and then conducted de novo transcriptome assembling with bioinformatics analysis to obtain candidate OC-17 transcripts. Based on this sequence, we used RACE and PCR cloning methods to successfully obtain the full-length OC-17 cDNA. Temporal and spatial OC-17 mRNA expression analyses were also performed to demonstrate that OC-17 is predominantly expressed in the adult hen uterus during the laying cycle and barely at immature developmental stages. Differential uterine expression of OC-17 was observed in hens laying eggs with weak versus strong eggshell, confirming its important role in the regulation of eggshell mineralization and providing a new tool for genetic selection for eggshell quality parameters. This study is the first one to report the full-length OC-17 cDNA sequence, and builds a foundation for OC-17 mRNA related studies. We provide a general method for biologists experiencing difficulty in obtaining candidate gene full-length cDNA sequences. PMID:24676480
Zhang, Quan; Liu, Long; Zhu, Feng; Ning, ZhongHua; Hincke, Maxwell T; Yang, Ning; Hou, ZhuoCheng
2014-01-01
Efficiently obtaining full-length cDNA for a target gene is the key step for functional studies and probing genetic variations. However, almost all sequenced domestic animal genomes are not 'finished'. Many functionally important genes are located in these gapped regions. It can be difficult to obtain full-length cDNA for which only partial amino acid/EST sequences exist. In this study we report a general pipeline to obtain full-length cDNA, and illustrate this approach for one important gene (Ovocleidin-17, OC-17) that is associated with chicken eggshell biomineralization. Chicken OC-17 is one of the best candidates to control and regulate the deposition of calcium carbonate in the calcified eggshell layer. OC-17 protein has been purified, sequenced, and has had its three-dimensional structure solved. However, researchers still cannot conduct OC-17 mRNA related studies because the mRNA sequence is unknown and the gene is absent from the current chicken genome. We used RNA-Seq to obtain the entire transcriptome of the adult hen uterus, and then conducted de novo transcriptome assembling with bioinformatics analysis to obtain candidate OC-17 transcripts. Based on this sequence, we used RACE and PCR cloning methods to successfully obtain the full-length OC-17 cDNA. Temporal and spatial OC-17 mRNA expression analyses were also performed to demonstrate that OC-17 is predominantly expressed in the adult hen uterus during the laying cycle and barely at immature developmental stages. Differential uterine expression of OC-17 was observed in hens laying eggs with weak versus strong eggshell, confirming its important role in the regulation of eggshell mineralization and providing a new tool for genetic selection for eggshell quality parameters. This study is the first one to report the full-length OC-17 cDNA sequence, and builds a foundation for OC-17 mRNA related studies. We provide a general method for biologists experiencing difficulty in obtaining candidate gene full-length cDNA sequences.
2011-01-01
Abstract Background Bupleurum chinense DC. is a widely used traditional Chinese medicinal plant. Saikosaponins are the major bioactive constituents of B. chinense, but relatively little is known about saikosaponin biosynthesis. The 454 pyrosequencing technology provides a promising opportunity for finding novel genes that participate in plant metabolism. Consequently, this technology may help to identify the candidate genes involved in the saikosaponin biosynthetic pathway. Results One-quarter of the 454 pyrosequencing runs produced a total of 195, 088 high-quality reads, with an average read length of 356 bases (NCBI SRA accession SRA039388). A de novo assembly generated 24, 037 unique sequences (22, 748 contigs and 1, 289 singletons), 12, 649 (52.6%) of which were annotated against three public protein databases using a basic local alignment search tool (E-value ≤1e-10). All unique sequences were compared with NCBI expressed sequence tags (ESTs) (237) and encoding sequences (44) from the Bupleurum genus, and with a Sanger-sequenced EST dataset (3, 111). The 23, 173 (96.4%) unique sequences obtained in the present study represent novel Bupleurum genes. The ESTs of genes related to saikosaponin biosynthesis were found to encode known enzymes that catalyze the formation of the saikosaponin backbone; 246 cytochrome P450 (P450s) and 102 glycosyltransferases (GTs) unique sequences were also found in the 454 dataset. Full length cDNAs of 7 P450s and 7 uridine diphosphate GTs (UGTs) were verified by reverse transcriptase polymerase chain reaction or by cloning using 5' and/or 3' rapid amplification of cDNA ends. Two P450s and three UGTs were identified as the most likely candidates involved in saikosaponin biosynthesis. This finding was based on the coordinate up-regulation of their expression with β-AS in methyl jasmonate-treated adventitious roots and on their similar expression patterns with β-AS in various B. chinense tissues. Conclusions A collection of high-quality ESTs for B. chinense obtained by 454 pyrosequencing is provided here for the first time. These data should aid further research on the functional genomics of B. chinense and other Bupleurum species. The candidate genes for enzymes involved in saikosaponin biosynthesis, especially the P450s and UGTs, that were revealed provide a substantial foundation for follow-up research on the metabolism and regulation of the saikosaponins. PMID:22047182
Creager, Hannah M; Becker, Ericka A; Sandman, Kelly K; Karl, Julie A; Lank, Simon M; Bimber, Benjamin N; Wiseman, Roger W; Hughes, Austin L; O'Connor, Shelby L; O'Connor, David H
2011-09-01
In recent years, the use of cynomolgus macaques in biomedical research has increased greatly. However, with the exception of the Mauritian population, knowledge of the MHC class II genetics of the species remains limited. Here, using cDNA cloning and Sanger sequencing, we identified 127 full-length MHC class II alleles in a group of 12 Indonesian and 12 Vietnamese cynomolgus macaques. Forty two of these were completely novel to cynomolgus macaques while 61 extended the sequence of previously identified alleles from partial to full length. This more than doubles the number of full-length cynomolgus macaque MHC class II alleles available in GenBank, significantly expanding the allele library for the species and laying the groundwork for future evolutionary and functional studies.
Insights into metazoan evolution from alvinella pompejana cDNAs
2010-01-01
Background Alvinella pompejana is a representative of Annelids, a key phylum for evo-devo studies that is still poorly studied at the sequence level. A. pompejana inhabits deep-sea hydrothermal vents and is currently known as one of the most thermotolerant Eukaryotes in marine environments, withstanding the largest known chemical and thermal ranges (from 5 to 105°C). This tube-dwelling worm forms dense colonies on the surface of hydrothermal chimneys and can withstand long periods of hypo/anoxia and long phases of exposure to hydrogen sulphides. A. pompejana specifically inhabits chimney walls of hydrothermal vents on the East Pacific Rise. To survive, Alvinella has developed numerous adaptations at the physiological and molecular levels, such as an increase in the thermostability of proteins and protein complexes. It represents an outstanding model organism for studying adaptation to harsh physicochemical conditions and for isolating stable macromolecules resistant to high temperatures. Results We have constructed four full length enriched cDNA libraries to investigate the biology and evolution of this intriguing animal. Analysis of more than 75,000 high quality reads led to the identification of 15,858 transcripts and 9,221 putative protein sequences. Our annotation reveals a good coverage of most animal pathways and networks with a prevalence of transcripts involved in oxidative stress resistance, detoxification, anti-bacterial defence, and heat shock protection. Alvinella proteins seem to show a slow evolutionary rate and a higher similarity with proteins from Vertebrates compared to proteins from Arthropods or Nematodes. Their composition shows enrichment in positively charged amino acids that might contribute to their thermostability. The gene content of Alvinella reveals that an important pool of genes previously considered to be specific to Deuterostomes were in fact already present in the last common ancestor of the Bilaterian animals, but have been secondarily lost in model invertebrates. This pool is enriched in glycoproteins that play a key role in intercellular communication, hormonal regulation and immunity. Conclusions Our study starts to unravel the gene content and sequence evolution of a deep-sea annelid, revealing key features in eukaryote adaptation to extreme environmental conditions and highlighting the proximity of Annelids and Vertebrates. PMID:21080938
Analysis of expressed sequence tags generated from full-length enriched cDNA libraries of melon
2011-01-01
Background Melon (Cucumis melo), an economically important vegetable crop, belongs to the Cucurbitaceae family which includes several other important crops such as watermelon, cucumber, and pumpkin. It has served as a model system for sex determination and vascular biology studies. However, genomic resources currently available for melon are limited. Result We constructed eleven full-length enriched and four standard cDNA libraries from fruits, flowers, leaves, roots, cotyledons, and calluses of four different melon genotypes, and generated 71,577 and 22,179 ESTs from full-length enriched and standard cDNA libraries, respectively. These ESTs, together with ~35,000 ESTs available in public domains, were assembled into 24,444 unigenes, which were extensively annotated by comparing their sequences to different protein and functional domain databases, assigning them Gene Ontology (GO) terms, and mapping them onto metabolic pathways. Comparative analysis of melon unigenes and other plant genomes revealed that 75% to 85% of melon unigenes had homologs in other dicot plants, while approximately 70% had homologs in monocot plants. The analysis also identified 6,972 gene families that were conserved across dicot and monocot plants, and 181, 1,192, and 220 gene families specific to fleshy fruit-bearing plants, the Cucurbitaceae family, and melon, respectively. Digital expression analysis identified a total of 175 tissue-specific genes, which provides a valuable gene sequence resource for future genomics and functional studies. Furthermore, we identified 4,068 simple sequence repeats (SSRs) and 3,073 single nucleotide polymorphisms (SNPs) in the melon EST collection. Finally, we obtained a total of 1,382 melon full-length transcripts through the analysis of full-length enriched cDNA clones that were sequenced from both ends. Analysis of these full-length transcripts indicated that sizes of melon 5' and 3' UTRs were similar to those of tomato, but longer than many other dicot plants. Codon usages of melon full-length transcripts were largely similar to those of Arabidopsis coding sequences. Conclusion The collection of melon ESTs generated from full-length enriched and standard cDNA libraries is expected to play significant roles in annotating the melon genome. The ESTs and associated analysis results will be useful resources for gene discovery, functional analysis, marker-assisted breeding of melon and closely related species, comparative genomic studies and for gaining insights into gene expression patterns. PMID:21599934
Chen, Yongzhong; Wang, Baoming; Chen, Jianjun; Wang, Xiangnan; Wang, Rui; Peng, Shaofeng; Chen, Longsheng; Ma, Li; Luo, Jian
2015-01-01
Tea oil derived from seeds of Camellia oleifera Abel. is high-quality edible oil in China. This study isolated full-length cDNAs of Rubisco subunits rbcL and rbcS from C. oleifera. The rbcL has 1,522 bp with a 1,425 bp coding region, encoding 475 amino acids; and the rbcS has 615 bp containing a 528 bp coding region, encoding 176 amino acids. The expression level of the two genes, designated as Co-rbcL and Co-rbcS, was determined in three C. oleifera cultivars: Hengchong 89, Xianglin 1, and Xianglin 14 whose annual oil yields were 546.9, 591.4, and 657.7 kg ha(-1), respectively. The Co-rbcL expression in 'Xianglin 14' was significantly higher than 'Xianglin 1', and 'Xianglin 1' was greater than 'Hengchong 89'. The expression levels of Co-rbcS in 'Xianglin 1' and 'Xianglin 14' were similar but were significantly greater than in 'Hengchong 89'. The net photosynthetic rate of 'Xianglin 14' was significantly higher than 'Xianglin 1', and 'Xianglin 1' was higher than 'Hengchong 89'. Pearson's correlation analysis showed that seed yields and oil yields were highly correlated with the expression level of Co-rbcL at P < 0.001 level; and the expression of Co-rbcS was correlated with oil yield at P < 0.01 level. Net photosynthetic rate was also correlated with oil yields and seed yields at P < 0.001 and P < 0.01 levels, respectively. Our results suggest that Co-rbcS and Co-rbcL in particular could potentially be molecular markers for early selection of high oil yield cultivars. In combination with the measurement of net photosynthetic rates, the early identification of potential high oil production cultivars would significantly shorten plant breeding time and increase breeding efficiency.
Azad, Abul Kalam; Katsuhara, Maki; Sawa, Yoshihiro; Ishikawa, Takahiro; Shibata, Hitoshi
2008-08-01
We suggested previously that temperature-dependent tulip (Tulipa gesneriana) petal movement that is concomitant with water transport is regulated by reversible phosphorylation of an unidentified plasma membrane intrinsic protein (PIP). In this study, four full-length cDNAs of PIPs from tulip petals were identified and cloned. Two PIPs, namely TgPIP1;1 and TgPIP1;2, are members of the PIP1 subfamily, and the remaining two PIPs, namely TgPIP2;1 and TgPIP2;2, belong to the PIP2 subfamily of aquaporins and were named according to the nomenclature of PIP genes in plants. Of these four homologs, only TgPIP2;2 displayed significant water channel activity in the heterologous expression assay using Xenopus laevis oocytes. The water channel activity of this functional isoform was abolished by mercury and was affected by inhibitors of protein kinase and protein phosphatase. Using a site-directed mutagenesis approach to substitute several serine residues with alanine, and assessing water channel activity using the methylotrophic yeast Pichia pastoris expression assay, we showed that Ser35, Ser116 and Ser274 are the putative phosphorylation sites of TgPIP2;2. Real-time reverse transcription-PCR analysis revealed that the transcript levels of TgPIP1;1 and TgPIP1;2 in tulip petals, stems, leaves, bulbs and roots are very low when compared with those of TgPIP2;1 and TgPIP2;2. The transcript level of TgPIP2;1 is negligible in roots, and TgPIP2;2 is ubiquitously expressed in all organs with significant transcript levels. From the data reported herein, we suggest that TgPIP2;2 might be modulated by phosphorylation and dephosphorylation for regulating water channel activity, and may play a role in transcellular water transport in all tulip organs.
Schanke, J T; Conwell, C M; Durning, M; Fisher, J M; Golos, T G
1997-03-01
We have examined the expression of Pit-1 messenger RNA (mRNA) splice variants in the nonhuman primate pituitary and in rhesus and human placenta. Full-length complementary DNAs (cDNAs) representing Pit-1 and the Pit-1 beta splice variants were cloned from a rhesus monkey pituitary cDNA library and were readily detectable by RT-PCR with rhesus pituitary gland RNA. The Pit-1T variant previously reported in mouse pituitary tumor cell lines was not detectable in normal rhesus pituitary tissue, although two novel splice variants were detected. A cDNA approximating the rat Pit-1 delta 4 variant was cloned but coded for a truncated and presumably nonfunctional protein. Only by using a nested RT-PCR approach were Pit-1 and Pit-1 beta variants consistently detectable in both human and rhesus placental tissue. The Pit-1 beta variant mRNA was not detectable in JEG-3 choriocarcinoma cells unless the cells were stimulated with 8-Br-cAMP. Immunoblot studies with nuclear extracts from primary rhesus syncytiotrophoblast cultures or JEG-3 choriocarcinoma cells indicated that although mRNA levels were very low, Pit-1 protein was detectable in differentiated cytotrophoblasts, and levels increased after treatment with 8-Br-cAMP. Two major species of Pit-1 protein were detected that corresponded to the two major bands in rat pituitary GH3 cell nuclear extracts. Low levels of slightly larger bands also were seen, which may represent Pit-1 beta protein or phosphorylated species. We conclude that Pit-1 splice variants expressed in the primate pituitary gland differ from those in the rodent gland and that the Pit-1 and Pit-1 beta mRNAs expressed in the placenta give rise to a pattern of protein expression similar to that seen in pituitary cells, which is inducible by treatment with 8-Br-cAMP.
Sun, Yulong; Zhang, Xin; Wang, Guodong; Lin, Shi; Zeng, Xinyang; Wang, Yilei; Zhang, Ziping
2016-12-01
The PI3K-AKT signal pathway has been found to be involved in many important physiological and pathological processes of the innate immune system of vertebrates and invertebrates. In this study, the AKT (HdAKT) and PI3K (HdPI3K) gene of small abalone Haliotis diversicolor were cloned and characterized for the important status of PI3K and AKT protein in PI3K-AKT signaling pathway. The full length cDNAs of HdAKT and HdPI3K are 2126 bp and 6052 bp respectively, encoding proteins of 479 amino acids and 1097 amino acids, respectively. The mRNA expression level of fourteen genes in the PI3K-AKT signaling pathway were detected by quantitative real-time PCR. The results showed that all these fourteen genes were ubiquitously expressed in seven selected tissues. Meanwhile, HdAKT was expressed in haemocytes with the highest expression level (p < 0.05) next in hepatopancreas (p < 0.05). On the other hand, the expression level of HdPI3K in haemocytes was higher than other tissues. Under normal condition, the gene expression level of HdAKT, HdPI3K, and other PI3K-AKT signaling pathway members were significantly up-regulated by Vibrio parahaemolyticus infection which demonstrated that HdAKT, HdPI3K, and other PI3K-AKT signaling pathway members play a role in the innate immune system of abalone. The mRNA expression of these genes in gills, haemocytes and hepatopancreas was significantly down-regulated after the Vibrio parahaemolyticus stimulation with environment stimulation (thermal, hypoxia and thermal & hypoxia). These results indicate that the dual/multiple stresses defeat the immune system and lead to immunosuppression in abalone. PI3K-AKT signaling pathway may be involved in hypoxia/thermal-induced immunosuppression of small abalone Haliotis diversicolor. Copyright © 2016 Elsevier Ltd. All rights reserved.
Confente, Francesca; Rendón, María Carmen; Besseau, Laurence; Falcón, Jack; Muñoz-Cueto, José A
2010-06-01
Melatonin receptors are expressed in neural and peripheral tissues and mediate melatonin actions on the synchronization of circadian and circannual rhythms. In this study we have cloned three melatonin receptor subtypes (MT1, MT2 and Mel1c) in the Senegalese sole and analyzed their central and peripheral tissue distribution. The full-length MT1 (1452 nt), MT2 (1728 nt) and Mel1c (1980 nt) cDNAs encode different proteins of 345, 373, 355 amino acids, respectively. They were mainly expressed in retina, brain and pituitary, but MT1 was also expressed in gill, liver, intestine, kidney, spleen, heart and skin. At peripheral level, MT2 expression was only evident in gill, kidney and skin whereas Mel1c expression was restricted to the muscle and skin. This pattern of expression was not markedly different between sexes or among the times of day analyzed. The real-time quantitative PCR analyses showed that MT1 displayed higher expression at night than during the day in the retina and optic tectum. Seasonal MT1 expression was characterized by higher mRNA levels in spring and autumn equinoxes for the retina, and in winter and summer solstices for the optic tectum. An almost similar expression profile was found for MT2, but differences were less conspicuous. No day-night differences in MT1 and MT2 expression were observed in the pituitary but a seasonal variation was detected, being mRNA levels higher in summer for both receptors. Mel1c expression did not exhibit significant day-night variation in retina and optic tectum but showed seasonal variations, with higher transcript levels in summer (optic tectum) and autumn (retina). Our results suggest that day-night and seasonal variations in melatonin receptor expression could also be mediating circadian and circannual rhythms in sole. Copyright 2010 Elsevier Inc. All rights reserved.
Radwan, Osman; Bouzidi, Mohamed Fouad; Mouzeyar, Said
2011-08-01
Depending on host-pathotype combination, two types of sunflower-Plasmopara halstedii incompatibility reactions have previously been identified. Type I resistance can restrict the growth of the pathogen in the basal region of the hypocotyls, whereas type II cannot, thus allowing the pathogen to reach the cotyledons. In type II resistance, a large portion of the hypocotyls is invaded by the pathogen and, subsequently, a hypersensitive reaction (HR) is activated over a long portion of the hypocotyls. Thus, the HR in type II resistance coincides with a higher induction of hsr203j sunflower homologue in comparison with type I resistance, where the HR is activated only in the basal part of hypocotyls. Although the pathogen was not detected in cotyledons of type I resistant plants, semiquantitative polymerase chain reaction confirmed the early abundant growth of the pathogen in cotyledons of susceptible plants by 6 days postinfection (dpi). This was in contrast to scarce growth of the pathogen in cotyledons of type II-resistant plants at a later time point (12 dpi). This suggests that pathogen growth differs according to the host-pathogen combination. To get more information about sunflower downy mildew resistance genes, the full-length cDNAs of RGC151 and RGC203, which segregated with the PlARG gene (resistance type I) and Pl14 gene (resistance type II), were cloned and sequenced. Sequence analyses revealed that RGC151 belongs to the Toll/interleukin-1 receptor (TIR) nucleotide-binding site leucine-rich repeat (NBS-LRR) class whereas RGC203 belongs to class coiled-coil (CC)-NBS-LRR. This study suggests that type II resistance may be controlled by CC-NBS-LRR gene transcripts which are enhanced upon infection by P. halstedii, rather than by the TIR-NBS-LRR genes that might control type I resistance.
Yamaguchi, Takuya; Yamamoto, Kazunori; Asano, Yasuhisa
2014-09-01
Japanese apricot, Prunus mume Sieb. et Zucc., belonging to the Rosaceae family, produces as defensive agents the cyanogenic glycosides prunasin and amygdalin, which are presumably derived from L-phenylalanine. In this study, we identified and characterized cytochrome P450s catalyzing the conversion of L-phenylalanine into mandelonitrile via phenylacetaldoxime. Full-length cDNAs encoding CYP79D16, CYP79A68, CYP71AN24, CYP71AP13, CYP71AU50, and CYP736A117 were cloned from P. mume ‘Nanko’ using publicly available P. mume RNA-sequencing data, followed by 5′- and 3′-RACE. CYP79D16 was expressed in seedlings, whereas CYP71AN24 was expressed in seedlings and leaves. Enzyme activity of these cytochrome P450s expressed in Saccharomyces cerevisiae was evaluated by liquid and gas chromatography–mass spectrometry. CYP79D16, but not CYP79A68, catalyzed the conversion of L-phenylalanine into phenylacetaldoxime. CYP79D16 showed no activity toward other amino acids. CYP71AN24, but not CYP71AP13, CYP71AU50, and CYP736A117, catalyzed the conversion of phenylacetaldoxime into mandelonitrile. CYP71AN24 also showed lower conversions of various aromatic aldoximes and nitriles. The K m value and turnover rate of CYP71AN24 for phenylacetaldoxime were 3.9 µM and 46.3 min(−1), respectively. The K m value and turnover of CYP71AN24 may cause the efficient metabolism of phenylacetaldoxime, avoiding the release of the toxic intermediate to the cytosol. These results suggest that cyanogenic glycoside biosynthesis in P. mume is regulated in concert with catalysis by CYP79D16 in the parental and sequential reaction of CYP71AN24 in the seedling.
Zheng, Yao; Wang, Lihong; Li, Meng; Liang, Hongwei; Qin, Fang; Liu, Shaozhen; Wang, Houpeng; Wu, Tingting; Zhang, Yingying; Wang, Zaizhao
2013-09-15
Pengze crucian carp (Carassius auratus var. pengze, Pcc), a triploid gynogenetic fish, was used in this study to investigate the cross-talk between EDCs and steroid receptors. The full-length cDNAs of five steroid receptors (esr1, er alpha2, esr2a, esr2b, ar) and partial cDNA of vtg B were isolated. The tissue distributions of these genes were analyzed in adult fish by qRT-PCR. Then the expression profiles of five steroid receptors (esrs and ar) and vtg B were detected in the juveniles exposed to 17α-ethinylestradiol (EE2, 0.1, 1 and 10ng/L) and 17α-methyltestosterone (MT, 50μg/L) for 4weeks. The results demonstrated that esrs, ar, and vtg B were predominantly expressed in liver of adult fish. However, among these detected genes, esr1 and er alpha2 mRNAs are sensitive biomarkers in response to EE2 at 0.1, 1, and 10ng/L for 1 and 2weeks compared to esr2a, esr2b, ar, and vtg B in the juveniles of mono-female gynogenetic fish. Totally, the subtypes of esrs show biphasic responses to EE2 exposures for 4weeks, and most of the EE2 exposures at 0.1, 1, and 10ng/L for 1, 2, 3 and 4weeks did not induce the mRNA expressions of vtg B. However, 1-, 2-, and 4-week 50μg/L MT all significantly stimulated vtg B transcripts. Further investigations are needed to elucidate the mechanism underlying the insensitivity or down-regulation of vtg B mRNA in response to EE2 in juvenile Pcc. Copyright © 2013 Elsevier Inc. All rights reserved.
Molecular cloning and expression of heteromeric ACCase subunit genes from Jatropha curcas.
Gu, Keyu; Chiam, Huihui; Tian, Dongsheng; Yin, Zhongchao
2011-04-01
Acetyl-CoA carboxylase (ACCase) catalyzes the biotin-dependent carboxylation of acetyl-CoA to produce malonyl-CoA, which is the essential first step in the biosynthesis of long-chain fatty acids. ACCase exists as a multi-subunit enzyme in most prokaryotes and the chloroplasts of most plants and algae, while it is present as a multi-domain enzyme in the endoplasmic reticulum of most eukaryotes. The heteromeric ACCase of higher plants consists of four subunits: an α-subunit of carboxyltransferase (α-CT, encoded by accA gene), a biotin carboxyl carrier protein (BCCP, encoded by accB gene), a biotin carboxylase (BC, encoded by accC gene) and a β-subunit of carboxyltransferase (β-CT, encoded by accD gene). In this study, we cloned and characterized the genes accA, accB1, accC and accD that encode the subunits of heteromeric ACCase in Jatropha (Jatropha curcas), a potential biofuel plant. The full-length cDNAs of the four subunit genes were isolated from a Jatropha cDNA library and by using 5' RACE, whereas the genomic clones were obtained from a Jatropha BAC library. They encode a 771 amino acid (aa) α-CT, a 286-aa BCCP1, a 537-aa BC and a 494-aa β-CT, respectively. The single-copy accA, accB1 and accC genes are nuclear genes, while the accD gene is located in chloroplast genome. Jatropha α-CT, BCCP1, BC and β-CT show high identity to their homologues in other higher plants at amino acid level and contain all conserved domains for ACCase activity. The accA, accB1, accC and accD genes are temporally and spatially expressed in the leaves and endosperm of Jatropha plants, which are regulated by plant development and environmental factors. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Londraville, R L; Cramer, T D; Franck, J P; Tullis, A; Block, B A
2000-10-01
Complete cDNAs for the fast-twitch Ca2+ -ATPase isoform (SERCA 1) were cloned and sequenced from blue marlin (Makaira nigricans) extraocular muscle (EOM). Complete cDNAs for SERCA 1 were also cloned from fast-twitch skeletal muscle of the same species. The two sequences are identical over the coding region except for the last five codons on the carboxyl end; EOM SERCA 1 cDNA codes for 996 amino acids and the fast-twitch cDNAs code for 991 aa. Phylogenetic analysis revealed that EOM SERCA 1 clusters with an isoform of Ca2+ -ATPase normally expressed in early development of mammals (SERCA 1B). This is the first report of SERCA 1B in an adult vertebrate. RNA hybridization assays indicate that 1B expression is limited to extraocular muscles. Because EOM gives rise to the thermogenic heater organ in marlin, we investigated whether SERCA 1B may play a role in heat generation, or if 1B expression is common in EOM among vertebrates. Chicken also expresses SERCA 1B in EOM, but rat expresses SERCA 1A; because SERCA 1B is not specific to heater tissue we conclude it is unlikely that it plays a specific role in intracellular heat production. Comparative sequence analysis does reveal, however, several sites that may be the source of functional differences between fish and mammalian SERCAs.
Jia, Ying; Cantu, Bruno A; Sánchez, Elda E; Pérez, John C
2008-06-15
To advance our knowledge on the snake venom composition and transcripts expressed in venom gland at the molecular level, we constructed a cDNA library from the venom gland of Agkistrodon piscivorus leucostoma for the generation of expressed sequence tags (ESTs) database. From the randomly sequenced 2112 independent clones, we have obtained ESTs for 1309 (62%) cDNAs, which showed significant deduced amino acid sequence similarity (scores >80) to previously characterized proteins in National Center for Biotechnology Information (NCBI) database. Ribosomal proteins make up 47 clones (2%) and the remaining 756 (36%) cDNAs represent either unknown identity or show BLASTX sequence identity scores of <80 with known GenBank accessions. The most highly expressed gene encoding phospholipase A(2) (PLA(2)) accounting for 35% of A. p. leucostoma venom gland cDNAs was identified and further confirmed by crude venom applied to sodium dodecyl sulfate/polyacrylamide gel electrophoresis (SDS-PAGE) electrophoresis and protein sequencing. A total of 180 representative genes were obtained from the sequence assemblies and deposited to EST database. Clones showing sequence identity to disintegrins, thrombin-like enzymes, hemorrhagic toxins, fibrinogen clotting inhibitors and plasminogen activators were also identified in our EST database. These data can be used to develop a research program that will help us identify genes encoding proteins that are of medical importance or proteins involved in the mechanisms of the toxin venom.
Oduru, Sreedhar; Campbell, Janee L; Karri, SriTulasi; Hendry, William J; Khan, Shafiq A; Williams, Simon C
2003-01-01
Background Complete genome annotation will likely be achieved through a combination of computer-based analysis of available genome sequences combined with direct experimental characterization of expressed regions of individual genomes. We have utilized a comparative genomics approach involving the sequencing of randomly selected hamster testis cDNAs to begin to identify genes not previously annotated on the human, mouse, rat and Fugu (pufferfish) genomes. Results 735 distinct sequences were analyzed for their relatedness to known sequences in public databases. Eight of these sequences were derived from previously unidentified genes and expression of these genes in testis was confirmed by Northern blotting. The genomic locations of each sequence were mapped in human, mouse, rat and pufferfish, where applicable, and the structure of their cognate genes was derived using computer-based predictions, genomic comparisons and analysis of uncharacterized cDNA sequences from human and macaque. Conclusion The use of a comparative genomics approach resulted in the identification of eight cDNAs that correspond to previously uncharacterized genes in the human genome. The proteins encoded by these genes included a new member of the kinesin superfamily, a SET/MYND-domain protein, and six proteins for which no specific function could be predicted. Each gene was expressed primarily in testis, suggesting that they may play roles in the development and/or function of testicular cells. PMID:12783626
Song, X Q; Fukao, T; Watanabe, H; Shintaku, H; Hirayama, K; Kassovska-Bratinova, S; Kondo, N; Mitchell, G A
1998-01-01
Succinyl-CoA:3-ketoacid CoA transferase (SCOT; EC 2.8.3.5; locus symbol OXCT) is the key enzyme of ketone body utilization. Hereditary SCOT deficiency (MIM 245050) causes episodes of severe ketoacidosis. We developed a transient expression system for mutant SCOT cDNAs, using immortalized SCOT-deficient fibroblasts. This paper describes and characterizes three missense mutations in two SCOT-deficient siblings from Japan. They are genetic compounds who inherited the mutation C456F (c1367 G-->T) from their mother. Their paternal allele contains two mutations in cis, T58M (c173 C-->T) and V133E (c398T-->A). Expression of SCOT cDNAs containing either V133E or C456F produces no detectable SCOT activity, whereas T58M is functionally neutral. T58M is a rare sequence variant not detected in 100 control Japanese alleles. In fibroblasts from the proband (GS02), in whom immunoblot demonstrated no detectable SCOT peptide, we measured an apparent residual SCOT activity of 20-35%. We hypothesize that the high residual SCOT activity in homogenates may be an artifact caused by use of the substrate, acetoacetyl-CoA by other enzymes. Expression of mutant SCOT cDNAs more accurately reflects the residual activity of SCOT than do currently available assays in cell or tissue homogenates.
Coster, Wendy J; Haley, Stephen M; Ni, Pengsheng; Dumas, Helene M; Fragala-Pinkham, Maria A
2008-04-01
To examine score agreement, validity, precision, and response burden of a prototype computer adaptive testing (CAT) version of the self-care and social function scales of the Pediatric Evaluation of Disability Inventory compared with the full-length version of these scales. Computer simulation analysis of cross-sectional and longitudinal retrospective data; cross-sectional prospective study. Pediatric rehabilitation hospital, including inpatient acute rehabilitation, day school program, outpatient clinics; community-based day care, preschool, and children's homes. Children with disabilities (n=469) and 412 children with no disabilities (analytic sample); 38 children with disabilities and 35 children without disabilities (cross-validation sample). Not applicable. Summary scores from prototype CAT applications of each scale using 15-, 10-, and 5-item stopping rules; scores from the full-length self-care and social function scales; time (in seconds) to complete assessments and respondent ratings of burden. Scores from both computer simulations and field administration of the prototype CATs were highly consistent with scores from full-length administration (r range, .94-.99). Using computer simulation of retrospective data, discriminant validity, and sensitivity to change of the CATs closely approximated that of the full-length scales, especially when the 15- and 10-item stopping rules were applied. In the cross-validation study the time to administer both CATs was 4 minutes, compared with over 16 minutes to complete the full-length scales. Self-care and social function score estimates from CAT administration are highly comparable with those obtained from full-length scale administration, with small losses in validity and precision and substantial decreases in administration time.
Presynaptic Neurotoxins: Biochemistry, Molecular Biology, Immunology and Other Exploratory Studies
1994-04-01
are involved in activities such as neurotoxicity. myotoxicity, dinmerization, etc.. and nucleic acid sequencing of both cDNAs and genonmic DNA have...other ’critical’ amino acid residues. We can now express both subunits of Mojave toxin in E. coli and are workding to isolate these products in...32 4 LIST OF FIGURES Figure 1. Plasmid subclones of Mojave toxin acidic and basic subu
USDA-ARS?s Scientific Manuscript database
This paper presents the first study describing the isolation, cloning and characterization of a full length gene encoding Bowman-Birk protease inhibitor (RbTI) from rice bean (Vigna umbellata). A full-length protease inhibitor gene with complete open reading frame of 327bp encoding 109 amino acids w...
Farcy, Emilie; Serpentini, Antoine; Fiévet, Bruno; Lebel, Jean-Marc
2007-04-01
Heat-shock proteins are a multigene family of proteins whose expression is induced by a variety of stress factors. This work reports the cloning and sequencing of HSP70 and HSP90 cDNAs in the gastropod Haliotis tuberculata. The deduced amino acid sequences of both HSP70 and HSP90 from H. tuberculata shared a high degree of homology with their homologues in other species, including typical eukaryotic HSP70 and HSP90 signature sequences. We examined their transcription expression pattern in abalone hemocytes exposed to thermal stress. Real-time PCR analysis indicated that both HSP70 and HSP90 mRNA were expressed in control animals but rapidly increased after heat-shock.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-26
...] Guidance for Industry: Implementation of an Acceptable Full- Length and Abbreviated Donor History... Full-Length and Abbreviated Donor History Questionnaires and Accompanying Materials for Use in... full-length and abbreviated donor history questionnaires and accompanying materials, version 1.2 dated...
Wu, K; Li, L; Gage, D A; Zeevaart, J A
1996-02-01
Spinach (Spinacia oleracea L.) is a long-day (LD) rosette plant in which stem growth under LD conditions is mediated by gibberellins (GAs). Major control points in spinach are the later steps of sequential oxidation and elimination of C-20 of C20-GAs. Degenerate oligonucleotide primers were used to obtain a polymerase chain reaction product from spinach genomic DNA that has a high homology with GA 20-oxidase cDNAs from Cucurbita maxima L. and Arabidopsis thaliana Heynh. This polymerase chain reaction product was used as a probe to isolate a full-length cDNA clone with an open reading frame encoding a putative 43-kD protein of 374 amino acid residues. When this cDNA clone was expressed in Escherichia coli, the fusion protein catalyzed the biosynthetic sequence GA53-->GA44-->GA19-->GA20 and GA19-->GA17. This establishes that in spinach a single protein catalyzes the oxidation and elimination of C-20. Transfer of spinach plants from short day (SD) to LD conditions caused an increase in the level of all GAs of the early-13-hydroxylation pathway, except GA53, with GA20, GA1, and GA8 showing the largest increases. Northern blot analysis indicated that the level of GA 20-oxidase mRNA was higher in plants in LD than in SD conditions, with highest level of expression in the shoot tips and elongating stems. This expression pattern of GA 20-oxidase is consistent with the different levels of GA20, GA1, and GA8 found in spinach plants grown in SD and LD conditions.
Evolutionary divergence of phytochrome protein function in Zea mays PIF3 signaling.
Kumar, Indrajit; Swaminathan, Kankshita; Hudson, Karen; Hudson, Matthew E
2016-07-01
Two maize phytochrome-interacting factor (PIF) basic helix-loop-helix (bHLH) family members, ZmPIF3.1 and ZmPIF3.2, were identified, cloned and expressed in vitro to investigate light-signaling interactions. A phylogenetic analysis of sequences of the maize bHLH transcription factor gene family revealed the extent of the PIF family, and a total of seven predicted PIF-encoding genes were identified from genes encoding bHLH family VIIa/b proteins in the maize genome. To investigate the role of maize PIFs in phytochrome signaling, full-length cDNAs for phytochromes PhyA2, PhyB1, PhyB2 and PhyC1 from maize were cloned and expressed in vitro as chromophorylated holophytochromes. We showed that ZmPIF3.1 and ZmPIF3.2 interact specifically with the Pfr form of maize holophytochrome B1 (ZmphyB1), showing no detectable affinity for the Pr form. Maize holophytochrome B2 (ZmphyB2) showed no detectable binding affinity for PIFs in either Pr or Pfr forms, but phyB Pfr from Arabidopsis interacted with ZmPIF3.1 similarly to ZmphyB1 Pfr. We conclude that subfunctionalization at the protein-protein interaction level has altered the role of phyB2 relative to that of phyB1 in maize. Since the phyB2 mutant shows photomorphogenic defects, we conclude that maize phyB2 is an active photoreceptor, without the binding of PIF3 seen in other phyB family proteins. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Jemel, Ikram; Ii, Hiromi; Oslund, Rob C; Payré, Christine; Dabert-Gay, Anne-Sophie; Douguet, Dominique; Chargui, Khaoula; Scarzello, Sabine; Gelb, Michael H; Lambeau, Gérard
2011-10-21
Among mammalian secreted phospholipases A(2) (sPLA(2)s), group X sPLA(2) has the most potent hydrolyzing activity toward phosphatidylcholine and is involved in arachidonic acid (AA) release. Group X sPLA(2) is produced as a proenzyme and contains a short propeptide of 11 amino acids ending with a dibasic motif, suggesting cleavage by proprotein convertases. Although the removal of this propeptide is clearly required for enzymatic activity, the cellular location and the protease(s) involved in proenzyme conversion are unknown. Here we have analyzed the maturation of group X sPLA(2) in HEK293 cells, which have been extensively used to analyze sPLA(2)-induced AA release. Using recombinant mouse (PromGX) and human (ProhGX) proenzymes; HEK293 cells transfected with cDNAs coding for full-length ProhGX, PromGX, and propeptide mutants; and various permeable and non-permeable sPLA(2) inhibitors and protease inhibitors, we demonstrate that group X sPLA(2) is mainly converted intracellularly and releases AA before externalization from the cell. Most strikingly, the exogenous proenzyme does not elicit AA release, whereas the transfected proenzyme does elicit AA release in a way insensitive to non-permeable sPLA(2) inhibitors. In transfected cells, a permeable proprotein convertase inhibitor, but not a non-permeable one, prevents group X sPLA(2) maturation and partially blocks AA release. Mutations at the dibasic motif of the propeptide indicate that the last basic residue is required and sufficient for efficient maturation and AA release. All together, these results argue for the intracellular maturation of group X proenzyme in HEK293 cells by a furin-like proprotein convertase, leading to intracellular release of AA during secretion.
Alternative channels for urea in the inner medulla of the rat kidney.
Nawata, C Michele; Dantzler, William H; Pannabecker, Thomas L
2015-12-01
The ascending thin limbs (ATLs) and lower descending thin limbs (DTLs) of Henle's loop in the inner medulla of the rat are highly permeable to urea, and yet no urea transporters have been identified in these sections. We hypothesized that novel, yet-unidentified transporters in these tubule segments could explain the high urea permeability. cDNAs encoding for Na(+)-glucose transporter 1a (SGLT1a), Na(+)-glucose transporter 1 (NaGLT1), urea transporter (UT)-A2c, and UT-A2d were isolated and cloned from the Munich-Wistar rat inner medulla. SGLT1a is a novel NH2-terminal truncated variant of SGLT1. NaGLT1 is a Na(+)-dependent glucose transporter primarily located in the proximal tubules and not previously described in the thin limbs. UT-A2c and UT-A2d are novel variants of UT-A2. UT-A2c is truncated at the COOH terminus, and UT-A2d has one exon skipped. When rats underwent water restriction for 72 h, mRNA levels of SGLT1a increased in ATLs, NaGLT1 levels increased in both ATLs and DTLs, and UT-A2c increased in ATLs. [(14)C]urea uptake assays performed on Xenopus oocytes heterologously expressing these proteins revealed that despite having structural differences from their full-length versions, SGLT1a, UT-A2c, and UT-A2d enhanced urea uptake. NaGLT1 also facilitated urea uptake. Uptakes were Na(+) independent and inhibitable by phloretin and/or phloridzin. Our data indicate that there are several alternative channels for urea in the rat inner medulla that could potentially contribute to the high urea permeabilities in thin limb segments. Copyright © 2015 the American Physiological Society.
NASA Astrophysics Data System (ADS)
Li, Shengjie; Han, Linqiang; Bai, Junjie; Ma, Dongmei; Quan, Yingchun; Fan, Jiajia; Jiang, Peng; Yu, Lingyun
2015-03-01
Pituitary adenylate cyclase activating polypeptide (PACAP) has a wide range of biological functions. We cloned the full-length cDNAs encoding PACAP and PACAP-related peptide (PRP) from the brain of largemouth bass ( Micropterus salmoides) and used real-time quantitative PCR to detect PRP-PACAP mRNA expression. The PRP-PACAP cDNA has two variants expressed via alternative splicing: a long form, which encodes both PRP and PACAP, and a short form, which encodes only PACAP. Sequence analysis results are consistent with a higher conservation of PACAP than PRP peptide sequences. The expression of PACAP-long and PACAP-short transcripts was highest in the forebrain, followed by the medulla, midbrain, pituitary, stomach, cerebellum, intestine, and kidney; however, these transcripts were either absent or were weakly expressed in the muscle, spleen, gill, heart, fatty tissue, and liver. The level of PACAP-short transcript expression was significantly higher than expression of the long transcript in the forebrain, cerebella, pituitary and intestine, but lower than that of the long transcript in the stomach. PACAP-long and PACAP-short transcripts were first detected at the blastula stage of embryogenesis, and the level of expression increased markedly between the muscular contraction stage and 3 d post hatch (dph). The expression of PACAP-long and PACAP-short transcripts decreased significantly in the brain following 4 d fasting compared with the control diet group. The down-regulation effect was enhanced as fasting continued. Conversely, expression levels increased significantly after 3 d of re-feeding. Our results suggest that PRP-PACAP acts as an important factor in appetite regulation in largemouth bass.
Isolation and characterization of terpene synthases in cotton (Gossypium hirsutum).
Yang, Chang-Qing; Wu, Xiu-Ming; Ruan, Ju-Xin; Hu, Wen-Li; Mao, Yin-Bo; Chen, Xiao-Ya; Wang, Ling-Jian
2013-12-01
Cotton plants accumulate gossypol and related sesquiterpene aldehydes, which function as phytoalexins against pathogens and feeding deterrents to herbivorous insects. However, to date little is known about the biosynthesis of volatile terpenes in this crop. Herein is reported that 5 monoterpenes and 11 sesquiterpenes from extracts of a glanded cotton cultivar, Gossypium hirsutum cv. CCRI12, were detected by gas chromatography-mass spectrometry (GC-MS). By EST data mining combined with Rapid Amplification of cDNA Ends (RACE), full-length cDNAs of three terpene synthases (TPSs), GhTPS1, GhTPS2 and GhTPS3 were isolated. By in vitro assays of the recombinant proteins, it was found that GhTPS1 and GhTPS2 are sesquiterpene synthases: the former converted farnesyl pyrophosphate (FPP) into β-caryophyllene and α-humulene in a ratio of 2:1, whereas the latter produced several sesquiterpenes with guaia-1(10),11-diene as the major product. By contrast, GhTPS3 is a monoterpene synthase, which produced α-pinene, β-pinene, β-phellandrene and trace amounts of other monoterpenes from geranyl pyrophosphate (GPP). The TPS activities were also supported by Virus Induced Gene Silencing (VIGS) in the cotton plant. GhTPS1 and GhTPS3 were highly expressed in the cotton plant overall, whereas GhTPS2 was expressed only in leaves. When stimulated by mechanical wounding, Verticillium dahliae (Vde) elicitor or methyl jasmonate (MeJA), production of terpenes and expression of the corresponding synthase genes were induced. These data demonstrate that the three genes account for the biosynthesis of volatile terpenes of cotton, at least of this Upland cotton. Copyright © 2013 Elsevier Ltd. All rights reserved.
Makita, Yuko; Kawashima, Mika; Lau, Nyok Sean; Othman, Ahmad Sofiman; Matsui, Minami
2018-01-19
Natural rubber is an economically important material. Currently the Pará rubber tree, Hevea brasiliensis is the main commercial source. Little is known about rubber biosynthesis at the molecular level. Next-generation sequencing (NGS) technologies brought draft genomes of three rubber cultivars and a variety of RNA sequencing (RNA-seq) data. However, no current genome or transcriptome databases (DB) are organized by gene. A gene-oriented database is a valuable support for rubber research. Based on our original draft genome sequence of H. brasiliensis RRIM600, we constructed a rubber tree genome and transcriptome DB. Our DB provides genome information including gene functional annotations and multi-transcriptome data of RNA-seq, full-length cDNAs including PacBio Isoform sequencing (Iso-Seq), ESTs and genome wide transcription start sites (TSSs) derived from CAGE technology. Using our original and publically available RNA-seq data, we calculated co-expressed genes for identifying functionally related gene sets and/or genes regulated by the same transcription factor (TF). Users can access multi-transcriptome data through both a gene-oriented web page and a genome browser. For the gene searching system, we provide keyword search, sequence homology search and gene expression search; users can also select their expression threshold easily. The rubber genome and transcriptome DB provides rubber tree genome sequence and multi-transcriptomics data. This DB is useful for comprehensive understanding of the rubber transcriptome. This will assist both industrial and academic researchers for rubber and economically important close relatives such as R. communis, M. esculenta and J. curcas. The Rubber Transcriptome DB release 2017.03 is accessible at http://matsui-lab.riken.jp/rubber/ .
Two GH3 genes from longan are differentially regulated during fruit growth and development.
Kuang, Jian-Fei; Zhang, Yu; Chen, Jian-ye; Chen, Qiu-Jin; Jiang, Yue-Ming; Lin, He-Tong; Xu, Shi-Juan; Lu, Wang-Jin
2011-10-01
In the present work, two full length cDNAs of GH3 genes, named DlGH3.1 and DlGH3.2 were cloned from pericarp and aril tissues of the longan fruit, respectively. Three conserved motifs, SSGTSAGERK, YASSE and YRVGD, as a characteristic of the acyladenylate/thioester forming enzyme superfamily were observed in DlGH3.1 and DlGH3.2 proteins. DlGH3.1 mainly expressed in pericarp tissues while DlGH3.2 accumulated in both the pericarp and aril tissues during fruit growth and development. In addition, NAA treatment induced the expression of DlGH3.1 and DlGH3.2 in the pericarp tissues at 21 and 77days after anthesis (DAA), while only DlGH3.2 in the aril tissues could be induced by NAA at 77DAA. More importantly, ABA and ethrel treatments suppressed the accumulations of DlGH3.1 and DlGH3.2 in the pericarp tissues of longan fruit at 21DAA (a rapid growth stage of pericarp), but enhanced DlGH3.2 expression in the aril tissues at 77DAA (a fruit ripening stage). Furthermore, the expression patterns of DlGH3.1 and DlGH3.2 showed different tissue specificity. Thus, our results suggest that DlGH3.1 gene expression might be associated with pericarp growth, while DlGH3.2 accumulation is likely to be related to both pericarp growth and fruit ripening, and the responses of DlGH3s to plant growth hormones are different and dependent on fruit development stage and fruit tissue. Copyright © 2011 Elsevier B.V. All rights reserved.
High diversification of CD94 by alternative splicing in New World primates.
Galindo, John A; Cadavid, Luis F
2013-04-01
CD94 forms heterodimers with NKG2A, -C, or -E to constitute lectin-like natural killer cell receptors for MHC-E. Its structure differs from other C-type lectins in that the second α-helix is replaced by a loop that forms the interacting interface with the NKG2 molecules. Although CD94 has remained highly conserved mammals, several alternative splicing variants have been detected in some species. To evaluate the prevalence and significance of this phenomenon, we have cloned and sequenced CD94 cDNAs in six species of New World primates from the Cebidae and Atelidae families. Full-length sequences had a mean similarity of 96 % amongst New World primates and of 90 % to the human orthologue, with little variation in the residues interacting with NKG2 or MHC-E molecules. Despite this high conservation, a total of 14 different splice variants were identified, half of which were shared by two or more primate species. Homology-based modeling of the C-type lectin domain showed that most isoforms folded stably, although they had modifications that prevented its interaction with NKG2 and MHC-E. Two isoforms were predicted to replace the typical CD94 loop by a second α-helix, evidencing a domain fold transition from a CD94 structure to a canonical C-type lectin. These two structures were more similar to members of the CLEC lectin family than to the native CD94. Thus, CD94 has remained conserved in primates to maintain functional interactions with NKG2 and MHC-E, while at the same time has diversified by alternative splicing potentially providing additional functional scenarios.
Coego, Alberto; Brizuela, Esther; Castillejo, Pablo; Ruíz, Sandra; Koncz, Csaba; del Pozo, Juan C; Piñeiro, Manuel; Jarillo, José A; Paz-Ares, Javier; León, José
2014-03-01
Transcription factors (TFs) are key regulators of gene expression in all organisms. In eukaryotes, TFs are often represented by functionally redundant members of large gene families. Overexpression might prove a means to unveil the biological functions of redundant TFs; however, constitutive overexpression of TFs frequently causes severe developmental defects, preventing their functional characterization. Conditional overexpression strategies help to overcome this problem. Here, we report on the TRANSPLANTA collection of Arabidopsis lines, each expressing one of 949 TFs under the control of a β-estradiol-inducible promoter. Thus far, 1636 independent homozygous lines, representing an average of 2.6 lines for every TF, have been produced for the inducible expression of 634 TFs. Along with a GUS-GFP reporter, randomly selected TRANSPLANTA lines were tested and confirmed for conditional transgene expression upon β-estradiol treatment. As a proof of concept for the exploitation of this resource, β-estradiol-induced proliferation of root hairs, dark-induced senescence, anthocyanin accumulation and dwarfism were observed in lines conditionally expressing full-length cDNAs encoding RHD6, WRKY22, MYB123/TT2 and MYB26, respectively, in agreement with previously reported phenotypes conferred by these TFs. Further screening performed with other TRANSPLANTA lines allowed the identification of TFs involved in different plant biological processes, illustrating that the collection is a powerful resource for the functional characterization of TFs. For instance, ANAC058 and a TINY/AP2 TF were identified as modulators of ABA-mediated germination potential, and RAP2.10/DEAR4 was identified as a regulator of cell death in the hypocotyl-root transition zone. Seeds of TRANSPLANTA lines have been deposited at the Nottingham Arabidopsis Stock Centre for further distribution. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.
Guo, Zhiling; Zhang, Huan; Lin, Senjie
2014-01-01
The discovery of microbial rhodopsins in marine proteobacteria changed the dogma that photosynthesis is the only pathway to use the solar energy for biological utilization in the marine environment. Although homologs of these rhodopsins have been identified in dinoflagellates, the diversity of the encoding genes and their physiological roles remain unexplored. As an initial step toward addressing the gap, we conducted high-throughput transcriptome sequencing on Oxyrrhis marina to retrieve rhodopsin transcripts, rapid amplification of cDNA ends to isolate full-length cDNAs of dominant representatives, and quantitative reverse-transcription PCR to investigate their expression under varying conditions. Our phylogenetic analyses showed that O. marina contained both the proton-pumping type (PR) and sensory type (SR) rhodopsins, and the transcriptome data showed that the PR type dominated over the SR type. We compared rhodopsin gene expression for cultures kept under light: dark cycle and continuous darkness in a time course of 24 days without feeding. Although both types of rhodopsin were expressed under the two conditions, the expression levels of PR were much higher than SR, consistent with the transcriptomic data. Furthermore, relative to cultures kept in the dark, rhodopsin expression levels and cell survival rate were both higher in cultures grown in the light. This is the first report of light-dependent promotion of starvation survival and concomitant promotion of PR expression in a eukaryote. While direct evidence needs to come from functional test on rhodopsins in vitro or gene knockout/knockdown experiments, our results suggest that the proton-pumping rhodopsin might be responsible for the light-enhanced survival of O. marina, as previously demonstrated in bacteria.
Arakane, Yasuyuki; Hogenkamp, David G; Zhu, Yu Cheng; Kramer, Karl J; Specht, Charles A; Beeman, Richard W; Kanost, Michael R; Muthukrishnan, Subbaratnam
2004-03-01
Two chitin synthase (CHS) genes of the red flour beetle, Tribolium castaneum, were sequenced and their transcription patterns during development examined. By screening a BAC library of genomic DNA from T. castaneum (Tc) with a DNA probe encoding the catalytic domain of a putative Tribolium CHS, several clones that contained CHS genes were identified. Two distinct PCR products were amplified from these BAC clones and confirmed to be highly similar to CHS genes from other insects, nematodes and fungi. The DNA sequences of these genes, TcCHS1 and TcCHS2, were determined by amplification of overlapping PCR fragments from two of the BAC DNAs and mapped to different linkage groups. Each ORF was identified and full-length cDNAs were also amplified, cloned and sequenced. TcCHS1 and TcCHS2 encode transmembrane proteins of 1558 and 1464 amino acids, respectively. The TcCHS1 gene was found to use alternate exons, each encoding 59 amino acids, a feature not found in the TcCHS2 gene. During development, Tribolium expressed TcCHS1 predominantly in the embryonic and pupal stages, whereas TcCHS2 was prevalent in the late larval and adult stages. The alternate exon 8a of TcCHS1 was utilized over a much broader range of development than exon 8b. We propose that the two isoforms of the TcCHS1 enzyme are used predominantly for the formation of chitin in embryonic and pupal cuticles, whereas TcCHS2 is utilized primarily for the synthesis of peritrophic membrane-associated chitin in the midgut.
Alternative channels for urea in the inner medulla of the rat kidney
Dantzler, William H.; Pannabecker, Thomas L.
2015-01-01
The ascending thin limbs (ATLs) and lower descending thin limbs (DTLs) of Henle's loop in the inner medulla of the rat are highly permeable to urea, and yet no urea transporters have been identified in these sections. We hypothesized that novel, yet-unidentified transporters in these tubule segments could explain the high urea permeability. cDNAs encoding for Na+-glucose transporter 1a (SGLT1a), Na+-glucose transporter 1 (NaGLT1), urea transporter (UT)-A2c, and UT-A2d were isolated and cloned from the Munich-Wistar rat inner medulla. SGLT1a is a novel NH2-terminal truncated variant of SGLT1. NaGLT1 is a Na+-dependent glucose transporter primarily located in the proximal tubules and not previously described in the thin limbs. UT-A2c and UT-A2d are novel variants of UT-A2. UT-A2c is truncated at the COOH terminus, and UT-A2d has one exon skipped. When rats underwent water restriction for 72 h, mRNA levels of SGLT1a increased in ATLs, NaGLT1 levels increased in both ATLs and DTLs, and UT-A2c increased in ATLs. [14C]urea uptake assays performed on Xenopus oocytes heterologously expressing these proteins revealed that despite having structural differences from their full-length versions, SGLT1a, UT-A2c, and UT-A2d enhanced urea uptake. NaGLT1 also facilitated urea uptake. Uptakes were Na+ independent and inhibitable by phloretin and/or phloridzin. Our data indicate that there are several alternative channels for urea in the rat inner medulla that could potentially contribute to the high urea permeabilities in thin limb segments. PMID:26423860
Quantitative Analysis of NF-κB Transactivation Specificity Using a Yeast-Based Functional Assay
Sharma, Vasundhara; Jordan, Jennifer J.; Ciribilli, Yari; Resnick, Michael A.; Bisio, Alessandra; Inga, Alberto
2015-01-01
The NF-κB transcription factor family plays a central role in innate immunity and inflammation processes and is frequently dysregulated in cancer. We developed an NF-κB functional assay in yeast to investigate the following issues: transactivation specificity of NF-κB proteins acting as homodimers or heterodimers; correlation between transactivation capacity and in vitro DNA binding measurements; impact of co-expressed interacting proteins or of small molecule inhibitors on NF-κB-dependent transactivation. Full-length p65 and p50 cDNAs were cloned into centromeric expression vectors under inducible GAL1 promoter in order to vary their expression levels. Since p50 lacks a transactivation domain (TAD), a chimeric construct containing the TAD derived from p65 was also generated (p50TAD) to address its binding and transactivation potential. The p50TAD and p65 had distinct transactivation specificities towards seventeen different κB response elements (κB-REs) where single nucleotide changes could greatly impact transactivation. For four κB-REs, results in yeast were predictive of transactivation potential measured in the human MCF7 cell lines treated with the NF-κB activator TNFα. Transactivation results in yeast correlated only partially with in vitro measured DNA binding affinities, suggesting that features other than strength of interaction with naked DNA affect transactivation, although factors such as chromatin context are kept constant in our isogenic yeast assay. The small molecules BAY11-7082 and ethyl-pyruvate as well as expressed IkBα protein acted as NF-κB inhibitors in yeast, more strongly towards p65. Thus, the yeast-based system can recapitulate NF-κB features found in human cells, thereby providing opportunities to address various NF-κB functions, interactions and chemical modulators. PMID:26147604
Moffatt, Pierre; Smith, Charles E; St-Arnaud, René; Simmons, Darrin; Wright, J Timothy; Nanci, Antonio
2006-10-01
Formation of tooth enamel is a very complex process in which a specific set of proteins secreted by ameloblasts play a primordial role. As part of a screening procedure to identify novel proteins secreted by EO (enamel organ) cells of rat incisors, we isolated a partial cDNA fragment (EO-017) that is the homologue of the recently described mouse Amtn (amelotin) gene [Iwasaki, Bajenova, Somogyi-Ganss, Miller, Nguyen, Nourkeyhani, Gao, Wendel and Ganss (2005) J. Dent. Res. 84, 1127-1132]. Presented herein is the cloning of rat and pig full-length cDNAs with their deduced protein sequences. Detailed expression profiling by Northern-blot analysis and RT (reverse transcriptase)-PCR on rat and mouse tissues revealed highest expression in the mandible, more specifically in the maturation stage of the EO. Among all tissues tested, low expression was detected only in periodontal ligament, lung, thymus and gingiva. In silico analyses revealed that the Amtn gene is highly conserved in seven other mammals, but is absent from fish, birds and amphibians. The Amtn protein is enriched in proline, leucine, glutamine and threonine (52% of total) and contains a perfectly conserved protein kinase CK2 phosphorylation site. Transient transfection experiments in HEK-293 cells (human embryonic kidney cells) showed that secreted Amtn is post-translationally modified possibly through O-linked oligosaccharides on threonine residues. In concordance with its predominant expression site, immunofluorescence localization within the rat and mouse mandibles revealed Amtn localized to the basal lamina of maturation stage ameloblasts of incisors and unerupted molars. Intense Amtn protein expression was also detected in the internal basal lamina of junctional epithelium in molars. The peculiar and unique cellular localization of Amtn suggests a role in cell adhesion.
Zhu, Ye; Saraike, Tatsunori; Yamamoto, Yuko; Hagita, Hiroko; Takumi, Shigeo; Murai, Koji
2008-11-01
Homeotic transformation of stamens into pistil-like structures (pistillody) can occur in cytoplasmic substitution (alloplasmic) lines of bread wheat (Triticum aestivum) that have the cytoplasm of the related species, Aegilops crassa. Previously we showed that pistillody results from altered patterns of expression of class B MADS-box genes mediated by mitochondrial gene(s) in the Ae. crassa cytoplasm. The wheat cultivar Chinese Spring does not show pistillody when Ae. crassa cytoplasm is introduced. The absence of an effect is due to a single dominant gene (designated Rfd1) located on the long arm of chromosome 7B. To identify the mitochondrial gene involved in pistillody induction, we performed a subtraction analysis using cDNAs derived from young spikes of a pistillody line and a normal line. We found that mitochondrial cDNA clone R04 was abundant in the young spikes of the pistillody line but was down-regulated in the normal line that carried nuclear Rfd1. Sequencing of the full-length cDNA corresponding to clone R04 showed that two genes were present, cox I (cytochrome c oxidase subunit I) and orf260(cra). orf260(cra) shows high sequence similarity to orf256, the T. timopheevii mitochondrial gene responsible for cytoplasmic male sterility (CMS). orf260(cra) was also present in the cytoplasms of Ae. juvenalis and Ae. vavilovii, which induce pistillody, but not in the cytoplasms of other species not associated with pistillody. Furthermore, Western blot analysis revealed that the ORF260cra protein was more abundant in the pistillody line than in the normal line. We suggest therefore that orf260(cra) is associated with pistillody induction.
Giannetto, Alessia; Oliva, Sabrina; Mazza, Lorenzo; Mondello, Giovanni; Savastano, Domenico; Mauceri, Angela; Fasulo, Salvatore
2017-09-05
Two full-length cDNAs of heat shock protein (HSP) genes (Hihsp70 and Hihsp90) were cloned from the black soldier fly (BSF) Hermetia illucens larvae reared in a food waste bioconversion pilot plant. The Hihsp70 and Hihsp90 transcripts were 2243 and 2507bp long, contained 1923 and 2166bp open reading frames encoding proteins of 640 and 721 amino acids with a molecular mass of 69.8 and 83kDa, respectively. Comparative analysis of protein sequences revealed the presence of the conserved HSP motifs in both proteins, showing high homology to their counterparts in other insect species from six different orders. Hihsp70 and Hihsp90 transcriptional expression profiles during two key developmental stages in the bioconversion process were evaluated by quantitative real time PCR showing that both genes were modulated during larval development. HiHsp70 mRNA expression levels during the II instar larvae was higher in respect to the V instar larvae. A similar difference in mRNA expression levels, but in a less extent, was found for the Hihsp90. Moreover, a diverse transcript level between the two genes at the V larval stage was observed where Hihsp90 was up-regulated compared to Hihsp70. These results suggested the involvement of Hsp70 and Hsp90 in H. illucens development and provide further evidences on the ecological and evolutionary importance of HSPs in the insect developmental processes together with valuable information on molecular features of adaptability to peculiar rearing conditions during food waste bioconversion. Copyright © 2017 Elsevier B.V. All rights reserved.
Gonzalez, Luis Miguel; Bonay, Pedro; Benitez, Laura; Ferrer, Elizabeth; Harrison, Leslie J S; Parkhouse, R Michael E; Garate, Teresa
2007-02-01
Two clones from an activated Taenia saginata oncosphere cDNA library, Ts45W and Ts45S, were isolated and sequenced. Both of these genes belong to the Taenia ovis 45W gene family. The Ts45W and Ts45S cDNAs are 997- and 1,004-bp-long, each corresponding to 255 amino acids and with theoretical molecular masses of 27.8 and 27.7 kDa, respectively. Southern blot profiles obtained with Ts45W cDNA as a probe suggest that these two genes are members of a multigene family with tandem organization. The full genomic sequence was determined for the Ts45W gene and a new family member, the Ts45W/2 gene. The genomic sequences of the T. saginata Ts45W and Ts45W/2 genes were at least 2.2 kb in length with four exons separated by three introns. Exons 1 and 4 coded for hydrophobic domains, while, importantly, exons 2 and 3 coded for fibronectin homologous domains. These domains are presumably responsible for the demonstrated cell adhesion and, perhaps, the protective nature of this family of molecules and the acronym TAF (Taenia adhesion family) is proposed for this group of genes. We hypothesize that these TAF proteins and another T. saginata-protective antigen, HP6, have evolved the dual functions of facilitating tissue invasion and stimulating protective immunity to first ensure primary infection and subsequently to establish a concomitant protective immunity to protect the host from death or debilitation through superinfection by subsequent infections and thus help ensure parasite survival.
Younis, Abuelhassan Elshazly; Geisinger, Frank; Ajonina-Ekoti, Irene; Soblik, Hanns; Steen, Hanno; Mitreva, Makedonka; Erttmann, Klaus D.; Perbandt, Markus; Liebau, Eva; Brattig, Norbert W.
2013-01-01
SUMMARY In search of molecules involved in the interaction of intestinal nematodes and mammalian mucosal host cells, we performed mass spectrometry to identify excretory/secretory proteins (ESP) from Strongyloides ratti. In addition to other peptides, we detected in the ESP of parasitic female stage peptides homologous to the Caenorhabditis elegans heat shock protein-17, named Sra-HSP-17.1 (~19 kDa) and Sra-HSP-17.2 (~ 18 kDa) with 49% amino acid identity. The full-length cDNAs (483 bp and 474 bp, respectively) were identified and the genomic organization analyzed. To allow further characterization, the proteins were recombinantly expressed and purified. Profiling of transcription by qRT-PCR and of protein by ELISA in various developmental stages revealed parasitic female-specific expression. The sequence analysis of both DNA and amino acid sequence showed two genes share a conserved alpha-crystallin domain and variable N-terminals. The Sra-HSP-17 proteins showed the highest homology to the deduced small heat-shock protein sequence of the human pathogen S. stercoralis. We observed strong immunogenicity of both proteins, leading to high IgG responses following infection of rats. Flow cytometric analysis indicated the binding of Sra-HSP-17s to the monocytes/macrophage lineage but not to peripheral lymphocytes or neutrophils. A rat intestinal epithelial cell line showed dose dependent binding to Sra-HSP-17.1, but not to Sra-HSP-17.2. Exposed monocytes released IL-10 but not TNF-alpha in response to Sra-HSP-17s, suggesting a possible involvement of secreted female proteins in host immune responses. PMID:21762402
Saccol, Etiane M H; Jerez-Cepa, Ismael; Ourique, Giovana M; Pês, Tanise S; Gressler, Luciane T; Mourão, Rosa H V; Martínez-Rodríguez, Gonzalo; Mancera, Juan M; Baldisserotto, Bernardo; Pavanato, Maria A; Martos-Sitcha, Juan A
2018-04-01
The effects of pre-transport handling and addition of essential oil of Myrcia sylvatica (EOMS) during transport on stress pathways activation in Rhamdia quelen were investigated. Fish (n=400, 25.2±2.9g) were captured in production ponds and transferred to 100-L tank (density 100g L -1 ). After 24h, 10 fish were sampled (before transport group). The remaining fish were placed in plastic bags (n=30 or 32 fish per bag, density 150g L -1 ) containing 5L of water (control), ethanol (315μLL -1 , vehicle) or EOMS (25 or 35μLL -1 ), in triplicate, transported for 6h and sampled (n=10 animals per group). Indicators of stress and metabolism, as well as mRNA expression of brain hormones were evaluated. Previously, full-length cDNAs, encoding specific corticotropin-releasing hormone (crh) and proopiomelanocortins (pomca and pomcb), were cloned from whole brain of R. quelen. Crh expression increased after 24h of capture and handling, whereas cortisol and glucose plasmatics enhanced their values in the control group. Transport with EOMS reduced plasma cortisol and lactate levels, while ethanol and EOMS groups increased Na + /K + -ATPase gill activity compared to control. Gene expression of crh, pomcb, prolactin and somatolactin mRNAs were lower after transport with EOMS compared to control. EOMS was able to mitigate the stress pathways activation caused by transport, maintaining a balance in body homeostasis. Thus, EOMS is recommended as sedative in procedures as transport and the pre-transport handling requires greater attention and use of tranquilizers. Copyright © 2017 Elsevier Ltd. All rights reserved.
Hou, Wan-ru; Tang, Yun; Hou, Yi-ling; Song, Yan; Zhang, Tian; Wu, Guang-fu
2010-07-01
Eukaryotic initiation factor (eIF) EIF1 is a universally conserved translation factor that is involved in translation initiation site selection. The cDNA and the genomic sequences of EIF1 were cloned successfully from the giant panda (Ailuropoda melanoleuca) and the black bear (Ursus thibetanus mupinensis) using reverse transcription polymerase chain reaction (RT-PCR) technology and touchdown-polymerase chain reaction, respectively. The cDNAs of the EIF1 cloned from the giant panda and the black bear are 418 bp in size, containing an open reading frame (ORF) of 342 bp encoding 113 amino acids. The length of the genomic sequence of the giant panda is 1909 bp, which contains four exons and three introns. The length of the genomic sequence of the black bear is 1897 bp, which also contains four exons and three introns. Sequence alignment indicates a high degree of homology to those of Homo sapiens, Mus musculus, Rattus norvegicus, and Bos Taurus at both amino acid and DNA levels. Topology prediction shows there are one N-glycosylation site, two Casein kinase II phosphorylation sites, and a Amidation site in the EIF1 protein of the giant panda and black bear. In addition, there is a protein kinase C phosphorylation site in EIF1 of the giant panda. The giant panda and the black bear EIF1 genes were overexpressed in E. coli BL21. The results indicated that the both EIF1 fusion proteins with the N-terminally His-tagged form gave rise to the accumulation of two expected 19 kDa polypeptide. The expression products obtained could be used to purify the proteins and study their function further.
Zhang, Luan; Xiong, Zhi-ting; Xu, Zhong-rui; Liu, Chen; Cai, Shen-wen
2014-06-01
The roots of metallophytes serve as the key interface between plants and heavy metal-contaminated underground environments. It is known that the roots of metallicolous plants show a higher activity of acid invertase enzymes than those of non-metallicolous plants when under copper stress. To test whether the higher activity of acid invertases is the result of increased expression of acid invertase genes or variations in the amino acid sequences between the two population types, we isolated full cDNAs for acid invertases from two populations of Kummerowia stipulacea (from metalliferous and non-metalliferous soils), determined their nucleotide sequences, expressed them in Pichia pastoris, and conducted real-time PCR to determine differences in transcript levels during Cu stress. Heterologous expression of acid invertase cDNAs in P. pastoris indicated that variations in the amino acid sequences of acid invertases between the two populations played no significant role in determining enzyme characteristics. Seedlings of K. stipulacea were exposed to 0.3µM Cu(2+) (control) and 10µM Cu(2+) for 7 days under hydroponics׳ conditions. The transcript levels of acid invertases in metallicolous plants were significantly higher than in non-metallicolous plants when under copper stress. The results suggest that the expression of acid invertase genes in metallicolous plants of K. stipulacea differed from those in non-metallicolous plants under such conditions. In addition, the sugars may play an important role in regulating the transcript level of acid invertase genes and acid invertase genes may also be involved in root/shoot biomass allocation. Copyright © 2014 Elsevier Inc. All rights reserved.
Xie, Bingkun; Yang, Wei; Ouyang, Yongchang; Chen, Lichan; Jiang, Hesheng; Liao, Yuying; Liao, D. Joshua
2016-01-01
Tens of thousands of chimeric RNAs have been reported. Most of them contain a short homologous sequence (SHS) at the joining site of the two partner genes but are not associated with a fusion gene. We hypothesize that many of these chimeras may be technical artifacts derived from SHS-caused mis-priming in reverse transcription (RT) or polymerase chain reactions (PCR). We cloned six chimeric complementary DNAs (cDNAs) formed by human mitochondrial (mt) 16S rRNA sequences at an SHS, which were similar to several expression sequence tags (ESTs).These chimeras, which could not be detected with cDNA protection assay, were likely formed because some regions of the 16S rRNA are reversely complementary to another region to form an SHS, which allows the downstream sequence to loop back and anneal at the SHS to prime the synthesis of its complementary strand, yielding a palindromic sequence that can form a hairpin-like structure.We identified a 16S rRNA that ended at the 4th nucleotide(nt) of the mt-tRNA-leu was dominant and thus should be the wild type. We also cloned a mouse Bcl2-Nek9 chimeric cDNA that contained a 5-nt unmatchable sequence between the two partners, contained two copies of the reverse primer in the same direction but did not contain the forward primer, making it unclear how this Bcl2-Nek9 was formed and amplified. Moreover, a cDNA was amplified because one primer has 4 nts matched to the template, suggesting that there may be many more artificial cDNAs than we have realized, because the nuclear and mt genomes have many more 4-nt than 5-nt or longer homologues. Altogether, the chimeric cDNAs we cloned are good examples suggesting that many cDNAs may be artifacts due to SHS-caused mis-priming and thus greater caution should be taken when new sequence is obtained from a technique involving DNA polymerization. PMID:27148738
Dewberry, Ebony J.; Dunkerley, Eric; Duffy, Carol
2012-01-01
Summary VP22, encoded by the UL49 gene, is one of the most abundant proteins of the herpes simplex virus type 1 (HSV-1) tegument and has been shown to be important for virus replication and spread. However, the exact role(s) played by VP22 in the HSV-1 replication cycle have yet to be delineated. The lack of a procedure to purify full-length VP22 has limited molecular studies on VP22 function. A procedure was developed for the purification of soluble, full-length VP22 from cells infected with HSV-1. A recombinant virus encoding His-tagged VP22 was generated and found to express VP22 at levels comparable to the wild type virus upon infection of Vero cells. By experimenting with a wide variety of cell lysis buffer conditions, several buffers that promote the solubility of full-length VP22 were identified. Buffers that gave the highest levels of solubility were then used in immobilized metal ion affinity chromatography experiments to identify conditions that provided the greatest level of VP22 binding and recovery from cobalt and nickel affinity resins. Using this strategy soluble, full-length VP22 was purified from cells infected with HSV-1. PMID:22569534
Davidsson, Pia; Söderling, Ann-Sofi; Svensson, Lena; Ahnmark, Andrea; Flodin, Christine; Wanag, Ewa; Screpanti-Sundqvist, Valentina; Gennemark, Peter
2015-05-01
Tissue distribution and pharmacokinetics (PK) of full-length nontargeted antibody and its antigen-binding fragment (FAb) were evaluated for a range of tissues primarily of interest for cardiovascular and metabolic diseases. Mice were intravenously injected with a dose of 10 mg/kg of either human IgG1or its FAb fragment; perfused tissues were collected at a range of time points over 3 weeks for the human IgG1 antibody and 1 week for the human FAb antibody. Tissues were homogenized and antibody concentrations were measured by specific immunoassays on the Gyros system. Exposure in terms of maximum concentration (Cmax ) and area under the curve was assessed for all nine tissues. Tissue exposure of full-length antibody relative to plasma exposure was found to be between 1% and 10%, except for brain (0.2%). Relative concentrations of FAb antibody were the same, except for kidney tissue, where the antibody concentration was found to be ten times higher than in plasma. However, the absolute tissue uptake of full-length IgG was significantly higher than the absolute tissue uptake of the FAb antibody. This study provides a reference PK state for full-length whole and FAb antibodies in tissues related to cardiovascular and metabolic diseases that do not include antigen or antibody binding. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.
Coster, Wendy J.; Haley, Stephen M.; Ni, Pengsheng; Dumas, Helene M.; Fragala-Pinkham, Maria A.
2009-01-01
Objective To examine score agreement, validity, precision, and response burden of a prototype computer adaptive testing (CAT) version of the Self-Care and Social Function scales of the Pediatric Evaluation of Disability Inventory (PEDI) compared to the full-length version of these scales. Design Computer simulation analysis of cross-sectional and longitudinal retrospective data; cross-sectional prospective study. Settings Pediatric rehabilitation hospital, including inpatient acute rehabilitation, day school program, outpatient clinics; community-based day care, preschool, and children’s homes. Participants Four hundred sixty-nine children with disabilities and 412 children with no disabilities (analytic sample); 38 children with disabilities and 35 children without disabilities (cross-validation sample). Interventions Not applicable. Main Outcome Measures Summary scores from prototype CAT applications of each scale using 15-, 10-, and 5-item stopping rules; scores from the full-length Self-Care and Social Function scales; time (in seconds) to complete assessments and respondent ratings of burden. Results Scores from both computer simulations and field administration of the prototype CATs were highly consistent with scores from full-length administration (all r’s between .94 and .99). Using computer simulation of retrospective data, discriminant validity and sensitivity to change of the CATs closely approximated that of the full-length scales, especially when the 15- and 10-item stopping rules were applied. In the cross-validation study the time to administer both CATs was 4 minutes, compared to over 16 minutes to complete the full-length scales. Conclusions Self-care and Social Function score estimates from CAT administration are highly comparable to those obtained from full-length scale administration, with small losses in validity and precision and substantial decreases in administration time. PMID:18373991
Kudo, H; Doi, Y; Ueda, H; Kaeriyama, M
2009-09-01
Despite the importance of olfactory receptor neurons (ORNs) for homing migration, the expression of olfactory marker protein (OMP) is not well understood in ORNs of Pacific salmon (genus Oncorhynchus). In this study, salmon OMP was characterized in the olfactory epithelia of lacustrine sockeye salmon (O. nerka) by molecular biological and histochemical techniques. Two cDNAs encoding salmon OMP were isolated and sequenced. These cDNAs both contained a coding region encoding 173 amino acid residues, and the molecular mass of the two proteins was calculated to be 19,581.17 and 19,387.11Da, respectively. Both amino acid sequences showed marked homology (90%). The protein and nucleotide sequencing demonstrates the existence of high-level homology between salmon OMPs and those of other teleosts. By in situ hybridization using a digoxigenin-labeled salmon OMP cRNA probe, signals for salmon OMP mRNA were observed preferentially in the perinuclear regions of the ORNs. By immunohistochemistry using a specific antibody to salmon OMP, OMP-immunoreactivities were noted in the cytosol of those neurons. The present study is the first to describe cDNA cloning of OMP in salmon olfactory epithelium, and indicate that OMP is a useful molecular marker for the detection of the ORNs in Pacific salmon.
Actin genes and their expression in pacific white shrimp, Litopenaeus vannamei.
Zhang, Xiaoxi; Zhang, Xiaojun; Yuan, Jianbo; Du, Jiangli; Li, Fuhua; Xiang, Jianhai
2018-04-01
Actin is a multi-functional gene family that can be divided into muscle-type actins and non-muscle-type actins. In this study, 37 unigenes encoding actins were identified from RNA-Seq data of Pacific white shrimp, Litopenaeus vannamei. According to phylogenetic analysis, four and three cDNAs belong to cytoplasmic- and heart-type actins and were named LvActinCT and LvActinHT, respectively. 10 cDNAs belong to the slow-type skeletal muscle actins, and 18 belong to the fast-type skeletal muscle actins; they were designated LvActinSSK and LvActinFSK, respectively. Some muscle actin genes formed gene clusters in the genome. Multiple alternative transcription starts sites (ATSSs) were found for LvActinCT1. Based on the early developmental expression profile, almost all LvActins were highly expressed between the early limb bud and post-larval stages. Using LvActinSSK5 as probes, slow-type muscle was localized in pleopod muscle and superficial ventral muscle. We also found three actin genes that were down-regulated in the hemocytes of white spot syndrome virus (WSSV)- and Vibrio parahaemolyticus-infected L. vannamei. This study provides valuable information on the actin gene structure of shrimp, furthers our understanding of the shrimp muscle system and helps us develop strategies for disease control and sustainable shrimp farming.
Bisphenol A (BPA) binding on full-length architectures of estrogen receptor.
Liu, Yaquan; Qu, Kaili; Hai, Ying; Zhao, Chunyan
2018-08-01
Previous research has shown that the major toxicity mechanism for many environment chemicals is binding with estrogen receptor (ER) and blocking endogenous estrogen access, including bisphenol A (BPA). However, the molecular level understanding the global consequence of BPA binding on the full-length architectures of ER is largely unknown, which is a necessary stage to evaluate estrogen-like toxicity of BPA. In the present work, the consequence of BPA on full-length architectures of ER was firstly modeled based on molecular dynamics, focusing on the cross communication between multi-domains including ligand binding domain (LBD) and DNA binding domain (DBD). The study proved consequence of BPA upon full-length ER structure was dependent on long-range communications between multiple protein domains. The allosteric effects occurring in LBD units could alter dimerization formation through a crucial change in residue-residue connections, which resulted in relaxation of DBD. It indicated BPA could present consequence on the full-size receptor, not only on the separate domains, but also on the cross communication among LBD, DBD, and DNA molecules. It might provide detailed insight into the knowledge about the structural characteristics of ER and its role in gene regulation, which eventually helped us evaluate the estrogen-like toxicity upon BPA binding with full-length ER. © 2018 Wiley Periodicals, Inc.
Shpilman, Michal; Hollander-Cohen, Lian; Ventura, Tomer; Gertler, Arieh; Levavi-Sivan, Berta
2014-10-01
Full-length cDNA encoding two leptin sequences (tLepA and tLepB) and one leptin receptor sequence (tLepR) were identified in tilapia (Oreochromis niloticus). The full-length cDNA of tLepR was 3423bp, encoding a protein of 1140 amino acid (aa) which contained all functionally important domains conserved among vertebrate leptin receptors. The cDNAs of tLepA and tLepB were 486bp and 459bp in length, encoding proteins of 161 aa and 152 aa, respectively. Modeling the three-dimensional structures of tLepA and tLepB predicted strong conservation of tertiary structure with that of human leptin, comprised of four helixes. Using synteny, the tLeps were found near common genes, such as IMPDH1 and LLRC4. The cDNA for tLepA and tLepB was cloned and synthetic cDNA optimized for expression in Escherichia coli was prepared according to the cloned sequence. The tLepA- and tLepB-expressing plasmids were transformed into E. coli and expressed as recombinant proteins upon induction with nalidixic acid, found almost entirely in insoluble inclusion bodies (IBs). The proteins were solubilized, refolded and purified to homogeneity by anion-exchange chromatography. In the case of tLepA, the fraction eluted contained a mixture of monomers and dimers. The purified tLepA and tLepB monomers and tLepA dimer showed a single band of ∼15kDa on an SDS-polyacrylamide gel in the presence of reducing agent, whereas the tLepA dimer showed one band of ∼30kDa in the absence of reducing agent, indicating its formation by S-S bonds. The three tLeps were biologically active in promoting proliferation of BAF/3 cells stably transfected with the long form of human leptin receptor (hLepR), but their activity was four orders of magnitude lower than that of mammalian leptin. Furthermore, the three tLeps were biologically active in promoting STAT-LUC activation in COS7 cells transfected with the identified tLepR but not in cells transfected with hLepR. tLepA was more active than tLepB. Low or no activity likely resulted from low identity (9-22%) to mammalian leptins. In an in vivo experiment in which tilapia were fed ad libitum or fasted, there was no significant difference in the expressions of tLepA, tLepB or tLepR in the brain between the two groups examined both by real-time PCR and RNA next generation sequencing. In conclusion, in the present report we show novel, previously unknown sequences of tilapia leptin receptor and two leptins and prepare two biologically active recombinant leptin proteins. Copyright © 2014 Elsevier Inc. All rights reserved.
Saghier, Sadaf; Schwarz, Steven M; Anderson, Virginia; Gupta, Raavi; Heidarian, Amin; Rabinowitz, Simon S
2018-04-25
Helicobacter pylori (Hp) are the most common agents causing gastric mucosal injury worldwide. Foveolar hyperplasia is a key component of the stomach's reaction to injury. This study examines histopathologic characteristics associated with Helicobacter pylori and with non- Helicobacter pylori-associated gastropathy in children and adolescents, and compares the prevalence of foveolar hyperplasia among these disease subgroups and normal control subjects. Eighty-one gastric antral and corpus biopsies from subjects 2-19 years of age were studied. Twenty-two subjects with Helicobacter pylori gastritis were compared to 23 with non-Helicobacter pylori gastropathy and to 36 controls (normal biopsies). Foveolar length, full mucosal thickness, and the foveolar length: full mucosal thickness ratio were derived by a morphometric technique previously developed to analyze adult gastric tissue. Compared to controls, Helicobacter pylori gastritis demonstrated significant increases in antral foveolar length (P < .0001), full mucosal thickness (P < .0001), as well as corpus foveolar length (P < .05) and corpus full mucosal thickness (P < .05). Non-Helicobacter pylori-associated gastropathy also was characterized by increased antral foveolar length (P < .0001) and full mucosal thickness (P < .001) but corresponding corpus measurements did not differ from controls. Antral foveolar length in non-Helicobacter pylori gastropathy was increased, when compared to Helicobacter pylori gastritis (P < .05), while corpus values were not. The non-Helicobacter pylori gastropathy group demonstrated increased antral foveolar length: full mucosal thickness ratios, compared with Helicobacter pylori gastritis (P < .001) and with normal controls (P < .0001). An objective, quantitative approach to measuring foveolar hyperplasia in adults was successfully applied to pediatric biopsies and yielded a richer characterization of gastric pathology in children. Foveolar hyperplasia appears to be a generalized phenomenon in the presence of pediatric Helicobacter pylori gastritis but is limited to the antrum in non-Helicobacter pylori gastropathy. © 2018 John Wiley & Sons Ltd.
Li, Xiangwei; Ma, Chi; Xie, Xiaohua; Sun, Hongchen; Liu, Xiaohua
2016-04-15
While pulp regeneration using tissue engineering strategy has been explored for over a decade, successful regeneration of pulp tissues in a full-length human root with a one-end seal that truly simulates clinical endodontic treatment has not been achieved. To address this challenge, we designed and synthesized a unique hierarchical growth factor-loaded nanofibrous microsphere scaffolding system. In this system, vascular endothelial growth factor (VEGF) binds with heparin and is encapsulated in heparin-conjugated gelatin nanospheres, which are further immobilized in the nanofibers of an injectable poly(l-lactic acid) (PLLA) microsphere. This hierarchical microsphere system not only protects the VEGF from denaturation and degradation, but also provides excellent control of its sustained release. In addition, the nanofibrous PLLA microsphere integrates the extracellular matrix-mimicking architecture with a highly porous injectable form, efficiently accommodating dental pulp stem cells (DPSCs) and supporting their proliferation and pulp tissue formation. Our in vivo study showed the successful regeneration of pulp-like tissues that fulfilled the entire apical and middle thirds and reached the coronal third of the full-length root canal. In addition, a large number of blood vessels were regenerated throughout the canal. For the first time, our work demonstrates the success of pulp tissue regeneration in a full-length root canal, making it a significant step toward regenerative endodontics. The regeneration of pulp tissues in a full-length tooth root canal has been one of the greatest challenges in the field of regenerative endodontics, and one of the biggest barriers for its clinical application. In this study, we developed a unique approach to tackle this challenge, and for the first time, we successfully regenerated living pulp tissues in a full-length root canal, making it a significant step toward regenerative endodontics. This study will make positive scientific impact and interest the broad and multidisciplinary readership in the dental biomaterials and craniofacial tissue engineering community. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Patterson, Michael; Seregin, Alexey; Huang, Cheng; Kolokoltsova, Olga; Smith, Jennifer; Miller, Milagros; Smith, Jeanon; Yun, Nadezhda; Poussard, Allison; Grant, Ashley; Tigabu, Bersabeh; Walker, Aida; Paessler, Slobodan
2014-02-01
Machupo virus (MACV) is the etiological agent of Bolivian hemorrhagic fever (BHF), a reemerging and neglected tropical disease associated with high mortality. The prototypical strain of MACV, Carvallo, was isolated from a human patient in 1963, but minimal in vitro and in vivo characterization has been reported. To this end, we utilized reverse genetics to rescue a pathogenic MACV from cloned cDNAs. The recombinant MACV (rMACV) had in vitro growth properties similar to those of the parental MACV. Both viruses caused similar disease development in alpha/beta and gamma interferon receptor knockout mice, including neurological disease development and high mortality. In addition, we have identified a novel murine model with mortality and neurological disease similar to BHF disease reported in humans and nonhuman primates.
cDNA cloning and expression of carotenogenic genes during flower development in Gentiana lutea.
Zhu, Changfu; Yamamura, Saburo; Koiwa, Hiroyuki; Nishihara, Masashiro; Sandmann, Gerhard
2002-02-01
All cDNAs involved in carotenoid biosynthesis leading to lycopene in yellow petals of Gentiana lutea have been cloned from a cDNA library. They encode a geranylgeranyl pyrophosphate synthase, a phytoene synthase, a phytoene desaturase and a zeta-carotene desaturase. The indicated function of all cDNAs was established by heterologous complementation in Escherichia coli. The amino acid sequences deduced from the cDNAs were between 47.5% and 78.9% identical to those reported for the corresponding enzymes from other higher plants. Southern analysis suggested that the genes for each enzyme probably represent a small multi-gene family. Tissue-specific expression of the genes and expression during flower development was investigated. The expression of the phytoene synthase gene, psy, was enhanced in flowers but transcripts were not detected in stems and leaves by northern blotting. Transcripts of the genes for geranylgeranyl pyrophosphate (ggpps), phytoene desaturase (pds) and zeta-carotene desaturase (zds) were detected in flowers and leaves but not in stems. Analysis of the expression of psy and zds in petals revealed that levels of the transcripts were lowest in young buds and highest in fully open flowers, in parallel with the formation of carotenoids. Obviously, the transcription of these genes control the accumulation of carotenoids during flower development in G. lutea. For pds only a very slight increase of mRNA was found whereas the transcripts of ggpps decreased during flower development.
Synthesis, antimicrobial activity and gene structure of a novel member of the dermaseptin B family.
Fleury, Y; Vouille, V; Beven, L; Amiche, M; Wróblewski, H; Delfour, A; Nicolas, P
1998-03-09
Dermaseptins are a family of cationic (Lys-rich) antimicrobial peptides that are abundant in the skin secretions of the arboreal frogs Phyllomedusa bicolor and P. sauvagii. In vitro, these peptides are microbicidal against a wide variety of microorganisms including Gram-positive and Gram-negative bacteria, yeasts, protozoa and fungi. To date, 6 dermaseptin B mature peptides, 24-34 residues long, 2 dermaseptin B cDNAs and 2 gene sequences have been identified in P. bicolor. To assess dermaseptin related genes further, we screened a P. bicolor genomic library with 32P-labeled cDNAs coding either for prepro-dermaseptins B1 or B2 (adenoregulin). A gene sequence was identified that coded a novel dermaseptin B, termed Drg3, which exhibits 23-42% amino acids identities with other members of the family. Analysis of the cDNAs coding precursors for several opioid and antimicrobial peptides originating from the skin of various amphibian species revealed that the 25-residue preproregion of these preproforms are all encoded by conserved nucleotides encompassed by the first coding exon of the Drg3 gene. Synthetic dermaseptin Drg3 exhibited a bactericidal activity towards several species of mollicutes (wall-less eubacteria), firmicutes (Gram-positive eubacteria), and gracilicutes (Gram-negative eubacteria), with minimal inhibitory concentrations (MICs) ranging from 6.25 to 100 microM. Experiments performed on Acholeplasma laidlawii cells revealed that this peptide is membranotropic and that if efficiently depolarizes the plasma membrane.
Saito, M; Takenouchi, Y; Kunisaki, N; Kimura, S
2001-05-01
The subunit compositions of skin and muscle type I collagens from rainbow trout were found to be alpha1(I)alpha2(I)alpha3(I) and [alpha1(I)](2)alpha2(I), respectively. The occurrence of alpha3(I) has been observed only for bonyfish. The skin collagen exhibited more susceptibility to both heat denaturation and MMP-13 digestion than the muscle counterpart; the former had a lower denaturation temperature by about 0.5 degrees C than the latter. The lower stability of skin collagen, however, is not due to the low levels of imino acids because the contents of Pro and Hyp were almost constant in both collagens. On the other hand, some cDNAs coding for the N-terminal and/or a part of triple-helical domains of proalpha(I) chains were cloned from the cDNA library of rainbow trout fibroblasts. These cDNAs together with the previously cloned collagen cDNAs gave information about the complete primary structure of type I procollagen. The main triple-helical domain of each proalpha(I) chain had 338 uninterrupted Gly-X-Y triplets consisting of 1014 amino acids and was unique in its high content of Gly-Gly doublets. In particular, the bonyfish-specific alpha(I) chain, proalpha3(I) was characterized by the small number of Gly-Pro-Pro triplets, 19, and the large number of Gly-Gly doublets, 38, in the triple-helical domain, compared to 23 and 22, respectively, for proalpha1(I). The small number of Gly-Pro-Pro and the large number of Gly-Gly in proalpha3(I) was assumed to partially loosen the triple-helical structure of skin collagen, leading to the lower stability of skin collagen mentioned above. Finally, phylogenetic analyses revealed that proalpha3(I) had diverged from proalpha1(I). This study is the first report of the complete primary structure of fish type I procollagen.
Abebie, Bekele; Lers, Amnon; Philosoph-Hadas, Sonia; Goren, Raphael; Riov, Joseph; Meir, Shimon
2008-01-01
A previous study showed that the relative effectiveness of 2,4-dichlorophenoxyacetic acid (2,4-D) compared with that of 1-naphthaleneacetic acid (NAA) in reducing floret bud abscission in cestrum (Cestrum elegans) cut flowers was due to its acropetal transport. The aim of the present study was to examine if the differential effect of these auxins on floret abscission is reflected in the expression of Aux/IAA genes in the floret abscission zone (AZ). cDNAs were isolated by PCR-based cloning from the floret AZ of auxin-treated cut flowers. The expression patterns of the cDNAs in various tissues and the effect of indole-3-acetic acid (IAA), applied with or without cycloheximide, on their expression in the floret AZ were examined by northern blot analysis. The regulation of transcript accumulation in the floret AZ in response to NAA or 2,4-D was measured by real-time PCR during auxin pulsing of cut flowers and vase life, concomitantly with floret abscission. Six isolated cDNAs were identified to represent Aux/IAA homologous genes, designated as Cestrum elegans (Ce)-IAA1 to Ce-IAA6. Four Ce-IAA genes were characterized as early auxin-responsive genes (ARGs), and two (Ce-IAA1 and Ce-IAA5) as late ARGs. Only Ce-IAA5 was AZ-specific in floret buds. A temporal regulation of Ce-IAA transcript levels in the floret AZ was found, with 2,4-D inducing higher expression levels than NAA in floret buds. These Ce-IAA expression levels were negatively correlated with floret abscission. The differential transport characteristics of NAA and 2,4-D in cestrum cut flowers were reflected in differential activation of the Ce-IAA genes identified in the floret AZ. Therefore, Aux/IAA genes can be used as molecular markers to measure auxin activity, which reflects free auxin level in the AZ. Two of the identified genes, Ce-IAA1 and Ce-IAA5, may also have a regulatory role in abscission.
Comparative gene expression in sexual and apomictic ovaries of Pennisetum ciliare (L.) Link.
Vielle-Calzada, J P; Nuccio, M L; Budiman, M A; Thomas, T L; Burson, B L; Hussey, M A; Wing, R A
1996-12-01
Limited emphasis has been given to the molecular study of apomixis, an asexual method of reproduction where seeds are produced without fertilization. Most buffelgrass (Pennisetum ciliare (L.) Link syn = Cenchrus ciliaris L.) genotypes reproduce by obligate apomixis (apospory); however, rare sexual plants have been recovered. A modified differential display procedure was used to compare gene expression in unpollinated ovaries containing ovules with either sexual or apomictic female gametophytes. The modification incorporated end-labeled poly(A)+ anchored primers as the only isotopic source, and was a reliable and consistent approach for detecting differentially displayed transcripts. Using 20 different decamers and two anchor primers, 2268 cDNA fragments between 200 and 600 bp were displayed. From these, eight reproducible differentially displayed cDNAs were identified and cloned. Based on northern analysis, one cDNA was detected in only the sexual ovaries, two cDNAs in only apomictic ovaries and one cDNA was present in both types of ovaries. Three fragments could not be detected and one fragment was detected in ovaries, stems, and leaves. Comparison of gene expression during sexual and apomictic development in buffelgrass represents a new model system and a strategy for investigating female reproductive development in the angiosperms.
Genes Expressed During Fruiting Body Formation of Agrocybe cylindracea
Shim, Sung Mi; Kim, Sang Beom; Kim, Hey Young; Rho, Hyun-Su; Lee, Hyun Sook; Lee, Min Woong; Lee, U Youn; Im, Kyung Hoan
2006-01-01
Agrocybe cylindracea, an edible mushroom belonging to Bolbitiaceae, Agaricales, is widely used as invaluable medicinal material in the oriental countries. This study was initiated to find the genes expressed during the fruiting body formation of A. cylindracea. The cDNAs expressed differentially during fruiting body morphogenesis of A. cylindracea were isolated through subtractive hybridization between vegetative mycelia and fruiting bodies. The cDNAs expressed in the fruiting body morphogenesis of A. cylindracea were cloned and twenty genes were identified. Eleven were homologous to genes of known functions, three were homologous to genes in other organism without any function known. Six were completely novel genes specific to A. cylindracea so far examined. Some genes with known functions were a pleurotolysin, a self-assembling poreforming cytolysins; Aa-Pri1 and Pir2p, specifically induced genes during fruiting initiation of other mushroom, Agrocybe aegerita; an amino acid permease; a cytochrome P450; a MADS-box gene; a peptidylprolyl isomerase; and a serine proteinase. For other clones, no clear function was annotated so far. We believe the first report of the differentially expressed genes in fruiting process of A. cylindracea will be great helps for further research. PMID:24039501
Dehesh, K; Edwards, P; Hayes, T; Cranmer, A M; Fillatti, J
1996-01-01
The seed oil of Cuphea palustris has an unusual fatty-acyl composition, whereby the principal fatty-acyl groups, myristate (64%) and caprylate (20%), differ by more than two methylenes. We have isolated two thioesterase (TE) cDNAs from C. palustris, encoding proteins designated Cp FatB1 and Cp FatB2, which, when expressed in Escherichia coli, have TE activities specific for 8:0/10:0- and 14:0/16:0-acyl carrier protein substrates, respectively. The specific activities of the recombinant affinity-purified enzymes indicate that Cp FatB2 is kinetically superior to Cp FatB1. This result is consistent with the predominance of 14:0 in the seed oil, despite apparently equal mRNA abundance of the two transcripts in the seed. In C. palustris the expression of both sequences is confined to the seed tissues. Based on these findings we propose that these two enzymes are major factors determining the bimodal chain-length composition of C. palustris oil. Analysis of the immature and mature seed oil by reverse-phase high-performance liquid chromatography confirmed that the principal triglycerides contain both 8:0 and 14:0. This result indicates that both fatty acids are synthesized at the same time and in the same cells at all developmental stages during oil deposition, suggesting that the two TEs act together in the same fatty acid synthesis system.
Dehesh, K; Edwards, P; Hayes, T; Cranmer, A M; Fillatti, J
1996-01-01
The seed oil of Cuphea palustris has an unusual fatty-acyl composition, whereby the principal fatty-acyl groups, myristate (64%) and caprylate (20%), differ by more than two methylenes. We have isolated two thioesterase (TE) cDNAs from C. palustris, encoding proteins designated Cp FatB1 and Cp FatB2, which, when expressed in Escherichia coli, have TE activities specific for 8:0/10:0- and 14:0/16:0-acyl carrier protein substrates, respectively. The specific activities of the recombinant affinity-purified enzymes indicate that Cp FatB2 is kinetically superior to Cp FatB1. This result is consistent with the predominance of 14:0 in the seed oil, despite apparently equal mRNA abundance of the two transcripts in the seed. In C. palustris the expression of both sequences is confined to the seed tissues. Based on these findings we propose that these two enzymes are major factors determining the bimodal chain-length composition of C. palustris oil. Analysis of the immature and mature seed oil by reverse-phase high-performance liquid chromatography confirmed that the principal triglycerides contain both 8:0 and 14:0. This result indicates that both fatty acids are synthesized at the same time and in the same cells at all developmental stages during oil deposition, suggesting that the two TEs act together in the same fatty acid synthesis system. PMID:8587983
Lee, Dae-Weon; Boo, Kyung Saeng
2005-12-01
Pheromone biosynthesis activating neuropeptide (PBAN) produced in the subesophageal ganglion stimulates pheromone production in the pheromone gland. A cDNA isolated from female adult heads of the diamondback moth (Plutella xylostella (L.)) encodes 193 amino acids including PBAN, designated as Plx-PBAN, and four other neuropeptides (NPs): diapause hormone (DH) homologue, alpha-NP, beta-NP and gamma-NP. All of the peptides are amidated in their C-termini and shared a conserved motif, FXPR(or K)L structure, as reported from other PBAN cDNAs. Plx-PBAN consists of 30 amino acids, the shortest PBAN so far reported. Plx-PBAN exhibited below 50% homology, compared with other known PBANs. The Plx-DH homologue is structurally different from DH of Bombyx mori. The length of Plx-beta-NP (16 amino acids) was the shortest and showed relatively low similarity, whereas gamma-NP (10 amino acids in length) was the longest among examined gamma-NPs. When female adults were injected with synthetic Plx-PBAN, pheromone production showed a maximal increase 1h post-injection. RT-PCR screening revealed that Plx-PBAN cDNA was expressed in all examined body parts, with the highest expression level in the head of female adults. Analysis of RT-PCR products indicated the Plx-PBAN sequence was identical in all examined body parts of both sexes. Phylogenetic analysis revealed that the Plx-PBAN gene is distantly related to other PBANs, demonstrated by the relatively low similarity.
Mureşan, Carmen I; Schierhorn, Angelika; Buttstedt, Anja
2018-04-25
Royal jelly (RJ) is a beehive product with a complex composition, major royal jelly proteins (MRJPs) being the most abundant proteins. Cell culture and animal studies suggest various biological activities for the full-length/native MRJPs. In the field of apitherapy, it is assumed that MRJPs can positively affect human health. However, whenever RJ is administered orally, the availability for assimilation in the gastrointestinal tract is a prerequisite for MRJPs to have any effect on humans. We here show that MRJPs vary in resistance to pepsin digestion with MRJP2 being most stable and still present as full-length protein after 24 h of digestion. In the intestinal phase, using trypsin and chymotrypsin, MRJPs are rapidly digested with MRJP2 again showing longest stability (40 min), suggesting that MRJPs can reach the small intestine as full-length proteins but then have to be resorbed quickly if full-length proteins are to fulfill any biological activity.
Knierim, Dennis; Maiss, Edgar; Kenyon, Lawrence; Winter, Stephan; Menzel, Wulf
2015-10-01
Luffa aphid-borne yellows virus (LABYV) was proposed as the name for a previously undescribed polerovirus based on partial genome sequences obtained from samples of cucurbit plants collected in Thailand between 2008 and 2013. In this study, we determined the first full-length genome sequence of LABYV. Based on phylogenetic analysis and genome properties, it is clear that this virus represents a distinct species in the genus Polerovirus. Analysis of sequences from sample TH24, which was collected in 2010 from a luffa plant in Thailand, reveals the presence of two different full-length genome consensus sequences.
USDA-ARS?s Scientific Manuscript database
This study was conducted to clone and analyze the expression pattern of a C4H gene encoding cinnamate 4-hydroxylase from kenaf (Hibiscus cannabinus L.). A full-length C4H ortholog was cloned using degenerate primers and the RACE (rapid amplification of cDNA ends) method. The full-length C4H ortholog...
A new strategy for full-length Ebola virus glycoprotein expression in E.coli.
Zai, Junjie; Yi, Yinhua; Xia, Han; Zhang, Bo; Yuan, Zhiming
2016-12-01
Ebola virus (EBOV) causes severe hemorrhagic fever in humans and non-human primates with high rates of fatality. Glycoprotein (GP) is the only envelope protein of EBOV, which may play a critical role in virus attachment and entry as well as stimulating host protective immune responses. However, the lack of expression of full-length GP in Escherichia coli hinders the further study of its function in viral pathogenesis. In this study, the vp40 gene was fused to the full-length gp gene and cloned into a prokaryotic expression vector. We showed that the VP40-GP and GP-VP40 fusion proteins could be expressed in E.coli at 16 °C. In addition, it was shown that the position of vp40 in the fusion proteins affected the yields of the fusion proteins, with a higher level of production of the fusion protein when vp40 was upstream of gp compared to when it was downstream. The results provide a strategy for the expression of a large quantity of EBOV full-length GP, which is of importance for further analyzing the relationship between the structure and function of GP and developing an antibody for the treatment of EBOV infection.
Richter, K; Egger, R; Negri, L; Corsi, R; Severini, C; Kreil, G
1990-06-01
We present the structure of four precursors for [D-Ala2]deltorphins I and II as deduced from cDNAs cloned from skin of the frog Phyllomedusa bicolor. These contain the genetic information for one copy of [D-Ala2]deltorphin II and zero, one, or three copies of [D-Ala2]deltorphin I. In each case, the D-alanine of the end product is encoded by a normal GCG codon for L-alanine. In addition, the existence of three peptides related to dermorphin was predicted from the amino acid sequence of the precursors. These peptides were synthesized with a D-alanine in position 2 and their pharmacological properties were tested. Two of them, [Lys7]dermorphin-OH and [Trp4,Asn7]dermorphin-OH, were found to have roughly the same affinity and selectivity for mu-type opioid receptors as dermorphin.
Richter, K; Egger, R; Negri, L; Corsi, R; Severini, C; Kreil, G
1990-01-01
We present the structure of four precursors for [D-Ala2]deltorphins I and II as deduced from cDNAs cloned from skin of the frog Phyllomedusa bicolor. These contain the genetic information for one copy of [D-Ala2]deltorphin II and zero, one, or three copies of [D-Ala2]deltorphin I. In each case, the D-alanine of the end product is encoded by a normal GCG codon for L-alanine. In addition, the existence of three peptides related to dermorphin was predicted from the amino acid sequence of the precursors. These peptides were synthesized with a D-alanine in position 2 and their pharmacological properties were tested. Two of them, [Lys7]dermorphin-OH and [Trp4,Asn7]dermorphin-OH, were found to have roughly the same affinity and selectivity for mu-type opioid receptors as dermorphin. PMID:2352951
Recombinant antigens for immunodiagnosis of cystic echinococcosis
Li, Jun; Zhang, Wen-Bao
2004-01-01
Three cDNAs, termed EpC1, TPxEg and EgG5, were isolated by immunoscreening from an Echinococcus granulosus cDNA library. The recombinant phages exhibited strong reactivity with sera from humans with confirmed cystic echinococcosis (CE) and with sera from mice infected with E. granulosus oncospheres. The cDNAs were subcloned into a pET vector, expressed as fusion proteins tagged with GST and affinity purified against the GST tag. Of the three recombinant proteins, EpC1 achieved the highest performance for serodiagnosis of CE in Western blot analysis using a panel of clinically defined human sera to initially address the sensitivity and specificity of the molecules. The protein yielded an overall sensitivity of 92.2% and specificity of 95.6%, levels unprecedented taking into account the large panel of 896 human sera that were tested. The strategy used may also prove suitable for improved immunodiagnosis of other parasitic infections. PMID:15188015
Chen, Gen-Hung; Chen, Wei-Ming; Huang, Guo-Ting; Chen, Yu-Wen; Jiang, Shann-Tzong
2009-10-28
Four recombinant antimicrobial peptide (rAMP) cDNAs, constructed from two goat lactoferricin-related peptide cDNAs (GLFcin and GLFcin II) with/without (His)(6)-Tag, were cloned into pPICZalphaC and transformed into Pichia pastoris SMD1168H. After methanol induction, these rAMPs were expressed and secreted into broth. They were purified after CM-Sepharose (without His-tg), HisTrap (with His-tg) and Sephadex G-25 chromatographies. The yield of purified rAMP was 0.15 mg/mL of broth. These 4 rAMPs were thermal-stable and with high antibacterial activity against Escherichia coli BCRC 11549, Pseudomonas aeruginosa BCRC 12450, Bacillus cereus BCRC 10603, Staphylococcus aureus BCRC 25923, Propioni bacterium acnes BCRC 10723, and Listera monocytogenes BCRC 14845. The minimum inhibitory concentration (MIC) of rAMPs against these indicators ranged from 4.07 to 16.00 mg/mL.
Liu, Zhong-Yuan; Wang, Yun; Lü, Guo-Dong; Wang, Xian-Lei; Zhang, Fu-Chun; Ma, Ji
2006-12-01
The partial cDNA sequence coding for the antifreeze proteins in the Tenebrio molitor was obtained by RT-PCR. Sequence analysis revealed nine putative cDNAs with a high degree of homology to Tenebrio molitor antifreeze proteins. The recombinant pGEX-4T-1-tmafp-XJ430 was introduced into E. coli BL21 to induce a GST fusion protein by IPTG. SDS-PAGE of the fusion protein demonstrated that the antifreeze protein migrated at a size of 38 kDa. The immunization was performed by intra-muscular injection of pCDNA3-tmafp-XJ430, and then antiserum was detected by ELISA. The titer of the antibody was 1:2,000. Western blotting analysis showed the antiserum was specific against the antifreeze protein. This finding could lead to further investigation of the properties and function of antifreeze proteins.
Molecular and Physiological Analysis of a Heat-Shock Response in Wheat 1
McElwain, Elizabeth F.; Spiker, Steven
1992-01-01
We have isolated two cDNA clones from wheat (Triticum aestivum L. var Stephens), designated WHSP16.8 and WHSP16.9, that are highly similar in sequence to the low molecular weight heat-shock protein genes previously isolated from soybean. RNA blot analysis confirms that these sequences are present in heat-shocked wheat seedlings, but not in control tissues. The WHSP16.8 and WHSP16.9 cDNAs were isolated by screening a lambda gt11 expression library with antibodies to HMGc (a chromosomal protein of wheat). Immunoblot analysis has demonstrated that the antibodies raised against HMGc also recognize a group of proteins that are induced by heat shock and have molecular weights (estimated by sodium dodecyl sulfate electrophoresis) consistent with the molecular weights of the proteins deduced from the sequences of the cDNAs. ImagesFigure 3Figure 4Figure 5 PMID:16669058
Bondre, Vijay P; Sankararaman, Vasudha; Andhare, Vijaysinh; Tupekar, Manisha; Sapkal, Gajanan N
2016-11-01
Human herpes simplex virus 1 (HSV-1) is the most common cause of sporadic encephalitis in humans that contributes to >10 per cent of the encephalitis cases occurring worldwide. Availability of limited full genome sequences from a small number of isolates resulted in poor understanding of host and viral factors responsible for variable clinical outcome. In this study genetic relationship, extent and source of recombination using full-length genome sequence derived from a newly isolated HSV-1 isolate was studied in comparison with those sampled from patients with varied clinical outcome. Full genome sequence of HSV-1 isolated from cerebrospinal fluid (CSF) of a patient with acute encephalitis syndrome (AES) by inoculation in baby hamster kidney-21 (BHK-21) cells was determined using next-generation sequencing (NGS) technology. Phylogenetic analysis of the newly generated sequence in comparison with 33 additional full-length genomes defined genetic relationship with worldwide distributed strains. The bootscan and similarity plot analysis defined recombination crossovers and similarities between newly isolated Indian HSV-1 with six Asian and a total of 34 worldwide isolated strains. Mapping of 376,332 reads amplified from HSV-1 DNA by NGS generated full-length genome of 151,024 bp from newly isolated Indian HSV-1. Phylogenetic analysis classified worldwide distributed strains into three major evolutionary lineages correlating to their geographic distribution. Lineage 1 containing strains were isolated from America and Europe; lineage 2 contained all the strains from Asian countries along with the North American KOS and RE strains whereas the South African isolates were distributed into two groups under lineage 3. Recombination analysis confirmed events of recombination in Indian HSV-1 genome resulting from mixing of different strains evolved in Asian countries. Our results showed that the full-length genome sequence generated from an Indian HSV-1 isolate shared close genetic relationship with the American KOS and Chinese CR38 strains which belonged to the Asian genetic lineage. Recombination analysis of Indian isolate demonstrated multiple recombination crossover points throughout the genome. This full-length genome sequence amplified from the Indian isolate would be helpful to study HSV evolution, genetic basis of differential pathogenesis, host-virus interactions and viral factors contributing towards differential clinical outcome in human infections.
Bondre, Vijay P.; Sankararaman, Vasudha; Andhare, Vijaysinh; Tupekar, Manisha; Sapkal, Gajanan N.
2016-01-01
Background & objectives: Human herpes simplex virus 1 (HSV-1) is the most common cause of sporadic encephalitis in humans that contributes to >10 per cent of the encephalitis cases occurring worldwide. Availability of limited full genome sequences from a small number of isolates resulted in poor understanding of host and viral factors responsible for variable clinical outcome. In this study genetic relationship, extent and source of recombination using full-length genome sequence derived from a newly isolated HSV-1 isolate was studied in comparison with those sampled from patients with varied clinical outcome. Methods: Full genome sequence of HSV-1 isolated from cerebrospinal fluid (CSF) of a patient with acute encephalitis syndrome (AES) by inoculation in baby hamster kidney-21 (BHK-21) cells was determined using next-generation sequencing (NGS) technology. Phylogenetic analysis of the newly generated sequence in comparison with 33 additional full-length genomes defined genetic relationship with worldwide distributed strains. The bootscan and similarity plot analysis defined recombination crossovers and similarities between newly isolated Indian HSV-1 with six Asian and a total of 34 worldwide isolated strains. Results: Mapping of 376,332 reads amplified from HSV-1 DNA by NGS generated full-length genome of 151,024 bp from newly isolated Indian HSV-1. Phylogenetic analysis classified worldwide distributed strains into three major evolutionary lineages correlating to their geographic distribution. Lineage 1 containing strains were isolated from America and Europe; lineage 2 contained all the strains from Asian countries along with the North American KOS and RE strains whereas the South African isolates were distributed into two groups under lineage 3. Recombination analysis confirmed events of recombination in Indian HSV-1 genome resulting from mixing of different strains evolved in Asian countries. Interpretation & conclusions: Our results showed that the full-length genome sequence generated from an Indian HSV-1 isolate shared close genetic relationship with the American KOS and Chinese CR38 strains which belonged to the Asian genetic lineage. Recombination analysis of Indian isolate demonstrated multiple recombination crossover points throughout the genome. This full-length genome sequence amplified from the Indian isolate would be helpful to study HSV evolution, genetic basis of differential pathogenesis, host-virus interactions and viral factors contributing towards differential clinical outcome in human infections. PMID:28361829
Ovule development: identification of stage-specific and tissue-specific cDNAs.
Nadeau, J A; Zhang, X S; Li, J; O'Neill, S D
1996-01-01
A differential screening approach was used to identify seven ovule-specific cDNAs representing genes that are expressed in a stage-specific manner during ovule development. The Phalaenopsis orchid takes 80 days to complete the sequence of ovule developmental events, making it a good system to isolate stage-specific ovule genes. We constructed cDNA libraries from orchid ovule tissue during archesporial cell differentiation, megasporocyte formation, and the transition to meiosis, as well as during the final mitotic divisions of female gametophyte development. RNA gel blot hybridization analysis revealed that four clones were stage specific and expressed solely in ovule tissue, whereas one clone was specific to pollen tubes. Two other clones were not ovule specific. Sequence analysis and in situ hybridization revealed the identities and domain of expression of several of the cDNAs. O39 encodes a putative homeobox transcription factor that is expressed early in the differentiation of the ovule primordium; O40 encodes a cytochrome P450 monooxygenase (CYP78A2) that is pollen tube specific. O108 encodes a protein of unknown function that is expressed exclusively in the outer layer of the outer integument and in the female gametophyte of mature ovules. O126 encodes a glycine-rich protein that is expressed in mature ovules, and O141 encodes a cysteine proteinase that is expressed in the outer integument of ovules during seed formation. Sequences homologous to these ovule clones can now be isolated from other organisms, and this should facilitate their functional characterization. PMID:8742709
Spindel, E R; Gibson, B W; Reeve, J R; Kelly, M
1990-01-01
Bombesin is a tetradecapeptide originally isolated from frog skin; its mammalian homologue is the 27-amino acid peptide gastrin-releasing peptide (GRP). cDNAs encoding GRP have been cloned from diverse species, but little is yet known about the amphibian bombesin precursor. Mass spectrometry of HPLC-separated skin exudate from Bombina orientalis was performed to demonstrate the existence of authentic bombesin in the skin of this frog. A cDNA library was prepared from the skin of B. orientalis and mixed oligonucleotide probes were used to isolate cDNAs encoding amphibian bombesin. Sequence analysis revealed that bombesin is encoded in a 119-amino acid prohormone. The carboxyl terminus of bombesin is flanked by two basic amino acids; the amino terminus is not flanked by basic amino acids but is flanked by a chymotryptic-like cleavage site. Northern blot analysis demonstrated similarly sized bombesin mRNAs in frog skin, brain, and stomach. Polymerase chain reaction was used to show that the skin and gut bombesin mRNAs encoded the identical prohormones. Prohormone processing, however, differed between skin and gut. Chromatography showed the presence of only authentic bombesin in skin whereas gut extracts contained two peaks of bombesin immunoreactivity, one consistent in size with bombesin and one closer in size to mammalian GRP. Thus the same bombesin prohormone is processed solely to bombesin in skin but is processed to a peptide similar in size to bombesin and to a peptide similar in size to mammalian GRP in stomach. Images PMID:2263631
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pizzuti, A.; Ratti, A.; Penso, D.
DiGeorge syndrome (DGS) is a developmental defect of some of the neural crest derivatives. Most DGS patients show haploinsufficiency due to interstitial deletions of the proximal long arm of chromosome 22. Deletions of 22q11 have also been reported in patients with the velo-cardio-facial syndrome and familial conotruncal heart defects. It has been suggested that the wide phenotype spectrum associated with 22q11 monosomy is a consequence of contiguous-gene deletions. We report the isolation of human cDNAs homologous to the Drosophila dishevelled (dsh) segment-polarity gene. Sequences homologous to the 3{prime} UTR of these transcripts (DVL-22) were positioned within the DGS critical regionmore » and were found to be deleted in DGS patients. Human DVL mRNAs are expressed in several fetal and adult tissues, including the thymus and, at high levels, the heart. Two transcripts, 3.2 and 5 kb, were detected, in Northern blot analysis, with different expression patterns in the surveyed tissues when different cDNAs were used. The isolated cDNAs exhibit high amino acid homology with the mouse and Xenopus Dvl-1 gene, the only other vertebrate dsh homologues so far isolated. The pivotal role of dsh in fly development suggests an analogous key function in vertebrate embryogenesis of its homologue genes. Since DGS may be due to perturbation of differentiation mechanisms at decisive embryological stages, a Dsh-like gene in the small-region overlap (SRO) might be a candidate for the pathogenesis of this disorder. 52 refs., 3 figs.« less
König, Enrico; Clark, Valerie C; Shaw, Chris; Bininda-Emonds, Olaf R P
2012-12-01
The skins of phyllomedusine frogs have long been considered as being tremendously rich sources of bioactive peptides. Previous studies of both peptides and cloning of their precursor encoding cDNAs have relied upon methanolic skin extracts or the dissected skins of recently deceased specimens and have not considered the different glands in isolation. We therefore focused our attention on the tibial gland of the Giant Monkey Frog, Phyllomedusa bicolor and constructed a cDNA library from the skin secretion that was obtained via mechanical stimulation of this macrogland. Using shotgun cloning, four precursors encoding host-defense peptides were identified: two archetypal dermaseptins, a phyllokinin and a phylloseptin that is new for this species but has been recently described from the Waxy Monkey Leaf Frog, Phyllomedusa sauvagii. Our study is the first to report defensive peptides specifically isolated from anuran tibial glands, confirming the hypothesis that these glands also contribute to chemical defense. Moreover, the discovery of novel compounds for this otherwise very well characterized species suggests that this largely neglected gland might possess a different cocktail of secretions from glands elsewhere in the same animal. We will also discuss some evolutionary implications of our findings with respect to the adaptive plasticity of secretory glands. Copyright © 2012 Elsevier Inc. All rights reserved.
Tan, Yung-Chie; Wong, Mui-Yun; Ho, Chai-Ling
2015-11-01
Basal stem rot is one of the major diseases of oil palm (Elaies guineensis Jacq.) caused by pathogenic Ganoderma species. Trichoderma and mycorrhizae were proposed to be able to reduce the disease severity. However, their roles in improving oil palm defence system by possibly inducing defence-related genes in the host are not well characterized. To better understand that, transcript profiles of eleven putative defence-related cDNAs in the roots of oil palm inoculated with Trichoderma harzianum T32 and mycorrhizae at different time points were studied. Transcripts encoding putative Bowman-Birk protease inhibitor (EgBBI2) and defensin (EgDFS) increased more than 2 fold in mycorrhizae-treated roots at 6 weeks post inoculation (wpi) compared to those in controls. Transcripts encoding putative dehydrin (EgDHN), glycine-rich RNA binding protein (EgGRRBP), isoflavone reductase (EgIFR), type 2 ribosome inactivating protein (EgT2RIP), and EgDFS increased in the oil palm roots treated with T. harzianum at 6 and/or 12 wpi compared to those in the controls. Some of these genes were also expressed in oil palm roots treated with Ganoderma boninense. This study provides an insight of some defence-related genes induced by Trichoderma and mycorrhizae, and their roles as potential agents to boost the plant defence system. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Eberwine, James; Bartfai, Tamas
2011-01-01
We report on an ‘unbiased’ molecular characterization of individual, adult neurons, active in a central, anterior hypothalamic neuronal circuit, by establishing cDNA libraries from each individual, electrophysiologically identified warm sensitive neuron (WSN). The cDNA libraries were analyzed by Affymetrix microarray. The presence and frequency of cDNAs was confirmed and enhanced with Illumina sequencing of each single cell cDNA library. cDNAs encoding the GABA biosynthetic enzyme. GAD1 and of adrenomedullin, galanin, prodynorphin, somatostatin, and tachykinin were found in the WSNs. The functional cellular and in vivo studies on dozens of the more than 500 neurotransmitter -, hormone- receptors and ion channels, whose cDNA was identified and sequence confirmed, suggest little or no discrepancy between the transcriptional and functional data in WSNs; whenever agonists were available for a receptor whose cDNA was identified, a functional response was found.. Sequencing single neuron libraries permitted identification of rarely expressed receptors like the insulin receptor, adiponectin receptor2 and of receptor heterodimers; information that is lost when pooling cells leads to dilution of signals and mixing signals. Despite the common electrophysiological phenotype and uniform GAD1 expression, WSN- transcriptomes show heterogenity, suggesting strong epigenetic influence on the transcriptome. Our study suggests that it is well-worth interrogating the cDNA libraries of single neurons by sequencing and chipping. PMID:20970451
USDA-ARS?s Scientific Manuscript database
Giardia canis virus (GCV) is a double-stranded RNA (dsRNA) virus of the family Totiviridae. In this study, the full-length cDNA of the G. canis virus was constructed in pPoly2/sfinot vector and RNA was transcribed in vitro. Virus-free G. canis trophozoites were transfected with in vitro transcribed ...
Mueller, MJ; Strube, MJ; Allen, BT
1997-04-01
INTRODUCTION:: Patients with diabetes (DM) and transmetatarsal amputation (TMA) are at high risk for skin breakdown from excessive peak plantar pressures (PPP). The primary purpose of this study was to determine how footwear (full length shoe or short shoe), a total contact insert, a rigid-rocker bottom (RRB) sole, and an ankle-foot-orthosis (AFO) affect PPP on the distal residuum and contralateral extremity of patients with DM and TMA. A secondary purpose was to monitor various functional measures during use of the footwear. METHODS:: Thirty patients with DM and TMA participated (mean age 62+/-4 years). The mean duration of DM was 19.9+/-10.1 years, and the mean time since TMA was 27.4+/-28.1 months. The following footwear was provided after a check-out from an orthotist and physical therapist (PT); 1) Full length shoe (ie shoe length prior to surgery), with a toe filler, 2) full length shoe, total contact insert, and an AFO, 2) full length shoe, total contact insert, and an AFO, 3) full length shoe, total contact insert, and a RRB sole, 4) full length shoe, total contact insert, RRB sole, and an AFO, 5) short shoe (ie length of residuum), total contact insert, and RRB, 6) short shoe, total contact insert, AFO, and RRB sole. In-shoe PPP during walking at the distal residuum and forefoot of the contralateral extremity were measured using the F-Scan System with established reliability under similar conditions (Generilizability coefficient =.75). Each measurement occurred after a one month adjustment period. Data were analyzed using a univariate repeated measuresANOVA. Individual contrasts were used for post-hoc analysis on those variables showing a significant overall F value (p<.05). RESULTS:: Compared to a regular shoe with a toe-filler, all conditions except the short shoe (#5), resulted in lower PPP on the distal residuum (p<.05). Condition 3, the full length shoe, total contact insert, and RRB resulted in lower pressures on the distal residuum and forefoot of the contralateral extremity compared to a regular shoe and toe-filler, and had few functional complaints as identified by the patient, orthotist or PT (3/27). Footwear using an AFO (Conditions 2,4,6) showed reduced PPP on the residuum, but most patients (16/29) had functional complaints. The short shoe (condition 5) had the fewest[Table: see text] functional complaints (2/26), but did not significantly reduce PPP and had the highest cosmetic refusal rate (5/26). DISCUSSION AND CONCLUSIONS:: Although there are individual patient characteristics which warrant other prescriptions, based on the results of this study, we recommend the full length shoe, total contact insert, and RRB sole for most patients with DM and TMA to reduce PPP. A reduction in PPP should help to lower the high risk of skin breakdown in this patient population.
Lu, Ling; Li, Chunhua; Yuan, Jie; Lu, Teng; Okamoto, Hiroaki; Murphy, Donald G
2013-03-01
We characterized the full-length genomes of five distinct hepatitis C virus (HCV)-3 isolates. These represent the first complete genomes for subtypes 3g and 3h, the second such genomes for 3k and 3i, and of one novel variant presently not assigned to a subtype. Each genome was determined from 18-25 overlapping fragments. They had lengths of 9579-9660 nt and each contained a single ORF encoding 3020-3025 aa. They were isolated from five patients residing in Canada; four were of Asian origin and one was of Somali origin. Phylogenetic analysis using 64 partial NS5B sequences differentiated 10 assigned subtypes, 3a-3i and 3k, and two additional lineages within genotype 3. From the data of this study, HCV-3 full-length sequences are now available for six of the assigned subtypes and one unassigned. Our findings should add insights to HCV evolutionary studies and clinical applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deymier, Martin J., E-mail: mdeymie@emory.edu; Claiborne, Daniel T., E-mail: dclaibo@emory.edu; Ende, Zachary, E-mail: zende@emory.edu
The high genetic diversity of HIV-1 impedes high throughput, large-scale sequencing and full-length genome cloning by common restriction enzyme based methods. Applying novel methods that employ a high-fidelity polymerase for amplification and an unbiased fusion-based cloning strategy, we have generated several HIV-1 full-length genome infectious molecular clones from an epidemiologically linked transmission pair. These clones represent the transmitted/founder virus and phylogenetically diverse non-transmitted variants from the chronically infected individual's diverse quasispecies near the time of transmission. We demonstrate that, using this approach, PCR-induced mutations in full-length clones derived from their cognate single genome amplicons are rare. Furthermore, all eight non-transmittedmore » genomes tested produced functional virus with a range of infectivities, belying the previous assumption that a majority of circulating viruses in chronic HIV-1 infection are defective. Thus, these methods provide important tools to update protocols in molecular biology that can be universally applied to the study of human viral pathogens. - Highlights: • Our novel methodology demonstrates accurate amplification and cloning of full-length HIV-1 genomes. • A majority of plasma derived HIV variants from a chronically infected individual are infectious. • The transmitted/founder was more infectious than the majority of the variants from the chronically infected donor.« less
Qi, Jianying; Ye, Xianlong; Ren, Guiping; Kan, Fangming; Zhang, Yu; Guo, Mo; Zhang, Zhiyi; Li, Deshan
2014-02-01
Rheumatoid arthritis (RA) is a chronic autoimmune inflammatory disease that mainly causes the synovial joint inflammation and cartilage destruction. Interleukin-1β (IL-1β) is an important proinflammatory cytokine involved in the pathogenesis of RA. In this study, we constructed and expressed anti-IL-1β-full-length antibody in CHO-K1-SV, anti-IL-1β-Fab and anti-IL-1β-scFv in Rosetta. We compared the therapeutic efficacy of three anti-IL-1β antibodies for CIA mice. Mice with CIA were subcutaneously injected with humanized anti-IL-1β-scFv, anti-IL-1β-Fab or anti-IL-1β-full-length antibody. The effects of treatment were determined by arthritis severity score, autoreactive humoral, cellular immune responses, histological lesion and cytokines production. Compared with anti-IL-1β-scFv treatments, anti-IL-1β-Fab and anti-IL-1β-full-length antibody therapy resulted in more significant effect in alleviating the severity of arthritis by preventing bone damage and cartilage destruction, reducing humoral and cellular immune responses, and down-regulating the expression of IL-1β, IL-6, IL-2, IFN-γ, TNF-α and MMP-3 in inflammatory tissue. The therapeutic effects of anti-IL-1β-Fab and anti-IL-1β-full-length antibodies on CIA mice had no significant difference. However, production of anti-IL-1β-full-length antibody in eukaryotic system is, in general, time-consuming and more expensive than that of anti-IL-1β-Fab in prokaryotic systems. In conclusion, as a small molecule antibody, anti-IL-1β-Fab is an ideal candidate for RA therapy. Copyright © 2013 Elsevier Ltd. All rights reserved.
Conformational states of the full-length glucagon receptor
Yang, Linlin; Yang, Dehua; de Graaf, Chris; Moeller, Arne; West, Graham M.; Dharmarajan, Venkatasubramanian; Wang, Chong; Siu, Fai Y.; Song, Gaojie; Reedtz-Runge, Steffen; Pascal, Bruce D.; Wu, Beili; Potter, Clinton S.; Zhou, Hu; Griffin, Patrick R.; Carragher, Bridget; Yang, Huaiyu; Wang, Ming-Wei; Stevens, Raymond C.; Jiang, Hualiang
2015-01-01
Class B G protein-coupled receptors are composed of an extracellular domain (ECD) and a seven-transmembrane (7TM) domain, and their signalling is regulated by peptide hormones. Using a hybrid structural biology approach together with the ECD and 7TM domain crystal structures of the glucagon receptor (GCGR), we examine the relationship between full-length receptor conformation and peptide ligand binding. Molecular dynamics (MD) and disulfide crosslinking studies suggest that apo-GCGR can adopt both an open and closed conformation associated with extensive contacts between the ECD and 7TM domain. The electron microscopy (EM) map of the full-length GCGR shows how a monoclonal antibody stabilizes the ECD and 7TM domain in an elongated conformation. Hydrogen/deuterium exchange (HDX) studies and MD simulations indicate that an open conformation is also stabilized by peptide ligand binding. The combined studies reveal the open/closed states of GCGR and suggest that glucagon binds to GCGR by a conformational selection mechanism. PMID:26227798
Lee, Jinhwa; Yu, Hai; Li, Yonghai; Ma, Jingjiao; Lang, Yuekun; Duff, Michael; Henningson, Jamie; Liu, Qinfang; Li, Yuhao; Nagy, Abdou; Bawa, Bhupinder; Li, Zejun; Tong, Guangzhi; Richt, Juergen A.; Ma, Wenjun
2017-01-01
Although several studies have investigated the functions of influenza PA-X, the impact of different expressions of PA-X protein including full-length, truncated or PA-X deficient forms on virus replication, pathogenicity and host response remains unclear. Herein, we generated two mutated viruses expressing a full-length or deficient PA-X protein based on the A/California/04/2009 (H1N1) virus that expresses a truncated PA-X to understand three different expressions of PA-X protein on virus replication, pathogenicity and host immune responses. The results showed that expression of either full-length or truncated PA-X protein enhanced viral replication and pathogenicity as well as reduced host innate immune response in mice by host shutoff activity when compared to the virus expressing the deficient PA-X form. Furthermore, the full-length PA-X expression exhibited a greater effect on virus pathogenicity than the truncated PA-X form. Our results provide novel insights of PA-X on viral replication, pathogenicity and host immune responses. PMID:28142079
Self-assembly of proglycinin and hybrid proglycinin synthesized in vitro from cDNA
Dickinson, Craig D.; Floener, Liliane A.; Lilley, Glenn G.; Nielsen, Niels C.
1987-01-01
An in vitro system was developed that results in the self-assembly of subunit precursors into complexes that resemble those found naturally in the endoplasmic reticulum. Subunits of glycinin, the predominant seed protein of soybeans, were synthesized from modified cDNAs using a combination of the SP6 transcription and the rabbit reticulocyte translation systems. Subunits produced from plasmid constructions that encoded either Gy4 or Gy5 gene products, but modified such that their signal sequences were absent, self-assembled into trimers equivalent in size to those precursors found in the endoplasmic reticulum. In contrast, proteins synthesized in vitro from Gy4 constructs failed to self-assemble when the signal sequence was left intact (e.g., preproglycinin) or when the coding sequence was modified to remove 27 amino acids from an internal hydrophobic region, which is highly conserved among the glycinin subunits. Various hybrid subunits were also produced by trading portions of Gy4 and Gy5 cDNAs and all self-assembled in our system. The in vitro assembly system provides an opportunity to study the self-assembly of precursors and to probe for regions important for assembly. It will also be helpful in attempts to engineer beneficial nutritional changes into this important food protein. Images PMID:16593868
Villand, P; Aalen, R; Olsen, O A; Lüthi, E; Lönneborg, A; Kleczkowski, L A
1992-06-01
Several cDNAs encoding the small and large subunit of ADP-glucose pyrophosphorylase (AGP) were isolated from total RNA of the starchy endosperm, roots and leaves of barley by polymerase chain reaction (PCR). Sets of degenerate oligonucleotide primers, based on previously published conserved amino acid sequences of plant AGP, were used for synthesis and amplification of the cDNAs. For either the endosperm, roots and leaves, the restriction analysis of PCR products (ca. 550 nucleotides each) has revealed heterogeneity, suggesting presence of three transcripts for AGP in the endosperm and roots, and up to two AGP transcripts in the leaf tissue. Based on the derived amino acid sequences, two clones from the endosperm, beps and bepl, were identified as coding for the small and large subunit of AGP, respectively, while a leaf transcript (blpl) encoded the putative large subunit of AGP. There was about 50% identity between the endosperm clones, and both of them were about 60% identical to the leaf cDNA. Northern blot analysis has indicated that beps and bepl are expressed in both the endosperm and roots, while blpl is detectable only in leaves. Application of the PCR technique in studies on gene structure and gene expression of plant AGP is discussed.
Adenoviral Gene Therapy Vectors Targeted to Prostate Cancer
2004-06-01
results from pre- clinical models into clinical trials . This problem has also been highlighted in Ad5 capsid mutation studies. Mutation of CAR and integrin...infectious eye disease in hospitals and eye 21. Harnett, G. B., and W. A. Newnham. 1981. Isolation of adenovirus type 19 clinics , from the male and female...promi- units or of large cDNAs such as the 7.1-kb ABCR gene nent in iris and ciliary body, with scattered positive cells involved in Stargardt disease
Deep sampling of the Palomero maize transcriptome by a high throughput strategy of pyrosequencing.
Vega-Arreguín, Julio C; Ibarra-Laclette, Enrique; Jiménez-Moraila, Beatriz; Martínez, Octavio; Vielle-Calzada, Jean Philippe; Herrera-Estrella, Luis; Herrera-Estrella, Alfredo
2009-07-06
In-depth sequencing analysis has not been able to determine the overall complexity of transcriptional activity of a plant organ or tissue sample. In some cases, deep parallel sequencing of Expressed Sequence Tags (ESTs), although not yet optimized for the sequencing of cDNAs, has represented an efficient procedure for validating gene prediction and estimating overall gene coverage. This approach could be very valuable for complex plant genomes. In addition, little emphasis has been given to efforts aiming at an estimation of the overall transcriptional universe found in a multicellular organism at a specific developmental stage. To explore, in depth, the transcriptional diversity in an ancient maize landrace, we developed a protocol to optimize the sequencing of cDNAs and performed 4 consecutive GS20-454 pyrosequencing runs of a cDNA library obtained from 2 week-old Palomero Toluqueño maize plants. The protocol reported here allowed obtaining over 90% of informative sequences. These GS20-454 runs generated over 1.5 Million reads, representing the largest amount of sequences reported from a single plant cDNA library. A collection of 367,391 quality-filtered reads (30.09 Mb) from a single run was sufficient to identify transcripts corresponding to 34% of public maize ESTs databases; total sequences generated after 4 filtered runs increased this coverage to 50%. Comparisons of all 1.5 Million reads to the Maize Assembled Genomic Islands (MAGIs) provided evidence for the transcriptional activity of 11% of MAGIs. We estimate that 5.67% (86,069 sequences) do not align with public ESTs or annotated genes, potentially representing new maize transcripts. Following the assembly of 74.4% of the reads in 65,493 contigs, real-time PCR of selected genes confirmed a predicted correlation between the abundance of GS20-454 sequences and corresponding levels of gene expression. A protocol was developed that significantly increases the number, length and quality of cDNA reads using massive 454 parallel sequencing. We show that recurrent 454 pyrosequencing of a single cDNA sample is necessary to attain a thorough representation of the transcriptional universe present in maize, that can also be used to estimate transcript abundance of specific genes. This data suggests that the molecular and functional diversity contained in the vast native landraces remains to be explored, and that large-scale transcriptional sequencing of a presumed ancestor of the modern maize varieties represents a valuable approach to characterize the functional diversity of maize for future agricultural and evolutionary studies.
Senecal, P. K.; Pomraning, E.; Anders, J. W.; ...
2014-05-28
A state-of-the-art, grid-convergent simulation methodology was applied to three-dimensional calculations of a single-cylinder optical engine. A mesh resolution study on a sector-based version of the engine geometry further verified the RANS-based cell size recommendations previously presented by Senecal et al. (“Grid Convergent Spray Models for Internal Combustion Engine CFD Simulations,” ASME Paper No. ICEF2012-92043). Convergence of cylinder pressure, flame lift-off length, and emissions was achieved for an adaptive mesh refinement cell size of 0.35 mm. Furthermore, full geometry simulations, using mesh settings derived from the grid convergence study, resulted in excellent agreement with measurements of cylinder pressure, heat release rate,more » and NOx emissions. On the other hand, the full geometry simulations indicated that the flame lift-off length is not converged at 0.35 mm for jets not aligned with the computational mesh. Further simulations suggested that the flame lift-off lengths for both the nonaligned and aligned jets appear to be converged at 0.175 mm. With this increased mesh resolution, both the trends and magnitudes in flame lift-off length were well predicted with the current simulation methodology. Good agreement between the overall predicted flame behavior and the available chemiluminescence measurements was also achieved. Our present study indicates that cell size requirements for accurate prediction of full geometry flame lift-off lengths may be stricter than those for global combustion behavior. This may be important when accurate soot predictions are required.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Senecal, P. K.; Pomraning, E.; Anders, J. W.
A state-of-the-art, grid-convergent simulation methodology was applied to three-dimensional calculations of a single-cylinder optical engine. A mesh resolution study on a sector-based version of the engine geometry further verified the RANS-based cell size recommendations previously presented by Senecal et al. (“Grid Convergent Spray Models for Internal Combustion Engine CFD Simulations,” ASME Paper No. ICEF2012-92043). Convergence of cylinder pressure, flame lift-off length, and emissions was achieved for an adaptive mesh refinement cell size of 0.35 mm. Furthermore, full geometry simulations, using mesh settings derived from the grid convergence study, resulted in excellent agreement with measurements of cylinder pressure, heat release rate,more » and NOx emissions. On the other hand, the full geometry simulations indicated that the flame lift-off length is not converged at 0.35 mm for jets not aligned with the computational mesh. Further simulations suggested that the flame lift-off lengths for both the nonaligned and aligned jets appear to be converged at 0.175 mm. With this increased mesh resolution, both the trends and magnitudes in flame lift-off length were well predicted with the current simulation methodology. Good agreement between the overall predicted flame behavior and the available chemiluminescence measurements was also achieved. Our present study indicates that cell size requirements for accurate prediction of full geometry flame lift-off lengths may be stricter than those for global combustion behavior. This may be important when accurate soot predictions are required.« less
Semler, Matthew R; Wiseman, Roger W; Karl, Julie A; Graham, Michael E; Gieger, Samantha M; O'Connor, David H
2018-06-01
Pig-tailed macaques (Macaca nemestrina, Mane) are important models for human immunodeficiency virus (HIV) studies. Their infectability with minimally modified HIV makes them a uniquely valuable animal model to mimic human infection with HIV and progression to acquired immunodeficiency syndrome (AIDS). However, variation in the pig-tailed macaque major histocompatibility complex (MHC) and the impact of individual transcripts on the pathogenesis of HIV and other infectious diseases is understudied compared to that of rhesus and cynomolgus macaques. In this study, we used Pacific Biosciences single-molecule real-time circular consensus sequencing to describe full-length MHC class I (MHC-I) transcripts for 194 pig-tailed macaques from three breeding centers. We then used the full-length sequences to infer Mane-A and Mane-B haplotypes containing groups of MHC-I transcripts that co-segregate due to physical linkage. In total, we characterized full-length open reading frames (ORFs) for 313 Mane-A, Mane-B, and Mane-I sequences that defined 86 Mane-A and 106 Mane-B MHC-I haplotypes. Pacific Biosciences technology allows us to resolve these Mane-A and Mane-B haplotypes to the level of synonymous allelic variants. The newly defined haplotypes and transcript sequences containing full-length ORFs provide an important resource for infectious disease researchers as certain MHC haplotypes have been shown to provide exceptional control of simian immunodeficiency virus (SIV) replication and prevention of AIDS-like disease in nonhuman primates. The increased allelic resolution provided by Pacific Biosciences sequencing also benefits transplant research by allowing researchers to more specifically match haplotypes between donors and recipients to the level of nonsynonymous allelic variation, thus reducing the risk of graft-versus-host disease.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ponce, E.; Mear, J; Grabowski, G.A.
1994-09-01
Numerous mutations ({approximately}45) of the acid {beta}-glucosidase gene have been identified in patients with Gaucher disease. Many of these have been characterized by partial sequencing of cDNAs derived by RT-PCR or PCR of genomic DNA. In addition, genotype/phenotype correlations have been based on screening for known mutations. Thus, only a part of the gene is characterized in any population of affected patients. Several Gaucher disease alleles contain multiple, authentic point mutations that raises concern about conclusions based on only partial genetic characterization. Several wild-type cDNAs for acid {beta}-glucosidase have been sequenced. One contained a cloning artifact encoding R495H. We expressedmore » this cDNA and showed that the R495H enzyme had normal kinetic and stability properties. A disease-associated allele encoding R496H has been found by several groups. The close association and similarities of these two substitutions led us to question the disease casuality of the R496H allele. To evaluate this, we created and/or expressed cDNAs encoding R495, R496 (wild-type), (R495H, R496), (R495, R496H) and (R495H, R496H). The (wild-type) and (R495H, R496) enzymes had indistinguishable properties whereas the (R495, R496H) enzyme was essentially inactive. The introduction of both mutations (R495H, R496H) produced an enzyme whose activity was 25 to 50% of the wild-type. These results indicate that a pseudoreversion to a functional enzyme can occur by introducing a functionally neutral mutation together with a severe mutation. These results have major implications to structure/function and genotype/phenotype correlations in this disease.« less
Wang, Y H; Garvin, D F; Kochian, L V
2001-09-01
A subtractive tomato (Lycopersicon esculentum) root cDNA library enriched in genes up-regulated by changes in plant mineral status was screened with labeled mRNA from roots of both nitrate-induced and mineral nutrient-deficient (-nitrogen [N], -phosphorus, -potassium [K], -sulfur, -magnesium, -calcium, -iron, -zinc, and -copper) tomato plants. A subset of cDNAs was selected from this library based on mineral nutrient-related changes in expression. Additional cDNAs were selected from a second mineral-deficient tomato root library based on sequence homology to known genes. These selection processes yielded a set of 1,280 mineral nutrition-related cDNAs that were arrayed on nylon membranes for further analysis. These high-density arrays were hybridized with mRNA from tomato plants exposed to nitrate at different time points after N was withheld for 48 h, for plants that were grown on nitrate/ammonium for 5 weeks prior to the withholding of N. One hundred-fifteen genes were found to be up-regulated by nitrate resupply. Among these genes were several previously identified as nitrate responsive, including nitrate transporters, nitrate and nitrite reductase, and metabolic enzymes such as transaldolase, transketolase, malate dehydrogenase, asparagine synthetase, and histidine decarboxylase. We also identified 14 novel nitrate-inducible genes, including: (a) water channels, (b) root phosphate and K(+) transporters, (c) genes potentially involved in transcriptional regulation, (d) stress response genes, and (e) ribosomal protein genes. In addition, both families of nitrate transporters were also found to be inducible by phosphate, K, and iron deficiencies. The identification of these novel nitrate-inducible genes is providing avenues of research that will yield new insights into the molecular basis of plant N nutrition, as well as possible networking between the regulation of N, phosphorus, and K nutrition.
Conservation of the egg envelope digestion mechanism of hatching enzyme in euteleostean fishes.
Kawaguchi, Mari; Yasumasu, Shigeki; Shimizu, Akio; Sano, Kaori; Iuchi, Ichiro; Nishida, Mutsumi
2010-12-01
We purified two hatching enzymes, namely high choriolytic enzyme (HCE; EC 3.4.24.67) and low choriolytic enzyme (LCE; EC 3.4.24.66), from the hatching liquid of Fundulus heteroclitus, which were named Fundulus HCE (FHCE) and Fundulus LCE (FLCE). FHCE swelled the inner layer of egg envelope, and FLCE completely digested the FHCE-swollen envelope. In addition, we cloned three Fundulus cDNAs orthologous to cDNAs for the medaka precursors of egg envelope subunit proteins (i.e. choriogenins H, H minor and L) from the female liver. Cleavage sites of FHCE and FLCE on egg envelope subunit proteins were determined by comparing the N-terminal amino acid sequences of digests with the sequences deduced from the cDNAs for egg envelope subunit proteins. FHCE and FLCE cleaved different sites of the subunit proteins. FHCE efficiently cleaved the Pro-X-Y repeat regions into tripeptides to dodecapeptides to swell the envelope, whereas FLCE cleaved the inside of the zona pellucida domain, the core structure of egg envelope subunit protein, to completely digest the FHCE-swollen envelope. A comparison showed that the positions of hatching enzyme cleavage sites on egg envelope subunit proteins were strictly conserved between Fundulus and medaka. Finally, we extended such a comparison to three other euteleosts (i.e. three-spined stickleback, spotted halibut and rainbow trout) and found that the egg envelope digestion mechanism was well conserved among them. During evolution, the egg envelope digestion by HCE and LCE orthologs was established in the lineage of euteleosts, and the mechanism is suggested to be conserved. © 2010 The Authors Journal compilation © 2010 FEBS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liang, Xiao; Gao, Jian; Li, Dapeng
Peroxisome proliferator activated receptor alpha1 and alpha2 (PPARα1 and PPARα2) were investigated in loach (Misgurnus anguillicaudatus) by RACE (rapid amplification of cDNA ends) and qPCR (real-time quantitative PCR) for the first time. The cDNA sequences of PPARα1 and PPARα2 were 2042bp and 2407bp, respectively encoding 467 and 465 amino acids. Sequence alignments of deduced amino acids showed significant homology between the two subtypes of PPARα, indicating 70% identity. The two genes revealed sensible changes in transcriptions during early life stages of the loach, and the highest transcriptions of the two genes both appeared at some day after hatching. PPARα1 predominantlymore » expressed in liver, while PPARα2 markedly expressed in heart. The expression regulation of PPARα1 and PPARα2 in response to dietary fatty acids was determined in livers of loaches fed with diets containing fish oil (FO group) and soybean oil (SO group) for 75 days. The expression level of PPARα1 in FO group was significantly higher than those in SO group (P < 0.01), while the expression level of PPARα2 in FO group was also significantly higher than those in SO group (P < 0.05). There was no significant difference in the expression level between PPARα1 and PPARα2 in SO group, whereas significant difference in FO group. These indicated that lipid resources could regulate the expressions of these two genes in the loach. Our results will provide opportunities to better understand the functional characterization of PPARα1 and PPARα2 in further studies. - Highlights: • The full-length cDNAs of loach PPARα1 and PPARα2 were obtained by a RACE PCR method. • Phylogenetic and protein characterizations of these two genes were predicted. • These two genes differentially expressed at different early life stages and tissues indicating their different functions. • n-3 PUFA may regulate the activation of PPARα in the loach.« less
Lorin-Nebel, Catherine; Xing, Juan; Yan, Xiaohui; Strange, Kevin
2007-01-01
The Ca2+ release-activated Ca2+ (CRAC) channel is a plasma membrane Ca2+ entry pathway activated by endoplasmic reticulum (ER) Ca2+ store depletion. STIM1 proteins function as ER Ca2+ sensors and regulate CRAC channel activation. Recent studies have demonstrated that CRAC channels are encoded by the human Orai1 gene and a homologous Drosophila gene. C. elegans intestinal cells express a store-operated Ca2+ channel (SOCC) regulated by STIM-1. We cloned a full-length C. elegans cDNA that encodes a 293 amino acid protein, ORAI-1, homologous to human and Drosophila Orai1 proteins. ORAI-1 GFP reporters are co-expressed with STIM-1 in the gonad and intestine. Inositol 1,4,5-trisphosphate (IP3)-dependent Ca2+ signalling regulates C. elegans gonad function, fertility and rhythmic posterior body wall muscle contraction (pBoc) required for defecation. RNA interference (RNAi) silencing of orai-1 expression phenocopies stim-1 knockdown and causes sterility and prevents intestinal cell SOCC activation, but has no effect on pBoc or intestinal Ca2+ signalling. Orai-1 RNAi suppresses pBoc defects induced by intestinal expression of a STIM-1 Ca2+-binding mutant, indicating that the proteins function in a common pathway. Co-expression of stim-1 and orai-1 cDNAs in HEK293 cells induces large inwardly rectifying cation currents activated by ER Ca2+ depletion. The properties of this current recapitulate those of the native SOCC current. We conclude that C. elegans expresses bona fide CRAC channels that require the function of Orai1- and STIM1-related proteins. CRAC channels thus arose very early in animal evolution. In C. elegans, CRAC channels do not play obligate roles in all IP3-dependent signalling processes and ER Ca2+ homeostasis. Instead, we suggest that CRAC channels carry out highly specialized and cell-specific signalling roles and that they may function as a failsafe mechanism to prevent Ca2+ store depletion under pathophysiological and stress conditions. PMID:17218360
Chen, Yongzhong; Wang, Baoming; Chen, Jianjun; Wang, Xiangnan; Wang, Rui; Peng, Shaofeng; Chen, Longsheng; Ma, Li; Luo, Jian
2015-01-01
Tea oil derived from seeds of Camellia oleifera Abel. is high-quality edible oil in China. This study isolated full-length cDNAs of Rubisco subunits rbcL and rbcS from C. oleifera. The rbcL has 1,522 bp with a 1,425 bp coding region, encoding 475 amino acids; and the rbcS has 615 bp containing a 528 bp coding region, encoding 176 amino acids. The expression level of the two genes, designated as Co-rbcL and Co-rbcS, was determined in three C. oleifera cultivars: Hengchong 89, Xianglin 1, and Xianglin 14 whose annual oil yields were 546.9, 591.4, and 657.7 kg ha-1, respectively. The Co-rbcL expression in ‘Xianglin 14’ was significantly higher than ‘Xianglin 1’, and ‘Xianglin 1’ was greater than ‘Hengchong 89’. The expression levels of Co-rbcS in ‘Xianglin 1’ and ‘Xianglin 14’ were similar but were significantly greater than in ‘Hengchong 89’. The net photosynthetic rate of ‘Xianglin 14’ was significantly higher than ‘Xianglin 1’, and ‘Xianglin 1’ was higher than ‘Hengchong 89’. Pearson’s correlation analysis showed that seed yields and oil yields were highly correlated with the expression level of Co-rbcL at P < 0.001 level; and the expression of Co-rbcS was correlated with oil yield at P < 0.01 level. Net photosynthetic rate was also correlated with oil yields and seed yields at P < 0.001 and P < 0.01 levels, respectively. Our results suggest that Co-rbcS and Co-rbcL in particular could potentially be molecular markers for early selection of high oil yield cultivars. In combination with the measurement of net photosynthetic rates, the early identification of potential high oil production cultivars would significantly shorten plant breeding time and increase breeding efficiency. PMID:25873921
Ellington, W Ross; Yamashita, Daisuke; Suzuki, Tomohiko
2004-06-09
Glycocyamine kinase (GK) catalyzes the reversible phosphorylation of glycocyamine (guanidinoacetate), a reaction central to cellular energy homeostasis in certain animals. GK is a member of the phosphagen kinase enzyme family and appears to have evolved from creatine kinase (CK) early in the evolution of multi-cellular animals. Prior work has shown that GK from the polychaete Neanthes (Nereis) diversicolor exits as a hetero-dimer in vivo and that the two polypeptide chains (termed alpha and beta) are coded for by unique transcripts. In the present study, we demonstrate that the GK from a congener Nereis virens is also hetero-dimeric and is coded for by alpha and beta transcripts, which are virtually identical to the corresponding forms in N. diversicolor. The GK gene from N. diversicolor was amplified by PCR. Sequencing of the PCR products showed that the alpha and beta chains are the result of alternative splicing of the GK primary mRNA transcript. These results also strongly suggest that this gene underwent an early tandem exon duplication event. Full-length cDNAs for N. virens GKalpha and GKbeta were individually ligated into expression vectors and the resulting constructs used to transform Escherichia coli expression hosts. Regardless of expression conditions, minimal GK activity was observed in both GKalpha and GKbeta constructs. Inclusion bodies for both were harvested, unfolded in urea and alpha chains, beta chains and mixtures of alpha and beta chains were refolded by sequential dialysis. Only modest amounts of GK activity were observed when alpha and beta were refolded individually. In contrast, when refolded the alpha and beta mixture yielded highly active hetero-dimers, as validated by size exclusion chromatography, electrophoresis and mass spectrometry, with a specific activity comparable to that of natural GK. The above evidence suggests that there is a preference for hetero-dimer formation in the GKs from these two polychaetes. The evolution of the alternate splicing and an additional exon in these GKs, producing alpha and beta transcripts, can be viewed as a possible compensation for a mutation(s) in the original gene, which most likely coded for a homo-dimeric protein.
Polymorphisms and linkage analysis for ICAM-1 and the selectin gene cluster
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vora, D.K.; Rosenbloom, C.L.; Cottingham, R.W.
1994-06-01
Genetic polymorphisms in leukocyte and endothelial cell adhesion molecules may be important variables with regard to susceptibility to multifactorial disease processes that include an inflammatory component. For this reason, polymorphisms were sought for intercellular adhesion molecule-1 (ICAM-1; gene symbol ICAM1) and for the three genes in the selectin cluster, P-selectin, L-selectin, and E-selectin (gene symbols SELP, SELL, and SELE, respectively). Two amino acid polymorphisms were identified for ICAM-1; Gly or Arg at codon 241 and Lys or Glu at codon 469. Dinucleotide repeat polymorphisms were identified in the 3{prime}-untranslated region for ICAM-1 and in intron 9 for P-selectin. Restriction fragmentmore » length polymorphisms were found using cDNAs for each of the three selectin genes as probes; E-selectin with BglII, P-selectin with ScaI, and L-selectin with HincII. Linkage analysis was performed for the selectin gene cluster and for ICAM-1 using the CEPH families; ICAM-1 is very tightly linked to the LDL receptor on chromosome 19, and the selectin cluster is linked to markers at chromosome 1q23. 41 refs., 2 tabs.« less
A Family of at Least Seven β-Galactosidase Genes Is Expressed during Tomato Fruit Development
Smith, David L.; Gross, Kenneth C.
2000-01-01
During our search for a cDNA encoding β-galactosidase II, a β-galactosidase/exogalactanase (EC 3.2.1.23) present during tomato (Lycopersicon esculentum Mill.) fruit ripening, a family of seven tomato β-galactosidase (TBG) cDNAs was identified. The shared amino acid sequence identity among the seven TBG clones ranged from 33% to 79%. All contained the putative active site-containing consensus sequence pattern G-G-P-[LIVM]-x-Q-x-E-N-E-[FY] belonging to glycosyl hydrolase family 35. Six of the seven single-copy genes were mapped using restriction fragment length polymorphisms of recombinant inbred lines. RNA gel-blot analysis was used to evaluate TBG mRNA levels throughout fruit development, in different fruit tissues, and in various plant tissues. RNA gel-blot analysis was also used to reveal TBG mRNA levels in fruit of the rin, nor, and Nr tomato mutants. The TBG4-encoded protein, known to correspond to β-galactosidase II, was expressed in yeast and exo-galactanase activity was confirmed via a quantified release of galactosyl residues from cell wall fractions containing β(1→4)-d-galactan purified from tomato fruit. PMID:10889266
Suppression of the heterotrimeric G protein causes abnormal morphology, including dwarfism, in rice
Fujisawa, Yukiko; Kato, Teruhisa; Ohki, Shizuka; Ishikawa, Atsushi; Kitano, Hidemi; Sasaki, Takuji; Asahi, Tadashi; Iwasaki, Yukimoto
1999-01-01
Transgenic rice containing an antisense cDNA for the α subunit of rice heterotrimeric G protein produced little or no mRNA for the subunit and exhibited abnormal morphology, including dwarf traits and the setting of small seeds. In normal rice, the mRNA for the α subunit was abundant in the internodes and florets, the tissues closely related to abnormality in the dwarf transformants. The position of the α-subunit gene was mapped on rice chromosome 5 by mapping with the restriction fragment length polymorphism. The position was closely linked to the locus of a rice dwarf mutant, Daikoku dwarf (d-1), which is known to exhibit abnormal phenotypes similar to those of the transformants that suppressed the endogenous mRNA for the α subunit by antisense technology. Analysis of the cDNAs for the α subunits of five alleles of Daikoku dwarf (d-1), ID-1, DK22, DKT-1, DKT-2, and CM1361–1, showed that these dwarf mutants had mutated in the coding region of the α-subunit gene. These results show that the G protein functions in the formation of normal internodes and seeds in rice. PMID:10377457
Huber, Warren J.; Backes, Wayne L.
2009-01-01
Heme oxygenase (HO) is the chief regulatory enzyme in the oxidative degradation of heme to biliverdin. In the process of heme degradation, this NADPH and cytochrome P450 reductase (CPR)-dependent oxidation of heme also releases free iron and carbon monoxide. Much of the recent research involving heme oxygenase is done using a 30-kDa soluble form of the enzyme, which lacks the membrane binding region (C-terminal 23 amino acids). The goal of this study was to express and purify a full-length human HO-1 (hHO-1) protein; however, due to the lability of the full-length form, a rapid purification procedure was required. This was accomplished by use of a GST-tagged hHO-1 construct. Although the procedure permitted the generation of a full-length HO-1, this form was contaminated with a 30-kDa degradation product that could not be eliminated. Therefore, we attempted to remove a putative secondary thrombin cleavage site by a conservative mutation of amino acid 254, which replaces lysine with arginine. This mutation allowed the expression and purification of a full length hHO-1 protein. Unlike wild-type HO-1, the K254R mutant could be purified to a single 32-kDa protein capable of degrading heme at the same rate as the wild-type enzyme. The K254R full-length form had a specific activity of ~200–225 nmol bilirubin hr−1nmol−1 HO-1 as compared to ~140–150 nmol bilirubin hr−1nmol−1 for the WT form, which contains the 30-kDa contaminant. This is a 2–3-fold increase from the previously reported soluble 30-kDa HO-1, suggesting that the C-terminal 23 amino acids are essential for maximal catalytic activity. Because the membrane spanning domain is present, the full-length hHO-1 has the potential to incorporate into phospholipid membranes, which can be reconstituted at known concentrations, in combination with other ER-resident enzymes. PMID:17915953
Huber, Warren J; Backes, Wayne L
2007-10-30
Heme oxygenase-1 (HO-1) is the chief regulatory enzyme in the oxidative degradation of heme to biliverdin. In the process of heme degradation, HO-1 receives the electrons necessary for catalysis from the flavoprotein NADPH cytochrome P450 reductase (CPR), releasing free iron and carbon monoxide. Much of the recent research involving heme oxygenase has been done using a 30 kDa soluble form of the enzyme, which lacks the membrane binding region (C-terminal 23 amino acids). The goal of this study was to express and purify a full-length human HO-1 (hHO-1) protein; however, due to the lability of the full-length form, a rapid purification procedure was required. This was accomplished by use of a glutathione-s-transferase (GST)-tagged hHO-1 construct. Although the procedure permitted the generation of a full-length HO-1, this form was contaminated with a 30 kDa degradation product that could not be eliminated. Therefore, attempts were made to remove a putative secondary thrombin cleavage site by a conservative mutation of amino acid 254, which replaces arginine with lysine. This mutation allowed the expression and purification of a full-length hHO-1 protein. Unlike wild type (WT) HO-1, the R254K mutant could be purified to a single 32 kDa protein capable of degrading heme at the same rate as the WT enzyme. The R254K full-length form had a specific activity of approximately 200-225 nmol of bilirubin h-1 nmol-1 HO-1 as compared to approximately 140-150 nmol of bilirubin h-1 nmol-1 for the WT form, which contains the 30 kDa contaminant. This is a 2-3-fold increase from the previously reported soluble 30 kDa HO-1, suggesting that the C-terminal 23 amino acids are essential for maximal catalytic activity. Because the membrane-spanning domain is present, the full-length hHO-1 has the potential to incorporate into phospholipid membranes, which can be reconstituted at known concentrations, in combination with other endoplasmic reticulum resident enzymes.
Dai, Shengjie; Li, Ping; Chen, Pei; Li, Qian; Pei, Yuelin; He, Suihuan; Sun, Yufei; Wang, Ya; Kai, Wenbin; Zhao, Bo; Liao, Yalan; Leng, Ping
2014-09-01
To investigate the contribution of abscisic acid (ABA) in pear 'Gold Nijisseiki' during fruit ripening and under dehydration stress, two cDNAs (PpNCED1 and PpNCED2) which encode 9-cis-epoxycarotenoid dioxygenase (NCED) (a key enzyme in ABA biosynthesis), two cDNAs (PpCYP707A1 and PpCYP707A2) which encode 8'-hydroxylase (a key enzyme in the oxidative catabolism of ABA), one cDNA (PpACS3) which encodes 1-aminocyclopropane-1-carboxylic acid (ACC), and one cDNA (PpACO1) which encodes ACC oxidase involved in ethylene biosynthesis were cloned from 'Gold Nijisseiki' fruit. In the pulp, peel and seed, expressions of PpNCED1 and PpNCED2 rose in two stages which corresponded with the increase of ABA levels. The expression of PpCYP707A1 dramatically declined after 60-90 days after full bloom (DAFB) in contrast to the changes of ABA levels during this period, while PpCYP707A2 stayed low during the whole development of fruit. Application of exogenous ABA at 100 DAFB increased the soluble sugar content and the ethylene release but significantly decreased the titratable acid and chlorophyll contents in fruits. When fruits harvested at 100 DAFB were stored in the laboratory (25 °C, 50% relative humidity), the ABA content and the expressions of PpNCED1/2 and PpCYP707A1 in the pulp, peel and seed increased significantly, while ethylene reached its highest value after the maximum peak of ABA accompanied with the expressions of PpACS3 and PpACO1. In sum the endogenous ABA may play an important role in the fruit ripening and dehydration of pear 'Gold Nijisseiki' and the ABA level was regulated mainly by the dynamics of PpNCED1, PpNCED2 and PpCYP707A1 at the transcriptional level. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
ERIC Educational Resources Information Center
Galewsky, Samuel
2000-01-01
Introduces a series of molecular genetics laboratories where students pick a single colony from a Drosophila melanogester embryo cDNA library and purify the plasmid, then analyze the insert through restriction digests and gel electrophoresis. (Author/YDS)
75 FR 8369 - Office of the Director, National Institutes of Health; Notice of Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-24
... cloning of Ebola and Marburg cDNAs into E. coli. Please check the meeting agenda at http://oba.od.nih.gov... requirements of Section III-E-3 of the NIH Guidelines for Research with Recombinant DNA Molecules. Please check...
Improving the Performance of Two-Stage Gas Guns By Adding a Diaphragm in the Pump Tube
NASA Technical Reports Server (NTRS)
Bogdanoff, D. W.; Miller, Robert J.
1995-01-01
Herein, we study the technique of improving the gun performance by installing a diaphragm in the pump tube of the gun. A CFD study is carried out for the 0.28 in. gun in the Hypervelocity Free Flight Radiation (HFF RAD) range at the NASA Ames Research Center. The normal, full-length pump tube is studied as well as two pump tubes of reduced length (approximately 75% and approximately 33% of the normal length). Significant improvements in performance are calculated to be gained for the reduced length pump tubes upon the addition of the diaphragm. These improvements are identified as reductions in maximum pressures in the pump tube and at the projectile base of approximately 20%, while maintaining the projectile muzzle velocity or as increases in muzzle velocity of approximately 0.5 km/sec while not increasing the maximum pressures in the gun. Also, it is found that both guns with reduced pump tube length (with diaphragms) could maintain the performance of gun with the full length pump tube without diaphragms, whereas the guns with reduced pump tube lengths without diaphragms could not. A five-shot experimental investigation of the pump tube diaphragm technique is carried out for the gun with a pump tube length of 75% normal. The CFD predictions of increased muzzle velocity are borne out by the experimental data. Modest, but useful muzzle velocity increases (2.5 - 6%) are obtained upon the installation of a diaphragm, compared to a benchmark shot without a diaphragm.
Xuxia, Wang; Jie, Chen; Bo, Wang; Lijun, Liu; Hui, Jiang; Diluo, Tang; Dingxiang, Peng
2012-01-01
For the purpose of screening putative anthracnose resistance-related genes of ramie ( Boehmeria nivea L. Gaud), a cDNA library was constructed by suppression subtractive hybridization using anthracnose-resistant cultivar Huazhu no. 4. The cDNAs from Huazhu no. 4, which were infected with Colletotrichum gloeosporioides , were used as the tester and cDNAs from uninfected Huazhu no. 4 as the driver. Sequencing analysis and homology searching showed that these clones represented 132 single genes, which were assigned to functional categories, including 14 putative cellular functions, according to categories established for Arabidopsis . These 132 genes included 35 disease resistance and stress tolerance-related genes including putative heat-shock protein 90, metallothionein, PR-1.2 protein, catalase gene, WRKY family genes, and proteinase inhibitor-like protein. Partial disease-related genes were further analyzed by reverse transcription PCR and RNA gel blot. These expressed sequence tags are the first anthracnose resistance-related expressed sequence tags reported in ramie.
RNA-Seq analysis to capture the transcriptome landscape of a single cell
Tang, Fuchou; Barbacioru, Catalin; Nordman, Ellen; Xu, Nanlan; Bashkirov, Vladimir I; Lao, Kaiqin; Surani, M. Azim
2013-01-01
We describe here a protocol for digital transcriptome analysis in a single mouse blastomere using a deep sequencing approach. An individual blastomere was first isolated and put into lysate buffer by mouth pipette. Reverse transcription was then performed directly on the whole cell lysate. After this, the free primers were removed by Exonuclease I and a poly(A) tail was added to the 3′ end of the first-strand cDNA by Terminal Deoxynucleotidyl Transferase. Then the single cell cDNAs were amplified by 20 plus 9 cycles of PCR. Then 100-200 ng of these amplified cDNAs were used to construct a sequencing library. The sequencing library can be used for deep sequencing using the SOLiD system. Compared with the cDNA microarray technique, our assay can capture up to 75% more genes expressed in early embryos. The protocol can generate deep sequencing libraries within 6 days for 16 single cell samples. PMID:20203668
Erickson, R H; Gum, J R; Lindstrom, M M; McKean, D; Kim, Y S
1995-11-02
RT-PCR was used to obtain rat small intestinal cDNAs for two peptide transporters, showing conclusively for the first time that both are present in normal intestinal mucosa. Sequencing of these cDNAs showed them to be highly homologous and similar to two different types of peptide transport proteins from either colorectal carcinoma cells (Caco-2) or human and rabbit intestine. An even distribution profile of steady state levels of mRNA for both peptide transporters was observed along the longitudinal axis of small intestine. Both were upregulated in the distal regions of intestine by a high protein diet. Also, high levels of the rat high affinity glutamate transporter EAAC1 were observed in the distal intestine. These results suggest that the distal regions of small intestine play an important role in the absorption of some amino acids and peptides. Furthermore this area appears to be a primary site where dietary-induced changes in peptide and amino acid transport occurs.
Zhao, Shicheng; Park, Chang Ha; Li, Xiaohua; Kim, Yeon Bok; Yang, Jingli; Sung, Gyoo Byung; Park, Nam Il; Kim, Soonok; Park, Sang Un
2015-09-30
Mulberry (Morus alba L.) is used in traditional Chinese medicine and is the sole food source of the silkworm. Here, 21 cDNAs encoding phenylpropanoid biosynthetic genes and 21 cDNAs encoding triterpene biosynthetic genes were isolated from mulberry. The expression levels of genes involved in these biosynthetic pathways and the accumulation of rutin, betulin, and betulinic acid, important secondary metabolites, were investigated in different plant organs. Most phenylpropanoid and triterpene biosynthetic genes were highly expressed in leaves and/or fruit, and most genes were downregulated during fruit ripening. The accumulation of rutin was more than fivefold higher in leaves than in other organs, and higher levels of betulin and betulinic acid were found in roots and leaves than in fruit. By comparing the contents of these compounds with gene expression levels, we speculate that MaUGT78D1 and MaLUS play important regulatory roles in the rutin and betulin biosynthetic pathways.
Allen, Margaret L.; Mertens, Jeffrey A.
2008-01-01
Three unique cDNAs encoding putative polygalacturonase enzymes were isolated from the tarnished plant bug, Lygus lineolaris (Palisot de Beauvois) (Hemiptera: Miridae). The three nucleotide sequences were dissimilar to one another, but the deduced amino acid sequences were similar to each other and to other polygalacturonases from insects, fungi, plants, and bacteria. Four conserved segments characteristic of polygalacturonases were present, but with some notable semiconservative substitutions. Two of four expected disulfide bridge—forming cysteine pairs were present. All three inferred protein translations included predicted signal sequences of 17 to 20 amino acids. Amplification of genomic DNA identified an intron in one of the genes, Llpg1, in the 5′ untranslated region. Semiquantitative RT-PCR revealed expression in all stages of the insect except the eggs. Expression in adults, male and female, was highly variable, indicating a family of highly inducible and diverse enzymes adapted to the generalist polyphagous nature of this important pest. PMID:20233096
Sequence analysis of 497 mouse brain ESTs expressed in the substantia nigra
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stewart, G.J.; Savioz, A.; Davies, R.W.
1997-01-15
The use of subtracted, region-specific cDNA libraries combined with single-pass cDNA sequencing allows the discovery of novel genes and facilitates molecular description of the tissue or region involved. We report the sequence of 497 mouse expressed sequence tags (ESTs) from two subtracted libraries enriched for cDNAs expressed in the substantia nigra, a brain region with important roles in movement control and Parkinson disease. Of these, 238 ESTs give no database matches and therefore derive from novel genes. A further 115 ESTs show sequence similarity to ESTs from other organisms, which themselves do not yield any significant database matches to genesmore » of known function. Fifty-six ESTs show sequence similarity to previously identified genes whose mouse homologues have not been reported. The total number of ESTs reported that are new for the mouse is 407, which, together with the 90 ESTs corresponding to known mouse genes or cDNAs, contributes to the molecular description of the substantia nigra. 21 refs., 4 tabs.« less
Molecular mechanism for cadmium-induced anthocyanin accumulation in Azolla imbricata.
Dai, Ling-Peng; Dong, Xin-Jiao; Ma, Hai-Hu
2012-04-01
Anthocyanins inducibly synthesized by Cd treatment showed high antioxidant activity and might be involved in internal detoxification mechanisms of Azolla imbricata against Cd toxicity. In order to understand anthocyanin biosynthesis mechanism during Cd stress, the cDNAs encoding chalcone synthase (CHS) and dihydroflavonol reductase (DFR), two key enzymes in the anthocyanin synthesis pathway, were isolated from A. imbricata. Deduced amino acid sequences of the cDNAs showed high homology to the sequences from other plants. Expression of AiDFR, and to a lesser extent AiCHS, was significantly induced in Cd treatment plant in comparison with the control. CHS and DFR enzymatic activities showed similar pattern changes with these genes expression during Cd stress. These results strongly indicate that Cd induced anthocyanin accumulation is probably mediated by up-regulation of structural genes including CHS and DFR, which might further increase the activities of enzymes encoded by these structural genes that control the anthocyanin biosynthetic steps. Copyright © 2011 Elsevier Ltd. All rights reserved.
[Construction of fetal mesenchymal stem cell cDNA subtractive library].
Yang, Li; Wang, Dong-Mei; Li, Liang; Bai, Ci-Xian; Cao, Hua; Li, Ting-Yu; Pei, Xue-Tao
2002-04-01
To identify differentially expressed genes between fetal mesenchymal stem cell (MSC) and adult MSC, especially specified genes expressed in fetal MSC, a cDNA subtractive library of fetal MSC was constructed using suppression subtractive hybridization (SSH) technique. At first, total RNA was isolated from fetal and adult MSC. Using SMART PCR synthesis method, single-strand and double-strand cDNAs were synthesized. After Rsa I digestion, fetal MSC cDNAs were divided into two groups and ligated to adaptor 1 and adaptor 2 respectively. Results showed that the amplified library contains 890 clones. Analysis of 890 clones with PCR demonstrated that 768 clones were positive. The positive rate is 86.3%. The size of inserted fragments in these positive clones was between 0.2 - 1 kb, with an average of 400 - 600 bp. SSH is a convenient and effective method for screening differentially expressed genes. The constructed cDNA subtractive library of fetal MSC cDNA lays solid foundation for screening and cloning new and specific function related genes of fetal MSC.
Kausel, G; Vera, T; Valenzuela, G; Lopez, M; Romero, A; Muller, M; Figueroa, J
2010-12-01
The mechanisms of seasonal acclimatization in eurythermal fish such as common carp are not fully understood. Here, we concentrate on the regulation of pituitary factors, as this organ was shown to be highly affected by seasonal changes. We cloned and sequenced two different cDNAs for each of the transcription factors Pitx2 and Rpx, known to play a role in pituitary development. We show that these genes are conserved throughout evolution, to different degrees depending on the specific domain considered. Finally, we show that the cDNAs for both factors are clearly up-regulated during the winter season, in sharp contrast to other regulators such as Pit1 or pituitary hormone genes such as prolactin (prl) and growth hormone (gh). Our results suggest that increased expression of Pitx2 and Rpx contributes to seasonal adaptation of common carp to winter conditions. Copyright © 2010 Elsevier Inc. All rights reserved.
Islam, N; Poitras, L; Gagnon, F; Moss, T
1996-10-17
The structure and temporal expression of two Xenopus cDNAs encoding the beta subunit of pyruvate dehydrogenase (XPdhE1 beta) have been determined. XPdhE1 beta was 88% homologous to mature human PdhE1 beta, but the putative N-terminal mitochondrial signal peptide was poorly conserved. Zygotic expression of XPdhE1 beta mRNA was detected at neural tube closure and increased until stage 40. RT-PCR cloning identified a short homology to a protein kinase open reading frame within the 3' non-coding sequence of the XPdhE1 beta cDNAs. This homology, which occurred on the antisense cDNA strand, was shown by strand specific RT-PCR to be transcribed in vivo as part of an antisense RNA. Northern analysis showed that this RNA formed part of an abundant and heterogeneous population of antisense and sense poly(A)-RNAs transcribed from the XPdhE1 beta loci and coordinately regulated with message production.
2010-01-01
Background Salmonids are one of the most intensely studied fish, in part due to their economic and environmental importance, and in part due to a recent whole genome duplication in the common ancestor of salmonids. This duplication greatly impacts species diversification, functional specialization, and adaptation. Extensive new genomic resources have recently become available for Atlantic salmon (Salmo salar), but documentation of allelic versus duplicate reference genes remains a major uncertainty in the complete characterization of its genome and its evolution. Results From existing expressed sequence tag (EST) resources and three new full-length cDNA libraries, 9,057 reference quality full-length gene insert clones were identified for Atlantic salmon. A further 1,365 reference full-length clones were annotated from 29,221 northern pike (Esox lucius) ESTs. Pairwise dN/dS comparisons within each of 408 sets of duplicated salmon genes using northern pike as a diploid out-group show asymmetric relaxation of selection on salmon duplicates. Conclusions 9,057 full-length reference genes were characterized in S. salar and can be used to identify alleles and gene family members. Comparisons of duplicated genes show that while purifying selection is the predominant force acting on both duplicates, consistent with retention of functionality in both copies, some relaxation of pressure on gene duplicates can be identified. In addition, there is evidence that evolution has acted asymmetrically on paralogs, allowing one of the pair to diverge at a faster rate. PMID:20433749
Ahmed, Md Atique; Fauzi, Muh; Han, Eun-Taek
2018-03-14
Human infections due to the monkey malaria parasite Plasmodium knowlesi is on the rise in most Southeast Asian countries specifically Malaysia. The C-terminal 19 kDa domain of PvMSP1P is a potential vaccine candidate, however, no study has been conducted in the orthologous gene of P. knowlesi. This study investigates level of polymorphisms, haplotypes and natural selection of full-length pkmsp1p in clinical samples from Malaysia. A total of 36 full-length pkmsp1p sequences along with the reference H-strain and 40 C-terminal pkmsp1p sequences from clinical isolates of Malaysia were downloaded from published genomes. Genetic diversity, polymorphism, haplotype and natural selection were determined using DnaSP 5.10 and MEGA 5.0 software. Genealogical relationships were determined using haplotype network tree in NETWORK software v5.0. Population genetic differentiation index (F ST ) and population structure of parasite was determined using Arlequin v3.5 and STRUCTURE v2.3.4 software. Comparison of 36 full-length pkmsp1p sequences along with the H-strain identified 339 SNPs (175 non-synonymous and 164 synonymous substitutions). The nucleotide diversity across the full-length gene was low compared to its ortholog pvmsp1p. The nucleotide diversity was higher toward the N-terminal domains (pkmsp1p-83 and 30) compared to the C-terminal domains (pkmsp1p-38, 33 and 19). Phylogenetic analysis of full-length genes identified 2 distinct clusters of P. knowlesi from Malaysian Borneo. The 40 pkmsp1p-19 sequences showed low polymorphisms with 16 polymorphisms leading to 18 haplotypes. In total there were 10 synonymous and 6 non-synonymous substitutions and 12 cysteine residues were intact within the two EGF domains. Evidence of strong purifying selection was observed within the full-length sequences as well in all the domains. Shared haplotypes of 40 pkmsp1p-19 were identified within Malaysian Borneo haplotypes. This study is the first to report on the genetic diversity and natural selection of pkmsp1p. A low level of genetic diversity and strong evidence of negative selection was detected and observed in all the domains of pkmsp1p of P. knowlesi indicating functional constrains. Shared haplotypes were identified within pkmsp1p-19 highlighting further evaluation using larger number of clinical samples from Malaysia.
Lai, Jian-Ping; Lai, Saien; Tuluc, Florin; Tansky, Morris F.; Kilpatrick, Laurie E.; Leeman, Susan E.; Douglas, Steven D.
2008-01-01
The neurokinin-1 receptor (NK1R) has two naturally occurring forms that differ in the length of the carboxyl terminus: a full-length receptor consisting of 407 aa and a truncated receptor consisting of 311 aa. We examined whether there are differential signaling properties attributable to the carboxyl terminus of this receptor by using stably transfected human embryonic kidney (HEK293) cell lines that express either full-length or truncated NK1R. Substance P (SP) specifically triggered intracellular calcium increase in HEK293 cells expressing full-length NK1R but had no effect in the cells expressing the truncated NK1R. In addition, in cells expressing full-length NK1R, SP activated NF-κB and IL-8 mRNA expression, but in cells expressing the truncated NK1R, SP did not activate NF-κB, and it decreased IL-8 mRNA expression. In cells expressing full-length NK1R, SP stimulated phosphorylation of PKCδ but inhibited phosphorylation of PKCδ in cells expressing truncated NK1R. There are also differences in the timing of SP-induced ERK activation in cells expressing the two different forms of the receptor. Full-length NK1R activation of ERK was rapid (peak within 1–2 min), whereas truncated NK1R-mediated activation was slower (peak at 20–30 min). Thus, the carboxyl terminus of NK1R is the structural basis for differences in the functional properties of the full-length and truncated NK1R. These differences may provide important information toward the design of new NK1R receptor antagonists. PMID:18713853
Modeling of Ceiling Fire Spread and Thermal Radiation.
1981-10-01
under a PMMA ceiling and flame lengths under an inert ceiling are found to be in reasonable agreement with full-scale behavior. Although fire spread...5 3 Flame Lengths under Full-Scale Ceilings 12 4 Correlation of Flame Length under Inert Ceilings 16 5 Correlation of Flame Length under No 234 Model...Ceilings 17 6 Correlation of Flame Length under No B8811 Model Ceilings 18 7 Correlation of Flame Length under No. 223 Model Ceilings 19 8
Eberwine, James; Bartfai, Tamas
2011-03-01
We report on an 'unbiased' molecular characterization of individual, adult neurons, active in a central, anterior hypothalamic neuronal circuit, by establishing cDNA libraries from each individual, electrophysiologically identified warm sensitive neuron (WSN). The cDNA libraries were analyzed by Affymetrix microarray. The presence and frequency of cDNAs were confirmed and enhanced with Illumina sequencing of each single cell cDNA library. cDNAs encoding the GABA biosynthetic enzyme Gad1 and of adrenomedullin, galanin, prodynorphin, somatostatin, and tachykinin were found in the WSNs. The functional cellular and in vivo studies on dozens of the more than 500 neurotransmitters, hormone receptors and ion channels, whose cDNA was identified and sequence confirmed, suggest little or no discrepancy between the transcriptional and functional data in WSNs; whenever agonists were available for a receptor whose cDNA was identified, a functional response was found. Sequencing single neuron libraries permitted identification of rarely expressed receptors like the insulin receptor, adiponectin receptor 2 and of receptor heterodimers; information that is lost when pooling cells leads to dilution of signals and mixing signals. Despite the common electrophysiological phenotype and uniform Gad1 expression, WSN transcriptomes show heterogeneity, suggesting strong epigenetic influence on the transcriptome. Our study suggests that it is well-worth interrogating the cDNA libraries of single neurons by sequencing and chipping. Copyright © 2010 Elsevier Inc. All rights reserved.
Expression of mRNAs encoding ARPP-16/19, ARPP-21, and DARPP-32 in human brain tissue.
Brené, S; Lindefors, N; Ehrlich, M; Taubes, T; Horiuchi, A; Kopp, J; Hall, H; Sedvall, G; Greengard, P; Persson, H
1994-03-01
In this study we have isolated and sequenced human cDNAs for the phosphoproteins DARPP-32, ARPP-21, and ARPP-16/19, and have compared these sequences to previously characterized bovine and rat cDNAs. In situ hybridization and Northern blot analysis with the human cDNA probes were used to study the expression of mRNAs encoding ARPP-16/19, ARPP-21, and DARPP-32 in human postmortem brain tissue. In situ hybridization was performed using horizontal whole hemisphere sections. Five representative levels of the brain ranging from 71 mm to 104 mm ventral to vertex were examined. All three probes showed distinct hybridization patterns in the caudate nucleus, putamen, nucleus accumbens, and the amygdaloid complex. For ARPP-16/19 mRNA, a hybridization signal comparable to the signal in caudate nucleus, putamen, and nucleus accumbens was also detected in the neocortex. ARPP-21 and DARPP-32 mRNA, on the other hand, were present in lower levels in neocortical regions. DARPP-32 mRNA was abundant in the cerebellar cortex at the level of the Purkinje cell layer. High levels of ARPP-16/19 and ARPP-21 mRNA were also found in the cerebellar cortex, where they were confined to deeper layers. The present result demonstrate that mRNAs for the three phosphoproteins are expressed in overlapping, but also distinct, areas of the human brain that in many cases coincide with previously described distribution of the dopamine D1 receptor.
Fish and chips: Various methodologies demonstrate utility of a 16,006-gene salmonid microarray
von Schalburg, Kristian R; Rise, Matthew L; Cooper, Glenn A; Brown, Gordon D; Gibbs, A Ross; Nelson, Colleen C; Davidson, William S; Koop, Ben F
2005-01-01
Background We have developed and fabricated a salmonid microarray containing cDNAs representing 16,006 genes. The genes spotted on the array have been stringently selected from Atlantic salmon and rainbow trout expressed sequence tag (EST) databases. The EST databases presently contain over 300,000 sequences from over 175 salmonid cDNA libraries derived from a wide variety of tissues and different developmental stages. In order to evaluate the utility of the microarray, a number of hybridization techniques and screening methods have been developed and tested. Results We have analyzed and evaluated the utility of a microarray containing 16,006 (16K) salmonid cDNAs in a variety of potential experimental settings. We quantified the amount of transcriptome binding that occurred in cross-species, organ complexity and intraspecific variation hybridization studies. We also developed a methodology to rapidly identify and confirm the contents of a bacterial artificial chromosome (BAC) library containing Atlantic salmon genomic DNA. Conclusion We validate and demonstrate the usefulness of the 16K microarray over a wide range of teleosts, even for transcriptome targets from species distantly related to salmonids. We show the potential of the use of the microarray in a variety of experimental settings through hybridization studies that examine the binding of targets derived from different organs and tissues. Intraspecific variation in transcriptome expression is evaluated and discussed. Finally, BAC hybridizations are demonstrated as a rapid and accurate means to identify gene content. PMID:16164747
Stevens, Mark; Viganó, Felicita
2007-04-01
The full-length cDNA of Beet mild yellowing virus (Broom's Barn isolate) was sequenced and cloned into the vector pLitmus 29 (pBMYV-BBfl). The sequence of BMYV-BBfl (5721 bases) shared 96% and 98% nucleotide identity with the other complete sequences of BMYV (BMYV-2ITB, France and BMYV-IPP, Germany respectively). Full-length capped RNA transcripts of pBMYV-BBfl were synthesised and found to be biologically active in Arabidopsis thaliana protoplasts following electroporation or PEG inoculation when the protoplasts were subsequently analysed using serological and molecular methods. The BMYV sequence was modified by inserting DNA that encoded the jellyfish green fluorescent protein (GFP) into the P5 gene close to its 3' end. A. thaliana protoplasts electroporated with these RNA transcripts were biologically active and up to 2% of transfected protoplasts showed GFP-specific fluorescence. The exploitation of these cDNA clones for the study of the biology of beet poleroviruses is discussed.
Kozłowska, Małgorzata; Tarczewska, Aneta; Jakób, Michał; Bystranowska, Dominika; Taube, Michał; Kozak, Maciej; Czarnocki-Cieciura, Mariusz; Dziembowski, Andrzej; Orłowski, Marek; Tkocz, Katarzyna; Ożyhar, Andrzej
2017-01-01
Nucleoplasmins are a nuclear chaperone family defined by the presence of a highly conserved N-terminal core domain. X-ray crystallographic studies of isolated nucleoplasmin core domains revealed a β-propeller structure consisting of a set of five monomers that together form a stable pentamer. Recent studies on isolated N-terminal domains from Drosophila 39-kDa FK506-binding protein (FKBP39) and from other chromatin-associated proteins showed analogous, nucleoplasmin-like (NPL) pentameric structures. Here, we report that the NPL domain of the full-length FKBP39 does not form pentameric complexes. Multi-angle light scattering (MALS) and sedimentation equilibrium ultracentrifugation (SE AUC) analyses of the molecular mass of the full-length protein indicated that FKBP39 forms homotetrameric complexes. Molecular models reconstructed from small-angle X-ray scattering (SAXS) revealed that the NPL domain forms a stable, tetrameric core and that FK506-binding domains are linked to it by intrinsically disordered, flexible chains that form tentacle-like segments. Analyses of full-length FKBP39 and its isolated NPL domain suggested that the distal regions of the polypeptide chain influence and determine the quaternary conformation of the nucleoplasmin-like protein. These results provide new insights regarding the conserved structure of nucleoplasmin core domains and provide a potential explanation for the importance of the tetrameric structural organization of full-length nucleoplasmins. PMID:28074868
Expression of FSH receptor in the hamster ovary during perinatal development
Chakraborty, Prabuddha; Roy, Shyamal K.
2014-01-01
FSH plays an important role in ovarian follicular development, and it functions via the G-protein coupled FSH receptor. The objectives of the present study were to determine if full-length FSHR mRNA and corresponding protein were expressed in fetal through postnatal hamster ovaries to explain the FSH-induced primordial follicle formation, and if FSH or estrogen (E) would affect the expression. A full-length and two alternately spliced FSHR transcripts were expressed from E14 through P20. The level of the full-length FSHR mRNA increased markedly through P7 before stabilizing at a lower level with the formation and activation of primordial follicles. A predicted 87kDa FSHR protein band was detected in fetal through P4 ovaries, but additional bands appeared as ovary developed. FSHR immunosignal was present in undifferentiated somatic cells and oocytes in early postnatal ovaries, but was granulosa cells specific after follicles formed. Both eCG and E significantly up-regulated full-length FSHR mRNA levels. Therefore, FSHR is expressed in the hamster ovary from the fetal life to account for FSH-induced primordial follicle formation and cAMP production. Further, FSH or E regulates the receptor expression. PMID:25462586
Epicuticular waxes and thrips resistance in onion
USDA-ARS?s Scientific Manuscript database
Next-generation sequencing of normalized cDNAs from two inbred lines of onion revealed over 3000 well supported single nucleotide polymorphisms (SNPs), of which over 800 have been mapped. This SNP-based map was used to identify quantitative trait loci (QTL) controlling the amounts and types of epicu...
Analysis of genetic diversity using SNP markers in oat
USDA-ARS?s Scientific Manuscript database
A large-scale single nucleotide polymorphism (SNP) discovery was carried out in cultivated oat using Roche 454 sequencing methods. DNA sequences were generated from cDNAs originating from a panel of 20 diverse oat cultivars, and from Diversity Array Technology (DArT) genomic complexity reductions fr...
Noda, Shuhei; Matsumoto, Takuya; Tanaka, Tsutomu; Kondo, Akihiko
2015-01-13
Streptavidin is a tetrameric protein derived from Streptomyces avidinii, and has tight and specific biotin binding affinity. Applications of the streptavidin-biotin system have been widely studied. Streptavidin is generally produced using protein expression in Escherichia coli. In the present study, the secretory production of streptavidin was carried out using Streptomyces lividans as a host. In this study, we used the gene encoding native full-length streptavidin, whereas the core region is generally used for streptavidin production in E. coli. Tetrameric streptavidin composed of native full-length streptavidin monomers was successfully secreted in the culture supernatant of S. lividans transformants, and had specific biotin binding affinity as strong as streptavidin produced by E. coli. The amount of Sav using S. lividans was about 9 times higher than using E. coli. Surprisingly, streptavidin produced by S. lividans exhibited affinity to biotin after boiling, despite the fact that tetrameric streptavidin is known to lose its biotin binding ability after brief boiling. We successfully produced a large amount of tetrameric streptavidin as a secretory-form protein with unique thermotolerance.
Cheng, Xiao-Rui; Zhou, Wen-Xia; Zhang, Yong-Xiang
2006-05-01
Alzheimer' s disease (AD) is the most common form of dementia in the elderly. AD is an invariably fatal neurodegenerative disorder with no effective treatment. Senescence-accelerated mouse prone 8 (SAMP8) is a model for studying age-related cognitive impairments and also is a good model to study brain aging and one of mouse model of AD. The technique of cDNA microarray can monitor the expression levels of thousands of genes simultaneously and can be used to study AD with the character of multi-mechanism, multi-targets and multi-pathway. In order to disclose the mechanism of AD and find the drug targets of AD, cDNA microarray containing 3136 cDNAs amplified from the suppression subtracted cDNA library of hippocampus of SAMP8 and SAMR1 was prepared with 16 blocks and 14 x 14 pins, the housekeeping gene beta-actin and G3PDH as inner conference. The background of this microarray was low and unanimous, and dots divided evenly. The conditions of hybridization and washing were optimized during the hybridization of probe and target molecule. After the data of hybridization analysis, the differential expressed cDNAs were sequenced and analyzed by the bioinformatics, and some of genes were quantified by the real time RT-PCR and the reliability of this cDNA microarray were validated. This cDNA microarray may be the good means to select the differential expressed genes and disclose the molecular mechanism of SAMP8's brain aging and AD.
Characterization and analysis of ribosomal proteins in two marine calanoid copepods
NASA Astrophysics Data System (ADS)
Yang, Feifei; Xu, Donghui; Zhuang, Yunyun; Huang, Yousong; Yi, Xiaoyan; Chen, Hongju; Liu, Guangxing; Zhang, Huan
2016-11-01
Copepods are among the most abundant and successful metazoans in the marine ecosystem. However, genomic resources related to fundamental cellular processes are still limited in this particular group of crustaceans. Ribosomal proteins are the building blocks of ribosomes, the primary site for protein synthesis. In this study, we characterized and analyzed the cDNAs of cytoplasmic ribosomal proteins (cRPs) of two calanoid copepods, Pseudodiaptomus poplesia and Acartia pacifica. We obtained 79 cRP cDNAs from P. poplesia and 67 from A. pacifica by cDNA library construction/sequencing and rapid amplification of cDNA ends. Analysis of the nucleic acid composition showed that the copepod cRP-encoding genes had higher GC content in the protein-coding regions (CDSs) than in the untranslated regions (UTRs), and single nucleotide repeats (>3 repeats) were common, with "A" repeats being the most frequent, especially in the CDSs. The 3'-UTRs of the cRP genes were significantly longer than the 5'-UTRs. Codon usage analysis showed that the third positions of the codons were dominated by C or G. The deduced amino acid sequences of the cRPs contained high proportions of positively charged residues and had high pI values. This is the first report of a complete set of cRP-encoding genes from copepods. Our results shed light on the characteristics of cRPs in copepods, and provide fundamental data for further studies of protein synthesis in copepods. The copepod cRP information revealed in this study indicates that additional comparisons and analysis should be performed on different taxonomic categories such as orders and families.
Cultural Proficiency: Using Films to Get Groups Talking--and Listening--to One Another
ERIC Educational Resources Information Center
Nelson, Sarah W.; Guerra, Patricia L.
2009-01-01
Full-length films allow viewers to see the complexity and nuances of cultural interactions. Discussions following full-length films tend to be deeper and more insightful than those in response to a short clip. This makes watching full-length films an excellent strategy for helping teachers unpack beliefs, values, and stereotypes. In this article,…
USDA-ARS?s Scientific Manuscript database
Maize fine streak virus (MFSV) is negative-sense RNA virus member of the genus Nucleorhabdovirus. Our goal is to determine whether Drosophila S2 cells can support the production of a full-length clone of MFSV. We have previously demonstrated that the full-length MFSV nucleoprotein (N) and phosphopro...
Trott, Josephine F; Freking, Bradley A; Hovey, Russell C
2014-02-01
The actions of prolactin (PRL) are mediated by both long (LF) and short isoforms (SF) of the PRL receptor (PRLR). Here, we report on a genetic and functional analysis of the porcine PRLR (pPRLR) SF. Three single nucleotide polymorphisms (SNPs) within exon 11 of the pPRLR-SF give rise to four amino acid haplotypes of the intracellular domain. We identified the dimorphic insertion of a short interspersed repetitive DNA element (PRE-1) along with 32 SNPs and four other insertion/deletion sites within the 3' untranslated region (UTR) of pPRLR-SF. The PRE-1 element reduced protein translation in vitro by 75%, whereas the combination of 10 SNPs and one insertion/deletion decreased translation by 50%. Full-length cDNAs for all four haplotypes of pPRLR-SF were cloned behind the elongation factor 1-alpha promoter and functionally analyzed in vitro. None of the haplotypes could initiate transcription from the ß-casein promoter, whereas all four were dominant negatives against PRL-activation of the pPRLR-LF. Two of the haplotypes completely inhibited pPRLR-LF activity at a four-fold excess, whereas the others required a six-fold excess to impart the same effect. The ligand binding affinities of the pPRLR-SF haplotypes did not differ. Expression of the pPRLR-SF increased linearly during gestation in the endometrium and was hormonally regulated in a tissue-specific manner in the mammary glands and uterus. In conclusion, we identified a PRE-1 and other SNPs in the pPRLR-SF 3' UTR that reduce protein expression and four haplotypes of the pPRLR-SF that suppress pPRLR-LF signaling and may differentially impact the phenotypic effects of PRL in vivo. © 2013 Stichting International Foundation for Animal Genetics.
Jemel, Ikram; Ii, Hiromi; Oslund, Rob C.; Payré, Christine; Dabert-Gay, Anne-Sophie; Douguet, Dominique; Chargui, Khaoula; Scarzello, Sabine; Gelb, Michael H.; Lambeau, Gérard
2011-01-01
Among mammalian secreted phospholipases A2 (sPLA2s), group X sPLA2 has the most potent hydrolyzing activity toward phosphatidylcholine and is involved in arachidonic acid (AA) release. Group X sPLA2 is produced as a proenzyme and contains a short propeptide of 11 amino acids ending with a dibasic motif, suggesting cleavage by proprotein convertases. Although the removal of this propeptide is clearly required for enzymatic activity, the cellular location and the protease(s) involved in proenzyme conversion are unknown. Here we have analyzed the maturation of group X sPLA2 in HEK293 cells, which have been extensively used to analyze sPLA2-induced AA release. Using recombinant mouse (PromGX) and human (ProhGX) proenzymes; HEK293 cells transfected with cDNAs coding for full-length ProhGX, PromGX, and propeptide mutants; and various permeable and non-permeable sPLA2 inhibitors and protease inhibitors, we demonstrate that group X sPLA2 is mainly converted intracellularly and releases AA before externalization from the cell. Most strikingly, the exogenous proenzyme does not elicit AA release, whereas the transfected proenzyme does elicit AA release in a way insensitive to non-permeable sPLA2 inhibitors. In transfected cells, a permeable proprotein convertase inhibitor, but not a non-permeable one, prevents group X sPLA2 maturation and partially blocks AA release. Mutations at the dibasic motif of the propeptide indicate that the last basic residue is required and sufficient for efficient maturation and AA release. All together, these results argue for the intracellular maturation of group X proenzyme in HEK293 cells by a furin-like proprotein convertase, leading to intracellular release of AA during secretion. PMID:21878635
Zhou, Yuchan; Underhill, Steven J R
2016-01-01
Breadfruit (Artocarpus altilis) is a traditional staple tree crop in the Oceania. Susceptibility to windstorm damage is a primary constraint on breadfruit cultivation. Significant tree loss due to intense tropical windstorm in the past decades has driven a widespread interest in developing breadfruit with dwarf stature. Gibberellin (GA) is one of the most important determinants of plant height. GA 2-oxidase is a key enzyme regulating the flux of GA through deactivating biologically active GAs in plants. As a first step toward understanding the molecular mechanism of growth regulation in the species, we isolated a cohort of four full-length GA2-oxidase cDNAs, AaGA2ox1- AaGA2ox4 from breadfruit. Sequence analysis indicated the deduced proteins encoded by these AaGA2oxs clustered together under the C19 GA2ox group. Transcripts of AaGA2ox1, AaGA2ox2 and AaGA2ox3 were detected in all plant organs, but exhibited highest level in source leaves and stems. In contrast, transcript of AaGA2ox4 was predominantly expressed in roots and flowers, and displayed very low expression in leaves and stems. AaGA2ox1, AaGA2ox2 and AaGA2ox3, but not AaGA2ox4 were subjected to GA feedback regulation where application of exogenous GA3 or gibberellin biosynthesis inhibitor, paclobutrazol was shown to manipulate the first internode elongation of breadfruit. Treatments of drought or high salinity increased the expression of AaGA2ox1, AaGA2ox2 and AaGA2ox4. But AaGA2ox3 was down-regulated under salt stress. The function of AaGA2oxs is discussed with particular reference to their role in stem elongation and involvement in abiotic stress response in breadfruit. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Delatte, Thierry L.; Sedijani, Prapti; Kondou, Youichi; Matsui, Minami; de Jong, Gerhardus J.; Somsen, Govert W.; Wiese-Klinkenberg, Anika; Primavesi, Lucia F.; Paul, Matthew J.; Schluepmann, Henriette
2011-01-01
The strong regulation of plant carbon allocation and growth by trehalose metabolism is important for our understanding of the mechanisms that determine growth and yield, with obvious applications in crop improvement. To gain further insight on the growth arrest by trehalose feeding, we first established that starch-deficient seedlings of the plastidic phosphoglucomutase1 mutant were similarly affected as the wild type on trehalose. Starch accumulation in the source cotyledons, therefore, did not cause starvation and consequent growth arrest in the growing zones. We then screened the FOX collection of Arabidopsis (Arabidopsis thaliana) expressing full-length cDNAs for seedling resistance to 100 mm trehalose. Three independent transgenic lines were identified with dominant segregation of the trehalose resistance trait that overexpress the bZIP11 (for basic region/leucine zipper motif) transcription factor. The resistance of these lines to trehalose could not be explained simply through enhanced trehalase activity or through inhibition of bZIP11 translation. Instead, trehalose-6-phosphate (T6P) accumulation was much increased in bZIP11-overexpressing lines, suggesting that these lines may be insensitive to the effects of T6P. T6P is known to inhibit the central stress-integrating kinase SnRK1 (KIN10) activity. We confirmed that this holds true in extracts from seedlings grown on trehalose, then showed that two independent transgenic lines overexpressing KIN10 were insensitive to trehalose. Moreover, the expression of marker genes known to be jointly controlled by SnRK1 activity and bZIP11 was consistent with low SnRK1 or bZIP11 activity in seedlings on trehalose. These results reveal an astonishing case of primary metabolite control over growth by way of the SnRK1 signaling pathway involving T6P, SnRK1, and bZIP11. PMID:21753116
Rodrigo, María-Jesús; Alquezar, Berta; Zacarías, Lorenzo
2006-01-01
There is now biochemical and genetic evidence that oxidative cleavage of cis-epoxycarotenoids by 9-cis-epoxycarotenoid dioxygenase (NCED) is the critical step in the regulation of abscisic acid (ABA) synthesis in higher plants. The peel of Citrus fruit accumulates large amounts of ABA during maturation. To understand the regulation of ABA biosynthesis in Citrus, two full-length cDNAs (CsNCED1 and CsNCED2) encoding NCEDs were isolated and characterized from the epicarp of orange fruits (Citrus sinensis L. Osbeck). Expression of the CsNCED1 gene increased in the epicarp during natural and ethylene-induced fruit maturation, and in water-stressed leaves, in a pattern consistent with the accumulation of ABA. The second gene, CsNCED2, was not detected in dehydrated leaves and, in fruits, exhibited a differential expression to that of CsNCED1. Taken together, these results suggests that CsNCED1 is likely to play a primary role in the biosynthesis of ABA in both leaves and fruits, while CsNCED2 appears to play a subsidiary role restricted to chromoplast-containing tissue. Furthermore, analysis of 9-cis-violaxanthin and 9'-cis-neoxanthin, as the two possible substrates for NCEDs, revealed that the former was the main carotenoid in the outer coloured part of the fruit peel as the fruit ripened or after ethylene treatment, whereas 9'-cis-neoxanthin was not detected or was in trace amounts. By contrast, turgid and dehydrated leaves contained 9'-cis-neoxanthin but 9-cis-violaxanthin was absent. Based on these results, it is suggested that 9-cis-violaxanthin may be the predominant substrate for NCED in the peel of Citrus fruits, whereas 9'-cis-neoxanthin would be the precursor of ABA in photosynthetic tissues.
Soñanez-Organis, José G.; Vázquez-Medina, José P.; Crocker, Daniel E.; Ortiz, Rudy M.
2013-01-01
Hypoxia inducible factors (HIFs) are important regulators of energy homeostasis and cellular adaptation to low oxygen conditions. Northern elephant seals are naturally adapted to prolonged periods (1–2 months) of food deprivation (fasting) that result in metabolic changes that may activate HIF-1. However, the effects of prolonged fasting on HIFs are not well defined. We obtained the full-length cDNAs of HIF-1α and HIF-2α, and partial cDNA of HIF-3α in northern elephant seal pups. We also measured mRNA and nuclear protein content of HIF-1α, -2α, -3α in muscle and adipose during prolonged fasting (1, 3, 5 & 7 wks), along with mRNA expression of HIF-mediated genes, LDH and VEGF. HIF-1α, -2α and -3α are 2595, 2852 and 1842 bp and encode proteins of 823, 864 and 586 amino acid residues with conserved domains needed for their function (bHLH and PAS) and regulation (ODD and TAD). HIF-1α and -2α mRNA expression increased 3- to 5-fold after 7 weeks of fasting in adipose and muscle, whereas HIF-3α increased 5-fold after 7 weeks of fasting in adipose. HIF-2α protein expression was detected in nuclear fractions from adipose and muscle, increasing approximately 2-fold, respectively with fasting. Expression of VEGF increased 3-fold after 7 weeks in adipose and muscle, whereas LDH mRNA expression increased 12-fold after 7 weeks in adipose. While the 3 HIFα genes are expressed in muscle and adipose, only HIF-2α protein was detectable in the nucleus suggesting that HIF-2α may contribute more significantly in the up-regulation of genes involved in the metabolic adaption during fasting in the elephant seal. PMID:23707926
Xu, Zhong-Rui; Cai, Shen-Wen; Huang, Wu-Xing; Liu, Rong-Xiang; Xiong, Zhi-Ting
2018-01-01
Acid invertase activities in roots and young seeds of a metalliferous population (MP) of Rumex dentatus were previously observed to be significantly higher than those of a non-metalliferous population (NMP) under Cu stress. To date, no acid invertase gene has been cloned from R. dentatus. Here, we isolated four full-length cDNAs from the two populations of R. dentatus, presumably encoding cell wall (RdnCIN1 and RdmCIN1 from the NMP and MP, respectively) and vacuolar invertases (RdnVIN1 and RdmVIN1 from the NMP and MP, respectively). Unexpectedly, RdnCIN1 and RdmCIN1 most likely encode special defective invertases with highly attenuated sucrose-hydrolyzing capacity. The transcript levels of RdmCIN1 were significantly higher than those of RdnCIN1 in roots and young seeds under Cu stress, whereas under control conditions, the former was initially lower than the latter. Unexpected high correlations were observed between the transcript levels of RdnCIN1 and RdmCIN1 and the activity of cell wall invertase, even though RdnCIN1 and RdmCIN1 do not encode catalytically active invertases. Similarly, the transcript levels of RdmVIN1 in roots and young seeds were increased under Cu stress, whereas those of RdnVIN1 were decreased. The high correlations between the transcript levels of RdnVIN1 and RdmVIN1 and the activity of vacuolar invertase indicate that RdnVIN1 and RdmVIN1 might control distinct vacuolar invertase activities in the two populations. Moreover, a possible indirect role for acid invertases in Cu tolerance, mediated by generating a range of sugars used as nutrients and signaling molecules, is discussed. Copyright © 2017 Elsevier Inc. All rights reserved.
Schuurmans, Jolanda A M J; van Dongen, Joost T; Rutjens, Bas P W; Boonman, Alex; Pieterse, Corné M J; Borstlap, Adrianus C
2003-11-01
Water and nutrients required by developing seeds are mainly supplied by the phloem and have to be released from a maternal parenchyma tissue before being utilized by the filial tissues of embryo and endosperm. To identify aquaporins that could be involved in this process four full-length cDNAs were cloned and sequenced from a cDNA library of developing seed coats of pea (Pisum sativum L.). The cDNA of PsPIP1-1 appeared to be identical to that of clone 7a/TRG-31, a turgor-responsive gene cloned previously from pea roots. PsPIP1-1, PsPIP2-1, and PsTIP1-1, or their possible close homologues, were also expressed in cotyledons of developing and germinating seeds, and in roots and shoots of seedlings, but transcripts of PsNIP-1 were only detected in the seed coat. In mature dry seeds, high hybridization signals were observed with the probe for PsPIP1-1, but transcripts of PsPIP2-1, PsTIP1-1, and PsNIP-1 were not detected. Functional characterization after heterologous expression in Xenopus oocytes showed that PsPIP2-1 and PsTIP1-1 are aquaporins whereas PsNIP-1 is an aquaglyceroporin. PsNIP-1, like several other NIPs, contains a tryptophan residue corresponding with Trp-48 in GlpF (the glycerol facilitator of Escherichia coli) that borders the selectivity filter in the permeation channel. It is suggested that PsPIP1-1 and/or its possible close homologues could play a role in water absorption during seed imbibition, and that PsPIP2-1, possibly together with PsPIP1-1, could be involved in the release of phloem water from the seed coat symplast, which is intimately connected with the release of nutrients for the embryo.
A Novel Multifunctional C-23 Oxidase, CYP714E19, is Involved in Asiaticoside Biosynthesis.
Kim, Ok Tae; Um, Yurry; Jin, Mei Lan; Kim, Jang Uk; Hegebarth, Daniela; Busta, Lucas; Racovita, Radu C; Jetter, Reinhard
2018-06-01
Centella asiatica is widely used as a medicinal plant due to accumulation of the ursane-type triterpene saponins asiaticoside and madecassoside. The molecular structure of both compounds suggests that they are biosynthesized from α-amyrin via three hydroxylations, and the respective Cyt P450-dependent monooxygenases (P450 enzymes) oxidizing the C-28 and C-2α positions have been reported. However, a third enzyme hydroxylating C-23 remained elusive. We previously identified 40,064 unique sequences in the transcriptome of C. asiatica elicited by methyl jasmonate, and among them we have now found 149 unigenes encoding putative P450 enzymes. In this set, 23 full-length cDNAs were recognized, 13 of which belonged to P450 subfamilies previously implicated in secondary metabolism. Four of these genes were highly expressed in response to jasmonate treatment, especially in leaves, in accordance with the accumulation patterns of asiaticoside. The functions of these candidate genes were tested using heterologous expression in yeast cells. Gas chromatography-mass spectrometry (GC-MS) analysis revealed that yeast expressing only the oxidosqualene synthase CaDDS produced the asiaticoside precursor α-amyrin (along with its isomer β-amyrin), while yeast co-expressing CaDDS and CYP716A83 also contained ursolic acid along with oleanolic acid. This P450 enzyme thus acts as a multifunctional triterpenoid C-28 oxidase converting amyrins into corresponding triterpenoid acids. Finally, yeast strains co-expressing CaDDS, CYP716A83 and CYP714E19 produced hederagenin and 23-hydroxyursolic acid, showing that CYP714E19 is a multifunctional triterpenoid oxidase catalyzing the C-23 hydroxylation of oleanolic acid and ursolic acid. Overall, our results demonstrate that CaDDS, CYP716A83 and CYP714E19 are C. asiatica enzymes catalyzing consecutive steps in asiaticoside biosynthesis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clines, G.; Lovett, M.
1994-09-01
Diastrophic dysplasia (DTD) is an autosomal recessive disorder of unknown pathogenesis that is characterized by abnormal skeletal and cartilage growth. Phenotypic characteristics of the disorder include short stature, scoliosis, and deformation of the first metacarpal. The diastrophic dysplasia gene has been localized to chromosome 5q31-33, within {approximately}60 kb of the colony stimulating factor 1 receptor gene (CSF1R). We have used direct cDNA selection to build a transcription map across {approximately}250 kb surrounding and including the CSF1R locus. cDNA pools from human placenta, activated T cells, cerebellum, Hela cells, fetal brain, chondrocytes, chondrosarcomas and osteosarcomas were multiplexed in these selections. Aftermore » two rounds of selection, an analysis revealed that {approximately}70% of the selected cDNAs were contained within the contig. DNA sequencing and cosmid mapping data from a collection of 310 clones revealed the presence of three new genes in this region that show no appreciable homologies on sequence database searches, as well as cDNA clones from the CSF1R and the PDGFRB loci (another of the known genes in the region). An additional cDNA was found with 100% homology to the gene encoding human ribosomal protein L7 (RPL7). This cDNA comprised {approximately}25% of all selected clones. However, further analysis of the genomic contig revealed the presence of an RPL7 processed pseudogene in very close proximity to the CSF1R and PDGFRB genes. The selection of processed pseudogenes is one previously anticipated artifact of selection metholodolgies, but has not been previously observed. Mutational analysis of the three new genes is underway in diastrophic dysplasia families, as is derivation of full length cDNA clones and the expansion of this detailed transcription map into a larger genomic contig.« less
Soñanez-Organis, José G; Vázquez-Medina, José P; Crocker, Daniel E; Ortiz, Rudy M
2013-09-10
Hypoxia inducible factors (HIFs) are important regulators of energy homeostasis and cellular adaptation to low oxygen conditions. Northern elephant seals are naturally adapted to prolonged periods (1-2 months) of food deprivation (fasting) which result in metabolic changes that may activate HIF-1. However, the effects of prolonged fasting on HIFs are not well defined. We obtained the full-length cDNAs of HIF-1α and HIF-2α, and partial cDNA of HIF-3α in northern elephant seal pups. We also measured mRNA and nuclear protein content of HIF-1α, -2α, -3α in muscle and adipose during prolonged fasting (1, 3, 5 & 7 weeks), along with mRNA expression of HIF-mediated genes, LDH and VEGF. HIF-1α, -2α and -3α are 2595, 2852 and 1842 bp and encode proteins of 823, 864 and 586 amino acid residues with conserved domains needed for their function (bHLH and PAS) and regulation (ODD and TAD). HIF-1α and -2α mRNA expression increased 3- to 5-fold after 7 weeks of fasting in adipose and muscle, whereas HIF-3α increased 5-fold after 7 weeks of fasting in adipose. HIF-2α protein expression was detected in nuclear fractions from adipose and muscle, increasing approximately 2-fold, respectively with fasting. Expression of VEGF increased 3-fold after 7 weeks in adipose and muscle, whereas LDH mRNA expression increased 12-fold after 7 weeks in adipose. While the 3 HIFα genes are expressed in muscle and adipose, only HIF-2α protein was detectable in the nucleus suggesting that HIF-2α may contribute more significantly in the up-regulation of genes involved in the metabolic adaptation during fasting in the elephant seal. Copyright © 2013 Elsevier B.V. All rights reserved.
A novel gene, RSD-3/HSD-3.1, encodes a meiotic-related protein expressed in rat and human testis.
Zhang, Xiaodong; Liu, Huixian; Zhang, Yan; Qiao, Yuan; Miao, Shiying; Wang, Linfang; Zhang, Jianchao; Zong, Shudong; Koide, S S
2003-06-01
The expression of stage-specific genes during spermatogenesis was determined by isolating two segments of rat seminiferous tubule at different stages of the germinal epithelium cycle delineated by transillumination-delineated microdissection, combined with differential display polymerase chain reaction to identify the differential transcripts formed. A total of 22 cDNAs were identified and accepted by GenBank as new expressed sequence tags. One of the expressed sequence tags was radiolabeled and used as a probe to screen a rat testis cDNA library. A novel full-length cDNA composed of 2228 bp, designated as RSD-3 (rat sperm DNA no.3, GenBank accession no. AF094609) was isolated and characterized. The reading frame encodes a polypeptide consisting of 526 amino acid residues, containing a number of DNA binding motifs and phosphorylation sites for PKC, CK-II, and p34cdc2. Northern blot of mRNA prepared from various tissues of adult rats showed that RSD-3 is expressed only in the testis. The initial expression of the RSD-3 gene was detected in the testis on the 30th postnatal day and attained adult level on the 60th postnatal day. Immunolocalization of RSD-3 in germ cells of rat testis showed that its expression is restricted to primary spermatocytes, undergoing meiosis division I. A human testis homologue of RSD-3 cDNA, designated as HSD-3.1 (GenBank accession no. AF144487) was isolated by screening the Human Testis Rapid-Screen arrayed cDNA library panels by RT-PCR. The exon-intron boundaries of HSD-3.1 gene were determined by aligning the cDNA sequence with the corresponding genome sequence. The cDNA consisted of 12 exons that span approximately 52.8 kb of the genome sequence and was mapped to chromosome 14q31.3.
NASA Astrophysics Data System (ADS)
Ren, Yuanyuan; Wen, Haishen; Li, Yun; Li, Jifang
2017-07-01
The effects of stocking density on the growth and metabolism of Amur sturgeon were assessed. Amur sturgeon were grown for 70 days at three different stocking densities (low stocking density, LSD: 5.5 kg/m3; medium stocking density, MSD: 8.0 kg/m3; and high stocking density, HSD: 11.0 kg/m3), and the biometric index, muscle composition, and serum biochemical parameters were evaluated. In addition, pituitary, liver, and muscle samples were collected for gene cloning and expression analyses. After 70 days of growth, the fish maintained at HSD had significantly lower final body weight and specific growth rate, and a higher feed conversion ratio than those of the fish in the MSD and LSD groups. The HSD group had the lowest lipid and protein concentrations in serum and muscle. The serum cortisol concentration increased significantly in the HSD group, indicating that the stress-response system was activated in these fish. There was no change in the concentration of serum insulin-like growth factor 2 (IGF-2), while the concentrations of serum growth hormone (GH) and insulin-like growth factor 1 (IGF-1) decreased in the HSD group. The full-length cDNAs of GH and IGF-2 genes (995-bp and 1 207-bp long, respectively), were cloned and analyzed. In the HSD group, the expressions of GH in the pituitary and growth hormone receptor (GHR) and IGF-1 in the liver were down-regulated at the end of the 70-day experiment. In the HSD group, the transcript level of IGF-2 significantly decreased in the liver, but did not change in muscle. Overall, our results indicated that a HSD negatively affects the growth performance and leads to changes in lipid and protein metabolism in Amur sturgeon. The down-regulated expression of genes related to the GH/IGF axis may be responsible for the poor growth performance of Amur sturgeon under crowding stress.
Cystic Fibrosis Transmembrane Conductance Regulator (ABCC7) Structure
Hunt, John F.; Wang, Chi; Ford, Robert C.
2013-01-01
Structural studies of the cystic fibrosis transmembrane conductance regulator (CFTR) are reviewed. Like many membrane proteins, full-length CFTR has proven to be difficult to express and purify, hence much of the structural data available is for the more tractable, independently expressed soluble domains. Therefore, this chapter covers structural data for individual CFTR domains in addition to the sparser data available for the full-length protein. To set the context for these studies, we will start by reviewing structural information on model proteins from the ATP-binding cassette (ABC) transporter superfamily, to which CFTR belongs. PMID:23378596
Liu, Guan-Jun; Liu, Ming-Kun; Xu, Zhi-Ru; Yan, Xiu-Feng; Wei, Zhi-Gang; Yang, Chuan-Ping
2009-04-01
Using cDNAs prepared from the leaves and stems of Polygonum sibiricum Laxm. treated with NaHCO3 stress for 48 h as testers and cDNAs from unstressed P. sibiricum leaves and stems as drivers library, suppression subtractive hybridization (SSH) was employed to construct a cDNA subtracted library, which contained 2 282 valid sequences including 598 ESTs in the stems forward SSH library and 490 ESTs in the stem reverse SSH library, 627 ESTs in the leaf forward SSH library and 567 in the leaf reverse SSH library. According to the functional catalogue of MIPs and the comparison of the reverse and forward SSH libraries of the stem and leaf, the responses to NaHCO3 stress were different between leaf and stem, except for the same trend in cell rescue defense and transport facilitation. The trend in the metabolism, energy, photosynthesis, protein synthesis, transcription, and signal transduction was opposite. RT-PCR analysis demonstrated that the expression of 12 putative stress related genes in the NaHCO3-treated leaves and stems was different from that in the untreated leaves and stems. This indicated that different mechanisms might be responsible for reactions of leaf and stem in P. sibiricum. The results from this study are useful in understanding the molecular mechanism of saline-alkali tolerance in P. sibiricum.
Kilpatrick, David R.; Nakamura, Tomofumi; Burns, Cara C.; Bukbuk, David; Oderinde, Soji B.; Oberste, M. Steven; Kew, Olen M.; Pallansch, Mark A.; Shimizu, Hiroyuki
2014-01-01
Laboratory diagnosis has played a critical role in the Global Polio Eradication Initiative since 1988, by isolating and identifying poliovirus (PV) from stool specimens by using cell culture as a highly sensitive system to detect PV. In the present study, we aimed to develop a molecular method to detect PV directly from stool extracts, with a high efficiency comparable to that of cell culture. We developed a method to efficiently amplify the entire capsid coding region of human enteroviruses (EVs) including PV. cDNAs of the entire capsid coding region (3.9 kb) were obtained from as few as 50 copies of PV genomes. PV was detected from the cDNAs with an improved PV-specific real-time reverse transcription-PCR system and nucleotide sequence analysis of the VP1 coding region. For assay validation, we analyzed 84 stool extracts that were positive for PV in cell culture and detected PV genomes from 100% of the extracts (84/84 samples) with this method in combination with a PV-specific extraction method. PV could be detected in 2/4 stool extract samples that were negative for PV in cell culture. In PV-positive samples, EV species C viruses were also detected with high frequency (27% [23/86 samples]). This method would be useful for direct detection of PV from stool extracts without using cell culture. PMID:25339406
Xu, Li; Ding, Zhi-Shan; Zhou, Yun-Kai; Tao, Xue-Fen
2009-06-01
To obtain the full-length cDNA sequence of Secoisolariciresinol Dehydrogenase gene from Dysosma versipellis by RACE PCR,then investigate the character of Secoisolariciresinol Dehydrogenase gene. The full-length cDNA sequence of Secoisolariciresinol Dehydrogenase gene was obtained by 3'-RACE and 5'-RACE from Dysosma versipellis. We first reported the full cDNA sequences of Secoisolariciresinol Dehydrogenase in Dysosma versipellis. The acquired gene was 991bp in full length, including 5' untranslated region of 42bp, 3' untranslated region of 112bp with Poly (A). The open reading frame (ORF) encoding 278 amino acid with molecular weight 29253.3 Daltons and isolectric point 6.328. The gene accession nucleotide sequence number in GeneBank was EU573789. Semi-quantitative RT-PCR analysis revealed that the Secoisolariciresinol Dehydrogenase gene was highly expressed in stem. Alignment of the amino acid sequence of Secoisolariciresinol Dehydrogenase indicated there may be some significant amino acid sequence difference among different species. Obtain the full-length cDNA sequence of Secoisolariciresinol Dehydrogenase gene from Dysosma versipellis.
Criscitiello, Michael F; Ohta, Yuko; Saltis, Mark; McKinney, E Churchill; Flajnik, Martin F
2010-06-15
Cartilaginous fish are the oldest animals that generate RAG-based Ag receptor diversity. We have analyzed the genes and expressed transcripts of the four TCR chains for the first time in a cartilaginous fish, the nurse shark (Ginglymostoma cirratum). Northern blotting found TCR mRNA expression predominantly in lymphoid and mucosal tissues. Southern blotting suggested translocon-type loci encoding all four chains. Based on diversity of V and J segments, the expressed combinatorial diversity for gamma is similar to that of human, alpha and beta may be slightly lower, and delta diversity is the highest of any organism studied to date. Nurse shark TCRdelta have long CDR3 loops compared with the other three chains, creating binding site topologies comparable to those of mammalian TCR in basic paratope structure; additionally, nurse shark TCRdelta CDR3 are more similar to IgH CDR3 in length and heterogeneity than to other TCR chains. Most interestingly, several cDNAs were isolated that contained IgM or IgW V segments rearranged to other gene segments of TCRdelta and alpha. Finally, in situ hybridization experiments demonstrate a conservation of both alpha/beta and gamma/delta T cell localization in the thymus across 450 million years of vertebrate evolution, with gamma/delta TCR expression especially high in the subcapsular region. Collectively, these data make the first cellular identification of TCR-expressing lymphocytes in a cartilaginous fish.
Wang, Jin; Gines, Silvia; MacDonald, Marcy E; Gusella, James F
2005-01-01
Background Huntington's disease (HD) is an inherited neurodegenerative disorder triggered by an expanded polyglutamine tract in huntingtin that is thought to confer a new conformational property on this large protein. The propensity of small amino-terminal fragments with mutant, but not wild-type, glutamine tracts to self-aggregate is consistent with an altered conformation but such fragments occur relatively late in the disease process in human patients and mouse models expressing full-length mutant protein. This suggests that the altered conformational property may act within the full-length mutant huntingtin to initially trigger pathogenesis. Indeed, genotype-phenotype studies in HD have defined genetic criteria for the disease initiating mechanism, and these are all fulfilled by phenotypes associated with expression of full-length mutant huntingtin, but not amino-terminal fragment, in mouse models. As the in vitro aggregation of amino-terminal mutant huntingtin fragment offers a ready assay to identify small compounds that interfere with the conformation of the polyglutamine tract, we have identified a number of aggregation inhibitors, and tested whether these are also capable of reversing a phenotype caused by endogenous expression of mutant huntingtin in a striatal cell line from the HdhQ111/Q111 knock-in mouse. Results We screened the NINDS Custom Collection of 1,040 FDA approved drugs and bioactive compounds for their ability to prevent in vitro aggregation of Q58-htn 1–171 amino terminal fragment. Ten compounds were identified that inhibited aggregation with IC50 < 15 μM, including gossypol, gambogic acid, juglone, celastrol, sanguinarine and anthralin. Of these, both juglone and celastrol were effective in reversing the abnormal cellular localization of full-length mutant huntingtin observed in mutant HdhQ111/Q111 striatal cells. Conclusions At least some compounds identified as aggregation inhibitors also prevent a neuronal cellular phenotype caused by full-length mutant huntingtin, suggesting that in vitro fragment aggregation can act as a proxy for monitoring the disease-producing conformational property in HD. Thus, identification and testing of compounds that alter in vitro aggregation is a viable approach for defining potential therapeutic compounds that may act on the deleterious conformational property of full-length mutant huntingtin. PMID:15649316
Engineering behavior of small-scale foundation piers constructed from alternative materials
NASA Astrophysics Data System (ADS)
Prokudin, Maxim Mikhaylovich
Testing small-scale prototype pier foundations to evaluate engineering behavior is an alternative to full-scale testing that facilitates testing of several piers and pier groups at relatively low cost. In this study, various pier systems and pier groups at one tenth scale were subjected to static vertical loading under controlled conditions to evaluate stiffness, bearing capacity, and group efficiency. Pier length, material properties and methods of installation were evaluated. Pier length to diameter ratios varied between four and eight. A unique soil pit with dimensions of 2.1 m in width, 1.5 m in length and 2.0 m in depth was designed to carry out this research. The test pit was filled with moisture conditioned and compacted Western Iowa loess. A special load test frame was designed and fabricated to provide up to 25,000 kg vertical reaction force for load testing. A load cell and displacement instrumentation was setup to capture the load test data. Alternative materials to conventional cement concrete were studied. The pier materials evaluated in this study included compacted aggregate, cement stabilized silt, cementitious grouts, and fiber reinforced silt. Key findings from this study demonstrated that (1) the construction method influences the behavior of aggregate piers, (2) the composition of the pier has a significant impact on the stiffness, (3) group efficiencies were found to be a function of pier length and pier material, (4) in comparison to full-scale testing the scaled piers were found to produce a stiffer response with load-settlement and bearing capacities to be similar. Further, although full-scale test results were not available for all pier materials, the small-scale testing provided a means for comparing results between pier systems. Finally, duplicate pier tests for a given length and material were found to be repeatable.
Koehler Leman, Julia; Bonneau, Richard
2018-04-03
Membrane proteins composed of soluble and membrane domains are often studied one domain at a time. However, to understand the biological function of entire protein systems and their interactions with each other and drugs, knowledge of full-length structures or models is required. Although few computational methods exist that could potentially be used to model full-length constructs of membrane proteins, none of these methods are perfectly suited for the problem at hand. Existing methods require an interface or knowledge of the relative orientations of the domains or are not designed for domain assembly, and none of them are developed for membrane proteins. Here we describe the first domain assembly protocol specifically designed for membrane proteins that assembles intra- and extracellular soluble domains and the transmembrane domain into models of the full-length membrane protein. Our protocol does not require an interface between the domains and samples possible domain orientations based on backbone dihedrals in the flexible linker regions, created via fragment insertion, while keeping the transmembrane domain fixed in the membrane. For five examples tested, our method mp_domain_assembly, implemented in RosettaMP, samples domain orientations close to the known structure and is best used in conjunction with experimental data to reduce the conformational search space.
Kojima, T; Habu, Y; Iida, S; Ogihara, Y
2000-05-01
The amplified restriction fragment length polymorphism (AFLP)-based mRNA fingerprinting (AMF) method makes it possible systematically and conveniently to identify differentially expressed cDNAs with high reproducibility. We have applied the AMF method to the cloning of the Q gene of common wheat, which is located on the long arm of chromosome 5A and pleiotropically controls the spike morphology and the threshing character of seeds. Using the AMF method, we compared the fingerprints of mRNA samples extracted from the young spikes of Triticum aestivum cv. Chinese Spring (CS) carrying the Q gene to those of a chromosome deletion line of CS, namely, q5, which lacks 15% of 5AL including the Q gene. Approximately 12,200 fragments were produced after PCR with 256 primer combinations. Of these, 92 fragments were differentially expressed between CS and q5. Northern and Southern analyses showed that 16 fragments gave specific or relatively stronger transcript signals in CS, and these clones were present in single copy or in low copy numbers in the wheat genome. Four clones were genetically mapped to the region deleted in q5. Subsequently, one clone, pTaQ22, was mapped at the same locus as the Q gene, indicating that pTaQ22 corresponds to the Q gene or is tightly linked to it. DNA sequence data showed that pTaQ22 had no homology to any known genes, thus suggesting a novel function for this gene in flower morphogenesis. This AMF method might provide a straightforward method for isolating genes in the hexaploid background of common wheat.
Cutting Edge: Inflammasome Activation in Primary Human Macrophages Is Dependent on Flagellin
Kortmann, Jens; Brubaker, Sky W.
2015-01-01
Murine NLR family, apoptosis inhibitory protein (Naip)1, Naip2, and Naip5/6 are host sensors that detect the cytosolic presence of needle and rod proteins from bacterial type III secretion systems and flagellin, respectively. Previous studies using human-derived macrophage-like cell lines indicate that human macrophages sense the cytosolic needle protein, but not bacterial flagellin. In this study, we show that primary human macrophages readily sense cytosolic flagellin. Infection of primary human macrophages with Salmonella elicits robust cell death and IL-1β secretion that is dependent on flagellin. We show that flagellin detection requires a full-length isoform of human Naip. This full-length Naip isoform is robustly expressed in primary macrophages from healthy human donors, but it is drastically reduced in monocytic tumor cells, THP-1, and U937, rendering them insensitive to cytosolic flagellin. However, ectopic expression of full-length Naip rescues the ability of U937 cells to sense flagellin. In conclusion, human Naip functions to activate the inflammasome in response to flagellin, similar to murine Naip5/6. PMID:26109648
Molecular Architecture of Full-length TRF1 Favors Its Interaction with DNA.
Boskovic, Jasminka; Martinez-Gago, Jaime; Mendez-Pertuz, Marinela; Buscato, Alberto; Martinez-Torrecuadrada, Jorge Luis; Blasco, Maria A
2016-10-07
Telomeres are specific DNA-protein structures found at both ends of eukaryotic chromosomes that protect the genome from degradation and from being recognized as double-stranded breaks. In vertebrates, telomeres are composed of tandem repeats of the TTAGGG sequence that are bound by a six-subunit complex called shelterin. Molecular mechanisms of telomere functions remain unknown in large part due to lack of structural data on shelterins, shelterin complex, and its interaction with the telomeric DNA repeats. TRF1 is one of the best studied shelterin components; however, the molecular architecture of the full-length protein remains unknown. We have used single-particle electron microscopy to elucidate the structure of TRF1 and its interaction with telomeric DNA sequence. Our results demonstrate that full-length TRF1 presents a molecular architecture that assists its interaction with telometic DNA and at the same time makes TRFH domains accessible to other TRF1 binding partners. Furthermore, our studies suggest hypothetical models on how other proteins as TIN2 and tankyrase contribute to regulate TRF1 function. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Molecular Architecture of Full-length TRF1 Favors Its Interaction with DNA*
Boskovic, Jasminka; Martinez-Gago, Jaime; Mendez-Pertuz, Marinela; Buscato, Alberto; Martinez-Torrecuadrada, Jorge Luis; Blasco, Maria A.
2016-01-01
Telomeres are specific DNA-protein structures found at both ends of eukaryotic chromosomes that protect the genome from degradation and from being recognized as double-stranded breaks. In vertebrates, telomeres are composed of tandem repeats of the TTAGGG sequence that are bound by a six-subunit complex called shelterin. Molecular mechanisms of telomere functions remain unknown in large part due to lack of structural data on shelterins, shelterin complex, and its interaction with the telomeric DNA repeats. TRF1 is one of the best studied shelterin components; however, the molecular architecture of the full-length protein remains unknown. We have used single-particle electron microscopy to elucidate the structure of TRF1 and its interaction with telomeric DNA sequence. Our results demonstrate that full-length TRF1 presents a molecular architecture that assists its interaction with telometic DNA and at the same time makes TRFH domains accessible to other TRF1 binding partners. Furthermore, our studies suggest hypothetical models on how other proteins as TIN2 and tankyrase contribute to regulate TRF1 function. PMID:27563064
USDA-ARS?s Scientific Manuscript database
Hymenopteran viruses may provide insights into colony collapse disorder in honey bees and other insect species. Three novel small RNA viruses were discovered during the genomics effort for the beneficial parasitoid of flies in the genus Nasonia (Hymenoptera). Genomics provides a great deal of inform...
Defense Response in Slash Pine: Chitosan Treatment Alters the Abundance of Specific mRNAs
Mary E. Mason; John M. Davis
1997-01-01
We used differential display to identify chitosan responsive cDNAs in slashpine cell cultures. Two clones that showed increased mRNA abundance had sequence similarity to genes with roles in major plant defense responses, clone 18 to cinnamic acid 4-hydroxylase, and clone 30 to chitinase.
Troncoso-Ponce, M A; Rivoal, J; Venegas-Calerón, M; Dorion, S; Sánchez, R; Cejudo, F J; Garcés, R; Martínez-Force, E
2012-07-01
Three cDNAs encoding different phosphoglycerate kinase (PGK, EC 2.7.2.3) isoforms, two cytosolic (HacPGK1 and HacPGK2) and one plastidic (HapPGK), were cloned and characterized from developing sunflower (Helianthus annuus L.) seeds. The expression profiles of these genes showed differences in heterotrophic tissues, such as developing seeds and roots, where HacPGK1 was predominant, while HapPGK was highly expressed in photosynthetic tissues. The cDNAs were expressed in Escherichia coli, and the corresponding proteins purified to electrophoretic homogeneity, using immobilized metal ion affinity chromatography, and biochemically characterized. Despite the high level of identity between sequences, the HacPGK1 isoform showed strong differences in terms of specific activity, temperature stability and pH sensitivity in comparison to HacPGK2 and HapPGK. A polyclonal immune serum was raised against the purified HacPGK1 isoform, which showed cross-immunoreactivity with the other PGK isoforms. This serum allowed the localization of high expression levels of PGK isozymes in embryo tissues. Copyright © 2012 Elsevier Ltd. All rights reserved.
Cloning and purification of alpha-neurotoxins from king cobra (Ophiophagus hannah).
He, Ying-Ying; Lee, Wei-Hui; Zhang, Yun
2004-09-01
Thirteen complete and three partial cDNA sequences were cloned from the constructed king cobra (Ophiophagus hannah) venom gland cDNA library. Phylogenetic analysis of nucleotide sequences of king cobra with those from other snake venoms revealed that obtained cDNAs are highly homologous to snake venom alpha-neurotoxins. Alignment of deduced mature peptide sequences of the obtained clones with those of other reported alpha-neurotoxins from the king cobra venom indicates that our obtained 16 clones belong to long-chain neurotoxins (seven), short-chain neurotoxins (seven), weak toxin (one) and variant (one), respectively. Up to now, two out of 16 newly cloned king cobra alpha-neurotoxins have identical amino acid sequences with CM-11 and Oh-6A/6B, which have been characterized from the same venom. Furthermore, five long-chain alpha-neurotoxins and two short-chain alpha-neurotoxins were purified from crude venom and their N-terminal amino acid sequences were determined. The cDNAs encoding the putative precursors of the purified native peptide were also determined based on the N-terminal amino acid sequencing. The purified alpha-neurotoxins showed different lethal activities on mice.
Kim, Yun-Hee; Yang, Kyoung-Sil; Kim, Cha Young; Ryu, Sun-Hwa; Song, Wan-Keun; Kwon, Suk-Yoon; Lee, Haeng-Soon; Bang, Jae-Wook; Kwak, Sang-Soo
2008-03-31
Three peroxidase (POD) cDNAs were isolated from dehydration-treated fibrous roots of sweetpotato (Ipomoea batatas) plant via the screening of a cDNA library, and their expressions were assessed to characterize functions of each POD in relation to environmental stress. Three PODs were divided into two groups, designated the basic PODs (swpb4, swpb5) and the anionic PODs (swpa7), on the basis of the pI values of mature proteins. Fluorescence microscope analysis indicated that three PODs are secreted into the extracellular space. RTPCR analysis revealed that POD genes have diverse expression patterns in a variety of plant tissues. Swpb4 was abundantly expressed in stem tissues, whereas the expression levels of swpb5 and swpa7 transcripts were high in fibrous and thick pigmented roots. Swpb4 and swpa7 showed abundant expression levels in suspension cultured cells. Three POD genes responded differently in the leaf and fibrous roots in response to a variety of stresses including dehydration, temperature stress, stress-associated chemicals, and pathogenic bacteria.
Su, Chinh Tran-To; Kwoh, Chee-Keong; Verma, Chandra Shekhar; Gan, Samuel Ken-En
2017-12-27
HIV polyprotein Gag is increasingly found to contribute to protease inhibitor resistance. Despite its role in viral maturation and in developing drug resistance, there remain gaps in the knowledge of the role of certain Gag subunits (e.g. p6), and that of non-cleavage mutations in drug resistance. As p6 is flexible, it poses a problem for structural experiments, and is hence often omitted in experimental Gag structural studies. Nonetheless, as p6 is an indispensable component for viral assembly and maturation, we have modeled the full length Gag structure based on several experimentally determined constraints and studied its structural dynamics. Our findings suggest that p6 can mechanistically modulate Gag conformations. In addition, the full length Gag model reveals that allosteric communication between the non-cleavage site mutations and the first Gag cleavage site could possibly result in protease drug resistance, particularly in the absence of mutations in Gag cleavage sites. Our study provides a mechanistic understanding to the structural dynamics of HIV-1 Gag, and also proposes p6 as a possible drug target in anti-HIV therapy.
Kastner, Rebecca M; Sellbom, Martin; Lilienfeld, Scott O
2012-03-01
The Psychopathic Personality Inventory (PPI) has shown promising construct validity as a measure of psychopathy. Because of its relative efficiency, a short-form version of the PPI (PPI-SF) was developed and has proven useful in many psychopathy studies. The validity of the PPI-SF, however, has not been thoroughly examined, and no studies have directly compared the validity of the short form with that of the full-length version. The current study was designed to compare the psychometric properties of both PPI versions, with an emphasis on convergent and discriminant validity in predicting external criteria conceptually relevant to psychopathy. We used both prison (n = 558) and college samples (n = 322) for this investigation. PPI scale scores were more reliable and more strongly correlated with the conceptually relevant criterion measures compared with the PPI-SF, particularly in the prison sample. There were no differences in relative discriminant validity. Thus, overall, the PPI full-length version showed more evidence of construct validity than did the short form, and the consequences of this psychometric difference should be considered when evaluating the clinical utility of each measure.
Kawashima, Satoshi; Ikehata, Hiroki; Tada, Chihiro; Ogino, Tomohiro; Kakizaki, Hiromi; Ikeda, Mana; Fukushima, Hideto; Matsumiya, Masahiro
2016-01-20
Fish express two different chitinases, acidic fish chitinase-1 (AFCase-1) and acidic fish chitinase-2 (AFCase-2), in the stomach. AFCase-1 and AFCase-2 have different degradation patterns, as fish efficiently degrade chitin ingested as food. For a comparison with the enzymatic properties and the primary structures of chitinase isozymes obtained previously from the stomach of demersal fish, in this study, we purified chitinase isozymes from the stomach of Japanese sardine Sardinops melanostictus, a surface fish that feeds on plankton, characterized the properties of these isozymes, and cloned the cDNAs encoding chitinases. We also predicted 3D structure models using the primary structures of S. melanostictus stomach chitinases. Two chitinase isozymes, SmeChiA (45 kDa) and SmeChiB (56 kDa), were purified from the stomach of S. melanostictus. Moreover, two cDNAs, SmeChi-1 encoding SmeChiA, and SmeChi-2 encoding SmeChiB were cloned. The linker regions of the deduced amino acid sequences of SmeChi-1 and SmeChi-2 (SmeChi-1 and SmeChi-2) are the longest among the fish stomach chitinases. In the cleavage pattern groups toward short substrates and the phylogenetic tree analysis, SmeChi-1 and SmeChi-2 were classified into AFCase-1 and AFCase-2, respectively. SmeChi-1 and SmeChi-2 had catalytic domains that consisted of a TIM-barrel (β/α)₈-fold structure and a deep substrate-binding cleft. This is the first study showing the 3D structure models of fish stomach chitinases.
Reference standard of penile size and prevalence of buried penis in Japanese newborn male infants.
Matsuo, Nobutake; Ishii, Tomohiro; Takayama, John I; Miwa, Masayuki; Hasegawa, Tomonobu
2014-01-01
The present study set forth the reference values for penile size and determined the prevalence of buried penis in Japanese full-term newborns. The stretched penile length was measured and the presence of buried penis was assessed at 1-7 days of age in 547 Japanese full-term newborn infants born between 2008 and 2012 in Tokyo. The stretched penile lengths were compared at 1-12 hours and 1-7 days of age in 63 infants and by two observers in 73 infants to estimate postnatal changes and interobserver variation, respectively. The mean stretched penile length was 3.06 cm (SD, 0.26; 95% confidence interval [CI], 3.04-3.08) and the mean ratio of penile length to body length was 6.24 × 100(-1) (SD, 0.55 × 100(-1)), both of which were significantly smaller than those in Caucasian newborn infants. Buried penis was identified in 20 of 547 infants (3.7%; 95% CI, 2.1-5.2%). The first measurements of penile length at 1-12 hours were significantly smaller than the next measurements at 1-7 days (95% CI of the difference, 0.22-0.34). The 95% CI for the limits of agreement in the penile lengths measured by the two observers was -0.58 to -0.40 for the lower limit and 0.33 to 0.51 for the upper limit. These findings indicate that the penile length should be assessed after 24 hours of age by the reference standard of the same ethnicity for identifying micropenis and that buried penis is not uncommon in Japanese full-term newborns.
Herndon, Carl L; Horodyski, MaryBeth; Vincent, Heather K
2017-10-01
This study examined whether epidural injection-induced anesthesia acutely and positively affected temporal spatial parameters of gait in patients with chronic low back pain (LBP) due to lumbar spinal stenosis. Twenty-five patients (61.7±13.6years) who were obtaining lumbar epidural injections for stenosis-related LBP participated. Oswestry Disability Index (ODI) scores, Medical Outcomes Short Form (SF-36) scores, 11-point Numerical pain rating (NRS pain ) scores, and temporal spatial parameters of walking gait were obtained prior to, and 11-point Numerical pain rating (NRS pain ) scores, and temporal spatial parameters of walking gait were obtained after the injection. Gait parameters were measured using an instrumented gait mat. Patients received transforaminal epidural injections in the L1-S1 vertebral range (1% lidocaine, corticosteroid) under fluoroscopic guidance. Patients with post-injection NRS pain ratings of "0" or values greater than "0" were stratified into two groups: 1) full pain relief, or 2) partial pain relief, respectively. Post-injection, 48% (N=12) of patients reported full pain relief. ODI scores were higher in patients with full pain relief (55.3±21.4 versus 33.7 12.8; p=0.008). Post-injection, stride length and step length variability were significantly improved in the patients with full pain relief compared to those with partial pain relief. Effect sizes between full and partial pain relief for walking velocity, step length, swing time, stride and step length variability were medium to large (Cohen's d>0.50). Patients with LBP can gain immediate gait improvements from complete pain relief from transforaminal epidural anesthetic injections for LBP, which could translate to better stability and lower fall risk. Copyright © 2017 Elsevier B.V. All rights reserved.
Native Mutant Huntingtin in Human Brain
Sapp, Ellen; Valencia, Antonio; Li, Xueyi; Aronin, Neil; Kegel, Kimberly B.; Vonsattel, Jean-Paul; Young, Anne B.; Wexler, Nancy; DiFiglia, Marian
2012-01-01
Huntington disease (HD) is caused by polyglutamine expansion in the N terminus of huntingtin (htt). Analysis of human postmortem brain lysates by SDS-PAGE and Western blot reveals htt as full-length and fragmented. Here we used Blue Native PAGE (BNP) and Western blots to study native htt in human postmortem brain. Antisera against htt detected a single band broadly migrating at 575–850 kDa in control brain and at 650–885 kDa in heterozygous and Venezuelan homozygous HD brains. Anti-polyglutamine antisera detected full-length mutant htt in HD brain. There was little htt cleavage even if lysates were pretreated with trypsin, indicating a property of native htt to resist protease cleavage. A soluble mutant htt fragment of about 180 kDa was detected with anti-htt antibody Ab1 (htt-(1–17)) and increased when lysates were treated with denaturants (SDS, 8 m urea, DTT, or trypsin) before BNP. Wild-type htt was more resistant to denaturants. Based on migration of in vitro translated htt fragments, the 180-kDa segment terminated ≈htt 670–880 amino acids. If second dimension SDS-PAGE followed BNP, the 180-kDa mutant htt was absent, and 43–50 kDa htt fragments appeared. Brain lysates from two HD mouse models expressed native full-length htt; a mutant fragment formed if lysates were pretreated with 8 m urea + DTT. Native full-length mutant htt in embryonic HD140Q/140Q mouse primary neurons was intact during cell death and when cell lysates were exposed to denaturants before BNP. Thus, native mutant htt occurs in brain and primary neurons as a soluble full-length monomer. PMID:22375012
Prasad, Ramesh; Sen, Prosenjit
2018-02-01
Tissue factor (TF)-mediated factor VII (FVII) activation and a subsequent proteolytic TF-FVIIa binary complex formation is the key step initiating the coagulation cascade, with implications in various homeostatic and pathologic scenarios. TF binding allosterically modifies zymogen-like free FVIIa to its highly catalytically active form. As a result of unresolved crystal structure of the full-length TF 1-263 -FVIIa binary complex and free FVIIa, allosteric alterations in FVIIa following its binding to full-length TF and the consequences of these on function are not entirely clear. The present study aims to map and identify structural alterations in FVIIa and TF resulting from full-length TF binding to FVIIa and the key events responsible for enhanced FVIIa activity in coagulation. We constructed the full-length TF 1-263 -FVIIa membrane bound complex using computational modeling and subjected it to molecular dynamics (MD) simulations. MD simulations showed that TF alters the structure of each domain of FVIIa and these combined alterations contribute to enhanced TF-FVIIa activity. Detailed, domain-wise investigation revealed several new non-covalent interactions between TF and FVIIa that were not found in the truncated soluble TF-FVIIa crystal structure. The structural modulation of each FVIIa domain imparted by TF indicated that both inter and intra-domain communication is crucial for allosteric modulation of FVIIa. Our results suggest that these newly formed interactions can provide additional stability to the protease domain and regulate its activity profile by governing catalytic triad (CT) orientation and localization. The unexplored newly formed interactions between EGF2 and TF provides a possible explanation for TF-induced allosteric activation of FVIIa.
Kim, Hae Jin; Silva, Jillian E; Iskandarov, Umidjon; Andersson, Mariette; Cahoon, Rebecca E; Mockaitis, Keithanne; Cahoon, Edgar B
2015-12-01
Lysophosphatidic acid acyltransferase (LPAT) catalyzes acylation of the sn-2 position on lysophosphatidic acid by an acyl CoA substrate to produce the phosphatidic acid precursor of polar glycerolipids and triacylglycerols (TAGs). In the case of TAGs, this reaction is typically catalyzed by an LPAT2 from microsomal LPAT class A that has high specificity for C18 fatty acids containing Δ9 unsaturation. Because of this specificity, the occurrence of saturated fatty acids in the TAG sn-2 position is infrequent in seed oils. To identify LPATs with variant substrate specificities, deep transcriptomic mining was performed on seeds of two Cuphea species producing TAGs that are highly enriched in saturated C8 and C10 fatty acids. From these analyses, cDNAs for seven previously unreported LPATs were identified, including cDNAs from Cuphea viscosissima (CvLPAT2) and Cuphea avigera var. pulcherrima (CpuLPAT2a) encoding microsomal, seed-specific class A LPAT2s and a cDNA from C. avigera var. pulcherrima (CpuLPATB) encoding a microsomal, seed-specific LPAT from the bacterial-type class B. The activities of these enzymes were characterized in Camelina sativa by seed-specific co-expression with cDNAs for various Cuphea FatB acyl-acyl carrier protein thioesterases (FatB) that produce a variety of saturated medium-chain fatty acids. CvLPAT2 and CpuLPAT2a expression resulted in accumulation of 10:0 fatty acids in the Camelina sativa TAG sn-2 position, indicating a 10:0 CoA specificity that has not been previously described for plant LPATs. CpuLPATB expression generated TAGs with 14:0 at the sn-2 position, but not 10:0. Identification of these LPATs provides tools for understanding the structural basis of LPAT substrate specificity and for generating altered oil functionalities. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.
Kang, Duk-Young; Kim, Hyo-Chan
2015-01-01
To determine whether proopiomelanocortin (POMC) genes are involved in darkening color camouflage, blind-side hypermelanosis, and appetite in flatfish, we isolated and cloned three POMC genes from the pituitary of the olive flounder (Paralichthys olivaceus) and compared their amino acid (aa) structures to those of POMC genes from other animals. Next, we examined the relationship of these pituitary POMC genes to camouflage color change, blind-side hypermelanosis, and appetite by quantifying mRNA expression. Olive flounder (of)-POMC1, 2, and 3 cDNAs consisted of 648-bp, 582-bp, and 693-bp open reading frames (ORF) encoding 216 aa, 194 aa, and 231 aa residues, respectively. Structurally, the three of-POMC cDNAs consisted of seven peptides (signal peptide, N-POMC, α-MSH, CLIP, N-β-LPH, β-MSH and β-END [or END-like peptide]) that are similar to those of other fish POMC cDNAs. α-MSH encoded a protein composed of 13 aa and β-MSH encoded a protein composed of 17 aa. The three POMC genes were predominantly expressed in the pituitary gland, but they were also expressed in a variety of tissues, including brain, eye, kidney, heart, testis, and skin. of-POMC2 exhibited the highest expression, while of-POMC3 displayed the lowest expression. The relative levels of of-POMC1 and 3 mRNAs were not influenced by background color and feeding (or fasting), but the relative level of of-POMC2 mRNA significantly increased in response to a dark background and fasting. The relative levels of of-POMC1 and 2 mRNAs were significantly higher in hypermelanic fish; however, we did not determine a direct anorexigenic or orexigenic relationship for the three POMC genes. These results indicate that pituitary POMC genes are related to darkening color change and the differentiation of pigment cells, but they are not directly related to appetite. Copyright © 2014 Elsevier Inc. All rights reserved.
Separated-orbit bisected energy-recovered linear accelerator
Douglas, David R.
2015-09-01
A separated-orbit bisected energy-recovered linear accelerator apparatus and method. The accelerator includes a first linac, a second linac, and a plurality of arcs of differing path lengths, including a plurality of up arcs, a plurality of downgoing arcs, and a full energy arc providing a path independent of the up arcs and downgoing arcs. The up arcs have a path length that is substantially a multiple of the RF wavelength and the full energy arc includes a path length that is substantially an odd half-integer multiple of the RF wavelength. Operation of the accelerator includes accelerating the beam utilizing the linacs and up arcs until the beam is at full energy, at full energy executing a full recirculation to the second linac using a path length that is substantially an odd half-integer of the RF wavelength, and then decelerating the beam using the linacs and downgoing arcs.
Cuphea wrightii thioesterases have unexpected broad specificities on saturated fatty acids.
Leonard, J M; Slabaugh, M B; Knapp, S J
1997-07-01
Cuphea wrightii A. Gray is an herbaceous annual that accumulates 30% caprate (10:0) and 54% laurate (12:0) in seed storage lipids. We investigated the role of acyl-acyl carrier protein (ACP) thioesterases (TE) in acyl chain-length regulation in C. wrightii. Two embryo-derived cDNAs, encoding the TEs Cw FatB1 and Cw FatB2, were isolated. Both proteins were detected in developing embryos and mature seeds but not in other tissues, suggesting involvement in seed oil synthesis. Although expected to be 10:0/12:0-ACP-specific, these genes produced a broad range of fatty acids (12:0, 14:0, and 16:0) in transgenic Arabidopsis with the greatest accumulation at 14:0. Cw FatB2 transformants also accumulated small amounts of 10:0. Because C. wrightii accumulates only ca. 5% 14:0 and ca. 2% 16:0, we tested the possibility that gene dosage effects might significantly alter the overall kinetics of the pathway. Phenotypic comparisons of progeny segregating for the transgenes individually and in a hybrid population demonstrated that increased enzyme pools in vivo had a minor effect on diverting fatty acid production to shorter chains. We propose that Cw FatB1 and Cw FatB2 may be necessary but not sufficient determinants of the C. wrightii phenotype.
Liu, Jing; Hua, Wei; Zhan, Gaomiao; Wei, Fang; Wang, Xinfa; Liu, Guihua; Wang, Hanzhong
2010-01-01
Rapeseed (Brassica napus) is one of the most important edible oilseed crops in the world and is increasingly used globally to produce bio-diesel. Therefore, increasing oil content of oilseed corps is of importance economically in both food and oil industries. The wri1 genes are differentially expressed in B. napus lines with different oil content. To investigate the effects of B. napus WRI1 (BnWRI1) on oil content, two Bnwri1 genes with different lengths, Bnwri1-1 and Bnwri1-2, were identified and sequenced. Homology analysis shows 80% amino acids of Bnwri1s are homologous to Arabidopsis thaliana WRI1 (AtWRI1). Overexpression of Bnwri1 cDNAs driven by cauliflower mosaic virus 35S-promoter in 51 transgenic A. thaliana lines resulted in 10-40% increased seed oil content and enlarged seed size and mass. Detailed analysis on transgenic embryos indicates an increased cell size other than cell number. In addition, Bnwri1 sequence polymorphism is highly related to oil content (p < 0.001). Taking together, Bnwri1 has potential applications in food and oil industries and in rapeseed breeding. Copyright 2009 Elsevier Masson SAS. All rights reserved.
Moser, Lindsey A.; Ramirez-Carvajal, Lisbeth; Puri, Vinita; Pauszek, Steven J.; Matthews, Krystal; Dilley, Kari A.; Mullan, Clancy; McGraw, Jennifer; Khayat, Michael; Beeri, Karen; Yee, Anthony; Dugan, Vivien; Heise, Mark T.; Frieman, Matthew B.; Rodriguez, Luis L.; Bernard, Kristen A.; Wentworth, David E.
2016-01-01
ABSTRACT Several biosafety level 3 and/or 4 (BSL-3/4) pathogens are high-consequence, single-stranded RNA viruses, and their genomes, when introduced into permissive cells, are infectious. Moreover, many of these viruses are select agents (SAs), and their genomes are also considered SAs. For this reason, cDNAs and/or their derivatives must be tested to ensure the absence of infectious virus and/or viral RNA before transfer out of the BSL-3/4 and/or SA laboratory. This tremendously limits the capacity to conduct viral genomic research, particularly the application of next-generation sequencing (NGS). Here, we present a sequence-independent method to rapidly amplify viral genomic RNA while simultaneously abolishing both viral and genomic RNA infectivity across multiple single-stranded positive-sense RNA (ssRNA+) virus families. The process generates barcoded DNA amplicons that range in length from 300 to 1,000 bp, which cannot be used to rescue a virus and are stable to transport at room temperature. Our barcoding approach allows for up to 288 barcoded samples to be pooled into a single library and run across various NGS platforms without potential reconstitution of the viral genome. Our data demonstrate that this approach provides full-length genomic sequence information not only from high-titer virion preparations but it can also recover specific viral sequence from samples with limited starting material in the background of cellular RNA, and it can be used to identify pathogens from unknown samples. In summary, we describe a rapid, universal standard operating procedure that generates high-quality NGS libraries free of infectious virus and infectious viral RNA. IMPORTANCE This report establishes and validates a standard operating procedure (SOP) for select agents (SAs) and other biosafety level 3 and/or 4 (BSL-3/4) RNA viruses to rapidly generate noninfectious, barcoded cDNA amenable for next-generation sequencing (NGS). This eliminates the burden of testing all processed samples derived from high-consequence pathogens prior to transfer from high-containment laboratories to lower-containment facilities for sequencing. Our established protocol can be scaled up for high-throughput sequencing of hundreds of samples simultaneously, which can dramatically reduce the cost and effort required for NGS library construction. NGS data from this SOP can provide complete genome coverage from viral stocks and can also detect virus-specific reads from limited starting material. Our data suggest that the procedure can be implemented and easily validated by institutional biosafety committees across research laboratories. PMID:27822536
Klissenbauer, Monika; Winters, Silke; Heinlein, Uwe A O; Lisowsky, Thomas
2002-07-01
In this study, we investigated the expression of the mammalian FAD-dependent sulphydryl oxidase Erv1p/Alrp in the rat and mouse and during mouse spermatogenesis. Up to three forms of Alrp were identified in protein extracts from different tissues and organs, but very little enzyme was present in blood samples. The three forms of Alrp represent the full-length protein of 23 kDa and fragments of 21 kDa and 15 kDa. All forms of Alrp were assembled into dimers in vivo. In contrast to samples from other organs, the protein analysis of mouse testis identified predominantly full-length 23 kDa Alrp. This finding prompted us to investigate in more detail the expression of Alrp during spermatogenesis. Testis samples of individual mice from postnatal days 13-29 were probed with an antibody specific for mammalian Alrp. In addition, cells from whole testis preparations were fractionated on a bovine serum albumin column gradient. Protein expression of mouse Alrp was compared with those of testis-specific cyritestin, the cytoskeleton marker actin and mitochondrial subunit Vb of cytochrome oxidase and cytochrome c. These studies demonstrated a specific accumulation of full-length mouse Alrp during the early stages of spermatogenesis. The highest levels of Alrp were found in spermatogonia and primary spermatocytes. Levels of expression of Alrp did not correlate with the synthesis of components of the respiratory chain, indicating that full-length Alrp in the mitochondria of spermatogonia and spermatocytes has another function in addition to its role in oxidative phosphorylation.
Himuro, Yasuyo; Tanaka, Hidenori; Hashiguchi, Masatsugu; Ichikawa, Takanari; Nakazawa, Miki; Seki, Motoaki; Fujita, Miki; Shinozaki, Kazuo; Matsui, Minami; Akashi, Ryo; Hoffmann, Franz
2011-01-15
Using the full-length cDNA overexpressor (FOX) gene-hunting system, we have generated 130 Arabidopsis FOX-superroot lines in bird's-foot trefoil (Lotus corniculatus) for the systematic functional analysis of genes expressed in roots and for the selection of induced mutants with interesting root growth characteristics. We used the Arabidopsis-FOX Agrobacterium library (constructed by ligating pBIG2113SF) for the Agrobacterium-mediated transformation of superroots (SR) and the subsequent selection of gain-of-function mutants with ectopically expressed Arabidopsis genes. The original superroot culture of L. corniculatus is a unique host system displaying fast root growth in vitro, allowing continuous root cloning, direct somatic embryogenesis and mass regeneration of plants under entirely hormone-free culture conditions. Several of the Arabidopsis FOX-superroot lines show interesting deviations from normal growth and morphology of roots from SR-plants, such as differences in pigmentation, growth rate, length or diameter. Some of these mutations are of potential agricultural interest. Genomic PCR analysis revealed that 100 (76.9%) out of the 130 transgenic lines showed the amplification of single fragments. Sequence analysis of the PCR fragments from these 100 lines identified full-length cDNA in 74 of them. Forty-three out of 74 full-length cDNA carried known genes. The Arabidopsis FOX-superroot lines of L. corniculatus, produced in this study, expand the FOX hunting system and provide a new tool for the genetic analysis and control of root growth in a leguminous forage plant. Copyright © 2010 Elsevier GmbH. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Several biosafety level (BSL)-3/4 pathogens are high consequence, single-stranded RNA viruses and their genomes, when introduced into permissive cells, are infectious. Moreover many of these viruses are Select Agents (SAs), and their genomes are also considered SAs. For this reason cDNAs and/or th...
Partial DNA sequencing of Douglas-fir cDNAs used in RFLP mapping
K.D. Jermstad; D.L. Bassoni; C.S. Kinlaw; D.B. Neale
1998-01-01
DNA sequences from 87 Douglas-fir (Pseudotsuga menziesii [Mirb.] Franco) cDNA RFLP probes were determined. Sequences were submitted to the GenBank dbEST database and searched for similarity against nucleotide and protein databases using the BLASTn and BLASTx programs. Twenty-one sequences (24%) were assigned putative functions; 18 of which...
Liu, Dong; Liu, Shaojun; You, Cuiping; Chen, Lin; Liu, Zhen; Liu, Liangguo; Wang, Jing; Liu, Yun
2010-04-01
Diploid eggs of allotetraploid hybrids (red crucian carp female symbol x common carp male symbol), when activated by UV-irradiated sperm of scatter scale carp, can develop into diploid progenies without chromosome duplication treatment. Diploid progenies produce diploid eggs, which develop into diploid population by the same way. To understand the molecular mechanism underlying the production of diploid eggs by the diploid fish, we constructed a forward suppression subtractive hybridization complementary DNA (cDNA) library. The cDNAs from the ovary in proliferation phase were employed as the "tester," and those in growth phase were used as the "driver." Seventy-three cDNA clones that are specifically expressed in proliferation phase were detected by dot-blot hybridization. Sequencing analyses revealed that several of these cDNAs have high homologies to the known sequences in the NCBI database. Their encoded proteins include the protein preventing mitosis catastrophe (PMC), the signal recognition particle 9, the ATP-binding cassette transporter, the glucanase-xylanase fusion protein, and others. These genes were confirmed by reverse transcriptase-polymerase chain reaction. The expression profile of the PMC gene at different time points was analyzed by quantitative real-time polymerase chain reaction. The results indicated that the expression of this suppression subtractive hybridization-identified gene changed during the time course, corresponding with the cellular phenomenon in the ovary development. Our studies provide insights into the molecular mechanism underlying the ovary development of diploid gynogenetic fish.
Marchitelli, Cinzia; Crisà, Alessandra; Mostarda, Elisa; Napolitano, Francesco; Moioli, Bianca
2013-01-01
The serine protease inhibitor, clade A, member 1 (SERPINA1) is the gene for a protein called alpha-1-antitrypsin (AAT), which is a member of the serine protease inhibitor (serpin) superfamily of proteins. By conformational change, serpins control several chemical reactions inhibiting the activity of proteases. AAT is the most abundant endogenous serpin in blood circulation and it is present in relatively high concentration in human milk as well as in bovine and porcine colostrum. Here we report for the first time the molecular characterization and sequence variability of the ovine SERPINA1 cDNA and gene. cDNAs from mammary gland and from milk were PCR amplified, and three different transcripts (1437, 1166 and 521bp) of the SERPINA1 gene were identified. We amplified and sequenced different regions of the gene (5’ UTR, from exon 2 to exon 5 and 3’ UTR), and we found that the exon-intron structure of the gene is similar to that of human and bovine. We detected a total of 97 SNPs in cDNAs and gene sequences from 10 sheep of three different breeds. In adult sheep tissues a SERPINA1 gene expression analysis indicated a differential expression of the three different transcripts. The finding reported in this paper will aid further studies on possible involvement of the SERPINA1 gene in different physiological states and its possible association with production traits. PMID:24009725
Harada, Taro; Torii, Yuka; Morita, Shigeto; Onodera, Reiko; Hara, Yoshinao; Yokoyama, Ryusuke; Nishitani, Kazuhiko; Satoh, Shigeru
2011-01-01
Growth of petal cells is a basis for expansion and morphogenesis (outward bending) of petals during opening of carnation flowers (Dianthus caryophyllus L.). Petal growth progressed through elongation in the early stage, expansion with outward bending in the middle stage, and expansion of the whole area in the late stage of flower opening. In the present study, four cDNAs encoding xyloglucan endotransglucosylase/hydrolase (XTH) (DcXTH1–DcXTH4) and three cDNAs encoding expansin (DcEXPA1–DcEXPA3) were cloned from petals of opening carnation flowers and characterized. Real-time reverse transcription-PCR analyses showed that transcript levels of XTH and expansin genes accumulated differently in floral and vegetative tissues of carnation plants with opening flowers, indicating regulated expression of these genes. DcXTH2 and DcXTH3 transcripts were detected in large quantities in petals as compared with other tissues. DcEXPA1 and DcEXPA2 transcripts were markedly accumulated in petals of opening flowers. The action of XTH in growing petal tissues was confirmed by in situ staining of xyloglucan endotransglucosylase (XET) activity using a rhodamine-labelled xyloglucan nonasaccharide as a substrate. Based on the present findings, it is suggested that two XTH genes (DcXTH2 and DcXTH3) and two expansin genes (DcEXPA1 and DcEXPA2) are associated with petal growth and development during carnation flower opening. PMID:20959626
Kurtz, Brian M.; Singletary, Lauren B.; Kelly, Sean D.; Frampton, Arthur R.
2010-01-01
In this study, Equus caballus major histocompatibility complex class I (MHC-I) was identified as a cellular entry receptor for the alphaherpesvirus equine herpesvirus type 1 (EHV-1). This novel EHV-1 receptor was discovered using a cDNA library from equine macrophages. cDNAs from this EHV-1-susceptible cell type were inserted into EHV-1-resistant B78H1 murine melanoma cells, these cells were infected with an EHV-1 lacZ reporter virus, and cells that supported virus infection were identified by X-Gal (5-bromo-4-chloro-3-indolyl-β-d-galactopyranoside) staining. Positive cells were subjected to several rounds of purification to obtain homogeneous cell populations that were shown to be uniformly infected with EHV-1. cDNAs from these cell populations were amplified by PCR and then sequenced. The sequence data revealed that the EHV-1-susceptible cells had acquired an E. caballus MHC-I cDNA. Cell surface expression of this receptor was verified by confocal immunofluorescence microscopy. The MHC-I cDNA was cloned into a mammalian expression vector, and stable B78H1 cell lines were generated that express this receptor. These cell lines were susceptible to EHV-1 infection while the parental B78H1 cells remained resistant to infection. In addition, EHV-1 infection of the B78H1 MHC-I-expressing cell lines was inhibited in a dose-dependent manner by an anti-MHC-I antibody. PMID:20610718
DOE Office of Scientific and Technical Information (OSTI.GOV)
Srivastava, A.K.; Schlessinger, D.; Kere, J.
1994-09-01
The gene for the X chromosomal developmental disorder anhidrotic ectodermal dysplasia (EDA) has been mapped to Xq12-q13 by linkage analysis and is expressed in a few females with chromosomal translocations involving band Xq12-q13. A yeast artificial chromosome (YAC) contig (2.0 Mb) spanning two translocation breakpoints has been assembled by sequence-tagged site (STS)-based chromosomal walking. The two translocation breakpoints (X:autosome translocations from the affected female patients) have been mapped less than 60 kb apart within a YAC contig. Unique probes and intragenic STSs (mapped between the two translocations) have been developed and a somatic cell hybrid carrying the translocated X chromosomemore » from the AK patient has been analyzed by isolating unique probes that span the breakpoint. Several STSs made from intragenic sequences have been found to be conserved in mouse, hamster and monkey, but we have detected no mRNAs in a number of tissues tested. However, a probe and STS developed from the DNA spanning the AK breakpoint is conserved in mouse, hamster and monkey, and we have detected expressed sequences in skin cells and cDNA libraries. In addition, unique sequences have been obtained from two CpG islands in the region that maps proximal to the breakpoints. cDNAs containing these sequences are being studied as candidates for the gene affected in the etiology of EDA.« less
Leal, Walter S.; Ishida, Yuko; Pelletier, Julien; Xu, Wei; Rayo, Josep; Xu, Xianzhong; Ames, James B.
2009-01-01
Background The navel orangeworm, Amyelois transitella Walker (Lepidoptera: Pyralidae), is the most serious insect pest of almonds and pistachios in California for which environmentally friendly alternative methods of control — like pheromone-based approaches — are highly desirable. Some constituents of the sex pheromone are unstable and could be replaced with parapheromones, which may be designed on the basis of molecular interaction of pheromones and pheromone-detecting olfactory proteins. Methodology By analyzing extracts from olfactory and non-olfactory tissues, we identified putative olfactory proteins, obtained their N-terminal amino acid sequences by Edman degradation, and used degenerate primers to clone the corresponding cDNAs by SMART RACE. Additionally, we used degenerate primers based on conserved sequences of known proteins to fish out other candidate olfactory genes. We expressed the gene encoding a newly identified pheromone-binding protein, which was analyzed by circular dichroism, fluorescence, and nuclear magnetic resonance, and used in a binding assay to assess affinity to pheromone components. Conclusion We have cloned nine cDNAs encoding olfactory proteins from the navel orangeworm, including two pheromone-binding proteins, two general odorant-binding proteins, one chemosensory protein, one glutathione S-transferase, one antennal binding protein X, one sensory neuron membrane protein, and one odorant receptor. Of these, AtraPBP1 is highly enriched in male antennae. Fluorescence, CD and NMR studies suggest a dramatic pH-dependent conformational change, with high affinity to pheromone constituents at neutral pH and no binding at low pH. PMID:19789654
Arita, Minetaro; Kilpatrick, David R; Nakamura, Tomofumi; Burns, Cara C; Bukbuk, David; Oderinde, Soji B; Oberste, M Steven; Kew, Olen M; Pallansch, Mark A; Shimizu, Hiroyuki
2015-01-01
Laboratory diagnosis has played a critical role in the Global Polio Eradication Initiative since 1988, by isolating and identifying poliovirus (PV) from stool specimens by using cell culture as a highly sensitive system to detect PV. In the present study, we aimed to develop a molecular method to detect PV directly from stool extracts, with a high efficiency comparable to that of cell culture. We developed a method to efficiently amplify the entire capsid coding region of human enteroviruses (EVs) including PV. cDNAs of the entire capsid coding region (3.9 kb) were obtained from as few as 50 copies of PV genomes. PV was detected from the cDNAs with an improved PV-specific real-time reverse transcription-PCR system and nucleotide sequence analysis of the VP1 coding region. For assay validation, we analyzed 84 stool extracts that were positive for PV in cell culture and detected PV genomes from 100% of the extracts (84/84 samples) with this method in combination with a PV-specific extraction method. PV could be detected in 2/4 stool extract samples that were negative for PV in cell culture. In PV-positive samples, EV species C viruses were also detected with high frequency (27% [23/86 samples]). This method would be useful for direct detection of PV from stool extracts without using cell culture. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Full length articles published in BJOMS during 2010-11--an analysis by sub-specialty and study type.
Arakeri, Gururaj; Colbert, Serryth; Rosenbaum, Gavin; Brennan, Peter A
2012-12-01
Full length articles such as prospective and retrospective studies, case series, laboratory-based research and reviews form the majority of papers published in the British Journal of Oral and Maxillofacial Surgery (BJOMS). We were interested to evaluate the breakdown of these types of articles both by sub-specialty and the type of study as well as the proportion that are written by UK colleagues compared to overseas authors over a 2 year period (2010-11). A total of 191 full length articles across all sub-specialties of our discipline were published, with 107 papers (56%) coming from UK authors. There were proportionately more oncology papers arising from the UK than overseas (60 and 30% of total respectively) while the opposite was found for cleft/deformity studies (10% and 22%). There was only one laboratory-based study published from the UK compared with 27 papers from overseas. The number of quality papers being submitted to the Journal continues to increase, and the type of article being published between UK and overseas probably reflects different practices and case-loads amongst colleagues. The relatively few UK laboratory based studies published in BJOMS compared to overseas authors are most likely due to authors seeking the most prestigious journals possible for their work. Copyright © 2012 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.
A survey of the sorghum transcriptome using single-molecule long reads
Abdel-Ghany, Salah E.; Hamilton, Michael; Jacobi, Jennifer L.; ...
2016-06-24
Alternative splicing and alternative polyadenylation (APA) of pre-mRNAs greatly contribute to transcriptome diversity, coding capacity of a genome and gene regulatory mechanisms in eukaryotes. Second-generation sequencing technologies have been extensively used to analyse transcriptomes. However, a major limitation of short-read data is that it is difficult to accurately predict full-length splice isoforms. Here we sequenced the sorghum transcriptome using Pacific Biosciences single-molecule real-time long-read isoform sequencing and developed a pipeline called TAPIS (Transcriptome Analysis Pipeline for Isoform Sequencing) to identify full-length splice isoforms and APA sites. Our analysis reveals transcriptome-wide full-length isoforms at an unprecedented scale with over 11,000 novelmore » splice isoforms. Additionally, we uncover APA ofB11,000 expressed genes and more than 2,100 novel genes. Lastly, these results greatly enhance sorghum gene annotations and aid in studying gene regulation in this important bioenergy crop. The TAPIS pipeline will serve as a useful tool to analyse Iso-Seq data from any organism.« less
Adrenodoxin supports reactions catalyzed by microsomal steroidogenic cytochrome P450s
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pechurskaya, Tatiana A.; Harnastai, Ivan N.; Grabovec, Irina P.
2007-02-16
The interaction of adrenodoxin (Adx) and NADPH cytochrome P450 reductase (CPR) with human microsomal steroidogenic cytochrome P450s was studied. It is found that Adx, mitochondrial electron transfer protein, is able to support reactions catalyzed by human microsomal P450s: full length CYP17, truncated CYP17, and truncated CYP21. CPR, but not Adx, supports activity of truncated CYP19. Truncated and the full length CYP17s show distinct preference for electron donor proteins. Truncated CYP17 has higher activity with Adx compared to CPR. The alteration in preference to electron donor does not change product profile for truncated enzymes. The electrostatic contacts play a major rolemore » in the interaction of truncated CYP17 with either CPR or Adx. Similarly electrostatic contacts are predominant in the interaction of full length CYP17 with Adx. We speculate that Adx might serve as an alternative electron donor for CYP17 at the conditions of CPR deficiency in human.« less
A survey of the sorghum transcriptome using single-molecule long reads
Abdel-Ghany, Salah E.; Hamilton, Michael; Jacobi, Jennifer L.; Ngam, Peter; Devitt, Nicholas; Schilkey, Faye; Ben-Hur, Asa; Reddy, Anireddy S. N.
2016-01-01
Alternative splicing and alternative polyadenylation (APA) of pre-mRNAs greatly contribute to transcriptome diversity, coding capacity of a genome and gene regulatory mechanisms in eukaryotes. Second-generation sequencing technologies have been extensively used to analyse transcriptomes. However, a major limitation of short-read data is that it is difficult to accurately predict full-length splice isoforms. Here we sequenced the sorghum transcriptome using Pacific Biosciences single-molecule real-time long-read isoform sequencing and developed a pipeline called TAPIS (Transcriptome Analysis Pipeline for Isoform Sequencing) to identify full-length splice isoforms and APA sites. Our analysis reveals transcriptome-wide full-length isoforms at an unprecedented scale with over 11,000 novel splice isoforms. Additionally, we uncover APA of ∼11,000 expressed genes and more than 2,100 novel genes. These results greatly enhance sorghum gene annotations and aid in studying gene regulation in this important bioenergy crop. The TAPIS pipeline will serve as a useful tool to analyse Iso-Seq data from any organism. PMID:27339290
Structure of the full-length glucagon class B G protein-coupled receptor
Zhang, Haonan; Qiao, Anna; Yang, Dehua; Yang, Linlin; Dai, Antao; de Graaf, Chris; Reedtz-Runge, Steffen; Dharmarajan, Venkatasubramanian; Zhang, Hui; Han, Gye Won; Grant, Thomas D.; Sierra, Raymond G.; Weierstall, Uwe; Nelson, Garrett; Liu, Wei; Wu, Yanhong; Ma, Limin; Cai, Xiaoqing; Lin, Guangyao; Wu, Xiaoai; Geng, Zhi; Dong, Yuhui; Song, Gaojie; Griffin, Patrick R.; Lau, Jesper; Cherezov, Vadim; Yang, Huaiyu; Hanson, Michael A.; Stevens, Raymond C.; Zhao, Qiang; Jiang, Hualiang; Wang, Ming-Wei; Wu, Beili
2017-01-01
The human glucagon receptor (GCGR) belongs to the class B G protein-coupled receptor (GPCR) family and plays a key role in glucose homeostasis and the pathophysiology of type 2 diabetes. Here we report the 3.0 Å crystal structure of full-length GCGR containing both extracellular domain (ECD) and transmembrane domain (TMD) in an inactive conformation. The two domains are connected by a 12-residue segment termed the ‘stalk’, which adopts a β-strand conformation, instead of forming an α-helix as observed in the previously solved structure of GCGR-TMD. The first extracellular loop (ECL1) exhibits a β-hairpin conformation and interacts with the stalk to form a compact β-sheet structure. Hydrogen/deuterium exchange, disulfide cross-linking and molecular dynamics studies suggest that the stalk and ECL1 play critical roles in modulating peptide ligand binding and receptor activation. These insights into the full-length GCGR structure deepen our understanding about the signaling mechanisms of class B GPCRs. PMID:28514451
PIM1: A Molecular Target to Modulate Cellular Resistance to Therapy in Prostate Cancer
2008-10-31
2007) C«t Pr. T«K:J1 r. 587-605 CaUtr«M, F. I . |200S> Oil . te- Tx\\u< 35.443-582 I ..-:tiatr.-ir, C.Iixo;, X. Cfitniti t,B<nor V..Dcrtgovsu, V,Chat...control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. I . REPORT DATE (DD-MM-YYYY) 31-10-2008 2. REPORT TYPE Annual 3. DATES COVERED...reporting period a number of studies were undertaken to characterize Fig. 4. Modulation of docetaxel cell kill by enforced expression of pim-1 cDNAs. 1 i
Zhang, Huimin; He, Hongkui; Yu, Xiujuan; Xu, Zhaohui; Zhang, Zhizhou
2016-11-01
It remains an unsolved problem to quantify a natural microbial community by rapidly and conveniently measuring multiple species with functional significance. Most widely used high throughput next-generation sequencing methods can only generate information mainly for genus-level taxonomic identification and quantification, and detection of multiple species in a complex microbial community is still heavily dependent on approaches based on near full-length ribosome RNA gene or genome sequence information. In this study, we used near full-length rRNA gene library sequencing plus Primer-Blast to design species-specific primers based on whole microbial genome sequences. The primers were intended to be specific at the species level within relevant microbial communities, i.e., a defined genomics background. The primers were tested with samples collected from the Daqu (also called fermentation starters) and pit mud of a traditional Chinese liquor production plant. Sixteen pairs of primers were found to be suitable for identification of individual species. Among them, seven pairs were chosen to measure the abundance of microbial species through quantitative PCR. The combination of near full-length ribosome RNA gene library sequencing and Primer-Blast may represent a broadly useful protocol to quantify multiple species in complex microbial population samples with species-specific primers.
Helito, Camilo Partezani; Helito, Paulo Victor Partezani; Bonadio, Marcelo Batista; da Mota e Albuquerque, Roberto Freire; Bordalo-Rodrigues, Marcelo; Pecora, Jose Ricardo; Camanho, Gilberto Luis; Demange, Marco Kawamura
2014-01-01
Background: Recent anatomical studies have identified the anterolateral ligament (ALL). Injury to this structure may lead to the presence of residual pivot shift in some reconstructions of the anterior cruciate ligament. The behavior of the length of this structure and its tension during range of motion has not been established and is essential when planning reconstruction. Purpose: To establish differences in the ALL length during range of knee motion. Study Design: Descriptive laboratory study. Methods: Ten unpaired cadavers were dissected. The attachments of the ALL were isolated. Its origin and insertion were marked with a 2 mm–diameter metallic sphere. Computed tomography scans were performed on the dissected parts under extension and 30°, 60°, and 90° of flexion; measurements of the distance between the 2 markers were taken at all mentioned degrees of flexion. The distances between the points were compared. Results: The mean ALL length increased with knee flexion. Its mean length at full extension and at 30°, 60°, and 90° of flexion was 37.9 ± 5.3, 39.3 ± 5.4, 40.9 ± 5.4, and 44.1 ± 6.4 mm, respectively. The mean increase in length from 0° to 30° was 3.99% ± 4.7%, from 30° to 60° was 4.20% ± 3.2%, and from 60° to 90° was 7.45% ± 4.8%. From full extension to 90° of flexion, the ligament length increased on average 16.7% ± 12.1%. From 60° to 90° of flexion, there was a significantly higher increase in the mean distance between the points compared with the flexion from 0° to 30° and from 30° to 60°. Conclusion: The ALL shows no isometric behavior during the range of motion of the knee. The ALL increases in length from full extension to 90° of flexion by 16.7%, on average. The increase in length was greater from 60° to 90° than from 0° to 30° and from 30° to 60°. The increase in length at higher degrees of flexion suggests greater tension with increasing flexion. Clinical Relevance: Knowledge of ALL behavior during the range of motion of the knee will allow for fixation (during its reconstruction) to be performed with a higher or lower tension, depending on the chosen degree of flexion. PMID:26535292
2010-01-01
Background Carotenoids are a group of C40 isoprenoid molecules that play diverse biological and ecological roles in plants. Tomato is an important vegetable in human diet and provides the vitamin A precursor β-carotene. Genes encoding enzymes involved in carotenoid biosynthetic pathway have been cloned. However, regulation of genes involved in carotenoid biosynthetic pathway and accumulation of specific carotenoid in chromoplasts are not well understood. One of the approaches to understand regulation of carotenoid metabolism is to characterize the promoters of genes encoding proteins involved in carotenoid metabolism. Lycopene β-cyclase is one of the crucial enzymes in carotenoid biosynthesis pathway in plants. Its activity is required for synthesis of both α-and β-carotenes that are further converted into other carotenoids such as lutein, zeaxanthin, etc. This study describes the isolation and characterization of chromoplast-specific Lycopene β-cyclase (CYC-B) promoter from a green fruited S. habrochaites genotype EC520061. Results A 908 bp region upstream to the initiation codon of the Lycopene β-cyclase gene was cloned and identified as full-length promoter. To identify promoter region necessary for regulating developmental expression of the ShCYC-B gene, the full-length promoter and its three different 5' truncated fragments were cloned upstream to the initiation codon of GUS reporter cDNA in binary vectors. These four plant transformation vectors were separately transformed in to Agrobacterium. Agrobacterium-mediated transient and stable expression systems were used to study the GUS expression driven by the full-length promoter and its 5' deletion fragments in tomato. The full-length promoter showed a basal level activity in leaves, and its expression was upregulated > 5-fold in flowers and fruits in transgenic tomato plants. Deletion of -908 to -577 bp 5' to ATG decreases the ShCYC-B promoter strength, while deletion of -908 to -437 bp 5' to ATG led to significant increase in the activity of GUS in the transgenic plants. Promoter deletion analysis led to the identification of a short promoter region (-436 bp to ATG) that exhibited a higher promoter strength but similar developmental expression pattern as compared with the full-length ShCYC-B promoter. Conclusion Functional characterization of the full-length ShCYC-B promoter and its deletion fragments in transient expression system in fruto as well as in stable transgenic tomato revealed that the promoter is developmentally regulated and its expression is upregulated in chromoplast-rich flowers and fruits. Our study identified a short promoter region with functional activity and developmental expression pattern similar to that of the full-length ShCYC-B promoter. This 436 bp promoter region can be used in promoter::reporter fusion molecular genetic screens to identify mutants impaired in CYC-B expression, and thus can be a valuable tool in understanding carotenoid metabolism in tomato. Moreover, this short promoter region of ShCYC-B may be useful in genetic engineering of carotenoid content and other agronomic traits in tomato fruits. PMID:20380705
Hydroxyurea enhances SMN2 gene expression through nitric oxide release.
Xu, Cheng; Chen, Xin; Grzeschik, Susanna M; Ganta, Madhuri; Wang, Ching H
2011-02-01
Small molecules that increase full-length survivor motor neuron (SMN) gene transcript are promising therapeutic candidates for spinal muscular atrophy (SMA). Hydroxyurea (HU) has recently been shown to increase full-length SMN transcript in cultured lymphocytes from patients with SMA. We investigate the mechanism by which HU enhances full-length SMN2 gene expression in SMA lymphocytes. Nitric oxide (NO) is a major intracellular metabolite of HU. We test whether NO donors can themselves enhance full-length SMN2 expression. Eighteen cell lines (five type I, five type II, six type III SMA, and two non-SMA controls) were treated with or without NO donors for 48 h. SMA cells treated with HU and three NO donors: two long-acting donors, Deta-NONOate and S-nitrosoglutathione, and one short-acting donor, 3-ethyl-3-(ethylaminoethyl)-1-hydroxy-2-oxo-1-triazene, resulted in significant increase in full-length SMN2 mRNA. These effects were abolished by co-treatment with an NO scavenger 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide. One short-acting NO donor, S-nitroso-N-acetyl-DL-penicillamine, failed to show significant effect on full-length SMN2 expression, possibly due to high degree of cytotoxicity. These results were observed using both densitometry and quantitative PCR methods. We conclude that HU enhances SMN2 expression through the release of NO. NO donors may themselves be considered as new therapeutic candidates for SMA.
Walkway Length Determination for Steady State Walking in Young and Older Adults
ERIC Educational Resources Information Center
Macfarlane, Pamela A.; Looney, Marilyn A.
2008-01-01
The primary purpose of this study was to determine acceleration (AC) and deceleration (DC) distances that would accommodate young and older adults walking at their preferred and fast speeds. A secondary purpose was to determine the minimal walkway length needed to record six steady state (SS) steps (three full gait cycles) for younger and older…
Bhore, Subhash J; Kassim, Amelia; Loh, Chye Ying; Shah, Farida H
2010-01-01
It is well known that the nutritional quality of the American oil-palm (Elaeis oleifera) mesocarp oil is superior to that of African oil-palm (Elaeis guineensis Jacq. Tenera) mesocarp oil. Therefore, it is of important to identify the genetic features for its superior value. This could be achieved through the genome sequencing of the oil-palm. However, the genome sequence is not available in the public domain due to commercial secrecy. Hence, we constructed a cDNA library and generated expressed sequence tags (3,205) from the mesocarp tissue of the American oil-palm. We continued to annotate each of these cDNAs after submitting to GenBank/DDBJ/EMBL. A rough analysis turned our attention to the beta-carotene hydroxylase (Chyb) enzyme encoding cDNA. Then, we completed the full sequencing of cDNA clone for its both strands using M13 forward and reverse primers. The full nucleotide and protein sequence was further analyzed and annotated using various Bioinformatics tools. The analysis results showed the presence of fatty acid hydroxylase superfamily domain in the protein sequence. The multiple sequence alignment of selected Chyb amino acid sequences from other plant species and algal members with E. oleifera Chyb using ClustalW and its phylogenetic analysis suggest that Chyb from monocotyledonous plant species, Lilium hubrid, Crocus sativus and Zea mays are the most evolutionary related with E. oleifera Chyb. This study reports the annotation of E. oleifera Chyb. Abbreviations ESTs - expressed sequence tags, EoChyb - Elaeis oleifera beta-carotene hydroxylase, MC - main cluster PMID:21364789
Alfano, Massimo; Cinque, Paola; Giusti, Guido; Proietti, Silvia; Nebuloni, Manuela; Danese, Silvio; D’Alessio, Silvia; Genua, Marco; Portale, Federica; Lo Porto, Manuela; Singhal, Pravin C.; Rastaldi, Maria Pia; Saleem, Moin A.; Mavilio, Domenico; Mikulak, Joanna
2015-01-01
Increased plasma level of soluble urokinase-type plasminogen activator receptor (suPAR) was associated recently with focal segmental glomerulosclerosis (FSGS). In addition, different clinical studies observed increased concentration of suPAR in various glomerular diseases and in other human pathologies with nephrotic syndromes such as HIV and Hantavirus infection, diabetes and cardiovascular disorders. Here, we show that suPAR induces nephrin down-modulation in human podocytes. This phenomenon is mediated only by full-length suPAR, is time-and dose-dependent and is associated with the suppression of Wilms’ tumor 1 (WT-1) transcription factor expression. Moreover, an antagonist of αvβ3 integrin RGDfv blocked suPAR-induced suppression of nephrin. These in vitro data were confirmed in an in vivo uPAR knock out Plaur−/− mice model by demonstrating that the infusion of suPAR inhibits expression of nephrin and WT-1 in podocytes and induces proteinuria. This study unveiled that interaction of full-length suPAR with αvβ3 integrin expressed on podocytes results in down-modulation of nephrin that may affect kidney functionality in different human pathologies characterized by increased concentration of suPAR. PMID:26380915
Song, B; Hou, Y L; Ding, X; Wang, T; Wang, F; Zhong, J C; Xu, T; Zhong, J; Hou, W R; Shuai, S R
2014-02-20
Fatty acid binding proteins (FABPs) are a family of small, highly conserved cytoplasmic proteins that bind long-chain fatty acids and other hydrophobic ligands. In this study, cDNA and genomic sequences of FABP4 and FABP5 were cloned successfully from the giant panda (Ailuropoda melanoleuca) using reverse transcription polymerase chain reaction (RT-PCR) technology and touchdown-PCR. The cDNAs of FABP4 and FABP5 cloned from the giant panda were 400 and 413 bp in length, containing an open reading frame of 399 and 408 bp, encoding 132 and 135 amino acids, respectively. The genomic sequences of FABP4 and FABP5 were 3976 and 3962 bp, respectively, which each contained four exons and three introns. Sequence alignment indicated a high degree of homology with reported FABP sequences of other mammals at both the amino acid and DNA levels. Topology prediction revealed seven protein kinase C phosphorylation sites, two casein kinase II phosphorylation sites, two N-myristoylation sites, and one cytosolic fatty acid-binding protein signature in the FABP4 protein, and three N-glycosylation sites, three protein kinase C phosphorylation sites, one casein kinase II phosphorylation site, one N-myristoylation site, one amidation site, and one cytosolic fatty acid-binding protein signature in the FABP5 protein. The FABP4 and FABP5 genes were overexpressed in Escherichia coli BL21 and they produced the expected 16.8- and 17.0-kDa polypeptides. The results obtained in this study provide information for further in-depth research of this system, which has great value of both theoretical and practical significance.
The Effect of a Full-Day Kindergarten on the Student's Academic Performance.
ERIC Educational Resources Information Center
Greer-Smith, Sandra
The purpose of this study was to determine whether the length of the school day has an effect on kindergarten students' academic performance. Ten full-day and ten half-day kindergarten teachers were asked to complete a questionnaire regarding the effects of full-day kindergarten on students. A majority of the half-day teachers were concerned that:…
Wen, Yangming; Lan, Kaijian; Wang, Junjie; Yu, Jingyi; Qu, Yarong; Zhao, Wei; Zhang, Fuchun; Tan, Wanlong; Cao, Hong; Zhou, Chen
2013-06-01
To construct dengue virus-specific full-length fully human antibody libraries using mammalian cell surface display technique. Total RNA was extracted from peripheral blood mononuclear cells (PBMCs) from convalescent patients with dengue fever. The reservoirs of the light chain and heavy chain variable regions (LCκ and VH) of the antibody genes were amplified by RT-PCR and inserted into the vector pDGB-HC-TM separately to construct the light chain and heavy chain libraries. The library DNAs were transfected into CHO cells and the expression of full-length fully human antibodies on the surface of CHO cells was analyzed by flow cytometry. Using 1.2 µg of the total RNA isolated from the PBMCs as the template, the LCκ and VH were amplified and the full-length fully human antibody mammalian display libraries were constructed. The kappa light chain gene library had a size of 1.45×10(4) and the heavy chain gene library had a size of 1.8×10(5). Sequence analysis showed that 8 out of the 10 light chain clones and 7 out of the 10 heavy chain clones randomly picked up from the constructed libraries contained correct open reading frames. FACS analysis demonstrated that all the 15 clones with correct open reading frames expressed full-length antibodies, which could be detected on CHO cell surfaces. After co-transfection of the heavy chain and light chain gene libraries into CHO cells, the expression of full-length antibodies on CHO cell surfaces could be detected by FACS analysis with an expressible diversity of the antibody library reaching 1.46×10(9) [(1.45×10(4)×80%)×(1.8×10(5)×70%)]. Using 1.2 µg of total RNA as template, the LCκ and VH full-length fully human antibody libraries against dengue virus have been successfully constructed with an expressible diversity of 10(9).
Kawashima, Satoshi; Ikehata, Hiroki; Tada, Chihiro; Ogino, Tomohiro; Kakizaki, Hiromi; Ikeda, Mana; Fukushima, Hideto; Matsumiya, Masahiro
2016-01-01
Fish express two different chitinases, acidic fish chitinase-1 (AFCase-1) and acidic fish chitinase-2 (AFCase-2), in the stomach. AFCase-1 and AFCase-2 have different degradation patterns, as fish efficiently degrade chitin ingested as food. For a comparison with the enzymatic properties and the primary structures of chitinase isozymes obtained previously from the stomach of demersal fish, in this study, we purified chitinase isozymes from the stomach of Japanese sardine Sardinops melanostictus, a surface fish that feeds on plankton, characterized the properties of these isozymes, and cloned the cDNAs encoding chitinases. We also predicted 3D structure models using the primary structures of S. melanostictus stomach chitinases. Two chitinase isozymes, SmeChiA (45 kDa) and SmeChiB (56 kDa), were purified from the stomach of S. melanostictus. Moreover, two cDNAs, SmeChi-1 encoding SmeChiA, and SmeChi-2 encoding SmeChiB were cloned. The linker regions of the deduced amino acid sequences of SmeChi-1 and SmeChi-2 (SmeChi-1 and SmeChi-2) are the longest among the fish stomach chitinases. In the cleavage pattern groups toward short substrates and the phylogenetic tree analysis, SmeChi-1 and SmeChi-2 were classified into AFCase-1 and AFCase-2, respectively. SmeChi-1 and SmeChi-2 had catalytic domains that consisted of a TIM-barrel (β/α)8–fold structure and a deep substrate-binding cleft. This is the first study showing the 3D structure models of fish stomach chitinases. PMID:26805857
Vallée, Maud; Gravel, Catherine; Palin, Marie-France; Reghenas, Hélène; Stothard, Paul; Wishart, David S; Sirard, Marc-André
2005-07-01
The main objective of the present study was to identify novel oocyte-specific genes in three different species: bovine, mouse, and Xenopus laevis. To achieve this goal, two powerful technologies were combined: a polymerase chain reaction (PCR)-based cDNA subtraction, and cDNA microarrays. Three subtractive libraries consisting of 3456 clones were established and enriched for oocyte-specific transcripts. Sequencing analysis of the positive insert-containing clones resulted in the following classification: 53% of the clones corresponded to known cDNAs, 26% were classified as uncharacterized cDNAs, and a final 9% were classified as novel sequences. All these clones were used for cDNA microarray preparation. Results from these microarray analyses revealed that in addition to already known oocyte-specific genes, such as GDF9, BMP15, and ZP, known genes with unknown function in the oocyte were identified, such as a MLF1-interacting protein (MLF1IP), B-cell translocation gene 4 (BTG4), and phosphotyrosine-binding protein (xPTB). Furthermore, 15 novel oocyte-specific genes were validated by reverse transcription-PCR to confirm their preferential expression in the oocyte compared to somatic tissues. The results obtained in the present study confirmed that microarray analysis is a robust technique to identify true positives from the suppressive subtractive hybridization experiment. Furthermore, obtaining oocyte-specific genes from three species simultaneously allowed us to look at important genes that are conserved across species. Further characterization of these novel oocyte-specific genes will lead to a better understanding of the molecular mechanisms related to the unique functions found in the oocyte.
USDA-ARS?s Scientific Manuscript database
Seeds of Momordica charantia (bitter melon) produce high levels of eleostearic acid, an unusual conjugated fatty acid with industrial value. Deep sequencing of non-normalized and normalized cDNAs from developing bitter melon seeds was conducted to uncover key genes required for biotechnological tran...
Pérez-Gonzalez, J A; De Graaff, L H; Visser, J; Ramón, D
1996-01-01
Two Aspergillus nidulans genes, xlnA and xlnB, encoding the X22 and X24 xylanases from this fungus, respectively, have been cloned and sequenced. Their cDNAs have been expressed in a laboratory Saccharomyces cerevisiae strain under the control of a constitutive yeast promoter, resulting in the construction of recombinant xylanolytic yeast strains. PMID:8787417