MetaGenyo: a web tool for meta-analysis of genetic association studies.
Martorell-Marugan, Jordi; Toro-Dominguez, Daniel; Alarcon-Riquelme, Marta E; Carmona-Saez, Pedro
2017-12-16
Genetic association studies (GAS) aims to evaluate the association between genetic variants and phenotypes. In the last few years, the number of this type of study has increased exponentially, but the results are not always reproducible due to experimental designs, low sample sizes and other methodological errors. In this field, meta-analysis techniques are becoming very popular tools to combine results across studies to increase statistical power and to resolve discrepancies in genetic association studies. A meta-analysis summarizes research findings, increases statistical power and enables the identification of genuine associations between genotypes and phenotypes. Meta-analysis techniques are increasingly used in GAS, but it is also increasing the amount of published meta-analysis containing different errors. Although there are several software packages that implement meta-analysis, none of them are specifically designed for genetic association studies and in most cases their use requires advanced programming or scripting expertise. We have developed MetaGenyo, a web tool for meta-analysis in GAS. MetaGenyo implements a complete and comprehensive workflow that can be executed in an easy-to-use environment without programming knowledge. MetaGenyo has been developed to guide users through the main steps of a GAS meta-analysis, covering Hardy-Weinberg test, statistical association for different genetic models, analysis of heterogeneity, testing for publication bias, subgroup analysis and robustness testing of the results. MetaGenyo is a useful tool to conduct comprehensive genetic association meta-analysis. The application is freely available at http://bioinfo.genyo.es/metagenyo/ .
USDA-ARS?s Scientific Manuscript database
Genetic diversity analysis, which refers to the elaboration of total extent of genetic characteristics in the genetic makeup of a certain species, constitutes a classical strategy for the study of diversity, population genetic structure, and breeding practices. In this study, fluorescence-labeled se...
Multivariate Methods for Meta-Analysis of Genetic Association Studies.
Dimou, Niki L; Pantavou, Katerina G; Braliou, Georgia G; Bagos, Pantelis G
2018-01-01
Multivariate meta-analysis of genetic association studies and genome-wide association studies has received a remarkable attention as it improves the precision of the analysis. Here, we review, summarize and present in a unified framework methods for multivariate meta-analysis of genetic association studies and genome-wide association studies. Starting with the statistical methods used for robust analysis and genetic model selection, we present in brief univariate methods for meta-analysis and we then scrutinize multivariate methodologies. Multivariate models of meta-analysis for a single gene-disease association studies, including models for haplotype association studies, multiple linked polymorphisms and multiple outcomes are discussed. The popular Mendelian randomization approach and special cases of meta-analysis addressing issues such as the assumption of the mode of inheritance, deviation from Hardy-Weinberg Equilibrium and gene-environment interactions are also presented. All available methods are enriched with practical applications and methodologies that could be developed in the future are discussed. Links for all available software implementing multivariate meta-analysis methods are also provided.
Kernel-Based Measure of Variable Importance for Genetic Association Studies.
Gallego, Vicente; Luz Calle, M; Oller, Ramon
2017-06-17
The identification of genetic variants that are associated with disease risk is an important goal of genetic association studies. Standard approaches perform univariate analysis where each genetic variant, usually Single Nucleotide Polymorphisms (SNPs), is tested for association with disease status. Though many genetic variants have been identified and validated so far using this univariate approach, for most complex diseases a large part of their genetic component is still unknown, the so called missing heritability. We propose a Kernel-based measure of variable importance (KVI) that provides the contribution of a SNP, or a group of SNPs, to the joint genetic effect of a set of genetic variants. KVI can be used for ranking genetic markers individually, sets of markers that form blocks of linkage disequilibrium or sets of genetic variants that lie in a gene or a genetic pathway. We prove that, unlike the univariate analysis, KVI captures the relationship with other genetic variants in the analysis, even when measured at the individual level for each genetic variable separately. This is specially relevant and powerful for detecting genetic interactions. We illustrate the results with data from an Alzheimer's disease study and show through simulations that the rankings based on KVI improve those rankings based on two measures of importance provided by the Random Forest. We also prove with a simulation study that KVI is very powerful for detecting genetic interactions.
A review of genome-wide approaches to study the genetic basis for spermatogenic defects.
Aston, Kenneth I; Conrad, Donald F
2013-01-01
Rapidly advancing tools for genetic analysis on a genome-wide scale have been instrumental in identifying the genetic bases for many complex diseases. About half of male infertility cases are of unknown etiology in spite of tremendous efforts to characterize the genetic basis for the disorder. Advancing our understanding of the genetic basis for male infertility will require the application of established and emerging genomic tools. This chapter introduces many of the tools available for genetic studies on a genome-wide scale along with principles of study design and data analysis.
Nippert, Reinhardt Peter; Schmidtke, Jörg
2012-01-01
Service quality for patients with genetic conditions can be assessed through the analysis of clinical genetic data sets, as was the case in this study. It represents a secondary analysis of a compilation of a single genetic expert's medical opinions covering the years 2000 to 2009, solicited by private health insurance companies with the intention of probing into medical necessity and adequacy of genetic testing ordered by physicians. Genetic testing has become an increasingly important part of clinical diagnostic services. Controlling these services does not only reduce costs but also saves patients from unwarranted over-utilisation. Therefore, the reasons given by doctors when ordering genetic tests are part of the quality of service delivery. The study revealed that more than 30% of the molecular genetic tests ordered lack sound medical reasoning and 30% of the cases studied show violation or neglect of guidelines and recommendations for diagnostic procedures with respect to genetic testing. In essence, the findings indicate a need for human genetic information among physicians. Their professional organisations are called upon to design and offer CME/CPD programmes in medical genetics to maintain and continually improve the quality of medical genetic care for patients with genetic conditions. Copyright © 2012. Published by Elsevier GmbH.
Conomos, Matthew P.; Laurie, Cecelia A.; Stilp, Adrienne M.; Gogarten, Stephanie M.; McHugh, Caitlin P.; Nelson, Sarah C.; Sofer, Tamar; Fernández-Rhodes, Lindsay; Justice, Anne E.; Graff, Mariaelisa; Young, Kristin L.; Seyerle, Amanda A.; Avery, Christy L.; Taylor, Kent D.; Rotter, Jerome I.; Talavera, Gregory A.; Daviglus, Martha L.; Wassertheil-Smoller, Sylvia; Schneiderman, Neil; Heiss, Gerardo; Kaplan, Robert C.; Franceschini, Nora; Reiner, Alex P.; Shaffer, John R.; Barr, R. Graham; Kerr, Kathleen F.; Browning, Sharon R.; Browning, Brian L.; Weir, Bruce S.; Avilés-Santa, M. Larissa; Papanicolaou, George J.; Lumley, Thomas; Szpiro, Adam A.; North, Kari E.; Rice, Ken; Thornton, Timothy A.; Laurie, Cathy C.
2016-01-01
US Hispanic/Latino individuals are diverse in genetic ancestry, culture, and environmental exposures. Here, we characterized and controlled for this diversity in genome-wide association studies (GWASs) for the Hispanic Community Health Study/Study of Latinos (HCHS/SOL). We simultaneously estimated population-structure principal components (PCs) robust to familial relatedness and pairwise kinship coefficients (KCs) robust to population structure, admixture, and Hardy-Weinberg departures. The PCs revealed substantial genetic differentiation within and among six self-identified background groups (Cuban, Dominican, Puerto Rican, Mexican, and Central and South American). To control for variation among groups, we developed a multi-dimensional clustering method to define a “genetic-analysis group” variable that retains many properties of self-identified background while achieving substantially greater genetic homogeneity within groups and including participants with non-specific self-identification. In GWASs of 22 biomedical traits, we used a linear mixed model (LMM) including pairwise empirical KCs to account for familial relatedness, PCs for ancestry, and genetic-analysis groups for additional group-associated effects. Including the genetic-analysis group as a covariate accounted for significant trait variation in 8 of 22 traits, even after we fit 20 PCs. Additionally, genetic-analysis groups had significant heterogeneity of residual variance for 20 of 22 traits, and modeling this heteroscedasticity within the LMM reduced genomic inflation for 19 traits. Furthermore, fitting an LMM that utilized a genetic-analysis group rather than a self-identified background group achieved higher power to detect previously reported associations. We expect that the methods applied here will be useful in other studies with multiple ethnic groups, admixture, and relatedness. PMID:26748518
John, Majnu; Lencz, Todd; Malhotra, Anil K; Correll, Christoph U; Zhang, Jian-Ping
2018-06-01
Meta-analysis of genetic association studies is being increasingly used to assess phenotypic differences between genotype groups. When the underlying genetic model is assumed to be dominant or recessive, assessing the phenotype differences based on summary statistics, reported for individual studies in a meta-analysis, is a valid strategy. However, when the genetic model is additive, a similar strategy based on summary statistics will lead to biased results. This fact about the additive model is one of the things that we establish in this paper, using simulations. The main goal of this paper is to present an alternate strategy for the additive model based on simulating data for the individual studies. We show that the alternate strategy is far superior to the strategy based on summary statistics.
Variable-number-of-tandem-repeats analysis of genetic diversity in Pasteuria ramosa.
Mouton, L; Ebert, D
2008-05-01
Variable-number-of-tandem-repeats (VNTR) markers are increasingly being used in population genetic studies of bacteria. They were recently developed for Pasteuria ramosa, an endobacterium that infects Daphnia species. In the present study, we genotyped P. ramosa in 18 infected hosts from the United Kingdom, Belgium, and two lakes in the United States using seven VNTR markers. Two Daphnia species were collected: D. magna and D. dentifera. Six loci showed length polymorphism, with as many as five alleles identified for a single locus. Similarity coefficient calculations showed that the extent of genetic variation between pairs of isolates within populations differed according to the population, but it was always less than the genetic distances among populations. Analysis of the genetic distances performed using principal component analysis revealed strong clustering by location of origin, but not by host Daphnia species. Our study demonstrated that the VNTR markers available for P. ramosa are informative in revealing genetic differences within and among populations and may therefore become an important tool for providing detailed analysis of population genetics and epidemiology.
Ai, XianTao; Liang, YaJun; Wang, JunDuo; Zheng, JuYun; Gong, ZhaoLong; Guo, JiangPing; Li, XueYuan; Qu, YanYing
2017-10-01
Cotton (Gossypium spp.) is the most important natural textile fiber crop, and Gossypium hirsutum L. is responsible for 90% of the annual cotton crop in the world. Information on cotton genetic diversity and population structure is essential for new breeding lines. In this study, we analyzed population structure and genetic diversity of 288 elite Gossypium hirsutum cultivar accessions collected from around the world, and especially from China, using genome-wide single nucleotide polymorphisms (SNP) markers. The average polymorphsim information content (PIC) was 0.25, indicating a relatively low degree of genetic diversity. Population structure analysis revealed extensive admixture and identified three subgroups. Phylogenetic analysis supported the subgroups identified by STRUCTURE. The results from both population structure and phylogenetic analysis were, for the most part, in agreement with pedigree information. Analysis of molecular variance revealed a larger amount of variation was due to diversity within the groups. Establishment of genetic diversity and population structure from this study could be useful for genetic and genomic analysis and systematic utilization of the standing genetic variation in upland cotton.
Insight into the molecular genetics of myopia
Li, Jiali
2017-01-01
Myopia is the most common cause of visual impairment worldwide. Genetic and environmental factors contribute to the development of myopia. Studies on the molecular genetics of myopia are well established and have implicated the important role of genetic factors. With linkage analysis, association studies, sequencing analysis, and experimental myopia studies, many of the loci and genes associated with myopia have been identified. Thus far, there has been no systemic review of the loci and genes related to non-syndromic and syndromic myopia based on the different approaches. Such a systemic review of the molecular genetics of myopia will provide clues to identify additional plausible genes for myopia and help us to understand the molecular mechanisms underlying myopia. This paper reviews recent genetic studies on myopia, summarizes all possible reported genes and loci related to myopia, and suggests implications for future studies on the molecular genetics of myopia. PMID:29386878
Insight into the molecular genetics of myopia.
Li, Jiali; Zhang, Qingjiong
2017-01-01
Myopia is the most common cause of visual impairment worldwide. Genetic and environmental factors contribute to the development of myopia. Studies on the molecular genetics of myopia are well established and have implicated the important role of genetic factors. With linkage analysis, association studies, sequencing analysis, and experimental myopia studies, many of the loci and genes associated with myopia have been identified. Thus far, there has been no systemic review of the loci and genes related to non-syndromic and syndromic myopia based on the different approaches. Such a systemic review of the molecular genetics of myopia will provide clues to identify additional plausible genes for myopia and help us to understand the molecular mechanisms underlying myopia. This paper reviews recent genetic studies on myopia, summarizes all possible reported genes and loci related to myopia, and suggests implications for future studies on the molecular genetics of myopia.
Methodological issues of genetic association studies.
Simundic, Ana-Maria
2010-12-01
Genetic association studies explore the association between genetic polymorphisms and a certain trait, disease or predisposition to disease. It has long been acknowledged that many genetic association studies fail to replicate their initial positive findings. This raises concern about the methodological quality of these reports. Case-control genetic association studies often suffer from various methodological flaws in study design and data analysis, and are often reported poorly. Flawed methodology and poor reporting leads to distorted results and incorrect conclusions. Many journals have adopted guidelines for reporting genetic association studies. In this review, some major methodological determinants of genetic association studies will be discussed.
Manzanero, Silvia; Kozlovskaia, Maria; Vlahovich, Nicole
2018-01-01
Background With the increasing capacity for remote collection of both data and samples for medical research, a thorough assessment is needed to determine the association of population characteristics and recruitment methodologies with response rates. Objective The aim of this research was to assess population representativeness in a two-stage study of health and injury in recreational runners, which consisted of an epidemiological arm and genetic analysis. Methods The cost and success of various classical and internet-based methods were analyzed, and demographic representativeness was assessed for recruitment to the epidemiological survey, reported willingness to participate in the genetic arm of the study, actual participation, sample return, and approval for biobank storage. Results A total of 4965 valid responses were received, of which 1664 were deemed eligible for genetic analysis. Younger age showed a negative association with initial recruitment rate, expressed willingness to participate in genetic analysis, and actual participation. Additionally, female sex was associated with higher initial recruitment rates, and ethnic origin impacted willingness to participate in the genetic analysis (all P<.001). Conclusions The sharp decline in retention through the different stages of the study in young respondents suggests the necessity to develop specific recruitment and retention strategies when investigating a young, physically active population. PMID:29792293
Dudley, Joel T.; Chen, Rong; Sanderford, Maxwell; Butte, Atul J.; Kumar, Sudhir
2012-01-01
Genome-wide disease association studies contrast genetic variation between disease cohorts and healthy populations to discover single nucleotide polymorphisms (SNPs) and other genetic markers revealing underlying genetic architectures of human diseases. Despite scores of efforts over the past decade, many reproducible genetic variants that explain substantial proportions of the heritable risk of common human diseases remain undiscovered. We have conducted a multispecies genomic analysis of 5,831 putative human risk variants for more than 230 disease phenotypes reported in 2,021 studies. We find that the current approaches show a propensity for discovering disease-associated SNPs (dSNPs) at conserved genomic positions because the effect size (odds ratio) and allelic P value of genetic association of an SNP relates strongly to the evolutionary conservation of their genomic position. We propose a new measure for ranking SNPs that integrates evolutionary conservation scores and the P value (E-rank). Using published data from a large case-control study, we demonstrate that E-rank method prioritizes SNPs with a greater likelihood of bona fide and reproducible genetic disease associations, many of which may explain greater proportions of genetic variance. Therefore, long-term evolutionary histories of genomic positions offer key practical utility in reassessing data from existing disease association studies, and in the design and analysis of future studies aimed at revealing the genetic basis of common human diseases. PMID:22389448
Sviatova, G S; Berezina, G M; Abil'dinova, G Zh
2001-12-01
Rural populations neighboring the Semipalatinsk nuclear test site were used as a model to develop and test an integrated population-genetic approach to analysis of the medical genetic situation and environmental conditions in the areas studied. The contributions of individual factors of population dynamics into the formation of the genetic load were also assessed. The informative values of some genetic markers were estimated. Based on these estimates, a mathematical model was constructed that makes it possible to calculate numerical scores for analysis of the genetic loads in populations differing in environmental exposure.
[Progress in genetic research of human height].
Chen, Kaixu; Wang, Weilan; Zhang, Fuchun; Zheng, Xiufen
2015-08-01
It is well known that both environmental and genetic factors contribute to adult height variation in general population. However, heritability studies have shown that the variation in height is more affected by genetic factors. Height is a typical polygenic trait which has been studied by traditional linkage analysis and association analysis to identify common DNA sequence variation associated with height, but progress has been slow. More recently, with the development of genotyping and DNA sequencing technologies, tremendous achievements have been made in genetic research of human height. Hundreds of single nucleotide polymorphisms (SNPs) associated with human height have been identified and validated with the application of genome-wide association studies (GWAS) methodology, which deepens our understanding of the genetics of human growth and development and also provides theoretic basis and reference for studying other complex human traits. In this review, we summarize recent progress in genetic research of human height and discuss problems and prospects in this research area which may provide some insights into future genetic studies of human height.
Greenberg, David A.
2011-01-01
Computer simulation methods are under-used tools in genetic analysis because simulation approaches have been portrayed as inferior to analytic methods. Even when simulation is used, its advantages are not fully exploited. Here, I present SHIMSHON, our package of genetic simulation programs that have been developed, tested, used for research, and used to generated data for Genetic Analysis Workshops (GAW). These simulation programs, now web-accessible, can be used by anyone to answer questions about designing and analyzing genetic disease studies for locus identification. This work has three foci: (1) the historical context of SHIMSHON's development, suggesting why simulation has not been more widely used so far. (2) Advantages of simulation: computer simulation helps us to understand how genetic analysis methods work. It has advantages for understanding disease inheritance and methods for gene searches. Furthermore, simulation methods can be used to answer fundamental questions that either cannot be answered by analytical approaches or cannot even be defined until the problems are identified and studied, using simulation. (3) I argue that, because simulation was not accepted, there was a failure to grasp the meaning of some simulation-based studies of linkage. This may have contributed to perceived weaknesses in linkage analysis; weaknesses that did not, in fact, exist. PMID:22189467
Zhang, H; Ji, W L; Li, M; Zhou, L Y
2015-10-14
Comprehensive research of genetic variation is crucial in designing conservation strategies for endangered and threatened species. Sinowilsonia henryi Hemsi. is a tertiary relic with a limited geographical distribution in the central and western areas of China. It is endangered because of climate change and habitat fragmentation over the last thousands of years. In this study, amplified fragment length polymorphism markers were utilized to estimate genetic diversity and genetic structure in and among S. henryi. In this study, Nei's genetic diversity and Shannon's information index were found to be 0.192 and 0.325 respectively, indicating a moderate-to-high genetic diversity in species. According to analysis of molecular variation results, 32% of the genetic variation was shown to be partitioned among populations, demonstrating a relatively high genetic divergence; this was supported by principal coordinate analysis and unweighted pair-group method with arithmetic average analysis. Moreover, the Mantel test showed that there was no significant correlation between genetic and geographical distances. The above results can be explained by the effects of habitat fragmentation, history traits, and gene drift. Based on the results, several implications were indicated and suggestions proposed for preservation strategies for this species.
Frantine-Silva, W; Ferreira, D G; Nascimento, R H C; Fracasso, J F; Conte, J E; Ramos, F P; Carvalho, S; Galindo, B A
2015-12-29
Most studies of diversity and genetic structure in neotropical fish have focused on commercial species from large rivers or their reservoirs. However, smaller tributaries have been identified as an important alternative migratory route, with independent pools of genetic diversity. In this context, the present study aimed to evaluate genetic diversity and structure in five neotropical fish species from a region of Laranjinha River in the upper Paraná River basin. PCR-RAPD (random amplified polymorphic DNA) markers were used to characterize around 40 individuals of each species distributed upstream and downstream of Corredeira Dam that interrupts the river. The descriptive index of genetic diversity (P = 30.5-82%; HE 0.122-0.312) showed that the populations have acceptable levels of genetic diversity. The values for Nei's genetic distance (DN min 0.0110 and max 0.0306) as well as the genetic structure index and the analysis of molecular variance (AMOVA, ϕST min 0.0132 and max 0.0385) demonstrated low, but significant levels of genetic structure. Bayesian analysis of assignment found two k clusters, including several individuals with mixed ancestry for all populations from the five species analyzed. These findings along with historical data on rainfall and the low dimensions of the dam studied here support the hypothesis that periodic floods enable the transit of individuals between different localities mitigating the differentiation process between populations.
Genetic Influences on Adolescent Eating Habits
ERIC Educational Resources Information Center
Beaver, Kevin M.; Flores, Tori; Boutwell, Brian B.; Gibson, Chris L.
2012-01-01
Behavioral genetic research shows that variation in eating habits and food consumption is due to genetic and environmental factors. The current study extends this line of research by examining the genetic contribution to adolescent eating habits. Analysis of sibling pairs drawn from the National Longitudinal Study of Adolescent Health (Add Health)…
Iacono, William G; Malone, Stephen M; Vaidyanathan, Uma; Vrieze, Scott I
2014-12-01
This article provides an introductory overview of the investigative strategy employed to evaluate the genetic basis of 17 endophenotypes examined as part of a 20-year data collection effort from the Minnesota Center for Twin and Family Research. Included are characterization of the study samples, descriptive statistics for key properties of the psychophysiological measures, and rationale behind the steps taken in the molecular genetic study design. The statistical approach included (a) biometric analysis of twin and family data, (b) heritability analysis using 527,829 single nucleotide polymorphisms (SNPs), (c) genome-wide association analysis of these SNPs and 17,601 autosomal genes, (d) follow-up analyses of candidate SNPs and genes hypothesized to have an association with each endophenotype, (e) rare variant analysis of nonsynonymous SNPs in the exome, and (f) whole genome sequencing association analysis using 27 million genetic variants. These methods were used in the accompanying empirical articles comprising this special issue, Genome-Wide Scans of Genetic Variants for Psychophysiological Endophenotypes. Copyright © 2014 Society for Psychophysiological Research.
Manzanero, Silvia; Kozlovskaia, Maria; Vlahovich, Nicole; Hughes, David C
2018-05-23
With the increasing capacity for remote collection of both data and samples for medical research, a thorough assessment is needed to determine the association of population characteristics and recruitment methodologies with response rates. The aim of this research was to assess population representativeness in a two-stage study of health and injury in recreational runners, which consisted of an epidemiological arm and genetic analysis. The cost and success of various classical and internet-based methods were analyzed, and demographic representativeness was assessed for recruitment to the epidemiological survey, reported willingness to participate in the genetic arm of the study, actual participation, sample return, and approval for biobank storage. A total of 4965 valid responses were received, of which 1664 were deemed eligible for genetic analysis. Younger age showed a negative association with initial recruitment rate, expressed willingness to participate in genetic analysis, and actual participation. Additionally, female sex was associated with higher initial recruitment rates, and ethnic origin impacted willingness to participate in the genetic analysis (all P<.001). The sharp decline in retention through the different stages of the study in young respondents suggests the necessity to develop specific recruitment and retention strategies when investigating a young, physically active population. ©Silvia Manzanero, Maria Kozlovskaia, Nicole Vlahovich, David C Hughes. Originally published in JMIR Research Protocols (http://www.researchprotocols.org), 23.05.2018.
Livshits, G; Yakovenko, K; Ginsburg, E; Kobyliansky, E
1998-01-01
The present study utilized pedigree data from three ethnically different populations of Kirghizstan, Turkmenia and Chuvasha. Principal component analysis was performed on a matrix of genetic correlations between 22 measures of adiposity, including skinfolds, circumferences and indices. Findings are summarized as follows: (1) All three genetic matrices were not positive definite and the first four factors retained even after exclusion RG > or = 1.0, explained from 88% to 97% of the total additive genetic variation in the 22 trials studied. This clearly emphasizes the massive involvement of pleiotropic gene effects in the variability of adiposity traits. (2) Despite the quite natural differences in pairwise correlations between the adiposity traits in the three ethnically different samples under study, factor analysis revealed a common basic pattern of covariability for the adiposity traits. In each of the three samples, four genetic factors were retained, namely, the amount of subcutaneous fat, the total body obesity, the pattern of distribution of subcutaneous fat and the central adiposity distribution. (3) Genetic correlations between the retained four factors were virtually non-existent, suggesting that several independent genetic sources may be governing the variation of adiposity traits. (4) Variance decomposition analysis on the obtained genetic factors leaves no doubt regarding the substantial familial and (most probably genetic) effects on variation of each factor in each studied population. The similarity of results in the three different samples indicates that the findings may be deemed valid and reliable descriptions of the genetic variation and covariation pattern of adiposity traits in the human species.
Cattle genome-wide analysis reveals genetic signatures in trypanotolerant N'Dama.
Kim, Soo-Jin; Ka, Sojeong; Ha, Jung-Woo; Kim, Jaemin; Yoo, DongAhn; Kim, Kwondo; Lee, Hak-Kyo; Lim, Dajeong; Cho, Seoae; Hanotte, Olivier; Mwai, Okeyo Ally; Dessie, Tadelle; Kemp, Stephen; Oh, Sung Jong; Kim, Heebal
2017-05-12
Indigenous cattle in Africa have adapted to various local environments to acquire superior phenotypes that enhance their survival under harsh conditions. While many studies investigated the adaptation of overall African cattle, genetic characteristics of each breed have been poorly studied. We performed the comparative genome-wide analysis to assess evidence for subspeciation within species at the genetic level in trypanotolerant N'Dama cattle. We analysed genetic variation patterns in N'Dama from the genomes of 101 cattle breeds including 48 samples of five indigenous African cattle breeds and 53 samples of various commercial breeds. Analysis of SNP variances between cattle breeds using wMI, XP-CLR, and XP-EHH detected genes containing N'Dama-specific genetic variants and their potential associations. Functional annotation analysis revealed that these genes are associated with ossification, neurological and immune system. Particularly, the genes involved in bone formation indicate that local adaptation of N'Dama may engage in skeletal growth as well as immune systems. Our results imply that N'Dama might have acquired distinct genotypes associated with growth and regulation of regional diseases including trypanosomiasis. Moreover, this study offers significant insights into identifying genetic signatures for natural and artificial selection of diverse African cattle breeds.
PAQ: Partition Analysis of Quasispecies.
Baccam, P; Thompson, R J; Fedrigo, O; Carpenter, S; Cornette, J L
2001-01-01
The complexities of genetic data may not be accurately described by any single analytical tool. Phylogenetic analysis is often used to study the genetic relationship among different sequences. Evolutionary models and assumptions are invoked to reconstruct trees that describe the phylogenetic relationship among sequences. Genetic databases are rapidly accumulating large amounts of sequences. Newly acquired sequences, which have not yet been characterized, may require preliminary genetic exploration in order to build models describing the evolutionary relationship among sequences. There are clustering techniques that rely less on models of evolution, and thus may provide nice exploratory tools for identifying genetic similarities. Some of the more commonly used clustering methods perform better when data can be grouped into mutually exclusive groups. Genetic data from viral quasispecies, which consist of closely related variants that differ by small changes, however, may best be partitioned by overlapping groups. We have developed an intuitive exploratory program, Partition Analysis of Quasispecies (PAQ), which utilizes a non-hierarchical technique to partition sequences that are genetically similar. PAQ was used to analyze a data set of human immunodeficiency virus type 1 (HIV-1) envelope sequences isolated from different regions of the brain and another data set consisting of the equine infectious anemia virus (EIAV) regulatory gene rev. Analysis of the HIV-1 data set by PAQ was consistent with phylogenetic analysis of the same data, and the EIAV rev variants were partitioned into two overlapping groups. PAQ provides an additional tool which can be used to glean information from genetic data and can be used in conjunction with other tools to study genetic similarities and genetic evolution of viral quasispecies.
Applying Quantitative Genetic Methods to Primate Social Behavior
Brent, Lauren J. N.
2013-01-01
Increasingly, behavioral ecologists have applied quantitative genetic methods to investigate the evolution of behaviors in wild animal populations. The promise of quantitative genetics in unmanaged populations opens the door for simultaneous analysis of inheritance, phenotypic plasticity, and patterns of selection on behavioral phenotypes all within the same study. In this article, we describe how quantitative genetic techniques provide studies of the evolution of behavior with information that is unique and valuable. We outline technical obstacles for applying quantitative genetic techniques that are of particular relevance to studies of behavior in primates, especially those living in noncaptive populations, e.g., the need for pedigree information, non-Gaussian phenotypes, and demonstrate how many of these barriers are now surmountable. We illustrate this by applying recent quantitative genetic methods to spatial proximity data, a simple and widely collected primate social behavior, from adult rhesus macaques on Cayo Santiago. Our analysis shows that proximity measures are consistent across repeated measurements on individuals (repeatable) and that kin have similar mean measurements (heritable). Quantitative genetics may hold lessons of considerable importance for studies of primate behavior, even those without a specific genetic focus. PMID:24659839
Stice, Shaun P; Stumpf, Spencer D; Gitaitis, Ron D; Kvitko, Brian H; Dutta, Bhabesh
2018-01-01
Pantoea ananatis is a member of the family Enterobacteriaceae and an enigmatic plant pathogen with a broad host range. Although P. ananatis strains can be aggressive on onion causing foliar necrosis and onion center rot, previous genomic analysis has shown that P. ananatis lacks the primary virulence secretion systems associated with other plant pathogens. We assessed a collection of fifty P. ananatis strains collected from Georgia over three decades to determine genetic factors that correlated with onion pathogenic potential. Previous genetic analysis studies have compared strains isolated from different hosts with varying diseases potential and isolation sources. Strains varied greatly in their pathogenic potential and aggressiveness on different cultivated Allium species like onion, leek, shallot, and chive. Using multi-locus sequence analysis (MLSA) and repetitive extragenic palindrome repeat (rep)-PCR techniques, we did not observe any correlation between onion pathogenic potential and genetic diversity among strains. Whole genome sequencing and pan-genomic analysis of a sub-set of 10 strains aided in the identification of a novel series of genetic regions, likely plasmid borne, and correlating with onion pathogenicity observed on single contigs of the genetic assemblies. We named these loci Onion Virulence Regions (OVR) A-D. The OVR loci contain genes involved in redox regulation as well as pectate lyase and rhamnogalacturonase genes. Previous studies have not identified distinct genetic loci or plasmids correlating with onion foliar pathogenicity or pathogenicity on a single host pathosystem. The lack of focus on a single host system for this phytopathgenic disease necessitates the pan-genomic analysis performed in this study.
Stice, Shaun P.; Stumpf, Spencer D.; Gitaitis, Ron D.; Kvitko, Brian H.; Dutta, Bhabesh
2018-01-01
Pantoea ananatis is a member of the family Enterobacteriaceae and an enigmatic plant pathogen with a broad host range. Although P. ananatis strains can be aggressive on onion causing foliar necrosis and onion center rot, previous genomic analysis has shown that P. ananatis lacks the primary virulence secretion systems associated with other plant pathogens. We assessed a collection of fifty P. ananatis strains collected from Georgia over three decades to determine genetic factors that correlated with onion pathogenic potential. Previous genetic analysis studies have compared strains isolated from different hosts with varying diseases potential and isolation sources. Strains varied greatly in their pathogenic potential and aggressiveness on different cultivated Allium species like onion, leek, shallot, and chive. Using multi-locus sequence analysis (MLSA) and repetitive extragenic palindrome repeat (rep)-PCR techniques, we did not observe any correlation between onion pathogenic potential and genetic diversity among strains. Whole genome sequencing and pan-genomic analysis of a sub-set of 10 strains aided in the identification of a novel series of genetic regions, likely plasmid borne, and correlating with onion pathogenicity observed on single contigs of the genetic assemblies. We named these loci Onion Virulence Regions (OVR) A-D. The OVR loci contain genes involved in redox regulation as well as pectate lyase and rhamnogalacturonase genes. Previous studies have not identified distinct genetic loci or plasmids correlating with onion foliar pathogenicity or pathogenicity on a single host pathosystem. The lack of focus on a single host system for this phytopathgenic disease necessitates the pan-genomic analysis performed in this study. PMID:29491851
A Behaviour-Genetic Analysis of Orthographic Learning, Spelling and Decoding
ERIC Educational Resources Information Center
Byrne, Brian; Coventry, William L.; Olson, Richard K.; Hulslander, Jacqueline; Wadsworth, Sally; DeFries, John C.; Corley, Robin; Willcutt, Erik G.; Samuelsson, Stefan
2008-01-01
As part of a longitudinal twin study of literacy and language, we conducted a behaviour-genetic analysis of orthographic learning, spelling and decoding in Grade 2 children (225 identical and 214 fraternal twin pairs) in the United States and Australia. Each variable showed significant genetic and unique environment influences. Multivariate…
Genes, age, and alcoholism: analysis of GAW14 data.
Apprey, Victor; Afful, Joseph; Harrell, Jules P; Taylor, Robert E; Bonney, George E
2005-12-30
A genetic analysis of age of onset of alcoholism was performed on the Collaborative Study on the Genetics of Alcoholism data released for Genetic Analysis Workshop 14. Our study illustrates an application of the log-normal age of onset model in our software Genetic Epidemiology Models (GEMs). The phenotype ALDX1 of alcoholism was studied. The analysis strategy was to first find the markers of the Affymetrix SNP dataset with significant association with age of onset, and then to perform linkage analysis on them. ALDX1 revealed strong evidence of linkage for marker tsc0041591 on chromosome 2 and suggestive linkage for marker tsc0894042 on chromosome 3. The largest separation in mean ages of onset of ALDX1 was 19.76 and 24.41 between male smokers who are carriers of the risk allele of tsc0041591 and the non-carriers, respectively. Hence, male smokers who are carriers of marker tsc0041591 on chromosome 2 have an average onset of ALDX1 almost 5 years earlier than non-carriers.
Genetic polymorphisms in the ESR1 gene and cerebral infarction risk: a meta-analysis.
Gao, Hong-Hua; Gao, Lian-Bo; Wen, Jia-Mei
2014-09-01
A number of studies have documented that estrogen receptor α (ESR1) may play an important role in the development and progression of cerebral infarction, but many existing studies have yielded inconclusive results. This meta-analysis was performed to evaluate the relationships between ESR1 genetic polymorphisms and cerebral infarction risk. The PubMed, CISCOM, CINAHL, Web of Science, Google Scholar, EBSCO, Cochrane Library, and CBM databases were searched for relevant articles published before October 1, 2013, without any language restrictions. Meta-analysis was conducted using the STATA 12.0 software. Seven case-control studies were included with a total of 1471 patients with cerebral infarction and 4688 healthy control subjects. Two common single-nucleotide polymorphisms (SNPs) in the ESR1 gene (rs2234693 T>C and rs9340799 A>G) were assessed. Our meta-analysis results revealed that ESR1 genetic polymorphisms might increase the risk of cerebral infarction. Subgroup analysis by SNP type indicated that both rs2234693 and rs9340799 polymorphisms in the ESR1 gene were strongly associated with an increased risk of cerebral infarction. Further subgroup analysis by ethnicity showed significant associations between ESR1 genetic polymorphisms and increased risk of cerebral infarction among both Asians and Caucasians. In the stratified subgroup analysis by gender, the results suggested that ESR1 genetic polymorphisms were associated with an increased risk of cerebral infarction in the female population. However, there were no statistically significant associations between ESR1 genetic polymorphisms and cerebral infarction risk in the male population. Meta-regression analyses also confirmed that gender might be a main source of heterogeneity. Our findings indicate that ESR1 genetic polymorphisms may contribute to the development of cerebral infarction, especially in the female population.
Campoy, José Antonio; Lerigoleur-Balsemin, Emilie; Christmann, Hélène; Beauvieux, Rémi; Girollet, Nabil; Quero-García, José; Dirlewanger, Elisabeth; Barreneche, Teresa
2016-02-24
Depiction of the genetic diversity, linkage disequilibrium (LD) and population structure is essential for the efficient organization and exploitation of genetic resources. The objectives of this study were to (i) to evaluate the genetic diversity and to detect the patterns of LD, (ii) to estimate the levels of population structure and (iii) to identify a 'core collection' suitable for association genetic studies in sweet cherry. A total of 210 genotypes including modern cultivars and landraces from 16 countries were genotyped using the RosBREED cherry 6 K SNP array v1. Two groups, mainly bred cultivars and landraces, respectively, were first detected using STRUCTURE software and confirmed by Principal Coordinate Analysis (PCoA). Further analyses identified nine subgroups using STRUCTURE and Discriminant Analysis of Principal Components (DAPC). Several sub-groups correspond to different eco-geographic regions of landraces distribution. Linkage disequilibrium was evaluated showing lower values than in peach, the reference Prunus species. A 'core collection' containing 156 accessions was selected using the maximum length sub tree method. The present study constitutes the first population genetics analysis in cultivated sweet cherry using a medium-density SNP (single nucleotide polymorphism) marker array. We provided estimations of linkage disequilibrium, genetic structure and the definition of a first INRA's Sweet Cherry core collection useful for breeding programs, germplasm management and association genetics studies.
Bralten, Janita; Franke, Barbara; Waldman, Irwin; Rommelse, Nanda; Hartman, Catharina; Asherson, Philip; Banaschewski, Tobias; Ebstein, Richard P; Gill, Michael; Miranda, Ana; Oades, Robert D; Roeyers, Herbert; Rothenberger, Aribert; Sergeant, Joseph A; Oosterlaan, Jaap; Sonuga-Barke, Edmund; Steinhausen, Hans-Christoph; Faraone, Stephen V; Buitelaar, Jan K; Arias-Vásquez, Alejandro
2013-11-01
Because multiple genes with small effect sizes are assumed to play a role in attention-deficit/hyperactivity disorder (ADHD) etiology, considering multiple variants within the same analysis likely increases the total explained phenotypic variance, thereby boosting the power of genetic studies. This study investigated whether pathway-based analysis could bring scientists closer to unraveling the biology of ADHD. The pathway was described as a predefined gene selection based on a well-established database or literature data. Common genetic variants in pathways involved in dopamine/norepinephrine and serotonin neurotransmission and genes involved in neuritic outgrowth were investigated in cases from the International Multicentre ADHD Genetics (IMAGE) study. Multivariable analysis was performed to combine the effects of single genetic variants within the pathway genes. Phenotypes were DSM-IV symptom counts for inattention and hyperactivity/impulsivity (n = 871) and symptom severity measured with the Conners Parent (n = 930) and Teacher (n = 916) Rating Scales. Summing genetic effects of common genetic variants within the pathways showed a significant association with hyperactive/impulsive symptoms ((p)empirical = .007) but not with inattentive symptoms ((p)empirical = .73). Analysis of parent-rated Conners hyperactive/impulsive symptom scores validated this result ((p)empirical = .0018). Teacher-rated Conners scores were not associated. Post hoc analyses showed a significant contribution of all pathways to the hyperactive/impulsive symptom domain (dopamine/norepinephrine, (p)empirical = .0004; serotonin, (p)empirical = .0149; neuritic outgrowth, (p)empirical = .0452). The present analysis shows an association between common variants in 3 genetic pathways and the hyperactive/impulsive component of ADHD. This study demonstrates that pathway-based association analyses, using quantitative measurements of ADHD symptom domains, can increase the power of genetic analyses to identify biological risk factors involved in this disorder. Copyright © 2013 American Academy of Child and Adolescent Psychiatry. Published by Elsevier Inc. All rights reserved.
Genetic Simulation Tools for Post-Genome Wide Association Studies of Complex Diseases
Amos, Christopher I.; Bafna, Vineet; Hauser, Elizabeth R.; Hernandez, Ryan D.; Li, Chun; Liberles, David A.; McAllister, Kimberly; Moore, Jason H.; Paltoo, Dina N.; Papanicolaou, George J.; Peng, Bo; Ritchie, Marylyn D.; Rosenfeld, Gabriel; Witte, John S.
2014-01-01
Genetic simulation programs are used to model data under specified assumptions to facilitate the understanding and study of complex genetic systems. Standardized data sets generated using genetic simulation are essential for the development and application of novel analytical tools in genetic epidemiology studies. With continuing advances in high-throughput genomic technologies and generation and analysis of larger, more complex data sets, there is a need for updating current approaches in genetic simulation modeling. To provide a forum to address current and emerging challenges in this area, the National Cancer Institute (NCI) sponsored a workshop, entitled “Genetic Simulation Tools for Post-Genome Wide Association Studies of Complex Diseases” at the National Institutes of Health (NIH) in Bethesda, Maryland on March 11-12, 2014. The goals of the workshop were to: (i) identify opportunities, challenges and resource needs for the development and application of genetic simulation models; (ii) improve the integration of tools for modeling and analysis of simulated data; and (iii) foster collaborations to facilitate development and applications of genetic simulation. During the course of the meeting the group identified challenges and opportunities for the science of simulation, software and methods development, and collaboration. This paper summarizes key discussions at the meeting, and highlights important challenges and opportunities to advance the field of genetic simulation. PMID:25371374
2011-01-01
Background Implicitly, parasite molecular studies assume temporal genetic stability. In this study we tested, for the first time to our knowledge, the extent of changes in genetic diversity and structure of Sarcoptes mite populations from Pyrenean chamois (Rupicapra pyrenaica) in Asturias (Spain), using one multiplex of 9 microsatellite markers and Sarcoptes samples from sympatric Pyrenean chamois, red deer (Cervus elaphus), roe deer (Capreolus capreolus) and red fox (Vulpes vulpes). Results The analysis of an 11-years interval period found little change in the genetic diversity (allelic diversity, and observed and expected heterozygosity). The temporal stability in the genetic diversity was confirmed by population structure analysis, which was not significantly variable over time. Population structure analysis revealed temporal stability in the genetic diversity of Sarcoptes mite under the host-taxon law (herbivore derived- and carnivore derived-Sarcoptes mite) among the sympatric wild animals from Asturias. Conclusions The confirmation of parasite temporal genetic stability is of vital interest to allow generalizations to be made, which have further implications regarding the genetic structure, epidemiology and monitoring protocols of the ubiquitous Sarcoptes mite. This could eventually be applied to other parasite species. PMID:21794141
Zabalza, Michel; Subirana, Isaac; Lluis-Ganella, Carla; Sayols-Baixeras, Sergi; de Groot, Eric; Arnold, Roman; Cenarro, Ana; Ramos, Rafel; Marrugat, Jaume; Elosua, Roberto
2015-10-01
Recent studies have identified several genetic variants associated with coronary artery disease. Some of these genetic variants are not associated with classical cardiovascular risk factors and the mechanism of such associations is unclear. The aim of the study was to determine whether these genetic variants are related to subclinical atherosclerosis measured by carotid intima media thickness, carotid stiffness, and ankle brachial index. A cross-sectional study nested in the follow-up of the REGICOR cohort was undertaken. The study included 2667 individuals. Subclinical atherosclerosis measurements were performed with standardized methods. Nine genetic variants were genotyped to assess associations with subclinical atherosclerosis, individually and in a weighted genetic risk score. A systematic review and meta-analysis of previous studies that analyzed these associations was undertaken. Neither the selected genetic variants nor the genetic risk score were significantly associated with subclinical atherosclerosis. In the meta-analysis, the rs1746048 (CXCL12; n = 10581) risk allele was directly associated with carotid intima-media thickness (β = 0.008; 95% confidence interval, 0.001-0.015), whereas the rs6725887 (WDR12; n = 7801) risk allele was inversely associated with this thickness (β = -0.013; 95% confidence interval, -0.024 to -0.003). The analyzed genetic variants seem to mediate their association with coronary artery disease through different mechanisms. Our results generate the hypothesis that the CXCL12 variant appears to influence coronary artery disease risk through arterial remodeling and thickening, whereas the WDR12 risk variant could be related to higher plaque vulnerability. Copyright © 2014 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.
Gene Level Meta-Analysis of Quantitative Traits by Functional Linear Models.
Fan, Ruzong; Wang, Yifan; Boehnke, Michael; Chen, Wei; Li, Yun; Ren, Haobo; Lobach, Iryna; Xiong, Momiao
2015-08-01
Meta-analysis of genetic data must account for differences among studies including study designs, markers genotyped, and covariates. The effects of genetic variants may differ from population to population, i.e., heterogeneity. Thus, meta-analysis of combining data of multiple studies is difficult. Novel statistical methods for meta-analysis are needed. In this article, functional linear models are developed for meta-analyses that connect genetic data to quantitative traits, adjusting for covariates. The models can be used to analyze rare variants, common variants, or a combination of the two. Both likelihood-ratio test (LRT) and F-distributed statistics are introduced to test association between quantitative traits and multiple variants in one genetic region. Extensive simulations are performed to evaluate empirical type I error rates and power performance of the proposed tests. The proposed LRT and F-distributed statistics control the type I error very well and have higher power than the existing methods of the meta-analysis sequence kernel association test (MetaSKAT). We analyze four blood lipid levels in data from a meta-analysis of eight European studies. The proposed methods detect more significant associations than MetaSKAT and the P-values of the proposed LRT and F-distributed statistics are usually much smaller than those of MetaSKAT. The functional linear models and related test statistics can be useful in whole-genome and whole-exome association studies. Copyright © 2015 by the Genetics Society of America.
Establishment of apoptotic regulatory network for genetic markers of colorectal cancer.
Hao, Yibin; Shan, Guoyong; Nan, Kejun
2017-03-01
Our purpose is to screen out genetic markers applicable to early diagnosis for colorectal cancer and to establish apoptotic regulatory network model for colorectal cancer, thereby providing theoretical evidence and targeted therapy for early diagnosis of colorectal cancer. Taking databases including CNKI, VIP, Wanfang data, Pub Med, and MEDLINE as main sources of literature retrieval, literatures associated with genetic markers applied to early diagnosis of colorectal cancer were searched to perform comprehensive and quantitative analysis by Meta analysis, hence screening genetic markers used in early diagnosis of colorectal cancer. Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were employed to establish apoptotic regulatory network model based on screened genetic markers, and then verification experiment was conducted. Through Meta analysis, seven genetic markers were screened out, including WWOX, K-ras, COX-2, p53, APC, DCC and PTEN, among which DCC shows highest diagnostic efficiency. GO analysis of genetic markers found that six genetic markers played role in biological process, molecular function and cellular component. It was indicated in apoptotic regulatory network built by KEGG analysis and verification experiment that WWOX could promote tumor cell apoptotic in colorectal cancer and elevate expression level of p53. The apoptotic regulatory model of colorectal cancer established in this study provides clinically theoretical evidence and targeted therapy for early diagnosis of colorectal cancer.
Michael J. Firko; Jane Leslie Hayes
1990-01-01
Quantitative genetic studies of resistance can provide estimates of genetic parameters not available with other types of genetic analyses. Three methods are discussed for estimating the amount of additive genetic variation in resistance to individual insecticides and subsequent estimation of heritability (h2) of resistance. Sibling analysis and...
Renan, Sharon; Greenbaum, Gili; Shahar, Naama; Templeton, Alan R; Bouskila, Amos; Bar-David, Shirli
2015-04-01
Small populations are prone to loss of genetic variation and hence to a reduction in their evolutionary potential. Therefore, studying the mating system of small populations and its potential effects on genetic drift and genetic diversity is of high importance for their viability assessments. The traditional method for studying genetic mating systems is paternity analysis. Yet, as small populations are often rare and elusive, the genetic data required for paternity analysis are frequently unavailable. The endangered Asiatic wild ass (Equus hemionus), like all equids, displays a behaviourally polygynous mating system; however, the level of polygyny has never been measured genetically in wild equids. Combining noninvasive genetic data with stochastic modelling of shifts in allele frequencies, we developed an alternative approach to paternity analysis for studying the genetic mating system of the re-introduced Asiatic wild ass in the Negev Desert, Israel. We compared the shifts in allele frequencies (as a measure of genetic drift) that have occurred in the wild ass population since re-introduction onset to simulated scenarios under different proportions of mating males. We revealed a strongly polygynous mating system in which less than 25% of all males participate in the mating process each generation. This strongly polygynous mating system and its potential effect on the re-introduced population's genetic diversity could have significant consequences for the long-term persistence of the population in the Negev. The stochastic modelling approach and the use of allele-frequency shifts can be further applied to systems that are affected by genetic drift and for which genetic data are limited. © 2015 John Wiley & Sons Ltd.
Zhu, Wensheng; Yuan, Ying; Zhang, Jingwen; Zhou, Fan; Knickmeyer, Rebecca C; Zhu, Hongtu
2017-02-01
The aim of this paper is to systematically evaluate a biased sampling issue associated with genome-wide association analysis (GWAS) of imaging phenotypes for most imaging genetic studies, including the Alzheimer's Disease Neuroimaging Initiative (ADNI). Specifically, the original sampling scheme of these imaging genetic studies is primarily the retrospective case-control design, whereas most existing statistical analyses of these studies ignore such sampling scheme by directly correlating imaging phenotypes (called the secondary traits) with genotype. Although it has been well documented in genetic epidemiology that ignoring the case-control sampling scheme can produce highly biased estimates, and subsequently lead to misleading results and suspicious associations, such findings are not well documented in imaging genetics. We use extensive simulations and a large-scale imaging genetic data analysis of the Alzheimer's Disease Neuroimaging Initiative (ADNI) data to evaluate the effects of the case-control sampling scheme on GWAS results based on some standard statistical methods, such as linear regression methods, while comparing it with several advanced statistical methods that appropriately adjust for the case-control sampling scheme. Copyright © 2016 Elsevier Inc. All rights reserved.
Lindén, Rolf O; Eronen, Ville-Pekka; Aittokallio, Tero
2011-03-24
High-throughput genetic screening approaches have enabled systematic means to study how interactions among gene mutations contribute to quantitative fitness phenotypes, with the aim of providing insights into the functional wiring diagrams of genetic interaction networks on a global scale. However, it is poorly known how well these quantitative interaction measurements agree across the screening approaches, which hinders their integrated use toward improving the coverage and quality of the genetic interaction maps in yeast and other organisms. Using large-scale data matrices from epistatic miniarray profiling (E-MAP), genetic interaction mapping (GIM), and synthetic genetic array (SGA) approaches, we carried out here a systematic comparative evaluation among these quantitative maps of genetic interactions in yeast. The relatively low association between the original interaction measurements or their customized scores could be improved using a matrix-based modelling framework, which enables the use of single- and double-mutant fitness estimates and measurements, respectively, when scoring genetic interactions. Toward an integrative analysis, we show how the detections from the different screening approaches can be combined to suggest novel positive and negative interactions which are complementary to those obtained using any single screening approach alone. The matrix approximation procedure has been made available to support the design and analysis of the future screening studies. We have shown here that even if the correlation between the currently available quantitative genetic interaction maps in yeast is relatively low, their comparability can be improved by means of our computational matrix approximation procedure, which will enable integrative analysis and detection of a wider spectrum of genetic interactions using data from the complementary screening approaches.
de Moor, Marleen H M; van den Berg, Stéphanie M; Verweij, Karin J H; Krueger, Robert F; Luciano, Michelle; Arias Vasquez, Alejandro; Matteson, Lindsay K; Derringer, Jaime; Esko, Tõnu; Amin, Najaf; Gordon, Scott D; Hansell, Narelle K; Hart, Amy B; Seppälä, Ilkka; Huffman, Jennifer E; Konte, Bettina; Lahti, Jari; Lee, Minyoung; Miller, Mike; Nutile, Teresa; Tanaka, Toshiko; Teumer, Alexander; Viktorin, Alexander; Wedenoja, Juho; Abecasis, Goncalo R; Adkins, Daniel E; Agrawal, Arpana; Allik, Jüri; Appel, Katja; Bigdeli, Timothy B; Busonero, Fabio; Campbell, Harry; Costa, Paul T; Davey Smith, George; Davies, Gail; de Wit, Harriet; Ding, Jun; Engelhardt, Barbara E; Eriksson, Johan G; Fedko, Iryna O; Ferrucci, Luigi; Franke, Barbara; Giegling, Ina; Grucza, Richard; Hartmann, Annette M; Heath, Andrew C; Heinonen, Kati; Henders, Anjali K; Homuth, Georg; Hottenga, Jouke-Jan; Iacono, William G; Janzing, Joost; Jokela, Markus; Karlsson, Robert; Kemp, John P; Kirkpatrick, Matthew G; Latvala, Antti; Lehtimäki, Terho; Liewald, David C; Madden, Pamela A F; Magri, Chiara; Magnusson, Patrik K E; Marten, Jonathan; Maschio, Andrea; Medland, Sarah E; Mihailov, Evelin; Milaneschi, Yuri; Montgomery, Grant W; Nauck, Matthias; Ouwens, Klaasjan G; Palotie, Aarno; Pettersson, Erik; Polasek, Ozren; Qian, Yong; Pulkki-Råback, Laura; Raitakari, Olli T; Realo, Anu; Rose, Richard J; Ruggiero, Daniela; Schmidt, Carsten O; Slutske, Wendy S; Sorice, Rossella; Starr, John M; St Pourcain, Beate; Sutin, Angelina R; Timpson, Nicholas J; Trochet, Holly; Vermeulen, Sita; Vuoksimaa, Eero; Widen, Elisabeth; Wouda, Jasper; Wright, Margaret J; Zgaga, Lina; Porteous, David; Minelli, Alessandra; Palmer, Abraham A; Rujescu, Dan; Ciullo, Marina; Hayward, Caroline; Rudan, Igor; Metspalu, Andres; Kaprio, Jaakko; Deary, Ian J; Räikkönen, Katri; Wilson, James F; Keltikangas-Järvinen, Liisa; Bierut, Laura J; Hettema, John M; Grabe, Hans J; van Duijn, Cornelia M; Evans, David M; Schlessinger, David; Pedersen, Nancy L; Terracciano, Antonio; McGue, Matt; Penninx, Brenda W J H; Martin, Nicholas G; Boomsma, Dorret I
2015-07-01
Neuroticism is a pervasive risk factor for psychiatric conditions. It genetically overlaps with major depressive disorder (MDD) and is therefore an important phenotype for psychiatric genetics. The Genetics of Personality Consortium has created a resource for genome-wide association analyses of personality traits in more than 63,000 participants (including MDD cases). To identify genetic variants associated with neuroticism by performing a meta-analysis of genome-wide association results based on 1000 Genomes imputation; to evaluate whether common genetic variants as assessed by single-nucleotide polymorphisms (SNPs) explain variation in neuroticism by estimating SNP-based heritability; and to examine whether SNPs that predict neuroticism also predict MDD. Genome-wide association meta-analysis of 30 cohorts with genome-wide genotype, personality, and MDD data from the Genetics of Personality Consortium. The study included 63,661 participants from 29 discovery cohorts and 9786 participants from a replication cohort. Participants came from Europe, the United States, or Australia. Analyses were conducted between 2012 and 2014. Neuroticism scores harmonized across all 29 discovery cohorts by item response theory analysis, and clinical MDD case-control status in 2 of the cohorts. A genome-wide significant SNP was found on 3p14 in MAGI1 (rs35855737; P = 9.26 × 10-9 in the discovery meta-analysis). This association was not replicated (P = .32), but the SNP was still genome-wide significant in the meta-analysis of all 30 cohorts (P = 2.38 × 10-8). Common genetic variants explain 15% of the variance in neuroticism. Polygenic scores based on the meta-analysis of neuroticism in 27 cohorts significantly predicted neuroticism (1.09 × 10-12 < P < .05) and MDD (4.02 × 10-9 < P < .05) in the 2 other cohorts. This study identifies a novel locus for neuroticism. The variant is located in a known gene that has been associated with bipolar disorder and schizophrenia in previous studies. In addition, the study shows that neuroticism is influenced by many genetic variants of small effect that are either common or tagged by common variants. These genetic variants also influence MDD. Future studies should confirm the role of the MAGI1 locus for neuroticism and further investigate the association of MAGI1 and the polygenic association to a range of other psychiatric disorders that are phenotypically correlated with neuroticism.
Ge, Y; Li, X; Yang, X X; Cui, C S; Qu, S P
2015-05-22
Cucurbita maxima is one of the most widely cultivated vegetables in China and exhibits distinct morphological characteristics. In this study, genetic linkage analysis with 57 simple-sequence repeats, 21 amplified fragment length polymorphisms, 3 random-amplified polymorphic DNA, and one morphological marker revealed 20 genetic linkage groups of C. maxima covering a genetic distance of 991.5 cM with an average of 12.1 cM between adjacent markers. Genetic linkage analysis identified the simple-sequence repeat marker 'PU078072' 5.9 cM away from the locus 'Rc', which controls rind color. The genetic map in the present study will be useful for better mapping, tagging, and cloning of quantitative trait loci/gene(s) affecting economically important traits and for breeding new varieties of C. maxima through marker-assisted selection.
Groen-Blokhuis, Maria M.; Pourcain, Beate St.; Greven, Corina U.; Pappa, Irene; Tiesler, Carla M.T.; Ang, Wei; Nolte, Ilja M.; Vilor-Tejedor, Natalia; Bacelis, Jonas; Ebejer, Jane L.; Zhao, Huiying; Davies, Gareth E.; Ehli, Erik A.; Evans, David M.; Fedko, Iryna O.; Guxens, Mònica; Hottenga, Jouke-Jan; Hudziak, James J.; Jugessur, Astanand; Kemp, John P.; Krapohl, Eva; Martin, Nicholas G.; Murcia, Mario; Myhre, Ronny; Ormel, Johan; Ring, Susan M.; Standl, Marie; Stergiakouli, Evie; Stoltenberg, Camilla; Thiering, Elisabeth; Timpson, Nicholas J.; Trzaskowski, Maciej; van der Most, Peter J.; Wang, Carol; Nyholt, Dale R.; Medland, Sarah E.; Neale, Benjamin; Jacobsson, Bo; Sunyer, Jordi; Hartman, Catharina A.; Whitehouse, Andrew J.O.; Pennell, Craig E.; Heinrich, Joachim; Plomin, Robert; Smith, George Davey; Tiemeier, Henning; Posthuma, Danielle; Boomsma, Dorret I.
2016-01-01
Objective To elucidate the influence of common genetic variants on childhood attention-deficit/hyperactivity disorder (ADHD) symptoms, to identify genetic variants that explain its high heritability, and to investigate the genetic overlap of ADHD symptom scores with ADHD diagnosis. Method Within the EArly Genetics and Lifecourse Epidemiology (EAGLE) consortium, genome-wide single nucleotide polymorphisms (SNPs) and ADHD symptom scores were available for 17,666 children (< 13 years) from nine population-based cohorts. SNP-based heritability was estimated in data from the three largest cohorts. Meta-analysis based on genome-wide association (GWA) analyses with SNPs was followed by gene-based association tests, and the overlap in results with a meta-analysis in the Psychiatric Genomics Consortium (PGC) case-control ADHD study was investigated. Results SNP-based heritability ranged from 5% to 34%, indicating that variation in common genetic variants influences ADHD symptom scores. The meta-analysis did not detect genome-wide significant SNPs, but three genes, lying close to each other with SNPs in high linkage disequilibrium (LD), showed a gene-wide significant association (p values between 1.46×10-6 and 2.66×10-6). One gene, WASL, is involved in neuronal development. Both SNP- and gene-based analyses indicated overlap with the PGC meta-analysis results with the genetic correlation estimated at 0.96. Conclusion The SNP-based heritability for ADHD symptom scores indicates a polygenic architecture and genes involved in neurite outgrowth are possibly involved. Continuous and dichotomous measures of ADHD appear to assess a genetically common phenotype. A next step is to combine data from population-based and case-control cohorts in genetic association studies to increase sample size and improve statistical power for identifying genetic variants. PMID:27663945
Witt, S H; Streit, F; Jungkunz, M; Frank, J; Awasthi, S; Reinbold, C S; Treutlein, J; Degenhardt, F; Forstner, A J; Heilmann-Heimbach, S; Dietl, L; Schwarze, C E; Schendel, D; Strohmaier, J; Abdellaoui, A; Adolfsson, R; Air, T M; Akil, H; Alda, M; Alliey-Rodriguez, N; Andreassen, O A; Babadjanova, G; Bass, N J; Bauer, M; Baune, B T; Bellivier, F; Bergen, S; Bethell, A; Biernacka, J M; Blackwood, D H R; Boks, M P; Boomsma, D I; Børglum, A D; Borrmann-Hassenbach, M; Brennan, P; Budde, M; Buttenschøn, H N; Byrne, E M; Cervantes, P; Clarke, T-K; Craddock, N; Cruceanu, C; Curtis, D; Czerski, P M; Dannlowski, U; Davis, T; de Geus, E J C; Di Florio, A; Djurovic, S; Domenici, E; Edenberg, H J; Etain, B; Fischer, S B; Forty, L; Fraser, C; Frye, M A; Fullerton, J M; Gade, K; Gershon, E S; Giegling, I; Gordon, S D; Gordon-Smith, K; Grabe, H J; Green, E K; Greenwood, T A; Grigoroiu-Serbanescu, M; Guzman-Parra, J; Hall, L S; Hamshere, M; Hauser, J; Hautzinger, M; Heilbronner, U; Herms, S; Hitturlingappa, S; Hoffmann, P; Holmans, P; Hottenga, J-J; Jamain, S; Jones, I; Jones, L A; Juréus, A; Kahn, R S; Kammerer-Ciernioch, J; Kirov, G; Kittel-Schneider, S; Kloiber, S; Knott, S V; Kogevinas, M; Landén, M; Leber, M; Leboyer, M; Li, Q S; Lissowska, J; Lucae, S; Martin, N G; Mayoral-Cleries, F; McElroy, S L; McIntosh, A M; McKay, J D; McQuillin, A; Medland, S E; Middeldorp, C M; Milaneschi, Y; Mitchell, P B; Montgomery, G W; Morken, G; Mors, O; Mühleisen, T W; Müller-Myhsok, B; Myers, R M; Nievergelt, C M; Nurnberger, J I; O'Donovan, M C; Loohuis, L M O; Ophoff, R; Oruc, L; Owen, M J; Paciga, S A; Penninx, B W J H; Perry, A; Pfennig, A; Potash, J B; Preisig, M; Reif, A; Rivas, F; Rouleau, G A; Schofield, P R; Schulze, T G; Schwarz, M; Scott, L; Sinnamon, G C B; Stahl, E A; Strauss, J; Turecki, G; Van der Auwera, S; Vedder, H; Vincent, J B; Willemsen, G; Witt, C C; Wray, N R; Xi, H S; Tadic, A; Dahmen, N; Schott, B H; Cichon, S; Nöthen, M M; Ripke, S; Mobascher, A; Rujescu, D; Lieb, K; Roepke, S; Schmahl, C; Bohus, M; Rietschel, M
2017-06-20
Borderline personality disorder (BOR) is determined by environmental and genetic factors, and characterized by affective instability and impulsivity, diagnostic symptoms also observed in manic phases of bipolar disorder (BIP). Up to 20% of BIP patients show comorbidity with BOR. This report describes the first case-control genome-wide association study (GWAS) of BOR, performed in one of the largest BOR patient samples worldwide. The focus of our analysis was (i) to detect genes and gene sets involved in BOR and (ii) to investigate the genetic overlap with BIP. As there is considerable genetic overlap between BIP, major depression (MDD) and schizophrenia (SCZ) and a high comorbidity of BOR and MDD, we also analyzed the genetic overlap of BOR with SCZ and MDD. GWAS, gene-based tests and gene-set analyses were performed in 998 BOR patients and 1545 controls. Linkage disequilibrium score regression was used to detect the genetic overlap between BOR and these disorders. Single marker analysis revealed no significant association after correction for multiple testing. Gene-based analysis yielded two significant genes: DPYD (P=4.42 × 10 -7 ) and PKP4 (P=8.67 × 10 -7 ); and gene-set analysis yielded a significant finding for exocytosis (GO:0006887, P FDR =0.019; FDR, false discovery rate). Prior studies have implicated DPYD, PKP4 and exocytosis in BIP and SCZ. The most notable finding of the present study was the genetic overlap of BOR with BIP (r g =0.28 [P=2.99 × 10 -3 ]), SCZ (r g =0.34 [P=4.37 × 10 -5 ]) and MDD (r g =0.57 [P=1.04 × 10 -3 ]). We believe our study is the first to demonstrate that BOR overlaps with BIP, MDD and SCZ on the genetic level. Whether this is confined to transdiagnostic clinical symptoms should be examined in future studies.
Convergent evidence from systematic analysis of GWAS revealed genetic basis of esophageal cancer.
Gao, Xue-Xin; Gao, Lei; Wang, Jiu-Qiang; Qu, Su-Su; Qu, Yue; Sun, Hong-Lei; Liu, Si-Dang; Shang, Ying-Li
2016-07-12
Recent genome-wide association studies (GWAS) have identified single nucleotide polymorphisms (SNPs) associated with risk of esophageal cancer (EC). However, investigation of genetic basis from the perspective of systematic biology and integrative genomics remains scarce.In this study, we explored genetic basis of EC based on GWAS data and implemented a series of bioinformatics methods including functional annotation, expression quantitative trait loci (eQTL) analysis, pathway enrichment analysis and pathway grouped network analysis.Two hundred and thirteen risk SNPs were identified, in which 44 SNPs were found to have significantly differential gene expression in esophageal tissues by eQTL analysis. By pathway enrichment analysis, 170 risk genes mapped by risk SNPs were enriched into 38 significant GO terms and 17 significant KEGG pathways, which were significantly grouped into 9 sub-networks by pathway grouped network analysis. The 9 groups of interconnected pathways were mainly involved with muscle cell proliferation, cellular response to interleukin-6, cell adhesion molecules, and ethanol oxidation, which might participate in the development of EC.Our findings provide genetic evidence and new insight for exploring the molecular mechanisms of EC.
Weller, Claudia M; Wilbrink, Leopoldine A; Houwing-Duistermaat, Jeanine J; Koelewijn, Stephany C; Vijfhuizen, Lisanne S; Haan, Joost; Ferrari, Michel D; Terwindt, Gisela M; van den Maagdenberg, Arn M J M; de Vries, Boukje
2015-08-01
Cluster headache is a severe neurological disorder with a complex genetic background. A missense single nucleotide polymorphism (rs2653349; p.Ile308Val) in the HCRTR2 gene that encodes the hypocretin receptor 2 is the only genetic factor that is reported to be associated with cluster headache in different studies. However, as there are conflicting results between studies, we re-evaluated its role in cluster headache. We performed a genetic association analysis for rs2653349 in our large Leiden University Cluster headache Analysis (LUCA) program study population. Systematic selection of the literature yielded three additional studies comprising five study populations, which were included in our meta-analysis. Data were extracted according to predefined criteria. A total of 575 cluster headache patients from our LUCA study and 874 controls were genotyped for HCRTR2 SNP rs2653349 but no significant association with cluster headache was found (odds ratio 0.91 (95% confidence intervals 0.75-1.10), p = 0.319). In contrast, the meta-analysis that included in total 1167 cluster headache cases and 1618 controls from the six study populations, which were part of four different studies, showed association of the single nucleotide polymorphism with cluster headache (random effect odds ratio 0.69 (95% confidence intervals 0.53-0.90), p = 0.006). The association became weaker, as the odds ratio increased to 0.80, when the meta-analysis was repeated without the initial single South European study with the largest effect size. Although we did not find evidence for association of rs2653349 in our LUCA study, which is the largest investigated study population thus far, our meta-analysis provides genetic evidence for a role of HCRTR2 in cluster headache. Regardless, we feel that the association should be interpreted with caution as meta-analyses with individual populations that have limited power have diminished validity. © International Headache Society 2014.
Genetic studies of stuttering in a founder population.
Wittke-Thompson, Jacqueline K; Ambrose, Nicoline; Yairi, Ehud; Roe, Cheryl; Cook, Edwin H; Ober, Carole; Cox, Nancy J
2007-01-01
Genome-wide linkage and association analyses were conducted to identify genetic determinants of stuttering in a founder population in which 48 individuals affected with stuttering are connected in a single 232-person genealogy. A novel approach was devised to account for all necessary relationships to enable multipoint linkage analysis. Regions with nominal evidence for linkage were found on chromosomes 3 (P=0.013, 208.8 centiMorgans (cM)), 13 (P=0.012, 52.6 cM), and 15 (P=0.02, 100 cM). Regions with nominal evidence for association with stuttering that overlapped with a linkage signal are located on chromosomes 3 (P=0.0047, 195 cM), 9 (P=0.0067, 46.5 cM), and 13 (P=0.0055, 52.6 cM). We also conducted the first meta-analysis for stuttering using results from linkage studies in the Hutterites and The Illinois International Genetics of Stuttering Project and identified regions with nominal evidence for linkage on chromosomes 2 (P=0.013, 180-195 cM) and 5 (P=0.0051, 105-120 cM; P=0.015, 120-135 cM). None of the linkage signals detected in the Hutterite sample alone, or in the meta-analysis, meet genome-wide criteria for significance, although some of the stronger signals overlap linkage mapping signals previously reported for other speech and language disorders. After reading this article, the reader will be able to: (1) summarize information about the background of common disorders and methodology of genetic studies; (2) evaluate the role of genetics in stuttering; (3) discuss the value of using founder populations in genetic studies; (4) articulate the importance of combining several studies in a meta-analysis; (5) discuss the overlap of genetic signals identified in stuttering with other speech and language disorders.
Genetic analysis without replications: Model evaluation and application in spring wheat
USDA-ARS?s Scientific Manuscript database
Genetic data collected from plant breeding and genetic studies may not be replicated in field designs even though field variation is present. In this study, we addressed this problem using spring wheat (Triticum eastivum L.) trial data collected from two locations. There were no intra-location repl...
Olah, Eva; Balogh, Erzsebet; Pajor, Laszlo; Jakab, Zsuzsanna
2011-03-01
A nationwide study was started in 1993 to provide genetic diagnosis for all newly diagnosed childhood ALL cases in Hungary using cytogenetic examination, DNA-index determination, FISH (aneuploidy, ABL/BCR, TEL/AML1) and molecular genetic tests (ABL/BCR, MLL/AF4, TEL/AML1). Aim of the study was to assess the usefulness of different genetic methods, to study the frequency of various aberrations and their prognostic significance. Results were synthesized for genetic subgrouping of patients. To assess the prognostic value of genetic aberrations overall and event-free survival of genetic subgroups were compared using Kaplan-Meier method. Prognostic role of aberrations was investigated by multivariate analysis (Cox's regression) as well in comparison with other factors (age, sex, major congenital abnormalities, initial WBC, therapy, immunophenotype). Five hundred eighty-eight ALL cases were diagnosed between 1993-2002. Cytogenetic examination was performed in 537 (91%) (success rate 73%), DNA-index in 265 (45%), FISH in 74 (13%), TEL/AML1 RT-PCR in 219 (37%) cases producing genetic diagnosis in 457 patients (78%). Proportion of subgroups with good prognosis in prae-B-cell ALL was lower than expected: hyperdiploidB 18% (73/400), TEL/AML1+ 9% (36/400). Univariate analysis showed significantly better 5-year EFS in TEL/AML1+ (82%) and hyperdiploidB cases (78%) than in tetraploid (44%) or pseudodiploid (52%) subgroups. By multivariate analysis main negative prognostic factors were: congenital abnormalities, high WBC, delay in therapy, specific translocations. Complementary use of each of genetic methods used is necessary for reliable genetic diagnosis according to the algorithm presented. Specific genetic alterations proved to be of prognostic significance.
Xie, Tong; Guo, Yuxin; Chen, Ling; Fang, Yating; Tai, Yunchun; Zhou, Yongsong; Qiu, Pingming; Zhu, Bofeng
2018-07-01
In recent years, insertion/deletion (InDel) markers have become a promising and useful supporting tool in forensic identification cases and biogeographic research field. In this study, 30 InDel loci were explored to reveal the genetic diversities and genetic relationships between Chinese Xinjiang Hui group and the 25 previously reported populations using various biostatistics methods such as forensic statistical parameter analysis, phylogenetic reconstruction, multi-dimensional scaling, principal component analysis, and STRUCTURE analysis. No deviations from Hardy-Weinberg equilibrium tests were found at all 30 loci in the Chinese Xinjiang Hui group. The observed heterozygosity and expected heterozygosity ranged from 0.1971 (HLD118) to 0.5092 (HLD92), 0.2222 (HLD118) to 0.5000 (HLD6), respectively. The cumulative probability of exclusion and combined power of discrimination were 0.988849 and 0.99999999999378, respectively, which indicated that these 30 loci could be qualified for personal identification and used as complementary genetic markers for paternity tests in forensic cases. The results of present research based on the different methods of population genetic analysis revealed that the Chinese Xinjiang Hui group had close relationships with most Chinese groups, especially Han populations. In spite of this, for a better understanding of genetic background of the Chinese Xinjiang Hui group, more molecular genetic markers such as ancestry informative markers, single nucleotide polymorphisms (SNPs), and copy number variations will be conducted in future studies. Copyright © 2018 Elsevier B.V. All rights reserved.
Pastorino, Roberta; Puggina, Anna; Carreras-Torres, Robert; Lagiou, Pagona; Holcátová, Ivana; Richiardi, Lorenzo; Kjaerheim, Kristina; Agudo, Antonio; Castellsagué, Xavier; Macfarlane, Tatiana V; Barzan, Luigi; Canova, Cristina; Thakker, Nalin S; Conway, David I; Znaor, Ariana; Healy, Claire M; Ahrens, Wolfgang; Zaridze, David; Szeszenia-Dabrowska, Neonilia; Lissowska, Jolanta; Fabianova, Eleonora; Mates, Ioan Nicolae; Bencko, Vladimir; Foretova, Lenka; Janout, Vladimir; Brennan, Paul; Gaborieau, Valérie; McKay, James D; Boccia, Stefania
2018-03-14
With the aim to dissect the effect of adult height on head and neck cancer (HNC), we use the Mendelian randomization (MR) approach to test the association between genetic instruments for height and the risk of HNC. 599 single nucleotide polymorphisms (SNPs) were identified as genetic instruments for height, accounting for 16% of the phenotypic variation. Genetic data concerning HNC cases and controls were obtained from a genome-wide association study. Summary statistics for genetic association were used in complementary MR approaches: the weighted genetic risk score (GRS) and the inverse-variance weighted (IVW). MR-Egger regression was used for sensitivity analysis and pleiotropy evaluation. From the GRS analysis, one standard deviation (SD) higher height (6.9 cm; due to genetic predisposition across 599 SNPs) raised the risk for HNC (Odds ratio (OR), 1.14; 95% Confidence Interval (95%CI), 0.99-1.32). The association analyses with potential confounders revealed that the GRS was associated with tobacco smoking (OR = 0.80, 95% CI (0.69-0.93)). MR-Egger regression did not provide evidence of overall directional pleiotropy. Our study indicates that height is potentially associated with HNC risk. However, the reported risk could be underestimated since, at the genetic level, height emerged to be inversely associated with smoking.
Problems in Psychiatric Genetic Research: A Reply to Faraone and Biederman.
ERIC Educational Resources Information Center
Joseph, Jay
2000-01-01
Answers the most important criticisms by Faraone and Biederman in their critique of Joseph's analysis of evidence supporting a genetic basis of attention deficit hyperactivity disorder. Argues that possible genetic and environmental influences in ADHD twin studies are confounded, obscuring inferences about genetic factors. (JPB)
Chen, Ruikun; Hara, Takashi; Ohsawa, Ryo; Yoshioka, Yosuke
2017-01-01
Diversity analysis of rapeseed accessions preserved in the Japanese Genebank can provide valuable information for breeding programs. In this study, 582 accessions were genotyped with 30 SSR markers covering all 19 rapeseed chromosomes. These markers amplified 311 alleles (10.37 alleles per marker; range, 3–39). The genetic diversity of Japanese accessions was lower than that of overseas accessions. Analysis of molecular variance indicated significant genetic differentiation between Japanese and overseas accessions. Small but significant differences were found among geographical groups in Japan, and genetic differentiation tended to increase with geographical distance. STRUCTURE analysis indicated the presence of two main genetic clusters in the NARO rapeseed collection. With the membership probabilities threshold, 227 accessions mostly originating from overseas were assigned to one subgroup, and 276 accessions mostly originating from Japan were assigned to the other subgroup. The remaining 79 accessions are assigned to admixed group. The core collection constructed comprises 96 accessions of diverse origin. It represents the whole collection well and thus it may be useful for rapeseed genetic research and breeding programs. The core collection improves the efficiency of management, evaluation, and utilization of genetic resources. PMID:28744177
Lencina, K H; Konzen, E R; Tsai, S M; Bisognin, D A
2016-12-19
Apuleia leiocarpa (Vogel) J.F. MacBride is a hardwood species native to South America, which is at serious risk of extinction. Therefore, it is of prime importance to examine the genetic diversity of this species, information required for developing conservation, sustainable management, and breeding strategies. Although scarcely used in recent years, random amplified polymorphic DNA markers are useful resources for the analysis of genetic diversity and structure of tree species. This study represents the first genetic analysis based on DNA markers in A. leiocarpa that aimed to investigate the levels of polymorphism and to select markers for the precise characterization of its genetic structure. We adapted the original DNA extraction protocol based on cetyltrimethyl ammonium bromide, and describe a simple procedure that can be used to obtain high-quality samples from leaf tissues of this tree. Eighteen primers were selected, revealing 92 bands, from which 75 were polymorphic and 61 were sufficient to represent the overall genetic structure of the population without compromising the precision of the analysis. Some fragments were conserved among individuals, which can be sequenced and used to analyze nucleotide diversity parameters through a wider set of A. leiocarpa individuals and populations. The individuals were separated into 11 distinct groups with variable levels of genetic diversity, which is important for selecting desirable genotypes and for the development of a conservation and sustainable management program. Our results are of prime importance for further investigations concerning the genetic characterization of this important, but vulnerable species.
Genetic association studies in osteoarthritis: is it fairytale?
Warner, Sophie C; Valdes, Ana M
2017-01-01
Osteoarthritis is a common complex disorder with a strong genetic component. Other identified risk factors such as increasing age and overweight do not fully explain the risk of osteoarthritis. Here, we highlight the main findings from genetic association studies on osteoarthritis to date. Currently, genetic association studies have identified 21 independent susceptibility loci for osteoarthritis. Studies have focused on hip, knee and hand osteoarthritis, as well as posttotal joint replacement and minimum joint space width, a proxy for cartilage thickness. Four distinct loci have recently been identified in a genome-wide association scan on minimum joint space width. The role of mitochondrial DNA variants has been the focus of a recent meta-analysis. Findings have previously been mixed, however, this study suggests a plausible involvement of mitochondrial DNA in the progression of radiographic knee osteoarthritis. Identifying genetic locations of interest provides a framework upon which to base future studies, for example replication analysis and functional work. Genetic association studies have shaped and will continue to shape research in this field. Improving the understanding of osteoarthritis could improve the diagnosis and treatment of the disease and improve quality of life for many individuals.
Marital assortment for genetic similarity.
Eckman, Ronael E; Williams, Robert; Nagoshi, Craig
2002-10-01
The present study involved analyses of a Caucasian American sample (n=949) and a Japanese American sample (n=400) for factors supporting Genetic Similarity Theory (GST). The analyses found no evidence for the presence of genetic similarity between spouses in either sample for the blood group analyses of nine loci. All results indicated random mating for blood group genes. The results did not provide consistent substantial support to show that spousal similarity is correlated with the degree of genetic component of a trait for a set of seventeen individual differences variables, with only the Caucasian sample yielding significant correlations for this analysis. A third analysis examining the correlation between presence of spousal genetic similarity and spousal similarity on observable traits was not performed because spousal genetic similarity was not observed in either sample. The overall implication of the study is that GST is not supported as an explanation for spousal similarity in humans.
Analysis of genetic diversity of Persea bombycina "Som" using RAPD-based molecular markers.
Bhau, Brijmohan Singh; Medhi, Kalyani; Das, Ambrish P; Saikia, Siddhartha P; Neog, Kartik; Choudhury, S N
2009-08-01
The utility of RAPD markers in assessing genetic diversity and phenetic relationships in Persea bombycina, a major tree species for golden silk (muga) production, was investigated using 48 genotypes from northeast India. Thirteen RAPD primer combinations generated 93 bands. On average, seven RAPD fragments were amplified per reaction. In a UPGMA phenetic dendrogram based on Jaccard's coefficient, the P. bombycina accessions showed a high level of genetic variation, as indicated by genetic similarity. The grouping in the phenogram was highly consistent, as indicated by high values of cophenetic correlation and high bootstrap values at the key nodes. The accessions were scattered on a plot derived from principal correspondence analysis. The study concluded that the high level of genetic diversity in the P. bombycina accessions may be attributed to the species' outcrossing nature. This study may be useful in identifying diverse genetic stocks of P. bombycina, which may then be conserved on a priority basis.
Meta-analysis of genetic variants associated with human exceptional longevity
Sebastiani, Paola; Bae1, Harold; Sun, Fangui X.; Andersen, Stacy L.; Daw, E. Warwick; Malovini, Alberto; Kojima, Toshio; Hirose, Nobuyoshi; Schupf, Nicole; Puca, Annibale; Perls, Thomas T
2013-01-01
Despite evidence from family studies that there is a strong genetic influence upon exceptional longevity, relatively few genetic variants have been associated with this trait. One reason could be that many genes individually have such weak effects that they cannot meet standard thresholds of genome wide significance, but as a group in specific combinations of genetic variations, they can have a strong influence. Previously we reported that such genetic signatures of 281 genetic markers associated with about 130 genes can do a relatively good job of differentiating centenarians from non-centenarians particularly if the centenarians are 106 years and older. This would support our hypothesis that the genetic influence upon exceptional longevity increases with older and older (and rarer) ages. We investigated this list of markers using similar genetic data from 5 studies of centenarians from the USA, Europe and Japan. The results from the meta-analysis show that many of these variants are associated with survival to these extreme ages in other studies. Since many centenarians compress morbidity and disability towards the end of their lives, these results could point to biological pathways and therefore new therapeutics to increase years of healthy lives in the general population. PMID:24244950
A genetic analysis of Trichuris trichiura and Trichuris suis from Ecuador.
Meekums, Hayley; Hawash, Mohamed B F; Sparks, Alexandra M; Oviedo, Yisela; Sandoval, Carlos; Chico, Martha E; Stothard, J Russell; Cooper, Philip J; Nejsum, Peter; Betson, Martha
2015-03-19
Since the nematodes Trichuris trichiura and T. suis are morphologically indistinguishable, genetic analysis is required to assess epidemiological cross-over between people and pigs. This study aimed to clarify the transmission biology of trichuriasis in Ecuador. Adult Trichuris worms were collected during a parasitological survey of 132 people and 46 pigs in Esmeraldas Province, Ecuador. Morphometric analysis of 49 pig worms and 64 human worms revealed significant variation. In discriminant analysis morphometric characteristics correctly classified male worms according to host species. In PCR-RFLP analysis of the ribosomal Internal Transcribed Spacer (ITS-2) and 18S DNA (59 pig worms and 82 human worms), nearly all Trichuris exhibited expected restriction patterns. However, two pig-derived worms showed a "heterozygous-type" ITS-2 pattern, with one also having a "heterozygous-type" 18S pattern. Phylogenetic analysis of the mitochondrial large ribosomal subunit partitioned worms by host species. Notably, some Ecuadorian T. suis clustered with porcine Trichuris from USA and Denmark and some with Chinese T. suis. This is the first study in Latin America to genetically analyse Trichuris parasites. Although T. trichiura does not appear to be zoonotic in Ecuador, there is evidence of genetic exchange between T. trichiura and T. suis warranting more detailed genetic sampling.
Kim, Jin-Hee; Chung, Il Kyung; Kim, Kyung-Min
2017-01-01
The Sweet potato, Ipomoea batatas (L.) Lam, is difficult to study in genetics and genomics because it is a hexaploid. The sweet potato study not have been performed domestically or internationally. In this study was performed to construct genetic map and quantitative trait loci (QTL) analysis. A total of 245 EST-SSR markers were developed, and the map was constructed by using 210 of those markers. The total map length was 1508.1 cM, and the mean distance between markers was 7.2 cM. Fifteen characteristics were investigated for QTLs analysis. According to those, the Four QTLs were identified, and The LOD score was 3.0. Further studies need to develop molecular markers in terms of EST-SSR markers for doing to be capable of efficient breeding. The genetic map created here using EST-SSR markers will facilitate planned breeding of sweet potato cultivars with various desirable traits.
Fragman: an R package for fragment analysis
USDA-ARS?s Scientific Manuscript database
Determination of microsatellite lengths or other DNA fragment types is an important initial component of many genetic studies such as mutation detection, linkage and QTL mapping, genetic diversity, pedigree analysis, and detection of heterozygosity. A handful of commercial and freely available softw...
Kochunov, Peter; Jahanshad, Neda; Sprooten, Emma; Nichols, Thomas E; Mandl, René C; Almasy, Laura; Booth, Tom; Brouwer, Rachel M; Curran, Joanne E; de Zubicaray, Greig I; Dimitrova, Rali; Duggirala, Ravi; Fox, Peter T; Hong, L Elliot; Landman, Bennett A; Lemaitre, Hervé; Lopez, Lorna M; Martin, Nicholas G; McMahon, Katie L; Mitchell, Braxton D; Olvera, Rene L; Peterson, Charles P; Starr, John M; Sussmann, Jessika E; Toga, Arthur W; Wardlaw, Joanna M; Wright, Margaret J; Wright, Susan N; Bastin, Mark E; McIntosh, Andrew M; Boomsma, Dorret I; Kahn, René S; den Braber, Anouk; de Geus, Eco J C; Deary, Ian J; Hulshoff Pol, Hilleke E; Williamson, Douglas E; Blangero, John; van 't Ent, Dennis; Thompson, Paul M; Glahn, David C
2014-07-15
Combining datasets across independent studies can boost statistical power by increasing the numbers of observations and can achieve more accurate estimates of effect sizes. This is especially important for genetic studies where a large number of observations are required to obtain sufficient power to detect and replicate genetic effects. There is a need to develop and evaluate methods for joint-analytical analyses of rich datasets collected in imaging genetics studies. The ENIGMA-DTI consortium is developing and evaluating approaches for obtaining pooled estimates of heritability through meta-and mega-genetic analytical approaches, to estimate the general additive genetic contributions to the intersubject variance in fractional anisotropy (FA) measured from diffusion tensor imaging (DTI). We used the ENIGMA-DTI data harmonization protocol for uniform processing of DTI data from multiple sites. We evaluated this protocol in five family-based cohorts providing data from a total of 2248 children and adults (ages: 9-85) collected with various imaging protocols. We used the imaging genetics analysis tool, SOLAR-Eclipse, to combine twin and family data from Dutch, Australian and Mexican-American cohorts into one large "mega-family". We showed that heritability estimates may vary from one cohort to another. We used two meta-analytical (the sample-size and standard-error weighted) approaches and a mega-genetic analysis to calculate heritability estimates across-population. We performed leave-one-out analysis of the joint estimates of heritability, removing a different cohort each time to understand the estimate variability. Overall, meta- and mega-genetic analyses of heritability produced robust estimates of heritability. Copyright © 2014 Elsevier Inc. All rights reserved.
WISARD: workbench for integrated superfast association studies for related datasets.
Lee, Sungyoung; Choi, Sungkyoung; Qiao, Dandi; Cho, Michael; Silverman, Edwin K; Park, Taesung; Won, Sungho
2018-04-20
A Mendelian transmission produces phenotypic and genetic relatedness between family members, giving family-based analytical methods an important role in genetic epidemiological studies-from heritability estimations to genetic association analyses. With the advance in genotyping technologies, whole-genome sequence data can be utilized for genetic epidemiological studies, and family-based samples may become more useful for detecting de novo mutations. However, genetic analyses employing family-based samples usually suffer from the complexity of the computational/statistical algorithms, and certain types of family designs, such as incorporating data from extended families, have rarely been used. We present a Workbench for Integrated Superfast Association studies for Related Data (WISARD) programmed in C/C++. WISARD enables the fast and a comprehensive analysis of SNP-chip and next-generation sequencing data on extended families, with applications from designing genetic studies to summarizing analysis results. In addition, WISARD can automatically be run in a fully multithreaded manner, and the integration of R software for visualization makes it more accessible to non-experts. Comparison with existing toolsets showed that WISARD is computationally suitable for integrated analysis of related subjects, and demonstrated that WISARD outperforms existing toolsets. WISARD has also been successfully utilized to analyze the large-scale massive sequencing dataset of chronic obstructive pulmonary disease data (COPD), and we identified multiple genes associated with COPD, which demonstrates its practical value.
Heritability of circulating growth factors involved in the angiogenesis in healthy human population.
Pantsulaia, I; Trofimov, S; Kobyliansky, E; Livshits, G
2004-09-21
The present study examined the extent of genetic and environmental influences on the populational variation of circulating growth factors (VEGF, EGF) involved in angiogenesis in healthy and ethnically homogeneous Caucasian families. The plasma levels of each of the studied biochemical indices were determined by enzyme-linked immunoassay in 478 healthy individuals aged 18-75 years. Quantitative genetic analysis showed that the VEGF and EGF variation was appreciably attributable to genetic effects, with heritability estimates of 79.9% and 48.4%, respectively. Yet, common environmental factors, shared by members of the same household, also played a significant role (P < 0.01) and explained between 20.1% and 32.6% of the variation. The present study additionally examined the covariations between these molecules and either transforming growth factor-beta 1 (TGF-beta 1) or tissue inhibitors of matrix metalloproteinases 1 (TIMP-1), likewise relevant for angiogenesis. Bivariate analysis revealed significant phenotypic correlations (P < 0.002) between all pairs of variables, thus indicating the possible existence of common genetic and environmental factors. The analysis suggested that the pleiotropic genetic effects were consistently the primary (or even the sole) source of correlation between all pairs of studied molecules. The results of our study affirm the existence of specific and common genetic pathways that commonly determine the greater part of the circulating variation of these molecules.
Tramuto, Fabio; Bonura, Filippa; Perna, Anna Maria; Mancuso, Salvatrice; Firenze, Alberto; Romano, Nino; Vitale, Francesco
2007-09-01
The molecular epidemiology of HIV-1 strains in Sicily (Italy) was phylogenetically investigated by the analysis of HIV-1 gag, pol, and env gene sequences from 11 HIV-1 non-B strains from 408 HIV-1-seropositive patients observed from September 2001 to August 2006. Sequences suggestive of recombination were further investigated by bootscanning analysis of various fragments. Overall, we identified several second-generation recombinant (SGRs) strains, which contained genetic material of CRF02_AG in at least one gene. Notably, three individuals were found to be infected with subsubtype A3, and one of them showed genetic recombination with subsubtype A4. The current study emphasizes the genetic analysis of gag, pol, and env genes as a powerful tool to trace the spread of complex HIV-1 recombinant forms, and highlight the genetic diversity of HIV-1 non-B strains in Italy.
God and Genes in the Caring Professions: Clinician and Clergy Perceptions of Religion and Genetics
Bartlett, Virginia L; Johnson, Rolanda L
2013-01-01
Little is known about how care providers’ perceptions of religion and genetics affect interactions with patients/parishioners. This study investigates clinicians’ and clergy’s perceptions of and experiences with religion and genetics in their clinical and pastoral interactions. An exploratory qualitative study designed to elicit care providers’ descriptions of experiences with religion and genetics in clinical or pastoral interactions. Thirteen focus groups were conducted with members of the caring professions: physicians, nurses, and genetics counselors (clinicians), ministers and chaplains (clergy). Preliminary analysis of qualitative data is presented here. Preliminary analysis highlights four positions in professional perceptions of the relationship between science and faith. Further, differences among professional perceptions appear to influence perceptions of needed or available resources for interactions with religion and genetics. Clinicians’ and clergy’s perceptions of how religion and genetics relate are not defined solely by professional affiliation. These non-role-defined perceptions may affect clinical and pastoral interactions, especially regarding resources for patients and parishioners. PMID:19170091
Knowledge, attitudes towards and acceptability of genetic modification in Germany.
Christoph, Inken B; Bruhn, Maike; Roosen, Jutta
2008-07-01
Genetic modification remains a controversial issue. The aim of this study is to analyse the attitudes towards genetic modification, the knowledge about it and its acceptability in different application areas among German consumers. Results are based on a survey from spring 2005. An exploratory factor analysis is conducted to identify the attitudes towards genetic modification. The identified factors are used in a cluster analysis that identified a cluster of supporters, of opponents and a group of indifferent consumers. Respondents' knowledge of genetics and biotechnology differs among the found clusters without revealing a clear relationship between knowledge and support of genetic modification. The acceptability of genetic modification varies by application area and cluster, and genetically modified non-food products are more widely accepted than food products. The perception of personal health risks has high explanatory power for attitudes and acceptability.
Genetic rhetoric: Science, authority, and genes
NASA Astrophysics Data System (ADS)
Shea, Elizabeth Parthenia
This dissertation is an analysis of how the cultural authority of genetics works through language. An analysis of the rhetorical construction of knowledge and authority in cultural contexts, the study is intended to contribute to a larger discussion aimed at keeping the intersections of science and culture within the realm of rhetoric, that is within the realm of communication and dialogue. Of special concern is the influence of genetic rhetoric on the cultural momentum of biological determinism to explain away social organization, class inequalities, racial differences, gender differences, and stigmatized behaviors by rooting them in the construct of the biological individual. This study separates questions of legitimacy from questions of authority and focuses on the way that authority of genetics works through language. With authority defined as the function of resisting challenges to legitimacy and/or power, the study consists of three parts. First, a historical analysis of the terms science, genetics, and gene, shows how these words came to refer not only to areas and objects of study but also to sources of epistemological legitimacy outside culture and language. The relationships between these words and their referents are examined in socio-historical context to illustrate how the function of signaling authority was inscribed in the literal definition of these terms. Second, introductory chapters of contemporary Genetics textbooks are examined. In these texts the foundations of legitimacy associated with genetics and science are maintained as the authors articulate idealized views of science and genetics in relation to society. Finally, articles in the popular press reporting on and discussing recent research correlating genetics and homosexuality are examined. The popular press reports of "gay gene" research serve as textual examples of figurative representations of genetics concepts shaping discourse about social issues. I argue that the cultural authority of genetics, as well as the power of science to shape culture, is not necessarily a matter of the persuasiveness of material truths but rather a mobilization of rhetorical figures that are linked to but not literally representing ideas of material truth.
Zhu, Xiaofeng; Feng, Tao; Tayo, Bamidele O; Liang, Jingjing; Young, J Hunter; Franceschini, Nora; Smith, Jennifer A; Yanek, Lisa R; Sun, Yan V; Edwards, Todd L; Chen, Wei; Nalls, Mike; Fox, Ervin; Sale, Michele; Bottinger, Erwin; Rotimi, Charles; Liu, Yongmei; McKnight, Barbara; Liu, Kiang; Arnett, Donna K; Chakravati, Aravinda; Cooper, Richard S; Redline, Susan
2015-01-08
Genome-wide association studies (GWASs) have identified many genetic variants underlying complex traits. Many detected genetic loci harbor variants that associate with multiple-even distinct-traits. Most current analysis approaches focus on single traits, even though the final results from multiple traits are evaluated together. Such approaches miss the opportunity to systemically integrate the phenome-wide data available for genetic association analysis. In this study, we propose a general approach that can integrate association evidence from summary statistics of multiple traits, either correlated, independent, continuous, or binary traits, which might come from the same or different studies. We allow for trait heterogeneity effects. Population structure and cryptic relatedness can also be controlled. Our simulations suggest that the proposed method has improved statistical power over single-trait analysis in most of the cases we studied. We applied our method to the Continental Origins and Genetic Epidemiology Network (COGENT) African ancestry samples for three blood pressure traits and identified four loci (CHIC2, HOXA-EVX1, IGFBP1/IGFBP3, and CDH17; p < 5.0 × 10(-8)) associated with hypertension-related traits that were missed by a single-trait analysis in the original report. Six additional loci with suggestive association evidence (p < 5.0 × 10(-7)) were also observed, including CACNA1D and WNT3. Our study strongly suggests that analyzing multiple phenotypes can improve statistical power and that such analysis can be executed with the summary statistics from GWASs. Our method also provides a way to study a cross phenotype (CP) association by using summary statistics from GWASs of multiple phenotypes. Copyright © 2015 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
Genetic characterization of canine parvovirus from dogs in Pakistan.
Shabbir, M Z; Sohail, M U; Chaudhary, U N; Yaqub, W; Rashid, I; Saleem, M H; Munir, M
Canine parvoviruses (CPV) exist as antigenic variants with varying frequencies and genetic variabilities across the globe. Given the endemicity and high prevalence in Pakistan, we characterized the CPVs originating from dogs-population to elucidate viral diversity and evolution. Fecal samples from clinically diseased pups (n = 17) of different breeds and age (2-6 months) were processed for hemagglutination assay (HA), and later for partial amplification of VP2 gene sequence and amino acid analysis. A total of 11 samples (64.71%) were found positive both in hemagglutination and PCR assays. Phylogenetic and evolutionary analysis demonstrated higher genetic heterogeneity in studied strains and constituted seven clusters within the CPV-2a group, however, they shared high level of identity with Chinese strains. Further studies are necessary to elucidate genetic analysis and epidemiology of CPV variants across a wide geographical area of the country.
Burgess, Matthew; Tai, Geneieve; Martinek, Nathalie; Menezes, Melody; Delatycki, Martin
2015-01-01
Genetic counselling is a caring profession. It has been known for some time that genetic counsellors are susceptible to clinical burnout and/or compassion fatigue. Recent studies have shown that mindfulness may help health care professionals with their experience of burnout. It is hypothesised that mindful awareness may be useful in ameliorating these symptoms of burnout in genetic counsellors. The present study aims to collect information about the experiences of Australasian genetic counsellors in relation to compassion fatigue and mindfulness. This study is an online questionnaire open to practicing Australasian genetic counsellors. The survey is in three parts. The first part collects demographic information about the genetic counsellor completing the questionnaire. The second part of the survey is the Professional Quality of Life Scale, Compassion Satisfaction and Fatigue Subscales-Revision IV. The final part of the questionnaire is the Mindful Attention Awareness Scale. Both scales are validated. Descriptive analyses will generate frequency data to elicit a description of participants and the responses obtained. Analysis of categorical measures will be undertaken using χ2 (chi-squared) analysis to determine if there are any differences in responses. For continuous variables, differences in means between groups will be assessed using t-tests. Qualitative content analysis (inductive approach) will be utilised to analyse open ended responses. The results of this questionnaire will provide important data about clinical burnout and compassion fatigue among genetic counsellors and will enable recommendations about the use of mindfulness to minimise the impact of these on those in this profession.
Venegas, J; Rojas, T; DÍaz, F; Miranda, S; Jercic, M I; González, C; Coñoepán, W; Pichuantes, S; RodrÍguez, J; Gajardo, M; Sánchez, G
2011-01-01
In order to obtain more information about the population structure of Chilean Trypanosoma cruzi, and their genetic relationship with other Latino American counterparts, we performed the study of T. cruzi samples detected in the midgut content of Triatoma infestans insects from three endemic regions of Chile. The genetic characteristics of these samples were analysed using microsatellite markers and PCR conditions that allow the detection of predominant T. cruzi clones directly in triatomine midgut content. Population genetic analyses using the Fisher’s exact method, analysis of molecular variance (AMOVA) and the determination of FST showed that the northern T. cruzi population sample was genetically differentiated from the two southern population counterparts. Further analysis showed that the cause of this genetic differentiation was the asymmetrical distribution of TcIII T. cruzi predominant clones. Considering all triatomines from the three regions, the most frequent predominant lineages were TcIII (38%), followed by TcI (34%) and hybrid (8%). No TcII lineage was observed along the predominant T. cruzi clones. The best phylogenetic reconstruction using the shared allelic genetic distance was concordant with the population genetic analysis and tree topology previously described studying foreign samples. The correlation studies showed that the lineage TcIII from the III region was genetically differentiated from the other two, and this differentiation was correlated with geographical distance including Chilean and mainly Brazilian samples. It will be interesting to investigate whether this geographical structure may be related with different clinical manifestation of Chagas disease. PMID:22325822
Smith, Jennifer A; Zhao, Wei; Yasutake, Kalyn; August, Carmella; Ratliff, Scott M; Faul, Jessica D; Boerwinkle, Eric; Chakravarti, Aravinda; Diez Roux, Ana V; Gao, Yan; Griswold, Michael E; Heiss, Gerardo; Kardia, Sharon L R; Morrison, Alanna C; Musani, Solomon K; Mwasongwe, Stanford; North, Kari E; Rose, Kathryn M; Sims, Mario; Sun, Yan V; Weir, David R; Needham, Belinda L
2017-12-18
Inter-individual variability in blood pressure (BP) is influenced by both genetic and non-genetic factors including socioeconomic and psychosocial stressors. A deeper understanding of the gene-by-socioeconomic/psychosocial factor interactions on BP may help to identify individuals that are genetically susceptible to high BP in specific social contexts. In this study, we used a genomic region-based method for longitudinal analysis, Longitudinal Gene-Environment-Wide Interaction Studies (LGEWIS), to evaluate the effects of interactions between known socioeconomic/psychosocial and genetic risk factors on systolic and diastolic BP in four large epidemiologic cohorts of European and/or African ancestry. After correction for multiple testing, two interactions were significantly associated with diastolic BP. In European ancestry participants, outward/trait anger score had a significant interaction with the C10orf107 genomic region ( p = 0.0019). In African ancestry participants, depressive symptom score had a significant interaction with the HFE genomic region ( p = 0.0048). This study provides a foundation for using genomic region-based longitudinal analysis to identify subgroups of the population that may be at greater risk of elevated BP due to the combined influence of genetic and socioeconomic/psychosocial risk factors.
Analysis of genetic diversity of Chinese dairy goats via microsatellite markers.
Wang, G Z; Chen, S S; Chao, T L; Ji, Z B; Hou, L; Qin, Z J; Wang, J M
2017-05-01
In this study, 15 polymorphic microsatellite markers were used to analyze the genetic structure and phylogenetic relationships of 6 dairy goat breeds in China, including 4 native developed breeds and 2 introduced breeds. The results showed that a total of 172 alleles were detected in 347 samples of the dairy goat breeds included in this study. The mean number of effective alleles per locus was 4.92. Except for BMS0812, all of the remaining microsatellite loci were highly polymorphic (polymorphism information content [PIC] > 0.5). The analysis of genetic diversity parameters, including the number of effective alleles, PIC, and heterozygosity, revealed that the native developed dairy goat breeds in China harbored a rich genetic diversity. However, these breeds showed a low breeding degree and a high population intermix degree, with a certain degree of inbreeding and within-subpopulation inbreeding coefficient ( > 0). The analysis of population genetic differentiation and phylogenetic tree topologies showed a moderate state of genetic differentiation among subpopulations of native developed breed dairy goats in China (0.05 < gene fixation coefficient [] < 0.15). The native developed breeds shared a common ancestor, namely, the Saanen dairy goat, originating from Europe. The results showed that there was a close genetic relationship between Wendeng and Laoshan dairy goats while the Guanzhong dairy goat and the Xinong Saanen dairy goat were also found to have a close genetic relationship, which were both in agreement with the formation history and geographical distribution of the breeds. This study revealed that adopting genetic management strategies, such as expanding pedigree source and strengthening multi-trait selection, is useful in maintaining the genetic diversity of native developed breeds and improving the population uniformity of dairy goats.
SecureMA: protecting participant privacy in genetic association meta-analysis.
Xie, Wei; Kantarcioglu, Murat; Bush, William S; Crawford, Dana; Denny, Joshua C; Heatherly, Raymond; Malin, Bradley A
2014-12-01
Sharing genomic data is crucial to support scientific investigation such as genome-wide association studies. However, recent investigations suggest the privacy of the individual participants in these studies can be compromised, leading to serious concerns and consequences, such as overly restricted access to data. We introduce a novel cryptographic strategy to securely perform meta-analysis for genetic association studies in large consortia. Our methodology is useful for supporting joint studies among disparate data sites, where privacy or confidentiality is of concern. We validate our method using three multisite association studies. Our research shows that genetic associations can be analyzed efficiently and accurately across substudy sites, without leaking information on individual participants and site-level association summaries. Our software for secure meta-analysis of genetic association studies, SecureMA, is publicly available at http://github.com/XieConnect/SecureMA. Our customized secure computation framework is also publicly available at http://github.com/XieConnect/CircuitService. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Consistency of immigrant and country-of-birth suicide rates: a meta-analysis.
Voracek, M; Loibl, L M
2008-10-01
Multifaceted evidence (family, twin, adoption, molecular genetic, geographic and surname studies of suicide) suggests genetic risk factors for suicide. Migrant studies are also informative in this context, but underused. In particular, a meta-analysis of the associations of immigrant (IMM) and country-of-birth (COB) suicide rates is unavailable. Thirty-three studies, reporting IMM suicide rates for nearly 50 nationalities in seven host countries (Australia, Austria, Canada, England, the Netherlands, Sweden and the USA), were retrieved. Total-population IMM and COB suicide rates were strongly positively associated (combined rank-order correlation across 20 eligible studies: 0.65, 95% CI: 0.56-0.73, P < 10(-9)). The effect generalized across both sexes, host countries and study periods. Following the logic of the migrant study design of genetic epidemiology, the correspondence of IMM and COB suicide rates is consistent with the assumption of population differences in the prevalence of genetic risk factors for suicide.
Genetics and epidemiology, congenital anomalies and cancer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Friedman, J.M.
1997-03-01
Many of the basic statistical methods used in epidemiology - regression, analysis of variance, and estimation of relative risk, for example - originally were developed for the genetic analysis of biometric data. The familiarity that many geneticists have with this methodology has helped geneticists to understand and accept genetic epidemiology as a scientific discipline. It worth noting, however, that most of the work in genetic epidemiology during the past decade has been devoted to linkage and other family studies, rather than to population-based investigations of the type that characterize much of mainstream epidemiology. 30 refs., 2 tabs.
Polyglot Programming in Applications Used for Genetic Data Analysis
Nowak, Robert M.
2014-01-01
Applications used for the analysis of genetic data process large volumes of data with complex algorithms. High performance, flexibility, and a user interface with a web browser are required by these solutions, which can be achieved by using multiple programming languages. In this study, I developed a freely available framework for building software to analyze genetic data, which uses C++, Python, JavaScript, and several libraries. This system was used to build a number of genetic data processing applications and it reduced the time and costs of development. PMID:25197633
Polyglot programming in applications used for genetic data analysis.
Nowak, Robert M
2014-01-01
Applications used for the analysis of genetic data process large volumes of data with complex algorithms. High performance, flexibility, and a user interface with a web browser are required by these solutions, which can be achieved by using multiple programming languages. In this study, I developed a freely available framework for building software to analyze genetic data, which uses C++, Python, JavaScript, and several libraries. This system was used to build a number of genetic data processing applications and it reduced the time and costs of development.
Hill, W D; Marioni, R E; Maghzian, O; Ritchie, S J; Hagenaars, S P; McIntosh, A M; Gale, C R; Davies, G; Deary, I J
2018-01-11
Intelligence, or general cognitive function, is phenotypically and genetically correlated with many traits, including a wide range of physical, and mental health variables. Education is strongly genetically correlated with intelligence (r g = 0.70). We used these findings as foundations for our use of a novel approach-multi-trait analysis of genome-wide association studies (MTAG; Turley et al. 2017)-to combine two large genome-wide association studies (GWASs) of education and intelligence, increasing statistical power and resulting in the largest GWAS of intelligence yet reported. Our study had four goals: first, to facilitate the discovery of new genetic loci associated with intelligence; second, to add to our understanding of the biology of intelligence differences; third, to examine whether combining genetically correlated traits in this way produces results consistent with the primary phenotype of intelligence; and, finally, to test how well this new meta-analytic data sample on intelligence predicts phenotypic intelligence in an independent sample. By combining datasets using MTAG, our functional sample size increased from 199,242 participants to 248,482. We found 187 independent loci associated with intelligence, implicating 538 genes, using both SNP-based and gene-based GWAS. We found evidence that neurogenesis and myelination-as well as genes expressed in the synapse, and those involved in the regulation of the nervous system-may explain some of the biological differences in intelligence. The results of our combined analysis demonstrated the same pattern of genetic correlations as those from previous GWASs of intelligence, providing support for the meta-analysis of these genetically-related phenotypes.
Wang, Hai-yan
2015-08-01
The classical research cases, which have greatly promoted the development of genetics in history, can be combined with the content of courses in genetics teaching to train students' ability of scientific thinking and genetic analysis. The localization and clone of gene controlling tomato fruit weight is a pioneer work in quantitative trait locus (QTL) studies and represents a complete process of QTL research in plants. Application of this integrated case in genetics teaching, which showed a wonderful process of scientific discovery and the fascination of genetic research, has inspired students' interest in genetics and achieved a good teaching effect.
Wild, Philipp S.; Felix, Janine F.; Schillert, Arne; Chen, Ming-Huei; Leening, Maarten J.G.; Völker, Uwe; Großmann, Vera; Brody, Jennifer A.; Irvin, Marguerite R.; Shah, Sanjiv J.; Pramana, Setia; Lieb, Wolfgang; Schmidt, Reinhold; Stanton, Alice V.; Malzahn, Dörthe; Lyytikäinen, Leo-Pekka; Tiller, Daniel; Smith, J. Gustav; Di Tullio, Marco R.; Musani, Solomon K.; Morrison, Alanna C.; Pers, Tune H.; Morley, Michael; Kleber, Marcus E.; Aragam, Jayashri; Bis, Joshua C.; Bisping, Egbert; Broeckel, Ulrich; Cheng, Susan; Deckers, Jaap W.; Del Greco M, Fabiola; Edelmann, Frank; Fornage, Myriam; Franke, Lude; Friedrich, Nele; Harris, Tamara B.; Hofer, Edith; Hofman, Albert; Huang, Jie; Hughes, Alun D.; Kähönen, Mika; investigators, KNHI; Kruppa, Jochen; Lackner, Karl J.; Lannfelt, Lars; Laskowski, Rafael; Launer, Lenore J.; Lindgren, Cecilia M.; Loley, Christina; Mayet, Jamil; Medenwald, Daniel; Morris, Andrew P.; Müller, Christian; Müller-Nurasyid, Martina; Nappo, Stefania; Nilsson, Peter M.; Nuding, Sebastian; Nutile, Teresa; Peters, Annette; Pfeufer, Arne; Pietzner, Diana; Pramstaller, Peter P.; Raitakari, Olli T.; Rice, Kenneth M.; Rotter, Jerome I.; Ruohonen, Saku T.; Sacco, Ralph L.; Samdarshi, Tandaw E.; Sharp, Andrew S.P.; Shields, Denis C.; Sorice, Rossella; Sotoodehnia, Nona; Stricker, Bruno H.; Surendran, Praveen; Töglhofer, Anna M.; Uitterlinden, André G.; Völzke, Henry; Ziegler, Andreas; Münzel, Thomas; März, Winfried; Cappola, Thomas P.; Hirschhorn, Joel N.; Mitchell, Gary F.; Smith, Nicholas L.; Fox, Ervin R.; Dueker, Nicole D.; Jaddoe, Vincent W.V.; Melander, Olle; Lehtimäki, Terho; Ciullo, Marina; Hicks, Andrew A.; Lind, Lars; Gudnason, Vilmundur; Pieske, Burkert; Barron, Anthony J.; Zweiker, Robert; Schunkert, Heribert; Ingelsson, Erik; Liu, Kiang; Arnett, Donna K.; Psaty, Bruce M.; Blankenberg, Stefan; Larson, Martin G.; Felix, Stephan B.; Franco, Oscar H.; Zeller, Tanja; Vasan, Ramachandran S.; Dörr, Marcus
2017-01-01
BACKGROUND. Understanding the genetic architecture of cardiac structure and function may help to prevent and treat heart disease. This investigation sought to identify common genetic variations associated with inter-individual variability in cardiac structure and function. METHODS. A GWAS meta-analysis of echocardiographic traits was performed, including 46,533 individuals from 30 studies (EchoGen consortium). The analysis included 16 traits of left ventricular (LV) structure, and systolic and diastolic function. RESULTS. The discovery analysis included 21 cohorts for structural and systolic function traits (n = 32,212) and 17 cohorts for diastolic function traits (n = 21,852). Replication was performed in 5 cohorts (n = 14,321) and 6 cohorts (n = 16,308), respectively. Besides 5 previously reported loci, the combined meta-analysis identified 10 additional genome-wide significant SNPs: rs12541595 near MTSS1 and rs10774625 in ATXN2 for LV end-diastolic internal dimension; rs806322 near KCNRG, rs4765663 in CACNA1C, rs6702619 near PALMD, rs7127129 in TMEM16A, rs11207426 near FGGY, rs17608766 in GOSR2, and rs17696696 in CFDP1 for aortic root diameter; and rs12440869 in IQCH for Doppler transmitral A-wave peak velocity. Findings were in part validated in other cohorts and in GWAS of related disease traits. The genetic loci showed associations with putative signaling pathways, and with gene expression in whole blood, monocytes, and myocardial tissue. CONCLUSION. The additional genetic loci identified in this large meta-analysis of cardiac structure and function provide insights into the underlying genetic architecture of cardiac structure and warrant follow-up in future functional studies. FUNDING. For detailed information per study, see Acknowledgments. PMID:28394258
Qiang, Haiping; Chen, Zhihong; Zhang, Zhengli; Wang, Xuemin; Gao, Hongwen; Wang, Zan
2015-01-01
Information on genetic diversity and population structure of a tetraploid alfalfa collection might be valuable in effective use of the genetic resources. A set of 336 worldwide genotypes of tetraploid alfalfa (Medicago sativa subsp. sativa L.) was genotyped using 85 genome-wide distributed SSR markers to reveal the genetic diversity and population structure in the alfalfa. Genetic diversity analysis identified a total of 1056 alleles across 85 marker loci. The average expected heterozygosity and polymorphism information content values were 0.677 and 0.638, respectively, showing high levels of genetic diversity in the cultivated tetraploid alfalfa germplasm. Comparison of genetic characteristics across chromosomes indicated regions of chromosomes 2 and 3 had the highest genetic diversity. A higher genetic diversity was detected in alfalfa landraces than that of wild materials and cultivars. Two populations were identified by the model-based population structure, principal coordinate and neighbor-joining analyses, corresponding to China and other parts of the world. However, lack of strictly correlation between clustering and geographic origins suggested extensive germplasm exchanges of alfalfa germplasm across diverse geographic regions. The quantitative analysis of the genetic diversity and population structure in this study could be useful for genetic and genomic analysis and utilization of the genetic variation in alfalfa breeding.
Multivariate Meta-Analysis of Genetic Association Studies: A Simulation Study
Neupane, Binod; Beyene, Joseph
2015-01-01
In a meta-analysis with multiple end points of interests that are correlated between or within studies, multivariate approach to meta-analysis has a potential to produce more precise estimates of effects by exploiting the correlation structure between end points. However, under random-effects assumption the multivariate estimation is more complex (as it involves estimation of more parameters simultaneously) than univariate estimation, and sometimes can produce unrealistic parameter estimates. Usefulness of multivariate approach to meta-analysis of the effects of a genetic variant on two or more correlated traits is not well understood in the area of genetic association studies. In such studies, genetic variants are expected to roughly maintain Hardy-Weinberg equilibrium within studies, and also their effects on complex traits are generally very small to modest and could be heterogeneous across studies for genuine reasons. We carried out extensive simulation to explore the comparative performance of multivariate approach with most commonly used univariate inverse-variance weighted approach under random-effects assumption in various realistic meta-analytic scenarios of genetic association studies of correlated end points. We evaluated the performance with respect to relative mean bias percentage, and root mean square error (RMSE) of the estimate and coverage probability of corresponding 95% confidence interval of the effect for each end point. Our simulation results suggest that multivariate approach performs similarly or better than univariate method when correlations between end points within or between studies are at least moderate and between-study variation is similar or larger than average within-study variation for meta-analyses of 10 or more genetic studies. Multivariate approach produces estimates with smaller bias and RMSE especially for the end point that has randomly or informatively missing summary data in some individual studies, when the missing data in the endpoint are imputed with null effects and quite large variance. PMID:26196398
Multivariate Meta-Analysis of Genetic Association Studies: A Simulation Study.
Neupane, Binod; Beyene, Joseph
2015-01-01
In a meta-analysis with multiple end points of interests that are correlated between or within studies, multivariate approach to meta-analysis has a potential to produce more precise estimates of effects by exploiting the correlation structure between end points. However, under random-effects assumption the multivariate estimation is more complex (as it involves estimation of more parameters simultaneously) than univariate estimation, and sometimes can produce unrealistic parameter estimates. Usefulness of multivariate approach to meta-analysis of the effects of a genetic variant on two or more correlated traits is not well understood in the area of genetic association studies. In such studies, genetic variants are expected to roughly maintain Hardy-Weinberg equilibrium within studies, and also their effects on complex traits are generally very small to modest and could be heterogeneous across studies for genuine reasons. We carried out extensive simulation to explore the comparative performance of multivariate approach with most commonly used univariate inverse-variance weighted approach under random-effects assumption in various realistic meta-analytic scenarios of genetic association studies of correlated end points. We evaluated the performance with respect to relative mean bias percentage, and root mean square error (RMSE) of the estimate and coverage probability of corresponding 95% confidence interval of the effect for each end point. Our simulation results suggest that multivariate approach performs similarly or better than univariate method when correlations between end points within or between studies are at least moderate and between-study variation is similar or larger than average within-study variation for meta-analyses of 10 or more genetic studies. Multivariate approach produces estimates with smaller bias and RMSE especially for the end point that has randomly or informatively missing summary data in some individual studies, when the missing data in the endpoint are imputed with null effects and quite large variance.
Yang, Chun-Hua; Yin, Cai-Yong; Shen, Chun-Mei; Guo, Yu-Xin; Dong, Qian; Yan, Jiang-Wei; Wang, Hong-Dan; Zhang, Yu-Dang; Meng, Hao-Tian; Jin, Rui
2017-01-01
Thirty insertion/deletion loci were utilized to study the genetic diversities of 125 bloodstain samples collected from Bai group in Yunnan Dali region, China. The observed heterozygosity and expected heterozygosity of the 30 loci ranged from 0.1520 to 0.5680, and 0.1927 to 0.4997, respectively. No deviations from Hardy-Weinberg equilibrium tests after Bonferroni correction were found at all 30 loci in Bai group. The cumulative probability of exclusion and combined discrimination power were 0.9859 and 0.9999999999887, respectively, which indicated the 30 loci could be used as complementary genetic markers for paternity testing and were qualified for personal identification in forensic cases. We found the studied Bai group had close relationships with Tibetan, Yi and Han groups from China by the population structure, principal component analysis, population differentiations, and phylogenetic reconstruction studies. Even so, for a better understanding of Bai ethnicity's genetic milieu, DNA genotyping at various genetic markers is necessary in future studies. PMID:28465476
Yang, Chun-Hua; Yin, Cai-Yong; Shen, Chun-Mei; Guo, Yu-Xin; Dong, Qian; Yan, Jiang-Wei; Wang, Hong-Dan; Zhang, Yu-Dang; Meng, Hao-Tian; Jin, Rui; Chen, Feng; Zhu, Bo-Feng
2017-06-13
Thirty insertion/deletion loci were utilized to study the genetic diversities of 125 bloodstain samples collected from Bai group in Yunnan Dali region, China. The observed heterozygosity and expected heterozygosity of the 30 loci ranged from 0.1520 to 0.5680, and 0.1927 to 0.4997, respectively. No deviations from Hardy-Weinberg equilibrium tests after Bonferroni correction were found at all 30 loci in Bai group. The cumulative probability of exclusion and combined discrimination power were 0.9859 and 0.9999999999887, respectively, which indicated the 30 loci could be used as complementary genetic markers for paternity testing and were qualified for personal identification in forensic cases. We found the studied Bai group had close relationships with Tibetan, Yi and Han groups from China by the population structure, principal component analysis, population differentiations, and phylogenetic reconstruction studies. Even so, for a better understanding of Bai ethnicity's genetic milieu, DNA genotyping at various genetic markers is necessary in future studies.
Kassir, Yona; Stuart, David T
2017-01-01
The budding yeast Saccharomyces cerevisiae has a long history as a model organism for studies of meiosis and the cell cycle. The popularity of this yeast as a model is in large part due to the variety of genetic and cytological approaches that can be effectively performed with the cells. Cultures of the cells can be induced to synchronously progress through meiosis and sporulation allowing large-scale gene expression and biochemical studies to be performed. Additionally, the spore tetrads resulting from meiosis make it possible to characterize the haploid products of meiosis allowing investigation of meiotic recombination and chromosome segregation. Here we describe genetic methods for analysis progression of S. cerevisiae through meiosis and sporulation with an emphasis on strategies for the genetic analysis of regulators of meiosis-specific genes.
Prinz, Kathleen; Przyborowski, Jerzy A.
2017-01-01
In this study, the genetic diversity and structure of 13 natural locations of Salix purpurea were determined with the use of AFLP (amplified length polymorphism), RAPD (randomly amplified polymorphic DNA) and ISSR (inter-simple sequence repeats). The genetic relationships between 91 examined S. purpurea genotypes were evaluated by analyses of molecular variance (AMOVA), principal coordinates analyses (PCoA) and UPGMA (unweighted pair group method with arithmetic mean) dendrograms for both single marker types and a combination of all marker systems. The locations were assigned to distinct regions and the analysis of AMOVA (analysis of molecular variance) revealed a high genetic diversity within locations. The genetic diversity between both regions and locations was relatively low, but typical for many woody plant species. The results noted for the analyzed marker types were generally comparable with few differences in the genetic relationships among S. purpurea locations. A combination of several marker systems could thus be ideally suited to understand genetic diversity patterns of the species. This study makes the first attempt to broaden our knowledge of the genetic parameters of the purple willow (S. purpurea) from natural location for research and several applications, inter alia breeding purposes. PMID:29301207
Guo, Guang; Tong, Yuying; Cai, Tianji
2010-01-01
In this study, we set out to investigate whether introducing molecular genetic measures into an analysis of sexual partner variety will yield novel sociological insights. The data source is the white male DNA sample in the National Longitudinal Study of Adolescent Health. Our empirical analysis has produced a robust protective effect of the 9R/9R genotype relative to the Any10R genotype in the dopamine transporter gene (DAT1). The gene-environment interaction analysis demonstrates that the protective effect of 9R/9R tends to be lost in schools in which higher proportions of students start having sex early or among those with relatively low levels of cognitive ability. Our genetics-informed sociological analysis suggests that the “one size” of a single social theory may not fit all. Explaining a human trait or behavior may require a theory that accommodates the complex interplay between social contextual and individual influences and genetic predispositions. PMID:19569400
Briley, Daniel A; Tucker-Drob, Elliot M
2013-09-01
Genes account for increasing proportions of variation in cognitive ability across development, but the mechanisms underlying these increases remain unclear. We conducted a meta-analysis of longitudinal behavioral genetic studies spanning infancy to adolescence. We identified relevant data from 16 articles with 11 unique samples containing a total of 11,500 twin and sibling pairs who were all reared together and measured at least twice between the ages of 6 months and 18 years. Longitudinal behavioral genetic models were used to estimate the extent to which early genetic influences on cognition were amplified over time and the extent to which innovative genetic influences arose with time. Results indicated that in early childhood, innovative genetic influences predominate but that innovation quickly diminishes, and amplified influences account for increasing heritability following age 8 years.
Burgess, Stephen; Zuber, Verena; Valdes-Marquez, Elsa; Sun, Benjamin B; Hopewell, Jemma C
2017-12-01
Mendelian randomization uses genetic variants to make causal inferences about the effect of a risk factor on an outcome. With fine-mapped genetic data, there may be hundreds of genetic variants in a single gene region any of which could be used to assess this causal relationship. However, using too many genetic variants in the analysis can lead to spurious estimates and inflated Type 1 error rates. But if only a few genetic variants are used, then the majority of the data is ignored and estimates are highly sensitive to the particular choice of variants. We propose an approach based on summarized data only (genetic association and correlation estimates) that uses principal components analysis to form instruments. This approach has desirable theoretical properties: it takes the totality of data into account and does not suffer from numerical instabilities. It also has good properties in simulation studies: it is not particularly sensitive to varying the genetic variants included in the analysis or the genetic correlation matrix, and it does not have greatly inflated Type 1 error rates. Overall, the method gives estimates that are less precise than those from variable selection approaches (such as using a conditional analysis or pruning approach to select variants), but are more robust to seemingly arbitrary choices in the variable selection step. Methods are illustrated by an example using genetic associations with testosterone for 320 genetic variants to assess the effect of sex hormone related pathways on coronary artery disease risk, in which variable selection approaches give inconsistent inferences. © 2017 The Authors Genetic Epidemiology Published by Wiley Periodicals, Inc.
Kumar, Mahadeo; Kumar, Sharad
2014-11-01
Molecular genetic analysis was performed using random amplified polymorphic DNA (RAPD) on three commonly used laboratory bred rodent genera viz. mouse (Mus musculus), rat (Rattus norvegicus) and guinea pig (Cavia porcellus) as sampled from the breeding colony maintained at the Animal Facility, CSIR-Indian Institute of Toxicology Research, Lucknow. In this study, 60 samples, 20 from each genus, were analyzed for evaluation of genetic structure of rodent stocks based on polymorphic bands using RAPD markers. Thirty five random primers were assessed for RAPD analysis. Out of 35, only 20 primers generated a total of 56.88% polymorphic bands among mice, rats and guinea pigs. The results revealed significantly variant and distinct fingerprint patterns specific to each of the genus. Within-genera analysis, the highest (89.0%) amount of genetic homogeneity was observed in mice samples and the least (79.3%) were observed in guinea pig samples. The amount of genetic homogeneity was observed very high within all genera. The average genetic diversity index observed was low (0.045) for mice and high (0.094) for guinea pigs. The inter-generic distances were maximum (0.8775) between mice and guinea pigs; and the minimum (0.5143) between rats and mice. The study proved that the RAPD markers are useful as genetic markers for assessment of genetic structure as well as inter-generic variability assessments.
Cost-Effectiveness Analysis of Different Genetic Testing Strategies for Lynch Syndrome in Taiwan.
Chen, Ying-Erh; Kao, Sung-Shuo; Chung, Ren-Hua
2016-01-01
Patients with Lynch syndrome (LS) have a significantly increased risk of developing colorectal cancer (CRC) and other cancers. Genetic screening for LS among patients with newly diagnosed CRC aims to identify mutations in the disease-causing genes (i.e., the DNA mismatch repair genes) in the patients, to offer genetic testing for relatives of the patients with the mutations, and then to provide early prevention for the relatives with the mutations. Several genetic tests are available for LS, such as DNA sequencing for MMR genes and tumor testing using microsatellite instability and immunohistochemical analyses. Cost-effectiveness analyses of different genetic testing strategies for LS have been performed in several studies from different countries such as the US and Germany. However, a cost-effectiveness analysis for the testing has not yet been performed in Taiwan. In this study, we evaluated the cost-effectiveness of four genetic testing strategies for LS described in previous studies, while population-specific parameters, such as the mutation rates of the DNA mismatch repair genes and treatment costs for CRC in Taiwan, were used. The incremental cost-effectiveness ratios based on discounted life years gained due to genetic screening were calculated for the strategies relative to no screening and to the previous strategy. Using the World Health Organization standard, which was defined based on Taiwan's Gross Domestic Product per capita, the strategy based on immunohistochemistry as a genetic test followed by BRAF mutation testing was considered to be highly cost-effective relative to no screening. Our probabilistic sensitivity analysis results also suggest that the strategy has a probability of 0.939 of being cost-effective relative to no screening based on the commonly used threshold of $50,000 to determine cost-effectiveness. To the best of our knowledge, this is the first cost-effectiveness analysis for evaluating different genetic testing strategies for LS in Taiwan. The results will be informative for the government when considering offering screening for LS in patients newly diagnosed with CRC.
Kogelman, Lisette J. A.; Pant, Sameer D.; Fredholm, Merete; Kadarmideen, Haja N.
2014-01-01
Obesity is a complex condition with world-wide exponentially rising prevalence rates, linked with severe diseases like Type 2 Diabetes. Economic and welfare consequences have led to a raised interest in a better understanding of the biological and genetic background. To date, whole genome investigations focusing on single genetic variants have achieved limited success, and the importance of including genetic interactions is becoming evident. Here, the aim was to perform an integrative genomic analysis in an F2 pig resource population that was constructed with an aim to maximize genetic variation of obesity-related phenotypes and genotyped using the 60K SNP chip. Firstly, Genome Wide Association (GWA) analysis was performed on the Obesity Index to locate candidate genomic regions that were further validated using combined Linkage Disequilibrium Linkage Analysis and investigated by evaluation of haplotype blocks. We built Weighted Interaction SNP Hub (WISH) and differentially wired (DW) networks using genotypic correlations amongst obesity-associated SNPs resulting from GWA analysis. GWA results and SNP modules detected by WISH and DW analyses were further investigated by functional enrichment analyses. The functional annotation of SNPs revealed several genes associated with obesity, e.g., NPC2 and OR4D10. Moreover, gene enrichment analyses identified several significantly associated pathways, over and above the GWA study results, that may influence obesity and obesity related diseases, e.g., metabolic processes. WISH networks based on genotypic correlations allowed further identification of various gene ontology terms and pathways related to obesity and related traits, which were not identified by the GWA study. In conclusion, this is the first study to develop a (genetic) obesity index and employ systems genetics in a porcine model to provide important insights into the complex genetic architecture associated with obesity and many biological pathways that underlie it. PMID:25071839
Calculating expected DNA remnants from ancient founding events in human population genetics
Stacey, Andrew; Sheffield, Nathan C; Crandall, Keith A
2008-01-01
Background Recent advancements in sequencing and computational technologies have led to rapid generation and analysis of high quality genetic data. Such genetic data have achieved wide acceptance in studies of historic human population origins and admixture. However, in studies relating to small, recent admixture events, genetic factors such as historic population sizes, genetic drift, and mutation can have pronounced effects on data reliability and utility. To address these issues we conducted genetic simulations targeting influential genetic parameters in admixed populations. Results We performed a series of simulations, adjusting variable values to assess the affect of these genetic parameters on current human population studies and what these studies infer about past population structure. Final mean allele frequencies varied from 0.0005 to over 0.50, depending on the parameters. Conclusion The results of the simulations illustrate that, while genetic data may be sensitive and powerful in large genetic studies, caution must be used when applying genetic information to small, recent admixture events. For some parameter sets, genetic data will not be adequate to detect historic admixture. In such cases, studies should consider anthropologic, archeological, and linguistic data where possible. PMID:18928554
ERIC Educational Resources Information Center
Cleveland, H. Harrington; Crosnoe, Robert
2004-01-01
Intergenerational closure refers to parents' knowing the parents of their adolescents' friends. This study treated intergenerational closure - as reported by the parents of adolescent twins - as the dependent variable in a behavioral genetic analysis. The sample consisted of identical and fraternal twin pairs in the National Longitudinal Study of…
ERIC Educational Resources Information Center
Al-Mamari, Watfa; Al-Saegh, Abeer; Al-Kindy, Adila; Bruwer, Zandre; Al-Murshedi, Fathiya; Al-Thihli, Khalid
2015-01-01
Autism Spectrum Disorders are a complicated group of disorders characterized with heterogeneous genetic etiologies. The genetic investigations for this group of disorders have expanded considerably over the past decade. In our study we designed a tired approach and studied the diagnostic yield of chromosomal microarray analysis on patients…
Painter, Jodie N; O'Mara, Tracy A; Morris, Andrew P; Cheng, Timothy H T; Gorman, Maggie; Martin, Lynn; Hodson, Shirley; Jones, Angela; Martin, Nicholas G; Gordon, Scott; Henders, Anjali K; Attia, John; McEvoy, Mark; Holliday, Elizabeth G; Scott, Rodney J; Webb, Penelope M; Fasching, Peter A; Beckmann, Matthias W; Ekici, Arif B; Hein, Alexander; Rübner, Matthias; Hall, Per; Czene, Kamila; Dörk, Thilo; Dürst, Matthias; Hillemanns, Peter; Runnebaum, Ingo; Lambrechts, Diether; Amant, Frederic; Annibali, Daniela; Depreeuw, Jeroen; Vanderstichele, Adriaan; Goode, Ellen L; Cunningham, Julie M; Dowdy, Sean C; Winham, Stacey J; Trovik, Jone; Hoivik, Erling; Werner, Henrica M J; Krakstad, Camilla; Ashton, Katie; Otton, Geoffrey; Proietto, Tony; Tham, Emma; Mints, Miriam; Ahmed, Shahana; Healey, Catherine S; Shah, Mitul; Pharoah, Paul D P; Dunning, Alison M; Dennis, Joe; Bolla, Manjeet K; Michailidou, Kyriaki; Wang, Qin; Tyrer, Jonathan P; Hopper, John L; Peto, Julian; Swerdlow, Anthony J; Burwinkel, Barbara; Brenner, Hermann; Meindl, Alfons; Brauch, Hiltrud; Lindblom, Annika; Chang-Claude, Jenny; Couch, Fergus J; Giles, Graham G; Kristensen, Vessela N; Cox, Angela; Zondervan, Krina T; Nyholt, Dale R; MacGregor, Stuart; Montgomery, Grant W; Tomlinson, Ian; Easton, Douglas F; Thompson, Deborah J; Spurdle, Amanda B
2018-05-01
Epidemiological, biological, and molecular data suggest links between endometriosis and endometrial cancer, with recent epidemiological studies providing evidence for an association between a previous diagnosis of endometriosis and risk of endometrial cancer. We used genetic data as an alternative approach to investigate shared biological etiology of these two diseases. Genetic correlation analysis of summary level statistics from genomewide association studies (GWAS) using LD Score regression revealed moderate but significant genetic correlation (r g = 0.23, P = 9.3 × 10 -3 ), and SNP effect concordance analysis provided evidence for significant SNP pleiotropy (P = 6.0 × 10 -3 ) and concordance in effect direction (P = 2.0 × 10 -3 ) between the two diseases. Cross-disease GWAS meta-analysis highlighted 13 distinct loci associated at P ≤ 10 -5 with both endometriosis and endometrial cancer, with one locus (SNP rs2475335) located within PTPRD associated at a genomewide significant level (P = 4.9 × 10 -8 , OR = 1.11, 95% CI = 1.07-1.15). PTPRD acts in the STAT3 pathway, which has been implicated in both endometriosis and endometrial cancer. This study demonstrates the value of cross-disease genetic analysis to support epidemiological observations and to identify biological pathways of relevance to multiple diseases. © 2018 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.
Spinal schwannomatosis in the absence of neurofibromatosis: A very rare condition
Landi, A.; Dugoni, D.E.; Marotta, N.; Mancarella, C.; Delfini, R.
2010-01-01
Schwannomatosis is defined as an extremely rare tumors syndrome characterized by the presence of multiple schwannomas in the absence of typical signs of NF1 and NF2 syndromes. The genetic and molecular analysis performed on these tumors makes it possible to name schwannomatosis as distinct clinical and genetic syndrome. The treatment in the case of symptomatic lesions is surgical removal; if the lesions are asymptomatic it is better to perform serial MRI studies. Given the high incidence of developing additional lesions in patients with schwannomatosis, it remains imperative to perform serial brain and spinal cord MRI studies during follow-up. The differential diagnosis is important including clinical and radiological criteria plus molecular genetic analysis of tumor cells and lymphocyte DNA. We report a rare case of spinal schwannomatosis in which genetic analysis performed on surgical samples showed two different mutations in the cells of the two lesions. PMID:22096683
Spinal schwannomatosis in the absence of neurofibromatosis: A very rare condition.
Landi, A; Dugoni, D E; Marotta, N; Mancarella, C; Delfini, R
2011-01-01
Schwannomatosis is defined as an extremely rare tumors syndrome characterized by the presence of multiple schwannomas in the absence of typical signs of NF1 and NF2 syndromes. The genetic and molecular analysis performed on these tumors makes it possible to name schwannomatosis as distinct clinical and genetic syndrome. The treatment in the case of symptomatic lesions is surgical removal; if the lesions are asymptomatic it is better to perform serial MRI studies. Given the high incidence of developing additional lesions in patients with schwannomatosis, it remains imperative to perform serial brain and spinal cord MRI studies during follow-up. The differential diagnosis is important including clinical and radiological criteria plus molecular genetic analysis of tumor cells and lymphocyte DNA. We report a rare case of spinal schwannomatosis in which genetic analysis performed on surgical samples showed two different mutations in the cells of the two lesions.
Roadhouse, C; Shuman, C; Anstey, K; Sappleton, K; Chitayat, D; Ignagni, E
2018-06-16
Genetic counselors adopt seemingly contradictory roles: advocating for individuals with genetic conditions while offering prenatal diagnosis and the option of selective termination to prevent the birth of a child with a disability. This duality contributes to the tension between the disability and clinical genetics communities. Varying opinions exist amongst the disability community: some value genetic services while others are opposed. However, there is limited research exploring the opinions of individuals with a disability regarding issues related to reproduction and genetic services in the context of personal experience. This exploratory qualitative study involved interviews with seven women and three men who self-identify as having a disability. We sought to gain their perspectives on experiences with disability, thoughts about reproduction and parenting, and perceptions of genetic services. Transcripts of the interviews were analyzed thematically using qualitative content analysis. Data analysis showed that societal views of disability affected the lived experience and impacted reproductive decision-making for those with a disability. It also showed differing interest in genetic services. Concerns about the perceived collective implications of genetic services were also raised. These findings contribute to the understanding of the disability perspective toward reproductive decision-making and genetic services. A further goal is to promote a meaningful dialogue between the genetics and disability communities, with the potential to enhance the genetic and reproductive care provided to individuals with disabilities.
Monir, Md. Mamun; Zhu, Jun
2017-01-01
Most of the genome-wide association studies (GWASs) for human complex diseases have ignored dominance, epistasis and ethnic interactions. We conducted comparative GWASs for total cholesterol using full model and additive models, which illustrate the impacts of the ignoring genetic variants on analysis results and demonstrate how genetic effects of multiple loci could differ across different ethnic groups. There were 15 quantitative trait loci with 13 individual loci and 3 pairs of epistasis loci identified by full model, whereas only 14 loci (9 common loci and 5 different loci) identified by multi-loci additive model. Again, 4 full model detected loci were not detected using multi-loci additive model. PLINK-analysis identified two loci and GCTA-analysis detected only one locus with genome-wide significance. Full model identified three previously reported genes as well as several new genes. Bioinformatics analysis showed some new genes are related with cholesterol related chemicals and/or diseases. Analyses of cholesterol data and simulation studies revealed that the full model performs were better than the additive-model performs in terms of detecting power and unbiased estimations of genetic variants of complex traits. PMID:28079101
Ashbrook, David G; Williams, Robert W; Lu, Lu; Stein, Jason L; Hibar, Derrek P; Nichols, Thomas E; Medland, Sarah E; Thompson, Paul M; Hager, Reinmar
2014-10-03
Variation in hippocampal volume has been linked to significant differences in memory, behavior, and cognition among individuals. To identify genetic variants underlying such differences and associated disease phenotypes, multinational consortia such as ENIGMA have used large magnetic resonance imaging (MRI) data sets in human GWAS studies. In addition, mapping studies in mouse model systems have identified genetic variants for brain structure variation with great power. A key challenge is to understand how genetically based differences in brain structure lead to the propensity to develop specific neurological disorders. We combine the largest human GWAS of brain structure with the largest mammalian model system, the BXD recombinant inbred mouse population, to identify novel genetic targets influencing brain structure variation that are linked to increased risk for neurological disorders. We first use a novel cross-species, comparative analysis using mouse and human genetic data to identify a candidate gene, MGST3, associated with adult hippocampus size in both systems. We then establish the coregulation and function of this gene in a comprehensive systems-analysis. We find that MGST3 is associated with hippocampus size and is linked to a group of neurodegenerative disorders, such as Alzheimer's.
Özbek, Özlem; Görgülü, Elçin; Yıldırımlı, Şinasi
2013-12-01
Isatidae L. is a complex and systematically difficult genus in Brassicaceae. The genus displays great morphological polymorphism, which makes the classification of species and subspecies difficult as it is observed in Isatis glauca Aucher ex Boiss. The aim of this study is characterization of the genetic diversity in subspecies of Isatis glauca Aucher ex Boiss. distributed widely in Central Anatolia, in Turkey by using Amplified Fragment Length Polymorphism (AFLP) technique. Eight different Eco RI-Mse I primer combinations produced 805 AFLP loci, 793 (98.5%) of which were polymorphic in 67 accessions representing nine different populations. The data obtained by AFLP was computed with using GDA (Genetic Data Analysis) and STRUCTURE (version 2.3.3) software programs for population genetics. The mean proportion of the polymorphic locus (P), the mean number of alleles (A), the number of unique alleles (U) and the mean value of gene diversity (He) were 0.59, 1.59, 20, and 0.23 respectively. The coancestry coefficient (ϴ) was 0.24. The optimal number of K was identified as seven. The principal component analysis (PCA) explained 85.61% of the total genetic variation. Isatis glauca ssp. populations showed a high level of genetic diversity, and the AFLP analysis revealed that high polymorphism and differentiated subspecies could be used conveniently for population genetic studies. The principal coordinate analysis (PCoA) based on the dissimilarity matrix, the dendrogram drawn with UPGMA method and STRUCTURE cluster analysis distinguished the accessions successfully. The accessions formed distinctive population structures for populations AA, AB, E, K, and S. Populations AG1 and AG2 seemed to have similar genetic content, in addition, in both populations several hybrid individuals were observed. The accessions did not formed distinctive population structures for both populations AI and ANP. Consequently, Ankara province might be the area, where species Isatis glauca Aucher ex Boiss. originated.
García-Lor, Andrés; Luro, François; Navarro, Luis; Ollitrault, Patrick
2012-01-01
Genetic stratification associated with domestication history is a key parameter for estimating the pertinence of genetic association study within a gene pool. Previous molecular and phenotypic studies have shown that most of the diversity of cultivated citrus results from recombination between three main species: C. medica (citron), C. reticulata (mandarin) and C. maxima (pummelo). However, the precise contribution of each of these basic species to the genomes of secondary cultivated species, such as C. sinensis (sweet orange), C. limon (lemon), C. aurantium (sour orange), C. paradisi (grapefruit) and recent hybrids is unknown. Our study focused on: (1) the development of insertion-deletion (InDel) markers and their comparison with SSR markers for use in genetic diversity and phylogenetic studies; (2) the analysis of the contributions of basic taxa to the genomes of secondary species and modern cultivars and (3) the description of the organisation of the Citrus gene pool, to evaluate how genetic association studies should be done at the cultivated Citrus gene pool level. InDel markers appear to be better phylogenetic markers for tracing the contributions of the three ancestral species, whereas SSR markers are more useful for intraspecific diversity analysis. Most of the genetic organisation of the Citrus gene pool is related to the differentiation between C. reticulata, C. maxima and C. medica. High and generalised LD was observed, probably due to the initial differentiation between the basic species and a limited number of interspecific recombinations. This structure precludes association genetic studies at the genus level without developing additional recombinant populations from interspecific hybrids. Association genetic studies should also be affordable at intraspecific level in a less structured pool such as C. reticulata.
Study on Analysis of Variance on the indigenous wild and cultivated rice species of Manipur Valley
NASA Astrophysics Data System (ADS)
Medhabati, K.; Rohinikumar, M.; Rajiv Das, K.; Henary, Ch.; Dikash, Th.
2012-10-01
The analysis of variance revealed considerable variation among the cultivars and the wild species for yield and other quantitative characters in both the years of investigation. The highly significant differences among the cultivars in year wise and pooled analysis of variance for all the 12 characters reveal that there are enough genetic variabilities for all the characters studied. The existence of genetic variability is of paramount importance for starting a judicious plant breeding programme. Since introduced high yielding rice cultivars usually do not perform well. Improvement of indigenous cultivars is a clear choice for increase of rice production. The genetic variability of 37 rice germplasms in 12 agronomic characters estimated in the present study can be used in breeding programme
A roadmap for the genetic analysis of renal aging
Noordmans, Gerda A; Hillebrands, Jan-Luuk; van Goor, Harry; Korstanje, Ron
2015-01-01
Several studies show evidence for the genetic basis of renal disease, which renders some individuals more prone than others to accelerated renal aging. Studying the genetics of renal aging can help us to identify genes involved in this process and to unravel the underlying pathways. First, this opinion article will give an overview of the phenotypes that can be observed in age-related kidney disease. Accurate phenotyping is essential in performing genetic analysis. For kidney aging, this could include both functional and structural changes. Subsequently, this article reviews the studies that report on candidate genes associated with renal aging in humans and mice. Several loci or candidate genes have been found associated with kidney disease, but identification of the specific genetic variants involved has proven to be difficult. CUBN, UMOD, and SHROOM3 were identified by human GWAS as being associated with albuminuria, kidney function, and chronic kidney disease (CKD). These are promising examples of genes that could be involved in renal aging, and were further mechanistically evaluated in animal models. Eventually, we will provide approaches for performing genetic analysis. We should leverage the power of mouse models, as testing in humans is limited. Mouse and other animal models can be used to explain the underlying biological mechanisms of genes and loci identified by human GWAS. Furthermore, mouse models can be used to identify genetic variants associated with age-associated histological changes, of which Far2, Wisp2, and Esrrg are examples. A new outbred mouse population with high genetic diversity will facilitate the identification of genes associated with renal aging by enabling high-resolution genetic mapping while also allowing the control of environmental factors, and by enabling access to renal tissues at specific time points for histology, proteomics, and gene expression. PMID:26219736
Ismail, Nurul-Ain; Adilah-Amrannudin, Nurul; Hamsidi, Mayamin; Ismail, Rodziah; Dom, Nazri Che; Ahmad, Abu Hassan; Mastuki, Mohd Fahmi; Camalxaman, Siti Nazrina
2017-11-07
The global expansion of Ae. albopictus from its native range in Southeast Asia has been implicated in the recent emergence of dengue endemicity in Malaysia. Genetic variability studies of Ae. albopictus are currently lacking in the Malaysian setting, yet are crucial to enhancing the existing vector control strategies. The study was conducted to establish the genetic variability of maternally inherited mitochondrial DNA encoding for cytochrome oxidase subunit 1 (CO1) gene in Ae. albopictus. Twelve localities were selected in the Subang Jaya district based on temporal indices utilizing 120 mosquito samples. Genetic polymorphism and phylogenetic analysis were conducted to unveil the genetic variability and geographic origins of Ae. albopictus. The haplotype network was mapped to determine the genealogical relationship of sequences among groups of population in the Asian region. Comparison of Malaysian CO1 sequences with sequences derived from five Asian countries revealed genetically distinct Ae. albopictus populations. Phylogenetic analysis revealed that all sequences from other Asian countries descended from the same genetic lineage as the Malaysian sequences. Noteworthy, our study highlights the discovery of 20 novel haplotypes within the Malaysian population which to date had not been reported. These findings could help determine the genetic variation of this invasive species, which in turn could possibly improve the current dengue vector surveillance strategies, locally and regionally. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Genetic differentiation of Alaska Chinook salmon: the missing link for migratory studies.
Templin, William D; Seeb, James E; Jasper, James R; Barclay, Andrew W; Seeb, Lisa W
2011-03-01
Most information about Chinook salmon genetic diversity and life history originates from studies from the West Coast USA, western Canada and southeast Alaska; less is known about Chinook salmon from western and southcentral Alaska drainages. Populations in this large area are genetically distinct from populations to the south and represent an evolutionary legacy of unique genetic, phenotypic and life history diversity. More genetic information is necessary to advance mixed stock analysis applications for studies involving these populations. We assembled a comprehensive, open-access baseline of 45 single nucleotide polymorphisms (SNPs) from 172 populations ranging from Russia to California. We compare SNP data from representative populations throughout the range with particular emphasis on western and southcentral Alaska. We grouped populations into major lineages based upon genetic and geographic characteristics, evaluated the resolution for identifying the composition of admixtures and performed mixed stock analysis on Chinook salmon caught incidentally in the walleye pollock fishery in the Bering Sea. SNP data reveal complex genetic structure within Alaska and can be used in applications to address not only regional issues, but also migration pathways, bycatch studies on the high seas, and potential changes in the range of the species in response to climate change. © 2011 Blackwell Publishing Ltd.
Utility of blood pressure genetic risk score in admixed Hispanic samples.
Beecham, A H; Wang, L; Vasudeva, N; Liu, Z; Dong, C; Goldschmidt-Clermont, P J; Pericak-Vance, M A; Rundek, T; Seo, D; Blanton, S H; Sacco, R L; Beecham, G W
2016-12-01
Hypertension is strongly influenced by genetic factors. Although hypertension prevalence in some Hispanic sub-populations is greater than in non-Hispanic whites, genetic studies on hypertension have focused primarily on samples of European descent. A recent meta-analysis of 200 000 individuals of European descent identified 29 common genetic variants that influence blood pressure, and a genetic risk score derived from the 29 variants has been proposed. We sought to evaluate the utility of this genetic risk score in Hispanics. The sample set consists of 1994 Hispanics from 2 cohorts: the Northern Manhattan Study (primarily Dominican/Puerto Rican) and the Miami Cardiovascular Registry (primarily Cuban/South American). Risk scores for systolic and diastolic blood pressure were computed as a weighted sum of the risk alleles, with the regression coefficients reported in the European meta-analysis used as weights. Association of risk score with blood pressure was tested within each cohort, adjusting for age, age 2 , sex and body mass index. Results were combined using an inverse-variance meta-analysis. The risk score was significantly associated with blood pressure in our combined sample (P=5.65 × 10 -4 for systolic and P=1.65 × 10 -3 for diastolic) but the magnitude of the effect sizes varied by degree of European, African and Native American admixture. Further studies among other Hispanic sub-populations are needed to elucidate the role of these 29 variants and identify additional genetic and environmental factors contributing to blood pressure variability in Hispanics.
Childhood adiposity and risk of type 1 diabetes: A Mendelian randomization study
Todd, John A.
2017-01-01
Background The incidence of type 1 diabetes (T1D) is increasing globally. One hypothesis is that increasing childhood obesity rates may explain part of this increase, but, as T1D is rare, intervention studies are challenging to perform. The aim of this study was to assess this hypothesis with a Mendelian randomization approach that uses genetic variants as instrumental variables to test for causal associations. Methods and findings We created a genetic instrument of 23 single nucleotide polymorphisms (SNPs) associated with childhood adiposity in children aged 2–10 years. Summary-level association results for these 23 SNPs with childhood-onset (<17 years) T1D were extracted from a meta-analysis of genome-wide association study with 5,913 T1D cases and 8,828 reference samples. Using inverse-variance weighted Mendelian randomization analysis, we found support for an effect of childhood adiposity on T1D risk (odds ratio 1.32, 95% CI 1.06–1.64 per standard deviation score in body mass index [SDS-BMI]). A sensitivity analysis provided evidence of horizontal pleiotropy bias (p = 0.04) diluting the estimates towards the null. We therefore applied Egger regression and multivariable Mendelian randomization methods to control for this type of bias and found evidence in support of a role of childhood adiposity in T1D (odds ratio in Egger regression, 2.76, 95% CI 1.40–5.44). Limitations of our study include that underlying genes and their mechanisms for most of the genetic variants included in the score are not known. Mendelian randomization requires large sample sizes, and power was limited to provide precise estimates. This research has been conducted using data from the Early Growth Genetics (EGG) Consortium, the Genetic Investigation of Anthropometric Traits (GIANT) Consortium, the Tobacco and Genetics (TAG) Consortium, and the Social Science Genetic Association Consortium (SSGAC), as well as meta-analysis results from a T1D genome-wide association study. Conclusions This study provides genetic support for a link between childhood adiposity and T1D risk. Together with evidence from observational studies, our findings further emphasize the importance of measures to reduce the global epidemic of childhood obesity and encourage mechanistic studies. PMID:28763444
Genetic studies among seven endogamous populations of the Koshi Zone, Bihar (India).
Pandey, B N; Das, P K; Husain, S; Anwer, Md Rauf; Jha, A K
2003-09-01
The distribution of AB0 and Rhesus blood groups, PTC taste sensitivity and colour blindness was studied among seven endogamous populations (Tharu, Mushar, Santal, Dhobi, Julaha, Kulhaiya and Karan Kayastha) in the Koshi Zone of Bihar (India). The phenotype and allele frequencies of the four gene loci (AB0, RH, PTC and colour blindness) show considerable differences between these populations. The measurement of genetic distances revealed, that the lowest genetic distance is seen between Dhobi and Julaha, the highest between Mushar and Tharu. From the genetic distance analysis there is some evidence for a close genetic relationship among the population groups belonging to the same region, irrespective of their caste, religion, linguistic or any other affinities. It may be concluded that all these populations have arisen through a common ancestor and changed gene frequencies among them is due to evolutionary forces like mutation, selection, migration, temporal variation and genetic drift. However, these populations retain their separate entities by practising endogamy. Gene diversity analysis reveals that these populations are at an early stage of genetic differentiation.
2012-01-01
Background For complex diseases like cancer, pooled-analysis of individual data represents a powerful tool to investigate the joint contribution of genetic, phenotypic and environmental factors to the development of a disease. Pooled-analysis of epidemiological studies has many advantages over meta-analysis, and preliminary results may be obtained faster and with lower costs than with prospective consortia. Design and methods Based on our experience with the study design of the Melanocortin-1 receptor (MC1R) gene, SKin cancer and Phenotypic characteristics (M-SKIP) project, we describe the most important steps in planning and conducting a pooled-analysis of genetic epidemiological studies. We then present the statistical analysis plan that we are going to apply, giving particular attention to methods of analysis recently proposed to account for between-study heterogeneity and to explore the joint contribution of genetic, phenotypic and environmental factors in the development of a disease. Within the M-SKIP project, data on 10,959 skin cancer cases and 14,785 controls from 31 international investigators were checked for quality and recoded for standardization. We first proposed to fit the aggregated data with random-effects logistic regression models. However, for the M-SKIP project, a two-stage analysis will be preferred to overcome the problem regarding the availability of different study covariates. The joint contribution of MC1R variants and phenotypic characteristics to skin cancer development will be studied via logic regression modeling. Discussion Methodological guidelines to correctly design and conduct pooled-analyses are needed to facilitate application of such methods, thus providing a better summary of the actual findings on specific fields. PMID:22862891
Prajapati, Surendra Kumar; Joshi, Hema; Valecha, Neena
2010-06-01
Malaria, an ancient human infectious disease caused by five species of Plasmodium, among them Plasmodium vivax is the most widespread human malaria species and causes huge morbidity to its host. Identification of genetic marker to resolve higher genetic diversity for an ancient origin organism is a crucial task. We have analyzed genetic diversity of P. vivax field isolates using highly polymorphic antigen gene merozoite surface protein-3 alpha (msp-3 alpha) and assessed its suitability as high-resolution genetic marker for population genetic studies. 27 P. vivax field isolates collected during chloroquine therapeutic efficacy study at Chennai were analyzed for genetic diversity. PCR-RFLP was employed to assess the genetic variations using highly polymorphic antigen gene msp-3 alpha. We observed three distinct PCR alleles at msp-3 alpha, and among them allele A showed significantly high frequency (53%, chi2 = 8.22, p = 0.001). PCR-RFLP analysis revealed 14 and 17 distinct RFLP patterns for Hha1 and Alu1 enzymes respectively. Further, RFLP analysis revealed that allele A at msp-3 alpha is more diverse in the population compared with allele B and C. Combining Hha1 and Alu1 RFLP patterns revealed 21 distinct genotypes among 22 isolates reflects higher diversity resolution power of msp-3 alpha in the field isolates. P. vivax isolates from Chennai region revealed substantial amount of genetic diversity and comparison of allelic diversity with other antigen genes and microsatellites suggesting that msp-3 alpha could be a high-resolution marker for genetic diversity studies among P. vivax field isolates.
Business and Breakthrough: Framing (Expanded) Genetic Carrier Screening for the Public.
Holton, Avery E; Canary, Heather E; Wong, Bob
2017-09-01
A growing body of research has given attention to issues surrounding genetic testing, including expanded carrier screening (ECS), an elective medical test that allows planning or expecting parents to consider the potential occurrence of genetic diseases and disorders in their children. These studies have noted the role of the mass media in driving public perceptions about such testing, giving particular attention to ways in which coverage of genetics and genetic testing broadly may drive public attitudes and choices concerning the morality, legality, ethics, and parental well-being involved in genetic technologies. However, few studies have explored how mass media are covering the newer test, ECS. Drawing on health-related framing studies that have shown in varying degrees the impact particular frames such as gain/loss and thematic/episodic can have on the public, this study examines the frame selection employed by online media in its coverage of ECS. This analysis-combined with an analysis of the sources and topics used in such coverage and how they relate to selected frames-helps to clarify how mass media are covering an increasingly important medical test and offers considerations of how such coverage may inform mass media scholarship as well as health-related practices.
Monteiro, Filipa; Vidigal, Patrícia; Barros, André B.; Monteiro, Ana; Oliveira, Hugo R.; Viegas, Wanda
2016-01-01
Rye (Secale cereale L.) is a cereal crop of major importance in many parts of Europe and rye breeders are presently very concerned with the restrict pool of rye genetic resources available. Such narrowing of rye genetic diversity results from the presence of “Petkus” pool in most modern rye varieties as well as “Petkus” × “Carsten” heterotic pool in hybrid rye breeding programs. Previous studies on rye's genetic diversity revealed moreover a common genetic background on landraces (ex situ) and cultivars, regardless of breeding level or geographical origin. Thus evaluation of in situ populations is of utmost importance to unveil “on farm” diversity, which is largely undervalued. Here, we perform the first comprehensive assessment of rye's genetic diversity and population structuring using cultivars, ex situ landraces along a comprehensive sampling of in situ accessions from Portugal, through a molecular-directed analysis using SSRs markers. Rye genetic diversity and population structure analysis does not present any geographical trend but disclosed marked differences between genetic backgrounds of in situ accessions and those of cultivars/ex situ collections. Such genetic distinctiveness of in situ accessions highlights their unexplored potential as new genetic resources, which can be used to boost rye breeding strategies and the production of new varieties. Overall, our study successfully demonstrates the high prospective impact of comparing genetic diversity and structure of cultivars, ex situ, and in situ samples in ascertaining the status of plant genetic resources (PGR). PMID:27630658
Actor-network theory: a tool to support ethical analysis of commercial genetic testing.
Williams-Jones, Bryn; Graham, Janice E
2003-12-01
Social, ethical and policy analysis of the issues arising from gene patenting and commercial genetic testing is enhanced by the application of science and technology studies, and Actor-Network Theory (ANT) in particular. We suggest the potential for transferring ANT's flexible nature to an applied heuristic methodology for gathering empirical information and for analysing the complex networks involved in the development of genetic technologies. Three concepts are explored in this paper--actor-networks, translation, and drift--and applied to the case of Myriad Genetics and their commercial BRACAnalysis genetic susceptibility test for hereditary breast cancer. Treating this test as an active participant in socio-technical networks clarifies the extent to which it interacts with, shapes and is shaped by people, other technologies, and institutions. Such an understanding enables more sophisticated and nuanced technology assessment, academic analysis, as well as public debate about the social, ethical and policy implications of the commercialization of new genetic technologies.
Qiang, Haiping; Chen, Zhihong; Zhang, Zhengli; Wang, Xuemin; Gao, Hongwen; Wang, Zan
2015-01-01
Information on genetic diversity and population structure of a tetraploid alfalfa collection might be valuable in effective use of the genetic resources. A set of 336 worldwide genotypes of tetraploid alfalfa (Medicago sativa subsp. sativa L.) was genotyped using 85 genome-wide distributed SSR markers to reveal the genetic diversity and population structure in the alfalfa. Genetic diversity analysis identified a total of 1056 alleles across 85 marker loci. The average expected heterozygosity and polymorphism information content values were 0.677 and 0.638, respectively, showing high levels of genetic diversity in the cultivated tetraploid alfalfa germplasm. Comparison of genetic characteristics across chromosomes indicated regions of chromosomes 2 and 3 had the highest genetic diversity. A higher genetic diversity was detected in alfalfa landraces than that of wild materials and cultivars. Two populations were identified by the model-based population structure, principal coordinate and neighbor-joining analyses, corresponding to China and other parts of the world. However, lack of strictly correlation between clustering and geographic origins suggested extensive germplasm exchanges of alfalfa germplasm across diverse geographic regions. The quantitative analysis of the genetic diversity and population structure in this study could be useful for genetic and genomic analysis and utilization of the genetic variation in alfalfa breeding. PMID:25901573
Genetic analysis of circulating tumor cells in pancreatic cancer patients: A pilot study.
Görner, Karin; Bachmann, Jeannine; Holzhauer, Claudia; Kirchner, Roland; Raba, Katharina; Fischer, Johannes C; Martignoni, Marc E; Schiemann, Matthias; Alunni-Fabbroni, Marianna
2015-07-01
Pancreatic cancer is one of the most aggressive malignant tumors, mainly due to an aggressive metastasis spreading. In recent years, circulating tumor cells became associated to tumor metastasis. Little is known about their expression profiles. The aim of this study was to develop a complete workflow making it possible to isolate circulating tumor cells from patients with pancreatic cancer and their genetic characterization. We show that the proposed workflow offers a technical sensitivity and specificity high enough to detect and isolate single tumor cells. Moreover our approach makes feasible to genetically characterize single CTCs. Our work discloses a complete workflow to detect, count and genetically analyze individual CTCs isolated from blood samples. This method has a central impact on the early detection of metastasis development. The combination of cell quantification and genetic analysis provides the clinicians with a powerful tool not available so far. Copyright © 2015. Published by Elsevier Inc.
USDA-ARS?s Scientific Manuscript database
Ecoregional differences contribute to genetic environmental interactions and impact animal performance. These differences may become more important under climate change scenarios. Utilizing genetic diversity within a species to address such problems has not been fully explored. In this study Herefor...
Huang, Chunqiong; Liu, Guodao; Bai, Changjun; Wang, Wenqiang
2014-10-21
Although Cynodon dactylon (C. dactylon) is widely distributed in China, information on its genetic diversity within the germplasm pool is limited. The objective of this study was to reveal the genetic variation and relationships of 430 C. dactylon accessions collected from 22 Chinese provinces using sequence-related amplified polymorphism (SRAP) markers. Fifteen primer pairs were used to amplify specific C. dactylon genomic sequences. A total of 481 SRAP fragments were generated, with fragment sizes ranging from 260-1800 base pairs (bp). Genetic similarity coefficients (GSC) among the 430 accessions averaged 0.72 and ranged from 0.53-0.96. Cluster analysis conducted by two methods, namely the unweighted pair-group method with arithmetic averages (UPGMA) and principle coordinate analysis (PCoA), separated the accessions into eight distinct groups. Our findings verify that Chinese C. dactylon germplasms have rich genetic diversity, which is an excellent basis for C. dactylon breeding for new cultivars.
Espinoza, Bertha; Martínez-Ibarra, Jose Alejandro; Villalobos, Guiehdani; De La Torre, Patricia; Laclette, Juan Pedro; Martínez-Hernández, Fernando
2013-01-01
The triatomines vectors of Trypanosoma cruzi are principal factors in acquiring Chagas disease. For this reason, increased knowledge of domestic transmission of T. cruzi and control of its insect vectors is necessary. To contribute to genetic knowledge of North America Triatominae species, we studied genetic variations and conducted phylogenetic analysis of different triatomines species of epidemiologic importance. Our analysis showed high genetic variations between different geographic populations of Triatoma mexicana, Meccus longipennis, M. mazzottii, M. picturatus, and T. dimidiata species, suggested initial divergence, hybridation, or classifications problems. In contrast, T. gerstaeckeri, T. bolivari, and M. pallidipennis populations showed few genetics variations. Analysis using cytochrome B and internal transcribed spacer 2 gene sequences indicated that T. bolivari is closely related to the Rubrofasciata complex and not to T. dimidiata. Triatoma brailovskyi and T. gerstaeckeri showed a close relationship with Dimidiata and Phyllosoma complexes. PMID:23249692
Zhang, Qin-di; Jia, Rui-Zhi; Meng, Chao; Ti, Chao-Wen; Wang, Yi-Ling
2015-01-01
Knowledge of the genetic diversity and structure of tree species across their geographic ranges is essential for sustainable use and management of forest ecosystems. Acer grosseri Pax., an economically and ecologically important maple species, is mainly distributed in North China. In this study, the genetic diversity and population differentiation of 24 natural populations of this species were evaluated using sequence-related amplified polymorphism markers and morphological characters. The results show that highly significant differences occurred in 32 morphological traits. The coefficient of variation of 34 characters was 18.19 %. Principal component analysis indicated that 18 of 34 traits explained 60.20 % of the total variance. The phenotypic differentiation coefficient (VST) was 36.06 % for all morphological traits. The Shannon–Wiener index of 34 morphological characters was 6.09, while at the population level, it was 1.77. The percentage of polymorphic bands of all studied A. grosseri populations was 82.14 %. Nei's gene diversity (He) and Shannon's information index (I) were 0.35 and 0.50, respectively. Less genetic differentiation was detected among the natural populations (GST = 0.20, ΦST = 0.10). Twenty-four populations of A. grosseri formed two main clusters, which is consistent with morphological cluster analysis. Principal coordinates analysis and STRUCTURE analysis supported the UPGMA-cluster dendrogram. There was no significant correlation between genetic and geographical distances among populations. Both molecular and morphological data suggested that A. grosseri is rich in genetic diversity. The high level of genetic variation within populations could be affected by the biological characters, mating system and lifespan of A. grosseri, whereas the lower genetic diversity among populations could be caused by effective gene exchange, selective pressure from environmental heterogeneity and the species' geographical range. PMID:26311734
A weighted U statistic for association analyses considering genetic heterogeneity.
Wei, Changshuai; Elston, Robert C; Lu, Qing
2016-07-20
Converging evidence suggests that common complex diseases with the same or similar clinical manifestations could have different underlying genetic etiologies. While current research interests have shifted toward uncovering rare variants and structural variations predisposing to human diseases, the impact of heterogeneity in genetic studies of complex diseases has been largely overlooked. Most of the existing statistical methods assume the disease under investigation has a homogeneous genetic effect and could, therefore, have low power if the disease undergoes heterogeneous pathophysiological and etiological processes. In this paper, we propose a heterogeneity-weighted U (HWU) method for association analyses considering genetic heterogeneity. HWU can be applied to various types of phenotypes (e.g., binary and continuous) and is computationally efficient for high-dimensional genetic data. Through simulations, we showed the advantage of HWU when the underlying genetic etiology of a disease was heterogeneous, as well as the robustness of HWU against different model assumptions (e.g., phenotype distributions). Using HWU, we conducted a genome-wide analysis of nicotine dependence from the Study of Addiction: Genetics and Environments dataset. The genome-wide analysis of nearly one million genetic markers took 7h, identifying heterogeneous effects of two new genes (i.e., CYP3A5 and IKBKB) on nicotine dependence. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
The role of AMH and its receptor SNP in the pathogenesis of PCOS.
Wang, Fang; Niu, Wen-Bin; Kong, Hui-Juan; Guo, Yi-Hong; Sun, Ying-Pu
2017-01-05
The etiology of polycystic ovaries syndrome (PCOS) is unknown. Studies probing the role of genetic variants of anti-Mullerian hormone (AMH) and its type II receptor (AMHR2) in the pathogenesis of PCOS have yielded inconsistent results. Thus, we performed a systematic review and meta-analysis to determine the role of genetic variants of AMH/AMHR2 in the pathogenesis of PCOS. A systematic search of electronic databases was performed. Statistical analysis was performed using the Comprehensive Meta-Analysis software (Version 3). Pooled Odds Ratios (OR) (95% confidence intervals) were determined to assess the association between genetic variants of AMH/AMHR2 and PCOS. Five studies, involving a total of 2042 PCOS cases and 1071 controls, were included in the meta-analysis. Single nucleotide polymorphisms of AMH and AMHR2 did not appear to confer a heightened risk for PCOS (OR: 0.954, 95% CI: 0.848-1.073; P = 0.435; and OR: 1.074, 95% CI: 0.875-1.318; P = 0.494, respectively). In this study, genetic variants of AMH or AMHR2 were not found to be associated with a higher risk for PCOS. Copyright © 2016. Published by Elsevier Ireland Ltd.
Social network analysis of the genetic structure of Pacific islanders.
Terrell, John Edward
2010-05-01
Social network analysis (SNA) is a body of theory and a set of relatively new computer-aided techniques used in the analysis and study of relational data. Recent studies of autosomal markers from over 40 human populations in the south-western Pacific have further documented the remarkable degree of genetic diversity in this part of the world. I report additional analysis using SNA methods contributing new controlled observations on the structuring of genetic diversity among these islanders. These SNA mappings are then compared with model-based network expectations derived from the geographic distances among the same populations. Previous studies found that genetic divergence among island Melanesian populations is organised by island, island size/topography, and position (coastal vs. inland), and that similarities observed correlate only weakly with an isolation-by-distance model. Using SNA methods, however, improves the resolution of among population comparison, and suggests that isolation by distance constrained by social networks together with position (coastal/inland) accounts for much of the population structuring observed. The multilocus data now available is also in accord with current thinking on the impact of major biogeographical transformations on prehistoric colonisation and post-settlement human interaction in Oceania.
Robinson, Elise B.; Kirby, Andrew; Ruparel, Kosha; Yang, Jian; McGrath, Lauren; Anttila, Verneri; Neale, Benjamin M.; Merikangas, Kathleen; Lehner, Thomas; Sleiman, Patrick M.A.; Daly, Mark J.; Gur, Ruben; Gur, Raquel; Hakonarson, Hakon
2014-01-01
The objective of this analysis was to examine the genetic architecture of diverse cognitive abilities in children and adolescents, including the magnitude of common genetic effects and patterns of shared and unique genetic influences. Subjects included 3,689 members of the Philadelphia Neurodevelopmental Cohort, a general population sample of ages 8-21 years who completed an extensive battery of cognitive tests. We used genome-wide complex trait analysis (GCTA) to estimate the SNP-based heritability of each domain, as well as the genetic correlation between all domains that showed significant genetic influence. Several of the individual domains suggested strong influence of common genetic variants (e.g. reading ability, h2g=0.43, p=4e-06; emotion identification, h2g=0.36, p=1e-05; verbal memory, h2g=0.24, p=0.005). The genetic correlations highlighted trait domains that are candidates for joint interrogation in future genetic studies (e.g. language reasoning and spatial reasoning, r(g)=0.72, p=0.007). These results can be used to structure future genetic and neuropsychiatric investigations of diverse cognitive abilities. PMID:25023143
Genetic parameters and path analysis in cowpea genotypes grown in the Cerrado/Pantanal ecotone.
Lopes, K V; Teodoro, P E; Silva, F A; Silva, M T; Fernandes, R L; Rodrigues, T C; Faria, T C; Corrêa, A M
2017-05-18
Estimating genetic parameters in plant breeding allows us to know the population potential for selecting and designing strategies that can maximize the achievement of superior genotypes. The objective of this study was to evaluate the genetic potential of a population of 20 cowpea genotypes by estimating genetic parameters and path analysis among the traits to guide the selection strategies. The trial was conducted in randomized block design with four replications. Its morphophysiological components, components of green grain production and dry grain yield were estimated from genetic use and correlations between the traits. Phenotypic correlations were deployed through path analysis into direct and indirect effects of morphophysiological traits and yield components on dry grain yield. There were significant differences (P < 0.01) between the genotypes for most the traits, indicating the presence of genetic variability in the population and the possibility of practicing selection. The population presents the potential for future genetic breeding studies and is highly promising for the selection of traits dry grain yield, the number of grains per pod, and hundred grains mass. A number of grains per green pod is the main determinant trait of dry grain yield that is also influenced by the cultivar cycle and that the selection for the dry grain yield can be made indirectly by selecting the green pod mass and green pod length.
Genome-wide analysis of disease progression in age-related macular degeneration.
Yan, Qi; Ding, Ying; Liu, Yi; Sun, Tao; Fritsche, Lars G; Clemons, Traci; Ratnapriya, Rinki; Klein, Michael L; Cook, Richard J; Liu, Yu; Fan, Ruzong; Wei, Lai; Abecasis, Gonçalo R; Swaroop, Anand; Chew, Emily Y; Weeks, Daniel E; Chen, Wei
2018-03-01
Family- and population-based genetic studies have successfully identified multiple disease-susceptibility loci for Age-related macular degeneration (AMD), one of the first batch and most successful examples of genome-wide association study. However, most genetic studies to date have focused on case-control studies of late AMD (choroidal neovascularization or geographic atrophy). The genetic influences on disease progression are largely unexplored. We assembled unique resources to perform a genome-wide bivariate time-to-event analysis to test for association of time-to-late-AMD with ∼9 million variants on 2721 Caucasians from a large multi-center randomized clinical trial, the Age-Related Eye Disease Study. To our knowledge, this is the first genome-wide association study of disease progression (bivariate survival outcome) in AMD genetic studies, thus providing novel insights to AMD genetics. We used a robust Cox proportional hazards model to appropriately account for between-eye correlation when analyzing the progression time in the two eyes of each participant. We identified four previously reported susceptibility loci showing genome-wide significant association with AMD progression: ARMS2-HTRA1 (P = 8.1 × 10-43), CFH (P = 3.5 × 10-37), C2-CFB-SKIV2L (P = 8.1 × 10-10) and C3 (P = 1.2 × 10-9). Furthermore, we detected association of rs58978565 near TNR (P = 2.3 × 10-8), rs28368872 near ATF7IP2 (P = 2.9 × 10-8) and rs142450006 near MMP9 (P = 0.0006) with progression to choroidal neovascularization but not geographic atrophy. Secondary analysis limited to 34 reported risk variants revealed that LIPC and CTRB2-CTRB1 were also associated with AMD progression (P < 0.0015). Our genome-wide analysis thus expands the genetics in both development and progression of AMD and should assist in early identification of high risk individuals.
Genetic structure in four West African population groups
Adeyemo, Adebowale A; Chen, Guanjie; Chen, Yuanxiu; Rotimi, Charles
2005-01-01
Background Africa contains the most genetically divergent group of continental populations and several studies have reported that African populations show a high degree of population stratification. In this regard, it is important to investigate the potential for population genetic structure or stratification in genetic epidemiology studies involving multiple African populations. The presences of genetic sub-structure, if not properly accounted for, have been reported to lead to spurious association between a putative risk allele and a disease. Within the context of the Africa America Diabetes Mellitus (AADM) Study (a genetic epidemiologic study of type 2 diabetes mellitus in West Africa), we have investigated population structure or stratification in four ethnic groups in two countries (Akan and Gaa-Adangbe from Ghana, Yoruba and Igbo from Nigeria) using data from 372 autosomal microsatellite loci typed in 493 unrelated persons (986 chromosomes). Results There was no significant population genetic structure in the overall sample. The smallest probability is associated with an inferred cluster of 1 and little of the posterior probability is associated with a higher number of inferred clusters. The distribution of members of the sample to inferred clusters is consistent with this finding; roughly the same proportion of individuals from each group is assigned to each cluster with little variation between the ethnic groups. Analysis of molecular variance (AMOVA) showed that the between-population component of genetic variance is less than 0.1% in contrast to 99.91% for the within population component. Pair-wise genetic distances between the four ethnic groups were also very similar. Nonetheless, the small between-population genetic variance was sufficient to distinguish the two Ghanaian groups from the two Nigerian groups. Conclusion There was little evidence for significant population substructure in the four major West African ethnic groups represented in the AADM study sample. Ethnicity apparently did not introduce differential allele frequencies that may affect analysis and interpretation of linkage and association studies. These findings, although not entirely surprising given the geographical proximity of these groups, provide important insights into the genetic relationships between the ethnic groups studied and confirm previous results that showed close genetic relationship between most studied West African groups. PMID:15978124
Genetic analysis of PAX3 for diagnosis of Waardenburg syndrome type I.
Matsunaga, Tatsuo; Mutai, Hideki; Namba, Kazunori; Morita, Noriko; Masuda, Sawako
2013-04-01
PAX3 genetic analysis increased the diagnostic accuracy for Waardenburg syndrome type I (WS1). Analysis of the three-dimensional (3D) structure of PAX3 helped verify the pathogenicity of a missense mutation, and multiple ligation-dependent probe amplification (MLPA) analysis of PAX3 increased the sensitivity of genetic diagnosis in patients with WS1. Clinical diagnosis of WS1 is often difficult in individual patients with isolated, mild, or non-specific symptoms. The objective of the present study was to facilitate the accurate diagnosis of WS1 through genetic analysis of PAX3 and to expand the spectrum of known PAX3 mutations. In two Japanese families with WS1, we conducted a clinical evaluation of symptoms and genetic analysis, which involved direct sequencing, MLPA analysis, quantitative PCR of PAX3, and analysis of the predicted 3D structure of PAX3. The normal-hearing control group comprised 92 subjects who had normal hearing according to pure tone audiometry. In one family, direct sequencing of PAX3 identified a heterozygous mutation, p.I59F. Analysis of PAX3 3D structures indicated that this mutation distorted the DNA-binding site of PAX3. In the other family, MLPA analysis and subsequent quantitative PCR detected a large, heterozygous deletion spanning 1759-2554 kb that eliminated 12-18 genes including a whole PAX3 gene.
Genetic Relationships Between Schizophrenia, Bipolar Disorder, and Schizoaffective Disorder
Cardno, Alastair G.
2014-01-01
There is substantial evidence for partial overlap of genetic influences on schizophrenia and bipolar disorder, with family, twin, and adoption studies showing a genetic correlation between the disorders of around 0.6. Results of genome-wide association studies are consistent with commonly occurring genetic risk variants, contributing to both the shared and nonshared aspects, while studies of large, rare chromosomal structural variants, particularly copy number variants, show a stronger influence on schizophrenia than bipolar disorder to date. Schizoaffective disorder has been less investigated but shows substantial familial overlap with both schizophrenia and bipolar disorder. A twin analysis is consistent with genetic influences on schizoaffective episodes being entirely shared with genetic influences on schizophrenic and manic episodes, while association studies suggest the possibility of some relatively specific genetic influences on broadly defined schizoaffective disorder, bipolar subtype. Further insights into genetic relationships between these disorders are expected as studies continue to increase in sample size and in technical and analytical sophistication, information on phenotypes beyond clinical diagnoses are increasingly incorporated, and approaches such as next-generation sequencing identify additional types of genetic risk variant. PMID:24567502
Some Conceptual Deficiencies in "Developmental" Behavior Genetics.
ERIC Educational Resources Information Center
Gottlieb, Gilbert
1995-01-01
Criticizes the application of the statistical procedures of the population-genetic approach within evolutionary biology to the study of psychological development. Argues that the application of the statistical methods of population genetics--primarily the analysis of variance--to the causes of psychological development is bound to result in a…
An analysis of genetic architecture in populations of Ponderosa Pine
Yan B. Linhart; Jeffry B. Mitton; Kareen B. Sturgeon; Martha L. Davis
1981-01-01
Patterns of genetic variation were studied in three populations of ponderosa pine in Colorado by using electrophoretically variable protein loci. Significant genetic differences were found between separate clusters of trees and between age classes within populations. In addition, data indicate that differential cone production and differential animal damage have...
Genetic Analysis of Termite Colonies in Wisconsin
R.A. Arango; D.A. Marschalek; F. Green III; K.F. Raffa; M.E. Berres
2015-01-01
The objective of this study was to document current areas of subterranean termite activity in Wisconsin and to evaluate genetic characteristics of these northern, peripheral colonies. Here, amplified fragment-length polymorphism was used to characterize levels of inbreeding, expected heterozygosity, and percent polymorphism within colonies as well as genetic structure...
Genetics of human body size and shape: body proportions and indices.
Livshits, Gregory; Roset, A; Yakovenko, K; Trofimov, S; Kobyliansky, E
2002-01-01
The study of the genetic component in morphological variables such as body height and weight, head and chest circumference, etc. has a rather long history. However, only a few studies investigated body proportions and configuration. The major aim of the present study was to evaluate the extent of the possible genetic effects on the inter-individual variation of a number of body configuration indices amenable to clear functional interpretation. Two ethnically different pedigree samples were used in the study: (1) Turkmenians (805 individuals) from Central Asia, and (2) Chuvasha (732 individuals) from the Volga riverside, Russian Federation. To achieve the aim of the present study we proposed three new indices, which were subjected to a statistical-genetic analysis using modified version of "FISHER" software. The proposed indices were: (1) an integral index of torso volume (IND#1), an index reflecting a predisposition of body proportions to maintain a balance in a vertical position (IND#2), and an index of skeletal extremities volume (IND#3). Additionally, the first two principal factors (PF1 and PF2) obtained on 19 measurements of body length and breadth were subjected to genetic analysis. Variance decomposition analysis that simultaneously assess the contribution of gender, age, additive genetic effects and effects of environment shared by the nuclear family members, was applied to fit variation of the above three indices, and PF1 and PF2. The raw familial correlation of all study traits and in both samples showed: (1) all marital correlations did not differ significantly from zero; (2) parent-offspring and sibling correlations were all positive and statistically significant. The parameter estimates obtained in variance analyses showed that from 40% to 75% of inter-individual variation of the studied traits (adjusted for age and sex) were attributable to genetic effects. For PF1 and PF2 in both samples, and for IND#2 (in Chuvasha pedigrees), significant common sib environmental effects were also detectable. Genetic factors substantially influence inter-individual differences in body shape and configuration in two studied samples. However, further studies are needed to clarify the extent of pleiotropy and epigenetic effects on various facets of the human physique.
Cui, Di; Li, Jinmei; Tang, Cuifeng; A, Xinxiang; Yu, Tengqiong; Ma, Xiaoding; Zhang, Enlai; Cao, Guilan; Xu, Furong; Qiao, Yongli; Dai, Luyuan; Han, Longzhi
2016-01-01
Diachronic analysis showed no significant changes in the level of genetic diversity occurred over the past 27 years' domestication, which indicated genetic diversity was successfully maintained under on-farm conservation. Rice (Oryza sativa L.) is one of the earliest domesticated crop species. Its genetic diversity has been declining as a result of natural and artificial selection. In this study, we performed the first analysis of the levels and patterns of nucleotide variation in rice genomes under on-farm conservation in Yunnan during a 27-year period of domestication. We performed large-scale sequencing of 600 rice accessions with high diversity, which were collected in 1980 and 2007, using ten unlinked nuclear loci. Diachronic analysis showed no significant changes in the level of genetic diversity occurring over the past 27 years' domestication, which indicated genetic diversity was successfully maintained under on-farm conservation. Population structure revealed that the rice landraces could be grouped into two subpopulations, namely the indica and japonica groups. Interestingly, the alternate distribution of indica and japonica rice landraces could be found in each ecological zone. The results of AMOVA showed that on-farm conservation provides opportunities for continued differentiation and variation of landraces. Therefore, dynamic conservation measures such as on-farm conservation (which is a backup, complementary strategy to ex situ conservation) should be encouraged and enhanced, especially in crop genetic diversity centers. The results of this study offered accurate insights into short-term evolutionary processes and provided a scientific basis for on-farm management practices.
Tian, Tongde; Chen, Chuanliang; Yang, Feng; Tang, Jingwen; Pei, Junwen; Shi, Bian; Zhang, Ning; Zhang, Jianhua
2017-03-01
The paper aimed to screen out genetic markers applicable to early diagnosis for colorectal cancer and establish apoptotic regulatory network model for colorectal cancer, and to analyze the current situation of traditional Chinese medicine (TCM) target, thereby providing theoretical evidence for early diagnosis and targeted therapy of colorectal cancer. Taking databases including CNKI, VIP, Wanfang data, Pub Med, and MEDLINE as main sources of literature retrieval, literatures associated with genetic markers that are applied to early diagnosis of colorectal cancer were searched and performed comprehensive and quantitative analysis by Meta analysis, hence screening genetic markers used in early diagnosis of colorectal cancer. KEGG analysis was employed to establish apoptotic regulatory network model based on screened genetic markers, and optimization was conducted on TCM targets. Through Meta analysis, seven genetic markers were screened out, including WWOX, K-ras, COX-2, P53, APC, DCC and PTEN, among which DCC has the highest diagnostic efficiency. Apoptotic regulatory network was built by KEGG analysis. Currently, it was reported that TCM has regulatory function on gene locus in apoptotic regulatory network. The apoptotic regulatory model of colorectal cancer established in this study provides theoretical evidence for early diagnosis and TCM targeted therapy of colorectal cancer in clinic.
Genetics of the Framingham Heart Study Population
Govindaraju, Diddahally R.; Cupples, L. Adrienne; Kannel, William B.; O’Donnell, Christopher J.; Atwood, Larry D.; D’Agostino, Ralph B.; Fox, Caroline S.; Larson, Marty; Levy, Daniel; Morabito, Joanne; Vasan, Ramachandran S.; Splansky, Greta Lee; Wolf, Philip A.; Benjamin, Emelia J.
2010-01-01
This article provides an introduction to the Framingham Heart Study (FHS) and the genetic research related to cardiovascular diseases conducted in this unique population1. It briefly describes the origins of the study, the risk factors that contribute to heart disease and the approaches taken to discover the genetic basis of some of these risk factors. The genetic architecture of several biological risk factors has been explained using family studies, segregation analysis, heritability, phenotypic and genetic correlations. Many quantitative trait loci underlying cardiovascular diseases have been discovered using different molecular markers. Additionally, results from genome-wide association studies using 100,000 markers, and the prospects of using 550,000 markers for association studies are presented. Finally, the use of this unique sample in genotype and environment interaction is described. PMID:19010253
Li, Sherly X; Ye, Zheng; Whelan, Kevin; Truby, Helen
2016-09-01
Genetic risk prediction of chronic conditions including obesity, diabetes and CVD currently has limited predictive power but its potential to engage healthy behaviour change has been of immense research interest. We aimed to understand whether the latter is indeed true by conducting a systematic review and meta-analysis investigating whether genetic risk communication affects motivation and actual behaviour change towards preventative lifestyle modification. We included all randomised controlled trials (RCT) since 2003 investigating the impact of genetic risk communication on health behaviour to prevent cardiometabolic disease, without restrictions on age, duration of intervention or language. We conducted random-effects meta-analyses for perceived motivation for behaviour change and clinical changes (weight loss) and a narrative analysis for other outcomes. Within the thirteen studies reviewed, five were vignette studies (hypothetical RCT) and seven were clinical RCT. There was no consistent effect of genetic risk on actual motivation for weight loss, perceived motivation for dietary change (control v. genetic risk group standardised mean difference (smd) -0·15; 95 % CI -1·03, 0·73, P=0·74) or actual change in dietary behaviour. Similar results were observed for actual weight loss (control v. high genetic risk SMD 0·29 kg; 95 % CI -0·74, 1·31, P=0·58). This review found no clear or consistent evidence that genetic risk communication alone either raises motivation or translates into actual change in dietary intake or physical activity to reduce the risk of cardiometabolic disorders in adults. Of thirteen studies, eight were at high or unclear risk of bias. Additional larger-scale, high-quality clinical RCT are warranted.
Population and genomic lessons from genetic analysis of two Indian populations.
Juyal, Garima; Mondal, Mayukh; Luisi, Pierre; Laayouni, Hafid; Sood, Ajit; Midha, Vandana; Heutink, Peter; Bertranpetit, Jaume; Thelma, B K; Casals, Ferran
2014-10-01
Indian demographic history includes special features such as founder effects, interpopulation segregation, complex social structure with a caste system and elevated frequency of consanguineous marriages. It also presents a higher frequency for some rare mendelian disorders and in the last two decades increased prevalence of some complex disorders. Despite the fact that India represents about one-sixth of the human population, deep genetic studies from this terrain have been scarce. In this study, we analyzed high-density genotyping and whole-exome sequencing data of a North and a South Indian population. Indian populations show higher differentiation levels than those reported between populations of other continents. In this work, we have analyzed its consequences, by specifically assessing the transferability of genetic markers from or to Indian populations. We show that there is limited genetic marker portability from available genetic resources such as HapMap or the 1,000 Genomes Project to Indian populations, which also present an excess of private rare variants. Conversely, tagSNPs show a high level of portability between the two Indian populations, in contrast to the common belief that North and South Indian populations are genetically very different. By estimating kinship from mates and consanguinity in our data from trios, we also describe different patterns of assortative mating and inbreeding in the two populations, in agreement with distinct mating preferences and social structures. In addition, this analysis has allowed us to describe genomic regions under recent adaptive selection, indicating differential adaptive histories for North and South Indian populations. Our findings highlight the importance of considering demography for design and analysis of genetic studies, as well as the need for extending human genetic variation catalogs to new populations and particularly to those with particular demographic histories.
Bohl, Daniel D; Telles, Connor J; Ruiz, Ferrin K; Badrinath, Raghav; DeLuca, Peter A; Grauer, Jonathan N
2016-04-01
Retrospective cohort. To determine whether a genetic test is associated with successful Providence bracing for adolescent idiopathic scoliosis (AIS). Genetic factors have been defined that predict the risk of progression of AIS in a polygenic fashion. From these data, a commercially available genetic test, ScoliScore, was developed. It is now used in clinical practice for counseling and to guide clinical management. Bracing is a mainstay of treatment for AIS. Large efforts have been made recently to reduce potential confounding across studies of different braces; however, none of these have considered genetics as a potential confounder. In particular, ScoliScore has not been evaluated in a population undergoing bracing. We conducted a retrospective cohort study in which we identified a population of AIS patients who were initiated with Providence bracing and followed over time. Although these patients did not necessarily fit the commercial indications for ScoliScore, we contacted the patients and obtained a saliva sample from each for genetic analysis. We then tested whether ScoliScore correlated with the outcome of their bracing therapy. We were able to contact and invite 25 eligible subjects, of whom 16 (64.0%) returned samples for laboratory analysis. Patients were followed for an average of 2.3 years (range, 1.1-4 y) after initiation of the Providence brace. Eight patients (50.0%) progressed to >45 degrees, whereas the other 8 patients (50.0%) did not. The mean ScoliScore among those who progressed to >45 degrees was higher than that among those who did not (176 vs. 112, P=0.030). We demonstrate that a genetic test correlates with bracing outcome. It may be appropriate for future bracing studies to include analysis of genetic predisposition to limit potential confounding.
PICALM gene rs3851179 polymorphism contributes to Alzheimer's disease in an Asian population.
Liu, Guiyou; Zhang, Shuyan; Cai, Zhiyou; Ma, Guoda; Zhang, Liangcai; Jiang, Yongshuai; Feng, Rennan; Liao, Mingzhi; Chen, Zugen; Zhao, Bin; Li, Keshen
2013-06-01
PICALM gene rs3851179 polymorphism was reported to an Alzheimer's disease (AD) susceptibility locus in a Caucasian population. However, recent studies reported consistent and inconsistent results in an Asian population. Four studies indicated no association between rs3851179 and AD in a Chinese population and one study reported weak association in a Japanese population. We consider that the failure to replicate the significant association between rs3851179 and AD may be caused by at least two reasons. The first reason may be the genetic heterogeneity in AD among different populations, and the second may be the relatively small sample size compared with large-scale GWAS in Caucasian ancestry. In order to confirm this view, in this research, we first evaluated the genetic heterogeneity of rs3851179 polymorphism in Caucasian and Asian populations. We then investigated rs3851179 polymorphism in an Asian population by a pooled analysis method and a meta-analysis method. We did not observe significant genetic heterogeneity of rs3851179 in the Caucasian and Asian populations. Our results indicate that rs3851179 polymorphism is significantly associated with AD in the Asian population by both pooled analysis and meta-analysis methods. We believe that our findings will be very useful for future genetic studies in AD.
Márquez, Ana; Ferreiro-Iglesias, Aida; Dávila-Fajardo, Cristina L; Montes, Ariana; Pascual-Salcedo, Dora; Perez-Pampin, Eva; Moreno-Ramos, Manuel J; García-Portales, Rosa; Navarro, Federico; Moreira, Virginia; Magro, César; Caliz, Rafael; Ferrer, Miguel Angel; Alegre-Sancho, Juan José; Joven, Beatriz; Carreira, Patricia; Balsa, Alejandro; Vasilopoulos, Yiannis; Sarafidou, Theologia; Cabeza-Barrera, José; Narvaez, Javier; Raya, Enrique; Cañete, Juan D; Fernández-Nebro, Antonio; Ordóñez, María del Carmen; de la Serna, Arturo R; Magallares, Berta; Gomez-Reino, Juan J; González, Antonio; Martín, Javier
2014-03-11
In this study, our aim was to elucidate the role of four polymorphisms identified in a prior large genome-wide association study (GWAS) in which the investigators analyzed the responses of patients with rheumatoid arthritis (RA) to treatment with tumor necrosis factor inhibitors (TNFi). The authors of that study reported that the four genetic variants were significantly associated. However, none of the associations reached GWAS significance, and two subsequent studies failed to replicate these associations. The four polymorphisms (rs12081765, rs1532269, rs17301249 and rs7305646) were genotyped in a total of 634 TNFi-treated RA patients of Spanish Caucasian origin. Four outcomes were evaluated: changes in the Disease Activity Score in 28 joints (DAS28) after 6 and 12 months of treatment and classification according to the European League Against Rheumatism (EULAR) response criteria at the same time points. Association with DAS28 changes was assessed by linear regression using an additive genetic model. Contingency tables of genotype and allele frequencies between EULAR responder and nonresponder patients were compared. In addition, we combined our data with those of previously reported studies in a meta-analysis including 2,998 RA patients. None of the four genetic variants showed an association with response to TNFi in any of the four outcomes analyzed in our Spanish patients. In addition, only rs1532269 yielded a suggestive association (P = 0.0033) with the response to TNFi when available data from previous studies were combined in the meta-analysis. Our data suggest that the rs12081765, rs1532269, rs17301249 and rs7305646 genetic variants do not have a role as genetic predictors of TNFi treatment outcomes.
Raji, J. A.; Atkinson, Carter T.
2016-01-01
The distribution and amount of genetic variation within and between populations of plant species are important for their adaptability to future habitat changes and also critical for their restoration and overall management. This study was initiated to assess the genetic status of the remnant population of Melicope zahlbruckneri–a critically endangered species in Hawaii, and determine the extent of genetic variation and diversity in order to propose valuable conservation approaches. Estimated genetic structure of individuals based on molecular marker allele frequencies identified genetic groups with low overall differentiation but identified the most genetically diverse individuals within the population. Analysis of Amplified Fragment Length Polymorphic (AFLP) marker loci in the population based on Bayesian model and multivariate statistics classified the population into four subgroups. We inferred a mixed species population structure based on Bayesian clustering and frequency of unique alleles. The percentage of Polymorphic Fragment (PPF) ranged from 18.8 to 64.6% for all marker loci with an average of 54.9% within the population. Inclusion of all surviving M. zahlbruckneri trees in future restorative planting at new sites are suggested, and approaches for longer term maintenance of genetic variability are discussed. To our knowledge, this study represents the first report of molecular genetic analysis of the remaining population of M. zahlbruckneri and also illustrates the importance of genetic variability for conservation of a small endangered population.
Liu, Guiyou; Zhang, Fang; Jiang, Yongshuai; Hu, Yang; Gong, Zhongying; Liu, Shoufeng; Chen, Xiuju; Jiang, Qinghua; Hao, Junwei
2017-02-01
Much effort has been expended on identifying the genetic determinants of multiple sclerosis (MS). Existing large-scale genome-wide association study (GWAS) datasets provide strong support for using pathway and network-based analysis methods to investigate the mechanisms underlying MS. However, no shared genetic pathways have been identified to date. We hypothesize that shared genetic pathways may indeed exist in different MS-GWAS datasets. Here, we report results from a three-stage analysis of GWAS and expression datasets. In stage 1, we conducted multiple pathway analyses of two MS-GWAS datasets. In stage 2, we performed a candidate pathway analysis of the large-scale MS-GWAS dataset. In stage 3, we performed a pathway analysis using the dysregulated MS gene list from seven human MS case-control expression datasets. In stage 1, we identified 15 shared pathways. In stage 2, we successfully replicated 14 of these 15 significant pathways. In stage 3, we found that dysregulated MS genes were significantly enriched in 10 of 15 MS risk pathways identified in stages 1 and 2. We report shared genetic pathways in different MS-GWAS datasets and highlight some new MS risk pathways. Our findings provide new insights on the genetic determinants of MS.
Relationship between polycystic ovary syndrome and ancestry in European Americans.
Bjonnes, Andrew C; Saxena, Richa; Welt, Corrine K
2016-12-01
To determine whether European Americans with polycystic ovary syndrome (PCOS) exhibit genetic differences associated with PCOS status and phenotypic features. Case-control association study in European Americans. Academic center. Women with PCOS diagnosed with the use of the National Institutes of Health criteria (n = 532) and control women with regular menstrual cycles and no evidence of hyperandrogenism (n = 432). Blood was drawn for measurement of sex steroids, metabolic parameters, and genotyping. Associations among PCOS status, phenotype, and genetic background identified with the use of principal component analysis. Principal component analysis identified five principal components (PCs). PC1 captured northwest-to-southeast European genetic variation and was associated with PCOS status. Acanthosis was associated with southern European ancestry, and larger waist:hip ratio was associated with northern European ancestry. PC2 was associated with east-to-west European genetic variation and cholesterol levels. These data provide evidence for genetic influence based on European ethnicity in women with PCOS. There is also evidence for a genetic component in the phenotypic features of PCOS within a mixed European population. The data point to the need to control for population stratification in genetic studies in women of mixed European ethnicity. They also emphasize the need for better studies of PCOS prevalence and phenotype as a function of genetic background. Copyright © 2016 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
Nazarian, Alireza; Gezan, Salvador A
2016-03-01
The study of genetic architecture of complex traits has been dramatically influenced by implementing genome-wide analytical approaches during recent years. Of particular interest are genomic prediction strategies which make use of genomic information for predicting phenotypic responses instead of detecting trait-associated loci. In this work, we present the results of a simulation study to improve our understanding of the statistical properties of estimation of genetic variance components of complex traits, and of additive, dominance, and genetic effects through best linear unbiased prediction methodology. Simulated dense marker information was used to construct genomic additive and dominance matrices, and multiple alternative pedigree- and marker-based models were compared to determine if including a dominance term into the analysis may improve the genetic analysis of complex traits. Our results showed that a model containing a pedigree- or marker-based additive relationship matrix along with a pedigree-based dominance matrix provided the best partitioning of genetic variance into its components, especially when some degree of true dominance effects was expected to exist. Also, we noted that the use of a marker-based additive relationship matrix along with a pedigree-based dominance matrix had the best performance in terms of accuracy of correlations between true and estimated additive, dominance, and genetic effects. © The American Genetic Association 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Gemenetzi, M; Yang, Y; Lotery, A J
2012-01-01
Glaucoma is a common, complex, heterogenous disease and it constitutes the major cause of irreversible blindness worldwide. Primary open-angle glaucoma (POAG) is the most common type of glaucoma in all populations. Most of the molecular mechanisms leading to POAG development are still unknown. Gene mutations in various populations have been identified by genetic studies and a genetic basis for glaucoma pathogenesis has been established. Linkage analysis and association studies are genetic approaches in the investigation of the genetic basis of POAG. Genome-wide association studies (GWAS) are more powerful compared with linkage analysis in discovering genes of small effect that might contribute to the development of the disease. POAG links to at least 20 genetic loci, but only 2 genes identified in these loci, myocilin and optineurin, are considered as well-established glaucoma-causing genes, whereas the role of other loci, genes, and variants implicated in the development of POAG remains controversial. Gene mutations associated with POAG result in retinal ganglion cell death, which is the common outcome of pathogenetic mechanisms in glaucoma. In future, if the sensitivity and specificity of genotyping increases, it may be possible to screen individuals routinely for disease susceptibility. This review is an update on the latest progress of genetic studies associated with POAG. It emphasizes the correlation of recent achievements in genetics with glaucoma pathophysiology, glaucoma treatment perspectives, and the possibility of future prevention of irreversible visual loss caused by the disease. PMID:22173078
Structure-function analysis of genetically defined neuronal populations.
Groh, Alexander; Krieger, Patrik
2013-10-01
Morphological and functional classification of individual neurons is a crucial aspect of the characterization of neuronal networks. Systematic structural and functional analysis of individual neurons is now possible using transgenic mice with genetically defined neurons that can be visualized in vivo or in brain slice preparations. Genetically defined neurons are useful for studying a particular class of neurons and also for more comprehensive studies of the neuronal content of a network. Specific subsets of neurons can be identified by fluorescence imaging of enhanced green fluorescent protein (eGFP) or another fluorophore expressed under the control of a cell-type-specific promoter. The advantages of such genetically defined neurons are not only their homogeneity and suitability for systematic descriptions of networks, but also their tremendous potential for cell-type-specific manipulation of neuronal networks in vivo. This article describes a selection of procedures for visualizing and studying the anatomy and physiology of genetically defined neurons in transgenic mice. We provide information about basic equipment, reagents, procedures, and analytical approaches for obtaining three-dimensional (3D) cell morphologies and determining the axonal input and output of genetically defined neurons. We exemplify with genetically labeled cortical neurons, but the procedures are applicable to other brain regions with little or no alterations.
The use of archived tags in retrospective genetic analysis of fish.
Bonanomi, Sara; Therkildsen, Nina Overgaard; Hedeholm, Rasmus Berg; Hemmer-Hansen, Jakob; Nielsen, Einar E
2014-05-01
Collections of historical tissue samples from fish (e.g. scales and otoliths) stored in museums and fisheries institutions are precious sources of DNA for conducting retrospective genetic analysis. However, in some cases, only external tags used for documentation of spatial dynamics of fish populations have been preserved. Here, we test the usefulness of fish tags as a source of DNA for genetic analysis. We extract DNA from historical tags from cod collected in Greenlandic waters between 1950 and 1968. We show that the quantity and quality of DNA recovered from tags is comparable to DNA from archived otoliths from the same individuals. Surprisingly, levels of cross-contamination do not seem to be significantly higher in DNA from external (tag) than internal (otolith) sources. Our study therefore demonstrates that historical tags can be a highly valuable source of DNA for retrospective genetic analysis of fish. © 2013 John Wiley & Sons Ltd.
Sample size requirements for indirect association studies of gene-environment interactions (G x E).
Hein, Rebecca; Beckmann, Lars; Chang-Claude, Jenny
2008-04-01
Association studies accounting for gene-environment interactions (G x E) may be useful for detecting genetic effects. Although current technology enables very dense marker spacing in genetic association studies, the true disease variants may not be genotyped. Thus, causal genes are searched for by indirect association using genetic markers in linkage disequilibrium (LD) with the true disease variants. Sample sizes needed to detect G x E effects in indirect case-control association studies depend on the true genetic main effects, disease allele frequencies, whether marker and disease allele frequencies match, LD between loci, main effects and prevalence of environmental exposures, and the magnitude of interactions. We explored variables influencing sample sizes needed to detect G x E, compared these sample sizes with those required to detect genetic marginal effects, and provide an algorithm for power and sample size estimations. Required sample sizes may be heavily inflated if LD between marker and disease loci decreases. More than 10,000 case-control pairs may be required to detect G x E. However, given weak true genetic main effects, moderate prevalence of environmental exposures, as well as strong interactions, G x E effects may be detected with smaller sample sizes than those needed for the detection of genetic marginal effects. Moreover, in this scenario, rare disease variants may only be detectable when G x E is included in the analyses. Thus, the analysis of G x E appears to be an attractive option for the detection of weak genetic main effects of rare variants that may not be detectable in the analysis of genetic marginal effects only.
Microsatellite diversity among the primitive tribes of India
Mukherjee, Malay B.; Tripathy, V.; Colah, R. B.; Solanki, P. K.; Ghosh, K.; Reddy, B. M.; Mohanty, D.
2009-01-01
The present study was undertaken to determine the extent of diversity at 12 microsatellite short tandem repeat (STR) loci in seven primitive tribal populations of India with diverse linguistic and geographic backgrounds. DNA samples of 160 unrelated individuals were analyzed for 12 STR loci by multiplex polymerase chain reaction (PCR). Gene diversity analysis suggested that the average heterozygosity was uniformly high ( >0.7) in these groups and varied from 0.705 to 0.794. The Hardy-Weinberg equilibrium analysis revealed that these populations were in genetic equilibrium at almost all the loci. The overall GST value was high (GST = 0.051; range between 0.026 and 0.098 among the loci), reflecting the degree of differentiation/heterogeneity of seven populations studied for these loci. The cluster analysis and multidimensional scaling of genetic distances reveal two broad clusters of populations, besides Moolu Kurumba maintaining their distinct genetic identity vis-à-vis other populations. The genetic affinity for the three tribes of the Indo-European family could be explained based on geography and Language but not for the four Dravidian tribes as reflected by the NJT and MDS plots. For the overall data, the insignificant MANTEL correlations between genetic, linguistic and geographic distances suggest that the genetic variation among these tribes is not patterned along geographic and/or linguistic lines. PMID:21088716
Liu, Yao-Shun; Chen, Jian-Gang; Mei, Ting; Guo, Yu-Xin; Meng, Hao-Tian; Li, Jian-Fei; Wei, Yuan-Yuan; Jin, Xiao-Ye; Zhu, Bo-Feng; Zhang, Li-Ping
2017-08-15
We analyzed the genetic polymorphisms of 15 autosomal and 10 Y-chromosomal STR loci in 214 individuals of Han population from Southern Shaanxi of China and studied the genetic relationships between Southern Shaanxi Han and other populations. We observed a total of 150 alleles at 15 autosomal STR loci with the corresponding allelic frequencies ranging from 0.0023 to 0.5210, and the combined power of discrimination and exclusion for the 15 autosomal STR loci were 0.99999999999999998866 and 0.999998491, respectively. For the 10 Y-STR loci, totally 100 different haplotypes were obtained, of which 94 were unique. The discriminatory capacity and haplotype diversity values of the 10 Y-STR loci were 0.9259 and 0.998269, respectively. The results demonstrated high genetic diversities of the 25 STR loci in the population for forensic applications. We constructed neighbor-joining tree and conducted principal component analysis based on 15 autosomal STR loci and conducted multidimensional scaling analysis and constructed neighbor-joining tree based on 10 Y-STR loci. The results of population genetic analyses based on both autosomal and Y-chromosome STRs indicated that the studied Southern Shaanxi Han population had relatively closer genetic relationship with Eastern Han population, and distant relationships with Croatian, Serbian and Moroccan populations.
Vasilopoulos, Terrie; Franz, Carol E; Panizzon, Matthew S; Xian, Hong; Grant, Michael D; Lyons, Michael J; Toomey, Rosemary; Jacobson, Kristen C; Kremen, William S
2012-03-01
To examine how genes and environments contribute to relationships among Trail Making Test (TMT) conditions and the extent to which these conditions have unique genetic and environmental influences. Participants included 1,237 middle-aged male twins from the Vietnam Era Twin Study of Aging. The Delis-Kaplan Executive Function System TMT included visual searching, number and letter sequencing, and set-shifting components. Phenotypic correlations among TMT conditions ranged from 0.29 to 0.60, and genes accounted for the majority (58-84%) of each correlation. Overall heritability ranged from 0.34 to 0.62 across conditions. Phenotypic factor analysis suggested a single factor. In contrast, genetic models revealed a single common genetic factor but also unique genetic influences separate from the common factor. Genetic variance (i.e., heritability) of number and letter sequencing was completely explained by the common genetic factor while unique genetic influences separate from the common factor accounted for 57% and 21% of the heritabilities of visual search and set shifting, respectively. After accounting for general cognitive ability, unique genetic influences accounted for 64% and 31% of those heritabilities. A common genetic factor, most likely representing a combination of speed and sequencing, accounted for most of the correlation among TMT 1-4. Distinct genetic factors, however, accounted for a portion of variance in visual scanning and set shifting. Thus, although traditional phenotypic shared variance analysis techniques suggest only one general factor underlying different neuropsychological functions in nonpatient populations, examining the genetic underpinnings of cognitive processes with twin analysis can uncover more complex etiological processes.
Monogenic Mouse Models of Autism Spectrum Disorders: Common Mechanisms and Missing Links
Hulbert, Samuel W.; Jiang, Yong-hui
2016-01-01
Autism Spectrum Disorders (ASDs) present unique challenges in the fields of genetics and neurobiology because of the clinical and molecular heterogeneity underlying these disorders. Genetic mutations found in ASD patients provide opportunities to dissect the molecular and circuit mechanisms underlying autistic behaviors using animal models. Ongoing studies of genetically modified models have offered critical insight into possible common mechanisms arising from different mutations, but links between molecular abnormalities and behavioral phenotypes remain elusive. The challenges encountered in modeling autism in mice demand a new analytic paradigm that integrates behavioral analysis with circuit-level analysis in genetically modified models with strong construct validity. PMID:26733386
Genetic basis of male sexual behavior.
Emmons, Scott W; Lipton, Jonathan
2003-01-01
Male sexual behavior is increasingly the focus of genetic study in a variety of animals. Genetic analysis in the soil roundworm Caenorhabditis elegans and the fruit fly Drosophila melanogaster has lead to identification of genes and circuits that govern behaviors ranging from motivation and mate-searching to courtship and copulation. Some worm and fly genes have counterparts with related functions in higher animals and many more such correspondences can be expected. Analysis of mutations in mammals can potentially lead to insights into such issues as monogamous versus promiscuous sexual behavior and sexual orientation. Genetic analysis of sexual behavior has implications for understanding how the nervous system generates and controls a complex behavior. It can also help us to gain an appreciation of how behavior is encoded by genes and their regulatory sequences. Copyright 2003 Wiley Periodicals, Inc.
The complex genetics of gait speed: genome-wide meta-analysis approach
Lunetta, Kathryn L.; Smith, Jennifer A.; Eicher, John D.; Vered, Rotem; Deelen, Joris; Arnold, Alice M.; Buchman, Aron S.; Tanaka, Toshiko; Faul, Jessica D.; Nethander, Maria; Fornage, Myriam; Adams, Hieab H.; Matteini, Amy M.; Callisaya, Michele L.; Smith, Albert V.; Yu, Lei; De Jager, Philip L.; Evans, Denis A.; Gudnason, Vilmundur; Hofman, Albert; Pattie, Alison; Corley, Janie; Launer, Lenore J.; Knopman, Davis S.; Parimi, Neeta; Turner, Stephen T.; Bandinelli, Stefania; Beekman, Marian; Gutman, Danielle; Sharvit, Lital; Mooijaart, Simon P.; Liewald, David C.; Houwing-Duistermaat, Jeanine J.; Ohlsson, Claes; Moed, Matthijs; Verlinden, Vincent J.; Mellström, Dan; van der Geest, Jos N.; Karlsson, Magnus; Hernandez, Dena; McWhirter, Rebekah; Liu, Yongmei; Thomson, Russell; Tranah, Gregory J.; Uitterlinden, Andre G.; Weir, David R.; Zhao, Wei; Starr, John M.; Johnson, Andrew D.; Ikram, M. Arfan; Bennett, David A.; Cummings, Steven R.; Deary, Ian J.; Harris, Tamara B.; Kardia, Sharon L. R.; Mosley, Thomas H.; Srikanth, Velandai K.; Windham, Beverly G.; Newman, Ann B.; Walston, Jeremy D.; Davies, Gail; Evans, Daniel S.; Slagboom, Eline P.; Ferrucci, Luigi; Kiel, Douglas P.; Murabito, Joanne M.; Atzmon, Gil
2017-01-01
Emerging evidence suggests that the basis for variation in late-life mobility is attributable, in part, to genetic factors, which may become increasingly important with age. Our objective was to systematically assess the contribution of genetic variation to gait speed in older individuals. We conducted a meta-analysis of gait speed GWASs in 31,478 older adults from 17 cohorts of the CHARGE consortium, and validated our results in 2,588 older adults from 4 independent studies. We followed our initial discoveries with network and eQTL analysis of candidate signals in tissues. The meta-analysis resulted in a list of 536 suggestive genome wide significant SNPs in or near 69 genes. Further interrogation with Pathway Analysis placed gait speed as a polygenic complex trait in five major networks. Subsequent eQTL analysis revealed several SNPs significantly associated with the expression of PRSS16, WDSUB1 and PTPRT, which in addition to the meta-analysis and pathway suggested that genetic effects on gait speed may occur through synaptic function and neuronal development pathways. No genome-wide significant signals for gait speed were identified from this moderately large sample of older adults, suggesting that more refined physical function phenotypes will be needed to identify the genetic basis of gait speed in aging. PMID:28077804
Tansey, Katherine E; Guipponi, Michel; Perroud, Nader; Bondolfi, Guido; Domenici, Enrico; Evans, David; Hall, Stephanie K; Hauser, Joanna; Henigsberg, Neven; Hu, Xiaolan; Jerman, Borut; Maier, Wolfgang; Mors, Ole; O'Donovan, Michael; Peters, Tim J; Placentino, Anna; Rietschel, Marcella; Souery, Daniel; Aitchison, Katherine J; Craig, Ian; Farmer, Anne; Wendland, Jens R; Malafosse, Alain; Holmans, Peter; Lewis, Glyn; Lewis, Cathryn M; Stensbøl, Tine Bryan; Kapur, Shitij; McGuffin, Peter; Uher, Rudolf
2012-01-01
It has been suggested that outcomes of antidepressant treatment for major depressive disorder could be significantly improved if treatment choice is informed by genetic data. This study aims to test the hypothesis that common genetic variants can predict response to antidepressants in a clinically meaningful way. The NEWMEDS consortium, an academia-industry partnership, assembled a database of over 2,000 European-ancestry individuals with major depressive disorder, prospectively measured treatment outcomes with serotonin reuptake inhibiting or noradrenaline reuptake inhibiting antidepressants and available genetic samples from five studies (three randomized controlled trials, one part-randomized controlled trial, and one treatment cohort study). After quality control, a dataset of 1,790 individuals with high-quality genome-wide genotyping provided adequate power to test the hypotheses that antidepressant response or a clinically significant differential response to the two classes of antidepressants could be predicted from a single common genetic polymorphism. None of the more than half million genetic markers significantly predicted response to antidepressants overall, serotonin reuptake inhibitors, or noradrenaline reuptake inhibitors, or differential response to the two types of antidepressants (genome-wide significance p<5×10(-8)). No biological pathways were significantly overrepresented in the results. No significant associations (genome-wide significance p<5×10(-8)) were detected in a meta-analysis of NEWMEDS and another large sample (STAR*D), with 2,897 individuals in total. Polygenic scoring found no convergence among multiple associations in NEWMEDS and STAR*D. No single common genetic variant was associated with antidepressant response at a clinically relevant level in a European-ancestry cohort. Effects specific to particular antidepressant drugs could not be investigated in the current study. Please see later in the article for the Editors' Summary.
Trejo, Laura; Alvarado-Cárdenas, Leonardo O; Scheinvar, Enrique; Eguiarte, Luis E
2016-06-01
Is there an association between bioclimatic variables and genetic variation within species? This question can be approached by a detailed analysis of population genetics parameters along environmental gradients in recently originated species (so genetic drift does not further obscure the patterns). The genus Agave, with more than 200 recent species encompassing a diversity of morphologies and distributional patterns, is an adequate system for such analyses. We studied Agave striata, a widely distributed species from the Chihuahuan Desert, with a distinctive iteroparous reproductive ecology and two recognized subspecies with clear morphological differences. We used population genetic analyses along with bioclimatic studies to understand the effect of environment on the genetic variation and differentiation of this species. We analyzed six populations of the subspecies A. striata subsp. striata, with a southern distribution, and six populations of A. striata subsp. falcata, with a northern distribution, using 48 ISSR loci and a total of 541 individuals (averaging 45 individuals per population). We assessed correlations between population genetics parameters (the levels of genetic variation and differentiation) and the bioclimatic variables of each population. We modeled each subspecies distribution and used linear correlations and multifactorial analysis of variance. Genetic variation (measured as expected heterozygosity) increased at higher latitudes. Higher levels of genetic variation in populations were associated with a higher variation in environmental temperature and lower precipitation. Stronger population differentiation was associated with wetter and more variable precipitation in the southern distribution of the species. The two subspecies have genetic differences, which coincide with their climatic differences and potential distributions. Differences in genetic variation among populations and the genetic differentiation between A. striata subsp. striata and A. striata subsp. falcata is correlated with differences in environmental climatic variables along their distribution. We found two distinct gene pools that suggest active differentiation and perhaps incipient speciation. The detected association between genetic variation and environment variables indicates that climatic variables are playing an important role in the differentiation of A. striata. © 2016 Botanical Society of America.
Smoking and caffeine consumption: a genetic analysis of their association.
Treur, Jorien L; Taylor, Amy E; Ware, Jennifer J; Nivard, Michel G; Neale, Michael C; McMahon, George; Hottenga, Jouke-Jan; Baselmans, Bart M L; Boomsma, Dorret I; Munafò, Marcus R; Vink, Jacqueline M
2017-07-01
Smoking and caffeine consumption show a strong positive correlation, but the mechanism underlying this association is unclear. Explanations include shared genetic/environmental factors or causal effects. This study employed three methods to investigate the association between smoking and caffeine. First, bivariate genetic models were applied to data of 10 368 twins from the Netherlands Twin Register in order to estimate genetic and environmental correlations between smoking and caffeine use. Second, from the summary statistics of meta-analyses of genome-wide association studies on smoking and caffeine, the genetic correlation was calculated by LD-score regression. Third, causal effects were tested using Mendelian randomization analysis in 6605 Netherlands Twin Register participants and 5714 women from the Avon Longitudinal Study of Parents and Children. Through twin modelling, a genetic correlation of r0.47 and an environmental correlation of r0.30 were estimated between current smoking (yes/no) and coffee use (high/low). Between current smoking and total caffeine use, this was r0.44 and r0.00, respectively. LD-score regression also indicated sizeable genetic correlations between smoking and coffee use (r0.44 between smoking heaviness and cups of coffee per day, r0.28 between smoking initiation and coffee use and r0.25 between smoking persistence and coffee use). Consistent with the relatively high genetic correlations and lower environmental correlations, Mendelian randomization provided no evidence for causal effects of smoking on caffeine or vice versa. Genetic factors thus explain most of the association between smoking and caffeine consumption. These findings suggest that quitting smoking may be more difficult for heavy caffeine consumers, given their genetic susceptibility. © 2016 The Authors.Addiction Biology published by John Wiley & Sons Ltd on behalf of Society for the Study of Addiction.
NASA Astrophysics Data System (ADS)
Bakar, Mohamad-Azam Akmal Abu; Rovie-Ryan, Jeffrine Japning; Ampeng, Ahmad; Yaakop, Salmah; Nor, Shukor Md; Md-Zain, Badrul Munir
2018-04-01
Mousedeer is one of the primitive mammals that can be found mainly in Southeast-Asia region. There are two species of mousedeer in Malaysia which are Tragulus kanchil and Tragulus napu. Both species can be distinguish by size, coat coloration, and throat pattern but clear diagnosis still cannot be found. The objective of the study is to show the genetic distance relationship between T. kanchil and T. napu and their population based on mitochondrial DNA (mtDNA) cytochrome oxidase I (COI) and D-loop region. There are 42 sample of mousedeer were used in this study collected by PERHILITAN from different locality. Another 29 D-loop sequence were retrieved from Genbank for comparative analysis. All sample were amplified using universal primer and species-specific primer for COI and D-loop genes via PCR process. The amplified sequences were analyzed to determine genetic distance of T. kanchil and T. napu. From the analysis, the average genetic distance between T. kanchil and T. napu based on locus COI and D-loop were 0.145 and 0.128 respectively. The genetic distance between populations of T. kanchil based on locus COI was between 0.003-0.013. For locus D-loop, genetic distance analysis showed distance in relationship between west-coast populations to east-coast population of T. kanchil. COI and D-loop mtDNA region provided a clear picture on the relationship within the mousedeer species. Last but not least, conservation effort toward protecting this species can be done by study the molecular genetics and prevent the extinction of this species.
Bogenpohl, James W; Mignogna, Kristin M; Smith, Maren L; Miles, Michael F
2017-01-01
Complex behavioral traits, such as alcohol abuse, are caused by an interplay of genetic and environmental factors, producing deleterious functional adaptations in the central nervous system. The long-term behavioral consequences of such changes are of substantial cost to both the individual and society. Substantial progress has been made in the last two decades in understanding elements of brain mechanisms underlying responses to ethanol in animal models and risk factors for alcohol use disorder (AUD) in humans. However, treatments for AUD remain largely ineffective and few medications for this disease state have been licensed. Genome-wide genetic polymorphism analysis (GWAS) in humans, behavioral genetic studies in animal models and brain gene expression studies produced by microarrays or RNA-seq have the potential to produce nonbiased and novel insight into the underlying neurobiology of AUD. However, the complexity of such information, both statistical and informational, has slowed progress toward identifying new targets for intervention in AUD. This chapter describes one approach for integrating behavioral, genetic, and genomic information across animal model and human studies. The goal of this approach is to identify networks of genes functioning in the brain that are most relevant to the underlying mechanisms of a complex disease such as AUD. We illustrate an example of how genomic studies in animal models can be used to produce robust gene networks that have functional implications, and to integrate such animal model genomic data with human genetic studies such as GWAS for AUD. We describe several useful analysis tools for such studies: ComBAT, WGCNA, and EW_dmGWAS. The end result of this analysis is a ranking of gene networks and identification of their cognate hub genes, which might provide eventual targets for future therapeutic development. Furthermore, this combined approach may also improve our understanding of basic mechanisms underlying gene x environmental interactions affecting brain functioning in health and disease.
Bogenpohl, James W.; Mignogna, Kristin M.; Smith, Maren L.; Miles, Michael F.
2016-01-01
Complex behavioral traits, such as alcohol abuse, are caused by an interplay of genetic and environmental factors, producing deleterious functional adaptations in the central nervous system. The long-term behavioral consequences of such changes are of substantial cost to both the individual and society. Substantial progress has been made in the last two decades in understanding elements of brain mechanisms underlying responses to ethanol in animal models and risk factors for alcohol use disorder (AUD) in humans. However, treatments for AUD remain largely ineffective and few medications for this disease state have been licensed. Genome-wide genetic polymorphism analysis (GWAS) in humans, behavioral genetic studies in animal models and brain gene expression studies produced by microarrays or RNA-seq have the potential to produce non-biased and novel insight into the underlying neurobiology of AUD. However, the complexity of such information, both statistical and informational, has slowed progress toward identifying new targets for intervention in AUD. This chapter describes one approach for integrating behavioral, genetic, and genomic information across animal model and human studies. The goal of this approach is to identify networks of genes functioning in the brain that are most relevant to the underlying mechanisms of a complex disease such as AUD. We illustrate an example of how genomic studies in animal models can be used to produce robust gene networks that have functional implications, and to integrate such animal model genomic data with human genetic studies such as GWAS for AUD. We describe several useful analysis tools for such studies: ComBAT, WGCNA and EW_dmGWAS. The end result of this analysis is a ranking of gene networks and identification of their cognate hub genes, which might provide eventual targets for future therapeutic development. Furthermore, this combined approach may also improve our understanding of basic mechanisms underlying gene x environmental interactions affecting brain functioning in health and disease. PMID:27933543
Blokland, Gabriëlla A M; Mesholam-Gately, Raquelle I; Toulopoulou, Timothea; Del Re, Elisabetta C; Lam, Max; DeLisi, Lynn E; Donohoe, Gary; Walters, James T R; Seidman, Larry J; Petryshen, Tracey L
2017-07-01
Schizophrenia is characterized by neuropsychological deficits across many cognitive domains. Cognitive phenotypes with high heritability and genetic overlap with schizophrenia liability can help elucidate the mechanisms leading from genes to psychopathology. We performed a meta-analysis of 170 published twin and family heritability studies of >800 000 nonpsychiatric and schizophrenia subjects to accurately estimate heritability across many neuropsychological tests and cognitive domains. The proportion of total variance of each phenotype due to additive genetic effects (A), shared environment (C), and unshared environment and error (E), was calculated by averaging A, C, and E estimates across studies and weighting by sample size. Heritability ranged across phenotypes, likely due to differences in genetic and environmental effects, with the highest heritability for General Cognitive Ability (32%-67%), Verbal Ability (43%-72%), Visuospatial Ability (20%-80%), and Attention/Processing Speed (28%-74%), while the lowest heritability was observed for Executive Function (20%-40%). These results confirm that many cognitive phenotypes are under strong genetic influences. Heritability estimates were comparable in nonpsychiatric and schizophrenia samples, suggesting that environmental factors and illness-related moderators (eg, medication) do not substantially decrease heritability in schizophrenia samples, and that genetic studies in schizophrenia samples are informative for elucidating the genetic basis of cognitive deficits. Substantial genetic overlap between cognitive phenotypes and schizophrenia liability (average rg = -.58) in twin studies supports partially shared genetic etiology. It will be important to conduct comparative studies in well-powered samples to determine whether the same or different genes and genetic variants influence cognition in schizophrenia patients and the general population. © The Author 2016. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Shukla, Sudhir; Bhargava, Atul; Chatterjee, Avijeet; Pandey, Avinash Chandra; Mishra, Brij K
2010-01-15
Assessment of genetic diversity in a crop-breeding programme helps in the identification of diverse parental combinations to create segregating progenies with maximum genetic variability and facilitates introgression of desirable genes from diverse germplasm into the available genetic base. In the present study, 39 strains of vegetable amaranth (Amaranthus tricolor) were evaluated for eight morphological and seven quality traits for two test seasons to study the extent of genetic divergence among the strains. Multivariate analysis showed that the first four principal components contributed 67.55% of the variability. Cluster analysis grouped the strains into six clusters that displayed a wide range of diversity for most of the traits. Cluster analysis has proved to be an effective method in grouping strains that may facilitate effective management and utilisation in crop-breeding programmes. The diverse strains falling in different clusters were identified, which can be utilised in different hybridisation programmes to develop high-foliage-yielding varieties rich in nutritional components. Copyright (c) 2009 Society of Chemical Industry.
A Critical Analysis of IQ Studies of Adopted Children
ERIC Educational Resources Information Center
Richardson, Ken; Norgate, Sarah H.
2006-01-01
The pattern of parent-child correlations in adoption studies has long been interpreted to suggest substantial additive genetic variance underlying variance in IQ. The studies have frequently been criticized on methodological grounds, but those criticisms have not reflected recent perspectives in genetics and developmental theory. Here we apply…
Yang, Xiaohui; Wei, Zunzheng; Du, Qingzhang; Chen, Jinhui; Wang, Qingshi; Quan, Mingyang; Song, Yuepeng; Xie, Jianbo; Zhang, Deqiang
2015-11-09
Transcription factors (TFs) regulate gene expression and can strongly affect phenotypes. However, few studies have examined TF variants and TF interactions with their targets in plants. Here, we used genetic association in 435 unrelated individuals of Populus tomentosa to explore the variants in Pto-Wuschela and its targets to decipher the genetic regulatory network of Pto-Wuschela. Our bioinformatics and co-expression analysis identified 53 genes with the motif TCACGTGA as putative targets of Pto-Wuschela. Single-marker association analysis showed that Pto-Wuschela was associated with wood properties, which is in agreement with the observation that it has higher expression in stem vascular tissues in Populus. Also, SNPs in the 53 targets were associated with growth or wood properties under additive or dominance effects, suggesting these genes and Pto-Wuschela may act in the same genetic pathways that affect variation in these quantitative traits. Epistasis analysis indicated that 75.5% of these genes directly or indirectly interacted Pto-Wuschela, revealing the coordinated genetic regulatory network formed by Pto-Wuschela and its targets. Thus, our study provides an alternative method for dissection of the interactions between a TF and its targets, which will strength our understanding of the regulatory roles of TFs in complex traits in plants.
The association between intelligence and lifespan is mostly genetic.
Arden, Rosalind; Luciano, Michelle; Deary, Ian J; Reynolds, Chandra A; Pedersen, Nancy L; Plassman, Brenda L; McGue, Matt; Christensen, Kaare; Visscher, Peter M
2016-02-01
Several studies in the new field of cognitive epidemiology have shown that higher intelligence predicts longer lifespan. This positive correlation might arise from socioeconomic status influencing both intelligence and health; intelligence leading to better health behaviours; and/or some shared genetic factors influencing both intelligence and health. Distinguishing among these hypotheses is crucial for medicine and public health, but can only be accomplished by studying a genetically informative sample. We analysed data from three genetically informative samples containing information on intelligence and mortality: Sample 1, 377 pairs of male veterans from the NAS-NRC US World War II Twin Registry; Sample 2, 246 pairs of twins from the Swedish Twin Registry; and Sample 3, 784 pairs of twins from the Danish Twin Registry. The age at which intelligence was measured differed between the samples. We used three methods of genetic analysis to examine the relationship between intelligence and lifespan: we calculated the proportion of the more intelligent twins who outlived their co-twin; we regressed within-twin-pair lifespan differences on within-twin-pair intelligence differences; and we used the resulting regression coefficients to model the additive genetic covariance. We conducted a meta-analysis of the regression coefficients across the three samples. The combined (and all three individual samples) showed a small positive phenotypic correlation between intelligence and lifespan. In the combined sample observed r = .12 (95% confidence interval .06 to .18). The additive genetic covariance model supported a genetic relationship between intelligence and lifespan. In the combined sample the genetic contribution to the covariance was 95%; in the US study, 84%; in the Swedish study, 86%, and in the Danish study, 85%. The finding of common genetic effects between lifespan and intelligence has important implications for public health, and for those interested in the genetics of intelligence, lifespan or inequalities in health outcomes including lifespan. © The Author 2015; Published by Oxford University Press on behalf of the International Epidemiological Association.
The association between intelligence and lifespan is mostly genetic
Arden, Rosalind; Deary, Ian J; Reynolds, Chandra A; Pedersen, Nancy L; Plassman, Brenda L; McGue, Matt; Christensen, Kaare; Visscher, Peter M
2016-01-01
Abstract Background: Several studies in the new field of cognitive epidemiology have shown that higher intelligence predicts longer lifespan. This positive correlation might arise from socioeconomic status influencing both intelligence and health; intelligence leading to better health behaviours; and/or some shared genetic factors influencing both intelligence and health. Distinguishing among these hypotheses is crucial for medicine and public health, but can only be accomplished by studying a genetically informative sample. Methods: We analysed data from three genetically informative samples containing information on intelligence and mortality: Sample 1, 377 pairs of male veterans from the NAS-NRC US World War II Twin Registry; Sample 2, 246 pairs of twins from the Swedish Twin Registry; and Sample 3, 784 pairs of twins from the Danish Twin Registry. The age at which intelligence was measured differed between the samples. We used three methods of genetic analysis to examine the relationship between intelligence and lifespan: we calculated the proportion of the more intelligent twins who outlived their co-twin; we regressed within-twin-pair lifespan differences on within-twin-pair intelligence differences; and we used the resulting regression coefficients to model the additive genetic covariance. We conducted a meta-analysis of the regression coefficients across the three samples. Results: The combined (and all three individual samples) showed a small positive phenotypic correlation between intelligence and lifespan. In the combined sample observed r = .12 (95% confidence interval .06 to .18). The additive genetic covariance model supported a genetic relationship between intelligence and lifespan. In the combined sample the genetic contribution to the covariance was 95%; in the US study, 84%; in the Swedish study, 86%, and in the Danish study, 85%. Conclusions: The finding of common genetic effects between lifespan and intelligence has important implications for public health, and for those interested in the genetics of intelligence, lifespan or inequalities in health outcomes including lifespan. PMID:26213105
Medici, Marco; van der Deure, Wendy M; Verbiest, Michael; Vermeulen, Sita H; Hansen, Pia S; Kiemeney, Lambertus A; Hermus, Ad R M M; Breteler, Monique M; Hofman, Albert; Hegedüs, Laszlo; Kyvik, Kirsten Ohm; den Heijer, Martin; Uitterlinden, André G; Visser, Theo J; Peeters, Robin P
2011-05-01
Minor variation in serum thyroid hormone (TH) levels can have important effects on various clinical endpoints. Although 45-65% of the inter-individual variation in serum TH levels is due to genetic factors, the causative genes are not well established. We therefore studied the effects of genetic variation in 68 TH pathway genes on serum TSH and free thyroxine (FT(4)) levels. Sixty-eight genes (1512 polymorphisms) were studied in relation to serum TSH and FT(4) levels in 1121 Caucasian subjects. Promising hits (P<0.01) were studied in three independent Caucasian populations (2656 subjects) for confirmation. A meta-analysis of all four studies was performed. For TSH, eight PDE8B polymorphisms (P=4×10(-17)) remained significant in the meta-analysis. For FT(4), two DIO1 (P=8×10(-12)) and one FOXE1 (P=0.0003) polymorphisms remained significant in the meta-analysis. Suggestive associations were detected for one FOXE1 (P=0.0028) and three THRB (P=0.0045) polymorphisms with TSH, and one SLC16A10 polymorphism (P=0.0110) with FT(4), but failed to reach the significant multiple-testing corrected P value (P<0.0022 and P<0.0033 respectively). Using a large-scale association analysis, we replicated previously reported associations with genetic variation in PDE8B, THRB, and DIO1. We demonstrate effects of genetic variation in FOXE1 on serum FT(4) levels, and borderline significant effects on serum TSH levels. A suggestive association of genetic variation in SLC16A10 with serum FT(4) levels was found. These data provide insight into the molecular basis of inter-individual variation in TH serum levels.
Gene ontology analysis of pairwise genetic associations in two genome-wide studies of sporadic ALS.
Kim, Nora Chung; Andrews, Peter C; Asselbergs, Folkert W; Frost, H Robert; Williams, Scott M; Harris, Brent T; Read, Cynthia; Askland, Kathleen D; Moore, Jason H
2012-07-28
It is increasingly clear that common human diseases have a complex genetic architecture characterized by both additive and nonadditive genetic effects. The goal of the present study was to determine whether patterns of both additive and nonadditive genetic associations aggregate in specific functional groups as defined by the Gene Ontology (GO). We first estimated all pairwise additive and nonadditive genetic effects using the multifactor dimensionality reduction (MDR) method that makes few assumptions about the underlying genetic model. Statistical significance was evaluated using permutation testing in two genome-wide association studies of ALS. The detection data consisted of 276 subjects with ALS and 271 healthy controls while the replication data consisted of 221 subjects with ALS and 211 healthy controls. Both studies included genotypes from approximately 550,000 single-nucleotide polymorphisms (SNPs). Each SNP was mapped to a gene if it was within 500 kb of the start or end. Each SNP was assigned a p-value based on its strongest joint effect with the other SNPs. We then used the Exploratory Visual Analysis (EVA) method and software to assign a p-value to each gene based on the overabundance of significant SNPs at the α = 0.05 level in the gene. We also used EVA to assign p-values to each GO group based on the overabundance of significant genes at the α = 0.05 level. A GO category was determined to replicate if that category was significant at the α = 0.05 level in both studies. We found two GO categories that replicated in both studies. The first, 'Regulation of Cellular Component Organization and Biogenesis', a GO Biological Process, had p-values of 0.010 and 0.014 in the detection and replication studies, respectively. The second, 'Actin Cytoskeleton', a GO Cellular Component, had p-values of 0.040 and 0.046 in the detection and replication studies, respectively. Pathway analysis of pairwise genetic associations in two GWAS of sporadic ALS revealed a set of genes involved in cellular component organization and actin cytoskeleton, more specifically, that were not reported by prior GWAS. However, prior biological studies have implicated actin cytoskeleton in ALS and other motor neuron diseases. This study supports the idea that pathway-level analysis of GWAS data may discover important associations not revealed using conventional one-SNP-at-a-time approaches.
Grady, Benjamin J.; Ritchie, Marylyn D.
2011-01-01
Research in human genetics and genetic epidemiology has grown significantly over the previous decade, particularly in the field of pharmacogenomics. Pharmacogenomics presents an opportunity for rapid translation of associated genetic polymorphisms into diagnostic measures or tests to guide therapy as part of a move towards personalized medicine. Expansion in genotyping technology has cleared the way for widespread use of whole-genome genotyping in the effort to identify novel biology and new genetic markers associated with pharmacokinetic and pharmacodynamic endpoints. With new technology and methodology regularly becoming available for use in genetic studies, a discussion on the application of such tools becomes necessary. In particular, quality control criteria have evolved with the use of GWAS as we have come to understand potential systematic errors which can be introduced into the data during genotyping. There have been several replicated pharmacogenomic associations, some of which have moved to the clinic to enact change in treatment decisions. These examples of translation illustrate the strength of evidence necessary to successfully and effectively translate a genetic discovery. In this review, the design of pharmacogenomic association studies is examined with the goal of optimizing the impact and utility of this research. Issues of ascertainment, genotyping, quality control, analysis and interpretation are considered. PMID:21887206
Workalemahu, Tsegaselassie; Enquobahrie, Daniel A; Gelaye, Bizu; Sanchez, Sixto E; Garcia, Pedro J; Tekola-Ayele, Fasil; Hajat, Anjum; Thornton, Timothy A; Ananth, Cande V; Williams, Michelle A
2018-06-01
Accumulating epidemiological evidence points to strong genetic susceptibility to placental abruption (PA). However, characterization of genes associated with PA remains incomplete. We conducted a genome-wide association study (GWAS) of PA and a meta-analysis of GWAS. Participants of the Placental Abruption Genetic Epidemiology (PAGE) study, a population based case-control study of PA conducted in Lima, Peru, were genotyped using the Illumina HumanCore-24 BeadChip platform. Genotypes were imputed using the 1000 genomes reference panel, and >4.9 million SNPs that passed quality control were analyzed. We performed a GWAS in PAGE participants (507 PA cases and 1090 controls) and a GWAS meta-analysis in 2512 participants (959 PA cases and 1553 controls) that included PAGE and the previously reported Peruvian Abruptio Placentae Epidemiology (PAPE) study. We fitted population stratification-adjusted logistic regression models and fixed-effects meta-analyses using inverse-variance weighting. Independent loci (linkage-disequilibrium<0.80) suggestively associated with PA (P-value<5e-5) included rs4148646 and rs2074311 in ABCC8, rs7249210, rs7250184, rs7249100 and rs10401828 in ZNF28, rs11133659 in CTNND2, and rs2074314 and rs35271178 near KCNJ11 in the PAGE GWAS. Similarly, independent loci suggestively associated with PA in the GWAS meta-analysis included rs76258369 near IRX1, and rs7094759 and rs12264492 in ADAM12. Functional analyses of these genes showed trophoblast-like cell interaction, as well as networks involved in endocrine system disorders, cardiovascular diseases, and cellular function. We identified several genetic loci and related functions that may play a role in PA risk. Understanding genetic factors underlying pathophysiological mechanisms of PA may facilitate prevention and early diagnostic efforts. Published by Elsevier Ltd.
Kung, Tabitha N; Dennis, Jessica; Ma, Yiqing; Xie, Gang; Bykerk, Vivian; Pope, Janet; Thorne, Carter; Keystone, Edward; Siminovitch, Katherine A; Gagnon, France
2014-05-01
Associations have been reported between candidate genes and the response to methotrexate (MTX) in rheumatoid arthritis (RA) patients, but most of the studies have been small and have yielded conflicting results. This study was undertaken to provide a systematic review of all genetic variant associations with MTX efficacy and toxicity, and to conduct a meta-analysis evaluating the most commonly studied single-nucleotide polymorphism for which prior cumulative analysis has been lacking. A systematic review and meta-analysis were performed to identify genetic variant associations with MTX efficacy and toxicity. Studies were identified from the Medline, EMBase, HuGENet Navigator, and Cochrane Library databases through December 2012, and from the 2009-2011 abstracts of the American College of Rheumatology and the European League Against Rheumatism annual meeting proceedings. Additional unpublished genotype data from a Canadian cohort of patients with early RA were also included. Among the 87 identified studies examining genetic associations with MTX efficacy and toxicity, the reduced folate carrier 1 gene (RFC1) variant 80G>A (Arg(27) His, rs1051266) was selected for random-effects meta-analysis. RFC1 80G>A was associated with MTX efficacy in both the recessive model (odds ratio [OR] 1.42, 95% confidence interval [95% CI] 1.04-1.93) and the additive model (OR 1.28, 95% CI 1.10-1.49). Restriction of the sensitivity analyses to studies that involved Caucasian subjects only and that used similar outcome measures (MTX failure versus nonfailure) maintained and improved the associations in both models. No significant association between RFC1 80G>A and MTX toxicity was detected. In these analyses of available data from observational studies, RFC1 80G>A was found to be associated with MTX efficacy, but not toxicity, in RA patients. This variant merits further prospective analysis as a potential predictor of MTX efficacy. Variability in the definitions of response in pharmacogenetic studies is a source of data heterogeneity that should be addressed. Copyright © 2014 by the American College of Rheumatology.
Fujisawa, Tomochika; Vogler, Alfried P; Barraclough, Timothy G
2015-01-22
Comparative analysis is a potentially powerful approach to study the effects of ecological traits on genetic variation and rate of evolution across species. However, the lack of suitable datasets means that comparative studies of correlates of genetic traits across an entire clade have been rare. Here, we use a large DNA-barcode dataset (5062 sequences) of water beetles to test the effects of species ecology and geographical distribution on genetic variation within species and rates of molecular evolution across species. We investigated species traits predicted to influence their genetic characteristics, such as surrogate measures of species population size, latitudinal distribution and habitat types, taking phylogeny into account. Genetic variation of cytochrome oxidase I in water beetles was positively correlated with occupancy (numbers of sites of species presence) and negatively with latitude, whereas substitution rates across species depended mainly on habitat types, and running water specialists had the highest rate. These results are consistent with theoretical predictions from nearly-neutral theories of evolution, and suggest that the comparative analysis using large databases can give insights into correlates of genetic variation and molecular evolution.
Phylogenetic analysis of the envelope protein (domain lll) of dengue 4 viruses
Mota, Javier; Ramos-Castañeda, José; Rico-Hesse, Rebeca; Ramos, Celso
2011-01-01
Objective To evaluate the genetic variability of domain III of envelope (E) protein and to estimate phylogenetic relationships of dengue 4 (Den-4) viruses isolated in Mexico and from other endemic areas of the world. Material and Methods A phylogenetic study of domain III of envelope (E) protein of Den-4 viruses was conducted in 1998 using virus strains from Mexico and other parts of the world, isolated in different years. Specific primers were used to amplify by RT-PCR the domain III and to obtain nucleotide sequence. Based on nucleotide and deduced aminoacid sequence, genetic variability was estimated and a phylogenetic tree was generated. To make an easy genetic analysis of domain III region, a Restriction Fragment Length Polymorphism (RFLP) assay was performed, using six restriction enzymes. Results Study results demonstrate that nucleotide and aminoacid sequence analysis of domain III are similar to those reported from the complete E protein gene. Based on the RFLP analysis of domain III using the restriction enzymes Nla III, Dde I and Cfo I, Den-4 viruses included in this study were clustered into genotypes 1 and 2 previously reported. Conclusions Study results suggest that domain III may be used as a genetic marker for phylogenetic and molecular epidemiology studies of dengue viruses. The English version of this paper is available too at: http://www.insp.mx/salud/index.html PMID:12132320
Genetic architecture for susceptibility to gout in the KARE cohort study.
Shin, Jimin; Kim, Younyoung; Kong, Minyoung; Lee, Chaeyoung
2012-06-01
This study aimed to identify functional associations of cis-regulatory regions with gout susceptibility using data resulted from a genome-wide association study (GWAS), and to show a genetic architecture for gout with interaction effects among genes within each of the identified functions. The GWAS was conducted with 8314 control subjects and 520 patients with gout in the Korea Association REsource cohort. However, genetic associations with any individual nucleotide variants were not discovered by Bonferroni multiple testing in the GWAS (P>1.42 × 10(-7)). Genomic regions enrichment analysis was employed to identify functional associations of cis-regulatory regions. This analysis revealed several biological processes associated with gout susceptibility, and they were quite different from those with serum uric acid level. Epistasis for susceptibility to gout was estimated using entropy decomposition with selected genes within each biological process identified by the genomic regions enrichment analysis. Some epistases among nucleotide sequence variants for gout susceptibility were found to be larger than their individual effects. This study provided the first evidence that genetic factors for gout susceptibility greatly differed from those for serum uric acid level, which may suggest that research endeavors for identifying genetic factors for gout susceptibility should not be heavily dependent on pathogenesis of uric acid. Interaction effects between genes should be examined to explain a large portion of phenotypic variability for gout susceptibility.
Santos, D N; Nunes, C F; Setotaw, T A; Pio, R; Pasqual, M; Cançado, G M A
2016-12-19
Cambuci (Campomanesia phaea) belongs to the Myrtaceae family and is native to the Atlantic Forest of Brazil. It has ecological and social appeal but is exposed to problems associated with environmental degradation and expansion of agricultural activities in the region. Comprehensive studies on this species are rare, making its conservation and genetic improvement difficult. Thus, it is important to develop research activities to understand the current situation of the species as well as to make recommendations for its conservation and use. This study was performed to characterize the cambuci accessions found in the germplasm bank of Coordenadoria de Assistência Técnica Integral using inter-simple sequence repeat markers, with the goal of understanding the plant's population structure. The results showed the existence of some level of genetic diversity among the cambuci accessions that could be exploited for the genetic improvement of the species. Principal coordinate analysis and discriminant analysis clustered the 80 accessions into three groups, whereas Bayesian model-based clustering analysis clustered them into two groups. The formation of two cluster groups and the high membership coefficients within the groups pointed out the importance of further collection to cover more areas and more genetic variability within the species. The study also showed the lack of conservation activities; therefore, more attention from the appropriate organizations is needed to plan and implement natural and ex situ conservation activities.
D'Cunha, Anitha; Pandit, Lekha; Malli, Chaithra
2017-06-01
Indian data have been largely missing from genome-wide databases that provide information on genetic variations in different populations. This hinders association studies for complex disorders in India. This study was aimed to determine whether the complex genetic structure and endogamy among Indians could potentially influence the design of case-control studies for autoimmune disorders in the south Indian population. A total of 12 single nucleotide variations (SNVs) related to genes associated with autoimmune disorders were genotyped in 370 healthy individuals belonging to six different caste groups in southern India. Allele frequencies were estimated; genetic divergence and phylogenetic relationship within the various caste groups and other HapMap populations were ascertained. Allele frequencies for all genotyped SNVs did not vary significantly among the different groups studied. Wright's FSTwas 0.001 per cent among study population and 0.38 per cent when compared with Gujarati in Houston (GIH) population on HapMap data. The analysis of molecular variance results showed a 97 per cent variation attributable to differences within the study population and <1 per cent variation due to differences between castes. Phylogenetic analysis showed a separation of Dravidian population from other HapMap populations and particularly from GIH population. Despite the complex genetic origins of the Indian population, our study indicated a low level of genetic differentiation among Dravidian language-speaking people of south India. Case-control studies of association among Dravidians of south India may not require stratification based on language and caste.
Predicting age-age genetic correlations in tree-breeding programs: a case study of Pinus taeda L.
D.P. Gwaze; F.E. Bridgwater; T.D. Byram; J.A. Woolliams; C.G. Williams
2000-01-01
A meta-analysis of 520 parents and 51,439 individuals was used to develop two equations for predicting age-age genetic correlations in Pinus taeda L. Genetic and phenotypic family mean correlations and heritabilities were estimated for ages ranging from 2 to 25 years on 31...
Schlag, Erin M; McIntosh, Marla S
2013-09-01
Ginseng is one of the world's most important herbals used as an adaptogen and a cure for an impressively large range of ailments. Differences in the medicinal properties of ginseng roots have been attributed to variation in ginsenoside composition. In this study, the association between genetic and chemotypic profiles of wild and cultivated American ginseng (Panax quinquefolius L.) roots grown in Maryland was investigated. Ginseng roots were classified into chemotypes based on their relative composition of Re and Rg1. Genetic profiles of these roots were determined from the analysis of 38 polymorphic RAPD markers and used for a cluster analysis of genetic similarities. The close correspondence between chemotype and genetic cluster provides the first DNA-based evidence for the genetic basis of ginsenoside composition. Results of this research are significant for plant breeding and conservation, phytochemical research, and clinical and pharmacological studies. Also, the correlation between RAPD markers and chemotype indicates the potential to use RAPD markers as a reliable and practical method for identification and certification of ginseng roots. Copyright © 2013 Elsevier Ltd. All rights reserved.
Xu, Yuejuan; Li, Tingting; Pu, Tian; Cao, Ruixue; Long, Fei; Chen, Sun; Sun, Kun; Xu, Rang
2017-12-01
Congenital heart disease (CHD) is one of the most common birth defects. More than 200 susceptibility loci have been identified for CHDs, yet a large part of the genetic risk factors remain unexplained. Monozygotic (MZ) twins are thought to be completely genetically identical; however, discordant phenotypes have been found in MZ twins. Recent studies have demonstrated genetic differences between MZ twins. We aimed to test whether copy number variants (CNVs) and/or genetic mutation differences play a role in the etiology of CHDs by using single nucleotide polymorphism (SNP) genotyping arrays and whole exome sequencing of twin pairs discordant for CHDs. Our goal was to identify mutations present only in the affected twins, which could identify novel candidates for CHD susceptibility loci. We present a comprehensive analysis for the CNVs and genetic mutation results of the selected individuals but detected no consistent differences within the twin pairs. Our study confirms that chromosomal structure or genetic mutation differences do not seem to play a role in the MZ twins discordant for CHD.
Genetic testing in the European Union: does economic evaluation matter?
Antoñanzas, Fernando; Rodríguez-Ibeas, R; Hutter, M F; Lorente, R; Juárez, C; Pinillos, M
2012-10-01
We review the published economic evaluation studies applied to genetic technologies in the EU to know the main diseases addressed by these studies, the ways the studies were conducted and to assess the efficiency of these new technologies. The final aim of this review was to understand the possibilities of the economic evaluations performed up to date as a tool to contribute to decision making in this area. We have reviewed a set of articles found in several databases until March 2010. Literature searches were made in the following databases: PubMed; Euronheed; Centre for Reviews and Dissemination of the University of York-Health Technology Assessment, Database of Abstracts of Reviews of Effects, NHS Economic Evaluation Database; and Scopus. The algorithm was "(screening or diagnosis) and genetic and (cost or economic) and (country EU27)". We included studies if they met the following criteria: (1) a genetic technology was analysed; (2) human DNA must be tested for; (3) the analysis was a real economic evaluation or a cost study, and (4) the articles had to be related to any EU Member State. We initially found 3,559 papers on genetic testing but only 92 articles of economic analysis referred to a wide range of genetic diseases matched the inclusion criteria. The most studied diseases were as follows: cystic fibrosis (12), breast and ovarian cancer (8), hereditary hemochromatosis (6), Down's syndrome (7), colorectal cancer (5), familial hypercholesterolaemia (5), prostate cancer (4), and thrombophilia (4). Genetic tests were mostly used for screening purposes, and cost-effectiveness analysis is the most common type of economic study. The analysed gene technologies are deemed to be efficient for some specific population groups and screening algorithms according to the values of their cost-effectiveness ratios that were below the commonly accepted threshold of 30,000€. Economic evaluation of genetic technologies matters but the number of published studies is still rather low as to be widely used for most of the decisions in different jurisdictions across the EU. Further, the decision bodies across EU27 are fragmented and the responsibilities are located at different levels of the decision process for what it is difficult to find out whether a given decision on genetic tests was somehow supported by the economic evaluation results.
Onyśk, Agnieszka; Boczkowska, Maja
2017-01-01
Simple Sequence Repeat (SSR) markers are one of the most frequently used molecular markers in studies of crop diversity and population structure. This is due to their uniform distribution in the genome, the high polymorphism, reproducibility, and codominant character. Additional advantages are the possibility of automatic analysis and simple interpretation of the results. The M13 tagged PCR reaction significantly reduces the costs of analysis by the automatic genetic analyzers. Here, we also disclose a short protocol of SSR data analysis.
Vilor-Tejedor, Natàlia; Cáceres, Alejandro; Pujol, Jesús; Sunyer, Jordi; González, Juan R
2017-12-01
Joint analysis of genetic and neuroimaging data, known as Imaging Genetics (IG), offers an opportunity to deepen our knowledge of the biological mechanisms of neurodevelopmental domains. There has been exponential growth in the literature on IG studies, which challenges the standardization of analysis methods in this field. In this review we give a complete up-to-date account of IG studies on attention deficit hyperactivity disorder (ADHD) and related neurodevelopmental domains, which serves as a reference catalog for researchers working on this neurological disorder. We searched MEDLINE/Pubmed and identified 37 articles on IG of ADHD that met our eligibility criteria. We carefully cataloged these articles according to imaging technique, genes and brain region, and summarized the main results and characteristics of each study. We found that IG studies on ADHD generally focus on dopaminergic genes and the structure of basal ganglia using structural Magnetic Resonance Imaging (MRI). We found little research involving multiple genetic factors and brain regions because of the scarce use of multivariate strategies in data analysis. IG of ADHD and related neurodevelopmental domains is still in its early stages, and a lack of replicated findings is one of the most pressing challenges in the field.
Berdugo-Cely, Jhon; Valbuena, Raúl Iván; Sánchez-Betancourt, Erika; Barrero, Luz Stella; Yockteng, Roxana
2017-01-01
The potato (Solanum tuberosum L.) is the fourth most important crop food in the world and Colombia has one of the most important collections of potato germplasm in the world (the Colombian Central Collection-CCC). Little is known about its potential as a source of genetic diversity for molecular breeding programs. In this study, we analyzed 809 Andigenum group accessions from the CCC using 5968 SNPs to determine: 1) the genetic diversity and population structure of the Andigenum germplasm and 2) the usefulness of this collection to map qualitative traits across the potato genome. The genetic structure analysis based on principal components, cluster analyses, and Bayesian inference revealed that the CCC can be subdivided into two main groups associated with their ploidy level: Phureja (diploid) and Andigena (tetraploid). The Andigena population was more genetically diverse but less genetically substructured than the Phureja population (three vs. five subpopulations, respectively). The association mapping analysis of qualitative morphological data using 4666 SNPs showed 23 markers significantly associated with nine morphological traits. The present study showed that the CCC is a highly diverse germplasm collection genetically and phenotypically, useful to implement association mapping in order to identify genes related to traits of interest and to assist future potato genetic breeding programs.
Berdugo-Cely, Jhon; Valbuena, Raúl Iván; Sánchez-Betancourt, Erika; Barrero, Luz Stella
2017-01-01
The potato (Solanum tuberosum L.) is the fourth most important crop food in the world and Colombia has one of the most important collections of potato germplasm in the world (the Colombian Central Collection-CCC). Little is known about its potential as a source of genetic diversity for molecular breeding programs. In this study, we analyzed 809 Andigenum group accessions from the CCC using 5968 SNPs to determine: 1) the genetic diversity and population structure of the Andigenum germplasm and 2) the usefulness of this collection to map qualitative traits across the potato genome. The genetic structure analysis based on principal components, cluster analyses, and Bayesian inference revealed that the CCC can be subdivided into two main groups associated with their ploidy level: Phureja (diploid) and Andigena (tetraploid). The Andigena population was more genetically diverse but less genetically substructured than the Phureja population (three vs. five subpopulations, respectively). The association mapping analysis of qualitative morphological data using 4666 SNPs showed 23 markers significantly associated with nine morphological traits. The present study showed that the CCC is a highly diverse germplasm collection genetically and phenotypically, useful to implement association mapping in order to identify genes related to traits of interest and to assist future potato genetic breeding programs. PMID:28257509
Iarossi, Giancarlo; Bertelli, Matteo; Maltese, Paolo Enrico; Gusson, Elena; Marchini, Giorgio; Bruson, Alice; Benedetti, Sabrina; Volpetti, Sabrina; Catena, Gino; Buzzonetti, Luca; Ziccardi, Lucia
2017-01-01
Familial exudative vitreoretinopathy (FEVR) is a complex disorder characterized by incomplete development of the retinal vasculature. Here, we report the results obtained on the spectrum of genetic variations and correlated phenotypes found in a cohort of Italian FEVR patients. Eight probands (age range 7-19 years) were assessed by genetic analysis and comprehensive age-appropriate ophthalmic examination. Genetic testing investigated the genes most widely associated in literature with FEVR: FZD4 , LRP5 , TSPAN12 , and NDP . Clinical and genetic evaluations were extended to relatives of probands positive to genetic testing. Six out of eight probands (75%) showed a genetic variation probably related to the phenotype. We identified four novel genetic variants, one variant already described in association with Norrie disease and one previously described linked to autosomal dominant FEVR. Pedigree analysis of patients led to the classification of four autosomal dominant cases of FEVR (caused by FZD4 and TSPAN12 variants) and two X-linked FEVR probands ( NDP variants). None of the patients showed variants in the LRP5 gene. This study represents the largest cohort study in Italian FEVR patients. Our findings are in agreement with the previous literature confirming that FEVR is a clinically and genetically heterogeneous retinal disorder, even when it manifests in the same family.
Marchini, Giorgio; Volpetti, Sabrina; Catena, Gino
2017-01-01
Familial exudative vitreoretinopathy (FEVR) is a complex disorder characterized by incomplete development of the retinal vasculature. Here, we report the results obtained on the spectrum of genetic variations and correlated phenotypes found in a cohort of Italian FEVR patients. Eight probands (age range 7–19 years) were assessed by genetic analysis and comprehensive age-appropriate ophthalmic examination. Genetic testing investigated the genes most widely associated in literature with FEVR: FZD4, LRP5, TSPAN12, and NDP. Clinical and genetic evaluations were extended to relatives of probands positive to genetic testing. Six out of eight probands (75%) showed a genetic variation probably related to the phenotype. We identified four novel genetic variants, one variant already described in association with Norrie disease and one previously described linked to autosomal dominant FEVR. Pedigree analysis of patients led to the classification of four autosomal dominant cases of FEVR (caused by FZD4 and TSPAN12 variants) and two X-linked FEVR probands (NDP variants). None of the patients showed variants in the LRP5 gene. This study represents the largest cohort study in Italian FEVR patients. Our findings are in agreement with the previous literature confirming that FEVR is a clinically and genetically heterogeneous retinal disorder, even when it manifests in the same family. PMID:28758032
Martínez-Díaz, Yesenia; González-Rodríguez, Antonio; Rico-Ponce, Héctor Rómulo; Rocha-Ramírez, Víctor; Ovando-Medina, Isidro; Espinosa-García, Francisco J
2017-01-01
Jatropha curcas L. (Euphorbiaceae) is a shrub native to Mexico and Central America, which produces seeds with a high oil content that can be converted to biodiesel. The genetic diversity of this plant has been widely studied, but it is not known whether the diversity of the seed oil chemical composition correlates with neutral genetic diversity. The total seed oil content, the diversity of profiles of fatty acids and phorbol esters were quantified, also, the genetic diversity obtained from simple sequence repeats was analyzed in native populations of J. curcas in Mexico. Using the fatty acids profiles, a discriminant analysis recognized three groups of individuals according to geographical origin. Bayesian assignment analysis revealed two genetic groups, while the genetic structure of the populations could not be explained by isolation-by-distance. Genetic and fatty acid profile data were not correlated based on Mantel test. Also, phorbol ester content and genetic diversity were not associated. Multiple linear regression analysis showed that total oil content was associated with altitude and seasonality of temperature. The content of unsaturated fatty acids was associated with altitude. Therefore, the cultivation planning of J. curcas should take into account chemical variation related to environmental factors. © 2017 Wiley-VHCA AG, Zurich, Switzerland.
He, Linwen; Zhu, Jianyi; Lu, Qinqin; Niu, Jianfeng; Zhang, Baoyu; Lin, Apeng; Wang, Guangce
2013-06-01
Pyropia yezoensis (Ueda) M. S. Hwang et H. G. Choi (previously called Porphyra yezoensis) is an economically important alga. The blades generated from conchospores are genetic chimeras, which are not suitable for genetic similarity analysis. In this study, two types of blades from a single filament of P. yezoensis sporophyte filament were obtained. One type, ConB, consisted of 40 blades that had germinated from conchospores. The other type, ArcB, consisted of 88 blades that had germinated from archeospores released from ConB. Both of them were analyzed by amplified fragment length polymorphism. The low genetic similarity levels for both conchospore-germinated and archeospore-germinated blades demonstrated that the conchcelis we used was cross-fertilized. Furthermore, a higher polymorphic loci ratio (98.6%) was detected in ArcB than in ConB (80.7%), and the average genetic similarity of ArcB (average 0.61) was lower than that of ConB (average 0.71). These differences indicated that genetic analysis using ArcB gives more accurate results. © 2013 Phycological Society of America.
Genetic linkage analysis of schizophrenia using chromosome 11q13-24 markers in Israeli pedigrees
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mulcrone, J.; Marchblanks, R.; Whatley, S.A.
It is generally agreed that there is a genetic component in the etiology of schizophrenia which may be tested by the application of linkage analysis to multiply-affected families. One genetic region of interest is the long arm of chromosome 11 because of previously reported associations of genetic variation in this region with schizophrenia, and because of the fact that it contains the locus for the dopamine D2 receptor gene. In this study we have examined the segregation of schizophrenia with microsatellite dinucleotide repeat DNA markers along chromosome 11q in 5 Israeli families multiply-affected for schizophrenia. The hypothesis of linkage undermore » genetic homogeneity of causation was tested under a number of genetic models. Linkage analysis provided no evidence for significant causal mutations within the region bounded by INT and D11S420 on chromosome 11q. It is still possible, however, that a gene of major effect exists in this region, either with low penetrance or with heterogeneity. 32 refs., 2 figs., 4 tabs.« less
Ming, L; Yi, L; Sa, R; Wang, Z X; Wang, Z; Ji, R
2017-04-01
The Bactrian camel includes various domestic (Camelus bactrianus) and wild (Camelus ferus) breeds that are important for transportation and for their nutritional value. However, there is a lack of extensive information on their genetic diversity and phylogeographic structure. Here, we studied these parameters by examining an 809-bp mtDNA fragment from 113 individuals, representing 11 domestic breeds, one wild breed and two hybrid individuals. We found 15 different haplotypes, and the phylogenetic analysis suggests that domestic and wild Bactrian camels have two distinct lineages. The analysis of molecular variance placed most of the genetic variance (90.14%, P < 0.01) between wild and domestic camel lineages, suggesting that domestic and wild Bactrian camel do not have the same maternal origin. The analysis of domestic Bactrian camels from different geographical locations found there was no significant genetic divergence in China, Russia and Mongolia. This suggests a strong gene flow due to wide movement of domestic Bactrian camels. © 2016 The Authors. Animal Genetics published by John Wiley & Sons Ltd on behalf of Stichting International Foundation for Animal Genetics.
USDA-ARS?s Scientific Manuscript database
In recent years SSR markers have been used widely for genetic analysis. The objective of this study was to use an SSR-based marker system to develop the molecular fingerprints and analyze the genetic relationship of sugarcane cultivars grown in Pakistan. Twenty-one highly polymorphic SSR markers wer...
Common Aetiology for Diverse Language Skills in 4 1/2-Year-Old Twins
ERIC Educational Resources Information Center
Hayiou-Thomas, Marianna E.; Kovas, Yulia; Harlaar, Nicole; Plomin, Robert; Bishop, Dorothy V. M.; Dale, Philip S.
2006-01-01
Multivariate genetic analysis was used to examine the genetic and environmental aetiology of the interrelationships of diverse linguistic skills. This study used data from a large sample of 4 1/2-year-old twins who were tested on measures assessing articulation, phonology, grammar, vocabulary, and verbal memory. Phenotypic analysis suggested two…
Learning abilities and disabilities: generalist genes in early adolescence.
Davis, Oliver S P; Haworth, Claire M A; Plomin, Robert
2009-01-01
The new view of cognitive neuropsychology that considers not just case studies of rare severe disorders but also common disorders, as well as normal variation and quantitative traits, is more amenable to recent advances in molecular genetics, such as genome-wide association studies, and advances in quantitative genetics, such as multivariate genetic analysis. A surprising finding emerging from multivariate quantitative genetic studies across diverse learning abilities is that most genetic influences are shared: they are "generalist", rather than "specialist". We exploited widespread access to inexpensive and fast Internet connections in the United Kingdom to assess over 5000 pairs of 12-year-old twins from the Twins Early Development Study (TEDS) on four distinct batteries: reading, mathematics, general cognitive ability (g) and, for the first time, language. Genetic correlations remain high among all of the measured abilities, with language as highly correlated genetically with g as reading and mathematics. Despite developmental upheaval, generalist genes remain important into early adolescence, suggesting optimal strategies for molecular genetic studies seeking to identify the genes of small effect that influence learning abilities and disabilities.
Hu, Boran; Yue, Yaqing; Zhu, Yong; Wen, Wen; Zhang, Fengmin; Hardie, Jim W
2015-01-01
Proton nuclear magnetic resonance spectroscopy coupled multivariate analysis (1H NMR-PCA/PLS-DA) is an important tool for the discrimination of wine products. Although 1H NMR has been shown to discriminate wines of different cultivars, a grape genetic component of the discrimination has been inferred only from discrimination of cultivars of undefined genetic homology and in the presence of many confounding environmental factors. We aimed to confirm the influence of grape genotypes in the absence of those factors. We applied 1H NMR-PCA/PLS-DA and hierarchical cluster analysis (HCA) to wines from five, variously genetically-related grapevine (V. vinifera) cultivars; all grown similarly on the same site and vinified similarly. We also compared the semi-quantitative profiles of the discriminant metabolites of each cultivar with previously reported chemical analyses. The cultivars were clearly distinguishable and there was a general correlation between their grouping and their genetic homology as revealed by recent genomic studies. Between cultivars, the relative amounts of several of the cultivar-related discriminant metabolites conformed closely with reported chemical analyses. Differences in grape-derived metabolites associated with genetic differences alone are a major source of 1H NMR-based discrimination of wines and 1H NMR has the capacity to discriminate between very closely related cultivars. The study confirms that genetic variation among grape cultivars alone can account for the discrimination of wine by 1H NMR-PCA/PLS and indicates that 1H NMR spectra of wine of single grape cultivars may in future be used in tandem with hierarchical cluster analysis to elucidate genetic lineages and metabolomic relations of grapevine cultivars. In the absence of genetic information, for example, where predecessor varieties are no longer extant, this may be a particularly useful approach.
Karyotype versus microarray testing for genetic abnormalities after stillbirth.
Reddy, Uma M; Page, Grier P; Saade, George R; Silver, Robert M; Thorsten, Vanessa R; Parker, Corette B; Pinar, Halit; Willinger, Marian; Stoll, Barbara J; Heim-Hall, Josefine; Varner, Michael W; Goldenberg, Robert L; Bukowski, Radek; Wapner, Ronald J; Drews-Botsch, Carolyn D; O'Brien, Barbara M; Dudley, Donald J; Levy, Brynn
2012-12-06
Genetic abnormalities have been associated with 6 to 13% of stillbirths, but the true prevalence may be higher. Unlike karyotype analysis, microarray analysis does not require live cells, and it detects small deletions and duplications called copy-number variants. The Stillbirth Collaborative Research Network conducted a population-based study of stillbirth in five geographic catchment areas. Standardized postmortem examinations and karyotype analyses were performed. A single-nucleotide polymorphism array was used to detect copy-number variants of at least 500 kb in placental or fetal tissue. Variants that were not identified in any of three databases of apparently unaffected persons were then classified into three groups: probably benign, clinical significance unknown, or pathogenic. We compared the results of karyotype and microarray analyses of samples obtained after delivery. In our analysis of samples from 532 stillbirths, microarray analysis yielded results more often than did karyotype analysis (87.4% vs. 70.5%, P<0.001) and provided better detection of genetic abnormalities (aneuploidy or pathogenic copy-number variants, 8.3% vs. 5.8%; P=0.007). Microarray analysis also identified more genetic abnormalities among 443 antepartum stillbirths (8.8% vs. 6.5%, P=0.02) and 67 stillbirths with congenital anomalies (29.9% vs. 19.4%, P=0.008). As compared with karyotype analysis, microarray analysis provided a relative increase in the diagnosis of genetic abnormalities of 41.9% in all stillbirths, 34.5% in antepartum stillbirths, and 53.8% in stillbirths with anomalies. Microarray analysis is more likely than karyotype analysis to provide a genetic diagnosis, primarily because of its success with nonviable tissue, and is especially valuable in analyses of stillbirths with congenital anomalies or in cases in which karyotype results cannot be obtained. (Funded by the Eunice Kennedy Shriver National Institute of Child Health and Human Development.).
Belle, Elise M S; Barbujani, Guido
2007-08-01
Previous studies of the correlations between the languages spoken by human populations and the genes carried by the members of those populations have been limited by the small amount of genetic markers available and by approximations in the treatment of linguistic data. In this study we analyzed a large collection of polymorphic microsatellite loci (377), distributed on all autosomes, and used Ruhlen's linguistic classification, to investigate the relative roles of geography and language in shaping the distribution of human DNA diversity at a worldwide scale. For this purpose, we performed three different kinds of analysis: (i) we partitioned genetic variances at three hierarchical levels of population subdivision according to language group by means of a molecular analysis of variance (AMOVA); (ii) we quantified by a series of Mantel's tests the correlation between measures of genetic and linguistic differentiation; and (iii) we tested whether linguistic differences are increased across known zones of increased genetic change between populations. Genetic differences appear to more closely reflect geographic than linguistic differentiation. However, our analyses show that language differences also have a detectable effect on DNA diversity at the genomic level, above and beyond the effects of geographic distance. (c) 2007 Wiley-Liss, Inc.
Lachowski, Stanisław; Jurkiewicz, Anna; Choina, Piotr; Florek-Łuszczki, Magdalena; Buczaj, Agnieszka; Goździewska, Małgorzata
2017-06-07
Agriculture based on genetically modified organisms plays an increasingly important role in feeding the world population, which is evidenced by a considerable growth in the size of land under genetically modified crops (GM). Uncertainty and controversy around GM products are mainly due to the lack of accurate and reliable information, and lack of knowledge concerning the essence of genetic modifications, and the effect of GM food on the human organism, and consequently, a negative emotional attitude towards what is unknown. The objective of the presented study was to discover to what extent knowledge and the emotional attitude of adolescents towards genetically modified organisms is related with acceptance of growing genetically modified plants or breeding GM animals on own farm or allotment garden, and the purchase and consumption of GM food, as well as the use of GMOs in medicine. The study was conducted by the method of a diagnostic survey using a questionnaire designed by the author, which covered a group of 500 adolescents completing secondary school on the level of maturity examination. The collected material was subjected to statistical analysis. Research hypotheses were verified using chi-square test (χ 2 ), t-Student test, and stepwise regression analysis. Stepwise regression analysis showed that the readiness of adolescents to use genetically modified organisms as food or for the production of pharmaceuticals, the production of GM plants or animals on own farm, depends on an emotional-evaluative attitude towards GMOs, and the level of knowledge concerning the essence of genetic modifications.
Genetical genomics of Populus leaf shape variation
Drost, Derek R.; Puranik, Swati; Novaes, Evandro; ...
2015-06-30
Leaf morphology varies extensively among plant species and is under strong genetic control. Mutagenic screens in model systems have identified genes and established molecular mechanisms regulating leaf initiation, development, and shape. However, it is not known whether this diversity across plant species is related to naturally occurring variation at these genes. Quantitative trait locus (QTL) analysis has revealed a polygenic control for leaf shape variation in different species suggesting that loci discovered by mutagenesis may only explain part of the naturally occurring variation in leaf shape. Here we undertook a genetical genomics study in a poplar intersectional pseudo-backcross pedigree tomore » identify genetic factors controlling leaf shape. Here, the approach combined QTL discovery in a genetic linkage map anchored to the Populus trichocarpa reference genome sequence and transcriptome analysis.« less
Zhu, Tian-Tian; Jin, Ling; Du, Tao; Cui, Zhi-Jia; Zhang, Xian-Fei; Wu, Di
2013-09-01
To investigate the genetic relationship of Ephedra intermedia from different habitats in Gansu. The genetic diversity and genetic relationship of E. intermedia from different habitats in Gansu were studied by ISSR molecular marker technique. Twelve ISSR primers were selected from 70 ISSR primers and used for ISSR amplification. Total 112 loci were amplified, in which 81 were polymorphic loci, the average percentage of polymorphie bands (PPB) was 72.32%. Clustering results indicated that the wild species and cultivating species were clustered into different group. The wild species, which had closer distance, were clustered into a group. E. intermedia of different habitats in Gansu have rich genetic diversities among species, it is the reason that E. intermedia has strong adaptability and wide distribution. Further, the genetic distance of E. intermedia is associated with geographical distance, the further distance can hinder the gene flow.
Genetic affinities of the Siddis of South India: an emigrant population of East Africa.
Gauniyal, Mansi; Chahal, S M S; Kshatriya, Gautam K
2008-06-01
Historical records indicate that the Portuguese brought the African Siddis to Goa, India, as slaves about 500 years ago. Subsequently, the Siddis moved into the interior regions of the state of Karnataka, India, and have remained there ever since. Over time the Siddis have experienced considerable cultural changes because of their proximity to neighboring population groups. To understand the biological consequences of these changes, we studied the Siddis to determine the extent of genetic variation and the contributions from the African, European, and Indian ancestral populations. In the present study we typed the Siddis for 20 polymorphic serological, red cell, and Alu insertion-deletion loci. The overall pattern of phenotype (and genotype) distribution is in accordance with Hardy-Weinberg expectations. Considering the ethnohistorical records and the availability of secondary-source genetic data, we used two data sets in the analysis: one comprising eight serological and red cell enzyme markers with eight population groups and another comprising six Alu insertion-deletion markers with seven tribal groups of South India. The dendrograms generated from these two data sets on the basis of genetic distance analysis between the selected populations of African, European, and Indian descent reveals that the Siddis are closer to the Africans than they are to the South Indian populations. Genetic admixture analysis using a dihybrid model (19 loci) and a trihybrid model (10 loci and 8 loci) shows that the predominant influence comes from the Africans, a lesser contribution from the South Indians, and a slight contribution from the Portuguese. Thus the original composition of the African genes among the Siddis has been diluted to some extent by the contribution from southern Indian population groups. There is no nonrandom association of alleles among a set of 10 genetic marker systems considered in the present study. The demonstration of genetic homogeneity of the Siddis, despite their admixed origin, suggests the utility of this population for genetic and epidemiological studies.
Pesik, V Yu; Fedunin, A A; Agdzhoyan, A T; Utevska, O M; Chukhraeva, M I; Evseeva, I V; Churnosov, M I; Lependina, I N; Bogunov, Yu V; Bogunova, A A; Ignashkin, M A; Yankovsky, N K; Balanovska, E V; Orekhov, V A; Balanovsky, O P
2014-06-01
We conducted the first genetic analysis of a wide a range of rural Russian populations in European Russia with a panel of common DNA markers commonly used in criminalistics genetic identification. We examined a total of 647 samples from indigenous ethnic Russian populations in Arkhangelsk, Belgorod, Voronezh, Kursk, Rostov, Ryazan, and Orel regions. We employed a multiplex genotyping kit, COrDIS Plus, to genotype Short Tandem Repeat (STR) loci, which included the genetic marker panel officially recommended for DNA identification in the Russian Federation, the United States, and the European Union. In the course of our study, we created a database of allelic frequencies, examined the distribution of alleles and genotypes in seven rural Russian populations, and defined the genetic relationships between these populations. We found that, although multidimensional analysis indicated a difference between the Northern gene pool and the rest of the Russian European populations, a pairwise comparison using 19 STR markers among all populations did not reveal significant differences. This is in concordance with previous studies, which examined up to 12 STR markers of urban Russian populations. Therefore, the database of allelic frequencies created in this study can be applied for forensic examinations and DNA identification among the ethnic Russian population over European Russia. We also noted a decrease in the levels of heterozygosity in the northern Russian population compared to ethnic populations in southern and central Russia, which is consistent with trends identified previously using classical gene markers and analysis of mitochondrial DNA.
Chikkagoudar, Satish; Wang, Kai; Li, Mingyao
2011-05-26
Gene-gene interaction in genetic association studies is computationally intensive when a large number of SNPs are involved. Most of the latest Central Processing Units (CPUs) have multiple cores, whereas Graphics Processing Units (GPUs) also have hundreds of cores and have been recently used to implement faster scientific software. However, currently there are no genetic analysis software packages that allow users to fully utilize the computing power of these multi-core devices for genetic interaction analysis for binary traits. Here we present a novel software package GENIE, which utilizes the power of multiple GPU or CPU processor cores to parallelize the interaction analysis. GENIE reads an entire genetic association study dataset into memory and partitions the dataset into fragments with non-overlapping sets of SNPs. For each fragment, GENIE analyzes: 1) the interaction of SNPs within it in parallel, and 2) the interaction between the SNPs of the current fragment and other fragments in parallel. We tested GENIE on a large-scale candidate gene study on high-density lipoprotein cholesterol. Using an NVIDIA Tesla C1060 graphics card, the GPU mode of GENIE achieves a speedup of 27 times over its single-core CPU mode run. GENIE is open-source, economical, user-friendly, and scalable. Since the computing power and memory capacity of graphics cards are increasing rapidly while their cost is going down, we anticipate that GENIE will achieve greater speedups with faster GPU cards. Documentation, source code, and precompiled binaries can be downloaded from http://www.cceb.upenn.edu/~mli/software/GENIE/.
Cheng, Yu-Ching; Stanne, Tara M; Giese, Anne-Katrin; Ho, Weang Kee; Traylor, Matthew; Amouyel, Philippe; Holliday, Elizabeth G; Malik, Rainer; Xu, Huichun; Kittner, Steven J; Cole, John W; O'Connell, Jeffrey R; Danesh, John; Rasheed, Asif; Zhao, Wei; Engelter, Stefan; Grond-Ginsbach, Caspar; Kamatani, Yoichiro; Lathrop, Mark; Leys, Didier; Thijs, Vincent; Metso, Tiina M; Tatlisumak, Turgut; Pezzini, Alessandro; Parati, Eugenio A; Norrving, Bo; Bevan, Steve; Rothwell, Peter M; Sudlow, Cathie; Slowik, Agnieszka; Lindgren, Arne; Walters, Matthew R; Jannes, Jim; Shen, Jess; Crosslin, David; Doheny, Kimberly; Laurie, Cathy C; Kanse, Sandip M; Bis, Joshua C; Fornage, Myriam; Mosley, Thomas H; Hopewell, Jemma C; Strauch, Konstantin; Müller-Nurasyid, Martina; Gieger, Christian; Waldenberger, Melanie; Peters, Annette; Meisinger, Christine; Ikram, M Arfan; Longstreth, W T; Meschia, James F; Seshadri, Sudha; Sharma, Pankaj; Worrall, Bradford; Jern, Christina; Levi, Christopher; Dichgans, Martin; Boncoraglio, Giorgio B; Markus, Hugh S; Debette, Stephanie; Rolfs, Arndt; Saleheen, Danish; Mitchell, Braxton D
2016-02-01
Although a genetic contribution to ischemic stroke is well recognized, only a handful of stroke loci have been identified by large-scale genetic association studies to date. Hypothesizing that genetic effects might be stronger for early- versus late-onset stroke, we conducted a 2-stage meta-analysis of genome-wide association studies, focusing on stroke cases with an age of onset <60 years. The discovery stage of our genome-wide association studies included 4505 cases and 21 968 controls of European, South-Asian, and African ancestry, drawn from 6 studies. In Stage 2, we selected the lead genetic variants at loci with association P<5×10(-6) and performed in silico association analyses in an independent sample of ≤1003 cases and 7745 controls. One stroke susceptibility locus at 10q25 reached genome-wide significance in the combined analysis of all samples from the discovery and follow-up stages (rs11196288; odds ratio =1.41; P=9.5×10(-9)). The associated locus is in an intergenic region between TCF7L2 and HABP2. In a further analysis in an independent sample, we found that 2 single nucleotide polymorphisms in high linkage disequilibrium with rs11196288 were significantly associated with total plasma factor VII-activating protease levels, a product of HABP2. HABP2, which encodes an extracellular serine protease involved in coagulation, fibrinolysis, and inflammatory pathways, may be a genetic susceptibility locus for early-onset stroke. © 2016 American Heart Association, Inc.
2011-01-01
Background Gene-gene interaction in genetic association studies is computationally intensive when a large number of SNPs are involved. Most of the latest Central Processing Units (CPUs) have multiple cores, whereas Graphics Processing Units (GPUs) also have hundreds of cores and have been recently used to implement faster scientific software. However, currently there are no genetic analysis software packages that allow users to fully utilize the computing power of these multi-core devices for genetic interaction analysis for binary traits. Findings Here we present a novel software package GENIE, which utilizes the power of multiple GPU or CPU processor cores to parallelize the interaction analysis. GENIE reads an entire genetic association study dataset into memory and partitions the dataset into fragments with non-overlapping sets of SNPs. For each fragment, GENIE analyzes: 1) the interaction of SNPs within it in parallel, and 2) the interaction between the SNPs of the current fragment and other fragments in parallel. We tested GENIE on a large-scale candidate gene study on high-density lipoprotein cholesterol. Using an NVIDIA Tesla C1060 graphics card, the GPU mode of GENIE achieves a speedup of 27 times over its single-core CPU mode run. Conclusions GENIE is open-source, economical, user-friendly, and scalable. Since the computing power and memory capacity of graphics cards are increasing rapidly while their cost is going down, we anticipate that GENIE will achieve greater speedups with faster GPU cards. Documentation, source code, and precompiled binaries can be downloaded from http://www.cceb.upenn.edu/~mli/software/GENIE/. PMID:21615923
Assessment of Genetic Diversity of Sweet Potato in Puerto Rico
Rodriguez-Bonilla, Lorraine; Cuevas, Hugo E.; Montero-Rojas, Milly; Bird-Pico, Fernando; Luciano-Rosario, Dianiris; Siritunga, Dimuth
2014-01-01
Sweet potato (Ipomoea batatas L.) is the seventh most important food crop due to its distinct advantages, such as adaptability to different environmental conditions and high nutritional value. Assessing the genetic diversity of this important crop is necessary due to the constant increase of demand for food and the need for conservation of agricultural and genetic resources. In Puerto Rico (PR), the genetic diversity of sweet potato has been poorly understood, although it has been part of the diet since Pre-Columbus time. Thus, 137 landraces from different localities around PR were collected and subjected to a genetic diversity analysis using 23 SSR-markers. In addition, 8 accessions from a collection grown in Gurabo, PR at the Agricultural Experimental Station (GAES), 10 US commercial cultivars and 12 Puerto Rican accessions from the USDA repository collection were included in this assessment. The results of the analysis of the 23 loci showed 255 alleles in the 167 samples. Observed heterozygosity was high across populations (0.71) while measurements of total heterozygosity revealed a large genetic diversity throughout the population and within populations. UPGMA clustering method revealed two main clusters. Cluster 1 contained 12 PR accessions from the USDA repository collection, while cluster 2 consisted of PR landraces, US commercial cultivars and the PR accessions from GAES. Population structure analysis grouped PR landraces in five groups including four US commercial cultivars. Our study shows the presence of a high level of genetic diversity of sweet potato across PR which can be related to the genetic makeup of sweet potato, human intervention and out-crossing nature of the plant. The history of domestication and dispersal of sweet potato in the Caribbean and the high levels of genetic diversity found through this study makes sweet potato an invaluable resource that needs to be protected and further studied. PMID:25551388
Zhu, Yong; Wen, Wen; Zhang, Fengmin; Hardie, Jim W.
2015-01-01
Background and Aims Proton nuclear magnetic resonance spectroscopy coupled multivariate analysis (1H NMR-PCA/PLS-DA) is an important tool for the discrimination of wine products. Although 1H NMR has been shown to discriminate wines of different cultivars, a grape genetic component of the discrimination has been inferred only from discrimination of cultivars of undefined genetic homology and in the presence of many confounding environmental factors. We aimed to confirm the influence of grape genotypes in the absence of those factors. Methods and Results We applied 1H NMR-PCA/PLS-DA and hierarchical cluster analysis (HCA) to wines from five, variously genetically-related grapevine (V. vinifera) cultivars; all grown similarly on the same site and vinified similarly. We also compared the semi-quantitative profiles of the discriminant metabolites of each cultivar with previously reported chemical analyses. The cultivars were clearly distinguishable and there was a general correlation between their grouping and their genetic homology as revealed by recent genomic studies. Between cultivars, the relative amounts of several of the cultivar-related discriminant metabolites conformed closely with reported chemical analyses. Conclusions Differences in grape-derived metabolites associated with genetic differences alone are a major source of 1H NMR-based discrimination of wines and 1H NMR has the capacity to discriminate between very closely related cultivars. Significance of the Study The study confirms that genetic variation among grape cultivars alone can account for the discrimination of wine by 1H NMR-PCA/PLS and indicates that 1H NMR spectra of wine of single grape cultivars may in future be used in tandem with hierarchical cluster analysis to elucidate genetic lineages and metabolomic relations of grapevine cultivars. In the absence of genetic information, for example, where predecessor varieties are no longer extant, this may be a particularly useful approach. PMID:26658757
Xue, Huiling; Xiao, Yao; Jin, Yanling; Li, Xinbo; Fang, Yang; Zhao, Hai; Zhao, Yun; Guan, Jiafa
2012-01-01
Duckweed, with rapid growth rate and high starch content, is a new alternate feedstock for bioethanol production. The genetic diversity among 27 duckweed populations of seven species in genus Lemna and Spirodela from China and Vietnam was analyzed by ISSR-PCR. Eight ISSR primers generating a reproducible amplification banding pattern had been screened. 89 polymorphic bands were scored out of the 92 banding patterns of 16 Lemna populations, accounting for 96.74% of the polymorphism. 98 polymorphic bands of 11 Spirodela populations were scored out of 99 banding patterns, and the polymorphism was 98.43%. The genetic distance of Lemna varied from 0.127 to 0.784, and from 0.138 to 0.902 for Spirodela, which indicated a high level of genetic variation among the populations studied. The unweighted pair group method with arithmetic average (UPGMA) cluster analysis corresponded well with the genetic distance. Populations from Sichuan China grouped together and so did the populations from Vietnam, which illuminated populations collected from the same region clustered into one group. Especially, the only one population from Tibet was included in subgroup A2 alone. Clustering analysis indicated that the geographic differentiation of collected sites correlated closely with the genetic differentiation of duckweeds. The results suggested that geographic differentiation had great influence on genetic diversity of duckweed in China and Vietnam at the regional scale. This study provided primary guidelines for collection, conservation, characterization of duckweed resources for bioethanol production etc.
High genetic diversity of Jatropha curcas assessed by ISSR.
Díaz, B G; Argollo, D M; Franco, M C; Nucci, S M; Siqueira, W J; de Laat, D M; Colombo, C A
2017-05-31
Jatropha curcas L. is a highly promising oilseed for sustainable production of biofuels and bio-kerosene due to its high oil content and excellent quality. However, it is a perennial and incipiently domesticated species with none stable cultivar created until now despite genetic breeding programs in progress in several countries. Knowledge of the genetic structure and diversity of the species is a necessary step for breeding programs. The molecular marker can be used as a tool for speed up the process. This study was carried out to assess genetic diversity of a germplasm bank represented by J. curcas accessions from different provenance beside interspecific hybrid and backcrosses generated by IAC breeding programs using inter-simple sequence repeat markers. The molecular study revealed 271 bands of which 98.9% were polymorphic with an average of 22.7 polymorphic bands per primer. Genetic diversity of the germplasm evaluated was slightly higher than other germplasm around the world and ranged from 0.55 to 0.86 with an average of 0.59 (Jaccard index). Cluster analysis (UPGMA) revealed no clear grouping as to the geographical origin of accessions, consistent with genetic structure analysis using the Structure software. For diversity analysis between groups, accessions were divided into eight groups by origin. Nei's genetic distance between groups was 0.14. The results showed the importance of Mexican accessions, congeneric wild species, and interspecific hybrids for conservation and development of new genotypes in breeding programs.
Coleman, J; Pierce, K M; Berry, D P; Brennan, A; Horan, B
2009-10-01
Three genetic groups of Holstein-Friesian dairy cows were established from within the Moorepark (Teagasc, Ireland) dairy research herd: LowNA, indicative of the Irish national average-genetic-merit North American Holstein-Friesian; HighNA, high-genetic-merit North American Holstein-Friesian; HighNZ, high-genetic-merit New Zealand Holstein-Friesian. Genetic merit in this study was based on the Irish total merit index, the Economic Breeding Index. Animals from within each genetic group were randomly allocated to 1 of 2 possible post-European Union-milk-quota pasture-based feeding systems (FS): 1) The Moorepark (MP) pasture system (2.64 cows/ha and 500 kg of concentrate supplement per cow per lactation) and 2) a high output per hectare (HC) pasture system (2.85 cows/ha and 1,200 kg of concentrate supplement per cow per lactation). A total of 126, 128, and 140 spring-calving dairy cows were used during the years 2006, 2007, and 2008, respectively. Each group had an individual farmlet of 17 paddocks, and all groups were managed similarly throughout the study. The effects of genetic group, FS, and the interaction between genetic group and FS on reproductive performance, body weight, body condition score, and blood metabolite concentrations were studied using mixed models with factorial arrangements of genetic groups and FS. Odds ratios were used in the analysis of binary fertility traits, and survival analysis was used in the analysis of survival after first calving. When treatment means were compared, the HighNA and HighNZ genotypes (with greater genetic merit for fertility performance) had greater first-service pregnancy rates and had a greater proportion of cows pregnant after 42 d of the breeding season than the LowNA group. Both HighNA and HighNZ genotypes were submitted for artificial insemination earlier in the breeding season and had greater survival than the LowNA genotype. There was no significant FS or genotype by FS interactions for any of the reproductive, blood metabolite, body weight, or body condition score measures. The results demonstrate that increased genetic merit for fertility traits resulted in improved reproductive performance and that the poor reproductive capacity of inferior-genetic-merit animals for fertility was not improved through concentrate supplementation at pasture.
Zhang, F; Ge, Y Y; Wang, W Y; Shen, X L; Yu, X Y
2012-12-03
Conventional hybridization and selection techniques have aided the development of new ornamental crop cultivars. However, little information is available on the genetic divergence of bromeliad hybrids. In the present study, we investigated the genetic variability in interspecific hybrids of Aechmea gomosepala and A. recurvata var. recurvata using inflorescence characteristics and sequence-related amplified polymorphism (SRAP) markers. The morphological analysis showed that the putative hybrids were intermediate between both parental species with respect to inflorescence characteristics. The 16 SRAP primer combinations yield 265 bands, among which 154 (57.72%) were polymorphic. The genetic similarity was an average of 0.59 and ranged from 0.21 to 0.87, indicating moderate genetic divergence among the hybrids. The unweighted pair group method with arithmetic average (UPGMA)-based cluster analysis distinguished the hybrids from their parents with a genetic distance coefficient of 0.54. The cophenetic correlation was 0.93, indicating a good fit between the dendrogram and the original distance matrix. The two-dimensional plot from the principal coordinate analysis showed that the hybrids were intermediately dispersed between both parents, corresponding to the results of the UPGMA cluster and the morphological analysis. These results suggest that SRAP markers could help to identify breeders, characterize F(1) hybrids of bromeliads at an early stage, and expedite genetic improvement of bromeliad cultivars.
Mishima, Hiroyuki; Lidral, Andrew C; Ni, Jun
2008-05-28
Genetic association studies have been used to map disease-causing genes. A newly introduced statistical method, called exhaustive haplotype association study, analyzes genetic information consisting of different numbers and combinations of DNA sequence variations along a chromosome. Such studies involve a large number of statistical calculations and subsequently high computing power. It is possible to develop parallel algorithms and codes to perform the calculations on a high performance computing (HPC) system. However, most existing commonly-used statistic packages for genetic studies are non-parallel versions. Alternatively, one may use the cutting-edge technology of grid computing and its packages to conduct non-parallel genetic statistical packages on a centralized HPC system or distributed computing systems. In this paper, we report the utilization of a queuing scheduler built on the Grid Engine and run on a Rocks Linux cluster for our genetic statistical studies. Analysis of both consecutive and combinational window haplotypes was conducted by the FBAT (Laird et al., 2000) and Unphased (Dudbridge, 2003) programs. The dataset consisted of 26 loci from 277 extended families (1484 persons). Using the Rocks Linux cluster with 22 compute-nodes, FBAT jobs performed about 14.4-15.9 times faster, while Unphased jobs performed 1.1-18.6 times faster compared to the accumulated computation duration. Execution of exhaustive haplotype analysis using non-parallel software packages on a Linux-based system is an effective and efficient approach in terms of cost and performance.
Mishima, Hiroyuki; Lidral, Andrew C; Ni, Jun
2008-01-01
Background Genetic association studies have been used to map disease-causing genes. A newly introduced statistical method, called exhaustive haplotype association study, analyzes genetic information consisting of different numbers and combinations of DNA sequence variations along a chromosome. Such studies involve a large number of statistical calculations and subsequently high computing power. It is possible to develop parallel algorithms and codes to perform the calculations on a high performance computing (HPC) system. However, most existing commonly-used statistic packages for genetic studies are non-parallel versions. Alternatively, one may use the cutting-edge technology of grid computing and its packages to conduct non-parallel genetic statistical packages on a centralized HPC system or distributed computing systems. In this paper, we report the utilization of a queuing scheduler built on the Grid Engine and run on a Rocks Linux cluster for our genetic statistical studies. Results Analysis of both consecutive and combinational window haplotypes was conducted by the FBAT (Laird et al., 2000) and Unphased (Dudbridge, 2003) programs. The dataset consisted of 26 loci from 277 extended families (1484 persons). Using the Rocks Linux cluster with 22 compute-nodes, FBAT jobs performed about 14.4–15.9 times faster, while Unphased jobs performed 1.1–18.6 times faster compared to the accumulated computation duration. Conclusion Execution of exhaustive haplotype analysis using non-parallel software packages on a Linux-based system is an effective and efficient approach in terms of cost and performance. PMID:18541045
Temporal analysis of mtDNA variation reveals decreased genetic diversity in least terns
Draheim, Hope M.; Baird, Patricia; Haig, Susan M.
2012-01-01
The Least Tern (Sternula antillarum) has undergone large population declines over the last century as a result of direct and indirect anthropogenic factors. The genetic implications of these declines are unknown. We used historical museum specimens (pre-1960) and contemporary (2001–2005) samples to examine range-wide phylogeographic patterns and investigate potential loss in the species' genetic variation. We obtained sequences (522 bp) of the mitochondrial gene for NADH dehydrogenase subunit 6 (ND6) from 268 individuals from across the species' range. Phylogeographic analysis revealed no association with geography or traditional subspecies designations. However, we detected potential reductions in genetic diversity in contemporary samples from California and the Atlantic coast Least Tern from that in historical samples, suggesting that current genetic diversity in Least Tern populations is lower than in their pre-1960 counterparts. Our results offer unique insights into changes in the Least Tern's genetic diversity over the past century and highlight the importance and utility of museum specimens in studies of conservation genetics.
Effectiveness of students worksheet based on mastery learning in genetics subject
NASA Astrophysics Data System (ADS)
Megahati, R. R. P.; Yanti, F.; Susanti, D.
2018-05-01
Genetics is one of the subjects that must be followed by students in Biology education department. Generally, students do not like the genetics subject because of genetics concepts difficult to understand and the unavailability of a practical students worksheet. Consequently, the complete learning process (mastery learning) is not fulfilled and low students learning outcomes. The aim of this study develops student worksheet based on mastery learning that practical in genetics subject. This research is a research and development using 4-D models. The data analysis technique used is the descriptive analysis that describes the results of the practicalities of students worksheets based on mastery learning by students and lecturer of the genetic subject. The result is the student worksheet based on mastery learning on genetics subject are to the criteria of 80,33% and 80,14%, which means that the students worksheet practical used by lecturer and students. Student’s worksheet based on mastery learning effective because it can increase the activity and student learning outcomes.
Aguiar, G F; Neves, W A
1991-08-01
The analysis of biologic variation in prehistoric human populations separately by sex has been used as a tool to recover post-marital residential rules. These studies, which focus on the sexual distribution of skeletal traits, assume that the degree of intragroup or intergroup biologic diversity is higher in one sex with regard to unilocality (uxori- or virilocality). Despite a recent attempt to interpret this phenomenon in terms of population genetics (Konigsberg 1988), the main assumption has never been tested in situations in which the real residential practice of an indigenous population is known and in which genetic rather than phenotypic data are available. We investigated the within-group and between-group genetic variability among males and females from 4 villages of an uxorilocal Amazonian tribe, the Urubu-Ka'apor, on the basis of 20 polymorphic loci. The results were only partly concordant with the expected. Individual mean per locus heterozygosities were not different between the sexes, and the analysis of genetic heterogeneity showed similar gene frequencies for males and females in all villages. On the other hand, the intergroup approach detected a level of variation significantly greater among females than among males. The ethnographic evidence shows that three of the four subgroups studied belong to the same gamic unity, with the fourth subgroup belonging to another gamic network. Within-sex differences in intergroup analysis turned out to be more evident; yet, when those 3 villages were investigated separately, the female FST (0.0609) proved to be significantly higher than the male FST (0.0218). Such results suggest that the intergroup analysis is more sensitive to the genetic effects of differential migration rates between the sexes. In prehistoric contexts, therefore, an intergroup genetic approach can provide more reliable grounds for sociocultural inferences.
Jahanshad, Neda; Kochunov, Peter; Sprooten, Emma; Mandl, René C.; Nichols, Thomas E.; Almassy, Laura; Blangero, John; Brouwer, Rachel M.; Curran, Joanne E.; de Zubicaray, Greig I.; Duggirala, Ravi; Fox, Peter T.; Hong, L. Elliot; Landman, Bennett A.; Martin, Nicholas G.; McMahon, Katie L.; Medland, Sarah E.; Mitchell, Braxton D.; Olvera, Rene L.; Peterson, Charles P.; Starr, John M.; Sussmann, Jessika E.; Toga, Arthur W.; Wardlaw, Joanna M.; Wright, Margaret J.; Hulshoff Pol, Hilleke E.; Bastin, Mark E.; McIntosh, Andrew M.; Deary, Ian J.; Thompson, Paul M.; Glahn, David C.
2013-01-01
The ENIGMA (Enhancing NeuroImaging Genetics through Meta-Analysis) Consortium was set up to analyze brain measures and genotypes from multiple sites across the world to improve the power to detect genetic variants that influence the brain. Diffusion tensor imaging (DTI) yields quantitative measures sensitive to brain development and degeneration, and some common genetic variants may be associated with white matter integrity or connectivity. DTI measures, such as the fractional anisotropy (FA) of water diffusion, may be useful for identifying genetic variants that influence brain microstructure. However, genome-wide association studies (GWAS) require large populations to obtain sufficient power to detect and replicate significant effects, motivating a multi-site consortium effort. As part of an ENIGMA–DTI working group, we analyzed high-resolution FA images from multiple imaging sites across North America, Australia, and Europe, to address the challenge of harmonizing imaging data collected at multiple sites. Four hundred images of healthy adults aged 18–85 from four sites were used to create a template and corresponding skeletonized FA image as a common reference space. Using twin and pedigree samples of different ethnicities, we used our common template to evaluate the heritability of tract-derived FA measures. We show that our template is reliable for integrating multiple datasets by combining results through meta-analysis and unifying the data through exploratory mega-analyses. Our results may help prioritize regions of the FA map that are consistently influenced by additive genetic factors for future genetic discovery studies. Protocols and templates are publicly available at (http://enigma.loni.ucla.edu/ongoing/dti-working-group/). PMID:23629049
Richardson, Marty; Kirkham, Jamie; Dwan, Kerry; Sloan, Derek; Davies, Geraint; Jorgensen, Andrea
2017-07-13
Tuberculosis patients receiving anti-tuberculosis treatment may experience serious adverse drug reactions, such as hepatotoxicity. Genetic risk factors, such as polymorphisms of the NAT2, CYP2E1 and GSTM1 genes, may increase the risk of experiencing such toxicity events. Many pharmacogenetic studies have investigated the association between genetic variants and anti-tuberculosis drug-related toxicity events, and several meta-analyses have synthesised data from these studies, although conclusions from these meta-analyses are conflicting. Many meta-analyses also have serious methodological limitations, such as applying restrictive inclusion criteria, or not assessing the quality of included studies. Most also only consider hepatotoxicity outcomes and specific genetic variants. The purpose of this systematic review and meta-analysis is to give a comprehensive evaluation of the evidence base for associations between any genetic variant and anti-tuberculosis drug-related toxicity. We will search for studies in MEDLINE, EMBASE, BIOSIS and Web of Science. We will also hand search reference lists from relevant studies and contact experts in the field. We will include cohort studies, case-control studies and randomised controlled trials that recruited patients with tuberculosis who were either already established on anti-tuberculosis treatment or were commencing treatment and who were genotyped to investigate the effect of genetic variants on any anti-tuberculosis drug-related toxicity outcome. One author will screen abstracts to identify potentially relevant studies and will then obtain the full text for each potentially relevant study in order to assess eligibility. At each of these stages, a second author will independently screen/assess 10% of studies. Two authors will independently extract data and assess the quality of studies using a pre-piloted data extraction form. If appropriate, we will pool estimates of effect for each genotype on each outcome using meta-analyses stratified by ethnicity. Our review and meta-analysis will update and add to the existing research in this field. By not restricting the scope of the review to a specific drug, genetic variant, or toxicity outcome, we hope to synthesise data for associations between genetic variants and anti-tuberculosis drug-related toxicity outcomes that have previously not been summarised in systematic reviews, and consequently, add to the knowledge base of the pharmacogenetics of anti-tuberculosis drugs. PROSPERO CRD42017068448.
Partition of genetic trends by origin in Landrace and Large-White pigs.
Škorput, D; Gorjanc, G; Kasap, A; Luković, Z
2015-10-01
The objective of this study was to analyse the effectiveness of genetic improvement via domestic selection and import for backfat thickness and time on test in a conventional pig breeding programme for Landrace (L) and Large-White (LW) breeds. Phenotype data was available for 25 553 L and 10 432 LW pigs born between 2002 and 2012 from four large-scale farms and 72 family farms. Pedigree information indicated whether each animal was born and registered within the domestic breeding programme or has been imported. This information was used for defining the genetic groups of unknown parents in a pedigree and the partitioning analysis. Breeding values were estimated using a Bayesian analysis of an animal model with and without genetic groups. Such analysis enabled full Bayesian inference of the genetic trends and their partitioning by the origin of germplasm. Estimates of genetic group indicated that imported germplasm was overall better than domestic and substantial changes in estimates of breeding values was observed when genetic group were fitted. The estimated genetic trends in L were favourable and significantly different from zero by the end of the analysed period. Overall, the genetic trends in LW were not different from zero. The relative contribution of imported germplasm to genetic trends was large, especially towards the end of analysed period with 78% and 67% in L and from 50% to 67% in LW. The analyses suggest that domestic breeding activities and sources of imported animals need to be re-evaluated, in particular in LW breed.
Pissard, A; Ghislain, M; Bertin, P
2006-01-01
The Andean tuber-bearing species, Oxalis tuberosa Mol., is a vegetatively propagated crop cultivated in the uplands of the Andes. Its genetic diversity was investigated in the present study using the inter-simple sequence repeat (ISSR) technique. Thirty-two accessions originating from South America (Argentina, Bolivia, Chile, and Peru) and maintained in vitro were chosen to represent the ecogeographic diversity of its cultivation area. Twenty-two primers were tested and 9 were selected according to fingerprinting quality and reproducibility. Genetic diversity analysis was performed with 90 markers. Jaccard's genetic distance between accessions ranged from 0 to 0.49 with an average of 0.28 +/- 0.08 (mean +/- SD). Dendrogram (UPGMA (unweighted pair-group method with arithmetic averaging)) and factorial correspondence analysis (FCA) showed that the genetic structure was influenced by the collection site. The two most distant clusters contained all of the Peruvian accessions, one from Bolivia, none from Argentina or Chile. Analysis by country revealed that Peru presented the greatest genetic distances from the other countries and possessed the highest intra-country genetic distance (0.30 +/- 0.08). This suggests that the Peruvian oca accessions form a distinct genetic group. The relatively low level of genetic diversity in the oca species may be related to its predominating reproduction strategy, i.e., vegetative propagation. The extent and structure of the genetic diversity of the species detailed here should help the establishment of conservation strategies.
Boronnikova, S V; Kalendar', R N
2010-01-01
Species-specific LTR retrotransposons were first cloned in five rare relic species of drug plants located in the Perm' region. Sequences of LTR retrotransposons were used for PCR analysis based on amplification of repeated sequences from LTR or other sites of retrotransposons (IRAP). Genetic diversity was studied in six populations of rare relic species of plants Adonis vernalis L. by means of the IRAP method; 125 polymorphic IRAP-markers were analyzed. Parameters for DNA polymorphism and genetic diversity of A. vernalis populations were determined.
Vasilopoulos, Terrie; Franz, Carol E.; Panizzon, Matthew S.; Xian, Hong; Grant, Michael D.; Lyons, Michael J; Toomey, Rosemary; Jacobson, Kristen C.; Kremen, William S.
2012-01-01
Objective To examine how genes and environments contribute to relationships among Trail Making test conditions and the extent to which these conditions have unique genetic and environmental influences. Method Participants included 1237 middle-aged male twins from the Vietnam-Era Twin Study of Aging (VESTA). The Delis-Kaplan Executive Function System Trail Making test included visual searching, number and letter sequencing, and set-shifting components. Results Phenotypic correlations among Trails conditions ranged from 0.29 – 0.60, and genes accounted for the majority (58–84%) of each correlation. Overall heritability ranged from 0.34 to 0.62 across conditions. Phenotypic factor analysis suggested a single factor. In contrast, genetic models revealed a single common genetic factor but also unique genetic influences separate from the common factor. Genetic variance (i.e., heritability) of number and letter sequencing was completely explained by the common genetic factor while unique genetic influences separate from the common factor accounted for 57% and 21% of the heritabilities of visual search and set-shifting, respectively. After accounting for general cognitive ability, unique genetic influences accounted for 64% and 31% of those heritabilities. Conclusions A common genetic factor, most likely representing a combination of speed and sequencing accounted for most of the correlation among Trails 1–4. Distinct genetic factors, however, accounted for a portion of variance in visual scanning and set-shifting. Thus, although traditional phenotypic shared variance analysis techniques suggest only one general factor underlying different neuropsychological functions in non-patient populations, examining the genetic underpinnings of cognitive processes with twin analysis can uncover more complex etiological processes. PMID:22201299
Huang, Chunqiong; Liu, Guodao; Bai, Changjun; Wang, Wenqiang
2014-01-01
Although Cynodon dactylon (C. dactylon) is widely distributed in China, information on its genetic diversity within the germplasm pool is limited. The objective of this study was to reveal the genetic variation and relationships of 430 C. dactylon accessions collected from 22 Chinese provinces using sequence-related amplified polymorphism (SRAP) markers. Fifteen primer pairs were used to amplify specific C. dactylon genomic sequences. A total of 481 SRAP fragments were generated, with fragment sizes ranging from 260–1800 base pairs (bp). Genetic similarity coefficients (GSC) among the 430 accessions averaged 0.72 and ranged from 0.53–0.96. Cluster analysis conducted by two methods, namely the unweighted pair-group method with arithmetic averages (UPGMA) and principle coordinate analysis (PCoA), separated the accessions into eight distinct groups. Our findings verify that Chinese C. dactylon germplasms have rich genetic diversity, which is an excellent basis for C. dactylon breeding for new cultivars. PMID:25338051
Patirana, A.; Hatcher, S.A.; Friesen, Vicki L.
2002-01-01
Population decline in red-legged kittiwakes (Rissa brevirostris) over recent decades has necessitated the collection of information on the distribution of genetic variation within and among colonies for implementation of suitable management policies. Here we present a preliminary study of the extent of genetic structuring and gene flow among the three principal breeding locations of red-legged kittiwakes using the hypervariable Domain I of the mitochondrial control region. Genetic variation was high relative to other species of seabirds, and was similar among locations. Analysis of molecular variance indicated that population genetic structure was statistically significant, and nested clade analysis suggested that kittiwakes breeding on Bering Island maybe genetically isolated from those elsewhere. However, phylogeographic structure was weak. Although this analysis involved only a single locus and a small number of samples, it suggests that red-legged kittiwakes probably constitute a single evolutionary significant unit; the possibility that they constitute two management units requires further investigation.
Multi-gene panel testing in Korean patients with common genetic generalized epilepsy syndromes.
Lee, Cha Gon; Lee, Jeehun; Lee, Munhyang
2018-01-01
Genetic heterogeneity of common genetic generalized epilepsy syndromes is frequently considered. The present study conducted a focused analysis of potential candidate or susceptibility genes for common genetic generalized epilepsy syndromes using multi-gene panel testing with next-generation sequencing. This study included patients with juvenile myoclonic epilepsy, juvenile absence epilepsy, and epilepsy with generalized tonic-clonic seizures alone. We identified pathogenic variants according to the American College of Medical Genetics and Genomics guidelines and identified susceptibility variants using case-control association analyses and family analyses for familial cases. A total of 57 patients were enrolled, including 51 sporadic cases and 6 familial cases. Twenty-two pathogenic and likely pathogenic variants of 16 different genes were identified. CACNA1H was the most frequently observed single gene. Variants of voltage-gated Ca2+ channel genes, including CACNA1A, CACNA1G, and CACNA1H were observed in 32% of variants (n = 7/22). Analyses to identify susceptibility variants using case-control association analysis indicated that KCNMA1 c.400G>C was associated with common genetic generalized epilepsy syndromes. Only 1 family (family A) exhibited a candidate pathogenic variant p.(Arg788His) on CACNA1H, as determined via family analyses. This study identified candidate genetic variants in about a quarter of patients (n = 16/57) and an average of 2.8 variants was identified in each patient. The results reinforced the polygenic disorder with very high locus and allelic heterogeneity of common GGE syndromes. Further, voltage-gated Ca2+ channels are suggested as important contributors to common genetic generalized epilepsy syndromes. This study extends our comprehensive understanding of common genetic generalized epilepsy syndromes.
Genetic diversity trend in Indian rice varieties: an analysis using SSR markers.
Singh, Nivedita; Choudhury, Debjani Roy; Tiwari, Gunjan; Singh, Amit Kumar; Kumar, Sundeep; Srinivasan, Kalyani; Tyagi, R K; Sharma, A D; Singh, N K; Singh, Rakesh
2016-09-05
The knowledge of the extent and pattern of diversity in the crop species is a prerequisite for any crop improvement as it helps breeders in deciding suitable breeding strategies for their future improvement. Rice is the main staple crop in India with the large number of varieties released every year. Studies based on the small set of rice genotypes have reported a loss in genetic diversity especially after green revolution. However, a detailed study of the trend of diversity in Indian rice varieties is lacking. SSR markers have proven to be a marker of choice for studying the genetic diversity. Therefore, the present study was undertaken with the aim to characterize and assess trends of genetic diversity in a large set of Indian rice varieties (released between 1940-2013), conserved in the National Gene Bank of India using SSR markers. A set of 729 Indian rice varieties were genotyped using 36 HvSSR markers to assess the genetic diversity and genetic relationship. A total of 112 alleles was amplified with an average of 3.11 alleles per locus with mean Polymorphic Information Content (PIC) value of 0.29. Cluster analysis grouped these varieties into two clusters whereas the model based population structure divided them into three populations. AMOVA study based on hierarchical cluster and model based approach showed 3 % and 11 % variation between the populations, respectively. Decadal analysis for gene diversity and PIC showed increasing trend from 1940 to 2005, thereafter values for both the parameters showed decreasing trend between years 2006-2013. In contrast to this, allele number demonstrated increasing trend in these varieties released and notified between1940 to 1985, it remained nearly constant during 1986 to 2005 and again showed an increasing trend. Our results demonstrated that the Indian rice varieties harbors huge amount of genetic diversity. However, the trait based improvement program in the last decades forced breeders to rely on few parents, which resulted in loss of gene diversity during 2006 to 2013. The present study indicates the need for broadening the genetic base of Indian rice varieties through the use of diverse parents in the current breeding program.
Scaffolding Dynamics and the Emergence of Problematic Learning Trajectories
ERIC Educational Resources Information Center
Steenbeek, Henderien; Jansen, Louise; van Geert, Paul
2012-01-01
This study aims at examining problematic learning trajectories of students with emotional behavioral disorders (EBD) by means of a longitudinal and time serial (micro genetic) study of individual instruction sessions during arithmetic lessons. Micro genetic analysis techniques were applied on the variable "responsiveness" in the scaffolding…
Genetic polymorphism of MMP family and coronary disease susceptibility: a meta-analysis.
Li, Min; Shi, Jingpu; Fu, Lingyu; Wang, Hailong; Zhou, Bo; Wu, Xiaomei
2012-03-01
The issue that genetic polymorphism of matrix metalloproteinase (MMP) family is in association with coronary disease is controversial. So we did a meta-analysis to clarify it clearly. We made a literature search of PubMed, the Web of Science, and Cochrane Collaboration's database to identify eligible reports. The methodological quality of each included studies was assessed. We calculated the pooled ORs with their 95%CI for each genetic polymorphism in STATA 11 software. Separate analysis was performed to address the consistency of results across the subgroup with different continents. A total of 39 studies were included, with a sample of 42269 individuals. This meta-analysis provided evidence that genetic polymorphism of MMP1-1607 1G/2G, MMP3-Gly45lys, MMP3-376 G/C, MMP3-1171 5A/6A, MMP9-1562 C/T and MMP9-R279Q have a small to medium effect on incidence of coronary disease. There was no evidence that MMP1-519 A/G, MMP1-340 T/C and MMP2-1306 C/T polymorphism could increase risk of coronary disease. Results from subgroup analysis supported a relation between MMP3-1711 5A allele, MMP9-1562 C allele and coronary disease especially in Asian population. The results provide moderate association between the six common genetic polymorphism of matrix metalloproteinase family and coronary disease. However, the challenge for researcher is identifying separate effect on different races. Copyright © 2011 Elsevier B.V. All rights reserved.
Visscher, P M; Haley, C S; Ewald, H; Mors, O; Egeland, J; Thiel, B; Ginns, E; Muir, W; Blackwood, D H
2005-02-05
To test the hypothesis that the same genetic loci confer susceptibility to, or protection from, disease in different populations, and that a combined analysis would improve the map resolution of a common susceptibility locus, we analyzed data from three studies that had reported linkage to bipolar disorder in a small region on chromosome 4p. Data sets comprised phenotypic information and genetic marker data on Scottish, Danish, and USA extended pedigrees. Across the three data sets, 913 individuals appeared in the pedigrees, 462 were classified, either as unaffected (323) or affected (139) with unipolar or bipolar disorder. A consensus linkage map was created from 14 microsatellite markers in a 33 cM region. Phenotypic and genetic data were analyzed using a variance component (VC) and allele sharing method. All previously reported elevated test statistics in the region were confirmed with one or both analysis methods, indicating the presence of one or more susceptibility genes to bipolar disorder in the three populations in the studied chromosome segment. When the results from both the VC and allele sharing method were considered, there was strong evidence for a susceptibility locus in the data from Scotland, some evidence in the data from Denmark and relatively less evidence in the data from the USA. The test statistics from the Scottish data set dominated the test statistics from the other studies, and no improved map resolution for a putative genetic locus underlying susceptibility in all three studies was obtained. Studies reporting linkage to the same region require careful scrutiny and preferably joint or meta analysis on the same basis in order to ensure that the results are truly comparable. (c) 2004 Wiley-Liss, Inc.
Multiple Phenotype Association Tests Using Summary Statistics in Genome-Wide Association Studies
Liu, Zhonghua; Lin, Xihong
2017-01-01
Summary We study in this paper jointly testing the associations of a genetic variant with correlated multiple phenotypes using the summary statistics of individual phenotype analysis from Genome-Wide Association Studies (GWASs). We estimated the between-phenotype correlation matrix using the summary statistics of individual phenotype GWAS analyses, and developed genetic association tests for multiple phenotypes by accounting for between-phenotype correlation without the need to access individual-level data. Since genetic variants often affect multiple phenotypes differently across the genome and the between-phenotype correlation can be arbitrary, we proposed robust and powerful multiple phenotype testing procedures by jointly testing a common mean and a variance component in linear mixed models for summary statistics. We computed the p-values of the proposed tests analytically. This computational advantage makes our methods practically appealing in large-scale GWASs. We performed simulation studies to show that the proposed tests maintained correct type I error rates, and to compare their powers in various settings with the existing methods. We applied the proposed tests to a GWAS Global Lipids Genetics Consortium summary statistics data set and identified additional genetic variants that were missed by the original single-trait analysis. PMID:28653391
Multiple phenotype association tests using summary statistics in genome-wide association studies.
Liu, Zhonghua; Lin, Xihong
2018-03-01
We study in this article jointly testing the associations of a genetic variant with correlated multiple phenotypes using the summary statistics of individual phenotype analysis from Genome-Wide Association Studies (GWASs). We estimated the between-phenotype correlation matrix using the summary statistics of individual phenotype GWAS analyses, and developed genetic association tests for multiple phenotypes by accounting for between-phenotype correlation without the need to access individual-level data. Since genetic variants often affect multiple phenotypes differently across the genome and the between-phenotype correlation can be arbitrary, we proposed robust and powerful multiple phenotype testing procedures by jointly testing a common mean and a variance component in linear mixed models for summary statistics. We computed the p-values of the proposed tests analytically. This computational advantage makes our methods practically appealing in large-scale GWASs. We performed simulation studies to show that the proposed tests maintained correct type I error rates, and to compare their powers in various settings with the existing methods. We applied the proposed tests to a GWAS Global Lipids Genetics Consortium summary statistics data set and identified additional genetic variants that were missed by the original single-trait analysis. © 2017, The International Biometric Society.
No Genetic Influence for Childhood Behavior Problems From DNA Analysis
Trzaskowski, Maciej; Dale, Philip S.; Plomin, Robert
2013-01-01
Objective Twin studies of behavior problems in childhood point to substantial genetic influence. It is now possible to estimate genetic influence using DNA alone in samples of unrelated individuals, not relying on family-based designs such as twins. A linear mixed model, which incorporates DNA microarray data, has confirmed twin results by showing substantial genetic influence for diverse traits in adults. Here we present direct comparisons between twin and DNA heritability estimates for childhood behavior problems as rated by parents, teachers, and children themselves. Method Behavior problem data from 2,500 UK-representative 12-year-old twin pairs were used in twin analyses; DNA analyses were based on 1 member of the twin pair with genotype data for 1.7 million DNA markers. Diverse behavior problems were assessed, including autistic, depressive, and hyperactive symptoms. Genetic influence from DNA was estimated using genome-wide complex trait analysis (GCTA), and the twin estimates of heritability were based on standard twin model fitting. Results Behavior problems in childhood—whether rated by parents, teachers, or children themselves—show no significant genetic influence using GCTA, even though twin study estimates of heritability are substantial in the same sample, and even though both GCTA and twin study estimates of genetic influence are substantial for cognitive and anthropometric traits. Conclusions We suggest that this new type of “missing heritability,” that is, the gap between GCTA and twin study estimates for behavior problems in childhood, is due to nonadditive genetic influence, which will make it more difficult to identify genes responsible for heritability. PMID:24074471
Coppi, Andrea; Lastrucci, Lorenzo; Cappelletti, David; Cerri, Martina; Ferranti, Francesco; Ferri, Valentina; Foggi, Bruno; Gigante, Daniela; Venanzoni, Roberto; Viciani, Daniele; Selvaggi, Roberta; Reale, Lara
2018-01-01
Phragmites australis is a subcosmopolitan species typical of wetlands being studied in Europe for its disappearance from natural stands, a phenomenon called reed die-back syndrome (RDBS). Although it is conjectured that low genetic variability contributes to RDBS, this aspect remains neglected to this day. Using a molecular fingerprinting approach and a sequence analysis of the trnT-trnL/rbcL-psaI regions of cpDNA, this study aimed to compare the genetic structure of stable vs. RDBS-affected P. australis stands from five wetlands of central Italy. Beforehand, in order to characterize the health condition of reed populations, the occurrence of the main macromorphological descriptors for RDBS was considered on 40 reed stands. Soil samples were also collected to examine the total content of heavy metals. The current study analyzed cpDNA in 19 samples and AFLP profiles in 381 samples to investigate the genetic structure of Phragmites populations. Based on the multinomial-Dirichlet model, an analysis of candidate loci under selective pressure was also performed. The relationships among AFLP data, RDBS descriptors and chemicals were evaluated with the use of Linear Mixed Models. The analysis of the cpDNA shows the occurrence of the haplotypes M (the most widespread), and K here recorded for the first time in Italy. Three new haplotypes were also described. The DNA fingerprinting analysis has produced a total of 322 loci (98% polymorphic) and shows the medium-to-high amount of genetic diversity. The significant genetic differentiation among wetlands (Fst = 0.337) suggests either low gene flow or small effective population size. Moreover, the low amount of outlier loci (only 5; l.5% of the total), seems to indicate the scarce occurrence of selective pressure upon the reed’s genome. Genetic diversity increased in relationship to the decrease in diameter and of flowering buds of the reed, two of the trends associated with the die-back. The current study rejects the hypothesis that genetic diversity massively contributed to RDBS. Moreover, significant relationships between genetic diversity and the total concentration of some heavy metals (Cr, Cu, and Zn) were highlighted, indicating possible genotoxic effects on P. australis. The current study represents a fact-finding background useful for the conservation of common reed. PMID:29632544
Mdladla, K; Dzomba, E F; Muchadeyi, F C
2018-04-01
In Africa, extensively raised livestock populations in most smallholder farming communities are exposed to harsh and heterogeneous climatic conditions and disease pathogens that they adapt to in order to survive. Majority of these livestock species, including goats, are of non-descript and uncharacterized breeds and their response to natural selection presented by heterogeneous environments is still unresolved. This study investigated genetic diversity and its association with environmental and geographic conditions in 194 South African indigenous goats from different geographic locations genotyped on the Illumina goat SNP50K panel. Population structure analysis revealed a homogeneous genetic cluster of the Tankwa goats, restricted to the Northern Cape province. Overall, the Boer, Kalahari Red, and Savanna showed a wide geographic spread of shared genetic components, whereas the village ecotypes revealed a longitudinal distribution. The relative importance of environmental factors on genetic variation of goat populations was assessed using redundancy analysis (RDA). Climatic and geographic variables explained 22% of the total variation while climatic variables alone accounted for 17% of the diversity. Geographic variables solitarily explained 1% of the total variation. The first axis (Model I) of the RDA analysis revealed 329 outlier SNPs. Landscape genomic approaches of spatial analysis method (SAM) identified a total of 843 (1.75%) SNPs, while latent factor mixed models (LFMM) identified 714 (1.48%) SNPs significantly associated with environmental variables. Significant markers were within genes involved in biological functions potentially important for environmental adaptation. Overall, the study suggested environmental factors to have some effect in shaping the genetic variation of South African indigenous goat populations. Loci observed to be significant and under selection may be responsible for the adaption of the goat populations to local production systems.
Zheng, Yiqi; Xu, Shaojun; Liu, Jing; Zhao, Yan; Liu, Jianxiu
2017-01-01
Bermudagrass [Cynodon dactylon (L.) Pers.], an important turfgrass used in public parks, home lawns, golf courses and sports fields, is widely distributed in China. In the present study, sequence-related amplified polymorphism (SRAP) markers were used to assess genetic diversity and population structure among 157 indigenous bermudagrass genotypes from 20 provinces in China. The application of 26 SRAP primer pairs produced 340 bands, of which 328 (96.58%) were polymorphic. The polymorphic information content (PIC) ranged from 0.36 to 0.49 with a mean of 0.44. Genetic distance coefficients among accessions ranged from 0.04 to 0.61, with an average of 0.32. The results of STRUCTURE analysis suggested that 157 bermudagrass accessions can be grouped into three subpopulations. Moreover, according to clustering based on the unweighted pair-group method of arithmetic averages (UPGMA), accessions were divided into three major clusters. The UPGMA dendrogram revealed that accessions from identical or adjacent areas were generally, but not entirely, clustered into the same cluster. Comparison of the UPGMA dendrogram and the Bayesian STRUCTURE analysis showed general agreement between the population subdivisions and the genetic relationships among accessions. Principal coordinate analysis (PCoA) with SRAP markers revealed a similar grouping of accessions to the UPGMA dendrogram and STRUCTUE analysis. Analysis of molecular variance (AMOVA) indicated that 18% of total molecular variance was attributed to diversity among subpopulations, while 82% of variance was associated with differences within subpopulations. Our study represents the most comprehensive investigation of the genetic diversity and population structure of bermudagrass in China to date, and provides valuable information for the germplasm collection, genetic improvement, and systematic utilization of bermudagrass.
Xu, Shaojun; Liu, Jing; Zhao, Yan; Liu, Jianxiu
2017-01-01
Bermudagrass [Cynodon dactylon (L.) Pers.], an important turfgrass used in public parks, home lawns, golf courses and sports fields, is widely distributed in China. In the present study, sequence-related amplified polymorphism (SRAP) markers were used to assess genetic diversity and population structure among 157 indigenous bermudagrass genotypes from 20 provinces in China. The application of 26 SRAP primer pairs produced 340 bands, of which 328 (96.58%) were polymorphic. The polymorphic information content (PIC) ranged from 0.36 to 0.49 with a mean of 0.44. Genetic distance coefficients among accessions ranged from 0.04 to 0.61, with an average of 0.32. The results of STRUCTURE analysis suggested that 157 bermudagrass accessions can be grouped into three subpopulations. Moreover, according to clustering based on the unweighted pair-group method of arithmetic averages (UPGMA), accessions were divided into three major clusters. The UPGMA dendrogram revealed that accessions from identical or adjacent areas were generally, but not entirely, clustered into the same cluster. Comparison of the UPGMA dendrogram and the Bayesian STRUCTURE analysis showed general agreement between the population subdivisions and the genetic relationships among accessions. Principal coordinate analysis (PCoA) with SRAP markers revealed a similar grouping of accessions to the UPGMA dendrogram and STRUCTUE analysis. Analysis of molecular variance (AMOVA) indicated that 18% of total molecular variance was attributed to diversity among subpopulations, while 82% of variance was associated with differences within subpopulations. Our study represents the most comprehensive investigation of the genetic diversity and population structure of bermudagrass in China to date, and provides valuable information for the germplasm collection, genetic improvement, and systematic utilization of bermudagrass. PMID:28493962
Robustness of meta-analyses in finding gene × environment interactions
Shi, Gang; Nehorai, Arye
2017-01-01
Meta-analyses that synthesize statistical evidence across studies have become important analytical tools for genetic studies. Inspired by the success of genome-wide association studies of the genetic main effect, researchers are searching for gene × environment interactions. Confounders are routinely included in the genome-wide gene × environment interaction analysis as covariates; however, this does not control for any confounding effects on the results if covariate × environment interactions are present. We carried out simulation studies to evaluate the robustness to the covariate × environment confounder for meta-regression and joint meta-analysis, which are two commonly used meta-analysis methods for testing the gene × environment interaction or the genetic main effect and interaction jointly. Here we show that meta-regression is robust to the covariate × environment confounder while joint meta-analysis is subject to the confounding effect with inflated type I error rates. Given vast sample sizes employed in genome-wide gene × environment interaction studies, non-significant covariate × environment interactions at the study level could substantially elevate the type I error rate at the consortium level. When covariate × environment confounders are present, type I errors can be controlled in joint meta-analysis by including the covariate × environment terms in the analysis at the study level. Alternatively, meta-regression can be applied, which is robust to potential covariate × environment confounders. PMID:28362796
A Multivariate Twin Study of the DSM-IV Criteria for Antisocial Personality Disorder
Kendler, Kenneth S.; Aggen, Steven H.; Patrick, Christopher J.
2012-01-01
BACKGROUND Many assessment instruments for psychopathy are multidimensional, suggesting that distinguishable factors are needed to effectively capture variation in this personality domain. However, no prior study has examined the factor structure of the DSM-IV criteria for antisocial personality disorder (ASPD). METHODS Self-report questionnaire items reflecting all A criteria for DSM-IV ASPD were available from 4,291 twins (including both members of 1,647 pairs) from the Virginia Adult Study of Psychiatric and Substance Use Disorders. Exploratory factor analysis and twin model fitting were performed using, respectively, Mplus and Mx. RESULTS Phenotypic factor analysis produced evidence for 2 correlated factors: aggressive-disregard and disinhibition. The best-fitting multivariate twin model included two genetic and one unique environmental common factor, along with criteria-specific genetic and environmental effects. The two genetic factors closely resembled the phenotypic factors and varied in their prediction of a range of relevant criterion variables. Scores on the genetic aggressive-disregard factor score were more strongly associated with risk for conduct disorder, early and heavy alcohol use, and low educational status, whereas scores on the genetic disinhibition factor score were more strongly associated with younger age, novelty seeking, and major depression. CONCLUSION From a genetic perspective, the DSM-IV criteria for ASPD do not reflect a single dimension of liability but rather are influenced by two dimensions of genetic risk reflecting aggressive-disregard and disinhibition. The phenotypic structure of the ASPD criteria results largely from genetic and not from environmental influences. PMID:21762879
USDA-ARS?s Scientific Manuscript database
Peanut (Arachis hypogaea L.) is an important source for edible oil and protein. It is important to identify genetic diversity of peanut for cultivar development. In this study, 111 SSR markers with high polymorphic information content (PIC) were used to assess the genetic variation of 79 peanut cult...
Analysis of Molecular Genetics Content in Spanish Secondary School Textbooks
ERIC Educational Resources Information Center
Martinez-Gracia, M. V.; Gil-Quilez, M. J.; Osada, J.
2006-01-01
The treatment of molecular biology in thirty-four Spanish high school biology textbooks has been analysed using a check-list made up of twenty-three items. The study showed a tendency to confuse the genetic code with genetic information. The treatment of DNA transcription, regulation of gene expression and translation were presented as masses of…
Analysis of Errors Made by Students Solving Genetics Problems.
ERIC Educational Resources Information Center
Costello, Sandra Judith
The purpose of this study was to analyze the errors made by students solving genetics problems. A sample of 10 non-science undergraduate students was obtained from a private college in Northern New Jersey. The results support prior research in the area of genetics education and show that a weak understanding of the relationship of meiosis to…
Population genetic characterization of Cyclospora cayetanensis from discrete geographical regions.
Guo, Yaqiong; Li, Na; Ortega, Ynes R; Zhang, Longxian; Roellig, Dawn M; Feng, Yaoyu; Xiao, Lihua
2018-01-01
Cyclospora cayetanensis is an emerging pathogen that is endemic in developing countries and responsible for many large foodborne cyclosporiasis outbreaks in North America since 1990s. Because of the lack of typing targets, the genetic diversity and population genetics of C. cayetanensis have not been investigated. In this study, we undertook a population genetic analysis of multilocus sequence typing data we recently collected from 64 C. cayetanensis specimens. Despite the extensive genetic heterogeneity in the overall C. cayetanensis population, there were significant intra- and inter-genic linkage disequilibria (LD). A disappearance of LD was observed when only multilocus genotypes were included in the population genetic analysis, indicative of an epidemic nature of C. cayetanensis. Geographical segregation-associated sub-structuring was observed between specimens from China and those from Peru and the United States. The two subpopulations had reduced LD, indicating the likely occurrence of genetic exchange among isolates in endemic areas. Further analyses of specimens from other geographical regions are necessary to fully understand the population genetics of C. cayetanensis. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
van der Plas-Duivesteijn, Suzanne J.; Smit, Femmie J. L.; van Alphen, Jacques J. M.; Kraaijeveld, Ken
2015-03-01
Conservation management in the North Sea is often motivated by the population size of marine mammals, like harbor porpoises Phocoena phocoena. In the Dutch part of the North Sea, sighting and stranding data are used to estimate population sizes, but these data give little insight into genetic structuring of the population. In this study we investigated genetic structure among animals stranded at different locations and times of year. We also tested whether there is a link between stranding and necropsy data, and genetic diversity. We made use of both mitochondrial (mtDNA) and microsatellite DNA analysis of samples from dead stranded porpoises along the Dutch coast during 2007. mtDNA analysis showed 6 variable positions in the control region, defining 3 different haplotypes. mtDNA haplotypes were not randomly distributed along the Dutch coastline. However, microsatellite analysis showed that these mtDNA haplotypes did not represent separate groups on a nuclear level. Furthermore, microsatellite analysis revealed no genotypic differences between seasons, locations or genders. The results of this study indicate that the Dutch population is panmictic. In contrast, heterozygosity levels were low, indicating some level of inbreeding in this population. However, this was not corroborated by other indices of inbreeding. This research provided insight into genetic structuring of stranded porpoises in 2007, but data from multiple years should be included to be able to help estimate population sizes.
Molecular Study of the Amazonian Macabea Cattle History.
Vargas, Julio; Landi, Vincenzo; Martínez, Amparo; Gómez, Mayra; Camacho, María Esperanza; Álvarez, Luz Ángela; Aguirre, Lenin; Delgado, Juan Vicente
2016-01-01
Macabea cattle are the only Bos taurus breed that have adapted to the wet tropical conditions of the Amazon. This breed has integrated into the culture of the indigenous Shuar-Asuar nations probably since its origins, being one of the few European zoogenetic resources assimilated by the deep-jungle Amazon communities. Despite its potential for local endogenous sustainable development, this breed is currently endangered. The present study used molecular genetics tools to investigate the within- and between-breeds diversity, in order to characterize the breed population, define its associations with other breeds, and infer its origin and evolution. The within-breed genetic diversity showed high values, as indicated by all genetic parameters, such as the mean number of alleles (MNA = 7.25±2.03), the observed heterozygosity (Ho = 0.72±0.02) and the expected heterozygosity (He = 0.72±0.02). The between-breeds diversity analysis, which included factorial correspondence analysis, Reynolds genetic distance, neighbor-joining analysis, and genetic structure analysis, showed that the Macabea breed belongs to the group of the American Creoles, with a Southern-Spain origin. Our outcomes demonstrated that the Macabea breed has a high level of purity and null influences of exotic cosmopolitan breeds with European or Asiatic origin. This breed is an important zoogenetic resource of Ecuador, with relevant and unique attributes; therefore, there is an urgent need to develop conservation strategies for the Macabea breed.
Molecular Study of the Amazonian Macabea Cattle History
Vargas, Julio; Martínez, Amparo; Gómez, Mayra; Camacho, María Esperanza; Álvarez, Luz Ángela; Aguirre, Lenin; Delgado, Juan Vicente
2016-01-01
Macabea cattle are the only Bos taurus breed that have adapted to the wet tropical conditions of the Amazon. This breed has integrated into the culture of the indigenous Shuar-Asuar nations probably since its origins, being one of the few European zoogenetic resources assimilated by the deep-jungle Amazon communities. Despite its potential for local endogenous sustainable development, this breed is currently endangered. The present study used molecular genetics tools to investigate the within- and between-breeds diversity, in order to characterize the breed population, define its associations with other breeds, and infer its origin and evolution. The within-breed genetic diversity showed high values, as indicated by all genetic parameters, such as the mean number of alleles (MNA = 7.25±2.03), the observed heterozygosity (Ho = 0.72±0.02) and the expected heterozygosity (He = 0.72±0.02). The between-breeds diversity analysis, which included factorial correspondence analysis, Reynolds genetic distance, neighbor-joining analysis, and genetic structure analysis, showed that the Macabea breed belongs to the group of the American Creoles, with a Southern-Spain origin. Our outcomes demonstrated that the Macabea breed has a high level of purity and null influences of exotic cosmopolitan breeds with European or Asiatic origin. This breed is an important zoogenetic resource of Ecuador, with relevant and unique attributes; therefore, there is an urgent need to develop conservation strategies for the Macabea breed. PMID:27776178
Michailidou, S; Tsangaris, G; Fthenakis, G C; Tzora, A; Skoufos, I; Karkabounas, S C; Banos, G; Argiriou, A; Arsenos, G
2018-06-01
In the present study, genome-wide genotyping was applied to characterize the genetic diversity and population structure of three autochthonous Greek breeds: Boutsko, Karagouniko and Chios. Dairy sheep are among the most significant livestock species in Greece numbering approximately 9 million animals which are characterized by large phenotypic variation and reared under various farming systems. A total of 96 animals were genotyped with the Illumina's OvineSNP50K microarray beadchip, to study the population structure of the breeds and develop a specialized panel of single-nucleotide polymorphisms (SNPs), which could distinguish one breed from the others. Quality control on the dataset resulted in 46,125 SNPs, which were used to evaluate the genetic structure of the breeds. Population structure was assessed through principal component analysis (PCA) and admixture analysis, whereas inbreeding was estimated based on runs of homozygosity (ROHs) coefficients, genomic relationship matrix inbreeding coefficients (F GRM ) and patterns of linkage disequilibrium (LD). Associations between SNPs and breeds were analyzed with different inheritance models, to identify SNPs that distinguish among the breeds. Results showed high levels of genetic heterogeneity in the three breeds. Genetic distances among breeds were modest, despite their different ancestries. Chios and Karagouniko breeds were more genetically related to each other compared to Boutsko. Analysis revealed 3802 candidate SNPs that can be used to identify two-breed crosses and purebred animals. The present study provides, for the first time, data on the genetic background of three Greek indigenous dairy sheep breeds as well as a specialized marker panel that can be applied for traceability purposes as well as targeted genetic improvement schemes and conservation programs.
Cox, R M; Costello, R A; Camber, B E; McGlothlin, J W
2017-07-01
Darwin viewed the ornamentation of females as an indirect consequence of sexual selection on males and the transmission of male phenotypes to females via the 'laws of inheritance'. Although a number of studies have supported this view by demonstrating substantial between-sex genetic covariance for ornament expression, the majority of this work has focused on avian plumage. Moreover, few studies have considered the genetic basis of ornaments from a multivariate perspective, which may be crucial for understanding the evolution of sex differences in general, and of complex ornaments in particular. Here, we provide a multivariate, quantitative-genetic analysis of a sexually dimorphic ornament that has figured prominently in studies of sexual selection: the brightly coloured dewlap of Anolis lizards. Using data from a paternal half-sibling breeding experiment in brown anoles (Anolis sagrei), we show that multiple aspects of dewlap size and colour exhibit significant heritability and a genetic variance-covariance structure (G) that is broadly similar in males (G m ) and females (G f ). Whereas sexually monomorphic aspects of the dewlap, such as hue, exhibit significant between-sex genetic correlations (r mf ), sexually dimorphic features, such as area and brightness, exhibit reduced r mf values that do not differ from zero. Using a modified random skewers analysis, we show that the between-sex genetic variance-covariance matrix (B) should not strongly constrain the independent responses of males and females to sexually antagonistic selection. Our microevolutionary analysis is in broad agreement with macroevolutionary perspectives indicating considerable scope for the independent evolution of coloration and ornamentation in males and females. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.
Pometti, Carolina; Bessega, Cecilia; Cialdella, Ana; Ewens, Mauricio; Saidman, Beatriz; Vilardi, Juan
2018-01-01
The identification of factors that structure intraspecific diversity is of particular interest for biological conservation and restoration ecology. All rangelands in Argentina are currently experiencing some form of deterioration or desertification. Acacia aroma is a multipurpose species widely distributed throughout this country. In this study, we used the AFLP technique to study genetic diversity, population genetic structure, and fine-scale spatial genetic structure in 170 individuals belonging to 6 natural Argentinean populations. With 401 loci, the mean heterozygosity (HE = 0.2) and the mean percentage of polymorphic loci (PPL = 62.1%) coefficients indicated that the genetic variation is relatively high in A. aroma. The analysis with STRUCTURE showed that the number of clusters (K) was 3. With Geneland analysis, the number of clusters was K = 4, sharing the same grouping as STRUCTURE but dividing one population into two groups. When studying SGS, significant structure was detected in 3 of 6 populations. The neighbourhood size in these populations ranged from 15.2 to 64.3 individuals. The estimated gene dispersal distance depended on the effective population density and disturbance level and ranged from 45 to 864 m. The combined results suggest that a sampling strategy, which aims to maintain a considerable part of the variability contained in natural populations sampled here, would include at least 3 units defined by the clusters analyses that exhibit particular genetic properties. Moreover, the current SGS analysis suggests that within the wider management units/provinces, seed collection from A. aroma should target trees separated by a minimum distance of 50 m but preferably 150 m to reduce genetic relatedness among seeds from different trees.
Bessega, Cecilia; Cialdella, Ana; Ewens, Mauricio; Saidman, Beatriz; Vilardi, Juan
2018-01-01
The identification of factors that structure intraspecific diversity is of particular interest for biological conservation and restoration ecology. All rangelands in Argentina are currently experiencing some form of deterioration or desertification. Acacia aroma is a multipurpose species widely distributed throughout this country. In this study, we used the AFLP technique to study genetic diversity, population genetic structure, and fine-scale spatial genetic structure in 170 individuals belonging to 6 natural Argentinean populations. With 401 loci, the mean heterozygosity (HE = 0.2) and the mean percentage of polymorphic loci (PPL = 62.1%) coefficients indicated that the genetic variation is relatively high in A. aroma. The analysis with STRUCTURE showed that the number of clusters (K) was 3. With Geneland analysis, the number of clusters was K = 4, sharing the same grouping as STRUCTURE but dividing one population into two groups. When studying SGS, significant structure was detected in 3 of 6 populations. The neighbourhood size in these populations ranged from 15.2 to 64.3 individuals. The estimated gene dispersal distance depended on the effective population density and disturbance level and ranged from 45 to 864 m. The combined results suggest that a sampling strategy, which aims to maintain a considerable part of the variability contained in natural populations sampled here, would include at least 3 units defined by the clusters analyses that exhibit particular genetic properties. Moreover, the current SGS analysis suggests that within the wider management units/provinces, seed collection from A. aroma should target trees separated by a minimum distance of 50 m but preferably 150 m to reduce genetic relatedness among seeds from different trees. PMID:29389969
Liu, Yao-Shun; Chen, Jian-Gang; Mei, Ting; Guo, Yu-Xin; Meng, Hao-Tian; Li, Jian-Fei; Wei, Yuan-Yuan; Jin, Xiao-Ye; Zhu, Bo-Feng; Zhang, Li-Ping
2017-01-01
We analyzed the genetic polymorphisms of 15 autosomal and 10 Y-chromosomal STR loci in 214 individuals of Han population from Southern Shaanxi of China and studied the genetic relationships between Southern Shaanxi Han and other populations. We observed a total of 150 alleles at 15 autosomal STR loci with the corresponding allelic frequencies ranging from 0.0023 to 0.5210, and the combined power of discrimination and exclusion for the 15 autosomal STR loci were 0.99999999999999998866 and 0.999998491, respectively. For the 10 Y-STR loci, totally 100 different haplotypes were obtained, of which 94 were unique. The discriminatory capacity and haplotype diversity values of the 10 Y-STR loci were 0.9259 and 0.998269, respectively. The results demonstrated high genetic diversities of the 25 STR loci in the population for forensic applications. We constructed neighbor-joining tree and conducted principal component analysis based on 15 autosomal STR loci and conducted multidimensional scaling analysis and constructed neighbor-joining tree based on 10 Y-STR loci. The results of population genetic analyses based on both autosomal and Y-chromosome STRs indicated that the studied Southern Shaanxi Han population had relatively closer genetic relationship with Eastern Han population, and distant relationships with Croatian, Serbian and Moroccan populations. PMID:28903432
Irano, Natalia; Bignardi, Annaiza Braga; El Faro, Lenira; Santana, Mário Luiz; Cardoso, Vera Lúcia; Albuquerque, Lucia Galvão
2014-03-01
The objective of this study was to estimate genetic parameters for milk yield, stayability, and the occurrence of clinical mastitis in Holstein cows, as well as studying the genetic relationship between them, in order to provide subsidies for the genetic evaluation of these traits. Records from 5,090 Holstein cows with calving varying from 1991 to 2010, were used in the analysis. Two standard multivariate analyses were carried out, one containing the trait of accumulated 305-day milk yields in the first lactation (MY1), stayability (STAY) until the third lactation, and clinical mastitis (CM), as well as the other traits, considering accumulated 305-day milk yields (Y305), STAY, and CM, including the first three lactations as repeated measures for Y305 and CM. The covariance components were obtained by a Bayesian approach. The heritability estimates obtained by multivariate analysis with MY1 were 0.19, 0.28, and 0.13 for MY1, STAY, and CM, respectively, whereas using the multivariate analysis with the Y305, the estimates were 0.19, 0.31, and 0.14, respectively. The genetic correlations between MY1 and STAY, MY1 and CM, and STAY and CM, respectively, were 0.38, 0.12, and -0.49. The genetic correlations between Y305 and STAY, Y305 and CM, and STAY and CM, respectively, were 0.66, -0.25, and -0.52.
Smoking and caffeine consumption: a genetic analysis of their association
Taylor, Amy E.; Ware, Jennifer J.; Nivard, Michel G.; Neale, Michael C.; McMahon, George; Hottenga, Jouke‐Jan; Baselmans, Bart M. L.; Boomsma, Dorret I.; Munafò, Marcus R.; Vink, Jacqueline M.
2016-01-01
Abstract Smoking and caffeine consumption show a strong positive correlation, but the mechanism underlying this association is unclear. Explanations include shared genetic/environmental factors or causal effects. This study employed three methods to investigate the association between smoking and caffeine. First, bivariate genetic models were applied to data of 10 368 twins from the Netherlands Twin Register in order to estimate genetic and environmental correlations between smoking and caffeine use. Second, from the summary statistics of meta‐analyses of genome‐wide association studies on smoking and caffeine, the genetic correlation was calculated by LD‐score regression. Third, causal effects were tested using Mendelian randomization analysis in 6605 Netherlands Twin Register participants and 5714 women from the Avon Longitudinal Study of Parents and Children. Through twin modelling, a genetic correlation of r0.47 and an environmental correlation of r0.30 were estimated between current smoking (yes/no) and coffee use (high/low). Between current smoking and total caffeine use, this was r0.44 and r0.00, respectively. LD‐score regression also indicated sizeable genetic correlations between smoking and coffee use (r0.44 between smoking heaviness and cups of coffee per day, r0.28 between smoking initiation and coffee use and r0.25 between smoking persistence and coffee use). Consistent with the relatively high genetic correlations and lower environmental correlations, Mendelian randomization provided no evidence for causal effects of smoking on caffeine or vice versa. Genetic factors thus explain most of the association between smoking and caffeine consumption. These findings suggest that quitting smoking may be more difficult for heavy caffeine consumers, given their genetic susceptibility. PMID:27027469
Yang, Lijuan; Zhou, Xianghai; Luo, Yingying; Sun, Xiuqin; Tang, Yong; Guo, Wulan; Han, Xueyao; Ji, Linong
2012-01-01
A number of studies have been performed to identify the association between potassium inwardly-rectifying channel, subfamily J, member 11 (KCNJ11) gene and type 2 diabetes mellitus (T2DM) in East Asian populations, with inconsistent results. The main aim of this work was to evaluate more precisely the genetic influence of KCNJ11 on T2DM in East Asian populations by means of a meta-analysis. We identified 20 articles for qualitative analysis and 16 were eligible for quantitative analysis (meta-analysis) by database searching up to May 2010. The association was assessed under different genetic models, and the pooled odds ratios (ORs) with 95% confidence intervals (95% CIs) were calculated. The allelic and genotypic contrast demonstrated that the association between KCNJ11 and T2DM was significant for rs5210. However, not all results for rs5215 and rs5218 showed significant associations. For rs5219, the combined ORs (95% CIs) for allelic contrast, dominant and recessive models contrast (with allelic frequency and genotypic distribution data) were 1.139 (1.093-1.188), 1.177 (1.099-1.259) and 1.207 (1.094-1.332), respectively (random effect model). The analysis on the most completely adjusted ORs (95% CIs) by the covariates of rs5219 all presented significant associations under different genetic models. Population-stratified analysis (Korean, Japanese and Chinese) and sensitivity analysis verified the significant results. Cumulative meta-analysis including publication time and sample size illustrated the exaggerated genetic effect in the earliest studies. Heterogeneity and publication bias were assessed. Our study verified that single nucleotide polymorphisms (SNPs) of KCNJ11 gene were significantly associated with the risk of T2DM in East Asian populations.
Katie Coats; Marianne Elliott; Gary Chastagner
2017-01-01
Microsatellite analysis initially identified genetic variations within the NA1 clonal lineage of Phytophthora ramorum; however, in Washington nurseries, the genetic population of P. ramorum has shifted and is now dominated by two other lineages, NA2 and EU1. In this study, recently identified markers that are more variable, and...
Kanchanaketu, T; Sangduen, N; Toojinda, T; Hongtrakul, V
2012-04-13
Genetic analysis of 56 samples of Jatropha curcas L. collected from Thailand and other countries was performed using the methylation-sensitive amplification polymorphism (MSAP) technique. Nine primer combinations were used to generate MSAP fingerprints. When the data were interpreted as amplified fragment length polymorphism (AFLP) markers, 471 markers were scored. All 56 samples were classified into three major groups: γ-irradiated, non-toxic and toxic accessions. Genetic similarity among the samples was extremely high, ranging from 0.95 to 1.00, which indicated very low genetic diversity in this species. The MSAP fingerprint was further analyzed for DNA methylation polymorphisms. The results revealed differences in the DNA methylation level among the samples. However, the samples collected from saline areas and some species hybrids showed specific DNA methylation patterns. AFLP data were used, together with methylation-sensitive AFLP (MS-AFLP) data, to construct a phylogenetic tree, resulting in higher efficiency to distinguish the samples. This combined analysis separated samples previously grouped in the AFLP analysis. This analysis also distinguished some hybrids. Principal component analysis was also performed; the results confirmed the separation in the phylogenetic tree. Some polymorphic bands, involving both nucleotide and DNA methylation polymorphism, that differed between toxic and non-toxic samples were identified, cloned and sequenced. BLAST analysis of these fragments revealed differences in DNA methylation in some known genes and nucleotide polymorphism in chloroplast DNA. We conclude that MSAP is a powerful technique for the study of genetic diversity for organisms that have a narrow genetic base.
Martin-Fernandez, Laura; Ziyatdinov, Andrey; Carrasco, Marina; Millon, Juan Antonio; Martinez-Perez, Angel; Vilalta, Noelia; Brunel, Helena; Font, Montserrat; Hamsten, Anders; Souto, Juan Carlos; Soria, José Manuel
2016-01-01
Background Venous thromboembolism (VTE) is a common disease where known genetic risk factors explain only a small portion of the genetic variance. Then, the analysis of intermediate phenotypes, such as thrombin generation assay, can be used to identify novel genetic risk factors that contribute to VTE. Objectives To investigate the genetic basis of distinct quantitative phenotypes of thrombin generation and its relationship to the risk of VTE. Patients/Methods Lag time, thrombin peak and endogenous thrombin potential (ETP) were measured in the families of the Genetic Analysis of Idiopathic Thrombophilia 2 (GAIT-2) Project. This sample consisted of 935 individuals in 35 extended families selected through a proband with idiopathic thrombophilia. We performed also genome wide association studies (GWAS) with thrombin generation phenotypes. Results The results showed that 67% of the variation in the risk of VTE is attributable to genetic factors. The heritabilities of lag time, thrombin peak and ETP were 49%, 54% and 52%, respectively. More importantly, we demonstrated also the existence of positive genetic correlations between thrombin peak or ETP and the risk of VTE. Moreover, the major genetic determinant of thrombin generation was the F2 gene. However, other suggestive signals were observed. Conclusions The thrombin generation phenotypes are strongly genetically determined. The thrombin peak and ETP are significantly genetically correlated with the risk of VTE. In addition, F2 was identified as a major determinant of thrombin generation. We reported suggestive signals that might increase our knowledge to explain the variability of this important phenotype. Validation and functional studies are required to confirm GWAS results. PMID:26784699
Couto, Ana Rita; Parreira, Bruna; Thomson, Russell; Soares, Marta; Power, Deborah M; Stankovich, Jim; Armas, Jácome Bruges; Brown, Matthew A
2017-01-01
Twelve families with exuberant and early-onset calcium pyrophosphate dehydrate chondrocalcinosis (CC) and diffuse idiopathic skeletal hyperostosis (DISH), hereafter designated DISH/CC, were identified in Terceira Island, the Azores, Portugal. Ninety-two (92) individuals from these families were selected for whole-genome-wide linkage analysis. An identity-by-descent (IBD) analysis was performed in 10 individuals from 5 of the investigated pedigrees. The chromosome area with the maximal logarithm of the odds score (1.32; P =0.007) was not identified using the IBD/identity-by-state (IBS) analysis; therefore, it was not investigated further. From the IBD/IBS analysis, two candidate genes, LEMD3 and RSPO4 , were identified and sequenced. Nine genetic variants were identified in the RSPO4 gene; one regulatory variant (rs146447064) was significantly more frequent in control individuals than in DISH/CC patients ( P =0.03). Four variants were identified in LEMD3 , and the rs201930700 variant was further investigated using segregation analysis. None of the genetic variants in RSPO4 or LEMD3 segregated within the studied families. Therefore, although a major genetic effect was shown to determine DISH/CC occurrence within these families, the specific genetic variants involved were not identified.
Couto, Ana Rita; Parreira, Bruna; Thomson, Russell; Soares, Marta; Power, Deborah M; Stankovich, Jim; Armas, Jácome Bruges; Brown, Matthew A
2017-01-01
Twelve families with exuberant and early-onset calcium pyrophosphate dehydrate chondrocalcinosis (CC) and diffuse idiopathic skeletal hyperostosis (DISH), hereafter designated DISH/CC, were identified in Terceira Island, the Azores, Portugal. Ninety-two (92) individuals from these families were selected for whole-genome-wide linkage analysis. An identity-by-descent (IBD) analysis was performed in 10 individuals from 5 of the investigated pedigrees. The chromosome area with the maximal logarithm of the odds score (1.32; P=0.007) was not identified using the IBD/identity-by-state (IBS) analysis; therefore, it was not investigated further. From the IBD/IBS analysis, two candidate genes, LEMD3 and RSPO4, were identified and sequenced. Nine genetic variants were identified in the RSPO4 gene; one regulatory variant (rs146447064) was significantly more frequent in control individuals than in DISH/CC patients (P=0.03). Four variants were identified in LEMD3, and the rs201930700 variant was further investigated using segregation analysis. None of the genetic variants in RSPO4 or LEMD3 segregated within the studied families. Therefore, although a major genetic effect was shown to determine DISH/CC occurrence within these families, the specific genetic variants involved were not identified. PMID:29104755
Genetic evidence for an East Asian origin of Chinese Muslim populations Dongxiang and Hui
Yao, Hong-Bing; Wang, Chuan-Chao; Tao, Xiaolan; Shang, Lei; Wen, Shao-Qing; Zhu, Bofeng; Kang, Longli; Jin, Li; Li, Hui
2016-01-01
There is a long-going debate on the genetic origin of Chinese Muslim populations, such as Uygur, Dongxiang, and Hui. However, genetic information for those Muslim populations except Uygur is extremely limited. In this study, we investigated the genetic structure and ancestry of Chinese Muslims by analyzing 15 autosomal short tandem repeats in 652 individuals from Dongxiang, Hui, and Han Chinese populations in Gansu province. Both genetic distance and Bayesian-clustering methods showed significant genetic homogeneity between the two Muslim populations and East Asian populations, suggesting a common genetic ancestry. Our analysis found no evidence of substantial gene flow from Middle East or Europe into Dongxiang and Hui people during their Islamization. The dataset generated in present study are also valuable for forensic identification and paternity tests in China. PMID:27924949
Whitlock, Raj
2014-01-01
Understanding the effects of intraspecific genetic diversity on the structure and functioning of ecological communities is a fundamentally important part of evolutionary ecology and may also have conservation relevance in identifying the situations in which genetic diversity coincides with species-level diversity.Early studies within this field documented positive relationships between genetic diversity and ecological structure, but recent studies have challenged these findings. Conceptual synthesis has been hampered because studies have used different measures of intraspecific variation (phenotypically adaptive vs. neutral) and have considered different measures of ecological structure in different ecological and spatial contexts. The aim of this study is to strengthen conceptual understanding by providing an empirical synthesis quantifying the relationship between genetic diversity and ecological structure.Here, I present a meta-analysis of the relationship between genetic diversity within plant populations and the structure and functioning of associated ecological communities (including 423 effect sizes from 70 studies). I used Bayesian meta-analyses to examine (i) the strength and direction of this relationship, (ii) the extent to which phenotypically adaptive and neutral (molecular) measures of diversity differ in their association with ecological structure and (iii) variation in outcomes among different measures of ecological structure and in different ecological contexts.Effect sizes measuring the relationship between adaptive diversity (genotypic richness) and both community- and ecosystem-level ecological responses were small, but significantly positive. These associations were supported by genetic effects on species richness and productivity, respectively.There was no overall association between neutral genetic diversity and measures of ecological structure, but a positive correlation was observed under a limited set of demographic conditions. These results suggest that adaptive and neutral genetic diversity should not be treated as ecologically equivalent measures of intraspecific variation.Synthesis. This study advances the debate over whether relationships between genetic diversity and ecological structure are either simply positive or negative, by showing how the strength and direction of these relationships changes with different measures of diversity and in different ecological contexts. The results provide a solid foundation for assessing when and where an expanded synthesis between ecology and genetics will be most fruitful. PMID:25210204
HIV-1 Transmission during Early Infection in Men Who Have Sex with Men: A Phylodynamic Analysis
Volz, Erik M.; Ionides, Edward; Romero-Severson, Ethan O.; ...
2013-12-10
Conventional epidemiological surveillance of infectious diseases is focused on characterization of incident infections and estimation of the number of prevalent infections. Advances in methods for the analysis of the population-level genetic variation of viruses can potentially provide information about donors, not just recipients, of infection. Genetic sequences from many viruses are increasingly abundant, especially HIV, which is routinely sequenced for surveillance of drug resistance mutations. In this study, we conducted a phylodynamic analysis of HIV genetic sequence data and surveillance data from a US population of men who have sex with men (MSM) and estimated incidence and transmission rates bymore » stage of infection.« less
HIV-1 Transmission during Early Infection in Men Who Have Sex with Men: A Phylodynamic Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Volz, Erik M.; Ionides, Edward; Romero-Severson, Ethan O.
Conventional epidemiological surveillance of infectious diseases is focused on characterization of incident infections and estimation of the number of prevalent infections. Advances in methods for the analysis of the population-level genetic variation of viruses can potentially provide information about donors, not just recipients, of infection. Genetic sequences from many viruses are increasingly abundant, especially HIV, which is routinely sequenced for surveillance of drug resistance mutations. In this study, we conducted a phylodynamic analysis of HIV genetic sequence data and surveillance data from a US population of men who have sex with men (MSM) and estimated incidence and transmission rates bymore » stage of infection.« less
Roetker, Nicholas S; Page, C David; Yonker, James A; Chang, Vicky; Roan, Carol L; Herd, Pamela; Hauser, Taissa S; Hauser, Robert M; Atwood, Craig S
2013-10-01
We examined depression within a multidimensional framework consisting of genetic, environmental, and sociobehavioral factors and, using machine learning algorithms, explored interactions among these factors that might better explain the etiology of depressive symptoms. We measured current depressive symptoms using the Center for Epidemiologic Studies Depression Scale (n = 6378 participants in the Wisconsin Longitudinal Study). Genetic factors were 78 single nucleotide polymorphisms (SNPs); environmental factors-13 stressful life events (SLEs), plus a composite proportion of SLEs index; and sociobehavioral factors-18 personality, intelligence, and other health or behavioral measures. We performed traditional SNP associations via logistic regression likelihood ratio testing and explored interactions with support vector machines and Bayesian networks. After correction for multiple testing, we found no significant single genotypic associations with depressive symptoms. Machine learning algorithms showed no evidence of interactions. Naïve Bayes produced the best models in both subsets and included only environmental and sociobehavioral factors. We found no single or interactive associations with genetic factors and depressive symptoms. Various environmental and sociobehavioral factors were more predictive of depressive symptoms, yet their impacts were independent of one another. A genome-wide analysis of genetic alterations using machine learning methodologies will provide a framework for identifying genetic-environmental-sociobehavioral interactions in depressive symptoms.
Kohzaki, Hidetsugu
2014-01-01
Since the completion of the Human Genome Project, technology has developed markedly in fields such as medical genetics and genetic counseling in the medical arena. In particular, this technology has advanced the discovery of and ways of understanding various genes responsible for genetic diseases, and genetic polymorphisms thought to be associated with disease. Some have been implicated as factors in common lifestyle diseases and have increased the significance of genetic testing. In Japan, doctors and other health professionals, such as nurse and medical technologists have been engaged in genetic testing and genetic disease treatment. Chromosomal and gene aberrations were detected mainly by medical technologists. However, due to the nature of medical technologists who have to provide various clinical tests, such as blood test, pre-medical technology students are required to cover tremendous knowledge of different academic fields to pass the national exam. Therefore, the time allowed for such students to study chromosomal and gene analysis is quite limited. Moreover, they are forced to enter the medical setting without receiving sufficient training. Among them, only few medical technologists specialize in chromosomal and gene analysis. However, with the advancement of clinical genetics and development of chromosomal and gene analysis, conducting clinical practice is becoming more and more difficult for medical technologists who just passed the national exam. Also, doctors and other health professionals have not been able to keep up with service demands either. This paper attempts to address knowledge and skills gaps (especially clinical genetics, English, and ICT literacy) of medical technologists and we propose educational methods to prepare medical genetics professionals in Japan to meet these gaps.
Spanagel, Rainer
2013-01-01
Convergent functional genomics (CFG) is a translational methodology that integrates in a Bayesian fashion multiple lines of evidence from studies in human and animal models to get a better understanding of the genetics of a disease or pathological behavior. Here the integration of data sets that derive from forward genetics in animals and genetic association studies including genome wide association studies (GWAS) in humans is described for addictive behavior. The aim of forward genetics in animals and association studies in humans is to identify mutations (e.g. SNPs) that produce a certain phenotype; i.e. "from phenotype to genotype". Most powerful in terms of forward genetics is combined quantitative trait loci (QTL) analysis and gene expression profiling in recombinant inbreed rodent lines or genetically selected animals for a specific phenotype, e.g. high vs. low drug consumption. By Bayesian scoring genomic information from forward genetics in animals is then combined with human GWAS data on a similar addiction-relevant phenotype. This integrative approach generates a robust candidate gene list that has to be functionally validated by means of reverse genetics in animals; i.e. "from genotype to phenotype". It is proposed that studying addiction relevant phenotypes and endophenotypes by this CFG approach will allow a better determination of the genetics of addictive behavior.
Wu, Zheyang; Zhao, Hongyu
2012-01-01
For more fruitful discoveries of genetic variants associated with diseases in genome-wide association studies, it is important to know whether joint analysis of multiple markers is more powerful than the commonly used single-marker analysis, especially in the presence of gene-gene interactions. This article provides a statistical framework to rigorously address this question through analytical power calculations for common model search strategies to detect binary trait loci: marginal search, exhaustive search, forward search, and two-stage screening search. Our approach incorporates linkage disequilibrium, random genotypes, and correlations among score test statistics of logistic regressions. We derive analytical results under two power definitions: the power of finding all the associated markers and the power of finding at least one associated marker. We also consider two types of error controls: the discovery number control and the Bonferroni type I error rate control. After demonstrating the accuracy of our analytical results by simulations, we apply them to consider a broad genetic model space to investigate the relative performances of different model search strategies. Our analytical study provides rapid computation as well as insights into the statistical mechanism of capturing genetic signals under different genetic models including gene-gene interactions. Even though we focus on genetic association analysis, our results on the power of model selection procedures are clearly very general and applicable to other studies.
Wu, Zheyang; Zhao, Hongyu
2013-01-01
For more fruitful discoveries of genetic variants associated with diseases in genome-wide association studies, it is important to know whether joint analysis of multiple markers is more powerful than the commonly used single-marker analysis, especially in the presence of gene-gene interactions. This article provides a statistical framework to rigorously address this question through analytical power calculations for common model search strategies to detect binary trait loci: marginal search, exhaustive search, forward search, and two-stage screening search. Our approach incorporates linkage disequilibrium, random genotypes, and correlations among score test statistics of logistic regressions. We derive analytical results under two power definitions: the power of finding all the associated markers and the power of finding at least one associated marker. We also consider two types of error controls: the discovery number control and the Bonferroni type I error rate control. After demonstrating the accuracy of our analytical results by simulations, we apply them to consider a broad genetic model space to investigate the relative performances of different model search strategies. Our analytical study provides rapid computation as well as insights into the statistical mechanism of capturing genetic signals under different genetic models including gene-gene interactions. Even though we focus on genetic association analysis, our results on the power of model selection procedures are clearly very general and applicable to other studies. PMID:23956610
Genetic variation in IBD: progress, clues to pathogenesis and possible clinical utility
Ye, Byong Duk; McGovern, Dermot P.B.
2016-01-01
Epidemiological and clinical studies have suggested that the pathogenesis of inflammatory bowel disease (IBD) is strongly influenced by genetic predisposition. Beyond the limitations of linkage analysis, multiple genome-wide association studies, their meta-analyses, and targeted genotyping array techniques have broadened our understanding of the genetic architecture of IBD. Currently, over 200 single nucleotide polymorphisms are known to be associated with susceptibility to IBD and through functional analysis of genes and loci, a substantial proportion of pathophysiologic mechanisms have been revealed. However, because only a modest fraction of predicted heritability can be explained by known genes/loci, additional strategies are needed including the identification of rare variants with large effect sizes to help explain the missing heritability. Considerable progress is also being made on applying outcomes of genetic research in diagnostics, classification, prognostics, and the development of new therapeutics of IBD. PMID:27156530
Visual analysis of geocoded twin data puts nature and nurture on the map.
Davis, O S P; Haworth, C M A; Lewis, C M; Plomin, R
2012-09-01
Twin studies allow us to estimate the relative contributions of nature and nurture to human phenotypes by comparing the resemblance of identical and fraternal twins. Variation in complex traits is a balance of genetic and environmental influences; these influences are typically estimated at a population level. However, what if the balance of nature and nurture varies depending on where we grow up? Here we use statistical and visual analysis of geocoded data from over 6700 families to show that genetic and environmental contributions to 45 childhood cognitive and behavioral phenotypes vary geographically in the United Kingdom. This has implications for detecting environmental exposures that may interact with the genetic influences on complex traits, and for the statistical power of samples recruited for genetic association studies. More broadly, our experience demonstrates the potential for collaborative exploratory visualization to act as a lingua franca for large-scale interdisciplinary research.
Combe, M L; Pons, J L
1999-12-01
The genetic diversity and relationships within the genus Prevotella were studied by analyzing twenty-five strains by multilocus enzyme electrophoresis (MLEE) at nine metabolic enzyme loci and DNA-DNA hybridization. MLEE revealed a high genetic diversity with 25 electrophoretic types (ETs) for the 25 strains studied, a mean number of alleles per enzyme locus of 6.8 and a mean genetic diversity per locus of 0.786. The index of association described by Maynard Smith et al. (1993) revealed a clonal structure within the genus Prevotella. A dendrogram generated by cluster analysis of a matrix of ETs showed that species like P. bivia, P. buccae, P. oris, P. oralis, P. nigrescens, and P. denticola form clusters that are consistent with DNA homologies. However, strains identified as P. melaninogenica or P. loescheii by DNA-DNA hybridization did not constitute distinct subpopulations in MLEE. MLEE analysis demonstrated its high power in differentiating closely related strains. It provides an alternative to 16S rRNA analysis for the study of phylogenetic relationships within the genus Prevotella, especially for differentiating strains with high DNA homology or high rRNA homology.
Logistic regression trees for initial selection of interesting loci in case-control studies
Nickolov, Radoslav Z; Milanov, Valentin B
2007-01-01
Modern genetic epidemiology faces the challenge of dealing with hundreds of thousands of genetic markers. The selection of a small initial subset of interesting markers for further investigation can greatly facilitate genetic studies. In this contribution we suggest the use of a logistic regression tree algorithm known as logistic tree with unbiased selection. Using the simulated data provided for Genetic Analysis Workshop 15, we show how this algorithm, with incorporation of multifactor dimensionality reduction method, can reduce an initial large pool of markers to a small set that includes the interesting markers with high probability. PMID:18466557
Zong, Min; Liu, Hai-Long; Qiu, Ying-Xiong; Yang, Shu-Zhen; Zhao, Ming-Shui; Fu, Cheng-Xin
2008-04-01
Dysosma pleiantha, an important threatened medicinal plant species, is restricted in distribution to southeastern China. The species is capable of reproducing both sexually and asexually. In this study, inter-simple sequence repeat marker data were obtained and analyzed with respect to genetic variation and genetic structure. The extent of clonality, together with the clonal and sexual reproductive strategies, varied among sites, and the populations under harsh ecological conditions tended to have large clones with relatively low clonal diversity caused by vegetative reproduction. The ramets sharing the same genotype show a clumped distribution. Across all populations surveyed, average within-population diversity was remarkably low (e.g., 0.111 for Nei's gene diversity), with populations from the nature reserves maintaining relatively high amounts of genetic diversity. Among all populations, high genetic differentiation (AMOVA: Phi(ST) = 0.500; Nei's genetic diversity: G (ST) = 0.465, Bayesian analysis: Phi(B) = 0.436) was detected, together with an isolation-by-distance pattern. Low seedling recruitment due to inbreeding, restricted gene flow, and genetic drift are proposed as determinant factors responsible for the low genetic diversity and high genetic differentiation observed.
Genetic analysis of Mexican Criollo cattle populations.
Ulloa-Arvizu, R; Gayosso-Vázquez, A; Ramos-Kuri, M; Estrada, F J; Montaño, M; Alonso, R A
2008-10-01
The objective of this study was to evaluate the genetic structure of Mexican Criollo cattle populations using microsatellite genetic markers. DNA samples were collected from 168 animals from four Mexican Criollo cattle populations, geographically isolated in remote areas of Sierra Madre Occidental (West Highlands). Also were included samples from two breeds with Iberian origin: the fighting bull (n = 24) and the milking central American Criollo (n = 24) and one Asiatic breed: Guzerat (n = 32). Genetic analysis consisted of the estimation of the genetic diversity in each population by the allele number and the average expected heterozygosity found in nine microsatellite loci. Furthermore, genetic relationships among the populations were defined by their genetic distances. Our data shows that Mexican cattle populations have a relatively high level of genetic diversity based either on the mean number of alleles (10.2-13.6) and on the expected heterozygosity (0.71-0.85). The degree of observed homozygosity within the Criollo populations was remarkable and probably caused by inbreeding (reduced effective population size) possibly due to reproductive structure within populations. Our data shows that considerable genetic differentiation has been occurred among the Criollo cattle populations in different regions of Mexico.
Genetic characterization of Uruguayan Pampa Rocha pigs with microsatellite markers
Montenegro, M; Llambí, S; Castro, G; Barlocco, N; Vadell, A; Landi, V; Delgado, JV; Martínez, A
2015-01-01
In this study, we genetically characterized the Uruguayan pig breed Pampa Rocha. Genetic variability was assessed by analyzing a panel of 25 microsatellite markers from a sample of 39 individuals. Pampa Rocha pigs showed high genetic variability with observed and expected heterozygosities of 0.583 and 0.603, respectively. The mean number of alleles was 5.72. Twenty-four markers were polymorphic, with 95.8% of them in Hardy Weinberg equilibrium. The level of endogamy was low (FIS = 0.0475). A factorial analysis of correspondence was used to assess the genetic differences between Pampa Rocha and other pig breeds; genetic distances were calculated, and a tree was designed to reflect the distance matrix. Individuals were also allocated into clusters. This analysis showed that the Pampa Rocha breed was separated from the other breeds along the first and second axes. The neighbour-joining tree generated by the genetic distances DA showed clustering of Pampa Rocha with the Meishan breed. The allocation of individuals to clusters showed a clear separation of Pampa Rocha pigs. These results provide insights into the genetic variability of Pampa Rocha pigs and indicate that this breed is a well-defined genetic entity. PMID:25983624
Álvarez-Sandoval, Brenda A.; Manzanilla, Linda R.; González-Ruiz, Mercedes; Malgosa, Assumpció; Montiel, Rafael
2015-01-01
Multiethnicity in Teopancazco, Teotihuacan, is supported by foreign individuals found in the neighborhood center as well as by the diversity observed in funerary rituals at the site. Studies of both stable and strontium isotopes as well as paleodietary analysis, suggest that the population of Teopancazco was composed by three population groups: people from Teotihuacan, people from nearby sites (Tlaxcala-Hidalgo-Puebla), and people from afar, including the coastal plains. In an attempt to understand the genetic dynamics in Teopancazco we conducted an ancient DNA (aDNA) analysis based on mtDNA. Our results show that the level of genetic diversity is consistent with the multiethnicity phenomenon at the neighborhood center. Levels of genetic diversity at different time periods of Teopancazco’s history show that multiethnicity was evident since the beginning and lasted until the collapse of the neighborhood center. However, a PCA and a Neighbor-Joining tree suggested the presence of a genetically differentiated group (buried at the Transitional phase) compared to the population from the initial phase (Tlamimilolpa) as well as the population from the final phase (Xolalpan) of the history of Teopancazco. Genetic studies showed no differences in genetic diversity between males and females in the adult population of Teopancazco, this data along with ample archaeological evidence, suggest a neolocal post-marital pattern of residence in Teopancazco. Nevertheless, genetic analyses on the infant population showed that the males are significantly more heterogeneous than the females suggesting a possible differential role in cultural practices by sex in the infant sector. Regarding interpopulation analysis, we found similar indices of genetic diversity between Teopancazco and heterogeneous native groups, which support the multiethnic character of Teopancazco. Finally, our data showed a close genetic relationship between Teopancazco and populations from the “Teotihuacan corridor” and from Oaxaca and the Maya region, in agreement with previous archaeological evidence. PMID:26200455
Álvarez-Sandoval, Brenda A; Manzanilla, Linda R; González-Ruiz, Mercedes; Malgosa, Assumpció; Montiel, Rafael
2015-01-01
Multiethnicity in Teopancazco, Teotihuacan, is supported by foreign individuals found in the neighborhood center as well as by the diversity observed in funerary rituals at the site. Studies of both stable and strontium isotopes as well as paleodietary analysis, suggest that the population of Teopancazco was composed by three population groups: people from Teotihuacan, people from nearby sites (Tlaxcala-Hidalgo-Puebla), and people from afar, including the coastal plains. In an attempt to understand the genetic dynamics in Teopancazco we conducted an ancient DNA (aDNA) analysis based on mtDNA. Our results show that the level of genetic diversity is consistent with the multiethnicity phenomenon at the neighborhood center. Levels of genetic diversity at different time periods of Teopancazco's history show that multiethnicity was evident since the beginning and lasted until the collapse of the neighborhood center. However, a PCA and a Neighbor-Joining tree suggested the presence of a genetically differentiated group (buried at the Transitional phase) compared to the population from the initial phase (Tlamimilolpa) as well as the population from the final phase (Xolalpan) of the history of Teopancazco. Genetic studies showed no differences in genetic diversity between males and females in the adult population of Teopancazco, this data along with ample archaeological evidence, suggest a neolocal post-marital pattern of residence in Teopancazco. Nevertheless, genetic analyses on the infant population showed that the males are significantly more heterogeneous than the females suggesting a possible differential role in cultural practices by sex in the infant sector. Regarding interpopulation analysis, we found similar indices of genetic diversity between Teopancazco and heterogeneous native groups, which support the multiethnic character of Teopancazco. Finally, our data showed a close genetic relationship between Teopancazco and populations from the "Teotihuacan corridor" and from Oaxaca and the Maya region, in agreement with previous archaeological evidence.
A powerful and robust test in genetic association studies.
Cheng, Kuang-Fu; Lee, Jen-Yu
2014-01-01
There are several well-known single SNP tests presented in the literature for detecting gene-disease association signals. Having in place an efficient and robust testing process across all genetic models would allow a more comprehensive approach to analysis. Although some studies have shown that it is possible to construct such a test when the variants are common and the genetic model satisfies certain conditions, the model conditions are too restrictive and in general difficult to verify. In this paper, we propose a powerful and robust test without assuming any model restrictions. Our test is based on the selected 2 × 2 tables derived from the usual 2 × 3 table. By signals from these tables, we show through simulations across a wide range of allele frequencies and genetic models that this approach may produce a test which is almost uniformly most powerful in the analysis of low- and high-frequency variants. Two cancer studies are used to demonstrate applications of the proposed test. © 2014 S. Karger AG, Basel.
Gene-Based Association Analysis for Censored Traits Via Fixed Effect Functional Regressions.
Fan, Ruzong; Wang, Yifan; Yan, Qi; Ding, Ying; Weeks, Daniel E; Lu, Zhaohui; Ren, Haobo; Cook, Richard J; Xiong, Momiao; Swaroop, Anand; Chew, Emily Y; Chen, Wei
2016-02-01
Genetic studies of survival outcomes have been proposed and conducted recently, but statistical methods for identifying genetic variants that affect disease progression are rarely developed. Motivated by our ongoing real studies, here we develop Cox proportional hazard models using functional regression (FR) to perform gene-based association analysis of survival traits while adjusting for covariates. The proposed Cox models are fixed effect models where the genetic effects of multiple genetic variants are assumed to be fixed. We introduce likelihood ratio test (LRT) statistics to test for associations between the survival traits and multiple genetic variants in a genetic region. Extensive simulation studies demonstrate that the proposed Cox RF LRT statistics have well-controlled type I error rates. To evaluate power, we compare the Cox FR LRT with the previously developed burden test (BT) in a Cox model and sequence kernel association test (SKAT), which is based on mixed effect Cox models. The Cox FR LRT statistics have higher power than or similar power as Cox SKAT LRT except when 50%/50% causal variants had negative/positive effects and all causal variants are rare. In addition, the Cox FR LRT statistics have higher power than Cox BT LRT. The models and related test statistics can be useful in the whole genome and whole exome association studies. An age-related macular degeneration dataset was analyzed as an example. © 2016 WILEY PERIODICALS, INC.
Gene-based Association Analysis for Censored Traits Via Fixed Effect Functional Regressions
Fan, Ruzong; Wang, Yifan; Yan, Qi; Ding, Ying; Weeks, Daniel E.; Lu, Zhaohui; Ren, Haobo; Cook, Richard J; Xiong, Momiao; Swaroop, Anand; Chew, Emily Y.; Chen, Wei
2015-01-01
Summary Genetic studies of survival outcomes have been proposed and conducted recently, but statistical methods for identifying genetic variants that affect disease progression are rarely developed. Motivated by our ongoing real studies, we develop here Cox proportional hazard models using functional regression (FR) to perform gene-based association analysis of survival traits while adjusting for covariates. The proposed Cox models are fixed effect models where the genetic effects of multiple genetic variants are assumed to be fixed. We introduce likelihood ratio test (LRT) statistics to test for associations between the survival traits and multiple genetic variants in a genetic region. Extensive simulation studies demonstrate that the proposed Cox RF LRT statistics have well-controlled type I error rates. To evaluate power, we compare the Cox FR LRT with the previously developed burden test (BT) in a Cox model and sequence kernel association test (SKAT) which is based on mixed effect Cox models. The Cox FR LRT statistics have higher power than or similar power as Cox SKAT LRT except when 50%/50% causal variants had negative/positive effects and all causal variants are rare. In addition, the Cox FR LRT statistics have higher power than Cox BT LRT. The models and related test statistics can be useful in the whole genome and whole exome association studies. An age-related macular degeneration dataset was analyzed as an example. PMID:26782979
Pathway-based discovery of genetic interactions in breast cancer
Xu, Zack Z.; Boone, Charles; Lange, Carol A.
2017-01-01
Breast cancer is the second largest cause of cancer death among U.S. women and the leading cause of cancer death among women worldwide. Genome-wide association studies (GWAS) have identified several genetic variants associated with susceptibility to breast cancer, but these still explain less than half of the estimated genetic contribution to the disease. Combinations of variants (i.e. genetic interactions) may play an important role in breast cancer susceptibility. However, due to a lack of statistical power, the current tests for genetic interactions from GWAS data mainly leverage prior knowledge to focus on small sets of genes or SNPs that are known to have an association with breast cancer. Thus, many genetic interactions, particularly among novel variants, remain understudied. Reverse-genetic interaction screens in model organisms have shown that genetic interactions frequently cluster into highly structured motifs, where members of the same pathway share similar patterns of genetic interactions. Based on this key observation, we recently developed a method called BridGE to search for such structured motifs in genetic networks derived from GWAS studies and identify pathway-level genetic interactions in human populations. We applied BridGE to six independent breast cancer cohorts and identified significant pathway-level interactions in five cohorts. Joint analysis across all five cohorts revealed a high confidence consensus set of genetic interactions with support in multiple cohorts. The discovered interactions implicated the glutathione conjugation, vitamin D receptor, purine metabolism, mitotic prometaphase, and steroid hormone biosynthesis pathways as major modifiers of breast cancer risk. Notably, while many of the pathways identified by BridGE show clear relevance to breast cancer, variants in these pathways had not been previously discovered by traditional single variant association tests, or single pathway enrichment analysis that does not consider SNP-SNP interactions. PMID:28957314
Dias, Elisabete F.; Moura, M.; Schaefer, H.; Silva, Luís
2016-01-01
Island plants are frequently used as model systems in evolutionary biology to understand factors that might explain genetic diversity and population differentiation levels. Theory suggests that island plants should have lower levels of genetic diversity than their continental relatives, but this hypothesis has been rejected in several recent studies. In the Azores, the population level genetic diversity is generally low. However, like in most island systems, there are high levels of genetic differentiation between different islands. The Azores lettuce, Lactuca watsoniana, is an endangered Asteraceae with small population sizes. Therefore, we expect to find a lower level of genetic diversity than in the other more common endemic Asteraceae. The intra- and interpopulation genetic structure and diversity of L. watsoniana was assessed using eight newly developed microsatellite markers. We included 135 individuals, from all 13 known populations in the study. Because our microsatellite results suggested that the species is tetraploid, we analysed the microsatellite data (i) in codominant format using PolySat (Principal Coordinate Analysis, PCoA) and SPAgedi (genetic diversity indexes) and (ii) in dominant format using Arlequin (AMOVA) and STRUCTURE (Bayesian genetic cluster analysis). A total of 129 alleles were found for all L. watsoniana populations. In contrast to our expectations, we found a high level of intrapopulation genetic diversity (total heterozigosity = 0.85; total multilocus average proportion of private alleles per population = 26.5 %, Fis = −0.19). Our results show the existence of five well-defined genetic groups, one for each of the three islands São Miguel, Terceira and Faial, plus two groups for the East and West side of Pico Island (Fst = 0.45). The study revealed the existence of high levels of genetic diversity, which should be interpreted taking into consideration the ploidy level of this rare taxon. PMID:27742648
Johnson, Jennifer L.; Wittgenstein, Helena; Mitchell, Sharon E.; Hyma, Katie E.; Temnykh, Svetlana V.; Kharlamova, Anastasiya V.; Gulevich, Rimma G.; Vladimirova, Anastasiya V.; Fong, Hiu Wa Flora; Acland, Gregory M.; Trut, Lyudmila N.; Kukekova, Anna V.
2015-01-01
The silver fox (Vulpes vulpes) offers a novel model for studying the genetics of social behavior and animal domestication. Selection of foxes, separately, for tame and for aggressive behavior has yielded two strains with markedly different, genetically determined, behavioral phenotypes. Tame strain foxes are eager to establish human contact while foxes from the aggressive strain are aggressive and difficult to handle. These strains have been maintained as separate outbred lines for over 40 generations but their genetic structure has not been previously investigated. We applied a genotyping-by-sequencing (GBS) approach to provide insights into the genetic composition of these fox populations. Sequence analysis of EcoT22I genomic libraries of tame and aggressive foxes identified 48,294 high quality SNPs. Population structure analysis revealed genetic divergence between the two strains and more diversity in the aggressive strain than in the tame one. Significant differences in allele frequency between the strains were identified for 68 SNPs. Three of these SNPs were located on fox chromosome 14 within an interval of a previously identified behavioral QTL, further supporting the importance of this region for behavior. The GBS SNP data confirmed that significant genetic diversity has been preserved in both fox populations despite many years of selective breeding. Analysis of SNP allele frequencies in the two populations identified several regions of genetic divergence between the tame and aggressive foxes, some of which may represent targets of selection for behavior. The GBS protocol used in this study significantly expanded genomic resources for the fox, and can be adapted for SNP discovery and genotyping in other canid species. PMID:26061395
Johnson, Jennifer L; Wittgenstein, Helena; Mitchell, Sharon E; Hyma, Katie E; Temnykh, Svetlana V; Kharlamova, Anastasiya V; Gulevich, Rimma G; Vladimirova, Anastasiya V; Fong, Hiu Wa Flora; Acland, Gregory M; Trut, Lyudmila N; Kukekova, Anna V
2015-01-01
The silver fox (Vulpes vulpes) offers a novel model for studying the genetics of social behavior and animal domestication. Selection of foxes, separately, for tame and for aggressive behavior has yielded two strains with markedly different, genetically determined, behavioral phenotypes. Tame strain foxes are eager to establish human contact while foxes from the aggressive strain are aggressive and difficult to handle. These strains have been maintained as separate outbred lines for over 40 generations but their genetic structure has not been previously investigated. We applied a genotyping-by-sequencing (GBS) approach to provide insights into the genetic composition of these fox populations. Sequence analysis of EcoT22I genomic libraries of tame and aggressive foxes identified 48,294 high quality SNPs. Population structure analysis revealed genetic divergence between the two strains and more diversity in the aggressive strain than in the tame one. Significant differences in allele frequency between the strains were identified for 68 SNPs. Three of these SNPs were located on fox chromosome 14 within an interval of a previously identified behavioral QTL, further supporting the importance of this region for behavior. The GBS SNP data confirmed that significant genetic diversity has been preserved in both fox populations despite many years of selective breeding. Analysis of SNP allele frequencies in the two populations identified several regions of genetic divergence between the tame and aggressive foxes, some of which may represent targets of selection for behavior. The GBS protocol used in this study significantly expanded genomic resources for the fox, and can be adapted for SNP discovery and genotyping in other canid species.
Shahid, Muhammad Qasim; Çiftçi, Vahdettin; E. Sáenz de Miera, Luis; Aasim, Muhammad; Nadeem, Muhammad Azhar; Aktaş, Husnu; Özkan, Hakan; Hatipoğlu, Rüştü
2017-01-01
Until now, little attention has been paid to the geographic distribution and evaluation of genetic diversity of durum wheat from the Central Fertile Crescent (modern-day Turkey and Syria). Turkey and Syria are considered as primary centers of wheat diversity, and thousands of locally adapted wheat landraces are still present in the farmers’ small fields. We planned this study to evaluate the genetic diversity of durum wheat landraces from the Central Fertile Crescent by genotyping based on DArTseq and SNP analysis. A total of 39,568 DArTseq and 20,661 SNP markers were used to characterize the genetic characteristic of 91 durum wheat land races. Clustering based on Neighbor joining analysis, principal coordinate as well as Bayesian model implemented in structure, clearly showed that the grouping pattern is not associated with the geographical distribution of the durum wheat due to the mixing of the Turkish and Syrian landraces. Significant correlation between DArTseq and SNP markers was observed in the Mantel test. However, we detected a non-significant relationship between geographical coordinates and DArTseq (r = -0.085) and SNP (r = -0.039) loci. These results showed that unconscious farmer selection and lack of the commercial varieties might have resulted in the exchange of genetic material and this was apparent in the genetic structure of durum wheat in Turkey and Syria. The genomic characterization presented here is an essential step towards a future exploitation of the available durum wheat genetic resources in genomic and breeding programs. The results of this study have also depicted a clear insight about the genetic diversity of wheat accessions from the Central Fertile Crescent. PMID:28099442
Wang, Ting; Su, Yingjuan; Li, Yuan
2012-01-01
Essentially all ferns can perform both sexual and asexual reproduction. Their populations represent suitable study objects to test the population genetic effects of different reproductive systems. Using the diploid homosporous fern Alsophila spinulosa as an example species, the main purpose of this study was to assess the relative impact of sexual and asexual reproduction on the level and structure of population genetic variation. Inter-simple sequence repeats analysis was conducted on 140 individuals collected from seven populations (HSG, LCH, BPC, MPG, GX, LD, and ZHG) in China. Seventy-four polymorphic bands discriminated a total of 127 multilocus genotypes. Character compatibility analysis revealed that 50.0 to 70.0% of the genotypes had to be deleted in order to obtain a tree-like structure in the data set from populations HSG, LCH, MPG, BPC, GX, and LD; and there was a gradual decrease of conflict in the data set when genotypes with the highest incompatibility counts were successively deleted. In contrast, in population ZHG, only 33.3% of genotypes had to be removed to achieve complete compatibility in the data set, which showed a sharp decline in incompatibility upon the deletion of those genotypes. All populations examined possessed similar levels of genetic variation. Population ZHG was not found to be more differentiated than the other populations. Sexual recombination is the predominant source of genetic variation in most of the examined populations of A. spinulosa. However, somatic mutation contributes most to the genetic variation in population ZHG. This change of the primary mode of reproduction does not cause a significant difference in the population genetic composition. Character compatibility analysis represents an effective approach to separate the role of sexual and asexual components in shaping the genetic pattern of fern populations.
Genetic Diversity of Ascaris in China Assessed Using Simple Sequence Repeat Markers.
Zhou, Chunhua; Jian, Shaoqing; Peng, Weidong; Li, Min
2018-04-01
The giant roundworm Ascaris infects pigs and people worldwide and causes serious diseases. The taxonomic relationship between Ascaris suum and Ascaris lumbricoides is still unclear. The purpose of the present study was to investigate the genetic diversity and population genetic structure of 258 Ascaris specimens from humans and pigs from 6 sympatric regions in Ascaris -endemic regions of China using existing simple sequence repeat data. The microsatellite markers showed a high level of allelic richness and genetic diversity in the samples. Each of the populations demonstrated excess homozygosity (Ho
Hill, W David
2018-04-01
Intelligence and educational attainment are strongly genetically correlated. This relationship can be exploited by Multi-Trait Analysis of GWAS (MTAG) to add power to Genome-wide Association Studies (GWAS) of intelligence. MTAG allows the user to meta-analyze GWASs of different phenotypes, based on their genetic correlations, to identify association's specific to the trait of choice. An MTAG analysis using GWAS data sets on intelligence and education was conducted by Lam et al. (2017). Lam et al. (2017) reported 70 loci that they described as 'trait specific' to intelligence. This article examines whether the analysis conducted by Lam et al. (2017) has resulted in genetic information about a phenotype that is more similar to education than intelligence.
Samberg, Leah H; Fishman, Lila; Allendorf, Fred W
2013-01-01
Conservation strategies are increasingly driven by our understanding of the processes and patterns of gene flow across complex landscapes. The expansion of population genetic approaches into traditional agricultural systems requires understanding how social factors contribute to that landscape, and thus to gene flow. This study incorporates extensive farmer interviews and population genetic analysis of barley landraces (Hordeum vulgare) to build a holistic picture of farmer-mediated geneflow in an ancient, traditional agricultural system in the highlands of Ethiopia. We analyze barley samples at 14 microsatellite loci across sites at varying elevations and locations across a contiguous mountain range, and across farmer-identified barley types and management strategies. Genetic structure is analyzed using population-based and individual-based methods, including measures of population differentiation and genetic distance, multivariate Principal Coordinate Analysis, and Bayesian assignment tests. Phenotypic analysis links genetic patterns to traits identified by farmers. We find that differential farmer management strategies lead to markedly different patterns of population structure across elevation classes and barley types. The extent to which farmer seed management appears as a stronger determinant of spatial structure than the physical landscape highlights the need for incorporation of social, landscape, and genetic data for the design of conservation strategies in human-influenced landscapes. PMID:24478796
A Genetic Epidemiological Mega Analysis of Smoking Initiation in Adolescents
Prom-Wormley, Elizabeth; Eaves, Lindon J.; Rhee, Soo Hyun; Hewitt, John K.; Young, Susan; Corley, Robin; McGue, Matt; Iacono, William G.; Legrand, Lisa; Samek, Diana R.; Murrelle, E. Lenn; Silberg, Judy L.; Miles, Donna R.; Schieken, Richard M.; Beunen, Gaston P.; Thomis, Martine; Rose, Richard J.; Dick, Danielle M.; Boomsma, Dorret I.; Bartels, Meike; Vink, Jacqueline M.; Lichtenstein, Paul; White, Victoria; Kaprio, Jaakko; Neale, Michael C.
2017-01-01
Abstract Introduction: Previous studies in adolescents were not adequately powered to accurately disentangle genetic and environmental influences on smoking initiation (SI) across adolescence. Methods: Mega-analysis of pooled genetically informative data on SI was performed, with structural equation modeling, to test equality of prevalence and correlations across cultural backgrounds, and to estimate the significance and effect size of genetic and environmental effects according to the classical twin study, in adolescent male and female twins from same-sex and opposite-sex twin pairs (N = 19 313 pairs) between ages 10 and 19, with 76 358 longitudinal assessments between 1983 and 2007, from 11 population-based twin samples from the United States, Europe, and Australia. Results: Although prevalences differed between samples, twin correlations did not, suggesting similar etiology of SI across developed countries. The estimate of additive genetic contributions to liability of SI increased from approximately 15% to 45% from ages 13 to 19. Correspondingly, shared environmental factors accounted for a substantial proportion of variance in liability to SI at age 13 (70%) and gradually less by age 19 (40%). Conclusions: Both additive genetic and shared environmental factors significantly contribute to variance in SI throughout adolescence. The present study, the largest genetic epidemiological study on SI to date, found consistent results across 11 studies for the etiology of SI. Environmental factors, especially those shared by siblings in a family, primarily influence SI variance in early adolescence, while an increasing role of genetic factors is seen at later ages, which has important implications for prevention strategies. Implications: This is the first study to find evidence of genetic factors in liability to SI at ages as young as 12. It also shows the strongest evidence to date for decay of effects of the shared environment from early adolescence to young adulthood. We found remarkable consistency of twin correlations across studies reflecting similar etiology of liability to initiate smoking across different cultures and time periods. Thus familial factors strongly contribute to individual differences in who starts to smoke with a gradual increase in the impact of genetic factors and a corresponding decrease in that of the shared environment. PMID:27807125
Dupont, L; Torres-Leguizamon, M; René-Corail, P; Mathieu, J
2017-06-01
Landscape features are known to alter the spatial genetic variation of aboveground organisms. Here, we tested the hypothesis that the genetic structure of belowground organisms also responds to landscape structure. Microsatellite markers were used to carry out a landscape genetic study of two endogeic earthworm species, Allolobophora chlorotica (N = 440, eight microsatellites) and Aporrectodea icterica (N = 519, seven microsatellites), in an agricultural landscape in the North of France, where landscape features were characterized with high accuracy. We found that habitat fragmentation impacted genetic variation of earthworm populations at the local scale. A significant relationship was observed between genetic diversity (H e , A r ) and several landscape features in A. icterica populations and A. chlorotica. Moreover, a strong genetic differentiation between sites was observed in both species, with a low degree of genetic admixture and high F st values. The landscape connectivity analysis at the regional scale, including isolation by distance, least-cost path and cost-weighted distance approaches, showed that genetic distances were linked to landscape connectivity in A. chlorotica. This indicates that the fragmentation of natural habitats has shaped their dispersal patterns and local effective population sizes. Landscape connectivity analysis confirmed that a priori favourable habitats such as grasslands may constitute dispersal corridors for these species. © 2017 John Wiley & Sons Ltd.
Ligthart, Lannie; Hottenga, Jouke-Jan; Lewis, Cathryn M.; Farmer, Anne E.; Craig, Ian W.; Breen, Gerome; Willemsen, Gonneke; Vink, Jacqueline M.; Middeldorp, Christel M.; Byrne, Enda M.; Heath, Andrew C.; Madden, Pamela A.F.; Pergadia, Michele L.; Montgomery, Grant W.; Martin, Nicholas G.; Penninx, Brenda W.J.H.; McGuffin, Peter; Boomsma, Dorret I.; Nyholt, Dale R.
2013-01-01
Migraine and major depressive disorder (MDD) are comorbid, moderately heritable and to some extent influenced by the same genes. In a previous paper, we suggested the possibility of causality (one trait causing the other) underlying this comorbidity. We present a new application of polygenic (genetic risk) score analysis to investigate the mechanisms underlying the genetic overlap of migraine and MDD. Genetic risk scores were constructed based on data from two discovery samples in which genome-wide association analyses (GWA) were performed for migraine and MDD, respectively. The Australian Twin Migraine GWA study (N = 6350) included 2825 migraine cases and 3525 controls, 805 of whom met the diagnostic criteria for MDD. The RADIANT GWA study (N = 3230) included 1636 MDD cases and 1594 controls. Genetic risk scores for migraine and for MDD were used to predict pure and comorbid forms of migraine and MDD in an independent Dutch target sample (NTR-NESDA, N = 2966), which included 1476 MDD cases and 1058 migraine cases (723 of these individuals had both disorders concurrently). The observed patterns of prediction suggest that the ‘pure’ forms of migraine and MDD are genetically distinct disorders. The subgroup of individuals with comorbid MDD and migraine were genetically most similar to MDD patients. These results indicate that in at least a subset of migraine patients with MDD, migraine may be a symptom or consequence of MDD. PMID:24081561
Molecular genetic analysis of patients with sporadic and X-linked infantile nystagmus
Zhao, Hui; Huang, Xiu-Feng; Zheng, Zhi-Li; Deng, Wen-Li; Lei, Xin-Lan; Xing, Dong-Jun; Ye, Liang; Xu, Su-Zhong; Chen, Jie; Zhang, Fang; Yu, Xin-Ping; Jin, Zi-Bing
2016-01-01
Objectives Infantile nystagmus (IN) is a genetically heterogeneous condition characterised by involuntary rhythmic oscillations of the eyes accompanied by different degrees of vision impairment. Two genes have been identified as mainly causing IN: FRMD7 and GPR143. The aim of our study was to identify the genetic basis of both sporadic IN and X-linked IN. Design Prospective analysis. Patients Twenty Chinese patients, including 15 sporadic IN cases and 5 from X-linked IN families, were recruited and underwent molecular genetic analysis. We first performed PCR-based DNA sequencing of the entire coding region and the splice junctions of the FRMD7 and GPR143 genes in participants. Mutational analysis and co-segregation confirmation were then performed. Setting All clinical examinations and genetic experiments were performed in the Eye Hospital of Wenzhou Medical University. Results Two mutations in the FRMD7 gene, including one novel nonsense mutation (c.1090C>T, p.Q364X) and one reported missense mutation (c.781C>G, p.R261G), were identified in two of the five (40%) X-linked IN families. However, none of putative mutations were identified in FRMD7 or GPR143 in any of the sporadic cases. Conclusions The results suggest that mutations in FRMD7 appeared to be the major genetic cause of X-linked IN, but not of sporadic IN. Our findings provide further insights into FRMD7 mutations, which could be helpful for future genetic diagnosis and genetic counselling of Chinese patients with nystagmus. PMID:27036142
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brannon, E.L.; Thorgaard, G.H.; Cummings, S.A.
1994-10-01
The study has shown through life history examination and DNA analysis that three forms of O. nerka are present in Redfish Lake. The three forms are closely related, but may be sufficiently different to be considered three separate stocks. Fishhook Creek kokanee are temporally isolated from the beach spawners, and may represent the gene pool most similar to the historic sockeye population that once spawned there. Fishhook Creek offers the best spawning area available in the lake system, and should be considered for use in reestablishing an anadromous Fishhook Creek sockeye swain. The resident beach spawning strain of O. nerkamore » is likewise the most similar genetic form of the companion anadromous beach spawning O. nerka, and needs to be considered the most appropriate genetic source to help minimize reduced fitness of the sockeye from inbreeding.« less
Kamel, Katarzyna A; Kroc, Magdalena; Święcicki, Wojciech
2015-01-01
Sequence tagged site (STS) markers are valuable tools for genetic and physical mapping that can be successfully used in comparative analyses among related species. Current challenges for molecular markers genotyping in plants include the lack of fast, sensitive and inexpensive methods suitable for sequence variant detection. In contrast, high resolution melting (HRM) is a simple and high-throughput assay, which has been widely applied in sequence polymorphism identification as well as in the studies of genetic variability and genotyping. The present study is the first attempt to use the HRM analysis to genotype STS markers in narrow-leafed lupin (Lupinus angustifolius L.). The sensitivity and utility of this method was confirmed by the sequence polymorphism detection based on melting curve profiles in the parental genotypes and progeny of the narrow-leafed lupin mapping population. Application of different approaches, including amplicon size and a simulated heterozygote analysis, has allowed for successful genetic mapping of 16 new STS markers in the narrow-leafed lupin genome.
Lyons, Leslie A.; Erdman, Carolyn A.; Grahn, Robert A.; Hamilton, Michael J.; Carter, Michael J.; Helps, Christopher R.; Alhaddad, Hasan; Gandolfi, Barbara
2015-01-01
Frontonasal dysplasia (FND) can have severe presentations that are medically and socially debilitating. Several genes are implicated in FND conditions, including Aristaless-Like Homeobox 1 (ALX1), which is associated with FND3. Breeds of cats are selected and bred for extremes in craniofacial morphologies. In particular, a lineage of Burmese cats with severe brachycephyla is extremely popular and is termed Contemporary Burmese. Genetic studies demonstrated that the brachycephyla of the Contemporary Burmese is a simple co-dominant trait, however, the homozygous cats have a severe craniofacial defect that is incompatible with life. The craniofacial defect of the Burmese was genetically analyzed over a 20 year period, using various genetic analysis techniques. Family-based linkage analysis localized the trait to cat chromosome B4. Genome-wide association studies and other genetic analyses of SNP data refined a critical region. Sequence analysis identified a 12 bp in frame deletion in ALX1, c.496delCTCTCAGGACTG, which is 100% concordant with the craniofacial defect and not found in cats not related to the Contemporary Burmese. PMID:26610632
Céspedes, Sandra; Salgado, Paulina; Valenzuela, Patricio; Vidal, Roberto; Oñate, Angel A.
2011-01-01
One of the capabilities developed by bacteria is the ability to gain large fragments of DNA from other bacteria or to lose portions of their own genomes. Among these exchangeable fragments are the genomic islands (GIs). Nine GIs have been identified in Brucella, and genomic island 3 (GI-3) is shared by two pathogenic species, B. melitensis and B. abortus. GI-3 encodes mostly unknown proteins. One of the aims of this study was to perform pulsed-field gel electrophoresis (PFGE) on field isolates of B. abortus from Chile to determine whether these isolates are clonally related. Furthermore, we focused on the characterization of GI-3, studying its organization and the genetic conservation of the GI-3 sequence using techniques such as tiling-path PCR (TP-PCR) and restriction fragment length polymorphism-PCR (RFLP-PCR). Our results, after PFGE was performed on 69 field isolates of B. abortus from Chile, showed that the strains were genetically homogeneous. To increase the power of genetic discrimination among these strains, we used multiple locus variable-number tandem-repeat (VNTR) analysis with 16 loci (MLVA-16). The results obtained by MLVA-16 showed that the strains of B. abortus were genetically heterogeneous and that most of them clustered according to their geographic origin. Of the genetic loci studied, panel 2B was the one describing the highest diversity in the analysis, as well as locus Bruce19 in panel 2A. In relation to the study of GI-3, our experimental analysis by TP-PCR identified and confirmed that GI-3 is present in all wild strains of B. abortus, demonstrating the high stability of gene cluster GI-3 in Chilean field strains. PMID:21543580
Larmuseau, M H D; Van Geystelen, A; van Oven, M; Decorte, R
2013-04-01
In this article, we promote the implementation of extensive genealogical data in population genetic studies. Genealogical records can provide valuable information on the origin of DNA donors in a population genetic study, going beyond the commonly collected data such as residence, birthplace, language, and self-reported ethnicity. Recent studies demonstrated that extended genealogical data added to surname analysis can be crucial to detect signals of (past) population stratification and to interpret the population structure in a more objective manner. Moreover, when in-depth pedigree data are combined with haploid markers, it is even possible to disentangle signals of temporal differentiation within a population genetic structure during the last centuries. Obtaining genealogical data for all DNA donors in a population genetic study is a labor-intensive task but the vastly growing (genetic) genealogical databases, due to the broad interest of the public, are making this job more time-efficient if there is a guarantee for sufficient data quality. At the end, we discuss the advantages and pitfalls of using genealogy within sampling campaigns and we provide guidelines for future population genetic studies. Copyright © 2013 Wiley Periodicals, Inc.
Vinson, Amanda; Prongay, Kamm; Ferguson, Betsy
2013-01-01
Complex diseases (e.g., cardiovascular disease and type 2 diabetes, among many others) pose the biggest threat to human health worldwide and are among the most challenging to investigate. Susceptibility to complex disease may be caused by multiple genetic variants (GVs) and their interaction, by environmental factors, and by interaction between GVs and environment, and large study cohorts with substantial analytical power are typically required to elucidate these individual contributions. Here, we discuss the advantages of both power and feasibility afforded by the use of extended pedigrees of rhesus macaques (Macaca mulatta) for genetic studies of complex human disease based on next-generation sequence data. We present these advantages in the context of previous research conducted in rhesus macaques for several representative complex diseases. We also describe a single, multigeneration pedigree of Indian-origin rhesus macaques and a sample biobank we have developed for genetic analysis of complex disease, including power of this pedigree to detect causal GVs using either genetic linkage or association methods in a variance decomposition approach. Finally, we summarize findings of significant heritability for a number of quantitative traits that demonstrate that genetic contributions to risk factors for complex disease can be detected and measured in this pedigree. We conclude that the development and application of an extended pedigree to analysis of complex disease traits in the rhesus macaque have shown promising early success and that genome-wide genetic and higher order -omics studies in this pedigree are likely to yield useful insights into the architecture of complex human disease. PMID:24174435
USDA-ARS?s Scientific Manuscript database
Plant height and spike length and angle are important agronomic traits in the production of barley (Hordeum vulgare L.) due to strong correlations with lodging and disease. The objective of this study was to use QTL analysis to identify genetic regions associated with each trait in a recombinant inb...
Brian Baltunis; Dudley Huber; Tim Wite
2006-01-01
The Forest Biology Research Cooperative recently established a series of loblolly pine clonal trials known as CCLONES (Comparing Clonal Lines on Experimental Sites). There are three primary levels of genetic structure in this study (parental, full-sib family, clone) that strengthen the power of CCLONES for examining genetic mechanisms and interactions with cultural...
Keith R. Merrill; Susan E. Meyer; Craig E. Coleman
2012-01-01
The mechanisms for range expansion in invasive species depend on how genetic variation is structured in the introduced range. This study examined neutral genetic variation in the invasive annual grass Bromus tectorum in the Intermountain Western United States. Patterns of microsatellite (SSR) genotype distribution in this highly inbreeding species were used to make...
USDA-ARS?s Scientific Manuscript database
Scope: Tissue concentrations of omega-3 fatty acids may reduce cardiovascular disease risk, and genetic variants are associated with circulating fatty acids concentrations. Whether dietary fatty acids interact with genetic variants to modify circulating omega-3 fatty acids is unclear. We evaluated i...
Teaching Genetics in Secondary Classrooms: A Linguistic Analysis of Teachers' Talk about Proteins
ERIC Educational Resources Information Center
Thörne, Karin; Gericke, Niklas
2014-01-01
This study investigates Swedish biology teachers' inclusion of proteins when teaching genetics in grade nine (students 15-16 years old). For some years, there has been a call to give attention to proteins when teaching genetics as a means of linking the concepts "gene" and "trait". Students are known to have problems with this…
Genetic determinants of common epilepsies: a meta-analysis of genome-wide association studies
2014-01-01
Summary Background The epilepsies are a clinically heterogeneous group of neurological disorders. Despite strong evidence for heritability, genome-wide association studies have had little success in identification of risk loci associated with epilepsy, probably because of relatively small sample sizes and insufficient power. We aimed to identify risk loci through meta-analyses of genome-wide association studies for all epilepsy and the two largest clinical subtypes (genetic generalised epilepsy and focal epilepsy). Methods We combined genome-wide association data from 12 cohorts of individuals with epilepsy and controls from population-based datasets. Controls were ethnically matched with cases. We phenotyped individuals with epilepsy into categories of genetic generalised epilepsy, focal epilepsy, or unclassified epilepsy. After standardised filtering for quality control and imputation to account for different genotyping platforms across sites, investigators at each site conducted a linear mixed-model association analysis for each dataset. Combining summary statistics, we conducted fixed-effects meta-analyses of all epilepsy, focal epilepsy, and genetic generalised epilepsy. We set the genome-wide significance threshold at p<1·66 × 10−8. Findings We included 8696 cases and 26 157 controls in our analysis. Meta-analysis of the all-epilepsy cohort identified loci at 2q24.3 (p=8·71 × 10−10), implicating SCN1A, and at 4p15.1 (p=5·44 × 10−9), harbouring PCDH7, which encodes a protocadherin molecule not previously implicated in epilepsy. For the cohort of genetic generalised epilepsy, we noted a single signal at 2p16.1 (p=9·99 × 10−9), implicating VRK2 or FANCL. No single nucleotide polymorphism achieved genome-wide significance for focal epilepsy. Interpretation This meta-analysis describes a new locus not previously implicated in epilepsy and provides further evidence about the genetic architecture of these disorders, with the ultimate aim of assisting in disease classification and prognosis. The data suggest that specific loci can act pleiotropically raising risk for epilepsy broadly, or can have effects limited to a specific epilepsy subtype. Future genetic analyses might benefit from both lumping (ie, grouping of epilepsy types together) or splitting (ie, analysis of specific clinical subtypes). Funding International League Against Epilepsy and multiple governmental and philanthropic agencies. PMID:25087078
Cheng, Yu-Ching; Stanne, Tara M.; Giese, Anne-Katrin; Ho, Weang Kee; Traylor, Matthew; Amouyel, Philippe; Holliday, Elizabeth G.; Malik, Rainer; Xu, Huichun; Kittner, Steven J.; Cole, John W.; O’Connell, Jeffrey R.; Danesh, John; Rasheed, Asif; Zhao, Wei; Engelter, Stefan; Grond-Ginsbach, Caspar; Kamatani, Yoichiro; Lathrop, Mark; Leys, Didier; Thijs, Vincent; Metso, Tiina M.; Tatlisumak, Turgut; Pezzini, Alessandro; Parati, Eugenio A.; Norrving, Bo; Bevan, Steve; Rothwell, Peter M; Sudlow, Cathie; Slowik, Agnieszka; Lindgren, Arne; Walters, Matthew R; Jannes, Jim; Shen, Jess; Crosslin, David; Doheny, Kimberly; Laurie, Cathy C.; Kanse, Sandip M.; Bis, Joshua C.; Fornage, Myriam; Mosley, Thomas H.; Hopewell, Jemma C.; Strauch, Konstantin; Müller-Nurasyid, Martina; Gieger, Christian; Waldenberger, Melanie; Peters, Annette; Meisinger, Christine; Ikram, M. Arfan; Longstreth, WT; Meschia, James F.; Seshadri, Sudha; Sharma, Pankaj; Worrall, Bradford; Jern, Christina; Levi, Christopher; Dichgans, Martin; Boncoraglio, Giorgio B.; Markus, Hugh S.; Debette, Stephanie; Rolfs, Arndt; Saleheen, Danish; Mitchell, Braxton D.
2015-01-01
Background and Purpose Although a genetic contribution to ischemic stroke is well recognized, only a handful of stroke loci have been identified by large-scale genetic association studies to date. Hypothesizing that genetic effects might be stronger for early- versus late-onset stroke, we conducted a two-stage meta-analysis of genome-wide association studies (GWAS), focusing on stroke cases with an age of onset < 60 years old. Methods The Discovery stage of our GWAS included 4,505 cases and 21,968 controls of European, South-Asian and African ancestry, drawn from 6 studies. In Stage 2, we selected the lead genetic variants at loci with association P<5×10−6 and performed in silico association analyses in an independent sample of up to 1,003 cases and 7,745 controls. Results One stroke susceptibility locus at 10q25 reached genome-wide significance in the combined analysis of all samples from the Discovery and Follow-up Stages (rs11196288, OR=1.41, P=9.5×10−9). The associated locus is in an intergenic region between TCF7L2 and HABP2. In a further analysis in an independent sample, we found that two SNPs in high linkage disequilibrium with rs11196288 were significantly associated with total plasma factor VII-activating protease levels, a product of HABP2. Conclusions HABP2, which encodes an extracellular serine protease involved in coagulation, fibrinolysis, and inflammatory pathways, may be a genetic susceptibility locus for early-onset stroke. PMID:26732560
An overview of STRUCTURE: applications, parameter settings, and supporting software
Porras-Hurtado, Liliana; Ruiz, Yarimar; Santos, Carla; Phillips, Christopher; Carracedo, Ángel; Lareu, Maria V.
2013-01-01
Objectives: We present an up-to-date review of STRUCTURE software: one of the most widely used population analysis tools that allows researchers to assess patterns of genetic structure in a set of samples. STRUCTURE can identify subsets of the whole sample by detecting allele frequency differences within the data and can assign individuals to those sub-populations based on analysis of likelihoods. The review covers STRUCTURE's most commonly used ancestry and frequency models, plus an overview of the main applications of the software in human genetics including case-control association studies (CCAS), population genetics, and forensic analysis. The review is accompanied by supplementary material providing a step-by-step guide to running STRUCTURE. Methods: With reference to a worked example, we explore the effects of changing the principal analysis parameters on STRUCTURE results when analyzing a uniform set of human genetic data. Use of the supporting software: CLUMPP and distruct is detailed and we provide an overview and worked example of STRAT software, applicable to CCAS. Conclusion: The guide offers a simplified view of how STRUCTURE, CLUMPP, distruct, and STRAT can be applied to provide researchers with an informed choice of parameter settings and supporting software when analyzing their own genetic data. PMID:23755071
Heritabilities of Facial Measurements and Their Latent Factors in Korean Families
Kim, Hyun-Jin; Im, Sun-Wha; Jargal, Ganchimeg; Lee, Siwoo; Yi, Jae-Hyuk; Park, Jeong-Yeon; Sung, Joohon; Cho, Sung-Il; Kim, Jong-Yeol; Kim, Jong-Il; Seo, Jeong-Sun
2013-01-01
Genetic studies on facial morphology targeting healthy populations are fundamental in understanding the specific genetic influences involved; yet, most studies to date, if not all, have been focused on congenital diseases accompanied by facial anomalies. To study the specific genetic cues determining facial morphology, we estimated familial correlations and heritabilities of 14 facial measurements and 3 latent factors inferred from a factor analysis in a subset of the Korean population. The study included a total of 229 individuals from 38 families. We evaluated a total of 14 facial measurements using 2D digital photographs. We performed factor analysis to infer common latent variables. The heritabilities of 13 facial measurements were statistically significant (p < 0.05) and ranged from 0.25 to 0.61. Of these, the heritability of intercanthal width in the orbital region was found to be the highest (h2 = 0.61, SE = 0.14). Three factors (lower face portion, orbital region, and vertical length) were obtained through factor analysis, where the heritability values ranged from 0.45 to 0.55. The heritability values for each factor were higher than the mean heritability value of individual original measurements. We have confirmed the genetic influence on facial anthropometric traits and suggest a potential way to categorize and analyze the facial portions into different groups. PMID:23843774
Understanding genetics: Analysis of secondary students' conceptual status
NASA Astrophysics Data System (ADS)
Tsui, Chi-Yan; Treagust, David F.
2007-02-01
This article explores the conceptual change of students in Grades 10 and 12 in three Australian senior high schools when the teachers included computer multimedia to a greater or lesser extent in their teaching of a genetics course. The study, underpinned by a multidimensional conceptual-change framework, used an interpretive approach and a case-based design with multiple data collection methods. Over 4-8 weeks, the students learned genetics in classroom lessons that included BioLogica activities, which feature multiple representations. Results of the online tests and interview tasks revealed that most students improved their understanding of genetics as evidenced in the development of genetics reasoning. However, using Thorley's (1990) status analysis categories, a cross-case analysis of the gene conceptions of 9 of the 26 students interviewed indicated that only 4 students' postinstructional conceptions were intelligible-plausible-fruitful. Students' conceptual change was consistent with classroom teaching and learning. Findings suggested that multiple representations supported conceptual understanding of genetics but not in all students. It was also shown that status can be a viable hallmark enabling researchers to identify students' conceptual change that would otherwise be less accessible. Thorley's method for analyzing conceptual status is discussed.
Savage, Jeanne E; Jansen, Philip R; Stringer, Sven; Watanabe, Kyoko; Bryois, Julien; de Leeuw, Christiaan A; Nagel, Mats; Awasthi, Swapnil; Barr, Peter B; Coleman, Jonathan R I; Grasby, Katrina L; Hammerschlag, Anke R; Kaminski, Jakob A; Karlsson, Robert; Krapohl, Eva; Lam, Max; Nygaard, Marianne; Reynolds, Chandra A; Trampush, Joey W; Young, Hannah; Zabaneh, Delilah; Hägg, Sara; Hansell, Narelle K; Karlsson, Ida K; Linnarsson, Sten; Montgomery, Grant W; Muñoz-Manchado, Ana B; Quinlan, Erin B; Schumann, Gunter; Skene, Nathan G; Webb, Bradley T; White, Tonya; Arking, Dan E; Avramopoulos, Dimitrios; Bilder, Robert M; Bitsios, Panos; Burdick, Katherine E; Cannon, Tyrone D; Chiba-Falek, Ornit; Christoforou, Andrea; Cirulli, Elizabeth T; Congdon, Eliza; Corvin, Aiden; Davies, Gail; Deary, Ian J; DeRosse, Pamela; Dickinson, Dwight; Djurovic, Srdjan; Donohoe, Gary; Conley, Emily Drabant; Eriksson, Johan G; Espeseth, Thomas; Freimer, Nelson A; Giakoumaki, Stella; Giegling, Ina; Gill, Michael; Glahn, David C; Hariri, Ahmad R; Hatzimanolis, Alex; Keller, Matthew C; Knowles, Emma; Koltai, Deborah; Konte, Bettina; Lahti, Jari; Le Hellard, Stephanie; Lencz, Todd; Liewald, David C; London, Edythe; Lundervold, Astri J; Malhotra, Anil K; Melle, Ingrid; Morris, Derek; Need, Anna C; Ollier, William; Palotie, Aarno; Payton, Antony; Pendleton, Neil; Poldrack, Russell A; Räikkönen, Katri; Reinvang, Ivar; Roussos, Panos; Rujescu, Dan; Sabb, Fred W; Scult, Matthew A; Smeland, Olav B; Smyrnis, Nikolaos; Starr, John M; Steen, Vidar M; Stefanis, Nikos C; Straub, Richard E; Sundet, Kjetil; Tiemeier, Henning; Voineskos, Aristotle N; Weinberger, Daniel R; Widen, Elisabeth; Yu, Jin; Abecasis, Goncalo; Andreassen, Ole A; Breen, Gerome; Christiansen, Lene; Debrabant, Birgit; Dick, Danielle M; Heinz, Andreas; Hjerling-Leffler, Jens; Ikram, M Arfan; Kendler, Kenneth S; Martin, Nicholas G; Medland, Sarah E; Pedersen, Nancy L; Plomin, Robert; Polderman, Tinca J C; Ripke, Stephan; van der Sluis, Sophie; Sullivan, Patrick F; Vrieze, Scott I; Wright, Margaret J; Posthuma, Danielle
2018-06-25
Intelligence is highly heritable 1 and a major determinant of human health and well-being 2 . Recent genome-wide meta-analyses have identified 24 genomic loci linked to variation in intelligence 3-7 , but much about its genetic underpinnings remains to be discovered. Here, we present a large-scale genetic association study of intelligence (n = 269,867), identifying 205 associated genomic loci (190 new) and 1,016 genes (939 new) via positional mapping, expression quantitative trait locus (eQTL) mapping, chromatin interaction mapping, and gene-based association analysis. We find enrichment of genetic effects in conserved and coding regions and associations with 146 nonsynonymous exonic variants. Associated genes are strongly expressed in the brain, specifically in striatal medium spiny neurons and hippocampal pyramidal neurons. Gene set analyses implicate pathways related to nervous system development and synaptic structure. We confirm previous strong genetic correlations with multiple health-related outcomes, and Mendelian randomization analysis results suggest protective effects of intelligence for Alzheimer's disease and ADHD and bidirectional causation with pleiotropic effects for schizophrenia. These results are a major step forward in understanding the neurobiology of cognitive function as well as genetically related neurological and psychiatric disorders.
Rodriguez, Maria-Virginia
2012-03-01
This article contains an analysis of a research ethics committee's (REC) concerns about a study protocol involving genetic screening for antisocial personality disorder. The study was proposed by US university researchers and to be conducted with Mesoamerican populations in the United States and in their countries of origin. The analysis explains why the study was not considered ethical by the REC, pointing to issues with the choice of study population, informed consent, confidentiality, and posttrial obligations. Some recommendations are provided for ways in which the study could have been redesigned.
Sim, Sheina B.; Geib, Scott M.
2017-01-01
Genetic sexing strains (GSS) used in sterile insect technique (SIT) programs are textbook examples of how classical Mendelian genetics can be directly implemented in the management of agricultural insect pests. Although the foundation of traditionally developed GSS are single locus, autosomal recessive traits, their genetic basis are largely unknown. With the advent of modern genomic techniques, the genetic basis of sexing traits in GSS can now be further investigated. This study is the first of its kind to integrate traditional genetic techniques with emerging genomics to characterize a GSS using the tephritid fruit fly pest Bactrocera cucurbitae as a model. These techniques include whole-genome sequencing, the development of a mapping population and linkage map, and quantitative trait analysis. The experiment designed to map the genetic sexing trait in B. cucurbitae, white pupae (wp), also enabled the generation of a chromosome-scale genome assembly by integrating the linkage map with the assembly. Quantitative trait loci analysis revealed SNP loci near position 42 MB on chromosome 3 to be tightly linked to wp. Gene annotation and synteny analysis show a near perfect relationship between chromosomes in B. cucurbitae and Muller elements A–E in Drosophila melanogaster. This chromosome-scale genome assembly is complete, has high contiguity, was generated using a minimal input DNA, and will be used to further characterize the genetic mechanisms underlying wp. Knowledge of the genetic basis of genetic sexing traits can be used to improve SIT in this species and expand it to other economically important Diptera. PMID:28450369
Defining and redefining the scope and goals of genetic counseling.
Resta, Robert G
2006-11-15
Many definitions of genetic counseling have been proposed since Sheldon Reed first defined the term in 1947. This study reviews selected definitions of genetic counseling including the most recent definition proposed by a committee of the National Society of Genetic Counselors. The analysis focuses on the professional background of who was formulating the definition; the reasons why the definition was created; medical, historical, and social factors; and the definer's implicit or explicit goals of genetic counseling. No definition of genetic counseling is ideal, and any definition can only reflect the values, ethics, goals, and medical practices of the person or group defining the practice of genetic counseling. (c) 2006 Wiley-Liss, Inc.
Xian, Zhi-Hong; Cong, Wen-Ming; Zhang, Shu-Hui; Wu, Meng-Chao
2005-01-01
AIM: To study the genetic alterations and their association with clinicopathological characteristics of hepatocellular carcinoma (HCC), and to find the tumor related DNA fragments. METHODS: DNA isolated from tumors and corresponding noncancerous liver tissues of 56 HCC patients was amplified by random amplified polymorphic DNA (RAPD) with 10 random 10-mer arbitrary primers. The RAPD bands showing obvious differences in tumor tissue DNA corresponding to that of normal tissue were separated, purified, cloned and sequenced. DNA sequences were analyzed and compared with GenBank data. RESULTS: A total of 56 cases of HCC were demonstrated to have genetic alterations, which were detected by at least one primer. The detestability of genetic alterations ranged from 20% to 70% in each case, and 17.9% to 50% in each primer. Serum HBV infection, tumor size, histological grade, tumor capsule, as well as tumor intrahepatic metastasis, might be correlated with genetic alterations on certain primers. A band with a higher intensity of 480 bp or so amplified fragments in tumor DNA relative to normal DNA could be seen in 27 of 56 tumor samples using primer 4. Sequence analysis of these fragments showed 91% homology with Homo sapiens double homeobox protein DUX10 gene. CONCLUSION: Genetic alterations are a frequent event in HCC, and tumor related DNA fragments have been found in this study, which may be associated with hepatocarcin-ogenesis. RAPD is an effective method for the identification and analysis of genetic alterations in HCC, and may provide new information for further evaluating the molecular mechanism of hepatocarcinogenesis. PMID:15996039
[Genetic analysis of the putative remains of general Władysław Sikorski].
Kupiec, Tomasz; Branicki, Wojciech
2009-01-01
The paper presents results of genetic identification studies carried out in material collected during exhumation of the putative body of general Władysław Sikorski, buried in a sarcophagus in Saint Leonard's crypt in the Wawel Cathedral. The analysis of STR-type autosomal markers, Y-STR markers and sequences of HVI and HVII regions of mitochondrial DNA carried out in samples collected for genetic analysis--fragments of the thigh bone and a tooth--yielded a full set of results. The same mtDNA profile was also determined in hair revealed on the underpants and shirt secured from the studied body. The mitochondrial DNA profile determined in the bone material and also in the hair matched the profile characteristic for a female relative through the maternal line of general Władysław Sikorski. The obtained evidence supports the hypothesis that the studied body is that of general Sikorski. An additional analysis of position SNP rs12913832 located on the HERC2 gene revealed the presence of genotype C/C, which suggests that general Władysław Sikorski had light (most probably blue) eyes.
Self-fertilization is the main sexual reproduction mechanism in native wine yeast populations.
Cubillos, Francisco A; Vásquez, Claudia; Faugeron, Sylvain; Ganga, Angélica; Martínez, Claudio
2009-01-01
Saccharomyces cerevisiae is a model eukaryotic organism for classical genetics and genomics, and yet its ecology is still largely unknown. In this work, a population genetic analysis was performed on five yeast populations isolated from wine-making areas with different enological practices using simple sequence repeats and restriction fragment length polymorphism of mitochondrial DNA as molecular markers on 292 strains. In accordance with other studies, genome size estimation suggests that native S. cerevisiae strains are mainly homothallic and diploids. Analysis of mtDNA data showed that yeast populations from nonindustrial areas have 40% higher genetic diversity than populations isolated from industrial areas, demonstrating that industrial enological practices are likely to affect native yeast populations negatively by reducing its biodiversity. On the other hand, genetic differentiation analysis based on their microsatellite showed no correlation between genetic and geographic distance and a nonsignificant value when a Mantel test was applied. Finally, in the five populations studied, positive inbreeding (F(is)) values from 0.4 to 0.75, a low but significant level of linkage disequilibrium and a high number of multilocus genotypes were detected. These results strongly advocate that sexual reproduction is frequent enough to erase clonal signature in natural populations and that self-fertilization is the main mating system.
Harris, Donald G.; Quinn, Kevin J.; French, Beth M.; Schwartz, Evan; Kang, Elizabeth; Dahi, Siamak; Phelps, Carol J.; Ayares, David L.; Burdorf, Lars; Azimzadeh, Agnes M.; Pierson, Richard N.
2014-01-01
Background Genetically modified pigs are a promising potential source of lung xenografts. Ex-vivo xenoperfusion is an effective platform for testing the effect of new modifications, but typical experiments are limited by testing of a single genetic intervention and small sample sizes. The purpose of this study was to analyze the individual and aggregate effects of donor genetic modifications on porcine lung xenograft survival and injury in an extensive pig lung xenoperfusion series. Methods Data from 157 porcine lung xenoperfusion experiments using otherwise unmodified heparinized human blood were aggregated as either continuous or dichotomous variables. Lungs were wild type in 17 perfusions (11% of the study group), while 31 lungs (20% of the study group) had 1 genetic modification, 40 lungs (39%) had 2, and 47 lungs (30%) had 3 or more modifications. The primary endpoint was functional lung survival to 4 hours of perfusion. Secondary analyses evaluated previously identified markers associated with known lung xenograft injury mechanisms. In addition to comparison among all xenografts grouped by survival status, a subgroup analysis was performed of lungs incorporating the GalTKO.hCD46 genotype. Results Each increase in the number of genetic modifications was associated with additional prolongation of lung xenograft survival. Lungs that exhibited survival to 4 hours generally had reduced platelet activation and thrombin generation. GalTKO and the expression of hCD46, HO-1, hCD55 or hEPCR were associated with improved survival. hTBM, HLA-E, and hCD39 were associated with no significant effect on the primary outcome. Conclusion This meta-analysis of an extensive lung xenotransplantation series demonstrates that increasing the number of genetic modifications targeting known xenogeneic lung injury mechanisms is associated with incremental improvements in lung survival. While more detailed mechanistic studies are needed to explore the relationship between gene expression and pathway-specific injury, and explore why some genes apparently exhibit neutral (hTBM, HLA-E) or inconclusive (CD39) effects, GalTKO, hCD46, HO-1, hCD55, and hEPCR modifications were associated with significant lung xenograft protection. This analysis supports the hypothesis that multiple genetic modifications targeting different known mechanisms of xenograft injury will be required to optimize lung xenograft survival. PMID:25470239
Nelson, Heidi D; Pappas, Miranda; Zakher, Bernadette; Mitchell, Jennifer Priest; Okinaka-Hu, Leila; Fu, Rongwei
2014-02-18
Mutations in breast cancer susceptibility genes (BRCA1 and BRCA2) are associated with increased risks for breast, ovarian, and other types of cancer. To review new evidence on the benefits and harms of risk assessment, genetic counseling, and genetic testing for BRCA-related cancer in women. MEDLINE and PsycINFO between 2004 and 30 July 2013, the Cochrane Central Register of Controlled Trials and Cochrane Database of Systematic Reviews from 2004 through the second quarter of 2013, Health Technology Assessment during the fourth quarter of 2012, Scopus, and reference lists. English-language studies about accuracy of risk assessment and benefits and harms of genetic counseling, genetic testing, and interventions to reduce cancer incidence and mortality. Individual investigators extracted data on participants, study design, analysis, follow-up, and results, and a second investigator confirmed key data. Investigators independently dual-rated study quality and applicability by using established criteria. Five referral models accurately estimated individual risk for BRCA mutations. Genetic counseling increased the accuracy of risk perception and decreases the intention for genetic testing among unlikely carriers and cancer-related worry, anxiety, and depression. No trials evaluated the effectiveness of intensive screening or risk-reducing medications in mutation carriers, although false-positive rates, unneeded imaging, and unneeded surgeries were higher with screening. Among high-risk women and mutation carriers, risk-reducing mastectomy decreased breast cancer by 85% to 100% and breast cancer mortality by 81% to 100% compared with women without surgery; risk-reducing salpingo-oophorectomy decreased breast cancer incidence by 37% to 100%, ovarian cancer by 69% to 100%, and all-cause mortality by 55% to 100%. The analysis included only English-language articles;efficacy trials in mutation carriers were lacking. Studies of risk assessment, genetic counseling, genetic testing, and interventions to reduce cancer and mortality indicate potential benefits and harms that vary according to risk.
Functional Characterization of Two Novel Human Prostate Cancer Metastasis Related Genes
2007-02-01
genomic investigation would be the ability to perform genetic subtractive analysis with in vivo-derived genetic material originating from a...different DNA sequences present in one complimentary (31) or genomic (32) DNA library but absent in another. The advent of suppressive hybridization...of control specimens different from the native tissue for subtractive genomic analysis in some studies has created many inconclusive results. Cell
The psychological impact of genetic testing on parents.
Dinc, Leyla; Terzioglu, Fusun
2006-01-01
The aim of this descriptive study was to explore the psychological impact of genetic testing on parents whose children have been referred for genetic testing. Genetic tests enable individuals to be informed about their health status and to have the opportunity of early diagnosis and treatment of their diseases. However undergoing genetic testing and receiving a positive test result may also cause stress and anxiety. This descriptive study was carried out at the genetic departments of two university hospitals in Ankara. The sample of this study consisted of 128 individuals whose children have been referred for chromosomal analysis. Data were collected through using a semi-structured interview method with a data collection form and the anxiety inventory and analysed using the percentages and independent samples t-test. The majority of our participants experienced distress before genetic testing. Their general trait anxiety score before receiving the test results was 47.38, and following the test results the state anxiety score was 50.65. Having a previous child with an abnormality, a positive test result, and being a mother elevated the anxiety of individuals. This paper supports the findings of previous studies, which indicated that genetic test results might lead to anxiety in individuals and reveals the importance of genetic counselling. As the results of this study indicated, genetic testing causes distress and anxiety in individuals. Nurses can play an important role in minimizing anxiety of parents whose children undergo genetic testing by providing information about genetic testing and by taking part in the counselling process.
Zhang, Xue; Wen, Ming; Li, Junjian; Zhu, Hui; Wang, Yinliang; Ren, Bingzhong
2015-01-01
Abstract In an attempt to explain the variation within this species and clarify the subspecies classification, an analysis of the genetic, calling songs, and morphological variations within the species Gampsocleis sedakovii is presented from Inner Mongolia, China. Recordings were compared of the male calling songs and analysis performed of selected acoustic variables. This analysis is combined with sequencing of mtDNA - COI and examination of morphological traits to perform cluster analyses. The trees constructed from different datasets were structurally similar, bisecting the six geographical populations studied. Based on two large branches in the analysis, the species Gampsocleis sedakovii was partitioned into two subspecies, Gampsocleis sedakovii sedakovii (Fischer von Waldheim, 1846) and Gampsocleis sedakovii obscura (Walker, 1869). Comparing all the traits, the individual of Elunchun (ELC) was the intermediate type in this species according to the acoustic, genetic, and morphological characteristics. This study provides evidence for insect acoustic signal divergence and the process of subspeciation. PMID:26692795
Genetic research: who is at risk for alcoholism.
Foroud, Tatiana; Edenberg, Howard J; Crabbe, John C
2010-01-01
The National Institute on Alcohol Abuse and Alcoholism (NIAAA) was founded 40 years ago to help elucidate the biological underpinnings of alcohol dependence, including the potential contribution of genetic factors. Twin, adoption, and family studies conclusively demonstrated that genetic factors account for 50 to 60 percent of the variance in risk for developing alcoholism. Case-control studies and linkage analyses have helped identify DNA variants that contribute to increased risk, and the NIAAA-sponsored Collaborative Studies on Genetics of Alcoholism (COGA) has the expressed goal of identifying contributing genes using state-of-the-art genetic technologies. These efforts have ascertained several genes that may contribute to an increased risk of alcoholism, including certain variants encoding alcohol-metabolizing enzymes and neurotransmitter receptors. Genome-wide association studies allowing the analysis of millions of genetic markers located throughout the genome will enable discovery of further candidate genes. In addition to these human studies, genetic animal models of alcohol's effects and alcohol use have greatly advanced our understanding of the genetic basis of alcoholism, resulting in the identification of quantitative trait loci and allowing for targeted manipulation of candidate genes. Novel research approaches-for example, into epigenetic mechanisms of gene regulation-also are under way and undoubtedly will further clarify the genetic basis of alcoholism.
Huang, Yen-Tsung; Liang, Liming; Moffatt, Miriam F; Cookson, William O C M; Lin, Xihong
2015-07-01
Genome-wide association studies (GWAS) have been a standard practice in identifying single nucleotide polymorphisms (SNPs) for disease susceptibility. We propose a new approach, termed integrative GWAS (iGWAS) that exploits the information of gene expressions to investigate the mechanisms of the association of SNPs with a disease phenotype, and to incorporate the family-based design for genetic association studies. Specifically, the relations among SNPs, gene expression, and disease are modeled within the mediation analysis framework, which allows us to disentangle the genetic effect on a disease phenotype into two parts: an effect mediated through a gene expression (mediation effect, ME) and an effect through other biological mechanisms or environment-mediated mechanisms (alternative effect, AE). We develop omnibus tests for the ME and AE that are robust to underlying true disease models. Numerical studies show that the iGWAS approach is able to facilitate discovering genetic association mechanisms, and outperforms the SNP-only method for testing genetic associations. We conduct a family-based iGWAS of childhood asthma that integrates genetic and genomic data. The iGWAS approach identifies six novel susceptibility genes (MANEA, MRPL53, LYCAT, ST8SIA4, NDFIP1, and PTCH1) using the omnibus test with false discovery rate less than 1%, whereas no gene using SNP-only analyses survives with the same cut-off. The iGWAS analyses further characterize that genetic effects of these genes are mostly mediated through their gene expressions. In summary, the iGWAS approach provides a new analytic framework to investigate the mechanism of genetic etiology, and identifies novel susceptibility genes of childhood asthma that were biologically meaningful. © 2015 WILEY PERIODICALS, INC.
Ezquerra, M; Campdelacreu, J; Munoz, E; Oliva, R; Tolosa, E
2004-01-01
Objectives: To search for genetic changes in the 3'untranslated region (3'UTR) of tau and adjacent sequence LOC147077, and in the coding region of STH in PSP patients. Methods: The study included 57 PSP patients and 83 healthy controls. The genetic analysis of each region was performed through sequencing. The Q7R polymorphism was studied through restriction enzyme and electrophoresis analysis. Results: No mutations were found in the regions analysed. The QQ genotype of the STH polymorphism was over-represented in participants with PSP (91.5%) compared with control subjects (47%) (p⩽0.00001). This genotype co-segregated with the H1/H1 haplotype in our PSP cases. Conclusions: Our results do not support a major role for the tau 3'UTR in PSP genetics. The QQ genotype of STH confers susceptibility for PSP and is in linkage disequilibrium with the H1/H1 haplotype. PMID:14707330
An efficient Bayesian meta-analysis approach for studying cross-phenotype genetic associations
Majumdar, Arunabha; Haldar, Tanushree; Bhattacharya, Sourabh; Witte, John S.
2018-01-01
Simultaneous analysis of genetic associations with multiple phenotypes may reveal shared genetic susceptibility across traits (pleiotropy). For a locus exhibiting overall pleiotropy, it is important to identify which specific traits underlie this association. We propose a Bayesian meta-analysis approach (termed CPBayes) that uses summary-level data across multiple phenotypes to simultaneously measure the evidence of aggregate-level pleiotropic association and estimate an optimal subset of traits associated with the risk locus. This method uses a unified Bayesian statistical framework based on a spike and slab prior. CPBayes performs a fully Bayesian analysis by employing the Markov Chain Monte Carlo (MCMC) technique Gibbs sampling. It takes into account heterogeneity in the size and direction of the genetic effects across traits. It can be applied to both cohort data and separate studies of multiple traits having overlapping or non-overlapping subjects. Simulations show that CPBayes can produce higher accuracy in the selection of associated traits underlying a pleiotropic signal than the subset-based meta-analysis ASSET. We used CPBayes to undertake a genome-wide pleiotropic association study of 22 traits in the large Kaiser GERA cohort and detected six independent pleiotropic loci associated with at least two phenotypes. This includes a locus at chromosomal region 1q24.2 which exhibits an association simultaneously with the risk of five different diseases: Dermatophytosis, Hemorrhoids, Iron Deficiency, Osteoporosis and Peripheral Vascular Disease. We provide an R-package ‘CPBayes’ implementing the proposed method. PMID:29432419
Genetic variants in Alzheimer disease – molecular and brain network approaches
Gaiteri, Chris; Mostafavi, Sara; Honey, Christopher; De Jager, Philip L.; Bennett, David A.
2016-01-01
Genetic studies in late-onset Alzheimer disease (LOAD) are aimed at identifying core disease mechanisms and providing potential biomarkers and drug candidates to improve clinical care for AD. However, due to the complexity of LOAD, including pathological heterogeneity and disease polygenicity, extracting actionable guidance from LOAD genetics has been challenging. Past attempts to summarize the effects of LOAD-associated genetic variants have used pathway analysis and collections of small-scale experiments to hypothesize functional convergence across several variants. In this review, we discuss how the study of molecular, cellular and brain networks provides additional information on the effect of LOAD-associated genetic variants. We then discuss emerging combinations of omic data types in multiscale models, which provide a more comprehensive representation of the effect of LOAD-associated genetic variants at multiple biophysical scales. Further, we highlight the clinical potential of mechanistically coupling genetic variants and disease phenotypes with multiscale brain models. PMID:27282653
Using expression genetics to study the neurobiology of ethanol and alcoholism.
Farris, Sean P; Wolen, Aaron R; Miles, Michael F
2010-01-01
Recent simultaneous progress in human and animal model genetics and the advent of microarray whole genome expression profiling have produced prodigious data sets on genetic loci, potential candidate genes, and differential gene expression related to alcoholism and ethanol behaviors. Validated target genes or gene networks functioning in alcoholism are still of meager proportions. Genetical genomics, which combines genetic analysis of both traditional phenotypes and whole genome expression data, offers a potential methodology for characterizing brain gene networks functioning in alcoholism. This chapter will describe concepts, approaches, and recent findings in the field of genetical genomics as it applies to alcohol research. Copyright 2010 Elsevier Inc. All rights reserved.
Exploring science teachers' pedagogical content knowledge in the teaching of genetics in Swaziland
NASA Astrophysics Data System (ADS)
Mthethwa-Kunene, Khetsiwe Eunice Faith
Recent trends show that learners' enrolment and performance in science at secondary school level is dwindling. Some science topics including genetics in biology are said to be difficult for learners to learn and thus they perform poorly in examinations. Teacher knowledge base, particularly topic-specific pedagogical content knowledge (PCK), has been identified by many researchers as an important factor that is linked with learner understanding and achievement in science. This qualitative study was an attempt to explore the PCK of four successful biology teachers and how they developed it in the context of teaching genetics. The purposive sampling technique was employed to select the participating teachers based on their schools' performance in biology public examinations and recommendations by science specialists and school principals. Pedagogical content knowledge was used as a theoretical framework for the study, which guided the inquiry in data collection, analysis and discussion of the research findings. The study adopted the case study method and various sources of evidence including concept maps, lesson plans, pre-lesson interviews, lesson observations, post-teaching teacher questionnaire, post-lesson interviews and document analysis were used to collect data on teachers' PCK as well as how PCK was assumed to have developed. The data were analysed in an attempt to determine the individual teachers' school genetics' content knowledge, related knowledge of instructional strategies and knowledge of learners' preconceptions and learning difficulties. The analysis involved an iterative process of coding data into PCK categories of content knowledge, pedagogical knowledge and knowledge of learners' preconceptions and learning difficulties. The findings of the study indicate that the four successful biology teachers generally have the necessary content knowledge of school genetics, used certain topic-specific instructional strategies, but lacked knowledge of genetics-related learners' preconceptions and learning difficulties despite having taught the topic for many years. There were some instructional deficits in their approaches and techniques in teaching genetics. The teachers failed to use physical models, teacher demonstration and/or learner experimentation in their lessons (or include them in their lesson plans) to assist learners in visualizing or internalizing the genetics concepts or processes located at the sub-microscopic level. The teachers' PCK in genetics teaching was assumed to have developed mainly through formal university education programmes, classroom teaching experiences, peer support and participation in in-service workshops. The implications for biology teacher education are also discussed.
Wu, Fu Qin; Shen, Shi Kang; Zhang, Xin Jun; Wang, Yue Hua; Sun, Wei Bang
2014-12-04
Comprehensive studies on the genetic diversity and structure of endangered species are urgently needed to promote effective conservation and management activities. The big tree rhododendron, Rhododendron protistum var. giganteum, is a highly endangered species with only two known endemic populations in a small area in the southern part of Yunnan Province in China. Unfortunately, limited information is available regarding the population genetics of this species. Therefore, we conducted amplified fragment length polymorphism (AFLP) analysis to characterize the genetic diversity and variation of this species within and between remaining populations. Twelve primer combinations of AFLP produced 447 unambiguous and repetitious bands. Among these bands, 298 (66.67 %) were polymorphic. We found high genetic diversity at the species level (percentage of polymorphic loci = 66.67 %, h = 0.240, I = 0.358) and low genetic differentiation (Gst = 0.110) between the two populations. Gene flow between populations (Nm) was relatively high at 4.065. Analysis of molecular variance results revealed that 22 % of the genetic variation was partitioned between populations and 78 % of the genetic variation was within populations. The presence of moderate to high genetic diversity and low genetic differentiation in the two populations can be explained by life history traits, pollen dispersal and high gene flow (Nm = 4.065). Bayesian structure and principal coordinate analysis revealed that 56 sampled trees were clustered into two groups. Our results suggest that some rare and endangered species are able to maintain high levels of genetic diversity even at small population sizes. These results will assist with the design of conservation and management programmes, such as in situ and ex situ conservation, seed collection for germplasm conservation and reintroduction. Published by Oxford University Press on behalf of the Annals of Botany Company.
PredictABEL: an R package for the assessment of risk prediction models.
Kundu, Suman; Aulchenko, Yurii S; van Duijn, Cornelia M; Janssens, A Cecile J W
2011-04-01
The rapid identification of genetic markers for multifactorial diseases from genome-wide association studies is fuelling interest in investigating the predictive ability and health care utility of genetic risk models. Various measures are available for the assessment of risk prediction models, each addressing a different aspect of performance and utility. We developed PredictABEL, a package in R that covers descriptive tables, measures and figures that are used in the analysis of risk prediction studies such as measures of model fit, predictive ability and clinical utility, and risk distributions, calibration plot and the receiver operating characteristic plot. Tables and figures are saved as separate files in a user-specified format, which include publication-quality EPS and TIFF formats. All figures are available in a ready-made layout, but they can be customized to the preferences of the user. The package has been developed for the analysis of genetic risk prediction studies, but can also be used for studies that only include non-genetic risk factors. PredictABEL is freely available at the websites of GenABEL ( http://www.genabel.org ) and CRAN ( http://cran.r-project.org/).
Klinkenberg-Ramirez, Stephanie; Neri, Pamela M; Volk, Lynn A; Samaha, Sara J; Newmark, Lisa P; Pollard, Stephanie; Varugheese, Matthew; Baxter, Samantha; Aronson, Samuel J; Rehm, Heidi L; Bates, David W
2016-01-01
Partners HealthCare Personalized Medicine developed GeneInsight Clinic (GIC), a tool designed to communicate updated variant information from laboratory geneticists to treating clinicians through automated alerts, categorized by level of variant interpretation change. The study aimed to evaluate feedback from the initial users of the GIC, including the advantages and challenges to receiving this variant information and using this technology at the point of care. Healthcare professionals from two clinics that ordered genetic testing for cardiomyopathy and related disorders were invited to participate in one-hour semi-structured interviews and/ or a one-hour focus group. Using a Grounded Theory approach, transcript concepts were coded and organized into themes. Two genetic counselors and two physicians from two treatment clinics participated in individual interviews. Focus group participants included one genetic counselor and four physicians. Analysis resulted in 8 major themes related to structuring and communicating variant knowledge, GIC's impact on the clinic, and suggestions for improvements. The interview analysis identified longitudinal patient care, family data, and growth in genetic testing content as potential challenges to optimization of the GIC infrastructure. Participants agreed that GIC implementation increased efficiency and effectiveness of the clinic through increased access to genetic variant information at the point of care. Development of information technology (IT) infrastructure to aid in the organization and management of genetic variant knowledge will be critical as the genetic field moves towards whole exome and whole genome sequencing. Findings from this study could be applied to future development of IT support for genetic variant knowledge management that would serve to improve clinicians' ability to manage and care for patients.
Genetics educational needs in China: physicians' experience and knowledge of genetic testing.
Li, Jing; Xu, Tengda; Yashar, Beverly M
2015-09-01
The aims of this study were to explore the relationship between physicians' knowledge and utilization of genetic testing and to explore genetics educational needs in China. An anonymous survey about experience, attitudes, and knowledge of genetic testing was conducted among physicians affiliated with Peking Union Medical College Hospital during their annual health evaluation. A personal genetics knowledge score was developed and predictors of personal genetics knowledge score were evaluated. Sixty-four physicians (33% male) completed the survey. Fifty-eight percent of them had used genetic testing in their clinical practice. Using a 4-point scale, mean knowledge scores of six common genetic testing techniques ranged from 1.7 ± 0.9 to 2.4 ± 1.0, and the average personal genetics knowledge score was 2.1 ± 0.8. In regression analysis, significant predictors of higher personal genetics knowledge score were ordering of genetic testing, utilization of pedigrees, higher medical degree, and recent genetics training (P < 0.05). Sixty-six percent of physicians indicated a desire for specialized genetic services, and 84% reported a desire for additional genetics education. This study demonstrated a sizable gap between Chinese physicians' knowledge and utilization of genetic testing. Participants had high self-perceived genetics educational needs. Development of genetics educational platforms is both warranted and desired in China.Genet Med 17 9, 757-760.
A multivariate twin study of the DSM-IV criteria for antisocial personality disorder.
Kendler, Kenneth S; Aggen, Steven H; Patrick, Christopher J
2012-02-01
Many assessment instruments for psychopathy are multidimensional, suggesting that distinguishable factors are needed to effectively capture variation in this personality domain. However, no prior study has examined the factor structure of the DSM-IV criteria for antisocial personality disorder (ASPD). Self-report questionnaire items reflecting all A criteria for DSM-IV ASPD were available from 4291 twins (including both members of 1647 pairs) from the Virginia Adult Study of Psychiatric and Substance Use Disorders. Exploratory factor analysis and twin model fitting were performed using, respectively, Mplus and Mx. Phenotypic factor analysis produced evidence for two correlated factors: aggressive-disregard and disinhibition. The best-fitting multivariate twin model included two genetic and one unique environmental common factor, along with criteria-specific genetic and environmental effects. The two genetic factors closely resembled the phenotypic factors and varied in their prediction of a range of relevant criterion variables. Scores on the genetic aggressive-disregard factor score were more strongly associated with risk for conduct disorder, early and heavy alcohol use, and low educational status, whereas scores on the genetic disinhibition factor score were more strongly associated with younger age, novelty seeking, and major depression. From a genetic perspective, the DSM-IV criteria for ASPD do not reflect a single dimension of liability but rather are influenced by two dimensions of genetic risk reflecting aggressive-disregard and disinhibition. The phenotypic structure of the ASPD criteria results largely from genetic and not from environmental influences. Copyright © 2012 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
Iglesias, María José; García López, Jesús; Collados Luján, Juan Fernando; López Ortiz, Fernando; Bojórquez Pereznieto, Humberto; Toresano, Fernando; Camacho, Francisco
2014-01-01
The effects of genetic, technological and environmental factors on the chemical composition of four marmande type tomato varieties have been investigated. The study is based on the analysis of (1)H HRMAS NMR spectra of tomato purée using a combination of partial least squares (PLS) and assigned signal analysis (ASA). In agreement with genetic, morphological and taste characteristics of the tomatoes studied, the analysis of the NMR data allows two groups of samples to be differentiated. The type of culture and climatic conditions can reduce the compositional differences. The extension of the compositional changes produced by climatic conditions is variety-depend. Neither grafting nor perlite affect significantly the relative content of primary metabolites. This was not the case for tomatoes grown using the pure hydroponic production system based on the recirculation of nutrient solution, New Growing System NGS®, which seems to be an effective agricultural approach to improve tomato quality. Copyright © 2013 Elsevier Ltd. All rights reserved.
Applications of the 1000 Genomes Project resources
Zheng-Bradley, Xiangqun
2017-01-01
Abstract The 1000 Genomes Project created a valuable, worldwide reference for human genetic variation. Common uses of the 1000 Genomes dataset include genotype imputation supporting Genome-wide Association Studies, mapping expression Quantitative Trait Loci, filtering non-pathogenic variants from exome, whole genome and cancer genome sequencing projects, and genetic analysis of population structure and molecular evolution. In this article, we will highlight some of the multiple ways that the 1000 Genomes data can be and has been utilized for genetic studies. PMID:27436001
Lo, Min-Tzu; Hinds, David A.; Tung, Joyce Y.; Franz, Carol; Fan, Chun-Chieh; Wang, Yunpeng; Smeland, Olav B.; Schork, Andrew; Holland, Dominic; Kauppi, Karolina; Sanyal, Nilotpal; Escott-Price, Valentina; Smith, Daniel J.; O'Donovan, Michael; Stefansson, Hreinn; Bjornsdottir, Gyda; Thorgeirsson, Thorgeir E.; Stefansson, Kari; McEvoy, Linda K.; Dale, Anders M.; Andreassen, Ole A.; Chen, Chi-Hua
2017-01-01
Summary Personality is influenced by genetic and environmental factors1, and associated with mental health. However, the underlying genetic determinants are largely unknown. We identified six genetic loci, including five novel loci2,3, significantly associated with personality traits in a meta-analysis of genome-wide association studies (N=123,132–260,861). Of these genome-wide significant loci, extraversion was associated with variants in WSCD2 and near PCDH15, and neuroticism with variants on chromosome 8p23.1 and in L3MBTL2. We performed a principal component analysis to extract major dimensions underlying genetic variations among five personality traits and six psychiatric disorders (N=5,422–18,759). The first genetic dimension separated personality traits and psychiatric disorders, except that neuroticism and openness to experience were clustered with the disorders. High genetic correlations were found between extraversion and attention-deficit/hyperactivity disorder (ADHD), and between openness and schizophrenia/bipolar disorder. The second genetic dimension was closely aligned with extraversion-introversion and grouped neuroticism with internalizing psychopathology (e.g., depression/anxiety). PMID:27918536
Lo, Min-Tzu; Hinds, David A; Tung, Joyce Y; Franz, Carol; Fan, Chun-Chieh; Wang, Yunpeng; Smeland, Olav B; Schork, Andrew; Holland, Dominic; Kauppi, Karolina; Sanyal, Nilotpal; Escott-Price, Valentina; Smith, Daniel J; O'Donovan, Michael; Stefansson, Hreinn; Bjornsdottir, Gyda; Thorgeirsson, Thorgeir E; Stefansson, Kari; McEvoy, Linda K; Dale, Anders M; Andreassen, Ole A; Chen, Chi-Hua
2017-01-01
Personality is influenced by genetic and environmental factors and associated with mental health. However, the underlying genetic determinants are largely unknown. We identified six genetic loci, including five novel loci, significantly associated with personality traits in a meta-analysis of genome-wide association studies (N = 123,132-260,861). Of these genome-wide significant loci, extraversion was associated with variants in WSCD2 and near PCDH15, and neuroticism with variants on chromosome 8p23.1 and in L3MBTL2. We performed a principal component analysis to extract major dimensions underlying genetic variations among five personality traits and six psychiatric disorders (N = 5,422-18,759). The first genetic dimension separated personality traits and psychiatric disorders, except that neuroticism and openness to experience were clustered with the disorders. High genetic correlations were found between extraversion and attention-deficit-hyperactivity disorder (ADHD) and between openness and schizophrenia and bipolar disorder. The second genetic dimension was closely aligned with extraversion-introversion and grouped neuroticism with internalizing psychopathology (e.g., depression or anxiety).
Mapping the Schizophrenia Genes by Neuroimaging: The Opportunities and the Challenges
2018-01-01
Schizophrenia (SZ) is a heritable brain disease originating from a complex interaction of genetic and environmental factors. The genes underpinning the neurobiology of SZ are largely unknown but recent data suggest strong evidence for genetic variations, such as single nucleotide polymorphisms, making the brain vulnerable to the risk of SZ. Structural and functional brain mapping of these genetic variations are essential for the development of agents and tools for better diagnosis, treatment and prevention of SZ. Addressing this, neuroimaging methods in combination with genetic analysis have been increasingly used for almost 20 years. So-called imaging genetics, the opportunities of this approach along with its limitations for SZ research will be outlined in this invited paper. While the problems such as reproducibility, genetic effect size, specificity and sensitivity exist, opportunities such as multivariate analysis, development of multisite consortia for large-scale data collection, emergence of non-candidate gene (hypothesis-free) approach of neuroimaging genetics are likely to contribute to a rapid progress for gene discovery besides to gene validation studies that are related to SZ. PMID:29324666
Kamara, D; Gyenai, K B; Geng, T; Hammade, H; Smith, E J
2007-01-01
The turkey is second only to the chicken in importance as an agriculturally important poultry species. Unlike the chicken, however, genetic studies of the turkey continue to be limited. For example, to date, many genomic investigations have been conducted to characterize genetic relationships between commercial (CO) and non-CO chicken breeds, whereas the nature of the genetic relatedness between CO and heritage turkeys remains unknown. The objective of the current research was to use microsatellites to analyze the genetic relatedness between CO and heritage domestic turkeys including Narragansett, Bourbon Red, Blue Slate, Spanish Black, and Royal Palm. Primer pairs specific for 10 previously described turkey microsatellite markers were used. The phylogenetic analysis showed that the Blue Slate, Bourbon Red, and Narragansett were genetically closely related to the CO strain, with a Nei distance of 0.30, and the Royal Palm and Spanish Black were the least related to the CO strain, with Nei distances of 0.41 and 0.40, respectively. The present work provides a foundation for the basis of using heritage turkeys to genetically improve CO populations by introgression.
The commercialization of human genetic information and related circumstances within Turkish law.
Memiş, Tekin
2011-01-01
Today, human genetic information is used for commercial purposes as well. This means, based on the case, the direct or indirect commercialization of genetic information. In this study, this specific issue is analyzed in light of the new legal regulations as to the subject in the Turkish Law. Specifically, this study focuses on the issue of whether the commercialization of genetic information is allowed under the Turkish Law. This study also attempts to clarify the issue of whether there is any limitations for the commercialization of genetic information in the Turkish Law provided that the commercialization of genetic information is permitted. Prior to this legal analysis, the problems of the legal ownership for genetic information and of whether genetic information should be considered as an organ of human body is discussed. Accordingly, relevant Turkish laws and regulations are individually analyzed within this context. In the mean time legal regulations of some countries in this respect are taken into account with a comparative approach. In the end a general evaluation and suggestions are provided to the reader.
Potential of SNP markers for the characterization of Brazilian cassava germplasm.
de Oliveira, Eder Jorge; Ferreira, Cláudia Fortes; da Silva Santos, Vanderlei; de Jesus, Onildo Nunes; Oliveira, Gilmara Alvarenga Fachardo; da Silva, Maiane Suzarte
2014-06-01
High-throughput markers, such as SNPs, along with different methodologies were used to evaluate the applicability of the Bayesian approach and the multivariate analysis in structuring the genetic diversity in cassavas. The objective of the present work was to evaluate the diversity and genetic structure of the largest cassava germplasm bank in Brazil. Complementary methodological approaches such as discriminant analysis of principal components (DAPC), Bayesian analysis and molecular analysis of variance (AMOVA) were used to understand the structure and diversity of 1,280 accessions genotyped using 402 single nucleotide polymorphism markers. The genetic diversity (0.327) and the average observed heterozygosity (0.322) were high considering the bi-allelic markers. In terms of population, the presence of a complex genetic structure was observed indicating the formation of 30 clusters by DAPC and 34 clusters by Bayesian analysis. Both methodologies presented difficulties and controversies in terms of the allocation of some accessions to specific clusters. However, the clusters suggested by the DAPC analysis seemed to be more consistent for presenting higher probability of allocation of the accessions within the clusters. Prior information related to breeding patterns and geographic origins of the accessions were not sufficient for providing clear differentiation between the clusters according to the AMOVA analysis. In contrast, the F ST was maximized when considering the clusters suggested by the Bayesian and DAPC analyses. The high frequency of germplasm exchange between producers and the subsequent alteration of the name of the same material may be one of the causes of the low association between genetic diversity and geographic origin. The results of this study may benefit cassava germplasm conservation programs, and contribute to the maximization of genetic gains in breeding programs.
Environment, genes, and experience: lessons from behavior genetics.
Barsky, Philipp I
2010-11-01
The article reviews the theoretical analysis of the problems inherent in studying the environment within behavior genetics across several periods in the development of environmental studies in behavior genetics and proposes some possible alternatives to traditional approaches to studying the environment in behavior genetics. The first period (from the end of the 1920s to the end of the 1970s), when the environment was not actually studied, is called pre-environmental; during this time, the basic principles and theoretical models of understanding environmental effects in behavior genetics were developed. The second period is characterized by the development of studies on environmental influences within the traditional behavior genetics paradigm; several approaches to studying the environment emerged in behavior genetics during this period, from the beginning of the 1980s until today. At the present time, the field is undergoing paradigmatic changes, concerned with methodology, theory, and mathematical models of genotype-environment interplay; this might be the beginning of a third period of development of environmental studies in behavior genetics. In another part, the methodological problems related to environmental studies in behavior genetics are discussed. Although the methodology used in differential psychology is applicable for assessment of differences between individuals, it is insufficient to explain the sources of these differences. In addition, we stress that psychoanalytic studies of twins and their experiences, initiated in the 1930s and continued episodically until the 1980s, could bring an interesting methodology and contribute to the explanation of puzzling findings from environmental studies of behavior genetics. Finally, we will conclude with implications from the results of environmental studies in behavior genetics, including methodological issues. Copyright © 2010 Elsevier Ltd. All rights reserved.
[Progress in studies on the genetic risk factors for nonsyndromic cleft lip or palate in China].
Huang, Y Q
2017-04-09
Cleft lip and palate is the most common congenital defects of oral and maxillofacial region in human beings. The etiology of this malformation is complex, with both genetic and environmental causal factors are involved. To provide a better understanding in the genetic etiology of cleft lip or palate, the author summarized recent years studies based on Chinese population. Those researches included validation of some candidate genes for cleft lip or palate, using genome wide association analysis which included six independent cohorts from China to elucidate the genetic architecture of non-syndromic cleft lip with or without cleft palate in Chinese population and finally found a new susceptibility locus. This locus was on the 16p13.3 (rs8049367) between CREBBP and ADCY9. It has been mentioned common methods of genetic analysis involved in the researches on cleft lip or palate in this paper. Furthermore, we try to discuss new methods to illustrate the etiology of cleft lip and palate that could provide more inspiration on future researches.
Wang, Lu-Yong; Fasulo, D
2006-01-01
Genome-wide association study for complex diseases will generate massive amount of single nucleotide polymorphisms (SNPs) data. Univariate statistical test (i.e. Fisher exact test) was used to single out non-associated SNPs. However, the disease-susceptible SNPs may have little marginal effects in population and are unlikely to retain after the univariate tests. Also, model-based methods are impractical for large-scale dataset. Moreover, genetic heterogeneity makes the traditional methods harder to identify the genetic causes of diseases. A more recent random forest method provides a more robust method for screening the SNPs in thousands scale. However, for more large-scale data, i.e., Affymetrix Human Mapping 100K GeneChip data, a faster screening method is required to screening SNPs in whole-genome large scale association analysis with genetic heterogeneity. We propose a boosting-based method for rapid screening in large-scale analysis of complex traits in the presence of genetic heterogeneity. It provides a relatively fast and fairly good tool for screening and limiting the candidate SNPs for further more complex computational modeling task.
Cluster analysis of Pinus taiwanensis for its ex situ conservation in China.
Gao, X; Shi, L; Wu, Z
2015-06-01
Pinus taiwanensis Hayata is one of the most famous sights in the Huangshan Scenic Resort, China, because of its strong adaptability and ability to survive; however, this endemic species is currently under threat in China. Relationships between different P. taiwanensis populations have been well-documented; however, few studies have been conducted on how to protect this rare pine. In the present study, we propose the ex situ conservation of this species using geographical information system (GIS) cluster and genetic diversity analyses. The GIS cluster method was conducted as a preliminary analysis for establishing a sampling site category based on climatic factors. Genetic diversity was analyzed using morphological and genetic traits. By combining geographical information with genetic data, we demonstrate that growing conditions, morphological traits, and the genetic make-up of the population in the Huangshan Scenic Resort were most similar to conditions on Tianmu Mountain. Therefore, we suggest that Tianmu Mountain is the best choice for the ex situ conservation of P. taiwanensis. Our results provide a molecular basis for the sustainable management, utilization, and conservation of this species in Huangshan Scenic Resort.
Preuss, Michael; König, Inke R; Thompson, John R; Erdmann, Jeanette; Absher, Devin; Assimes, Themistocles L; Blankenberg, Stefan; Boerwinkle, Eric; Chen, Li; Cupples, L Adrienne; Hall, Alistair S; Halperin, Eran; Hengstenberg, Christian; Holm, Hilma; Laaksonen, Reijo; Li, Mingyao; März, Winfried; McPherson, Ruth; Musunuru, Kiran; Nelson, Christopher P; Burnett, Mary Susan; Epstein, Stephen E; O'Donnell, Christopher J; Quertermous, Thomas; Rader, Daniel J; Roberts, Robert; Schillert, Arne; Stefansson, Kari; Stewart, Alexandre F R; Thorleifsson, Gudmar; Voight, Benjamin F; Wells, George A; Ziegler, Andreas; Kathiresan, Sekar; Reilly, Muredach P; Samani, Nilesh J; Schunkert, Heribert
2010-10-01
Recent genome-wide association studies (GWAS) of myocardial infarction (MI) and other forms of coronary artery disease (CAD) have led to the discovery of at least 13 genetic loci. In addition to the effect size, power to detect associations is largely driven by sample size. Therefore, to maximize the chance of finding novel susceptibility loci for CAD and MI, the Coronary ARtery DIsease Genome-wide Replication And Meta-analysis (CARDIoGRAM) consortium was formed. CARDIoGRAM combines data from all published and several unpublished GWAS in individuals with European ancestry; includes >22 000 cases with CAD, MI, or both and >60 000 controls; and unifies samples from the Atherosclerotic Disease VAscular functioN and genetiC Epidemiology study, CADomics, Cohorts for Heart and Aging Research in Genomic Epidemiology, deCODE, the German Myocardial Infarction Family Studies I, II, and III, Ludwigshafen Risk and Cardiovascular Heath Study/AtheroRemo, MedStar, Myocardial Infarction Genetics Consortium, Ottawa Heart Genomics Study, PennCath, and the Wellcome Trust Case Control Consortium. Genotyping was carried out on Affymetrix or Illumina platforms followed by imputation of genotypes in most studies. On average, 2.2 million single nucleotide polymorphisms were generated per study. The results from each study are combined using meta-analysis. As proof of principle, we meta-analyzed risk variants at 9p21 and found that rs1333049 confers a 29% increase in risk for MI per copy (P=2×10⁻²⁰). CARDIoGRAM is poised to contribute to our understanding of the role of common genetic variation on risk for CAD and MI.
Genetic and environmental variance in content dimensions of the MMPI.
Rose, R J
1988-08-01
To evaluate genetic and environmental variance in the Minnesota Multiphasic Personality Inventory (MMPI), I studied nine factor scales identified in the first item factor analysis of normal adult MMPIs in a sample of 820 adolescent and young adult co-twins. Conventional twin comparisons documented heritable variance in six of the nine MMPI factors (Neuroticism, Psychoticism, Extraversion, Somatic Complaints, Inadequacy, and Cynicism), whereas significant influence from shared environmental experience was found for four factors (Masculinity versus Femininity, Extraversion, Religious Orthodoxy, and Intellectual Interests). Genetic variance in the nine factors was more evident in results from twin sisters than those of twin brothers, and a developmental-genetic analysis, using hierarchical multiple regressions of double-entry matrixes of the twins' raw data, revealed that in four MMPI factor scales, genetic effects were significantly modulated by age or gender or their interaction during the developmental period from early adolescence to early adulthood.
Mining disease fingerprints from within genetic pathways.
Nabhan, Ahmed Ragab; Sarkar, Indra Neil
2012-01-01
Mining biological networks can be an effective means to uncover system level knowledge out of micro level associations, such as encapsulated in genetic pathways. Analysis of human disease genetic pathways can lead to the identification of major mechanisms that may underlie disorders at an abstract functional level. The focus of this study was to develop an approach for structural pattern analysis and classification of genetic pathways of diseases. A probabilistic model was developed to capture characteristic components ('fingerprints') of functionally annotated pathways. A probability estimation procedure of this model searched for fingerprints in each disease pathway while improving probability estimates of model parameters. The approach was evaluated on data from the Kyoto Encyclopedia of Genes and Genomes (consisting of 56 pathways across seven disease categories). Based on the achieved average classification accuracy of up to ~77%, the findings suggest that these fingerprints may be used for classification and discovery of genetic pathways.
Mining Disease Fingerprints From Within Genetic Pathways
Nabhan, Ahmed Ragab; Sarkar, Indra Neil
2012-01-01
Mining biological networks can be an effective means to uncover system level knowledge out of micro level associations, such as encapsulated in genetic pathways. Analysis of human disease genetic pathways can lead to the identification of major mechanisms that may underlie disorders at an abstract functional level. The focus of this study was to develop an approach for structural pattern analysis and classification of genetic pathways of diseases. A probabilistic model was developed to capture characteristic components (‘fingerprints’) of functionally annotated pathways. A probability estimation procedure of this model searched for fingerprints in each disease pathway while improving probability estimates of model parameters. The approach was evaluated on data from the Kyoto Encyclopedia of Genes and Genomes (consisting of 56 pathways across seven disease categories). Based on the achieved average classification accuracy of up to ∼77%, the findings suggest that these fingerprints may be used for classification and discovery of genetic pathways. PMID:23304411
Zhu, Yun; Fan, Ruzong; Xiong, Momiao
2017-01-01
Investigating the pleiotropic effects of genetic variants can increase statistical power, provide important information to achieve deep understanding of the complex genetic structures of disease, and offer powerful tools for designing effective treatments with fewer side effects. However, the current multiple phenotype association analysis paradigm lacks breadth (number of phenotypes and genetic variants jointly analyzed at the same time) and depth (hierarchical structure of phenotype and genotypes). A key issue for high dimensional pleiotropic analysis is to effectively extract informative internal representation and features from high dimensional genotype and phenotype data. To explore correlation information of genetic variants, effectively reduce data dimensions, and overcome critical barriers in advancing the development of novel statistical methods and computational algorithms for genetic pleiotropic analysis, we proposed a new statistic method referred to as a quadratically regularized functional CCA (QRFCCA) for association analysis which combines three approaches: (1) quadratically regularized matrix factorization, (2) functional data analysis and (3) canonical correlation analysis (CCA). Large-scale simulations show that the QRFCCA has a much higher power than that of the ten competing statistics while retaining the appropriate type 1 errors. To further evaluate performance, the QRFCCA and ten other statistics are applied to the whole genome sequencing dataset from the TwinsUK study. We identify a total of 79 genes with rare variants and 67 genes with common variants significantly associated with the 46 traits using QRFCCA. The results show that the QRFCCA substantially outperforms the ten other statistics. PMID:29040274
A comparative phylogenetic study of genetics and folk music.
Pamjav, Horolma; Juhász, Zoltán; Zalán, Andrea; Németh, Endre; Damdin, Bayarlkhagva
2012-04-01
Computer-aided comparison of folk music from different nations is one of the newest research areas. We were intrigued to have identified some important similarities between phylogenetic studies and modern folk music. First of all, both of them use similar concepts and representation tools such as multidimensional scaling for modelling relationship between populations. This gave us the idea to investigate whether these connections are merely accidental or if they mirror population migrations from the past. We raised the question; does the complex structure of musical connections display a clear picture and can this system be interpreted by the genetic analysis? This study is the first to systematically investigate the incidental genetic background of the folk music context between different populations. Paternal (42 populations) and maternal lineages (56 populations) were compared based on Fst genetic distances of the Y chromosomal and mtDNA haplogroup frequencies. To test this hypothesis, the corresponding musical cultures were also compared using an automatic overlap analysis of parallel melody styles for 31 Eurasian nations. We found that close musical relations of populations indicate close genetic distances (<0.05) with a probability of 82%. It was observed that there is a significant correlation between population genetics and folk music; maternal lineages have a more important role in folk music traditions than paternal lineages. Furthermore, the combination of these disciplines establishing a new interdisciplinary research field of "music-genetics" can be an efficient tool to get a more comprehensive picture on the complex behaviour of populations in prehistoric time.
Mei, Ting; Shen, Chun-Mei; Liu, Yao-Shun; Meng, Hao-Tian; Zhang, Yu-Dang; Guo, Yu-Xin; Dong, Qian; Wang, Xin-Xin; Yan, Jiang-Wei; Zhu, Bo-Feng; Zhang, Li-Ping
2016-01-01
The Uigur ethnic minority is the largest ethnic group in the Xinjiang Uygur Autonomous Region of China, and valuable resource for the study of ethnogeny. The objective of this study was to estimate the genetic diversities and forensic parameters of 30 insertion-deletion loci in Uigur ethnic group from Xinjiang Uigur Autonomous Region of China and to analyze the genetic relationships between Xinjiang Uigur group and other previously published groups based on population data of these loci. All the tested loci were conformed to Hardy-Weinberg equilibrium after Bonferroni correction. The observed and expected heterozygosity ranged from 0.3750 to 0.5515; and 0.4057 to 0.5037, respectively. The combined power of discrimination and probability of exclusion in the group were 0.99999999999940 and 0.9963, respectively. We analyzed the D A distance, interpopulation differentiations and population structure, conducted principal component analysis and neighbor-joining tree based on our studied group and 21 reference groups. The present results indicated that the studied Xinjiang Uigur group (represented our samples from the whole territory of Xinjiang Uigur Autonomous Region) had a close relationships with Urumchi Uigur (represented previously reported samples from Urumchi of Xinjiang) and Kazak groups. The present study may provide novel biological information for the study of population genetics, and can also increase our understanding of the genetic relationships between Xinjiang Uigur group and other groups.
Hu, Chih-Yi; Tsai, You-Zen; Lin, Shun-Fu
2014-12-01
Tea (Camellia sinensis) is an important economic crop in Taiwan. Particularly, two major commercial types of tea (Paochong tea and Oolong tea) which are produced in Taiwan are famous around the world, and they must be manufactured with specific cultivars. Nevertheless, many elite cultivars have been illegally introduced to foreign countries. Because of the lower cost, large amount of "Taiwan-type tea" are produced and imported to Taiwan, causing a dramatic damage in the tea industry. It is very urgent to develop the stable, fast and reliable DNA markers for fingerprinting tea cultivars in Taiwan and protecting intellectual property rights for breeders. Furthermore, genetic diversity and phylogenetic relationship evaluations of tea germplasm in Taiwan are imperative for parental selection in the cross-breeding program and avoidance of genetic vulnerability. Two STS and 37 CAPS markers derived from cytoplasmic genome and ESTs of tea have been developed in this study providing a useful tool for distinguishing all investigated germplasm. For identifying 12 prevailing tea cultivars in Taiwan, five core markers, including each one of mitochondria and chloroplast, and three nuclear markers, were developed. Based on principal coordinate analysis and cluster analysis, 55 tea germplasm in Taiwan were divided into three groups: sinensis type (C. sinensis var. sinensis), assamica type (C. sinensis var. assamica) and Taiwan wild species (C. formosensis). The result of genetic diversity analysis revealed that both sinensis (0.44) and assamica (0.41) types had higher genetic diversity than wild species (0.25). The close genetic distance between the first (Chin-Shin-Oolong) and the third (Shy-Jih-Chuen) prevailing cultivars was found, and many recently released varieties are the descents of Chin-Shin-Oolong. This implies the potential risk of genetic vulnerability for tea cultivation in Taiwan. We have successfully developed a tool for tea germplasm discrimination and genetic diversity analysis, as well as a set of core markers for effective identification of prevailing cultivars in Taiwan. According to the results of phylogenetic analysis on prevailing tea cultivars, it is necessary to broaden genetic diversity from wild species or plant introduction in future breeding programs.
Path analysis of the genetic integration of traits in the sand cricket: a novel use of BLUPs.
Roff, D A; Fairbairn, D J
2011-09-01
This study combines path analysis with quantitative genetics to analyse a key life history trade-off in the cricket, Gryllus firmus. We develop a path model connecting five traits associated with the trade-off between flight capability and reproduction and test this model using phenotypic data and estimates of breeding values (best linear unbiased predictors) from a half-sibling experiment. Strong support by both types of data validates our causal model and indicates concordance between the phenotypic and genetic expression of the trade-off. Comparisons of the trade-off between sexes and wing morphs reveal that these discrete phenotypes are not genetically independent and that the evolutionary trajectories of the two wing morphs are more tightly constrained to covary than those of the two sexes. Our results illustrate the benefits of combining a quantitative genetic analysis, which examines statistical correlations between traits, with a path model that focuses upon the causal components of variation. © 2011 The Authors. Journal of Evolutionary Biology © 2011 European Society For Evolutionary Biology.
Preliminary Design of a Manned Nuclear Electric Propulsion Vehicle Using Genetic Algorithms
NASA Technical Reports Server (NTRS)
Irwin, Ryan W.; Tinker, Michael L.
2005-01-01
Nuclear electric propulsion (NEP) vehicles will be needed for future manned missions to Mars and beyond. Candidate designs must be identified for further detailed design from a large array of possibilities. Genetic algorithms have proven their utility in conceptual design studies by effectively searching a large design space to pinpoint unique optimal designs. This research combined analysis codes for NEP subsystems with a genetic algorithm. The use of penalty functions with scaling ratios was investigated to increase computational efficiency. Also, the selection of design variables for optimization was considered to reduce computation time without losing beneficial design search space. Finally, trend analysis of a reference mission to the asteroids yielded a group of candidate designs for further analysis.
[Genetic dissection of intracranial aneurysm].
Onda, Hideaki; Yoneyama, Taku; Akagawa, Hiroyuki; Kasuya, Hidetoshi
2008-11-01
Subarachnoid hemorrhage (SAH) due to rupture of an intracranial aneurysm (IA) is a devastating condition with high mortality and morbidity. Genetic as well as environment factors play important roles in the pathogenesis of SAH and IAs. We review the present knowledge on the genetic factors responsible for SAH or IAs. Linkage analysis and association study are used for genetic dissection. Genome-wide linkage analyses have specified several genetic loci for IAs and 6 loci (1p34-36, 7q11, 11q24-25, 14q22-31, 19q13, and Xp22) have been replicated in different populations. Numerous functional and/or positional candidate genes for IAs have been investigated by case-control association studies. The results of genetic association studies are modest because of small sample sizes. To date, no specific genes have been identified as responsible for IA development or rupture. Recent, large-scale genome-wide association (GWA) studies have revealed consistent and replicable genetic markers of several complex diseases such as coronary artery disease and type 2 diabetes. Although, thus far, no GWA studies have been performed for IAs, such a study may accomplish the breakthrough of genetic dissection of IAs. The identification of susceptible genes might lead to the understanding of the mechanism of IA formation or rupture and to novel therapeutic strategies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klinger, K.W.; Winqvist, R.; Riccio, A.
1987-12-01
The regional chromosomal location of the human gene for plasminogen activator inhibitor type 1 (PAI1) was determined by three independent methods of gene mapping. PAI1 was localized first to 7cen-q32 and then to 7q21.3-q22 by Southern blot hybridization analysis of a panel of human and mouse somatic cell hybrids with a PAI1 cDNA probe and in situ hybridization, respectively. The authors frequent HindIII restriction fragment length polymorphism (RFLP) of the PAI1 gene with an information content of 0.369. In family studies using this polymorphism, genetic linkage was found between PAI1 and the loci for erythropoietin (EPO), paraoxonase (PON), the metmore » protooncogene (MET), and cystic fibrosis (CF), all previously assigned to the middle part of the long arm of chromosome 7. The linkage with EPO was closest with an estimated genetic distance of 3 centimorgans, whereas that to CF was 20 centimorgans. A three-point genetic linkage analysis and data from previous studies showed that the most likely order of these loci is EPO, PAI1, PON, (MET, CF), with PAI1 being located centromeric to CF. The PAI1 RFLP may prove to be valuable in ordering genetic markers in the CF-linkage group and may also be valuable in genetic analysis of plasminogen activation-related diseases, such as certain thromboembolic disorders and cancer.« less
Song, W; Cao, L-J; Wang, Y-Z; Li, B-Y; Wei, S-J
2017-06-01
The oriental fruit moth (OFM) Grapholita molesta (Lepidoptera: Tortricidae) is an important economic pest of stone and pome fruits worldwide. We sequenced the OFM genome using next-generation sequencing and characterized the microsatellite distribution. In total, 56,674 microsatellites were identified, with 11,584 loci suitable for primer design. Twenty-seven polymorphic microsatellites, including 24 loci with trinucleotide repeat and three with pentanucleotide repeat, were validated in 95 individuals from four natural populations. The allele numbers ranged from 4 to 40, with an average value of 13.7 per locus. A high frequency of null alleles was observed in most loci developed for the OFM. Three marker panels, all of the loci, nine loci with the lowest null allele frequencies, and nine loci with the highest null allele frequencies, were established for population genetics analyses. The null allele influenced estimations of genetic diversity parameters but not the OFM's genetic structure. Both a STRUCTURE analysis and a discriminant analysis of principal components, using the three marker panels, divided the four natural populations into three groups. However, more individuals were incorrectly assigned by the STRUCTURE analysis when the marker panel with the highest null allele frequency was used compared with the other two panels. Our study provides empirical research on the effects of null alleles on population genetics analyses. The microsatellites developed will be valuable markers for genetic studies of the OFM.
Williams, Winfred W.; Salem, Rany M.; McKnight, Amy Jayne; Sandholm, Niina; Forsblom, Carol; Taylor, Andrew; Guiducci, Candace; McAteer, Jarred B.; McKay, Gareth J.; Isakova, Tamara; Brennan, Eoin P.; Sadlier, Denise M.; Palmer, Cameron; Söderlund, Jenny; Fagerholm, Emma; Harjutsalo, Valma; Lithovius, Raija; Gordin, Daniel; Hietala, Kustaa; Kytö, Janne; Parkkonen, Maija; Rosengård-Bärlund, Milla; Thorn, Lena; Syreeni, Anna; Tolonen, Nina; Saraheimo, Markku; Wadén, Johan; Pitkäniemi, Janne; Sarti, Cinzia; Tuomilehto, Jaakko; Tryggvason, Karl; Österholm, Anne-May; He, Bing; Bain, Steve; Martin, Finian; Godson, Catherine; Hirschhorn, Joel N.; Maxwell, Alexander P.; Groop, Per-Henrik; Florez, Jose C.
2012-01-01
We formed the GEnetics of Nephropathy–an International Effort (GENIE) consortium to examine previously reported genetic associations with diabetic nephropathy (DN) in type 1 diabetes. GENIE consists of 6,366 similarly ascertained participants of European ancestry with type 1 diabetes, with and without DN, from the All Ireland-Warren 3-Genetics of Kidneys in Diabetes U.K. and Republic of Ireland (U.K.-R.O.I.) collection and the Finnish Diabetic Nephropathy Study (FinnDiane), combined with reanalyzed data from the Genetics of Kidneys in Diabetes U.S. Study (U.S. GoKinD). We found little evidence for the association of the EPO promoter polymorphism, rs161740, with the combined phenotype of proliferative retinopathy and end-stage renal disease in U.K.-R.O.I. (odds ratio [OR] 1.14, P = 0.19) or FinnDiane (OR 1.06, P = 0.60). However, a fixed-effects meta-analysis that included the previously reported cohorts retained a genome-wide significant association with that phenotype (OR 1.31, P = 2 × 10−9). An expanded investigation of the ELMO1 locus and genetic regions reported to be associated with DN in the U.S. GoKinD yielded only nominal statistical significance for these loci. Finally, top candidates identified in a recent meta-analysis failed to reach genome-wide significance. In conclusion, we were unable to replicate most of the previously reported genetic associations for DN, and significance for the EPO promoter association was attenuated. PMID:22721967
Teaching Genetics in Secondary Classrooms: a Linguistic Analysis of Teachers' Talk About Proteins
NASA Astrophysics Data System (ADS)
Thörne, Karin; Gericke, Niklas
2014-02-01
This study investigates Swedish biology teachers' inclusion of proteins when teaching genetics in grade nine (students 15-16 years old). For some years, there has been a call to give attention to proteins when teaching genetics as a means of linking the concepts `gene' and `trait'. Students are known to have problems with this relation because the concepts belong to different organizational levels. However, we know little about how the topic is taught and therefore this case study focuses on how teachers talk about proteins while teaching genetics and if they use proteins as a link between the micro and macro level. Four teachers were recorded during entire genetics teaching sequences, 45 lessons in total. The teachers' verbal communication was then analyzed using thematic pattern analysis, which is based in systemic functional linguistics. The linguistic analysis of teachers' talk in action revealed great variations in both the extent to which they used proteins in explanations of genetics and the ways they included proteins in linking genes and traits. Two of the teachers used protein as a link between gene and trait, while two did not. Three of the four teachers included instruction about protein synthesis. The common message from all teachers was that proteins are built, but none of the teachers talked about genes as exclusively encoding proteins. Our results suggest that students' common lack of understanding of proteins as an intermediate link between gene and trait could be explained by limitations in the way the subject is taught.
Guenni, K; Aouadi, M; Chatti, K; Salhi-Hannachi, A
2016-10-17
Sequence-related amplified polymorphism (SRAP) markers preferentially amplify open reading frames and were used to study the genetic diversity of Tunisian pistachio. In the present study, 43 Pistacia vera accessions were screened using seven SRAP primer pairs. A total of 78 markers was revealed (95.12%) with an average polymorphic information content of 0.850. The results suggest that there is strong genetic differentiation, which characterizes the local resources (G ST = 0.307). High gene flow (N m = 1.127) among groups was explained by the exchange of plant material among regions. Analysis of molecular variance revealed significant differences within groups and showed that 73.88% of the total genetic diversity occurred within groups, whereas the remaining 26.12% occurred among groups. Bayesian clustering and principal component analysis identified three pools, El Guettar, Pollenizers, and the rest of the pistachios belonging to the Gabès, Kasserine, and Sfax localities. Bayesian analysis revealed that El Guettar and male genotypes were assigned with more than 80% probability. The BayeScan method proposed that locus 59 (F13-R9) could be used in the development of sex-linked SCAR markers from SRAP since it is a commonly detected locus in comparisons involving the Pollenizers group. This is the first application of SRAP markers for the assessment of genetic diversity in Tunisian germplasm of P. vera. Such information will be useful to define conservation strategies and improvement programs for this species.
Vendrell, Xavier; Bautista-Llácer, Rosa
2012-12-01
The genetic diagnosis and screening of preimplantation embryos generated by assisted reproduction technology has been consolidated in the prenatal care framework. The rapid evolution of DNA technologies is tending to molecular approaches. Our intention is to present a detailed methodological view, showing different diagnostic strategies based on molecular techniques that are currently applied in preimplantation genetic diagnosis. The amount of DNA from one single, or a few cells, obtained by embryo biopsy is a limiting factor for the molecular analysis. In this sense, genetic laboratories have developed molecular protocols considering this restrictive condition. Nevertheless, the development of whole-genome amplification methods has allowed preimplantation genetic diagnosis for two or more indications simultaneously, like the selection of histocompatible embryos plus detection of monogenic diseases or aneuploidies. Moreover, molecular techniques have permitted preimplantation genetic screening to progress, by implementing microarray-based comparative genome hybridization. Finally, a future view of the embryo-genetics field based on molecular advances is proposed. The normalization, cost-effectiveness analysis, and new technological tools are the next topics for preimplantation genetic diagnosis and screening. Concomitantly, these additions to assisted reproduction technologies could have a positive effect on the schedules of preimplantation studies.
A recessive genetic model and runs of homozygosity in major depressive disorder
Power, Robert A.; Keller, Matthew C.; Ripke, Stephan; Abdellaoui, Abdel; Wray, Naomi R.; Sullivan, Patrick F; Breen, Gerome
2014-01-01
Genome-wide association studies (GWASs) of major depressive disorder (MDD) have yet to identify variants that surpass the threshold for genome-wide significance. A recent study reported that runs of homozygosity (ROH) are associated with schizophrenia, reflecting a novel genetic risk factor resulting from increased parental relatedness and recessive genetic effects. Here we undertake an analysis of ROH for MDD using the 9,238 MDD cases and 9,521 controls reported in a recent mega-analysis of 9 GWAS. Since evidence for association with ROH could reflect a recessive mode of action at loci, we also conducted a genome-wide association analyses under a recessive model. The genome-wide association analysis using a recessive model found no significant associations. Our analysis of ROH suggested that there was significant heterogeneity of effect across studies in effect (p=0.001), and it was associated with genotyping platform and country of origin. The results of the ROH analysis show that differences across studies can lead to conflicting systematic genome-wide differences between cases and controls that are unaccounted for by traditional covariates. They highlight the sensitivity of the ROH method to spurious associations, and the need to carefully control for potential confounds in such analyses. We found no strong evidence for a recessive model underlying MDD. PMID:24482242
The Genomic and Genetic Toolbox of the Teleost Medaka (Oryzias latipes)
Kirchmaier, Stephan; Naruse, Kiyoshi; Wittbrodt, Joachim; Loosli, Felix
2015-01-01
The Japanese medaka, Oryzias latipes, is a vertebrate teleost model with a long history of genetic research. A number of unique features and established resources distinguish medaka from other vertebrate model systems. A large number of laboratory strains from different locations are available. Due to a high tolerance to inbreeding, many highly inbred strains have been established, thus providing a rich resource for genetic studies. Furthermore, closely related species native to different habitats in Southeast Asia permit comparative evolutionary studies. The transparency of embryos, larvae, and juveniles allows a detailed in vivo analysis of development. New tools to study diverse aspects of medaka biology are constantly being generated. Thus, medaka has become an important vertebrate model organism to study development, behavior, and physiology. In this review, we provide a comprehensive overview of established genetic and molecular-genetic tools that render medaka fish a full-fledged vertebrate system. PMID:25855651
Chen, Chuan; Li, Pan; Wang, Rui-Hong; Schaal, Barbara A.; Fu, Cheng-Xin
2014-01-01
Background Domestic cultivation of medicinal plants is an important strategy for protecting these species from over harvesting. Some species of medicinal plants have been brought into cultivation for more than hundreds years. Concerns about severe loss of genetic diversity and sustainable cultivation can potentially limit future use of these valuable plants. Genetic studies with comprehensive sampling of multiple medicinal species by molecular markers will allow for assessment and management of these species. Here we examine the population genetic consequences of cultivation and domestication in Scrophularia ningpoensis Hemsl. We used chloroplast DNA and genomic AFLP markers to clarify not only the effects of domestication on genetic diversity, but also determine the geographic origins of cultivars and their genetic divergence from native populations. These results will allow both better management of cultivated populations, but also provide insights for crop improvement. Results Twenty-one cpDNA haplotypes of S. ningpoensis were identified. Wild populations contain all haplotypes, whereas only three haplotypes were found in cultivated populations with wild populations having twice the haplotype diversity of cultivated populations. Genetic differentiation between cultivated populations and wild populations was significant. Genomic AFLP markers revealed similar genetic diversity patterns. Furthermore, Structure analysis grouped all wild populations into two gene pools; two of which shared the same gene pool with cultivated S. ningpoensis. The result of Neighbor-Joining analysis was consistent with the structure analysis. In principal coordinate analysis, three cultivated populations from Zhejiang Province grouped together and were separated from other cultivated populations. Conclusions These results suggest that cultivated S. ningpoensis has experienced dramatic loss of genetic diversity under anthropogenic influence. We postulate that strong artificial selection for medicinal quality has resulted in genetic differentiation between cultivated and wild populations. Furthermore, it appears that wild populations in Jiangxi-Hunan area were involved in the origin of cultivated S. ningpoensis. PMID:25157628
COMPLEXO: identifying the missing heritability of breast cancer via next generation collaboration.
Southey, Melissa C; Park, Daniel J; Nguyen-Dumont, Tu; Campbell, Ian; Thompson, Ella; Trainer, Alison H; Chenevix-Trench, Georgia; Simard, Jacques; Dumont, Martine; Soucy, Penny; Thomassen, Mads; Jønson, Lars; Pedersen, Inge S; Hansen, Thomas Vo; Nevanlinna, Heli; Khan, Sofia; Sinilnikova, Olga; Mazoyer, Sylvie; Lesueur, Fabienne; Damiola, Francesca; Schmutzler, Rita; Meindl, Alfons; Hahnen, Eric; Dufault, Michael R; Chris Chan, Tl; Kwong, Ava; Barkardóttir, Rosa; Radice, Paolo; Peterlongo, Paolo; Devilee, Peter; Hilbers, Florentine; Benitez, Javier; Kvist, Anders; Törngren, Therese; Easton, Douglas; Hunter, David; Lindstrom, Sara; Kraft, Peter; Zheng, Wei; Gao, Yu-Tang; Long, Jirong; Ramus, Susan; Feng, Bing-Jian; Weitzel, Jeffrey N; Nathanson, Katherine; Offit, Kenneth; Joseph, Vijai; Robson, Mark; Schrader, Kasmintan; Wang, San; Kim, Yeong C; Lynch, Henry; Snyder, Carrie; Tavtigian, Sean; Neuhausen, Susan; Couch, Fergus J; Goldgar, David E
2013-06-21
Linkage analysis, positional cloning, candidate gene mutation scanning and genome-wide association study approaches have all contributed significantly to our understanding of the underlying genetic architecture of breast cancer. Taken together, these approaches have identified genetic variation that explains approximately 30% of the overall familial risk of breast cancer, implying that more, and likely rarer, genetic susceptibility alleles remain to be discovered.
Hsiao, Chiu-Yueh; Lee, Shu-Hsin; Chen, Suh-Jen; Lin, Shu-Chin
2013-08-01
Advances in genetics have had a profound impact on health care. Yet, many nurses, as well as other health care providers, have limited genetic knowledge and feel uncomfortable integrating genetics into their practice. Very little is known about perceived genetic knowledge and clinical comfort among Taiwanese nurses enrolled in a Registered Nurse to Bachelor of Science in Nursing program. To examine perceived knowledge and clinical comfort with genetics among Taiwanese nurses enrolled in a Registered Nurse to Bachelor of Science in Nursing program and to assess how genetics has been integrated into their past and current nursing programs. The study also sought to examine correlations among perceived knowledge, integration of genetics into the nursing curriculum, and clinical comfort with genetics. A descriptive, cross-sectional study. Taiwanese nurses enrolled in a Registered Nurse to Bachelor of Science in Nursing program were recruited. A total of 190 of 220 nurses returned the completed survey (86.36% response rate). Descriptive statistics and the Pearson product-moment correlation were used for data analysis. Most nurses indicated limited perceived knowledge and clinical comfort with genetics. Curricular hours focused on genetics in a current nursing program were greater than those in past nursing programs. The use of genetic materials, attendance at genetic workshops and conferences, and clinically relevant genetics in nursing practice significantly related with perceived knowledge and clinical comfort with genetics. However, there were no correlations between prior genetic-based health care, perceived knowledge, and clinical comfort with genetics. This study demonstrated the need for emphasizing genetic education and practice to ensure health-related professionals become knowledgeable about genetic information. Given the rapidly developing genetic revolution, nurses and other health care providers need to utilize genetic discoveries to optimize health outcomes. Copyright © 2012 Elsevier Ltd. All rights reserved.
Suzuki, Taku; Ikari, Katsunori; Yano, Koichiro; Inoue, Eisuke; Toyama, Yoshiaki; Taniguchi, Atsuo; Yamanaka, Hisashi; Momohara, Shigeki
2013-01-01
Rheumatoid arthritis (RA) is a systemic, chronic inflammatory disease influenced by both genetic and environmental factors, leading to joint destruction and functional impairment. Recently, a large-scaled GWAS meta-analysis using more than 37,000 Japanese samples were conducted and 13 RA susceptibility loci were identified. However, it is not clear whether these loci have significant impact on joint destruction or not. This is the first study focused on the 13 loci to investigate independent genetic risk factors for radiographic progression in the first five years from onset of RA. Sharp/van der Heijde score of hands at 5-year disease duration, which represents joint damage, were measured retrospectively and used as an outcome variable in 865 Japanese RA patients. Genetic factors regarded as putative risk factors were RA-susceptible polymorphisms identified by the Japanese GWAS meta-analysis, including HLA-DRB1 (shared epitope, SE), rs2240340 (PADI4), rs2230926 (TNFAIP3), rs3093024 (CCR6), rs11900673 (B3GNT2), rs2867461 (ANXA3), rs657075 (CSF2), rs12529514 (CD83), rs2233434 (NFKBIE), rs10821944 (ARID5B), rs3781913 (PDE2A-ARAP1), rs2841277 (PLD4) and rs2847297 (PTPN2). These putative genetic risk factors were assessed by a stepwise multiple regression analysis adjusted for possible non-genetic risk factors: autoantibody positivity (anti-citrullinated peptide antibody [ACPA] and rheumatoid factor), history of smoking, gender and age at disease onset. The number of SE alleles (P = 0.002) and risk alleles of peptidyl arginine deiminase type IV gene (PADI4, P = 0.04) had significant impact on progressive joint destruction, as well as following non-genetic factors: ACPA positive (P = 0.0006), female sex (P = 0.006) and younger age of onset (P = 0.02). In the present study, we found that PADI4 risk allele and HLA-DRB1 shared epitope are independent genetic risks for radiographic progression in Japanese rheumatoid arthritis patients. The results of this study give important knowledge of the risks on progressive joint damage in RA patients.
Cao, Ying; Rajan, Suja S; Wei, Peng
2016-12-01
A Mendelian randomization (MR) analysis is performed to analyze the causal effect of an exposure variable on a disease outcome in observational studies, by using genetic variants that affect the disease outcome only through the exposure variable. This method has recently gained popularity among epidemiologists given the success of genetic association studies. Many exposure variables of interest in epidemiological studies are time varying, for example, body mass index (BMI). Although longitudinal data have been collected in many cohort studies, current MR studies only use one measurement of a time-varying exposure variable, which cannot adequately capture the long-term time-varying information. We propose using the functional principal component analysis method to recover the underlying individual trajectory of the time-varying exposure from the sparsely and irregularly observed longitudinal data, and then conduct MR analysis using the recovered curves. We further propose two MR analysis methods. The first assumes a cumulative effect of the time-varying exposure variable on the disease risk, while the second assumes a time-varying genetic effect and employs functional regression models. We focus on statistical testing for a causal effect. Our simulation studies mimicking the real data show that the proposed functional data analysis based methods incorporating longitudinal data have substantial power gains compared to standard MR analysis using only one measurement. We used the Framingham Heart Study data to demonstrate the promising performance of the new methods as well as inconsistent results produced by the standard MR analysis that relies on a single measurement of the exposure at some arbitrary time point. © 2016 WILEY PERIODICALS, INC.
Role of genetic mutations in folate-related enzyme genes on Male Infertility
Liu, Kang; Zhao, Ruizhe; Shen, Min; Ye, Jiaxin; Li, Xiao; Huang, Yuan; Hua, Lixin; Wang, Zengjun; Li, Jie
2015-01-01
Several studies showed that the genetic mutations in the folate-related enzyme genes might be associated with male infertility; however, the results were still inconsistent. We performed a meta-analysis with trial sequential analysis to investigate the associations between the MTHFR C677T, MTHFR A1298C, MTR A2756G, MTRR A66G mutations and the MTHFR haplotype with the risk of male infertility. Overall, a total of 37 studies were selected. Our meta-analysis showed that the MTHFR C677T mutation was a risk factor for male infertility in both azoospermia and oligoasthenoteratozoospermia patients, especially in Asian population. Men carrying the MTHFR TC haplotype were most liable to suffer infertility while those with CC haplotype had lowest risk. On the other hand, the MTHFR A1298C mutation was not related to male infertility. MTR A2756G and MTRR A66G were potential candidates in the pathogenesis of male infertility, but more case-control studies were required to avoid false-positive outcomes. All of these results were confirmed by the trial sequential analysis. Finally, our meta-analysis with trial sequential analysis proved that the genetic mutations in the folate-related enzyme genes played a significant role in male infertility. PMID:26549413
Garzón-Martínez, Gina A.; Osorio-Guarín, Jaime A.; Delgadillo-Durán, Paola; Mayorga, Franklin; Enciso-Rodríguez, Felix E.; Landsman, David
2015-01-01
The genus Physalis is common in the Americas and includes several economically important species, among them Physalis peruviana that produces appetizing edible fruits. We studied the genetic diversity and population structure of P. peruviana and characterized 47 accessions of this species along with 13 accessions of related taxa consisting of 222 individuals from the Colombian Corporation of Agricultural Research (CORPOICA) germplasm collection, using Conserved Orthologous Sequences (COSII) and Immunity Related Genes (IRGs). In addition, 642 Single Nucleotide Polymorphism (SNPs) markers were identified and used for the genetic diversity analysis. A total of 121 alleles were detected in 24 InDels loci ranging from 2 to 9 alleles per locus, with an average of 5.04 alleles per locus. The average number of alleles in the SNP markers was two. The observed heterozygosity for P. peruviana with InDel and SNP markers was higher (0.48 and 0.59) than the expected heterozygosity (0.30 and 0.41). Interestingly, the observed heterozygosity in related taxa (0.4 and 0.12) was lower than the expected heterozygosity (0.59 and 0.25). The coefficient of population differentiation FST was 0.143 (InDels) and 0.038 (SNPs), showing a relatively low level of genetic differentiation among P. peruviana and related taxa. Higher levels of genetic variation were instead observed within populations based on the AMOVA analysis. Population structure analysis supported the presence of two main groups and PCA analysis based on SNP markers revealed two distinct clusters in the P. peruviana accessions corresponding to their state of cultivation. In this study, we identified molecular markers useful to detect genetic variation in Physalis germplasm for assisting conservation and crossbreeding strategies. PMID:26550601
Krehbiel, B.; Ericsson, S. A.; Wilson, C.; Caetano, A. R.; Paiva, S. R.
2017-01-01
Ecoregional differences contribute to genetic environmental interactions and impact animal performance. These differences may become more important under climate change scenarios. Utilizing genetic diversity within a species to address such problems has not been fully explored. In this study Hereford cattle were genotyped with 50K Bead Chip or 770K Bovine Bead Chip to test the existence of genetic structure in five U.S. ecoregions characterized by precipitation, temperature and humidity and designated: cool arid (CA), cool humid (CH), transition zone (TZ), warm arid (WA), and warm humid (WH). SNP data were analyzed in three sequential analyses. Broad genetic structure was evaluated with STRUCTURE, and ADMIXTURE software using 14,312 SNPs after passing quality control variables. The second analysis was performed using principal coordinate analysis with 66 Tag SNPs associated in the literature with various aspects of environmental stressors (e.g., heat tolerance) or production (e.g., milk production). In the third analysis TreeSelect was used with the 66 SNPs to evaluate if ecoregional allelic frequencies deviated from a central frequency and by so doing are indicative of directional selection. The three analyses suggested subpopulation structures associated with ecoregions from where animals were derived. ADMIXTURE and PCA results illustrated the importance of temperature and humidity and confirm subpopulation assignments. Comparisons of allele frequencies with TreeSelect showed ecoregion differences, in particular the divergence between arid and humid regions. Patterns of genetic variability obtained by medium and high density SNP chips can be used to acclimatize a temperately derived breed to various ecoregions. As climate change becomes an important factor in cattle production, this study should be used as a proof of concept to review future breeding and conservation schemes aimed at adaptation to climatic events. PMID:28459870
Schuckit, Marc A.; Smith, Tom L.; Shafir, Alexandra; Clausen, Peyton; Danko, George; Gonçalves, Priscila Dib; Anthenelli, Robert M.; Chan, Grace; Kuperman, Samuel; Hesselbrock, Michie; Hesselbrock, Victor; Kramer, John; Bucholz, Kathleen K.
2017-01-01
Objective: Alcohol-related blackouts (ARBs) are anterograde amnesias related to heavy alcohol intake seen in about 50% of drinkers. Although a major determinant of ARBs relates to blood alcohol concentrations, additional contributions come from genetic vulnerabilities and possible impacts of cannabis use disorders (CUDs). We evaluated relationships of genetics and cannabis use to latent class trajectories of ARBs in 829 subjects from the Collaborative Study of the Genetics of Alcoholism (COGA). Method: The number of ARBs experienced every 2 years from subjects with average ages of 18 to 25 were entered into a latent class growth analysis in Mplus, and resulting class membership was evaluated in light of baseline characteristics, including CUDs. Correlations of number of ARBs across assessments were also compared for sibling pairs versus unrelated subjects. Results: Latent class growth analysis identified ARB-based Classes 1 (consistent low = 42.5%), 2 (moderate low = 28.3%), 3 (moderate high = 22.9%), and 4 (consistent high = 6.3%). A multinomial logistic regression analysis within latent class growth analysis revealed that baseline CUDs related most closely to Classes 3 and 4. The number of ARBs across time correlated .23 for sibling pairs and -.10 for unrelated subjects. Conclusions: Baseline CUDs related to the most severe latent ARB course over time, even when considered along with other trajectory predictors, including baseline alcohol use disorders and maximum number of drinks. Data indicated significant roles for genetic factors for alcohol use disorder patterns over time. Future research is needed to improve understanding of how cannabis adds to the ARB risk and to find genes that contribute to risks for ARBs among drinkers. PMID:27936363
Garzón-Martínez, Gina A; Osorio-Guarín, Jaime A; Delgadillo-Durán, Paola; Mayorga, Franklin; Enciso-Rodríguez, Felix E; Landsman, David; Mariño-Ramírez, Leonardo; Barrero, Luz Stella
2015-12-01
The genus Physalis is common in the Americas and includes several economically important species, among them Physalis peruviana that produces appetizing edible fruits. We studied the genetic diversity and population structure of P. peruviana and characterized 47 accessions of this species along with 13 accessions of related taxa consisting of 222 individuals from the Colombian Corporation of Agricultural Research (CORPOICA) germplasm collection, using Conserved Orthologous Sequences (COSII) and Immunity Related Genes (IRGs). In addition, 642 Single Nucleotide Polymorphism (SNPs) markers were identified and used for the genetic diversity analysis. A total of 121 alleles were detected in 24 InDels loci ranging from 2 to 9 alleles per locus, with an average of 5.04 alleles per locus. The average number of alleles in the SNP markers was two. The observed heterozygosity for P. peruviana with InDel and SNP markers was higher (0.48 and 0.59) than the expected heterozygosity (0.30 and 0.41). Interestingly, the observed heterozygosity in related taxa (0.4 and 0.12) was lower than the expected heterozygosity (0.59 and 0.25). The coefficient of population differentiation F ST was 0.143 (InDels) and 0.038 (SNPs), showing a relatively low level of genetic differentiation among P. peruviana and related taxa. Higher levels of genetic variation were instead observed within populations based on the AMOVA analysis. Population structure analysis supported the presence of two main groups and PCA analysis based on SNP markers revealed two distinct clusters in the P. peruviana accessions corresponding to their state of cultivation. In this study, we identified molecular markers useful to detect genetic variation in Physalis germplasm for assisting conservation and crossbreeding strategies.
Ren, Zhen-Yu; Xu, Xiao-Qing; Bao, Yan-Ping; He, Jie; Shi, Le; Deng, Jia-Hui; Gao, Xue-Jiao; Tang, Hui-Lin; Wang, Yu-Mei; Lu, Lin
2015-01-01
Individual response to opioid analgesics varies among patients. This study sought to clarify the impact of distinct genetic variations on pain, opioid consumption, and opioid side effects in patients with postoperative pain. A systematic review and meta-analysis of associations between genetic single-nucleotide polymorphisms (SNPs) and opioids used for acute postoperative pain. This meta-analysis examined all studies involving an association between genetic polymorphisms and the analgesic efficacy or clinical outcome of opioid analgesics for postoperative pain. A literature search was performed up to January 31, 2014, using the PubMed, EMBase, ISI Web of Science, and Cochrane Library databases. Fifty-nine studies were included in this systematic review, and 23 studies (a total of 5,902 patients) were included in the final meta-analysis. The results showed that human μ-opioid receptor gene (OPRM1) 118G allele variant carriers consumed more opioids for analgesia (SMD = -0.17, 95% CI = [-0.25, -0.10], P < 0.00001), but reported higher pain scores (MD = -0.11, 95% CI = [-0.17, -0.04], P = 0.002) and less nausea and vomiting (odds ratio = 1.30, 95% CI = [1.08, 1.55], P = 0.005) than the homozygous 118AA patients during the first 24 hour but not the 48 hour postoperative period. Moreover, CYP3A4*1G carriers consumed less opioids than homozygous CYP3A4*1/*1 patients during the first 24 hours postoperative period (MD = 45.12, 95% CI = [36.17, 54.06], P < 0.00001). No significant differences were found in CYP3A5*3, ABCB1 C3435T, and G2477T/A genetic polymorphisms. Some potential non-genetic factors can modify the effects of gene SNP on pain and opioid consumption during the postoperative period, such as age, gender, mood, anxiety, and drug-drug interactions. But further analyses could not be performed in the present meta-analysis due to limited information. The results indicate that among the genetic SNPs we studied which include those affecting analgesic drug metabolism, transport of analgesic agents across the blood-brain barrier, and their activity at target receptors and ion channels and in the modulation of neurotransmitter pathways, the A118G allele variant of OPRM1 has the most potent influence on pain management of postoperative patients. Opioid receptor gene information may provide valuable information for clinicians to properly manage the analgesic use of opioids individually for better pain management.
Meyers, J L; Cerdá, M; Galea, S; Keyes, K M; Aiello, A E; Uddin, M; Wildman, D E; Koenen, K C
2013-08-13
Cigarette smoking is influenced both by genetic and environmental factors. Until this year, all large-scale gene identification studies on smoking were conducted in populations of European ancestry. Consequently, the genetic architecture of smoking is not well described in other populations. Further, despite a rich epidemiologic literature focused on the social determinants of smoking, few studies have examined the moderation of genetic influences (for example, gene-environment interactions) on smoking in African Americans. In the Detroit Neighborhood Health Study (DNHS), a sample of randomly selected majority African American residents of Detroit, we constructed a genetic risk score (GRS), in which we combined top (P-value <5 × 10(-7)) genetic variants from a recent meta-analysis conducted in a large sample of African Americans. Using regression (effective n=399), we first tested for association between the GRS and cigarettes per day, attempting to replicate the findings from the meta-analysis. Second, we examined interactions with three social contexts that may moderate the genetic association with smoking: traumatic events, neighborhood social cohesion and neighborhood physical disorder. Among individuals who had ever smoked cigarettes, the GRS significantly predicted the number of cigarettes smoked per day and accounted for ~3% of the overall variance in the trait. Significant interactions were observed between the GRS and number of traumatic events experienced, as well as between the GRS and average neighborhood social cohesion; the association between genetic risk and smoking was greater among individuals who had experienced an increased number of traumatic events in their lifetimes, and diminished among individuals who lived in a neighborhood characterized by greater social cohesion. This study provides support for the utility of the GRS as an alternative approach to replication of common polygenic variation, and in gene-environment interaction, for smoking behaviors. In addition, this study indicates that environmental determinants have the potential to both exacerbate (traumatic events) and diminish (neighborhood social cohesion) genetic influences on smoking behaviors.
Meyers, J L; Cerdá, M; Galea, S; Keyes, K M; Aiello, A E; Uddin, M; Wildman, D E; Koenen, K C
2013-01-01
Cigarette smoking is influenced both by genetic and environmental factors. Until this year, all large-scale gene identification studies on smoking were conducted in populations of European ancestry. Consequently, the genetic architecture of smoking is not well described in other populations. Further, despite a rich epidemiologic literature focused on the social determinants of smoking, few studies have examined the moderation of genetic influences (for example, gene–environment interactions) on smoking in African Americans. In the Detroit Neighborhood Health Study (DNHS), a sample of randomly selected majority African American residents of Detroit, we constructed a genetic risk score (GRS), in which we combined top (P-value <5 × 10−7) genetic variants from a recent meta-analysis conducted in a large sample of African Americans. Using regression (effective n=399), we first tested for association between the GRS and cigarettes per day, attempting to replicate the findings from the meta-analysis. Second, we examined interactions with three social contexts that may moderate the genetic association with smoking: traumatic events, neighborhood social cohesion and neighborhood physical disorder. Among individuals who had ever smoked cigarettes, the GRS significantly predicted the number of cigarettes smoked per day and accounted for ∼3% of the overall variance in the trait. Significant interactions were observed between the GRS and number of traumatic events experienced, as well as between the GRS and average neighborhood social cohesion; the association between genetic risk and smoking was greater among individuals who had experienced an increased number of traumatic events in their lifetimes, and diminished among individuals who lived in a neighborhood characterized by greater social cohesion. This study provides support for the utility of the GRS as an alternative approach to replication of common polygenic variation, and in gene–environment interaction, for smoking behaviors. In addition, this study indicates that environmental determinants have the potential to both exacerbate (traumatic events) and diminish (neighborhood social cohesion) genetic influences on smoking behaviors. PMID:23942621
Complete genomic screen in Parkinson disease: evidence for multiple genes.
Scott, W K; Nance, M A; Watts, R L; Hubble, J P; Koller, W C; Lyons, K; Pahwa, R; Stern, M B; Colcher, A; Hiner, B C; Jankovic, J; Ondo, W G; Allen, F H; Goetz, C G; Small, G W; Masterman, D; Mastaglia, F; Laing, N G; Stajich, J M; Slotterbeck, B; Booze, M W; Ribble, R C; Rampersaud, E; West, S G; Gibson, R A; Middleton, L T; Roses, A D; Haines, J L; Scott, B L; Vance, J M; Pericak-Vance, M A
2001-11-14
The relative contribution of genes vs environment in idiopathic Parkinson disease (PD) is controversial. Although genetic studies have identified 2 genes in which mutations cause rare single-gene variants of PD and observational studies have suggested a genetic component, twin studies have suggested that little genetic contribution exists in the common forms of PD. To identify genetic risk factors for idiopathic PD. Genetic linkage study conducted 1995-2000 in which a complete genomic screen (n = 344 markers) was performed in 174 families with multiple individuals diagnosed as having idiopathic PD, identified through probands in 13 clinic populations in the continental United States and Australia. A total of 870 family members were studied: 378 diagnosed as having PD, 379 unaffected by PD, and 113 with unclear status. Logarithm of odds (lod) scores generated from parametric and nonparametric genetic linkage analysis. Two-point parametric maximum parametric lod score (MLOD) and multipoint nonparametric lod score (LOD) linkage analysis detected significant evidence for linkage to 5 distinct chromosomal regions: chromosome 6 in the parkin gene (MLOD = 5.07; LOD = 5.47) in families with at least 1 individual with PD onset at younger than 40 years, chromosomes 17q (MLOD = 2.28; LOD = 2.62), 8p (MLOD = 2.01; LOD = 2.22), and 5q (MLOD = 2.39; LOD = 1.50) overall and in families with late-onset PD, and chromosome 9q (MLOD = 1.52; LOD = 2.59) in families with both levodopa-responsive and levodopa-nonresponsive patients. Our data suggest that the parkin gene is important in early-onset PD and that multiple genetic factors may be important in the development of idiopathic late-onset PD.
Hoofwijk, D M N; van Reij, R R I; Rutten, B P; Kenis, G; Buhre, W F; Joosten, E A
2016-12-01
Although several patient characteristic, clinical, and psychological risk factors for chronic postsurgical pain (CPSP) have been identified, genetic variants including single nucleotide polymorphisms have also become of interest as potential risk factors for the development of CPSP. The aim of this review is to summarize the current evidence on genetic polymorphisms associated with the prevalence and severity of CPSP in adult patients. A systematic review of the literature was performed, and additional literature was obtained by reference tracking. The primary outcome was CPSP, defined as pain at least 2 months after the surgery. Studies performed exclusively in animals were excluded. Out of the 1001 identified studies, 14 studies were selected for inclusion. These studies described 5269 participants in 17 cohorts. A meta-analysis was not possible because of heterogeneity of data and data analysis. Associations with the prevalence or severity of CPSP were reported for genetic variants in the COMT gene, OPRM1, potassium channel genes, GCH1, CACNG, CHRNA6, P2X7R, cytokine-associated genes, human leucocyte antigens, DRD2, and ATXN1 CONCLUSIONS: Research on the topic of genetic variants associated with CPSP is still in its initial phase. Hypothesis-free, genome-wide association studies on large cohorts are needed in this field. In addition, future studies may also integrate genetic risk factors and patient characteristic, clinical, and psychological predictors for CPSP. © The Author 2016. Published by Oxford University Press on behalf of the British Journal of Anaesthesia. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Bernicot, I; Dechanet, C; Mace, A; Hedon, B; Hamamah, S; Pellestor, F; Anahory, T
2010-07-01
Pericentric inversions (PIs) are structural chromosomal abnormalities, potentially associated with infertility or multiple miscarriages. More rarely, at meiosis, odd numbers of genetic recombinations within the inversion loop produce recombinant gametes which may lead to aneusomy of recombination in the offspring. We report a FISH segregation analysis of an inv5(p15.3q11.2) carrier, both in sperm and blastomeres. In sperm, we directly evaluated the proportion of recombinant gametes and compared the results with chromosomal abnormalities found in blastomeres collected from embryos obtained following a preimplantation genetic diagnosis (PGD) procedure. A total of 7006 sperm nuclei were analyzed. The size of the inverted segment represented 27% of the total length of chromosome 5. The frequencies of balanced chromosomes (normal or inverted), recombinant chromosomes and unbalanced combinations were 97.1, 0.17 and 2.73%, respectively. Of six embryos, PGD FISH analysis revealed that one was a balanced embryo, whereas five were unbalanced and there were no recombinants. This study demonstrated the value of sperm-FISH analysis in providing reproductive genetic counseling for PI carriers. Our study also highlights the clinical relevance of performing PGD instead of prenatal diagnosis.
ERIC Educational Resources Information Center
Mysliwiec, Tami H.
2003-01-01
Incorporates history and genetics to explain how genetic traits are passed on to the next generation by focusing on methemoglobinemia, a rare genetic disease, and discusses how oxygen is carried by hemoglobin. Includes individual pedigree analysis and class pedigree analysis. (YDS)
Wei, Jingli; Hu, Xiaorong; Yang, Jingjing; Yang, Wencai
2012-01-01
The genus Physalis includes a number of commercially important edible and ornamental species. Its high nutritional value and potential medicinal properties leads to the increased commercial interest in the products of this genus worldwide. However, lack of molecular markers prevents the detailed study of genetics and phylogeny in Physalis, which limits the progress of breeding. In the present study, we compared the DNA sequences between Physalis and tomato, and attempted to analyze genetic diversity in Physalis using tomato markers. Blasting 23180 DNA sequences derived from Physalis against the International Tomato Annotation Group (ITAG) Release2.3 Predicted CDS (SL2.40) discovered 3356 single-copy orthologous genes between them. A total of 38 accessions from at least six species of Physalis were subjected to genetic diversity analysis using 97 tomato markers and 25 SSR markers derived from P. peruviana. Majority (73.2%) of tomato markers could amplify DNA fragments from at least one accession of Physalis. Diversity in Physalis at molecular level was also detected. The average Nei’s genetic distance between accessions was 0.3806 with a range of 0.2865 to 0.7091. These results indicated Physalis and tomato had similarity at both molecular marker and DNA sequence levels. Therefore, the molecular markers developed in tomato can be used in genetic study in Physalis. PMID:23166835
Ben Ali, Sina-Elisabeth; Madi, Zita Erika; Hochegger, Rupert; Quist, David; Prewein, Bernhard; Haslberger, Alexander G; Brandes, Christian
2014-10-31
Genetic mutations must be avoided during the production and use of seeds. In the European Union (EU), Directive 2001/18/EC requires any DNA construct introduced via transformation to be stable. Establishing genetic stability is critical for the approval of genetically modified organisms (GMOs). In this study, genetic stability of two GMOs was examined using high resolution melting (HRM) analysis and real-time polymerase chain reaction (PCR) employing Scorpion primers for amplification. The genetic variability of the transgenic insert and that of the flanking regions in a single oilseed rape variety (GT73) and a stacked maize (MON88017×MON810) was studied. The GT73 and the 5' region of MON810 showed no instabilities in the examined regions. However; two out of 100 analyzed samples carried a heterozygous point mutation in the 3' region of MON810 in the stacked variety. These results were verified by direct sequencing of the amplified PCR products as well as by sequencing of cloned PCR fragments. The occurrence of the mutation suggests that the 5' region is more suitable than the 3' region for the quantification of MON810. The identification of the single nucleotide polymorphism (SNP) in a stacked event is in contrast to the results of earlier studies of the same MON810 region in a single event where no DNA polymorphism was found.
Nunes, José de Ribamar da Silva; Liu, Shikai; Pértille, Fábio; Perazza, Caio Augusto; Villela, Priscilla Marqui Schmidt; de Almeida-Val, Vera Maria Fonseca; Hilsdorf, Alexandre Wagner Silva; Liu, Zhanjiang; Coutinho, Luiz Lehmann
2017-01-01
Colossoma macropomum, or tambaqui, is the largest native Characiform species found in the Amazon and Orinoco river basins, yet few resources for genetic studies and the genetic improvement of tambaqui exist. In this study, we identified a large number of single-nucleotide polymorphisms (SNPs) for tambaqui and constructed a high-resolution genetic linkage map from a full-sib family of 124 individuals and their parents using the genotyping by sequencing method. In all, 68,584 SNPs were initially identified using minimum minor allele frequency (MAF) of 5%. Filtering parameters were used to select high-quality markers for linkage analysis. We selected 7,734 SNPs for linkage mapping, resulting in 27 linkage groups with a minimum logarithm of odds (LOD) of 8 and maximum recombination fraction of 0.35. The final genetic map contains 7,192 successfully mapped markers that span a total of 2,811 cM, with an average marker interval of 0.39 cM. Comparative genomic analysis between tambaqui and zebrafish revealed variable levels of genomic conservation across the 27 linkage groups which allowed for functional SNP annotations. The large-scale SNP discovery obtained here, allowed us to build a high-density linkage map in tambaqui, which will be useful to enhance genetic studies that can be applied in breeding programs. PMID:28387238
Development of Genomic Simple Sequence Repeats (SSR) by Enrichment Libraries in Date Palm.
Al-Faifi, Sulieman A; Migdadi, Hussein M; Algamdi, Salem S; Khan, Mohammad Altaf; Al-Obeed, Rashid S; Ammar, Megahed H; Jakse, Jerenj
2017-01-01
Development of highly informative markers such as simple sequence repeats (SSR) for cultivar identification and germplasm characterization and management is essential for date palms genetic studies. The present study documents the development of SSR markers and assesses genetic relationships of commonly grown date palm (Phoenix dactylifera L.) cultivars in different geographical regions of Saudi Arabia. A total of 93 novel simple sequence repeat (SSR) markers were screened for their ability to detect polymorphism in date palm. Around 71% of genomic SSRs are dinucleotide, 25% trinucleotide, 3% tetranucleotide, and 1% pentanucleotide motives and show 100% polymorphism. The Unweighted Pair Group Method with Arithmetic Mean (UPGMA) cluster analysis illustrates that cultivars trend to group according to their class of maturity, region of cultivation, and fruit color. Analysis of molecular variations (AMOVA) reveals genetic variation among and within cultivars of 27% and 73%, respectively, according to the geographical distribution of the cultivars. Developed microsatellite markers are of additional value to date palm characterization, tools which can be used by researchers in population genetics, cultivar identification, as well as genetic resource exploration and management. The cultivars tested exhibited a significant amount of genetic diversity and could be suitable for successful breeding programs. Genomic sequences generated from this study are available at the National Center for Biotechnology Information (NCBI), Sequence Read Archive (Accession numbers. LIBGSS_039019).
Hou, Lu; Cui, Yanhong; Li, Xiang; Chen, Wu; Zhang, Zhiyong; Pang, Xiaoming; Li, Yingyue
2018-01-01
Thuja koraiensis Nakai is an endangered conifer of high economic and ecological value in Jilin Province, China. However, studies on its population structure and conservation genetics have been limited by the lack of genomic data. Here, 37,761 microsatellites (simple sequence repeat, SSR) were detected based on 875,792 de novo-assembled contigs using a restriction-associated DNA (RAD) approach. Among these SSRs, 300 were randomly selected to test for polymorphisms and 96 obtained loci were able to amplify a fragment of expected size. Twelve polymorphic SSR markers were developed to analyze the genetic diversity and population structure of three natural populations. High genetic diversity (mean NA = 5.481, HE = 0.548) and moderate population differentiation (pairwise Fst = 0.048–0.078, Nm = 2.940–4.958) were found in this species. Molecular variance analysis suggested that most of the variation (83%) existed within populations. Combining the results of STRUCTURE, principal coordinate, and neighbor-joining analysis, the 232 individuals were divided into three genetic clusters that generally correlated with their geographical distributions. Finally, appropriate conservation strategies were proposed to protect this species. This study provides genetic information for the natural resource conservation and utilization of T. koraiensis and will facilitate further studies of the evolution and phylogeography of the species. PMID:29673217
Wei, Jingli; Hu, Xiaorong; Yang, Jingjing; Yang, Wencai
2012-01-01
The genus Physalis includes a number of commercially important edible and ornamental species. Its high nutritional value and potential medicinal properties leads to the increased commercial interest in the products of this genus worldwide. However, lack of molecular markers prevents the detailed study of genetics and phylogeny in Physalis, which limits the progress of breeding. In the present study, we compared the DNA sequences between Physalis and tomato, and attempted to analyze genetic diversity in Physalis using tomato markers. Blasting 23180 DNA sequences derived from Physalis against the International Tomato Annotation Group (ITAG) Release2.3 Predicted CDS (SL2.40) discovered 3356 single-copy orthologous genes between them. A total of 38 accessions from at least six species of Physalis were subjected to genetic diversity analysis using 97 tomato markers and 25 SSR markers derived from P. peruviana. Majority (73.2%) of tomato markers could amplify DNA fragments from at least one accession of Physalis. Diversity in Physalis at molecular level was also detected. The average Nei's genetic distance between accessions was 0.3806 with a range of 0.2865 to 0.7091. These results indicated Physalis and tomato had similarity at both molecular marker and DNA sequence levels. Therefore, the molecular markers developed in tomato can be used in genetic study in Physalis.
Clinical applications of preimplantation genetic testing.
Brezina, Paul R; Kutteh, William H
2015-02-19
Genetic diagnostic technologies are rapidly changing the way medicine is practiced. Preimplantation genetic testing is a well established application of genetic testing within the context of in vitro fertilization cycles. It involves obtaining a cell(s) from a developing embryo in culture, which is then subjected to genetic diagnostic analysis; the resulting information is used to guide which embryos are transferred into the uterus. The potential applications and use of this technology have increased in recent years. Experts agree that preimplantation genetic diagnosis is clinically appropriate for many known genetic disorders. However, some applications of such testing, such as preimplantation genetic screening for aneuploidy, remain controversial. Clinical data suggest that preimplantation genetic screening may be useful, but further studies are needed to quantify the size of the effect and who would benefit most. © BMJ Publishing Group Ltd 2015.
RAPD study on some common species of Porphyra in China
NASA Astrophysics Data System (ADS)
Kuang, Mei; Wang, Su-Juan; Li, Yao; Shen, Da-Leng; Zeng, Cheng-Kui
1998-03-01
RAPD analysis of seven samples of five Porphyra species, P haitanensis (three samples of cultured population), P. katadai var. hemiphylla, P. oligospermatangia, P. suborbiculata and P. yezoensis, showed the closest relationship existing among the three cultured populations of P. haitanensis. The genetic distance between P. haitanensis and P. oligospermatangia was the same as that between P. haitanensis and P. suborbiculata, both were 0.9. The genetic distances, among the other species of Porphyra ranged from 0.7 to 0.8. UPGMA analysis showed P. suborbiculata and P. yezoensis belong to another lineage. Results of this study suggests that RAPD analysis is effective at population level.
Redman, Regina S.; Ranson, Judith; Rodriguez, Rusty J.
2006-01-01
Cantharellus formosus growing on the Olympic Peninsula of the Pacific Northwest was sampled from September – November 1995 for genetic analysis. A total of ninety-six basidiomes from five clusters separated from one another by 3 - 25 meters were genetically characterized by PCR analysis of 13 arbitrary loci and rDNA sequences. The number of basidiomes in each cluster varied from 15 to 25 and genetic analysis delineated 15 genets among the clusters. Analysis of variance utilizing thirteen apPCR generated genetic molecular markers and PCR amplification of the ribosomal ITS regions indicated that 81.41% of the genetic variation occurred between clusters and 18.59% within clusters. Proximity of the basidiomes within a cluster was not an indicator of genotypic similarity. The molecular profiles of each cluster were distinct and defined as unique populations containing 2 - 6 genets. The monitoring and analysis of this species through non-lethal sampling and future applications is discussed.
Understanding the impact of genetic testing for inherited retinal dystrophy
Combs, Ryan; McAllister, Marion; Payne, Katherine; Lowndes, Jo; Devery, Sophie; Webster, Andrew R; Downes, Susan M; Moore, Anthony T; Ramsden, Simon; Black, Graeme; Hall, Georgina
2013-01-01
The capability of genetic technologies is expanding rapidly in the field of inherited eye disease. New genetic testing approaches will deliver a step change in the ability to diagnose and extend the possibility of targeted treatments. However, evidence is lacking about the benefits of genetic testing to support service planning. Here, we report qualitative data about retinal dystrophy families' experiences of genetic testing in United Kingdom. The data were part of a wider study examining genetic eye service provision. Twenty interviewees from families in which a causative mutation had been identified by a genetic eye clinic were recruited to the study. Fourteen interviewees had chosen to have a genetic test and five had not; one was uncertain. In-depth telephone interviews were conducted allowing a thorough exploration of interviewees' views and experiences of the benefits of genetic counselling and testing. Transcripts were analysed using thematic analysis. Both affected and unaffected interviewees expressed mainly positive views about genetic testing, highlighting benefits such as diagnostic confirmation, risk information, and better preparation for the future. Negative consequences included the burden of knowledge, moral dilemmas around reproduction, and potential impact on insurance. The offer of genetic testing was often taken up, but was felt unnecessary in some cases. Interviewees in the study reported many benefits, suggesting genetic testing should be available to this patient group. The benefits and risks identified will inform future evaluation of models of service delivery. This research was part of a wider study exploring experiences of families with retinal dystrophy. PMID:23403902
Understanding the impact of genetic testing for inherited retinal dystrophy.
Combs, Ryan; McAllister, Marion; Payne, Katherine; Lowndes, Jo; Devery, Sophie; Webster, Andrew R; Downes, Susan M; Moore, Anthony T; Ramsden, Simon; Black, Graeme; Hall, Georgina
2013-11-01
The capability of genetic technologies is expanding rapidly in the field of inherited eye disease. New genetic testing approaches will deliver a step change in the ability to diagnose and extend the possibility of targeted treatments. However, evidence is lacking about the benefits of genetic testing to support service planning. Here, we report qualitative data about retinal dystrophy families' experiences of genetic testing in United Kingdom. The data were part of a wider study examining genetic eye service provision. Twenty interviewees from families in which a causative mutation had been identified by a genetic eye clinic were recruited to the study. Fourteen interviewees had chosen to have a genetic test and five had not; one was uncertain. In-depth telephone interviews were conducted allowing a thorough exploration of interviewees' views and experiences of the benefits of genetic counselling and testing. Transcripts were analysed using thematic analysis. Both affected and unaffected interviewees expressed mainly positive views about genetic testing, highlighting benefits such as diagnostic confirmation, risk information, and better preparation for the future. Negative consequences included the burden of knowledge, moral dilemmas around reproduction, and potential impact on insurance. The offer of genetic testing was often taken up, but was felt unnecessary in some cases. Interviewees in the study reported many benefits, suggesting genetic testing should be available to this patient group. The benefits and risks identified will inform future evaluation of models of service delivery. This research was part of a wider study exploring experiences of families with retinal dystrophy.
Gifford, Matthew E; Larson, Allan
2008-10-01
A previous phylogeographic study of mitochondrial haplotypes for the Hispaniolan lizard Ameiva chrysolaema revealed deep genetic structure associated with seawater inundation during the late Pliocene/early Pleistocene and evidence of subsequent population expansion into formerly inundated areas. We revisit hypotheses generated by our previous study using increased geographic sampling of populations and analysis of three nuclear markers (alpha-enolase intron 8, alpha-cardiac-actin intron 4, and beta-actin intron 3) in addition to mitochondrial haplotypes (ND2). Large genetic discontinuities correspond spatially and temporally with historical barriers to gene flow (sea inundations). NCPA cross-validation analysis and Bayesian multilocus analyses of divergence times (IMa and MCMCcoal) reveal two separate episodes of fragmentation associated with Pliocene and Pleistocene sea inundations, separating the species into historically separate Northern, East-Central, West-Central, and Southern population lineages. Multilocus Bayesian analysis using IMa indicates asymmetrical migration from the East-Central to the West-Central populations following secondary contact, consistent with expectations from the more pervasive sea inundation in the western region. The West-Central lineage has a genetic signature of population growth consistent with the expectation of geographic expansion into formerly inundated areas. Within each lineage, significant spatial genetic structure indicates isolation by distance at comparable temporal scales. This study adds to the growing body of evidence that vicariant speciation may be the prevailing source of lineage accumulation on oceanic islands. Thus, prior theories of island biogeography generally underestimate the role and temporal scale of intra-island vicariant processes.
Genetic diversity of popcorn genotypes using molecular analysis.
Resh, F S; Scapim, C A; Mangolin, C A; Machado, M F P S; do Amaral, A T; Ramos, H C C; Vivas, M
2015-08-19
In this study, we analyzed dominant molecular markers to estimate the genetic divergence of 26 popcorn genotypes and evaluate whether using various dissimilarity coefficients with these dominant markers influences the results of cluster analysis. Fifteen random amplification of polymorphic DNA primers produced 157 amplified fragments, of which 65 were monomorphic and 92 were polymorphic. To calculate the genetic distances among the 26 genotypes, the complements of the Jaccard, Dice, and Rogers and Tanimoto similarity coefficients were used. A matrix of Dij values (dissimilarity matrix) was constructed, from which the genetic distances among genotypes were represented in a more simplified manner as a dendrogram generated using the unweighted pair-group method with arithmetic average. Clusters determined by molecular analysis generally did not group material from the same parental origin together. The largest genetic distance was between varieties 17 (UNB-2) and 18 (PA-091). In the identification of genotypes with the smallest genetic distance, the 3 coefficients showed no agreement. The 3 dissimilarity coefficients showed no major differences among their grouping patterns because agreement in determining the genotypes with large, medium, and small genetic distances was high. The largest genetic distances were observed for the Rogers and Tanimoto dissimilarity coefficient (0.74), followed by the Jaccard coefficient (0.65) and the Dice coefficient (0.48). The 3 coefficients showed similar estimations for the cophenetic correlation coefficient. Correlations among the matrices generated using the 3 coefficients were positive and had high magnitudes, reflecting strong agreement among the results obtained using the 3 evaluated dissimilarity coefficients.
Evaluation of genetic diversity of Panicum turgidum Forssk from Saudi Arabia.
Assaeed, Abdulaziz M; Al-Faifi, Sulieman A; Migdadi, Hussein M; El-Bana, Magdy I; Al Qarawi, Abdulaziz A; Khan, Mohammad Altaf
2018-01-01
The genetic diversity of 177 accessions of Panicum turgidum Forssk, representing ten populations collected from four geographical regions in Saudi Arabia, was analyzed using amplified fragment length polymorphism (AFLP) markers. A set of four primer-pairs with two/three selective nucleotides scored 836 AFLP amplified fragments (putative loci/genome landmarks), all of which were polymorphic. Populations collected from the southern region of the country showed the highest genetic diversity parameters, whereas those collected from the central regions showed the lowest values. Analysis of molecular variance (AMOVA) revealed that 78% of the genetic variability was attributable to differences within populations. Pairwise values for population differentiation and genetic structure were statistically significant for all variances. The UPGMA dendrogram, validated by principal coordinate analysis-grouped accessions, corresponded to the geographical origin of the accessions. Mantel's test showed that there was a significant correlation between the genetic and geographical distances ( r = 0.35, P < 0.04). In summary, the AFLP assay demonstrated the existence of substantial genetic variation in P. turgidum . The relationship between the genetic diversity and geographical source of P. turgidum populations of Saudi Arabia, as revealed through this comprehensive study, will enable effective resource management and restoration of new areas without compromising adaptation and genetic diversity.
Yi, Shaokui; Wang, Weimin; Zhou, Xiaoyun
2018-02-21
Misgurnus anguillicaudatus, an important aquatic species, is mainly distributed in the Yangtze River basin. To reveal the population genetic structure of M. anguillicaudatus distributed in the Yangtze River basin, genotyping by sequencing (GBS) technique was employed to detect the genome wide genetic variations of M. anguillicaudatus. A total of 30.03 Gb raw data were yielded from 70 samples collected from 15 geographic sites located in the Yangtze River basin. Subsequently, 2092 high quality SNPs were genotyped across these samples and used for a series of genetic analysis. The results of genetic analysis showed that high levels of genetic diversity were observed and the populations from upper reaches (UR) were significantly differentiated from the middle and lower reaches (MLR) of Yangtze River basin. Meanwhile, no significant isolation by distance was detected among the populations. Ecological factors (e.g. complicated topography and climatic environment) and anthropogenic factors (e.g. aquaculture and agriculture cultivation) might account for the genetic disconnectivity between UR and MLR populations. This study provided valuable genetic data for the future breeding program and also for the conversation and scientific utilization of those abundant genetic resources stored in the Yangtze River basin. Copyright © 2018 Elsevier Inc. All rights reserved.
Genetic Technology: A Proposal for the Development of a Science of the Possible
ERIC Educational Resources Information Center
Hudock, George A.
1974-01-01
Urges that biology teachers include the study of genetic anomolies, some very simple aspects of pedigree analysis, and related problems in order to produce citizens who are aware of the impact of science on their lives. (PEB)
Drosophila Melanogaster as an Experimental Organism.
ERIC Educational Resources Information Center
Rubin, Gerald M.
1988-01-01
Discusses the role of the fruit fly in genetics research requiring a multidisciplinary approach. Describes embryological and genetic methods used in the experimental analysis of this organism. Outlines the use of Drosophila in the study of the development and function of the nervous system. (RT)
Familial aggregation and linkage analysis with covariates for metabolic syndrome risk factors.
Naseri, Parisa; Khodakarim, Soheila; Guity, Kamran; Daneshpour, Maryam S
2018-06-15
Mechanisms of metabolic syndrome (MetS) causation are complex, genetic and environmental factors are important factors for the pathogenesis of MetS In this study, we aimed to evaluate familial and genetic influences on metabolic syndrome risk factor and also assess association between FTO (rs1558902 and rs7202116) and CETP(rs1864163) genes' single nucleotide polymorphisms (SNP) with low HDL_C in the Tehran Lipid and Glucose Study (TLGS). The design was a cross-sectional study of 1776 members of 227 randomly-ascertained families. Selected families contained at least one affected metabolic syndrome and at least two members of the family had suffered a loss of HDL_C according to ATP III criteria. In this study, after confirming the familial aggregation with intra-trait correlation coefficients (ICC) of Metabolic syndrome (MetS) and the quantitative lipid traits, the genetic linkage analysis of HDL_C was performed using conditional logistic method with adjusted sex and age. The results of the aggregation analysis revealed a higher correlation between siblings than between parent-offspring pairs representing the role of genetic factors in MetS. In addition, the conditional logistic model with covariates showed that the linkage results between HDL_C and three marker, rs1558902, rs7202116 and rs1864163 were significant. In summary, a high risk of MetS was found in siblings confirming the genetic influences of metabolic syndrome risk factor. Moreover, the power to detect linkage increases in the one parameter conditional logistic model regarding the use of age and sex as covariates. Copyright © 2018. Published by Elsevier B.V.
Al-Sadi, Abdullah M; Al-Oweisi, Fatma A; Edwards, Simon G; Al-Nadabi, Hamed; Al-Fahdi, Ahmed M
2015-07-28
Trichoderma is one of the most common fungi in soil. However, little information is available concerning the diversity of Trichoderma in soil with no previous history of cultivation. This study was conducted to investigate the most common species and the level of genetic relatedness of Trichoderma species from uncultivated soil in relation to cultivated soil and potting media. A total of 24, 15 and 13 Trichoderma isolates were recovered from 84 potting media samples, 45 cultivated soil samples and 65 uncultivated soil samples, respectively. Analysis based on the internal transcribed spacer region of the ribosomal RNA (rRNA) and the translation elongation factor gene (EF1) indicated the presence of 9 Trichoderma species: T. harzianum (16 isolates), T. asperellum (13), T. citrinoviride (9), T. orientalis (3), T. ghanense (3), T. hamatum (3), T. longibrachiatum (2), T. atroviride (2), and T. viride (1). All species were found to occur in potting media samples, while five Trichoderma species were recovered from the cultivated soils and four from the uncultivated soils. AFLP analysis of the 52 Trichoderma isolates produced 52 genotypes and 993 polymorphic loci. Low to moderate levels of genetic diversity were found within populations of Trichoderma species (H = 0.0780 to 0.2208). Analysis of Molecular Variance indicated the presence of very low levels of genetic differentiation (Fst = 0.0002 to 0.0139) among populations of the same Trichoderma species obtained from the potting media, cultivated soil and uncultivated soil. The study provides evidence for occurrence of Trichoderma isolates in soil with no previous history of cultivation. The lack of genetic differentiation among Trichoderma populations from potting media, cultivated soil and uncultivated soil suggests that some factors could have been responsible for moving Trichoderma propagules among the three substrates. The study reports for the first time the presence of 4 Trichoderma species in Oman: T. asperellum, T. ghanense, T. longibrachiatum and T. orientalis.
Ruiz-Montoya, L; Zúñiga, G; Cisneros, R; Salinas-Moreno, Y; Peña-Martínez, R; Machkour-M'Rabet, S
2015-12-01
The study of phenotypic and genetic variation of obligate parthenogenetic organisms contributes to an understanding of evolution in the absence of genetic variation produced by sexual reproduction. Eriosoma lanigerum Hausmann undergoes obligate parthenogenesis in Mexico City, Mexico, due to the unavailability of the host plants required for sexual reproduction. We analysed the phenotypic and genetic variation of E. lanigerum in relation to the dry and wet season and plant phenology. Aphids were collected on two occasions per season on a secondary host plant, Pyracantha koidzumii, at five different sites in the southern area of Mexico City, Mexico. Thirteen morphological characteristics were measured from 147 to 276 individuals per site and per season. A multivariate analysis of variance was performed to test the effect of the season, site and their interaction on morphological traits. Morphological variation was summarised using a principal component analysis. Genetic variation was described using six enzymatic loci, four of which were polymorphic. Our study showed that the site and season has a significant effect on morphological trait variation. The largest aphids were recorded during cold temperatures with low relative humidity and when the plant was at the end of the fruiting period. The mean genetic diversity was low (mean H e = .161), and populations were genetically structured by season and site. Morphological and genetic variations appear to be associated with environmental factors that directly affect aphid development and/or indirectly by host plant phenology.
de Lima, Suelen Cristina; Adelino, José Eduardo; Crovella, Sergio; de Azevedo Silva, Jaqueline; Sandrin-Garcia, Paula
2017-11-01
Studies performed in the past years showed PTNP22 1858 C > T (rs2476601) polymorphism as associated with systemic lupus erythematosus susceptibility, although conflicting findings are still found. In this context, a powerful statistical study, such as meta-analysis, is necessary to establish a consensus. The aim of this study was to evaluate association studies between the PTPN22 1858 C > T polymorphism and SLE by a meta-analysis update, including three recently published studies in the last three years. A total of 3868 SLE patients and 7458 healthy individuals were considered herein, enclosing 19 studies from Asian, American, European and Latin ethnic groups. Odds ratio (OR) was performed for allelic, dominant and recessive genetic models. Statistically significant association was found between the PTPN22 1858 C > T polymorphism and susceptibility to SLE in all inheritance models. Allelic genetic model data (OR = 1.54, 95% confidence interval (CI) = 1.38-1.72, p value=.000) shows that T allele confers increased SLE susceptibility. As well as recessive genetic model (OR = 2.04, 95% CI = 1.09-3.82, p value = .030) for T/T genotype. Instead, dominant genetic model shows that C/C genotype confers lower susceptibility for SLE development (OR = 0.62, 95% CI = 0.54-0.72, p value = .000). In addition, we provided an ethnicity-derived meta-analysis. The results showed association in Caucasian (OR = 1.47, p value = .000) and Latin (OR = 2.41, p value = .000) ethnic groups. However, rs2476601 polymorphism is not associated nor in Asian (OR= 1.31; p value = .54) and African (OR = 2.04; p value=.22) populations. In conclusion, present meta-analysis update confirms that T allele and T/T genotype in PTPN22 1858 C > T polymorphism confers SLE susceptibility, particular in Caucasian and Latin groups, suggesting PTPN22 1858 C > T as a potential genetic marker in SLE susceptibility.
Nabi, Gowher; Akhter, Naseem; Wahid, Mohd; Bhatia, Kanchan; Mandal, Raju Kumar; Dar, Sajad Ahmad; Jawed, Arshad; Haque, Shafiul
2016-01-01
The PTPN22 1858C/T polymorphism is associated with rheumatoid arthritis (RA). However, reports from the Asian populations are conflicting in nature and lacks consensus. The aim of our study was to evaluate the association between the PTPN22 1858C/T polymorphism and RA in Asian and Caucasian subjects by carrying out a meta-analysis of Asian and Caucasian data. A total of 27 205 RA cases and 27 677 controls were considered in the present meta-analysis involving eight Asian and 35 Caucasian studies. The pooled odds ratios (ORs) were performed for the allele, dominant, and recessive genetic model. No statistically significant association was found between the PTPN22 1858C/T polymorphism and risk of RA in Asian population (allele genetic model: OR = 1.217, 95% confidence interval (CI) = 0.99-1.496, p value 0.061; dominant genetic model: OR = 1.238, 95% CI = 0.982-1.562, p value 0.071; recessive genetic model: OR = 1.964, 95% CI = 0.678-5.693, p value 0.213). A significant association with risk of RA in Caucasian population suggesting that T-- allele does confer susceptibility to RA in this subgroup was observed (allele genetic model: OR = 1.638, 95% CI = 1.574-1.705, p value < 0.0001; dominant genetic model: OR = 1.67, 95% CI = 1.598-1.745, p value < 0.0001; recessive genetic model: OR = 2.65, 95% CI = 2.273-3.089, p value < 0.0001). The PTPN22 1858C/T polymorphism is not associated with RA risk in Asian populations. However, our meta-analysis confirms that the PTPN22 1858C/T polymorphism is associated with RA susceptibility in Caucasians.
Hughes, Kim; Flynn, Tanya; de Zoysa, Janak; Dalbeth, Nicola; Merriman, Tony R
2014-02-01
Increased serum urate predicts chronic kidney disease independent of other risk factors. The use of xanthine oxidase inhibitors coincides with improved renal function. Whether this is due to reduced serum urate or reduced production of oxidants by xanthine oxidase or another physiological mechanism remains unresolved. Here we applied Mendelian randomization, a statistical genetics approach allowing disentangling of cause and effect in the presence of potential confounding, to determine whether lowering of serum urate by genetic modulation of renal excretion benefits renal function using data from 7979 patients of the Atherosclerosis Risk in Communities and Framingham Heart studies. Mendelian randomization by the two-stage least squares method was done with serum urate as the exposure, a uric acid transporter genetic risk score as instrumental variable, and estimated glomerular filtration rate and serum creatinine as the outcomes. Increased genetic risk score was associated with significantly improved renal function in men but not in women. Analysis of individual genetic variants showed the effect size associated with serum urate did not correlate with that associated with renal function in the Mendelian randomization model. This is consistent with the possibility that the physiological action of these genetic variants in raising serum urate correlates directly with improved renal function. Further studies are required to understand the mechanism of the potential renal function protection mediated by xanthine oxidase inhibitors.
Genetic and forensic implications in epilepsy and cardiac arrhythmias: a case series.
Partemi, Sara; Vidal, Monica Coll; Striano, Pasquale; Campuzano, Oscar; Allegue, Catarina; Pezzella, Marianna; Elia, Maurizio; Parisi, Pasquale; Belcastro, Vincenzo; Casellato, Susanna; Giordano, Lucio; Mastrangelo, Massimo; Pietrafusa, Nicola; Striano, Salvatore; Zara, Federico; Bianchi, Amedeo; Buti, Daniela; La Neve, Angela; Tassinari, Carlo Alberto; Oliva, Antonio; Brugada, Ramon
2015-05-01
Epilepsy affects approximately 3% of the world's population, and sudden death is a significant cause of death in this population. Sudden unexpected death in epilepsy (SUDEP) accounts for up to 17% of all these cases, which increases the rate of sudden death by 24-fold as compared to the general population. The underlying mechanisms are still not elucidated, but recent studies suggest the possibility that a common genetic channelopathy might contribute to both epilepsy and cardiac disease to increase the incidence of death via a lethal cardiac arrhythmia. We performed genetic testing in a large cohort of individuals with epilepsy and cardiac conduction disorders in order to identify genetic mutations that could play a role in the mechanism of sudden death. Putative pathogenic disease-causing mutations in genes encoding cardiac ion channel were detected in 24% of unrelated individuals with epilepsy. Segregation analysis through genetic screening of the available family members and functional studies are crucial tasks to understand and to prove the possible pathogenicity of the variant, but in our cohort, only two families were available. Despite further research should be performed to clarify the mechanism of coexistence of both clinical conditions, genetic analysis, applied also in post-mortem setting, could be very useful to identify genetic factors that predispose epileptic patients to sudden death, helping to prevent sudden death in patients with epilepsy.
Bartels, Meike
2015-03-01
Wellbeing is a major topic of research across several disciplines, reflecting the increasing recognition of its strong value across major domains in life. Previous twin-family studies have revealed that individual differences in wellbeing are accounted for by both genetic as well as environmental factors. A systematic literature search identified 30 twin-family studies on wellbeing or a related measure such as satisfaction with life or happiness. Review of these studies showed considerable variation in heritability estimates (ranging from 0 to 64 %), which makes it difficult to draw firm conclusions regarding the genetic influences on wellbeing. For overall wellbeing twelve heritability estimates, from 10 independent studies, were meta-analyzed by computing a sample size weighted average heritability. Ten heritability estimates, derived from 9 independent samples, were used for the meta-analysis of satisfaction with life. The weighted average heritability of wellbeing, based on a sample size of 55,974 individuals, was 36 % (34-38), while the weighted average heritability for satisfaction with life was 32 % (29-35) (n = 47,750). With this result a more robust estimate of the relative influence of genetic effects on wellbeing is provided.
Seo, Joo Hee; Lee, Jun Heon; Kong, Hong Sik
2017-01-01
Objective This study was conducted to investigate the basic information on genetic structure and characteristics of Korean Native chickens (NC) and foreign breeds through the analysis of the pure chicken populations and commercial chicken lines of the Hanhyup Company which are popular in the NC market, using the 20 microsatellite markers. Methods In this study, the genetic diversity and phylogenetic relationships of 445 NC from five different breeds (NC, Leghorn [LH], Cornish [CS], Rhode Island Red [RIR], and Hanhyup [HH] commercial line) were investigated by performing genotyping using 20 microsatellite markers. Results The highest genetic distance was observed between RIR and LH (18.9%), whereas the lowest genetic distance was observed between HH and NC (2.7%). In the principal coordinates analysis (PCoA) illustrated by the first component, LH was clearly separated from the other groups. The correspondence analysis showed close relationship among individuals belonging to the NC, CS, and HH lines. From the STRUCTURE program, the presence of 5 clusters was detected and it was found that the proportion of membership in the different clusters was almost comparable among the breeds with the exception of one breed (HH), although it was highest in LH (0.987) and lowest in CS (0.578). For the cluster 1 it was high in HH (0.582) and in CS (0.368), while for the cluster 4 it was relatively higher in HH (0.392) than other breeds. Conclusion Our study showed useful genetic diversity and phylogenetic relationship data that can be utilized for NC breeding and development by the commercial chicken industry to meet consumer demands. PMID:28335091
Riveira-Munoz, Eva; He, Su-Min; Escaramís, Georgia; Stuart, Philip E; Hüffmeier, Ulrike; Lee, Catherine; Kirby, Brian; Oka, Akira; Giardina, Emiliano; Liao, Wilson; Bergboer, Judith; Kainu, Kati; de Cid, Rafael; Munkhbat, Batmunkh; Zeeuwen, Patrick L J M; Armour, John A L; Poon, Annie; Mabuchi, Tomotaka; Ozawa, Akira; Zawirska, Agnieszka; Burden, David A; Barker, Jonathan N; Capon, Francesca; Traupe, Heiko; Sun, Liang-Dan; Cui, Yong; Yin, Xian-Yong; Chen, Gang; Lim, Henry; Nair, Rajan; Voorhess, John; Tejasvi, Trilokraj; Pujol, Ramón; Munkhtuvshin, Namid; Fischer, Judith; Kere, Juha; Schalkwijk, Joost; Bowcock, Anne; Kwok, Pui-Yan; Novelli, Giuseppe; Inoko, Hidetoshi; Ryan, Anthony W; Trembath, Richard C; Reis, André; Zhang, Xue-Jun; Elder, James T; Estivill, Xavier
2012-01-01
A multicenter meta-analysis including data from 9389 psoriasis patients and 9477 control subjects was performed to investigate the contribution of the deletion of genes LCE3C and LCE3B, involved in skin barrier defense, to psoriasis susceptibility in different populations. The study confirms that the deletion of LCE3C and LCE3B is a common genetic factor for susceptibility to psoriasis in European populations [OROverall = 1.21 (1.15–1.27)], and for the first time directly demonstrated the deletion's association with psoriasis in [Chinese OR = 1.27 (1.16–1.34); Mongolian OR = 2.08 (1.44–2.99)] populations. The analysis of the HLA-Cw6 locus showed significant differences in the epistatic interaction with the LCE3C and LCE3B deletion in at least some European populations, indicating epistatic effects between these two major genetic contributors to psoriasis. The study highlights the value of examining genetic risk factors in multiple populations to identify genetic interactions, and indicates the need of further studies to understand the interaction of the skin barrier and the immune system in susceptibility to psoriasis. PMID:21107349
Pezzolesi, Marcus G.; Skupien, Jan; Krolewski, Andrzej S.
2010-01-01
The Genetics of Kidneys in Diabetes (GoKinD) study was initiated to facilitate research aimed at identifying genes involved in diabetic nephropathy (DN) in type 1 diabetes (T1D). In this review, we present on overview of this study and the various reports that have utilized its collection. At the forefront of these efforts is the recent genome-wide association (GWA) scan implemented on the GoKinD collection. We highlight the results from our analysis of these data and describe compelling evidence from animal models that further support the potential role of associated loci in the susceptibility of DN. To enhance our analysis of genetic associations in GoKinD, using genome-wide imputation (GWI), we expanded our analysis of this collection to include genotype data from more than 2.4 million common SNPs. We illustrate the added utility of this enhanced dataset through the comprehensive fine-mapping of candidate genomic regions previously linked with DN and the targeted investigation of genes involved in candidate pathway implicated in its pathogenesis. Collectively, GWA and GWI data from the GoKinD collection will serve as a springboard for future investigations into the genetic basis of DN in T1D. PMID:20347642
Genetic analysis of the VP2-encoding gene of canine parvovirus strains from Africa.
Dogonyaro, Banenat B; Bosman, Anna-Mari; Sibeko, Kgomotso P; Venter, Estelle H; van Vuuren, Moritz
2013-08-30
Since the emergence of canine parvovirus type-2 (CPV-2) in the early 1970s, it has been evolving into novel genetic and antigenic variants (CPV-2a, 2b and 2c) that are unevenly distributed throughout the world. Genetic characterization of CPV-2 has not been documented in Africa since 1998 apart from the study carried out in Tunisia 2009. A total of 139 field samples were collected from South Africa and Nigeria, detected using PCR and the full length VP2-encoding gene of 27 positive samples were sequenced and genetically analyzed. Nigerian samples (n=6), South Africa (n=19) and vaccine strains (n=2) were compared with existing sequences obtained from GenBank. The results showed the presence of both CPV-2a and 2b in South Africa and only CPV-2a in Nigeria. No CPV-2c strain was detected during this study. Phylogenetic analysis showed a clustering not strictly associated with the geographical origin of the analyzed strains, although most of the South African strains tended to cluster together and the viral strains analyzed in this study were not completely distinct from CPV-2 strains from other parts of the world. Amino acid analysis showed predicted amino acid changes. Copyright © 2013 Elsevier B.V. All rights reserved.
Allele-specific suppression as a tool to study protein-protein interactions in bacteria.
Manson, M D
2000-01-01
Suppression analysis is well suited to study the interactions of gene products. It offers the advantage of simplicity for any organism for which a convenient genetic system has been developed, which holds for a wide spectrum of bacteria and an ever-increasing number of unicellular as well as complex eukaryotes. No other method provides as much information about the functional relationships of biological macromolecules. The intrinsic value of suppression analysis is enhanced by advances in genomics and in biophysical techniques for investigating the properties of nucleic acids and proteins, such as X-ray crystallography, liquid and solid-state nuclear magnetic resonance, electron spin labeling, and isothermal calorimetry. These approaches confirm and complement whatever is revealed by genetics. Despite these sterling qualities, suppression analysis has its dangers, less in execution than in conceptualization of experiments and interpretation of data. A consistent nomenclature is essential for a uniform and widespread understanding of the results. Familiarity with the genetic background and idiosyncracies of the organism studied is critical in avoiding extraneous phenomena that can affect the outcome. Finally, it is imperative not to underestimate potentially bizarre and improbable consequences that can transpire when rigorous genetic selection is maintained for an appreciable length of time. The article begins with a somewhat pedagogical discussion of genetic terminology. It then moves on to the necessary precautions to observe while planning and conducting suppression analysis. The remainder of the article considers different manifestations of suppression: bypass suppression; gradients of suppression; suppression by relaxed specificity; allele-specific "suppression at a distance"; and true conformational suppression. The treatment is not exhaustive, but representative examples have been gleaned from the recent bacterial literature. Copyright 2000 Academic Press.
Smouse, P E; Dyer, R J; Westfall, R D; Sork, V L
2001-02-01
Gene flow is a key factor in the spatial genetic structure in spatially distributed species. Evolutionary biologists interested in microevolutionary processess and conservation biologists interested in the impact of landscape change require a method that measures the real time process of gene movement. We present a novel two-generation (parent-offspring) approach to the study of genetic structure (TwoGener) that allows us to quantify heterogeneity among the male gamete pools sampled by maternal trees scattered across the landscape and to estimate mean pollination distance and effective neighborhood size. First, we describe the model's elements: genetic distance matrices to estimate intergametic distances, molecular analysis of variance to determine whether pollen profiles differ among mothers, and optimal sampling considerations. Second, we evaluate the model's effectiveness by simulating spatially distributed populations. Spatial heterogeneity in male gametes can be estimated by phiFT, a male gametic analogue of Wright's F(ST) and an inverse function of mean pollination distance. We illustrate TwoGener in cases where the male gamete can be categorically or ambiguously determined. This approach does not require the high level of genetic resolution needed by parentage analysis, but the ambiguous case is vulnerable to bias in the absence of adequate genetic resolution. Finally, we apply TwoGener to an empirical study of Quercus alba in Missouri Ozark forests. We find that phiFT = 0.06, translating into about eight effective pollen donors per female and an effective pollination neighborhood as a circle of radius about 17 m. Effective pollen movement in Q. alba is more restricted than previously realized, even though pollen is capable of moving large distances. This case study illustrates that, with a modest investment in field survey and laboratory analysis, the TwoGener approach permits inferences about landscape-level gene movements.
Kinziger, Andrew P; Hellmair, Michael; McCraney, W Tyler; Jacobs, David K; Goldsmith, Greg
2015-11-01
Extinction and colonization dynamics are critical to understanding the evolution and conservation of metapopulations. However, traditional field studies of extinction-colonization are potentially fraught with detection bias and have rarely been validated. Here, we provide a comparison of molecular and field-based approaches for assessment of the extinction-colonization dynamics of tidewater goby (Eucyclogobius newberryi) in northern California. Our analysis of temporal genetic variation across 14 northern California tidewater goby populations failed to recover genetic change expected with extinction-colonization cycles. Similarly, analysis of site occupancy data from field studies (94 sites) indicated that extinction and colonization are very infrequent for our study populations. Comparison of the approaches indicated field data were subject to imperfect detection, and falsely implied extinction-colonization cycles in several instances. For northern California populations of tidewater goby, we interpret the strong genetic differentiation between populations and high degree of within-site temporal stability as consistent with a model of drift in the absence of migration, at least over the past 20-30 years. Our findings show that tidewater goby exhibit different population structures across their geographic range (extinction-colonization dynamics in the south vs. drift in isolation in the north). For northern populations, natural dispersal is too infrequent to be considered a viable approach for recolonizing extirpated populations, suggesting that species recovery will likely depend on artificial translocation in this region. More broadly, this work illustrates that temporal genetic analysis can be used in combination with field data to strengthen inference of extinction-colonization dynamics or as a stand-alone tool when field data are lacking. © 2015 John Wiley & Sons Ltd.
Zwingerman, Nora; Medina-Rivera, Alejandra; Kassam, Irfahan; Wilson, Michael D.; Morange, Pierre-Emmanuel; Trégouët, David-Alexandre; Gagnon, France
2017-01-01
Background Thrombin activatable fibrinolysis inhibitor (TAFI), encoded by the Carboxypeptidase B2 gene (CPB2), is an inhibitor of fibrinolysis and plays a role in the pathogenesis of venous thrombosis. Experimental findings support a functional role of genetic variants in CPB2, while epidemiological studies have been unable to confirm associations with risk of venous thrombosis. Sex-specific effects could underlie the observed inconsistent associations between CPB2 genetic variants and venous thrombosis. Methods A comprehensive literature search was conducted for associations between Ala147Thr and Thr325Ile variants with venous thrombosis. Authors were contacted to provide sex-specific genotype counts from their studies. Combined and sex-specific random effects meta-analyses were used to estimate a pooled effect estimate for primary and secondary genetic models. Results A total of 17 studies met the inclusion criteria. A sex-specific meta-analysis applying a dominant model supported a protective effect of Ala147Thr on venous thrombosis in females (OR = 0.81, 95%CI: 0.68,0.97; p = 0.018), but not in males (OR = 1.06, 95%CI:0.96–1.16; p = 0.263). The Thr325Ile did not show a sex-specific effect but showed variation in allele frequencies by geographic region. A subgroup analysis of studies in European countries showed decreased risk, with a recessive model (OR = 0.83, 95%CI:0.71–0.97, p = 0.021) for venous thrombosis. Conclusions A comprehensive literature review, including unpublished data, provided greater statistical power for the analyses and decreased the likelihood of publication bias influencing the results. Sex-specific analyses explained apparent discrepancies across genetic studies of Ala147Thr and venous thrombosis. While, careful selection of genetic models based on population genetics, evolutionary and biological knowledge can increase power by decreasing the need to adjust for testing multiple models. PMID:28552956
Zwingerman, Nora; Medina-Rivera, Alejandra; Kassam, Irfahan; Wilson, Michael D; Morange, Pierre-Emmanuel; Trégouët, David-Alexandre; Gagnon, France
2017-01-01
Thrombin activatable fibrinolysis inhibitor (TAFI), encoded by the Carboxypeptidase B2 gene (CPB2), is an inhibitor of fibrinolysis and plays a role in the pathogenesis of venous thrombosis. Experimental findings support a functional role of genetic variants in CPB2, while epidemiological studies have been unable to confirm associations with risk of venous thrombosis. Sex-specific effects could underlie the observed inconsistent associations between CPB2 genetic variants and venous thrombosis. A comprehensive literature search was conducted for associations between Ala147Thr and Thr325Ile variants with venous thrombosis. Authors were contacted to provide sex-specific genotype counts from their studies. Combined and sex-specific random effects meta-analyses were used to estimate a pooled effect estimate for primary and secondary genetic models. A total of 17 studies met the inclusion criteria. A sex-specific meta-analysis applying a dominant model supported a protective effect of Ala147Thr on venous thrombosis in females (OR = 0.81, 95%CI: 0.68,0.97; p = 0.018), but not in males (OR = 1.06, 95%CI:0.96-1.16; p = 0.263). The Thr325Ile did not show a sex-specific effect but showed variation in allele frequencies by geographic region. A subgroup analysis of studies in European countries showed decreased risk, with a recessive model (OR = 0.83, 95%CI:0.71-0.97, p = 0.021) for venous thrombosis. A comprehensive literature review, including unpublished data, provided greater statistical power for the analyses and decreased the likelihood of publication bias influencing the results. Sex-specific analyses explained apparent discrepancies across genetic studies of Ala147Thr and venous thrombosis. While, careful selection of genetic models based on population genetics, evolutionary and biological knowledge can increase power by decreasing the need to adjust for testing multiple models.
Analysis of genetic diversity in Bolivian llama populations using microsatellites.
Barreta, J; Gutiérrez-Gil, B; Iñiguez, V; Romero, F; Saavedra, V; Chiri, R; Rodríguez, T; Arranz, J J
2013-08-01
South American camelids (SACs) have a major role in the maintenance and potential future of rural Andean human populations. More than 60% of the 3.7 million llamas living worldwide are found in Bolivia. Due to the lack of studies focusing on genetic diversity in Bolivian llamas, this analysis investigates both the genetic diversity and structure of 12 regional groups of llamas that span the greater part of the range of distribution for this species in Bolivia. The analysis of 42 microsatellite markers in the considered regional groups showed that, in general, there were high levels of polymorphism (a total of 506 detected alleles; average PIC across per marker: 0.66), which are comparable with those reported for other populations of domestic SACs. The estimated diversity parameters indicated that there was high intrapopulational genetic variation (average number of alleles and average expected heterozygosity per marker: 12.04 and 0.68, respectively) and weak genetic differentiation among populations (FST range: 0.003-0.052). In agreement with these estimates, Bolivian llamas showed a weak genetic structure and an intense gene flow between all the studied regional groups, which is due to the exchange of reproductive males between the different flocks. Interestingly, the groups for which the largest pairwise FST estimates were observed, Sud Lípez and Nor Lípez, showed a certain level of genetic differentiation that is probably due to the pattern of geographic isolation and limited communication infrastructures of these southern localities. Overall, the population parameters reported here may serve as a reference when establishing conservation policies that address Bolivian llama populations. © 2012 Blackwell Verlag GmbH.
Pain, Oliver; Dudbridge, Frank; Cardno, Alastair G; Freeman, Daniel; Lu, Yi; Lundstrom, Sebastian; Lichtenstein, Paul; Ronald, Angelica
2018-03-31
This study aimed to test for overlap in genetic influences between psychotic-like experience traits shown by adolescents in the community, and clinically-recognized psychiatric disorders in adulthood, specifically schizophrenia, bipolar disorder, and major depression. The full spectra of psychotic-like experience domains, both in terms of their severity and type (positive, cognitive, and negative), were assessed using self- and parent-ratings in three European community samples aged 15-19 years (Final N incl. siblings = 6,297-10,098). A mega-genome-wide association study (mega-GWAS) for each psychotic-like experience domain was performed. Single nucleotide polymorphism (SNP)-heritability of each psychotic-like experience domain was estimated using genomic-relatedness-based restricted maximum-likelihood (GREML) and linkage disequilibrium- (LD-) score regression. Genetic overlap between specific psychotic-like experience domains and schizophrenia, bipolar disorder, and major depression was assessed using polygenic risk score (PRS) and LD-score regression. GREML returned SNP-heritability estimates of 3-9% for psychotic-like experience trait domains, with higher estimates for less skewed traits (Anhedonia, Cognitive Disorganization) than for more skewed traits (Paranoia and Hallucinations, Parent-rated Negative Symptoms). Mega-GWAS analysis identified one genome-wide significant association for Anhedonia within IDO2 but which did not replicate in an independent sample. PRS analysis revealed that the schizophrenia PRS significantly predicted all adolescent psychotic-like experience trait domains (Paranoia and Hallucinations only in non-zero scorers). The major depression PRS significantly predicted Anhedonia and Parent-rated Negative Symptoms in adolescence. Psychotic-like experiences during adolescence in the community show additive genetic effects and partly share genetic influences with clinically-recognized psychiatric disorders, specifically schizophrenia and major depression. © 2018 The Authors. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics Published by Wiley Periodicals, Inc.
Bhatti, Shahzad; Aslamkhan, M; Abbas, Sana; Attimonelli, Marcella; Aydin, Hikmet Hakan; de Souza, Erica Martinha Silva
2017-09-01
Due to its geo strategic position at the crossroad of Asia, Pakistan has gained crucial importance of playing its pivotal role in subsequent human migratory events, both prehistoric and historic. This human movement became possible through an ancient overland network of trails called "The Silk Route" linking Asia Minor, Middle East China, Central Asia and Southeast Asia. This study was conducted to analyze complete mitochondrial control region samples of 100 individuals of four major Pashtun tribes namely, Bangash, Khattak, Mahsuds and Orakzai in the province of Khyber Pakhtunkhwa, Pakistan. All Pashtun tribes revealed high genetic diversity which is comparable to the other Central Asian, Southeast Asian and European populations. The configuration of genetic variation and heterogeneity further unveiled through Multidimensional Scaling, Principal Component Analysis and phylogenetic analysis. The results revealed that Pashtun are the composite mosaic of West Eurasian ancestry of numerous geographic origin. They received substantial gene flow during different invasive movements and have a high element of the Western provenance. The most common haplogroups reported in this study are: South Asian haplogroups M (28%) and R (8%); whereas, West Asians haplogroups are present, albeit in high frequencies (67%) and widespread over all; HV (15%), U (17%), H (9%), J (8%), K (8%), W (4%), N (3%) and T (3%). Moreover, we linked the unexplored genetic connection between Ashkenazi Jews and Pashtun. The presence of specific haplotypes J1b (4%) and K1a1b1a (5%) pointed to a genetic connection of Jewish conglomeration in Khattak tribe. This was a result of an ancient genetic influx in the early Neolithic period that led to the formation of a diverse genetic substratum in present day Pashtun.
2014-01-01
Background The oriental fruit fly, Bactrocera dorsalis s.s., is one of the most important quarantine pests in many countries, including China. Although the oriental fruit fly has been investigated extensively, its origins and genetic structure remain disputed. In this study, the NADH dehydrogenase subunit 1 (ND1) gene was used as a genetic marker to examine the genetic diversity, population structure, and gene flow of B. dorsalis s.s. throughout its range in China and southeast Asia. Results Haplotype networks and phylogenetic analysis indicated two distinguishable lineages of the fly population but provided no strong support for geographical subdivision in B. philippinensis. Demographic analysis revealed rapid expansion of B. dorsalis s.s. populations in China and Southeast Asia in the recent years. The greatest amount of genetic diversity was observed in Manila, Pattaya, and Bangkok, and asymmetric migration patterns were observed in different parts of China. The data collected here further show that B. dorsalis s.s. in Yunnan, Guangdong, and Fujian Provinces, and in Taiwan might have different origins within southeast Asia. Conclusions Using the mitochondrial ND1 gene, the results of the present study showed B. dorsalis s.s. from different parts of China to have different genetic structures and origins. B. dorsalis s.s. in China and southeast Asia was found to have experienced rapid expansion in recent years. Data further support the existence of two distinguishable lineages of B. dorsalis s.s. in China and indicate genetic diversity and gene flow from multiple origins. The sequences in this paper have been deposited in GenBank/NCBI under accession numbers KC413034–KC413367. PMID:24655832
Liu, Dajiang J; Leal, Suzanne M
2012-10-05
Next-generation sequencing has led to many complex-trait rare-variant (RV) association studies. Although single-variant association analysis can be performed, it is grossly underpowered. Therefore, researchers have developed many RV association tests that aggregate multiple variant sites across a genetic region (e.g., gene), and test for the association between the trait and the aggregated genotype. After these aggregate tests detect an association, it is only possible to estimate the average genetic effect for a group of RVs. As a result of the "winner's curse," such an estimate can be biased. Although for common variants one can obtain unbiased estimates of genetic parameters by analyzing a replication sample, for RVs it is desirable to obtain unbiased genetic estimates for the study where the association is identified. This is because there can be substantial heterogeneity of RV sites and frequencies even among closely related populations. In order to obtain an unbiased estimate for aggregated RV analysis, we developed bootstrap-sample-split algorithms to reduce the bias of the winner's curse. The unbiased estimates are greatly important for understanding the population-specific contribution of RVs to the heritability of complex traits. We also demonstrate both theoretically and via simulations that for aggregate RV analysis the genetic variance for a gene or region will always be underestimated, sometimes substantially, because of the presence of noncausal variants or because of the presence of causal variants with effects of different magnitudes or directions. Therefore, even if RVs play a major role in the complex-trait etiologies, a portion of the heritability will remain missing, and the contribution of RVs to the complex-trait etiologies will be underestimated. Copyright © 2012 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
Kato, S; Ishii, A; Nishi, A; Kuriki, S; Koide, T
2014-01-01
Recent genetic studies have shown that genetic loci with significant effects in whole-genome quantitative trait loci (QTL) analyses were lost or weakened in congenic strains. Characterisation of the genetic basis of this attenuated QTL effect is important to our understanding of the genetic mechanisms of complex traits. We previously found that a consomic strain, B6-Chr6CMSM, which carries chromosome 6 of a wild-derived strain MSM/Ms on the genetic background of C57BL/6J, exhibited lower home-cage activity than C57BL/6J. In the present study, we conducted a composite interval QTL analysis using the F2 mice derived from a cross between C57BL/6J and B6-Chr6CMSM. We found one QTL peak that spans 17.6 Mbp of chromosome 6. A subconsomic strain that covers the entire QTL region also showed lower home-cage activity at the same level as the consomic strain. We developed 15 congenic strains, each of which carries a shorter MSM/Ms-derived chromosomal segment from the subconsomic strain. Given that the results of home-cage activity tests on the congenic strains cannot be explained by a simple single-gene model, we applied regression analysis to segregate the multiple genetic loci. The results revealed three loci (loci 1–3) that have the effect of reducing home-cage activity and one locus (locus 4) that increases activity. We also found that the combination of loci 3 and 4 cancels out the effects of the congenic strains, which indicates the existence of a genetic mechanism related to the loss of QTLs. PMID:24781804
Eco-genetic modeling of contemporary life-history evolution.
Dunlop, Erin S; Heino, Mikko; Dieckmann, Ulf
2009-10-01
We present eco-genetic modeling as a flexible tool for exploring the course and rates of multi-trait life-history evolution in natural populations. We build on existing modeling approaches by combining features that facilitate studying the ecological and evolutionary dynamics of realistically structured populations. In particular, the joint consideration of age and size structure enables the analysis of phenotypically plastic populations with more than a single growth trajectory, and ecological feedback is readily included in the form of density dependence and frequency dependence. Stochasticity and life-history trade-offs can also be implemented. Critically, eco-genetic models permit the incorporation of salient genetic detail such as a population's genetic variances and covariances and the corresponding heritabilities, as well as the probabilistic inheritance and phenotypic expression of quantitative traits. These inclusions are crucial for predicting rates of evolutionary change on both contemporary and longer timescales. An eco-genetic model can be tightly coupled with empirical data and therefore may have considerable practical relevance, in terms of generating testable predictions and evaluating alternative management measures. To illustrate the utility of these models, we present as an example an eco-genetic model used to study harvest-induced evolution of multiple traits in Atlantic cod. The predictions of our model (most notably that harvesting induces a genetic reduction in age and size at maturation, an increase or decrease in growth capacity depending on the minimum-length limit, and an increase in reproductive investment) are corroborated by patterns observed in wild populations. The predicted genetic changes occur together with plastic changes that could phenotypically mask the former. Importantly, our analysis predicts that evolutionary changes show little signs of reversal following a harvest moratorium. This illustrates how predictions offered by eco-genetic models can enable and guide evolutionarily sustainable resource management.
Eltaher, Shamseldeen; Sallam, Ahmed; Belamkar, Vikas; Emara, Hamdy A; Nower, Ahmed A; Salem, Khaled F M; Poland, Jesse; Baenziger, Peter S
2018-01-01
The availability of information on the genetic diversity and population structure in wheat ( Triticum aestivum L.) breeding lines will help wheat breeders to better use their genetic resources and manage genetic variation in their breeding program. The recent advances in sequencing technology provide the opportunity to identify tens or hundreds of thousands of single nucleotide polymorphism (SNPs) in large genome species (e.g., wheat). These SNPs can be utilized for understanding genetic diversity and performing genome wide association studies (GWAS) for complex traits. In this study, the genetic diversity and population structure were investigated in a set of 230 genotypes (F 3:6 ) derived from various crosses as a prerequisite for GWAS and genomic selection. Genotyping-by-sequencing provided 25,566 high-quality SNPs. The polymorphism information content (PIC) across chromosomes ranged from 0.09 to 0.37 with an average of 0.23. The distribution of SNPs markers on the 21 chromosomes ranged from 319 on chromosome 3D to 2,370 on chromosome 3B. The analysis of population structure revealed three subpopulations (G1, G2, and G3). Analysis of molecular variance identified 8% variance among and 92% within subpopulations. Of the three subpopulations, G2 had the highest level of genetic diversity based on three genetic diversity indices: Shannon's information index ( I ) = 0.494, diversity index ( h ) = 0.328 and unbiased diversity index (uh) = 0.331, while G3 had lowest level of genetic diversity ( I = 0.348, h = 0.226 and uh = 0.236). This high genetic diversity identified among the subpopulations can be used to develop new wheat cultivars.
Fine-Scale Analysis Reveals Cryptic Landscape Genetic Structure in Desert Tortoises
Latch, Emily K.; Boarman, William I.; Walde, Andrew; Fleischer, Robert C.
2011-01-01
Characterizing the effects of landscape features on genetic variation is essential for understanding how landscapes shape patterns of gene flow and spatial genetic structure of populations. Most landscape genetics studies have focused on patterns of gene flow at a regional scale. However, the genetic structure of populations at a local scale may be influenced by a unique suite of landscape variables that have little bearing on connectivity patterns observed at broader spatial scales. We investigated fine-scale spatial patterns of genetic variation and gene flow in relation to features of the landscape in desert tortoise (Gopherus agassizii), using 859 tortoises genotyped at 16 microsatellite loci with associated data on geographic location, sex, elevation, slope, and soil type, and spatial relationship to putative barriers (power lines, roads). We used spatially explicit and non-explicit Bayesian clustering algorithms to partition the sample into discrete clusters, and characterize the relationships between genetic distance and ecological variables to identify factors with the greatest influence on gene flow at a local scale. Desert tortoises exhibit weak genetic structure at a local scale, and we identified two subpopulations across the study area. Although genetic differentiation between the subpopulations was low, our landscape genetic analysis identified both natural (slope) and anthropogenic (roads) landscape variables that have significantly influenced gene flow within this local population. We show that desert tortoise movements at a local scale are influenced by features of the landscape, and that these features are different than those that influence gene flow at larger scales. Our findings are important for desert tortoise conservation and management, particularly in light of recent translocation efforts in the region. More generally, our results indicate that recent landscape changes can affect gene flow at a local scale and that their effects can be detected almost immediately. PMID:22132143
Fine-scale analysis reveals cryptic landscape genetic structure in desert tortoises.
Latch, Emily K; Boarman, William I; Walde, Andrew; Fleischer, Robert C
2011-01-01
Characterizing the effects of landscape features on genetic variation is essential for understanding how landscapes shape patterns of gene flow and spatial genetic structure of populations. Most landscape genetics studies have focused on patterns of gene flow at a regional scale. However, the genetic structure of populations at a local scale may be influenced by a unique suite of landscape variables that have little bearing on connectivity patterns observed at broader spatial scales. We investigated fine-scale spatial patterns of genetic variation and gene flow in relation to features of the landscape in desert tortoise (Gopherus agassizii), using 859 tortoises genotyped at 16 microsatellite loci with associated data on geographic location, sex, elevation, slope, and soil type, and spatial relationship to putative barriers (power lines, roads). We used spatially explicit and non-explicit Bayesian clustering algorithms to partition the sample into discrete clusters, and characterize the relationships between genetic distance and ecological variables to identify factors with the greatest influence on gene flow at a local scale. Desert tortoises exhibit weak genetic structure at a local scale, and we identified two subpopulations across the study area. Although genetic differentiation between the subpopulations was low, our landscape genetic analysis identified both natural (slope) and anthropogenic (roads) landscape variables that have significantly influenced gene flow within this local population. We show that desert tortoise movements at a local scale are influenced by features of the landscape, and that these features are different than those that influence gene flow at larger scales. Our findings are important for desert tortoise conservation and management, particularly in light of recent translocation efforts in the region. More generally, our results indicate that recent landscape changes can affect gene flow at a local scale and that their effects can be detected almost immediately.
Eltaher, Shamseldeen; Sallam, Ahmed; Belamkar, Vikas; Emara, Hamdy A.; Nower, Ahmed A.; Salem, Khaled F. M.; Poland, Jesse; Baenziger, Peter S.
2018-01-01
The availability of information on the genetic diversity and population structure in wheat (Triticum aestivum L.) breeding lines will help wheat breeders to better use their genetic resources and manage genetic variation in their breeding program. The recent advances in sequencing technology provide the opportunity to identify tens or hundreds of thousands of single nucleotide polymorphism (SNPs) in large genome species (e.g., wheat). These SNPs can be utilized for understanding genetic diversity and performing genome wide association studies (GWAS) for complex traits. In this study, the genetic diversity and population structure were investigated in a set of 230 genotypes (F3:6) derived from various crosses as a prerequisite for GWAS and genomic selection. Genotyping-by-sequencing provided 25,566 high-quality SNPs. The polymorphism information content (PIC) across chromosomes ranged from 0.09 to 0.37 with an average of 0.23. The distribution of SNPs markers on the 21 chromosomes ranged from 319 on chromosome 3D to 2,370 on chromosome 3B. The analysis of population structure revealed three subpopulations (G1, G2, and G3). Analysis of molecular variance identified 8% variance among and 92% within subpopulations. Of the three subpopulations, G2 had the highest level of genetic diversity based on three genetic diversity indices: Shannon’s information index (I) = 0.494, diversity index (h) = 0.328 and unbiased diversity index (uh) = 0.331, while G3 had lowest level of genetic diversity (I = 0.348, h = 0.226 and uh = 0.236). This high genetic diversity identified among the subpopulations can be used to develop new wheat cultivars. PMID:29593779
Vranckx, Guy; Jacquemyn, Hans; Muys, Bart; Honnay, Olivier
2012-04-01
Shrubs and trees are assumed less likely to lose genetic variation in response to habitat fragmentation because they have certain life-history characteristics such as long lifespans and extensive pollen flow. To test this assumption, we conducted a meta-analysis with data on 97 woody plant species derived from 98 studies of habitat fragmentation. We measured the weighted response of four different measures of population-level genetic diversity to habitat fragmentation with Hedge's d and Spearman rank correlation. We tested whether the genetic response to habitat fragmentation was mediated by life-history traits (longevity, pollination mode, and seed dispersal vector) and study characteristics (genetic marker and plant material used). For both tests of effect size habitat fragmentation was associated with a substantial decrease in expected heterozygosity, number of alleles, and percentage of polymorphic loci, whereas the population inbreeding coefficient was not associated with these measures. The largest proportion of variation among effect sizes was explained by pollination mechanism and by the age of the tissue (progeny or adult) that was genotyped. Our primary finding was that wind-pollinated trees and shrubs appeared to be as likely to lose genetic variation as insect-pollinated species, indicating that severe habitat fragmentation may lead to pollen limitation and limited gene flow. In comparison with results of previous meta-analyses on mainly herbaceous species, we found trees and shrubs were as likely to have negative genetic responses to habitat fragmentation as herbaceous species. We also found that the genetic variation in offspring was generally less than that of adult trees, which is evidence of a genetic extinction debt and probably reflects the genetic diversity of the historical, less-fragmented landscape. ©2011 Society for Conservation Biology.
5-years later - have faculty integrated medical genetics into nurse practitioner curriculum?
Maradiegue, Ann H; Edwards, Quannetta T; Seibert, Diane
2013-10-31
Abstract Many genetic/genomic educational opportunities are available to assist nursing faculty in their knowledge and understanding of genetic/genomics. This study was conducted to assess advance practice nursing faculty members' current knowledge of medical genetics/genomics, their integration of genetics/genomics content into advance practice nursing curricula, any prior formal training/education in genetics/genomics, and their comfort level in teaching genetics/genomic content. A secondary aim was to conduct a comparative analysis of the 2010 data to a previous study conducted in 2005, to determine changes that have taken place during that time period. During a national nurse practitioner faculty conference, 85 nurse practitioner faculty voluntarily completed surveys. Approximately 70% of the 2010 faculty felt comfortable teaching basic genetic/genomic concepts compared to 50% in 2005. However, there continue to be education gaps in the genetic/genomic content taught to advance practice nursing students. If nurses are going to be a crucial member of the health-care team, they must achieve the requisite competencies to deliver the increasingly complex care patients require.
Exploring Genetic Numeracy Skills in a Sample of U.S. University Students
Bergman, Margo W.; Goodson, Patricia; Goltz, Heather Honoré
2017-01-01
Misconceptions concerning numerical genetic risk exist even within educated populations. To more fully characterize and understand the extent of these risk misunderstandings, which have large potential impact on clinical care, we analyzed the responses from 2,576 students enrolled at 2 Southwestern universities using the PGRID tool, a 138-item web-based survey comprising measures of understanding of genetics, genetic disease, and genetic risk. The primary purpose of this study was to characterize the intersection of risk perception and knowledge, termed genetic numeracy (GN). Additionally, we identify sociodemographic factors that might shape varying levels of GN skills within the study sample and explore the impact of GN on genetic testing intentions using both the Marascuilo procedure and logistic regression analysis. Despite having some college coursework or at least one college degree, most respondents lacked high-level aptitude in understanding genetic inheritance risk, especially with respect to recessive disorders. Prior education about genetics and biology, as well as exposure to biomedical models of genetics, was associated with higher GN levels; exposure to popular media models of genetics was inversely associated with higher GN levels. Differing GN levels affects genetic testing intentions. GN will become more relevant as genetic testing is increasingly incorporated into general clinical care. PMID:28900615
Exploring Genetic Numeracy Skills in a Sample of U.S. University Students.
Bergman, Margo W; Goodson, Patricia; Goltz, Heather Honoré
2017-01-01
Misconceptions concerning numerical genetic risk exist even within educated populations. To more fully characterize and understand the extent of these risk misunderstandings, which have large potential impact on clinical care, we analyzed the responses from 2,576 students enrolled at 2 Southwestern universities using the PGRID tool, a 138-item web-based survey comprising measures of understanding of genetics, genetic disease, and genetic risk. The primary purpose of this study was to characterize the intersection of risk perception and knowledge, termed genetic numeracy (GN). Additionally, we identify sociodemographic factors that might shape varying levels of GN skills within the study sample and explore the impact of GN on genetic testing intentions using both the Marascuilo procedure and logistic regression analysis. Despite having some college coursework or at least one college degree, most respondents lacked high-level aptitude in understanding genetic inheritance risk, especially with respect to recessive disorders. Prior education about genetics and biology, as well as exposure to biomedical models of genetics, was associated with higher GN levels; exposure to popular media models of genetics was inversely associated with higher GN levels. Differing GN levels affects genetic testing intentions. GN will become more relevant as genetic testing is increasingly incorporated into general clinical care.
Molecular inversion probe assay.
Absalan, Farnaz; Ronaghi, Mostafa
2007-01-01
We have described molecular inversion probe technologies for large-scale genetic analyses. This technique provides a comprehensive and powerful tool for the analysis of genetic variation and enables affordable, large-scale studies that will help uncover the genetic basis of complex disease and explain the individual variation in response to therapeutics. Major applications of the molecular inversion probes (MIP) technologies include targeted genotyping from focused regions to whole-genome studies, and allele quantification of genomic rearrangements. The MIP technology (used in the HapMap project) provides an efficient, scalable, and affordable way to score polymorphisms in case/control populations for genetic studies. The MIP technology provides the highest commercially available multiplexing levels and assay conversion rates for targeted genotyping. This enables more informative, genome-wide studies with either the functional (direct detection) approach or the indirect detection approach.
Genetically determined schizophrenia is not associated with impaired glucose homeostasis.
Polimanti, Renato; Gelernter, Joel; Stein, Dan J
2018-05-01
Here, we used data from large genome-wide association studies to test the presence of causal relationships, conducting a Mendelian randomization analysis; and shared molecular mechanisms, calculating the genetic correlation, among schizophrenia, type 2 diabetes (T2D), and impaired glucose homeostasis. Although our Mendelian randomization analysis was well-powered, no causal relationship was observed between schizophrenia and T2D, or traits related to glucose impaired homeostasis. Similarly, we did not observe any global genetic overlap among these traits. These findings indicate that there is no causal relationships or shared mechanisms between schizophrenia and impaired glucose homeostasis. Copyright © 2017 Elsevier B.V. All rights reserved.
Barrera-Mejía, Magda; Simón-Martínez, José; Ulloa-Arvizu, Raúl; Salgado-Miranda, Celene; Soriano-Vargas, Edgardo
2010-07-01
The presence of infectious pancreatic necrosis virus (IPNV) in salmonids predominantly produces a high mortality rate in first-feeding fry. Genomic analysis of the vp2 gene sequence is most commonly used to determine the genetic diversity of IPNV isolates. Recently, information obtained from the vp1 gene allowed for efficient analysis of the genetic diversity of IPNV. In this study, the vp1 gene from a Mexican IPNV isolate was characterized and compared with IPNV isolates from Europe, North America, and Asia. The results indicate that the Mexican isolate is most closely related genetically to the 2310 strain from Spain.
GWAS meta-analysis of 16 852 women identifies new susceptibility locus for endometrial cancer
Chen, Maxine M.; O'Mara, Tracy A.; Thompson, Deborah J.; Painter, Jodie N.; Attia, John; Black, Amanda; Brinton, Louise; Chanock, Stephen; Chen, Chu; Cheng, Timothy HT; Cook, Linda S.; Crous-Bou, Marta; Doherty, Jennifer; Friedenreich, Christine M.; Garcia-Closas, Montserrat; Gaudet, Mia M.; Gorman, Maggie; Haiman, Christopher; Hankinson, Susan E.; Hartge, Patricia; Henderson, Brian E.; Hodgson, Shirley; Holliday, Elizabeth G.; Horn-Ross, Pamela L.; Hunter, David J.; Le Marchand, Loic; Liang, Xiaolin; Lissowska, Jolanta; Long, Jirong; Lu, Lingeng; Magliocco, Anthony M.; Martin, Lynn; McEvoy, Mark; Olson, Sara H.; Orlow, Irene; Pooler, Loreall; Prescott, Jennifer; Rastogi, Radhai; Rebbeck, Timothy R.; Risch, Harvey; Sacerdote, Carlotta; Schumacher, Frederick; Wendy Setiawan, Veronica; Scott, Rodney J.; Sheng, Xin; Shu, Xiao-Ou; Turman, Constance; Van Den Berg, David; Wang, Zhaoming; Weiss, Noel S.; Wentzensen, Nicholas; Xia, Lucy; Xiang, Yong-Bing; Yang, Hannah P.; Yu, Herbert; Zheng, Wei; Pharoah, Paul D.P.; Dunning, Alison M.; Tomlinson, Ian; Easton, Douglas F.; Kraft, Peter; Spurdle, Amanda B.; De Vivo, Immaculata
2016-01-01
Endometrial cancer is the most common gynecological malignancy in the developed world. Although there is evidence of genetic predisposition to the disease, most of the genetic risk remains unexplained. We present the meta-analysis results of four genome-wide association studies (4907 cases and 11 945 controls total) in women of European ancestry. We describe one new locus reaching genome-wide significance (P < 5 × 10 −8) at 6p22.3 (rs1740828; P = 2.29 × 10 −8, OR = 1.20), providing evidence of an additional region of interest for genetic susceptibility to endometrial cancer. PMID:27008869
Low Divergence of Clonorchis sinensis in China Based on Multilocus Analysis
Sun, Jiufeng; Huang, Yan; Huang, Huaiqiu; Liang, Pei; Wang, Xiaoyun; Mao, Qiang; Men, Jingtao; Chen, Wenjun; Deng, Chuanhuan; Zhou, Chenhui; Lv, Xiaoli; Zhou, Juanjuan; Zhang, Fan; Li, Ran; Tian, Yanli; Lei, Huali; Liang, Chi; Hu, Xuchu; Xu, Jin; Li, Xuerong; XinbingYu
2013-01-01
Clonorchis sinensis, an ancient parasite that infects a number of piscivorous mammals, attracts significant public health interest due to zoonotic exposure risks in Asia. The available studies are insufficient to reflect the prevalence, geographic distribution, and intraspecific genetic diversity of C. sinensis in endemic areas. Here, a multilocus analysis based on eight genes (ITS1, act, tub, ef-1a, cox1, cox3, nad4 and nad5 [4.986 kb]) was employed to explore the intra-species genetic construction of C. sinensis in China. Two hundred and fifty-six C. sinensis isolates were obtained from environmental reservoirs from 17 provinces of China. A total of 254 recognized Multilocus Types (MSTs) showed high diversity among these isolates using multilocus analysis. The comparison analysis of nuclear and mitochondrial phylogeny supports separate clusters in a nuclear dendrogram. Genetic differentiation analysis of three clusters (A, B, and C) showed low divergence within populations. Most isolates from clusters B and C are geographically limited to central China, while cluster A is extraordinarily genetically diverse. Further genetic analyses between different geographic distributions, water bodies and hosts support the low population divergence. The latter haplotype analyses were consistent with the phylogenetic and genetic differentiation results. A recombination network based on concatenated sequences showed a concentrated linkage recombination population in cox1, cox3, nad4 and nad5, with spatial structuring in ITS1. Coupled with the history record and archaeological evidence of C. sinensis infection in mummified desiccated feces, these data point to an ancient origin of C. sinensis in China. In conclusion, we present a likely phylogenetic structure of the C. sinensis population in mainland China, highlighting its possible tendency for biogeographic expansion. Meanwhile, ITS1 was found to be an effective marker for tracking C. sinensis infection worldwide. Thus, the present study improves our understanding of the global epidemiology and evolution of C. sinensis. PMID:23825605
Network-assisted crop systems genetics: network inference and integrative analysis.
Lee, Tak; Kim, Hyojin; Lee, Insuk
2015-04-01
Although next-generation sequencing (NGS) technology has enabled the decoding of many crop species genomes, most of the underlying genetic components for economically important crop traits remain to be determined. Network approaches have proven useful for the study of the reference plant, Arabidopsis thaliana, and the success of network-based crop genetics will also require the availability of a genome-scale functional networks for crop species. In this review, we discuss how to construct functional networks and elucidate the holistic view of a crop system. The crop gene network then can be used for gene prioritization and the analysis of resequencing-based genome-wide association study (GWAS) data, the amount of which will rapidly grow in the field of crop science in the coming years. Copyright © 2015 Elsevier Ltd. All rights reserved.
López, Almudena; Vera, Manuel; Planas, Miquel; Bouza, Carmen
2015-01-01
This study was focused on conservation genetics of threatened Hippocampus guttulatus on the Atlantic coast of NW Iberian Peninsula. Information about spatial structure and temporal stability of wild populations was obtained based on microsatellite markers, and used for monitoring a captive breeding program firstly initiated in this zone at the facilities of the Institute of Marine Research (Vigo, Spain). No significant major genetic structure was observed regarding the biogeographical barrier of Cape Finisterre. However, two management units under continuous gene flow are proposed based on the allelic differentiation between South-Atlantic and Cantabrian subpopulations, with small to moderate contemporary effective size based on single-sample methods. Temporal stability was observed in South-Atlantic population samples of H. guttulatus for the six-year period studied, suggesting large enough effective population size to buffer the effects of genetic drift within the time frame of three generations. Genetic analysis of wild breeders and offspring in captivity since 2009 allowed us to monitor the breeding program founded in 2006 in NW Spain for this species. Similar genetic diversity in the renewed and founder broodstock, regarding the wild population of origin, supports suitable renewal and rearing processes to maintain genetic variation in captivity. Genetic parentage proved single-brood monogamy in the wild and in captivity, but flexible short- and long-term mating system under captive conditions, from strict monogamy to polygamy within and/or among breeding seasons. Family analysis showed high reproductive success in captivity under genetic management assisted by molecular relatedness estimates to avoid inbreeding. This study provides genetic information about H. guttulatus in the wild and captivity within an uncovered geographical range for this data deficient species, to be taken into account for management and conservation purposes. PMID:25646777
Costello, Tracy J; Falk, Catherine T; Ye, Kenny Q
2003-01-01
The Framingham Heart Study data, as well as a related simulated data set, were generously provided to the participants of the Genetic Analysis Workshop 13 in order that newly developed and emerging statistical methodologies could be tested on that well-characterized data set. The impetus driving the development of novel methods is to elucidate the contributions of genes, environment, and interactions between and among them, as well as to allow comparison between and validation of methods. The seven papers that comprise this group used data-mining methodologies (tree-based methods, neural networks, discriminant analysis, and Bayesian variable selection) in an attempt to identify the underlying genetics of cardiovascular disease and related traits in the presence of environmental and genetic covariates. Data-mining strategies are gaining popularity because they are extremely flexible and may have greater efficiency and potential in identifying the factors involved in complex disorders. While the methods grouped together here constitute a diverse collection, some papers asked similar questions with very different methods, while others used the same underlying methodology to ask very different questions. This paper briefly describes the data-mining methodologies applied to the Genetic Analysis Workshop 13 data sets and the results of those investigations. Copyright 2003 Wiley-Liss, Inc.
Kim, Jung-Yeon; Suh, Eun-Jung; Yu, Hyo-Soon; Jung, Hyun-Sik; Park, In-Ho; Choi, Yien-Kyeoug; Choi, Kyoung-Mi; Cho, Shin-Hyeong; Lee, Won-Ja
2011-12-01
Vivax malaria has reemerged and become endemic in Korea. Our study aimed to analyze by both longitudinal and cross-sectional genetic diversity of this malaria based on the P vivax Merozoite Surface Protein (PvMSP) gene parasites recently found in the Korean peninsula. PvMSP-1 gene sequence analysis from P vivax isolates (n = 835) during the 1996-2010 period were longitudinally analyzed and the isolates from the Korean peninsula through South Korea, the demilitarized zone and North Korea collected in 2008-2010 were enrolled in an overall analysis of MSP-1 gene diversity. New recombinant subtypes and severe multiple-cloneinfection rates were observed in recent vivax parasites. Regional variation was also observed in the study sites. This study revealed the great complexity of genetic variation and rapid dissemination of genes in P vivax. It also showed interesting patterns of diversity depending, on the region in the Korean Peninsula. Understanding the parasiteninsula. Under genetic variation may help to analyze trends and assess the extent of endemic malaria in Korea.
2q11.2 microdeletions: linking DNA structural variation to brain dysfunction and schizophrenia
Karayiorgou, Maria; Simon, Tony J.; Gogos, Joseph A.
2010-01-01
Recent studies are beginning to paint a clear and consistent picture of the impairments in psychological and cognitive competencies that are associated with microdeletions in chromosome 22q11.2. These studies have highlighted a strong link between this genetic lesion and schizophrenia. Parallel studies in humans and animal models are starting to uncover the complex genetic and neural substrates altered by the microdeletion. In addition to offering a deeper understanding of the effects of this genetic lesion, these findings may guide analysis of other copy-number variants associated with cognitive dysfunction and psychiatric disorders. PMID:20485365
Norheim, Katrine Brække; Le Hellard, Stephanie; Nordmark, Gunnel; Harboe, Erna; Gøransson, Lasse; Brun, Johan G; Wahren-Herlenius, Marie; Jonsson, Roland; Omdal, Roald
2014-02-01
Fatigue is prevalent and disabling in primary Sjögren's syndrome (pSS). Results from studies in chronic fatigue syndrome (CFS) indicate that genetic variation may influence fatigue. The aim of this study was to investigate single nucleotide polymorphism (SNP) variations in pSS patients with high and low fatigue. A panel of 85 SNPs in 12 genes was selected based on previous studies in CFS. A total of 207 pSS patients and 376 healthy controls were genotyped. One-hundred and ninety-three patients and 70 SNPs in 11 genes were available for analysis after quality control. Patients were dichotomized based on fatigue visual analogue scale (VAS) scores, with VAS <50 denominated "low fatigue" (n = 53) and VAS ≥50 denominated "high fatigue" (n = 140). We detected signals of association with pSS for one SNP in SLC25A40 (unadjusted p = 0.007) and two SNPs in PKN1 (both p = 0.03) in our pSS case versus control analysis. The association with SLC25A40 was stronger when only pSS high fatigue patients were analysed versus controls (p = 0.002). One SNP in PKN1 displayed an association in the case-only analysis of pSS high fatigue versus pSS low fatigue (p = 0.005). This candidate gene study in pSS did reveal a trend for associations between genetic variation in candidate genes and fatigue. The results will need to be replicated. More research on genetic associations with fatigue is warranted, and future trials should include larger cohorts and multicentre collaborations with sharing of genetic material to increase the statistical power.
Roy, Somnath; Marndi, B C; Mawkhlieng, B; Banerjee, A; Yadav, R M; Misra, A K; Bansal, K C
2016-07-13
Hill rices (Oryza sativa L.) are direct seeded rices grown on hill slopes of different gradients. These landraces have evolved under rainfed and harsh environmental conditions and may possess genes governing adaptation traits such as tolerance to cold and moisture stress. In this study, 64 hill rice landraces were collected from the state of Arunachal Pradesh of North-Eastern region of India, and assessed by agro-morphological variability and microsatellite markers polymorphism. Our aim was to use phenotypic and genetic diversity data to understand the basis of farmers' classification of hill rice landraces into two groups: umte and tening. Another goal was to understand the genetic differentiation of hill rices into Indica or japonica subspecies. According to farmers' classification, hill rices were categorized into two groups: umte (large-grained, late maturing) and tening (small-grained, early maturing). We did not find significant difference in days to 50 % flowering between the groups. Principal component analysis revealed that two groups can be distinguished on the basis of kernel length-to-width ration (KLW), kernel length (KL), grain length (GrL), grain length-to-width ration (GrLW) and plant height (Ht). Stepwise canonical discriminant analysis identified KL and Ht as the main discriminatory characters between the cultivar groups. Genetic diversity analysis with 35 SSR markers revealed considerable genetic diversity in the hill rice germplasm (gene diversity: 0.66; polymorphism information content: 0.62). Pair-wise allelic difference between umte and tening groups was not statistically significant. The model-based population structure analysis showed that the hill rices were clustered into two broad groups corresponding to Indica and Japonica. The geographic distribution and cultivars grouping of hill rices were not congruent in genetic clusters. Both distance- and model-based approaches indicated that the hill rices were predominantly japonica or admixture among the groups within the subspecies. These findings were further supported by combined analysis hill rices with 150 reference rice accessions representing major genetic groups of rice. This study collected a valuable set of hill rice germplasm for rice breeding and for evolutionary studies. It also generated a new set of information on genetic and phenotypic diversity of hill rice landraces in North-Eastern region of India. The collected hill rices were mostly japonica or admixture among the subpopulations of Indica or Japonica. The findings are useful for utilization and conservation of hill rice germplasm.
Ren, Jing; Sun, Daokun; Chen, Liang; You, Frank M; Wang, Jirui; Peng, Yunliang; Nevo, Eviatar; Sun, Dongfa; Luo, Ming-Cheng; Peng, Junhua
2013-03-28
Evaluation of genetic diversity and genetic structure in crops has important implications for plant breeding programs and the conservation of genetic resources. Newly developed single nucleotide polymorphism (SNP) markers are effective in detecting genetic diversity. In the present study, a worldwide durum wheat collection consisting of 150 accessions was used. Genetic diversity and genetic structure were investigated using 946 polymorphic SNP markers covering the whole genome of tetraploid wheat. Genetic structure was greatly impacted by multiple factors, such as environmental conditions, breeding methods reflected by release periods of varieties, and gene flows via human activities. A loss of genetic diversity was observed from landraces and old cultivars to the modern cultivars released during periods of the Early Green Revolution, but an increase in cultivars released during the Post Green Revolution. Furthermore, a comparative analysis of genetic diversity among the 10 mega ecogeographical regions indicated that South America, North America, and Europe possessed the richest genetic variability, while the Middle East showed moderate levels of genetic diversity.
Kang, Si-Yong; Lee, Geung-Joo; Lim, Ki Byung; Lee, Hye Jung; Park, In Sook; Chung, Sung Jin; Kim, Jin-Baek; Kim, Dong Sub; Rhee, Hye Kyung
2008-04-30
The genus Cynodon comprises ten species. The objective of this study was to evaluate the genetic diversity of Korean bermudagrasses at the morphological, cytological and molecular levels. Morphological parameters, the nuclear DNA content and ploidy levels were observed in 43 bermudagrass ecotypes. AFLP markers were evaluated to define the genetic diversity, and chromosome counts were made to confirm the inferred cytotypes. Nuclear DNA contents were in the ranges 1.42-1.56, 1.94-2.19, 2.54, and 2.77-2.85 pg/2C for the triploid, tetraploid, pentaploid, and hexaploid accessions, respectively. The inferred cytotypes were triploid (2n = 3x = 27), tetraploid (2n = 4x = 36), pentaploid (2n = 5x = 45), and hexaploid (2n = 6x = 54), but the majority of the collections were tetraploid (81%). Mitotic chromosome counts verified the corresponding ploidy levels. The fast growing fine-textured ecotypes had lower ploidy levels, while the pentaploids and hexaploids were coarse types. The genetic similarity ranged from 0.42 to 0.94 with an average of 0.64. UPGMA cluster analysis and principle coordinate analysis separated the ecotypes into 6 distinct groups. The genetic similarity suggests natural hybridization between the different cytotypes, which could be useful resources for future breeding and genetic studies.
Genetic variation associated with cardiovascular risk in autoimmune diseases
Perrotti, Pedro P.; Aterido, Adrià; Fernández-Nebro, Antonio; Cañete, Juan D.; Ferrándiz, Carlos; Tornero, Jesús; Gisbert, Javier P.; Domènech, Eugeni; Fernández-Gutiérrez, Benjamín; Gomollón, Fernando; García-Planella, Esther; Fernández, Emilia; Sanmartí, Raimon; Gratacós, Jordi; Martínez-Taboada, Víctor Manuel; Rodríguez-Rodríguez, Luís; Palau, Núria; Tortosa, Raül; Corbeto, Mireia L.; Lasanta, María L.; Marsal, Sara; Julià, Antonio
2017-01-01
Autoimmune diseases have a higher prevalence of cardiovascular events compared to the general population. The objective of this study was to investigate the genetic basis of cardiovascular disease (CVD) risk in autoimmunity. We analyzed genome-wide genotyping data from 6,485 patients from six autoimmune diseases that are associated with a high socio-economic impact. First, for each disease, we tested the association of established CVD risk loci. Second, we analyzed the association of autoimmune disease susceptibility loci with CVD. Finally, to identify genetic patterns associated with CVD risk, we applied the cross-phenotype meta-analysis approach (CPMA) on the genome-wide data. A total of 17 established CVD risk loci were significantly associated with CVD in the autoimmune patient cohorts. From these, four loci were found to have significantly different genetic effects across autoimmune diseases. Six autoimmune susceptibility loci were also found to be associated with CVD risk. Genome-wide CPMA analysis identified 10 genetic clusters strongly associated with CVD risk across all autoimmune diseases. Two of these clusters are highly enriched in pathways previously associated with autoimmune disease etiology (TNFα and IFNγ cytokine pathways). The results of this study support the presence of specific genetic variation associated with the increase of CVD risk observed in autoimmunity. PMID:28982122
Rapid identification of Enterobacter hormaechei and Enterobacter cloacae genetic cluster III.
Ohad, S; Block, C; Kravitz, V; Farber, A; Pilo, S; Breuer, R; Rorman, E
2014-05-01
Enterobacter cloacae complex bacteria are of both clinical and environmental importance. Phenotypic methods are unable to distinguish between some of the species in this complex, which often renders their identification incomplete. The goal of this study was to develop molecular assays to identify Enterobacter hormaechei and Ent. cloacae genetic cluster III which are relatively frequently encountered in clinical material. The molecular assays developed in this study are qPCR technology based and served to identify both Ent. hormaechei and Ent. cloacae genetic cluster III. qPCR results were compared to hsp60 sequence analysis. Most clinical isolates were assigned to Ent. hormaechei subsp. steigerwaltii and Ent. cloacae genetic cluster III. The latter was proportionately more frequently isolated from bloodstream infections than from other material (P < 0·05). The qPCR assays detecting Ent. hormaechei and Ent. cloacae genetic cluster III demonstrated high sensitivity and specificity. The presented qPCR assays allow accurate and rapid identification of clinical isolates of the Ent. cloacae complex. The improved identifications obtained can specifically assist analysis of Ent. hormaechei and Ent. cloacae genetic cluster III in nosocomial outbreaks and can promote rapid environmental monitoring. An association was observed between Ent. cloacae cluster III and systemic infection that deserves further attention. © 2014 The Society for Applied Microbiology.
Hsueh, Wen-Chi; He, Qimei; Willcox, D. Craig; Nievergelt, Caroline M.; Donlon, Timothy A.; Kwok, Pui-Yan; Suzuki, Makoto; Willcox, Bradley J.
2014-01-01
Isolated populations have advantages for genetic studies of longevity from decreased haplotype diversity and long-range linkage disequilibrium. This permits smaller sample sizes without loss of power, among other utilities. Little is known about the genome of the Okinawans, a potential population isolate, recognized for longevity. Therefore, we assessed genetic diversity, structure, and admixture in Okinawans, and compared this with Caucasians, Chinese, Japanese, and Africans from HapMap II, genotyped on the same Affymetrix GeneChip Human Mapping 500K array. Principal component analysis, haplotype coverage, and linkage disequilibrium decay revealed a distinct Okinawan genome—more homogeneity, less haplotype diversity, and longer range linkage disequilibrium. Population structure and admixture analyses utilizing 52 global reference populations from the Human Genome Diversity Cell Line Panel demonstrated that Okinawans clustered almost exclusively with East Asians. Sibling relative risk (λs) analysis revealed that siblings of Okinawan centenarians have 3.11 times (females) and 3.77 times (males) more likelihood of centenarianism. These findings suggest that Okinawans are genetically distinct and share several characteristics of a population isolate, which are prone to develop extreme phenotypes (eg, longevity) from genetic drift, natural selection, and population bottlenecks. These data support further exploration of genetic influence on longevity in the Okinawans. PMID:24444611
Ertiro, Berhanu Tadesse; Semagn, Kassa; Das, Biswanath; Olsen, Michael; Labuschagne, Maryke; Worku, Mosisa; Wegary, Dagne; Azmach, Girum; Ogugo, Veronica; Keno, Tolera; Abebe, Beyene; Chibsa, Temesgen; Menkir, Abebe
2017-10-12
Molecular characterization is important for efficient utilization of germplasm and development of improved varieties. In the present study, we investigated the genetic purity, relatedness and population structure of 265 maize inbred lines from the Ethiopian Institute of Agricultural Research (EIAR), the International Maize and Wheat Improvement Centre (CIMMYT) and the International Institute of Tropical Agriculture (IITA) using 220,878 single nucleotide polymorphic (SNP) markers obtained using genotyping by sequencing (GBS). Only 22% of the inbred lines were considered pure with <5% heterogeneity, while the remaining 78% of the inbred lines had a heterogeneity ranging from 5.1 to 31.5%. Pairwise genetic distances among the 265 inbred lines varied from 0.011 to 0.345, with 89% of the pairs falling between 0.301 and 0.345. Only <1% of the pairs had a genetic distance lower than 0.200, which included 14 pairs of sister lines that were nearly identical. Relative kinship analysis showed that the kinship coefficients for 59% of the pairs of lines was close to zero, which agrees with the genetic distance estimates. Principal coordinate analysis, discriminant analysis of principal components (DAPC) and the model-based population structure analysis consistently suggested the presence of three groups, which generally agreed with pedigree information (genetic background). Although not distinct enough, the SNP markers showed some level of separation between the two CIMMYT heterotic groups A and B established based on pedigree and combining ability information. The high level of heterogeneity detected in most of the inbred lines suggested the requirement for purification or further inbreeding except those deliberately maintained at early inbreeding level. The genetic distance and relative kinship analysis clearly indicated the uniqueness of most of the inbred lines in the maize germplasm available for breeders in the mid-altitude maize breeding program of Ethiopia. Results from the present study facilitate the maize breeding work in Ethiopia and germplasm exchange among breeding programs in Africa. We suggest the incorporation of high density molecular marker information in future heterotic group assignments.
The Ghost shrimp, (Neotrypaea californiensis) are burrowers, which have a wide demographic distribution along the United States Pacific Coast. Our study used genetic analysis to estimate the source populations of larvae recruiting into estuaries to allow a greater understanding ...
Adams, Noah S.; Spearman, William J.; Burger, Carl V.; Currens, Kenneth P.; Schreck, Carl B.; Li, Hiram W.
1994-01-01
Genetic differences between early and late forms of Alaskan chinook salmon (Oncorhynchus tshawytscha) were identified using two genetic approaches: mitochondrial DNA (mtDNA) analysis, and protein electrophoresis. Study populations consisted of early and late runs in each of the Kenai and Kasilof rivers in Alaska, and a population from the Minam River, Oregon. Two segments of mtDNA were amplified using the polymerase chain reaction (PCR) and digested with 14–16 restriction enzymes. Results showed that early runs were genetically similar to each other but different from the late runs. The late runs were different from each other based on the frequency of the common haplotypes. Frequency differences in shared haplotypes together with the presence of a unique haplotype separated the Minam River stock from those in Alaska. In the protein analysis, each population was examined at 30 allozyme loci. Based on 14 polymorphic loci, Minam River salmon were genetically distinct from the Alaskan populations. Within the Alaskan populations, early runs were most similar to each other but different from the late runs; the late runs were also genetically most similar to each other. Both mtDNA and allozyme analysis suggest that chinook salmon may segregate into genetically different early and late forms within a drainage.
Martinez, A L A; Araújo, J S P; Ragassi, C F; Buso, G S C; Reifschneider, F J B
2017-07-06
Capsicum peppers are native to the Americas, with Brazil being a significant diversity center. Capsicum baccatum accessions at Instituto Federal (IF) Goiano represent a portion of the species genetic resources from central Brazil. We aimed to characterize a C. baccatum working collection comprising 27 accessions and 3 commercial cultivars using morphological traits and molecular markers to describe its genetic and morphological variability and verify the occurrence of duplicates. This set included 1 C. baccatum var. praetermissum and 29 C. baccatum var. pendulum with potential for use in breeding programs. Twenty-two morphological descriptors, 57 inter-simple sequence repeat, and 34 random amplified polymorphic DNA markers were used. Genetic distance was calculated through the Jaccard similarity index and genetic variability through cluster analysis using the unweighted pair group method with arithmetic mean, resulting in dendrograms for both morphological analysis and molecular analysis. Genetic variability was found among C. baccatum var. pendulum accessions, and the distinction between the two C. baccatum varieties was evident in both the morphological and molecular analyses. The 29 C. baccatum var. pendulum genotypes clustered in four groups according to fruit type in the morphological analysis. They formed seven groups in the molecular analysis, without a clear correspondence with morphology. No duplicates were found. The results describe the genetic and morphological variability, provide a detailed characterization of genotypes, and discard the possibility of duplicates within the IF Goiano C. baccatum L. collection. This study will foment the use of this germplasm collection in C. baccatum breeding programs.
Ng, Yit Han; Fong, Mun Yik; Subramaniam, Vellayan; Shahari, Shahhaziq; Lau, Yee Ling
2015-12-01
Sarcocystis species are pathogenic parasites that infect a wide range of animals, including cattle. A high prevalence of cattle sarcocystosis has been reported worldwide, but its status is unknown in Malaysia. This study focused on utilizing 18S rDNA to identify Sarcocystis species in Malaysian cattle and to determine their genetic variants. In this study, only Sarcocystis cruzi was detected in Malaysian cattle. The intra-species S. cruzi phylogenetic tree analysis and principal coordinate analysis (PCoA), respectively displayed two minor groups among the parasite isolates. This finding was supported by high Wright FST value (FST=0.647). The definitive hosts (dogs) may play a fundamental role in the development of S. cruzi genetic variants. Additionally, the existence of microheterogeneity within the S. cruzi merozoites and/or distinct genetic variants arisen from independent merozoites in mature sarcocysts, possibly contributed to the existence of intra-species variations within the population. Copyright © 2015 Elsevier Ltd. All rights reserved.
Zadro, Joshua R; Shirley, Debra; Pinheiro, Marina B; Sánchez-Romera, Juan F; Pérez-Riquelme, Francisco; Ordoñana, Juan R; Ferreira, Paulo H
2017-04-01
There is limited research investigating educational attainment as a risk factor for low back pain (LBP), with the influence of gender commonly being neglected. Furthermore, genetics and early shared environment explain a substantial proportion of LBP cases and need to be controlled for when investigating risk factors for LBP. To investigate whether educational attainment affects the prevalence and risk of LBP differently in men and women while controlling for the influence of genetics and early shared environment. This is a cross-sectional and prospective twin case-control study. Adult monozygotic (MZ) and dizygotic (DZ) twins from the Murcia Twin Registry, with available data on educational attainment, formed the base sample for this study. The prevalence analysis considered twins with available data on LBP in 2013 (n=1,580). The longitudinal analysis considered twins free of LBP at baseline (2009-2011), with available data on LBP at follow-up (2013) (n=1,077). Data on the lifetime prevalence of activity limiting LBP (outcome) and educational attainment (risk factor) were self-reported. The prevalence analysis investigated the cross-sectional association between educational attainment and LBP, whereas the longitudinal analysis investigated whether educational attainment increased the risk of developing LBP. Both analyses were performed in the following sequence. First, a total sample analysis was performed on all twins (considering them as individuals), adjusting for confounding variables selected by the data. Second, to control for the influence of genetics and early shared environment, a within-pair case-control analysis (stratified by zygosity) was performed on complete twin pairs discordant for LBP (ie, one twin had LBP, whereas the co-twin did not). All analyses were stratified for gender where possible, with an interaction term determining whether gender was a significant moderator of the association between educational attainment and LBP. Women with either general secondary or university education were less likely to experience (prevalence analysis) or to develop LBP (longitudinal analysis). Educational attainment did not affect the risk of LBP in men. When controlling for the effects of genetics and early shared environment, the relationship between educational status and LBP in women was no longer statistically significant. Educational attainment affects LBP differently in men and women, with higher levels of education only decreasing the risk of developing LBP in women. After adjusting for genetics and early shared environment, the relationship between educational attainment and LBP in women disappears. This suggests that genetics and early shared environment are confounding the relationship between educational attainment and LBP in women. Copyright © 2016 Elsevier Inc. All rights reserved.
A Twin Study of Sleep Duration and Body Mass Index
Watson, Nathaniel F.; Buchwald, Dedra; Vitiello, Michael V.; Noonan, Carolyn; Goldberg, Jack
2010-01-01
Study Objective: To determine the relative importance of genetic and environmental contributions to the association between sleep duration and body mass index (BMI). Methods: Twins from the University of Washington Twin Registry, a community-based sample of U.S. twins, provided self-reported height and weight for BMI calculation and habitual sleep duration. A generalized estimating equation model evaluated the overall and within twin pair effects of sleep duration on BMI with and without stratification by twin zygosity. A structural equation model was used to assess genetic and non-genetic contributions to BMI and sleep duration. Results: The study sample included 1,224 twins comprised of 423 monozygotic, 143 dizygotic, and 46 indeterminate pairs. The mean age was 36.9 years; 69% were female. A multivariate adjusted analysis of all twins revealed an elevated mean BMI (26.0 kg/m2) in short sleeping twins (< 7 h/night) compared to twins sleeping 7–8.9 h/night (BMI 24.8 kg/m2; p < 0.01). The within-twin pair analysis revealed similar results, with the short sleeping twins having a mean BMI of 25.8 kg/m2 compared to 24.9 kg/m2 for the 7–8.9 h/night sleep duration group (p = 0.02). When restricted to monozygotic twins, the within-twin pair analysis continued to reveal an elevated BMI in the short sleeping twins (25.7 kg/m2) compared to the 7–8.9 h/night reference group (24.7 kg/m2; p = 0.02). No differences in mean BMI were observed between the 7–8.9 h/night reference group twins and longer sleeping twins (≥ 9 h/night) in the analysis of all twins, the overall within-twin pair analysis, or the within-twin pair analysis stratified by zygosity. The heritability of sleep duration was 0.31 (p = 0.08) and BMI 0.76 (p < 0.01). Bivariate genetic analysis revealed little evidence of shared genetics between sleep duration and BMI (p = 0.28). Conclusions: Short sleep was associated with elevated BMI following careful adjustment for genetics and shared environment. These findings point toward an environmental cause of the relationship between sleep duration and BMI. Citation: Watson NF; Buchwald D; Vitiello MV; Noonan C; Goldberg J. A twin study of sleep duration and body mass index. J Clin Sleep Med 2010;6(1):11-17. PMID:20191932
Optofluidic Cell Selection from Complex Microbial Communities for Single-Genome Analysis
Landry, Zachary C.; Giovanonni, Stephen J.; Quake, Stephen R.; Blainey, Paul C.
2013-01-01
Genetic analysis of single cells is emerging as a powerful approach for studies of heterogeneous cell populations. Indeed, the notion of homogeneous cell populations is receding as approaches to resolve genetic and phenotypic variation between single cells are applied throughout the life sciences. A key step in single-cell genomic analysis today is the physical isolation of individual cells from heterogeneous populations, particularly microbial populations, which often exhibit high diversity. Here, we detail the construction and use of instrumentation for optical trapping inside microfluidic devices to select individual cells for analysis by methods including nucleic acid sequencing. This approach has unique advantages for analyses of rare community members, cells with irregular morphologies, small quantity samples, and studies that employ advanced optical microscopy. PMID:24060116
Phylogenetic relationship of Ornithobacterium rhinotracheale strains.
DE Oca-Jimenez, Roberto Montes; Vega-Sanchez, Vicente; Morales-Erasto, Vladimir; Salgado-Miranda, Celene; Blackall, Patrick J; Soriano-Vargas, Edgardo
2018-04-10
The bacterium Ornithobacterium rhinotracheale is associated with respiratory disease in wild birds and poultry. In this study, the phylogenetic analysis of nine reference strains of O. rhinotracheale belonging to serovars A to I, and eight Mexican isolates belonging to serovar A, was performed. The analysis was extended to include available sequences from another 23 strains available in the public domain. The analysis showed that the 40 sequences formed six clusters, I to VI. All eight Mexican field isolates were placed in cluster I. One of the reference strains appears to present genetic diversity not previously recognized and was placed in a new genetic cluster. In conclusion, the phylogenetic analysis of O. rhinotracheale strains, based on the 16S rRNA gene, is a suitable tool for epidemiologic studies.
Genetic variability within and among populations of an invasive, exotic orchid
Ueno, Sueme; Rodrigues, Jucelene Fernandes; Alves-Pereira, Alessandro; Pansarin, Emerson Ricardo; Veasey, Elizabeth Ann
2015-01-01
Despite the fact that invasive species are of great evolutionary interest because of their success in colonizing and spreading into new areas, the factors underlying this success often remain obscure. In this sense, studies on population genetics and phylogenetic relationships of invasive species could offer insights into mechanisms of invasions. Originally from Africa, the terrestrial orchid Oeceoclades maculata, considered an invasive plant, is the only species of the genus throughout the Americas. Considering the lack of information on population genetics of this species, the aim of this study was to evaluate the genetic diversity and structure of Brazilian populations of O. maculata. We used 13 inter-simple sequence repeat primers to assess the genetic diversity of 152 individuals of O. maculata distributed in five sampled sites from three Brazilian states (São Paulo, Mato Grosso and Paraná). Low diversity was found within samples, with estimates of the Shannon index (H) ranging from 0.0094 to 0.1054 and estimates of Nei's gene diversity (He) ranging from 0.0054 to 0.0668. However, when evaluated together, the sampling locations showed substantially higher diversity estimates (H = 0.3869, He = 0.2556), and most of the genetic diversity was found among populations (ΦST = 0.933). Both clustering and principal coordinate analysis indicate the existence of five distinct groups, corresponding to the sampled localities, and which were also recovered in the Bayesian analysis. A substructure was observed in one of the localities, suggesting a lack of gene flow even between very small distances. The patterns of genetic structure found in this study may be understood considering the interaction of several probable reproductive strategies with its history of colonization involving possible genetic drift, selective pressures and multiple introductions. PMID:26162896
Redlinger-Grosse, Krista; Veach, Patricia McCarthy; LeRoy, Bonnie S; Zierhut, Heather
2017-12-01
As the genetic counseling field evolves, a comprehensive model of practice is critical. The Reciprocal-Engagement Model (REM) consists of 5 tenets and 17 goals. Lacking in the REM, however, are well-articulated counselor strategies and behaviors. The purpose of the present study was to further elaborate and provide supporting evidence for the REM by identifying and mapping genetic counseling strategies to the REM goals. A secondary, qualitative analysis was conducted on data from two prior studies: 1) focus group results of genetic counseling outcomes (Redlinger-Grosse et al., Journal of Genetic Counseling, 2015); and 2) genetic counselors' examples of successful and unsuccessful genetic counseling sessions (Geiser et al. 2009). Using directed content analysis, 337 unique strategies were extracted from focus group data. A Q-sort of the 337 strategies yielded 15 broader strategy domains that were then mapped to the successful and unsuccessful session examples. Differing prevalence of strategy domains identified in successful sessions versus the prevalence of domains identified as lacking in unsuccessful sessions provide further support for the REM goals. The most prevalent domains for successful sessions were Information Giving and Use Psychosocial Skills and Strategies; and for unsuccessful sessions, Information Giving and Establish Working Alliance. Identified strategies support the REM's reciprocal nature, especially with regard to addressing patients' informational and psychosocial needs. Patients' contributions to success (or lack thereof) of sessions was also noted, supporting a REM tenet that individual characteristics and the counselor-patient relationship are central to processes and outcomes. The elaborated REM could be used as a framework for certain graduate curricular objectives, and REM components could also inform process and outcomes research studies to document and further characterize genetic counselor strategies.
Estimating the actual subject-specific genetic correlations in behavior genetics.
Molenaar, Peter C M
2012-10-01
Generalization of the standard behavior longitudinal genetic factor model for the analysis of interindividual phenotypic variation to a genetic state space model for the analysis of intraindividual variation enables the possibility to estimate subject-specific heritabilities.
Alamgir, Md; Eroukova, Veronika; Jessulat, Matthew; Xu, Jianhua; Golshani, Ashkan
2008-01-01
Background Functional genomics has received considerable attention in the post-genomic era, as it aims to identify function(s) for different genes. One way to study gene function is to investigate the alterations in the responses of deletion mutants to different stimuli. Here we investigate the genetic profile of yeast non-essential gene deletion array (yGDA, ~4700 strains) for increased sensitivity to paromomycin, which targets the process of protein synthesis. Results As expected, our analysis indicated that the majority of deletion strains (134) with increased sensitivity to paromomycin, are involved in protein biosynthesis. The remaining strains can be divided into smaller functional categories: metabolism (45), cellular component biogenesis and organization (28), DNA maintenance (21), transport (20), others (38) and unknown (39). These may represent minor cellular target sites (side-effects) for paromomycin. They may also represent novel links to protein synthesis. One of these strains carries a deletion for a previously uncharacterized ORF, YBR261C, that we term TAE1 for Translation Associated Element 1. Our focused follow-up experiments indicated that deletion of TAE1 alters the ribosomal profile of the mutant cells. Also, gene deletion strain for TAE1 has defects in both translation efficiency and fidelity. Miniaturized synthetic genetic array analysis further indicates that TAE1 genetically interacts with 16 ribosomal protein genes. Phenotypic suppression analysis using TAE1 overexpression also links TAE1 to protein synthesis. Conclusion We show that a previously uncharacterized ORF, YBR261C, affects the process of protein synthesis and reaffirm that large-scale genetic profile analysis can be a useful tool to study novel gene function(s). PMID:19055778
Alamgir, Md; Eroukova, Veronika; Jessulat, Matthew; Xu, Jianhua; Golshani, Ashkan
2008-12-03
Functional genomics has received considerable attention in the post-genomic era, as it aims to identify function(s) for different genes. One way to study gene function is to investigate the alterations in the responses of deletion mutants to different stimuli. Here we investigate the genetic profile of yeast non-essential gene deletion array (yGDA, approximately 4700 strains) for increased sensitivity to paromomycin, which targets the process of protein synthesis. As expected, our analysis indicated that the majority of deletion strains (134) with increased sensitivity to paromomycin, are involved in protein biosynthesis. The remaining strains can be divided into smaller functional categories: metabolism (45), cellular component biogenesis and organization (28), DNA maintenance (21), transport (20), others (38) and unknown (39). These may represent minor cellular target sites (side-effects) for paromomycin. They may also represent novel links to protein synthesis. One of these strains carries a deletion for a previously uncharacterized ORF, YBR261C, that we term TAE1 for Translation Associated Element 1. Our focused follow-up experiments indicated that deletion of TAE1 alters the ribosomal profile of the mutant cells. Also, gene deletion strain for TAE1 has defects in both translation efficiency and fidelity. Miniaturized synthetic genetic array analysis further indicates that TAE1 genetically interacts with 16 ribosomal protein genes. Phenotypic suppression analysis using TAE1 overexpression also links TAE1 to protein synthesis. We show that a previously uncharacterized ORF, YBR261C, affects the process of protein synthesis and reaffirm that large-scale genetic profile analysis can be a useful tool to study novel gene function(s).
Population Structure in Naegleria fowleri as Revealed by Microsatellite Markers
Coupat-Goutaland, Bénédicte; Régoudis, Estelle; Besseyrias, Matthieu; Mularoni, Angélique; Binet, Marie; Herbelin, Pascaline; Pélandakis, Michel
2016-01-01
Naegleria sp. is a free living amoeba belonging to the Heterolobosea class. Over 40 species of Naegleria were identified and recovered worldwide in different habitats such as swimming pools, freshwater lakes, soil or dust. Among them, N. fowleri, is a human pathogen responsible for primary amoeboic meningoencephalitis (PAM). Around 300 cases were reported in 40 years worldwide but PAM is a fatal disease of the central nervous system with only 5% survival of infected patients. Since both pathogenic and non pathogenic species were encountered in the environment, detection and dispersal mode are crucial points in the fight against this pathogenic agent. Previous studies on identification and genotyping of N. fowleri strains were focused on RAPD analysis and on ITS sequencing and identified 5 variants: euro-american, south pacific, widespread, cattenom and chooz. Microsatellites are powerful markers in population genetics with broad spectrum of applications (such as paternity test, fingerprinting, genetic mapping or genetic structure analysis). They are characterized by a high degree of length polymorphism. The aim of this study was to genotype N. fowleri strains using microsatellites markers in order to track this population and to better understand its evolution. Six microsatellite loci and 47 strains from different geographical origins were used for this analysis. The microsatellite markers revealed a level of discrimination higher than any other marker used until now, enabling the identification of seven genetic groups, included in the five main genetic groups based on the previous RAPD and ITS analyses. This analysis also allowed us to go further in identifying private alleles highlighting intra-group variability. A better identification of the N. fowleri isolates could be done with this type of analysis and could allow a better tracking of the clinical and environmental N. fowleri strains. PMID:27035434
Population Structure in Naegleria fowleri as Revealed by Microsatellite Markers.
Coupat-Goutaland, Bénédicte; Régoudis, Estelle; Besseyrias, Matthieu; Mularoni, Angélique; Binet, Marie; Herbelin, Pascaline; Pélandakis, Michel
2016-01-01
Naegleria sp. is a free living amoeba belonging to the Heterolobosea class. Over 40 species of Naegleria were identified and recovered worldwide in different habitats such as swimming pools, freshwater lakes, soil or dust. Among them, N. fowleri, is a human pathogen responsible for primary amoeboic meningoencephalitis (PAM). Around 300 cases were reported in 40 years worldwide but PAM is a fatal disease of the central nervous system with only 5% survival of infected patients. Since both pathogenic and non pathogenic species were encountered in the environment, detection and dispersal mode are crucial points in the fight against this pathogenic agent. Previous studies on identification and genotyping of N. fowleri strains were focused on RAPD analysis and on ITS sequencing and identified 5 variants: euro-american, south pacific, widespread, cattenom and chooz. Microsatellites are powerful markers in population genetics with broad spectrum of applications (such as paternity test, fingerprinting, genetic mapping or genetic structure analysis). They are characterized by a high degree of length polymorphism. The aim of this study was to genotype N. fowleri strains using microsatellites markers in order to track this population and to better understand its evolution. Six microsatellite loci and 47 strains from different geographical origins were used for this analysis. The microsatellite markers revealed a level of discrimination higher than any other marker used until now, enabling the identification of seven genetic groups, included in the five main genetic groups based on the previous RAPD and ITS analyses. This analysis also allowed us to go further in identifying private alleles highlighting intra-group variability. A better identification of the N. fowleri isolates could be done with this type of analysis and could allow a better tracking of the clinical and environmental N. fowleri strains.
Taranto, F; D'Agostino, N; Greco, B; Cardi, T; Tripodi, P
2016-11-21
Knowledge on population structure and genetic diversity in vegetable crops is essential for association mapping studies and genomic selection. Genotyping by sequencing (GBS) represents an innovative method for large scale SNP detection and genotyping of genetic resources. Herein we used the GBS approach for the genome-wide identification of SNPs in a collection of Capsicum spp. accessions and for the assessment of the level of genetic diversity in a subset of 222 cultivated pepper (Capsicum annum) genotypes. GBS analysis generated a total of 7,568,894 master tags, of which 43.4% uniquely aligned to the reference genome CM334. A total of 108,591 SNP markers were identified, of which 105,184 were in C. annuum accessions. In order to explore the genetic diversity of C. annuum and to select a minimal core set representing most of the total genetic variation with minimum redundancy, a subset of 222 C. annuum accessions were analysed using 32,950 high quality SNPs. Based on Bayesian and Hierarchical clustering it was possible to divide the collection into three clusters. Cluster I had the majority of varieties and landraces mainly from Southern and Northern Italy, and from Eastern Europe, whereas clusters II and III comprised accessions of different geographical origins. Considering the genome-wide genetic variation among the accessions included in cluster I, a second round of Bayesian (K = 3) and Hierarchical (K = 2) clustering was performed. These analysis showed that genotypes were grouped not only based on geographical origin, but also on fruit-related features. GBS data has proven useful to assess the genetic diversity in a collection of C. annuum accessions. The high number of SNP markers, uniformly distributed on the 12 chromosomes, allowed the accessions to be distinguished according to geographical origin and fruit-related features. SNP markers and information on population structure developed in this study will undoubtedly support genome-wide association mapping studies and marker-assisted selection programs.
van Hulzen, Kimm J E; Scholz, Claus J; Franke, Barbara; Ripke, Stephan; Klein, Marieke; McQuillin, Andrew; Sonuga-Barke, Edmund J; Kelsoe, John R; Landén, Mikael; Andreassen, Ole A; Lesch, Klaus-Peter; Weber, Heike; Faraone, Stephen V; Arias-Vasquez, Alejandro; Reif, Andreas
2017-11-01
Attention-deficit/hyperactivity disorder (ADHD) and bipolar disorder (BPD) are frequently co-occurring and highly heritable mental health conditions. We hypothesized that BPD cases with an early age of onset (≤21 years old) would be particularly likely to show genetic covariation with ADHD. Genome-wide association study data were available for 4609 individuals with ADHD, 9650 individuals with BPD (5167 thereof with early-onset BPD), and 21,363 typically developing controls. We conducted a cross-disorder genome-wide association study meta-analysis to identify whether the observed comorbidity between ADHD and BPD could be due to shared genetic risks. We found a significant single nucleotide polymorphism-based genetic correlation between ADHD and BPD in the full and age-restricted samples (r Gfull = .64, p = 3.13 × 10 -14 ; r Grestricted = .71, p = 4.09 × 10 -16 ). The meta-analysis between the full BPD sample identified two genome-wide significant (p rs7089973 = 2.47 × 10 -8 ; p rs11756438 = 4.36 × 10 -8 ) regions located on chromosomes 6 (CEP85L) and 10 (TAF9BP2). Restricting the analyses to BPD cases with an early onset yielded one genome-wide significant association (p rs58502974 = 2.11 × 10 -8 ) on chromosome 5 in the ADCY2 gene. Additional nominally significant regions identified contained known expression quantitative trait loci with putative functional consequences for NT5DC1, NT5DC2, and CACNB3 expression, whereas functional predictions implicated ABLIM1 as an allele-specific expressed gene in neuronal tissue. The single nucleotide polymorphism-based genetic correlation between ADHD and BPD is substantial, significant, and consistent with the existence of genetic overlap between ADHD and BPD, with potential differential genetic mechanisms involved in early and later BPD onset. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
Rahmatalla, Siham A; Arends, Danny; Reissmann, Monika; Said Ahmed, Ammar; Wimmers, Klaus; Reyer, Henry; Brockmann, Gudrun A
2017-10-23
Sudan is endowed with a variety of indigenous goat breeds which are used for meat and milk production and which are well adapted to the local environment. The aim of the present study was to determine the genetic diversity and relationship within and between the four main Sudanese breeds of Nubian, Desert, Taggar and Nilotic goats. Using the 50 K SNP chip, 24 animals of each breed were genotyped. More than 96% of high quality SNPs were polymorphic with an average minor allele frequency of 0.3. In all breeds, no significant difference between observed (0.4) and expected (0.4) heterozygosity was found and the inbreeding coefficients (F IS ) did not differ from zero. F st coefficients for the genetic distance between breeds also did not significantly deviate from zero. In addition, the analysis of molecular variance revealed that 93% of the total variance in the examined population can be explained by differences among individuals, while only 7% result from differences between the breeds. These findings provide evidence for high genetic diversity and little inbreeding within breeds on one hand, and low diversity between breeds on the other hand. Further examinations using Nei's genetic distance and STRUCTURE analysis clustered Taggar goats distinct from the other breeds. In a principal component (PC) analysis, PC1 could separate Taggar, Nilotic and a mix of Nubian and Desert goats into three groups. The SNPs that contributed strongly to PC1 showed high F st values in Taggar goat versus the other goat breeds. PCA allowed us to identify target genomic regions which contain genes known to influence growth, development, bone formation and the immune system. The information on the genetic variability and diversity in this study confirmed that Taggar goat is genetically different from the other goat breeds in Sudan. The SNPs identified by the first principal components show high F st values in Taggar goat and allowed to identify candidate genes which can be used in the development of breed selection programs to improve local breeds and find genetic factors contributing to the adaptation to harsh environments.
Mega, J L; Stitziel, N O; Smith, J G; Chasman, D I; Caulfield, M; Devlin, J J; Nordio, F; Hyde, C; Cannon, C P; Sacks, F; Poulter, N; Sever, P; Ridker, P M; Braunwald, E; Melander, O; Kathiresan, S; Sabatine, M S
2015-06-06
Genetic variants have been associated with the risk of coronary heart disease. In this study, we tested whether or not a composite of these variants could ascertain the risk of both incident and recurrent coronary heart disease events and identify those individuals who derive greater clinical benefit from statin therapy. A community-based cohort study (the Malmo Diet and Cancer Study) and four randomised controlled trials of both primary prevention (JUPITER and ASCOT) and secondary prevention (CARE and PROVE IT-TIMI 22) with statin therapy, comprising a total of 48,421 individuals and 3477 events, were included in these analyses. We studied the association of a genetic risk score based on 27 genetic variants with incident or recurrent coronary heart disease, adjusting for traditional clinical risk factors. We then investigated the relative and absolute risk reductions in coronary heart disease events with statin therapy stratified by genetic risk. We combined data from the different studies using a meta-analysis. When individuals were divided into low (quintile 1), intermediate (quintiles 2-4), and high (quintile 5) genetic risk categories, a significant gradient in risk for incident or recurrent coronary heart disease was shown. Compared with the low genetic risk category, the multivariable-adjusted hazard ratio for coronary heart disease for the intermediate genetic risk category was 1·34 (95% CI 1·22-1·47, p<0·0001) and that for the high genetic risk category was 1·72 (1·55-1·92, p<0·0001). In terms of the benefit of statin therapy in the four randomised trials, we noted a significant gradient (p=0·0277) of increasing relative risk reductions across the low (13%), intermediate (29%), and high (48%) genetic risk categories. Similarly, we noted greater absolute risk reductions in those individuals in higher genetic risk categories (p=0·0101), resulting in a roughly threefold decrease in the number needed to treat to prevent one coronary heart disease event in the primary prevention trials. Specifically, in the primary prevention trials, the number needed to treat to prevent one such event in 10 years was 66 in people at low genetic risk, 42 in those at intermediate genetic risk, and 25 in those at high genetic risk in JUPITER, and 57, 47, and 20, respectively, in ASCOT. A genetic risk score identified individuals at increased risk for both incident and recurrent coronary heart disease events. People with the highest burden of genetic risk derived the largest relative and absolute clinical benefit from statin therapy. National Institutes of Health. Copyright © 2015 Elsevier Ltd. All rights reserved.
A Genetic Epidemiological Mega Analysis of Smoking Initiation in Adolescents.
Maes, Hermine H; Prom-Wormley, Elizabeth; Eaves, Lindon J; Rhee, Soo Hyun; Hewitt, John K; Young, Susan; Corley, Robin; McGue, Matt; Iacono, William G; Legrand, Lisa; Samek, Diana R; Murrelle, E Lenn; Silberg, Judy L; Miles, Donna R; Schieken, Richard M; Beunen, Gaston P; Thomis, Martine; Rose, Richard J; Dick, Danielle M; Boomsma, Dorret I; Bartels, Meike; Vink, Jacqueline M; Lichtenstein, Paul; White, Victoria; Kaprio, Jaakko; Neale, Michael C
2017-04-01
Previous studies in adolescents were not adequately powered to accurately disentangle genetic and environmental influences on smoking initiation (SI) across adolescence. Mega-analysis of pooled genetically informative data on SI was performed, with structural equation modeling, to test equality of prevalence and correlations across cultural backgrounds, and to estimate the significance and effect size of genetic and environmental effects according to the classical twin study, in adolescent male and female twins from same-sex and opposite-sex twin pairs (N = 19 313 pairs) between ages 10 and 19, with 76 358 longitudinal assessments between 1983 and 2007, from 11 population-based twin samples from the United States, Europe, and Australia. Although prevalences differed between samples, twin correlations did not, suggesting similar etiology of SI across developed countries. The estimate of additive genetic contributions to liability of SI increased from approximately 15% to 45% from ages 13 to 19. Correspondingly, shared environmental factors accounted for a substantial proportion of variance in liability to SI at age 13 (70%) and gradually less by age 19 (40%). Both additive genetic and shared environmental factors significantly contribute to variance in SI throughout adolescence. The present study, the largest genetic epidemiological study on SI to date, found consistent results across 11 studies for the etiology of SI. Environmental factors, especially those shared by siblings in a family, primarily influence SI variance in early adolescence, while an increasing role of genetic factors is seen at later ages, which has important implications for prevention strategies. This is the first study to find evidence of genetic factors in liability to SI at ages as young as 12. It also shows the strongest evidence to date for decay of effects of the shared environment from early adolescence to young adulthood. We found remarkable consistency of twin correlations across studies reflecting similar etiology of liability to initiate smoking across different cultures and time periods. Thus familial factors strongly contribute to individual differences in who starts to smoke with a gradual increase in the impact of genetic factors and a corresponding decrease in that of the shared environment. © The Author 2017. Published by Oxford University Press on behalf of the Society for Research on Nicotine and Tobacco. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Autobiologies on YouTube: Narratives of Direct-to-Consumer Genetic Testing.
Harris, Anna; Kelly, Susan E; Wyatt, Sally
2014-03-01
Despite a growing personal genomics market, little is known about how people engage with the possibilities offered by direct-to-consumer (DTC) genetic testing. In order to help address this gap, this study deploys narrative analysis of YouTube videos posted by individuals who have purchased DTC genetic testing for disease. Genetic testing is said to be contributing to new states of illness, where individuals may become "patients-in-waiting." In the videos analyzed, we found a new form of storytelling about this ambiguous state of illness, which we refer to as autobiology. Autobiology - the study of, and story about, one's own biology - concerns narratives of sense-making through forms of biological practice, as well as wayfaring narratives which interweave genetic markers and family histories of disease. These autobiologies - part of a broader shift toward public stories about genetics and other healthcare technologies - exhibit playfulness, as well as being bound with consumerist practices.
2014-01-01
Background Wild boar, Sus scrofa, is an extant wild ancestor of the domestic pig as an agro-economically important mammal. Wild boar has a worldwide distribution with its geographic origin in Southeast Asia, but genetic diversity and genetic structure of wild boar in East Asia are poorly understood. To characterize the pattern and amount of genetic variation and population structure of wild boar in East Asia, we genotyped and analyzed microsatellite loci for a total of 238 wild boar specimens from ten locations across six countries in East and Southeast Asia. Results Our data indicated that wild boar populations in East Asia are genetically diverse and structured, showing a significant correlation of genetic distance with geographic distance and implying a low level of gene flow at a regional scale. Bayesian-based clustering analysis was indicative of seven inferred genetic clusters in which wild boars in East Asia are geographically structured. The level of genetic diversity was relatively high in wild boars from Southeast Asia, compared with those from Northeast Asia. This gradient pattern of genetic diversity is consistent with an assumed ancestral population of wild boar in Southeast Asia. Genetic evidences from a relationship tree and structure analysis suggest that wild boar in Jeju Island, South Korea have a distinct genetic background from those in mainland Korea. Conclusions Our results reveal a diverse pattern of genetic diversity and the existence of genetic differentiation among wild boar populations inhabiting East Asia. This study highlights the potential contribution of genetic variation of wild boar to the high genetic diversity of local domestic pigs during domestication in East Asia. PMID:25034725
Wang, Lili; Fan, Jean; Francis, Joshua M.; Georghiou, George; Hergert, Sarah; Li, Shuqiang; Gambe, Rutendo; Zhou, Chensheng W.; Yang, Chunxiao; Xiao, Sheng; Cin, Paola Dal; Bowden, Michaela; Kotliar, Dylan; Shukla, Sachet A.; Brown, Jennifer R.; Neuberg, Donna; Alessi, Dario R.; Zhang, Cheng-Zhong; Kharchenko, Peter V.; Livak, Kenneth J.; Wu, Catherine J.
2017-01-01
Intra-tumoral genetic heterogeneity has been characterized across cancers by genome sequencing of bulk tumors, including chronic lymphocytic leukemia (CLL). In order to more accurately identify subclones, define phylogenetic relationships, and probe genotype–phenotype relationships, we developed methods for targeted mutation detection in DNA and RNA isolated from thousands of single cells from five CLL samples. By clearly resolving phylogenic relationships, we uncovered mutated LCP1 and WNK1 as novel CLL drivers, supported by functional evidence demonstrating their impact on CLL pathways. Integrative analysis of somatic mutations with transcriptional states prompts the idea that convergent evolution generates phenotypically similar cells in distinct genetic branches, thus creating a cohesive expression profile in each CLL sample despite the presence of genetic heterogeneity. Our study highlights the potential for single-cell RNA-based targeted analysis to sensitively determine transcriptional and mutational profiles of individual cancer cells, leading to increased understanding of driving events in malignancy. PMID:28679620
Handler, Alfred M; Beeman, Richard W
2003-01-01
USDA-ARS scientists have made important contributions to the molecular genetic analysis of agriculturally important insects, and have been in the forefront of using this information for the development of new pest management strategies. Advances have been made in the identification and analysis of genetic systems involved in insect development, reproduction and behavior which enable the identification of new targets for control, as well as the development of highly specific insecticidal products. Other studies have been on the leading edge of developing gene transfer technology to better elucidate these biological processes though functional genomics and to develop new transgenic strains for biological control. Important contributions have also been made to the development and use of molecular markers and methodologies to identify and track insect populations. The use of molecular genetic technology and strategies will become increasingly important to pest management as genomic sequencing information becomes available from important pest insects, their targets and other associated organisms.
Genetic susceptibility to bone and soft tissue sarcomas: a field synopsis and meta-analysis.
Benna, Clara; Simioni, Andrea; Pasquali, Sandro; De Boni, Davide; Rajendran, Senthilkumar; Spiro, Giovanna; Colombo, Chiara; Virgone, Calogero; DuBois, Steven G; Gronchi, Alessandro; Rossi, Carlo Riccardo; Mocellin, Simone
2018-04-06
The genetic architecture of bone and soft tissue sarcomas susceptibility is yet to be elucidated. We aimed to comprehensively collect and meta-analyze the current knowledge on genetic susceptibility in these rare tumors. We conducted a systematic review and meta-analysis of the evidence on the association between DNA variation and risk of developing sarcomas through searching PubMed, The Cochrane Library, Scopus and Web of Science databases. To evaluate result credibility, summary evidence was graded according to the Venice criteria and false positive report probability (FPRP) was calculated to further validate result noteworthiness. Integrative analysis of genetic and eQTL (expression quantitative trait locus) data was coupled with network and pathway analysis to explore the hypothesis that specific cell functions are involved in sarcoma predisposition. We retrieved 90 eligible studies comprising 47,796 subjects (cases: 14,358, 30%) and investigating 1,126 polymorphisms involving 320 distinct genes. Meta-analysis identified 55 single nucleotide polymorphisms (SNPs) significantly associated with disease risk with a high (N=9), moderate (N=38) and low (N=8) level of evidence, findings being classified as noteworthy basically only when the level of evidence was high. The estimated joint population attributable risk for three independent SNPs (rs11599754 of ZNF365/EGR2 , rs231775 of CTLA4 , and rs454006 of PRKCG ) was 37.2%. We also identified 53 SNPs significantly associated with sarcoma risk based on single studies.Pathway analysis enabled us to propose that sarcoma predisposition might be linked especially to germline variation of genes whose products are involved in the function of the DNA repair machinery. We built the first knowledgebase on the evidence linking DNA variation to sarcomas susceptibility, which can be used to generate mechanistic hypotheses and inform future studies in this field of oncology.
Segal, N L; Feng, R; McGuire, S A; Allison, D B; Miller, S
2009-01-01
Earlier studies have established that a substantial percentage of variance in obesity-related phenotypes is explained by genetic components. However, only one study has used both virtual twins (VTs) and biological twins and was able to simultaneously estimate additive genetic, non-additive genetic, shared environmental and unshared environmental components in body mass index (BMI). Our current goal was to re-estimate four components of variance in BMI, applying a more rigorous model to biological and virtual multiples with additional data. Virtual multiples share the same family environment, offering unique opportunities to estimate common environmental influence on phenotypes that cannot be separated from the non-additive genetic component using only biological multiples. Data included 929 individuals from 164 monozygotic twin pairs, 156 dizygotic twin pairs, five triplet sets, one quadruplet set, 128 VT pairs, two virtual triplet sets and two virtual quadruplet sets. Virtual multiples consist of one biological child (or twins or triplets) plus one same-aged adoptee who are all raised together since infancy. We estimated the additive genetic, non-additive genetic, shared environmental and unshared random components in BMI using a linear mixed model. The analysis was adjusted for age, age(2), age(3), height, height(2), height(3), gender and race. Both non-additive genetic and common environmental contributions were significant in our model (P-values<0.0001). No significant additive genetic contribution was found. In all, 63.6% (95% confidence interval (CI) 51.8-75.3%) of the total variance of BMI was explained by a non-additive genetic component, 25.7% (95% CI 13.8-37.5%) by a common environmental component and the remaining 10.7% by an unshared component. Our results suggest that genetic components play an essential role in BMI and that common environmental factors such as diet or exercise also affect BMI. This conclusion is consistent with our earlier study using a smaller sample and shows the utility of virtual multiples for separating non-additive genetic variance from common environmental variance.
Genetics and Epigenetics of Eating Disorders
Yilmaz, Zeynep; Hardaway, J. Andrew; Bulik, Cynthia M.
2015-01-01
Eating disorders (EDs) are serious psychiatric conditions influenced by biological, psychological, and sociocultural factors. A better understanding of the genetics of these complex traits and the development of more sophisticated molecular biology tools have advanced our understanding of the etiology of EDs. The aim of this review is to critically evaluate the literature on the genetic research conducted on three major EDs: anorexia nervosa (AN), bulimia nervosa (BN), and binge eating disorder (BED). We will first review the diagnostic criteria, clinical features, prevalence, and prognosis of AN, BN, and BED, followed by a review of family, twin, and adoption studies. We then review the history of genetic studies of EDs covering linkage analysis, candidate gene association studies, genome-wide association studies, and the study of rare variants in EDs. Our review also incorporates a translational perspective by covering animal models of ED-related phenotypes. Finally, we review the nascent field of epigenetics of EDs and a look forward to future directions for ED genetic research. PMID:27013903
Applications of the 1000 Genomes Project resources.
Zheng-Bradley, Xiangqun; Flicek, Paul
2017-05-01
The 1000 Genomes Project created a valuable, worldwide reference for human genetic variation. Common uses of the 1000 Genomes dataset include genotype imputation supporting Genome-wide Association Studies, mapping expression Quantitative Trait Loci, filtering non-pathogenic variants from exome, whole genome and cancer genome sequencing projects, and genetic analysis of population structure and molecular evolution. In this article, we will highlight some of the multiple ways that the 1000 Genomes data can be and has been utilized for genetic studies. © The Author 2016. Published by Oxford University Press.
Wallace, Chris; Xue, Ming-Zhan; Newhouse, Stephen J.; Marçano, Ana Carolina B.; Onipinla, Abiodun K.; Burke, Beverley; Gungadoo, Johannie; Dobson, Richard J.; Brown, Morris; Connell, John M.; Dominiczak, Anna; Lathrop, G. Mark; Webster, John; Farrall, Martin; Mein, Charles; Samani, Nilesh J.; Caulfield, Mark J.; Clayton, David G.; Munroe, Patricia B.
2006-01-01
Identification of the genetic influences on human essential hypertension and other complex diseases has proved difficult, partly because of genetic heterogeneity. In many complex-trait resources, additional phenotypic data have been collected, allowing comorbid intermediary phenotypes to be used to characterize more genetically homogeneous subsets. The traditional approach to analyzing covariate-defined subsets has typically depended on researchers’ previous expectations for definition of a comorbid subset and leads to smaller data sets, with a concomitant attrition in power. An alternative is to test for dependence between genetic sharing and covariates across the entire data set. This approach offers the advantage of exploiting the full data set and could be widely applied to complex-trait genome scans. However, existing maximum-likelihood methods can be prohibitively computationally expensive, especially since permutation is often required to determine significance. We developed a less computationally intensive score test and applied it to biometric and biochemical covariate data, from 2,044 sibling pairs with severe hypertension, collected by the British Genetics of Hypertension (BRIGHT) study. We found genomewide-significant evidence for linkage with hypertension and several related covariates. The strongest signals were with leaner-body-mass measures on chromosome 20q (maximum LOD=4.24) and with parameters of renal function on chromosome 5p (maximum LOD=3.71). After correction for the multiple traits and genetic locations studied, our global genomewide P value was .046. This is the first identity-by-descent regression analysis of hypertension to our knowledge, and it demonstrates the value of this approach for the incorporation of additional phenotypic information in genetic studies of complex traits. PMID:16826522
Chaste, Pauline; Klei, Lambertus; Sanders, Stephan J; Hus, Vanessa; Murtha, Michael T; Lowe, Jennifer K; Willsey, A Jeremy; Moreno-De-Luca, Daniel; Yu, Timothy W; Fombonne, Eric; Geschwind, Daniel; Grice, Dorothy E; Ledbetter, David H; Mane, Shrikant M; Martin, Donna M; Morrow, Eric M; Walsh, Christopher A; Sutcliffe, James S; Lese Martin, Christa; Beaudet, Arthur L; Lord, Catherine; State, Matthew W; Cook, Edwin H; Devlin, Bernie
2015-05-01
Phenotypic heterogeneity in autism has long been conjectured to be a major hindrance to the discovery of genetic risk factors, leading to numerous attempts to stratify children based on phenotype to increase power of discovery studies. This approach, however, is based on the hypothesis that phenotypic heterogeneity closely maps to genetic variation, which has not been tested. Our study examines the impact of subphenotyping of a well-characterized autism spectrum disorder (ASD) sample on genetic homogeneity and the ability to discover common genetic variants conferring liability to ASD. Genome-wide genotypic data of 2576 families from the Simons Simplex Collection were analyzed in the overall sample and phenotypic subgroups defined on the basis of diagnosis, IQ, and symptom profiles. We conducted a family-based association study, as well as estimating heritability and evaluating allele scores for each phenotypic subgroup. Association analyses revealed no genome-wide significant association signal. Subphenotyping did not increase power substantially. Moreover, allele scores built from the most associated single nucleotide polymorphisms, based on the odds ratio in the full sample, predicted case status in subsets of the sample equally well and heritability estimates were very similar for all subgroups. In genome-wide association analysis of the Simons Simplex Collection sample, reducing phenotypic heterogeneity had at most a modest impact on genetic homogeneity. Our results are based on a relatively small sample, one with greater homogeneity than the entire population; if they apply more broadly, they imply that analysis of subphenotypes is not a productive path forward for discovering genetic risk variants in ASD. Copyright © 2015 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
Characterizing Clinical Genetic Counselors' Countertransference Experiences: an Exploratory Study.
Reeder, Rebecca; Veach, Patricia McCarthy; MacFarlane, Ian M; LeRoy, Bonnie S
2017-10-01
Countertransference (CT) refers to conscious and unconscious emotions, fantasies, behaviors, perceptions, and psychological defenses genetic counselors experience in response to any aspect of genetic counseling situations (Weil 2010). Some authors theorize about the importance of recognizing and managing CT, but no studies solely aim to explore genetic counselors' experiences of the phenomenon. This study examined the extent to which clinical genetic counselors' perceive themselves as inclined to experience CT, gathered examples of CT encountered in clinical situations, and assessed their CT management strategies. An anonymous online survey, sent to NSGC members, yielded 127 usable responses. Participants completed Likert-type items rating their CT propensities; 57 of these individuals also provided examples of CT they experienced in their practice. Factor analysis of CT propensities tentatively suggested four factors: Control, Conflict Avoidance, Directiveness, and Self-Regulation, accounting for 38.5% of response variance. Thematic analysis of CT examples yielded five common triggers: general similarity to patient, medical/genetic similarity, angry patients, patient behaves differently from counselor expectations, and disclosing bad news; six common manifestations: being self-focused, projecting feelings onto the patient, intense emotional reaction to patient, being overly invested, disengagement, and physical reaction; five CT effects: disruption in rapport building, repaired empathy, over-identification, conversation does not reach fullest potential, and counselor is drained emotionally; and three management strategies: recognizing CT as it occurs, self-reflection, and consultation. Results suggest CT is a common experience, occurring in both "routine" and emotionally complex cases. Training programs, continuing education, and peer supervision might include discussion of CT, informed by examples from the present study, to increase genetic counselor awareness and skills for managing the phenomenon.
Clinical subtypes and genetic heterogeneity: of lumping and splitting in Parkinson disease.
von Coelln, Rainer; Shulman, Lisa M
2016-12-01
Recent studies on clinical, genetic and pathological heterogeneity of Parkinson disease have renewed the old debate whether we should think of Parkinson disease as one disease with variations, or as a group of independent diseases that happen to present with similar phenotypes. Here, we provide an overview of where the debate is coming from, and how recent findings in clinical subtyping, genetics and clinico-pathological correlation have shaped this controversy over the last few years. New and innovative clinical diagnostic criteria for Parkinson disease have been proposed and await validation. Studies using functional imaging or wearable biosensors, as well as biomarker studies, provide new support for the validity of the traditional clinical subtypes of Parkinson disease (tremor-dominant versus akinetic-rigid or postural instability/gait difficulty). A recent cluster analysis (as unbiased data-driven approach to subtyping) included a wide spectrum of nonmotor variables, and showed correlation of the proposed subtypes with disease progression in a longitudinal analysis. New genetic factors contributing to Parkinson disease susceptibility continue to be identified, including rare mutations causing monogenetic disease, common variants with small effect size and risk factors (like mutations in the gene for glucocerebrosidase) that fall in between the two other categories. Recent studies show some limited correlation between genetic factors and clinical heterogeneity. Despite some variations in patterns of pathology, Lewy bodies are still the hallmark of Parkinson disease, including the vast majority of genetic subgroups. Evidence of clinical, genetic and pathological heterogeneity of Parkinson disease continues to emerge, but clearly defined subtypes that hold up in more than one of these domains remain elusive. For research to identify such subtypes, splitting is likely the way forward; until then, for clinical practice, lumping remains the more pragmatic approach.
Pantsulaia, Ia; Pantsulaia, I; Trofimov, Svetlana; Kobyliansky, Eugene; Livshits, Gregory
2005-07-01
Recent literature has shown that circulating levels of insulin-like growth factor I (IGF-I) and/or IGF binding proteins (IGF-BPs) may be of importance in the risk assessment of several chronic diseases including cancer, cardiovascular disease, diabetes mellitus and so on. The present study examined the extent of genetic and environmental influences on the populational variation of circulating IGF-I and IGF-BP-1 in apparently healthy and ethnically homogeneous white families. The plasma levels of each of the studied biochemical indices were determined by enzyme-linked immunoassay in 563 individuals aged 18 to 80 years. Quantitative genetic analysis showed that the IGF-I variation was appreciably attributable to genetic effects (47.1% +/- 9.0%), whereas for IGF-BP-1, only 23.3% +/- 7.8% of the interindividual variation was explained by genetic determinants. Common familial environment factors contributed significantly only to IGF-BP-1 variation (23.3% +/- 7.8%). In addition, we examined the covariations between these molecules and between them and IGF-BP-3 and leptin that were previously studied in the same sample. The analysis revealed that the pleiotropic genetic effects were significant for 2 pairs of traits, namely for IGF-I and IGF-BP-3, and for IGF-BP-1 and leptin. The bivariate heritability estimates were 0.21 +/- 0.04 and 0.15 +/- 0.05. The common environmental factors were consistently a significant source of correlation between all pairs (barring IGF-I and leptin) of the studied molecules; they were the sole predictors of correlation between IGF-I and IGF-BP-1, and between IGF-BP-1 and IGF-BP-3. Our results affirm the existence of specific and common genetic pathways that in combination determine a substantial proportion of the circulating variation of these molecules.
Duncan, Laramie; Yilmaz, Zeynep; Gaspar, Helena; Walters, Raymond; Goldstein, Jackie; Anttila, Verneri; Bulik-Sullivan, Brendan; Ripke, Stephan; Thornton, Laura; Hinney, Anke; Daly, Mark; Sullivan, Patrick F; Zeggini, Eleftheria; Breen, Gerome; Bulik, Cynthia M
2017-09-01
The authors conducted a genome-wide association study of anorexia nervosa and calculated genetic correlations with a series of psychiatric, educational, and metabolic phenotypes. Following uniform quality control and imputation procedures using the 1000 Genomes Project (phase 3) in 12 case-control cohorts comprising 3,495 anorexia nervosa cases and 10,982 controls, the authors performed standard association analysis followed by a meta-analysis across cohorts. Linkage disequilibrium score regression was used to calculate genome-wide common variant heritability (single-nucleotide polymorphism [SNP]-based heritability [h 2 SNP ]), partitioned heritability, and genetic correlations (r g ) between anorexia nervosa and 159 other phenotypes. Results were obtained for 10,641,224 SNPs and insertion-deletion variants with minor allele frequencies >1% and imputation quality scores >0.6. The h 2 SNP of anorexia nervosa was 0.20 (SE=0.02), suggesting that a substantial fraction of the twin-based heritability arises from common genetic variation. The authors identified one genome-wide significant locus on chromosome 12 (rs4622308) in a region harboring a previously reported type 1 diabetes and autoimmune disorder locus. Significant positive genetic correlations were observed between anorexia nervosa and schizophrenia, neuroticism, educational attainment, and high-density lipoprotein cholesterol, and significant negative genetic correlations were observed between anorexia nervosa and body mass index, insulin, glucose, and lipid phenotypes. Anorexia nervosa is a complex heritable phenotype for which this study has uncovered the first genome-wide significant locus. Anorexia nervosa also has large and significant genetic correlations with both psychiatric phenotypes and metabolic traits. The study results encourage a reconceptualization of this frequently lethal disorder as one with both psychiatric and metabolic etiology.
Wallace, Chris; Xue, Ming-Zhan; Newhouse, Stephen J; Marcano, Ana Carolina B; Onipinla, Abiodun K; Burke, Beverley; Gungadoo, Johannie; Dobson, Richard J; Brown, Morris; Connell, John M; Dominiczak, Anna; Lathrop, G Mark; Webster, John; Farrall, Martin; Mein, Charles; Samani, Nilesh J; Caulfield, Mark J; Clayton, David G; Munroe, Patricia B
2006-08-01
Identification of the genetic influences on human essential hypertension and other complex diseases has proved difficult, partly because of genetic heterogeneity. In many complex-trait resources, additional phenotypic data have been collected, allowing comorbid intermediary phenotypes to be used to characterize more genetically homogeneous subsets. The traditional approach to analyzing covariate-defined subsets has typically depended on researchers' previous expectations for definition of a comorbid subset and leads to smaller data sets, with a concomitant attrition in power. An alternative is to test for dependence between genetic sharing and covariates across the entire data set. This approach offers the advantage of exploiting the full data set and could be widely applied to complex-trait genome scans. However, existing maximum-likelihood methods can be prohibitively computationally expensive, especially since permutation is often required to determine significance. We developed a less computationally intensive score test and applied it to biometric and biochemical covariate data, from 2,044 sibling pairs with severe hypertension, collected by the British Genetics of Hypertension (BRIGHT) study. We found genomewide-significant evidence for linkage with hypertension and several related covariates. The strongest signals were with leaner-body-mass measures on chromosome 20q (maximum LOD = 4.24) and with parameters of renal function on chromosome 5p (maximum LOD = 3.71). After correction for the multiple traits and genetic locations studied, our global genomewide P value was .046. This is the first identity-by-descent regression analysis of hypertension to our knowledge, and it demonstrates the value of this approach for the incorporation of additional phenotypic information in genetic studies of complex traits.
Mimee, Benjamin; Duceppe, Marc-Olivier; Véronneau, Pierre-Yves; Lafond-Lapalme, Joël; Jean, Martine; Belzile, François; Bélair, Guy
2015-11-01
Cyst nematodes are important agricultural pests responsible for billions of dollars of losses each year. Plant resistance is the most effective management tool, but it requires a close monitoring of population genetics. Current technologies for pathotyping and genotyping cyst nematodes are time-consuming, expensive and imprecise. In this study, we capitalized on the reproduction mode of cyst nematodes to develop a simple population genetic analysis pipeline based on genotyping-by-sequencing and Pool-Seq. This method yielded thousands of SNPs and allowed us to study the relationships between populations of different origins or pathotypes. Validation of the method on well-characterized populations also demonstrated that it was a powerful and accurate tool for population genetics. The genomewide allele frequencies of 23 populations of golden nematode, from nine countries and representing the five known pathotypes, were compared. A clear separation of the pathotypes and fine genetic relationships between and among global populations were obtained using this method. In addition to being powerful, this tool has proven to be very time- and cost-efficient and could be applied to other cyst nematode species. © 2015 Her Majesty the Queen in Right of Canada Molecular Ecology Resources © 2015 John Wiley & Sons Ltd Reproduced with the permission of the Minister of Agriculture and Agri-food.
Cheng, Yue; Yu, Chengxiao; Huang, Mingtao; Du, Fangzhi; Song, Ci; Ma, Zijian; Zhai, Xiangjun; Yang, Yuan; Liu, Jibin; Bei, Jin-Xin; Jia, Weihua; Jin, Guangfu; Li, Shengping; Zhou, Weiping; Liu, Jianjun; Dai, Juncheng; Hu, Zhibin
2017-10-01
Observational studies show an association between telomere length and Hepatocellular carcinoma (HCC) risk, but the relationship is controversial. Particularly, it remains unclear whether the association is due to confounding or biases inherent in conventional epidemiological studies. Here, we applied Mendelian randomization approach to evaluate whether telomere length is causally associated with HCC risk. Individual-level data were from HBV-related HCC Genome-wide association studies (1,538 HBV positive HCC patients and 1,465 HBV positive controls). Genetic risk score, as proxy for actual measured telomere length, derived from nine telomere length-associated genetic variants was used to evaluate the effect of telomere length on HCC risk. We observed a significant risk signal between genetically increased telomere length and HBV-related HCC risk (OR=2.09, 95% CI 1.32-3.31, P=0.002). Furthermore, a U-shaped curve was fitted by the restricted cubic spline curve, which indicated that either short or long telomere length would increase HCC risk (P=0.0022 for non-linearity test). Subgroup analysis did not reveal significant heterogeneity between different age, gender, smoking status and drinking status groups. Our results indicated that a genetic background that favors longer or shorter telomere length may increase HBV-related HCC risk-a U-shaped association. Copyright © 2017 Elsevier Ltd. All rights reserved.
Sharma, Anshul; Kaur, Jasmine; Lee, Sulhee; Park, Young-Seo
2018-06-01
In the present study, 35 Leuconostoc mesenteroides strains isolated from vegetables and food products from South Korea were studied by multilocus sequence typing (MLST) of seven housekeeping genes (atpA, groEL, gyrB, pheS, pyrG, rpoA, and uvrC). The fragment sizes of the seven amplified housekeeping genes ranged in length from 366 to 1414 bp. Sequence analysis indicated 27 different sequence types (STs) with 25 of them being represented by a single strain indicating high genetic diversity, whereas the remaining 2 were characterized by five strains each. In total, 220 polymorphic nucleotide sites were detected among seven housekeeping genes. The phylogenetic analysis based on the STs of the seven loci indicated that the 35 strains belonged to two major groups, A (28 strains) and B (7 strains). Split decomposition analysis showed that intraspecies recombination played a role in generating diversity among strains. The minimum spanning tree showed that the evolution of the STs was not correlated with food source. This study signifies that the multilocus sequence typing is a valuable tool to access the genetic diversity among L. mesenteroides strains from South Korea and can be used further to monitor the evolutionary changes.
Transcriptome Analysis and Development of SSR Molecular Markers in Glycyrrhiza uralensis Fisch.
Liu, Yaling; Zhang, Pengfei; Song, Meiling; Hou, Junling; Qing, Mei; Wang, Wenquan; Liu, Chunsheng
2015-01-01
Licorice is an important traditional Chinese medicine with clinical and industrial applications. Genetic resources of licorice are insufficient for analysis of molecular biology and genetic functions; as such, transcriptome sequencing must be conducted for functional characterization and development of molecular markers. In this study, transcriptome sequencing on the Illumina HiSeq 2500 sequencing platform generated a total of 5.41 Gb clean data. De novo assembly yielded a total of 46,641 unigenes. Comparison analysis using BLAST showed that the annotations of 29,614 unigenes were conserved. Further study revealed 773 genes related to biosynthesis of secondary metabolites of licorice, 40 genes involved in biosynthesis of the terpenoid backbone, and 16 genes associated with biosynthesis of glycyrrhizic acid. Analysis of unigenes larger than 1 Kb with a length of 11,702 nt presented 7,032 simple sequence repeats (SSR). Sixty-four of 69 randomly designed and synthesized SSR pairs were successfully amplified, 33 pairs of primers were polymorphism in in Glycyrrhiza uralensis Fisch., Glycyrrhiza inflata Bat., Glycyrrhiza glabra L. and Glycyrrhiza pallidiflora Maxim. This study not only presents the molecular biology data of licorice but also provides a basis for genetic diversity research and molecular marker-assisted breeding of licorice. PMID:26571372
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coyle, Heather; Drell, Dan
Various: (1)TriState 2000 Genetics in the Courts (2) Growing impact of the new genetics on the courts (3)Human testing (4) Legal analysis - in re G.C. (5) Legal analysis - GM ''peanots'', and (6) Legal analysis for State vs Miller
Kurata, Kaoruko; Jaffré, Tanguy; Setoguchi, Hiroaki
2008-12-01
Among the many species that grow in New Caledonia, the pitcher plant Nepenthes vieillardii (Nepenthaceae) has a high degree of morphological variation. In this study, we present the patterns of genetic differentiation of pitcher plant populations based on chloroplast DNA haplotype analysis using the sequences of five spacers. We analyzed 294 samples from 16 populations covering the entire range of the species, using 4660 bp of sequence. Our analysis identified 17 haplotypes, including one that is widely distributed across the islands, as well as regional and private haplotypes. The greatest haplotype diversity was detected on the eastern coast of the largest island and included several private haplotypes, while haplotype diversity was low in the southern plains region. The parsimony network analysis of the 17 haplotypes suggested that the genetic divergence is the result of long-term isolation of individual populations. Results from a spatial analysis of molecular variance and a cluster analysis suggest that the plants once covered the entire serpentine area of New Caledonia and that subsequent regional fragmentation resulted in the isolation of each population and significantly restricted seed flow. This isolation may have been an important factor in the development of the morphological and genetic variation among pitcher plants in New Caledonia.
The Relationship Between Polycystic Ovary Syndrome and Ancestry in European Americans
Bjonnes, Andrew C.; Saxena, Richa; Welt, Corrine K.
2016-01-01
Objective To determine whether European Americans with PCOS would exhibit genetic differences associated with PCOS status and phenotypic features. Design The study was a case-control association study in European Americans. Setting Subjects were studied in an academic center. Subjects Women with PCOS diagnosed using the NIH criteria (n=532) and controls with regular menstrual cycles and no evidence of hyperandrogenism (n=432) were studied. Interventions Blood was drawn for measurement of sex steroids, metabolic parameters and genotyping. Main outcome measure Associations were identified between PCOS status, phenotype and genetic background determined using principal components. Results Principal component analysis identified 5 principal components (PCs). PC1 captured northwest to southeast European genetic variation and was associated with PCOS status. Acanthosis was associated with southern European ancestry, while larger waist:hip ratio was associated with northern European ancestry. PC2 was associated with east to west European genetic variation and cholesterol levels. Conclusions These data provide evidence for genetic influence based on European ethnicity in women with PCOS. There is also evidence for a genetic component in the phenotypic features of PCOS within a mixed European population. The data point to the need to control for population stratification in genetic studies in women of mixed European ethnicity. They also emphasize the need for better studies of PCOS prevalence and phenotype as a function of genetic background. PMID:27666562
Sun, Yaling; Chen, Min; Mao, Benyu; Cheng, Xianglin; Zhang, Xianping; Xu, Chuanxin
2017-04-01
Some studies have reported that vascular endothelial growth factor (VEGF) genetic polymorphisms are associated with recurrent pregnancy loss (RPL), but the results are controversial. This study is aimed to quantify the strength of this association. A systematic review of the published literature from Medline, Springer, and China National Knowledge Infra structure (CNKI) databases was conducted and investigations of VEGF genetic polymorphisms in RPL were selected. We estimated the pooled odds ratio (OR) to assess this possible association. Fifteen case-control studies comprising 2702 cases and 2667 controls and including five genetic polymorphisms (rs3025039, rs833061, rs15703060, rs2010963 and rs699947) were eligible for this meta-analysis. The overall analysis suggested that only two genetic polymorphisms (rs1570360, rs3025039) were associated with increased risk of RPL. A significant increased risk between VEGF rs1570360 polymorphism and RPL was only found under the dominant model in Caucasians (OR=1.70, 95% CI 1.02-2.82, P=0.04). Whereas, we found that VEGF rs3025039 polymorphism was significantly associated with RPL both under the dominant and recessive model in East Asians, and their summary odd ratios and 95% CIs were 1.26, 1.04-1.53, P=0.02 and 2.94, 1.80-4.83, P=0, respectively. This meta-analysis showed that only rs1570360 (especially in Caucasians) and rs3025039 (especially in East Asians) may be risk factors for RPL. Copyright © 2017 Elsevier B.V. All rights reserved.
Genetic analysis of captive proboscis monkeys.
Ogata, Mitsuaki; Seino, Satoru
2015-01-01
Information on the genetic relationships of captive founders is important for captive population management. In this study, we investigated DNA polymorphisms of four microsatellite loci and the mitochondrial control region sequence of five proboscis monkeys residing in a Japanese zoo as captive founders, to clarify their genetic relationship. We found that two of the five monkeys appeared to be genetically related. Furthermore, the haplotypes of the mitochondrial control region of the five monkeys were well differentiated from the haplotypes previously reported from wild populations from the northern area of Borneo, indicating a greater amount of genetic diversity in proboscis monkeys than previously reported. © 2014 Wiley Periodicals, Inc.
Yap, Fook Choy; Yan, Yap Jin; Loon, Kiung Teh; Zhen, Justina Lee Ning; Kamau, Nelly Warau; Kumaran, Jayaraj Vijaya
2010-10-01
The present investigation was carried out in an attempt to study the phylogenetic analysis of different breeds of domestic chickens in Peninsular Malaysia inferred from partial cytochrome b gene information and random amplified polymorphic DNA (RAPD) markers. Phylogenetic analysis using both neighbor-joining (NJ) and maximum parsimony (MP) methods produced three clusters that encompassed Type-I village chickens, the red jungle fowl subspecies and the Japanese Chunky broilers. The phylogenetic analysis also revealed that majority of the Malaysian commercial chickens were randomly assembled with the Type-II village chickens. In RAPD assay, phylogenetic analysis using neighbor-joining produced six clusters that were completely distinguished based on the locality of chickens. High levels of genetic variations were observed among the village chickens, the commercial broilers, and between the commercial broilers and layer chickens. In this study, it was found that Type-I village chickens could be distinguished from the commercial chickens and Type-II village chickens at the position of the 27th nucleotide of the 351 bp cytochrome b gene. This study also revealed that RAPD markers were unable to differentiate the type of chickens, but it showed the effectiveness of RAPD in evaluating the genetic variation and the genetic relationships between chicken lines and populations.
2011-01-01
Background Available evidence suggests that improvements in genetics education are needed to prepare primary care providers for the impact of ongoing rapid advances in genomics. Postgraduate (physician training) and master (midwifery training) programmes in primary care and public health are failing to meet these perceived educational needs. The aim of this study was to explore the role of genetics in primary care (i.e. family medicine and midwifery care) and the need for education in this area as perceived by primary care providers, patient advocacy groups and clinical genetics professionals. Methods Forty-four participants took part in three types of focus groups: mono-disciplinary groups of general practitioners and midwives, respectively and multidisciplinary groups composed of a diverse set of experts. The focus group sessions were audio-taped, transcribed verbatim and analysed using content analysis. Recurrent themes were identified. Results Four themes emerged regarding the educational needs and the role of genetics in primary care: (1) genetics knowledge, (2) family history, (3) ethical dilemmas and psychosocial effects in relation to genetics and (4) insight into the organisation and role of clinical genetics services. These themes reflect a shift in the role of genetics in primary care with implications for education. Although all focus group participants acknowledged the importance of genetics education, general practitioners felt this need more urgently than midwives and more strongly emphasized their perceived knowledge deficiencies. Conclusion The responsibilities of primary care providers with regard to genetics require further study. The results of this study will help to develop effective genetics education strategies to improve primary care providers' competencies in this area. More research into the educational priorities in genetics is needed to design courses that are suitable for postgraduate and master programmes for general practitioners and midwives. PMID:21329524