NASA Astrophysics Data System (ADS)
Leung, L.; Hagos, S. M.; Rauscher, S.; Ringler, T.
2012-12-01
This study compares two grid refinement approaches using global variable resolution model and nesting for high-resolution regional climate modeling. The global variable resolution model, Model for Prediction Across Scales (MPAS), and the limited area model, Weather Research and Forecasting (WRF) model, are compared in an idealized aqua-planet context with a focus on the spatial and temporal characteristics of tropical precipitation simulated by the models using the same physics package from the Community Atmosphere Model (CAM4). For MPAS, simulations have been performed with a quasi-uniform resolution global domain at coarse (1 degree) and high (0.25 degree) resolution, and a variable resolution domain with a high-resolution region at 0.25 degree configured inside a coarse resolution global domain at 1 degree resolution. Similarly, WRF has been configured to run on a coarse (1 degree) and high (0.25 degree) resolution tropical channel domain as well as a nested domain with a high-resolution region at 0.25 degree nested two-way inside the coarse resolution (1 degree) tropical channel. The variable resolution or nested simulations are compared against the high-resolution simulations that serve as virtual reality. Both MPAS and WRF simulate 20-day Kelvin waves propagating through the high-resolution domains fairly unaffected by the change in resolution. In addition, both models respond to increased resolution with enhanced precipitation. Grid refinement induces zonal asymmetry in precipitation (heating), accompanied by zonal anomalous Walker like circulations and standing Rossby wave signals. However, there are important differences between the anomalous patterns in MPAS and WRF due to differences in the grid refinement approaches and sensitivity of model physics to grid resolution. This study highlights the need for "scale aware" parameterizations in variable resolution and nested regional models.
Using high spectral resolution spectrophotometry to study broad mineral absorption features on Mars
NASA Technical Reports Server (NTRS)
Blaney, D. L.; Crisp, D.
1993-01-01
Traditionally telescopic measurements of mineralogic absorption features have been made using relatively low to moderate (R=30-300) spectral resolution. Mineralogic absorption features tend to be broad so high resolution spectroscopy (R greater than 10,000) does not provide significant additional compositional information. Low to moderate resolution spectroscopy allows an observer to obtain data over a wide wavelength range (hundreds to thousands of wavenumbers) compared to the several wavenumber intervals that are collected using high resolution spectrometers. However, spectrophotometry at high resolution has major advantages over lower resolution spectroscopy in situations that are applicable to studies of the Martian surface, i.e., at wavelengths where relatively weak surface absorption features and atmospheric gas absorption features both occur.
Hu, Zhen-Hua; Huang, Teng; Wang, Ying-Ping; Ding, Lei; Zheng, Hai-Yang; Fang, Li
2011-06-01
Taking solar source as radiation in the near-infrared high-resolution absorption spectrum is widely used in remote sensing of atmospheric parameters. The present paper will take retrieval of the concentration of CO2 for example, and study the effect of solar spectra resolution. Retrieving concentrations of CO2 by using high resolution absorption spectra, a method which uses the program provided by AER to calculate the solar spectra at the top of atmosphere as radiation and combine with the HRATS (high resolution atmospheric transmission simulation) to simulate retrieving concentration of CO2. Numerical simulation shows that the accuracy of solar spectrum is important to retrieval, especially in the hyper-resolution spectral retrieavl, and the error of retrieval concentration has poor linear relation with the resolution of observation, but there is a tendency that the decrease in the resolution requires low resolution of solar spectrum. In order to retrieve the concentration of CO2 of atmosphere, the authors' should take full advantage of high-resolution solar spectrum at the top of atmosphere.
Image quality improvement in cone-beam CT using the super-resolution technique.
Oyama, Asuka; Kumagai, Shinobu; Arai, Norikazu; Takata, Takeshi; Saikawa, Yusuke; Shiraishi, Kenshiro; Kobayashi, Takenori; Kotoku, Jun'ichi
2018-04-05
This study was conducted to improve cone-beam computed tomography (CBCT) image quality using the super-resolution technique, a method of inferring a high-resolution image from a low-resolution image. This technique is used with two matrices, so-called dictionaries, constructed respectively from high-resolution and low-resolution image bases. For this study, a CBCT image, as a low-resolution image, is represented as a linear combination of atoms, the image bases in the low-resolution dictionary. The corresponding super-resolution image was inferred by multiplying the coefficients and the high-resolution dictionary atoms extracted from planning CT images. To evaluate the proposed method, we computed the root mean square error (RMSE) and structural similarity (SSIM). The resulting RMSE and SSIM between the super-resolution images and the planning CT images were, respectively, as much as 0.81 and 1.29 times better than those obtained without using the super-resolution technique. We used super-resolution technique to improve the CBCT image quality.
NASA Astrophysics Data System (ADS)
Ogawa, Masahiko; Shidoji, Kazunori
2011-03-01
High-resolution stereoscopic images are effective for use in virtual reality and teleoperation systems. However, the higher the image resolution, the higher is the cost of computer processing and communication. To reduce this cost, numerous earlier studies have suggested the use of multi-resolution images, which have high resolution in region of interests and low resolution in other areas. However, observers can perceive unpleasant sensations and incorrect depth because they can see low-resolution areas in their field of vision. In this study, we conducted an experiment to research the relationship between the viewing field and the perception of image resolution, and determined respective thresholds of image-resolution perception for various positions of the viewing field. The results showed that participants could not distinguish between the high-resolution stimulus and the decreased stimulus, 63 ppi, at positions more than 8 deg outside the gaze point. Moreover, with positions shifted a further 11 and 13 deg from the gaze point, participants could not distinguish between the high-resolution stimulus and the decreased stimuli whose resolution densities were 42 and 25 ppi. Hence, we will propose the composition of multi-resolution images in which observers do not perceive unpleasant sensations and incorrect depth with data reduction (compression).
Klein, Isabelle F; Lavallée, Philippa C; Mazighi, Mikael; Schouman-Claeys, Elisabeth; Labreuche, Julien; Amarenco, Pierre
2010-07-01
Pontine infarction is most often related to basilar artery atherosclerosis when the lesion abuts on the basal surface (paramedian pontine infarction), whereas small medial pontine lesion is usually attributed to small vessel lipohyalinosis. A previous study has found that high-resolution MRI can detect basilar atherosclerotic plaques in up to 70% of patient with paramedian pontine infarction, even in patients with normal angiograms, but none has evaluated the presence of basilar artery plaque by high-resolution MRI in patients with small medial pontine lesion in the medial part of the pons. Consecutive patients with pontine infarction underwent basilar angiography using time-of-flight and contrast-enhanced 3-dimensional MR angiography to assess the presence of basilar artery stenosis and high-resolution MRI to assess the presence of atherosclerotic plaque. Basilar artery angiogram was scored as "normal," "irregular," or "stenosed" >or=30%" and basilar artery by high-resolution MRI was scored as "normal" or "presence of plaque." Medial pontine infarcts were divided into paramedian pontine infarction and small medial pontine lesion groups. Forty-one patients with pontine infarction were included, 26 with paramedian pontine infarction and 15 with small medial pontine lesion. High-resolution MRI detected basilar artery atherosclerosis in 42% of patients with a pontine infarction and normal basilar angiograms. Among patients with paramedian pontine infarction, 65% had normal basilar angiograms but 77% had basilar artery atherosclerosis detected on high-resolution MRI. Among patients with small medial pontine lesion, 46% had normal basilar angiograms but 73% had basilar artery plaques detected on by high-resolution MRI. This study suggests that medial pontine lacunes may be due to a penetrating artery disease secondary to basilar artery atherosclerosis. High-resolution MRI could help precise stroke subtyping.
NASA Astrophysics Data System (ADS)
Unnikrishnan, C. K.; Rajeevan, M.; Rao, S. Vijaya Bhaskara
2016-06-01
The direct impact of high resolution land surface initialization on the forecast bias in a regional climate model in recent years over Indian summer monsoon region is investigated. Two sets of regional climate model simulations are performed, one with a coarse resolution land surface initial conditions and second one used a high resolution land surface data for initial condition. The results show that all monsoon years respond differently to the high resolution land surface initialization. The drought monsoon year 2009 and extended break periods were more sensitive to the high resolution land surface initialization. These results suggest that the drought monsoon year predictions can be improved with high resolution land surface initialization. Result also shows that there are differences in the response to the land surface initialization within the monsoon season. Case studies of heat wave and a monsoon depression simulation show that, the model biases were also improved with high resolution land surface initialization. These results show the need for a better land surface initialization strategy in high resolution regional models for monsoon forecasting.
Crawshaw, Benjamin P; Russ, Andrew J; Stein, Sharon L; Reynolds, Harry L; Marderstein, Eric L; Delaney, Conor P; Champagne, Bradley J
2015-01-01
High-resolution anoscopy has been shown to improve identification of anal intraepithelial neoplasia but a reduction in progression to anal squamous-cell cancer has not been substantiated when serial high-resolution anoscopy is compared with traditional expectant management. The aim of this study was to compare high-resolution anoscopy versus expectant management for the surveillance of anal intraepithelial neoplasia and the prevention of anal cancer. This is a retrospective review of all patients who presented with anal squamous dysplasia, positive anal Pap smears, or anal squamous-cell cancer from 2007 to 2013. This study was performed in the colorectal department of a university-affiliated, tertiary care hospital. Included patients had biopsy-proven anal intraepithelial neoplasia from 2007 to 2013. Patients were treated with high-resolution anoscopy with ablation or standard anoscopy with ablation. Both groups were treated with imiquimod and followed every 6 months indefinitely. The incidence of anal squamous-cell cancer in each group was the primary end point. From 2007 to 2013, 424 patients with anal squamous dysplasia were seen in the clinic (high-resolution anoscopy, 220; expectant management, 204). Three patients (high-resolution anoscopy, 1; expectant management, 2) progressed to anal squamous-cell cancer; 2 were noncompliant with follow-up and with HIV treatment, and the third was allergic to imiquimod and refused to take topical 5-fluorouracil. The 5-year progression rate was 6.0% (95% CI, 1.5-24.6) for expectant management and 4.5% (95% CI, 0.7-30.8) for high-resolution anoscopy (p = 0.37). This was a retrospective review. There is potential for selection and referral bias. Because of the rarity of the outcome, the study may be underpowered. Patients with squamous-cell dysplasia followed with expectant management or high-resolution anoscopy rarely develop squamous-cell cancer if they are compliant with the protocol. The cost, morbidity, and value of high-resolution anoscopy should be further evaluated in lieu of these findings.
NASA Astrophysics Data System (ADS)
Hester, David Barry
The objective of this research was to develop methods for urban land cover analysis using QuickBird high spatial resolution satellite imagery. Such imagery has emerged as a rich commercially available remote sensing data source and has enjoyed high-profile broadcast news media and Internet applications, but methods of quantitative analysis have not been thoroughly explored. The research described here consists of three studies focused on the use of pan-sharpened 61-cm spatial resolution QuickBird imagery, the spatial resolution of which is the highest of any commercial satellite. In the first study, a per-pixel land cover classification method is developed for use with this imagery. This method utilizes a per-pixel classification approach to generate an accurate six-category high spatial resolution land cover map of a developing suburban area. The primary objective of the second study was to develop an accurate land cover change detection method for use with QuickBird land cover products. This work presents an efficient fuzzy framework for transforming map uncertainty into accurate and meaningful high spatial resolution land cover change analysis. The third study described here is an urban planning application of the high spatial resolution QuickBird-based land cover product developed in the first study. This work both meaningfully connects this exciting new data source to urban watershed management and makes an important empirical contribution to the study of suburban watersheds. Its analysis of residential roads and driveways as well as retail parking lots sheds valuable light on the impact of transportation-related land use on the suburban landscape. Broadly, these studies provide new methods for using state-of-the-art remote sensing data to inform land cover analysis and urban planning. These methods are widely adaptable and produce land cover products that are both meaningful and accurate. As additional high spatial resolution satellites are launched and the cost of high resolution imagery continues to decline, this research makes an important contribution to this exciting era in the science of remote sensing.
O-space with high resolution readouts outperforms radial imaging.
Wang, Haifeng; Tam, Leo; Kopanoglu, Emre; Peters, Dana C; Constable, R Todd; Galiana, Gigi
2017-04-01
While O-Space imaging is well known to accelerate image acquisition beyond traditional Cartesian sampling, its advantages compared to undersampled radial imaging, the linear trajectory most akin to O-Space imaging, have not been detailed. In addition, previous studies have focused on ultrafast imaging with very high acceleration factors and relatively low resolution. The purpose of this work is to directly compare O-Space and radial imaging in their potential to deliver highly undersampled images of high resolution and minimal artifacts, as needed for diagnostic applications. We report that the greatest advantages to O-Space imaging are observed with extended data acquisition readouts. A sampling strategy that uses high resolution readouts is presented and applied to compare the potential of radial and O-Space sequences to generate high resolution images at high undersampling factors. Simulations and phantom studies were performed to investigate whether use of extended readout windows in O-Space imaging would increase k-space sampling and improve image quality, compared to radial imaging. Experimental O-Space images acquired with high resolution readouts show fewer artifacts and greater sharpness than radial imaging with equivalent scan parameters. Radial images taken with longer readouts show stronger undersampling artifacts, which can cause small or subtle image features to disappear. These features are preserved in a comparable O-Space image. High resolution O-Space imaging yields highly undersampled images of high resolution and minimal artifacts. The additional nonlinear gradient field improves image quality beyond conventional radial imaging. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Singh, G.; Das, N. N.; Panda, R. K.; Mohanty, B.; Entekhabi, D.; Bhattacharya, B. K.
2016-12-01
Soil moisture status at high resolution (1-10 km) is vital for hydrological, agricultural and hydro-metrological applications. The NASA Soil Moisture Active Passive (SMAP) mission had potential to provide reliable soil moisture estimate at finer spatial resolutions (3 km and 9 km) at the global extent, but suffered a malfunction of its radar, consequently making the SMAP mission observations only from radiometer that are of coarse spatial resolution. At present, the availability of high-resolution soil moisture product is limited, especially in developing countries like India, which greatly depends on agriculture for sustaining a huge population. Therefore, an attempt has been made in the reported study to combine the C-band synthetic aperture radar (SAR) data from Radar Imaging Satellite (RISAT) of the Indian Space Research Organization (ISRO) with the SMAP mission L-band radiometer data to obtain high-resolution (1 km and 3 km) soil moisture estimates. In this study, a downscaling approach (Active-Passive Algorithm) implemented for the SMAP mission was used to disaggregate the SMAP radiometer brightness temperature (Tb) using the fine resolution SAR backscatter (σ0) from RISAT. The downscaled high-resolution Tb was then subjected to tau-omega model in conjunction with high-resolution ancillary data to retrieve soil moisture at 1 and 3 km scale. The retrieved high-resolution soil moisture estimates were then validated with ground based soil moisture measurement under different hydro-climatic regions of India. Initial results show tremendous potential and reasonable accuracy for the retrieved soil moisture at 1 km and 3 km. It is expected that ISRO will implement this approach to produce high-resolution soil moisture estimates for the Indian subcontinent.
Application and evaluation of high-resolution WRF-CMAQ with simple urban parameterization.
The 2-way coupled WRF-CMAQ meteorology and air quality modeling system is evaluated for high-resolution applications by comparing to a regional air quality field study (Discover-AQ). The model was modified to better account for the effects of urban environments. High-resolution...
USDA-ARS?s Scientific Manuscript database
Thermal and multispectral remote sensing data from low-altitude aircraft can provide high spatial resolution necessary for sub-field (= 10 m) and plant canopy (= 1 m) scale evapotranspiration (ET) monitoring. In this study, high resolution aircraft sub-meter scale thermal infrared and multispectral...
Application and evaluation of high-resolution WRF-CMAQ with simple urban parameterization
The 2-way coupled WRF-CMAQ meteorology and air quality modeling system is evaluated for high-resolution applications by comparing to a regional air quality field study (Discover-AQ). The model was modified to better account for the effects of urban environments. High-resolution...
B. W. Butler; N. S. Wagenbrenner; J. M. Forthofer; B. K. Lamb; K. S. Shannon; D. Finn; R. M. Eckman; K. Clawson; L. Bradshaw; P. Sopko; S. Beard; D. Jimenez; C. Wold; M. Vosburgh
2015-01-01
A number of numerical wind flow models have been developed for simulating wind flow at relatively fine spatial resolutions (e.g., 100 m); however, there are very limited observational data available for evaluating these high-resolution models. This study presents high-resolution surface wind data sets collected from an isolated mountain and a steep river canyon. The...
CNV detection method optimized for high-resolution arrayCGH by normality test.
Ahn, Jaegyoon; Yoon, Youngmi; Park, Chihyun; Park, Sanghyun
2012-04-01
High-resolution arrayCGH platform makes it possible to detect small gains and losses which previously could not be measured. However, current CNV detection tools fitted to early low-resolution data are not applicable to larger high-resolution data. When CNV detection tools are applied to high-resolution data, they suffer from high false-positives, which increases validation cost. Existing CNV detection tools also require optimal parameter values. In most cases, obtaining these values is a difficult task. This study developed a CNV detection algorithm that is optimized for high-resolution arrayCGH data. This tool operates up to 1500 times faster than existing tools on a high-resolution arrayCGH of whole human chromosomes which has 42 million probes whose average length is 50 bases, while preserving false positive/negative rates. The algorithm also uses a normality test, thereby removing the need for optimal parameters. To our knowledge, this is the first formulation for CNV detecting problems that results in a near-linear empirical overall complexity for real high-resolution data. Copyright © 2012 Elsevier Ltd. All rights reserved.
High Resolution Higher Energy X-ray Microscope for Mesoscopic Materials
NASA Astrophysics Data System (ADS)
Snigireva, I.; Snigirev, A.
2013-10-01
We developed a novel X-ray microscopy technique to study mesoscopically structured materials, employing compound refractive lenses. The easily seen advantage of lens-based methodology is the possibility to retrieve high resolution diffraction pattern and real-space images in the same experimental setup. Methodologically the proposed approach is similar to the studies of crystals by high resolution transmission electron microscopy. The proposed microscope was applied for studying of mesoscopic materials such as natural and synthetic opals, inverted photonic crystals.
Chang, Hing-Chiu; Sundman, Mark; Petit, Laurent; Guhaniyogi, Shayan; Chu, Mei-Lan; Petty, Christopher; Song, Allen W.; Chen, Nan-kuei
2015-01-01
The advantages of high-resolution diffusion tensor imaging (DTI) have been demonstrated in a recent post-mortem human brain study (Miller et al., NeuroImage 2011;57(1):167–181), showing that white matter fiber tracts can be much more accurately detected in data at submillimeter isotropic resolution. To our knowledge, in vivo human brain DTI at submillimeter isotropic resolution has not been routinely achieved yet because of the difficulty in simultaneously achieving high resolution and high signal-to-noise ratio (SNR) in DTI scans. Here we report a 3D multi-slab interleaved EPI acquisition integrated with multiplexed sensitivity encoded (MUSE) reconstruction, to achieve high-quality, high-SNR and submillimeter isotropic resolution (0.85 × 0.85 × 0.85 mm3) in vivo human brain DTI on a 3 Tesla clinical MRI scanner. In agreement with the previously reported post-mortem human brain DTI study, our in vivo data show that the structural connectivity networks of human brains can be mapped more accurately and completely with high-resolution DTI as compared with conventional DTI (e.g., 2 × 2 × 2 mm3). PMID:26072250
[Possibile application of X-ray and high resolution CT in pneumoconiosis management].
Vlasov, V G; Laptev, V Ia; Logvinenko, I I; Smirnova, E L; Brovchenko, E P; Mironova, M V
2011-01-01
The article covers results of clinical and roentgenologic data analysis. The data were obtained in the study that covered 447 pneumoconiosis patients, 75 of which were subjected to high resolution CT. If compared to chest X-ray, high resolution CT helps more precise forecast of further course in pneumoconiosis.
Using High Spatial Resolution to Improve BOLD fMRI Detection at 3T
Claise, Béatrice; Jean, Betty
2015-01-01
For different functional magnetic resonance imaging experiments using blood oxygenation level-dependent (BOLD) contrast, the acquisition of T 2*-weighted scans at a high spatial resolution may be advantageous in terms of time-course signal-to-noise ratio and of BOLD sensitivity when the regions are prone to susceptibility artifacts. In this study, we explore this solution by examining how spatial resolution influences activations elicited when appetizing food pictures are viewed. Twenty subjects were imaged at 3 T with two different voxel volumes, 3.4 μl and 27 μl. Despite the diminution of brain coverage, we found that high-resolution acquisition led to a better detection of activations. Though known to suffer to different degrees from susceptibility artifacts, the activations detected by high spatial resolution were notably consistent with those reported in published activation likelihood estimation meta-analyses, corresponding to taste-responsive regions. Furthermore, these regions were found activated bilaterally, in contrast with previous findings. Both the reduction of partial volume effect, which improves BOLD contrast, and the mitigation of susceptibility artifact, which boosts the signal to noise ratio in certain regions, explained the better detection noted with high resolution. The present study provides further evidences that high spatial resolution is a valuable solution for human BOLD fMRI, especially for studying food-related stimuli. PMID:26550990
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wei, Zhiliang; Lin, Liangjie; Lin, Yanqin, E-mail: linyq@xmu.edu.cn, E-mail: chenz@xmu.edu.cn
2014-09-29
In nuclear magnetic resonance (NMR) technique, it is of great necessity and importance to obtain high-resolution spectra, especially under inhomogeneous magnetic fields. In this study, a method based on partial homogeneity is proposed for retrieving high-resolution one-dimensional NMR spectra under inhomogeneous fields. Signals from series of small voxels, which characterize high resolution due to small sizes, are recorded simultaneously. Then, an inhomogeneity correction algorithm is developed based on pattern recognition to correct the influence brought by field inhomogeneity automatically, thus yielding high-resolution information. Experiments on chemical solutions and fish spawn were carried out to demonstrate the performance of the proposedmore » method. The proposed method serves as a single radiofrequency pulse high-resolution NMR spectroscopy under inhomogeneous fields and may provide an alternative of obtaining high-resolution spectra of in vivo living systems or chemical-reaction systems, where performances of conventional techniques are usually degenerated by field inhomogeneity.« less
Koen, Joshua D; Borders, Alyssa A; Petzold, Michael T; Yonelinas, Andrew P
2017-02-01
The medial temporal lobe (MTL) plays a critical role in episodic long-term memory, but whether the MTL is necessary for visual short-term memory is controversial. Some studies have indicated that MTL damage disrupts visual short-term memory performance whereas other studies have failed to find such evidence. To account for these mixed results, it has been proposed that the hippocampus is critical in supporting short-term memory for high resolution complex bindings, while the cortex is sufficient to support simple, low resolution bindings. This hypothesis was tested in the current study by assessing visual short-term memory in patients with damage to the MTL and controls for high resolution and low resolution object-location and object-color associations. In the location tests, participants encoded sets of two or four objects in different locations on the screen. After each set, participants performed a two-alternative forced-choice task in which they were required to discriminate the object in the target location from the object in a high or low resolution lure location (i.e., the object locations were very close or far away from the target location, respectively). Similarly, in the color tests, participants were presented with sets of two or four objects in a different color and, after each set, were required to discriminate the object in the target color from the object in a high or low resolution lure color (i.e., the lure color was very similar or very different, respectively, to the studied color). The patients were significantly impaired in visual short-term memory, but importantly, they were more impaired for high resolution object-location and object-color bindings. The results are consistent with the proposal that the hippocampus plays a critical role in forming and maintaining complex, high resolution bindings. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Visual working memory capacity for color is independent of representation resolution.
Ye, Chaoxiong; Zhang, Lingcong; Liu, Taosheng; Li, Hong; Liu, Qiang
2014-01-01
The relationship between visual working memory (VWM) capacity and resolution of representation have been extensively investigated. Several recent ERP studies using orientation (or arrow) stimuli suggest that there is an inverse relationship between VWM capacity and representation resolution. However, different results have been obtained in studies using color stimuli. This could be due to important differences in the experimental paradigms used in previous studies. We examined whether the same relationship between capacity and resolution holds for color information. Participants performed a color change detection task while their electroencephalography was recorded. We manipulated representation resolution by asking participants to detect either a salient change (low-resolution) or a subtle change (high-resolution) in color. We used an ERP component known as contralateral delay activity (CDA) to index the amount of information maintained in VWM. The result demonstrated the same pattern for both low- and high-resolution conditions, with no difference between conditions. This result suggests that VWM always represents a fixed number of approximately 3-4 colors regardless of the resolution of representation.
Enwright, Nicholas M.; Jones, William R.; Garber, Adrienne L.; Keller, Matthew J.
2014-01-01
Long-term monitoring efforts often use remote sensing to track trends in habitat or landscape conditions over time. To most appropriately compare observations over time, long-term monitoring efforts strive for consistency in methods. Thus, advances and changes in technology over time can present a challenge. For instance, modern camera technology has led to an increasing availability of very high-resolution imagery (i.e. submetre and metre) and a shift from analogue to digital photography. While numerous studies have shown that image resolution can impact the accuracy of classifications, most of these studies have focused on the impacts of comparing spatial resolution changes greater than 2 m. Thus, a knowledge gap exists on the impacts of minor changes in spatial resolution (i.e. submetre to about 1.5 m) in very high-resolution aerial imagery (i.e. 2 m resolution or less). This study compared the impact of spatial resolution on land/water classifications of an area dominated by coastal marsh vegetation in Louisiana, USA, using 1:12,000 scale colour-infrared analogue aerial photography (AAP) scanned at four different dot-per-inch resolutions simulating ground sample distances (GSDs) of 0.33, 0.54, 1, and 2 m. Analysis of the impact of spatial resolution on land/water classifications was conducted by exploring various spatial aspects of the classifications including density of waterbodies and frequency distributions in waterbody sizes. This study found that a small-magnitude change (1–1.5 m) in spatial resolution had little to no impact on the amount of water classified (i.e. percentage mapped was less than 1.5%), but had a significant impact on the mapping of very small waterbodies (i.e. waterbodies ≤ 250 m2). These findings should interest those using temporal image classifications derived from very high-resolution aerial photography as a component of long-term monitoring programs.
Dorji, Passang; Fearns, Peter
2017-01-01
The impact of anthropogenic activities on coastal waters is a cause of concern because such activities add to the total suspended sediment (TSS) budget of the coastal waters, which have negative impacts on the coastal ecosystem. Satellite remote sensing provides a powerful tool in monitoring TSS concentration at high spatiotemporal resolution, but coastal managers should be mindful that the satellite-derived TSS concentrations are dependent on the satellite sensor's radiometric properties, atmospheric correction approaches, the spatial resolution and the limitations of specific TSS algorithms. In this study, we investigated the impact of different spatial resolutions of satellite sensor on the quantification of TSS concentration in coastal waters of northern Western Australia. We quantified the TSS product derived from MODerate resolution Imaging Spectroradiometer (MODIS)-Aqua, Landsat-8 Operational Land Image (OLI), and WorldView-2 (WV2) at native spatial resolutions of 250 m, 30 m and 2 m respectively and coarser spatial resolution (resampled up to 5 km) to quantify the impact of spatial resolution on the derived TSS product in different turbidity conditions. The results from the study show that in the waters of high turbidity and high spatial variability, the high spatial resolution WV2 sensor reported TSS concentration as high as 160 mg L-1 while the low spatial resolution MODIS-Aqua reported a maximum TSS concentration of 23.6 mg L-1. Degrading the spatial resolution of each satellite sensor for highly spatially variable turbid waters led to variability in the TSS concentrations of 114.46%, 304.68% and 38.2% for WV2, Landsat-8 OLI and MODIS-Aqua respectively. The implications of this work are particularly relevant in the situation of compliance monitoring where operations may be required to restrict TSS concentrations to a pre-defined limit.
Fearns, Peter
2017-01-01
The impact of anthropogenic activities on coastal waters is a cause of concern because such activities add to the total suspended sediment (TSS) budget of the coastal waters, which have negative impacts on the coastal ecosystem. Satellite remote sensing provides a powerful tool in monitoring TSS concentration at high spatiotemporal resolution, but coastal managers should be mindful that the satellite-derived TSS concentrations are dependent on the satellite sensor’s radiometric properties, atmospheric correction approaches, the spatial resolution and the limitations of specific TSS algorithms. In this study, we investigated the impact of different spatial resolutions of satellite sensor on the quantification of TSS concentration in coastal waters of northern Western Australia. We quantified the TSS product derived from MODerate resolution Imaging Spectroradiometer (MODIS)-Aqua, Landsat-8 Operational Land Image (OLI), and WorldView-2 (WV2) at native spatial resolutions of 250 m, 30 m and 2 m respectively and coarser spatial resolution (resampled up to 5 km) to quantify the impact of spatial resolution on the derived TSS product in different turbidity conditions. The results from the study show that in the waters of high turbidity and high spatial variability, the high spatial resolution WV2 sensor reported TSS concentration as high as 160 mg L-1 while the low spatial resolution MODIS-Aqua reported a maximum TSS concentration of 23.6 mg L-1. Degrading the spatial resolution of each satellite sensor for highly spatially variable turbid waters led to variability in the TSS concentrations of 114.46%, 304.68% and 38.2% for WV2, Landsat-8 OLI and MODIS-Aqua respectively. The implications of this work are particularly relevant in the situation of compliance monitoring where operations may be required to restrict TSS concentrations to a pre-defined limit. PMID:28380059
The effect of horizontal resolution on simulation quality in the Community Atmospheric Model, CAM5.1
Wehner, Michael F.; Reed, Kevin A.; Li, Fuyu; ...
2014-10-13
We present an analysis of version 5.1 of the Community Atmospheric Model (CAM5.1) at a high horizontal resolution. Intercomparison of this global model at approximately 0.25°, 1°, and 2° is presented for extreme daily precipitation as well as for a suite of seasonal mean fields. In general, extreme precipitation amounts are larger in high resolution than in lower-resolution configurations. In many but not all locations and/or seasons, extreme daily precipitation rates in the high-resolution configuration are higher and more realistic. The high-resolution configuration produces tropical cyclones up to category 5 on the Saffir-Simpson scale and a comparison to observations revealsmore » both realistic and unrealistic model behavior. In the absence of extensive model tuning at high resolution, simulation of many of the mean fields analyzed in this study is degraded compared to the tuned lower-resolution public released version of the model.« less
Conceptual study of an optical aperture synthesis system for high resolution astronomy
NASA Astrophysics Data System (ADS)
Calvel, Bertrand
2018-04-01
This paper, "Conceptual study of an optical aperture synthesis system for high resolution astronomy," was presented as part of International Conference on Space Optics—ICSO 1997, held in Toulouse, France.
Evacuee Compliance Behavior Analysis using High Resolution Demographic Information
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Wei; Han, Lee; Liu, Cheng
2014-01-01
The purpose of this study is to examine whether evacuee compliance behavior with route assignments from different resolutions of demographic data would impact the evacuation performance. Most existing evacuation strategies assume that travelers will follow evacuation instructions, while in reality a certain percent of evacuees do not comply with prescribed instructions. In this paper, a comparison study of evacuation assignment based on Traffic Analysis Zones (TAZ) and high resolution LandScan USA Population Cells (LPC) were conducted for the detailed road network representing Alexandria, Virginia. A revised platform for evacuation modeling built on high resolution demographic data and activity-based microscopic trafficmore » simulation is proposed. The results indicate that evacuee compliance behavior affects evacuation efficiency with traditional TAZ assignment, but it does not significantly compromise the efficiency with high resolution LPC assignment. The TAZ assignment also underestimates the real travel time during evacuation, especially for high compliance simulations. This suggests that conventional evacuation studies based on TAZ assignment might not be effective at providing efficient guidance to evacuees. From the high resolution data perspective, traveler compliance behavior is an important factor but it does not impact the system performance significantly. The highlight of evacuee compliance behavior analysis should be emphasized on individual evacuee level route/shelter assignments, rather than the whole system performance.« less
Spatial and temporal resolution effects on urban catchments with different imperviousness degrees
NASA Astrophysics Data System (ADS)
Cristiano, Elena; ten Veldhuis, Marie-Claire; van de Giesen, Nick C.
2015-04-01
One of the main problems in urban hydrological analysis is to measure the rainfall at urban scale with high resolution and use these measurements to model urban runoff processes to predict flows and reduce flood risk. With the aim of building a semi-distribute hydrological sewer model for an urban catchment, high resolution rainfall data are required as input. In this study, the sensitivity of hydrological response to high resolution precipitation data for hydrodynamic models at urban scale is evaluated with different combinations of spatial and temporal resolutions. The aim is to study sensitivity in relation to catchment characteristics, especially drainage area size, imperviousness degree and hydraulic properties such as special structures (weirs, pumping stations). Rainfall data of nine storms are considered with 4 different spatial resolutions (3000m, 1000m, 500m and 100m) combined with 4 different temporal resolutions (10min, 5min, 3min and 1min). The dual polarimetric X-band weather radar, located in the Cabauw Experimental Site for Atmospheric Research (CESAR) provided the high resolution rainfall data of these rainfall events, used to improve the sewer model. The effects of spatial-temporal rainfall input resolution on response is studied in three Districts of Rotterdam (NL): Kralingen, Spaanse Polder and Centrum district. These catchments have different average drainage area size (from 2km2 to 7km2), and different general characteristics. Centrum district and Kralingen are, indeed, more various and include residential and commercial areas, big green areas and a small industrial area, while Spaanse Polder is a industrial area, densely urbanized, and presents a high percentage of imperviousness.
NASA Technical Reports Server (NTRS)
Kim, Dongchul; Chin, Mian; Kemp, Eric M.; Tao, Zhining; Peters-Lidard, Christa D.; Ginoux, Paul
2017-01-01
A high-resolution dynamic dust source has been developed in the NASA Unified-Weather Research and Forecasting (NU-WRF) model to improve the existing coarse static dust source. In the new dust source map, topographic depression is in 1-km resolution and surface bareness is derived using the Normalized Difference Vegetation Index (NDVI) data from Moderate Resolution Imaging Spectroradiometer (MODIS). The new dust source better resolves the complex topographic distribution over the Western United States where its magnitude is higher than the existing, coarser resolution static source. A case study is conducted with an extreme dust storm that occurred in Phoenix, Arizona in 0203 UTC July 6, 2011. The NU-WRF model with the new high-resolution dynamic dust source is able to successfully capture the dust storm, which was not achieved with the old source identification. However the case study also reveals several challenges in reproducing the time evolution of the short-lived, extreme dust storm events.
Kim, Dongchul; Chin, Mian; Kemp, Eric M.; Tao, Zhining; Peters-Lidard, Christa D.; Ginoux, Paul
2018-01-01
A high-resolution dynamic dust source has been developed in the NASA Unified-Weather Research and Forecasting (NU-WRF) model to improve the existing coarse static dust source. In the new dust source map, topographic depression is in 1-km resolution and surface bareness is derived using the Normalized Difference Vegetation Index (NDVI) data from Moderate Resolution Imaging Spectroradiometer (MODIS). The new dust source better resolves the complex topographic distribution over the Western United States where its magnitude is higher than the existing, coarser resolution static source. A case study is conducted with an extreme dust storm that occurred in Phoenix, Arizona in 02-03 UTC July 6, 2011. The NU-WRF model with the new high-resolution dynamic dust source is able to successfully capture the dust storm, which was not achieved with the old source identification. However the case study also reveals several challenges in reproducing the time evolution of the short-lived, extreme dust storm events. PMID:29632432
Kim, Dongchul; Chin, Mian; Kemp, Eric M; Tao, Zhining; Peters-Lidard, Christa D; Ginoux, Paul
2017-06-01
A high-resolution dynamic dust source has been developed in the NASA Unified-Weather Research and Forecasting (NU-WRF) model to improve the existing coarse static dust source. In the new dust source map, topographic depression is in 1-km resolution and surface bareness is derived using the Normalized Difference Vegetation Index (NDVI) data from Moderate Resolution Imaging Spectroradiometer (MODIS). The new dust source better resolves the complex topographic distribution over the Western United States where its magnitude is higher than the existing, coarser resolution static source. A case study is conducted with an extreme dust storm that occurred in Phoenix, Arizona in 02-03 UTC July 6, 2011. The NU-WRF model with the new high-resolution dynamic dust source is able to successfully capture the dust storm, which was not achieved with the old source identification. However the case study also reveals several challenges in reproducing the time evolution of the short-lived, extreme dust storm events.
Gladys, Fanny Moses; Matsuda, Masaru; Lim, Yiheng; Jackin, Boaz Jessie; Imai, Takuto; Otani, Yukitoshi; Yatagai, Toyohiko; Cense, Barry
2015-02-01
We propose ultra-high resolution optical coherence tomography to study the morphological development of internal organs in medaka fish in the post-embryonic stages at micrometer resolution. Different stages of Japanese medaka were imaged after hatching in vivo with an axial resolution of 2.8 µm in tissue. Various morphological structures and organs identified in the OCT images were then compared with the histology. Due to the medaka's close resemblance to vertebrates, including humans, these morphological features play an important role in morphogenesis and can be used to study diseases that also occur in humans.
The impact of high-resolution ultrasound in the differential diagnosis of non-hemolytic jaundice.
Rauh, Peter; Neye, Holger; Mönkemüller, Klaus; Malfertheiner, Peter; Rickes, Steffen
2010-12-01
Because jaundice is a common reason for hospital admission. A fast and correct differential diagnosis is very important to increase treatment efficacy. The aim of our study was to evaluate the impact of the high-resolution ultrasound in this kind of clinical setting. In a prospective study we included 30 patients and we divided them in patients with extrahepatic jaundice and patients with intrahepatic jaundice. We observed a high accuracy of the high-resolution sonography, with a sensitivity of 95% and a specificity of 100% for extrahepatic jaundice, and a sensitivity of 100% and a specificity of 95% for intrahepatic jaundice. We conclude that the high-resolution ultrasound should be used in the very beginning of the diagnostic algorithm for the evaluation of patients with unclear jaundice.
Waveform digitization for high resolution timing detectors with silicon photomultipliers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ronzhin, A.; Albrow, M. G.; Los, S.
2012-03-01
The results of time resolution studies with silicon photomultipliers (SiPMs) read out with high bandwidth constant fraction discrimination electronics were presented earlier [1-3]. Here we describe the application of fast waveform digitization readout based on the DRS4 chip [4], a switched capacitor array (SCA) produced by the Paul Scherrer Institute, to further our goal of developing high time resolution detectors based on SiPMs. The influence of the SiPM signal shape on the time resolution was investigated. Different algorithms to obtain the best time resolution are described, and test beam results are presented.
High-resolution nuclear magnetic resonance studies of proteins.
Jonas, Jiri
2002-03-25
The combination of advanced high-resolution nuclear magnetic resonance (NMR) techniques with high-pressure capability represents a powerful experimental tool in studies of protein folding. This review is organized as follows: after a general introduction of high-pressure, high-resolution NMR spectroscopy of proteins, the experimental part deals with instrumentation. The main section of the review is devoted to NMR studies of reversible pressure unfolding of proteins with special emphasis on pressure-assisted cold denaturation and the detection of folding intermediates. Recent studies investigating local perturbations in proteins and the experiments following the effects of point mutations on pressure stability of proteins are also discussed. Ribonuclease A, lysozyme, ubiquitin, apomyoglobin, alpha-lactalbumin and troponin C were the model proteins investigated.
NASA Technical Reports Server (NTRS)
Tarbell, Theodore D.
1993-01-01
Technical studies of the feasibility of balloon flights of the former Spacelab instrument, the Solar Optical Universal Polarimeter, with a modern charge-coupled device (CCD) camera, to study the structure and evolution of solar active regions at high resolution, are reviewed. In particular, different CCD cameras were used at ground-based solar observatories with the SOUP filter, to evaluate their performance and collect high resolution images. High resolution movies of the photosphere and chromosphere were successfully obtained using four different CCD cameras. Some of this data was collected in coordinated observations with the Yohkoh satellite during May-July, 1992, and they are being analyzed scientifically along with simultaneous X-ray observations.
Kuribayashi, Ryuma; Nittono, Hiroshi
2017-01-01
High-resolution audio has a higher sampling frequency and a greater bit depth than conventional low-resolution audio such as compact disks. The higher sampling frequency enables inaudible sound components (above 20 kHz) that are cut off in low-resolution audio to be reproduced. Previous studies of high-resolution audio have mainly focused on the effect of such high-frequency components. It is known that alpha-band power in a human electroencephalogram (EEG) is larger when the inaudible high-frequency components are present than when they are absent. Traditionally, alpha-band EEG activity has been associated with arousal level. However, no previous studies have explored whether sound sources with high-frequency components affect the arousal level of listeners. The present study examined this possibility by having 22 participants listen to two types of a 400-s musical excerpt of French Suite No. 5 by J. S. Bach (on cembalo, 24-bit quantization, 192 kHz A/D sampling), with or without inaudible high-frequency components, while performing a visual vigilance task. High-alpha (10.5-13 Hz) and low-beta (13-20 Hz) EEG powers were larger for the excerpt with high-frequency components than for the excerpt without them. Reaction times and error rates did not change during the task and were not different between the excerpts. The amplitude of the P3 component elicited by target stimuli in the vigilance task increased in the second half of the listening period for the excerpt with high-frequency components, whereas no such P3 amplitude change was observed for the other excerpt without them. The participants did not distinguish between these excerpts in terms of sound quality. Only a subjective rating of inactive pleasantness after listening was higher for the excerpt with high-frequency components than for the other excerpt. The present study shows that high-resolution audio that retains high-frequency components has an advantage over similar and indistinguishable digital sound sources in which such components are artificially cut off, suggesting that high-resolution audio with inaudible high-frequency components induces a relaxed attentional state without conscious awareness.
Chang, Shu-Wei; Kuo, Shih-Yu; Huang, Ting-Hsuan
2017-01-01
This paper presents a novel experimental design for complex structural health monitoring (SHM) studies achieved by integrating 3D printing technologies, high-resolution laser displacement sensors, and multiscale entropy SHM theory. A seven-story structure with a variety of composite bracing systems was constructed using a dual-material 3D printer. A wireless Bluetooth vibration speaker was used to excite the ground floor of the structure, and high-resolution laser displacement sensors (1-μm resolution) were used to monitor the displacement history on different floors. Our results showed that the multiscale entropy SHM method could detect damage on the 3D-printed structures. The results of this study demonstrate that integrating 3D printing technologies and high-resolution laser displacement sensors enables the design of cheap, fast processing, complex, small-scale civil structures for future SHM studies. The novel experimental design proposed in this study provides a suitable platform for investigating the validity and sensitivity of SHM in different composite structures and damage conditions for real life applications in the future. PMID:29271937
Chang, Shu-Wei; Lin, Tzu-Kang; Kuo, Shih-Yu; Huang, Ting-Hsuan
2017-12-22
This paper presents a novel experimental design for complex structural health monitoring (SHM) studies achieved by integrating 3D printing technologies, high-resolution laser displacement sensors, and multiscale entropy SHM theory. A seven-story structure with a variety of composite bracing systems was constructed using a dual-material 3D printer. A wireless Bluetooth vibration speaker was used to excite the ground floor of the structure, and high-resolution laser displacement sensors (1-μm resolution) were used to monitor the displacement history on different floors. Our results showed that the multiscale entropy SHM method could detect damage on the 3D-printed structures. The results of this study demonstrate that integrating 3D printing technologies and high-resolution laser displacement sensors enables the design of cheap, fast processing, complex, small-scale civil structures for future SHM studies. The novel experimental design proposed in this study provides a suitable platform for investigating the validity and sensitivity of SHM in different composite structures and damage conditions for real life applications in the future.
High-resolution ground-based spectroscopy: where and how ?
NASA Astrophysics Data System (ADS)
Pallavicini, R.
2002-07-01
An overview is presented of high-resolution optical spectrographs in operation or under development at large telescopes, with emphasis on those facilities best suited for the study of late-type stars and stellar surface inhomogeneities. Plans for the development of new high-resolution spectroscopic instruments are discussed with emphasis on the ICE spectrograph for the PEPSI spectropolarimeter at the LBT.
Yuan, Baohong; Pei, Yanbo; Kandukuri, Jayanth
2013-01-01
Our recently developed ultrasound-switchable fluorescence (USF) imaging technique showed that it was feasible to conduct high-resolution fluorescence imaging in a centimeter-deep turbid medium. Because the spatial resolution of this technique highly depends on the ultrasound-induced temperature focal size (UTFS), minimization of UTFS becomes important for further improving the spatial resolution USF technique. In this study, we found that UTFS can be significantly reduced below the diffraction-limited acoustic intensity focal size via nonlinear acoustic effects and thermal confinement by appropriately controlling ultrasound power and exposure time, which can be potentially used for deep-tissue high-resolution imaging. PMID:23479498
Lee, N J; Chung, M S; Jung, S C; Kim, H S; Choi, C-G; Kim, S J; Lee, D H; Suh, D C; Kwon, S U; Kang, D-W; Kim, J S
2016-12-01
High-resolution MR imaging has recently been introduced as a promising diagnostic modality in intracranial artery disease. Our aim was to compare high-resolution MR imaging with digital subtraction angiography for the characterization and diagnosis of various intracranial artery diseases. Thirty-seven patients who had undergone both high-resolution MR imaging and DSA for intracranial artery disease were enrolled in our study (August 2011 to April 2014). The time interval between the high-resolution MR imaging and DSA was within 1 month. The degree of stenosis and the minimal luminal diameter were independently measured by 2 observers in both DSA and high-resolution MR imaging, and the results were compared. Two observers independently diagnosed intracranial artery diseases on DSA and high-resolution MR imaging. The time interval between the diagnoses on DSA and high-resolution MR imaging was 2 weeks. Interobserver diagnostic agreement for each technique and intermodality diagnostic agreement for each observer were acquired. High-resolution MR imaging showed moderate-to-excellent agreement (interclass correlation coefficient = 0.892-0.949; κ = 0.548-0.614) and significant correlations (R = 0.766-892) with DSA on the degree of stenosis and minimal luminal diameter. The interobserver diagnostic agreement was good for DSA (κ = 0.643) and excellent for high-resolution MR imaging (κ = 0.818). The intermodality diagnostic agreement was good (κ = 0.704) for observer 1 and moderate (κ = 0.579) for observer 2, respectively. High-resolution MR imaging may be an imaging method comparable with DSA for the characterization and diagnosis of various intracranial artery diseases. © 2016 by American Journal of Neuroradiology.
A high-resolution cattle CNV map by population-scale genome sequencing
USDA-ARS?s Scientific Manuscript database
Copy Number Variations (CNVs) are common genomic structural variations that have been linked to human diseases and phenotypic traits. Prior studies in cattle have produced low-resolution CNV maps. We constructed a draft, high-resolution map of cattle CNVs based on whole genome sequencing data from 7...
NASA Astrophysics Data System (ADS)
Zarzycki, C. M.; Gettelman, A.; Callaghan, P.
2017-12-01
Accurately predicting weather extremes such as precipitation (floods and droughts) and temperature (heat waves) requires high resolution to resolve mesoscale dynamics and topography at horizontal scales of 10-30km. Simulating such resolutions globally for climate scales (years to decades) remains computationally impractical. Simulating only a small region of the planet is more tractable at these scales for climate applications. This work describes global simulations using variable-resolution static meshes with multiple dynamical cores that target the continental United States using developmental versions of the Community Earth System Model version 2 (CESM2). CESM2 is tested in idealized, aquaplanet and full physics configurations to evaluate variable mesh simulations against uniform high and uniform low resolution simulations at resolutions down to 15km. Different physical parameterization suites are also evaluated to gauge their sensitivity to resolution. Idealized variable-resolution mesh cases compare well to high resolution tests. More recent versions of the atmospheric physics, including cloud schemes for CESM2, are more stable with respect to changes in horizontal resolution. Most of the sensitivity is due to sensitivity to timestep and interactions between deep convection and large scale condensation, expected from the closure methods. The resulting full physics model produces a comparable climate to the global low resolution mesh and similar high frequency statistics in the high resolution region. Some biases are reduced (orographic precipitation in the western United States), but biases do not necessarily go away at high resolution (e.g. summertime JJA surface Temp). The simulations are able to reproduce uniform high resolution results, making them an effective tool for regional climate studies and are available in CESM2.
Boyle, Sarah A; Kennedy, Christina M; Torres, Julio; Colman, Karen; Pérez-Estigarribia, Pastor E; de la Sancha, Noé U
2014-01-01
Technological advances and increasing availability of high-resolution satellite imagery offer the potential for more accurate land cover classifications and pattern analyses, which could greatly improve the detection and quantification of land cover change for conservation. Such remotely-sensed products, however, are often expensive and difficult to acquire, which prohibits or reduces their use. We tested whether imagery of high spatial resolution (≤5 m) differs from lower-resolution imagery (≥30 m) in performance and extent of use for conservation applications. To assess performance, we classified land cover in a heterogeneous region of Interior Atlantic Forest in Paraguay, which has undergone recent and dramatic human-induced habitat loss and fragmentation. We used 4 m multispectral IKONOS and 30 m multispectral Landsat imagery and determined the extent to which resolution influenced the delineation of land cover classes and patch-level metrics. Higher-resolution imagery more accurately delineated cover classes, identified smaller patches, retained patch shape, and detected narrower, linear patches. To assess extent of use, we surveyed three conservation journals (Biological Conservation, Biotropica, Conservation Biology) and found limited application of high-resolution imagery in research, with only 26.8% of land cover studies analyzing satellite imagery, and of these studies only 10.4% used imagery ≤5 m resolution. Our results suggest that high-resolution imagery is warranted yet under-utilized in conservation research, but is needed to adequately monitor and evaluate forest loss and conversion, and to delineate potentially important stepping-stone fragments that may serve as corridors in a human-modified landscape. Greater access to low-cost, multiband, high-resolution satellite imagery would therefore greatly facilitate conservation management and decision-making.
A Virtual Study of Grid Resolution on Experiments of a Highly-Resolved Turbulent Plume
NASA Astrophysics Data System (ADS)
Maisto, Pietro M. F.; Marshall, Andre W.; Gollner, Michael J.; Fire Protection Engineering Department Collaboration
2017-11-01
An accurate representation of sub-grid scale turbulent mixing is critical for modeling fire plumes and smoke transport. In this study, PLIF and PIV diagnostics are used with the saltwater modeling technique to provide highly-resolved instantaneous field measurements in unconfined turbulent plumes useful for statistical analysis, physical insight, and model validation. The effect of resolution was investigated employing a virtual interrogation window (of varying size) applied to the high-resolution field measurements. Motivated by LES low-pass filtering concepts, the high-resolution experimental data in this study can be analyzed within the interrogation windows (i.e. statistics at the sub-grid scale) and on interrogation windows (i.e. statistics at the resolved scale). A dimensionless resolution threshold (L/D*) criterion was determined to achieve converged statistics on the filtered measurements. Such a criterion was then used to establish the relative importance between large and small-scale turbulence phenomena while investigating specific scales for the turbulent flow. First order data sets start to collapse at a resolution of 0.3D*, while for second and higher order statistical moments the interrogation window size drops down to 0.2D*.
A flexible spatiotemporal method for fusing satellite images with different resolutions
Xiaolin Zhu; Eileen H. Helmer; Feng Gao; Desheng Liu; Jin Chen; Michael A. Lefsky
2016-01-01
Studies of land surface dynamics in heterogeneous landscapes often require remote sensing datawith high acquisition frequency and high spatial resolution. However, no single sensor meets this requirement. This study presents a new spatiotemporal data fusion method, the Flexible Spatiotemporal DAta Fusion (FSDAF) method, to generate synthesized frequent high spatial...
Gladys, Fanny Moses; Matsuda, Masaru; Lim, Yiheng; Jackin, Boaz Jessie; Imai, Takuto; Otani, Yukitoshi; Yatagai, Toyohiko; Cense, Barry
2015-01-01
We propose ultra-high resolution optical coherence tomography to study the morphological development of internal organs in medaka fish in the post-embryonic stages at micrometer resolution. Different stages of Japanese medaka were imaged after hatching in vivo with an axial resolution of 2.8 µm in tissue. Various morphological structures and organs identified in the OCT images were then compared with the histology. Due to the medaka’s close resemblance to vertebrates, including humans, these morphological features play an important role in morphogenesis and can be used to study diseases that also occur in humans. PMID:25780725
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Chun; Leung, L. Ruby; Park, Sang-Hun
Advances in computing resources are gradually moving regional and global numerical forecasting simulations towards sub-10 km resolution, but global high resolution climate simulations remain a challenge. The non-hydrostatic Model for Prediction Across Scales (MPAS) provides a global framework to achieve very high resolution using regional mesh refinement. Previous studies using the hydrostatic version of MPAS (H-MPAS) with the physics parameterizations of Community Atmosphere Model version 4 (CAM4) found notable resolution dependent behaviors. This study revisits the resolution sensitivity using the non-hydrostatic version of MPAS (NH-MPAS) with both CAM4 and CAM5 physics. A series of aqua-planet simulations at global quasi-uniform resolutionsmore » ranging from 240 km to 30 km and global variable resolution simulations with a regional mesh refinement of 30 km resolution over the tropics are analyzed, with a primary focus on the distinct characteristics of NH-MPAS in simulating precipitation, clouds, and large-scale circulation features compared to H-MPAS-CAM4. The resolution sensitivity of total precipitation and column integrated moisture in NH-MPAS is smaller than that in H-MPAS-CAM4. This contributes importantly to the reduced resolution sensitivity of large-scale circulation features such as the inter-tropical convergence zone and Hadley circulation in NH-MPAS compared to H-MPAS. In addition, NH-MPAS shows almost no resolution sensitivity in the simulated westerly jet, in contrast to the obvious poleward shift in H-MPAS with increasing resolution, which is partly explained by differences in the hyperdiffusion coefficients used in the two models that influence wave activity. With the reduced resolution sensitivity, simulations in the refined region of the NH-MPAS global variable resolution configuration exhibit zonally symmetric features that are more comparable to the quasi-uniform high-resolution simulations than those from H-MPAS that displays zonal asymmetry in simulations inside the refined region. Overall, NH-MPAS with CAM5 physics shows less resolution sensitivity compared to CAM4. These results provide a reference for future studies to further explore the use of NH-MPAS for high-resolution climate simulations in idealized and realistic configurations.« less
NASA Astrophysics Data System (ADS)
Luo, Shouhua; Shen, Tao; Sun, Yi; Li, Jing; Li, Guang; Tang, Xiangyang
2018-04-01
In high resolution (microscopic) CT applications, the scan field of view should cover the entire specimen or sample to allow complete data acquisition and image reconstruction. However, truncation may occur in projection data and results in artifacts in reconstructed images. In this study, we propose a low resolution image constrained reconstruction algorithm (LRICR) for interior tomography in microscopic CT at high resolution. In general, the multi-resolution acquisition based methods can be employed to solve the data truncation problem if the project data acquired at low resolution are utilized to fill up the truncated projection data acquired at high resolution. However, most existing methods place quite strict restrictions on the data acquisition geometry, which greatly limits their utility in practice. In the proposed LRICR algorithm, full and partial data acquisition (scan) at low and high resolutions, respectively, are carried out. Using the image reconstructed from sparse projection data acquired at low resolution as the prior, a microscopic image at high resolution is reconstructed from the truncated projection data acquired at high resolution. Two synthesized digital phantoms, a raw bamboo culm and a specimen of mouse femur, were utilized to evaluate and verify performance of the proposed LRICR algorithm. Compared with the conventional TV minimization based algorithm and the multi-resolution scout-reconstruction algorithm, the proposed LRICR algorithm shows significant improvement in reduction of the artifacts caused by data truncation, providing a practical solution for high quality and reliable interior tomography in microscopic CT applications. The proposed LRICR algorithm outperforms the multi-resolution scout-reconstruction method and the TV minimization based reconstruction for interior tomography in microscopic CT.
Study of fish response using particle image velocimetry and high-speed, high-resolution imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deng, Z.; Richmond, M. C.; Mueller, R. P.
2004-10-01
Fish swimming has fascinated both engineers and fish biologists for decades. Digital particle image velocimetry (DPIV) and high-speed, high-resolution digital imaging are recently developed analysis tools that can help engineers and biologists better understand how fish respond to turbulent environments. This report details studies to evaluate DPIV. The studies included a review of existing literature on DPIV, preliminary studies to test the feasibility of using DPIV conducted at our Flow Biology Laboratory in Richland, Washington September through December 2003, and applications of high-speed, high-resolution digital imaging with advanced motion analysis to investigations of fish injury mechanisms in turbulent shear flowsmore » and bead trajectories in laboratory physical models. Several conclusions were drawn based on these studies, which are summarized as recommendations for proposed research at the end of this report.« less
NASA Technical Reports Server (NTRS)
Menzel, W. Paul; Moeller, Christopher C.; Smith, William L.
1991-01-01
This program has applied Multispectral Atmospheric Mapping Sensor (MAMS) high resolution data to the problem of monitoring atmospheric quantities of moisture and radiative flux at small spatial scales. MAMS, with 100-m horizontal resolution in its four infrared channels, was developed to study small scale atmospheric moisture and surface thermal variability, especially as related to the development of clouds, precipitation, and severe storms. High-resolution Interferometer Sounder (HIS) data has been used to develop a high spectral resolution retrieval algorithm for producing vertical profiles of atmospheric temperature and moisture. The results of this program are summarized and a list of publications resulting from this contract is presented. Selected publications are attached as an appendix.
Genome-wide high-resolution aCGH analysis of gestational choriocarcinomas.
Poaty, Henriette; Coullin, Philippe; Peko, Jean Félix; Dessen, Philippe; Diatta, Ange Lucien; Valent, Alexander; Leguern, Eric; Prévot, Sophie; Gombé-Mbalawa, Charles; Candelier, Jean-Jacques; Picard, Jean-Yves; Bernheim, Alain
2012-01-01
Eleven samples of DNA from choriocarcinomas were studied by high resolution CGH-array 244 K. They were studied after histopathological confirmation of the diagnosis, of the androgenic etiology and after a microsatellite marker analysis confirming the absence of contamination of tumor DNA from maternal DNA. Three cell lines, BeWo, JAR, JEG were also studied by this high resolution pangenomic technique. According to aCGH analysis, the de novo choriocarcinomas exhibited simple chromosomal rearrangements or normal profiles. The cell lines showed various and complex chromosomal aberrations. 23 Minimal Critical Regions were defined that allowed us to list the genes that were potentially implicated. Among them, unusually high numbers of microRNA clusters and imprinted genes were observed.
1992-05-29
Spectroscopy of 1,2- Difluoroethane in a Molecular Beam: A Case Study of Vibrational Mode-Coupling by Steven W. Mork, C. Cameron Miller, and Laura A...and sale; its distribution is unlimited. 92-14657 l9lll l l l , II a HIGH RESOLUTION SPECTROSCOPY OF 1,2- DIFLUOROETHANE IN A MOLECULAR BEAM: A CASE...14853-1301 Abstract The high resolution infrared spectrum of 1,2- difluoroethane (DFE) in a molecular beam has been obtained over the 2978-2996 cm-1
Donegan, Ryan J; Stauffer, Anthony; Heaslet, Michael; Poliskie, Michael
Plantar plate pathology has gained noticeable attention in recent years as an etiology of lesser metatarsophalangeal joint pain. The heightened clinical awareness has led to the need for more effective diagnostic imaging accuracy. Numerous reports have established the accuracy of both magnetic resonance imaging and ultrasonography for the diagnosis of plantar plate pathology. However, no conclusions have been made regarding which is the superior imaging modality. The present study reports a case series directly comparing high-resolution dynamic ultrasonography and magnetic resonance imaging. A multicenter retrospective comparison of magnetic resonance imaging versus high-resolution dynamic ultrasonography to evaluate plantar plate pathology with surgical confirmation was conducted. The sensitivity, specificity, and positive and negative predictive values for magnetic resonance imaging were 60%, 100%, 100%, and 33%, respectively. The overall diagnostic accuracy compared with the intraoperative findings was 66%. The sensitivity, specificity, and positive and negative predictive values for high-resolution dynamic ultrasound imaging were 100%, 100%, 100%, and 100%, respectively. The overall diagnostic accuracy compared with the intraoperative findings was 100%. The p value using Fisher's exact test for magnetic resonance imaging and high-resolution dynamic ultrasonography was p = .45, a difference that was not statistically significant. High-resolution dynamic ultrasonography had greater accuracy than magnetic resonance imaging in diagnosing lesser metatarsophalangeal joint plantar plate pathology, although the difference was not statistically significant. The present case series suggests that high-resolution dynamic ultrasonography can be considered an equally accurate imaging modality for plantar plate pathology at a potential cost savings compared with magnetic resonance imaging. Therefore, high-resolution dynamic ultrasonography warrants further investigation in a prospective study. Copyright © 2016 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.
Parker, I; Callamaras, N; Wier, W G
1997-06-01
We describe the construction of a high-resolution confocal laser-scanning microscope, and illustrate its use for studying elementary Ca2+ signalling events in cells. An avalanche photodiode module and simple optical path provide a high efficiency system for detection of fluorescence signals, allowing use of a small confocal aperture giving near diffraction-limited spatial resolution (< 300 nm lateral and < 400 nm axial). When operated in line-scan mode, the maximum temporal resolution is 1 ms, and the associated computer software allows complete flexibility to record line-scans continuously for long (minutes) periods or to obtain any desired pixel resolution in x-y scans. An independent UV irradiation system permits simultaneous photolysis of caged compounds over either a uniform, wide field (arc lamp source) or at a tightly focussed spot (frequency-tripled Nd:YAG laser). The microscope thus provides a versatile tool for optical studies of dynamic cellular processes, as well as excellent resolution for morphological studies. The confocal scanner can be added to virtually any inverted microscope for a component cost that is only a small fraction of that of comparable commercial instruments, yet offers better performance and greater versatility.
NASA Astrophysics Data System (ADS)
Vrieling, Anton; Skidmore, Andrew K.; Wang, Tiejun; Meroni, Michele; Ens, Bruno J.; Oosterbeek, Kees; O'Connor, Brian; Darvishzadeh, Roshanak; Heurich, Marco; Shepherd, Anita; Paganini, Marc
2017-07-01
Vegetation indices derived from satellite image time series have been extensively used to estimate the timing of phenological events like season onset. Medium spatial resolution (≥250 m) satellite sensors with daily revisit capability are typically employed for this purpose. In recent years, phenology is being retrieved at higher resolution (≤30 m) in response to increasing availability of high-resolution satellite data. To overcome the reduced acquisition frequency of such data, previous attempts involved fusion between high- and medium-resolution data, or combinations of multi-year acquisitions in a single phenological reconstruction. The objectives of this study are to demonstrate that phenological parameters can now be retrieved from single-season high-resolution time series, and to compare these retrievals against those derived from multi-year high-resolution and single-season medium-resolution satellite data. The study focuses on the island of Schiermonnikoog, the Netherlands, which comprises a highly-dynamic saltmarsh, dune vegetation, and agricultural land. Combining NDVI series derived from atmospherically-corrected images from RapidEye (5 m-resolution) and the SPOT5 Take5 experiment (10m-resolution) acquired between March and August 2015, phenological parameters were estimated using a function fitting approach. We then compared results with phenology retrieved from four years of 30 m Landsat 8 OLI data, and single-year 100 m Proba-V and 250 m MODIS temporal composites of the same period. Retrieved phenological parameters from combined RapidEye/SPOT5 displayed spatially consistent results and a large spatial variability, providing complementary information to existing vegetation community maps. Retrievals that combined four years of Landsat observations into a single synthetic year were affected by the inclusion of years with warmer spring temperatures, whereas adjustment of the average phenology to 2015 observations was only feasible for a few pixels due to cloud cover around phenological transition dates. The Proba-V and MODIS phenology retrievals scaled poorly relative to their high-resolution equivalents, indicating that medium-resolution phenology retrievals need to be interpreted with care, particularly in landscapes with fine-scale land cover variability.
Larue, Michelle A; Knight, Joseph
2014-12-01
The Southern Ocean is one of the most rapidly changing ecosystems on the planet due to the effects of climate change and commercial fishing for ecologically important krill and fish. Because sea ice loss is expected to be accompanied by declines in krill and fish predators, decoupling the effects of climate and anthropogenic changes on these predator populations is crucial for ecosystem-based management of the Southern Ocean. We reviewed research published from 2007 to 2014 that incorporated very high-resolution satellite imagery to assess distribution, abundance, and effects of climate and other anthropogenic changes on populations of predators in polar regions. Very high-resolution imagery has been used to study 7 species of polar animals in 13 papers, many of which provide methods through which further research can be conducted. Use of very high-resolution imagery in the Southern Ocean can provide a broader understanding of climate and anthropogenic forces on populations and inform management and conservation recommendations. We recommend that conservation biologists continue to integrate high-resolution remote sensing into broad-scale biodiversity and population studies in remote areas, where it can provide much needed detail. © 2014 Society for Conservation Biology.
High resolution studies of the solar X-ray corona from Aerobee rockets
NASA Technical Reports Server (NTRS)
Davis, J. M.; Haggerty, R.; Krieger, A. S.; Manko, H.; Sherman, G.; Ting, J. W. S.; Vaiana, G. S.
1973-01-01
The research in high resolution solar X-ray astronomy is reported. The payload for the Aerobee 150 launch vehicle, which included a 23 cm diameter mirror whose polished surface was a nickel-phosphorus alloy is discussed along with the high resolution measurements, by Flight 13.028 CS, of the temperature and density structure of the lower corona. Flight 13.029 CS is also discussed.
Zhu, Hongchun; Cai, Lijie; Liu, Haiying; Huang, Wei
2016-01-01
Multi-scale image segmentation and the selection of optimal segmentation parameters are the key processes in the object-oriented information extraction of high-resolution remote sensing images. The accuracy of remote sensing special subject information depends on this extraction. On the basis of WorldView-2 high-resolution data, the optimal segmentation parameters methodof object-oriented image segmentation and high-resolution image information extraction, the following processes were conducted in this study. Firstly, the best combination of the bands and weights was determined for the information extraction of high-resolution remote sensing image. An improved weighted mean-variance method was proposed andused to calculatethe optimal segmentation scale. Thereafter, the best shape factor parameter and compact factor parameters were computed with the use of the control variables and the combination of the heterogeneity and homogeneity indexes. Different types of image segmentation parameters were obtained according to the surface features. The high-resolution remote sensing images were multi-scale segmented with the optimal segmentation parameters. Ahierarchical network structure was established by setting the information extraction rules to achieve object-oriented information extraction. This study presents an effective and practical method that can explain expert input judgment by reproducible quantitative measurements. Furthermore the results of this procedure may be incorporated into a classification scheme. PMID:27362762
Zhu, Hongchun; Cai, Lijie; Liu, Haiying; Huang, Wei
2016-01-01
Multi-scale image segmentation and the selection of optimal segmentation parameters are the key processes in the object-oriented information extraction of high-resolution remote sensing images. The accuracy of remote sensing special subject information depends on this extraction. On the basis of WorldView-2 high-resolution data, the optimal segmentation parameters methodof object-oriented image segmentation and high-resolution image information extraction, the following processes were conducted in this study. Firstly, the best combination of the bands and weights was determined for the information extraction of high-resolution remote sensing image. An improved weighted mean-variance method was proposed andused to calculatethe optimal segmentation scale. Thereafter, the best shape factor parameter and compact factor parameters were computed with the use of the control variables and the combination of the heterogeneity and homogeneity indexes. Different types of image segmentation parameters were obtained according to the surface features. The high-resolution remote sensing images were multi-scale segmented with the optimal segmentation parameters. Ahierarchical network structure was established by setting the information extraction rules to achieve object-oriented information extraction. This study presents an effective and practical method that can explain expert input judgment by reproducible quantitative measurements. Furthermore the results of this procedure may be incorporated into a classification scheme.
A Flexible Spatiotemporal Method for Fusing Satellite Images with Different Resolutions
USDA-ARS?s Scientific Manuscript database
Studies of land surface dynamics in heterogeneous landscapes often require remote sensing data with high acquisition frequency and high spatial resolution. However, no single sensor meets this requirement. This study presents a new spatiotemporal data fusion method, the Flexible Spatiotemporal DAta ...
NASA Astrophysics Data System (ADS)
Ba, Yu Tao; xian Liu, Bao; Sun, Feng; Wang, Li hua; Tang, Yu jia; Zhang, Da wei
2017-04-01
High-resolution mapping of PM2.5 is the prerequisite for precise analytics and subsequent anti-pollution interventions. Considering the large variances of particulate distribution, urban-scale mapping is challenging either with ground-based fixed stations, with satellites or via models. In this study, a dynamic fusion method between high-density sensor network and MODIS Aerosol Optical Depth (AOD) was introduced. The sensor network was deployed in Beijing ( > 1000 fixed monitors across 16000 km2 area) to provide raw observations with high temporal resolution (sampling interval < 1 hour), high spatial resolution in flat areas ( < 1 km), and low spatial resolution in mountainous areas ( > 5 km). The MODIS AOD was calibrated to provide distribution map with low temporal resolution (daily) and moderate spatial resolution ( = 3 km). By encoding the data quality and defects (e.g. could, reflectance, abnormal), a hybrid interpolation procedure with cross-validation generated PM2.5 distribution with both high temporal and spatial resolution. Several no-pollutant and high-pollution periods were tested to validate the proposed fusion method for capturing the instantaneous patterns of PM2.5 emission.
Study of a high-resolution, 3D positioning cadmium zinc telluride detector for PET.
Gu, Y; Matteson, J L; Skelton, R T; Deal, A C; Stephan, E A; Duttweiler, F; Gasaway, T M; Levin, C S
2011-03-21
This paper investigates the performance of 1 mm resolution cadmium zinc telluride (CZT) detectors for positron emission tomography (PET) capable of positioning the 3D coordinates of individual 511 keV photon interactions. The detectors comprise 40 mm × 40 mm × 5 mm monolithic CZT crystals that employ a novel cross-strip readout with interspersed steering electrodes to obtain high spatial and energy resolution. The study found a single anode FWHM energy resolution of 3.06 ± 0.39% at 511 keV throughout most of the detector volume. Improved resolution is expected with properly shielded front-end electronics. Measurements made using a collimated beam established the efficacy of the steering electrodes in facilitating enhanced charge collection across anodes, as well as a spatial resolution of 0.44 ± 0.07 mm in the direction orthogonal to the electrode planes. Finally, measurements based on coincidence electronic collimation yielded a point spread function with 0.78 ± 0.10 mm FWHM, demonstrating 1 mm spatial resolution capability transverse to the anodes-as expected from the 1 mm anode pitch. These findings indicate that the CZT-based detector concept has excellent performance and shows great promise for a high-resolution PET system.
USDA-ARS?s Scientific Manuscript database
The current study evaluates the potential of using high resolution DNA melting assays to discriminate species in the genus, Isaria. The study utilizes a previously identified 103 base pair PCR amplicon, which was reported to be selective for Isaria fumosorosea. Our study finds the amplicon selective...
FALCON: fast and unbiased reconstruction of high-density super-resolution microscopy data
NASA Astrophysics Data System (ADS)
Min, Junhong; Vonesch, Cédric; Kirshner, Hagai; Carlini, Lina; Olivier, Nicolas; Holden, Seamus; Manley, Suliana; Ye, Jong Chul; Unser, Michael
2014-04-01
Super resolution microscopy such as STORM and (F)PALM is now a well known method for biological studies at the nanometer scale. However, conventional imaging schemes based on sparse activation of photo-switchable fluorescent probes have inherently slow temporal resolution which is a serious limitation when investigating live-cell dynamics. Here, we present an algorithm for high-density super-resolution microscopy which combines a sparsity-promoting formulation with a Taylor series approximation of the PSF. Our algorithm is designed to provide unbiased localization on continuous space and high recall rates for high-density imaging, and to have orders-of-magnitude shorter run times compared to previous high-density algorithms. We validated our algorithm on both simulated and experimental data, and demonstrated live-cell imaging with temporal resolution of 2.5 seconds by recovering fast ER dynamics.
FALCON: fast and unbiased reconstruction of high-density super-resolution microscopy data
Min, Junhong; Vonesch, Cédric; Kirshner, Hagai; Carlini, Lina; Olivier, Nicolas; Holden, Seamus; Manley, Suliana; Ye, Jong Chul; Unser, Michael
2014-01-01
Super resolution microscopy such as STORM and (F)PALM is now a well known method for biological studies at the nanometer scale. However, conventional imaging schemes based on sparse activation of photo-switchable fluorescent probes have inherently slow temporal resolution which is a serious limitation when investigating live-cell dynamics. Here, we present an algorithm for high-density super-resolution microscopy which combines a sparsity-promoting formulation with a Taylor series approximation of the PSF. Our algorithm is designed to provide unbiased localization on continuous space and high recall rates for high-density imaging, and to have orders-of-magnitude shorter run times compared to previous high-density algorithms. We validated our algorithm on both simulated and experimental data, and demonstrated live-cell imaging with temporal resolution of 2.5 seconds by recovering fast ER dynamics. PMID:24694686
Impacts of high resolution data on traveler compliance levels in emergency evacuation simulations
Lu, Wei; Han, Lee D.; Liu, Cheng; ...
2016-05-05
In this article, we conducted a comparison study of evacuation assignment based on Traffic Analysis Zones (TAZ) and high resolution LandScan USA Population Cells (LPC) with detailed real world roads network. A platform for evacuation modeling built on high resolution population distribution data and activity-based microscopic traffic simulation was proposed. This platform can be extended to any cities in the world. The results indicated that evacuee compliance behavior affects evacuation efficiency with traditional TAZ assignment, but it did not significantly compromise the performance with high resolution LPC assignment. The TAZ assignment also underestimated the real travel time during evacuation. Thismore » suggests that high data resolution can improve the accuracy of traffic modeling and simulation. The evacuation manager should consider more diverse assignment during emergency evacuation to avoid congestions.« less
High Efficiency Multi-shot Interleaved Spiral-In/Out Acquisition for High Resolution BOLD fMRI
Jung, Youngkyoo; Samsonov, Alexey A.; Liu, Thomas T.; Buracas, Giedrius T.
2012-01-01
Growing demand for high spatial resolution BOLD functional MRI faces a challenge of the spatial resolution vs. coverage or temporal resolution tradeoff, which can be addressed by methods that afford increased acquisition efficiency. Spiral acquisition trajectories have been shown to be superior to currently prevalent echo-planar imaging in terms of acquisition efficiency, and high spatial resolution can be achieved by employing multiple-shot spiral acquisition. The interleaved spiral in-out trajectory is preferred over spiral-in due to increased BOLD signal CNR and higher acquisition efficiency than that of spiral-out or non-interleaved spiral in/out trajectories (1), but to date applicability of the multi-shot interleaved spiral in-out for high spatial resolution imaging has not been studied. Herein we propose multi-shot interleaved spiral in-out acquisition and investigate its applicability for high spatial resolution BOLD fMRI. Images reconstructed from interleaved spiral-in and -out trajectories possess artifacts caused by differences in T2* decay, off-resonance and k-space errors associated with the two trajectories. We analyze the associated errors and demonstrate that application of conjugate phase reconstruction and spectral filtering can substantially mitigate these image artifacts. After applying these processing steps, the multishot interleaved spiral in-out pulse sequence yields high BOLD CNR images at in-plane resolution below 1x1 mm while preserving acceptable temporal resolution (4 s) and brain coverage (15 slices of 2 mm thickness). Moreover, this method yields sufficient BOLD CNR at 1.5 mm isotropic resolution for detection of activation in hippocampus associated with cognitive tasks (Stern memory task). The multi-shot interleaved spiral in-out acquisition is a promising technique for high spatial resolution BOLD fMRI applications. PMID:23023395
Photoionization Rate of Atomic Oxygen
NASA Astrophysics Data System (ADS)
Meier, R. R.; McLaughlin, B. M.; Warren, H. P.; Bishop, J.
2006-05-01
Accurate knowledge of the photoionization rate of atomic oxygen is important for the study and understanding of the ionospheres and emission processes of terrestrial, planetary, and cometary atmospheres. Past calculations of the photoionization rate have been carried out at various spectral resolutions, but none were at sufficiently high resolution to accommodate accidental resonances between solar emission lines and highly structured auto-ionization features in the photoionization cross section. A new version of the NRLEUV solar spectral irradiance model (at solar minimum) and a new model of the O photoionization cross section enable calculations at very high spectral resolution. We find unattenuated photoionization rates computed at 0.001 nm resolution are larger than those at moderate resolution (0.1 nm) by amounts approaching 20%. Allowing for attenuation in the terrestrial atmosphere, we find differences in photoionization rates computed at high and moderate resolution to vary with altitude, especially below 200 km where deviations of plus or minus 20% occur between the two cases.
Downscaling Land Surface Temperature in an Urban Area: A Case Study for Hamburg, Germany
NASA Astrophysics Data System (ADS)
Bechtel, Benjamin; Zakšek, Klemen
2013-04-01
Land surface temperature (LST) is an important parameter for the urban radiation and heat balance and a boundary condition for the atmospheric urban heat island (UHI). The increase in urban surface temperatures compared to the surrounding area (surface urban heat island, SUHI) has been described and analysed with satellite-based measurements for several decades. Besides continuous progress in the development of new sensors, an operational monitoring is still severely limited by physical constraints regarding the spatial and temporal resolution of the satellite data. Essentially, two measurement concepts must be distinguished: Sensors on geostationary platforms have high temporal (several times per hour) and poor spatial resolution (~ 5 km) while those on low earth orbiters have high spatial (~ 100-1000 m) resolution and a long return period (one day to several weeks). To enable an observation with high temporal and spatial resolution, a downscaling scheme for LST from the Spinning Enhanced Visible Infra-Red Imager (SEVIRI) sensor onboard the geostationary meteorological Meteosat 9 to spatial resolutions between 100 and 1000 m was developed and tested for Hamburg in this case study. Therefore, various predictor sets (including parameters derived from multi-temporal thermal data, NDVI, and morphological parameters) were tested. The relationship between predictors and LST was empirically calibrated in the low resolution domain and then transferred to the high resolution domain. The downscaling was validated with LST data from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) for the same time. Aggregated parameters from multi-temporal thermal data (in particular annual cycle parameters and principal components) proved particularly suitable. The results for the highest resolution of 100 m showed a high explained variance (R² = 0.71) and relatively low root mean square errors (RMSE = 2.2 K). Larger predictor sets resulted in higher errors, because they tended to overfit. As expected the results were better for coarser spatial resolutions (R² = 0.80, RMSE = 1.8 K for 500 m). These results are similar or slightly better than in previous studies, although we are not aware of any study with a comparably large downscaling factor. A considerable percentage of the error is systematic due to the different viewing geometry of the sensors (the high resolution LST was overestimated about 1.3 K). The study shows that downscaling of SEVIRI LST is possible up to a resolution of 100 m for urban areas and that multi-temporal thermal data are particularly suitable as predictors.
NASA Astrophysics Data System (ADS)
Senanayake, I. P.; Yeo, I. Y.; Tangdamrongsub, N.; Willgoose, G. R.; Hancock, G. R.; Wells, T.; Fang, B.; Lakshmi, V.
2017-12-01
Long-term soil moisture datasets at high spatial resolution are important in agricultural, hydrological, and climatic applications. The soil moisture estimates can be achieved using satellite remote sensing observations. However, the satellite soil moisture data are typically available at coarse spatial resolutions ( several tens of km), therefore require further downscaling. Different satellite soil moisture products have to be conjointly employed in developing a consistent time-series of high resolution soil moisture, while the discrepancies amongst different satellite retrievals need to be resolved. This study aims to downscale three different satellite soil moisture products, the Soil Moisture and Ocean Salinity (SMOS, 25 km), the Soil Moisture Active Passive (SMAP, 36 km) and the SMAP-Enhanced (9 km), and to conduct an inter-comparison of the downscaled results. The downscaling approach is developed based on the relationship between the diurnal temperature difference and the daily mean soil moisture content. The approach is applied to two sub-catchments (Krui and Merriwa River) of the Goulburn River catchment in the Upper Hunter region (NSW, Australia) to estimate soil moisture at 1 km resolution for 2015. The three coarse spatial resolution soil moisture products and their downscaled results will be validated with the in-situ observations obtained from the Scaling and Assimilation of Soil Moisture and Streamflow (SASMAS) network. The spatial and temporal patterns of the downscaled results will also be analysed. This study will provide the necessary insights for data selection and bias corrections to maintain the consistency of a long-term high resolution soil moisture dataset. The results will assist in developing a time-series of high resolution soil moisture data over the south-eastern Australia.
Evaluating an image-fusion algorithm with synthetic-image-generation tools
NASA Astrophysics Data System (ADS)
Gross, Harry N.; Schott, John R.
1996-06-01
An algorithm that combines spectral mixing and nonlinear optimization is used to fuse multiresolution images. Image fusion merges images of different spatial and spectral resolutions to create a high spatial resolution multispectral combination. High spectral resolution allows identification of materials in the scene, while high spatial resolution locates those materials. In this algorithm, conventional spectral mixing estimates the percentage of each material (called endmembers) within each low resolution pixel. Three spectral mixing models are compared; unconstrained, partially constrained, and fully constrained. In the partially constrained application, the endmember fractions are required to sum to one. In the fully constrained application, all fractions are additionally required to lie between zero and one. While negative fractions seem inappropriate, they can arise from random spectral realizations of the materials. In the second part of the algorithm, the low resolution fractions are used as inputs to a constrained nonlinear optimization that calculates the endmember fractions for the high resolution pixels. The constraints mirror the low resolution constraints and maintain consistency with the low resolution fraction results. The algorithm can use one or more higher resolution sharpening images to locate the endmembers to high spatial accuracy. The algorithm was evaluated with synthetic image generation (SIG) tools. A SIG developed image can be used to control the various error sources that are likely to impair the algorithm performance. These error sources include atmospheric effects, mismodeled spectral endmembers, and variability in topography and illumination. By controlling the introduction of these errors, the robustness of the algorithm can be studied and improved upon. The motivation for this research is to take advantage of the next generation of multi/hyperspectral sensors. Although the hyperspectral images will be of modest to low resolution, fusing them with high resolution sharpening images will produce a higher spatial resolution land cover or material map.
Radar/radiometer facilities for precipitation measurements
NASA Technical Reports Server (NTRS)
Hodge, D. B.; Taylor, R. C.
1973-01-01
The OSU ElectroScience Laboratory Radar/Radiometer Facilities are described. This instrumentation includes a high-resolution radar/radiometer system, a fully automated low-resolution radar system, and a small surveillance radar system. The high-resolution radar/radiometer system operates at 3, 9, and 15 GHz using two 9.1 m and one 4.6 m parabolic antennas, respectively. The low-resolution and surveillance radars operate at 9 and 15 GHz, respectively. Both the high- and low-resolution systems are interfaced to real-time digital processing and recording systems. This capability was developed for the measurement of the temporal and spatial characteristics of precipitation in conjunction with millimeter wavelength propagation studies utilizing the Advanced Technology Satellites. Precipitation characteristics derived from these measurements could also be of direct benefit in such diverse areas as: the atmospheric sciences, meteorology, water resources, flood control and warning, severe storm warning, agricultural crop studies, and urban and regional planning.
Bibliography of In-House and Contract Reports. Supplement 16
1989-10-01
Differences from ETL-71-CR-10 1971 Grav,t% and Gravity Gradients 54 TiLE REPORT NO. YEAR Determination of Level Sensitivity (Field ETL-RN-74-4 1974...Data Base Study, Phase II ETL-0360 1984 High Resolution Optical Power Spectrum Analyzer ETL-0127 1978 High Resolution Orthophoto Output Table (HIROOT...AD 856 731L 1969 High Resolution Orthophoto Output Table ETL-ETR-72-3 1972 High Speed Disc Memory and a Color Image AD 878 975L 1970 Display for a
Fuzzy Classification of High Resolution Remote Sensing Scenes Using Visual Attention Features.
Li, Linyi; Xu, Tingbao; Chen, Yun
2017-01-01
In recent years the spatial resolutions of remote sensing images have been improved greatly. However, a higher spatial resolution image does not always lead to a better result of automatic scene classification. Visual attention is an important characteristic of the human visual system, which can effectively help to classify remote sensing scenes. In this study, a novel visual attention feature extraction algorithm was proposed, which extracted visual attention features through a multiscale process. And a fuzzy classification method using visual attention features (FC-VAF) was developed to perform high resolution remote sensing scene classification. FC-VAF was evaluated by using remote sensing scenes from widely used high resolution remote sensing images, including IKONOS, QuickBird, and ZY-3 images. FC-VAF achieved more accurate classification results than the others according to the quantitative accuracy evaluation indices. We also discussed the role and impacts of different decomposition levels and different wavelets on the classification accuracy. FC-VAF improves the accuracy of high resolution scene classification and therefore advances the research of digital image analysis and the applications of high resolution remote sensing images.
Fuzzy Classification of High Resolution Remote Sensing Scenes Using Visual Attention Features
Xu, Tingbao; Chen, Yun
2017-01-01
In recent years the spatial resolutions of remote sensing images have been improved greatly. However, a higher spatial resolution image does not always lead to a better result of automatic scene classification. Visual attention is an important characteristic of the human visual system, which can effectively help to classify remote sensing scenes. In this study, a novel visual attention feature extraction algorithm was proposed, which extracted visual attention features through a multiscale process. And a fuzzy classification method using visual attention features (FC-VAF) was developed to perform high resolution remote sensing scene classification. FC-VAF was evaluated by using remote sensing scenes from widely used high resolution remote sensing images, including IKONOS, QuickBird, and ZY-3 images. FC-VAF achieved more accurate classification results than the others according to the quantitative accuracy evaluation indices. We also discussed the role and impacts of different decomposition levels and different wavelets on the classification accuracy. FC-VAF improves the accuracy of high resolution scene classification and therefore advances the research of digital image analysis and the applications of high resolution remote sensing images. PMID:28761440
RBS/C, HRTEM and HRXRD study of damage accumulation in irradiated SrTiO3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jagielski, Jacek; Jozwik, Przemyslaw A.; Jozwik Biala, Iwona
2013-05-14
Damage accumulation in argon-irradiated SrTiO3 single crystals has been studied by using combination of Rutherford Backscattering/Channeling (RBS/C), High Resolution Transmission Electron Microscopy (HRTEM) and High Resolution X-Ray Diffraction (HRXRD) techniques. The RBS/C spectra were fitted using McChasy, a Monte Carlo simulation code allowing the quantitative analysis of amorphous-like and dislocation-like types of defects. The results were interpreted by using a Multi-Step Damage Accumulation model which assumes, that the damage accumulation occurs in a series of structural transformations, the defect transformations are triggered by a stress caused by formation of a free volume in the irradiated crystal. This assumption has beenmore » confirmed by High Resolution Transmission Electron Microscopy and High Resolution X-Ray Diffraction analysis.« less
Applications of High-Resolution LiDAR Data for the Christina River Basin CZO
NASA Astrophysics Data System (ADS)
Hicks, N. S.; Aufdenkampe, A. K.; Hicks, S. D.
2011-12-01
High-resolution LiDAR data allows for fine scale geomorphic assessment over relatively large spatial extents. Previously available DEMs with a resolution of ten meters or more did not provide adequate resolution for geomorphic characterization of small streams and watersheds or the identification of changes in stream morphology over time. High-resolution LiDAR data for a portion of the Christina River Basin Critical Zone Observatory (CRB-CZO) was obtained during both leaf-off and leaf-on time periods in 2010. Topographic data from these flights is being analyzed with the intent of geomorphic applications such as stream morphology, sediment transport studies, and the evaluation of alluvial deposits. These data and resultant products will also be used in hydrologic and biogeochemical modeling and in biologic and biogeochemical studies of these streams, which are long-term study sites. The LiDAR data also facilitate informed instrument placement and will be used for vegetation studies. The LiDAR data for the CRB-CZO has been used to create a variety of LiDAR based topographic data products including TINs and 0.5-m DEMs. LiDAR derived slope and elevation products were combined with LiDAR intensity images to identify stream channel boundaries and stream centerlines for third through first-order streams. High-resolution slope data also aided in floodplain characterization of these small streams. These high precision stream channel and floodplain characterizations would not have been otherwise possible without extensive field surveying. Future LiDAR flights will allow for the identification of changes in channel morphology over time in low order basins. These characterizations are of particular interest in comparisons between forested and meadow reaches, and in studying the effects of changes in land-use on channel morphology. High-resolution LiDAR data allow for the generation of surface characterizations of importance to a wide range of interdisciplinary researchers.
Sub-micron resolution selected area electron channeling patterns.
Guyon, J; Mansour, H; Gey, N; Crimp, M A; Chalal, S; Maloufi, N
2015-02-01
Collection of selected area channeling patterns (SACPs) on a high resolution FEG-SEM is essential to carry out quantitative electron channeling contrast imaging (ECCI) studies, as it facilitates accurate determination of the crystal plane normal with respect to the incident beam direction and thus allows control the electron channeling conditions. Unfortunately commercial SACP modes developed in the past were limited in spatial resolution and are often no longer offered. In this contribution we present a novel approach for collecting high resolution SACPs (HR-SACPs) developed on a Gemini column. This HR-SACP technique combines the first demonstrated sub-micron spatial resolution with high angular accuracy of about 0.1°, at a convenient working distance of 10mm. This innovative approach integrates the use of aperture alignment coils to rock the beam with a digitally calibrated beam shift procedure to ensure the rocking beam is maintained on a point of interest. Moreover a new methodology to accurately measure SACP spatial resolution is proposed. While column considerations limit the rocking angle to 4°, this range is adequate to index the HR-SACP in conjunction with the pattern simulated from the approximate orientation deduced by EBSD. This new technique facilitates Accurate ECCI (A-ECCI) studies from very fine grained and/or highly strained materials. It offers also new insights for developing HR-SACP modes on new generation high-resolution electron columns. Copyright © 2014 Elsevier B.V. All rights reserved.
Improving axial resolution in confocal microscopy with new high refractive index mounting media.
Fouquet, Coralie; Gilles, Jean-François; Heck, Nicolas; Dos Santos, Marc; Schwartzmann, Richard; Cannaya, Vidjeacoumary; Morel, Marie-Pierre; Davidson, Robert Stephen; Trembleau, Alain; Bolte, Susanne
2015-01-01
Resolution, high signal intensity and elevated signal to noise ratio (SNR) are key issues for biologists who aim at studying the localisation of biological structures at the cellular and subcellular levels using confocal microscopy. The resolution required to separate sub-cellular biological structures is often near to the resolving power of the microscope. When optimally used, confocal microscopes may reach resolutions of 180 nm laterally and 500 nm axially, however, axial resolution in depth is often impaired by spherical aberration that may occur due to refractive index mismatches. Spherical aberration results in broadening of the point-spread function (PSF), a decrease in peak signal intensity when imaging in depth and a focal shift that leads to the distortion of the image along the z-axis and thus in a scaling error. In this study, we use the novel mounting medium CFM3 (Citifluor Ltd., UK) with a refractive index of 1.518 to minimize the effects of spherical aberration. This mounting medium is compatible with most common fluorochromes and fluorescent proteins. We compare its performance with established mounting media, harbouring refractive indices below 1.500, by estimating lateral and axial resolution with sub-resolution fluorescent beads. We show furthermore that the use of the high refractive index media renders the tissue transparent and improves considerably the axial resolution and imaging depth in immuno-labelled or fluorescent protein labelled fixed mouse brain tissue. We thus propose to use those novel high refractive index mounting media, whenever optimal axial resolution is required.
High-resolution regional climate model evaluation using variable-resolution CESM over California
NASA Astrophysics Data System (ADS)
Huang, X.; Rhoades, A.; Ullrich, P. A.; Zarzycki, C. M.
2015-12-01
Understanding the effect of climate change at regional scales remains a topic of intensive research. Though computational constraints remain a problem, high horizontal resolution is needed to represent topographic forcing, which is a significant driver of local climate variability. Although regional climate models (RCMs) have traditionally been used at these scales, variable-resolution global climate models (VRGCMs) have recently arisen as an alternative for studying regional weather and climate allowing two-way interaction between these domains without the need for nudging. In this study, the recently developed variable-resolution option within the Community Earth System Model (CESM) is assessed for long-term regional climate modeling over California. Our variable-resolution simulations will focus on relatively high resolutions for climate assessment, namely 28km and 14km regional resolution, which are much more typical for dynamically downscaled studies. For comparison with the more widely used RCM method, the Weather Research and Forecasting (WRF) model will be used for simulations at 27km and 9km. All simulations use the AMIP (Atmospheric Model Intercomparison Project) protocols. The time period is from 1979-01-01 to 2005-12-31 (UTC), and year 1979 was discarded as spin up time. The mean climatology across California's diverse climate zones, including temperature and precipitation, is analyzed and contrasted with the Weather Research and Forcasting (WRF) model (as a traditional RCM), regional reanalysis, gridded observational datasets and uniform high-resolution CESM at 0.25 degree with the finite volume (FV) dynamical core. The results show that variable-resolution CESM is competitive in representing regional climatology on both annual and seasonal time scales. This assessment adds value to the use of VRGCMs for projecting climate change over the coming century and improve our understanding of both past and future regional climate related to fine-scale processes. This assessment is also relevant for addressing the scale limitation of current RCMs or VRGCMs when next-generation model resolution increases to ~10km and beyond.
Genome-Wide High-Resolution aCGH Analysis of Gestational Choriocarcinomas
Poaty, Henriette; Coullin, Philippe; Peko, Jean Félix; Dessen, Philippe; Diatta, Ange Lucien; Valent, Alexander; Leguern, Eric; Prévot, Sophie; Gombé-Mbalawa, Charles; Candelier, Jean-Jacques; Picard, Jean-Yves; Bernheim, Alain
2012-01-01
Eleven samples of DNA from choriocarcinomas were studied by high resolution CGH-array 244 K. They were studied after histopathological confirmation of the diagnosis, of the androgenic etiology and after a microsatellite marker analysis confirming the absence of contamination of tumor DNA from maternal DNA. Three cell lines, BeWo, JAR, JEG were also studied by this high resolution pangenomic technique. According to aCGH analysis, the de novo choriocarcinomas exhibited simple chromosomal rearrangements or normal profiles. The cell lines showed various and complex chromosomal aberrations. 23 Minimal Critical Regions were defined that allowed us to list the genes that were potentially implicated. Among them, unusually high numbers of microRNA clusters and imprinted genes were observed. PMID:22253721
Imaging X-ray spectrophotometers
NASA Technical Reports Server (NTRS)
Hailey, C. J.; Hamilton, T. T.; Ku, W. H.-M.
1981-01-01
A new instrument which combines the good energy resolution of the gas scintillation proportional counter with the high position resolution of the microchannel plate is proposed. A study of the factors which determine the combined energy and position resolution of the new instrument is discussed. Submillimeter position resolution along with good energy resolution (8% fwhm at 6 keV) should be achievable.
Mesosacle eddies in a high resolution OGCM and coupled ocean-atmosphere GCM
NASA Astrophysics Data System (ADS)
Yu, Y.; Liu, H.; Lin, P.
2017-12-01
The present study described high-resolution climate modeling efforts including oceanic, atmospheric and coupled general circulation model (GCM) at the state key laboratory of numerical modeling for atmospheric sciences and geophysical fluid dynamics (LASG), Institute of Atmospheric Physics (IAP). The high-resolution OGCM is established based on the latest version of the LASG/IAP Climate system Ocean Model (LICOM2.1), but its horizontal resolution and vertical resolution are increased to 1/10° and 55 layers, respectively. Forced by the surface fluxes from the reanalysis and observed data, the model has been integrated for approximately more than 80 model years. Compared with the simulation of the coarse-resolution OGCM, the eddy-resolving OGCM not only better simulates the spatial-temporal features of mesoscale eddies and the paths and positions of western boundary currents but also reproduces the large meander of the Kuroshio Current and its interannual variability. Another aspect, namely, the complex structures of equatorial Pacific currents and currents in the coastal ocean of China, are better captured due to the increased horizontal and vertical resolution. Then we coupled the high resolution OGCM to NCAR CAM4 with 25km resolution, in which the mesoscale air-sea interaction processes are better captured.
High resolution physical mapping of single gene fragments on pachytene chromosome 4 and 7 of Rosa.
Kirov, Ilya V; Van Laere, Katrijn; Khrustaleva, Ludmila I
2015-07-02
Rosaceae is a family containing many economically important fruit and ornamental species. Although fluorescence in situ hybridization (FISH)-based physical mapping of plant genomes is a valuable tool for map-based cloning, comparative genomics and evolutionary studies, no studies using high resolution physical mapping have been performed in this family. Previously we proved that physical mapping of single-copy genes as small as 1.1 kb is possible on mitotic metaphase chromosomes of Rosa wichurana using Tyramide-FISH. In this study we aimed to further improve the physical map of Rosa wichurana by applying high resolution FISH to pachytene chromosomes. Using high resolution Tyramide-FISH and multicolor Tyramide-FISH, 7 genes (1.7-3 kb) were successfully mapped on pachytene chromosomes 4 and 7 of Rosa wichurana. Additionally, by using multicolor Tyramide-FISH three closely located genes were simultaneously visualized on chromosome 7. A detailed map of heterochromatine/euchromatine patterns of chromosome 4 and 7 was developed with indication of the physical position of these 7 genes. Comparison of the gene order between Rosa wichurana and Fragaria vesca revealed a poor collinearity for chromosome 7, but a perfect collinearity for chromosome 4. High resolution physical mapping of short probes on pachytene chromosomes of Rosa wichurana was successfully performed for the first time. Application of Tyramide-FISH on pachytene chromosomes allowed the mapping resolution to be increased up to 20 times compared to mitotic metaphase chromosomes. High resolution Tyramide-FISH and multicolor Tyramide-FISH might become useful tools for further physical mapping of single-copy genes and for the integration of physical and genetic maps of Rosa wichurana and other members of the Rosaceae.
Spatial resolution limitation of liquid crystal spatial light modulator
NASA Astrophysics Data System (ADS)
Wang, Xinghua; Wang, Bin; McManamon, Paul F., III; Pouch, John J.; Miranda, Felix A.; Anderson, James E.; Bos, Philip J.
2004-10-01
The effect of fringing electric fields in a liquid crystal (LC) Optical Phased Array (OPA), also referred to as a spatial light modulator (SLM), is a governing factor that determines the diffraction efficiency (DE) of the LC OPA for high resolution spatial phase modulation. In this article, the fringing field effect in a high resolution LC OPA is studied by accurate modeling the DE of the LC blazed gratings by LC director simulation and Finite Difference Time Domain (FDTD) simulation. Influence factors that contribute significantly to the DE are discussed. Such results provide fundamental understanding for high resolution LC devices.
ERIC Educational Resources Information Center
Karatas, Zeynep
2011-01-01
The aim of this study is to examine the effects of group practice which is performed using psychodrama techniques on adolescents' conflict resolution skills. The subjects, for this study, were selected among the high school students who have high aggression levels and low problem solving levels attending Haci Zekiye Arslan High School, in Nigde.…
High-resolution fiber-optic microendoscopy for in situ cellular imaging.
Pierce, Mark; Yu, Dihua; Richards-Kortum, Rebecca
2011-01-11
Many biological and clinical studies require the longitudinal study and analysis of morphology and function with cellular level resolution. Traditionally, multiple experiments are run in parallel, with individual samples removed from the study at sequential time points for evaluation by light microscopy. Several intravital techniques have been developed, with confocal, multiphoton, and second harmonic microscopy all demonstrating their ability to be used for imaging in situ. With these systems, however, the required infrastructure is complex and expensive, involving scanning laser systems and complex light sources. Here we present a protocol for the design and assembly of a high-resolution microendoscope which can be built in a day using off-the-shelf components for under US$5,000. The platform offers flexibility in terms of image resolution, field-of-view, and operating wavelength, and we describe how these parameters can be easily modified to meet the specific needs of the end user. We and others have explored the use of the high-resolution microendoscope (HRME) in in vitro cell culture, in excised and living animal tissues, and in human tissues in vivo. Users have reported the use of several different fluorescent contrast agents, including proflavine, benzoporphyrin-derivative monoacid ring A (BPD-MA), and fluoroscein, all of which have received full, or investigational approval from the FDA for use in human subjects. High-resolution microendoscopy, in the form described here, may appeal to a wide range of researchers working in the basic and clinical sciences. The technique offers an effective and economical approach which complements traditional benchtop microscopy, by enabling the user to perform high-resolution, longitudinal imaging in situ.
NASA Astrophysics Data System (ADS)
Kimball, H.; Selmants, P. C.; Running, S. W.; Moreno, A.; Giardina, C. P.
2016-12-01
In this study we evaluate the influence of spatial data product accuracy and resolution on the application of global models for smaller scale heterogeneous landscapes. In particular, we assess the influence of locally specific land cover and high-resolution climate data products on estimates of Gross Primary Production (GPP) for the Hawaiian Islands using the MOD17 model. The MOD17 GPP algorithm uses a measure of the fraction of absorbed photosynthetically active radiation from the National Aeronautics and Space Administration's Earth Observation System. This direct measurement is combined with global land cover (500-m resolution) and climate models ( 1/2-degree resolution) to estimate GPP. We first compared the alignment between the global land cover model used in MOD17 with a Hawaii specific land cover data product. We found that there was a 51.6% overall agreement between the two land cover products. We then compared four MOD17 GPP models: A global model that used the global land cover and low-resolution global climate data products, a model produced using the Hawaii specific land cover and low-resolution global climate data products, a model with global land cover and high-resolution climate data products, and finally, a model using both Hawaii specific land cover and high-resolution climate data products. We found that including either the Hawaii specific land cover or the high-resolution Hawaii climate data products with MOD17 reduced overall estimates of GPP by 8%. When both were used, GPP estimates were reduced by 16%. The reduction associated with land cover is explained by a reduction of the total area designated as evergreen broad leaf forest and an increase in the area designated as barren or sparsely vegetated in the Hawaii land cover product as compared to the global product. The climate based reduction is explained primarily by the spatial resolution and distribution of solar radiation in the Hawaiian Islands. This study highlights the importance of accuracy and resolution when applying global models to highly variable landscapes and provides an estimate of the influence of land cover and climate data products on estimates of GPP using MOD17.
Downscaling of Seasonal Landsat-8 and MODIS Land Surface Temperature (LST) in Kolkata, India
NASA Astrophysics Data System (ADS)
Garg, R. D.; Guha, S.; Mondal, A.; Lakshmi, V.; Kundu, S.
2017-12-01
The quality of life of urban people is affected by urban heat environment. The urban heat studies can be carried out using remotely sensed thermal infrared imagery for retrieving Land Surface Temperature (LST). Currently, high spatial resolution (<200 m) thermal images are limited and their temporal resolution is low (e.g., 17 days of Landsat-8). Coarse spatial resolution (1000 m) and high temporal resolution (daily) thermal images of MODIS (Moderate Resolution Imaging Spectroradiometer) are frequently available. The present study is to downscale spatially coarser resolution of the thermal image to fine resolution thermal image using regression based downscaling technique. This method is based on the relationship between (LST) and vegetation indices (e.g., Normalized Difference Vegetation Index or NDVI) over a heterogeneous landscape. The Kolkata metropolitan city, which experiences a tropical wet-and-dry type of climate has been selected for the study. This study applied different seasonal open source satellite images viz., Landsat-8 and Terra MODIS. The Landsat-8 images are aggregated at 960 m resolution and downscaled into 480, 240 120 and 60 m. Optical and thermal resolution of Landsat-8 and MODIS are 30 m and 60 m; 250 m and 1000 m respectively. The homogeneous land cover areas have shown better accuracy than heterogeneous land cover areas. The downscaling method plays a crucial role while the spatial resolution of thermal band renders it unable for advanced study. Key words: Land Surface Temperature (LST), Downscale, MODIS, Landsat, Kolkata
NASA Astrophysics Data System (ADS)
Tang, U. W.; Wang, Z. S.
2008-10-01
Each city has its unique urban form. The importance of urban form on sustainable development has been recognized in recent years. Traditionally, air quality modelling in a city is in a mesoscale with grid resolution of kilometers, regardless of its urban form. This paper introduces a GIS-based air quality and noise model system developed to study the built environment of highly compact urban forms. Compared with traditional mesoscale air quality model system, the present model system has a higher spatial resolution down to individual buildings along both sides of the street. Applying the developed model system in the Macao Peninsula with highly compact urban forms, the average spatial resolution of input and output data is as high as 174 receptor points per km2. Based on this input/output dataset with a high spatial resolution, this study shows that even the highly compact urban forms can be fragmented into a very small geographic scale of less than 3 km2. This is due to the significant temporal variation of urban development. The variation of urban form in each fragment in turn affects air dispersion, traffic condition, and thus air quality and noise in a measurable scale.
NASA Astrophysics Data System (ADS)
Elarab, Manal; Ticlavilca, Andres M.; Torres-Rua, Alfonso F.; Maslova, Inga; McKee, Mac
2015-12-01
Precision agriculture requires high-resolution information to enable greater precision in the management of inputs to production. Actionable information about crop and field status must be acquired at high spatial resolution and at a temporal frequency appropriate for timely responses. In this study, high spatial resolution imagery was obtained through the use of a small, unmanned aerial system called AggieAirTM. Simultaneously with the AggieAir flights, intensive ground sampling for plant chlorophyll was conducted at precisely determined locations. This study reports the application of a relevance vector machine coupled with cross validation and backward elimination to a dataset composed of reflectance from high-resolution multi-spectral imagery (VIS-NIR), thermal infrared imagery, and vegetative indices, in conjunction with in situ SPAD measurements from which chlorophyll concentrations were derived, to estimate chlorophyll concentration from remotely sensed data at 15-cm resolution. The results indicate that a relevance vector machine with a thin plate spline kernel type and kernel width of 5.4, having LAI, NDVI, thermal and red bands as the selected set of inputs, can be used to spatially estimate chlorophyll concentration with a root-mean-squared-error of 5.31 μg cm-2, efficiency of 0.76, and 9 relevance vectors.
NASA Astrophysics Data System (ADS)
Mondal, Sudip; Hegarty, Evan; Martin, Chris; Gökçe, Sertan Kutal; Ghorashian, Navid; Ben-Yakar, Adela
2016-10-01
Next generation drug screening could benefit greatly from in vivo studies, using small animal models such as Caenorhabditis elegans for hit identification and lead optimization. Current in vivo assays can operate either at low throughput with high resolution or with low resolution at high throughput. To enable both high-throughput and high-resolution imaging of C. elegans, we developed an automated microfluidic platform. This platform can image 15 z-stacks of ~4,000 C. elegans from 96 different populations using a large-scale chip with a micron resolution in 16 min. Using this platform, we screened ~100,000 animals of the poly-glutamine aggregation model on 25 chips. We tested the efficacy of ~1,000 FDA-approved drugs in improving the aggregation phenotype of the model and identified four confirmed hits. This robust platform now enables high-content screening of various C. elegans disease models at the speed and cost of in vitro cell-based assays.
ERIC Educational Resources Information Center
Deutsch, Morton
This paper is a summary report of a study of the effects of training in conflict resolution and cooperative learning in an alternative high school in New York City. Three of the school's four campuses participated, with Campus A receiving conflict resolution training, Campus C receiving cooperative learning training, and Campus B receiving…
Umehara, Kensuke; Ota, Junko; Ishida, Takayuki
2017-10-18
In this study, the super-resolution convolutional neural network (SRCNN) scheme, which is the emerging deep-learning-based super-resolution method for enhancing image resolution in chest CT images, was applied and evaluated using the post-processing approach. For evaluation, 89 chest CT cases were sampled from The Cancer Imaging Archive. The 89 CT cases were divided randomly into 45 training cases and 44 external test cases. The SRCNN was trained using the training dataset. With the trained SRCNN, a high-resolution image was reconstructed from a low-resolution image, which was down-sampled from an original test image. For quantitative evaluation, two image quality metrics were measured and compared to those of the conventional linear interpolation methods. The image restoration quality of the SRCNN scheme was significantly higher than that of the linear interpolation methods (p < 0.001 or p < 0.05). The high-resolution image reconstructed by the SRCNN scheme was highly restored and comparable to the original reference image, in particular, for a ×2 magnification. These results indicate that the SRCNN scheme significantly outperforms the linear interpolation methods for enhancing image resolution in chest CT images. The results also suggest that SRCNN may become a potential solution for generating high-resolution CT images from standard CT images.
High resolution manometry findings in patients with esophageal epiphrenic diverticula.
Vicentine, Fernando P P; Herbella, Fernando A M; Silva, Luciana C; Patti, Marco G
2011-12-01
The pathophysiology of esophageal epiphrenic diverticula is still uncertain even though a concomitant motility disorder is found in the majority of patients in different series. High resolution manometry may allow detection of motor abnormalities in a higher number of patients with esophageal epiphrenic diverticula compared with conventional manometry. This study aims to evaluate the high resolution manometry findings in patients with esophageal epiphrenic diverticula. Nine individuals (mean age 63 ± 10 years, 4 females) with esophageal epiphrenic diverticula underwent high resolution manometry. A single diverticulum was observed in eight patients and multiple diverticula in one. Visual analysis of conventional tracings and color pressure plots for identification of segmental abnormalities was performed by two researchers experienced in high resolution manometry. Upper esophageal sphincter was normal in all patients. Esophageal body was abnormal in eight patients; lower esophageal sphincter was abnormal in seven patients. Named esophageal motility disorders were found in seven patients: achalasia in six, diffuse esophageal spasm in one. In one patient, a segmental hypercontractile zone was noticed with pressure of 196 mm Hg. High resolution manometry demonstrated motor abnormalities in all patients with esophageal epiphrenic diverticula.
Creation of a Multiresolution and Multiaccuracy Dtm: Problems and Solutions for Heli-Dem Case Study
NASA Astrophysics Data System (ADS)
Biagi, L.; Carcano, L.; Lucchese, A.; Negretti, M.
2013-01-01
The work is part of "HELI-DEM" (HELvetia-Italy Digital Elevation Model) project, funded by the European Regional Development Fund within the Italy-Switzerland cooperation program. The aim of the project is the creation of a unique DTM for the alpine and subalpine area between Italy (Piedmont, Lombardy) and Switzerland (Ticino and Grisons Cantons); at present, different DTMs, that are in different reference frames and have been obtained with different technologies, accuracies, and resolutions, have been acquired. The final DTM should be correctly georeferenced and produced validating and integrating the data that are available for the project. DTMs are fundamental in hydrogeological studies, especially in alpine areas where hydrogeological risks may exist. Moreover, when an event, like for example a landslide, happens at the border between countries, a unique and integrated DTM which covers the interest area is useful to analyze the scenario. In this sense, HELI-DEM project is helpful. To perform analyses along the borders between countries, transnational geographic information is needed: a transnational DTM can be obtained by merging regional low resolution DTMs. Moreover high resolution local DTMs should be used where they are available. To be merged, low and high resolution DTMs should be in the same three dimensional reference frame, should not present biases and should be consistent in the overlapping areas. Cross-validation between the different DTMs is therefore needed. Two different problems should be solved: the merging of regional, partly overlapping low and medium resolution DTMs into a unique low/medium resolution DTM and the merging with other local high resolution/high accuracy height data. This paper discusses the preliminary processing of the data for the fusion of low and high resolution DTMs in a study-case area within the Lombardy region: Valtellina valley. In this region the Lombardy regional low resolution DTM is available, with a horizontal resolution of 20 meters; in addition a LiDAR DTM with a horizontal resolution of 1 meter, which covers only the main hydrographic basins, is also available. The two DTMs have been transformed into the same reference frame. The cross-validation of the two datasets has been performed comparing the low resolution DTM with the local high resolution DTM. Then, where significant differences are present, GPS survey have been used as external validation. The results are presented. Moreover, a possible strategy for the future fusion of the data, is shortly summarized at the end of the paper.
USDA-ARS?s Scientific Manuscript database
Construction of genetic linkage map is essential for genetic and genomic studies. Recent advances in sequencing and genotyping technologies made it possible to generate high-density and high-resolution genetic linkage maps, especially for the organisms lacking extensive genomic resources. In the pre...
Fabrication of [001]-oriented tungsten tips for high resolution scanning tunneling microscopy
Chaika, A. N.; Orlova, N. N.; Semenov, V. N.; Postnova, E. Yu.; Krasnikov, S. A.; Lazarev, M. G.; Chekmazov, S. V.; Aristov, V. Yu.; Glebovsky, V. G.; Bozhko, S. I.; Shvets, I. V.
2014-01-01
The structure of the [001]-oriented single crystalline tungsten probes sharpened in ultra-high vacuum using electron beam heating and ion sputtering has been studied using scanning and transmission electron microscopy. The electron microscopy data prove reproducible fabrication of the single-apex tips with nanoscale pyramids grained by the {011} planes at the apexes. These sharp, [001]-oriented tungsten tips have been successfully utilized in high resolution scanning tunneling microscopy imaging of HOPG(0001), SiC(001) and graphene/SiC(001) surfaces. The electron microscopy characterization performed before and after the high resolution STM experiments provides direct correlation between the tip structure and picoscale spatial resolution achieved in the experiments. PMID:24434734
Liu, Danzhou; Hua, Kien A; Sugaya, Kiminobu
2008-09-01
With the advances in medical imaging devices, large volumes of high-resolution 3-D medical image data have been produced. These high-resolution 3-D data are very large in size, and severely stress storage systems and networks. Most existing Internet-based 3-D medical image interactive applications therefore deal with only low- or medium-resolution image data. While it is possible to download the whole 3-D high-resolution image data from the server and perform the image visualization and analysis at the client site, such an alternative is infeasible when the high-resolution data are very large, and many users concurrently access the server. In this paper, we propose a novel framework for Internet-based interactive applications of high-resolution 3-D medical image data. Specifically, we first partition the whole 3-D data into buckets, remove the duplicate buckets, and then, compress each bucket separately. We also propose an index structure for these buckets to efficiently support typical queries such as 3-D slicer and region of interest, and only the relevant buckets are transmitted instead of the whole high-resolution 3-D medical image data. Furthermore, in order to better support concurrent accesses and to improve the average response time, we also propose techniques for efficient query processing, incremental transmission, and client sharing. Our experimental study in simulated and realistic environments indicates that the proposed framework can significantly reduce storage and communication requirements, and can enable real-time interaction with remote high-resolution 3-D medical image data for many concurrent users.
NASA Technical Reports Server (NTRS)
Desai, U. D.; Orwig, Larry E.
1988-01-01
In the areas of high spatial resolution, the evaluation of a hard X-ray detector with 65 micron spatial resolution for operation in the energy range from 30 to 400 keV is proposed. The basic detector is a thick large-area scintillator faceplate, composed of a matrix of high-density scintillating glass fibers, attached to a proximity type image intensifier tube with a resistive-anode digital readout system. Such a detector, combined with a coded-aperture mask, would be ideal for use as a modest-sized hard X-ray imaging instrument up to X-ray energies as high as several hundred keV. As an integral part of this study it was also proposed that several techniques be critically evaluated for X-ray image coding which could be used with this detector. In the area of high spectral resolution, it is proposed to evaluate two different types of detectors for use as X-ray spectrometers for solar flares: planar silicon detectors and high-purity germanium detectors (HPGe). Instruments utilizing these high-spatial-resolution detectors for hard X-ray imaging measurements from 30 to 400 keV and high-spectral-resolution detectors for measurements over a similar energy range would be ideally suited for making crucial solar flare observations during the upcoming maximum in the solar cycle.
Khonsari, R H; Di Rocco, F; Arnaud, E; Sanchez, S; Tafforeau, P
2012-09-01
The developmental genetics and the biomechanics of sutures are well-studied topics, while their microanatomy is still imperfectly known. Here, we aim to investigate the structure of skull vault sutures using a high-resolution imaging device. We used synchrotron X-ray microtomography in order to obtain high-resolution images of skull vault sutures from an extant mammal (the mouse Mus musculus) and from an extinct fish (the placoderm Compagopiscis croucheri). We used segmentation and 3D reconstruction softwares in order to reveal the microanatomy of sutures in these species. The high-resolution images allowed us to study the distribution of osteocytes, the organisation of vascular canals, the shapes of the suture borders, the insertion of Sharpey's fibres, the bone growth lines and the structure of the soft tissues surrounding the sutures. Synchrotron imaging provides new perspectives for the study of the normal microanatomy of sutures. The submicronic resolution of the synchrotron scans gives access to the 3D organisation of structures that were previously only known in 2D, even in normal sutures. The description of anatomical entities such as vascular canals and Sharpey's fibres in abnormally fused sutures would be of interest in the understanding of craniosynostoses.
Monitoring Cyanobacteria Bloom in Taihu Lake by High-Resolution Geostationary Satellite GF4
NASA Astrophysics Data System (ADS)
Liu, J.
2018-04-01
The high-resolution remote-sensing satellite, GF4 PMS, of China's geosynchronous earth orbit was successfully launched on December 29, 2015. Its high spatial resolution and high temporal resolution allow GF4 PMS to play a very important role in water environment monitoring, especially in the dynamic monitoring of lake and reservoir cyanobacteria blooms. As GF4 PMS has just been launched, there is still relatively little related research, and the practical application effect of GF4 PMS in the extraction of cyanobacteria blooms remains to be further tested. Therefore, in this study, the method and effect of GF4 PMS application in cyanobacteria bloom monitoring were studied in Taihu. It turned that GF4 PMS can be applied to the dynamic monitoring of the distribution of cyanobacteria blooms in Taihu, thereby finding the temporal and spatial variation of the distribution of cyanobacteria blooms.
Remote sensing in support of high-resolution terrestrial carbon monitoring and modeling
NASA Astrophysics Data System (ADS)
Hurtt, G. C.; Zhao, M.; Dubayah, R.; Huang, C.; Swatantran, A.; ONeil-Dunne, J.; Johnson, K. D.; Birdsey, R.; Fisk, J.; Flanagan, S.; Sahajpal, R.; Huang, W.; Tang, H.; Armstrong, A. H.
2014-12-01
As part of its Phase 1 Carbon Monitoring System (CMS) activities, NASA initiated a Local-Scale Biomass Pilot study. The goals of the pilot study were to develop protocols for fusing high-resolution remotely sensed observations with field data, provide accurate validation test areas for the continental-scale biomass product, and demonstrate efficacy for prognostic terrestrial ecosystem modeling. In Phase 2, this effort was expanded to the state scale. Here, we present results of this activity focusing on the use of remote sensing in high-resolution ecosystem modeling. The Ecosystem Demography (ED) model was implemented at 90 m spatial resolution for the entire state of Maryland. We rasterized soil depth and soil texture data from SSURGO. For hourly meteorological data, we spatially interpolated 32-km 3-hourly NARR into 1-km hourly and further corrected them at monthly level using PRISM data. NLCD data were used to mask sand, seashore, and wetland. High-resolution 1 m forest/non-forest mapping was used to define forest fraction of 90 m cells. Three alternative strategies were evaluated for initialization of forest structure using high-resolution lidar, and the model was used to calculate statewide estimates of forest biomass, carbon sequestration potential, time to reach sequestration potential, and sensitivity to future forest growth and disturbance rates, all at 90 m resolution. To our knowledge, no dynamic ecosystem model has been run at such high spatial resolution over such large areas utilizing remote sensing and validated as extensively. There are over 3 million 90 m land cells in Maryland, greater than 43 times the ~73,000 half-degree cells in a state-of-the-art global land model.
Study of a high-resolution, 3-D positioning cadmium zinc telluride detector for PET
Gu, Y; Matteson, J L; Skelton, R T; Deal, A C; Stephan, E A; Duttweiler, F; Gasaway, T M; Levin, C S
2011-01-01
This paper investigates the performance of 1 mm resolution Cadmium Zinc Telluride (CZT) detectors for positron emission tomography (PET) capable of positioning the 3-D coordinates of individual 511 keV photon interactions. The detectors comprise 40 mm × 40 mm × 5 mm monolithic CZT crystals that employ a novel cross-strip readout with interspersed steering electrodes to obtain high spatial and energy resolution. The study found a single anode FWHM energy resolution of 3.06±0.39% at 511 keV throughout most the detector volume. Improved resolution is expected with properly shielded front-end electronics. Measurements made using a collimated beam established the efficacy of the steering electrodes in facilitating enhanced charge collection across anodes, as well as a spatial resolution of 0.44±0.07 mm in the direction orthogonal to the electrode planes. Finally, measurements based on coincidence electronic collimation yielded a point spread function with 0.78±0.10 mm FWHM, demonstrating 1 mm spatial resolution capability transverse to the anodes – as expected from the 1 mm anode pitch. These findings indicate that the CZT-based detector concept has excellent performance and shows great promise for a high-resolution PET system. PMID:21335649
Accuracy of a high-resolution lidar terrain model under a conifer forest canopy
S.E. Reutebuch; R.J. McGaughey; H.-E. Andersen; W.W. Carson
2003-01-01
Airborne laser scanning systems can provide terrain elevation data for open areas with a vertical accuracy of 15 cm. In this study, a high-resolution digital terrain model (DTM) was produced from high-density lidar data. Vegetation in the 500-ha mountainous study area varied from bare ground to dense 70-year-old conifer forest. Conventional ground survey methods were...
The large area high resolution gamma ray astrophysics facility - HR-GRAF
NASA Astrophysics Data System (ADS)
Fenyves, E. J.; Chaney, R. C.; Hoffman, J. H.; Cline, D. B.; Atac, M.; Park, J.; White, S. R.; Zych, A. D.; Tumer, Q. T.; Hughes, E. B.
1990-03-01
The long-term program is described in terms of its equipment, scientific objectives, and long-range scientific studies. A prototype of a space-based large-area high-resolution gamma-ray facility (HR-GRAF) is being developed to examine pointlike and diffuse gamma-ray sources in the range 1 MeV-100 GeV. The instrument for the facility is proposed to have high angular and energy resolution and very high sensitivity to permit the study of the proposed objects. The primary research targets include the mapping of galactic gamma radiation, observing the angular variations of diffuse gamma rays, and studying the Galactic center with particular emphasis on the hypothetical black hole. Also included in the research plans are obtaining data on gamma-ray bursters, investigating the transmission of gamma rays from cold dark matter, and studying nuclear gamma-ray lines.
Recent Advances in 3D Time-Resolved Contrast-Enhanced MR Angiography
Riederer, Stephen J.; Haider, Clifton R.; Borisch, Eric A.; Weavers, Paul T.; Young, Phillip M.
2015-01-01
Contrast-enhanced MR angiography (CE-MRA) was first introduced for clinical studies approximately 20 years ago. Early work provided 3 to 4 mm spatial resolution with acquisition times in the 30 sec range. Since that time there has been continuing effort to provide improved spatial resolution with reduced acquisition time, allowing high resolution three-dimensional (3D) time-resolved studies. The purpose of this work is to describe how this has been accomplished. Specific technical enablers have been: improved gradients allowing reduced repetition times, improved k-space sampling and reconstruction methods, parallel acquisition particularly in two directions, and improved and higher count receiver coil arrays. These have collectively made high resolution time-resolved studies readily available for many anatomic regions. Depending on the application, approximate 1 mm isotropic resolution is now possible with frame times of several seconds. Clinical applications of time-resolved CE-MRA are briefly reviewed. PMID:26032598
Improving Axial Resolution in Confocal Microscopy with New High Refractive Index Mounting Media
Fouquet, Coralie; Gilles, Jean-François; Heck, Nicolas; Dos Santos, Marc; Schwartzmann, Richard; Cannaya, Vidjeacoumary; Morel, Marie-Pierre; Davidson, Robert Stephen; Trembleau, Alain; Bolte, Susanne
2015-01-01
Resolution, high signal intensity and elevated signal to noise ratio (SNR) are key issues for biologists who aim at studying the localisation of biological structures at the cellular and subcellular levels using confocal microscopy. The resolution required to separate sub-cellular biological structures is often near to the resolving power of the microscope. When optimally used, confocal microscopes may reach resolutions of 180 nm laterally and 500 nm axially, however, axial resolution in depth is often impaired by spherical aberration that may occur due to refractive index mismatches. Spherical aberration results in broadening of the point-spread function (PSF), a decrease in peak signal intensity when imaging in depth and a focal shift that leads to the distortion of the image along the z-axis and thus in a scaling error. In this study, we use the novel mounting medium CFM3 (Citifluor Ltd., UK) with a refractive index of 1.518 to minimize the effects of spherical aberration. This mounting medium is compatible with most common fluorochromes and fluorescent proteins. We compare its performance with established mounting media, harbouring refractive indices below 1.500, by estimating lateral and axial resolution with sub-resolution fluorescent beads. We show furthermore that the use of the high refractive index media renders the tissue transparent and improves considerably the axial resolution and imaging depth in immuno-labelled or fluorescent protein labelled fixed mouse brain tissue. We thus propose to use those novel high refractive index mounting media, whenever optimal axial resolution is required. PMID:25822785
Sakaguchi, Koichi; Lu, Jian; Leung, L. Ruby; ...
2016-10-22
Impacts of regional grid refinement on large-scale circulations (“upscale effects”) were detected in a previous study that used the Model for Prediction Across Scales-Atmosphere coupled to the physics parameterizations of the Community Atmosphere Model version 4. The strongest upscale effect was identified in the Southern Hemisphere jet during austral winter. This study examines the detailed underlying processes by comparing two simulations at quasi-uniform resolutions of 30 and 120 km to three variable-resolution simulations in which the horizontal grids are regionally refined to 30 km in North America, South America, or Asia from 120 km elsewhere. In all the variable-resolution simulations,more » precipitation increases in convective areas inside the high-resolution domains, as in the reference quasi-uniform high-resolution simulation. With grid refinement encompassing the tropical Americas, the increased condensational heating expands the local divergent circulations (Hadley cell) meridionally such that their descending branch is shifted poleward, which also pushes the baroclinically unstable regions, momentum flux convergence, and the eddy-driven jet poleward. This teleconnection pathway is not found in the reference high-resolution simulation due to a strong resolution sensitivity of cloud radiative forcing that dominates the aforementioned teleconnection signals. The regional refinement over Asia enhances Rossby wave sources and strengthens the upper level southerly flow, both facilitating the cross-equatorial propagation of stationary waves. Evidence indicates that this teleconnection pathway is also found in the reference high-resolution simulation. Lastly, the result underlines the intricate diagnoses needed to understand the upscale effects in global variable-resolution simulations, with implications for science investigations using the computationally efficient modeling framework.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sakaguchi, Koichi; Lu, Jian; Leung, L. Ruby
Impacts of regional grid refinement on large-scale circulations (“upscale effects”) were detected in a previous study that used the Model for Prediction Across Scales-Atmosphere coupled to the physics parameterizations of the Community Atmosphere Model version 4. The strongest upscale effect was identified in the Southern Hemisphere jet during austral winter. This study examines the detailed underlying processes by comparing two simulations at quasi-uniform resolutions of 30 and 120 km to three variable-resolution simulations in which the horizontal grids are regionally refined to 30 km in North America, South America, or Asia from 120 km elsewhere. In all the variable-resolution simulations,more » precipitation increases in convective areas inside the high-resolution domains, as in the reference quasi-uniform high-resolution simulation. With grid refinement encompassing the tropical Americas, the increased condensational heating expands the local divergent circulations (Hadley cell) meridionally such that their descending branch is shifted poleward, which also pushes the baroclinically unstable regions, momentum flux convergence, and the eddy-driven jet poleward. This teleconnection pathway is not found in the reference high-resolution simulation due to a strong resolution sensitivity of cloud radiative forcing that dominates the aforementioned teleconnection signals. The regional refinement over Asia enhances Rossby wave sources and strengthens the upper level southerly flow, both facilitating the cross-equatorial propagation of stationary waves. Evidence indicates that this teleconnection pathway is also found in the reference high-resolution simulation. Lastly, the result underlines the intricate diagnoses needed to understand the upscale effects in global variable-resolution simulations, with implications for science investigations using the computationally efficient modeling framework.« less
How much can we trust high-resolution spectroscopic stellar chemical abundances?
NASA Astrophysics Data System (ADS)
Blanco-Cuaresma, S.; Nordlander, T.; Heiter, U.; Jofré, P.; Masseron, T.; Casamiquela, L.; Tabernero, H. M.; Bhat, S. S.; Casey, A. R.; Meléndez, J.; Ramírez, I.
2017-03-01
To study stellar populations, it is common to combine chemical abundances from different spectroscopic surveys/studies where different setups were used. These inhomogeneities can lead us to inaccurate scientific conclusions. In this work, we studied one aspect of the problem: When deriving chemical abundances from high-resolution stellar spectra, what differences originate from the use of different radiative transfer codes?
Lim, Kyungjae; Kwon, Heejin; Cho, Jinhan; Oh, Jongyoung; Yoon, Seongkuk; Kang, Myungjin; Ha, Dongho; Lee, Jinhwa; Kang, Eunju
2015-01-01
The purpose of this study was to assess the image quality of a novel advanced iterative reconstruction (IR) method called as "adaptive statistical IR V" (ASIR-V) by comparing the image noise, contrast-to-noise ratio (CNR), and spatial resolution from those of filtered back projection (FBP) and adaptive statistical IR (ASIR) on computed tomography (CT) phantom image. We performed CT scans at 5 different tube currents (50, 70, 100, 150, and 200 mA) using 3 types of CT phantoms. Scanned images were subsequently reconstructed in 7 different scan settings, such as FBP, and 3 levels of ASIR and ASIR-V (30%, 50%, and 70%). The image noise was measured in the first study using body phantom. The CNR was measured in the second study using contrast phantom and the spatial resolutions were measured in the third study using a high-resolution phantom. We compared the image noise, CNR, and spatial resolution among the 7 reconstructed image scan settings to determine whether noise reduction, high CNR, and high spatial resolution could be achieved at ASIR-V. At quantitative analysis of the first and second studies, it showed that the images reconstructed using ASIR-V had reduced image noise and improved CNR compared with those of FBP and ASIR (P < 0.001). At qualitative analysis of the third study, it also showed that the images reconstructed using ASIR-V had significantly improved spatial resolution than those of FBP and ASIR (P < 0.001). Our phantom studies showed that ASIR-V provides a significant reduction in image noise and a significant improvement in CNR as well as spatial resolution. Therefore, this technique has the potential to reduce the radiation dose further without compromising image quality.
Bredenoord, Albert J; Fox, Mark; Kahrilas, Peter J; Pandolfino, John E; Schwizer, Werner; Smout, AJPM; Conklin, Jeffrey L; Cook, Ian J; Gyawali, Prakash; Hebbard, Geoffrey; Holloway, Richard H; Ke, Meiyun; Keller, Jutta; Mittal, Ravinder K; Peters, Jeff; Richter, Joel; Roman, Sabine; Rommel, Nathalie; Sifrim, Daniel; Tutuian, Radu; Valdovinos, Miguel; Vela, Marcelo F; Zerbib, Frank
2011-01-01
Background The Chicago Classification of esophageal motility was developed to facilitate the interpretation of clinical high resolution esophageal pressure topography (EPT) studies, concurrent with the widespread adoption of this technology into clinical practice. The Chicago Classification has been, and will continue to be, an evolutionary process, molded first by published evidence pertinent to the clinical interpretation of high resolution manometry (HRM) studies and secondarily by group experience when suitable evidence is lacking. Methods This publication summarizes the state of our knowledge as of the most recent meeting of the International High Resolution Manometry Working Group in Ascona, Switzerland in April 2011. The prior iteration of the Chicago Classification was updated through a process of literature analysis and discussion. Key Results The major changes in this document from the prior iteration are largely attributable to research studies published since the prior iteration, in many cases research conducted in response to prior deliberations of the International High Resolution Manometry Working Group. The classification now includes criteria for subtyping achalasia, EGJ outflow obstruction, motility disorders not observed in normal subjects (Distal esophageal spasm, Hypercontractile esophagus, and Absent peristalsis), and statistically defined peristaltic abnormalities (Weak peristalsis, Frequent failed peristalsis, Rapid contractions with normal latency, and Hypertensive peristalsis). Conclusions & Inferences The Chicago Classification is an algorithmic scheme for diagnosis of esophageal motility disorders from clinical EPT studies. Moving forward, we anticipate continuing this process with increased emphasis placed on natural history studies and outcome data based on the classification. PMID:22248109
Bredenoord, A J; Fox, M; Kahrilas, P J; Pandolfino, J E; Schwizer, W; Smout, A J P M
2012-03-01
The Chicago Classification of esophageal motility was developed to facilitate the interpretation of clinical high resolution esophageal pressure topography (EPT) studies, concurrent with the widespread adoption of this technology into clinical practice. The Chicago Classification has been an evolutionary process, molded first by published evidence pertinent to the clinical interpretation of high resolution manometry (HRM) studies and secondarily by group experience when suitable evidence is lacking. This publication summarizes the state of our knowledge as of the most recent meeting of the International High Resolution Manometry Working Group in Ascona, Switzerland in April 2011. The prior iteration of the Chicago Classification was updated through a process of literature analysis and discussion. The major changes in this document from the prior iteration are largely attributable to research studies published since the prior iteration, in many cases research conducted in response to prior deliberations of the International High Resolution Manometry Working Group. The classification now includes criteria for subtyping achalasia, EGJ outflow obstruction, motility disorders not observed in normal subjects (Distal esophageal spasm, Hypercontractile esophagus, and Absent peristalsis), and statistically defined peristaltic abnormalities (Weak peristalsis, Frequent failed peristalsis, Rapid contractions with normal latency, and Hypertensive peristalsis). The Chicago Classification is an algorithmic scheme for diagnosis of esophageal motility disorders from clinical EPT studies. Moving forward, we anticipate continuing this process with increased emphasis placed on natural history studies and outcome data based on the classification. © 2012 Blackwell Publishing Ltd.
Evaluating the Value of High Spatial Resolution in National Capacity Expansion Models using ReEDS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krishnan, Venkat; Cole, Wesley
2016-11-14
Power sector capacity expansion models (CEMs) have a broad range of spatial resolutions. This paper uses the Regional Energy Deployment System (ReEDS) model, a long-term national scale electric sector CEM, to evaluate the value of high spatial resolution for CEMs. ReEDS models the United States with 134 load balancing areas (BAs) and captures the variability in existing generation parameters, future technology costs, performance, and resource availability using very high spatial resolution data, especially for wind and solar modeled at 356 resource regions. In this paper we perform planning studies at three different spatial resolutions--native resolution (134 BAs), state-level, and NERCmore » region level--and evaluate how results change under different levels of spatial aggregation in terms of renewable capacity deployment and location, associated transmission builds, and system costs. The results are used to ascertain the value of high geographically resolved models in terms of their impact on relative competitiveness among renewable energy resources.« less
NASA Astrophysics Data System (ADS)
Takei, Satoshi; Hanabata, Makoto
2017-03-01
We report high-resolution (150 nm) nanopatterning of biodegradable polylactide by thermal nanoimprint lithography using dichloromethane as a volatile solvent for improving the liquidity and a porous cyclodextrin-based gas-permeable mold. This study demonstrates the high-resolution patterning of polylactic acid and other non-liquid functional materials with poor fluidity by thermal nanoimprinting. Such a patterning is expected to expand the utility of thermal nanoimprint lithography and fabricate non-liquid functional materials suitable for eco-friendly and biomedical applications.
Zhang, Yong-Tao; Shi, Jing; Shu, Chi-Wang; Zhou, Ye
2003-10-01
A quantitative study is carried out in this paper to investigate the size of numerical viscosities and the resolution power of high-order weighted essentially nonoscillatory (WENO) schemes for solving one- and two-dimensional Navier-Stokes equations for compressible gas dynamics with high Reynolds numbers. A one-dimensional shock tube problem, a one-dimensional example with parameters motivated by supernova and laser experiments, and a two-dimensional Rayleigh-Taylor instability problem are used as numerical test problems. For the two-dimensional Rayleigh-Taylor instability problem, or similar problems with small-scale structures, the details of the small structures are determined by the physical viscosity (therefore, the Reynolds number) in the Navier-Stokes equations. Thus, to obtain faithful resolution to these small-scale structures, the numerical viscosity inherent in the scheme must be small enough so that the physical viscosity dominates. A careful mesh refinement study is performed to capture the threshold mesh for full resolution, for specific Reynolds numbers, when WENO schemes of different orders of accuracy are used. It is demonstrated that high-order WENO schemes are more CPU time efficient to reach the same resolution, both for the one-dimensional and two-dimensional test problems.
Akten, H Serpil; Kilic, Hatice; Celik, Bulent; Erbas, Gonca; Isikdogan, Zeynep; Turktas, Haluk; Kokturk, Nurdan
2018-04-25
This study aimed to evaluate the diagnostic yield of fiberoptic bronchoscopic (FOB) transbronchial biopsy and its relation with quantitative findings of high resolution computerized tomography (HRCT). A total of 83 patients, 19 males and 64 females with a mean age of 45.1 years diagnosed with sarcoidosis with complete records of high resolution computerized tomography were retrospectively recruited during the time period from Feb 2005 to Jan 2015. High resolution computerized tomography scans were retrospectively assessed in random order by an experienced observer without knowledge of the bronchoscopic results or lung function tests. According to the radiological staging with HRCT, 2.4% of the patients (n=2) were stage 0, 19.3% (n=16) were stage 1, 72.3% (n=60) were stage 2 and 6.0% (n=5) were stage 3. This study showed that transbronchial lung biopsy showed positive results in 39.7% of the stage I or II sarcoidosis patients who were diagnosed by bronchoscopy. Different high resolution computerized tomography patterns and different scores of involvement did make a difference in the diagnostic accuracy of transbronchial biopsy (p=0.007). Creative Commons Attribution License
Semi-automatic mapping of linear-trending bedforms using 'Self-Organizing Maps' algorithm
NASA Astrophysics Data System (ADS)
Foroutan, M.; Zimbelman, J. R.
2017-09-01
Increased application of high resolution spatial data such as high resolution satellite or Unmanned Aerial Vehicle (UAV) images from Earth, as well as High Resolution Imaging Science Experiment (HiRISE) images from Mars, makes it necessary to increase automation techniques capable of extracting detailed geomorphologic elements from such large data sets. Model validation by repeated images in environmental management studies such as climate-related changes as well as increasing access to high-resolution satellite images underline the demand for detailed automatic image-processing techniques in remote sensing. This study presents a methodology based on an unsupervised Artificial Neural Network (ANN) algorithm, known as Self Organizing Maps (SOM), to achieve the semi-automatic extraction of linear features with small footprints on satellite images. SOM is based on competitive learning and is efficient for handling huge data sets. We applied the SOM algorithm to high resolution satellite images of Earth and Mars (Quickbird, Worldview and HiRISE) in order to facilitate and speed up image analysis along with the improvement of the accuracy of results. About 98% overall accuracy and 0.001 quantization error in the recognition of small linear-trending bedforms demonstrate a promising framework.
ERIC Educational Resources Information Center
Jones, Corinne A.; Hoffman, Matthew R.; Geng, Zhixian; Abdelhalim, Suzan M.; Jiang, Jack J.; McCulloch, Timothy M.
2014-01-01
Purpose: The purpose of this study was to investigate inter- and intrarater reliability among expert users, novice users, and speech-language pathologists with a semiautomated high-resolution manometry analysis program. We hypothesized that all users would have high intrarater reliability and high interrater reliability. Method: Three expert…
NASA Astrophysics Data System (ADS)
Macander, M. J.; Frost, G. V., Jr.
2015-12-01
Regional-scale mapping of vegetation and other ecosystem properties has traditionally relied on medium-resolution remote sensing such as Landsat (30 m) and MODIS (250 m). Yet, the burgeoning availability of high-resolution (<=2 m) imagery and ongoing advances in computing power and analysis tools raises the prospect of performing ecosystem mapping at fine spatial scales over large study domains. Here we demonstrate cutting-edge mapping approaches over a ~35,000 km² study area on Alaska's North Slope using calibrated and atmospherically-corrected mosaics of high-resolution WorldView-2 and GeoEye-1 imagery: (1) an a priori spectral approach incorporating the Satellite Imagery Automatic Mapper (SIAM) algorithms; (2) image segmentation techniques; and (3) texture metrics. The SIAM spectral approach classifies radiometrically-calibrated imagery to general vegetation density categories and non-vegetated classes. The SIAM classes were developed globally and their applicability in arctic tundra environments has not been previously evaluated. Image segmentation, or object-based image analysis, automatically partitions high-resolution imagery into homogeneous image regions that can then be analyzed based on spectral, textural, and contextual information. We applied eCognition software to delineate waterbodies and vegetation classes, in combination with other techniques. Texture metrics were evaluated to determine the feasibility of using high-resolution imagery to algorithmically characterize periglacial surface forms (e.g., ice-wedge polygons), which are an important physical characteristic of permafrost-dominated regions but which cannot be distinguished by medium-resolution remote sensing. These advanced mapping techniques provide products which can provide essential information supporting a broad range of ecosystem science and land-use planning applications in northern Alaska and elsewhere in the circumpolar Arctic.
NASA Astrophysics Data System (ADS)
Bohling, G.; Liu, G.; Knobbe, S. J.; Reboulet, E. C.; Hyndman, D. W.; Dietrich, P.; Butler, J. J.
2010-12-01
Spatial variations in hydraulic conductivity (K) are a critical control on subsurface solute transport. Characterization of such variations at the resolution (cm to dm) required for transport investigations, however, has proven to be a formidable challenge. A new generation of direct-push (DP) tools has now been developed for the characterization of vertical K variations at this resolution. These tools, which can be run in high- (0.015-m) and low- (0.4 m) resolution modes, were recently applied to the extensively studied and highly heterogeneous MADE site. Results from a geostatistical analysis of 64 DP K profiles compare favorably with the flowmeter K data that have served as the primary basis for previous MADE studies. The global statistics of the low-resolution DP and flowmeter K data are in excellent agreement. The correlation structures for the high-resolution DP data show excellent agreement with those computed from the flowmeter data. However, the geometric mean DP K value for high-resolution profiling is roughly one order of magnitude lower than the geometric mean flowmeter K value, possibly as a result of the biases inherent in each approach compounded with differences in the areal distribution of flowmeter and DP profile locations. A DP profile through the MADE aquifer to a depth of 12 m can be completed as rapidly as 1.5-2 hours, a small fraction of the time required to obtain a single flowmeter profile when well drilling, installation, and development are considered. The results of this study demonstrate that DP profiling is a practically feasible approach for characterization of spatial variations in K at the resolution required for transport investigations in highly heterogeneous systems.
Ultrahigh-resolution endoscopic optical coherence tomography
NASA Astrophysics Data System (ADS)
Chen, Yu; Herz, Paul R.; Hsiung, Pei-Lin; Aguirre, Aaron D.; Mashimo, Hiroshi; Desai, Saleem; Pedrosa, Macos; Koski, Amanda; Schmitt, Joseph M.; Fujimoto, James G.
2005-01-01
Early detection of gastrointestinal cancer is essential for the patient treatment and medical care. Endoscopically guided biopsy is currently the gold standard for the diagnosis of early esophageal cancer, but can suffer from high false negative rates due to sampling errors. Optical coherence tomography (OCT) is an emerging medical imaging technology which can generate high resolution, cross-sectional images of tissue in situ and in real time, without the removal of tissue specimen. Although endoscopic OCT has been used successfully to identify certain pathologies in the gastrointestinal tract, the resolution of current endoscopic OCT systems has been limited to 10 - 15 m for clinical procedures. In this study, in vivo imaging of the gastrointestinal tract is demonstrated at a three-fold higher resolution (< 5 m), using a portable, broadband, Cr4+:Forsterite laser as the optical light source. Images acquired from the esophagus, gastro-esophageal junction and colon on animal model display tissue microstructures and architectural details at high resolution, and the features observed in the OCT images are well-matched with histology. The clinical feasibility study is conducted through delivering OCT imaging catheter using standard endoscope. OCT images of normal esophagus, Barrett's esophagus, and esophageal cancers are demonstrated with distinct features. The ability of high resolution endoscopic OCT to image tissue morphology at an unprecedented resolution in vivo would facilitate the development of OCT as a potential imaging modality for early detection of neoplastic changes.
Xenia Mission: Spacecraft Design Concept
NASA Technical Reports Server (NTRS)
Hopkins, R. C.; Johnson, C. L.; Kouveliotou, C.; Jones, D.; Baysinger, M.; Bedsole, T.; Maples, C. C.; Benfield, P. J.; Turner, M.; Capizzo, P.;
2009-01-01
The proposed Xenia mission will, for the first time, chart the chemical and dynamical state of the majority of baryonic matter in the universe. using high-resolution spectroscopy, Xenia will collect essential information from major traces of the formation and evolution of structures from the early universe to the present time. The mission is based on innovative instrumental and observational approaches: observing with fast reaction gamma-ray bursts (GRBs) with a high spectral resolution. This enables the study of their (star-forming) environment from the dark to the local universe and the use of GRBs as backlight of large-scale cosmological structures, observing and surveying extended sources with high sensitivity using two wide field-of-view x-ray telescopes - one with a high angular resolution and the other with a high spectral resolution.
High efficiency multishot interleaved spiral-in/out: acquisition for high-resolution BOLD fMRI.
Jung, Youngkyoo; Samsonov, Alexey A; Liu, Thomas T; Buracas, Giedrius T
2013-08-01
Growing demand for high spatial resolution blood oxygenation level dependent (BOLD) functional magnetic resonance imaging faces a challenge of the spatial resolution versus coverage or temporal resolution tradeoff, which can be addressed by methods that afford increased acquisition efficiency. Spiral acquisition trajectories have been shown to be superior to currently prevalent echo-planar imaging in terms of acquisition efficiency, and high spatial resolution can be achieved by employing multiple-shot spiral acquisition. The interleaved spiral in/out trajectory is preferred over spiral-in due to increased BOLD signal contrast-to-noise ratio (CNR) and higher acquisition efficiency than that of spiral-out or noninterleaved spiral in/out trajectories (Law & Glover. Magn Reson Med 2009; 62:829-834.), but to date applicability of the multishot interleaved spiral in/out for high spatial resolution imaging has not been studied. Herein we propose multishot interleaved spiral in/out acquisition and investigate its applicability for high spatial resolution BOLD functional magnetic resonance imaging. Images reconstructed from interleaved spiral-in and -out trajectories possess artifacts caused by differences in T2 decay, off-resonance, and k-space errors associated with the two trajectories. We analyze the associated errors and demonstrate that application of conjugate phase reconstruction and spectral filtering can substantially mitigate these image artifacts. After applying these processing steps, the multishot interleaved spiral in/out pulse sequence yields high BOLD CNR images at in-plane resolution below 1 × 1 mm while preserving acceptable temporal resolution (4 s) and brain coverage (15 slices of 2 mm thickness). Moreover, this method yields sufficient BOLD CNR at 1.5 mm isotropic resolution for detection of activation in hippocampus associated with cognitive tasks (Stern memory task). The multishot interleaved spiral in/out acquisition is a promising technique for high spatial resolution BOLD functional magnetic resonance imaging applications. © 2012 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Sedano, Fernando; Kempeneers, Pieter; Strobl, Peter; Kucera, Jan; Vogt, Peter; Seebach, Lucia; San-Miguel-Ayanz, Jesús
2011-09-01
This study presents a novel cloud masking approach for high resolution remote sensing images in the context of land cover mapping. As an advantage to traditional methods, the approach does not rely on thermal bands and it is applicable to images from most high resolution earth observation remote sensing sensors. The methodology couples pixel-based seed identification and object-based region growing. The seed identification stage relies on pixel value comparison between high resolution images and cloud free composites at lower spatial resolution from almost simultaneously acquired dates. The methodology was tested taking SPOT4-HRVIR, SPOT5-HRG and IRS-LISS III as high resolution images and cloud free MODIS composites as reference images. The selected scenes included a wide range of cloud types and surface features. The resulting cloud masks were evaluated through visual comparison. They were also compared with ad-hoc independently generated cloud masks and with the automatic cloud cover assessment algorithm (ACCA). In general the results showed an agreement in detected clouds higher than 95% for clouds larger than 50 ha. The approach produced consistent results identifying and mapping clouds of different type and size over various land surfaces including natural vegetation, agriculture land, built-up areas, water bodies and snow.
High Spectral Resolution, High Cadence, Imaging X-Ray Microcalorimeters for Solar Physics
NASA Technical Reports Server (NTRS)
Bandler, Simon R.; Bailey, Catherine N.; Bookbinder, Jay A.; DeLuca, Edward E.; Chervenak, Jay A.; Eckart, Megan E.; Finkbeiner, Fred M.; Kelley, Daniel P.; Kelley, Richard L.; Kilbourne, Caroline A.;
2010-01-01
High spectral resolution, high cadence, imaging x-ray spectroscopy has the potential to revolutionize the study of the solar corona. To that end we have been developing transition-edge-sensor (TES) based x-ray micro calorimeter arrays for future solar physics missions where imaging and high energy resolution spectroscopy will enable previously impossible studies of the dynamics and energetics of the solar corona. The characteristics of these x-ray microcalorimeters are significantly different from conventional micro calorimeters developed for astrophysics because they need to accommodate much higher count rates (300-1000 cps) while maintaining high energy resolution of less than 4 eV FWHM in the X-ray energy band of 0.2-10 keV. The other main difference is a smaller pixel size (less than 75 x 75 square microns) than is typical for x-ray micro calorimeters in order to provide angular resolution less than 1 arcsecond. We have achieved at energy resolution of 2.15 eV at 6 keV in a pixel with a 12 x 12 square micron TES sensor and 34 x 34 x 9.1 micron gold absorber, and a resolution of 2.30 eV at 6 keV in a pixel with a 35 x 35 micron TES and a 57 x 57 x 9.1 micron gold absorber. This performance has been achieved in pixels that are fabricated directly onto solid substrates, ie. they are not supported by silicon nitride membranes. We present the results from these detectors, the expected performance at high count-rates, and prospects for the use of this technology for future Solar missions.
An Airborne A-Band Spectrometer for Remote Sensing Of Aerosol and Cloud Optical Properties
NASA Technical Reports Server (NTRS)
Pitts, Michael; Hostetler, Chris; Poole, Lamont; Holden, Carl; Rault, Didier
2000-01-01
Atmospheric remote sensing with the O2 A-band has a relatively long history, but most of these studies were attempting to estimate surface pressure or cloud-top pressure. Recent conceptual studies have demonstrated the potential of spaceborne high spectral resolution O2 A-band spectrometers for retrieval of aerosol and cloud optical properties. The physical rationale of this new approach is that information on the scattering properties of the atmosphere is embedded in the detailed line structure of the O2 A-band reflected radiance spectrum. The key to extracting this information is to measure the radiance spectrum at very high spectral resolution. Instrument performance requirement studies indicate that, in addition to high spectral resolution, the successful retrieval of aerosol and cloud properties from A-band radiance spectra will also require high radiometric accuracy, instrument stability, and high signal-to-noise measurements. To experimentally assess the capabilities of this promising new remote sensing application, the NASA Langley Research Center is developing an airborne high spectral resolution A-band spectrometer. The spectrometer uses a plane holographic grating with a folded Littrow geometry to achieve high spectral resolution (0.5 cm-1) and low stray light in a compact package. This instrument will be flown in a series of field campaigns beginning in 2001 to evaluate the overall feasibility of this new technique. Results from these campaigns should be particularly valuable for future spaceborne applications of A-band spectrometers for aerosol and cloud retrievals.
[Estimation of desert vegetation coverage based on multi-source remote sensing data].
Wan, Hong-Mei; Li, Xia; Dong, Dao-Rui
2012-12-01
Taking the lower reaches of Tarim River in Xinjiang of Northwest China as study areaAbstract: Taking the lower reaches of Tarim River in Xinjiang of Northwest China as study area and based on the ground investigation and the multi-source remote sensing data of different resolutions, the estimation models for desert vegetation coverage were built, with the precisions of different estimation methods and models compared. The results showed that with the increasing spatial resolution of remote sensing data, the precisions of the estimation models increased. The estimation precision of the models based on the high, middle-high, and middle-low resolution remote sensing data was 89.5%, 87.0%, and 84.56%, respectively, and the precisions of the remote sensing models were higher than that of vegetation index method. This study revealed the change patterns of the estimation precision of desert vegetation coverage based on different spatial resolution remote sensing data, and realized the quantitative conversion of the parameters and scales among the high, middle, and low spatial resolution remote sensing data of desert vegetation coverage, which would provide direct evidence for establishing and implementing comprehensive remote sensing monitoring scheme for the ecological restoration in the study area.
Mastering high resolution tip-enhanced Raman spectroscopy: towards a shift of perception.
Richard-Lacroix, Marie; Zhang, Yao; Dong, Zhenchao; Deckert, Volker
2017-07-03
Recent years have seen tremendous improvement of our understanding of high resolution reachable in TERS experiments, forcing us to re-evaluate our understanding of the intrinsic limits of this field, but also exposing several inconsistencies. On the one hand, more and more recent experimental results have provided us with clear indications of spatial resolutions down to a few nanometres or even on the subnanometre scale. Moreover, lessons learned from recent theoretical investigations clearly support such high resolutions, and vice versa the obvious theoretical impossibility to evade high resolution from a purely plasmonic point of view. On the other hand, most of the published TERS results still, to date, claim a resolution on the order of tens of nanometres that would be somehow limited by the tip apex, a statement well accepted for the past 2 decades. Overall, this now leads the field to a fundamental question: how can this divergence be justified? The answer to this question brings up an equally critical one: how can this gap be bridged? This review aims at raising a fundamental discussion related to the resolution limits of tip-enhanced Raman spectroscopy, at revisiting our comprehension of the factors limiting it both from a theoretical and an experimental point of view and at providing indications on how to move the field ahead. It is our belief that a much deeper understanding of the real accessible lateral resolution in TERS and the practical factors that limit them will simultaneously help us to fully explore the potential of this technique for studying nanoscale features in organic, inorganic and biological systems, and also to improve both the reproducibility and the accuracy of routine TERS studies. A significant improvement of our comprehension of the accessible resolution in TERS is thus critical for a broad audience, even in certain contexts where high resolution TERS is not the desired outcome.
High-Resolution Adaptive Optics Test-Bed for Vision Science
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilks, S C; Thomspon, C A; Olivier, S S
2001-09-27
We discuss the design and implementation of a low-cost, high-resolution adaptive optics test-bed for vision research. It is well known that high-order aberrations in the human eye reduce optical resolution and limit visual acuity. However, the effects of aberration-free eyesight on vision are only now beginning to be studied using adaptive optics to sense and correct the aberrations in the eye. We are developing a high-resolution adaptive optics system for this purpose using a Hamamatsu Parallel Aligned Nematic Liquid Crystal Spatial Light Modulator. Phase-wrapping is used to extend the effective stroke of the device, and the wavefront sensing and wavefrontmore » correction are done at different wavelengths. Issues associated with these techniques will be discussed.« less
High-resolution dynamic 31 P-MRSI using a low-rank tensor model.
Ma, Chao; Clifford, Bryan; Liu, Yuchi; Gu, Yuning; Lam, Fan; Yu, Xin; Liang, Zhi-Pei
2017-08-01
To develop a rapid 31 P-MRSI method with high spatiospectral resolution using low-rank tensor-based data acquisition and image reconstruction. The multidimensional image function of 31 P-MRSI is represented by a low-rank tensor to capture the spatial-spectral-temporal correlations of data. A hybrid data acquisition scheme is used for sparse sampling, which consists of a set of "training" data with limited k-space coverage to capture the subspace structure of the image function, and a set of sparsely sampled "imaging" data for high-resolution image reconstruction. An explicit subspace pursuit approach is used for image reconstruction, which estimates the bases of the subspace from the "training" data and then reconstructs a high-resolution image function from the "imaging" data. We have validated the feasibility of the proposed method using phantom and in vivo studies on a 3T whole-body scanner and a 9.4T preclinical scanner. The proposed method produced high-resolution static 31 P-MRSI images (i.e., 6.9 × 6.9 × 10 mm 3 nominal resolution in a 15-min acquisition at 3T) and high-resolution, high-frame-rate dynamic 31 P-MRSI images (i.e., 1.5 × 1.5 × 1.6 mm 3 nominal resolution, 30 s/frame at 9.4T). Dynamic spatiospectral variations of 31 P-MRSI signals can be efficiently represented by a low-rank tensor. Exploiting this mathematical structure for data acquisition and image reconstruction can lead to fast 31 P-MRSI with high resolution, frame-rate, and SNR. Magn Reson Med 78:419-428, 2017. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
A 4.5 km resolution Arctic Ocean simulation with the global multi-resolution model FESOM 1.4
NASA Astrophysics Data System (ADS)
Wang, Qiang; Wekerle, Claudia; Danilov, Sergey; Wang, Xuezhu; Jung, Thomas
2018-04-01
In the framework of developing a global modeling system which can facilitate modeling studies on Arctic Ocean and high- to midlatitude linkage, we evaluate the Arctic Ocean simulated by the multi-resolution Finite Element Sea ice-Ocean Model (FESOM). To explore the value of using high horizontal resolution for Arctic Ocean modeling, we use two global meshes differing in the horizontal resolution only in the Arctic Ocean (24 km vs. 4.5 km). The high resolution significantly improves the model's representation of the Arctic Ocean. The most pronounced improvement is in the Arctic intermediate layer, in terms of both Atlantic Water (AW) mean state and variability. The deepening and thickening bias of the AW layer, a common issue found in coarse-resolution simulations, is significantly alleviated by using higher resolution. The topographic steering of the AW is stronger and the seasonal and interannual temperature variability along the ocean bottom topography is enhanced in the high-resolution simulation. The high resolution also improves the ocean surface circulation, mainly through a better representation of the narrow straits in the Canadian Arctic Archipelago (CAA). The representation of CAA throughflow not only influences the release of water masses through the other gateways but also the circulation pathways inside the Arctic Ocean. However, the mean state and variability of Arctic freshwater content and the variability of freshwater transport through the Arctic gateways appear not to be very sensitive to the increase in resolution employed here. By highlighting the issues that are independent of model resolution, we address that other efforts including the improvement of parameterizations are still required.
Numerical Simulation and Mechanical Design for TPS Electron Beam Position Monitors
NASA Astrophysics Data System (ADS)
Hsueh, H. P.; Kuan, C. K.; Ueng, T. S.; Hsiung, G. Y.; Chen, J. R.
2007-01-01
Comprehensive study on the mechanical design and numerical simulation for the high resolution electron beam position monitors are key steps to build the newly proposed 3rd generation synchrotron radiation research facility, Taiwan Photon Source (TPS). With more advanced electromagnetic simulation tool like MAFIA tailored specifically for particle accelerator, the design for the high resolution electron beam position monitors can be tested in such environment before they are experimentally tested. The design goal of our high resolution electron beam position monitors is to get the best resolution through sensitivity and signal optimization. The definitions and differences between resolution and sensitivity of electron beam position monitors will be explained. The design consideration is also explained. Prototype deign has been carried out and the related simulations were also carried out with MAFIA. The results are presented here. Sensitivity as high as 200 in x direction has been achieved in x direction at 500 MHz.
High resolution imaging of a subsonic projectile using automated mirrors with large aperture
NASA Astrophysics Data System (ADS)
Tateno, Y.; Ishii, M.; Oku, H.
2017-02-01
Visual tracking of high-speed projectiles is required for studying the aerodynamics around the objects. One solution to this problem is a tracking method based on the so-called 1 ms Auto Pan-Tilt (1ms-APT) system that we proposed in previous work, which consists of rotational mirrors and a high-speed image processing system. However, the images obtained with that system did not have high enough resolution to realize detailed measurement of the projectiles because of the size of the mirrors. In this study, we propose a new system consisting of enlarged mirrors for tracking a high-speed projectiles so as to achieve higher-resolution imaging, and we confirmed the effectiveness of the system via an experiment in which a projectile flying at subsonic speed tracked.
Analyzing and leveraging self-similarity for variable resolution atmospheric models
NASA Astrophysics Data System (ADS)
O'Brien, Travis; Collins, William
2015-04-01
Variable resolution modeling techniques are rapidly becoming a popular strategy for achieving high resolution in a global atmospheric models without the computational cost of global high resolution. However, recent studies have demonstrated a variety of resolution-dependent, and seemingly artificial, features. We argue that the scaling properties of the atmosphere are key to understanding how the statistics of an atmospheric model should change with resolution. We provide two such examples. In the first example we show that the scaling properties of the cloud number distribution define how the ratio of resolved to unresolved clouds should increase with resolution. We show that the loss of resolved clouds, in the high resolution region of variable resolution simulations, with the Community Atmosphere Model version 4 (CAM4) is an artifact of the model's treatment of condensed water (this artifact is significantly reduced in CAM5). In the second example we show that the scaling properties of the horizontal velocity field, combined with the incompressibility assumption, necessarily result in an intensification of vertical mass flux as resolution increases. We show that such an increase is present in a wide variety of models, including CAM and the regional climate models of the ENSEMBLES intercomparision. We present theoretical arguments linking this increase to the intensification of precipitation with increasing resolution.
Zook, James D.; Molugu, Trivikram R.; Jacobsen, Neil E.; Lin, Guangxin; Soll, Jürgen; Cherry, Brian R.; Brown, Michael F.; Fromme, Petra
2013-01-01
Solving high-resolution structures for membrane proteins continues to be a daunting challenge in the structural biology community. In this study we report our high-resolution NMR results for a transmembrane protein, outer envelope protein of molar mass 16 kDa (OEP16), an amino acid transporter from the outer membrane of chloroplasts. Three-dimensional, high-resolution NMR experiments on the 13C, 15N, 2H-triply-labeled protein were used to assign protein backbone resonances and to obtain secondary structure information. The results yield over 95% assignment of N, HN, CO, Cα, and Cβ chemical shifts, which is essential for obtaining a high resolution structure from NMR data. Chemical shift analysis from the assignment data reveals experimental evidence for the first time on the location of the secondary structure elements on a per residue basis. In addition T 1Z and T2 relaxation experiments were performed in order to better understand the protein dynamics. Arginine titration experiments yield an insight into the amino acid residues responsible for protein transporter function. The results provide the necessary basis for high-resolution structural determination of this important plant membrane protein. PMID:24205117
USDA-ARS?s Scientific Manuscript database
Genotyping by sequencing (GBS) provides opportunities to generate high-resolution genetic maps at a low per-sample genotyping cost, but missing data and under-calling of heterozygotes complicate the creation of GBS linkage maps for highly heterozygous species. To overcome these issues, we developed ...
Ultra high resolution imaging of the human head at 8 tesla: 2K x 2K for Y2K.
Robitaille, P M; Abduljalil, A M; Kangarlu, A
2000-01-01
To acquire ultra high resolution MRI images of the human brain at 8 Tesla within a clinically acceptable time frame. Gradient echo images were acquired from the human head of normal subjects using a transverse electromagnetic resonator operating in quadrature and tuned to 340 MHz. In each study, a group of six images was obtained containing a total of 208 MB of unprocessed information. Typical acquisition parameters were as follows: matrix = 2,000 x 2,000, field of view = 20 cm, slice thickness = 2 mm, number of excitations (NEX) = 1, flip angle = 45 degrees, TR = 750 ms, TE = 17 ms, receiver bandwidth = 69.4 kHz. This resulted in a total scan time of 23 minutes, an in-plane resolution of 100 microm, and a pixel volume of 0.02 mm3. The ultra high resolution images acquired in this study represent more than a 50-fold increase in in-plane resolution relative to conventional 256 x 256 images obtained with a 20 cm field of view and a 5 mm slice thickness. Nonetheless, the ultra high resolution images could be acquired both with adequate image quality and signal to noise. They revealed numerous small venous structures throughout the image plane and provided reasonable delineation between gray and white matter. The elevated signal-to-noise ratio observed in ultra high field magnetic resonance imaging can be utilized to acquire images with a level of resolution approaching the histological level under in vivo conditions. However, brain motion is likely to degrade the useful resolution. This situation may be remedied in part with cardiac gating. Nonetheless, these images represent a significant advance in our ability to examine small anatomical features with noninvasive imaging methods.
Johnson, Curtis L.; McGarry, Matthew D. J.; Van Houten, Elijah E. W.; Weaver, John B.; Paulsen, Keith D.; Sutton, Bradley P.; Georgiadis, John G.
2012-01-01
MRE has been introduced in clinical practice as a possible surrogate for mechanical palpation, but its application to study the human brain in vivo has been limited by low spatial resolution and the complexity of the inverse problem associated with biomechanical property estimation. Here, we report significant improvements in brain MRE data acquisition by reporting images with high spatial resolution and signal-to-noise ratio as quantified by octahedral shear strain metrics. Specifically, we have developed a sequence for brain MRE based on multi-shot, variable-density spiral imaging and three-dimensional displacement acquisition, and implemented a correction scheme for any resulting phase errors. A Rayleigh damped model of brain tissue mechanics was adopted to represent the parenchyma, and was integrated via a finite element-based iterative inversion algorithm. A multi-resolution phantom study demonstrates the need for obtaining high-resolution MRE data when estimating focal mechanical properties. Measurements on three healthy volunteers demonstrate satisfactory resolution of grey and white matter, and mechanical heterogeneities correspond well with white matter histoarchitecture. Together, these advances enable MRE scans that result in high-fidelity, spatially-resolved estimates of in vivo brain tissue mechanical properties, improving upon lower resolution MRE brain studies which only report volume averaged stiffness values. PMID:23001771
NASA Astrophysics Data System (ADS)
Bindhu, V. M.; Narasimhan, B.
2015-03-01
Normalized Difference Vegetation Index (NDVI), a key parameter in understanding the vegetation dynamics, has high spatial and temporal variability. However, continuous monitoring of NDVI is not feasible at fine spatial resolution (<60 m) owing to the long revisit time needed by the satellites to acquire the fine spatial resolution data. Further, the study attains significance in the case of humid tropical regions of the earth, where the prevailing atmospheric conditions restrict availability of fine resolution cloud free images at a high temporal frequency. As an alternative to the lack of high resolution images, the current study demonstrates a novel disaggregation method (DisNDVI) which integrates the spatial information from a single fine resolution image and temporal information in terms of crop phenology from time series of coarse resolution images to generate estimates of NDVI at fine spatial and temporal resolution. The phenological variation of the pixels captured at the coarser scale provides the basis for relating the temporal variability of the pixel with the NDVI available at fine resolution. The proposed methodology was tested over a 30 km × 25 km spatially heterogeneous study area located in the south of Tamil Nadu, India. The robustness of the algorithm was assessed by an independent comparison of the disaggregated NDVI and observed NDVI obtained from concurrent Landsat ETM+ imagery. The results showed good spatial agreement across the study area dominated with agriculture and forest pixels, with a root mean square error of 0.05. The validation done at the coarser scale showed that disaggregated NDVI spatially averaged to 240 m compared well with concurrent MODIS NDVI at 240 m (R2 > 0.8). The validation results demonstrate the effectiveness of DisNDVI in improving the spatial and temporal resolution of NDVI images for utility in fine scale hydrological applications such as crop growth monitoring and estimation of evapotranspiration.
Midekisa, Alemayehu; Holl, Felix; Savory, David J; Andrade-Pacheco, Ricardo; Gething, Peter W; Bennett, Adam; Sturrock, Hugh J W
2017-01-01
Quantifying and monitoring the spatial and temporal dynamics of the global land cover is critical for better understanding many of the Earth's land surface processes. However, the lack of regularly updated, continental-scale, and high spatial resolution (30 m) land cover data limit our ability to better understand the spatial extent and the temporal dynamics of land surface changes. Despite the free availability of high spatial resolution Landsat satellite data, continental-scale land cover mapping using high resolution Landsat satellite data was not feasible until now due to the need for high-performance computing to store, process, and analyze this large volume of high resolution satellite data. In this study, we present an approach to quantify continental land cover and impervious surface changes over a long period of time (15 years) using high resolution Landsat satellite observations and Google Earth Engine cloud computing platform. The approach applied here to overcome the computational challenges of handling big earth observation data by using cloud computing can help scientists and practitioners who lack high-performance computational resources.
Holl, Felix; Savory, David J.; Andrade-Pacheco, Ricardo; Gething, Peter W.; Bennett, Adam; Sturrock, Hugh J. W.
2017-01-01
Quantifying and monitoring the spatial and temporal dynamics of the global land cover is critical for better understanding many of the Earth’s land surface processes. However, the lack of regularly updated, continental-scale, and high spatial resolution (30 m) land cover data limit our ability to better understand the spatial extent and the temporal dynamics of land surface changes. Despite the free availability of high spatial resolution Landsat satellite data, continental-scale land cover mapping using high resolution Landsat satellite data was not feasible until now due to the need for high-performance computing to store, process, and analyze this large volume of high resolution satellite data. In this study, we present an approach to quantify continental land cover and impervious surface changes over a long period of time (15 years) using high resolution Landsat satellite observations and Google Earth Engine cloud computing platform. The approach applied here to overcome the computational challenges of handling big earth observation data by using cloud computing can help scientists and practitioners who lack high-performance computational resources. PMID:28953943
Acton, Paul D; Choi, Seok-Rye; Plössl, Karl; Kung, Hank F
2002-05-01
Functional imaging of small animals, such as mice and rats, using ultra-high resolution positron emission tomography (PET) and single-photon emission tomography (SPET), is becoming a valuable tool for studying animal models of human disease. While several studies have shown the utility of PET imaging in small animals, few have used SPET in real research applications. In this study we aimed to demonstrate the feasibility of using ultra-high resolution SPET in quantitative studies of dopamine transporters (DAT) in the mouse brain. Four healthy ICR male mice were injected with (mean+/-SD) 704+/-154 MBq [(99m)Tc]TRODAT-1, and scanned using an ultra-high resolution SPET system equipped with pinhole collimators (spatial resolution 0.83 mm at 3 cm radius of rotation). Each mouse had two studies, to provide an indication of test-retest reliability. Reference tissue kinetic modeling analysis of the time-activity data in the striatum and cerebellum was used to quantitate the availability of DAT. A simple equilibrium ratio of striatum to cerebellum provided another measure of DAT binding. The SPET imaging results were compared against ex vivo biodistribution data from the striatum and cerebellum. The mean distribution volume ratio (DVR) from the reference tissue kinetic model was 2.17+/-0.34, with a test-retest reliability of 2.63%+/-1.67%. The ratio technique gave similar results (DVR=2.03+/-0.38, test-retest reliability=6.64%+/-3.86%), and the ex vivo analysis gave DVR=2.32+/-0.20. Correlations between the kinetic model and the ratio technique ( R(2)=0.86, P<0.001) and the ex vivo data ( R(2)=0.92, P=0.04) were both excellent. This study demonstrated clearly that ultra-high resolution SPET of small animals is capable of accurate, repeatable, and quantitative measures of DAT binding, and should open up the possibility of further studies of cerebral binding sites in mice using pinhole SPET.
Structural Analysis of Titan's Tholins by Ultra-High Resolution Mass Spectrometry
NASA Astrophysics Data System (ADS)
Vuitton, V.; Frisari, M.; Thissen, R.; Dutuit, O.; Bonnet, J.-Y.; Quirico, E.; Sciamma O'Brien, E.; Szopa, C.; Carrasco, N.; Somogyi, A.; Smith, M.; Hörst, S. M.; Yelle, R.
2010-04-01
We propose here a systematic ultra-high resolution mass spectrometry and MS/MS study in order to provide a more coherent and complete characterization of the structure of the molecules making up the soluble fraction of the Titan tholins.
Ghaste, Manoj; Mistrik, Robert; Shulaev, Vladimir
2016-05-25
Metabolomics, along with other "omics" approaches, is rapidly becoming one of the major approaches aimed at understanding the organization and dynamics of metabolic networks. Mass spectrometry is often a technique of choice for metabolomics studies due to its high sensitivity, reproducibility and wide dynamic range. High resolution mass spectrometry (HRMS) is a widely practiced technique in analytical and bioanalytical sciences. It offers exceptionally high resolution and the highest degree of structural confirmation. Many metabolomics studies have been conducted using HRMS over the past decade. In this review, we will explore the latest developments in Fourier transform mass spectrometry (FTMS) and Orbitrap based metabolomics technology, its advantages and drawbacks for using in metabolomics and lipidomics studies, and development of novel approaches for processing HRMS data.
Ghaste, Manoj; Mistrik, Robert; Shulaev, Vladimir
2016-01-01
Metabolomics, along with other “omics” approaches, is rapidly becoming one of the major approaches aimed at understanding the organization and dynamics of metabolic networks. Mass spectrometry is often a technique of choice for metabolomics studies due to its high sensitivity, reproducibility and wide dynamic range. High resolution mass spectrometry (HRMS) is a widely practiced technique in analytical and bioanalytical sciences. It offers exceptionally high resolution and the highest degree of structural confirmation. Many metabolomics studies have been conducted using HRMS over the past decade. In this review, we will explore the latest developments in Fourier transform mass spectrometry (FTMS) and Orbitrap based metabolomics technology, its advantages and drawbacks for using in metabolomics and lipidomics studies, and development of novel approaches for processing HRMS data. PMID:27231903
Feng, Wei; Zhang, Fumin; Qu, Xinghua; Zheng, Shiwei
2016-01-01
High-speed photography is an important tool for studying rapid physical phenomena. However, low-frame-rate CCD (charge coupled device) or CMOS (complementary metal oxide semiconductor) camera cannot effectively capture the rapid phenomena with high-speed and high-resolution. In this paper, we incorporate the hardware restrictions of existing image sensors, design the sampling functions, and implement a hardware prototype with a digital micromirror device (DMD) camera in which spatial and temporal information can be flexibly modulated. Combined with the optical model of DMD camera, we theoretically analyze the per-pixel coded exposure and propose a three-element median quicksort method to increase the temporal resolution of the imaging system. Theoretically, this approach can rapidly increase the temporal resolution several, or even hundreds, of times without increasing bandwidth requirements of the camera. We demonstrate the effectiveness of our method via extensive examples and achieve 100 fps (frames per second) gain in temporal resolution by using a 25 fps camera. PMID:26959023
Feng, Wei; Zhang, Fumin; Qu, Xinghua; Zheng, Shiwei
2016-03-04
High-speed photography is an important tool for studying rapid physical phenomena. However, low-frame-rate CCD (charge coupled device) or CMOS (complementary metal oxide semiconductor) camera cannot effectively capture the rapid phenomena with high-speed and high-resolution. In this paper, we incorporate the hardware restrictions of existing image sensors, design the sampling functions, and implement a hardware prototype with a digital micromirror device (DMD) camera in which spatial and temporal information can be flexibly modulated. Combined with the optical model of DMD camera, we theoretically analyze the per-pixel coded exposure and propose a three-element median quicksort method to increase the temporal resolution of the imaging system. Theoretically, this approach can rapidly increase the temporal resolution several, or even hundreds, of times without increasing bandwidth requirements of the camera. We demonstrate the effectiveness of our method via extensive examples and achieve 100 fps (frames per second) gain in temporal resolution by using a 25 fps camera.
Gerbich, Therese M.; Rana, Kishan; Suzuki, Aussie; Schaefer, Kristina N.; Heppert, Jennifer K.; Boothby, Thomas C.; Allbritton, Nancy L.; Gladfelter, Amy S.; Maddox, Amy S.
2018-01-01
Fluorescence microscopy is a powerful approach for studying subcellular dynamics at high spatiotemporal resolution; however, conventional fluorescence microscopy techniques are light-intensive and introduce unnecessary photodamage. Light-sheet fluorescence microscopy (LSFM) mitigates these problems by selectively illuminating the focal plane of the detection objective by using orthogonal excitation. Orthogonal excitation requires geometries that physically limit the detection objective numerical aperture (NA), thereby limiting both light-gathering efficiency (brightness) and native spatial resolution. We present a novel live-cell LSFM method, lateral interference tilted excitation (LITE), in which a tilted light sheet illuminates the detection objective focal plane without a sterically limiting illumination scheme. LITE is thus compatible with any detection objective, including oil immersion, without an upper NA limit. LITE combines the low photodamage of LSFM with high resolution, high brightness, and coverslip-based objectives. We demonstrate the utility of LITE for imaging animal, fungal, and plant model organisms over many hours at high spatiotemporal resolution. PMID:29490939
NASA Astrophysics Data System (ADS)
Wu, Yu; Zheng, Lijuan; Xie, Donghai; Zhong, Ruofei
2017-07-01
In this study, the extended morphological attribute profiles (EAPs) and independent component analysis (ICA) were combined for feature extraction of high-resolution multispectral satellite remote sensing images and the regularized least squares (RLS) approach with the radial basis function (RBF) kernel was further applied for the classification. Based on the major two independent components, the geometrical features were extracted using the EAPs method. In this study, three morphological attributes were calculated and extracted for each independent component, including area, standard deviation, and moment of inertia. The extracted geometrical features classified results using RLS approach and the commonly used LIB-SVM library of support vector machines method. The Worldview-3 and Chinese GF-2 multispectral images were tested, and the results showed that the features extracted by EAPs and ICA can effectively improve the accuracy of the high-resolution multispectral image classification, 2% larger than EAPs and principal component analysis (PCA) method, and 6% larger than APs and original high-resolution multispectral data. Moreover, it is also suggested that both the GURLS and LIB-SVM libraries are well suited for the multispectral remote sensing image classification. The GURLS library is easy to be used with automatic parameter selection but its computation time may be larger than the LIB-SVM library. This study would be helpful for the classification application of high-resolution multispectral satellite remote sensing images.
High-resolution harmonic motion imaging (HR-HMI) for tissue biomechanical property characterization
Ma, Teng; Qian, Xuejun; Chiu, Chi Tat; Yu, Mingyue; Jung, Hayong; Tung, Yao-Sheng; Shung, K. Kirk
2015-01-01
Background Elastography, capable of mapping the biomechanical properties of biological tissues, serves as a useful technique for clinicians to perform disease diagnosis and determine stages of many diseases. Many acoustic radiation force (ARF) based elastography, including acoustic radiation force impulse (ARFI) imaging and harmonic motion imaging (HMI), have been developed to remotely assess the elastic properties of tissues. However, due to the lower operating frequencies of these approaches, their spatial resolutions are insufficient for revealing stiffness distribution on small scale applications, such as cancerous tumor margin detection, atherosclerotic plaque composition analysis and ophthalmologic tissue characterization. Though recently developed ARF-based optical coherence elastography (OCE) methods open a new window for the high resolution elastography, shallow imaging depths significantly limit their usefulness in clinics. Methods The aim of this study is to develop a high-resolution HMI method to assess the tissue biomechanical properties with acceptable field of view (FOV) using a 4 MHz ring transducer for efficient excitation and a 40 MHz needle transducer for accurate detection. Under precise alignment of two confocal transducers, the high-resolution HMI system has a lateral resolution of 314 µm and an axial resolution of 147 µm with an effective FOV of 2 mm in depth. Results The performance of this high resolution imaging system was validated on the agar-based tissue mimicking phantoms with different stiffness distributions. These data demonstrated the imaging system’s improved resolution and sensitivity on differentiating materials with varying stiffness. In addition, ex vivo imaging of a human atherosclerosis coronary artery demonstrated the capability of high resolution HMI in identifying layer-specific structures and characterizing atherosclerotic plaques based on their stiffness differences. Conclusions All together high resolution HMI appears to be a promising ultrasound-only technology for characterizing tissue biomechanical properties at the microstructural level to improve the image-based diseases diagnosis in multiple clinical applications. PMID:25694960
High-resolution harmonic motion imaging (HR-HMI) for tissue biomechanical property characterization.
Ma, Teng; Qian, Xuejun; Chiu, Chi Tat; Yu, Mingyue; Jung, Hayong; Tung, Yao-Sheng; Shung, K Kirk; Zhou, Qifa
2015-02-01
Elastography, capable of mapping the biomechanical properties of biological tissues, serves as a useful technique for clinicians to perform disease diagnosis and determine stages of many diseases. Many acoustic radiation force (ARF) based elastography, including acoustic radiation force impulse (ARFI) imaging and harmonic motion imaging (HMI), have been developed to remotely assess the elastic properties of tissues. However, due to the lower operating frequencies of these approaches, their spatial resolutions are insufficient for revealing stiffness distribution on small scale applications, such as cancerous tumor margin detection, atherosclerotic plaque composition analysis and ophthalmologic tissue characterization. Though recently developed ARF-based optical coherence elastography (OCE) methods open a new window for the high resolution elastography, shallow imaging depths significantly limit their usefulness in clinics. The aim of this study is to develop a high-resolution HMI method to assess the tissue biomechanical properties with acceptable field of view (FOV) using a 4 MHz ring transducer for efficient excitation and a 40 MHz needle transducer for accurate detection. Under precise alignment of two confocal transducers, the high-resolution HMI system has a lateral resolution of 314 µm and an axial resolution of 147 µm with an effective FOV of 2 mm in depth. The performance of this high resolution imaging system was validated on the agar-based tissue mimicking phantoms with different stiffness distributions. These data demonstrated the imaging system's improved resolution and sensitivity on differentiating materials with varying stiffness. In addition, ex vivo imaging of a human atherosclerosis coronary artery demonstrated the capability of high resolution HMI in identifying layer-specific structures and characterizing atherosclerotic plaques based on their stiffness differences. All together high resolution HMI appears to be a promising ultrasound-only technology for characterizing tissue biomechanical properties at the microstructural level to improve the image-based diseases diagnosis in multiple clinical applications.
Patel, Trushar R; Chojnowski, Grzegorz; Astha; Koul, Amit; McKenna, Sean A; Bujnicki, Janusz M
2017-04-15
The diverse functional cellular roles played by ribonucleic acids (RNA) have emphasized the need to develop rapid and accurate methodologies to elucidate the relationship between the structure and function of RNA. Structural biology tools such as X-ray crystallography and Nuclear Magnetic Resonance are highly useful methods to obtain atomic-level resolution models of macromolecules. However, both methods have sample, time, and technical limitations that prevent their application to a number of macromolecules of interest. An emerging alternative to high-resolution structural techniques is to employ a hybrid approach that combines low-resolution shape information about macromolecules and their complexes from experimental hydrodynamic (e.g. analytical ultracentrifugation) and solution scattering measurements (e.g., solution X-ray or neutron scattering), with computational modeling to obtain atomic-level models. While promising, scattering methods rely on aggregation-free, monodispersed preparations and therefore the careful development of a quality control pipeline is fundamental to an unbiased and reliable structural determination. This review article describes hydrodynamic techniques that are highly valuable for homogeneity studies, scattering techniques useful to study the low-resolution shape, and strategies for computational modeling to obtain high-resolution 3D structural models of RNAs, proteins, and RNA-protein complexes. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.
Sub-Millimeter Heterodyne Focal-Plane Arrays for High-Resolution Astronomical Spectroscopy
NASA Astrophysics Data System (ADS)
Goldsmith, Paul F.
2017-09-01
Spectral lines are vital tools for astronomy, particularly for studying the interstellar medium, which is widely distributed throughout the volume of our Milky Way and of other galaxies. Broadband emissions, including synchrotron, free-free, and thermal dust emissions give astronomers important information. However, they do not give information about the motions of, for example, interstellar clouds, the filamentary structures found within them, star-forming dense cores, and photon-dominated regions energized by massive young stars. For study of the interstellar medium, spectral lines at sub-millimeter wavelengths are particularly important, for two reasons. First, they offer the unique ability to observe a variety of important molecules, atoms, and ions, which are the most important gas coolants (fine-structure lines of ionized and neutral carbon, neutral oxygen), probes of physical conditions (high-J transitions of CO, HF, fine-structure lines of ionized nitrogen), and of obvious biogenic importance (H2O). In addition, high-resolution observations of spectral lines offer the unique ability to disentangle the complex motions within these regions and, in some cases, to determine their arrangement along the line of sight. To accomplish this, spectral resolution high enough to resolve the spectral lines of interest is required. We can measure the resolution of the spectrometer in terms of its resolution, R = f/δf, where f is the rest frequency of the line, and δJ is the frequency resolution of the spectrometer. More-active sources can be advantageously studied with R = 3 × 10^5, while more quiescent sources require R as high as 10^7.
NASA Astrophysics Data System (ADS)
Nadeem, Imran; Formayer, Herbert
2016-11-01
A suite of high-resolution (10 km) simulations were performed with the International Centre for Theoretical Physics (ICTP) Regional Climate Model (RegCM3) to study the effect of various lateral boundary conditions (LBCs), domain size, and intermediate domains on simulated precipitation over the Great Alpine Region. The boundary conditions used were ECMWF ERA-Interim Reanalysis with grid spacing 0.75∘, the ECMWF ERA-40 Reanalysis with grid spacing 1.125 and 2.5∘, and finally the 2.5∘ NCEP/DOE AMIP-II Reanalysis. The model was run in one-way nesting mode with direct nesting of the high-resolution RCM (horizontal grid spacing Δx = 10 km) with driving reanalysis, with one intermediate resolution nest (Δx = 30 km) between high-resolution RCM and reanalysis forcings, and also with two intermediate resolution nests (Δx = 90 km and Δx = 30 km) for simulations forced with LBC of resolution 2.5∘. Additionally, the impact of domain size was investigated. The results of multiple simulations were evaluated using different analysis techniques, e.g., Taylor diagram and a newly defined useful statistical parameter, called Skill-Score, for evaluation of daily precipitation simulated by the model. It has been found that domain size has the major impact on the results, while different resolution and versions of LBCs, e.g., 1.125∘ ERA40 and 0.7∘ ERA-Interim, do not produce significantly different results. It is also noticed that direct nesting with reasonable domain size, seems to be the most adequate method for reproducing precipitation over complex terrain, while introducing intermediate resolution nests seems to deteriorate the results.
NASA Astrophysics Data System (ADS)
Lousberg, G. P.; Lemagne, F.; Gloesener, P.; Flebus, C.; Rougelot, S.; Coatantiec, C.; Harnisch, B.
2017-11-01
In the framework of the Fluorescence Explorer (FLEX) phase A/B1 study, an elegant breadboard (EBB) of an imaging spectrometer is designed, manufactured and aligned by AMOS, with Airbus Defence&Space as the prime Contractor of the study. The FLEX mission is one of the two candidates of the 8th Earth Explorer mission. The main constituting instrument of the FLEX mission is an imaging spectrometer observing vegetation fluorescence and reflectance with a high- and a low-resolution channels in the 500 nm -780 nm band. As part of the system feasibility study of the mission, a breadboard of the high-resolution channel of the instrument is designed and manufactured with a high representativeness of a future flight concept. The high-resolution channel is referred to as FIMAS (Fluorescence IMAging Spectrometer). The main purpose of the EBB is to demonstrate (1) the manufacturability of the instrument and (2) the compliance of the optical performances with respect to the science requirements (including spatial and spectral resolution and stray-light).
Auboire, Laurent; Escoffre, Jean-Michel; Fouan, Damien; Jacquet, Jean-René; Ossant, Frédéric; Grégoire, Jean-Marc; Bouakaz, Ayache
2017-07-24
Thrombosis is a major cause of several diseases, i.e. myocardial infarction, cerebral stroke and pulmonary embolism. Thrombolytic therapies are required to induce fast and efficient recanalization of occluded vessels. To evaluate the in vitro efficacy of these thrombolytic strategies, measuring clot dissolution is essential. This study aimed to evaluate and validate high resolution ultrasound as a tool to assess the exact volume of clots in 3D and in real time during in vitro thrombolytic drug testing. This new method was validated by measuring the effects of concentration range of recombinant tissue type plasminogen activator on a blood clot during complete occlusion or 70% stenosis of a vessel. This study shows that high resolution ultrasound imaging allows for a real-time assessment of the 3D volume of a blood clot with negligible inter- and intra-operator variabilities. The conclusions drawn from this study demonstrate the promising potential of high resolution ultrasound imaging for the in vitro assessment of new thrombolytic drugs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pravdivtsev, Andrey N.; Yurkovskaya, Alexandra V.; Ivanov, Konstantin L., E-mail: ivanov@tomo.nsc.ru
2014-10-21
Nuclear Magnetic Relaxation Dispersion (NMRD) of protons was studied in the pentapeptide Met-enkephalin and the amino acids, which constitute it. Experiments were run by using high-resolution Nuclear Magnetic Resonance (NMR) in combination with fast field-cycling, thus enabling measuring NMRD curves for all individual protons. As in earlier works, Papers I–III, pronounced effects of intramolecular scalar spin-spin interactions, J-couplings, on spin relaxation were found. Notably, at low fields J-couplings tend to equalize the apparent relaxation rates within networks of coupled protons. In Met-enkephalin, in contrast to the free amino acids, there is a sharp increase in the proton T{sub 1}-relaxation timesmore » at high fields due to the changes in the regime of molecular motion. The experimental data are in good agreement with theory. From modelling the relaxation experiments we were able to determine motional correlation times of different residues in Met-enkephalin with atomic resolution. This allows us to draw conclusions about preferential conformation of the pentapeptide in solution, which is also in agreement with data from two-dimensional NMR experiments (rotating frame Overhauser effect spectroscopy). Altogether, our study demonstrates that high-resolution NMR studies of magnetic field-dependent relaxation allow one to probe molecular mobility in biomolecules with atomic resolution.« less
Next Generation X-Ray Observatory: New Mission Concepts in Astrophysics
NASA Technical Reports Server (NTRS)
Cash, Webster
1998-01-01
This grant was to review the impact and possibilities for high resolution imaging as the theme for a new observatory early in the 21st Century. We proposed to investigate the suitability of a new approach to high resolution x-ray optics and investigate the range of science it might support. There is no question that high resolution x-ray imaging would lead to exciting, fundamental new discoveries. We demonstrated in this study that the technology already exists to improve imaging in the x-ray by up to six orders of magnitude. This would make the x-ray band the highest resolution band instead of its current status as second worst, behind gamma rays.
NASA Astrophysics Data System (ADS)
Ota, Junko; Umehara, Kensuke; Ishimaru, Naoki; Ohno, Shunsuke; Okamoto, Kentaro; Suzuki, Takanori; Shirai, Naoki; Ishida, Takayuki
2017-02-01
As the capability of high-resolution displays grows, high-resolution images are often required in Computed Tomography (CT). However, acquiring high-resolution images takes a higher radiation dose and a longer scanning time. In this study, we applied the Sparse-coding-based Super-Resolution (ScSR) method to generate high-resolution images without increasing the radiation dose. We prepared the over-complete dictionary learned the mapping between low- and highresolution patches and seek a sparse representation of each patch of the low-resolution input. These coefficients were used to generate the high-resolution output. For evaluation, 44 CT cases were used as the test dataset. We up-sampled images up to 2 or 4 times and compared the image quality of the ScSR scheme and bilinear and bicubic interpolations, which are the traditional interpolation schemes. We also compared the image quality of three learning datasets. A total of 45 CT images, 91 non-medical images, and 93 chest radiographs were used for dictionary preparation respectively. The image quality was evaluated by measuring peak signal-to-noise ratio (PSNR) and structure similarity (SSIM). The differences of PSNRs and SSIMs between the ScSR method and interpolation methods were statistically significant. Visual assessment confirmed that the ScSR method generated a high-resolution image with sharpness, whereas conventional interpolation methods generated over-smoothed images. To compare three different training datasets, there were no significance between the CT, the CXR and non-medical datasets. These results suggest that the ScSR provides a robust approach for application of up-sampling CT images and yields substantial high image quality of extended images in CT.
Feasibility of high temporal resolution breast DCE-MRI using compressed sensing theory.
Wang, Haoyu; Miao, Yanwei; Zhou, Kun; Yu, Yanming; Bao, Shanglian; He, Qiang; Dai, Yongming; Xuan, Stephanie Y; Tarabishy, Bisher; Ye, Yongquan; Hu, Jiani
2010-09-01
To investigate the feasibility of high temporal resolution breast DCE-MRI using compressed sensing theory. Two experiments were designed to investigate the feasibility of using reference image based compressed sensing (RICS) technique in DCE-MRI of the breast. The first experiment examined the capability of RICS to faithfully reconstruct uptake curves using undersampled data sets extracted from fully sampled clinical breast DCE-MRI data. An average approach and an approach using motion estimation and motion compensation (ME/MC) were implemented to obtain reference images and to evaluate their efficacy in reducing motion related effects. The second experiment, an in vitro phantom study, tested the feasibility of RICS for improving temporal resolution without degrading the spatial resolution. For the uptake-curve reconstruction experiment, there was a high correlation between uptake curves reconstructed from fully sampled data by Fourier transform and from undersampled data by RICS, indicating high similarity between them. The mean Pearson correlation coefficients for RICS with the ME/MC approach and RICS with the average approach were 0.977 +/- 0.023 and 0.953 +/- 0.031, respectively. The comparisons of final reconstruction results between RICS with the average approach and RICS with the ME/MC approach suggested that the latter was superior to the former in reducing motion related effects. For the in vitro experiment, compared to the fully sampled method, RICS improved the temporal resolution by an acceleration factor of 10 without degrading the spatial resolution. The preliminary study demonstrates the feasibility of RICS for faithfully reconstructing uptake curves and improving temporal resolution of breast DCE-MRI without degrading the spatial resolution.
NASA Astrophysics Data System (ADS)
Rimac, Antonija; von Storch, Jin-Song; Eden, Carsten
2013-04-01
The estimated power required to sustain global general circulation in the ocean is about 2 TW. This power is supplied with wind stress and tides. Energy spectrum shows pronounced maxima at near-inertial frequency. Near-inertial waves excited by high-frequency winds represent an important source for deep ocean mixing since they can propagate into the deep ocean and dissipate far away from the generation sites. The energy input by winds to near-inertial waves has been studied mostly using slab ocean models and wind stress forcing with coarse temporal resolution (e.g. 6-hourly). Slab ocean models lack the ability to reproduce fundamental aspects of kinetic energy balance and systematically overestimate the wind work. Also, slab ocean models do not account the energy used for the mixed layer deepening or the energy radiating downward into the deep ocean. Coarse temporal resolution of the wind forcing strongly underestimates the near-inertial energy. To overcome this difficulty we use an eddy permitting ocean model with high-frequency wind forcing. We establish the following model setup: We use the Max Planck Institute Ocean Model (MPIOM) on a tripolar grid with 45 km horizontal resolution and 40 vertical levels. We run the model with wind forcings that vary in horizontal and temporal resolution. We use high-resolution (1-hourly with 35 km horizontal resolution) and low-resolution winds (6-hourly with 250 km horizontal resolution). We address the following questions: Is the kinetic energy of near-inertial waves enhanced when high-resolution wind forcings are used? If so, is this due to higher level of overall wind variability or higher spatial or temporal resolution of wind forcing? How large is the power of near-inertial waves generated by winds? Our results show that near-inertial waves are enhanced and the near-inertial kinetic energy is two times higher (in the storm track regions 3.5 times higher) when high-resolution winds are used. Filtering high-resolution winds in space and time, the near-inertial kinetic energy reduces. The reduction is faster when a temporal filter is used suggesting that the high-frequency wind forcing is more efficient in generating near-inertial wave energy than the small-scale wind forcing. Using low-resolution wind forcing the wind generated power to near-inertial waves is 0.55 TW. When we use high-resolution wind forcing the result is 1.6 TW meaning that the result increases by 300%.
Cheng, Bingbing; Bandi, Venugopal; Wei, Ming-Yuan; Pei, Yanbo; D’Souza, Francis; Nguyen, Kytai T.; Hong, Yi; Yuan, Baohong
2016-01-01
For many years, investigators have sought after high-resolution fluorescence imaging in centimeter-deep tissue because many interesting in vivo phenomena—such as the presence of immune system cells, tumor angiogenesis, and metastasis—may be located deep in tissue. Previously, we developed a new imaging technique to achieve high spatial resolution in sub-centimeter deep tissue phantoms named continuous-wave ultrasound-switchable fluorescence (CW-USF). The principle is to use a focused ultrasound wave to externally and locally switch on and off the fluorophore emission from a small volume (close to ultrasound focal volume). By making improvements in three aspects of this technique: excellent near-infrared USF contrast agents, a sensitive frequency-domain USF imaging system, and an effective signal processing algorithm, for the first time this study has achieved high spatial resolution (~ 900 μm) in 3-centimeter-deep tissue phantoms with high signal-to-noise ratio (SNR) and high sensitivity (3.4 picomoles of fluorophore in a volume of 68 nanoliters can be detected). We have achieved these results in both tissue-mimic phantoms and porcine muscle tissues. We have also demonstrated multi-color USF to image and distinguish two fluorophores with different wavelengths, which might be very useful for simultaneously imaging of multiple targets and observing their interactions in the future. This work has opened the door for future studies of high-resolution centimeter-deep tissue fluorescence imaging. PMID:27829050
Cheng, Bingbing; Bandi, Venugopal; Wei, Ming-Yuan; Pei, Yanbo; D'Souza, Francis; Nguyen, Kytai T; Hong, Yi; Yuan, Baohong
2016-01-01
For many years, investigators have sought after high-resolution fluorescence imaging in centimeter-deep tissue because many interesting in vivo phenomena-such as the presence of immune system cells, tumor angiogenesis, and metastasis-may be located deep in tissue. Previously, we developed a new imaging technique to achieve high spatial resolution in sub-centimeter deep tissue phantoms named continuous-wave ultrasound-switchable fluorescence (CW-USF). The principle is to use a focused ultrasound wave to externally and locally switch on and off the fluorophore emission from a small volume (close to ultrasound focal volume). By making improvements in three aspects of this technique: excellent near-infrared USF contrast agents, a sensitive frequency-domain USF imaging system, and an effective signal processing algorithm, for the first time this study has achieved high spatial resolution (~ 900 μm) in 3-centimeter-deep tissue phantoms with high signal-to-noise ratio (SNR) and high sensitivity (3.4 picomoles of fluorophore in a volume of 68 nanoliters can be detected). We have achieved these results in both tissue-mimic phantoms and porcine muscle tissues. We have also demonstrated multi-color USF to image and distinguish two fluorophores with different wavelengths, which might be very useful for simultaneously imaging of multiple targets and observing their interactions in the future. This work has opened the door for future studies of high-resolution centimeter-deep tissue fluorescence imaging.
Analysis of Ultra High Resolution Sea Surface Temperature Level 4 Datasets
NASA Technical Reports Server (NTRS)
Wagner, Grant
2011-01-01
Sea surface temperature (SST) studies are often focused on improving accuracy, or understanding and quantifying uncertainties in the measurement, as SST is a leading indicator of climate change and represents the longest time series of any ocean variable observed from space. Over the past several decades SST has been studied with the use of satellite data. This allows a larger area to be studied with much more frequent measurements being taken than direct measurements collected aboard ship or buoys. The Group for High Resolution Sea Surface Temperature (GHRSST) is an international project that distributes satellite derived sea surface temperatures (SST) data from multiple platforms and sensors. The goal of the project is to distribute these SSTs for operational uses such as ocean model assimilation and decision support applications, as well as support fundamental SST research and climate studies. Examples of near real time applications include hurricane and fisheries studies and numerical weather forecasting. The JPL group has produced a new 1 km daily global Level 4 SST product, the Multiscale Ultrahigh Resolution (MUR), that blends SST data from 3 distinct NASA radiometers: the Moderate Resolution Imaging Spectroradiometer (MODIS), the Advanced Very High Resolution Radiometer (AVHRR), and the Advanced Microwave Scanning Radiometer ? Earth Observing System(AMSRE). This new product requires further validation and accuracy assessment, especially in coastal regions.We examined the accuracy of the new MUR SST product by comparing the high resolution version and a lower resolution version that has been smoothed to 19 km (but still gridded to 1 km). Both versions were compared to the same data set of in situ buoy temperature measurements with a focus on study regions of the oceans surrounding North and Central America as well as two smaller regions around the Gulf Stream and California coast. Ocean fronts exhibit high temperature gradients (Roden, 1976), and thus satellite data of SST can be used in the detection of these fronts. In this case, accuracy is less of a concern because the primary focus is on the spatial derivative of SST. We calculated the gradients for both versions of the MUR data set and did statistical comparisons focusing on the same regions.
Resolution dependence of precipitation statistical fidelity in hindcast simulations
O'Brien, Travis A.; Collins, William D.; Kashinath, Karthik; ...
2016-06-19
This article is a U.S. Government work and is in the public domain in the USA. Numerous studies have shown that atmospheric models with high horizontal resolution better represent the physics and statistics of precipitation in climate models. While it is abundantly clear from these studies that high-resolution increases the rate of extreme precipitation, it is not clear whether these added extreme events are “realistic”; whether they occur in simulations in response to the same forcings that drive similar events in reality. In order to understand whether increasing horizontal resolution results in improved model fidelity, a hindcast-based, multiresolution experimental designmore » has been conceived and implemented: the InitiaLIzed-ensemble, Analyze, and Develop (ILIAD) framework. The ILIAD framework allows direct comparison between observed and simulated weather events across multiple resolutions and assessment of the degree to which increased resolution improves the fidelity of extremes. Analysis of 5 years of daily 5 day hindcasts with the Community Earth System Model at horizontal resolutions of 220, 110, and 28 km shows that: (1) these hindcasts reproduce the resolution-dependent increase of extreme precipitation that has been identified in longer-duration simulations, (2) the correspondence between simulated and observed extreme precipitation improves as resolution increases; and (3) this increase in extremes and precipitation fidelity comes entirely from resolved-scale precipitation. Evidence is presented that this resolution-dependent increase in precipitation intensity can be explained by the theory of Rauscher et al. (), which states that precipitation intensifies at high resolution due to an interaction between the emergent scaling (spectral) properties of the wind field and the constraint of fluid continuity.« less
Resolution dependence of precipitation statistical fidelity in hindcast simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Brien, Travis A.; Collins, William D.; Kashinath, Karthik
This article is a U.S. Government work and is in the public domain in the USA. Numerous studies have shown that atmospheric models with high horizontal resolution better represent the physics and statistics of precipitation in climate models. While it is abundantly clear from these studies that high-resolution increases the rate of extreme precipitation, it is not clear whether these added extreme events are “realistic”; whether they occur in simulations in response to the same forcings that drive similar events in reality. In order to understand whether increasing horizontal resolution results in improved model fidelity, a hindcast-based, multiresolution experimental designmore » has been conceived and implemented: the InitiaLIzed-ensemble, Analyze, and Develop (ILIAD) framework. The ILIAD framework allows direct comparison between observed and simulated weather events across multiple resolutions and assessment of the degree to which increased resolution improves the fidelity of extremes. Analysis of 5 years of daily 5 day hindcasts with the Community Earth System Model at horizontal resolutions of 220, 110, and 28 km shows that: (1) these hindcasts reproduce the resolution-dependent increase of extreme precipitation that has been identified in longer-duration simulations, (2) the correspondence between simulated and observed extreme precipitation improves as resolution increases; and (3) this increase in extremes and precipitation fidelity comes entirely from resolved-scale precipitation. Evidence is presented that this resolution-dependent increase in precipitation intensity can be explained by the theory of Rauscher et al. (), which states that precipitation intensifies at high resolution due to an interaction between the emergent scaling (spectral) properties of the wind field and the constraint of fluid continuity.« less
High-resolution mini gamma camera for diagnosis and radio-guided surgery in diabetic foot infection
NASA Astrophysics Data System (ADS)
Scopinaro, F.; Capriotti, G.; Di Santo, G.; Capotondi, C.; Micarelli, A.; Massari, R.; Trotta, C.; Soluri, A.
2006-12-01
The diagnosis of diabetic foot osteomyelitis is often difficult. 99mTc-WBC (White Blood Cell) scintigraphy plays a key role in the diagnosis of bone infections. Spatial resolution of Anger camera is not always able to differentiate soft tissue from bone infection. Aim of present study is to verify if HRD (High-Resolution Detector) is able to improve diagnosis and to help surgery. Patients were studied by HRD showing 25.7×25.7 mm 2 FOV, 2 mm spatial resolution and 18% energy resolution. The patients were underwent to surgery and, when necessary, bone biopsy, both guided by HRD. Four patients were positive at Anger camera without specific signs of osteomyelitis. HRS (High-Resolution Scintigraphy) showed hot spots in the same patients. In two of them the hot spot was bar-shaped and it was localized in correspondence of the small phalanx. The presence of bone infection was confirmed at surgery, which was successfully guided by HRS. 99mTc-WBC HRS was able to diagnose pedal infection and to guide the surgery of diabetic foot, opening a new way in the treatment of infected diabetic foot.
Platinum replica electron microscopy: Imaging the cytoskeleton globally and locally.
Svitkina, Tatyana M
2017-05-01
Structural studies reveal how smaller components of a system work together as a whole. However, combining high resolution of details with full coverage of the whole is challenging. In cell biology, light microscopy can image many cells in their entirety, but at a lower resolution, whereas electron microscopy affords very high resolution, but usually at the expense of the sample size and coverage. Structural analyses of the cytoskeleton are especially demanding, because cytoskeletal networks are unresolvable by light microscopy due to their density and intricacy, whereas their proper preservation is a challenge for electron microscopy. Platinum replica electron microscopy can uniquely bridge the gap between the "comfort zones" of light and electron microscopy by allowing high resolution imaging of the cytoskeleton throughout the entire cell and in many cells in the population. This review describes the principles and applications of platinum replica electron microscopy for studies of the cytoskeleton. Copyright © 2017 Elsevier Ltd. All rights reserved.
Platinum Replica Electron Microscopy: Imaging the Cytoskeleton Globally and Locally
SVITKINA, Tatyana M.
2017-01-01
Structural studies reveal how smaller components of a system work together as a whole. However, combining high resolution of details with full coverage of the whole is challenging. In cell biology, light microscopy can image many cells in their entirety, but at a lower resolution, whereas electron microscopy affords very high resolution, but usually at the expense of the sample size and coverage. Structural analyses of the cytoskeleton are especially demanding, because cytoskeletal networks are unresolvable by light microscopy due to their density and intricacy, whereas their proper preservation is a challenge for electron microscopy. Platinum replica electron microscopy can uniquely bridge the gap between the “comfort zones” of light and electron microscopy by allowing high resolution imaging of the cytoskeleton throughout the entire cell and in many cells in the population. This review describes the principles and applications of platinum replica electron microscopy for studies of the cytoskeleton. PMID:28323208
High-Resolution Data for a Low-Resolution World
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brady, Brendan Williams
2016-05-10
In the past 15 years, the upper section of Cañon de Valle has been severely altered by wildfires and subsequent runoff events. Loss of root structures on high-angle slopes results in debris flow and sediment accumulation in the narrow canyon bottom. The original intent of the study described here was to better understand the changes occurring in watershed soil elevations over the course of several post-fire years. An elevation dataset from 5 years post-Cerro Grande fire was compared to high-resolution LiDAR data from 14 years post-Cerro Grande fire (also 3 years post-Las Conchas fire). The following analysis was motivated bymore » a problematic comparison of these datasets of unlike resolution, and therefore focuses on what the data reveals of itself. The objective of this study is to highlight the effects vegetation can have on remote sensing data that intends to read ground surface elevation.« less
NASA Astrophysics Data System (ADS)
Yi, Shengzhen; Zhang, Zhe; Huang, Qiushi; Zhang, Zhong; Wang, Zhanshan; Wei, Lai; Liu, Dongxiao; Cao, Leifeng; Gu, Yuqiu
2018-03-01
Multi-channel Kirkpatrick-Baez (KB) microscopes, which have better resolution and collection efficiency than pinhole cameras, have been widely used in laser inertial confinement fusion to diagnose time evolution of the target implosion. In this study, a tandem multi-channel KB microscope was developed to have sixteen imaging channels with the precise control of spatial resolution and image intervals. This precise control was created using a coarse assembly of mirror pairs with high-accuracy optical prisms, followed by precise adjustment in real-time x-ray imaging experiments. The multilayers coated on the KB mirrors were designed to have substantially the same reflectivity to obtain a uniform brightness of different images for laser-plasma temperature analysis. The study provides a practicable method to achieve the optimum performance of the microscope for future high-resolution applications in inertial confinement fusion experiments.
CT volumetry of the skeletal tissues
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brindle, James M.; Alexandre Trindade, A.; Pichardo, Jose C.
2006-10-15
Computed tomography (CT) is an important and widely used modality in the diagnosis and treatment of various cancers. In the field of molecular radiotherapy, the use of spongiosa volume (combined tissues of the bone marrow and bone trabeculae) has been suggested as a means to improve the patient-specificity of bone marrow dose estimates. The noninvasive estimation of an organ volume comes with some degree of error or variation from the true organ volume. The present study explores the ability to obtain estimates of spongiosa volume or its surrogate via manual image segmentation. The variation among different segmentation raters was exploredmore » and found not to be statistically significant (p value >0.05). Accuracy was assessed by having several raters manually segment a polyvinyl chloride (PVC) pipe with known volumes. Segmentation of the outer region of the PVC pipe resulted in mean percent errors as great as 15% while segmentation of the pipe's inner region resulted in mean percent errors within {approx}5%. Differences between volumes estimated with the high-resolution CT data set (typical of ex vivo skeletal scans) and the low-resolution CT data set (typical of in vivo skeletal scans) were also explored using both patient CT images and a PVC pipe phantom. While a statistically significant difference (p value <0.002) between the high-resolution and low-resolution data sets was observed with excised femoral heads obtained following total hip arthroplasty, the mean difference between high-resolution and low-resolution data sets was found to be only 1.24 and 2.18 cm{sup 3} for spongiosa and cortical bone, respectively. With respect to differences observed with the PVC pipe, the variation between the high-resolution and low-resolution mean percent errors was a high as {approx}20% for the outer region volume estimates and only as high as {approx}6% for the inner region volume estimates. The findings from this study suggest that manual segmentation is a reasonably accurate and reliable means for the in vivo estimation of spongiosa volume. This work also provides a foundation for future studies where spongiosa volumes are estimated by various raters in more comprehensive CT data sets.« less
Near-real-time mosaics from high-resolution side-scan sonar
Danforth, William W.; O'Brien, Thomas F.; Schwab, W.C.
1991-01-01
High-resolution side-scan sonar has proven to be a very effective tool for stuyding and understanding the surficial geology of the seafloor. Since the mid-1970s, the US Geological Survey has used high-resolution side-scan sonar systems for mapping various areas of the continental shelf. However, two problems typically encountered included the short range and the high sampling rate of high-resolution side-scan sonar systems and the acquisition and real-time processing of the enormous volume of sonar data generated by high-resolution suystems. These problems were addressed and overcome in August 1989 when the USGS conducted a side-scan sonar and bottom sampling survey of a 1000-sq-km section of the continental shelf in the Gulf of Farallones located offshore of San Francisco. The primary goal of this survey was to map an area of critical interest for studying continental shelf sediment dynamics. This survey provided an opportunity to test an image processing scheme that enabled production of a side-scan sonar hard-copy mosaic during the cruise in near real-time.
NASA Astrophysics Data System (ADS)
Mbabazi, D.; Mohanty, B.; Gaur, N.
2017-12-01
Evapotranspiration (ET) is an important component of the water and energy balance and accounts for 60 -70% of precipitation losses. However, accurate estimates of ET are difficult to quantify at varying spatial and temporal scales. Eddy covariance methods estimate ET at high temporal resolutions but without capturing the spatial variation in ET within its footprint. On the other hand, remote sensing methods using Landsat imagery provide ET with high spatial resolution but low temporal resolution (16 days). In this study, we used both eddy covariance and remote sensing methods to generate high space-time resolution ET. Daily, monthly and seasonal ET estimates were obtained using the eddy covariance (EC) method, Penman-Monteith (PM) and Mapping Evapotranspiration with Internalized Calibration (METRIC) models to determine cotton and native prairie ET dynamics in the Brazos river basin characterized by varying hydro-climatic and geological gradients. Daily estimates of spatially distributed ET (30 m resolution) were generated using spatial autocorrelation and temporal interpolations between the EC flux variable footprints and METRIC ET for the 2016 and 2017 growing seasons. A comparison of the 2016 and 2017 preliminary daily ET estimates showed similar ET dynamics/trends among the EC, PM and METRIC methods, and 5-20% differences in seasonal ET estimates. This study will improve the spatial estimates of EC ET and temporal resolution of satellite derived ET thus providing better ET data for water use management.
The Advanced Pair Telescope (APT) Mission Concept
NASA Technical Reports Server (NTRS)
Hunter, Stanley; Buckley, James H.
2008-01-01
We present a mission concept for the Advanced Pair Telescope (APT), a high-energy gamma-ray instrument with an order of magnitude improvement in sensitivity, 6 sr field of view, and angular resolution a factor of 3-10 times that of GLAST. With its very wide instantaneous field-of-view and large effective area, this instrument would be capable of detecting GRBs at very large redshifts, would enable a very high resolution study of SNRs and PWN, and could provide hour-scale temporal resolution of transients from many AGN and galactic sources. The APT instrument will consist of a Xe time-projection-chamber tracker that bridges the energy regime between Compton scattering and pair production and will provide an unprecedented improvement in angular resolution; a thick scintillating-fiber trackerlcalorimeter that will provide sensitivity and energy resolution to higher energies and will possess a factor of 10 improvement in geometric factor over GLAST; and an anticoincidence detector using scintillator-tiles to reject charged particles. After the anticipated 10-years of GLAST operation , the APT instrument would provide continued coverage of the critial high-energy gamma-ray band (between 30 MeV to 100 GeV), providing an essential component of broad-band multiwavelength studies of the high-energy universe.
Deformable image registration for multimodal lung-cancer staging
NASA Astrophysics Data System (ADS)
Cheirsilp, Ronnarit; Zang, Xiaonan; Bascom, Rebecca; Allen, Thomas W.; Mahraj, Rickhesvar P. M.; Higgins, William E.
2016-03-01
Positron emission tomography (PET) and X-ray computed tomography (CT) serve as major diagnostic imaging modalities in the lung-cancer staging process. Modern scanners provide co-registered whole-body PET/CT studies, collected while the patient breathes freely, and high-resolution chest CT scans, collected under a brief patient breath hold. Unfortunately, no method exists for registering a PET/CT study into the space of a high-resolution chest CT scan. If this could be done, vital diagnostic information offered by the PET/CT study could be brought seamlessly into the procedure plan used during live cancer-staging bronchoscopy. We propose a method for the deformable registration of whole-body PET/CT data into the space of a high-resolution chest CT study. We then demonstrate its potential for procedure planning and subsequent use in multimodal image-guided bronchoscopy.
Weber, Stefan A L; Kilpatrick, Jason I; Brosnan, Timothy M; Jarvis, Suzanne P; Rodriguez, Brian J
2014-05-02
Atomic force microscopy (AFM) is widely used in liquid environments, where true atomic resolution at the solid-liquid interface can now be routinely achieved. It is generally expected that AFM operation in more viscous environments results in an increased noise contribution from the thermal motion of the cantilever, thereby reducing the signal-to-noise ratio (SNR). Thus, viscous fluids such as ionic and organic liquids have been generally avoided for high-resolution AFM studies despite their relevance to, e.g. energy applications. Here, we investigate the thermal noise limitations of dynamic AFM operation in both low and high viscosity environments theoretically, deriving expressions for the amplitude, phase and frequency noise resulting from the thermal motion of the cantilever, thereby defining the performance limits of amplitude modulation, phase modulation and frequency modulation AFM. We show that the assumption of a reduced SNR in viscous environments is not inherent to the technique and demonstrate that SNR values comparable to ultra-high vacuum systems can be obtained in high viscosity environments under certain conditions. Finally, we have obtained true atomic resolution images of highly ordered pyrolytic graphite and mica surfaces, thus revealing the potential of high-resolution imaging in high viscosity environments.
NASA Astrophysics Data System (ADS)
Weber, Stefan A. L.; Kilpatrick, Jason I.; Brosnan, Timothy M.; Jarvis, Suzanne P.; Rodriguez, Brian J.
2014-05-01
Atomic force microscopy (AFM) is widely used in liquid environments, where true atomic resolution at the solid-liquid interface can now be routinely achieved. It is generally expected that AFM operation in more viscous environments results in an increased noise contribution from the thermal motion of the cantilever, thereby reducing the signal-to-noise ratio (SNR). Thus, viscous fluids such as ionic and organic liquids have been generally avoided for high-resolution AFM studies despite their relevance to, e.g. energy applications. Here, we investigate the thermal noise limitations of dynamic AFM operation in both low and high viscosity environments theoretically, deriving expressions for the amplitude, phase and frequency noise resulting from the thermal motion of the cantilever, thereby defining the performance limits of amplitude modulation, phase modulation and frequency modulation AFM. We show that the assumption of a reduced SNR in viscous environments is not inherent to the technique and demonstrate that SNR values comparable to ultra-high vacuum systems can be obtained in high viscosity environments under certain conditions. Finally, we have obtained true atomic resolution images of highly ordered pyrolytic graphite and mica surfaces, thus revealing the potential of high-resolution imaging in high viscosity environments.
Texture analysis of high-resolution FLAIR images for TLE
NASA Astrophysics Data System (ADS)
Jafari-Khouzani, Kourosh; Soltanian-Zadeh, Hamid; Elisevich, Kost
2005-04-01
This paper presents a study of the texture information of high-resolution FLAIR images of the brain with the aim of determining the abnormality and consequently the candidacy of the hippocampus for temporal lobe epilepsy (TLE) surgery. Intensity and volume features of the hippocampus from FLAIR images of the brain have been previously shown to be useful in detecting the abnormal hippocampus in TLE. However, the small size of the hippocampus may limit the texture information. High-resolution FLAIR images show more details of the abnormal intensity variations of the hippocampi and therefore are more suitable for texture analysis. We study and compare the low and high-resolution FLAIR images of six epileptic patients. The hippocampi are segmented manually by an expert from T1-weighted MR images. Then the segmented regions are mapped on the corresponding FLAIR images for texture analysis. The 2-D wavelet transforms of the hippocampi are employed for feature extraction. We compare the ability of the texture features from regular and high-resolution FLAIR images to distinguish normal and abnormal hippocampi. Intracranial EEG results as well as surgery outcome are used as gold standard. The results show that the intensity variations of the hippocampus are related to the abnormalities in the TLE.
Super resolution reconstruction of μ-CT image of rock sample using neighbour embedding algorithm
NASA Astrophysics Data System (ADS)
Wang, Yuzhu; Rahman, Sheik S.; Arns, Christoph H.
2018-03-01
X-ray computed tomography (μ-CT) is considered to be the most effective way to obtain the inner structure of rock sample without destructions. However, its limited resolution hampers its ability to probe sub-micro structures which is critical for flow transportation of rock sample. In this study, we propose an innovative methodology to improve the resolution of μ-CT image using neighbour embedding algorithm where low frequency information is provided by μ-CT image itself while high frequency information is supplemented by high resolution scanning electron microscopy (SEM) image. In order to obtain prior for reconstruction, a large number of image patch pairs contain high- and low- image patches are extracted from the Gaussian image pyramid generated by SEM image. These image patch pairs contain abundant information about tomographic evolution of local porous structures under different resolution spaces. Relying on the assumption of self-similarity of porous structure, this prior information can be used to supervise the reconstruction of high resolution μ-CT image effectively. The experimental results show that the proposed method is able to achieve the state-of-the-art performance.
Abatzoglou, John T; Dobrowski, Solomon Z; Parks, Sean A; Hegewisch, Katherine C
2018-01-09
We present TerraClimate, a dataset of high-spatial resolution (1/24°, ~4-km) monthly climate and climatic water balance for global terrestrial surfaces from 1958-2015. TerraClimate uses climatically aided interpolation, combining high-spatial resolution climatological normals from the WorldClim dataset, with coarser resolution time varying (i.e., monthly) data from other sources to produce a monthly dataset of precipitation, maximum and minimum temperature, wind speed, vapor pressure, and solar radiation. TerraClimate additionally produces monthly surface water balance datasets using a water balance model that incorporates reference evapotranspiration, precipitation, temperature, and interpolated plant extractable soil water capacity. These data provide important inputs for ecological and hydrological studies at global scales that require high spatial resolution and time varying climate and climatic water balance data. We validated spatiotemporal aspects of TerraClimate using annual temperature, precipitation, and calculated reference evapotranspiration from station data, as well as annual runoff from streamflow gauges. TerraClimate datasets showed noted improvement in overall mean absolute error and increased spatial realism relative to coarser resolution gridded datasets.
NASA Astrophysics Data System (ADS)
Abatzoglou, John T.; Dobrowski, Solomon Z.; Parks, Sean A.; Hegewisch, Katherine C.
2018-01-01
We present TerraClimate, a dataset of high-spatial resolution (1/24°, ~4-km) monthly climate and climatic water balance for global terrestrial surfaces from 1958-2015. TerraClimate uses climatically aided interpolation, combining high-spatial resolution climatological normals from the WorldClim dataset, with coarser resolution time varying (i.e., monthly) data from other sources to produce a monthly dataset of precipitation, maximum and minimum temperature, wind speed, vapor pressure, and solar radiation. TerraClimate additionally produces monthly surface water balance datasets using a water balance model that incorporates reference evapotranspiration, precipitation, temperature, and interpolated plant extractable soil water capacity. These data provide important inputs for ecological and hydrological studies at global scales that require high spatial resolution and time varying climate and climatic water balance data. We validated spatiotemporal aspects of TerraClimate using annual temperature, precipitation, and calculated reference evapotranspiration from station data, as well as annual runoff from streamflow gauges. TerraClimate datasets showed noted improvement in overall mean absolute error and increased spatial realism relative to coarser resolution gridded datasets.
Agricultural Land Use mapping by multi-sensor approach for hydrological water quality monitoring
NASA Astrophysics Data System (ADS)
Brodsky, Lukas; Kodesova, Radka; Kodes, Vit
2010-05-01
The main objective of this study is to demonstrate potential of operational use of the high and medium resolution remote sensing data for hydrological water quality monitoring by mapping agriculture intensity and crop structures. In particular use of remote sensing mapping for optimization of pesticide monitoring. The agricultural mapping task is tackled by means of medium spatial and high temporal resolution ESA Envisat MERIS FR images together with single high spatial resolution IRS AWiFS image covering the whole area of interest (the Czech Republic). High resolution data (e.g. SPOT, ALOS, Landsat) are often used for agricultural land use classification, but usually only at regional or local level due to data availability and financial constraints. AWiFS data (nominal spatial resolution 56 m) due to the wide satellite swath seems to be more suitable for use at national level. Nevertheless, one of the critical issues for such a classification is to have sufficient image acquisitions over the whole vegetation period to describe crop development in appropriate way. ESA MERIS middle-resolution data were used in several studies for crop classification. The high temporal and also spectral resolution of MERIS data has indisputable advantage for crop classification. However, spatial resolution of 300 m results in mixture signal in a single pixel. AWiFS-MERIS data synergy brings new perspectives in agricultural Land Use mapping. Also, the developed methodology procedure is fully compatible with future use of ESA (GMES) Sentinel satellite images. The applied methodology of hybrid multi-sensor approach consists of these main stages: a/ parcel segmentation and spectral pre-classification of high resolution image (AWiFS); b/ ingestion of middle resolution (MERIS) vegetation spectro-temporal features; c/ vegetation signatures unmixing; and d/ semantic object-oriented classification of vegetation classes into final classification scheme. These crop groups were selected to be classified: winter crops, spring crops, oilseed rape, legumes, summer and other crops. This study highlights operational potentials of high temporal full resolution MERIS images in agricultural land use monitoring. Practical application of this methodology is foreseen, among others, in the water quality monitoring. Effective pesticide monitoring relies also on spatial distribution of applied pesticides, which can be derived from crop - plant protection product relationship. Knowledge of areas with predominant occurrence of specific crop based on remote sensing data described above can be used for a forecast of probable plant protection product application, thus cost-effective pesticide monitoring. The remote sensing data used on a continuous basis can be used in other long-term water management issues and provide valuable data for decision makers. Acknowledgement: Authors acknowledge the financial support of the Ministry of Education, Youth and Sports of the Czech Republic (grants No. 2B06095 and No. MSM 6046070901). The study was also supported by ESA CAT-1 (ref. 4358) and SOSI projects (Spatial Observation Services and Infrastructure; ref. GSTP-RTDA-EOPG-SW-08-0004).
Extension of least squares spectral resolution algorithm to high-resolution lipidomics data.
Zeng, Ying-Xu; Mjøs, Svein Are; David, Fabrice P A; Schmid, Adrien W
2016-03-31
Lipidomics, which focuses on the global study of molecular lipids in biological systems, has been driven tremendously by technical advances in mass spectrometry (MS) instrumentation, particularly high-resolution MS. This requires powerful computational tools that handle the high-throughput lipidomics data analysis. To address this issue, a novel computational tool has been developed for the analysis of high-resolution MS data, including the data pretreatment, visualization, automated identification, deconvolution and quantification of lipid species. The algorithm features the customized generation of a lipid compound library and mass spectral library, which covers the major lipid classes such as glycerolipids, glycerophospholipids and sphingolipids. Next, the algorithm performs least squares resolution of spectra and chromatograms based on the theoretical isotope distribution of molecular ions, which enables automated identification and quantification of molecular lipid species. Currently, this methodology supports analysis of both high and low resolution MS as well as liquid chromatography-MS (LC-MS) lipidomics data. The flexibility of the methodology allows it to be expanded to support more lipid classes and more data interpretation functions, making it a promising tool in lipidomic data analysis. Copyright © 2016 Elsevier B.V. All rights reserved.
Microcapillary imaging of lamina cribrosa in porcine eyes using photoacoustic microscopy
NASA Astrophysics Data System (ADS)
Moothanchery, Mohesh; Chuangsuwanich, Thanadet; Yan, Alvan Tsz Chung; Schmetterer, Leopold; Girard, Michael J. A.; Pramanik, Manojit
2018-02-01
In order to understand the pathophysiology of glaucoma, Lamina cribrosa (LC) perfusion needs to be the subject of thorough investigation. It is currently difficult to obtain high resolution images of the embedded microcapillary network of the LC using conventional imaging techniques. In this study, an optical resolution photoacoustic microscopy (OR-PAM) system was used for imaging lamina cribrosa of an ex vivo porcine eye. Extrinsic contrast agent was used to perfuse the eye via its ciliary arteries. The OR-PAM system have a lateral resolution of 4 μm and an axial resolution of 30 μm. The high resolution system could able resolve a perfused LC microcapillary network to show vascular structure within the LC thickness. OR-PAM could be a promising imaging modality to study the LC perfusion and hence could be used to elucidate the hemodynamic aspect of glaucoma.
Collision cross section measurements for biomolecules within a high-resolution FT-ICR cell: theory.
Guo, Dan; Xin, Yi; Li, Dayu; Xu, Wei
2015-04-14
In this study, an energetic hard-sphere ion-neutral collision model was proposed to bridge-link ion collision cross section (CCS) with the image current collected from a high-resolution Fourier transform ion cyclotron resonance (FT-ICR) cell. By investigating the nonlinear effects induced by high-order electric fields and image charge forces, the energetic hard-sphere collision model was validated through experiments. Suitable application regions for the energetic hard-sphere collision model, as well as for the conventional Langevin and hard-sphere collision models, were also discussed. The energetic hard-sphere collision model was applied in the extraction of ion CCSs from high-resolution FT-ICR mass spectra. Discussions in the present study also apply to FT-Orbitraps and FT-quadrupole ion traps.
Cao, Q; Brehler, M; Sisniega, A; Stayman, J W; Yorkston, J; Siewerdsen, J H; Zbijewski, W
2017-03-01
CMOS x-ray detectors offer small pixel sizes and low electronic noise that may support the development of novel high-resolution imaging applications of cone-beam CT (CBCT). We investigate the effects of CsI scintillator thickness on the performance of CMOS detectors in high resolution imaging tasks, in particular in quantitative imaging of bone microstructure in extremity CBCT. A scintillator thickness-dependent cascaded systems model of CMOS x-ray detectors was developed. Detectability in low-, high- and ultra-high resolution imaging tasks (Gaussian with FWHM of ~250 μ m, ~80 μ m and ~40 μ m, respectively) was studied as a function of scintillator thickness using the theoretical model. Experimental studies were performed on a CBCT test bench equipped with DALSA Xineos3030 CMOS detectors (99 μ m pixels) with CsI scintillator thicknesses of 400 μ m and 700 μ m, and a 0.3 FS compact rotating anode x-ray source. The evaluation involved a radiographic resolution gauge (0.6-5.0 lp/mm), a 127 μm tungsten wire for assessment of 3D resolution, a contrast phantom with tissue-mimicking inserts, and an excised fragment of human tibia for visual assessment of fine trabecular detail. Experimental studies show ~35% improvement in the frequency of 50% MTF modulation when using the 400 μ m scintillator compared to the standard nominal CsI thickness of 700 μ m. Even though the high-frequency DQE of the two detectors is comparable, theoretical studies show a 14% to 28% increase in detectability index ( d' 2 ) of high- and ultrahigh resolution tasks, respectively, for the detector with 400 μ m CsI compared to 700 μ m CsI. Experiments confirm the theoretical findings, showing improvements with the adoption of 400 μ m panel in the visibility of the radiographic pattern (2× improvement in peak-to-through distance at 4.6 lp/mm) and a 12.5% decrease in the FWHM of the tungsten wire. Reconstructions of the tibial plateau reveal enhanced visibility of trabecular structures with the CMOS detector with 400 μ m scinitllator. Applications on CMOS detectors in high resolution CBCT imaging of trabecular bone will benefit from using a thinner scintillator than the current standard in general radiography. The results support the translation of the CMOS sensor with 400 μ m CsI onto the clinical prototype of CMOS-based extremity CBCT.
Cao, Q.; Brehler, M.; Sisniega, A.; Stayman, J. W.; Yorkston, J.; Siewerdsen, J. H.; Zbijewski, W.
2017-01-01
Purpose CMOS x-ray detectors offer small pixel sizes and low electronic noise that may support the development of novel high-resolution imaging applications of cone-beam CT (CBCT). We investigate the effects of CsI scintillator thickness on the performance of CMOS detectors in high resolution imaging tasks, in particular in quantitative imaging of bone microstructure in extremity CBCT. Methods A scintillator thickness-dependent cascaded systems model of CMOS x-ray detectors was developed. Detectability in low-, high- and ultra-high resolution imaging tasks (Gaussian with FWHM of ~250 μm, ~80 μm and ~40 μm, respectively) was studied as a function of scintillator thickness using the theoretical model. Experimental studies were performed on a CBCT test bench equipped with DALSA Xineos3030 CMOS detectors (99 μm pixels) with CsI scintillator thicknesses of 400 μm and 700 μm, and a 0.3 FS compact rotating anode x-ray source. The evaluation involved a radiographic resolution gauge (0.6–5.0 lp/mm), a 127 μm tungsten wire for assessment of 3D resolution, a contrast phantom with tissue-mimicking inserts, and an excised fragment of human tibia for visual assessment of fine trabecular detail. Results Experimental studies show ~35% improvement in the frequency of 50% MTF modulation when using the 400 μm scintillator compared to the standard nominal CsI thickness of 700 μm. Even though the high-frequency DQE of the two detectors is comparable, theoretical studies show a 14% to 28% increase in detectability index (d′2) of high- and ultrahigh resolution tasks, respectively, for the detector with 400 μm CsI compared to 700 μm CsI. Experiments confirm the theoretical findings, showing improvements with the adoption of 400 μm panel in the visibility of the radiographic pattern (2× improvement in peak-to-through distance at 4.6 lp/mm) and a 12.5% decrease in the FWHM of the tungsten wire. Reconstructions of the tibial plateau reveal enhanced visibility of trabecular structures with the CMOS detector with 400 μm scinitllator. Conclusion Applications on CMOS detectors in high resolution CBCT imaging of trabecular bone will benefit from using a thinner scintillator than the current standard in general radiography. The results support the translation of the CMOS sensor with 400 μm CsI onto the clinical prototype of CMOS-based extremity CBCT. PMID:28989220
Pierri, Giuseppe; Kotoni, Dorina; Simone, Patrizia; Villani, Claudio; Pepe, Giacomo; Campiglia, Pietro; Dugo, Paola; Gasparrini, Francesco
2013-10-25
Casein proteins constitute approximately 80% of the proteins present in bovine milk and account for many of its nutritional and technological properties. The analysis of the casein fraction in commercially available pasteurized milk and the study of its time-dependent degradation is of considerable interest in the agro-food industry. Here we present new analytical methods for the study of caseins in fresh and expired bovine milk, based on the use of lab-made capillary organic monolithic columns. An integrated capillary high performance liquid chromatography and high-resolution mass spectrometry (Cap-LC-HRMS) approach was developed, exploiting the excellent resolution, permeability and biocompatibility of organic monoliths, which is easily adaptable to the analysis of intact proteins. The resolution obtained on the lab-made Protein-Cap-RP-Lauryl-γ-Monolithic column (270 mm × 0.250 mm length × internal diameter, L × I.D.) in the analysis of commercial standard caseins (αS-CN, β-CN and κ-CN) through Cap-HPLC-UV was compared to the one observe using two packed capillary C4 columns, the ACE C4 (3 μm, 150 mm × 0.300 mm, L × I.D.) and the Jupiter C4 column (5 μm, 150 mm × 0.300 mm, L × I.D.). Thanks to the higher resolution observed, the monolithic capillary column was chosen for the successive degradation studies of casein fractions extracted from bovine milk 1-4 weeks after expiry date. The comparison of the UV chromatographic profiles of skim, semi-skim and whole milk showed a major stability of whole milk towards time-dependent degradation of caseins, which was further sustained by high-resolution analysis on a 50-cm long monolithic column using a 120-min time gradient. Contemporarily, the exact monoisotopic and average molecular masses of intact αS-CN and β-CN protein standards were obtained through high resolution mass spectrometry and used for casein identification in Cap-LC-HRMS analysis. Finally, the proteolytic degradation of β-CN in skim milk and the contemporary formation of low-molecular-weight proteose-peptones (PP) with exact monoisotopic Mr between 9444.0989 Da and 14098.9861 Da was confirmed through the deconvolution of high resolution mass spectra and literature data. Copyright © 2013 Elsevier B.V. All rights reserved.
Aggarwal, Manisha; Zhang, Jiangyang; Pletnikova, Olga; Crain, Barbara; Troncoso, Juan; Mori, Susumu
2013-01-01
A three-dimensional stereotaxic atlas of the human brainstem based on high resolution ex vivo diffusion tensor imaging (DTI) is introduced. The atlas consists of high resolution (125–255 μm isotropic) three-dimensional DT images of the formalin-fixed brainstem acquired at 11.7T. The DTI data revealed microscopic neuroanatomical details, allowing three-dimensional visualization and reconstruction of fiber pathways including the decussation of the pyramidal tract fibers, and interdigitating fascicles of the corticospinal and transverse pontine fibers. Additionally, strong grey-white matter contrasts in the apparent diffusion coefficient (ADC) maps enabled precise delineation of grey matter nuclei in the brainstem, including the cranial nerve and the inferior olivary nuclei. Comparison with myelin-stained histology shows that at the level of resolution achieved in this study, the structural details resolved with DTI contrasts in the brainstem were comparable to anatomical delineation obtained with histological sectioning. Major neural structures delineated from DTI contrasts in the brainstem are segmented and three-dimensionally reconstructed. Further, the ex vivo DTI data are nonlinearly mapped to a widely-used in vivo human brain atlas, to construct a high-resolution atlas of the brainstem in the Montreal Neurological Institute (MNI) stereotaxic coordinate space. The results demonstrate the feasibility of developing a 3D DTI based atlas for detailed characterization of brainstem neuroanatomy with high resolution and contrasts, which will be a useful resource for research and clinical applications. PMID:23384518
Oneda, Beatrice; Baldinger, Rosa; Reissmann, Regina; Reshetnikova, Irina; Krejci, Pavel; Masood, Rahim; Ochsenbein-Kölble, Nicole; Bartholdi, Deborah; Steindl, Katharina; Morotti, Denise; Faranda, Marzia; Baumer, Alessandra; Asadollahi, Reza; Joset, Pascal; Niedrist, Dunja; Breymann, Christian; Hebisch, Gundula; Hüsler, Margaret; Mueller, René; Prentl, Elke; Wisser, Josef; Zimmermann, Roland; Rauch, Anita
2014-06-01
The objective of this study was to determine for the first time the reliability and the diagnostic power of high-resolution microarray testing in routine prenatal diagnostics. We applied high-resolution chromosomal microarray testing in 464 cytogenetically normal prenatal samples with any indication for invasive testing. High-resolution testing revealed a diagnostic yield of 6.9% and 1.6% in cases of fetal ultrasound anomalies and cases of advanced maternal age (AMA), respectively, which is similar to previous studies using low-resolution microarrays. In three (0.6%) additional cases with an indication of AMA, an aberration in susceptibility risk loci was detected. Moreover, one case (0.2%) showed an X-linked aberration in a female fetus, a finding relevant for future family planning. We found the rate of cases, in which the parents had to be tested for interpretation of unreported copy number variants (3.7%), and the rate of remaining variants of unknown significance (0.4%) acceptably low. Of note, these findings did not cause termination of pregnancy after expert genetic counseling. The 0.4% rate of confined placental mosaicism was similar to that observed by conventional karyotyping and notably involved a case of placental microdeletion. High-resolution prenatal microarray testing is a reliable technique that increases diagnostic yield by at least 17.3% when compared with conventional karyotyping, without an increase in the frequency of variants of uncertain significance. © 2014 John Wiley & Sons, Ltd.
The effect of spatial resolution on water scarcity estimates in Australia
NASA Astrophysics Data System (ADS)
Gevaert, Anouk; Veldkamp, Ted; van Dijk, Albert; Ward, Philip
2017-04-01
Water scarcity is an important global issue with severe socio-economic consequences, and its occurrence is likely to increase in many regions due to population growth, economic development and climate change. This has prompted a number of global and regional studies to identify areas that are vulnerable to water scarcity and to determine how this vulnerability will change in the future. A drawback of these studies, however, is that they typically have coarse spatial resolutions. Here, we studied the effect of increasing the spatial resolution of water scarcity estimates in Australia, and the Murray-Darling Basin in particular. This was achieved by calculating the water stress index (WSI), an indicator showing the ratio of water use to water availability, at 0.5 and 0.05 degree resolution for the period 1990-2010. Monthly water availability data were based on outputs of the Australian Water Resources Assessment Landscape model (AWRA-L), which was run at both spatial resolutions and at a daily time scale. Water use information was obtained from a monthly 0.5 degree global dataset that distinguishes between water consumption for irrigation, livestock, industrial and domestic uses. The data were downscaled to 0.05 degree by dividing the sectoral water uses over the areas covered by relevant land use types using a high resolution ( 0.5km) land use dataset. The monthly WSIs at high and low resolution were then used to evaluate differences in the patterns of water scarcity frequency and intensity. In this way, we assess to what extent increasing the spatial resolution can improve the identification of vulnerable areas and thereby assist in the development of strategies to lower this vulnerability. The results of this study provide insight into the scalability of water scarcity estimates and the added value of high resolution water scarcity information in water resources management.
High-resolution mass spectrometric analysis of biomass pyrolysis vapors
Christensen, Earl; Evans, Robert J.; Carpenter, Daniel
2017-01-19
Vapors generated from the pyrolysis of lignocellulosic biomass are made up of a complex mixture of oxygenated compounds. Direct analysis of these vapors provides insight into the mechanisms of depolymerization of cellulose, hemicellulose, and lignin as well as insight into reactions that may occur during condensation of pyrolysis vapors into bio-oil. Studies utilizing pyrolysis molecular beam mass spectrometry have provided valuable information regarding the chemical composition of pyrolysis vapors. Mass spectrometers generally employed with these instruments have low mass resolution of approximately a mass unit. The presence of chemical species with identical unit mass but differing elemental formulas cannot bemore » resolved with these instruments and are therefore detected as a single ion. In this study we analyzed the pyrolysis vapors of several biomass sources using a high-resolution double focusing mass spectrometer. High-resolution analysis of pyrolysis vapors allowed for speciation of several compounds that would be detected as a single ion with unit mass resolution. Lastly, these data not only provide greater detail into the composition of pyrolysis vapors but also highlight differences between vapors generated from multiple biomass feedstocks.« less
Bakó, Gábor; Tolnai, Márton; Takács, Ádám
2014-01-01
Remote sensing is a method that collects data of the Earth's surface without causing disturbances. Thus, it is worthwhile to use remote sensing methods to survey endangered ecosystems, as the studied species will behave naturally while undisturbed. The latest passive optical remote sensing solutions permit surveys from long distances. State-of-the-art highly sensitive sensor systems allow high spatial resolution image acquisition at high altitudes and at high flying speeds, even in low-visibility conditions. As the aerial imagery captured by an airplane covers the entire study area, all the animals present in that area can be recorded. A population assessment is conducted by visual interpretations of an ortho image map. The basic objective of this study is to determine whether small- and medium-sized bird species are recognizable in the ortho images by using high spatial resolution aerial cameras. The spatial resolution needed for identifying the bird species in the ortho image map was studied. The survey was adjusted to determine the number of birds in a colony at a given time. PMID:25046012
The effect of model resolution in predicting meteorological parameters used in fire danger rating.
Jeanne L. Hoadley; Ken Westrick; Sue A. Ferguson; Scott L. Goodrick; Larry Bradshaw; Paul Werth
2004-01-01
Previous studies of model performance at varying resolutions have focused on winter storms or isolated convective events. Little attention has been given to the static high pressure situations that may lead to severe wildfire outbreaks. This study focuses on such an event so as to evaluate the value of increased model resolution for prediction of fire danger. The...
The effect of model resolution in predicting meteorological parameters used in fire danger rating
Jeanne L. Hoadley; Ken Westrick; Sue a. Ferguson; Scott L. Goodrick; Larry Bradshaw; Paul Wreth
2004-01-01
Previous studies of model perfonnance at varying resolutions have focused on winter stonns or isolated convective events. Little attention has been given to the static high pressure situations that may lead to severe wildfire outbreaks. This study focuses on such an event so as to evaluate the value of increased model resolution for prediction of fire danger. The...
Small-Scale Tropopause Dynamics and TOMS Total Ozone
NASA Technical Reports Server (NTRS)
Stanford, John L.
2002-01-01
This project used Earth Probe Total Ozone Mapping Spectrometer (EP TOMS) along-track ozone retrievals, in conjunction with ancillary meteorological fields and modeling studies, for high resolution investigations of upper troposphere and lower stratosphere dynamics. Specifically, high resolution along-track (Level 2) EP TOMS data were used to investigate the beautiful fine-scale structure in constituent and meteorological fields prominent in the evolution of highly non-linear baroclinic storm systems. Comparison was made with high resolution meteorological models. The analyses provide internal consistency checks and validation of the EP TOMS data which are vital for monitoring ozone depletion in both polar and midlatitude regions.
Goodman, Thomas C.; Hardies, Stephen C.; Cortez, Carlos; Hillen, Wolfgang
1981-01-01
Computer programs are described that direct the collection, processing, and graphical display of numerical data obtained from high resolution thermal denaturation (1-3) and circular dichroism (4) studies. Besides these specific applications, the programs may also be useful, either directly or as programming models, in other types of spectrophotometric studies employing computers, programming languages, or instruments similar to those described here (see Materials and Methods). PMID:7335498
Asymmetric Eyewall Vertical Motion in a High-Resolution Simulation of Hurricane Bonnie (1998)
NASA Technical Reports Server (NTRS)
Braun, Scott A.; Montgomery, Michael T.; Pu, Zhao-Xia
2003-01-01
This study examines a high-resolution simulation of Hurricane Bonnie. Results from the simulation will be compared to the conceptual model of Heymsfield et al. (2001) to determine the extent to which this conceptual model explains vertical motions and precipitation growth in the eyewall.
TandemPET-A High Resolution, Small Animal, Virtual Pinhole-Based PET Scanner: Initial Design Study
NASA Astrophysics Data System (ADS)
Raylman, Raymond R.; Stolin, Alexander V.; Martone, Peter F.; Smith, Mark F.
2016-02-01
Mice are the perhaps the most common species of rodents used in biomedical research, but many of the current generation of small animal PET scanners are non-optimal for imaging these small rodents due to their relatively low resolution. Consequently, a number of researchers have investigated the development of high-resolution scanners to address this need. In this investigation, the design of a novel, high-resolution system based on the dual-detector, virtual-pinhole PET concept was explored via Monte Carlo simulations. Specifically, this system, called TandemPET, consists of a 5 cm × 5 cm high-resolution detector made-up of a 90 × 90 array of 0.5 mm × 0.5 × 10 mm (pitch = 0.55 mm) LYSO detector elements in coincidence with a lower resolution detector consisting of a 68 × 68 array of 1.5 mm × 1.5 mm × 10 mm LYSO detector elements (total size = 10.5 cm × 10.5 cm). Analyses indicated that TandemPET's optimal geometry is to position the high-resolution detector 3 cm from the center-of-rotation, with the lower resolution detector positioned 9 cm from center. Measurements using modified NEMA NU4-2008-based protocols revealed that the spatial resolution of the system is 0.5 mm FWHM, after correction of positron range effects. Peak sensitivity is 2.1%, which is comparable to current small animal PET scanners. Images from a digital mouse brain phantom demonstrated the potential of the system for identifying important neurological structures.
The eclipse of Epsilon Aurigae visible spectroscopy and ultraviolet activity
NASA Technical Reports Server (NTRS)
Ferluga, S.; Hack, M.
1985-01-01
The preliminary results of the study of several high resolution spectrograms (lambda 3500 - lambda 7000 A), obtained at the Haute Provence Observatory (OHP) in France, at different epochs before, during and after the eclipse are reported. Some of these spectrograms are compared with corresponding IUE high resolution observations, in order to study the effects of the intrinsic UV activity, towards the longer wavelengths.
Sakadzić, Sava; Roussakis, Emmanuel; Yaseen, Mohammad A; Mandeville, Emiri T; Srinivasan, Vivek J; Arai, Ken; Ruvinskaya, Svetlana; Devor, Anna; Lo, Eng H; Vinogradov, Sergei A; Boas, David A
2010-09-01
Measurements of oxygen partial pressure (pO(2)) with high temporal and spatial resolution in three dimensions is crucial for understanding oxygen delivery and consumption in normal and diseased brain. Among existing pO(2) measurement methods, phosphorescence quenching is optimally suited for the task. However, previous attempts to couple phosphorescence with two-photon laser scanning microscopy have faced substantial difficulties because of extremely low two-photon absorption cross-sections of conventional phosphorescent probes. Here we report to our knowledge the first practical in vivo two-photon high-resolution pO(2) measurements in small rodents' cortical microvasculature and tissue, made possible by combining an optimized imaging system with a two-photon-enhanced phosphorescent nanoprobe. The method features a measurement depth of up to 250 microm, sub-second temporal resolution and requires low probe concentration. The properties of the probe allowed for direct high-resolution measurement of cortical extravascular (tissue) pO(2), opening many possibilities for functional metabolic brain studies.
NASA Astrophysics Data System (ADS)
Clifford, Eoghan; Mulligan, Sean; Comer, Joanne; Hannon, Louise
2018-01-01
Real-time monitoring of water consumption activities can be an effective mechanism to achieve efficient water network management. This approach, largely enabled by the advent of smart metering technologies, is gradually being practiced in domestic and industrial contexts. In particular, identifying water consumption habits from flow-signatures, i.e., the specific end-usage patterns, is being investigated as a means for conservation in both the residential and nonresidential context. However, the quality of meter data is bivariate (dependent on number of meters and data temporal resolution) and as a result, planning a smart metering scheme is relatively difficult with no generic design approach available. In this study, a comprehensive medium-resolution to high-resolution smart metering program was implemented at two nonresidential trial sites to evaluate the effect of spatial and temporal data aggregation. It was found that medium-resolution water meter data were capable of exposing regular, continuous, peak use, and diurnal patterns which reflect group wide end-usage characteristics. The high-resolution meter data permitted flow-signature at a personal end-use level. Through this unique opportunity to observe water usage characteristics via flow-signature patterns, newly defined hydraulic-based design coefficients determined from Poisson rectangular pulse were developed to intuitively aid in the process of pattern discovery with implications for automated activity recognition applications. A smart meter classification and siting index was introduced which categorizes meter resolution in terms of their suitable application.
Static Time-of-Flight Secondary Ion Mass Spectrometry (SIMS) | Materials
-Flight Secondary Ion Mass Spectrometry (SIMS) Image of high mass resolution and mass accuracy provided by TOF SIMS We used the high mass resolution and mass accuracy of TOF SIMS to study surface cleanliness acidic wash resulted in contamination by Fe and other metals. Without high mass accuracy, the CaO signal
Temporal and spatial resolution required for imaging myocardial function
NASA Astrophysics Data System (ADS)
Eusemann, Christian D.; Robb, Richard A.
2004-05-01
4-D functional analysis of myocardial mechanics is an area of significant interest and research in cardiology and vascular/interventional radiology. Current multidimensional analysis is limited by insufficient temporal resolution of x-ray and magnetic resonance based techniques, but recent improvements in system design holds hope for faster and higher resolution scans to improve images of moving structures allowing more accurate functional studies, such as in the heart. This paper provides a basis for the requisite temporal and spatial resolution for useful imaging during individual segments of the cardiac cycle. Multiple sample rates during systole and diastole are compared to determine an adequate sample frequency to reduce regional myocardial tracking errors. Concurrently, out-of-plane resolution has to be sufficiently high to minimize partial volume effect. Temporal resolution and out-of-plane spatial resolution are related factors that must be considered together. The data used for this study is a DSR dynamic volume image dataset with high temporal and spatial resolution using implanted fiducial markers to track myocardial motion. The results of this study suggest a reduced exposure and scan time for x-ray and magnetic resonance imaging methods, since a lower sample rate during systole is sufficient, whereas the period of rapid filling during diastole requires higher sampling. This could potentially reduce the cost of these procedures and allow higher patient throughput.
Ergün, Recai; Evcik, Ender; Ergün, Dilek; Ergan, Begüm; Özkan, Esin; Gündüz, Özge
2017-05-05
The number of studies where non-malignant pulmonary diseases are evaluated after occupational arsenic exposure is very few. To investigate the effects of occupational arsenic exposure on the lung by high-resolution computed tomography and pulmonary function tests. Retrospective cross-sectional study. In this study, 256 workers with suspected respiratory occupational arsenic exposure were included, with an average age of 32.9±7.8 years and an average of 3.5±2.7 working years. Hair and urinary arsenic levels were analysed. High-resolution computed tomography and pulmonary function tests were done. In workers with occupational arsenic exposure, high-resolution computed tomography showed 18.8% pulmonary involvement. In pulmonary involvement, pulmonary nodule was the most frequently seen lesion (64.5%). The other findings of pulmonary involvement were 18.8% diffuse interstitial lung disease, 12.5% bronchiectasis, and 27.1% bullae-emphysema. The mean age of patients with pulmonary involvement was higher and as they smoked more. The pulmonary involvement was 5.2 times higher in patients with skin lesions because of arsenic. Diffusing capacity of lung for carbon monoxide was significantly lower in patients with pulmonary involvement. Besides lung cancer, chronic occupational inhalation of arsenic exposure may cause non-malignant pulmonary findings such as bronchiectasis, pulmonary nodules and diffuse interstitial lung disease. So, in order to detect pulmonary involvement in the early stages, workers who experience occupational arsenic exposure should be followed by diffusion test and high-resolution computed tomography.
Heidemann, Robin M; Anwander, Alfred; Feiweier, Thorsten; Knösche, Thomas R; Turner, Robert
2012-04-02
There is ongoing debate whether using a higher spatial resolution (sampling k-space) or a higher angular resolution (sampling q-space angles) is the better way to improve diffusion MRI (dMRI) based tractography results in living humans. In both cases, the limiting factor is the signal-to-noise ratio (SNR), due to the restricted acquisition time. One possible way to increase the spatial resolution without sacrificing either SNR or angular resolution is to move to a higher magnetic field strength. Nevertheless, dMRI has not been the preferred application for ultra-high field strength (7 T). This is because single-shot echo-planar imaging (EPI) has been the method of choice for human in vivo dMRI. EPI faces several challenges related to the use of a high resolution at high field strength, for example, distortions and image blurring. These problems can easily compromise the expected SNR gain with field strength. In the current study, we introduce an adapted EPI sequence in conjunction with a combination of ZOOmed imaging and Partially Parallel Acquisition (ZOOPPA). We demonstrate that the method can produce high quality diffusion-weighted images with high spatial and angular resolution at 7 T. We provide examples of in vivo human dMRI with isotropic resolutions of 1 mm and 800 μm. These data sets are particularly suitable for resolving complex and subtle fiber architectures, including fiber crossings in the white matter, anisotropy in the cortex and fibers entering the cortex. Copyright © 2011 Elsevier Inc. All rights reserved.
Impact of positional difference on the measurement of breast density using MRI.
Chen, Jeon-Hor; Chan, Siwa; Tang, Yi-Ting; Hon, Jia Shen; Tseng, Po-Chuan; Cheriyan, Angela T; Shah, Nikita Rakesh; Yeh, Dah-Cherng; Lee, San-Kan; Chen, Wen-Pin; McLaren, Christine E; Su, Min-Ying
2015-05-01
This study investigated the impact of arms/hands and body position on the measurement of breast density using MRI. Noncontrast-enhanced T1-weighted images were acquired from 32 healthy women. Each subject received four MR scans using different experimental settings, including a high resolution hands-up, a low resolution hands-up, a high resolution hands-down, and finally, another high resolution hands-up after repositioning. The breast segmentation was performed using a fully automatic chest template-based method. The breast volume (BV), fibroglandular tissue volume (FV), and percent density (PD) measured from the four MR scan settings were analyzed. A high correlation of BV, FV, and PD between any pair of the four MR scans was noted (r > 0.98 for all). Using the generalized estimating equation method, a statistically significant difference in mean BV among four settings was noted (left breast, score test p = 0.0056; right breast, score test p = 0.0016), adjusted for age and body mass index. Despite differences in BV, there were no statistically significant differences in the mean PDs among the four settings (p > 0.10 for left and right breasts). Using Bland-Altman plots, the smallest mean difference/bias and standard deviations for BV, FV, and PD were noted when comparing hands-up high vs low resolution when the breast positions were exactly the same. The authors' study showed that BV, FV, and PD measurements from MRI of different positions were highly correlated. BV may vary with positions but the measured PD did not differ significantly between positions. The study suggested that the percent density analyzed from MRI studies acquired using different arms/hands and body positions from multiple centers can be combined for analysis.
NASA Astrophysics Data System (ADS)
Scaduto, David A.; Lubinsky, Anthony R.; Rowlands, John A.; Kenmotsu, Hidenori; Nishimoto, Norihito; Nishino, Takeshi; Tanioka, Kenkichi; Zhao, Wei
2014-03-01
We have previously proposed SAPHIRE (scintillator avalanche photoconductor with high resolution emitter readout), a novel detector concept with potentially superior spatial resolution and low-dose performance compared with existing flat-panel imagers. The detector comprises a scintillator that is optically coupled to an amorphous selenium photoconductor operated with avalanche gain, known as high-gain avalanche rushing photoconductor (HARP). High resolution electron beam readout is achieved using a field emitter array (FEA). This combination of avalanche gain, allowing for very low-dose imaging, and electron emitter readout, providing high spatial resolution, offers potentially superior image quality compared with existing flat-panel imagers, with specific applications to fluoroscopy and breast imaging. Through the present collaboration, a prototype HARP sensor with integrated electrostatic focusing and nano- Spindt FEA readout technology has been fabricated. The integrated electron-optic focusing approach is more suitable for fabricating large-area detectors. We investigate the dependence of spatial resolution on sensor structure and operating conditions, and compare the performance of electrostatic focusing with previous technologies. Our results show a clear dependence of spatial resolution on electrostatic focusing potential, with performance approaching that of the previous design with external mesh-electrode. Further, temporal performance (lag) of the detector is evaluated and the results show that the integrated electrostatic focusing design exhibits comparable or better performance compared with the mesh-electrode design. This study represents the first technical evaluation and characterization of the SAPHIRE concept with integrated electrostatic focusing.
AIRS Subpixel Cloud Characterization Using MODIS Cloud Products.
NASA Astrophysics Data System (ADS)
Li, Jun; Menzel, W. Paul; Sun, Fengying; Schmit, Timothy J.; Gurka, James
2004-08-01
The Moderate Resolution Imaging Spectroradiometer (MODIS) and the Atmospheric Infrared Sounder (AIRS) measurements from the Earth Observing System's (EOS's) Aqua satellite enable improved global monitoring of the distribution of clouds. MODIS is able to provide, at high spatial resolution (1 5 km), a cloud mask, surface and cloud types, cloud phase, cloud-top pressure (CTP), effective cloud amount (ECA), cloud particle size (CPS), and cloud optical thickness (COT). AIRS is able to provide CTP, ECA, CPS, and COT at coarser spatial resolution (13.5 km at nadir) but with much better accuracy using its high-spectral-resolution measurements. The combined MODIS AIRS system offers the opportunity for improved cloud products over those possible from either system alone. The key steps for synergistic use of imager and sounder radiance measurements are 1) collocation in space and time and 2) imager cloud amount, type, and phase determination within the sounder pixel. The MODIS and AIRS measurements from the EOS Aqua satellite provide the opportunity to study the synergistic use of advanced imager and sounder measurements. As the first step, the MODIS classification procedure is applied to identify various surface and cloud types within an AIRS footprint. Cloud-layer information (lower, midlevel, or high clouds) and phase information (water, ice, or mixed-phase clouds) within the AIRS footprint are sorted and characterized using MODIS 1-km-spatial-resolution data. The combined MODIS and AIRS data for various scenes are analyzed to study the utility of the synergistic use of high-spatial-resolution imager products and high-spectral-resolution sounder radiance measurements. There is relevance to the optimal use of data from the Advanced Baseline Imager (ABI) and Hyperspectral Environmental Suite (HES) systems, which are to fly on the Geostationary Operational Environmental Satellite (GOES)-R.
Droplet Image Super Resolution Based on Sparse Representation and Kernel Regression
NASA Astrophysics Data System (ADS)
Zou, Zhenzhen; Luo, Xinghong; Yu, Qiang
2018-02-01
Microgravity and containerless conditions, which are produced via electrostatic levitation combined with a drop tube, are important when studying the intrinsic properties of new metastable materials. Generally, temperature and image sensors can be used to measure the changes of sample temperature, morphology and volume. Then, the specific heat, surface tension, viscosity changes and sample density can be obtained. Considering that the falling speed of the material sample droplet is approximately 31.3 m/s when it reaches the bottom of a 50-meter-high drop tube, a high-speed camera with a collection rate of up to 106 frames/s is required to image the falling droplet. However, at the high-speed mode, very few pixels, approximately 48-120, will be obtained in each exposure time, which results in low image quality. Super-resolution image reconstruction is an algorithm that provides finer details than the sampling grid of a given imaging device by increasing the number of pixels per unit area in the image. In this work, we demonstrate the application of single image-resolution reconstruction in the microgravity and electrostatic levitation for the first time. Here, using the image super-resolution method based on sparse representation, a low-resolution droplet image can be reconstructed. Employed Yang's related dictionary model, high- and low-resolution image patches were combined with dictionary training, and high- and low-resolution-related dictionaries were obtained. The online double-sparse dictionary training algorithm was used in the study of related dictionaries and overcome the shortcomings of the traditional training algorithm with small image patch. During the stage of image reconstruction, the algorithm of kernel regression is added, which effectively overcomes the shortcomings of the Yang image's edge blurs.
Droplet Image Super Resolution Based on Sparse Representation and Kernel Regression
NASA Astrophysics Data System (ADS)
Zou, Zhenzhen; Luo, Xinghong; Yu, Qiang
2018-05-01
Microgravity and containerless conditions, which are produced via electrostatic levitation combined with a drop tube, are important when studying the intrinsic properties of new metastable materials. Generally, temperature and image sensors can be used to measure the changes of sample temperature, morphology and volume. Then, the specific heat, surface tension, viscosity changes and sample density can be obtained. Considering that the falling speed of the material sample droplet is approximately 31.3 m/s when it reaches the bottom of a 50-meter-high drop tube, a high-speed camera with a collection rate of up to 106 frames/s is required to image the falling droplet. However, at the high-speed mode, very few pixels, approximately 48-120, will be obtained in each exposure time, which results in low image quality. Super-resolution image reconstruction is an algorithm that provides finer details than the sampling grid of a given imaging device by increasing the number of pixels per unit area in the image. In this work, we demonstrate the application of single image-resolution reconstruction in the microgravity and electrostatic levitation for the first time. Here, using the image super-resolution method based on sparse representation, a low-resolution droplet image can be reconstructed. Employed Yang's related dictionary model, high- and low-resolution image patches were combined with dictionary training, and high- and low-resolution-related dictionaries were obtained. The online double-sparse dictionary training algorithm was used in the study of related dictionaries and overcome the shortcomings of the traditional training algorithm with small image patch. During the stage of image reconstruction, the algorithm of kernel regression is added, which effectively overcomes the shortcomings of the Yang image's edge blurs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krishnan, Venkat; Cole, Wesley
Power sector capacity expansion models (CEMs) have a broad range of spatial resolutions. This paper uses the Regional Energy Deployment System (ReEDS) model, a long-term national scale electric sector CEM, to evaluate the value of high spatial resolution for CEMs. ReEDS models the United States with 134 load balancing areas (BAs) and captures the variability in existing generation parameters, future technology costs, performance, and resource availability using very high spatial resolution data, especially for wind and solar modeled at 356 resource regions. In this paper we perform planning studies at three different spatial resolutions--native resolution (134 BAs), state-level, and NERCmore » region level--and evaluate how results change under different levels of spatial aggregation in terms of renewable capacity deployment and location, associated transmission builds, and system costs. The results are used to ascertain the value of high geographically resolved models in terms of their impact on relative competitiveness among renewable energy resources.« less
Meng, Lingyan; Yang, Zhilin; Chen, Jianing; Sun, Mengtao
2015-01-01
Tip-enhanced Raman spectroscopy (TERS) with sub-nanometer spatial resolution has been recently demonstrated experimentally. However, the physical mechanism underlying is still under discussion. Here we theoretically investigate the electric field gradient of a coupled tip-substrate system. Our calculations suggest that the ultra-high spatial resolution of TERS can be partially attributed to the electric field gradient effect owning to its tighter spatial confinement and sensitivity to the infrared (IR)-active of molecules. Particularly, in the case of TERS of flat-lying H2TBPP molecules,we find the electric field gradient enhancement is the dominating factor for the high spatial resolution, which qualitatively coincides with previous experimental report. Our theoretical study offers a new paradigm for understanding the mechanisms of the ultra-high spatial resolution demonstrated in tip-enhanced spectroscopy which is of importance but neglected. PMID:25784161
IMART software for correction of motion artifacts in images collected in intravital microscopy
Dunn, Kenneth W; Lorenz, Kevin S; Salama, Paul; Delp, Edward J
2014-01-01
Intravital microscopy is a uniquely powerful tool, providing the ability to characterize cell and organ physiology in the natural context of the intact, living animal. With the recent development of high-resolution microscopy techniques such as confocal and multiphoton microscopy, intravital microscopy can now characterize structures at subcellular resolution and capture events at sub-second temporal resolution. However, realizing the potential for high resolution requires remarkable stability in the tissue. Whereas the rigid structure of the skull facilitates high-resolution imaging of the brain, organs of the viscera are free to move with respiration and heartbeat, requiring additional apparatus for immobilization. In our experience, these methods are variably effective, so that many studies are compromised by residual motion artifacts. Here we demonstrate the use of IMART, a software tool for removing motion artifacts from intravital microscopy images collected in time series or in three dimensions. PMID:26090271
Highest Resolution In Vivo Human Brain MRI Using Prospective Motion Correction
Stucht, Daniel; Danishad, K. Appu; Schulze, Peter; Godenschweger, Frank; Zaitsev, Maxim; Speck, Oliver
2015-01-01
High field MRI systems, such as 7 Tesla (T) scanners, can deliver higher signal to noise ratio (SNR) than lower field scanners and thus allow for the acquisition of data with higher spatial resolution, which is often demanded by users in the fields of clinical and neuroscientific imaging. However, high resolution scans may require long acquisition times, which in turn increase the discomfort for the subject and the risk of subject motion. Even with a cooperative and trained subject, involuntary motion due to heartbeat, swallowing, respiration and changes in muscle tone can cause image artifacts that reduce the effective resolution. In addition, scanning with higher resolution leads to increased sensitivity to even very small movements. Prospective motion correction (PMC) at 3T and 7T has proven to increase image quality in case of subject motion. Although the application of prospective motion correction is becoming more popular, previous articles focused on proof of concept studies and technical descriptions, whereas this paper briefly describes the technical aspects of the optical tracking system, marker fixation and cross calibration and focuses on the application of PMC to very high resolution imaging without intentional motion. In this study we acquired in vivo MR images at 7T using prospective motion correction during long acquisitions. As a result, we present images among the highest, if not the highest resolution of in vivo human brain MRI ever acquired. PMID:26226146
High resolution time interval meter
Martin, A.D.
1986-05-09
Method and apparatus are provided for measuring the time interval between two events to a higher resolution than reliability available from conventional circuits and component. An internal clock pulse is provided at a frequency compatible with conventional component operating frequencies for reliable operation. Lumped constant delay circuits are provided for generating outputs at delay intervals corresponding to the desired high resolution. An initiation START pulse is input to generate first high resolution data. A termination STOP pulse is input to generate second high resolution data. Internal counters count at the low frequency internal clock pulse rate between the START and STOP pulses. The first and second high resolution data are logically combined to directly provide high resolution data to one counter and correct the count in the low resolution counter to obtain a high resolution time interval measurement.
NASA Astrophysics Data System (ADS)
Bonino, L.; Bresciani, F.; Piasini, G.; Flebus, C.; Lecat, J.-H.; Roose, S.; Pisani, M.; Cabral, A.; Rebordão, J.; Proença, C.; Costal, J.; Lima, P. U.; Musso, F.
2017-11-01
This paper describes the study of an interferometric instrument for the high-resolution surveillance of the Earth from geostationary orbit (GEO) performed for the EUCLID CEPA 9 RTP 9.9 "High Resolution Optical Satellite Sensor" project of the WEAO Research Cell. It is an in-depth description of a part of the activities described in. The instrument design, both optical and mechanical, is described; tradeoffs have been done for different restoration methods, based on an image generated using calculated point spread functions (PSF's) for the complete FOV. Co-phasing concept for the optical interferometer has been defined together with the optical metrology needed. Design and simulation of the overall instrument control system was carried out.
Noninvasive imaging of bone microarchitecture
Patsch, Janina M.; Burghardt, Andrew J.; Kazakia, Galateia; Majumdar, Sharmila
2015-01-01
The noninvasive quantification of peripheral compartment-specific bone microarchitecture is feasible with high-resolution peripheral quantitative computed tomography (HR-pQCT) and high-resolution magnetic resonance imaging (HR-MRI). In addition to classic morphometric indices, both techniques provide a suitable basis for virtual biomechanical testing using finite element (FE) analyses. Methodical limitations, morphometric parameter definition, and motion artifacts have to be considered to achieve optimal data interpretation from imaging studies. With increasing availability of in vivo high-resolution bone imaging techniques, special emphasis should be put on quality control including multicenter, cross-site validations. Importantly, conclusions from interventional studies investigating the effects of antiosteoporotic drugs on bone microarchitecture should be drawn with care, ideally involving imaging scientists, translational researchers, and clinicians. PMID:22172043
DOE Office of Scientific and Technical Information (OSTI.GOV)
Żurek-Biesiada, Dominika; Szczurek, Aleksander T.; Prakash, Kirti
Higher order chromatin structure is not only required to compact and spatially arrange long chromatids within a nucleus, but have also important functional roles, including control of gene expression and DNA processing. However, studies of chromatin nanostructures cannot be performed using conventional widefield and confocal microscopy because of the limited optical resolution. Various methods of superresolution microscopy have been described to overcome this difficulty, like structured illumination and single molecule localization microscopy. We report here that the standard DNA dye Vybrant{sup ®} DyeCycle™ Violet can be used to provide single molecule localization microscopy (SMLM) images of DNA in nuclei ofmore » fixed mammalian cells. This SMLM method enabled optical isolation and localization of large numbers of DNA-bound molecules, usually in excess of 10{sup 6} signals in one cell nucleus. The technique yielded high-quality images of nuclear DNA density, revealing subdiffraction chromatin structures of the size in the order of 100 nm; the interchromatin compartment was visualized at unprecedented optical resolution. The approach offers several advantages over previously described high resolution DNA imaging methods, including high specificity, an ability to record images using a single wavelength excitation, and a higher density of single molecule signals than reported in previous SMLM studies. The method is compatible with DNA/multicolor SMLM imaging which employs simple staining methods suited also for conventional optical microscopy. - Highlights: • Super-resolution imaging of nuclear DNA with Vybrant Violet and blue excitation. • 90nm resolution images of DNA structures in optically thick eukaryotic nuclei. • Enhanced resolution confirms the existence of DNA-free regions inside the nucleus. • Optimized imaging conditions enable multicolor super-resolution imaging.« less
NASA Astrophysics Data System (ADS)
Dube, Timothy; Mutanga, Onisimo
2015-03-01
Aboveground biomass estimation is critical in understanding forest contribution to regional carbon cycles. Despite the successful application of high spatial and spectral resolution sensors in aboveground biomass (AGB) estimation, there are challenges related to high acquisition costs, small area coverage, multicollinearity and limited availability. These challenges hamper the successful regional scale AGB quantification. The aim of this study was to assess the utility of the newly-launched medium-resolution multispectral Landsat 8 Operational Land Imager (OLI) dataset with a large swath width, in quantifying AGB in a forest plantation. We applied different sets of spectral analysis (test I: spectral bands; test II: spectral vegetation indices and test III: spectral bands + spectral vegetation indices) in testing the utility of Landsat 8 OLI using two non-parametric algorithms: stochastic gradient boosting and the random forest ensembles. The results of the study show that the medium-resolution multispectral Landsat 8 OLI dataset provides better AGB estimates for Eucalyptus dunii, Eucalyptus grandis and Pinus taeda especially when using the extracted spectral information together with the derived spectral vegetation indices. We also noted that incorporating the optimal subset of the most important selected medium-resolution multispectral Landsat 8 OLI bands improved AGB accuracies. We compared medium-resolution multispectral Landsat 8 OLI AGB estimates with Landsat 7 ETM + estimates and the latter yielded lower estimation accuracies. Overall, this study demonstrates the invaluable potential and strength of applying the relatively affordable and readily available newly-launched medium-resolution Landsat 8 OLI dataset, with a large swath width (185-km) in precisely estimating AGB. This strength of the Landsat OLI dataset is crucial especially in sub-Saharan Africa where high-resolution remote sensing data availability remains a challenge.
Evans, Alistair R.; McHenry, Colin R.
2015-01-01
The reliability of finite element analysis (FEA) in biomechanical investigations depends upon understanding the influence of model assumptions. In producing finite element models, surface mesh resolution is influenced by the resolution of input geometry, and influences the resolution of the ensuing solid mesh used for numerical analysis. Despite a large number of studies incorporating sensitivity studies of the effects of solid mesh resolution there has not yet been any investigation into the effect of surface mesh resolution upon results in a comparative context. Here we use a dataset of crocodile crania to examine the effects of surface resolution on FEA results in a comparative context. Seven high-resolution surface meshes were each down-sampled to varying degrees while keeping the resulting number of solid elements constant. These models were then subjected to bite and shake load cases using finite element analysis. The results show that incremental decreases in surface resolution can result in fluctuations in strain magnitudes, but that it is possible to obtain stable results using lower resolution surface in a comparative FEA study. As surface mesh resolution links input geometry with the resulting solid mesh, the implication of these results is that low resolution input geometry and solid meshes may provide valid results in a comparative context. PMID:26056620
Constructing a WISE High Resolution Galaxy Atlas
NASA Technical Reports Server (NTRS)
Jarrett, T. H.; Masci, F.; Tsai, C. W.; Petty, S.; Cluver, M.; Assef, Roberto J.; Benford, D.; Blain, A.; Bridge, C.; Donoso, E.;
2012-01-01
After eight months of continuous observations, the Wide-field Infrared Survey Explorer (WISE) mapped the entire sky at 3.4 micron, 4.6 micron, 12 micron, and 22 micron. We have begun a dedicated WISE High Resolution Galaxy Atlas project to fully characterize large, nearby galaxies and produce a legacy image atlas and source catalog. Here we summarize the deconvolution techniques used to significantly improve the spatial resolution of WISE imaging, specifically designed to study the internal anatomy of nearby galaxies. As a case study, we present results for the galaxy NGC 1566, comparing the WISE enhanced-resolution image processing to that of Spitzer, Galaxy Evolution Explorer, and ground-based imaging. This is the first paper in a two-part series; results for a larger sample of nearby galaxies are presented in the second paper.
Super resolution reconstruction of infrared images based on classified dictionary learning
NASA Astrophysics Data System (ADS)
Liu, Fei; Han, Pingli; Wang, Yi; Li, Xuan; Bai, Lu; Shao, Xiaopeng
2018-05-01
Infrared images always suffer from low-resolution problems resulting from limitations of imaging devices. An economical approach to combat this problem involves reconstructing high-resolution images by reasonable methods without updating devices. Inspired by compressed sensing theory, this study presents and demonstrates a Classified Dictionary Learning method to reconstruct high-resolution infrared images. It classifies features of the samples into several reasonable clusters and trained a dictionary pair for each cluster. The optimal pair of dictionaries is chosen for each image reconstruction and therefore, more satisfactory results is achieved without the increase in computational complexity and time cost. Experiments and results demonstrated that it is a viable method for infrared images reconstruction since it improves image resolution and recovers detailed information of targets.
NASA Technical Reports Server (NTRS)
Palmer, David; Prince, Thomas A.
1987-01-01
A laboratory imaging system has been developed to study the use of Fourier-transform techniques in high-resolution hard X-ray and gamma-ray imaging, with particular emphasis on possible applications to high-energy astronomy. Considerations for the design of a Fourier-transform imager and the instrumentation used in the laboratory studies is described. Several analysis methods for image reconstruction are discussed including the CLEAN algorithm and maximum entropy methods. Images obtained using these methods are presented.
Texton-based super-resolution for achieving high spatiotemporal resolution in hybrid camera system
NASA Astrophysics Data System (ADS)
Kamimura, Kenji; Tsumura, Norimichi; Nakaguchi, Toshiya; Miyake, Yoichi
2010-05-01
Many super-resolution methods have been proposed to enhance the spatial resolution of images by using iteration and multiple input images. In a previous paper, we proposed the example-based super-resolution method to enhance an image through pixel-based texton substitution to reduce the computational cost. In this method, however, we only considered the enhancement of a texture image. In this study, we modified this texton substitution method for a hybrid camera to reduce the required bandwidth of a high-resolution video camera. We applied our algorithm to pairs of high- and low-spatiotemporal-resolution videos, which were synthesized to simulate a hybrid camera. The result showed that the fine detail of the low-resolution video can be reproduced compared with bicubic interpolation and the required bandwidth could be reduced to about 1/5 in a video camera. It was also shown that the peak signal-to-noise ratios (PSNRs) of the images improved by about 6 dB in a trained frame and by 1.0-1.5 dB in a test frame, as determined by comparison with the processed image using bicubic interpolation, and the average PSNRs were higher than those obtained by the well-known Freeman’s patch-based super-resolution method. Compared with that of the Freeman’s patch-based super-resolution method, the computational time of our method was reduced to almost 1/10.
High-resolution imaging of the large non-human primate brain using microPET: a feasibility study
NASA Astrophysics Data System (ADS)
Naidoo-Variawa, S.; Hey-Cunningham, A. J.; Lehnert, W.; Kench, P. L.; Kassiou, M.; Banati, R.; Meikle, S. R.
2007-11-01
The neuroanatomy and physiology of the baboon brain closely resembles that of the human brain and is well suited for evaluating promising new radioligands in non-human primates by PET and SPECT prior to their use in humans. These studies are commonly performed on clinical scanners with 5 mm spatial resolution at best, resulting in sub-optimal images for quantitative analysis. This study assessed the feasibility of using a microPET animal scanner to image the brains of large non-human primates, i.e. papio hamadryas (baboon) at high resolution. Factors affecting image accuracy, including scatter, attenuation and spatial resolution, were measured under conditions approximating a baboon brain and using different reconstruction strategies. Scatter fraction measured 32% at the centre of a 10 cm diameter phantom. Scatter correction increased image contrast by up to 21% but reduced the signal-to-noise ratio. Volume resolution was superior and more uniform using maximum a posteriori (MAP) reconstructed images (3.2-3.6 mm3 FWHM from centre to 4 cm offset) compared to both 3D ordered subsets expectation maximization (OSEM) (5.6-8.3 mm3) and 3D reprojection (3DRP) (5.9-9.1 mm3). A pilot 18F-2-fluoro-2-deoxy-d-glucose ([18F]FDG) scan was performed on a healthy female adult baboon. The pilot study demonstrated the ability to adequately resolve cortical and sub-cortical grey matter structures in the baboon brain and improved contrast when images were corrected for attenuation and scatter and reconstructed by MAP. We conclude that high resolution imaging of the baboon brain with microPET is feasible with appropriate choices of reconstruction strategy and corrections for degrading physical effects. Further work to develop suitable correction algorithms for high-resolution large primate imaging is warranted.
NASA Astrophysics Data System (ADS)
Li, Jiao; Zhang, Songhe; Chekkoury, Andrei; Glasl, Sarah; Vetschera, Paul; Koberstein-Schwarz, Benno; Omar, Murad; Ntziachristos, Vasilis
2017-03-01
Multispectral optoacoustic mesoscopy (MSOM) has been recently introduced for cancer imaging, it has the potential for high resolution imaging of cancer development in vivo, at depths beyond the diffusion limit. Based on spectral features, optoacoustic imaging is capable of visualizing angiogenesis and imaging cancer heterogeneity of malignant tumors through endogenous hemoglobin. However, high-resolution structural and functional imaging of whole tumor mass is limited by modest penetration and image quality, due to the insufficient capability of ultrasound detectors and the twodimensional scan geometry. In this study, we introduce a novel multi-spectral optoacoustic mesoscopy (MSOM) for imaging subcutaneous or orthotopic tumors implanted in lab mice, with the high-frequency ultrasound linear array and a conical scanning geometry. Detailed volumetric images of vasculature and oxygen saturation of tissue in the entire tumors are obtained in vivo, at depths up to 10 mm with the desirable spatial resolutions approaching 70μm. This unprecedented performance enables the visualization of vasculature morphology and hypoxia conditions has been verified with ex vivo studies. These findings demonstrate the potential of MSOM for preclinical oncological studies in deep solid tumors to facilitate the characterization of tumor's angiogenesis and the evaluation of treatment strategies.
High resolution climate projection of storm surge at the Venetian coast
NASA Astrophysics Data System (ADS)
Mel, R.; Sterl, A.; Lionello, P.
2013-04-01
Climate change impact on storm surge regime is of great importance for the safety and maintenance of Venice. In this study a future storm surge scenario is evaluated using new high resolution sea level pressure and wind data recently produced by EC-Earth, an Earth System Model based on the operational seasonal forecast system of the European Centre for Medium-Range Weather Forecasts (ECMWF). The study considers an ensemble of six 5 yr long simulations of the rcp45 scenario at 0.25° resolution and compares the 2094-2098 to the 2004-2008 period. EC-Earth sea level pressure and surface wind fields are used as input for a shallow water hydrodynamic model (HYPSE) which computes sea level and barotropic currents in the Adriatic Sea. Results show that a high resolution climate model is needed for producing realistic values of storm surge statistics and confirm previous studies in that they show little sensitivity of storm surge levels to climate change. However, some climate change signals are detected, such as increased persistence of high pressure conditions, an increased frequency of windless hour, and a decreased number of moderate windstorms.
Ko, Guen Bae; Lee, Jae Sung
2015-01-01
Metal package photomultiplier tubes (PMTs) with a metal channel dynode structure have several advanced features for devising such time-of-flight (TOF) and high spatial resolution positron emission tomography (PET) detectors, thanks to their high packing density, large effective area ratio, fast time response, and position encoding capability. Here, we report on an investigation of new metal package PMTs with high quantum efficiency (QE) for high-resolution PET and TOF PET detector modules. The latest metal package PMT, the Hamamatsu R11265 series, is served with two kinds of photocathodes that have higher quantum efficiency than normal bialkali (typical QE ≈ 25%), super bialkali (SBA; QE ≈ 35%), and ultra bialkali (UBA; QE ≈ 43%). In this study, the authors evaluated the performance of the new PMTs with SBA and UBA photocathodes as a PET detector by coupling various crystal arrays. They also investigated the performance improvements of high QE, focusing in particular on a block detector coupled with a lutetium-based scintillator. A single 4 × 4 × 10 mm(3) LYSO, a 7 × 7 array of 3 × 3 × 20 mm(3) LGSO, a 9 × 9 array of 1.2 × 1.2 × 10 mm(3) LYSO, and a 6 × 6 array of 1.5 × 1.5 × 7 mm(3) LuYAP were used for evaluation. All coincidence data were acquired with a DRS4 based fast digitizer. This new PMT shows promising crystal positioning accuracy, energy and time discrimination performance for TOF, and high-resolution PET applications. The authors also found that a metal channel PMT with SBA was enough for both TOF and high-resolution application, although UBA gave a minor improvement to time resolution. However, significant performance improvement was observed in relative low light output crystals (LuYAP) coupled with UBA. The results of this study will be of value as a useful reference to select PMTs for high-performance PET detectors.
Robust isotropic super-resolution by maximizing a Laplace posterior for MRI volumes
NASA Astrophysics Data System (ADS)
Han, Xian-Hua; Iwamoto, Yutaro; Shiino, Akihiko; Chen, Yen-Wei
2014-03-01
Magnetic resonance imaging can only acquire volume data with finite resolution due to various factors. In particular, the resolution in one direction (such as the slice direction) is much lower than others (such as the in-plane direction), yielding un-realistic visualizations. This study explores to reconstruct MRI isotropic resolution volumes from three orthogonal scans. This proposed super- resolution reconstruction is formulated as a maximum a posterior (MAP) problem, which relies on the generation model of the acquired scans from the unknown high-resolution volumes. Generally, the deviation ensemble of the reconstructed high-resolution (HR) volume from the available LR ones in the MAP is represented as a Gaussian distribution, which usually results in some noise and artifacts in the reconstructed HR volume. Therefore, this paper investigates a robust super-resolution by formulating the deviation set as a Laplace distribution, which assumes sparsity in the deviation ensemble based on the possible insight of the appeared large values only around some unexpected regions. In addition, in order to achieve reliable HR MRI volume, we integrates the priors such as bilateral total variation (BTV) and non-local mean (NLM) into the proposed MAP framework for suppressing artifacts and enriching visual detail. We validate the proposed robust SR strategy using MRI mouse data with high-definition resolution in two direction and low-resolution in one direction, which are imaged in three orthogonal scans: axial, coronal and sagittal planes. Experiments verifies that the proposed strategy can achieve much better HR MRI volumes than the conventional MAP method even with very high-magnification factor: 10.
A method for generating high resolution satellite image time series
NASA Astrophysics Data System (ADS)
Guo, Tao
2014-10-01
There is an increasing demand for satellite remote sensing data with both high spatial and temporal resolution in many applications. But it still is a challenge to simultaneously improve spatial resolution and temporal frequency due to the technical limits of current satellite observation systems. To this end, much R&D efforts have been ongoing for years and lead to some successes roughly in two aspects, one includes super resolution, pan-sharpen etc. methods which can effectively enhance the spatial resolution and generate good visual effects, but hardly preserve spectral signatures and result in inadequate analytical value, on the other hand, time interpolation is a straight forward method to increase temporal frequency, however it increase little informative contents in fact. In this paper we presented a novel method to simulate high resolution time series data by combing low resolution time series data and a very small number of high resolution data only. Our method starts with a pair of high and low resolution data set, and then a spatial registration is done by introducing LDA model to map high and low resolution pixels correspondingly. Afterwards, temporal change information is captured through a comparison of low resolution time series data, and then projected onto the high resolution data plane and assigned to each high resolution pixel according to the predefined temporal change patterns of each type of ground objects. Finally the simulated high resolution data is generated. A preliminary experiment shows that our method can simulate a high resolution data with a reasonable accuracy. The contribution of our method is to enable timely monitoring of temporal changes through analysis of time sequence of low resolution images only, and usage of costly high resolution data can be reduces as much as possible, and it presents a highly effective way to build up an economically operational monitoring solution for agriculture, forest, land use investigation, environment and etc. applications.
Belgacem, O; Pittenauer, E; Openshaw, M E; Hart, P J; Bowdler, A; Allmaier, G
2016-02-15
For the last two decades, curved field reflectron technology has been used in matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometers, assisting in the generation of post-source-decay (PSD) or collision-induced dissociation (CID) without decelerating precursor ions, producing true high-energy CID spectra. The result was the generation of product ion mass spectra with product ions typical of high-energy (10 keV and beyond) collision processes. The disadvantage of this approach was the lack of resolution in CID spectra resulting from the excess laser energy deposition used to generate those MS/MS spectra. The work presented in this study overcomes this limitation and includes comprehensive examples of high-energy and high-resolution CID MALDI-MS/MS spectra of biomolecules. The devices used in this study are TOF/RTOF instruments equipped with a high-vacuum MALDI ion source. High-resolution and high-energy CID spectra result from the use of axial spatial distribution focusing (ASDF) in combination with curved field reflectron technology. A CID spectrum of the P14 R1 peptide exhibits product ion resolution in excess of 10,000 (FWHM) but at the same time yields typical high-energy product ions such as w- and [y-2]-type ion series. High-energy CID spectra of lipids, exemplified by a glycerophospholipid and triglyceride, demonstrate C-C backbone fragmentation elucidating the presence of a hydroxyl group in addition to double-bond positioning. A complex high mannose carbohydrate (Man)8 (GlcNAc)2 was also studied at 20 keV collision energy and revealed further high-energy product ions with very high resolution, allowing unambiguous detection and characterization of cross-ring cleavage-related ions. This is the first comprehensive study using a MALDI-TOF/RTOF instrument equipped with a curved field reflectron and an ASDF device prior to the reflectron. © 2015 The Authors. Rapid Communications in Mass Spectrometry published by John Wiley & Sons Ltd. © 2015 The Authors. Rapid Communications in Mass Spectrometry published by John Wiley & Sons Ltd.
Continuous probing of cold complex molecules with infrared frequency comb spectroscopy
NASA Astrophysics Data System (ADS)
Spaun, Ben; Changala, P. Bryan; Patterson, David; Bjork, Bryce J.; Heckl, Oliver H.; Doyle, John M.; Ye, Jun
2016-05-01
For more than half a century, high-resolution infrared spectroscopy has played a crucial role in probing molecular structure and dynamics. Such studies have so far been largely restricted to relatively small and simple systems, because at room temperature even molecules of modest size already occupy many millions of rotational/vibrational states, yielding highly congested spectra that are difficult to assign. Targeting more complex molecules requires methods that can record broadband infrared spectra (that is, spanning multiple vibrational bands) with both high resolution and high sensitivity. However, infrared spectroscopic techniques have hitherto been limited either by narrow bandwidth and long acquisition time, or by low sensitivity and resolution. Cavity-enhanced direct frequency comb spectroscopy (CE-DFCS) combines the inherent broad bandwidth and high resolution of an optical frequency comb with the high detection sensitivity provided by a high-finesse enhancement cavity, but it still suffers from spectral congestion. Here we show that this problem can be overcome by using buffer gas cooling to produce continuous, cold samples of molecules that are then subjected to CE-DFCS. This integration allows us to acquire a rotationally resolved direct absorption spectrum in the C-H stretching region of nitromethane, a model system that challenges our understanding of large-amplitude vibrational motion. We have also used this technique on several large organic molecules that are of fundamental spectroscopic and astrochemical relevance, including naphthalene, adamantane and hexamethylenetetramine. These findings establish the value of our approach for studying much larger and more complex molecules than have been probed so far, enabling complex molecules and their kinetics to be studied with orders-of-magnitude improvements in efficiency, spectral resolution and specificity.
An infrared high resolution silicon immersion grating spectrometer for airborne and space missions
NASA Astrophysics Data System (ADS)
Ge, Jian; Zhao, Bo; Powell, Scott; Jiang, Peng; Uzakbaiuly, Berik; Tanner, David
2014-08-01
Broad-band infrared (IR) spectroscopy, especially at high spectral resolution, is a largely unexplored area for the far IR (FIR) and submm wavelength region due to the lack of proper grating technology to produce high resolution within the very constrained volume and weight required for space mission instruments. High resolution FIR spectroscopy is an essential tool to resolve many atomic and molecular lines to measure physical and chemical conditions and processes in the environments where galaxy, star and planets form. A silicon immersion grating (SIG), due to its over three times high dispersion over a traditional reflective grating, offers a compact and low cost design of new generation IR high resolution spectrographs for space missions. A prototype SIG high resolution spectrograph, called Florida IR Silicon immersion grating spectromeTer (FIRST), has been developed at UF and was commissioned at a 2 meter robotic telescope at Fairborn Observatory in Arizona. The SIG with 54.74 degree blaze angle, 16.1 l/mm groove density, and 50x86 mm2 grating area has produced R=50,000 in FIRST. The 1.4-1.8 um wavelength region is completely covered in a single exposure with a 2kx2k H2RG IR array. The on-sky performance meets the science requirements for ground-based high resolution spectroscopy. Further studies show that this kind of SIG spectrometer with an airborne 2m class telescope such as SOFIA can offer highly sensitive spectroscopy with R~20,000-30,000 at 20 to 55 microns. Details about the on-sky measurement performance of the FIRST prototype SIG spectrometer and its predicted performance with the SOFIA 2.4m telescope are introduced.
Above-real-time training (ARTT) improves transfer to a simulated flight control task.
Donderi, D C; Niall, Keith K; Fish, Karyn; Goldstein, Benjamin
2012-06-01
The aim of this study was to measure the effects of above-real-time-training (ARTT) speed and screen resolution on a simulated flight control task. ARTT has been shown to improve transfer to the criterion task in some military simulation experiments. We tested training speed and screen resolution in a project, sponsored by Defence Research and Development Canada, to develop components for prototype air mission simulators. For this study, 54 participants used a single-screen PC-based flight simulation program to learn to chase and catch an F-18A fighter jet with another F-18A while controlling the chase aircraft with a throttle and side-stick controller. Screen resolution was varied between participants, and training speed was varied factorially across two sessions within participants. Pretest and posttest trials were at high resolution and criterion (900 knots) speed. Posttest performance was best with high screen resolution training and when one ARTT training session was followed by a session of criterion speed training. ARTT followed by criterion training improves performance on a visual-motor coordination task. We think that ARTT influences known facilitators of transfer, including similarity to the criterion task and contextual interference. Use high-screen resolution, start with ARTT, and finish with criterion speed training when preparing a mission simulation.
Time-resolved High Spectral Resolution Observation of 2MASSW J0746425+200032AB
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Ji; Mawet, Dimitri; Prato, Lisa, E-mail: ji.wang@caltech.edu
Many brown dwarfs (BDs) exhibit photometric variability at levels from tenths to tens of percents. The photometric variability is related to magnetic activity or patchy cloud coverage, characteristic of BDs near the L–T transition. Time-resolved spectral monitoring of BDs provides diagnostics of cloud distribution and condensate properties. However, current time-resolved spectral studies of BDs are limited to low spectral resolution ( R ∼ 100) with the exception of the study of Luhman 16 AB at a resolution of 100,000 using the VLT+CRIRES. This work yielded the first map of BD surface inhomogeneity, highlighting the importance and unique contribution of highmore » spectral resolution observations. Here, we report on the time-resolved high spectral resolution observations of a nearby BD binary, 2MASSW J0746425+200032AB. We find no coherent spectral variability that is modulated with rotation. Based on simulations, we conclude that the coverage of a single spot on 2MASSW J0746425+200032AB is smaller than 1% or 6.25% if spot contrast is 50% or 80% of its surrounding flux, respectively. Future high spectral resolution observations aided by adaptive optics systems can put tighter constraints on the spectral variability of 2MASSW J0746425+200032AB and other nearby BDs.« less
Super-resolution optical microscopy for studying membrane structure and dynamics.
Sezgin, Erdinc
2017-07-12
Investigation of cell membrane structure and dynamics requires high spatial and temporal resolution. The spatial resolution of conventional light microscopy is limited due to the diffraction of light. However, recent developments in microscopy enabled us to access the nano-scale regime spatially, thus to elucidate the nanoscopic structures in the cellular membranes. In this review, we will explain the resolution limit, address the working principles of the most commonly used super-resolution microscopy techniques and summarise their recent applications in the biomembrane field.
High resolution spectrograph. [for LST
NASA Technical Reports Server (NTRS)
Peacock, K.
1975-01-01
The high resolution spectrograph (HRS) is designed to be used with the Large Space Telescope (LST) for the study of spectra of point and extended targets in the spectral range 110 to 410 nm. It has spectral resolutions of 1,000; 30,000; and 100,000 and has a field of view as large as 10 arc sec. The spectral range and resolution are selectable using interchangeable optical components and an echelle spectrograph is used to display a cross dispersed spectrum on the photocathode of either of 2 SEC orthicon image tubes. Provisions are included for wavelength calibration, target identification and acquisition and thermal control. The system considerations of the instrument are described.
The spatial resolution of silicon-based electron detectors in beta-autoradiography.
Cabello, Jorge; Wells, Kevin
2010-03-21
Thin tissue autoradiography is an imaging modality where ex-vivo tissue sections are placed in direct contact with autoradiographic film. These tissue sections contain a radiolabelled ligand bound to a specific biomolecule under study. This radioligand emits beta - or beta+ particles ionizing silver halide crystals in the film. High spatial resolution autoradiograms are obtained using low energy radioisotopes, such as (3)H where an intrinsic 0.1-1 microm spatial resolution can be achieved. Several digital alternatives have been presented over the past few years to replace conventional film but their spatial resolution has yet to equal film, although silicon-based imaging technologies have demonstrated higher sensitivity compared to conventional film. It will be shown in this work how pixel size is a critical parameter for achieving high spatial resolution for low energy uncollimated beta imaging. In this work we also examine the confounding factors impeding silicon-based technologies with respect to spatial resolution. The study considers charge diffusion in silicon and detector noise, and this is applied to a range of radioisotopes typically used in autoradiography. Finally an optimal detector geometry to obtain the best possible spatial resolution for a specific technology and a specific radioisotope is suggested.
Pollen structure visualization using high-resolution laboratory-based hard X-ray tomography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Qiong; Gluch, Jürgen; Krüger, Peter
A laboratory-based X-ray microscope is used to investigate the 3D structure of unstained whole pollen grains. For the first time, high-resolution laboratory-based hard X-ray microscopy is applied to study pollen grains. Based on the efficient acquisition of statistically relevant information-rich images using Zernike phase contrast, both surface- and internal structures of pine pollen - including exine, intine and cellular structures - are clearly visualized. The specific volumes of these structures are calculated from the tomographic data. The systematic three-dimensional study of pollen grains provides morphological and structural information about taxonomic characters that are essential in palynology. Such studies have amore » direct impact on disciplines such as forestry, agriculture, horticulture, plant breeding and biodiversity. - Highlights: • The unstained whole pine pollen was visualized by high-resolution laboratory-based HXRM for the first time. • The comparison study of pollen grains by LM, SEM and high-resolution laboratory-based HXRM. • Phase contrast imaging provides significantly higher contrast of the raw images compared to absorption contrast imaging. • Surface and internal structure of the pine pollen including exine, intine and cellular structures are clearly visualized. • 3D volume data of unstained whole pollen grains are acquired and the specific volumes of the different layer are calculated.« less
Stochastic Downscaling of Digital Elevation Models
NASA Astrophysics Data System (ADS)
Rasera, Luiz Gustavo; Mariethoz, Gregoire; Lane, Stuart N.
2016-04-01
High-resolution digital elevation models (HR-DEMs) are extremely important for the understanding of small-scale geomorphic processes in Alpine environments. In the last decade, remote sensing techniques have experienced a major technological evolution, enabling fast and precise acquisition of HR-DEMs. However, sensors designed to measure elevation data still feature different spatial resolution and coverage capabilities. Terrestrial altimetry allows the acquisition of HR-DEMs with centimeter to millimeter-level precision, but only within small spatial extents and often with dead ground problems. Conversely, satellite radiometric sensors are able to gather elevation measurements over large areas but with limited spatial resolution. In the present study, we propose an algorithm to downscale low-resolution satellite-based DEMs using topographic patterns extracted from HR-DEMs derived for example from ground-based and airborne altimetry. The method consists of a multiple-point geostatistical simulation technique able to generate high-resolution elevation data from low-resolution digital elevation models (LR-DEMs). Initially, two collocated DEMs with different spatial resolutions serve as an input to construct a database of topographic patterns, which is also used to infer the statistical relationships between the two scales. High-resolution elevation patterns are then retrieved from the database to downscale a LR-DEM through a stochastic simulation process. The output of the simulations are multiple equally probable DEMs with higher spatial resolution that also depict the large-scale geomorphic structures present in the original LR-DEM. As these multiple models reflect the uncertainty related to the downscaling, they can be employed to quantify the uncertainty of phenomena that are dependent on fine topography, such as catchment hydrological processes. The proposed methodology is illustrated for a case study in the Swiss Alps. A swissALTI3D HR-DEM (with 5 m resolution) and a SRTM-derived LR-DEM from the Western Alps are used to downscale a SRTM-based LR-DEM from the eastern part of the Alps. The results show that the method is capable of generating multiple high-resolution synthetic DEMs that reproduce the spatial structure and statistics of the original DEM.
Allon, Ayala S.; Balaban, Halely; Luria, Roy
2014-01-01
In three experiments we manipulated the resolution of novel complex objects in visual working memory (WM) by changing task demands. Previous studies that investigated the trade-off between quantity and resolution in visual WM yielded mixed results for simple familiar stimuli. We used the contralateral delay activity as an electrophysiological marker to directly track the deployment of visual WM resources while participants preformed a change-detection task. Across three experiments we presented the same novel complex items but changed the task demands. In Experiment 1 we induced a medium resolution task by using change trials in which a random polygon changed to a different type of polygon and replicated previous findings showing that novel complex objects are represented with higher resolution relative to simple familiar objects. In Experiment 2 we induced a low resolution task that required distinguishing between polygons and other types of stimulus categories, but we failed in finding a corresponding decrease in the resolution of the represented item. Finally, in Experiment 3 we induced a high resolution task that required discriminating between highly similar polygons with somewhat different contours. This time, we observed an increase in the item’s resolution. Our findings indicate that the resolution for novel complex objects can be increased but not decreased according to task demands, suggesting that minimal resolution is required in order to maintain these items in visual WM. These findings support studies claiming that capacity and resolution in visual WM reflect different mechanisms. PMID:24734026
Tenboer, Jason; Basu, Shibom; Zatsepin, Nadia; ...
2014-12-05
We report that serial femtosecond crystallography using ultrashort pulses from X-ray Free Electron Lasers (XFELs) offers the possibility to study light-triggered dynamics of biomolecules. Using microcrystals of the blue light photoreceptor, photoactive yellow protein, as a model system, we present high resolution, time-resolved difference electron density maps of excellent quality with strong features, which allow the determination of structures of reaction intermediates to 1.6 Å resolution. These results open the way to the study of reversible and non-reversible biological reactions on time scales as short as femtoseconds under conditions which maximize the extent of reaction initiation throughout the crystal.
High-resolution weather forecasting is affected by many aspects, i.e. model initial conditions, subgrid-scale cumulus convection and cloud microphysics schemes. Recent 12km grid studies using the Weather Research and Forecasting (WRF) model have identified the importance of inco...
High-resolution solution-state NMR of unfractionated plant cell walls
John Ralph; Fachuang Lu; Hoon Kim; Dino Ress; Daniel J. Yelle; Kenneth E. Hammel; Sally A. Ralph; Bernadette Nanayakkara; Armin Wagner; Takuya Akiyama; Paul F. Schatz; Shawn D. Mansfield; Noritsugu Terashima; Wout Boerjan; Bjorn Sundberg; Mattias Hedenstrom
2009-01-01
Detailed structural studies on the plant cell wall have traditionally been difficult. NMR is one of the preeminent structural tools, but obtaining high-resolution solution-state spectra has typically required fractionation and isolation of components of interest. With recent methods for dissolution of, admittedly, finely divided plant cell wall material, the wall can...
What Geoscience Experts and Novices Look At, and What They See, When Viewing Data Visualizations
ERIC Educational Resources Information Center
Kastens, Kim A.; Shipley, Thomas F.; Boone, Alexander P.; Straccia, Frances
2016-01-01
This study examines how geoscience experts and novices make meaning from an iconic type of data visualization: shaded relief images of bathymetry and topography. Participants examined, described, and interpreted a global image, two high-resolution seafloor images, and 2 high-resolution continental images, while having their gaze direction…
USDA-ARS?s Scientific Manuscript database
This study demonstrated a new method for mapping high-resolution (spatial: 1 m, and temporal: 1 h) soil moisture by assimilating distributed temperature sensing (DTS) observed soil temperatures at intermediate scales. In order to provide robust soil moisture and property estimates, we first proposed...
High-resolution NMR study of light and heavy crude oils: “structure-property” analysis
NASA Astrophysics Data System (ADS)
Rakhmatullin, I.; Efimov, S.; Varfolomeev, M.; Klochkov, V.
2018-05-01
Measurements of three light and one heavy crude oil samples were carried out by high-resolution nuclear magnetic resonance (NMR) spectroscopy methods. Quantitative fractions of aromatic molecules and functional groups constituting oil hydrocarbons were determined, and comparative analysis of the oil samples of different viscosity and origin was done.
Zhan, Huili; Zhang, Huibo; Bai, Rongjie; Qian, Zhanhua; Liu, Yue; Zhang, Heng; Yin, Yuming
2017-12-01
To investigate if using high-resolution 3-T MRI can identify additional injuries of the triangular fibrocartilage complex (TFCC) beyond the Palmer classification. Eighty-six patients with surgically proven TFCC injury were included in this study. All patients underwent high-resolution 3-T MRI of the injured wrist. The MR imaging features of TFCC were analyzed according to the Palmer classification. According to the Palmer classification, 69 patients could be classified as having Palmer injuries (52 had traumatic tears and 17 had degenerative tears). There were 17 patients whose injuries could not be classified according to the Palmer classification: 13 had volar or dorsal capsular TFC detachment and 4 had a horizontal tear of the articular disk. Using high-resolution 3-T MRI, we have not only found all the TFCC injuries described in the Palmer classification, additional injury types were found in this study, including horizontal tear of the TFC and capsular TFC detachment. We propose the modified Palmer classification and add the injury types that were not included in the original Palmer classification.
An electron beam linear scanning mode for industrial limited-angle nano-computed tomography.
Wang, Chengxiang; Zeng, Li; Yu, Wei; Zhang, Lingli; Guo, Yumeng; Gong, Changcheng
2018-01-01
Nano-computed tomography (nano-CT), which utilizes X-rays to research the inner structure of some small objects and has been widely utilized in biomedical research, electronic technology, geology, material sciences, etc., is a high spatial resolution and non-destructive research technique. A traditional nano-CT scanning model with a very high mechanical precision and stability of object manipulator, which is difficult to reach when the scanned object is continuously rotated, is required for high resolution imaging. To reduce the scanning time and attain a stable and high resolution imaging in industrial non-destructive testing, we study an electron beam linear scanning mode of nano-CT system that can avoid mechanical vibration and object movement caused by the continuously rotated object. Furthermore, to further save the scanning time and study how small the scanning range could be considered with acceptable spatial resolution, an alternating iterative algorithm based on ℓ 0 minimization is utilized to limited-angle nano-CT reconstruction problem with the electron beam linear scanning mode. The experimental results confirm the feasibility of the electron beam linear scanning mode of nano-CT system.
An electron beam linear scanning mode for industrial limited-angle nano-computed tomography
NASA Astrophysics Data System (ADS)
Wang, Chengxiang; Zeng, Li; Yu, Wei; Zhang, Lingli; Guo, Yumeng; Gong, Changcheng
2018-01-01
Nano-computed tomography (nano-CT), which utilizes X-rays to research the inner structure of some small objects and has been widely utilized in biomedical research, electronic technology, geology, material sciences, etc., is a high spatial resolution and non-destructive research technique. A traditional nano-CT scanning model with a very high mechanical precision and stability of object manipulator, which is difficult to reach when the scanned object is continuously rotated, is required for high resolution imaging. To reduce the scanning time and attain a stable and high resolution imaging in industrial non-destructive testing, we study an electron beam linear scanning mode of nano-CT system that can avoid mechanical vibration and object movement caused by the continuously rotated object. Furthermore, to further save the scanning time and study how small the scanning range could be considered with acceptable spatial resolution, an alternating iterative algorithm based on ℓ0 minimization is utilized to limited-angle nano-CT reconstruction problem with the electron beam linear scanning mode. The experimental results confirm the feasibility of the electron beam linear scanning mode of nano-CT system.
NASA Astrophysics Data System (ADS)
Luo, D.; Cai, F.
2017-12-01
Small-scale and high-resolution marine sparker multi-channel seismic surveys using large energy sparkers are characterized by a high dominant frequency of the seismic source, wide bandwidth, and a high resolution. The technology with a high-resolution and high-detection precision was designed to improve the imaging quality of shallow sedimentary. In the study, a 20KJ sparker and 24-channel streamer cable with a 6.25m group interval were used as a seismic source and receiver system, respectively. Key factors for seismic imaging of gas hydrate are enhancement of S/N ratio, amplitude compensation and detailed velocity analysis. However, the data in this study has some characteristics below: 1. Small maximum offsets are adverse to velocity analysis and multiple attenuation. 2. Lack of low frequency information, that is, information less than 100Hz are invisible. 3. Low S/N ratio since less coverage times (only 12 times). These characteristics make it difficult to reach the targets of seismic imaging. In the study, the target processing methods are used to improve the seismic imaging quality of gas hydrate. First, some technologies of noise suppression are combined used in pre-stack seismic data to suppression of seismic noise and improve the S/N ratio. These technologies including a spectrum sharing noise elimination method, median filtering and exogenous interference suppression method. Second, the combined method of three technologies including SRME, τ-p deconvolution and high precision Radon transformation is used to remove multiples. Third, accurate velocity field are used in amplitude energy compensation to highlight the Bottom Simulating Reflector (short for BSR, the indicator of gas hydrates) and gas migration pathways (such as gas chimneys, hot spots et al.). Fourth, fine velocity analysis technology are used to improve accuracy of velocity analysis. Fifth, pre-stack deconvolution processing technology is used to compensate for low frequency energy and suppress of ghost, thus formation reflection characteristics are highlighted. The result shows that the small-scale and high resolution marine sparker multi-channel seismic surveys are very effective in improving the resolution and quality of gas hydrate imaging than the conventional seismic acquisition technology.
A device to measure the effects of strong magnetic fields on the image resolution of PET scanners
NASA Astrophysics Data System (ADS)
Burdette, D.; Albani, D.; Chesi, E.; Clinthorne, N. H.; Cochran, E.; Honscheid, K.; Huh, S. S.; Kagan, H.; Knopp, M.; Lacasta, C.; Mikuz, M.; Schmalbrock, P.; Studen, A.; Weilhammer, P.
2009-10-01
Very high resolution images can be achieved in small animal PET systems utilizing solid state silicon pad detectors. As these systems approach sub-millimeter resolutions, the range of the positron is becoming the dominant contribution to image blur. The size of the positron range effect depends on the initial positron energy and hence the radioactive tracer used. For higher energy positron emitters, such as Ga68 and Tc94m, which are gaining importance in small animal studies, the width of the annihilation point distribution dominates the spatial resolution. This positron range effect can be reduced by embedding the field of view of the PET scanner in a strong magnetic field. In order to confirm this effect experimentally, we developed a high resolution PET instrument based on silicon pad detectors that can operate in a 7 T magnetic field. In this paper, we describe the instrument and present initial results of a study of the effects of magnetic fields up to 7 T on PET image resolution for Na22 and Ga68 point sources.
Kaur, Parminder; Kiselar, Janna; Yang, Sichun; Chance, Mark R.
2015-01-01
Hydroxyl radical footprinting based MS for protein structure assessment has the goal of understanding ligand induced conformational changes and macromolecular interactions, for example, protein tertiary and quaternary structure, but the structural resolution provided by typical peptide-level quantification is limiting. In this work, we present experimental strategies using tandem-MS fragmentation to increase the spatial resolution of the technique to the single residue level to provide a high precision tool for molecular biophysics research. Overall, in this study we demonstrated an eightfold increase in structural resolution compared with peptide level assessments. In addition, to provide a quantitative analysis of residue based solvent accessibility and protein topography as a basis for high-resolution structure prediction; we illustrate strategies of data transformation using the relative reactivity of side chains as a normalization strategy and predict side-chain surface area from the footprinting data. We tested the methods by examination of Ca+2-calmodulin showing highly significant correlations between surface area and side-chain contact predictions for individual side chains and the crystal structure. Tandem ion based hydroxyl radical footprinting-MS provides quantitative high-resolution protein topology information in solution that can fill existing gaps in structure determination for large proteins and macromolecular complexes. PMID:25687570
Development of a superconducting bulk magnet for NMR and MRI.
Nakamura, Takashi; Tamada, Daiki; Yanagi, Yousuke; Itoh, Yoshitaka; Nemoto, Takahiro; Utumi, Hiroaki; Kose, Katsumi
2015-10-01
A superconducting bulk magnet composed of six vertically stacked annular single-domain c-axis-oriented Eu-Ba-Cu-O crystals was energized to 4.74 T using a conventional superconducting magnet for high-resolution NMR spectroscopy. Shim coils, gradient coils, and radio frequency coils for high resolution NMR and MRI were installed in the 23 mm-diameter room-temperature bore of the bulk magnet. A 6.9 ppm peak-to-peak homogeneous region suitable for MRI was achieved in the central cylindrical region (6.2 mm diameter, 9.1 mm length) of the bulk magnet by using a single layer shim coil. A 21 Hz spectral resolution that can be used for high resolution NMR spectroscopy was obtained in the central cylindrical region (1.3 mm diameter, 4 mm length) of the bulk magnet by using a multichannel shim coil. A clear 3D MR image dataset of a chemically fixed mouse fetus with (50 μm)(3) voxel resolution was obtained in 5.5 h. We therefore concluded that the cryogen-free superconducting bulk magnet developed in this study is useful for high-resolution desktop NMR, MRI and mobile NMR device. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Osman, Mutsim; Abdullatif, Osman
2017-04-01
The Permian to Triassic Khuff carbonate reservoirs (and equivalents) in the Middle East are estimated to contain about 38.4% of the world's natural gas reserves. Excellent exposed outcrops in central Saudi Arabia provide good outcrop equivalents to subsurface Khuff reservoirs. This study conduct high resolution outcrop scale investigations on an analog reservoir for upper Khartam of Khuff Formation. The main objective is to reconstruct litho- and chemo- stratigraphic outcrop analog model that may serve to characterize reservoir high resolution (interwell) heterogeneity, continuity and architecture. Given the fact of the limitation of subsurface data and toolsin capturing interwell reservoir heterogeneity, which in turn increases the value of this study.The methods applied integrate sedimentological, stratigraphic petrographic, petrophysical data and chemical analyses for major, trace and rare earth elements. In addition, laser scanning survey (LIDAR) was also utilized in this study. The results of the stratigraphic investigations revealed that the lithofacies range from mudstone, wackestone, packestone and grainstone. These lithofacies represent environments ranging from supratidal, intertidal, subtidal and shoal complex. Several meter-scale and less high resolution sequences and composite sequences within 4th and 5th order cycles were also recognized in the outcrop analog. The lithofacies and architectural analysis revealed several vertically and laterally stacked sequences at the outcrop as revealed from the stratigraphic sections and the lidar scan. Chemostratigraphy is effective in identifying lithofacies and sequences within the outcrop analog. Moreover, different chemical signatures were also recognized and allowed establishing and correlating high resolution lithofacies, reservoir zones, layers and surfaces bounding reservoirs and non-reservoir zones at scale of meters or less. The results of this high resolution outcrop analog study might help to understand and evaluate Khuff reservoir heterogeneity, quality and architecture. It might also help to fill the gap in knowledge in reservoir characterization models based on low resolution subsurface data alone.
NASA Astrophysics Data System (ADS)
Quiers, M.; Perrette, Y.; Etienne, D.; Develle, A. L.; Jacq, K.
2017-12-01
The use of organic proxies increases in paleoenvironmental reconstructions from natural archives. Major advances have been achieved by the development of new highly informative molecular proxies usually linked to specific compounds. While studies focused on targeted compounds, offering a high information degree, advances on bulk organic matter are limited. However, this bulk is the main contributor to carbon cycle and has been shown to be a driver of many mineral or organic compounds transfer and record. Development of target proxies need complementary information on bulk organic matter to understand biases link to controlling factors or analytical methods, and provide a robust interpretation. Fluorescence methods have often been employed to characterize and quantify organic matter. However, these technics are mainly developed for liquid samples, inducing material and resolution loss when working on natural archives (either stalagmite or sediments). High-resolution solid phase fluorescence (SPF) was developed on speleothems. This method allows now to analyse organic matter quality and quantity if procedure to constrain the optical density are adopted. In fact, a calibration method using liquid phase fluorescence (LPF) was developed for speleothem, allowing to quantify organic carbon at high-resolution. We report here an application of such a procedure SPF/LPF measurements on lake sediments. In order to avoid sediment matrix effects on the fluorescence signal, a calibration using LPF measurements was realised. First results using this method provided organic matter quality record of different organic matter compounds (humic-like, protein-like and chlorophylle-like compounds) at high resolution for the sediment core. High resolution organic matter fluxes are obtained in a second time, applying pragmatic chemometrics model (non linear models, partial least square models) on high resolution fluorescence data. SPF method can be considered as a promising tool for high resolution record on organic matter quality and quantity. Potential application of this method will be evocated (lake ecosystem dynamic, changes in trophic levels)
NASA Astrophysics Data System (ADS)
Magazù, Salvatore; Mezei, Ferenc; Migliardo, Federica
2018-05-01
In a variety of applications of inelastic neutron scattering spectroscopy the goal is to single out the elastic scattering contribution from the total scattered spectrum as a function of momentum transfer and sample environment parameters. The elastic part of the spectrum is defined in such a case by the energy resolution of the spectrometer. Variable elastic energy resolution offers a way to distinguish between elastic and quasi-elastic intensities. Correlation spectroscopy lends itself as an efficient, high intensity approach for accomplishing this both at continuous and pulsed neutron sources. On the one hand, in beam modulation methods the Liouville theorem coupling between intensity and resolution is relaxed and time-of-flight velocity analysis of the neutron velocity distribution can be performed with 50 % duty factor exposure for all available resolutions. On the other hand, the (quasi)elastic part of the spectrum generally contains the major part of the integrated intensity at a given detector, and thus correlation spectroscopy can be applied with most favorable signal to statistical noise ratio. The novel spectrometer CORELLI at SNS is an example for this type of application of the correlation technique at a pulsed source. On a continuous neutron source a statistical chopper can be used for quasi-random time dependent beam modulation and the total time-of-flight of the neutron from the statistical chopper to detection is determined by the analysis of the correlation between the temporal fluctuation of the neutron detection rate and the statistical chopper beam modulation pattern. The correlation analysis can either be used for the determination of the incoming neutron velocity or for the scattered neutron velocity, depending of the position of the statistical chopper along the neutron trajectory. These two options are considered together with an evaluation of spectrometer performance compared to conventional spectroscopy, in particular for variable resolution elastic neutron scattering (RENS) studies of relaxation processes and the evolution of mean square displacements. A particular focus of our analysis is the unique feature of correlation spectroscopy of delivering high and resolution independent beam intensity, thus the same statistical chopper scan contains both high intensity and high resolution information at the same time, and can be evaluated both ways. This flexibility for variable resolution data handling represents an additional asset for correlation spectroscopy in variable resolution work. Changing the beam width for the same statistical chopper allows us to additionally trade resolution for intensity in two different experimental runs, similarly for conventional single slit chopper spectroscopy. The combination of these two approaches is a capability of particular value in neutron spectroscopy studies requiring variable energy resolution, such as the systematic study of quasi-elastic scattering and mean square displacement. Furthermore the statistical chopper approach is particularly advantageous for studying samples with low scattering intensity in the presence of a high, sample independent background.
Muldoon, Timothy J; Polydorides, Alexandros D; Maru, Dipen M; Harpaz, Noam; Harris, Michael T; Hofstettor, Wayne; Hiotis, Spiros P; Kim, Sanghyun A; Ky, Alex J; Anandasabapathy, Sharmila; Richards-Kortum, Rebecca
2012-01-01
Background Confocal endomicroscopy has revolutionized endoscopy by offering sub-cellular images of gastrointestinal epithelium; however, field-of-view is limited. There is a need for multi-scale endoscopy platforms that use widefield imaging to better direct placement of high-resolution probes. Design Feasibility Study Objective This study evaluates the feasibility of a single agent, proflavine hemisulfate, as a contrast medium during both widefield and high resolution imaging to characterize morphologic changes associated with a variety of gastrointestinal conditions. Setting U.T. M.D. Anderson Cancer Center (Houston, TX) and Mount Sinai Medical Center (New York, NY) Patients, Interventions, and Main Outcome Measurements Surgical specimens were obtained from 15 patients undergoing esophagectomy/colectomy. Proflavine, a vital fluorescent dye, was applied topically. Specimens were imaged with a widefield multispectral microscope and a high-resolution microendoscope. Images were compared to histopathology. Results Widefield-fluorescence imaging enhanced visualization of morphology, including the presence and spatial distribution of glands, glandular distortion, atrophy and crowding. High-resolution imaging of widefield-abnormal areas revealed that neoplastic progression corresponded to glandular heterogeneity and nuclear crowding in dysplasia, with glandular effacement in carcinoma. These widefield and high-resolution image features correlated well with histopathology. Limitations This imaging approach must be validated in vivo with a larger sample size. Conclusions Multi-scale proflavine-enhanced fluorescence imaging can delineate epithelial changes in a variety of gastrointestinal conditions. Distorted glandular features seen with widefield imaging could serve as a critical ‘bridge’ to high-resolution probe placement. An endoscopic platform combining the two modalities with a single vital-dye may facilitate point-of-care decision-making by providing real-time, in vivo diagnoses. PMID:22301343
Vital-dye enhanced fluorescence imaging of GI mucosa: metaplasia, neoplasia, inflammation.
Thekkek, Nadhi; Muldoon, Timothy; Polydorides, Alexandros D; Maru, Dipen M; Harpaz, Noam; Harris, Michael T; Hofstettor, Wayne; Hiotis, Spiros P; Kim, Sanghyun A; Ky, Alex Jenny; Anandasabapathy, Sharmila; Richards-Kortum, Rebecca
2012-04-01
Confocal endomicroscopy has revolutionized endoscopy by offering subcellular images of the GI epithelium; however, the field of view is limited. Multiscale endoscopy platforms that use widefield imaging are needed to better direct the placement of high-resolution probes. Feasibility study. This study evaluated the feasibility of a single agent, proflavine hemisulfate, as a contrast medium during both widefield and high-resolution imaging to characterize the morphologic changes associated with a variety of GI conditions. The University of Texas MD Anderson Cancer Center, Houston, Texas, and Mount Sinai Medical Center, New York, New York. PATIENTS, INTERVENTIONS, AND MAIN OUTCOME MEASUREMENTS: Resected specimens were obtained from 15 patients undergoing EMR, esophagectomy, or colectomy. Proflavine hemisulfate, a vital fluorescent dye, was applied topically. The specimens were imaged with a widefield multispectral microscope and a high-resolution microendoscope. The images were compared with histopathologic examination. Widefield fluorescence imaging enhanced visualization of morphology, including the presence and spatial distribution of glands, glandular distortion, atrophy, and crowding. High-resolution imaging of widefield abnormal areas revealed that neoplastic progression corresponded to glandular heterogeneity and nuclear crowding in dysplasia, with glandular effacement in carcinoma. These widefield and high-resolution image features correlated well with the histopathologic features. This imaging approach must be validated in vivo with a larger sample size. Multiscale proflavine-enhanced fluorescence imaging can delineate epithelial changes in a variety of GI conditions. Distorted glandular features seen with widefield imaging could serve as a critical bridge to high-resolution probe placement. An endoscopic platform combining the two modalities with a single vital dye may facilitate point-of-care decision making by providing real-time, in vivo diagnoses. Copyright © 2012 American Society for Gastrointestinal Endoscopy. Published by Mosby, Inc. All rights reserved.
Dual-TRACER: High resolution fMRI with constrained evolution reconstruction.
Li, Xuesong; Ma, Xiaodong; Li, Lyu; Zhang, Zhe; Zhang, Xue; Tong, Yan; Wang, Lihong; Sen Song; Guo, Hua
2018-01-01
fMRI with high spatial resolution is beneficial for studies in psychology and neuroscience, but is limited by various factors such as prolonged imaging time, low signal to noise ratio and scarcity of advanced facilities. Compressed Sensing (CS) based methods for accelerating fMRI data acquisition are promising. Other advanced algorithms like k-t FOCUSS or PICCS have been developed to improve performance. This study aims to investigate a new method, Dual-TRACER, based on Temporal Resolution Acceleration with Constrained Evolution Reconstruction (TRACER), for accelerating fMRI acquisitions using golden angle variable density spiral. Both numerical simulations and in vivo experiments at 3T were conducted to evaluate and characterize this method. Results show that Dual-TRACER can provide functional images with a high spatial resolution (1×1mm 2 ) under an acceleration factor of 20 while maintaining hemodynamic signals well. Compared with other investigated methods, dual-TRACER provides a better signal recovery, higher fMRI sensitivity and more reliable activation detection. Copyright © 2017 Elsevier Inc. All rights reserved.
Multimodal hard x-ray imaging with resolution approaching 10 nm for studies in material science
NASA Astrophysics Data System (ADS)
Yan, Hanfei; Bouet, Nathalie; Zhou, Juan; Huang, Xiaojing; Nazaretski, Evgeny; Xu, Weihe; Cocco, Alex P.; Chiu, Wilson K. S.; Brinkman, Kyle S.; Chu, Yong S.
2018-03-01
We report multimodal scanning hard x-ray imaging with spatial resolution approaching 10 nm and its application to contemporary studies in the field of material science. The high spatial resolution is achieved by focusing hard x-rays with two crossed multilayer Laue lenses and raster-scanning a sample with respect to the nanofocusing optics. Various techniques are used to characterize and verify the achieved focus size and imaging resolution. The multimodal imaging is realized by utilizing simultaneously absorption-, phase-, and fluorescence-contrast mechanisms. The combination of high spatial resolution and multimodal imaging enables a comprehensive study of a sample on a very fine length scale. In this work, the unique multimodal imaging capability was used to investigate a mixed ionic-electronic conducting ceramic-based membrane material employed in solid oxide fuel cells and membrane separations (compound of Ce0.8Gd0.2O2‑x and CoFe2O4) which revealed the existence of an emergent material phase and quantified the chemical complexity at the nanoscale.
Super-resolution biomolecular crystallography with low-resolution data.
Schröder, Gunnar F; Levitt, Michael; Brunger, Axel T
2010-04-22
X-ray diffraction plays a pivotal role in the understanding of biological systems by revealing atomic structures of proteins, nucleic acids and their complexes, with much recent interest in very large assemblies like the ribosome. As crystals of such large assemblies often diffract weakly (resolution worse than 4 A), we need methods that work at such low resolution. In macromolecular assemblies, some of the components may be known at high resolution, whereas others are unknown: current refinement methods fail as they require a high-resolution starting structure for the entire complex. Determining the structure of such complexes, which are often of key biological importance, should be possible in principle as the number of independent diffraction intensities at a resolution better than 5 A generally exceeds the number of degrees of freedom. Here we introduce a method that adds specific information from known homologous structures but allows global and local deformations of these homology models. Our approach uses the observation that local protein structure tends to be conserved as sequence and function evolve. Cross-validation with R(free) (the free R-factor) determines the optimum deformation and influence of the homology model. For test cases at 3.5-5 A resolution with known structures at high resolution, our method gives significant improvements over conventional refinement in the model as monitored by coordinate accuracy, the definition of secondary structure and the quality of electron density maps. For re-refinements of a representative set of 19 low-resolution crystal structures from the Protein Data Bank, we find similar improvements. Thus, a structure derived from low-resolution diffraction data can have quality similar to a high-resolution structure. Our method is applicable to the study of weakly diffracting crystals using X-ray micro-diffraction as well as data from new X-ray light sources. Use of homology information is not restricted to X-ray crystallography and cryo-electron microscopy: as optical imaging advances to subnanometre resolution, it can use similar tools.
2014-01-01
Comparison of footprints from various image sensors used in this study . Landsat (blue) is in the upper left panel, SPOT (yellow) is in the upper right...the higher resolution sensors evaluated as part of this study are limited to four spectral bands. Moderate resolution processing. ArcGIS ...moderate, effective useful coverage may be much more limited for a scene that includes significant amounts of water. Throughout the study period, SPOT 4
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li Dan; Zhao Wei
2008-07-15
An indirect flat panel imager (FPI) with programmable avalanche gain and field emitter array (FEA) readout is being investigated for low-dose and high resolution x-ray imaging. It is made by optically coupling a structured x-ray scintillator, e.g., thallium (Tl) doped cesium iodide (CsI), to an amorphous selenium (a-Se) avalanche photoconductor called high-gain avalanche rushing amorphous photoconductor (HARP). The charge image created by the scintillator/HARP (SHARP) combination is read out by the electron beams emitted from the FEA. The proposed detector is called scintillator avalanche photoconductor with high resolution emitter readout (SAPHIRE). The programmable avalanche gain of HARP can improve themore » low dose performance of indirect FPI while the FEA can be made with pixel sizes down to 50 {mu}m. Because of the avalanche gain, a high resolution type of CsI (Tl), which has not been widely used in indirect FPI due to its lower light output, can be used to improve the high spatial frequency performance. The purpose of the present article is to investigate the factors affecting the spatial resolution of SAPHIRE. Since the resolution performance of the SHARP combination has been well studied, the focus of the present work is on the inherent resolution of the FEA readout method. The lateral spread of the electron beam emitted from a 50 {mu}mx50 {mu}m pixel FEA was investigated with two different electron-optical designs: mesh-electrode-only and electrostatic focusing. Our results showed that electrostatic focusing can limit the lateral spread of electron beams to within the pixel size of down to 50 {mu}m. Since electrostatic focusing is essentially independent of signal intensity, it will provide excellent spatial uniformity.« less
Luckman, Matthew; Hans, Didier; Cortez, Natalia; Nishiyama, Kyle K; Agarawal, Sanchita; Zhang, Chengchen; Nikkel, Lucas; Iyer, Sapna; Fusaro, Maria; Guo, Edward X; McMahon, Donald J; Shane, Elizabeth; Nickolas, Thomas L
2017-04-03
Studies using high-resolution peripheral quantitative computed tomography showed progressive abnormalities in cortical and trabecular microarchitecture and biomechanical competence over the first year after kidney transplantation. However, high-resolution peripheral computed tomography is a research tool lacking wide availability. In contrast, the trabecular bone score is a novel and widely available tool that uses gray-scale variograms of the spine image from dual-energy x-ray absorptiometry to assess trabecular quality. There are no studies assessing whether trabecular bone score characterizes bone quality in kidney transplant recipients. Between 2009 and 2010, we conducted a study to assess changes in peripheral skeletal microarchitecture, measured by high-resolution peripheral computed tomography, during the first year after transplantation in 47 patients managed with early corticosteroid-withdrawal immunosuppression. All adult first-time transplant candidates were eligible. Patients underwent imaging with high-resolution peripheral computed tomography and dual-energy x-ray absorptiometry pretransplantation and 3, 6, and 12 months post-transplantation. We now test if, during the first year after transplantation, trabecular bone score assesses the evolution of bone microarchitecture and biomechanical competence as determined by high-resolution peripheral computed tomography. At baseline and follow-up, among the 72% and 78%, respectively, of patients having normal bone mineral density by dual-energy x-ray absorptiometry, 53% and 50%, respectively, were classified by trabecular bone score as having high fracture risk. At baseline, trabecular bone score correlated with spine, hip, and ultradistal radius bone mineral density by dual-energy x-ray absorptiometry and cortical area, density, thickness, and porosity; trabecular density, thickness, separation, and heterogeneity; and stiffness and failure load by high-resolution peripheral computed tomography. Longitudinally, each percentage increase in trabecular bone score was associated with increases in trabecular number (0.35%±1.4%); decreases in trabecular thickness (-0.45%±0.15%), separation (-0.40%±0.15%), and network heterogeneity (-0.48%±0.20%); and increases in failure load (0.22%±0.09%) by high-resolution peripheral computed tomography (all P <0.05). Trabecular bone score may be a useful method to assess and monitor bone quality and strength and classify fracture risk in kidney transplant recipients. Copyright © 2017 by the American Society of Nephrology.
Luckman, Matthew; Hans, Didier; Cortez, Natalia; Nishiyama, Kyle K.; Agarawal, Sanchita; Zhang, Chengchen; Nikkel, Lucas; Iyer, Sapna; Fusaro, Maria; Guo, Edward X.; McMahon, Donald J.; Shane, Elizabeth
2017-01-01
Background and objectives Studies using high-resolution peripheral quantitative computed tomography showed progressive abnormalities in cortical and trabecular microarchitecture and biomechanical competence over the first year after kidney transplantation. However, high-resolution peripheral computed tomography is a research tool lacking wide availability. In contrast, the trabecular bone score is a novel and widely available tool that uses gray-scale variograms of the spine image from dual-energy x-ray absorptiometry to assess trabecular quality. There are no studies assessing whether trabecular bone score characterizes bone quality in kidney transplant recipients. Design, settings, participants, & measurements Between 2009 and 2010, we conducted a study to assess changes in peripheral skeletal microarchitecture, measured by high-resolution peripheral computed tomography, during the first year after transplantation in 47 patients managed with early corticosteroid–withdrawal immunosuppression. All adult first-time transplant candidates were eligible. Patients underwent imaging with high-resolution peripheral computed tomography and dual-energy x-ray absorptiometry pretransplantation and 3, 6, and 12 months post-transplantation. We now test if, during the first year after transplantation, trabecular bone score assesses the evolution of bone microarchitecture and biomechanical competence as determined by high-resolution peripheral computed tomography. Results At baseline and follow-up, among the 72% and 78%, respectively, of patients having normal bone mineral density by dual-energy x-ray absorptiometry, 53% and 50%, respectively, were classified by trabecular bone score as having high fracture risk. At baseline, trabecular bone score correlated with spine, hip, and ultradistal radius bone mineral density by dual-energy x-ray absorptiometry and cortical area, density, thickness, and porosity; trabecular density, thickness, separation, and heterogeneity; and stiffness and failure load by high-resolution peripheral computed tomography. Longitudinally, each percentage increase in trabecular bone score was associated with increases in trabecular number (0.35%±1.4%); decreases in trabecular thickness (−0.45%±0.15%), separation (−0.40%±0.15%), and network heterogeneity (−0.48%±0.20%); and increases in failure load (0.22%±0.09%) by high-resolution peripheral computed tomography (all P<0.05). Conclusions Trabecular bone score may be a useful method to assess and monitor bone quality and strength and classify fracture risk in kidney transplant recipients. PMID:28348031
The relationship between Class I and Class II methanol masers at high angular resolution
NASA Astrophysics Data System (ADS)
McCarthy, T. P.; Ellingsen, S. P.; Voronkov, M. A.; Cimò, G.
2018-06-01
We have used the Australia Telescope Compact Array (ATCA) to make the first high-resolution observations of a large sample of class I methanol masers in the 95-GHz (80-71A+) transition. The target sources consist of a statistically complete sample of 6.7-GHz class II methanol masers with an associated 95-GHz class I methanol maser, enabling a detailed study of the relationship between the two methanol maser classes at arcsecond angular resolution. These sources have been previously observed at high resolution in the 36- and 44-GHz transitions, allowing comparison between all three class I maser transitions. In total, 172 95-GHz maser components were detected across the 32 target sources. We find that at high resolution, when considering matched maser components, a 3:1 flux density ratio is observed between the 95- and 44-GHz components, consistent with a number of previous lower angular resolution studies. The 95-GHz maser components appear to be preferentially located closer to the driving sources and this may indicate that this transition is more strongly inverted nearby to background continuum sources. We do not observe an elevated association rate between 95-GHz maser emission and more evolved sources, as indicated by the presence of 12.2-GHz class II masers. We find that in the majority of cases where both class I and class II methanol emission is observed, some component of the class I emission is associated with a likely outflow candidate.
NASA Astrophysics Data System (ADS)
Lal, Cerine; McGrath, James; Subhash, Hrebesh; Rani, Sweta; Ritter, Thomas; Leahy, Martin
2016-03-01
Optical Coherence Tomography (OCT) is a non-invasive 3 dimensional optical imaging modality that enables high resolution cross sectional imaging in biological tissues and materials. Its high axial and lateral resolution combined with high sensitivity, imaging depth and wide field of view makes it suitable for wide variety of high resolution medical imaging applications at clinically relevant speed. With the advent of swept source lasers, the imaging speed of OCT has increased considerably in recent years. OCT has been used in ophthalmology to study dynamic changes occurring in the cornea and iris, thereby providing physiological and pathological changes that occur within the anterior segment structures such as in glaucoma, during refractive surgery, lamellar keratoplasty and corneal diseases. In this study, we assess the changes in corneal thickness in the anterior segment of the eye during wound healing process in a rat corneal burn model following stem cell therapy using high speed swept source OCT.
NASA Technical Reports Server (NTRS)
Grecu, Mircea; Anagnostou, Emmanouil N.; Olson, William S.; Starr, David OC. (Technical Monitor)
2002-01-01
In this study, a technique for estimating vertical profiles of precipitation from multifrequency, multiresolution active and passive microwave observations is investigated using both simulated and airborne data. The technique is applicable to the Tropical Rainfall Measuring Mission (TRMM) satellite multi-frequency active and passive observations. These observations are characterized by various spatial and sampling resolutions. This makes the retrieval problem mathematically more difficult and ill-determined because the quality of information decreases with decreasing resolution. A model that, given reflectivity profiles and a small set of parameters (including the cloud water content, the intercept drop size distribution, and a variable describing the frozen hydrometeor properties), simulates high-resolution brightness temperatures is used. The high-resolution simulated brightness temperatures are convolved at the real sensor resolution. An optimal estimation procedure is used to minimize the differences between simulated and observed brightness temperatures. The retrieval technique is investigated using cloud model synthetic and airborne data from the Fourth Convection And Moisture Experiment. Simulated high-resolution brightness temperatures and reflectivities and airborne observation strong are convolved at the resolution of the TRMM instruments and retrievals are performed and analyzed relative to the reference data used in observations synthesis. An illustration of the possible use of the technique in satellite rainfall estimation is presented through an application to TRMM data. The study suggests improvements in combined active and passive retrievals even when the instruments resolutions are significantly different. Future work needs to better quantify the retrievals performance, especially in connection with satellite applications, and the uncertainty of the models used in retrieval.
NASA Astrophysics Data System (ADS)
Huang, Danqing; Yan, Peiwen; Zhu, Jian; Zhang, Yaocun; Kuang, Xueyuan; Cheng, Jing
2018-04-01
The uncertainty of global summer precipitation simulated by the 23 CMIP5 CGCMs and the possible impacts of model resolutions are investigated in this study. Large uncertainties exist over the tropical and subtropical regions, which can be mainly attributed to convective precipitation simulation. High-resolution models (HRMs) and low-resolution models (LRMs) are further investigated to demonstrate their different contributions to the uncertainties of the ensemble mean. It shows that the high-resolution model ensemble means (HMME) and low-resolution model ensemble mean (LMME) mitigate the biases between the MME and observation over most continents and oceans, respectively. The HMME simulates more precipitation than the LMME over most oceans, but less precipitation over some continents. The dominant precipitation category in the HRMs (LRMs) is the heavy precipitation (moderate precipitation) over the tropic regions. The combinations of convective and stratiform precipitation are also quite different: the HMME has much higher ratio of stratiform precipitation while the LMME has more convective precipitation. Finally, differences in precipitation between the HMME and LMME can be traced to their differences in the SST simulations via the local and remote air-sea interaction.
Modeling soil temperature change in Seward Peninsula, Alaska
NASA Astrophysics Data System (ADS)
Debolskiy, M. V.; Nicolsky, D.; Romanovsky, V. E.; Muskett, R. R.; Panda, S. K.
2017-12-01
Increasing demand for assessment of climate change-induced permafrost degradation and its consequences promotes creation of high-resolution modeling products of soil temperature changes. This is especially relevant for areas with highly vulnerable warm discontinuous permafrost in the Western Alaska. In this study, we apply ecotype-based modeling approach to simulate high-resolution permafrost distribution and its temporal dynamics in Seward Peninsula, Alaska. To model soil temperature dynamics, we use a transient soil heat transfer model developed at the Geophysical Institute Permafrost Laboratory (GIPL-2). The model solves one dimensional nonlinear heat equation with phase change. The developed model is forced with combination of historical climate and different future scenarios for 1900-2100 with 2x2 km resolution prepared by Scenarios Network for Alaska and Arctic Planning (2017). Vegetation, snow and soil properties are calibrated by ecotype and up-scaled by using Alaska Existing Vegetation Type map for Western Alaska (Flemming, 2015) with 30x30 m resolution provided by Geographic Information Network of Alaska (UAF). The calibrated ecotypes cover over 75% of the study area. We calibrate the model using a data assimilation technique utilizing available observations of air, surface and sub-surface temperatures and snow cover collected by various agencies and research groups (USGS, Geophysical Institute, USDA). The calibration approach takes into account a natural variability between stations in the same ecotype and finds an optimal set of model parameters (snow and soil properties) within the study area. This approach allows reduction in microscale heterogeneity and aggregated soil temperature data from shallow boreholes which is highly dependent on local conditions. As a result of this study we present a series of preliminary high resolution maps for the Seward Peninsula showing changes in the active layer depth and ground temperatures for the current climate and future climate change scenarios.
Study of high resolution x-ray spectrometer concepts for NIF experiments
NASA Astrophysics Data System (ADS)
Hill, K. W.; Bitter, M.; Delgado-Aparicio, L.; Efthimion, P.; Gao, L.; Maddox, J.; Pablant, N. A.; Beiersdorfer, P.; Chen, H.; Coppari, F.; Ma, T.; Nora, R.; Scott, H.; Schneider, M.; Mancini, R.
2015-11-01
Options have been investigated for DIM-insertable (Diagnostic Instrument Manipulator) high resolution (E/ ΔE ~ 3000 - 5000) Bragg crystal x-ray spectrometers for experiments on the NIF. Of interest are time integrated Cu K- and Ta L-edge absorption spectra and time resolved Kr He- β emission from compressed symcaps for inference of electron temperature from dielectronic satellites and electron density from Stark broadening. Cylindrical and conical von Hamos, Johann, and advanced high throughput designs have been studied. Predicted x-ray intensities, spectrometer throughputs, spectral resolution, and spatial focusing properties, as well as lab evaluations of some spectrometer candidates will be presented. Performed under the auspices of the US DOE by PPPL under contract DE-AC02-09CH11466 and by LLNL under contract DE-AC52-07NA27344.
Ringler, Max; Mangione, Rosanna; Pašukonis, Andrius; Rainer, Gerhard; Gyimesi, Kristin; Felling, Julia; Kronaus, Hannes; Réjou-Méchain, Maxime; Chave, Jérôme; Reiter, Karl; Ringler, Eva
2015-01-01
For animals with spatially complex behaviours at relatively small scales, the resolution of a global positioning system (GPS) receiver location is often below the resolution needed to correctly map animals’ spatial behaviour. Natural conditions such as canopy cover, canyons or clouds can further degrade GPS receiver reception. Here we present a detailed, high-resolution map of a 4.6 ha Neotropical river island and a 8.3 ha mainland plot with the location of every tree >5 cm DBH and all structures on the forest floor, which are relevant to our study species, the territorial frog Allobates femoralis (Dendrobatidae). The map was derived using distance- and compass-based survey techniques, rooted on dGPS reference points, and incorporates altitudinal information based on a LiDAR survey of the area. PMID:27053943
NASA Astrophysics Data System (ADS)
Fuentes-Franco, Ramon; Koenigk, Torben
2017-04-01
Recently, an observational study has shown that sea ice variations in Barents Sea seem to be important for the sign of the following winter NAO (Koenigk et al. 2016). It has also been found that amplitude and extension of the Sea Level Pressure (SLP) patterns are modulated by Greenland and Labrador Seas ice areas. Therefore, Earth System Models participating in the PRIMAVERA Project are used to study the impact of resolution in ocean models in reproducing the previously mentioned observed correlation patterns between Sea Ice Concentration (SIC) and the SLP. When using ensembles of high ocean resolution (0.25 degrees) and low ocean resolution (1 degree) simulations, we found that the correlation sign between sea ice concentration over the Central Arctic, the Barents/Kara Seas and the Northern Hemisphere is similar to observations in the higher ocean resolution ensemble, although the amplitude is underestimated. In contrast, the low resolution ensemble shows opposite correlation patterns compared to observations. In general, high ocean resolution simulations show more similar results to observations than the low resolution simulations. Similarly, in order to study the mentioned observed SIC-SLP relationship reported by Koenigk et al (2016), we analyzed the impact of the use of pre-industrial and historical external forcing in the simulations. When using same forcing ensembles, we found that the correlation sign between SIC and SLP does not show a systematic behavior dependent on the use of different external forcing (pre-industrial or present day) as it does when using different ocean resolutions.
2014-08-01
and in (b) a standard animal model of prostate cancer. In the preliminary in-vitro study , imaging resolution, contrast to tissue ratio, and lesion...detectability will be assessed relative to a Siemens EV- 8C4 transrectal ultrasound probe. In the in-vivo study , molecular imaging and microvascular...lesions will be imaged at several axial depths using our prototype array and the Siemens EV-8C4 clinical TRUS probe. A blinded reader study will be
2015-08-01
prostate cancer. In the preliminary in-vitro study , imaging resolution, contrast to tissue ratio, and lesion detectability will be assessed relative to...a Siemens EV- 8C4 transrectal ultrasound probe. In the in-vivo study , molecular imaging and microvascular mapping will both be performed to assess...single element tests, years 2 and 3 have included progress towards the design of the final a dual frequency linear array. These studies included the
On the Importance of Spatial Resolution for Flap Side Edge Noise Prediction
NASA Technical Reports Server (NTRS)
Mineck, Raymond E.; Khorrami, Mehdi R.
2017-01-01
A spatial resolution study of flap tip flow and the effects on the farfield noise signature for an 18%-scale, semispan Gulfstream aircraft model are presented. The NASA FUN3D unstructured, compressible Navier-Stokes solver was used to perform the highly resolved, time-dependent, detached eddy simulations of the flow field associated with the flap for this high-fidelity aircraft model. Following our previous work on the same model, the latest computations were undertaken to determine the causes of deficiencies observed in our earlier predictions of the steady and unsteady surface pressures and off-surface flow field at the flap tip regions, in particular the outboard tip area, where the presence of a cavity at the side-edge produces very complex flow features and interactions. The present results show gradual improvement in steady loading at the outboard flap edge region with increasing spatial resolution, yielding more accurate fluctuating surface pressures, off-surface flow field, and farfield noise with improved high-frequency content when compared with wind tunnel measurements. The spatial resolution trends observed in the present study demonstrate that the deficiencies reported in our previous computations are mostly caused by inadequate spatial resolution and are not related to the turbulence model.
Simulation of Wind Profile Perturbations for Launch Vehicle Design
NASA Technical Reports Server (NTRS)
Adelfang, S. I.
2004-01-01
Ideally, a statistically representative sample of measured high-resolution wind profiles with wavelengths as small as tens of meters is required in design studies to establish aerodynamic load indicator dispersions and vehicle control system capability. At most potential launch sites, high- resolution wind profiles may not exist. Representative samples of Rawinsonde wind profiles to altitudes of 30 km are more likely to be available from the extensive network of measurement sites established for routine sampling in support of weather observing and forecasting activity. Such a sample, large enough to be statistically representative of relatively large wavelength perturbations, would be inadequate for launch vehicle design assessments because the Rawinsonde system accurately measures wind perturbations with wavelengths no smaller than 2000 m (1000 m altitude increment). The Kennedy Space Center (KSC) Jimsphere wind profiles (150/month and seasonal 2 and 3.5-hr pairs) are the only adequate samples of high resolution profiles approx. 150 to 300 m effective resolution, but over-sampled at 25 m intervals) that have been used extensively for launch vehicle design assessments. Therefore, a simulation process has been developed for enhancement of measured low-resolution Rawinsonde profiles that would be applicable in preliminary launch vehicle design studies at launch sites other than KSC.
XPS Study of Oxide/GaAs and SiO2/Si Interfaces
NASA Technical Reports Server (NTRS)
Grunthaner, F. J.; Grunthaner, P. J.; Vasquez, R. P.; Lewis, B. F.; Maserjian, J.; Madhukar, A.
1982-01-01
Concepts developed in study of SiO2/Si interface applied to analysis of native oxide/GaAs interface. High-resolution X-ray photoelectron spectroscopy (XPS) has been combined with precise chemical-profiling technique and resolution-enhancement methods to study stoichiometry of transitional layer. Results are presented in report now available.
High Quality Data for Grid Integration Studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clifton, Andrew; Draxl, Caroline; Sengupta, Manajit
As variable renewable power penetration levels increase in power systems worldwide, renewable integration studies are crucial to ensure continued economic and reliable operation of the power grid. The existing electric grid infrastructure in the US in particular poses significant limitations on wind power expansion. In this presentation we will shed light on requirements for grid integration studies as far as wind and solar energy are concerned. Because wind and solar plants are strongly impacted by weather, high-resolution and high-quality weather data are required to drive power system simulations. Future data sets will have to push limits of numerical weather predictionmore » to yield these high-resolution data sets, and wind data will have to be time-synchronized with solar data. Current wind and solar integration data sets are presented. The Wind Integration National Dataset (WIND) Toolkit is the largest and most complete grid integration data set publicly available to date. A meteorological data set, wind power production time series, and simulated forecasts created using the Weather Research and Forecasting Model run on a 2-km grid over the continental United States at a 5-min resolution is now publicly available for more than 126,000 land-based and offshore wind power production sites. The National Solar Radiation Database (NSRDB) is a similar high temporal- and spatial resolution database of 18 years of solar resource data for North America and India. The need for high-resolution weather data pushes modeling towards finer scales and closer synchronization. We also present how we anticipate such datasets developing in the future, their benefits, and the challenges with using and disseminating such large amounts of data.« less
Berg, A; Pernkopf, M; Waldhäusl, C; Schmidt, W; Moser, E
2004-09-07
Precise methods of modem radiation therapy such as intensity modulated radiotherapy (IMRT), brachytherapy (BT) and high LET irradiation allow for high dose localization in volumes of a few mm3. However, most dosimetry methods-ionization chambers, TLD arrangements or silicon detectors, for example-are not capable of detecting sub-mm dose variations or do not allow for simple dose imaging. Magnetic resonance based polymer dosimetry (MRPD) appears to be well suited to three-dimensional high resolution relative dosimetry but the spatial resolution based on a systematic modulation transfer function (MTF) approach has not yet been investigated. We offer a theoretical construct for addressing the spatial resolution in different dose imaging systems, i.e. the dose modulation transfer function (DMTF) approach, an experimental realization of this concept with a phantom and quantitative comparisons between two dosimetric systems: polymer gel and film dosimetry. Polymer gel samples were irradiated by Co-60 photons through an absorber grid which is characterized by periodic structures of different spatial period (a), the smallest one at width of a/2 = 280 microm. The modulation in dose under the grid is visualized via calibrated, high resolution, parameter-selective (T2) and dose images based on multi-echo MR imaging. The DMTF is obtained from the modulation depth of the spin-spin relaxation time (T2) after calibration. Voxel sizes below 0.04 mm3 could be achieved, which are significantly smaller than those reported in MR based dose imaging on polymer gels elsewhere, using a powerful gradient system and a highly sensitive small birdcage resonator on a whole-body 3T MR scanner. Dose modulations at 22% of maximum dose amplitude could be observed at about 2 line pairs per mm. The polymer DMTF results are compared to those of a typical clinical film-scanner system. This study demonstrates that MR based gel dosimetry at 200 microm pixel resolution might even be superior, with reference to relative spatial resolution, to the results of a standard film-scanner system offering a nominal scan resolution of 200 microm.
NASA Astrophysics Data System (ADS)
Semionkin, V. A.; Neshev, F. G.; Tsurin, V. A.; Milder, O. B.; Oshtrakh, M. I.
2010-03-01
Proton irradiated Hadfield steel foil was studied using transmission Mössbauer spectroscopy with high velocity resolution and conversion electron Mössbauer spectroscopy. It was shown that proton irradiation leads to structural changes in the foil as well as to surface oxidation with ferric hydrous oxide formation (ferrihydrite). Moreover, oxidation on the foil underside was higher than on the foil right side.
Data fusion of Landsat TM and IRS images in forest classification
Guangxing Wang; Markus Holopainen; Eero Lukkarinen
2000-01-01
Data fusion of Landsat TM images and Indian Remote Sensing satellite panchromatic image (IRS-1C PAN) was studied and compared to the use of TM or IRS image only. The aim was to combine the high spatial resolution of IRS-1C PAN to the high spectral resolution of Landsat TM images using a data fusion algorithm. The ground truth of the study was based on a sample of 1,020...
Measuring Large-Scale Social Networks with High Resolution
Stopczynski, Arkadiusz; Sekara, Vedran; Sapiezynski, Piotr; Cuttone, Andrea; Madsen, Mette My; Larsen, Jakob Eg; Lehmann, Sune
2014-01-01
This paper describes the deployment of a large-scale study designed to measure human interactions across a variety of communication channels, with high temporal resolution and spanning multiple years—the Copenhagen Networks Study. Specifically, we collect data on face-to-face interactions, telecommunication, social networks, location, and background information (personality, demographics, health, politics) for a densely connected population of 1 000 individuals, using state-of-the-art smartphones as social sensors. Here we provide an overview of the related work and describe the motivation and research agenda driving the study. Additionally, the paper details the data-types measured, and the technical infrastructure in terms of both backend and phone software, as well as an outline of the deployment procedures. We document the participant privacy procedures and their underlying principles. The paper is concluded with early results from data analysis, illustrating the importance of multi-channel high-resolution approach to data collection. PMID:24770359
Greschus, Susanne; Kuchenbuch, Tim; Plötz, Christian; Obert, Martin; Traupe, Horst; Padberg, Winfried; Grau, Veronika; Hirschburger, Markus
2009-01-01
Noninvasive assessment of experimental lung transplants with high resolution would be favorable to exclude technical failure and to follow up graft outcome in the living animal. Here we describe a flat-panel Volumetric Computed Tomography (fpVCT) technique using a prototype scanner. Lung transplantation was performed in allogeneic as well as in corresponding syngeneic rat strain combinations. At different time points post-transplantation, fpVCT was performed. Lung transplants can be visualized in the living rat with high-spatial resolution. FpVCT allows a detailed analysis of the lung and the bronchi. Infiltrates developing during rejection episodes can be diagnosed and follow-up studies can easily be performed. With fpVCT it is possible to control the technical success of the surgical procedure. Graft rejection can be visualized individually in the living animal noninvasively, which is highly advantageous for studying the pathogenesis of chronic rejection or to monitor new therapies.
NASA Astrophysics Data System (ADS)
Abbasi, R. U.; Abu-Zayyad, T.; Amann, J. F.; Archbold, G.; Atkins, R.; Bellido, J. A.; Belov, K.; Belz, J. W.; BenZvi, S.; Bergman, D. R.; Boyer, J. H.; Burt, G. W.; Cao, Z.; Clay, R. W.; Connolly, B. M.; Dawson, B. R.; Deng, W.; Fedorova, Y.; Findlay, J.; Finley, C. B.; Hanlon, W. F.; Hoffman, C. M.; Holzscheiter, M. H.; Hughes, G. A.; Hüntemeyer, P.; Jui, C. C. H.; Kim, K.; Kirn, M. A.; Knapp, B. C.; Loh, E. C.; Maestas, M. M.; Manago, N.; Mannel, E. J.; Marek, L. J.; Martens, K.; Matthews, J. A. J.; Matthews, J. N.; O'Neill, A.; Painter, C. A.; Perera, L.; Reil, K.; Riehle, R.; Roberts, M. D.; Sasaki, M.; Schnetzer, S. R.; Seman, M.; Simpson, K. M.; Sinnis, G.; Smith, J. D.; Snow, R.; Sokolsky, P.; Song, C.; Springer, R. W.; Stokes, B. T.; Thomas, J. R.; Thomas, S. B.; Thomson, G. B.; Tupa, D.; Westerhoff, S.; Wiencke, L. R.; Zech, A.; HIRES Collaboration
2004-08-01
The High Resolution Fly's Eye (HiRes) experiment is an air fluorescence detector which, operating in stereo mode, has a typical angular resolution of 0.6d and is sensitive to cosmic rays with energies above 1018 eV. The HiRes cosmic-ray detector is thus an excellent instrument for the study of the arrival directions of ultra-high-energy cosmic rays. We present the results of a search for anisotropies in the distribution of arrival directions on small scales (<5°) and at the highest energies (>1019 eV). The search is based on data recorded between 1999 December and 2004 January, with a total of 271 events above 1019 eV. No small-scale anisotropy is found, and the strongest clustering found in the HiRes stereo data is consistent at the 52% level with the null hypothesis of isotropically distributed arrival directions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walker, Katherine L.; Judenhofer, Martin S.; Cherry, Simon R.
In preclinical single-photon emission computed tomography (SPECT) system development the primary objective has been to improve spatial resolution by using novel parallel-hole or multi-pinhole collimator geometries. Furthermore, such high-resolution systems have relatively poor sensitivity (typically 0.01% to 0.1%). In contrast, a system that does not use collimators can achieve very high-sensitivity. Here we present a high-sensitivity un-collimated detector single-photon imaging (UCD-SPI) system for the imaging of both small animals and plants. This scanner consists of two thin, closely spaced, pixelated scintillator detectors that use NaI(Tl), CsI(Na), or BGO. The performance of the system has been characterized by measuring sensitivity, spatialmore » resolution, linearity, detection limits, and uniformity. With 99mTc (140 keV) at the center of the field of view (20 mm scintillator separation), the sensitivity was measured to be 31.8% using the NaI(Tl) detectors and 40.2% with CsI(Na). The best spatial resolution (FWHM when the image formed as the geometric mean of the two detector heads, 20 mm scintillator separation) was 19.0 mm for NaI(Tl) and 11.9 mm for CsI(Na) at 140 keV, and 19.5 mm for BGO at 1116 keV, which is somewhat degraded compared to the cm-scale resolution obtained with only one detector head and a close source. The quantitative accuracy of the system’s linearity is better than 2% with detection down to activity levels of 100 nCi. Two in vivo animal studies (a renal scan using 99mTc MAG-3 and a thyroid scan with 123I) and one plant study (a 99mTcO 4- xylem transport study) highlight the unique capabilities of this UCD-SPI system. From the renal scan, we observe approximately a one thousand-fold increase in sensitivity compared to the Siemens Inveon SPECT/CT scanner. In conclusion, UCD-SPI is useful for many imaging tasks that do not require excellent spatial resolution, such as high-throughput screening applications, simple radiotracer uptake studies in tumor xenografts, dynamic studies where very good temporal resolution is critical, or in planta imaging of radioisotopes at low concentrations.« less
Theoretical Problems in High Resolution Solar Physics, 2
NASA Technical Reports Server (NTRS)
Athay, G. (Editor); Spicer, D. S. (Editor)
1987-01-01
The Science Working Group for the High Resolution Solar Observatory (HRSO) laid plans beginning in 1984 for a series of workshops designed to stimulate a broadbased input from the scientific community to the HRSO mission. These workshops have the dual objectives of encouraging an early start on the difficult theoretical problems in radiative transfer, magnetohydrodynamics, and plasma physics that will be posed by the HRSO data, and maintaining current discussions of results in high resolution solar studies. This workshop was the second in the series. The workshop format presented invited review papers during the formal sessions and contributed poster papers for discussions during open periods. Both are presented.
Compressed Sensing for fMRI: Feasibility Study on the Acceleration of Non-EPI fMRI at 9.4T
Kim, Seong-Gi; Ye, Jong Chul
2015-01-01
Conventional functional magnetic resonance imaging (fMRI) technique known as gradient-recalled echo (GRE) echo-planar imaging (EPI) is sensitive to image distortion and degradation caused by local magnetic field inhomogeneity at high magnetic fields. Non-EPI sequences such as spoiled gradient echo and balanced steady-state free precession (bSSFP) have been proposed as an alternative high-resolution fMRI technique; however, the temporal resolution of these sequences is lower than the typically used GRE-EPI fMRI. One potential approach to improve the temporal resolution is to use compressed sensing (CS). In this study, we tested the feasibility of k-t FOCUSS—one of the high performance CS algorithms for dynamic MRI—for non-EPI fMRI at 9.4T using the model of rat somatosensory stimulation. To optimize the performance of CS reconstruction, different sampling patterns and k-t FOCUSS variations were investigated. Experimental results show that an optimized k-t FOCUSS algorithm with acceleration by a factor of 4 works well for non-EPI fMRI at high field under various statistical criteria, which confirms that a combination of CS and a non-EPI sequence may be a good solution for high-resolution fMRI at high fields. PMID:26413503
Study on a High Compression Processing for Video-on-Demand e-learning System
NASA Astrophysics Data System (ADS)
Nomura, Yoshihiko; Matsuda, Ryutaro; Sakamoto, Ryota; Sugiura, Tokuhiro; Matsui, Hirokazu; Kato, Norihiko
The authors proposed a high-quality and small-capacity lecture-video-file creating system for distance e-learning system. Examining the feature of the lecturing scene, the authors ingeniously employ two kinds of image-capturing equipment having complementary characteristics : one is a digital video camera with a low resolution and a high frame rate, and the other is a digital still camera with a high resolution and a very low frame rate. By managing the two kinds of image-capturing equipment, and by integrating them with image processing, we can produce course materials with the greatly reduced file capacity : the course materials satisfy the requirements both for the temporal resolution to see the lecturer's point-indicating actions and for the high spatial resolution to read the small written letters. As a result of a comparative experiment, the e-lecture using the proposed system was confirmed to be more effective than an ordinary lecture from the viewpoint of educational effect.
Damage extraction of buildings in the 2015 Gorkha, Nepal earthquake from high-resolution SAR data
NASA Astrophysics Data System (ADS)
Yamazaki, Fumio; Bahri, Rendy; Liu, Wen; Sasagawa, Tadashi
2016-05-01
Satellite remote sensing is recognized as one of the effective tools for detecting and monitoring affected areas due to natural disasters. Since SAR sensors can capture images not only at daytime but also at nighttime and under cloud-cover conditions, they are especially useful at an emergency response period. In this study, multi-temporal high-resolution TerraSAR-X images were used for damage inspection of the Kathmandu area, which was severely affected by the April 25, 2015 Gorkha Earthquake. The SAR images obtained before and after the earthquake were utilized for calculating the difference and correlation coefficient of backscatter. The affected areas were identified by high values of the absolute difference and low values of the correlation coefficient. The post-event high-resolution optical satellite images were employed as ground truth data to verify our results. Although it was difficult to estimate the damage levels for individual buildings, the high resolution SAR images could illustrate their capability in detecting collapsed buildings at emergency response times.
Radiometric infrared focal plane array imaging system for thermographic applications
NASA Technical Reports Server (NTRS)
Esposito, B. J.; Mccafferty, N.; Brown, R.; Tower, J. R.; Kosonocky, W. F.
1992-01-01
This document describes research performed under the Radiometric Infrared Focal Plane Array Imaging System for Thermographic Applications contract. This research investigated the feasibility of using platinum silicide (PtSi) Schottky-barrier infrared focal plane arrays (IR FPAs) for NASA Langley's specific radiometric thermal imaging requirements. The initial goal of this design was to develop a high spatial resolution radiometer with an NETD of 1 percent of the temperature reading over the range of 0 to 250 C. The proposed camera design developed during this study and described in this report provides: (1) high spatial resolution (full-TV resolution); (2) high thermal dynamic range (0 to 250 C); (3) the ability to image rapid, large thermal transients utilizing electronic exposure control (commandable dynamic range of 2,500,000:1 with exposure control latency of 33 ms); (4) high uniformity (0.5 percent nonuniformity after correction); and (5) high thermal resolution (0.1 C at 25 C background and 0.5 C at 250 C background).
Application of high resolution synchrotron micro-CT radiation in dental implant osseointegration.
Neldam, Camilla Albeck; Lauridsen, Torsten; Rack, Alexander; Lefolii, Tore Tranberg; Jørgensen, Niklas Rye; Feidenhans'l, Robert; Pinholt, Else Marie
2015-06-01
The purpose of this study was to describe a refined method using high-resolution synchrotron radiation microtomography (SRmicro-CT) to evaluate osseointegration and peri-implant bone volume fraction after titanium dental implant insertion. SRmicro-CT is considered gold standard evaluating bone microarchitecture. Its high resolution, high contrast, and excellent high signal-to-noise-ratio all contribute to the highest spatial resolutions achievable today. Using SRmicro-CT at a voxel size of 5 μm in an experimental goat mandible model, the peri-implant bone volume fraction was found to quickly increase to 50% as the radial distance from the implant surface increased, and levelled out to approximately 80% at a distance of 400 μm. This method has been successful in depicting the bone and cavities in three dimensions thereby enabling us to give a more precise answer to the fraction of the bone-to-implant contact compared to previous methods. Copyright © 2015 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.
Radiometric infrared focal plane array imaging system for thermographic applications
NASA Astrophysics Data System (ADS)
Esposito, B. J.; McCafferty, N.; Brown, R.; Tower, J. R.; Kosonocky, W. F.
1992-11-01
This document describes research performed under the Radiometric Infrared Focal Plane Array Imaging System for Thermographic Applications contract. This research investigated the feasibility of using platinum silicide (PtSi) Schottky-barrier infrared focal plane arrays (IR FPAs) for NASA Langley's specific radiometric thermal imaging requirements. The initial goal of this design was to develop a high spatial resolution radiometer with an NETD of 1 percent of the temperature reading over the range of 0 to 250 C. The proposed camera design developed during this study and described in this report provides: (1) high spatial resolution (full-TV resolution); (2) high thermal dynamic range (0 to 250 C); (3) the ability to image rapid, large thermal transients utilizing electronic exposure control (commandable dynamic range of 2,500,000:1 with exposure control latency of 33 ms); (4) high uniformity (0.5 percent nonuniformity after correction); and (5) high thermal resolution (0.1 C at 25 C background and 0.5 C at 250 C background).
High resolution estimates of the corrosion risk for cultural heritage in Italy.
De Marco, Alessandra; Screpanti, Augusto; Mircea, Mihaela; Piersanti, Antonio; Proietti, Chiara; Fornasier, M Francesca
2017-07-01
Air pollution plays a pivotal role in the deterioration of many materials used in buildings and cultural monuments causing an inestimable damage. This study aims to estimate the impacts of air pollution (SO 2 , HNO 3 , O 3 , PM 10 ) and meteorological conditions (temperature, precipitation, relative humidity) on limestone, copper and bronze based on high resolution air quality data-base produced with AMS-MINNI modelling system over the Italian territory over the time period 2003-2010. A comparison between high resolution data (AMS-MINNI grid, 4 × 4 km) and low resolution data (EMEP grid, 50 × 50 km) has been performed. Our results pointed out that the corrosion levels for limestone, copper and bronze are decreased in Italy from 2003 to 2010 in relation to decrease of pollutant concentrations. However, some problem related to air pollution persists especially in Northern and Southern Italy. In particular, PM 10 and HNO 3 are considered the main responsible for limestone corrosion. Moreover, the high resolution data (AMS-MINNI) allowed the identification of risk areas that are not visible with the low resolution data (EMEP modelling system) in all considered years and, especially, in the limestone case. Consequently, high resolution air quality simulations are suitable to provide concrete benefits in providing information for national effective policy against corrosion risk for cultural heritage, also in the context of climate changes that are affecting strongly Mediterranean basin. Copyright © 2017 Elsevier Ltd. All rights reserved.
[Polymorphism of HLA-B* 40 gene family in Chinese Han population].
Li, Zhen; Jin, Shi-Zheng; Cheng, Liang-Hong; Wang, Da-Ming; Zhou, Dan; Zou, Hong-Yan; Wu, Guo-Guang
2005-04-01
To investigate the allele distribution of HLA-B* 40 gene family in Chinese Han population and to study its influence on the selection of clinical transplantation donor, the HLA-B genetypes of 381 individuals randomly selected from Chinese National Marrow Donor Project were identified by PCR-SSO, and then all the HLA-B* 40 positive samples from the above population and the B* 40 homozygote samples received from another 1 270 registered donors were analyzed by PCR-SBT and PCR-SSP at high resolution. The results showed that the population of 381 registered donors was examined at HLA-B locus by using Hardy-Weinberg equilibrium, the gene frequency of HLA-B* 40 was 0.1692. Four different HLA-B* 40 alleles (B* 4001, B* 4002, B* 4003, B* 4006) were identified, and the serological specificity was B60 and B61 respectively. The relative frequency of each allele was 0.1192 for B* 4001, 0.0154 for B* 4002, 0.0038 for B* 4003, 0.0308 for B* 4006. The distribution of B* 40 homozygote revealed a certain regularity at high-resolution, B* 40XX (B* 4001 group), at low-resolution; B* 4001 at high resolution; B* 40XX (B* 4002 group), at low-resolution; B* 4002 or B* 4006 or heterozygote of both at high-resolution. It is concluded that in Chinese Han population, predominant allele in HLA-B* 40 gene family is B* 4001, the high-resolution typing may be recommended to use for the selection of clinical transplantation donor.
Chung, Euiheon; Kim, Daekeun; Cui, Yan; Kim, Yang-Hyo; So, Peter T. C.
2007-01-01
The development of high resolution, high speed imaging techniques allows the study of dynamical processes in biological systems. Lateral resolution improvement of up to a factor of 2 has been achieved using structured illumination. In a total internal reflection fluorescence microscope, an evanescence excitation field is formed as light is total internally reflected at an interface between a high and a low index medium. The <100 nm penetration depth of evanescence field ensures a thin excitation region resulting in low background fluorescence. We present even higher resolution wide-field biological imaging by use of standing wave total internal reflection fluorescence (SW-TIRF). Evanescent standing wave (SW) illumination is used to generate a sinusoidal high spatial frequency fringe pattern on specimen for lateral resolution enhancement. To prevent thermal drift of the SW, novel detection and estimation of the SW phase with real-time feedback control is devised for the stabilization and control of the fringe phase. SW-TIRF is a wide-field superresolution technique with resolution better than a fifth of emission wavelength or ∼100 nm lateral resolution. We demonstrate the performance of the SW-TIRF microscopy using one- and two-directional SW illumination with a biological sample of cellular actin cytoskeleton of mouse fibroblast cells as well as single semiconductor nanocrystal molecules. The results confirm the superior resolution of SW-TIRF in addition to the merit of a high signal/background ratio from TIRF microscopy. PMID:17483188
NASA Astrophysics Data System (ADS)
McAlister, Harold A.
1992-11-01
The Center for High Angular Resolution Astronomy (CHARA) was established in the College of Arts and Sciences at Georgia State University in 1984 with the goals of designing, constructing, and then operating a facility for very high spatial resolution astronomy. The interest in such a facility grew out of the participants' decade of activity in speckle interferometry. Although speckle interferometry continues to provide important astrophysical measurements of a variety of objects, many pressing problems require resolution far beyond that which can be expected from single aperture telescopes. In early 1986, CHARA received a grant from the National Science Foundation which has permitted a detailed exploration of the feasibility of constructing a facility which will provide a hundred-fold increase in angular resolution over what is possible by speckle interferometry at the largest existing telescopes. The design concept for the CHARA Array was developed initially with the contractural collaboration of United Technologies Optical Systems, Inc., in West Palm Beach, Florida, an arrangement that expired in August 1987. In late November 1987, the Georgia Tech Research Institute joined with CHARA to continue and complete the design concept study. Very high-resolution imaging at optical wavelengths is clearly coming of age in astronomy. The CHARA Array and other related projects will be important and necessary milestones along the way toward the development of a major national facility for high-resolution imaging--a true optical counterpart to the Very Large Array. Ground-based arrays and their scientific output will lead to high resolution facilities in space and, ultimately, on the Moon.
Sub-micron materials characterization using near-field optics
NASA Astrophysics Data System (ADS)
Blodgett, David Wesley
1998-12-01
High-resolution sub-surface materials characterization and inspection are critical in the microelectronics and thin films industries. To this end, a technique is described that couples the bulk property measurement capabilities of high-frequency ultrasound with the high-resolution surface imaging capabilities of the near-field optical microscope. Sensing bulk microstructure variations in the material, such as grain boundaries, requires a detection footprint smaller than the variation itself. The near-field optical microscope, with the ability to exceed the diffraction limit in optical resolution, meets this requirement. Two apertureless near-field optical microscopes, on-axis and off-axis illumination, have been designed and built. Near-field and far-field approach curves for both microscopes are presented. The sensitivity of the near-field approach curve was 8.3 muV/nm. Resolution studies for the near-field microscope indicate optical resolutions on the order of 50 nm, which exceeds the diffraction limit. The near-field microscope has been adapted to detect both contact-transducer-generated and laser-generated ultrasound. The successful detection of high-frequency ultrasound with the near-field optical microscope demonstrates the potential of this technique.
Dual-resolution image reconstruction for region-of-interest CT scan
NASA Astrophysics Data System (ADS)
Jin, S. O.; Shin, K. Y.; Yoo, S. K.; Kim, J. G.; Kim, K. H.; Huh, Y.; Lee, S. Y.; Kwon, O.-K.
2014-07-01
In ordinary CT scan, so called full field-of-view (FFOV) scan, in which the x-ray beam span covers the whole section of the body, a large number of projections are necessary to reconstruct high resolution images. However, excessive x-ray dose is a great concern in FFOV scan. Region-of-interest (ROI) scan is a method to visualize the ROI in high resolution while reducing the x-ray dose. But, ROI scan suffers from bright-band artifacts which may hamper CT-number accuracy. In this study, we propose an image reconstruction method to eliminate the band artifacts in the ROI scan. In addition to the ROI scan with high sampling rate in the view direction, we get FFOV projection data with much lower sampling rate. Then, we reconstruct images in the compressed sensing (CS) framework with dual resolutions, that is, high resolution in the ROI and low resolution outside the ROI. For the dual-resolution image reconstruction, we implemented the dual-CS reconstruction algorithm in which data fidelity and total variation (TV) terms were enforced twice in the framework of adaptive steepest descent projection onto convex sets (ASD-POCS). The proposed method has remarkably reduced the bright-band artifacts at around the ROI boundary, and it has also effectively suppressed the streak artifacts over the entire image. We expect the proposed method can be greatly used for dual-resolution imaging with reducing the radiation dose, artifacts and scan time.
Performance of European chemistry transport models as function of horizontal resolution
NASA Astrophysics Data System (ADS)
Schaap, M.; Cuvelier, C.; Hendriks, C.; Bessagnet, B.; Baldasano, J. M.; Colette, A.; Thunis, P.; Karam, D.; Fagerli, H.; Graff, A.; Kranenburg, R.; Nyiri, A.; Pay, M. T.; Rouïl, L.; Schulz, M.; Simpson, D.; Stern, R.; Terrenoire, E.; Wind, P.
2015-07-01
Air pollution causes adverse effects on human health as well as ecosystems and crop yield and also has an impact on climate change trough short-lived climate forcers. To design mitigation strategies for air pollution, 3D Chemistry Transport Models (CTMs) have been developed to support the decision process. Increases in model resolution may provide more accurate and detailed information, but will cubically increase computational costs and pose additional challenges concerning high resolution input data. The motivation for the present study was therefore to explore the impact of using finer horizontal grid resolution for policy support applications of the European Monitoring and Evaluation Programme (EMEP) model within the Long Range Transboundary Air Pollution (LRTAP) convention. The goal was to determine the "optimum resolution" at which additional computational efforts do not provide increased model performance using presently available input data. Five regional CTMs performed four runs for 2009 over Europe at different horizontal resolutions. The models' responses to an increase in resolution are broadly consistent for all models. The largest response was found for NO2 followed by PM10 and O3. Model resolution does not impact model performance for rural background conditions. However, increasing model resolution improves the model performance at stations in and near large conglomerations. The statistical evaluation showed that the increased resolution better reproduces the spatial gradients in pollution regimes, but does not help to improve significantly the model performance for reproducing observed temporal variability. This study clearly shows that increasing model resolution is advantageous, and that leaving a resolution of 50 km in favour of a resolution between 10 and 20 km is practical and worthwhile. As about 70% of the model response to grid resolution is determined by the difference in the spatial emission distribution, improved emission allocation procedures at high spatial and temporal resolution are a crucial factor for further model resolution improvements.
Optical imaging modalities: From design to diagnosis of skin cancer
NASA Astrophysics Data System (ADS)
Korde, Vrushali Raj
This study investigates three high resolution optical imaging modalities to better detect and diagnose skin cancer. The ideal high resolution optical imaging system can visualize pre-malignant tissue growth non-invasively with resolution comparable to histology. I examined 3 modalities which approached this goal. The first method examined was high magnification microscopy of thin stained tissue sections, together with a statistical analysis of nuclear chromatin patterns termed Karyometry. This method has subcellular resolution, but it necessitates taking a biopsy at the desired tissue site and imaging the tissue ex-vivo. My part of this study was to develop an automated nuclear segmentation algorithm to segment cell nuclei in skin histology images for karyometric analysis. The results of this algorithm were compared to hand segmented cell nuclei in the same images, and it was concluded that the automated segmentations can be used for karyometric analysis. The second optical imaging modality I investigated was Optical Coherence Tomography (OCT). OCT is analogous to ultrasound, in which sound waves are delivered into the body and the echo time and reflected signal magnitude are measured. Due to the fast speed of light and detector temporal integration times, low coherence interferometry is needed to gate the backscattered light. OCT acquires cross sectional images, and has an axial resolution of 1-15 mum (depending on the source bandwidth) and a lateral resolution of 10-20 mum (depending on the sample arm optics). While it is not capable of achieving subcellular resolution, it is a non-invasive imaging modality. OCT was used in this study to evaluate skin along a continuum from normal to sun damaged to precancer. I developed algorithms to detect statistically significant differences between images of sun protected and sun damaged skin, as well as between undiseased and precancerous skin. An Optical Coherence Microscopy (OCM) endoscope was developed in the third portion of this study. OCM is a high resolution en-face imaging modality. It is a hybrid system that combines the principles of confocal microscopy with coherence gating to provide an increased imaging depth. It can also be described as an OCT system with a high NA objective. Similar to OCT, the axial resolution is determined by the source center wavelength and bandwidth. The NA of the sample arm optics determines the lateral resolution, usually on the order of 1-5 mum. My effort on this system was to develop a handheld endoscope. To my knowledge, an OCM endoscope has not been developed prior to this work. An image of skin was taken as a proof of concept. This rigid handheld OCM endoscope will be useful for applications ranging from minimally invasive surgical imaging to non-invasively assessing dysplasia and sun damage in skin.
Non-target high resolution mass spectrometry techniques combined with advanced cheminformatics offer huge potential for exploring complex mixtures in our environment – yet also offers plenty of challenges. Peak inventories of several non-target studies from within Europe reveal t...
High-resolution infrared thermography for capturing wildland fire behaviour - RxCADRE 2012
Joseph J. O’Brien; E. Louise Loudermilk; Benjamin Hornsby; Andrew T. Hudak; Benjamin C. Bright; Matthew B. Dickinson; J. Kevin Hiers; Casey Teske; Roger D. Ottmar
2016-01-01
Wildland fire radiant energy emission is one of the only measurements of combustion that can be made at wide spatial extents and high temporal and spatial resolutions. Furthermore, spatially and temporally explicit measurements are critical for making inferences about fire effects and useful for examining patterns of fire spread. In this study we describe our...
ERIC Educational Resources Information Center
Kearney, Joan A.; Britner, Preston A.; Farrell, Anne F.; Robinson, JoAnn L.
2011-01-01
Maternal resolution of a child's diagnosis relates to sensitive caregiving and healthy attachment. Failure to resolve is associated with maternal distress, high caregiving burden, and the quality of marital and social support. This study examined maternal resolution of diagnosis in a child psychiatric population utilizing the Reaction to Diagnosis…
ERIC Educational Resources Information Center
Ciftci, Ayse; Demir, Ayhan; Bikos, Lynette Heim
2008-01-01
This study investigated the effect of loneliness on the conflict resolution strategies of adolescents toward their friends, mothers, and fathers. High school students (N = 180) from 8 different schools in Ankara, Turkey, completed the UCLA Loneliness Scale and Conflict Resolution Questionnaire with respect to their friends, mothers, and fathers.…
Single sensor processing to obtain high resolution color component signals
NASA Technical Reports Server (NTRS)
Glenn, William E. (Inventor)
2010-01-01
A method for generating color video signals representative of color images of a scene includes the following steps: focusing light from the scene on an electronic image sensor via a filter having a tri-color filter pattern; producing, from outputs of the sensor, first and second relatively low resolution luminance signals; producing, from outputs of the sensor, a relatively high resolution luminance signal; producing, from a ratio of the relatively high resolution luminance signal to the first relatively low resolution luminance signal, a high band luminance component signal; producing, from outputs of the sensor, relatively low resolution color component signals; and combining each of the relatively low resolution color component signals with the high band luminance component signal to obtain relatively high resolution color component signals.
High resolution study of magnetic ordering at absolute zero.
Lee, M; Husmann, A; Rosenbaum, T F; Aeppli, G
2004-05-07
High resolution pressure measurements in the zero-temperature limit provide a unique opportunity to study the behavior of strongly interacting, itinerant electrons with coupled spin and charge degrees of freedom. Approaching the precision that has become the hallmark of experiments on classical critical phenomena, we characterize the quantum critical behavior of the model, elemental antiferromagnet chromium, lightly doped with vanadium. We resolve the sharp doubling of the Hall coefficient at the quantum critical point and trace the dominating effects of quantum fluctuations up to surprisingly high temperatures.
Final Report: High Spectral Resolution Atmospheric Emitted Radiance Studies with the ARM UAV
DOE Office of Scientific and Technical Information (OSTI.GOV)
Revercomb, Henry E.
1999-12-31
The active participation in the Atmospheric Radiation Measurement (ARM) Unmanned Airborne Vehicle (UAV) science team that was anticipated in the grant proposal was indefinitely delayed after the first year due to a programmatic decision to exclude the high spectral resolution observations from the existing ARM UAV program. However, this report shows that substantial progress toward the science objectives of this grant have made with the help of separate funding from NASA and other agencies. In the four year grant period (including time extensions), a new high spectral resolution instrument has been flown and has successfully demonstrated the ability to obtainmore » measurements of the type needed in the conduct of this grant. In the near term, the third water vapor intensive observing period (WVIOP-3) in October 2000 will provide an opportunity to bring the high spectral resolution observations of upwelling radiance into the ARM program to complement the downwelling radiance observations from the existing ARM AERI instruments. We look forward to a time when the ARM-UAV program is able to extend its scope to include the capability for making these high spectral resolution measurements from a UAV platform.« less
Un-collimated single-photon imaging system for high-sensitivity small animal and plant imaging.
Walker, Katherine L; Judenhofer, Martin S; Cherry, Simon R; Mitchell, Gregory S
2015-01-07
In preclinical single-photon emission computed tomography (SPECT) system development the primary objective has been to improve spatial resolution by using novel parallel-hole or multi-pinhole collimator geometries. However, such high-resolution systems have relatively poor sensitivity (typically 0.01-0.1%). In contrast, a system that does not use collimators can achieve very high-sensitivity. Here we present a high-sensitivity un-collimated detector single-photon imaging (UCD-SPI) system for the imaging of both small animals and plants. This scanner consists of two thin, closely spaced, pixelated scintillator detectors that use NaI(Tl), CsI(Na), or BGO. The performance of the system has been characterized by measuring sensitivity, spatial resolution, linearity, detection limits, and uniformity. With (99m)Tc (140 keV) at the center of the field of view (20 mm scintillator separation), the sensitivity was measured to be 31.8% using the NaI(Tl) detectors and 40.2% with CsI(Na). The best spatial resolution (FWHM when the image formed as the geometric mean of the two detector heads, 20 mm scintillator separation) was 19.0 mm for NaI(Tl) and 11.9 mm for CsI(Na) at 140 keV, and 19.5 mm for BGO at 1116 keV, which is somewhat degraded compared to the cm-scale resolution obtained with only one detector head and a close source. The quantitative accuracy of the system's linearity is better than 2% with detection down to activity levels of 100 nCi. Two in vivo animal studies (a renal scan using (99m)Tc MAG-3 and a thyroid scan with (123)I) and one plant study (a (99m)TcO4(-) xylem transport study) highlight the unique capabilities of this UCD-SPI system. From the renal scan, we observe approximately a one thousand-fold increase in sensitivity compared to the Siemens Inveon SPECT/CT scanner. UCD-SPI is useful for many imaging tasks that do not require excellent spatial resolution, such as high-throughput screening applications, simple radiotracer uptake studies in tumor xenografts, dynamic studies where very good temporal resolution is critical, or in planta imaging of radioisotopes at low concentrations.
Un-collimated single-photon imaging system for high-sensitivity small animal and plant imaging
Walker, Katherine L.; Judenhofer, Martin S.; Cherry, Simon R.; ...
2014-12-12
In preclinical single-photon emission computed tomography (SPECT) system development the primary objective has been to improve spatial resolution by using novel parallel-hole or multi-pinhole collimator geometries. Furthermore, such high-resolution systems have relatively poor sensitivity (typically 0.01% to 0.1%). In contrast, a system that does not use collimators can achieve very high-sensitivity. Here we present a high-sensitivity un-collimated detector single-photon imaging (UCD-SPI) system for the imaging of both small animals and plants. This scanner consists of two thin, closely spaced, pixelated scintillator detectors that use NaI(Tl), CsI(Na), or BGO. The performance of the system has been characterized by measuring sensitivity, spatialmore » resolution, linearity, detection limits, and uniformity. With 99mTc (140 keV) at the center of the field of view (20 mm scintillator separation), the sensitivity was measured to be 31.8% using the NaI(Tl) detectors and 40.2% with CsI(Na). The best spatial resolution (FWHM when the image formed as the geometric mean of the two detector heads, 20 mm scintillator separation) was 19.0 mm for NaI(Tl) and 11.9 mm for CsI(Na) at 140 keV, and 19.5 mm for BGO at 1116 keV, which is somewhat degraded compared to the cm-scale resolution obtained with only one detector head and a close source. The quantitative accuracy of the system’s linearity is better than 2% with detection down to activity levels of 100 nCi. Two in vivo animal studies (a renal scan using 99mTc MAG-3 and a thyroid scan with 123I) and one plant study (a 99mTcO 4- xylem transport study) highlight the unique capabilities of this UCD-SPI system. From the renal scan, we observe approximately a one thousand-fold increase in sensitivity compared to the Siemens Inveon SPECT/CT scanner. In conclusion, UCD-SPI is useful for many imaging tasks that do not require excellent spatial resolution, such as high-throughput screening applications, simple radiotracer uptake studies in tumor xenografts, dynamic studies where very good temporal resolution is critical, or in planta imaging of radioisotopes at low concentrations.« less
Un-collimated single-photon imaging system for high-sensitivity small animal and plant imaging
NASA Astrophysics Data System (ADS)
Walker, Katherine L.; Judenhofer, Martin S.; Cherry, Simon R.; Mitchell, Gregory S.
2015-01-01
In preclinical single-photon emission computed tomography (SPECT) system development the primary objective has been to improve spatial resolution by using novel parallel-hole or multi-pinhole collimator geometries. However, such high-resolution systems have relatively poor sensitivity (typically 0.01-0.1%). In contrast, a system that does not use collimators can achieve very high-sensitivity. Here we present a high-sensitivity un-collimated detector single-photon imaging (UCD-SPI) system for the imaging of both small animals and plants. This scanner consists of two thin, closely spaced, pixelated scintillator detectors that use NaI(Tl), CsI(Na), or BGO. The performance of the system has been characterized by measuring sensitivity, spatial resolution, linearity, detection limits, and uniformity. With 99mTc (140 keV) at the center of the field of view (20 mm scintillator separation), the sensitivity was measured to be 31.8% using the NaI(Tl) detectors and 40.2% with CsI(Na). The best spatial resolution (FWHM when the image formed as the geometric mean of the two detector heads, 20 mm scintillator separation) was 19.0 mm for NaI(Tl) and 11.9 mm for CsI(Na) at 140 keV, and 19.5 mm for BGO at 1116 keV, which is somewhat degraded compared to the cm-scale resolution obtained with only one detector head and a close source. The quantitative accuracy of the system’s linearity is better than 2% with detection down to activity levels of 100 nCi. Two in vivo animal studies (a renal scan using 99mTc MAG-3 and a thyroid scan with 123I) and one plant study (a 99mTcO4- xylem transport study) highlight the unique capabilities of this UCD-SPI system. From the renal scan, we observe approximately a one thousand-fold increase in sensitivity compared to the Siemens Inveon SPECT/CT scanner. UCD-SPI is useful for many imaging tasks that do not require excellent spatial resolution, such as high-throughput screening applications, simple radiotracer uptake studies in tumor xenografts, dynamic studies where very good temporal resolution is critical, or in planta imaging of radioisotopes at low concentrations.
Retrieved Products from Simulated Hyperspectral Observations of a Hurricane
NASA Technical Reports Server (NTRS)
Susskind, Joel; Kouvaris, Louis; Iredell, Lena; Blaisdell, John
2015-01-01
Demonstrate via Observing System Simulation Experiments (OSSEs) the potential utility of flying high spatial resolution AIRS class IR sounders on future LEO and GEO missions.The study simulates and analyzes radiances for 3 sounders with AIRS spectral and radiometric properties on different orbits with different spatial resolutions: 1) Control run 13 kilometers AIRS spatial resolution at nadir on LEO in Aqua orbit; 2) 2 kilometer spatial resolution LEO sounder at nadir ARIES; 3) 5 kilometers spatial resolution sounder on a GEO orbit, radiances simulated every 72 minutes.
Micro-computed tomography pore-scale study of flow in porous media: Effect of voxel resolution
NASA Astrophysics Data System (ADS)
Shah, S. M.; Gray, F.; Crawshaw, J. P.; Boek, E. S.
2016-09-01
A fundamental understanding of flow in porous media at the pore-scale is necessary to be able to upscale average displacement processes from core to reservoir scale. The study of fluid flow in porous media at the pore-scale consists of two key procedures: Imaging - reconstruction of three-dimensional (3D) pore space images; and modelling such as with single and two-phase flow simulations with Lattice-Boltzmann (LB) or Pore-Network (PN) Modelling. Here we analyse pore-scale results to predict petrophysical properties such as porosity, single-phase permeability and multi-phase properties at different length scales. The fundamental issue is to understand the image resolution dependency of transport properties, in order to up-scale the flow physics from pore to core scale. In this work, we use a high resolution micro-computed tomography (micro-CT) scanner to image and reconstruct three dimensional pore-scale images of five sandstones (Bentheimer, Berea, Clashach, Doddington and Stainton) and five complex carbonates (Ketton, Estaillades, Middle Eastern sample 3, Middle Eastern sample 5 and Indiana Limestone 1) at four different voxel resolutions (4.4 μm, 6.2 μm, 8.3 μm and 10.2 μm), scanning the same physical field of view. Implementing three phase segmentation (macro-pore phase, intermediate phase and grain phase) on pore-scale images helps to understand the importance of connected macro-porosity in the fluid flow for the samples studied. We then compute the petrophysical properties for all the samples using PN and LB simulations in order to study the influence of voxel resolution on petrophysical properties. We then introduce a numerical coarsening scheme which is used to coarsen a high voxel resolution image (4.4 μm) to lower resolutions (6.2 μm, 8.3 μm and 10.2 μm) and study the impact of coarsening data on macroscopic and multi-phase properties. Numerical coarsening of high resolution data is found to be superior to using a lower resolution scan because it avoids the problem of partial volume effects and reduces the scaling effect by preserving the pore-space properties influencing the transport properties. This is evidently compared in this study by predicting several pore network properties such as number of pores and throats, average pore and throat radius and coordination number for both scan based analysis and numerical coarsened data.
Image resolution enhancement via image restoration using neural network
NASA Astrophysics Data System (ADS)
Zhang, Shuangteng; Lu, Yihong
2011-04-01
Image super-resolution aims to obtain a high-quality image at a resolution that is higher than that of the original coarse one. This paper presents a new neural network-based method for image super-resolution. In this technique, the super-resolution is considered as an inverse problem. An observation model that closely follows the physical image acquisition process is established to solve the problem. Based on this model, a cost function is created and minimized by a Hopfield neural network to produce high-resolution images from the corresponding low-resolution ones. Not like some other single frame super-resolution techniques, this technique takes into consideration point spread function blurring as well as additive noise and therefore generates high-resolution images with more preserved or restored image details. Experimental results demonstrate that the high-resolution images obtained by this technique have a very high quality in terms of PSNR and visually look more pleasant.
NASA Astrophysics Data System (ADS)
Du, Junwei; Bai, Xiaowei; Gola, Alberto; Acerbi, Fabio; Ferri, Alessandro; Piemonte, Claudio; Yang, Yongfeng; Cherry, Simon R.
2018-02-01
The goal of this study was to exploit the excellent spatial resolution characteristics of a position-sensitive silicon photomultiplier (SiPM) and develop a high-resolution depth-of-interaction (DOI) encoding positron emission tomography (PET) detector module. The detector consists of a 30 × 30 array of 0.445 × 0.445 × 20 mm3 polished LYSO crystals coupled to two 15.5 × 15.5 mm2 linearly-graded SiPM (LG-SiPM) arrays at both ends. The flood histograms show that all the crystals in the LYSO array can be resolved. The energy resolution, the coincidence timing resolution and the DOI resolution were 21.8 ± 5.8%, 1.23 ± 0.10 ns and 3.8 ± 1.2 mm, respectively, at a temperature of -10 °C and a bias voltage of 35.0 V. The performance did not degrade significantly for event rates of up to 130 000 counts s-1. This detector represents an attractive option for small-bore PET scanner designs that simultaneously emphasize high spatial resolution and high detection efficiency, important, for example, in preclinical imaging of the rodent brain with neuroreceptor ligands.
NASA Astrophysics Data System (ADS)
Norouzi, H.; Bah, A.; Prakash, S.; Nouri, N.; Blake, R.
2017-12-01
A great percentage of the world's population reside in urban areas that are exposed to the threats of global and regional climate changes and associated extreme weather events. Among them, urban heat islands have significant health and economic impacts due to higher thermal gradients of impermeable surfaces in urban regions compared to their surrounding rural areas. Therefore, accurate characterization of the surface energy balance in urban regions are required to predict these extreme events. High spatial resolution Land surface temperature (LST) in the scale of street level in the cities can provide wealth of information to study surface energy balance and eventually providing a reliable heat index. In this study, we estimate high-resolution LST maps using combination of LandSat 8 and infrared based satellite products such as Moderate Resolution Imaging Spectroradiometer (MODIS) and newly launched Geostationary Operational Environmental Satellite-R Series (GOES-R). Landsat 8 provides higher spatial resolution (30 m) estimates of skin temperature every 16 days. However, MODIS and GOES-R have lower spatial resolution (1km and 4km respectively) with much higher temporal resolution. Several statistical downscaling methods were investigated to provide high spatiotemporal LST maps in urban regions. The results reveal that statistical methods such as Principal Component Analysis (PCA) can provide reliable estimations of LST downscaling with 2K accuracy. Other methods also were tried including aggregating (up-scaling) the high-resolution data to a coarse one to examine the limitations and to build the model. Additionally, we deployed flux towers over distinct materials such as concrete, asphalt, and rooftops in New York City to monitor the sensible and latent heat fluxes through eddy covariance method. To account for the incoming and outgoing radiation, a 4-component radiometer is used that can observe both incoming and outgoing longwave and shortwave radiation. This enables us to accurately build the relationship between LST, air temperature, and the heat index in the future.
High quality transmission Kikuchi diffraction analysis of deformed alloys - Case study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tokarski, Tomasz, E-mail: tokarski@agh.edu.pl
Modern scanning electron microscopes (SEM) equipped with thermally assisted field emission guns (Schottky FEG) are capable of imaging with a resolution in the range of several nanometers or better. Simultaneously, the high electron beam current can be used, which enables fast chemical and crystallographic analysis with a higher resolution than is normally offered by SEM with a tungsten cathode. The current resolution that limits the EDS and EBSD analysis is related to materials' physics, particularly to the electron-specimen interaction volume. The application of thin, electron-transparent specimens, instead of bulk samples, improves the resolution and allows for the detailed analysis ofmore » very fine microstructural features. Beside the typical imaging mode, it is possible to use a standard EBSD camera in such a configuration that only transmitted and scattered electrons are detected. This modern approach was successfully applied to various materials giving rise to significant resolution improvement, especially for the light element magnesium based alloys. This paper presents an insight into the application of the transmission Kikuchi diffraction (TKD) technique applied to the most troublesome, heavily-deformed materials. In particular, the values of the highest possible acquisition rates for high resolution and high quality mapping were estimated within typical imaging conditions of stainless steel and magnesium-yttrium alloy. - Highlights: •Monte Carlo simulations were used to simulate EBSD camera intensity for various measuring conditions. •Transmission Kikuchi diffraction parameters were evaluated for highly deformed, light and heavy elements based alloys. •High quality maps with 20 nm spatial resolution were acquired for Mg and Fe based alloys. •High speed TKD measurements were performed at acquisition rates comparable to the reflection EBSD.« less
Parallelization and Algorithmic Enhancements of High Resolution IRAS Image Construction
NASA Technical Reports Server (NTRS)
Cao, Yu; Prince, Thomas A.; Tereby, Susan; Beichman, Charles A.
1996-01-01
The Infrared Astronomical Satellite caried out a nearly complete survey of the infrared sky, and the survey data are important for the study of many astrophysical phenomena. However, many data sets at other wavelengths have higher resolutions than that of the co-added IRAS maps, and high resolution IRAS images are strongly desired both for their own information content and their usefulness in correlation. The HIRES program was developed by the Infrared Processing and Analysis Center (IPAC) to produce high resolution (approx. 1') images from IRAS data using the Maximum Correlation Method (MCM). We describe the port of HIRES to the Intel Paragon, a massively parallel supercomputer, other software developments for mass production of HIRES images, and the IRAS Galaxy Atlas, a project to map the Galactic plane at 60 and 100(micro)m.
Wide-aperture aspherical lens for high-resolution terahertz imaging
NASA Astrophysics Data System (ADS)
Chernomyrdin, Nikita V.; Frolov, Maxim E.; Lebedev, Sergey P.; Reshetov, Igor V.; Spektor, Igor E.; Tolstoguzov, Viktor L.; Karasik, Valeriy E.; Khorokhorov, Alexei M.; Koshelev, Kirill I.; Schadko, Aleksander O.; Yurchenko, Stanislav O.; Zaytsev, Kirill I.
2017-01-01
In this paper, we introduce wide-aperture aspherical lens for high-resolution terahertz (THz) imaging. The lens has been designed and analyzed by numerical methods of geometrical optics and electrodynamics. It has been made of high-density polyethylene by shaping at computer-controlled lathe and characterized using a continuous-wave THz imaging setup based on a backward-wave oscillator and Golay detector. The concept of image contrast has been implemented to estimate image quality. According to the experimental data, the lens allows resolving two points spaced at 0.95λ distance with a contrast of 15%. To highlight high resolution in the THz images, the wide-aperture lens has been employed for studying printed electronic circuit board containing sub-wavelength-scale elements. The observed results justify the high efficiency of the proposed lens design.
Yonelinas, Andrew P.
2013-01-01
It is well established that the hippocampus plays a critical role in our ability to recollect past events. A number of recent studies have indicated that the hippocampus may also play a critical role in working memory and perception, but these results have been highly controversial because other similar studies have failed to find evidence for hippocampal involvement. Thus, the precise role that the hippocampus plays in cognition is still debated. In the current paper, I propose that the hippocampus supports the generation and utilization of complex high-resolution bindings that link together the qualitative aspects that make up an event; these bindings are essential for recollection, and they can also contribute to performance across a variety of tasks including perception and working memory. An examination of the existing patient literature provides support for this proposal by showing that hippocampal damage leads to impairments on perception and working memory tasks that require complex high-resolution bindings. Conversely, hippocampal damage is much less likely to lead to impairments on tasks that require only low-resolution or simple associations/relations. The current proposal can be distinguished from earlier accounts of hippocampal function, and it generates a number of novel predictions that can be tested in future studies. PMID:23721964
The Advanced Telescope for High Energy Astrophysics
NASA Astrophysics Data System (ADS)
Guainazzi, Matteo
2017-08-01
Athena (the Advanced Telescope for High Energy Astrophysics) is a next generation X-ray observatory currently under study by ESA for launch in 2028. Athena is designed to address the Hot and Energetic Universe science theme, which addresses two key questions: 1) How did ordinary matter evolve into the large scale structures we see today? 2) How do black holes grow and shape the Universe. To address these topics Athena employs an innovative X-ray telescope based on Silicon Pore Optics technology to deliver extremely light weight and high throughput, while retaining excellent angular resolution. The mirror can be adjusted to focus onto one of two focal place instruments: the X-ray Integral Field Unit (X-IFU) which provides spatially-resolved, high resolution spectroscopy, and the Wide Field Imager (WFI) which provides spectral imaging over a large field of view, as well as high time resolution and count rate tolerance. Athena is currently in Phase A and the study status will be reviewed, along with the scientific motivations behind the mission.
[Objective study of the voice quality following partial laryngectomy].
Remacle, M; Millet, B
1991-01-01
The high resolution frequency analyzer is used for the study of the vocal quality after partial laryngectomy. The post-operative plot after speech therapy is of good quality when respecting one vocal fold. On the contrary, the heard vocal sound does not correspond to the harmonics of the fundamental frequency but to intense noise from irregular vibrations of the residual laryngeal mucosa (ventricular folds, arytenoids). High resolution frequency analysis contributes to the follow-up of the partial laryngectomy.
NASA Astrophysics Data System (ADS)
Croghan, Danny; Van Loon, Anne; Bradley, Chris; Sadler, Jon; Hannnah, David
2017-04-01
Studies relating rainfall events to river water quality are frequently hindered by the lack of high resolution rainfall data. Local studies are particularly vulnerable due to the spatial variability of precipitation, whilst studies in urban environments require precipitation data at high spatial and temporal resolutions. The use of point-source data makes identifying causal effects of storms on water quality problematic and can lead to erroneous interpretations. High spatial and temporal resolution rainfall radar data offers great potential to address these issues. Here we use rainfall radar data with a 1km spatial resolution and 5 minute temporal resolution sourced from the UK Met Office Nimrod system to study the effects of storm events on water temperature (WTemp) in Birmingham, UK. 28 WTemp loggers were placed over 3 catchments on a rural-urban land use gradient to identify trends in WTemp during extreme events within urban environments. Using GIS, the catchment associated with each logger was estimated, and 5 min. rainfall totals and intensities were produced for each sub-catchment. Comparisons of rainfall radar data to meteorological stations in the same grid cell revealed the high accuracy of rainfall radar data in our catchments (<5% difference for studied months). The rainfall radar data revealed substantial differences in rainfall quantity between the three adjacent catchments. The most urban catchment generally received more rainfall, with this effect greatest in the highest intensity storms, suggesting the possibility of urban heat island effects on precipitation dynamics within the catchment. Rainfall radar data provided more accurate sub-catchment rainfall totals allowing better modelled estimates of storm flow, whilst spatial fluctuations in both discharge and WTemp can be simply related to precipitation intensity. Storm flow inputs for each sub-catchment were estimated and linked to changes in WTemp. WTemp showed substantial fluctuations (>1 °C) over short durations (<30 minutes) during storm events in urbanised sub-catchments, however WTemp recovery times were more prolonged. Use of the rainfall radar data allowed increased accuracy in estimates of storm flow timings and rainfall quantities at each sub-catchment, from which the impact of storm flow on WTemp could be quantified. We are currently using the radar data to derive thresholds for rainfall amount and intensity at which these storm deviations occur for each logger, from which the relative effects of land use and other catchment characteristics in each sub-catchment can be assessed. Our use of the rainfall radar data calls into question the validity of using station based data for small scale studies, particularly in urban areas, with high variation apparent in rainfall intensity both spatially and temporally. Variation was particularly high within the heavily urbanised catchment. For water quality studies, high resolution rainfall radar can be implemented to increase the reliability of interpretations of the response of water quality variables to storm water inputs in urban catchments.
NASA Astrophysics Data System (ADS)
Gülci, S.; Dindaroğlu, T.; Gündoğan, R.
2017-11-01
Unmanned air vehicle systems (UAVSs), which are presently defined as effective measuring instruments, can be used for measurements and evaluation studies in fields. Furthermore, UAVs are effective tools that can produce high-precision and resolution data for use in geographic information system-based work. This study examined a multicopter (hexacopter) as an air platform to seek opportunity in generating DSM with high resolution. Flights were performed in Kahramanmaras Sutcu Imam University Campus area in Turkey. Pre-assessment of field works, mission, tests and installation were prepared by using a Laptop with an adaptive ground control station. Hand remote controller unit was also linked and activated during flight to interfere with emergency situations. Canon model IXSUS 160 was preferred as sensor. As a result of this study, as mentioned previous studies, .The orthophotos can be produced by RGB (Red-green-blue) images obtained with UAV, herewith information on terrain topography, land cover and soil erosion can be evaluated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Siegel, J.; Gawelda, W.; Puerto, D.
2008-01-15
Phase transformations of crystalline Ge{sub 2}Sb{sub 2}Te{sub 5} films upon pulsed laser irradiation have been studied using in situ reflectivity measurements with temporal resolution. Two different configurations allowed point probing with nanosecond temporal resolution and imaging with subpicosecond temporal and micrometer spatial resolution. The role of the pulse duration and laser fluence on the dynamics of the phase change and the degree of amorphization is discussed. Several advantageous features of femtosecond compared to nanosecond laser-induced amorphization are identified. Moreover, a high-resolution study of the amorphization dynamics reveals the onset of amorphization at moderate fluences to occur within {approx}100 ps aftermore » arrival of the laser pulse. At high fluences, amorphization occurs after {approx}430 ps and the molten phase is characterized by an anomalously low reflectivity value, indicative of a state of extreme supercooling.« less
Hypernuclear Spectroscopy with Electron Beam at JLab Hall C
NASA Astrophysics Data System (ADS)
Fujii, Y.; Chiba, A.; Doi, D.; Gogami, T.; Hashimoto, O.; Kanda, H.; Kaneta, M.; Kawama, D.; Maeda, K.; Maruta, T.; Matsumura, A.; Nagao, S.; Nakamura, S. N.; Shichijo, A.; Tamura, H.; Taniya, N.; Yamamoto, T.; Yokota, K.; Kato, S.; Sato, Y.; Takahashi, T.; Noumi, H.; Motoba, T.; Hiyama, E.; Albayrak, I.; Ates, O.; Chen, C.; Christy, M.; Keppel, C.; Kohl, M.; Li, Y.; Liyanage, A.; Tang, L.; Walton, T.; Ye, Z.; Yuan, L.; Zhu, L.; Baturin, P.; Boeglin, W.; Dhamija, S.; Markowitz, P.; Raue, B.; Reinhold, J.; Hungerford, Ed. V.; Ent, R.; Fenker, H.; Gaskell, D.; Horn, T.; Jones, M.; Smith, G.; Vulcan, W.; Wood, S. A.; Johnston, C.; Simicevic, N.; Wells, S.; Samanta, C.; Hu, B.; Shen, J.; Wang, W.; Zhang, X.; Zhang, Y.; Feng, J.; Fu, Y.; Zhou, J.; Zhou, S.; Jiang, Y.; Lu, H.; Yan, X.; Ye, Y.; Gan, L.; Ahmidouch, A.; Danagoulian, S.; Gasparian, A.; Elaasar, M.; Wesselmann, F. R.; Asaturyan, A.; Margaryan, A.; Mkrtchyan, A.; Mkrtchyan, H.; Tadevosyan, V.; Androic, D.; Furic, M.; Petkovic, T.; Seva, T.; Niculescu, G.; Niculescu, I.; López, V. M. Rodríguez; Cisbani, E.; Cusanno, F.; Garibaldi, F.; Uuciuoli, G. M.; de Leo, R.; Maronne, S.
2010-10-01
Hypernuclear spectroscopy with electron beam at JLab Hall C has been studied since 2000. The first experiment, JLab E89-009, demonstrated the possibility of the (e,e'K+) reaction for hypernuclear spectroscopy by achieving an energy resolution of better than 1 MeV (FWHM). The second experiment, JLab E01-011 employed a newly constructed high resolution kaon spectrometer and introduced a vertically tilted electron arm setup to avoid electrons from bremsstrahlung and Moeller scattering. The setup allowed us to have 10 times yield rate and 4 times better signal to accidental ratio with expected energy resolution of 400 keV (FWHM). The third experiment, JLab E05-11B will be performed in 2009 with employing newly constructed high resolution electron spectrometer and a new charge-separation magnet. With the fully customized third generation experimental setup, we can study a variety of targets up to medium-heavy ones such as 52Cr.
Hypernuclear Spectroscopy with Electron Beam at JLab Hall C
NASA Astrophysics Data System (ADS)
Fujii, Y.; Chiba, A.; Doi, D.; Gogami, T.; Hashimoto, O.; Kanda, H.; Kaneta, M.; Kawama, D.; Maeda, K.; Maruta, T.; Matsumura, A.; Nagao, S.; Nakamura, S. N.; Shichijo, A.; Tamura, H.; Taniya, N.; Yamamoto, T.; Yokota, K.; Kato, S.; Sato, Y.; Takahashi, T.; Noumi, H.; Motoba, T.; Hiyama, E.; Albayrak, I.; Ates, O.; Chen, C.; Christy, M.; Keppel, C.; Kohl, M.; Li, Y.; Liyanage, A.; Tang, L.; Walton, T.; Ye, Z.; Yuan, L.; Zhu, L.; Baturin, P.; Boeglin, W.; Dhamija, S.; Markowitz, P.; Raue, B.; Reinhold, J.; Hungerford, Ed. V.; Ent, R.; Fenker, H.; Gaskell, D.; Horn, T.; Jones, M.; Smith, G.; Vulcan, W.; Wood, S. A.; Johnston, C.; Simicevic, N.; Wells, S.; Samanta, C.; Hu, B.; Shen, J.; Wang, W.; Zhang, X.; Zhang, Y.; Feng, J.; Fu, Y.; Zhou, J.; Zhou, S.; Jiang, Y.; Lu, H.; Yan, X.; Ye, Y.; Gan, L.; Ahmidouch, A.; Danagoulian, S.; Gasparian, A.; Elaasar, M.; Wesselmann, F. R.; Asaturyan, A.; Margaryan, A.; Mkrtchyan, A.; Mkrtchyan, H.; Tadevosyan, V.; Androic, D.; Furic, M.; Petkovic, T.; Seva, T.; Niculescu, G.; Niculescu, I.; Rodríguez López, V. M.; Cisbani, E.; Cusanno, F.; Garibaldi, F.; Uuciuoli, G. M.; de Leo, R.; Maronne, S.
Hypernuclear spectroscopy with electron beam at JLab Hall C has been studied since 2000. The first experiment, JLab E89-009, demonstrated the possibility of the (e, e‧ K+) reaction for hypernuclear spectroscopy by achieving an energy resolution of better than 1 MeV (FWHM). The second experiment, JLab E01-011 employed a newly constructed high resolution kaon spectrometer and introduced a vertically tilted electron arm setup to avoid electrons from bremsstrahlung and Moeller scattering. The setup allowed us to have 10 times yield rate and 4 times better signal to accidental ratio with expected energy resolution of 400 keV (FWHM). The third experiment, JLab E05-115 will be performed in 2009 with employing newly constructed high resolution electron spectrometer and a new charge-separation magnet. With the fully customized third generation experimental setup, we can study a variety of targets up to medium-heavy ones such as 52Cr.
3.0-T functional brain imaging: a 5-year experience.
Scarabino, T; Giannatempo, G M; Popolizio, T; Tosetti, M; d'Alesio, V; Esposito, F; Di Salle, F; Di Costanzo, A; Bertolino, A; Maggialetti, A; Salvolini, U
2007-02-01
The aim of this paper is to illustrate the technical, methodological and diagnostic features of functional imaging (comprising spectroscopy, diffusion, perfusion and cortical activation techniques) and its principal neuroradiological applications on the basis of the experience gained by the authors in the 5 years since the installation of a high-field magnetic resonance (MR) magnet. These MR techniques are particularly effective at 3.0 Tesla (T) owing to their high signal, resolution and sensitivity, reduced scanning times and overall improved diagnostic ability. In particular, the high-field strength enhances spectroscopic analysis due to a greater signal-to-noise ratio (SNR) and improved spectral, space and time resolution, resulting in the ability to obtain high-resolution spectroscopic studies not only of the more common metabolites, but also--and especially--of those which, due to their smaller concentrations, are difficult to detect using 1.5-T systems. All of these advantages can be obtained with reduced acquisition times. In diffusion studies, the high-field strength results in greater SNR, because 3.0-T magnets enable increased spatial resolution, which enhances accuracy. They also allow exploration in greater detail of more complex phenomena (such as diffusion tensor and tractography), which are not clearly depicted on 1.5-T systems. The most common perfusion study (with intravenous injection of a contrast agent) benefits from the greater SNR and higher magnetic susceptibility by achieving dramatically improved signal changes, and thus greater reliability, using smaller doses of contrast agent. Functional MR imaging (fMRI) is without doubt the modality in which high-field strength has had the greatest impact. Images acquired with the blood-oxygen-level-dependent (BOLD) technique benefit from the greater SNR afforded by 3.0-T magnets and from their stronger magnetic susceptibility effects, providing higher signal and spatial resolution. This enhances reliability of the localisation of brain functions, making it possible to map additional areas, even in the millimetre and submillimetre scale. The data presented and results obtained to date show that 3.0-T morphofunctional imaging can become the standard for high-resolution investigation of brain disease.
NASA Astrophysics Data System (ADS)
Liu, Junting; Tian, Jie; Liang, Jimin; Li, Xiangsi; Yang, Xiang; Chen, Xiaofeng; Chen, Yi; Zhou, Yuanfang; Wang, Xiaorui
2011-03-01
Immunocytochemical and immunofluorescence staining are used for identifying the characteristics of metastasis in traditional ways. Micro-computed tomography (micro-CT) is a useful tool for monitoring and longitudinal imaging of tumor in small animal in vivo. In present study, we evaluated the feasibility of the detection for metastasis of gastric carcinoma by high-resolution micro-CT system with omnipaque accumulative enhancement method in the organs. Firstly, a high-resolution micro-CT ZKKS-MCT-sharp micro-CT was developed by our research group and Guangzhou Zhongke Kaisheng Medical Technology Co., Ltd. Secondly, several gastric carcinoma models were established through inoculating 2x106 BGC-823 gastric carcinoma cells subcutaneously. Thirdly, micro-CT scanning was performed after accumulative enhancement method of intraperitoneal injection of omnipaque contrast agent containing 360 mg iodine with a concentration of 350 mg I/ml. Finally, we obtained high-resolution anatomical information of the metastasis in vivo in a BALB/c NuNu nude mouse, the 3D tumor architecture is revealed in exquisite detail at about 35 μm spatial resolution. In addition, the accurate shape and volume of the micrometastasis as small as 0.78 mm3 can be calculated with our software. Overall, our data suggest that this imaging approach and system could be used to enhance the understanding of tumor proliferation, metastasis and could be the basis for evaluating anti-tumor therapies.
Analysis and modeling of atmospheric turbulence on the high-resolution space optical systems
NASA Astrophysics Data System (ADS)
Lili, Jiang; Chen, Xiaomei; Ni, Guoqiang
2016-09-01
Modeling and simulation of optical remote sensing system plays an unslightable role in remote sensing mission predictions, imaging system design, image quality assessment. It has already become a hot research topic at home and abroad. Atmospheric turbulence influence on optical systems is attached more and more importance to as technologies of remote sensing are developed. In order to study the influence of atmospheric turbulence on earth observation system, the atmospheric structure parameter was calculated by using the weak atmospheric turbulence model; and the relationship of the atmospheric coherence length and high resolution remote sensing optical system was established; then the influence of atmospheric turbulence on the coefficient r0h of optical remote sensing system of ground resolution was derived; finally different orbit height of high resolution optical system imaging quality affected by atmospheric turbulence was analyzed. Results show that the influence of atmospheric turbulence on the high resolution remote sensing optical system, the resolution of which has reached sub meter level meter or even the 0.5m, 0.35m and even 0.15m ultra in recent years, image quality will be quite serious. In the above situation, the influence of the atmospheric turbulence must be corrected. Simulation algorithms of PSF are presented based on the above results. Experiment and analytical results are posted.
Longitudinal Plasmoid in High-Speed Vortex Gas Flow Created by Capacity HF Discharge
2010-10-28
interferometer with high space resolution, PIV method, FTIR spectrometer, optical spectrometer, pressure sensors with high time resolution, IR pyrometer and...of strong LP-vortex interaction. Intensive acoustic waves are created by CHFD in swirl flow in this regime. 38. Study of control of a longitudinal...quartz tube, 4- HF ball electrode, 5- Tesla’s transformer, 6- microwave interferometer, 7- video camera, 8-optical pyrometer , 9-pressure sensor, 10
Spatial Modeling of Geometallurgical Properties: Techniques and a Case Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deutsch, Jared L., E-mail: jdeutsch@ualberta.ca; Palmer, Kevin; Deutsch, Clayton V.
High-resolution spatial numerical models of metallurgical properties constrained by geological controls and more extensively by measured grade and geomechanical properties constitute an important part of geometallurgy. Geostatistical and other numerical techniques are adapted and developed to construct these high-resolution models accounting for all available data. Important issues that must be addressed include unequal sampling of the metallurgical properties versus grade assays, measurements at different scale, and complex nonlinear averaging of many metallurgical parameters. This paper establishes techniques to address each of these issues with the required implementation details and also demonstrates geometallurgical mineral deposit characterization for a copper–molybdenum deposit inmore » South America. High-resolution models of grades and comminution indices are constructed, checked, and are rigorously validated. The workflow demonstrated in this case study is applicable to many other deposit types.« less
NASA Astrophysics Data System (ADS)
Hariri, Ali; Bely, Nicholas; Chen, Chen; Nasiriavanaki, Mohammadreza
2016-03-01
The increasing use of mouse models for human brain disease studies, coupled with the fact that existing high-resolution functional imaging modalities cannot be easily applied to mice, presents an emerging need for a new functional imaging modality. Utilizing both mechanical and optical scanning in the photoacoustic microscopy, we can image spontaneous cerebral hemodynamic fluctuations and their associated functional connections in the mouse brain. The images is going to be acquired noninvasively with a fast frame rate, a large field of view, and a high spatial resolution. We developed an optical resolution photoacoustic microscopy (OR-PAM) with diode laser. Laser light was raster scanned due to XY-stage movement. Images from ultra-high OR-PAM can then be used to study brain disorders such as stroke, Alzheimer's, schizophrenia, multiple sclerosis, autism, and epilepsy.
Effects of Drake Passage on a strongly eddying global ocean
NASA Astrophysics Data System (ADS)
Viebahn, Jan; von der Heydt, Anna S.; Dijkstra, Henk A.
2015-04-01
During the past 65 Million (Ma) years, Earth's climate has undergone a major change from warm 'greenhouse' to colder 'icehouse' conditions with extensive ice sheets in the polar regions of both hemispheres. The Eocene-Oligocene (~34 Ma) and Oligocene-Miocene (~23 Ma) boundaries reflect major transitions in Cenozoic global climate change. Proposed mechanisms of these transitions include reorganization of ocean circulation due to critical gateway opening/deepening, changes in atmospheric CO2-concentration, and feedback mechanisms related to land-ice formation. Drake Passage (DP) is an intensively studied gateway because it plays a central role in closing the transport pathways of heat and chemicals in the ocean. The climate response to a closed DP has been explored with a variety of general circulation models, however, all of these models employ low model-grid resolutions such that the effects of subgrid-scale fluctuations ('eddies') are parameterized. We present results of the first high-resolution (0.1° horizontally) realistic global ocean model simulation with a closed DP in which the eddy field is largely resolved. The simulation extends over more than 200 years such that the strong transient adjustment process is passed and a near-equilibrium ocean state is reached. The effects of DP are diagnosed by comparing with both an open DP high-resolution control simulation (of same length) and corresponding low-resolution simulations. By focussing on the heat/tracer transports we demonstrate that the results are twofold: Considering spatially integrated transports the overall response to a closed DP is well captured by low-resolution simulations. However, looking at the actual spatial distributions drastic differences appear between far-scattered high-resolution and laminar-uniform low-resolution fields. We conclude that sparse and highly localized tracer proxy observations have to be interpreted carefully with the help of high-resolution model simulations.
Jain, Kartik; Jiang, Jingfeng; Strother, Charles; Mardal, Kent-André
2016-11-01
Blood flow in intracranial aneurysms has, until recently, been considered to be disturbed but still laminar. Recent high resolution computational studies have demonstrated, in some situations, however, that the flow may exhibit high frequency fluctuations that resemble weakly turbulent or transitional flow. Due to numerous assumptions required for simplification in computational fluid dynamics (CFD) studies, the occurrence of these events, in vivo, remains unsettled. The detection of these fluctuations in aneurysmal blood flow, i.e., hemodynamics by CFD, poses additional challenges as such phenomena cannot be captured in clinical data acquisition with magnetic resonance (MR) due to inadequate temporal and spatial resolutions. The authors' purpose was to address this issue by comparing results from highly resolved simulations, conventional resolution laminar simulations, and MR measurements, identify the differences, and identify their causes. Two aneurysms in the basilar artery, one with disturbed yet laminar flow and the other with transitional flow, were chosen. One set of highly resolved direct numerical simulations using the lattice Boltzmann method (LBM) and another with adequate resolutions under laminar flow assumption were conducted using a commercially available ANSYS Fluent solver. The velocity fields obtained from simulation results were qualitatively and statistically compared against each other and with MR acquisition. Results from LBM, ANSYS Fluent, and MR agree well qualitatively and quantitatively for one of the aneurysms with laminar flow in which fluctuations were <80 Hz. The comparisons for the second aneurysm with high fluctuations of > ∼ 600 Hz showed vivid differences between LBM, ANSYS Fluent, and magnetic resonance imaging. After ensemble averaging and down-sampling to coarser space and time scales, these differences became minimal. A combination of MR derived data and CFD can be helpful in estimating the hemodynamic environment of intracranial aneurysms. Adequately resolved CFD would suffice gross assessment of hemodynamics, potentially in a clinical setting, and highly resolved CFD could be helpful in a detailed and retrospective understanding of the physiological mechanisms.
Ahmed, Abdella M; Tashima, Hideaki; Yamaya, Taiga
2018-03-01
The dominant factor limiting the intrinsic spatial resolution of a positron emission tomography (PET) system is the size of the crystal elements in the detector. To increase sensitivity and achieve high spatial resolution, it is essential to use advanced depth-of-interaction (DOI) detectors and arrange them close to the subject. The DOI detectors help maintain high spatial resolution by mitigating the parallax error caused by the thickness of the scintillator near the peripheral regions of the field-of-view. As an optimal geometry for a brain PET scanner, with high sensitivity and spatial resolution, we proposed and developed the helmet-chin PET scanner using 54 four-layered DOI detectors consisting of a 16 × 16 × 4 array of GSOZ scintillator crystals with dimensions of 2.8 × 2.8 × 7.5 mm 3 . All the detectors used in the helmet-chin PET scanner had the same spatial resolution. In this study, we conducted a feasibility study of a new add-on detector arrangement for the helmet PET scanner by replacing the chin detector with a segmented crystal cube, having high spatial resolution in all directions, which can be placed inside the mouth. The crystal cube (which we have named the mouth-insert detector) has an array of 20 × 20 × 20 LYSO crystal segments with dimensions of 1 × 1 × 1 mm 3 . Thus, the scanner is formed by the combination of the helmet and mouth-insert detectors, and is referred to as the helmet-mouth-insert PET scanner. The results show that the helmet-mouth-insert PET scanner has comparable sensitivity and improved spatial resolution near the center of the hemisphere, compared to the helmet-chin PET scanner.
Variability along the Atlantic water pathway in the forced Norwegian Earth System Model
NASA Astrophysics Data System (ADS)
Langehaug, H. R.; Sandø, A. B.; Årthun, M.; Ilıcak, M.
2018-03-01
The growing attention on mechanisms that can provide predictability on interannual-to-decadal time scales, makes it necessary to identify how well climate models represent such mechanisms. In this study we use a high (0.25° horizontal grid) and a medium (1°) resolution version of a forced global ocean-sea ice model, utilising the Norwegian Earth System Model, to assess the impact of increased ocean resolution. Our target is the simulation of temperature and salinity anomalies along the pathway of warm Atlantic water in the subpolar North Atlantic and the Nordic Seas. Although the high resolution version has larger biases in general at the ocean surface, the poleward propagation of thermohaline anomalies is better resolved in this version, i.e., the time for an anomaly to travel northward is more similar to observation based estimates. The extent of these anomalies can be rather large in both model versions, as also seen in observations, e.g., stretching from Scotland to northern Norway. The easternmost branch into the Nordic and Barents Seas, carrying warm Atlantic water, is also improved by higher resolution, both in terms of mean heat transport and variability in thermohaline properties. A more detailed assessment of the link between the North Atlantic Ocean circulation and the thermohaline anomalies at the entrance of the Nordic Seas reveals that the high resolution is more consistent with mechanisms that are previously published. This suggests better dynamics and variability in the subpolar region and the Nordic Seas in the high resolution compared to the medium resolution. This is most likely due a better representation of the mean circulation in the studied region when using higher resolution. As the poleward propagation of ocean heat anomalies is considered to be a key source of climate predictability, we recommend that similar methodology presented herein should be performed on coupled climate models that are used for climate prediction.
Prajapati, Surendra Kumar; Joshi, Hema; Valecha, Neena
2010-06-01
Malaria, an ancient human infectious disease caused by five species of Plasmodium, among them Plasmodium vivax is the most widespread human malaria species and causes huge morbidity to its host. Identification of genetic marker to resolve higher genetic diversity for an ancient origin organism is a crucial task. We have analyzed genetic diversity of P. vivax field isolates using highly polymorphic antigen gene merozoite surface protein-3 alpha (msp-3 alpha) and assessed its suitability as high-resolution genetic marker for population genetic studies. 27 P. vivax field isolates collected during chloroquine therapeutic efficacy study at Chennai were analyzed for genetic diversity. PCR-RFLP was employed to assess the genetic variations using highly polymorphic antigen gene msp-3 alpha. We observed three distinct PCR alleles at msp-3 alpha, and among them allele A showed significantly high frequency (53%, chi2 = 8.22, p = 0.001). PCR-RFLP analysis revealed 14 and 17 distinct RFLP patterns for Hha1 and Alu1 enzymes respectively. Further, RFLP analysis revealed that allele A at msp-3 alpha is more diverse in the population compared with allele B and C. Combining Hha1 and Alu1 RFLP patterns revealed 21 distinct genotypes among 22 isolates reflects higher diversity resolution power of msp-3 alpha in the field isolates. P. vivax isolates from Chennai region revealed substantial amount of genetic diversity and comparison of allelic diversity with other antigen genes and microsatellites suggesting that msp-3 alpha could be a high-resolution marker for genetic diversity studies among P. vivax field isolates.
High-resolution scanning electron microscopy of frozen-hydrated cells.
Walther, P; Chen, Y; Pech, L L; Pawley, J B
1992-11-01
Cryo-fixed yeast Paramecia and sea urchin embryos were investigated with an in-lens type field-emission SEM using a cold stage. The goal was to further develop and investigate the processing of frozen samples for the low-temperature scanning electron microscope (LTSEM). Uncoated frozen-hydrated samples were imaged with the low-voltage backscattered electron signal (BSE). Resolution and contrast were sufficient to visualize cross-fractured membranes, nuclear pores and small vesicles in the cytoplasm. It is assumed that the resolution of this approach is limited by the extraction depth of the BSE which depends upon the accelerating voltage of the primary beam (V0). In this study, the lowest possible V0 was 2.6 kV because below this value the sensitivity of the BSE detector is insufficient. It is concluded that the resolution of the uncoated specimen could be improved if equipment were available for high-resolution BSE imaging at 0.5-2 kV. Higher resolution was obtained with platinum cryo-coated samples, on which intramembranous particles were easily imaged. These images even show the ring-like appearance of the hexagonally arranged intramembranous particles known from high-resolution replica studies. On fully hydrated samples at high magnification, the observation time for a particular area is limited by mass loss caused by electron irradiation. Other potential sources of artefacts are the deposition of water vapour contamination and shrinkage caused by the sublimation of ice. Imaging of partially dehydrated (partially freeze-dried) samples, e.g. high-pressure frozen Paramecium and sea urchin embryos, will probably become the main application in cell biology. In spite of possible shrinkage problems, this approach has a number of advantages compared with any other electron microscopy preparation method: no chemical fixation is necessary, eliminating this source of artefacts; due to partial removal of the water additional structures in the cytoplasm can be investigated; and finally, the mass loss due to electron beam irradiation is greatly reduced compared to fully frozen-hydrated specimens.
NASA Technical Reports Server (NTRS)
Mareboyana, Manohar; Le Moigne-Stewart, Jacqueline; Bennett, Jerome
2016-01-01
In this paper, we demonstrate a simple algorithm that projects low resolution (LR) images differing in subpixel shifts on a high resolution (HR) also called super resolution (SR) grid. The algorithm is very effective in accuracy as well as time efficiency. A number of spatial interpolation techniques using nearest neighbor, inverse-distance weighted averages, Radial Basis Functions (RBF) etc. used in projection yield comparable results. For best accuracy of reconstructing SR image by a factor of two requires four LR images differing in four independent subpixel shifts. The algorithm has two steps: i) registration of low resolution images and (ii) shifting the low resolution images to align with reference image and projecting them on high resolution grid based on the shifts of each low resolution image using different interpolation techniques. Experiments are conducted by simulating low resolution images by subpixel shifts and subsampling of original high resolution image and the reconstructing the high resolution images from the simulated low resolution images. The results of accuracy of reconstruction are compared by using mean squared error measure between original high resolution image and reconstructed image. The algorithm was tested on remote sensing images and found to outperform previously proposed techniques such as Iterative Back Projection algorithm (IBP), Maximum Likelihood (ML), and Maximum a posterior (MAP) algorithms. The algorithm is robust and is not overly sensitive to the registration inaccuracies.
NASA Astrophysics Data System (ADS)
Min, Byung Jun; Choi, Yong; Lee, Nam-Yong; Lee, Kisung; Ahn, Young Bok; Joung, Jinhun
2009-07-01
The aim of this study was to design a multipinhole (MP) collimator with lead vertical septa coupled to a high-resolution detector module containing silicon drift detectors (SDDs) with an intrinsic resolution approaching the sub-millimeter level. Monte Carlo simulations were performed to determine pinhole parameters such as pinhole diameter, focal length, and number of pinholes. Effects of parallax error and collimator penetration were investigated for the new MP collimator design. The MP detector module was evaluated using reconstructed images of resolution and mathematical cardiac torso (MCAT) phantoms. In addition, the reduced angular sampling effect was investigated over 180°. The images were reconstructed using dedicated maximum likelihood expectation maximization (MLEM) algorithm. An MP collimator with 81-pinhole was designed with a 2-mm-diameter pinhole and a focal length of 40 mm . Planar sensitivity and resolution obtained using the devised MP collimator were 3.9 cps/μCi and 6 mm full-width at half-maximum (FWHM) at a 10 cm distance. The parallax error and penetration ratio were significantly improved using the proposed MP collimation design. The simulation results demonstrated that the proposed MP detector provided enlarged imaging field of view (FOV) and improved the angular sampling effect in resolution and MCAT phantom studies. Moreover, the novel design enables tomography images by simultaneously obtaining eight projections with eight-detector modules located along the 180° orbit surrounding a patient, which allows designing of a stationary cardiac SPECT. In conclusion, the MP collimator with lead vertical septa was designed to have comparable system resolution and sensitivity to those of the low-energy high-resolution (LEHR) collimator per detector. The system sensitivity with an eight-detector configuration would be four times higher than that with a standard dual-detector cardiac SPECT.
NASA Astrophysics Data System (ADS)
Lindo-Atichati, D.; Curcic, M.; Paris, C. B.; Buston, P. M.
2016-02-01
Determining the appropriate resolution of circulation models often lacks statistical evaluation. Thus, the gains from implementing high-resolution versus less-costly low-resolution models are not always clear. Here we construct a hierarchy of ocean-atmosphere models operating at multiple-scales within a 1×1° domain of the Belizean Barrier Reef (BBR). We compare the dispersion and velocity of 55 surface drifters released in the field in summer 2013 to the dispersion and velocity of simulated drifters under alternative model configurations. Increasing the resolution of the ocean model (from 1/12° to 1/100°, from 1 day to 1 h), the resolution of the atmosphere model forcing (from 1/2° to 1/100°, from 6 h to 1 h), and incorporating tidal forcing incrementally reduces discrepancy between simulated and observed velocities and dispersion. We also investigate the effect of semi-diurnal tides on the local circulation. The model with highest resolution and with tidal forcing resolves higher number of looping trajectories and sub-mesoscale coherent structures. This may be a key factor in reducing discrepancy between simulated and observed velocities and dispersion. Simulations conducted with the highest resolution ocean-atmosphere model and tidal forcing highlight an intensification of the velocity fields throughout the summer and reveal several processes: mesoscale anticyclonic circulation around Glovers Reef, and recurrent sub-mesoscale cyclonic eddies formed in the vicinity of Columbus Island. This study provides a general framework to estimate the best surface transport prediction from different ocean-atmosphere models using metrics derived from high frequency drifters' data. Also, this study provides an evaluated high-resolution ocean-atmosphere model that resolves tides for the Belizean Barrier Reef.
Fusion and quality analysis for remote sensing images using contourlet transform
NASA Astrophysics Data System (ADS)
Choi, Yoonsuk; Sharifahmadian, Ershad; Latifi, Shahram
2013-05-01
Recent developments in remote sensing technologies have provided various images with high spatial and spectral resolutions. However, multispectral images have low spatial resolution and panchromatic images have low spectral resolution. Therefore, image fusion techniques are necessary to improve the spatial resolution of spectral images by injecting spatial details of high-resolution panchromatic images. The objective of image fusion is to provide useful information by improving the spatial resolution and the spectral information of the original images. The fusion results can be utilized in various applications, such as military, medical imaging, and remote sensing. This paper addresses two issues in image fusion: i) image fusion method and ii) quality analysis of fusion results. First, a new contourlet-based image fusion method is presented, which is an improvement over the wavelet-based fusion. This fusion method is then applied to a case study to demonstrate its fusion performance. Fusion framework and scheme used in the study are discussed in detail. Second, quality analysis for the fusion results is discussed. We employed various quality metrics in order to analyze the fusion results both spatially and spectrally. Our results indicate that the proposed contourlet-based fusion method performs better than the conventional wavelet-based fusion methods.
ERIC Educational Resources Information Center
Chen, Jian; Smith, Andrew D.; Khan, Majid A.; Sinning, Allan R.; Conway, Marianne L.; Cui, Dongmei
2017-01-01
Recent improvements in three-dimensional (3D) virtual modeling software allows anatomists to generate high-resolution, visually appealing, colored, anatomical 3D models from computed tomography (CT) images. In this study, high-resolution CT images of a cadaver were used to develop clinically relevant anatomic models including facial skull, nasal…
Modeling fire behavior on tropical islands with high-resolution weather data
John W. Benoit; Francis M. Fujioka; David R. Weise
2009-01-01
In this study, we consider fire behavior simulation in tropical island scenarios such as Hawaii and Puerto Rico. The development of a system to provide real-time fire behavior prediction in Hawaii is discussed. This involves obtaining fuels and topography information at a fine scale, as well as supplying daily high-resolution weather forecast data for the area of...
Wenli Huang; Anu Swatantran; Kristofer Johnson; Laura Duncanson; Hao Tang; Jarlath O' Neil Dunne; George Hurtt; Ralph Dubayah
2015-01-01
Continental-scale aboveground biomass maps are increasingly available, but their estimates vary widely, particularly at high resolution. A comprehensive understanding of map discrepancies is required to improve their effectiveness in carbon accounting and local decision-making. To this end, we compare four continental-scale maps with a recent high-resolution lidar-...
Qin, Kunming; Zheng, Lijuan; Cai, Hao; Cao, Gang; Lou, Yajing; Lu, Tulin; Shu, Yachun; Zhou, Wei; Cai, Baochang
2013-01-01
Pericarpium Citri Reticulatae (Chenpi in Chinese) has been widely used as an herbal medicine in Korea, China, and Japan. Chenpi extracts are used to treat indigestion and inflammatory syndromes of the respiratory tract such as bronchitis and asthma. This thesis will analyze chemical compositions of Chenpi volatile oil, which was performed by comprehensive two-dimensional gas chromatography with high-resolution time-of-flight mass spectrometry (GC × GC-HR-TOFMS). One hundred and sixty-seven components were tentatively identified, and terpene compounds are the main components of Chenpi volatile oil, a significant larger number than in previous studies. The majority of the eluted compounds, which were identified, were well separated as a result of high-resolution capability of the GC × GC method, which significantly reduces, the coelution. β -Elemene is tentatively qualified by means of GC × GC in tandem with high-resolution TOFMS detection, which plays an important role in enhancing the effects of many anticancer drugs and in reducing the side effects of chemotherapy. This study suggests that GC × GC-HR-TOFMS is suitable for routine characterization of chemical composition of volatile oil in herbal medicines.
Terada, Masaki; Matsushita, Hiroki; Oosugi, Masanori; Inoue, Kazuyasu; Yaegashi, Taku; Anma, Takeshi
2009-03-20
The advantage of the higher signal-to-noise ratio (SNR) of 3-Tesla magnetic resonance imaging (3-Tesla) has the possibility of contributing to the improvement of high spatial resolution without causing image deterioration. In this study, we compared SNR and the apparent diffusion coefficient (ADC) value with 3-Tesla as the condition in the diffusion-weighted image (DWI) parameter of the 1.5-Tesla magnetic resonance imaging (1.5-Tesla) and we examined the high spatial resolution images in the imaging method [respiratory-triggering (RT) method and breath free (BF) method] and artifact (motion and zebra) in the upper abdominal region of DWI at 3-Tesla. We have optimized scan parameters based on phantom and in vivo study. As a result, 3-Tesla was able to obtain about 1.5 times SNR in comparison with the 1.5-Tesla, ADC value had few differences. Moreover, the RT method was effective in correcting the influence of respiratory movement in comparison with the BF method, and image improvement by the effective acquisition of SNR and reduction of the artifact were provided. Thus, DWI of upper abdominal region was a useful sequence for the high spatial resolution in 3-Tesla.
Silvent, Jeremie; Akiva, Anat; Brumfeld, Vlad; Reznikov, Natalie; Rechav, Katya; Yaniv, Karina; Addadi, Lia; Weiner, Steve
2017-01-01
Although bone is one of the most studied living materials, many questions about the manner in which bones form remain unresolved, including fine details of the skeletal structure during development. In this study, we monitored skeleton development of zebrafish larvae, using calcein fluorescence, high-resolution micro-CT 3D images and FIB-SEM in the block surface serial imaging mode. We compared calcein staining of the skeletons of the wild type and nacre mutants, which are transparent zebrafish, with micro-CT for the first 30 days post fertilization embryos, and identified significant differences. We quantified the bone volumes and mineral contents of bones, including otoliths, during development, and showed that such developmental differences, including otolith development, could be helpful in identifying phenotypes. In addition, high-resolution imaging revealed the presence of mineralized aggregates in the notochord, before the formation of the first bone in the axial skeleton. These structures might play a role in the storage of the mineral. Our results highlight the potential of these high-resolution 3D approaches to characterize the zebrafish skeleton, which in turn could prove invaluable information for better understanding the development and the characterization of skeletal phenotypes. PMID:29220379
Spacer layer thickness dependent structural and magnetic properties of Co/Si multilayers
NASA Astrophysics Data System (ADS)
Roy, Ranjan; Singh, Dushyant; Kumar, M. Senthil
2018-05-01
In this article, the study of high resolution x-ray diffraction and magnetization of sputter deposited Co/Si multilayer is reported. Multilayers are prepared at ambient temperature by dc magnetron sputtering. Structural properties are studied by high resolution x-ray diffraction. Magnetic properties are studied at room temperature by vibrating sample magnetometer. Structural properties show that the Co layer is polycrystalline and the Si layer is amorphous. The magnetization study indicates that the samples are soft ferromagnetic in nature. The study of magnetization also shows that the easy axis of magnetization lies in the plane of the film.
Giesemann, Anja M; Raab, Peter; Lyutenski, Stefan; Dettmer, Sabine; Bültmann, Eva; Frömke, Cornelia; Lenarz, Thomas; Lanfermann, Heinrich; Goetz, Friedrich
2014-03-01
Magnetic resonance imaging of the temporal bone has an important role in decision making with regard to cochlea implantation, especially in children with cochlear nerve deficiency. The purpose of this study was to evaluate the usefulness of the combination of an advanced high-resolution T2-weighted sequence with a surface coil in a 3-Tesla magnetic resonance imaging scanner in cases of suspected cochlear nerve aplasia. Prospective study. Seven patients with cochlear nerve hypoplasia or aplasia were prospectively examined using a high-resolution three-dimensional variable flip-angle turbo spin-echo sequence using a surface coil, and the images were compared with the same sequence in standard resolution using a standard head coil. Three neuroradiologists evaluated the magnetic resonance images independently, rating the visibility of the nerves in diagnosing hypoplasia or aplasia. Eight ears in seven patients with hypoplasia or aplasia of the cochlear nerve were examined. The average age was 2.7 years (range, 9 months-5 years). Seven ears had accompanying malformations. The inter-rater reliability in diagnosing hypoplasia or aplasia was greater using the high-resolution three-dimensional variable flip-angle turbo spin-echo sequence (fixed-marginal kappa: 0.64) than with the same sequence in lower resolution (fixed-marginal kappa: 0.06). Examining cases of suspected cochlear nerve aplasia using the high-resolution three-dimensional variable flip-angle turbo spin-echo sequence in combination with a surface coil shows significant improvement over standard methods. © 2013 The American Laryngological, Rhinological and Otological Society, Inc.
NASA Astrophysics Data System (ADS)
Roesler, E. L.; Bosler, P. A.; Taylor, M.
2016-12-01
The impact of strong extratropical storms on coastal communities is large, and the extent to which storms will change with a warming Arctic is unknown. Understanding storms in reanalysis and in climate models is important for future predictions. We know that the number of detected Arctic storms in reanalysis is sensitive to grid resolution. To understand Arctic storm sensitivity to resolution in climate models, we describe simulations designed to identify and compare Arctic storms at uniform low resolution (1 degree), at uniform high resolution (1/8 degree), and at variable resolution (1 degree to 1/8 degree). High-resolution simulations resolve more fine-scale structure and extremes, such as storms, in the atmosphere than a uniform low-resolution simulation. However, the computational cost of running a globally uniform high-resolution simulation is often prohibitive. The variable resolution tool in atmospheric general circulation models permits regional high-resolution solutions at a fraction of the computational cost. The storms are identified using the open-source search algorithm, Stride Search. The uniform high-resolution simulation has over 50% more storms than the uniform low-resolution and over 25% more storms than the variable resolution simulations. Storm statistics from each of the simulations is presented and compared with reanalysis. We propose variable resolution as a cost-effective means of investigating physics/dynamics coupling in the Arctic environment. Future work will include comparisons with observed storms to investigate tuning parameters for high resolution models. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND2016-7402 A
An audit of half-count myocardial perfusion imaging using resolution recovery software.
Lawson, Richard S; White, Duncan; Nijran, Kuldip; Cade, Sarah C; Hall, David O; Kenny, Bob; Knight, Andy; Livieratos, Lefteris; Murray, Anthony; Towey, David
2014-05-01
The Nuclear Medicine Software Quality Group of the Institute of Physics and Engineering in Medicine has conducted a multicentre, multivendor audit to evaluate the use of resolution recovery software from several manufacturers when applied to myocardial perfusion data with half the normal counts acquired under a variety of clinical protocols in a range of departments. The objective was to determine whether centres could obtain clinical results with half-count data processed with resolution recovery software that were equivalent to those obtained using their normal protocols. Sixteen centres selected 50 routine myocardial perfusion studies each, from which the Nuclear Medicine Software Quality Group generated simulated half-count studies using Poisson resampling. These half-count studies were reconstructed using resolution recovery and the clinical reports compared with the original reports from the full-count data. A total of 769 patient studies were processed and compared. Eight centres found only a small number of clinically relevant discrepancies between the two reports, whereas eight had an unacceptably high number of discrepancies. There were no significant differences in acquisition parameters between the two groups, although centres finding a high number of discrepancies were more likely to perform both rest and stress scans on normal studies. Half of the participating centres could potentially make use of resolution recovery to reduce the administered activity for myocardial perfusion scans without changing their routine acquisition protocols. The other half could consider adjusting the reconstruction parameters used with their resolution recovery software if they wish to use reduced activity successfully.
NASA Astrophysics Data System (ADS)
Thomas, N.; Rueda, X.; Lambin, E.; Mendenhall, C. D.
2012-12-01
Large intact forested regions of the world are known to be critical to maintaining Earth's climate, ecosystem health, and human livelihoods. Remote sensing has been successfully implemented as a tool to monitor forest cover and landscape dynamics over broad regions. Much of this work has been done using coarse resolution sensors such as AVHRR and MODIS in combination with moderate resolution sensors, particularly Landsat. Finer scale analysis of heterogeneous and fragmented landscapes is commonly performed with medium resolution data and has had varying success depending on many factors including the level of fragmentation, variability of land cover types, patch size, and image availability. Fine scale tree cover in mixed agricultural areas can have a major impact on biodiversity and ecosystem sustainability but may often be inadequately captured with the global to regional (coarse resolution and moderate resolution) satellite sensors and processing techniques widely used to detect land use and land cover changes. This study investigates whether advanced remote sensing methods are able to assess and monitor percent tree canopy cover in spatially complex human-dominated agricultural landscapes that prove challenging for traditional mapping techniques. Our study areas are in high altitude, mixed agricultural coffee-growing regions in Costa Rica and the Colombian Andes. We applied Random Forests regression tree analysis to Landsat data along with additional spectral, environmental, and spatial variables to predict percent tree canopy cover at 30m resolution. Image object-based texture, shape, and neighborhood metrics were generated at the Landsat scale using eCognition and included in the variable suite. Training and validation data was generated using high resolution imagery from digital aerial photography at 1m to 2.5 m resolution. Our results are promising with Pearson's correlation coefficients between observed and predicted percent tree canopy cover of .86 (Costa Rica) and .83 (Colombia). The tree cover mapping developed here supports two distinct projects on sustaining biodiversity and natural and human capital: in Costa Rica the tree canopy cover map is utilized to predict bird community composition; and in Colombia the mapping is performed for two time periods and used to assess the impact of coffee eco-certification programs on the landscape. This research identifies ways to leverage readily available, high quality, and cost-free Landsat data or other medium resolution satellite data sources in combination with high resolution data, such as that frequently available through Google Earth, to monitor and support sustainability efforts in fragmented and heterogeneous landscapes.
Marcinkowski, R; España, S; Van Holen, R; Vandenberghe, S
2014-12-07
The majority of current whole-body PET scanners are based on pixelated scintillator arrays with a transverse pixel size of 4 mm. However, recent studies have shown that decreasing the pixel size to 2 mm can significantly improve image spatial resolution. In this study, the performance of Digital Photon Counter (DPC) from Philips Digital Photon Counting (PDPC) was evaluated to determine their potential for high-resolution whole-body time of flight (TOF) PET scanners. Two detector configurations were evaluated. First, the DPC3200-44-22 DPC array was coupled to a LYSO block of 15 × 15 2 × 2 × 22 mm(3) pixels through a 1 mm thick light guide. Due to light sharing among the dies neighbour logic of the DPC was used. In a second setup the same DPC was coupled directly to a scalable 4 × 4 LYSO matrix of 1.9 × 1.9 × 22 mm(3) crystals with a dedicated reflector arrangement allowing for controlled light sharing patterns inside the matrix. With the first approach an average energy resolution of 14.5% and an average CRT of 376 ps were achieved. For the second configuration an average energy resolution of 11% and an average CRT of 295 ps were achieved. Our studies show that the DPC is a suitable photosensor for a high-resolution TOF-PET detector. The dedicated reflector arrangement allows one to achieve better performances than the light guide approach. The count loss, caused by dark counts, is overcome by fitting the matrix size to the size of DPC single die.
Recent wetland land loss due to hurricanes: improved estimates based upon multiple source images
Kranenburg, Christine J.; Palaseanu-Lovejoy, Monica; Barras, John A.; Brock, John C.; Wang, Ping; Rosati, Julie D.; Roberts, Tiffany M.
2011-01-01
The objective of this study was to provide a moderate resolution 30-m fractional water map of the Chenier Plain for 2003, 2006 and 2009 by using information contained in high-resolution satellite imagery of a subset of the study area. Indices and transforms pertaining to vegetation and water were created using the high-resolution imagery, and a threshold was applied to obtain a categorical land/water map. The high-resolution data was used to train a decision-tree classifier to estimate percent water in a lower resolution (Landsat) image. Two new water indices based on the tasseled cap transformation were proposed for IKONOS imagery in wetland environments and more than 700 input parameter combinations were considered for each Landsat image classified. Final selection and thresholding of the resulting percent water maps involved over 5,000 unambiguous classified random points using corresponding 1-m resolution aerial photographs, and a statistical optimization procedure to determine the threshold at which the maximum Kappa coefficient occurs. Each selected dataset has a Kappa coefficient, percent correctly classified (PCC) water, land and total greater than 90%. An accuracy assessment using 1,000 independent random points was performed. Using the validation points, the PCC values decreased to around 90%. The time series change analysis indicated that due to Hurricane Rita, the study area lost 6.5% of marsh area, and transient changes were less than 3% for either land or water. Hurricane Ike resulted in an additional 8% land loss, although not enough time has passed to discriminate between persistent and transient changes.
Capillary electrophoresis-high resolution sector field inductively coupled plasma mass spectrometry.
Sonke, Jeroen E; Salters, Vincent J M
2007-08-03
The background and applications of high resolution sector field inductively coupled plasma mass spectrometry (HR-ICP-MS) as a detector for capillary (CE) and gel electrophoretic separations are reviewed. Notable progress has been made in the fields of bioinorganic and environmental (geo-) chemistry. Metallomics, the study of metal species interactions and functions in biological systems, puts substantial technical demands on speciation analysis. The combination of high species resolving power (CE) and high sensitivity-high mass resolving power (HR-ICP-MS) provides a solid base to meet such demands.
Larsson, Daniel H; Lundström, Ulf; Westermark, Ulrica K; Arsenian Henriksson, Marie; Burvall, Anna; Hertz, Hans M
2013-02-01
Small-animal studies require images with high spatial resolution and high contrast due to the small scale of the structures. X-ray imaging systems for small animals are often limited by the microfocus source. Here, the authors investigate the applicability of liquid-metal-jet x-ray sources for such high-resolution small-animal imaging, both in tomography based on absorption and in soft-tissue tumor imaging based on in-line phase contrast. The experimental arrangement consists of a liquid-metal-jet x-ray source, the small-animal object on a rotating stage, and an imaging detector. The source-to-object and object-to-detector distances are adjusted for the preferred contrast mechanism. Two different liquid-metal-jet sources are used, one circulating a Ga∕In∕Sn alloy and the other an In∕Ga alloy for higher penetration through thick tissue. Both sources are operated at 40-50 W electron-beam power with ∼7 μm x-ray spots, providing high spatial resolution in absorption imaging and high spatial coherence for the phase-contrast imaging. High-resolution absorption imaging is demonstrated on mice with CT, showing 50 μm bone details in the reconstructed slices. High-resolution phase-contrast soft-tissue imaging shows clear demarcation of mm-sized tumors at much lower dose than is required in absorption. This is the first application of liquid-metal-jet x-ray sources for whole-body small-animal x-ray imaging. In absorption, the method allows high-resolution tomographic skeletal imaging with potential for significantly shorter exposure times due to the power scalability of liquid-metal-jet sources. In phase contrast, the authors use a simple in-line arrangement to show distinct tumor demarcation of few-mm-sized tumors. This is, to their knowledge, the first small-animal tumor visualization with a laboratory phase-contrast system.
Unraveling the martian water cycle with high-resolution global climate simulations
NASA Astrophysics Data System (ADS)
Pottier, Alizée; Forget, François; Montmessin, Franck; Navarro, Thomas; Spiga, Aymeric; Millour, Ehouarn; Szantai, André; Madeleine, Jean-Baptiste
2017-07-01
Global climate modeling of the Mars water cycle is usually performed at relatively coarse resolution (200 - 300km), which may not be sufficient to properly represent the impact of waves, fronts, topography effects on the detailed structure of clouds and surface ice deposits. Here, we present new numerical simulations of the annual water cycle performed at a resolution of 1° × 1° (∼ 60 km in latitude). The model includes the radiative effects of clouds, whose influence on the thermal structure and atmospheric dynamics is significant, thus we also examine simulations with inactive clouds to distinguish the direct impact of resolution on circulation and winds from the indirect impact of resolution via water ice clouds. To first order, we find that the high resolution does not dramatically change the behavior of the system, and that simulations performed at ∼ 200 km resolution capture well the behavior of the simulated water cycle and Mars climate. Nevertheless, a detailed comparison between high and low resolution simulations, with reference to observations, reveal several significant changes that impact our understanding of the water cycle active today on Mars. The key northern cap edge dynamics are affected by an increase in baroclinic wave strength, with a complication of northern summer dynamics. South polar frost deposition is modified, with a westward longitudinal shift, since southern dynamics are also influenced. Baroclinic wave mode transitions are observed. New transient phenomena appear, like spiral and streak clouds, already documented in the observations. Atmospheric circulation cells in the polar region exhibit a large variability and are fine structured, with slope winds. Most modeled phenomena affected by high resolution give a picture of a more turbulent planet, inducing further variability. This is challenging for long-period climate studies.
Full Spatial Resolution Infrared Sounding Application in the Preconvection Environment
NASA Astrophysics Data System (ADS)
Liu, C.; Liu, G.; Lin, T.
2013-12-01
Advanced infrared (IR) sounders such as the Atmospheric Infrared Sounder (AIRS) and Infrared Atmospheric Sounding Interferometer (IASI) provide atmospheric temperature and moisture profiles with high vertical resolution and high accuracy in preconvection environments. The derived atmospheric stability indices such as convective available potential energy (CAPE) and lifted index (LI) from advanced IR soundings can provide critical information 1 ; 6 h before the development of severe convective storms. Three convective storms are selected for the evaluation of applying AIRS full spatial resolution soundings and the derived products on providing warning information in the preconvection environments. In the first case, the AIRS full spatial resolution soundings revealed local extremely high atmospheric instability 3 h ahead of the convection on the leading edge of a frontal system, while the second case demonstrates that the extremely high atmospheric instability is associated with the local development of severe thunderstorm in the following hours. The third case is a local severe storm that occurred on 7-8 August 2010 in Zhou Qu, China, which caused more than 1400 deaths and left another 300 or more people missing. The AIRS full spatial resolution LI product shows the atmospheric instability 3.5 h before the storm genesis. The CAPE and LI from AIRS full spatial resolution and operational AIRS/AMSU soundings along with Geostationary Operational Environmental Satellite (GOES) Sounder derived product image (DPI) products were analyzed and compared. Case studies show that full spatial resolution AIRS retrievals provide more useful warning information in the preconvection environments for determining favorable locations for convective initiation (CI) than do the coarser spatial resolution operational soundings and lower spectral resolution GOES Sounder retrievals. The retrieved soundings are also tested in a regional data assimilation WRF 3D-var system to evaluate the potential assist in the NWP model.
High-resolution typing of Chlamydia trachomatis: epidemiological and clinical uses.
de Vries, Henry J C; Schim van der Loeff, Maarten F; Bruisten, Sylvia M
2015-02-01
A state-of-the-art overview of molecular Chlamydia trachomatis typing methods that are used for routine diagnostics and scientific studies. Molecular epidemiology uses high-resolution typing techniques such as multilocus sequence typing, multilocus variable number of tandem repeats analysis, and whole-genome sequencing to identify strains based on their DNA sequence. These data can be used for cluster, network and phylogenetic analyses, and are used to unveil transmission networks, risk groups, and evolutionary pathways. High-resolution typing of C. trachomatis strains is applied to monitor treatment efficacy and re-infections, and to study the recent emergence of lymphogranuloma venereum (LGV) amongst men who have sex with men in high-income countries. Chlamydia strain typing has clinical relevance in disease management, as LGV needs longer treatment than non-LGV C. trachomatis. It has also led to the discovery of a new variant Chlamydia strain in Sweden, which was not detected by some commercial C. trachomatis diagnostic platforms. After a brief history and comparison of the various Chlamydia typing methods, the applications of the current techniques are described and future endeavors to extend scientific understanding are formulated. High-resolution typing will likely help to further unravel the pathophysiological mechanisms behind the wide clinical spectrum of chlamydial disease.
NASA Astrophysics Data System (ADS)
Li, Y.; McDougall, T. J.
2016-02-01
Coarse resolution ocean models lack knowledge of spatial correlations between variables on scales smaller than the grid scale. Some researchers have shown that these spatial correlations play a role in the poleward heat flux. In order to evaluate the poleward transport induced by the spatial correlations at a fixed horizontal position, an equation is obtained to calculate the approximate transport from velocity gradients. The equation involves two terms that can be added to the quasi-Stokes streamfunction (based on temporal correlations) to incorporate the contribution of spatial correlations. Moreover, these new terms do not need to be parameterized and is ready to be evaluated by using model data directly. In this study, data from a high resolution ocean model have been used to estimate the accuracy of this HRM approach for improving the horizontal property fluxes in coarse-resolution ocean models. A coarse grid is formed by sub-sampling and box-car averaging the fine grid scale. The transport calculated on the coarse grid is then compared to the transport on original high resolution grid scale accumulated over a corresponding number of grid boxes. The preliminary results have shown that the estimate on coarse resolution grids roughly match the corresponding transports on high resolution grids.
Sea Ice Pressure Ridge Height Distributions for the Arctic Ocean in Winter, Just Prior to Melt
NASA Astrophysics Data System (ADS)
Duncan, K.; Farrell, S. L.; Richter-Menge, J.; Hutchings, J.; Dominguez, R.; Connor, L. N.
2016-12-01
Pressure ridges are one of the most dominant morphological features of the Arctic sea ice pack. An impediment to navigation, pressure ridges are also of climatological interest since they impact the mass, energy and momentum transfer budgets for the Arctic Ocean. Understanding the regional and seasonal distributions of ridge sail heights, and their variability, is important for quantifying total sea ice mass, and for improved treatment of sea ice dynamics in high-resolution numerical models. Observations of sail heights from airborne and ship-based platforms have been documented in previous studies, however studies with both high spatial and temporal resolution, across multiple regions of the Arctic, are only recently possible with the advent of dedicated airborne surveys of the Arctic Ocean. In this study we present results from the high-resolution Digital Mapping System (DMS), flown as part of NASA's Operation IceBridge missions. We use DMS imagery to calculate ridge sail heights, derived from the shadows they cast combined with the solar elevation angle and the known pixel size of each image. Our analyses describe sea ice conditions at the end of winter, during the months of March and April, over a period spanning seven years, from 2010 to 2016. The high spatial resolution (0.1m) and temporal extent (seven years) of the DMS data set provides, for the first time, the full sail-height distributions of both first-year and multi-year sea ice. We present the inter-annual variability in sail height distributions for both the Central Arctic and the Beaufort and Chukchi Seas. We validate our results via comparison with spatially coincident high-resolution SAR imagery and airborne laser altimeter elevations.
Atomic force microscopy of lead iodide crystal surfaces
NASA Astrophysics Data System (ADS)
George, M. A.; Azoulay, M.; Jayatirtha, H. N.; Biao, Y.; Burger, A.; Collins, W. E.; Silberman, E.
1994-03-01
Atomic force microscopy (AFM) was used to characterize the surface of lead iodide crystals. The high vapor pressure of lead iodide prohibits the use of traditional high resolution surface study techniques that require high vacuum conditions. AFM was used to image numerous insulating surface in various ambients, with very little sample preparation techniques needed. Freshly cleaved and modified surfaces, including, chemical and vacuum etched, and air aged surfaces, were examined. Both intrinsic and induced defects were imaged with high resolution. The results were compared to a similar AFM study of mercuric iodide surfaces and it was found that, at ambient conditions, lead iodide is significantly more stable than mercuric iodide.
Attention Modifies Spatial Resolution According to Task Demands.
Barbot, Antoine; Carrasco, Marisa
2017-03-01
How does visual attention affect spatial resolution? In texture-segmentation tasks, exogenous (involuntary) attention automatically increases resolution at the attended location, which improves performance where resolution is too low (at the periphery) but impairs performance where resolution is already too high (at central locations). Conversely, endogenous (voluntary) attention improves performance at all eccentricities, which suggests a more flexible mechanism. Here, using selective adaptation to spatial frequency, we investigated the mechanism by which endogenous attention benefits performance in resolution tasks. Participants detected a texture target that could appear at several eccentricities. Adapting to high or low spatial frequencies selectively affected performance in a manner consistent with changes in resolution. Moreover, adapting to high, but not low, frequencies mitigated the attentional benefit at central locations where resolution was too high; this shows that attention can improve performance by decreasing resolution. Altogether, our results indicate that endogenous attention benefits performance by modulating the contribution of high-frequency information in order to flexibly adjust spatial resolution according to task demands.
Attention Modifies Spatial Resolution According to Task Demands
Barbot, Antoine; Carrasco, Marisa
2017-01-01
How does visual attention affect spatial resolution? In texture-segmentation tasks, exogenous (involuntary) attention automatically increases resolution at the attended location, which improves performance where resolution is too low (at the periphery) but impairs performance where resolution is already too high (at central locations). Conversely, endogenous (voluntary) attention improves performance at all eccentricities, which suggests a more flexible mechanism. Here, using selective adaptation to spatial frequency, we investigated the mechanism by which endogenous attention benefits performance in resolution tasks. Participants detected a texture target that could appear at several eccentricities. Adapting to high or low spatial frequencies selectively affected performance in a manner consistent with changes in resolution. Moreover, adapting to high, but not low, frequencies mitigated the attentional benefit at central locations where resolution was too high; this shows that attention can improve performance by decreasing resolution. Altogether, our results indicate that endogenous attention benefits performance by modulating the contribution of high-frequency information in order to flexibly adjust spatial resolution according to task demands. PMID:28118103
Miller, R.; Black, W.; Miele, M.; Morgan, T.; Ivanov, J.; Xia, J.; Peterie, S.
2011-01-01
A high-resolution seismic reflection investigation mapped reflectors and identified characteristics potentially influencing the interpretation of the hydrogeology underlying a portion of the Oxnard Plain in Ventura County, California. Design and implementation of this study was heavily influenced by high levels of cultural noise from vehicles, power lines, roads, manufacturing facilities, and underground utilities/vaults. Acquisition and processing flows were tailored to this noisy environment and relatively shallow target interval. Layering within both upper and lower aquifer systems was delineated at a vertical resolution potential of around 2.5 m at 350 m depth. ?? 2011 Society of Exploration Geophysicists.
Pinto, Francisco; Mielewczik, Michael; Liebisch, Frank; Walter, Achim; Greven, Hartmut; Rascher, Uwe
2013-01-01
Most spectral data for the amphibian integument are limited to the visible spectrum of light and have been collected using point measurements with low spatial resolution. In the present study a dual camera setup consisting of two push broom hyperspectral imaging systems was employed, which produces reflectance images between 400 and 2500 nm with high spectral and spatial resolution and a high dynamic range. We briefly introduce the system and document the high efficiency of this technique analyzing exemplarily the spectral reflectivity of the integument of three arboreal anuran species (Litoria caerulea, Agalychnis callidryas and Hyla arborea), all of which appear green to the human eye. The imaging setup generates a high number of spectral bands within seconds and allows non-invasive characterization of spectral characteristics with relatively high working distance. Despite the comparatively uniform coloration, spectral reflectivity between 700 and 1100 nm differed markedly among the species. In contrast to H. arborea, L. caerulea and A. callidryas showed reflection in this range. For all three species, reflectivity above 1100 nm is primarily defined by water absorption. Furthermore, the high resolution allowed examining even small structures such as fingers and toes, which in A. callidryas showed an increased reflectivity in the near infrared part of the spectrum. Hyperspectral imaging was found to be a very useful alternative technique combining the spectral resolution of spectrometric measurements with a higher spatial resolution. In addition, we used Digital Infrared/Red-Edge Photography as new simple method to roughly determine the near infrared reflectivity of frog specimens in field, where hyperspectral imaging is typically difficult.
Becucci, M; Pietraperzia, G; Pasquini, M; Piani, G; Zoppi, A; Chelli, R; Castellucci, E; Demtroeder, W
2004-03-22
An experimental and theoretical study is made on the anisole-water complex. It is the first van der Waals complex studied by high resolution electronic spectroscopy in which the water is seen acting as an acid. Vibronically and rotationally resolved electronic spectroscopy experiments and molecular mechanics calculations are used to elucidate the structure of the complex in the ground and first electronic excited state. Some internal dynamics in the system is revealed by high resolution spectroscopy. (c) 2004 American Institute of Physics
Shokri, Abbas; Eskandarloo, Amir; Norouzi, Marouf; Poorolajal, Jalal; Majidi, Gelareh; Aliyaly, Alireza
2018-03-01
This study compared the diagnostic accuracy of cone-beam computed tomography (CBCT) scans obtained with 2 CBCT systems with high- and low-resolution modes for the detection of root perforations in endodontically treated mandibular molars. The root canals of 72 mandibular molars were cleaned and shaped. Perforations measuring 0.2, 0.3, and 0.4 mm in diameter were created at the furcation area of 48 roots, simulating strip perforations, or on the external surfaces of 48 roots, simulating root perforations. Forty-eight roots remained intact (control group). The roots were filled using gutta-percha (Gapadent, Tianjin, China) and AH26 sealer (Dentsply Maillefer, Ballaigues, Switzerland). The CBCT scans were obtained using the NewTom 3G (QR srl, Verona, Italy) and Cranex 3D (Soredex, Helsinki, Finland) CBCT systems in high- and low-resolution modes, and were evaluated by 2 observers. The chi-square test was used to assess the nominal variables. In strip perforations, the accuracies of low- and high-resolution modes were 75% and 83% for NewTom 3G and 67% and 69% for Cranex 3D. In root perforations, the accuracies of low- and high-resolution modes were 79% and 83% for NewTom 3G and was 56% and 73% for Cranex 3D. The accuracy of the 2 CBCT systems was different for the detection of strip and root perforations. The Cranex 3D had non-significantly higher accuracy than the NewTom 3G. In both scanners, the high-resolution mode yielded significantly higher accuracy than the low-resolution mode. The diagnostic accuracy of CBCT scans was not affected by the perforation diameter.
NASA Astrophysics Data System (ADS)
Van Gordon, M.; Van Gordon, S.; Min, A.; Sullivan, J.; Weiner, Z.; Tappan, G. G.
2017-12-01
Using support vector machine (SVM) learning and high-accuracy hand-classified maps, we have developed a publicly available land cover classification tool for the West African Sahel. Our classifier produces high-resolution and regionally calibrated land cover maps for the Sahel, representing a significant contribution to the data available for this region. Global land cover products are unreliable for the Sahel, and accurate land cover data for the region are sparse. To address this gap, the U.S. Geological Survey and the Regional Center for Agriculture, Hydrology and Meteorology (AGRHYMET) in Niger produced high-quality land cover maps for the region via hand-classification of Landsat images. This method produces highly accurate maps, but the time and labor required constrain the spatial and temporal resolution of the data products. By using these hand-classified maps alongside SVM techniques, we successfully increase the resolution of the land cover maps by 1-2 orders of magnitude, from 2km-decadal resolution to 30m-annual resolution. These high-resolution regionally calibrated land cover datasets, along with the classifier we developed to produce them, lay the foundation for major advances in studies of land surface processes in the region. These datasets will provide more accurate inputs for food security modeling, hydrologic modeling, analyses of land cover change and climate change adaptation efforts. The land cover classification tool we have developed will be publicly available for use in creating additional West Africa land cover datasets with future remote sensing data and can be adapted for use in other parts of the world.
Moslemi, Vahid; Ashoor, Mansour
2017-05-01
In addition to the trade-off between resolution and sensitivity which is a common problem among all types of parallel hole collimators (PCs), obtained images by high energy PCs (HEPCs) suffer from hole-pattern artifact (HPA) due to further septa thickness. In this study, a new design on the collimator has been proposed to improve the trade-off between resolution and sensitivity and to eliminate the HPA. A novel PC, namely high energy extended PC (HEEPC), is proposed and is compared to HEPCs. In the new PC, trapezoidal denticles were added upon the septa in the detector side. The performance of the HEEPCs were evaluated and compared to that of HEPCs using a Monte Carlo-N-particle version5 (MCNP5) simulation. The point spread functions (PSF) of HEPCs and HEEPCs were obtained as well as the various parameters such as resolution, sensitivity, scattering, and penetration ratios, and the HPA of the collimators was assessed. Furthermore, a Picker phantom study was performed to examine the effects of the collimators on the quality of planar images. It was found that the HEEPC D with an identical resolution to that of HEPC C increased sensitivity by 34.7%, and it improved the trade-off between resolution and sensitivity as well as to eliminate the HPA. In the picker phantom study, the HEEPC D indicated the hot and cold lesions with the higher contrast, lower noise, and higher contrast to noise ratio (CNR). Since the HEEPCs modify the shaping of PSFs, they are able to improve the trade-off between the resolution and sensitivity; consequently, planar images can be achieved with higher contrast resolutions. Furthermore, because the HEEPC S reduce the HPA and produce images with a higher CNR, compared to HEPCs, the obtained images by HEEPCs have a higher quality, which can help physicians to provide better diagnosis.
Development of a large-area Multigap RPC with adequate spatial resolution for muon tomography
NASA Astrophysics Data System (ADS)
Wang, J.; Wang, Y.; Wang, X.; Zeng, M.; Xie, B.; Han, D.; Lyu, P.; Wang, F.; Li, Y.
2016-11-01
We study the performance of a large-area 2-D Multigap Resistive Plate Chamber (MRPC) designed for muon tomography with high spatial resolution. An efficiency up to 98% and a spatial resolution of around 270 μ m are obtained in cosmic ray and X-ray tests. The performance of the MRPC is also investigated for two working gases: standard gas and pure Freon. The result shows that the MRPC working in pure Freon can provide higher efficiency and better spatial resolution.
NASA Astrophysics Data System (ADS)
Nazari, B.; Seo, D.; Cannon, A.
2013-12-01
With many diverse features such as channels, pipes, culverts, buildings, etc., hydraulic modeling in urban areas for inundation mapping poses significant challenges. Identifying the practical extent of the details to be modeled in order to obtain sufficiently accurate results in a timely manner for effective emergency management is one of them. In this study we assess the tradeoffs between model complexity vs. information content for decision making in applying high-resolution hydrologic and hydraulic models for real-time flash flood forecasting and inundation mapping in urban areas. In a large urban area such as the Dallas-Fort Worth Metroplex (DFW), there exists very large spatial variability in imperviousness depending on the area of interest. As such, one may expect significant sensitivity of hydraulic model results to the resolution and accuracy of hydrologic models. In this work, we present the initial results from coupling of high-resolution hydrologic and hydraulic models for two 'hot spots' within the City of Fort Worth for real-time inundation mapping.
EVLA observations of radio-loud quasars selected to study radio orientation
NASA Astrophysics Data System (ADS)
Maithil, Jaya; Brotherton, Michael S.; Runnoe, Jessie; Wardle, John F. C.; DiPompeo, Michael; De Breuck, Carlos; Wills, Beverley J.
2018-06-01
We present preliminary work to develop an unbiased sample of radio-loud quasars to test orientation indicators. We have obtained radio data of 147 radio-loud quasars using EVLA at 10 GHz and with the A-array. With this high-resolution data we have measured the uncontaminated core flux density to determine orientation indicators based on radio core dominance. The radio cores of quasars have a flat spectrum over a broad range of frequencies, so we expect that the core flux density at the FIRST and the observed frequencies should be the same in the absence of variability. Jackson & Brown (2012) pointed out that the survey measurements of core flux density, like FIRST, often doesn't have the spatial resolution to distinguish cores from extended emission. Our measurements show that at FIRST spatial resolution, core flux measurements are indeed systematically high. Our results establish that orientation studies need high-resolution radio data as compared to survey data, and that the optical emission is a better normalization than the extended radio emission for a core dominance parameter to track orientation.
Live CLEM imaging to analyze nuclear structures at high resolution.
Haraguchi, Tokuko; Osakada, Hiroko; Koujin, Takako
2015-01-01
Fluorescence microscopy (FM) and electron microscopy (EM) are powerful tools for observing molecular components in cells. FM can provide temporal information about cellular proteins and structures in living cells. EM provides nanometer resolution images of cellular structures in fixed cells. We have combined FM and EM to develop a new method of correlative light and electron microscopy (CLEM), called "Live CLEM." In this method, the dynamic behavior of specific molecules of interest is first observed in living cells using fluorescence microscopy (FM) and then cellular structures in the same cell are observed using electron microscopy (EM). Following image acquisition, FM and EM images are compared to enable the fluorescent images to be correlated with the high-resolution images of cellular structures obtained using EM. As this method enables analysis of dynamic events involving specific molecules of interest in the context of specific cellular structures at high resolution, it is useful for the study of nuclear structures including nuclear bodies. Here we describe Live CLEM that can be applied to the study of nuclear structures in mammalian cells.
MAX '91: An advanced payload for the exploration of high energy processes on the active sun
NASA Technical Reports Server (NTRS)
1986-01-01
The results of a NASA science working group established to study a follow-on to the Solar Maximum Mission are given. A complement of instruments is suggested, with the primary objective of studying the physics of energetic processes in cosmic plasmas by observing high-energy phenomena in solar flares. High-quality flare observations will be possible with these instruments during the next peak in solar activity expected to last from 1990 through at least 1995. The primary objective of MAX '91 is to study energetic processes in cosmic plasmas by observing high-energy phenomena in solar flares. These processes, which are of general astrophysical importance, include energy release, particle acceleration, and energy transport. Results from comprehensive observing programs conducted during the last solar cycle have demonstrated the great scientific potential of high-energy emissions for addressing these central physical processes. Consequently, a payload optimized for observations of high-energy solar flare phenomena is suggested for MAX '91. It consists of the following four specific instruments: (1) a Fourier-transform X-ray and gamma-ray imager covering the energy range from a few keV to 1 MeV with arcsecond spatial resolution; (2) a cooled germanium X-ray and gamma-ray spectrometer with keV spectral resolution covering the energy range from 10 keV to 50 MeV; (3) Bragg spectrometers with high spectral resolution at wavelengths between 1 and 9 angstrons; and (4) a soft X-ray, EUV, or UV imaging instrument with arcsecond spatial resolution.
HIPS: A new hippocampus subfield segmentation method.
Romero, José E; Coupé, Pierrick; Manjón, José V
2017-12-01
The importance of the hippocampus in the study of several neurodegenerative diseases such as Alzheimer's disease makes it a structure of great interest in neuroimaging. However, few segmentation methods have been proposed to measure its subfields due to its complex structure and the lack of high resolution magnetic resonance (MR) data. In this work, we present a new pipeline for automatic hippocampus subfield segmentation using two available hippocampus subfield delineation protocols that can work with both high and standard resolution data. The proposed method is based on multi-atlas label fusion technology that benefits from a novel multi-contrast patch match search process (using high resolution T1-weighted and T2-weighted images). The proposed method also includes as post-processing a new neural network-based error correction step to minimize systematic segmentation errors. The method has been evaluated on both high and standard resolution images and compared to other state-of-the-art methods showing better results in terms of accuracy and execution time. Copyright © 2017 Elsevier Inc. All rights reserved.
High spatial resolution measurements of ram accelerator gas dynamic phenomena
NASA Technical Reports Server (NTRS)
Hinkey, J. B.; Burnham, E. A.; Bruckner, A. P.
1992-01-01
High spatial resolution experimental tube wall pressure measurements of ram accelerator gas dynamic phenomena are presented. The projectile resembles the centerbody of a ramjet and travels supersonically through a tube filled with a combustible gaseous mixture, with the tube acting as the outer cowling. Pressure data are recorded as the projectile passes by sensors mounted in the tube wall at various locations along the tube. Data obtained by using a special highly instrumented section of tube has allowed the recording of gas dynamic phenomena with a spatial resolution on the order of one tenth the projectile length. High spatial resolution tube wall pressure data from the three regimes of propulsion studied to date (subdetonative, transdetonative, and superdetonative) are presented and reveal the 3D character of the flowfield induced by projectile fins and the canting of the projectile body relative to the tube wall. Also presented for comparison to the experimental data are calculations made with an inviscid, 3D CFD code.
[Comparative study of cone-beam CT and spiral CT in measuring the length of styloid process].
Song, Y S; Liu, L F
2018-06-19
Objective: To compare the difference of measuring the length of styloid process between spiral CT with high resolution and cone-beam CT(CBCT). Methods: Five specimens (including 5 pairs of styloid processes) were selected randomly from the Anatomy Laboratory of Otolaryngology Department, all the specimens underwent spiral CT with high resolution and cone-beam CT retrospectively.With the original DICOM data, the styloid processes were shown in one plate by multiple plate reconstruction technique, and later the length of styloid processes of each specimen were measured separately by software NNT Viewer (to CBCT) or Osrix (to spiral CT with high resolution). Results: The length of styloid processes measured by CBCT and spiral CT was (26.8±5.5) mm and (27.1±5.4) mm respectively, and there was no statistical difference between the two groups. Conclusion: In respect of measuring the length of styloid process, the CBCT has the same value in clinical practice comparing to spiral CT with high resolution.
Iriza, Amalia; Dumitrache, Rodica C.; Lupascu, Aurelia; ...
2016-01-01
Our paper aims to evaluate the quality of high-resolution weather forecasts from the Weather Research and Forecasting (WRF) numerical weather prediction model. The lateral and boundary conditions were obtained from the numerical output of the Consortium for Small-scale Modeling (COSMO) model at 7 km horizontal resolution. Furthermore, the WRF model was run for January and July 2013 at two horizontal resolutions (3 and 1 km). The numerical forecasts of the WRF model were evaluated using different statistical scores for 2 m temperature and 10 m wind speed. Our results showed a tendency of the WRF model to overestimate the valuesmore » of the analyzed parameters in comparison to observations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iriza, Amalia; Dumitrache, Rodica C.; Lupascu, Aurelia
Our paper aims to evaluate the quality of high-resolution weather forecasts from the Weather Research and Forecasting (WRF) numerical weather prediction model. The lateral and boundary conditions were obtained from the numerical output of the Consortium for Small-scale Modeling (COSMO) model at 7 km horizontal resolution. Furthermore, the WRF model was run for January and July 2013 at two horizontal resolutions (3 and 1 km). The numerical forecasts of the WRF model were evaluated using different statistical scores for 2 m temperature and 10 m wind speed. Our results showed a tendency of the WRF model to overestimate the valuesmore » of the analyzed parameters in comparison to observations.« less
Haines, Brian M.; Aldrich, C. H.; Campbell, J. M.; ...
2017-04-24
In this study, we present the results of high-resolution simulations of the implosion of high-convergence layered indirect-drive inertial confinement fusion capsules of the type fielded on the National Ignition Facility using the xRAGE radiation-hydrodynamics code. In order to evaluate the suitability of xRAGE to model such experiments, we benchmark simulation results against available experimental data, including shock-timing, shock-velocity, and shell trajectory data, as well as hydrodynamic instability growth rates. We discuss the code improvements that were necessary in order to achieve favorable comparisons with these data. Due to its use of adaptive mesh refinement and Eulerian hydrodynamics, xRAGE is particularlymore » well suited for high-resolution study of multi-scale engineering features such as the capsule support tent and fill tube, which are known to impact the performance of high-convergence capsule implosions. High-resolution two-dimensional (2D) simulations including accurate and well-resolved models for the capsule fill tube, support tent, drive asymmetry, and capsule surface roughness are presented. These asymmetry seeds are isolated in order to study their relative importance and the resolution of the simulations enables the observation of details that have not been previously reported. We analyze simulation results to determine how the different asymmetries affect hotspot reactivity, confinement, and confinement time and how these combine to degrade yield. Yield degradation associated with the tent occurs largely through decreased reactivity due to the escape of hot fuel mass from the hotspot. Drive asymmetries and the fill tube, however, degrade yield primarily via burn truncation, as associated instability growth accelerates the disassembly of the hotspot. Finally, modeling all of these asymmetries together in 2D leads to improved agreement with experiment but falls short of explaining the experimentally observed yield degradation, consistent with previous 2D simulations of such capsules.« less
Belaghzal, Houda; Dekker, Job; Gibcus, Johan H
2017-07-01
Chromosome conformation capture-based methods such as Hi-C have become mainstream techniques for the study of the 3D organization of genomes. These methods convert chromatin interactions reflecting topological chromatin structures into digital information (counts of pair-wise interactions). Here, we describe an updated protocol for Hi-C (Hi-C 2.0) that integrates recent improvements into a single protocol for efficient and high-resolution capture of chromatin interactions. This protocol combines chromatin digestion and frequently cutting enzymes to obtain kilobase (kb) resolution. It also includes steps to reduce random ligation and the generation of uninformative molecules, such as unligated ends, to improve the amount of valid intra-chromosomal read pairs. This protocol allows for obtaining information on conformational structures such as compartment and topologically associating domains, as well as high-resolution conformational features such as DNA loops. Copyright © 2017 Elsevier Inc. All rights reserved.
Libraries of High and Mid-Resolution Spectra of F, G, K, and M Field Stars
NASA Astrophysics Data System (ADS)
Montes, D.
1998-06-01
I have compiled here the three libraries of high and mid-resolution optical spectra of late-type stars I have recently published. The libraries include F, G, K and M field stars, from dwarfs to giants. The spectral coverage is from 3800 to 1000 Å, with spectral resolution ranging from 0.09 to 3.0 Å. These spectra include many of the spectral lines most widely used as optical and near-infrared indicators of chromospheric activity. The spectra have been obtained with the aim of providing a library of high and mid-resolution spectra to be used in the study of active chromosphere stars by applying a spectral subtraction technique. However, the data set presented here can also be utilized in a wide variety of ways. A digital version of all the fully reduced spectra is available via FTP and the World Wide Web (WWW) in FITS format.
NASA Astrophysics Data System (ADS)
Pi, Shiqiang; Liu, Wenzhong; Jiang, Tao
2018-03-01
The magnetic transparency of biological tissue allows the magnetic nanoparticle (MNP) to be a promising functional sensor and contrast agent. The complex susceptibility of MNPs, strongly influenced by particle concentration, excitation magnetic field and their surrounding microenvironment, provides significant implications for biomedical applications. Therefore, magnetic susceptibility imaging of high spatial resolution will give more detailed information during the process of MNP-aided diagnosis and therapy. In this study, we present a novel spatial magnetic susceptibility extraction method for MNPs under a gradient magnetic field, a low-frequency drive magnetic field, and a weak strength high-frequency magnetic field. Based on this novel method, a magnetic particle susceptibility imaging (MPSI) of millimeter-level spatial resolution (<3 mm) was achieved using our homemade imaging system. Corroborated by the experimental results, the MPSI shows real-time (1 s per frame acquisition) and quantitative abilities, and isotropic high resolution.
The scale dependence of optical diversity in a prairie ecosystem
NASA Astrophysics Data System (ADS)
Gamon, J. A.; Wang, R.; Stilwell, A.; Zygielbaum, A. I.; Cavender-Bares, J.; Townsend, P. A.
2015-12-01
Biodiversity loss, one of the most crucial challenges of our time, endangers ecosystem services that maintain human wellbeing. Traditional methods of measuring biodiversity require extensive and costly field sampling by biologists with extensive experience in species identification. Remote sensing can be used for such assessment based upon patterns of optical variation. This provides efficient and cost-effective means to determine ecosystem diversity at different scales and over large areas. Sampling scale has been described as a "fundamental conceptual problem" in ecology, and is an important practical consideration in both remote sensing and traditional biodiversity studies. On the one hand, with decreasing spatial and spectral resolution, the differences among different optical types may become weak or even disappear. Alternately, high spatial and/or spectral resolution may introduce redundant or contradictory information. For example, at high resolution, the variation within optical types (e.g., between leaves on a single plant canopy) may add complexity unrelated to specie richness. We studied the scale-dependence of optical diversity in a prairie ecosystem at Cedar Creek Ecosystem Science Reserve, Minnesota, USA using a variety of spectrometers from several platforms on the ground and in the air. Using the coefficient of variation (CV) of spectra as an indicator of optical diversity, we found that high richness plots generally have a higher coefficient of variation. High resolution imaging spectrometer data (1 mm pixels) showed the highest sensitivity to richness level. With decreasing spatial resolution, the difference in CV between richness levels decreased, but remained significant. These findings can be used to guide airborne studies of biodiversity and develop more effective large-scale biodiversity sampling methods.
NASA Astrophysics Data System (ADS)
Seo, Jeongmin; Han, Min Cheol; Yeom, Yeon Soo; Lee, Hyun Su; Kim, Chan Hyeong; Jeong, Jong Hwi; Kim, SeongHoon
2017-04-01
In proton therapy, the spot scanning method is known to suffer from the interplay effect induced from the independent movements of the proton beam and the organs in the patient during the treatment. To study the interplay effect, several investigators have performed four-dimensional (4D) dose calculations with some limited temporal resolutions (4 or 10 phases per respiratory cycle) by using the 4D computed tomography (CT) images of the patient; however, the validity of the limited temporal resolutions has not been confirmed. The aim of the present study is to determine whether the previous temporal resolutions (4 or 10 phases per respiratory cycle) are really high enough for adequate study of the interplay effect in spot scanning proton therapy. For this study, a series of 4D dose calculations were performed with a virtual water phantom moving in the vertical direction during dose delivery. The dose distributions were calculated for different temporal resolutions (4, 10, 25, 50, and 100 phases per respiratory cycle), and the calculated dose distributions were compared with the reference dose distribution, which was calculated using an almost continuously-moving water phantom ( i.e., 1000 phases per respiratory cycle). The results of the present study show that the temporal resolutions of 4 and 10 phases per respiratory cycle are not high enough for an accurate evaluation of the interplay effect for spot scanning proton therapy. The temporal resolution should be at least 14 and 17 phases per respiratory cycle for 10-mm and 20-mm movement amplitudes, respectively, even for rigid movement ( i.e., without deformation) of the homogeneous water phantom considered in the present study. We believe that even higher temporal resolutions are needed for an accurate evaluation of the interplay effect in the human body, in which the organs are inhomogeneous and deform during movement.
High Resolution Imager (HRI) for the Roentgen Satellite (ROSAT) definition study
NASA Technical Reports Server (NTRS)
1983-01-01
The design of the high resolution imager (HRI) on HEAO 2 was modified for use in the instrument complement of the Roentgen Satellite (ROSAT). Mechanical models of the front end assembly, central electronics assembly, and detector assembly were used to accurately represent the HRI envelope for both fit checks and focal plane configuration studies. The mechanical and electrical interfaces were defined and the requirements for electrical ground support equipment were established. A summary description of the ROSAT telescope and mission is included.
NASA Astrophysics Data System (ADS)
Rasera, L. G.; Mariethoz, G.; Lane, S. N.
2017-12-01
Frequent acquisition of high-resolution digital elevation models (HR-DEMs) over large areas is expensive and difficult. Satellite-derived low-resolution digital elevation models (LR-DEMs) provide extensive coverage of Earth's surface but at coarser spatial and temporal resolutions. Although useful for large scale problems, LR-DEMs are not suitable for modeling hydrologic and geomorphic processes at scales smaller than their spatial resolution. In this work, we present a multiple-point geostatistical approach for downscaling a target LR-DEM based on available high-resolution training data and recurrent high-resolution remote sensing images. The method aims at generating several equiprobable HR-DEMs conditioned to a given target LR-DEM by borrowing small scale topographic patterns from an analogue containing data at both coarse and fine scales. An application of the methodology is demonstrated by using an ensemble of simulated HR-DEMs as input to a flow-routing algorithm. The proposed framework enables a probabilistic assessment of the spatial structures generated by natural phenomena operating at scales finer than the available terrain elevation measurements. A case study in the Swiss Alps is provided to illustrate the methodology.
Multispectral image enhancement processing for microsat-borne imager
NASA Astrophysics Data System (ADS)
Sun, Jianying; Tan, Zheng; Lv, Qunbo; Pei, Linlin
2017-10-01
With the rapid development of remote sensing imaging technology, the micro satellite, one kind of tiny spacecraft, appears during the past few years. A good many studies contribute to dwarfing satellites for imaging purpose. Generally speaking, micro satellites weigh less than 100 kilograms, even less than 50 kilograms, which are slightly larger or smaller than the common miniature refrigerators. However, the optical system design is hard to be perfect due to the satellite room and weight limitation. In most cases, the unprocessed data captured by the imager on the microsatellite cannot meet the application need. Spatial resolution is the key problem. As for remote sensing applications, the higher spatial resolution of images we gain, the wider fields we can apply them. Consequently, how to utilize super resolution (SR) and image fusion to enhance the quality of imagery deserves studying. Our team, the Key Laboratory of Computational Optical Imaging Technology, Academy Opto-Electronics, is devoted to designing high-performance microsat-borne imagers and high-efficiency image processing algorithms. This paper addresses a multispectral image enhancement framework for space-borne imagery, jointing the pan-sharpening and super resolution techniques to deal with the spatial resolution shortcoming of microsatellites. We test the remote sensing images acquired by CX6-02 satellite and give the SR performance. The experiments illustrate the proposed approach provides high-quality images.
Zarzycki, Colin M.; Thatcher, Diana R.; Jablonowski, Christiane
2017-01-22
This paper describes an objective technique for detecting the extratropical transition (ET) of tropical cyclones (TCs) in high-resolution gridded climate data. The algorithm is based on previous observational studies using phase spaces to define the symmetry and vertical thermal structure of cyclones. Storm tracking is automated, allowing for direct analysis of climate data. Tracker performance in the North Atlantic is assessed using 23 years of data from the variable-resolution Community Atmosphere Model (CAM) at two different resolutions (DX 55 km and 28 km), the Climate Forecast System Reanalysis (CFSR, DX 38 km), and the ERA-Interim Reanalysis (ERA-I, DX 80 km).more » The mean spatiotemporal climatologies and seasonal cycles of objectively detected ET in the observationally constrained CFSR and ERA-I are well matched to previous observational studies, demonstrating the capability of the scheme to adequately find events. High resolution CAM reproduces TC and ET statistics that are in general agreement with reanalyses. One notable model bias, however, is significantly longer time between ET onset and ET completion in CAM, particularly for TCs that lose symmetry prior to developing a cold-core structure and becoming extratropical cyclones, demonstrating the capability of this method to expose model biases in simulated cyclones beyond the tropical phase.« less
A novel high-resolution chaotic lidar with optical injection to chaotic laser diode
NASA Astrophysics Data System (ADS)
Wang, Yun-cai; Wang, An-bang
2008-03-01
A novel chaotic lidar with high resolution is proposed and studied theoretically. In chaotic lidar system, the chaotic laser emitted from chaotic laser diode is split into two beams: the probe and the reference light. The ranging is achieved by correlating the reference waveform with the delayed probe waveform backscattered from the target. In chaotic lidar systems presented previously, the chaotic signal source is laser diode with optical feedback or with optical injection by another one. The ranging resolution is limited by the bandwidth of chaotic laser which determined by the configuration of chaotic signal source. We proposed a novel chaotic lidar which ranging resolution is enhanced significantly by external optical injected chaotic laser diode. With the bandwidth-enhanced chaotic laser, the range resolution of the chaotic lidar system with optical injection is roughly two times compared with that of without optical injection. The resolution increases with injection strength increasing in a certain frequency detuning range.
Towards a Fine-Resolution Global Coupled Climate System for Prediction on Decadal/Centennial Scales
DOE Office of Scientific and Technical Information (OSTI.GOV)
McClean, Julie L.
The over-arching goal of this project was to contribute to the realization of a fully coupled fine resolution Earth System Model simulation in which a weather-scale atmosphere is coupled to an ocean in which mesoscale eddies are largely resolved. Both a prototype fine-resolution fully coupled ESM simulation and a first-ever multi-decadal forced fine-resolution global coupled ocean/ice simulation were configured, tested, run, and analyzed as part of this grant. Science questions focused on the gains from the use of high horizontal resolution, particularly in the ocean and sea-ice, with respect to climatically important processes. Both these fine resolution coupled ocean/sea icemore » and fully-coupled simulations and precedent stand-alone eddy-resolving ocean and eddy-permitting coupled ocean/ice simulations were used to explore the high resolution regime. Overall, these studies showed that the presence of mesoscale eddies significantly impacted mixing processes and the global meridional overturning circulation in the ocean simulations. Fourteen refereed publications and a Ph.D. dissertation resulted from this grant.« less
Image-receptor performance: a comparison of Trophy RVG UI sensor and Kodak Ektaspeed Plus film.
Ludlow, J; Mol, A
2001-01-01
Objective. This study compares the physical characteristics of the RVG UI sensor (RVG) with Ektaspeed Plus film. Dose-response curves were generated for film and for each of 6 available RVG modes. An aluminum step-wedge was used to evaluate exposure latitude. Spatial resolution was assessed by using a line-pair test tool. Latitude and resolution were assessed by observers for both modalities. The RVG was further characterized by its modulation transfer function. Exposure latitude was equal for film and RVG in the periodontal mode. Other gray scale modes demonstrated much lower latitude. The average maximum resolution was 15.3 line-pairs per millimeter (lp/mm) for RVG in high-resolution mode, 10.5 lp/mm for RVG in low-resolution mode, and 20 lp/mm for film (P <.0001). Modulation transfer function measurements supported the subjective assessments. In periodontal mode, the RVG UI sensor demonstrates exposure latitude similar to that of Ektaspeed Plus film. Film images exhibit significantly higher spatial resolution than the RVG images acquired in high-resolution mode.
High Resolution Model Intercomparison Project (HighResMIP v1.0) for CMIP6
NASA Astrophysics Data System (ADS)
Haarsma, Reindert J.; Roberts, Malcolm J.; Vidale, Pier Luigi; Senior, Catherine A.; Bellucci, Alessio; Bao, Qing; Chang, Ping; Corti, Susanna; Fučkar, Neven S.; Guemas, Virginie; von Hardenberg, Jost; Hazeleger, Wilco; Kodama, Chihiro; Koenigk, Torben; Leung, L. Ruby; Lu, Jian; Luo, Jing-Jia; Mao, Jiafu; Mizielinski, Matthew S.; Mizuta, Ryo; Nobre, Paulo; Satoh, Masaki; Scoccimarro, Enrico; Semmler, Tido; Small, Justin; von Storch, Jin-Song
2016-11-01
Robust projections and predictions of climate variability and change, particularly at regional scales, rely on the driving processes being represented with fidelity in model simulations. The role of enhanced horizontal resolution in improved process representation in all components of the climate system is of growing interest, particularly as some recent simulations suggest both the possibility of significant changes in large-scale aspects of circulation as well as improvements in small-scale processes and extremes. However, such high-resolution global simulations at climate timescales, with resolutions of at least 50 km in the atmosphere and 0.25° in the ocean, have been performed at relatively few research centres and generally without overall coordination, primarily due to their computational cost. Assessing the robustness of the response of simulated climate to model resolution requires a large multi-model ensemble using a coordinated set of experiments. The Coupled Model Intercomparison Project 6 (CMIP6) is the ideal framework within which to conduct such a study, due to the strong link to models being developed for the CMIP DECK experiments and other model intercomparison projects (MIPs). Increases in high-performance computing (HPC) resources, as well as the revised experimental design for CMIP6, now enable a detailed investigation of the impact of increased resolution up to synoptic weather scales on the simulated mean climate and its variability. The High Resolution Model Intercomparison Project (HighResMIP) presented in this paper applies, for the first time, a multi-model approach to the systematic investigation of the impact of horizontal resolution. A coordinated set of experiments has been designed to assess both a standard and an enhanced horizontal-resolution simulation in the atmosphere and ocean. The set of HighResMIP experiments is divided into three tiers consisting of atmosphere-only and coupled runs and spanning the period 1950-2050, with the possibility of extending to 2100, together with some additional targeted experiments. This paper describes the experimental set-up of HighResMIP, the analysis plan, the connection with the other CMIP6 endorsed MIPs, as well as the DECK and CMIP6 historical simulations. HighResMIP thereby focuses on one of the CMIP6 broad questions, "what are the origins and consequences of systematic model biases?", but we also discuss how it addresses the World Climate Research Program (WCRP) grand challenges.
Seeing tobacco mosaic virus through direct electron detectors
Fromm, Simon A.; Bharat, Tanmay A.M.; Jakobi, Arjen J.; Hagen, Wim J.H.; Sachse, Carsten
2015-01-01
With the introduction of direct electron detectors (DED) to the field of electron cryo-microscopy, a wave of atomic-resolution structures has become available. As the new detectors still require comparative characterization, we have used tobacco mosaic virus (TMV) as a test specimen to study the quality of 3D image reconstructions from data recorded on the two direct electron detector cameras, K2 Summit and Falcon II. Using DED movie frames, we explored related image-processing aspects and compared the performance of micrograph-based and segment-based motion correction approaches. In addition, we investigated the effect of dose deposition on the atomic-resolution structure of TMV and show that radiation damage affects negative carboxyl chains first in a side-chain specific manner. Finally, using 450,000 asymmetric units and limiting the effects of radiation damage, we determined a high-resolution cryo-EM map at 3.35 Å resolution. Here, we provide a comparative case study of highly ordered TMV recorded on different direct electron detectors to establish recording and processing conditions that enable structure determination up to 3.2 Å in resolution using cryo-EM. PMID:25528571
A digital gigapixel large-format tile-scan camera.
Ben-Ezra, M
2011-01-01
Although the resolution of single-lens reflex (SLR) and medium-format digital cameras has increased in recent years, applications for cultural-heritage preservation and computational photography require even higher resolutions. Addressing this issue, a large-format cameras' large image planes can achieve very high resolution without compromising pixel size and thus can provide high-quality, high-resolution images.This digital large-format tile scan camera can acquire high-quality, high-resolution images of static scenes. It employs unique calibration techniques and a simple algorithm for focal-stack processing of very large images with significant magnification variations. The camera automatically collects overlapping focal stacks and processes them into a high-resolution, extended-depth-of-field image.
NASA Astrophysics Data System (ADS)
Kong, J.; Ryu, Y.
2017-12-01
Algorithms for fusing high temporal frequency and high spatial resolution satellite images are widely used to develop dense time-series land surface observations. While many studies have revealed that the synthesized frequent high spatial resolution images could be successfully applied in vegetation mapping and monitoring, validation and correction of fused images have not been focused than its importance. To evaluate the precision of fused image in pixel level, in-situ reflectance measurements which could account for the pixel-level heterogeneity are necessary. In this study, the synthetic images of land surface reflectance were predicted by the coarse high-frequency images acquired from MODIS and high spatial resolution images from Landsat-8 OLI using the Flexible Spatiotemporal Data Fusion (FSDAF). Ground-based reflectance was measured by JAZ Spectrometer (Ocean Optics, Dunedin, FL, USA) on rice paddy during five main growth stages in Cheorwon-gun, Republic of Korea, where the landscape heterogeneity changes through the growing season. After analyzing the spatial heterogeneity and seasonal variation of land surface reflectance based on the ground measurements, the uncertainties of the fused images were quantified at pixel level. Finally, this relationship was applied to correct the fused reflectance images and build the seasonal time series of rice paddy surface reflectance. This dataset could be significant for rice planting area extraction, phenological stages detection, and variables estimation.
NASA Astrophysics Data System (ADS)
Harris, S.; Labahn, J. W.; Frank, J. H.; Ihme, M.
2017-11-01
Data assimilation techniques can be integrated with time-resolved numerical simulations to improve predictions of transient phenomena. In this study, optimal interpolation and nudging are employed for assimilating high-speed high-resolution measurements obtained for an inert jet into high-fidelity large-eddy simulations. This experimental data set was chosen as it provides both high spacial and temporal resolution for the three-component velocity field in the shear layer of the jet. Our first objective is to investigate the impact that data assimilation has on the resulting flow field for this inert jet. This is accomplished by determining the region influenced by the data assimilation and corresponding effect on the instantaneous flow structures. The second objective is to determine optimal weightings for two data assimilation techniques. The third objective is to investigate how the frequency at which the data is assimilated affects the overall predictions. Graduate Research Assistant, Department of Mechanical Engineering.
Wargo, Christopher J.; Gore, John C.
2013-01-01
Localized high-resolution diffusion tensor images (DTI) from the midbrain were obtained using reduced field-of-view (rFOV) methods combined with SENSE parallel imaging and single-shot echo planar (EPI) acquisitions at 7 T. This combination aimed to diminish sensitivities of DTI to motion, susceptibility variations, and EPI artifacts at ultra-high field. Outer-volume suppression (OVS) was applied in DTI acquisitions at 2- and 1-mm2 resolutions, b=1000 s/mm2, and six diffusion directions, resulting in scans of 7- and 14-min durations. Mean apparent diffusion coefficient (ADC) and fractional anisotropy (FA) values were measured in various fiber tract locations at the two resolutions and compared. Geometric distortion and signal-to-noise ratio (SNR) were additionally measured and compared for reduced-FOV and full-FOV DTI scans. Up to an eight-fold data reduction was achieved using DTI-OVS with SENSE at 1 mm2, and geometric distortion was halved. The localization of fiber tracts was improved, enabling targeted FA and ADC measurements. Significant differences in diffusion properties were observed between resolutions for a number of regions suggesting that FA values are impacted by partial volume effects even at a 2-mm2 resolution. The combined SENSE DTI-OVS approach allows large reductions in DTI data acquisition and provides improved quality for high-resolution diffusion studies of the human brain. PMID:23541390
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheen, David M.; Fernandes, Justin L.; Tedeschi, Jonathan R.
2013-06-12
Active millimeter-wave imaging is currently being used for personnel screening at airports and other high-security facilities. The lateral resolution, depth resolution, clothing penetration, and image illumination quality obtained from next-generation systems can be significantly enhanced through the selection the aperture size, antenna beamwidth, center frequency, and bandwidth. In this paper, the results of an extensive imaging trade study are presented using both planar and cylindrical three-dimensional imaging techniques at frequency ranges of 10-20 GHz, 10 – 40 GHz, 40 – 60 GHz, and 75 – 105 GHz
Comparison of computed tomography and complex motion tomography in the evaluation of cholesteatoma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shaffer, K.A.
1984-08-01
High-resolution axial and coronal computed tomographic (CT) scans were compared with coronal and sagittal complex motion tomograms in patients with suspected middle ear cholesteatomas. Information on CT scans equaled or exceeded that on conventional complex motion tomograms in 16 of 17 patients, and in 11 it provided additional information. Soft-tissue resolution was superior with CT. In 14 patients who underwent surgery, CT provided information that was valuable to the surgeon. On the basis of this study, high-resolution CT is recommended as the preferred method for evaluating most patients with cholesteatomas of the temporal bone.
PEPSI, the High-Resolution Optical-IR Spectrograph for the LBT
NASA Astrophysics Data System (ADS)
Andersen, Michael; Strassmeier, Klaus; Hoffman, Axel; Woche, Manfred; Spano, Paolo
PEPSI is a high resolution fibre feed optical-IR polarimetric echelle spectrograph for the Large Binocular Telescope (LBT). PEPSI utilizes the two 8.4m LBT apertures to simultaneously record four polarization states at a resolution of 120.000. The extension of the coverage towards the IR is mainly motivated by the larger Zeeman splitting of IR lines, which would allow to study weaker/fainter magnetic structures on stars. The two optical arms, which also have an integral light mode with R up to 300.000, are under construction, while the IR arm is being designed.
Note: Near infrared spectral and transient measurements of PbS quantum dots luminescence.
Parfenov, P S; Litvin, A P; Ushakova, E V; Fedorov, A V; Baranov, A V; Berwick, K
2013-11-01
We describe an experimental setup for the characterization of luminescence from nanostructures. The setup is intended for steady-state and time-resolved luminescence measurements in the near-infrared region. The setup allows us to study spectral luminescence properties in the spectral range of 0.8-2.0 μm with high spectral resolution and kinetic luminescence properties between 0.8 and 1.7 μm with a time resolution of 3 ns. The capabilities of the system are illustrated by taking luminescence measurements from PbS quantum dots. We established the size dependencies of the optical properties of the PbS quantum dots over a wide spectral range. Finally, the energy transfer process was studied with a high temporal and spectral resolution.
Blaeser, Andreas; Duarte Campos, Daniela Filipa; Puster, Uta; Richtering, Walter; Stevens, Molly M; Fischer, Horst
2016-02-04
A microvalve-based bioprinting system for the manufacturing of high-resolution, multimaterial 3D-structures is reported. Applying a straightforward fluid-dynamics model, the shear stress at the nozzle site can precisely be controlled. Using this system, a broad study on how cell viability and proliferation potential are affected by different levels of shear stress is conducted. Complex, multimaterial 3D structures are printed with high resolution. This work pioneers the investigation of shear stress-induced cell damage in 3D bioprinting and might help to comprehend and improve the outcome of cell-printing studies in the future. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
High resolution tsunami inversion for 2010 Chile earthquake
NASA Astrophysics Data System (ADS)
Wu, T.-R.; Ho, T.-C.
2011-12-01
We investigate the feasibility of inverting high-resolution vertical seafloor displacement from tsunami waveforms. An inversion method named "SUTIM" (small unit tsunami inversion method) is developed to meet this goal. In addition to utilizing the conventional least-square inversion, this paper also enhances the inversion resolution by Grid-Shifting method. A smooth constraint is adopted to gain stability. After a series of validation and performance tests, SUTIM is used to study the 2010 Chile earthquake. Based upon data quality and azimuthal distribution, we select tsunami waveforms from 6 GLOSS stations and 1 DART buoy record. In total, 157 sub-faults are utilized for the high-resolution inversion. The resolution reaches 10 sub-faults per wavelength. The result is compared with the distribution of the aftershocks and waveforms at each gauge location with very good agreement. The inversion result shows that the source profile features a non-uniform distribution of the seafloor displacement. The highly elevated vertical seafloor is mainly concentrated in two areas: one is located in the northern part of the epicentre, between 34° S and 36° S; the other is in the southern part, between 37° S and 38° S.
High-resolution surface analysis for extended-range downscaling with limited-area atmospheric models
NASA Astrophysics Data System (ADS)
Separovic, Leo; Husain, Syed Zahid; Yu, Wei; Fernig, David
2014-12-01
High-resolution limited-area model (LAM) simulations are frequently employed to downscale coarse-resolution objective analyses over a specified area of the globe using high-resolution computational grids. When LAMs are integrated over extended time frames, from months to years, they are prone to deviations in land surface variables that can be harmful to the quality of the simulated near-surface fields. Nudging of the prognostic surface fields toward a reference-gridded data set is therefore devised in order to prevent the atmospheric model from diverging from the expected values. This paper presents a method to generate high-resolution analyses of land-surface variables, such as surface canopy temperature, soil moisture, and snow conditions, to be used for the relaxation of lower boundary conditions in extended-range LAM simulations. The proposed method is based on performing offline simulations with an external surface model, forced with the near-surface meteorological fields derived from short-range forecast, operational analyses, and observed temperatures and humidity. Results show that the outputs of the surface model obtained in the present study have potential to improve the near-surface atmospheric fields in extended-range LAM integrations.
A high time resolution x-ray diagnostic on the Madison Symmetric Torus
NASA Astrophysics Data System (ADS)
DuBois, Ami M.; Lee, John David; Almagri, Abdulgadar F.
2015-07-01
A new high time resolution x-ray detector has been installed on the Madison Symmetric Torus (MST) to make measurements around sawtooth events. The detector system is comprised of a silicon avalanche photodiode, a 20 ns Gaussian shaping amplifier, and a 500 MHz digitizer with 14-bit sampling resolution. The fast shaping time diminishes the need to restrict the amount of x-ray flux reaching the detector, limiting the system dead-time. With a much higher time resolution than systems currently in use in high temperature plasma physics experiments, this new detector has the versatility to be used in a variety of discharges with varying flux and the ability to study dynamics on both slow and fast time scales. This paper discusses the new fast x-ray detector recently installed on MST and the improved time resolution capabilities compared to the existing soft and hard x-ray diagnostics. In addition to the detector hardware, improvements to the detector calibration and x-ray pulse identification software, such as additional fitting parameters and a more sophisticated fitting routine are discussed. Finally, initial data taken in both high confinement and standard reversed-field pinch plasma discharges are compared.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vaskuri, Anna, E-mail: anna.vaskuri@aalto.fi; Kärhä, Petri; Heikkilä, Anu
2015-10-15
Polystyrene and many other materials turn yellow when exposed to ultraviolet (UV) radiation. All photodegradation mechanisms including photoyellowing are functions of the exposure wavelength, which can be described with an action spectrum. In this work, a new high-resolution transmittance measurement setup based on lasers has been developed for measuring color changes, such as the photoyellowing of translucent materials aged with a spectrograph. The measurement setup includes 14 power-stabilized laser lines between 325 nm and 933 nm wavelengths, of which one at a time is directed on to the aged sample. The power transmitted through the sample is measured with amore » silicon detector utilizing an integrating sphere. The sample is mounted on a high-resolution XY translation stage. Measurement at various locations aged with different wavelengths of exposure radiation gives the transmittance data required for acquiring the action spectrum. The combination of a UV spectrograph and the new high-resolution transmittance measurement setup enables a novel method for studying the UV-induced ageing of translucent materials with a spectral resolution of 3–8 nm, limited by the adjustable spectral bandwidth range of the spectrograph. These achievements form a significant improvement over earlier methods.« less
Ripesi, P; Biferale, L; Schifano, S F; Tripiccione, R
2014-04-01
We study the turbulent evolution originated from a system subjected to a Rayleigh-Taylor instability with a double density at high resolution in a two-dimensional geometry using a highly optimized thermal lattice-Boltzmann code for GPUs. Our investigation's initial condition, given by the superposition of three layers with three different densities, leads to the development of two Rayleigh-Taylor fronts that expand upward and downward and collide in the middle of the cell. By using high-resolution numerical data we highlight the effects induced by the collision of the two turbulent fronts in the long-time asymptotic regime. We also provide details on the optimized lattice-Boltzmann code that we have run on a cluster of GPUs.
Design of UAV high resolution image transmission system
NASA Astrophysics Data System (ADS)
Gao, Qiang; Ji, Ming; Pang, Lan; Jiang, Wen-tao; Fan, Pengcheng; Zhang, Xingcheng
2017-02-01
In order to solve the problem of the bandwidth limitation of the image transmission system on UAV, a scheme with image compression technology for mini UAV is proposed, based on the requirements of High-definition image transmission system of UAV. The video codec standard H.264 coding module and key technology was analyzed and studied for UAV area video communication. Based on the research of high-resolution image encoding and decoding technique and wireless transmit method, The high-resolution image transmission system was designed on architecture of Android and video codec chip; the constructed system was confirmed by experimentation in laboratory, the bit-rate could be controlled easily, QoS is stable, the low latency could meets most applied requirement not only for military use but also for industrial applications.
Banville, Frederic A; Moreau, Julien; Sarkar, Mitradeep; Besbes, Mondher; Canva, Michael; Charette, Paul G
2018-04-16
Surface plasmon resonance imaging (SPRI) is an optical near-field method used for mapping the spatial distribution of chemical/physical perturbations above a metal surface without exogenous labeling. Currently, the majority of SPRI systems are used in microarray biosensing, requiring only modest spatial resolution. There is increasing interest in applying SPRI for label-free near-field imaging of biological cells to study cell/surface interactions. However, the required resolution (sub-µm) greatly exceeds what current systems can deliver. Indeed, the attenuation length of surface plasmon polaritons (SPP) severely limits resolution along one axis, typically to tens of µm. Strategies to date for improving spatial resolution result in a commensurate deterioration in other imaging parameters. Unlike the smooth metal surfaces used in SPRI that support purely propagating surface modes, nanostructured metal surfaces support "hybrid" SPP modes that share attributes from both propagating and localized modes. We show that these hybrid modes are especially well-suited to high-resolution imaging and demonstrate how the nanostructure geometry can be designed to achieve sub-µm resolution while mitigating the imaging parameter trade-off according to an application-specific optimum.
A depth-of-interaction PET detector using mutual gain-equalized silicon photomultiplier
DOE Office of Scientific and Technical Information (OSTI.GOV)
W. Xi, A.G, Weisenberger, H. Dong, Brian Kross, S. Lee, J. McKisson, Carl Zorn
We developed a prototype high resolution, high efficiency depth-encoding detector for PET applications based on dual-ended readout of LYSO array with two silicon photomultipliers (SiPMs). Flood images, energy resolution, and depth-of-interaction (DOI) resolution were measured for a LYSO array - 0.7 mm in crystal pitch and 10 mm in thickness - with four unpolished parallel sides. Flood images were obtained such that individual crystal element in the array is resolved. The energy resolution of the entire array was measured to be 33%, while individual crystal pixel elements utilizing the signal from both sides ranged from 23.3% to 27%. By applyingmore » a mutual-gain equalization method, a DOI resolution of 2 mm for the crystal array was obtained in the experiments while simulations indicate {approx}1 mm DOI resolution could possibly be achieved. The experimental DOI resolution can be further improved by obtaining revised detector supporting electronics with better energy resolutions. This study provides a detailed detector calibration and DOI response characterization of the dual-ended readout SiPM-based PET detectors, which will be important in the design and calibration of a PET scanner in the future.« less
Hu, Dandan; Sarder, Pinaki; Ronhovde, Peter; Orthaus, Sandra; Achilefu, Samuel; Nussinov, Zohar
2014-01-01
Inspired by a multi-resolution community detection (MCD) based network segmentation method, we suggest an automatic method for segmenting fluorescence lifetime (FLT) imaging microscopy (FLIM) images of cells in a first pilot investigation on two selected images. The image processing problem is framed as identifying segments with respective average FLTs against the background in FLIM images. The proposed method segments a FLIM image for a given resolution of the network defined using image pixels as the nodes and similarity between the FLTs of the pixels as the edges. In the resulting segmentation, low network resolution leads to larger segments, and high network resolution leads to smaller segments. Further, using the proposed method, the mean-square error (MSE) in estimating the FLT segments in a FLIM image was found to consistently decrease with increasing resolution of the corresponding network. The MCD method appeared to perform better than a popular spectral clustering based method in performing FLIM image segmentation. At high resolution, the spectral segmentation method introduced noisy segments in its output, and it was unable to achieve a consistent decrease in MSE with increasing resolution. PMID:24251410
Effects of DTM resolution on slope steepness and soil loss prediction on hillslope profiles
Eder Paulo Moreira; William J. Elliot; Andrew T. Hudak
2011-01-01
Topographic attributes play a critical role in predicting erosion in models such as the Water Erosion Prediction Project (WEPP). The effects of four different high resolution hillslope profiles were studied using four different DTM resolutions: 1-m, 3-m, 5-m and 10-m. The WEPP model used a common scenario encountered in the forest environment and the selected hillslope...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erickson III, David J
The climate of the last glacial maximum (LGM) is simulated with a high-resolution atmospheric general circulation model, the NCAR CCM3 at spectral truncation of T170, corresponding to a grid cell size of roughly 75 km. The purpose of the study is to assess whether there are significant benefits from the higher resolution simulation compared to the lower resolution simulation associated with the role of topography. The LGM simulations were forced with modified CLIMAP sea ice distribution and sea surface temperatures (SST) reduced by 1 C, ice sheet topography, reduced CO{sub 2}, and 21,000 BP orbital parameters. The high-resolution model capturesmore » modern climate reasonably well, in particular the distribution of heavy precipitation in the tropical Pacific. For the ice age case, surface temperature simulated by the high-resolution model agrees better with those of proxy estimates than does the low-resolution model. Despite the fact that tropical SSTs were only 2.1 C less than the control run, there are many lowland tropical land areas 4-6 C colder than present. Comparison of T170 model results with the best constrained proxy temperature estimates (noble gas concentrations in groundwater) now yield no significant differences between model and observations. There are also significant upland temperature changes in the best resolved tropical mountain belt (the Andes). We provisionally attribute this result in part as resulting from decreased lateral mixing between ocean and land in a model with more model grid cells. A longstanding model-data discrepancy therefore appears to be resolved without invoking any unusual model physics. The response of the Asian summer monsoon can also be more clearly linked to local geography in the high-resolution model than in the low-resolution model; this distinction should enable more confident validation of climate proxy data with the high-resolution model. Elsewhere, an inferred salinity increase in the subtropical North Atlantic may have significant implications for ocean circulation changes during the LGM. A large part of the Amazon and Congo Basins are simulated to be substantially drier in the ice age - consistent with many (but not all) paleo data. These results suggest that there are considerable benefits derived from high-resolution model regarding regional climate responses, and that observationalists can now compare their results with models that resolve geography at a resolution comparable to that which the proxy data represent.« less
OpenMP parallelization of a gridded SWAT (SWATG)
NASA Astrophysics Data System (ADS)
Zhang, Ying; Hou, Jinliang; Cao, Yongpan; Gu, Juan; Huang, Chunlin
2017-12-01
Large-scale, long-term and high spatial resolution simulation is a common issue in environmental modeling. A Gridded Hydrologic Response Unit (HRU)-based Soil and Water Assessment Tool (SWATG) that integrates grid modeling scheme with different spatial representations also presents such problems. The time-consuming problem affects applications of very high resolution large-scale watershed modeling. The OpenMP (Open Multi-Processing) parallel application interface is integrated with SWATG (called SWATGP) to accelerate grid modeling based on the HRU level. Such parallel implementation takes better advantage of the computational power of a shared memory computer system. We conducted two experiments at multiple temporal and spatial scales of hydrological modeling using SWATG and SWATGP on a high-end server. At 500-m resolution, SWATGP was found to be up to nine times faster than SWATG in modeling over a roughly 2000 km2 watershed with 1 CPU and a 15 thread configuration. The study results demonstrate that parallel models save considerable time relative to traditional sequential simulation runs. Parallel computations of environmental models are beneficial for model applications, especially at large spatial and temporal scales and at high resolutions. The proposed SWATGP model is thus a promising tool for large-scale and high-resolution water resources research and management in addition to offering data fusion and model coupling ability.
Ultra-high resolution of radiocesium distribution detection based on Cherenkov light imaging
NASA Astrophysics Data System (ADS)
Yamamoto, Seiichi; Ogata, Yoshimune; Kawachi, Naoki; Suzui, Nobuo; Yin, Yong-Gen; Fujimaki, Shu
2015-03-01
After the nuclear disaster in Fukushima, radiocesium contamination became a serious scientific concern and research of its effects on plants increased. In such plant studies, high resolution images of radiocesium are required without contacting the subjects. Cherenkov light imaging of beta radionuclides has inherently high resolution and is promising for plant research. Since 137Cs and 134Cs emit beta particles, Cherenkov light imaging will be useful for the imaging of radiocesium distribution. Consequently, we developed and tested a Cherenkov light imaging system. We used a high sensitivity cooled charge coupled device (CCD) camera (Hamamatsu Photonics, ORCA2-ER) for imaging Cherenkov light from 137Cs. A bright lens (Xenon, F-number: 0.95, lens diameter: 25 mm) was mounted on the camera and placed in a black box. With a 100-μm 137Cs point source, we obtained 220-μm spatial resolution in the Cherenkov light image. With a 1-mm diameter, 320-kBq 137Cs point source, the source was distinguished within 2-s. We successfully obtained Cherenkov light images of a plant whose root was dipped in a 137Cs solution, radiocesium-containing samples as well as line and character phantom images with our imaging system. Cherenkov light imaging is promising for the high resolution imaging of radiocesium distribution without contacting the subject.
NASA Technical Reports Server (NTRS)
Korb, C. L.; Gentry, Bruce M.
1995-01-01
The goal of the Army Research Office (ARO) Geosciences Program is to measure the three dimensional wind field in the planetary boundary layer (PBL) over a measurement volume with a 50 meter spatial resolution and with measurement accuracies of the order of 20 cm/sec. The objective of this work is to develop and evaluate a high vertical resolution lidar experiment using the edge technique for high accuracy measurement of the atmospheric wind field to meet the ARO requirements. This experiment allows the powerful capabilities of the edge technique to be quantitatively evaluated. In the edge technique, a laser is located on the steep slope of a high resolution spectral filter. This produces large changes in measured signal for small Doppler shifts. A differential frequency technique renders the Doppler shift measurement insensitive to both laser and filter frequency jitter and drift. The measurement is also relatively insensitive to the laser spectral width for widths less than the width of the edge filter. Thus, the goal is to develop a system which will yield a substantial improvement in the state of the art of wind profile measurement in terms of both vertical resolution and accuracy and which will provide a unique capability for atmospheric wind studies.
Analysis strategies for high-resolution UHF-fMRI data.
Polimeni, Jonathan R; Renvall, Ville; Zaretskaya, Natalia; Fischl, Bruce
2018-03-01
Functional MRI (fMRI) benefits from both increased sensitivity and specificity with increasing magnetic field strength, making it a key application for Ultra-High Field (UHF) MRI scanners. Most UHF-fMRI studies utilize the dramatic increases in sensitivity and specificity to acquire high-resolution data reaching sub-millimeter scales, which enable new classes of experiments to probe the functional organization of the human brain. This review article surveys advanced data analysis strategies developed for high-resolution fMRI at UHF. These include strategies designed to mitigate distortion and artifacts associated with higher fields in ways that attempt to preserve spatial resolution of the fMRI data, as well as recently introduced analysis techniques that are enabled by these extremely high-resolution data. Particular focus is placed on anatomically-informed analyses, including cortical surface-based analysis, which are powerful techniques that can guide each step of the analysis from preprocessing to statistical analysis to interpretation and visualization. New intracortical analysis techniques for laminar and columnar fMRI are also reviewed and discussed. Prospects for single-subject individualized analyses are also presented and discussed. Altogether, there are both specific challenges and opportunities presented by UHF-fMRI, and the use of proper analysis strategies can help these valuable data reach their full potential. Copyright © 2017 Elsevier Inc. All rights reserved.
Josse, G; Gensanne, D; Aquilina, C; Bernard, J; Saint-Martory, C; Lagarde, J M; Schmitt, A M
2009-04-01
Human immunodeficiency virus (HIV) infection generally induces lipodystrophy. For targeted treatment a better understanding of its development is necessary. The utility of high-resolution magnetic resonance imaging (MRI) is explored. The present study presents a way to visualize the adipose tissue architecture in vivo and to inspect modifications associated with the atrophy. High-resolution MRI scans with surface coils were performed on the calf and at the lumbar region of three groups of patients: HIV patients with lipoatrophy, HIV patients without lipoatrophy and healthy volunteers. All patients underwent a clinical examination. In addition, dual energy X-ray absorptiometry (DEXA) measurements were taken. On the MRI scans adipose tissue thickness and adipose nodule size were measured. Results High-resolution MRI enabled identification of a clear disorganization of adipose tissue in patients with lipoatrophy. In addition, these patients presented a very small adipose tissue thickness on the calf and a very small nodule size. led to the hypothesis that adipose tissue disorganization appears before changes in DEXA measurements or clinically visible modifications. High-resolution MRI enabled visualization in vivo of precise changes in tissue organization due to HIV lipoatrophy. This imaging technique should be very informative for better monitoring of the atrophy.
Linear mixing model applied to coarse resolution satellite data
NASA Technical Reports Server (NTRS)
Holben, Brent N.; Shimabukuro, Yosio E.
1992-01-01
A linear mixing model typically applied to high resolution data such as Airborne Visible/Infrared Imaging Spectrometer, Thematic Mapper, and Multispectral Scanner System is applied to the NOAA Advanced Very High Resolution Radiometer coarse resolution satellite data. The reflective portion extracted from the middle IR channel 3 (3.55 - 3.93 microns) is used with channels 1 (0.58 - 0.68 microns) and 2 (0.725 - 1.1 microns) to run the Constrained Least Squares model to generate fraction images for an area in the west central region of Brazil. The derived fraction images are compared with an unsupervised classification and the fraction images derived from Landsat TM data acquired in the same day. In addition, the relationship betweeen these fraction images and the well known NDVI images are presented. The results show the great potential of the unmixing techniques for applying to coarse resolution data for global studies.
NASA Astrophysics Data System (ADS)
Adloff, C.; Blaha, J.; Blaising, J.-J.; Drancourt, C.; Espargilière, A.; Gaglione, R.; Geffroy, N.; Karyotakis, Y.; Prast, J.; Vouters, G.; Francis, K.; Repond, J.; Smith, J.; Xia, L.; Baldolemar, E.; Li, J.; Park, S. T.; Sosebee, M.; White, A. P.; Yu, J.; Buanes, T.; Eigen, G.; Mikami, Y.; Watson, N. K.; Goto, T.; Mavromanolakis, G.; Thomson, M. A.; Ward, D. R.; Yan, W.; Benchekroun, D.; Hoummada, A.; Khoulaki, Y.; Benyamna, M.; Cârloganu, C.; Fehr, F.; Gay, P.; Manen, S.; Royer, L.; Blazey, G. C.; Dyshkant, A.; Lima, J. G. R.; Zutshi, V.; Hostachy, J.-Y.; Morin, L.; Cornett, U.; David, D.; Falley, G.; Gadow, K.; Göttlicher, P.; Günter, C.; Hermberg, B.; Karstensen, S.; Krivan, F.; Lucaci-Timoce, A.-I.; Lu, S.; Lutz, B.; Morozov, S.; Morgunov, V.; Reinecke, M.; Sefkow, F.; Smirnov, P.; Terwort, M.; Vargas-Trevino, A.; Feege, N.; Garutti, E.; Marchesini, I.; Ramilli, M.; Eckert, P.; Harion, T.; Kaplan, A.; Schultz-Coulon, H.-Ch; Shen, W.; Stamen, R.; Tadday, A.; Bilki, B.; Norbeck, E.; Onel, Y.; Wilson, G. W.; Kawagoe, K.; Dauncey, P. D.; Magnan, A.-M.; Wing, M.; Salvatore, F.; Calvo Alamillo, E.; Fouz, M.-C.; Puerta-Pelayo, J.; Balagura, V.; Bobchenko, B.; Chadeeva, M.; Danilov, M.; Epifantsev, A.; Markin, O.; Mizuk, R.; Novikov, E.; Rusinov, V.; Tarkovsky, E.; Kirikova, N.; Kozlov, V.; Smirnov, P.; Soloviev, Y.; Buzhan, P.; Dolgoshein, B.; Ilyin, A.; Kantserov, V.; Kaplin, V.; Karakash, A.; Popova, E.; Smirnov, S.; Kiesling, C.; Pfau, S.; Seidel, K.; Simon, F.; Soldner, C.; Szalay, M.; Tesar, M.; Weuste, L.; Bonis, J.; Bouquet, B.; Callier, S.; Cornebise, P.; Doublet, Ph; Dulucq, F.; Faucci Giannelli, M.; Fleury, J.; Li, H.; Martin-Chassard, G.; Richard, F.; de la Taille, Ch; Pöschl, R.; Raux, L.; Seguin-Moreau, N.; Wicek, F.; Anduze, M.; Boudry, V.; Brient, J.-C.; Jeans, D.; Mora de Freitas, P.; Musat, G.; Reinhard, M.; Ruan, M.; Videau, H.; Bulanek, B.; Zacek, J.; Cvach, J.; Gallus, P.; Havranek, M.; Janata, M.; Kvasnicka, J.; Lednicky, D.; Marcisovsky, M.; Polak, I.; Popule, J.; Tomasek, L.; Tomasek, M.; Ruzicka, P.; Sicho, P.; Smolik, J.; Vrba, V.; Zalesak, J.; Belhorma, B.; Ghazlane, H.; Takeshita, T.; Uozumi, S.; Sauer, J.; Weber, S.; Zeitnitz, C.
2012-09-01
The energy resolution of a highly granular 1 m3 analogue scintillator-steel hadronic calorimeter is studied using charged pions with energies from 10 GeV to 80 GeV at the CERN SPS. The energy resolution for single hadrons is determined to be approximately 58%/√E/GeV. This resolution is improved to approximately 45%/√E/GeV with software compensation techniques. These techniques take advantage of the event-by-event information about the substructure of hadronic showers which is provided by the imaging capabilities of the calorimeter. The energy reconstruction is improved either with corrections based on the local energy density or by applying a single correction factor to the event energy sum derived from a global measure of the shower energy density. The application of the compensation algorithms to geant4 simulations yield resolution improvements comparable to those observed for real data.
Enhancing Hi-C data resolution with deep convolutional neural network HiCPlus.
Zhang, Yan; An, Lin; Xu, Jie; Zhang, Bo; Zheng, W Jim; Hu, Ming; Tang, Jijun; Yue, Feng
2018-02-21
Although Hi-C technology is one of the most popular tools for studying 3D genome organization, due to sequencing cost, the resolution of most Hi-C datasets are coarse and cannot be used to link distal regulatory elements to their target genes. Here we develop HiCPlus, a computational approach based on deep convolutional neural network, to infer high-resolution Hi-C interaction matrices from low-resolution Hi-C data. We demonstrate that HiCPlus can impute interaction matrices highly similar to the original ones, while only using 1/16 of the original sequencing reads. We show that the models learned from one cell type can be applied to make predictions in other cell or tissue types. Our work not only provides a computational framework to enhance Hi-C data resolution but also reveals features underlying the formation of 3D chromatin interactions.
Stochastic Optical Reconstruction Microscopy (STORM).
Xu, Jianquan; Ma, Hongqiang; Liu, Yang
2017-07-05
Super-resolution (SR) fluorescence microscopy, a class of optical microscopy techniques at a spatial resolution below the diffraction limit, has revolutionized the way we study biology, as recognized by the Nobel Prize in Chemistry in 2014. Stochastic optical reconstruction microscopy (STORM), a widely used SR technique, is based on the principle of single molecule localization. STORM routinely achieves a spatial resolution of 20 to 30 nm, a ten-fold improvement compared to conventional optical microscopy. Among all SR techniques, STORM offers a high spatial resolution with simple optical instrumentation and standard organic fluorescent dyes, but it is also prone to image artifacts and degraded image resolution due to improper sample preparation or imaging conditions. It requires careful optimization of all three aspects-sample preparation, image acquisition, and image reconstruction-to ensure a high-quality STORM image, which will be extensively discussed in this unit. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.
Physics of cardiac imaging with multiple-row detector CT.
Mahesh, Mahadevappa; Cody, Dianna D
2007-01-01
Cardiac imaging with multiple-row detector computed tomography (CT) has become possible due to rapid advances in CT technologies. Images with high temporal and spatial resolution can be obtained with multiple-row detector CT scanners; however, the radiation dose associated with cardiac imaging is high. Understanding the physics of cardiac imaging with multiple-row detector CT scanners allows optimization of cardiac CT protocols in terms of image quality and radiation dose. Knowledge of the trade-offs between various scan parameters that affect image quality--such as temporal resolution, spatial resolution, and pitch--is the key to optimized cardiac CT protocols, which can minimize the radiation risks associated with these studies. Factors affecting temporal resolution include gantry rotation time, acquisition mode, and reconstruction method; factors affecting spatial resolution include detector size and reconstruction interval. Cardiac CT has the potential to become a reliable tool for noninvasive diagnosis and prevention of cardiac and coronary artery disease. (c) RSNA, 2007.
A. T. Hudak; C.A. Wessman
2001-01-01
Fire suppression associated with decades of cattle grazing can result in bush encroachment in savannas. Textural analyses of historical, high resolution images was used to characterize bush densities across a South African study landscape. A control site, where vegetation was assumed to have changed minimally for the duration of the image record (1955-1996), was used...
USDA-ARS?s Scientific Manuscript database
In this study, real-time RT-PCR assays were combined with high resolution melting (HRM) analysis for the simultaneous detection of Cherry necrotic rusty mottle virus (CNRMV) and Cherry green ring mottle virus (CGRMV) infection in sweet cherry trees. Detection of CNRMV and CGRMV was performed using a...
First results from stellar occultations in the "GAIA era"
NASA Astrophysics Data System (ADS)
Benedetti-Rossi, G.; Vieira-Martins, R.; Sicardy, B.
2017-09-01
Stellar occultation is a powerful technique to study distant solar system bodies. It allows high angular resolution of the occulting body from the analysis of a light curve acquired with high temporal resolution with uncertainties comparable as probes. In the "GAIA era", stellar occultations is now able to obtain even more impressive results such as the presence of atmosphere, rings and topographic features.
Maier, Hans; de Heer, Gert; Ortac, Ajda; Kuijten, Jan
2015-11-01
To analyze, interpret and evaluate microscopic images, used in medical diagnostics and forensic science, video images for educational purposes were made with a very high resolution of 4096 × 2160 pixels (4K), which is four times as many pixels as High-Definition Video (1920 × 1080 pixels). The unprecedented high resolution makes it possible to see details that remain invisible to any other video format. The images of the specimens (blood cells, tissue sections, hair, fibre, etc.) are recorded using a 4K video camera which is attached to a light microscope. After processing, this resulted in very sharp and highly detailed images. This material was then used in education for classroom discussion. Spoken explanation by experts in the field of medical diagnostics and forensic science was also added to the high-resolution video images to make it suitable for self-study. © 2015 The Authors. Journal of Microscopy published by John Wiley & Sons Ltd on behalf of Royal Microscopical Society.
Savelyev, Alexander; Sugumaran, Ramanathan
2008-01-01
The goal of this project was to map the surface temperature of the University of Northern Iowa campus using high-resolution thermal infrared aerial imageries. A thermal camera with a spectral bandwidth of 3.0-5.0 μm was flown at the average altitude of 600 m, achieving ground resolution of 29 cm. Ground control data was used to construct the pixel- to-temperature conversion model, which was later used to produce temperature maps of the entire campus and also for validation of the model. The temperature map then was used to assess the building rooftop conditions and steam line faults in the study area. Assessment of the temperature map revealed a number of building structures that may be subject to insulation improvement due to their high surface temperatures leaks. Several hot spots were also identified on the campus for steam pipelines faults. High-resolution thermal infrared imagery proved highly effective tool for precise heat anomaly detection on the campus, and it can be used by university facility services for effective future maintenance of buildings and grounds. PMID:27873800
NASA Astrophysics Data System (ADS)
Aglitskiy, Yefim; Weaver, J. L.; Karasik, M.; Serlin, V.; Obenschain, S. P.; Ralchenko, Yu.
2014-10-01
The spectra of multi-charged ions of Hf, Ta, W, Pt, Au and Bi have been studied on Nike krypton-fluoride laser facility with the help of two kinds of X-ray spectrometers. First, survey instrument covering a spectral range from 0.5 to 19.5 angstroms which allows simultaneous observation of both M- and N- spectra of above mentioned elements with high spectral resolution. Second, an imaging spectrometer with interchangeable spherically bent Quartz crystals that added higher efficiency, higher spectral resolution and high spatial resolution to the qualities of the former one. Multiple spectral lines with X-ray energies as high as 4 keV that belong to the isoelectronic sequences of Fe, Co, Ni, Cu and Zn were identified with the help of NOMAD package developed by Dr. Yu. Ralchenko and colleagues. In our continuous effort to support DOE-NNSA's inertial fusion program, this campaign covered a wide range of plasma conditions that result in production of relatively energetic X-rays. Work supported by the US DOE/NNSA.
NASA Astrophysics Data System (ADS)
Ohfuchi, Wataru; Enomoto, Takeshi; Yoshioka, Mayumi K.; Takaya, Koutarou
2014-05-01
Some high-resolution simulations with a conventional atmospheric general circulation model (AGCM) were conducted right after the first Earth Simulator started operating in the spring of 2002. More simulations with various resolutions followed. The AGCM in this study, AFES (Agcm For the Earth Simulator), is a primitive equation spectral transform method model with a cumulus convection parameterization. In this presentation, some findings from comparisons between high and low-resolution simulations, and some future perspectives of old-fashioned AGCMs will be discussed. One obvious advantage of increasing resolution is capability of resolving the fine structures of topography and atmospheric flow. By increasing resolution from T39 (about 320 km horizontal grid interval) to T79 (160 km), to T159 (80 km) to T319 (40 km), topographic precipitation over Japan becomes increasingly realistic. This feature is necessary for climate and weather studies involving both global and local aspects. In order to resolve submesoscale (about 100 km horizontal scale) atmospheric circulation, about 10-km grid interval is necessary. Comparing T1279 (10 km) simulations with T319 ones, it is found that, for example, the intensity of heavy rain associated with Baiu front and the central pressure of typhoon become more realistic. These realistic submesoscale phenomena should have impact on larger-sale flow through dynamics and thermodynamics. An interesting finding by increasing horizontal resolution of a conventional AGCM is that some cumulus convection parameterizations, such as Arakawa-Schubert type scheme, gradually stop producing precipitation, while some others, such as Emanuel type, do not. With the former, the grid condensation increases with the model resolution to compensate. Which characteristics are more desirable is arguable but it is an important feature one has to consider when developing a high-resolution conventional AGCM. Many may think that conventional primitive equation spectral transform AGCMs, such as AFES, have no future. Developing globally homogeneous nonhydrostatic cloud resolving grid AGCMs is obviously a straightforward direction for the future. However these models will be very expensive for many users for a while, perhaps for the next some decades. On the other hand, old-fashioned AGCMs with a grid interval of 20-100 km will remain to be accurate and efficient tools for many users for many years to come. Also by coupling with a fine-resolution regional nonhydrostatic model, a conventional AGCM may overcome its limitation for use in climate and weather studies in the future.
NASA Astrophysics Data System (ADS)
Riedo, Andreas; Grimaudo, Valentine; Moreno-García, Pavel; Brigitte Neuland, Maike; Tulej, Marek; Broekmann, Peter; Wurz, Peter
2015-04-01
Sensitive elemental and isotope analysis of solid samples are of considerable interest in nowadays in situ space research. For context in situ analysis, high spatial resolution is also of substantial importance. While the measurements conducted with high lateral resolution can provide compositional details of the surface of highly heterogeneous materials, depth profiling measurements yield information on compositional details of surface and subsurface. The mass spectrometric analysis with the vertical resolution at sub-µm levels is of special consideration and can deliver important information on processes, which may have modified the surface. Information on space weathering effects can be readily determined when the sample composition of the surface and sub-surface is studied with high vertical resolution. In this contribution we will present vertical depth resolution measurements conducted by our sensitive miniature laser ablation ionization time-of-flight mass spectrometer (160mm x Ø 60mm) designed for in situ space research [1-3]. The mass spectrometer is equipped with a fs-laser system (~190fs pulse width, λ = 775nm), which is used for ablation and ionization of the sample material [2]. Laser radiation is focussed on the target material to a spot size of about 10-20 µm in diameter. Mass spectrometric measurements are conducted with a mass resolution (m/Δm) of about 400-500 (at 56Fe mass peak) and with a superior dynamic range of more than eight orders of magnitude. The depth profiling performance studies were conducted on 10µm thick Cu films that were deposited by an additive-assisted electrochemical procedure on Si-wafers. The presented measurement study will show that the current instrument prototype is able to conduct quantitative chemical (elemental and isotope) analysis of solids with a vertical resolution at sub-nm level. Contaminants, incorporated by using additives (polymers containing e.g. C, N, O, S) and with layer thickness of a few nanometres, can be fully resolved [1]. The current measurement performance, including the sensitivity and the high vertical depth resolution, opens new perspectives for future applications in the laboratory, e.g. measurements of Genesis samples, and new measurement capabilities for in situ space research. References 1)V. Grimaudo, P. Moreno-García, M.B. Neuland, M. Tulej, P. Broekmann, P. Wurz and A. Riedo, "High-resolution chemical depth profiling of solid material using a miniature laser ablation/ionization mass spectrometer", Anal. Chem., 2015, submitted. 2)A. Riedo, M. Neuland, S. Meyer, M. Tulej, and P. Wurz, "Coupling of LMS with a fs-laser ablation ion source: elemental and isotope composition measurements", J. Anal. At. Spectrom., 2013, 28, 1256. 3)Tulej et al. CAMAM: A Miniature Laser Ablation Ionisation Mass Spectrometer and Microscope-Camera System for In Situ Investigation of the Composition and Morphology of Extraterrestrial Materials, Geostand. Geoanal. Res., 2014, doi: 10.1111/j.1751-908X.2014.00302.x
NASA Astrophysics Data System (ADS)
Kim, J.; Schumann, G.; Neal, J. C.; Lin, S.
2013-12-01
Earth is the only planet possessing an active hydrological system based on H2O circulation. However, after Mariner 9 discovered fluvial channels on Mars with similar features to Earth, it became clear that some solid planets and satellites once had water flows or pseudo hydrological systems of other liquids. After liquid water was identified as the agent of ancient martian fluvial activities, the valley and channels on the martian surface were investigated by a number of remote sensing and in-suit measurements. Among all available data sets, the stereo DTM and ortho from various successful orbital sensor, such as High Resolution Stereo Camera (HRSC), Context Camera (CTX), and High Resolution Imaging Science Experiment (HiRISE), are being most widely used to trace the origin and consequences of martian hydrological channels. However, geomorphological analysis, with stereo DTM and ortho images over fluvial areas, has some limitations, and so a quantitative modeling method utilizing various spatial resolution DTMs is required. Thus in this study we tested the application of hydraulics analysis with multi-resolution martian DTMs, constructed in line with Kim and Muller's (2009) approach. An advanced LISFLOOD-FP model (Bates et al., 2010), which simulates in-channel dynamic wave behavior by solving 2D shallow water equations without advection, was introduced to conduct a high accuracy simulation together with 150-1.2m DTMs over test sites including Athabasca and Bahram valles. For application to a martian surface, technically the acceleration of gravity in LISFLOOD-FP was reduced to the martian value of 3.71 m s-2 and the Manning's n value (friction), the only free parameter in the model, was adjusted for martian gravity by scaling it. The approach employing multi-resolution stereo DTMs and LISFLOOD-FP was superior compared with the other research cases using a single DTM source for hydraulics analysis. HRSC DTMs, covering 50-150m resolutions was used to trace rough routes of water flows for extensive target areas. After then, refinements through hydraulics simulations with CTX DTMs (~12-18m resolution) and HiRISE DTMs (~1- 4m resolution) were conducted by employing the output of HRSC simulations as the initial conditions. Thus even a few high and very high resolution stereo DTMs coverage enabled the performance of a high precision hydraulics analysis for reconstructing a whole fluvial event. In this manner, useful information to identify the characteristics of martian fluvial activities, such as water depth along the time line, flow direction, and travel time, were successfully retrieved with each target tributary. Together with all above useful outputs of hydraulics analysis, the local roughness and photogrammetric control of the stereo DTMs appeared to be crucial elements for accurate fluvial simulation. The potential of this study should be further explored for its application to the other extraterrestrial bodies where fluvial activity once existed, as well as the major martian channel and valleys.
High-speed X-ray microscopy by use of high-resolution zone plates and synchrotron radiation.
Hou, Qiyue; Wang, Zhili; Gao, Kun; Pan, Zhiyun; Wang, Dajiang; Ge, Xin; Zhang, Kai; Hong, Youli; Zhu, Peiping; Wu, Ziyu
2012-09-01
X-ray microscopy based on synchrotron radiation has become a fundamental tool in biology and life sciences to visualize the morphology of a specimen. These studies have particular requirements in terms of radiation damage and the image exposure time, which directly determines the total acquisition speed. To monitor and improve these key parameters, we present a novel X-ray microscopy method using a high-resolution zone plate as the objective and the matching condenser. Numerical simulations based on the scalar wave field theory validate the feasibility of the method and also indicate the performance of X-ray microscopy is optimized most with sub-10-nm-resolution zone plates. The proposed method is compatible with conventional X-ray microscopy techniques, such as computed tomography, and will find wide applications in time-resolved and/or dose-sensitive studies such as living cell imaging.
Hard X-ray and low-energy gamma-ray spectrometers
NASA Technical Reports Server (NTRS)
Gehrels, N.; Crannell, C. J.; Orwig, L. E.; Forrest, D. J.; Lin, R. P.; Starr, R.
1988-01-01
Basic principles of operation and characteristics of scintillation and semi-conductor detectors used for solar hard X-ray and gamma-ray spectrometers are presented. Scintillation materials such as NaI offer high stopping power for incident gamma rays, modest energy resolution, and relatively simple operation. They are, to date, the most often used detector in solar gamma-ray spectroscopy. The scintillator BGO has higher stopping power than NaI, but poorer energy resolution. The primary advantage of semi-conductor materials such as Ge is their high-energy resolution. Monte-Carlo simulations of the response of NaI and Ge detectors to model solar flare inputs show the benefit of high resoluton for studying spectral lines. No semi-conductor material besides Ge is currently available with adequate combined size and purity to make general-use hard X-ray and gamma-ray detectors for solar studies.
NASA Astrophysics Data System (ADS)
Li, Hao; Liu, Wenzhong; Zhang, Hao F.
2015-10-01
Rodent models are indispensable in studying various retinal diseases. Noninvasive, high-resolution retinal imaging of rodent models is highly desired for longitudinally investigating the pathogenesis and therapeutic strategies. However, due to severe aberrations, the retinal image quality in rodents can be much worse than that in humans. We numerically and experimentally investigated the influence of chromatic aberration and optical illumination bandwidth on retinal imaging. We confirmed that the rat retinal image quality decreased with increasing illumination bandwidth. We achieved the retinal image resolution of 10 μm using a 19 nm illumination bandwidth centered at 580 nm in a home-built fundus camera. Furthermore, we observed higher chromatic aberration in albino rat eyes than in pigmented rat eyes. This study provides a design guide for high-resolution fundus camera for rodents. Our method is also beneficial to dispersion compensation in multiwavelength retinal imaging applications.
Osechinskiy, Sergey; Kruggel, Frithjof
2009-01-01
The architectonic analysis of the human cerebral cortex is presently based on the examination of stained tissue sections. Recent progress in high-resolution magnetic resonance imaging (MRI) promotes the feasibility of an in vivo architectonic analysis. Since the exact relationship between the laminar fine-structure of a cortical MRI signal and histological cyto-and myeloarchitectonic staining patterns is not known, a quantitative study comparing high-resolution MRI to histological ground truth images is necessary for validating a future MRI based architectonic analysis. This communication describes an ongoing study comparing post mortem MR images to a myelin-stained histology of the brain cortex. After establishing a close spatial correspondence between histological sections and MRI using a slice-to-volume nonrigid registration algorithm, transcortical intensity profiles, extracted from both imaging modalities along curved trajectories of a Laplacian vector field, are compared via a cross-correlational analysis.
Space to Think: Large, High-Resolution Displays for Sensemaking
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andrews, Christopher P.; Endert, Alexander; North, Chris
2010-05-05
Space supports human cognitive abilities in a myriad of ways. The note attached to the side of the monitor, the papers spread out on the desk, diagrams scrawled on a whiteboard, and even the keys left out on the counter are all examples of using space to recall, reveal relationships, and think. Technological advances have made it possible to construct large display environments in which space has real meaning. This paper examines how increased space affects the way displays are regarded and used within the context of the cognitively demanding task of sensemaking. A study was conducted observing analysts usingmore » a prototype large, high-resolution display to solve an analytic problem. This paper reports on the results of this study and suggests a number of potential design criteria for future sensemaking tools developed for large, high-resolution displays.« less
Whole-animal imaging with high spatio-temporal resolution
NASA Astrophysics Data System (ADS)
Chhetri, Raghav; Amat, Fernando; Wan, Yinan; Höckendorf, Burkhard; Lemon, William C.; Keller, Philipp J.
2016-03-01
We developed isotropic multiview (IsoView) light-sheet microscopy in order to image fast cellular dynamics, such as cell movements in an entire developing embryo or neuronal activity throughput an entire brain or nervous system, with high resolution in all dimensions, high imaging speeds, good physical coverage and low photo-damage. To achieve high temporal resolution and high spatial resolution at the same time, IsoView microscopy rapidly images large specimens via simultaneous light-sheet illumination and fluorescence detection along four orthogonal directions. In a post-processing step, these four views are then combined by means of high-throughput multiview deconvolution to yield images with a system resolution of ≤ 450 nm in all three dimensions. Using IsoView microscopy, we performed whole-animal functional imaging of Drosophila embryos and larvae at a spatial resolution of 1.1-2.5 μm and at a temporal resolution of 2 Hz for up to 9 hours. We also performed whole-brain functional imaging in larval zebrafish and multicolor imaging of fast cellular dynamics across entire, gastrulating Drosophila embryos with isotropic, sub-cellular resolution. Compared with conventional (spatially anisotropic) light-sheet microscopy, IsoView microscopy improves spatial resolution at least sevenfold and decreases resolution anisotropy at least threefold. Compared with existing high-resolution light-sheet techniques, such as lattice lightsheet microscopy or diSPIM, IsoView microscopy effectively doubles the penetration depth and provides subsecond temporal resolution for specimens 400-fold larger than could previously be imaged.
NASA Astrophysics Data System (ADS)
Gill, Andrew B.; Black, Richard T.; Bowden, David J.; Priest, Andrew N.; Graves, Martin J.; Lomas, David J.
2014-06-01
This study investigated the effect of temporal resolution on the dual-input pharmacokinetic (PK) modelling of dynamic contrast-enhanced MRI (DCE-MRI) data from normal volunteer livers and from patients with hepatocellular carcinoma. Eleven volunteers and five patients were examined at 3 T. Two sections, one optimized for the vascular input functions (VIF) and one for the tissue, were imaged within a single heart-beat (HB) using a saturation-recovery fast gradient echo sequence. The data was analysed using a dual-input single-compartment PK model. The VIFs and/or uptake curves were then temporally sub-sampled (at interval ▵t = [2-20] s) before being subject to the same PK analysis. Statistical comparisons of tumour and normal tissue PK parameter values using a 5% significance level gave rise to the same study results when temporally sub-sampling the VIFs to HB < ▵t <4 s. However, sub-sampling to ▵t > 4 s did adversely affect the statistical comparisons. Temporal sub-sampling of just the liver/tumour tissue uptake curves at ▵t ≤ 20 s, whilst using high temporal resolution VIFs, did not substantially affect PK parameter statistical comparisons. In conclusion, there is no practical advantage to be gained from acquiring very high temporal resolution hepatic DCE-MRI data. Instead the high temporal resolution could be usefully traded for increased spatial resolution or SNR.
NASA Astrophysics Data System (ADS)
Zhang, Ying; Moges, Semu; Block, Paul
2018-01-01
Prediction of seasonal precipitation can provide actionable information to guide management of various sectoral activities. For instance, it is often translated into hydrological forecasts for better water resources management. However, many studies assume homogeneity in precipitation across an entire study region, which may prove ineffective for operational and local-level decisions, particularly for locations with high spatial variability. This study proposes advancing local-level seasonal precipitation predictions by first conditioning on regional-level predictions, as defined through objective cluster analysis, for western Ethiopia. To our knowledge, this is the first study predicting seasonal precipitation at high resolution in this region, where lives and livelihoods are vulnerable to precipitation variability given the high reliance on rain-fed agriculture and limited water resources infrastructure. The combination of objective cluster analysis, spatially high-resolution prediction of seasonal precipitation, and a modeling structure spanning statistical and dynamical approaches makes clear advances in prediction skill and resolution, as compared with previous studies. The statistical model improves versus the non-clustered case or dynamical models for a number of specific clusters in northwestern Ethiopia, with clusters having regional average correlation and ranked probability skill score (RPSS) values of up to 0.5 and 33 %, respectively. The general skill (after bias correction) of the two best-performing dynamical models over the entire study region is superior to that of the statistical models, although the dynamical models issue predictions at a lower resolution and the raw predictions require bias correction to guarantee comparable skills.
Study of hyperspectral characteristics of different types of flares and smoke candles
NASA Astrophysics Data System (ADS)
Farley, Vincent; Chamberland, Martin; Lagueux, Philippe; Kastek, Mariusz; Piatkowski, Tadeusz; Dulski, Rafal
2012-06-01
Modern infrared camouflage and countermeasure technologies used in the context of military operations have evolved rapidly over the last decade. Indeed, some infrared seekers and decoy/flares tend to have spectral sensitivity tailored to closely match the emission signatures of military vehicles (such as aircrafts, tanks) and reject other sources. Similarly, some candles (or smoke bombs) are developed to generate large area screens with very high absorption in the infrared. The Military University of Technology has conducted an intensive field campaign where various types of flares and smoke candles were deployed in different conditions and measured. The high spectral, spatial and temporal resolution acquisition of these thermodynamic events was recorded with the Telops Hyper-Cam. The Hyper-Cam enables simultaneous acquisition of spatial and spectral information at high resolutions in both domains. The ability to study combustion systems with high resolution, co-registered imagery and spectral data is made possible. This paper presents the test campaign concept and definition and the analysis of the recorded measurements.
Ortiz, X; Martí, R; Montaña, M J; Gasser, M; Margarit, L; Broto, F; Díaz-Ferrero, J
2010-09-01
The analysis of persistent organic pollutants in foodstuffs has become necessary for control of their levels in products for human and animal consumption. These analytical procedures usually require a fractionation step in order to separate the different families of pollutants to avoid interferences during the instrumental determination. In this study the separation was carried out on a 2-(1-pyrenyl)ethyl silica column, where analyte fractionation was based on differences in planarity and aromaticity. The fractionation of several types of persistent organic pollutants found in fish oil samples was studied; the pollutants included polychlorinated dibenzo-p-dioxins and dibenzofurans, polychlorinated biphenyls, polybrominated diphenyl ethers, and some organochlorine pesticides. Fractions were analyzed by high-resolution gas chromatography with electron-capture detection and high-resolution gas chromatography-high resolution mass spectroscopy. Finally, the whole method (including the purification, fractionation, and instrumental determination steps) was validated and successfully applied to the analysis of several samples of fish oil.
Parameter space of experimental chaotic circuits with high-precision control parameters.
de Sousa, Francisco F G; Rubinger, Rero M; Sartorelli, José C; Albuquerque, Holokx A; Baptista, Murilo S
2016-08-01
We report high-resolution measurements that experimentally confirm a spiral cascade structure and a scaling relationship of shrimps in the Chua's circuit. Circuits constructed using this component allow for a comprehensive characterization of the circuit behaviors through high resolution parameter spaces. To illustrate the power of our technological development for the creation and the study of chaotic circuits, we constructed a Chua circuit and study its high resolution parameter space. The reliability and stability of the designed component allowed us to obtain data for long periods of time (∼21 weeks), a data set from which an accurate estimation of Lyapunov exponents for the circuit characterization was possible. Moreover, this data, rigorously characterized by the Lyapunov exponents, allows us to reassure experimentally that the shrimps, stable islands embedded in a domain of chaos in the parameter spaces, can be observed in the laboratory. Finally, we confirm that their sizes decay exponentially with the period of the attractor, a result expected to be found in maps of the quadratic family.
Study of Saturn Electrostatic Discharges in a Wide Range of Timec SCALES
NASA Astrophysics Data System (ADS)
Mylostna, K.; Zakharenko, V.; Konovalenko, A.; Kolyadin, V.; Zarka, P.; Griemeier, J.-M.; Litvinenko, G.; Sidorchuk, M.; Rucker, H.; Fischer, G.; Cecconi, B.; Coffre, A.; Denis, L.; Nikolaenko, V.; Shevchenko, V.
Saturn Electrostatic discharges (SED) are sporadic broadband impulsive radio bursts associated with lightning in Saturnian atmosphere. After 25 years of space investigations in 2006 the first successful observations of SED on the UTR-2 radio telescope were carried out [1]. Since 2007 a long-term program of ED search and study in the Solar system has started. As a part of this program the unique observations with high time resolution were taken in 2010. New possibilities of UTR-2 radio telescope allowed to provide a long-period observations and study with high temporal resolution. This article presents the results of SED study in a wide range of time scales: from seconds to microseconds. For the first time there were obtained a low frequency spectrum of SED. We calculated flux densities of individual bursts at the maximum achievable time resolution. Flux densities of most intensive bursts reach 4200 Jy.
NASA Astrophysics Data System (ADS)
Dore, A. J.; Kryza, M.; Hall, J. R.; Hallsworth, S.; Keller, V. J. D.; Vieno, M.; Sutton, M. A.
2011-12-01
The Fine Resolution Atmospheric Multi-pollutant Exchange model (FRAME) has been applied to model the spatial distribution of nitrogen deposition and air concentration over the UK at a 1 km spatial resolution. The modelled deposition and concentration data were gridded at resolutions of 1 km, 5 km and 50 km to test the sensitivity of calculations of the exceedance of critical loads for nitrogen deposition to the deposition data resolution. The modelled concentrations of NO2 were validated by comparison with measurements from the rural sites in the national monitoring network and were found to achieve better agreement with the high resolution 1 km data. High resolution plots were found to represent a more physically realistic distribution of nitrogen air concentrations and deposition resulting from use of 1 km resolution precipitation and emissions data as compared to 5 km resolution data. Summary statistics for national scale exceedance of the critical load for nitrogen deposition were not highly sensitive to the grid resolution of the deposition data but did show greater area exceedance with coarser grid resolution due to spatial averaging of high nitrogen deposition hot spots. Local scale deposition at individual Sites of Special Scientific Interest and high precipitation upland sites was sensitive to choice of grid resolution of deposition data. Use of high resolution data tended to generate lower deposition values in sink areas for nitrogen dry deposition (Sites of Scientific Interest) and higher values in high precipitation upland areas. In areas with generally low exceedance (Scotland) and for certain vegetation types (montane), the exceedance statistics were more sensitive to model data resolution.
NASA Astrophysics Data System (ADS)
Dore, A. J.; Kryza, M.; Hall, J. R.; Hallsworth, S.; Keller, V. J. D.; Vieno, M.; Sutton, M. A.
2012-05-01
The Fine Resolution Atmospheric Multi-pollutant Exchange model (FRAME) was applied to model the spatial distribution of reactive nitrogen deposition and air concentration over the United Kingdom at a 1 km spatial resolution. The modelled deposition and concentration data were gridded at resolutions of 1 km, 5 km and 50 km to test the sensitivity of calculations of the exceedance of critical loads for nitrogen deposition to the deposition data resolution. The modelled concentrations of NO2 were validated by comparison with measurements from the rural sites in the national monitoring network and were found to achieve better agreement with the high resolution 1 km data. High resolution plots were found to represent a more physically realistic distribution of reactive nitrogen air concentrations and deposition resulting from use of 1 km resolution precipitation and emissions data as compared to 5 km resolution data. Summary statistics for national scale exceedance of the critical load for nitrogen deposition were not highly sensitive to the grid resolution of the deposition data but did show greater area exceedance with coarser grid resolution due to spatial averaging of high nitrogen deposition hot spots. Local scale deposition at individual Sites of Special Scientific Interest and high precipitation upland sites was sensitive to choice of grid resolution of deposition data. Use of high resolution data tended to generate lower deposition values in sink areas for nitrogen dry deposition (Sites of Scientific Interest) and higher values in high precipitation upland areas. In areas with generally low exceedance (Scotland) and for certain vegetation types (montane), the exceedance statistics were more sensitive to model data resolution.
Air-Quality and Climate Coupling in High Resolution for Urban Heat Island Study
NASA Astrophysics Data System (ADS)
Halenka, T.; Huszar, P.; Belda, M.
2012-04-01
Recent studies show considerable effect of atmospheric chemistry and aerosols on climate on regional and local scale. For the purpose of qualifying and quantifying the magnitude of climate forcing due to atmospheric chemistry/aerosols on regional scale and climate change effects on air-quality the regional climate model RegCM and chemistry/aerosol model CAMx was coupled. Climate change impacts on air-quality have been studied in high resolution of 10km with interactive two-way coupling of the effects of air-quality on climate. The experiments with the couple were performed for EC FP7 project MEGAPOLI assessing the impact of the megacities and industrialized areas on climate. New experiments in high resolution are prepared andsimulated for Urban Heat Island studies within the OP Central Europe Project UHI. Meteorological fields generated by RCM drive CAMx transport, chemistry and a dry/wet deposition. A preprocessor utility was developed for transforming RegCM provided fields to CAMx input fields and format. There is critical issue of the emission inventories available for 10km resolution including the urban hot-spots, TNO emissions are adopted for the experiments. Sensitivity tests switching on/off urban areas emissions are analysed as well. The results for year 2005 are presented and discussed, interactive coupling is compared to study the potential of possible impact of urban air-pollution to the urban area climate.
Optical Imaging with a High Resolution Microendoscope to Identify Cholesteatoma of the Middle Ear
Levy, Lauren L.; Jiang, Nancy; Smouha, Eric; Richards-Kortum, Rebecca; Sikora, Andrew G.
2013-01-01
Objective High resolution optical imaging is an imaging modality which allows visualization of structural changes in epithelial tissue in real time. Our prior studies using contrast-enhanced microendoscopy to image squamous cell carcinoma in the head and neck demonstrated that the contrast agent, proflavine, has high affinity for keratinized tissue. Thus, high-resolution microendoscopy with proflavine provides a potential mechanism to identify ectopic keratin production, such as that associated with cholesteatoma formation and distinguish between uninvolved mucosa and residual keratin at the time of surgery. Study Design Ex vivo imaging of histopathologically-confirmed samples of cholesteatoma and uninvolved middle-ear epithelium. Methods Seven separate specimens collected from patients who underwent surgical treatment for cholesteatoma were imaged ex vivo with the fiberoptic endoscope after surface staining with proflavine. Following imaging, the specimens were submitted for hematoxylin &eosin staining to allow histopathological correlation. Results Cholesteatoma and surrounding middle ear epithelium have distinct imaging characteristics. Keratin-bearing areas of cholesteatoma lack nuclei and appear as confluent hyperfluorescence, while nuclei are easily visualized in specimens containing normal middle ear epithelium. Hyperfluorescence and loss of cellular detail is the imaging hallmark of keratin allowing for discrimination of cholesteatoma from normal middle ear epithelium. Conclusions This study demonstrates the feasibility of high-resolution optical imaging to discriminate cholesteatoma from uninvolved middle ear mucosa, based on the unique staining properties of keratin. Use of real-time imaging may facilitate more complete extirpation of cholesteatoma by identifying areas of residual disease. PMID:23299781
NASA Astrophysics Data System (ADS)
Chan, Y. C.; Shih, N. C.; Hsieh, Y. C.
2016-12-01
Geologic maps have provided fundamental information for many scientific and engineering applications in human societies. Geologic maps directly influence the reliability of research results or the robustness of engineering projects. In the past, geologic maps were mainly produced by field geologists through direct field investigations and 2D topographic maps. However, the quality of traditional geologic maps was significantly compromised by field conditions, particularly, when the map area is covered by heavy forest canopies. Recent developments in airborne LiDAR technology may virtually remove trees or buildings, thus, providing a useful data set for improving geological mapping. Because high-quality topographic information still needs to be interpreted in terms of geology, there are many fundamental questions regarding how to best apply the data set for high-resolution geological mapping. In this study, we aim to test the quality and reliability of high-resolution geologic maps produced by recent technological methods through an example from the fold-and-thrust belt in northern Taiwan. We performed the geological mapping by applying the LiDAR-derived DEM, self-developed program tools and many layers of relevant information at interactive 3D environments. Our mapping results indicate that the proposed methods will considerably improve the quality and consistency of the geologic maps. The study also shows that in order to gain consistent mapping results, future high-resolution geologic maps should be produced at interactive 3D environments on the basis of existing geologic maps.
High-resolution x-ray imaging using a structured scintillator.
Hormozan, Yashar; Sychugov, Ilya; Linnros, Jan
2016-02-01
In this study, the authors introduce a new generation of finely structured scintillators with a very high spatial resolution (a few micrometers) compared to conventional scintillators, yet maintaining a thick absorbing layer for improved detectivity. Their concept is based on a 2D array of high aspect ratio pores which are fabricated by ICP etching, with spacings (pitches) of a few micrometers, on silicon and oxidation of the pore walls. The pores were subsequently filled by melting of powdered CsI(Tl), as the scintillating agent. In order to couple the secondary emitted photons of the back of the scintillator array to a CCD device, having a larger pixel size than the pore pitch, an open optical microscope with adjustable magnification was designed and implemented. By imaging a sharp edge, the authors were able to calculate the modulation transfer function (MTF) of this finely structured scintillator. The x-ray images of individually resolved pores suggest that they have been almost uniformly filled, and the MTF measurements show the feasibility of a few microns spatial resolution imaging, as set by the scintillator pore size. Compared to existing techniques utilizing CsI needles as a structured scintillator, their results imply an almost sevenfold improvement in resolution. Finally, high resolution images, taken by their detector, are presented. The presented work successfully shows the functionality of their detector concept for high resolution imaging and further fabrication developments are most likely to result in higher quantum efficiencies.
High-resolution x-ray imaging using a structured scintillator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hormozan, Yashar, E-mail: hormozan@kth.se; Sychugov, Ilya; Linnros, Jan
2016-02-15
Purpose: In this study, the authors introduce a new generation of finely structured scintillators with a very high spatial resolution (a few micrometers) compared to conventional scintillators, yet maintaining a thick absorbing layer for improved detectivity. Methods: Their concept is based on a 2D array of high aspect ratio pores which are fabricated by ICP etching, with spacings (pitches) of a few micrometers, on silicon and oxidation of the pore walls. The pores were subsequently filled by melting of powdered CsI(Tl), as the scintillating agent. In order to couple the secondary emitted photons of the back of the scintillator arraymore » to a CCD device, having a larger pixel size than the pore pitch, an open optical microscope with adjustable magnification was designed and implemented. By imaging a sharp edge, the authors were able to calculate the modulation transfer function (MTF) of this finely structured scintillator. Results: The x-ray images of individually resolved pores suggest that they have been almost uniformly filled, and the MTF measurements show the feasibility of a few microns spatial resolution imaging, as set by the scintillator pore size. Compared to existing techniques utilizing CsI needles as a structured scintillator, their results imply an almost sevenfold improvement in resolution. Finally, high resolution images, taken by their detector, are presented. Conclusions: The presented work successfully shows the functionality of their detector concept for high resolution imaging and further fabrication developments are most likely to result in higher quantum efficiencies.« less
Time stamping of single optical photons with 10 ns resolution
NASA Astrophysics Data System (ADS)
Chakaberia, Irakli; Cotlet, Mircea; Fisher-Levine, Merlin; Hodges, Diedra R.; Nguyen, Jayke; Nomerotski, Andrei
2017-05-01
High spatial and temporal resolution are key features for many modern applications, e.g. mass spectrometry, probing the structure of materials via neutron scattering, studying molecular structure, etc.1-5 Fast imaging also provides the capability of coincidence detection, and the further addition of sensitivity to single optical photons with the capability of timestamping them further broadens the field of potential applications. Photon counting is already widely used in X-ray imaging,6 where the high energy of the photons makes their detection easier. TimepixCam is a novel optical imager,7 which achieves high spatial resolution using an array of 256×256 55 μm × 55μm pixels which have individually controlled functionality. It is based on a thin-entrance-window silicon sensor, bump-bonded to a Timepix ASIC.8 TimepixCam provides high quantum efficiency in the optical wavelength range (400-1000 nm). We perform the timestamping of single photons with a time resolution of 20 ns, by coupling TimepixCam to a fast image-intensifier with a P47 phosphor screen. The fast emission time of the P479 allows us to preserve good time resolution while maintaining the capability to focus the optical output of the intensifier onto the 256×256 pixel Timepix sensor area. We demonstrate the capability of the (TimepixCam + image intensifier) setup to provide high-resolution single-photon timestamping, with an effective frame rate of 50 MHz.
Marchell, Richard; Locatis, Craig; Burges, Gene; Maisiak, Richard; Liu, Wei-Li; Ackerman, Michael
2017-03-01
There is little teledermatology research directly comparing remote methods, even less research with two in-person dermatologist agreement providing a baseline for comparing remote methods, and no research using high definition video as a live interactive method. To compare in-person consultations with store-and-forward and live interactive methods, the latter having two levels of image quality. A controlled study was conducted where patients were examined in-person, by high definition video, and by store-and-forward methods. The order patients experienced methods and residents assigned methods rotated, although an attending always saw patients in-person. The type of high definition video employed, lower resolution compressed or higher resolution uncompressed, was alternated between clinics. Primary and differential diagnoses, biopsy recommendations, and diagnostic and biopsy confidence ratings were recorded. Concordance and confidence were significantly better for in-person versus remote methods and biopsy recommendations were lower. Store-and-forward and higher resolution uncompressed video results were similar and better than those for lower resolution compressed video. Dermatology residents took store-and-forward photos and their quality was likely superior to those normally taken in practice. There were variations in expertise between the attending and second and third year residents. The superiority of in-person consultations suggests the tendencies to order more biopsies or still see patients in-person are often justified in teledermatology and that high resolution uncompressed video can close the resolution gap between store-and-forward and live interactive methods.
Madadkar, Pedram; Nino, Sergio Luna; Ghosh, Raja
2016-11-01
We discuss the use of a laterally-fed membrane chromatography (or LFMC) device for single-step purification of mono-PEGylated lysozyme. Recent studies have shown such LFMC devices to be suitable for high-resolution, multi-component separation of proteins in the bind-and-elute mode. The device used in this study contained a stack of rectangular cation-exchange membranes having 9.25mL bed volume. PEGylation of lysozyme was carried out in batch mode using 5kDa methoxy-polyethyleneglycol propionaldehyde (or m-PEG propionaldehyde) in the presence of sodium cyanoborohydride as reducing agent. Membrane chromatographic separation was carried out at 1.62 membrane bed volumes per minute flow rate, in the bind-and-elute mode. When a salt gradient was applied, the higher PEGylated forms of lysozyme (i.e. the byproducts) eluted earlier than mono-PEGylated lysozyme (the target product), while lysozyme eluted last. Under elution conditions optimized for resolution and speed, the separation could be carried out in less than 15 membrane bed volumes. High purity and recovery of mono-PEGylated lysozyme was obtained. The resolution of separation of mono-PEGylated lysozyme obtained under the above condition was comparable to that reported in the literature for equivalent cation-exchange resin columns while the flow rate expressed in bed volumes/min was 21.7 times higher. Also, the number of theoretical plates per meter was significantly higher with the LFMC device. Therefore the LFMC based purification process discussed in this paper combined high-productivity with high-resolution. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Salman Shahid, Syed; Gaul, Robert T.; Kerskens, Christian; Flamini, Vittoria; Lally, Caitríona
2017-12-01
Diffusion magnetic resonance imaging (dMRI) can provide insights into the microstructure of intact arterial tissue. The current study employed high magnetic field MRI to obtain ultra-high resolution dMRI at an isotropic voxel resolution of 117 µm3 in less than 2 h of scan time. A parameter selective single shell (128 directions) diffusion-encoding scheme based on Stejskel-Tanner sequence with echo-planar imaging (EPI) readout was used. EPI segmentation was used to reduce the echo time (TE) and to minimise the susceptibility-induced artefacts. The study utilised the dMRI analysis with diffusion tensor imaging (DTI) framework to investigate structural heterogeneity in intact arterial tissue and to quantify variations in tissue composition when the tissue is cut open and flattened. For intact arterial samples, the region of interest base comparison showed significant differences in fractional anisotropy and mean diffusivity across the media layer (p < 0.05). For open cut flat samples, DTI based directionally invariant indices did not show significant differences across the media layer. For intact samples, fibre tractography based indices such as calculated helical angle and fibre dispersion showed near circumferential alignment and a high degree of fibre dispersion, respectively. This study demonstrates the feasibility of fast dMRI acquisition with ultra-high spatial and angular resolution at 7 T. Using the optimised sequence parameters, this study shows that DTI based markers are sensitive to local structural changes in intact arterial tissue samples and these markers may have clinical relevance in the diagnosis of atherosclerosis and aneurysm.
Dinning, P G; Carrington, E V; Scott, S M
2015-12-01
In the esophagus, high-resolution manometry (HRM) has become a standard diagnostic tool in the investigation of suspected motility disorders. However, at the opposite end of the digestive tract (i.e., the colon and anorectum), the use of HRM still remains in its infancy, with relatively few published studies in the scientific literature. Further, the clinical utility of those studies that have been performed is largely undetermined. This review assesses all of the HRM studies published to date from both the colon and anorectum, explores the catheter types used, and attempts to determine the worth of HRM over traditional 'low-resolution' recordings from the same regions. Ultimately, this review addresses whether HRM currently provides information that will benefit patient diagnosis and treatment. © 2015 John Wiley & Sons Ltd.
Trace element study in scallop shells by laser ablation ICP-MS: the example of Ba/Ca ratios
NASA Astrophysics Data System (ADS)
Lorrain, A.; Pécheyran, C.; Paulet, Y.-M.; Chauvaud, L.; Amouroux, D.; Krupp, E.; Donard, O.
2003-04-01
As scallop shells grow incrementally at a rate of one line per day, environmental changes could then be evidenced on a daily basis. As an example for trace element incorporation studies, barium is a geochemical tracer that can be directly related to oceanic primary productivity. Hence, monitoring Ba/Ca variations in a scallop shell should give information about phytoplanktonic events encountered day by day during its life. The very high spatial resolution (typically 40 - 200 µm) and the high elemental sensitivity required can only be achieved by the combination of laser ablation coupled to inductively coupled plasma mass spectrometry. This study demonstrates that Laser ablation coupled to ICP-MS determination is a relevant tool for high resolution distribution measurement of trace elements in calcite matrix. The ablation strategy related to single line rastering and calcium normalisation were found to be the best analytical conditions in terms of reproducibility and sensitivity. The knowledge of P. maximus growth rings periodicity (daily), combined with LA-ICP-MS micro analysis allows the acquisition of time dated profiles with high spatial and thus temporal resolution. This resolution makes P. maximus a potential tool for environmental reconstruction and especially for accurate calibration of proxies. However, the relations among Ba/Ca peaks and phytoplanktonic events differed according to the animals and some inter-annual discrepancies complexify the interpretation.
Fusion of PET and MRI for Hybrid Imaging
NASA Astrophysics Data System (ADS)
Cho, Zang-Hee; Son, Young-Don; Kim, Young-Bo; Yoo, Seung-Schik
Recently, the development of the fusion PET-MRI system has been actively studied to meet the increasing demand for integrated molecular and anatomical imaging. MRI can provide detailed anatomical information on the brain, such as the locations of gray and white matter, blood vessels, axonal tracts with high resolution, while PET can measure molecular and genetic information, such as glucose metabolism, neurotransmitter-neuroreceptor binding and affinity, protein-protein interactions, and gene trafficking among biological tissues. State-of-the-art MRI systems, such as the 7.0 T whole-body MRI, now can visualize super-fine structures including neuronal bundles in the pons, fine blood vessels (such as lenticulostriate arteries) without invasive contrast agents, in vivo hippocampal substructures, and substantia nigra with excellent image contrast. High-resolution PET, known as High-Resolution Research Tomograph (HRRT), is a brain-dedicated system capable of imaging minute changes of chemicals, such as neurotransmitters and -receptors, with high spatial resolution and sensitivity. The synergistic power of the two, i.e., ultra high-resolution anatomical information offered by a 7.0 T MRI system combined with the high-sensitivity molecular information offered by HRRT-PET, will significantly elevate the level of our current understanding of the human brain, one of the most delicate, complex, and mysterious biological organs. This chapter introduces MRI, PET, and PET-MRI fusion system, and its algorithms are discussed in detail.
A Search for Water in a Super-Earth Atmosphere: High-resolution Optical Spectroscopy of 55Cancri e
DOE Office of Scientific and Technical Information (OSTI.GOV)
Esteves, Lisa J.; De Mooij, Ernst J. W.; Watson, Chris
We present the analysis of high-resolution optical spectra of four transits of 55Cnc e, a low-density super-Earth that orbits a nearby Sun-like star in under 18 hr. The inferred bulk density of the planet implies a substantial envelope, which, according to mass–radius relationships, could be either a low-mass extended or a high-mass compact atmosphere. Our observations investigate the latter scenario, with water as the dominant species. We take advantage of the Doppler cross-correlation technique, high-spectral resolution, and the large wavelength coverage of our observations to search for the signature of thousands of optical water absorption lines. Using our observations with HDSmore » on the Subaru telescope and ESPaDOnS on the Canada–France–Hawaii Telescope, we are able to place a 3 σ lower limit of 10 g mol{sup −1} on the mean-molecular weight of 55Cnc e’s water-rich (volume mixing ratio >10%), optically thin atmosphere, which corresponds to an atmospheric scale-height of ∼80 km. Our study marks the first high-spectral resolution search for water in a super-Earth atmosphere, and demonstrates that it is possible to recover known water-vapor absorption signals in a nearby super-Earth atmosphere, using high-resolution transit spectroscopy with current ground-based instruments.« less
NASA Astrophysics Data System (ADS)
Wiati, C. B.; Indriyanti, S. Y.; Maharani, R.; Subarudi
2018-04-01
Conflict resolution in Labanan Research Forest (LRF) by the Dipterocarps Forest Ecosystem Research and Development Center (Balai Besar Penelitian dan Pengembangan Ekosistem Hutan Dipterokarpa – B2P2EHD) needs support from other parties that are also interested in such forest management. This paper aimed to presented conflict resolution in LRF through stakeholder mapping for its engagement. This research was conducted for seven months (June to December 2015) with interviews and literature study as its data collection. Collected data were analysed by a stakeholder analysis and matrix based on their interest and power levels. Two important findings were: (1) There are 19 parties having interests in the existence of LRF should be engaged; (2) Conflict resolution of LRF can be achieved: (a) ensuring key stakeholders which have high interest and high power level has same perception in existence and management of LRF, (b) establishing a partnership with primary stakeholders which have high interest and high power levels; (c) building partnerships between primary stakeholders which have high interest but low power levels, (d) building partnerships between key and secondary stakeholders which have low interest but high power levels and (e) gaining support from primary and secondary stakeholders which have low interest and low power levels. Stakeholder mapping is an important tool for tenure conflict resolution through mapping the power and interest of the conflicted parties and finding the proper parties to be approached.
Very high resolution aerial films
NASA Astrophysics Data System (ADS)
Becker, Rolf
1986-11-01
The use of very high resolution aerial films in aerial photography is evaluated. Commonly used panchromatic, color, and CIR films and their high resolution equivalents are compared. Based on practical experience and systematic investigations, the very high image quality and improved height accuracy that can be achieved using these films are demonstrated. Advantages to be gained from this improvement and operational restrictions encountered when using high resolution film are discussed.
Scale dependency of regional climate modeling of current and future climate extremes in Germany
NASA Astrophysics Data System (ADS)
Tölle, Merja H.; Schefczyk, Lukas; Gutjahr, Oliver
2017-11-01
A warmer climate is projected for mid-Europe, with less precipitation in summer, but with intensified extremes of precipitation and near-surface temperature. However, the extent and magnitude of such changes are associated with creditable uncertainty because of the limitations of model resolution and parameterizations. Here, we present the results of convection-permitting regional climate model simulations for Germany integrated with the COSMO-CLM using a horizontal grid spacing of 1.3 km, and additional 4.5- and 7-km simulations with convection parameterized. Of particular interest is how the temperature and precipitation fields and their extremes depend on the horizontal resolution for current and future climate conditions. The spatial variability of precipitation increases with resolution because of more realistic orography and physical parameterizations, but values are overestimated in summer and over mountain ridges in all simulations compared to observations. The spatial variability of temperature is improved at a resolution of 1.3 km, but the results are cold-biased, especially in summer. The increase in resolution from 7/4.5 km to 1.3 km is accompanied by less future warming in summer by 1 ∘C. Modeled future precipitation extremes will be more severe, and temperature extremes will not exclusively increase with higher resolution. Although the differences between the resolutions considered (7/4.5 km and 1.3 km) are small, we find that the differences in the changes in extremes are large. High-resolution simulations require further studies, with effective parameterizations and tunings for different topographic regions. Impact models and assessment studies may benefit from such high-resolution model results, but should account for the impact of model resolution on model processes and climate change.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krishnan, Venkat; Cole, Wesley
This poster is based on the paper of the same name, presented at the IEEE Power & Energy Society General Meeting, July18, 2016. Power sector capacity expansion models (CEMs) have a broad range of spatial resolutions. This paper uses the Regional Energy Deployment System (ReEDS) model, a long-term national scale electric sector CEM, to evaluate the value of high spatial resolution for CEMs. ReEDS models the United States with 134 load balancing areas (BAs) and captures the variability in existing generation parameters, future technology costs, performance, and resource availability using very high spatial resolution data, especially for wind and solarmore » modeled at 356 resource regions. In this paper we perform planning studies at three different spatial resolutions - native resolution (134 BAs), state-level, and NERC region level - and evaluate how results change under different levels of spatial aggregation in terms of renewable capacity deployment and location, associated transmission builds, and system costs. The results are used to ascertain the value of high geographically resolved models in terms of their impact on relative competitiveness among renewable energy resources.« less
Microfabrication of High Resolution X-ray Magnetic Calorimeters
NASA Astrophysics Data System (ADS)
Hsieh, Wen-Ting; Bandler, Simon R.; Kelly, Daniel P.; Porst, Jan P.; Rotzinger, Hannes; Seidel, George M.; Stevenson, Thomas R.
2009-12-01
Metallic magnetic calorimeter (MMC) is one of the most promising x-ray detector technologies for providing the very high energy resolution needed for future astronomical x-ray imaging spectroscopy. For this purpose, we have developed micro-fabricated 5×5 arrays of MMC of which each individual pixel has excellent energy resolution as good as 3.4 eV at 6 keV x-ray. Here we report on the fabrication techniques developed to achieve good resolution and high efficiency. These include: processing of a thin insulation layer for strong magnetic coupling between the AuEr sensor film and the niobium pick-up coil; production of overhanging absorbers for enhanced efficiency of x-ray absorption; fabrication on SiN membranes to minimize the effects on energy resolution from athermal phonon loss. We have also improved the deposition of the magnetic sensor film such that the film magnetization is nearly completely that is expected from the AuEr sputter target bulk material. In addition, we have included a study of a positional sensitive design, the Hydra design, which allows thermal coupling of four absorbers to a common MMC sensor and circuit.
High resolution atomic force microscopy of double-stranded RNA.
Ares, Pablo; Fuentes-Perez, Maria Eugenia; Herrero-Galán, Elías; Valpuesta, José M; Gil, Adriana; Gomez-Herrero, Julio; Moreno-Herrero, Fernando
2016-06-09
Double-stranded (ds) RNA mediates the suppression of specific gene expression, it is the genetic material of a number of viruses, and a key activator of the innate immune response against viral infections. The ever increasing list of roles played by dsRNA in the cell and its potential biotechnological applications over the last decade has raised an interest for the characterization of its mechanical properties and structure, and that includes approaches using Atomic Force Microscopy (AFM) and other single-molecule techniques. Recent reports have resolved the structure of dsDNA with AFM at unprecedented resolution. However, an equivalent study with dsRNA is still lacking. Here, we have visualized the double helix of dsRNA under near-physiological conditions and at sufficient resolution to resolve the A-form sub-helical pitch periodicity. We have employed different high-sensitive force-detection methods and obtained images with similar spatial resolution. Therefore, we show here that the limiting factors for high-resolution AFM imaging of soft materials in liquid medium are, rather than the imaging mode, the force between the tip and the sample and the sharpness of the tip apex.
NASA Astrophysics Data System (ADS)
Joers, James M.
The use of magic angle spinning to obtain high resolution solid state spectra has been well documented. This resolution occurs by coherently averaging the chemical shift anisotropy and dipolar interactions to zero over the period of a full rotation. While this allows for higher resolution, the structural information is seemingly lost to the spectrometer eye. Thus, high resolution spectra and structural information appear to be mutually exlusive. Recently, the push in solid state NMR is the development of recoupling techniques which afford both high resolution and structural information. The following dissertation demonstrates the feasibility of implementing such experiments in solving real world problems, and is centered on devising a method to recover homonuclear dipolar interactions in the high resolution regime.
High resolution microscopy of the lipid layer of the tear film.
King-Smith, P Ewen; Nichols, Jason J; Braun, Richard J; Nichols, Kelly K
2011-10-01
Tear film evaporation is controlled by the lipid layer and is an important factor in dry eye conditions. Because the barrier to evaporation depends on the structure of the lipid layer, a high resolution microscope has been constructed to study the lipid layer in dry and in normal eyes. The microscope incorporates the following features. First, a long working distance microscope objective is used with a high numerical aperture and resolution. Second, because such a high resolution objective has limited depth of focus, 2000 images are recorded with a video camera over a 20-sec period, with the expectation that some images will be in focus. Third, illumination is from a stroboscopic light source having a brief flash duration, to avoid blurring from movement of the lipid layer. Fourth, the image is in focus when the edge of the image is sharp - this feature is used to select images in good focus. Fifth, an aid is included to help align the cornea at normal incidence to the axis of the objective so that the whole lipid image can be in focus. High resolution microscopy has the potential to elucidate several characteristics of the normal and abnormal lipid layer, including different objects and backgrounds, changes in the blink cycle, stability and fluidity, dewetting, gel-like properties and possible relation to lipid domains. It is expected that high resolution microscopy of the lipid layer will provide information about the mechanisms of dry eye disorders. Illustrative results are presented, derived from over 10,000 images from 375 subjects.
Stars and their Environments at High-Resolution with IGRINS
NASA Astrophysics Data System (ADS)
Mace, Gregory; Jaffe, Daniel; Kaplan, Kyle; Kidder, Benjamin; Oh, Heeyoung; Sneden, Christopher; Afşar, Melike
2016-06-01
TheImmersion Grating Infrared Spectrometer (IGRINS) is a revolutionary instrument that exploits broad spectral coverage at high-resolution in the near-infrared. There are no moving parts in IGRINS and its high-throughput white-pupil design maximizes sensitivity. IGRINS on the 2.7 meter Harlan J. Smith Telescope at McDonald Observatory is nearly as sensitive as CRIRES at the 8 meter Very Large Telescope. However, IGRINS at R=45,000 has more than 30 times the spectral grasp of CRIRES. The use of an immersion grating facilitates a compact cryostat while providing simultaneous H and K band observations with complete wavelength coverage from 1.45 - 2.45 microns. Here we discuss details of instrument performance and summarize the application of IGRINS to stellar characterization, star formation in regions like Taurus and Ophiuchus, the interstellar medium, and photodissociation regions. IGRINS has the largest spectral grasp of any high-resolution, near-infrared spectrograph, allowing us to study star formation and evolution in unprecedented detail. With its fixed format and high sensitivity, IGRINS is a great survey instrument for star clusters, high signal-to-noise (SNR>300) studies of field stars, and for mapping the interstellar medium. As a prototype for GMTNIRS on the Giant Magellan Telescope, IGRINS represents the future of high-resolution spectroscopy. In the future IGRINS will be deployed to numerous facilities and will remain a versatile instrument for the community while producing a rich archive of uniform spectra.
NASA Astrophysics Data System (ADS)
Broich, Mark
Humid tropical forest cover loss is threatening the sustainability of ecosystem goods and services as vast forest areas are rapidly cleared for industrial scale agriculture and tree plantations. Despite the importance of humid tropical forest in the provision of ecosystem services and economic development opportunities, the spatial and temporal distribution of forest cover loss across large areas is not well quantified. Here I improve the quantification of humid tropical forest cover loss using two remote sensing-based methods: sampling and wall-to-wall mapping. In all of the presented studies, the integration of coarse spatial, high temporal resolution data with moderate spatial, low temporal resolution data enable advances in quantifying forest cover loss in the humid tropics. Imagery from the Moderate Resolution Imaging Spectroradiometer (MODIS) are used as the source of coarse spatial resolution, high temporal resolution data and imagery from the Landsat Enhanced Thematic Mapper Plus (ETM+) sensor are used as the source of moderate spatial, low temporal resolution data. In a first study, I compare the precision of different sampling designs for the Brazilian Amazon using the annual deforestation maps derived by the Brazilian Space Agency for reference. I show that sampling designs can provide reliable deforestation estimates; furthermore, sampling designs guided by MODIS data can provide more efficient estimates than the systematic design used for the United Nations Food and Agricultural Organization Forest Resource Assessment 2010. Sampling approaches, such as the one demonstrated, are viable in regions where data limitations, such as cloud contamination, limit exhaustive mapping methods. Cloud-contaminated regions experiencing high rates of change include Insular Southeast Asia, specifically Indonesia and Malaysia. Due to persistent cloud cover, forest cover loss in Indonesia has only been mapped at a 5-10 year interval using photo interpretation of single best Landsat images. Such an approach does not provide timely results, and cloud cover reduces the utility of map outputs. In a second study, I develop a method to exhaustively mine the recently opened Landsat archive for cloud-free observations and automatically map forest cover loss for Sumatra and Kalimantan for the 2000-2005 interval. In a comparison with a reference dataset consisting of 64 Landsat sample blocks, I show that my method, using per pixel time-series, provides more accurate forest cover loss maps for multiyear intervals than approaches using image composites. In a third study, I disaggregate Landsat-mapped forest cover loss, mapped over a multiyear interval, by year using annual forest cover loss maps generated from coarse spatial, high temporal resolution MODIS imagery. I further disaggregate and analyze forest cover loss by forest land use, and provinces. Forest cover loss trends show high spatial and temporal variability. These results underline the importance of annual mapping for the quantification of forest cover loss in Indonesia, specifically in the light of the developing Reducing Emissions from Deforestation and Forest Degradation in Developing Countries policy framework (REDD). All three studies highlight the advances in quantifying forest cover loss in the humid tropics made by integrating coarse spatial, high temporal resolution data with moderate spatial, low temporal resolution data. The three methods presented can be combined into an integrated monitoring strategy.
NASA Astrophysics Data System (ADS)
Zhang, Shaojun; Wu, Ye; Huang, Ruikun; Wang, Jiandong; Yan, Han; Zheng, Yali; Hao, Jiming
2016-08-01
Vehicle emissions containing air pollutants created substantial environmental impacts on air quality for many traffic-populated cities in eastern Asia. A high-resolution emission inventory is a useful tool compared with traditional tools (e.g. registration data-based approach) to accurately evaluate real-world traffic dynamics and their environmental burden. In this study, Macau, one of the most populated cities in the world, is selected to demonstrate a high-resolution simulation of vehicular emissions and their contribution to air pollutant concentrations by coupling multimodels. First, traffic volumes by vehicle category on 47 typical roads were investigated during weekdays in 2010 and further applied in a networking demand simulation with the TransCAD model to establish hourly profiles of link-level vehicle counts. Local vehicle driving speed and vehicle age distribution data were also collected in Macau. Second, based on a localized vehicle emission model (e.g. the emission factor model for the Beijing vehicle fleet - Macau, EMBEV-Macau), this study established a link-based vehicle emission inventory in Macau with high resolution meshed in a temporal and spatial framework. Furthermore, we employed the AERMOD (AMS/EPA Regulatory Model) model to map concentrations of CO and primary PM2.5 contributed by local vehicle emissions during weekdays in November 2010. This study has discerned the strong impact of traffic flow dynamics on the temporal and spatial patterns of vehicle emissions, such as a geographic discrepancy of spatial allocation up to 26 % between THC and PM2.5 emissions owing to spatially heterogeneous vehicle-use intensity between motorcycles and diesel fleets. We also identified that the estimated CO2 emissions from gasoline vehicles agreed well with the statistical fuel consumption in Macau. Therefore, this paper provides a case study and a solid framework for developing high-resolution environment assessment tools for other vehicle-populated cities in eastern Asia.
NASA Technical Reports Server (NTRS)
Case, Jonathan L.; Kumar, Sujay V.; Krikishen, Jayanthi; Jedlovec, Gary J.
2011-01-01
It is hypothesized that high-resolution, accurate representations of surface properties such as soil moisture and sea surface temperature are necessary to improve simulations of summertime pulse-type convective precipitation in high resolution models. This paper presents model verification results of a case study period from June-August 2008 over the Southeastern U.S. using the Weather Research and Forecasting numerical weather prediction model. Experimental simulations initialized with high-resolution land surface fields from the NASA Land Information System (LIS) and sea surface temperature (SST) derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) are compared to a set of control simulations initialized with interpolated fields from the National Centers for Environmental Prediction 12-km North American Mesoscale model. The LIS land surface and MODIS SSTs provide a more detailed surface initialization at a resolution comparable to the 4-km model grid spacing. Soil moisture from the LIS spin-up run is shown to respond better to the extreme rainfall of Tropical Storm Fay in August 2008 over the Florida peninsula. The LIS has slightly lower errors and higher anomaly correlations in the top soil layer, but exhibits a stronger dry bias in the root zone. The model sensitivity to the alternative surface initial conditions is examined for a sample case, showing that the LIS/MODIS data substantially impact surface and boundary layer properties.
NASA Astrophysics Data System (ADS)
Fialová, Stanislava; Augustin, Marco; Plasenzotti, Roberto; Rauscher, Sabine; Gröger, Marion; Pircher, Michael; Hitzenberger, Christoph K.; Baumann, Bernhard
2015-07-01
Animal models play an important role for understanding the pathophysiology of glaucoma and age-related macular degeneration. With these models, longitudinal studies can be performed and therefore there is need for non-invasive evaluation of disease progress. For that purpose optical coherence tomography (OCT) can be used. Since tissues with different polarization properties are important in these diseases, polarization sensitive OCT (PS-OCT) could be a valuable tool in preclinical research. In this work a high resolution PS-OCT (HR-PS-OCT) system was used in-vivo for rodent retinal imaging. A super luminescent diode with a bandwidth of 100 nm was used as a light source that yielded an axial resolution of 5.1 μm in air (3.8 μm in tissue). The A-scan rate was 83 kHz, a whole 3D dataset was acquired in a few seconds (1536x1024x200 pixels in 3.5 s) which reduced motion artifacts. Rats (Sprague-Dawley, Long-Evans and Brown Norway) as well as mice (C57BL/6) were imaged. High resolution reflectivity images showed all retinal layers in all animals. From acquired data also phase retardation, fast axis orientation and degree of polarization uniformity (DOPU) images were calculated. On phase retardation images sclera was identified as birefringent and retinal pigment epithelium (RPE) and choroid as depolarizing tissues. Our results demonstrate the suitability of the system for high speed/resolution imaging in follow up studies on rodents.
Application of full field optical studies for pulsatile flow in a carotid artery phantom
Nemati, M.; Loozen, G. B.; van der Wekken, N.; van de Belt, G.; Urbach, H. P.; Bhattacharya, N.; Kenjeres, S.
2015-01-01
A preliminary comparative measurement between particle imaging velocimetry (PIV) and laser speckle contrast analysis (LASCA) to study pulsatile flow using ventricular assist device in a patient-specific carotid artery phantom is reported. These full-field optical techniques have both been used to study flow and extract complementary parameters. We use the high spatial resolution of PIV to generate a full velocity map of the flow field and the high temporal resolution of LASCA to extract the detailed frequency spectrum of the fluid pulses. Using this combination of techniques a complete study of complex pulsatile flow in an intricate flow network can be studied. PMID:26504652
Satellite image fusion based on principal component analysis and high-pass filtering.
Metwalli, Mohamed R; Nasr, Ayman H; Allah, Osama S Farag; El-Rabaie, S; Abd El-Samie, Fathi E
2010-06-01
This paper presents an integrated method for the fusion of satellite images. Several commercial earth observation satellites carry dual-resolution sensors, which provide high spatial resolution or simply high-resolution (HR) panchromatic (pan) images and low-resolution (LR) multi-spectral (MS) images. Image fusion methods are therefore required to integrate a high-spectral-resolution MS image with a high-spatial-resolution pan image to produce a pan-sharpened image with high spectral and spatial resolutions. Some image fusion methods such as the intensity, hue, and saturation (IHS) method, the principal component analysis (PCA) method, and the Brovey transform (BT) method provide HR MS images, but with low spectral quality. Another family of image fusion methods, such as the high-pass-filtering (HPF) method, operates on the basis of the injection of high frequency components from the HR pan image into the MS image. This family of methods provides less spectral distortion. In this paper, we propose the integration of the PCA method and the HPF method to provide a pan-sharpened MS image with superior spatial resolution and less spectral distortion. The experimental results show that the proposed fusion method retains the spectral characteristics of the MS image and, at the same time, improves the spatial resolution of the pan-sharpened image.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jun, Ji Hyun; Song, Zhihong; Liu, Zhenjiu
High-spatial resolution and high-mass resolution techniques are developed and adopted for the mass spectrometric imaging of epicuticular lipids on the surface of Arabidopsis thaliana. Single cell level spatial resolution of {approx}12 {micro}m was achieved by reducing the laser beam size by using an optical fiber with 25 {micro}m core diameter in a vacuum matrix-assisted laser desorption ionization-linear ion trap (vMALDI-LTQ) mass spectrometer and improved matrix application using an oscillating capillary nebulizer. Fine chemical images of a whole flower were visualized in this high spatial resolution showing substructure of an anther and single pollen grains at the stigma and anthers. Themore » LTQ-Orbitrap with a MALDI ion source was adopted to achieve MS imaging in high mass resolution. Specifically, isobaric silver ion adducts of C29 alkane (m/z 515.3741) and C28 aldehyde (m/z 515.3377), indistinguishable in low-resolution LTQ, can now be clearly distinguished and their chemical images could be separately constructed. In the application to roots, the high spatial resolution allowed molecular MS imaging of secondary roots and the high mass resolution allowed direct identification of lipid metabolites on root surfaces.« less
Exploring image data assimilation in the prospect of high-resolution satellite data
NASA Astrophysics Data System (ADS)
Verron, J. A.; Duran, M.; Gaultier, L.; Brankart, J. M.; Brasseur, P.
2016-02-01
Many recent works show the key importance of studying the ocean at fine scales including the meso- and submesoscales. Satellite observations such as ocean color data provide informations on a wide range of scales but do not directly provide information on ocean dynamics. Satellite altimetry provide informations on the ocean dynamic topography (SSH) but so far with a limited resolution in space and even more, in time. However, in the near future, high-resolution SSH data (e.g. SWOT) will give a vision of the dynamic topography at such fine space resolution. This raises some challenging issues for data assimilation in physical oceanography: develop reliable methodology to assimilate high resolution data, make integrated use of various data sets including biogeochemical data, and even more simply, solve the challenge of handling large amont of data and huge state vectors. In this work, we propose to consider structured information rather than pointwise data. First, we take an image data assimilation approach in studying the feasibility of inverting tracer observations from Sea Surface Temperature and/or Ocean Color datasets, to improve the description of mesoscale dynamics provided by altimetric observations. Finite Size Lyapunov Exponents are used as an image proxy. The inverse problem is formulated in a Bayesian framework and expressed in terms of a cost function measuring the misfits between the two images. Second, we explore the inversion of SWOT-like high resolution SSH data and more especially the various possible proxies of the actual SSH that could be used to control the ocean circulation at various scales. One focus is made on controlling the subsurface ocean from surface only data. A key point lies in the errors and uncertainties that are associated to SWOT data.
NASA Astrophysics Data System (ADS)
Cui, Y.; Zhao, P.; Hong, Y.; Fan, W.; Yan, B.; Xie, H.
2017-12-01
Abstract: As an important compont of evapotranspiration, vegetation rainfall interception is the proportion of gross rainfall that is intercepted, stored and subsequently evaporated from all parts of vegetation during or following rainfall. Accurately quantifying the vegetation rainfall interception at a high resolution is critical for rainfall-runoff modeling and flood forecasting, and is also essential for understanding its further impact on local, regional, and even global water cycle dynamics. In this study, the Remote Sensing-based Gash model (RS-Gash model) is developed based on a modified Gash model for interception loss estimation using remote sensing observations at the regional scale, and has been applied and validated in the upper reach of the Heihe River Basin of China for different types of vegetation. To eliminate the scale error and the effect of mixed pixels, the RS-Gash model is applied at a fine scale of 30 m with the high resolution vegetation area index retrieved by using the unified model of bidirectional reflectance distribution function (BRDF-U) for the vegetation canopy. Field validation shows that the RMSE and R2 of the interception ratio are 3.7% and 0.9, respectively, indicating the model's strong stability and reliability at fine scale. The temporal variation of vegetation rainfall interception loss and its relationship with precipitation are further investigated. In summary, the RS-Gash model has demonstrated its effectiveness and reliability in estimating vegetation rainfall interception. When compared to the coarse resolution results, the application of this model at 30-m fine resolution is necessary to resolve the scaling issues as shown in this study. Keywords: rainfall interception; remote sensing; RS-Gash analytical model; high resolution
Generation of High Resolution Land Surface Parameters in the Community Land Model
NASA Astrophysics Data System (ADS)
Ke, Y.; Coleman, A. M.; Wigmosta, M. S.; Leung, L.; Huang, M.; Li, H.
2010-12-01
The Community Land Model (CLM) is the land surface model used for the Community Atmosphere Model (CAM) and the Community Climate System Model (CCSM). It examines the physical, chemical, and biological processes across a variety of spatial and temporal scales. Currently, efforts are being made to improve the spatial resolution of the CLM, in part, to represent finer scale hydrologic characteristics. Current land surface parameters of CLM4.0, in particular plant functional types (PFT) and leaf area index (LAI), are generated from MODIS and calculated at a 0.05 degree resolution. These MODIS-derived land surface parameters have also been aggregated to coarser resolutions (e.g., 0.5, 1.0 degrees). To evaluate the response of CLM across various spatial scales, higher spatial resolution land surface parameters need to be generated. In this study we examine the use of Landsat TM/ETM+ imagery and data fusion techniques for generating land surface parameters at a 1km resolution within the Pacific Northwest United States. . Land cover types and PFTs are classified based on Landsat multi-season spectral information, DEM, National Land Cover Database (NLCD) and the USDA-NASS Crop Data Layer (CDL). For each PFT, relationships between MOD15A2 high quality LAI values, Landsat-based vegetation indices, climate variables, terrain, and laser-altimeter derived vegetation height are used to generate monthly LAI values at a 30m resolution. The high-resolution PFT and LAI data are aggregated to create a 1km model grid resolution. An evaluation and comparison of CLM land surface response at both fine and moderate scale is presented.
Generating High-Temporal and Spatial Resolution TIR Image Data
NASA Astrophysics Data System (ADS)
Herrero-Huerta, M.; Lagüela, S.; Alfieri, S. M.; Menenti, M.
2017-09-01
Remote sensing imagery to monitor global biophysical dynamics requires the availability of thermal infrared data at high temporal and spatial resolution because of the rapid development of crops during the growing season and the fragmentation of most agricultural landscapes. Conversely, no single sensor meets these combined requirements. Data fusion approaches offer an alternative to exploit observations from multiple sensors, providing data sets with better properties. A novel spatio-temporal data fusion model based on constrained algorithms denoted as multisensor multiresolution technique (MMT) was developed and applied to generate TIR synthetic image data at both temporal and spatial high resolution. Firstly, an adaptive radiance model is applied based on spectral unmixing analysis of . TIR radiance data at TOA (top of atmosphere) collected by MODIS daily 1-km and Landsat - TIRS 16-day sampled at 30-m resolution are used to generate synthetic daily radiance images at TOA at 30-m spatial resolution. The next step consists of unmixing the 30 m (now lower resolution) images using the information about their pixel land-cover composition from co-registered images at higher spatial resolution. In our case study, TIR synthesized data were unmixed to the Sentinel 2 MSI with 10 m resolution. The constrained unmixing preserves all the available radiometric information of the 30 m images and involves the optimization of the number of land-cover classes and the size of the moving window for spatial unmixing. Results are still being evaluated, with particular attention for the quality of the data streams required to apply our approach.
NASA Astrophysics Data System (ADS)
Porto da Silveira, I.; Zuidema, P.; Kirtman, B. P.
2017-12-01
The rugged topography of the Andes Cordillera along with strong coastal upwelling, strong sea surface temperatures (SST) gradients and extensive but geometrically-thin stratocumulus decks turns the Southeast Pacific (SEP) into a challenge for numerical modeling. In this study, hindcast simulations using the Community Climate System Model (CCSM4) at two resolutions were analyzed to examine the importance of resolution alone, with the parameterizations otherwise left unchanged. The hindcasts were initialized on January 1 with the real-time oceanic and atmospheric reanalysis (CFSR) from 1982 to 2003, forming a 10-member ensemble. The two resolutions are (0.1o oceanic and 0.5o atmospheric) and (1.125o oceanic and 0.9o atmospheric). The SST error growth in the first six days of integration (fast errors) and those resulted from model drift (saturated errors) are assessed and compared towards evaluating the model processes responsible for the SST error growth. For the high-resolution simulation, SST fast errors are positive (+0.3oC) near the continental borders and negative offshore (-0.1oC). Both are associated with a decrease in cloud cover, a weakening of the prevailing southwesterly winds and a reduction of latent heat flux. The saturated errors possess a similar spatial pattern, but are larger and are more spatially concentrated. This suggests that the processes driving the errors already become established within the first week, in contrast to the low-resolution simulations. These, instead, manifest too-warm SSTs related to too-weak upwelling, driven by too-strong winds and Ekman pumping. Nevertheless, the ocean surface tends to be cooler in the low-resolution simulation than the high-resolution due to a higher cloud cover. Throughout the integration, saturated SST errors become positive and could reach values up to +4oC. These are accompanied by upwelling dumping and a decrease in cloud cover. High and low resolution models presented notable differences in how SST errors variability drove atmospheric changes, especially because the high resolution is sensitive to resurgence regions. This allows the model to resolve cloud heights and establish different radiative feedbacks.
Propagation-based phase-contrast tomography for high-resolution lung imaging with laboratory sources
NASA Astrophysics Data System (ADS)
Krenkel, Martin; Töpperwien, Mareike; Dullin, Christian; Alves, Frauke; Salditt, Tim
2016-03-01
We have performed high-resolution phase-contrast tomography on whole mice with a laboratory setup. Enabled by a high-brilliance liquid-metal-jet source, we show the feasibility of propagation-based phase contrast in local tomography even in the presence of strongly absorbing surrounding tissue as it is the case in small animal imaging of the lung. We demonstrate the technique by reconstructions of the mouse lung for two different fields of view, covering the whole organ, and a zoom to the local finer structure of terminal airways and alveoli. With a resolution of a few micrometers and the wide availability of the technique, studies of larger biological samples at the cellular level become possible.
Degeneracy Lifting of Adsorbate Orbitals Imaged by High-Resolution Momentum Microscopy
NASA Astrophysics Data System (ADS)
Graus, Martin; Metzger, Christian; Grimm, Manuel; Feyer, Vitaliy; Puschnig, Peter; Schöll, Achim; Reinert, Friedrich
2018-06-01
On the topical example of the symmetry splitting of degenerate orbitals due to adsorption we drive the technique of orbital imaging by momentum microscopy (k-PEEM) ahead, demonstrating the potential of the method when performed with high accuracy in terms of experimental quality, energy resolution and data evaluation. Upon adsorption on the twofold symmetric substrate Ag(110), the symmetry of Iron-phthalocyanine reduces from fourfold two twofold, leading to distinct binding energies of the two e1g orbitals which constitute the twofold degenerate lowest unoccupied molecular orbital of the gas-phase molecule. In this combined experimental and theoretical study, we show that by k-PEEM with high energy resolution the individual orbitals can be identified and distinguished by mapping in momentum space.
Statistical Examination of the Resolution of a Block-Scale Urban Drainage Model
NASA Astrophysics Data System (ADS)
Goldstein, A.; Montalto, F. A.; Digiovanni, K. A.
2009-12-01
Stormwater drainage models are utilized by cities in order to plan retention systems to prevent combined sewage overflows and design for development. These models aggregate subcatchments and ignore small pipelines providing a coarse representation of a sewage network. This study evaluates the importance of resolution by comparing two models developed on a neighborhood scale for predicting the total quantity and peak flow of runoff to observed runoff measured at the site. The low and high resolution models were designed for a 2.6 ha block in Bronx, NYC in EPA Stormwater Management Model (SWMM) using a single catchment and separate subcatchments based on surface cover, respectively. The surface covers represented included sidewalks, street, buildings, and backyards. Characteristics for physical surfaces and the infrastructure in the high resolution mode were determined from site visits, sewer pipe maps, aerial photographs, and GIS data-sets provided by the NYC Department of City Planning. Since the low resolution model was depicted at a coarser scale, generalizations were assumed about the overall average characteristics of the catchment. Rainfall and runoff data were monitored over a four month period during the summer rainy season. A total of 53 rain fall events were recorded but only 29 storms produced significant amount of runoffs to be evaluated in the simulations. To determine which model was more accurate at predicting the observed runoff, three characteristics for each storm were compared: peak runoff, total runoff, and time to peak. Two statistical tests were used to determine the significance of the results: the percent difference for each storm and the overall Chi-squared Goodness of Fit distribution for both the low and high resolution model. These tests will evaluate if there is a statistical difference depending on the resolution of scale of the stormwater model. The scale of representation is being evaluated because it could have a profound impact on how low-impact development strategies are assessed. Rerouting flows to delay the time of entry into the combined sewage is the primary goal of stormwater source controls which may be better differentiated in a high resolution as opposed to low resolution model. The preliminary hypothesis is that the low resolution model simplifies watershed by defining attributes uniformly across the watershed. In the high resolution model, the physical flow can be more accurate depicted by connected the various subcatchments. For example, the runoff from buildings can directly be routed to the backyard. The main drawback to the high resolution model is the risk of adding uncertainty due to the number of parameters.
Multimaterial 4D Printing with Tailorable Shape Memory Polymers
Ge, Qi; Sakhaei, Amir Hosein; Lee, Howon; Dunn, Conner K.; Fang, Nicholas X.; Dunn, Martin L.
2016-01-01
We present a new 4D printing approach that can create high resolution (up to a few microns), multimaterial shape memory polymer (SMP) architectures. The approach is based on high resolution projection microstereolithography (PμSL) and uses a family of photo-curable methacrylate based copolymer networks. We designed the constituents and compositions to exhibit desired thermomechanical behavior (including rubbery modulus, glass transition temperature and failure strain which is more than 300% and larger than any existing printable materials) to enable controlled shape memory behavior. We used a high resolution, high contrast digital micro display to ensure high resolution of photo-curing methacrylate based SMPs that requires higher exposure energy than more common acrylate based polymers. An automated material exchange process enables the manufacture of 3D composite architectures from multiple photo-curable SMPs. In order to understand the behavior of the 3D composite microarchitectures, we carry out high fidelity computational simulations of their complex nonlinear, time-dependent behavior and study important design considerations including local deformation, shape fixity and free recovery rate. Simulations are in good agreement with experiments for a series of single and multimaterial components and can be used to facilitate the design of SMP 3D structures. PMID:27499417
Design, Fabrication and Characterization of A Bi-Frequency Co-Linear Array
Wang, Zhuochen; Li, Sibo; Czernuszewicz, Tomasz J; Gallippi, Caterina M.; Liu, Ruibin; Geng, Xuecang
2016-01-01
Ultrasound imaging with high resolution and large penetration depth has been increasingly adopted in medical diagnosis, surgery guidance, and treatment assessment. Conventional ultrasound works at a particular frequency, with a −6 dB fractional bandwidth of ~70 %, limiting the imaging resolution or depth of field. In this paper, a bi-frequency co-linear array with resonant frequencies of 8 MHz and 20 MHz was investigated to meet the requirements of resolution and penetration depth for a broad range of ultrasound imaging applications. Specifically, a 32-element bi-frequency co-linear array was designed and fabricated, followed by element characterization and real-time sectorial scan (S-scan) phantom imaging using a Verasonics system. The bi-frequency co-linear array was tested in four different modes by switching between low and high frequencies on transmit and receive. The four modes included the following: (1) transmit low, receive low, (2) transmit low, receive high, (3) transmit high, receive low, (4) transmit high, receive high. After testing, the axial and lateral resolutions of all modes were calculated and compared. The results of this study suggest that bi-frequency co-linear arrays are potential aids for wideband fundamental imaging and harmonic/sub-harmonic imaging. PMID:26661069
Liebisch, Frank; Walter, Achim; Greven, Hartmut; Rascher, Uwe
2013-01-01
Background Most spectral data for the amphibian integument are limited to the visible spectrum of light and have been collected using point measurements with low spatial resolution. In the present study a dual camera setup consisting of two push broom hyperspectral imaging systems was employed, which produces reflectance images between 400 and 2500 nm with high spectral and spatial resolution and a high dynamic range. Methodology/Principal Findings We briefly introduce the system and document the high efficiency of this technique analyzing exemplarily the spectral reflectivity of the integument of three arboreal anuran species (Litoria caerulea, Agalychnis callidryas and Hyla arborea), all of which appear green to the human eye. The imaging setup generates a high number of spectral bands within seconds and allows non-invasive characterization of spectral characteristics with relatively high working distance. Despite the comparatively uniform coloration, spectral reflectivity between 700 and 1100 nm differed markedly among the species. In contrast to H. arborea, L. caerulea and A. callidryas showed reflection in this range. For all three species, reflectivity above 1100 nm is primarily defined by water absorption. Furthermore, the high resolution allowed examining even small structures such as fingers and toes, which in A. callidryas showed an increased reflectivity in the near infrared part of the spectrum. Conclusion/Significance Hyperspectral imaging was found to be a very useful alternative technique combining the spectral resolution of spectrometric measurements with a higher spatial resolution. In addition, we used Digital Infrared/Red-Edge Photography as new simple method to roughly determine the near infrared reflectivity of frog specimens in field, where hyperspectral imaging is typically difficult. PMID:24058464
NASA Technical Reports Server (NTRS)
Mankbadi, M. R.; Georgiadis, N. J.; DeBonis, J. R.
2015-01-01
The objective of this work is to compare a high-order solver with a low-order solver for performing large-eddy simulations (LES) of a compressible mixing layer. The high-order method is the Wave-Resolving LES (WRLES) solver employing a Dispersion Relation Preserving (DRP) scheme. The low-order solver is the Wind-US code, which employs the second-order Roe Physical scheme. Both solvers are used to perform LES of the turbulent mixing between two supersonic streams at a convective Mach number of 0.46. The high-order and low-order methods are evaluated at two different levels of grid resolution. For a fine grid resolution, the low-order method produces a very similar solution to the high-order method. At this fine resolution the effects of numerical scheme, subgrid scale modeling, and filtering were found to be negligible. Both methods predict turbulent stresses that are in reasonable agreement with experimental data. However, when the grid resolution is coarsened, the difference between the two solvers becomes apparent. The low-order method deviates from experimental results when the resolution is no longer adequate. The high-order DRP solution shows minimal grid dependence. The effects of subgrid scale modeling and spatial filtering were found to be negligible at both resolutions. For the high-order solver on the fine mesh, a parametric study of the spanwise width was conducted to determine its effect on solution accuracy. An insufficient spanwise width was found to impose an artificial spanwise mode and limit the resolved spanwise modes. We estimate that the spanwise depth needs to be 2.5 times larger than the largest coherent structures to capture the largest spanwise mode and accurately predict turbulent mixing.