Multifractal detrended cross correlation analysis of neuro-degenerative diseases-An in depth study
NASA Astrophysics Data System (ADS)
Dutta, Srimonti; Ghosh, Dipak; Chatterjee, Sucharita
2018-02-01
This work revisits our previous study on human gait diseases, (Dutta et al., 2013) where we have studied the autocorrelation of human gait pattern in normal and diseased set. Significant difference in results was observed for normal and diseased set. However we were not able to distinguish between sets of Parkinson's and Huntington's disease. In this paper we attempt to study whether cross correlations between two feet of human gait pattern can help to distinguish between different diseased set. The results reveal that study of cross correlations can help to distinguish between Parkinson's and Huntington's disease.
Prodromal disease: Immune responses of the host macrophage system to humoral factors
NASA Technical Reports Server (NTRS)
Criswell, B. S.; Knight, V.
1973-01-01
A composite is presented of nine studies, each yielding information contributing toward an understanding of methods designed to detect disease during the prodromal stages. The data further point to new areas of study that might be useful in early diagnoses. Five of the none experiments were done in mice. Four of these involved acute infectious disease states and one involved a chronic autoimmune type disease. Of the numerous perimeters studied of the acute diseases, the uptake of H3- thymidine by peripheral blood lymphocytes appeared to yield the earliest indication of disease. This test was not useful in studying the chronic disease state. Four of the nine studies involved application of diagnostic technics to human disease. A normal baseline for H3-thymidine incorporation by human lymphocytes was determined. A subject with severe combined immunodeficiency disease was studied. A human volunteer study was done using Influenza A live attenuated vaccine. Finally, a human volunteer study of subjects infected with Influenza A was done.
Network-based study reveals potential infection pathways of hepatitis-C leading to various diseases.
Mukhopadhyay, Anirban; Maulik, Ujjwal
2014-01-01
Protein-protein interaction network-based study of viral pathogenesis has been gaining popularity among computational biologists in recent days. In the present study we attempt to investigate the possible pathways of hepatitis-C virus (HCV) infection by integrating the HCV-human interaction network, human protein interactome and human genetic disease association network. We have proposed quasi-biclique and quasi-clique mining algorithms to integrate these three networks to identify infection gateway host proteins and possible pathways of HCV pathogenesis leading to various diseases. Integrated study of three networks, namely HCV-human interaction network, human protein interaction network, and human proteins-disease association network reveals potential pathways of infection by the HCV that lead to various diseases including cancers. The gateway proteins have been found to be biologically coherent and have high degrees in human interactome compared to the other virus-targeted proteins. The analyses done in this study provide possible targets for more effective anti-hepatitis-C therapeutic involvement.
Network-Based Study Reveals Potential Infection Pathways of Hepatitis-C Leading to Various Diseases
Mukhopadhyay, Anirban; Maulik, Ujjwal
2014-01-01
Protein-protein interaction network-based study of viral pathogenesis has been gaining popularity among computational biologists in recent days. In the present study we attempt to investigate the possible pathways of hepatitis-C virus (HCV) infection by integrating the HCV-human interaction network, human protein interactome and human genetic disease association network. We have proposed quasi-biclique and quasi-clique mining algorithms to integrate these three networks to identify infection gateway host proteins and possible pathways of HCV pathogenesis leading to various diseases. Integrated study of three networks, namely HCV-human interaction network, human protein interaction network, and human proteins-disease association network reveals potential pathways of infection by the HCV that lead to various diseases including cancers. The gateway proteins have been found to be biologically coherent and have high degrees in human interactome compared to the other virus-targeted proteins. The analyses done in this study provide possible targets for more effective anti-hepatitis-C therapeutic involvement. PMID:24743187
Porcine models of digestive disease: the future of large animal translational research
Gonzalez, Liara M.; Moeser, Adam J.; Blikslager, Anthony T.
2015-01-01
There is increasing interest in non-rodent translational models for the study of human disease. The pig, in particular, serves as a useful animal model for the study of pathophysiological conditions relevant to the human intestine. This review assesses currently used porcine models of gastrointestinal physiology and disease and provides a rationale for the use of these models for future translational studies. The pig has proven its utility for the study of fundamental disease conditions such as ischemia/ reperfusion injury, stress-induced intestinal dysfunction, and short bowel syndrome. Pigs have also shown great promise for the study of intestinal barrier function, surgical tissue manipulation and intervention, as well as biomaterial implantation and tissue transplantation. Advantages of pig models highlighted by these studies include the physiological similarity to human intestine as well as to mechanisms of human disease. Emerging future directions for porcine models of human disease include the fields of transgenics and stem cell biology, with exciting implications for regenerative medicine. PMID:25655839
2013-01-01
Background The body of disease mutations with known phenotypic relevance continues to increase and is expected to do so even faster with the advent of new experimental techniques such as whole-genome sequencing coupled with disease association studies. However, genomic association studies are limited by the molecular complexity of the phenotype being studied and the population size needed to have adequate statistical power. One way to circumvent this problem, which is critical for the study of rare diseases, is to study the molecular patterns emerging from functional studies of existing disease mutations. Current gene-centric analyses to study mutations in coding regions are limited by their inability to account for the functional modularity of the protein. Previous studies of the functional patterns of known human disease mutations have shown a significant tendency to cluster at protein domain positions, namely position-based domain hotspots of disease mutations. However, the limited number of known disease mutations remains the main factor hindering the advancement of mutation studies at a functional level. In this paper, we address this problem by incorporating mutations known to be disruptive of phenotypes in other species. Focusing on two evolutionarily distant organisms, human and yeast, we describe the first inter-species analysis of mutations of phenotypic relevance at the protein domain level. Results The results of this analysis reveal that phenotypic mutations from yeast cluster at specific positions on protein domains, a characteristic previously revealed to be displayed by human disease mutations. We found over one hundred domain hotspots in yeast with approximately 50% in the exact same domain position as known human disease mutations. Conclusions We describe an analysis using protein domains as a framework for transferring functional information by studying domain hotspots in human and yeast and relating phenotypic changes in yeast to diseases in human. This first-of-a-kind study of phenotypically relevant yeast mutations in relation to human disease mutations demonstrates the utility of a multi-species analysis for advancing the understanding of the relationship between genetic mutations and phenotypic changes at the organismal level. PMID:23819456
Genetics of Human and Canine Dilated Cardiomyopathy
Simpson, Siobhan; Edwards, Jennifer; Ferguson-Mignan, Thomas F. N.; Cobb, Malcolm; Mongan, Nigel P.; Rutland, Catrin S.
2015-01-01
Cardiovascular disease is a leading cause of death in both humans and dogs. Dilated cardiomyopathy (DCM) accounts for a large number of these cases, reported to be the third most common form of cardiac disease in humans and the second most common in dogs. In human studies of DCM there are more than 50 genetic loci associated with the disease. Despite canine DCM having similar disease progression to human DCM studies into the genetic basis of canine DCM lag far behind those of human DCM. In this review the aetiology, epidemiology, and clinical characteristics of canine DCM are examined, along with highlighting possible different subtypes of canine DCM and their potential relevance to human DCM. Finally the current position of genetic research into canine and human DCM, including the genetic loci, is identified and the reasons many studies may have failed to find a genetic association with canine DCM are reviewed. PMID:26266250
Genetics of Human and Canine Dilated Cardiomyopathy.
Simpson, Siobhan; Edwards, Jennifer; Ferguson-Mignan, Thomas F N; Cobb, Malcolm; Mongan, Nigel P; Rutland, Catrin S
2015-01-01
Cardiovascular disease is a leading cause of death in both humans and dogs. Dilated cardiomyopathy (DCM) accounts for a large number of these cases, reported to be the third most common form of cardiac disease in humans and the second most common in dogs. In human studies of DCM there are more than 50 genetic loci associated with the disease. Despite canine DCM having similar disease progression to human DCM studies into the genetic basis of canine DCM lag far behind those of human DCM. In this review the aetiology, epidemiology, and clinical characteristics of canine DCM are examined, along with highlighting possible different subtypes of canine DCM and their potential relevance to human DCM. Finally the current position of genetic research into canine and human DCM, including the genetic loci, is identified and the reasons many studies may have failed to find a genetic association with canine DCM are reviewed.
Molecular Hydrogen as an Emerging Therapeutic Medical Gas for Neurodegenerative and Other Diseases
Ohno, Kinji; Ito, Mikako; Ichihara, Masatoshi; Ito, Masafumi
2012-01-01
Effects of molecular hydrogen on various diseases have been documented for 63 disease models and human diseases in the past four and a half years. Most studies have been performed on rodents including two models of Parkinson's disease and three models of Alzheimer's disease. Prominent effects are observed especially in oxidative stress-mediated diseases including neonatal cerebral hypoxia; Parkinson's disease; ischemia/reperfusion of spinal cord, heart, lung, liver, kidney, and intestine; transplantation of lung, heart, kidney, and intestine. Six human diseases have been studied to date: diabetes mellitus type 2, metabolic syndrome, hemodialysis, inflammatory and mitochondrial myopathies, brain stem infarction, and radiation-induced adverse effects. Two enigmas, however, remain to be solved. First, no dose-response effect is observed. Rodents and humans are able to take a small amount of hydrogen by drinking hydrogen-rich water, but marked effects are observed. Second, intestinal bacteria in humans and rodents produce a large amount of hydrogen, but an addition of a small amount of hydrogen exhibits marked effects. Further studies are required to elucidate molecular bases of prominent hydrogen effects and to determine the optimal frequency, amount, and method of hydrogen administration for each human disease. PMID:22720117
Roles of amino acids in preventing and treating intestinal diseases: recent studies with pig models.
Liu, Yulan; Wang, Xiuying; Hou, Yongqing; Yin, Yulong; Qiu, Yinsheng; Wu, Guoyao; Hu, Chien-An Andy
2017-08-01
Animal models are needed to study and understand a human complex disease. Because of their similarities in anatomy, structure, physiology, and pathophysiology, the pig has proven its usefulness in studying human gastrointestinal diseases, such as inflammatory bowel disease, ischemia/reperfusion injury, diarrhea, and cancer. To understand the pathogenesis of these diseases, a number of experimental models generated in pigs are available, for example, through surgical manipulation, chemical induction, microbial infection, and genetic engineering. Our interests have been using amino acids as therapeutics in pig and human disease models. Amino acids not only play an important role in protein biosynthesis, but also exert significant physiological effects in regulating immunity, anti-oxidation, redox regulation, energy metabolism, signal transduction, and animal behavior. Recent studies in pigs have shown that specific dietary amino acids can improve intestinal integrity and function under normal and pathological conditions that protect the host from different diseases. In this review, we summarize several pig models in intestinal diseases and how amino acids can be used as therapeutics in treating pig and human diseases.
Spengler, Jessica R; Kelly Keating, M; McElroy, Anita K; Zivcec, Marko; Coleman-McCray, JoAnn D; Harmon, Jessica R; Bollweg, Brigid C; Goldsmith, Cynthia S; Bergeron, Éric; Keck, James G; Zaki, Sherif R; Nichol, Stuart T; Spiropoulou, Christina F
2017-12-12
Crimean-Congo hemorrhagic fever (CCHF) is a tick-borne viral hemorrhagic disease seen exclusively in humans. Central nervous system (CNS) infection and neurological involvement have also been reported in CCHF. In the current study, we inoculated NSG-SGM3 mice engrafted with human hematopoietic CD34+ stem cells with low-passage CCHF virus strains isolated from human patients. In humanized mice, lethal disease develops, characterized by histopathological change in the liver and brain. To date, targets of neurological infection and disease have not been investigated in CCHF. CNS disease in humanized mice was characterized by gliosis, meningitis, and meningoencephalitis, and glial cells were identified as principal targets of infection. Humanized mice represent a novel lethal model for studies of CCHF countermeasures, and CCHF-associated CNS disease. Our data suggest a role for astrocyte dysfunction in neurological disease and identify key regions of infection in the CNS for future investigations of CCHF. Published by Oxford University Press for the Infectious Diseases Society of America 2017. This work is written by (a) US Government employee(s) and is in the public domain in the US.
Human Environmental Disease Network: A computational model to assess toxicology of contaminants.
Taboureau, Olivier; Audouze, Karine
2017-01-01
During the past decades, many epidemiological, toxicological and biological studies have been performed to assess the role of environmental chemicals as potential toxicants associated with diverse human disorders. However, the relationships between diseases based on chemical exposure rarely have been studied by computational biology. We developed a human environmental disease network (EDN) to explore and suggest novel disease-disease and chemical-disease relationships. The presented scored EDN model is built upon the integration of systems biology and chemical toxicology using information on chemical contaminants and their disease relationships reported in the TDDB database. The resulting human EDN takes into consideration the level of evidence of the toxicant-disease relationships, allowing inclusion of some degrees of significance in the disease-disease associations. Such a network can be used to identify uncharacterized connections between diseases. Examples are discussed for type 2 diabetes (T2D). Additionally, this computational model allows confirmation of already known links between chemicals and diseases (e.g., between bisphenol A and behavioral disorders) and also reveals unexpected associations between chemicals and diseases (e.g., between chlordane and olfactory alteration), thus predicting which chemicals may be risk factors to human health. The proposed human EDN model allows exploration of common biological mechanisms of diseases associated with chemical exposure, helping us to gain insight into disease etiology and comorbidity. This computational approach is an alternative to animal testing supporting the 3R concept.
Newer knowledge in comparative virology--its contribution to human health research.
Cabasso, J J
1975-06-28
Like other comparative sciences, and despite its recent beginning comparative virology has already contributed useful applications and observations to human health research. Teachings derived from the study of Marek's disease found application in that of Burkitt's lymphoma, and may lead to a possible vaccine against the human disease. Equally useful information came from the study of canine distemper in the development of a chorio-allantoic membrane attenuated measles vaccine, and in our knowledge of subacute sclerosing panencephalitis (SSPE) of humans; from the study of reovirus-like agents of infant mice and neonatal calves in that of an acute nonbacterial gastro-enteritis of infants and young children; and from that of the cancer-producing viruses of chickens, cats, and dogs to a better understanding of some human neoplasias. Finally, Aleutian mink disease may be an excellent natural model for the study of the collagen diseases of man, and scrapie of sheep one for that of a human chronic degenerative disease of the central nervous system of humans such as Kuru. Comparative virology has proved quite productive in a relatively short period, and is unlikely to be neglected in the future.
Vaccines against viral hemorrhagic fevers: non-human primate models.
Carrion, Ricardo; Patterson, Jean L
2011-06-01
Viral hemorrhagic fevers are a group of disease syndromes caused by infection with certain RNA viruses. The disease is marked by a febrile response, malaise, coagulopathy and vascular permeability culminating in death. Case fatality rates can reach 90% depending on the etiologic agent. Currently, there is no approved antiviral treatment. Because of the high case fatality, risk of importation and the potential to use these agents as biological weapons, development of countermeasures to these agents is a high priority. The sporadic nature of disease outbreaks and the ethical issues associated with conducting a human trial for such diseases make human studies impractical; therefore, development of countermeasures must occur in relevant animal models. Non-human primates are superior models to study infectious disease because their immune system is similar to humans and they are good predictors of efficacy in vaccine development and other intervention strategies. This review article summarizes viral hemorrhagic fever non-human primate models.
Bauer-Mehren, Anna; Bundschus, Markus; Rautschka, Michael; Mayer, Miguel A.; Sanz, Ferran; Furlong, Laura I.
2011-01-01
Background Scientists have been trying to understand the molecular mechanisms of diseases to design preventive and therapeutic strategies for a long time. For some diseases, it has become evident that it is not enough to obtain a catalogue of the disease-related genes but to uncover how disruptions of molecular networks in the cell give rise to disease phenotypes. Moreover, with the unprecedented wealth of information available, even obtaining such catalogue is extremely difficult. Principal Findings We developed a comprehensive gene-disease association database by integrating associations from several sources that cover different biomedical aspects of diseases. In particular, we focus on the current knowledge of human genetic diseases including mendelian, complex and environmental diseases. To assess the concept of modularity of human diseases, we performed a systematic study of the emergent properties of human gene-disease networks by means of network topology and functional annotation analysis. The results indicate a highly shared genetic origin of human diseases and show that for most diseases, including mendelian, complex and environmental diseases, functional modules exist. Moreover, a core set of biological pathways is found to be associated with most human diseases. We obtained similar results when studying clusters of diseases, suggesting that related diseases might arise due to dysfunction of common biological processes in the cell. Conclusions For the first time, we include mendelian, complex and environmental diseases in an integrated gene-disease association database and show that the concept of modularity applies for all of them. We furthermore provide a functional analysis of disease-related modules providing important new biological insights, which might not be discovered when considering each of the gene-disease association repositories independently. Hence, we present a suitable framework for the study of how genetic and environmental factors, such as drugs, contribute to diseases. Availability The gene-disease networks used in this study and part of the analysis are available at http://ibi.imim.es/DisGeNET/DisGeNETweb.html#Download. PMID:21695124
Bauer-Mehren, Anna; Bundschus, Markus; Rautschka, Michael; Mayer, Miguel A; Sanz, Ferran; Furlong, Laura I
2011-01-01
Scientists have been trying to understand the molecular mechanisms of diseases to design preventive and therapeutic strategies for a long time. For some diseases, it has become evident that it is not enough to obtain a catalogue of the disease-related genes but to uncover how disruptions of molecular networks in the cell give rise to disease phenotypes. Moreover, with the unprecedented wealth of information available, even obtaining such catalogue is extremely difficult. We developed a comprehensive gene-disease association database by integrating associations from several sources that cover different biomedical aspects of diseases. In particular, we focus on the current knowledge of human genetic diseases including mendelian, complex and environmental diseases. To assess the concept of modularity of human diseases, we performed a systematic study of the emergent properties of human gene-disease networks by means of network topology and functional annotation analysis. The results indicate a highly shared genetic origin of human diseases and show that for most diseases, including mendelian, complex and environmental diseases, functional modules exist. Moreover, a core set of biological pathways is found to be associated with most human diseases. We obtained similar results when studying clusters of diseases, suggesting that related diseases might arise due to dysfunction of common biological processes in the cell. For the first time, we include mendelian, complex and environmental diseases in an integrated gene-disease association database and show that the concept of modularity applies for all of them. We furthermore provide a functional analysis of disease-related modules providing important new biological insights, which might not be discovered when considering each of the gene-disease association repositories independently. Hence, we present a suitable framework for the study of how genetic and environmental factors, such as drugs, contribute to diseases. The gene-disease networks used in this study and part of the analysis are available at http://ibi.imim.es/DisGeNET/DisGeNETweb.html#Download.
HEDD: Human Enhancer Disease Database
Wang, Zhen; Zhang, Quanwei; Zhang, Wen; Lin, Jhih-Rong; Cai, Ying; Mitra, Joydeep
2018-01-01
Abstract Enhancers, as specialized genomic cis-regulatory elements, activate transcription of their target genes and play an important role in pathogenesis of many human complex diseases. Despite recent systematic identification of them in the human genome, currently there is an urgent need for comprehensive annotation databases of human enhancers with a focus on their disease connections. In response, we built the Human Enhancer Disease Database (HEDD) to facilitate studies of enhancers and their potential roles in human complex diseases. HEDD currently provides comprehensive genomic information for ∼2.8 million human enhancers identified by ENCODE, FANTOM5 and RoadMap with disease association scores based on enhancer–gene and gene–disease connections. It also provides Web-based analytical tools to visualize enhancer networks and score enhancers given a set of selected genes in a specific gene network. HEDD is freely accessible at http://zdzlab.einstein.yu.edu/1/hedd.php. PMID:29077884
Integrative analysis of 111 reference human epigenomes
Kundaje, Anshul; Meuleman, Wouter; Ernst, Jason; Bilenky, Misha; Yen, Angela; Kheradpour, Pouya; Zhang, Zhizhuo; Heravi-Moussavi, Alireza; Liu, Yaping; Amin, Viren; Ziller, Michael J; Whitaker, John W; Schultz, Matthew D; Sandstrom, Richard S; Eaton, Matthew L; Wu, Yi-Chieh; Wang, Jianrong; Ward, Lucas D; Sarkar, Abhishek; Quon, Gerald; Pfenning, Andreas; Wang, Xinchen; Claussnitzer, Melina; Coarfa, Cristian; Harris, R Alan; Shoresh, Noam; Epstein, Charles B; Gjoneska, Elizabeta; Leung, Danny; Xie, Wei; Hawkins, R David; Lister, Ryan; Hong, Chibo; Gascard, Philippe; Mungall, Andrew J; Moore, Richard; Chuah, Eric; Tam, Angela; Canfield, Theresa K; Hansen, R Scott; Kaul, Rajinder; Sabo, Peter J; Bansal, Mukul S; Carles, Annaick; Dixon, Jesse R; Farh, Kai-How; Feizi, Soheil; Karlic, Rosa; Kim, Ah-Ram; Kulkarni, Ashwinikumar; Li, Daofeng; Lowdon, Rebecca; Mercer, Tim R; Neph, Shane J; Onuchic, Vitor; Polak, Paz; Rajagopal, Nisha; Ray, Pradipta; Sallari, Richard C; Siebenthall, Kyle T; Sinnott-Armstrong, Nicholas; Stevens, Michael; Thurman, Robert E; Wu, Jie; Zhang, Bo; Zhou, Xin; Beaudet, Arthur E; Boyer, Laurie A; De Jager, Philip; Farnham, Peggy J; Fisher, Susan J; Haussler, David; Jones, Steven; Li, Wei; Marra, Marco; McManus, Michael T; Sunyaev, Shamil; Thomson, James A; Tlsty, Thea D; Tsai, Li-Huei; Wang, Wei; Waterland, Robert A; Zhang, Michael; Chadwick, Lisa H; Bernstein, Bradley E; Costello, Joseph F; Ecker, Joseph R; Hirst, Martin; Meissner, Alexander; Milosavljevic, Aleksandar; Ren, Bing; Stamatoyannopoulos, John A; Wang, Ting; Kellis, Manolis
2015-01-01
The reference human genome sequence set the stage for studies of genetic variation and its association with human disease, but a similar reference has lacked for epigenomic studies. To address this need, the NIH Roadmap Epigenomics Consortium generated the largest collection to-date of human epigenomes for primary cells and tissues. Here, we describe the integrative analysis of 111 reference human epigenomes generated as part of the program, profiled for histone modification patterns, DNA accessibility, DNA methylation, and RNA expression. We establish global maps of regulatory elements, define regulatory modules of coordinated activity, and their likely activators and repressors. We show that disease and trait-associated genetic variants are enriched in tissue-specific epigenomic marks, revealing biologically-relevant cell types for diverse human traits, and providing a resource for interpreting the molecular basis of human disease. Our results demonstrate the central role of epigenomic information for understanding gene regulation, cellular differentiation, and human disease. PMID:25693563
Integrative analysis of 111 reference human epigenomes.
Kundaje, Anshul; Meuleman, Wouter; Ernst, Jason; Bilenky, Misha; Yen, Angela; Heravi-Moussavi, Alireza; Kheradpour, Pouya; Zhang, Zhizhuo; Wang, Jianrong; Ziller, Michael J; Amin, Viren; Whitaker, John W; Schultz, Matthew D; Ward, Lucas D; Sarkar, Abhishek; Quon, Gerald; Sandstrom, Richard S; Eaton, Matthew L; Wu, Yi-Chieh; Pfenning, Andreas R; Wang, Xinchen; Claussnitzer, Melina; Liu, Yaping; Coarfa, Cristian; Harris, R Alan; Shoresh, Noam; Epstein, Charles B; Gjoneska, Elizabeta; Leung, Danny; Xie, Wei; Hawkins, R David; Lister, Ryan; Hong, Chibo; Gascard, Philippe; Mungall, Andrew J; Moore, Richard; Chuah, Eric; Tam, Angela; Canfield, Theresa K; Hansen, R Scott; Kaul, Rajinder; Sabo, Peter J; Bansal, Mukul S; Carles, Annaick; Dixon, Jesse R; Farh, Kai-How; Feizi, Soheil; Karlic, Rosa; Kim, Ah-Ram; Kulkarni, Ashwinikumar; Li, Daofeng; Lowdon, Rebecca; Elliott, GiNell; Mercer, Tim R; Neph, Shane J; Onuchic, Vitor; Polak, Paz; Rajagopal, Nisha; Ray, Pradipta; Sallari, Richard C; Siebenthall, Kyle T; Sinnott-Armstrong, Nicholas A; Stevens, Michael; Thurman, Robert E; Wu, Jie; Zhang, Bo; Zhou, Xin; Beaudet, Arthur E; Boyer, Laurie A; De Jager, Philip L; Farnham, Peggy J; Fisher, Susan J; Haussler, David; Jones, Steven J M; Li, Wei; Marra, Marco A; McManus, Michael T; Sunyaev, Shamil; Thomson, James A; Tlsty, Thea D; Tsai, Li-Huei; Wang, Wei; Waterland, Robert A; Zhang, Michael Q; Chadwick, Lisa H; Bernstein, Bradley E; Costello, Joseph F; Ecker, Joseph R; Hirst, Martin; Meissner, Alexander; Milosavljevic, Aleksandar; Ren, Bing; Stamatoyannopoulos, John A; Wang, Ting; Kellis, Manolis
2015-02-19
The reference human genome sequence set the stage for studies of genetic variation and its association with human disease, but epigenomic studies lack a similar reference. To address this need, the NIH Roadmap Epigenomics Consortium generated the largest collection so far of human epigenomes for primary cells and tissues. Here we describe the integrative analysis of 111 reference human epigenomes generated as part of the programme, profiled for histone modification patterns, DNA accessibility, DNA methylation and RNA expression. We establish global maps of regulatory elements, define regulatory modules of coordinated activity, and their likely activators and repressors. We show that disease- and trait-associated genetic variants are enriched in tissue-specific epigenomic marks, revealing biologically relevant cell types for diverse human traits, and providing a resource for interpreting the molecular basis of human disease. Our results demonstrate the central role of epigenomic information for understanding gene regulation, cellular differentiation and human disease.
Wildlife disease prevalence in human-modified landscapes.
Brearley, Grant; Rhodes, Jonathan; Bradley, Adrian; Baxter, Greg; Seabrook, Leonie; Lunney, Daniel; Liu, Yan; McAlpine, Clive
2013-05-01
Human-induced landscape change associated with habitat loss and fragmentation places wildlife populations at risk. One issue in these landscapes is a change in the prevalence of disease which may result in increased mortality and reduced fecundity. Our understanding of the influence of habitat loss and fragmentation on the prevalence of wildlife diseases is still in its infancy. What is evident is that changes in disease prevalence as a result of human-induced landscape modification are highly variable. The importance of infectious diseases for the conservation of wildlife will increase as the amount and quality of suitable habitat decreases due to human land-use pressures. We review the experimental and observational literature of the influence of human-induced landscape change on wildlife disease prevalence, and discuss disease transmission types and host responses as mechanisms that are likely to determine the extent of change in disease prevalence. It is likely that transmission dynamics will be the key process in determining a pathogen's impact on a host population, while the host response may ultimately determine the extent of disease prevalence. Finally, we conceptualize mechanisms and identify future research directions to increase our understanding of the relationship between human-modified landscapes and wildlife disease prevalence. This review highlights that there are rarely consistent relationships between wildlife diseases and human-modified landscapes. In addition, variation is evident between transmission types and landscape types, with the greatest positive influence on disease prevalence being in urban landscapes and directly transmitted disease systems. While we have a limited understanding of the potential influence of habitat loss and fragmentation on wildlife disease, there are a number of important areas to address in future research, particularly to account for the variability in increased and decreased disease prevalence. Previous studies have been based on a one-dimensional comparison between unmodified and modified sites. What is lacking are spatially and temporally explicit quantitative approaches which are required to enable an understanding of the range of key causal mechanisms and the reasons for variability. This is particularly important for replicated studies across different host-pathogen systems. Furthermore, there are few studies that have attempted to separate the independent effects of habitat loss and fragmentation on wildlife disease, which are the major determinants of wildlife population dynamics in human-modified landscapes. There is an urgent need to understand better the potential causal links between the processes of human-induced landscape change and the associated influences of habitat fragmentation, matrix hostility and loss of connectivity on an animal's physiological stress, immune response and disease susceptibility. This review identified no study that had assessed the influence of human-induced landscape change on the prevalence of a wildlife sexually transmitted disease. A better understanding of the various mechanisms linking human-induced landscape change and the prevalence of wildlife disease will lead to more successful conservation management outcomes. © 2012 The Authors. Biological Reviews © 2012 Cambridge Philosophical Society.
Glaze, Elizabeth R; Roy, Michael J; Dalrymple, Lonnie W; Lanning, Lynda L
2015-06-01
Marburg virus outbreaks are sporadic, infrequent, brief, and relatively small in terms of numbers of subjects affected. In addition, outbreaks most likely will occur in remote regions where clinical trials are not feasible; therefore, definitive, well-controlled human efficacy studies to test the effectiveness of a drug or biologic product are not feasible. Healthy human volunteers cannot ethically be deliberately exposed to a lethal agent such as Marburg virus in order to test the efficacy of a therapy or preventive prior to licensure. When human efficacy studies are neither ethical nor feasible, the US Food and Drug Administration may grant marketing approval of a drug or biologic product under the 'Animal Rule,' through which demonstration of the efficacy of a product can be 'based on adequate and well-controlled animal efficacy studies when the results of those studies establish that the drug is reasonably likely to produce clinical benefit in humans.' This process requires that the pathogenic determinants of the disease in the animal model are similar to those that have been identified in humans. After reviewing primarily English-language, peer-reviewed journal articles, we here summarize the clinical manifestations of Marburg virus disease and the results of studies in NHP showing the characteristics and progression of the disease. We also include a detailed comparison of the characteristics of the human disease relative to those for NHP. This review reveals that the disease characteristics of Marburg virus disease are generally similar for humans and 3 NHP species: cynomolgus macaques (Macaca fascicularis), rhesus macaques (Macaca mulatta), and African green monkeys (Chlorocebus aethiops).
Glaze, Elizabeth R; Roy, Michael J; Dalrymple, Lonnie W; Lanning, Lynda L
2015-01-01
Marburg virus outbreaks are sporadic, infrequent, brief, and relatively small in terms of numbers of subjects affected. In addition, outbreaks most likely will occur in remote regions where clinical trials are not feasible; therefore, definitive, well-controlled human efficacy studies to test the effectiveness of a drug or biologic product are not feasible. Healthy human volunteers cannot ethically be deliberately exposed to a lethal agent such as Marburg virus in order to test the efficacy of a therapy or preventive prior to licensure. When human efficacy studies are neither ethical nor feasible, the US Food and Drug Administration may grant marketing approval of a drug or biologic product under the ‘Animal Rule,’ through which demonstration of the efficacy of a product can be ‘based on adequate and well-controlled animal efficacy studies when the results of those studies establish that the drug is reasonably likely to produce clinical benefit in humans.’ This process requires that the pathogenic determinants of the disease in the animal model are similar to those that have been identified in humans. After reviewing primarily English-language, peer-reviewed journal articles, we here summarize the clinical manifestations of Marburg virus disease and the results of studies in NHP showing the characteristics and progression of the disease. We also include a detailed comparison of the characteristics of the human disease relative to those for NHP. This review reveals that the disease characteristics of Marburg virus disease are generally similar for humans and 3 NHP species: cynomolgus macaques (Macaca fascicularis), rhesus macaques (Macaca mulatta), and African green monkeys (Chlorocebus aethiops). PMID:26141449
Gut microbiomes and their metabolites shape human and animal health.
Park, Woojun
2018-03-01
The host genetic background, complex surrounding environments, and gut microbiome are very closely linked to human and animal health and disease. Although significant correlations between gut microbiota and human and animal health have been revealed, the specific roles of each gut bacterium in shaping human and animal health and disease remain unclear. However, recent omics-based studies using experimental animals and surveys of gut microbiota from unhealthy humans have provided insights into the relationships among microbial community, their metabolites, and human and animal health. This editorial introduces six review papers that provide new discoveries of disease-associated microbiomes and suggest possible microbiome-based therapeutic approaches to human disease.
Dudley, Joel T.; Chen, Rong; Sanderford, Maxwell; Butte, Atul J.; Kumar, Sudhir
2012-01-01
Genome-wide disease association studies contrast genetic variation between disease cohorts and healthy populations to discover single nucleotide polymorphisms (SNPs) and other genetic markers revealing underlying genetic architectures of human diseases. Despite scores of efforts over the past decade, many reproducible genetic variants that explain substantial proportions of the heritable risk of common human diseases remain undiscovered. We have conducted a multispecies genomic analysis of 5,831 putative human risk variants for more than 230 disease phenotypes reported in 2,021 studies. We find that the current approaches show a propensity for discovering disease-associated SNPs (dSNPs) at conserved genomic positions because the effect size (odds ratio) and allelic P value of genetic association of an SNP relates strongly to the evolutionary conservation of their genomic position. We propose a new measure for ranking SNPs that integrates evolutionary conservation scores and the P value (E-rank). Using published data from a large case-control study, we demonstrate that E-rank method prioritizes SNPs with a greater likelihood of bona fide and reproducible genetic disease associations, many of which may explain greater proportions of genetic variance. Therefore, long-term evolutionary histories of genomic positions offer key practical utility in reassessing data from existing disease association studies, and in the design and analysis of future studies aimed at revealing the genetic basis of common human diseases. PMID:22389448
Disease-aging network reveals significant roles of aging genes in connecting genetic diseases.
Wang, Jiguang; Zhang, Shihua; Wang, Yong; Chen, Luonan; Zhang, Xiang-Sun
2009-09-01
One of the challenging problems in biology and medicine is exploring the underlying mechanisms of genetic diseases. Recent studies suggest that the relationship between genetic diseases and the aging process is important in understanding the molecular mechanisms of complex diseases. Although some intricate associations have been investigated for a long time, the studies are still in their early stages. In this paper, we construct a human disease-aging network to study the relationship among aging genes and genetic disease genes. Specifically, we integrate human protein-protein interactions (PPIs), disease-gene associations, aging-gene associations, and physiological system-based genetic disease classification information in a single graph-theoretic framework and find that (1) human disease genes are much closer to aging genes than expected by chance; and (2) diseases can be categorized into two types according to their relationships with aging. Type I diseases have their genes significantly close to aging genes, while type II diseases do not. Furthermore, we examine the topological characters of the disease-aging network from a systems perspective. Theoretical results reveal that the genes of type I diseases are in a central position of a PPI network while type II are not; (3) more importantly, we define an asymmetric closeness based on the PPI network to describe relationships between diseases, and find that aging genes make a significant contribution to associations among diseases, especially among type I diseases. In conclusion, the network-based study provides not only evidence for the intricate relationship between the aging process and genetic diseases, but also biological implications for prying into the nature of human diseases.
Mantzorou, Maria; Pavlidou, Eleni; Vasios, George; Tsagalioti, Eftychia; Giaginis, Constantinos
2018-06-01
Numerous clinical trials have investigated the potential beneficial effects of curcumin supplementation against several human chronic diseases. Up to now, it has been claimed that curcumin consumption may exert beneficial effects against several chronic diseases by promoting human health and preventing diseases. In this aspect, the present review aims to critically collect and in-depth summarize the most recent, well-designed clinical studies evaluating the potential beneficial effects of curcumin consumption on human health promotion and disease prevention. According to recent and well-designed clinical studies, curcumin consumption may benefit against obesity, metabolic syndrome, and diabetes. Moreover, curcumin consumption seems to exert a positive effect on people suffering from various types of cancer, fatty liver disease, depression, arthritis, skin diseases, gut inflammation, and symptoms of premenstrual syndrome. Due to the strong heterogeneity among the clinical studies concerning the exact effective curcumin dose and formulation, as well as the recommended treatment duration for each chronic disease, no precise and definitive conclusions could be drawn. Further large-scale prospective studies are strongly recommended, being well-designed as far as follow-up times, dosage, formulation, and duration of curcumin supplementation are concerned. Moreover, potential confounders in each specific chronic disease should carefully be taken into account in future studies. Copyright © 2018 John Wiley & Sons, Ltd.
Contemporary Animal Models For Human Gene Therapy Applications.
Gopinath, Chitra; Nathar, Trupti Job; Ghosh, Arkasubhra; Hickstein, Dennis Durand; Nelson, Everette Jacob Remington
2015-01-01
Over the past three decades, gene therapy has been making considerable progress as an alternative strategy in the treatment of many diseases. Since 2009, several studies have been reported in humans on the successful treatment of various diseases. Animal models mimicking human disease conditions are very essential at the preclinical stage before embarking on a clinical trial. In gene therapy, for instance, they are useful in the assessment of variables related to the use of viral vectors such as safety, efficacy, dosage and localization of transgene expression. However, choosing a suitable disease-specific model is of paramount importance for successful clinical translation. This review focuses on the animal models that are most commonly used in gene therapy studies, such as murine, canine, non-human primates, rabbits, porcine, and a more recently developed humanized mice. Though small and large animals both have their own pros and cons as disease-specific models, the choice is made largely based on the type and length of study performed. While small animals with a shorter life span could be well-suited for degenerative/aging studies, large animals with longer life span could suit longitudinal studies and also help with dosage adjustments to maximize therapeutic benefit. Recently, humanized mice or mouse-human chimaeras have gained interest in the study of human tissues or cells, thereby providing a more reliable understanding of therapeutic interventions. Thus, animal models are of great importance with regard to testing new vector technologies in vivo for assessing safety and efficacy prior to a gene therapy clinical trial.
Trend of toxocariasis in Iran: a review on human and animal dimensions
Zibaei, M.; Sadjjadi, S. M.
2017-01-01
One of the neglected soil and/or food-borne diseases with international public health importance is toxocariasis. Human cases are being increasingly reported from Asian, African, Oceania, European and the American countries. Hence, human toxocariasis (HT) is now considered as a major zoonosis with global and regional importance. In Iran, human and animal toxocariasis is an endemic disease with clinical and epidemiologic health problem aspects. Doubtless, understanding the epidemiology and the trend of this important parasitic disease and its affecting factors will provide the establishment of effective prevention and control programs. To better understand the trend of toxocariasis researches in Iran, this study was performed to analyze different aspects of this zoonotic disease including history, life cycle, species, human animals and environmental studies, diagnostic aspects and treatments to find out the gaps, including different aspects of clinical sings in human patients, new and specific recombinant antigens based on the native antigens, new diagnostic tools, especially rapid diagnostic tests, paratenic hosts status and new treatment procedures which is necessary to be investigated in the future studies on this important zoonotic disease. PMID:29387094
Zhu, Ke-Fu; Wang, Yu-Ming; Zhu, Jin-Zhou; Zhou, Qin-Yi; Wang, Ning-Fu
2016-03-01
Coronary heart disease has become a major health concern over the past several decades. Several reviews have assessed the effects of socioeconomic status on the coronary heart disease epidemic in communities and countries, but only a few reviews have been performed at a global level. This study was to explore the relationship between the prevalence of coronary heart disease and socioeconomic development worldwide using the Human Development Index. Systematic review. The data in this study were collected from the MEDLINE database. Cross-sectional studies reporting the prevalence of coronary heart disease until November 2014 were collected. The Human Development Index was sourced from the United Nations Development Programme Database and was used to measure the socioeconomic achievements of countries. Each country was classified as a developing or developed country based on its level of development according to the Human Development Index value. Based on the data analysis on the global level, coronary heart disease prevalence had no association with the national Human Development Index (rho = 0.07). However, there was a positive association between coronary heart disease prevalence and the national Human Development Index in developing countries, although a negative association existed in developed countries (rho = 0.47 and -0.34, respectively). In addition, the past decades have witnessed a growing coronary heart disease epidemic in developing countries, with reverse trends observed in developed countries (P = 0.021 and 0.002, respectively). With the development of socioeconomic status, as measured by the Human Development Index, the prevalence of coronary heart disease is growing in developing countries, while declining in developed countries. Future research needs to pay more attention to the reasonable allocation of medical resources and control of coronary heart disease risk factors. © The European Society of Cardiology 2015.
Engineering Large Animal Species to Model Human Diseases.
Rogers, Christopher S
2016-07-01
Animal models are an important resource for studying human diseases. Genetically engineered mice are the most commonly used species and have made significant contributions to our understanding of basic biology, disease mechanisms, and drug development. However, they often fail to recreate important aspects of human diseases and thus can have limited utility as translational research tools. Developing disease models in species more similar to humans may provide a better setting in which to study disease pathogenesis and test new treatments. This unit provides an overview of the history of genetically engineered large animals and the techniques that have made their development possible. Factors to consider when planning a large animal model, including choice of species, type of modification and methodology, characterization, production methods, and regulatory compliance, are also covered. © 2016 by John Wiley & Sons, Inc. Copyright © 2016 John Wiley & Sons, Inc.
Disease modeling using human induced pluripotent stem cells: lessons from the liver.
Gieseck, Richard L; Colquhoun, Jennifer; Hannan, Nicholas R F
2015-01-01
Human pluripotent stem cells (hPSCs) have the capacity to differentiate into any of the hundreds of distinct cell types that comprise the human body. This unique characteristic has resulted in considerable interest in the field of regenerative medicine, given the potential for these cells to be used to protect, repair, or replace diseased, injured, and aged cells within the human body. In addition to their potential in therapeutics, hPSCs can be used to study the earliest stages of human development and to provide a platform for both drug screening and disease modeling using human cells. Recently, the description of human induced pluripotent stem cells (hIPSCs) has allowed the field of disease modeling to become far more accessible and physiologically relevant, as pluripotent cells can be generated from patients of any genetic background. Disease models derived from hIPSCs that manifest cellular disease phenotypes have been established to study several monogenic diseases; furthermore, hIPSCs can be used for phenotype-based drug screens to investigate complex diseases for which the underlying genetic mechanism is unknown. As a result, the use of stem cells as research tools has seen an unprecedented growth within the last decade as researchers look for in vitro disease models which closely mimic in vivo responses in humans. Here, we discuss the beginnings of hPSCs, starting with isolation of human embryonic stem cells, moving into the development and optimization of hIPSC technology, and ending with the application of hIPSCs towards disease modeling and drug screening applications, with specific examples highlighting the modeling of inherited metabolic disorders of the liver. This article is part of a Special Issue entitled Linking transcription to physiology in lipodomics. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.
Viruses as triggers of autoimmunity: facts and fantasies.
Whitton, J L; Fujinami, R S
1999-08-01
Autoimmunity has been proposed as the cause of several human chronic inflammatory diseases, and recent animal studies show that viruses can induce autoimmune disease. These studies demonstrate how viruses might misdirect the immune system, and here we discuss critically the evidence that similar phenomena may lead to human disease.
Modeling Niemann Pick type C1 using human embryonic and induced pluripotent stem cells.
Ordoñez, M Paulina; Steele, John W
2017-02-01
Data generated in Niemann Pick type C1 (NPC1) human embryonic and human induced pluripotent stem cell derived neurons complement on-going studies in animal models and provide the first example, in disease-relevant human cells, of processes that underlie preferential neuronal defects in a NPC1. Our work and that of other investigators in human neurons derived from stem cells highlight the importance of performing rigorous mechanistic studies in relevant cell types to guide drug discovery and therapeutic development, alongside of existing animal models. Through the use of human stem cell-derived models of disease, we can identify and discover or repurpose drugs that revert early events that lead to neuronal failure in NPC1. Together with the study of disease pathogenesis and efficacy of therapies in animal models, these strategies will fulfill the promise of stem cell technology in the development of new treatments for human diseases. This article is part of a Special Issue entitled SI: Exploiting human neurons. Copyright © 2016 Elsevier B.V. All rights reserved.
[Mice are not Men and yet… how humanized mice inform us about human infectious diseases].
Cachat, Anne; Villaudy, Julien; Rigal, Dominique; Gazzolo, Louis; Duc Dodon, Madeleine
2012-01-01
The study of human pathologies is often limited by the absence of animal models which are robust, cost-effective and reproduce the hallmarks of human infections. While mice have been frequently employed to study human diseases, many of important pathogens display unique human tropism. These last two decades the graft of human progenitor cells or tissues into -immunodeficient mice has allowed the elaboration of so called humanized mice. Humanized mouse technology has made rapid progress, and it is now possible to achieve high levels of human chimerism in various organs and tissues, particularly the immune system and the liver. The review briefly summarizes the different models of humanized mice available for in vivo experiments. With a focus on lymphotropic, monocytotropic and hepatotropic viruses, we here discuss the current status and future prospects of these models for studying the pathogenesis of infectious diseases. Furthermore, they provide a powerful tool for the development of innovative therapies. © 2012 médecine/sciences – Inserm / SRMS.
Tropical environments, human activities, and the transmission of infectious diseases.
Sattenspiel, L
2000-01-01
Throughout recent history, the tropical regions of the world have been affected more severely by infectious diseases than the temperate world. Much of the success of infectious diseases in that region is due to both biological and environmental factors that encourage high levels of biodiversity in hosts, vectors, and pathogens, and social factors that compromise efforts to control diseases. Several of these factors are described. Discussion then shifts to specific types of host-pathogen relationships. The most important of these in the tropics is the relationship between humans, a pathogen, and a vector that carries the pathogen from one human to another. Mosquitoes are the vector responsible for the transmission of many vector-borne human diseases. Characteristics of mosquito-human interactions are described, including cultural behaviors humans have developed that both increase the chances of transmission and help to limit that transmission. The transmission of water-borne diseases, fecal-oral transmission, zoonotic diseases, respiratory illnesses, and sexually transmitted diseases are also discussed. Attention is paid to how diseases with these modes of transmission differ in characteristics and importance in tropical human populations compared to those in temperate regions. Following this general discussion, three case studies are presented in some detail. The diseases chosen for the case studies include cholera, lymphatic filariasis, and dracunculiasis (guinea worm). These three case studies taken together provide examples of the diversity of human host-pathogen interactions as well as ways that human activities have both promoted their spread and helped to control them. The transmission of all three diseases is related to the nature and quality of water sources. The transmission of cholera, a water-borne disease, is related to sanitation practices, physical characteristics of the environment such as temperature and humidity, and modern shipping practices. Lymphatic filariasis, a mosquito-borne disease, has increased in frequency in parts of Africa in recent decades as a consequence of large-scale agricultural development projects that have shifted the nature and quantity of water sources and potential mosquito breeding sites. Dracunculiasis is transmitted by a small crustacean that contaminates sources of drinking water. Because its transmission can be prevented by a simple change in human behavior, filtering all water with a small piece of cloth before using it, dracunculiasis has been the focus of a major eradication effort that is near success.
Proteomics analyses for the global proteins in the brain tissues of different human prion diseases.
Shi, Qi; Chen, Li-Na; Zhang, Bao-Yun; Xiao, Kang; Zhou, Wei; Chen, Cao; Zhang, Xiao-Mei; Tian, Chan; Gao, Chen; Wang, Jing; Han, Jun; Dong, Xiao-Ping
2015-04-01
Proteomics changes of brain tissues have been described in different neurodegenerative diseases including Alzheimer's disease and Parkinson's disease. However, the brain proteomics of human prion disease remains less understood. In the study, the proteomics patterns of cortex and cerebellum of brain tissues of sporadic Creutzfeldt-Jakob disease, fatal familial insomnia, and G114V genetic CJD were analyzed with isobaric tags for relative and absolute quantitation combined with multidimensional liquid chromatography and MS analysis, with the brains from three normal individuals as controls. Global protein profiling, significant pathway, and functional categories were analyzed. In total, 2287 proteins were identified with quantitative information both in cortex and cerebellum regions. Cerebellum tissues appeared to contain more up- and down-regulated proteins (727 proteins) than cortex regions (312 proteins) of Creutzfeldt-Jakob disease, fatal familial insomnia, and G114V genetic CJD. Viral myocarditis, Parkinson's disease, Alzheimer's disease, lysosome, oxidative phosphorylation, protein export, and drug metabolism-cytochrome P450 were the most commonly affected pathways of the three kinds of diseases. Almost coincident biological functions were identified in the brain tissues of the three diseases. In all, data here demonstrate that the brain tissues of Creutzfeldt-Jakob disease, fatal familial insomnia, and G114V genetic CJD have obvious proteomics changes at their terminal stages, which show the similarities not only among human prion diseases but also with other neurodegeneration diseases. This is the first study to provide a reference proteome map for human prion diseases and will be helpful for future studies focused on potential biomarkers for the diagnosis and therapy of human prion diseases. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Studying the Brain in a Dish: 3D Cell Culture Models of Human Brain Development and Disease.
Brown, Juliana; Quadrato, Giorgia; Arlotta, Paola
2018-01-01
The study of the cellular and molecular processes of the developing human brain has been hindered by access to suitable models of living human brain tissue. Recently developed 3D cell culture models offer the promise of studying fundamental brain processes in the context of human genetic background and species-specific developmental mechanisms. Here, we review the current state of 3D human brain organoid models and consider their potential to enable investigation of complex aspects of human brain development and the underpinning of human neurological disease. © 2018 Elsevier Inc. All rights reserved.
Perentos, Nicholas; Martins, Amadeu Q.; Watson, Thomas C.; Bartsch, Ullrich; Mitchell, Nadia L.; Palmer, David N.; Jones, Matthew W.
2015-01-01
Creating valid mouse models of slowly progressing human neurological diseases is challenging, not least because the short lifespan of rodents confounds realistic modelling of disease time course. With their large brains and long lives, sheep offer significant advantages for translational studies of human disease. Here we used normal and CLN5 Batten disease affected sheep to demonstrate the use of the species for studying neurological function in a model of human disease. We show that electroencephalography can be used in sheep, and that longitudinal recordings spanning many months are possible. This is the first time such an electroencephalography study has been performed in sheep. We characterized sleep in sheep, quantifying characteristic vigilance states and neurophysiological hallmarks such as sleep spindles. Mild sleep abnormalities and abnormal epileptiform waveforms were found in the electroencephalographies of Batten disease affected sheep. These abnormalities resemble the epileptiform activity seen in children with Batten disease and demonstrate the translational relevance of both the technique and the model. Given that both spontaneous and engineered sheep models of human neurodegenerative diseases already exist, sheep constitute a powerful species in which longitudinal in vivo studies can be conducted. This will advance our understanding of normal brain function and improve our capacity for translational research into neurological disorders. PMID:25724202
The human disease network in terms of dysfunctional regulatory mechanisms.
Yang, Jing; Wu, Su-Juan; Dai, Wen-Tao; Li, Yi-Xue; Li, Yuan-Yuan
2015-10-08
Elucidation of human disease similarities has emerged as an active research area, which is highly relevant to etiology, disease classification, and drug repositioning. In pioneer studies, disease similarity was commonly estimated according to clinical manifestation. Subsequently, scientists started to investigate disease similarity based on gene-phenotype knowledge, which were inevitably biased to well-studied diseases. In recent years, estimating disease similarity according to transcriptomic behavior significantly enhances the probability of finding novel disease relationships, while the currently available studies usually mine expression data through differential expression analysis that has been considered to have little chance of unraveling dysfunctional regulatory relationships, the causal pathogenesis of diseases. We developed a computational approach to measure human disease similarity based on expression data. Differential coexpression analysis, instead of differential expression analysis, was employed to calculate differential coexpression level of every gene for each disease, which was then summarized to the pathway level. Disease similarity was eventually calculated as the partial correlation coefficients of pathways' differential coexpression values between any two diseases. The significance of disease relationships were evaluated by permutation test. Based on mRNA expression data and a differential coexpression analysis based method, we built a human disease network involving 1326 significant Disease-Disease links among 108 diseases. Compared with disease relationships captured by differential expression analysis based method, our disease links shared known disease genes and drugs more significantly. Some novel disease relationships were discovered, for example, Obesity and cancer, Obesity and Psoriasis, lung adenocarcinoma and S. pneumonia, which had been commonly regarded as unrelated to each other, but recently found to share similar molecular mechanisms. Additionally, it was found that both the type of disease and the type of affected tissue influenced the degree of disease similarity. A sub-network including Allergic asthma, Type 2 diabetes and Chronic kidney disease was extracted to demonstrate the exploration of their common pathogenesis. The present study produces a global view of human diseasome for the first time from the viewpoint of regulation mechanisms, which therefore could provide insightful clues to etiology and pathogenesis, and help to perform drug repositioning and design novel therapeutic interventions.
Lee, Geun-Shik; Jeong, Yeon Woo; Kim, Joung Joo; Park, Sun Woo; Ko, Kyeong Hee; Kang, Mina; Kim, Yu Kyung; Jung, Eui-Man; Moon, Changjong; Hyun, Sang Hwan; Hwang, Kyu-Chan; Kim, Nam-Hyung; Shin, Taeyoung; Jeung, Eui-Bae; Hwang, Woo Suk
2014-04-01
Canines are considered the most authentic model for studying multifactorial human diseases, as these animals typically share a common environment with man. Somatic cell nuclear transfer (SCNT) technology along with genetic engineering of nuclear donor cells provides a unique opportunity for examining human diseases using transgenic canines. In the present study, we generated transgenic canines that overexpressed the human amyloid precursor protein (APP) gene containing well-characterized familial Alzheimer's disease (AD) mutations. We successfully obtained five out of six live puppies by SCNT. This was confirmed by observing the expression of green fluorescence protein in the body as a visual transgenic marker and the overexpression of the mutated APP gene in the brain. The transgenic canines developed AD-like symptoms, such as enlarged ventricles, an atrophied hippocampus, and β-amyloid plaques in the brain. Thus, the transgenic canines we created can serve as a novel animal model for studying human AD.
Petticrew, Mark; Davey Smith, George
2012-01-01
It is often suggested that psychosocial factors, such as stress, or one's social position, may play an important role in producing social gradients in human disease. Evidence in favour of this model of health inequalities has relied, in part, on studies of the health effects of the natural social hierarchies found among non-human primates. This study aimed to assess the strength of this evidence. A systematic review was carried out to identify all studies of psychosocial factors and coronary artery disease (CAD) in non-human primates. We searched databases (MEDLINE, PsycInfo, EMBASE, and Primatelit from inception to November 2010) to identify experimental and observational studies of the impact of social reorganisation, social instability, and disruption of dominance hierarchies on primate CAD outcomes. We also handsearched bibliographies and examined the citations to those studies in public health articles. Fourteen studies were found which presented evidence on CAD and social status and/or psychosocial stress. These suggested that the association between social status and disease may be sex-specific: in female monkeys dominant status may be protective, with subordinate females having a greater extent of atherosclerosis. In male monkeys the reverse may be the case. Overall, non-human primate studies present only limited evidence for an association between social status and CAD, Despite this, there is selective citation of individual non-human primate studies in reviews and commentaries relating to human disease aetiology. Such generalisation of data from monkey studies to human societies does not appear warranted.
Petticrew, Mark; Davey Smith, George
2012-01-01
Background It is often suggested that psychosocial factors, such as stress, or one's social position, may play an important role in producing social gradients in human disease. Evidence in favour of this model of health inequalities has relied, in part, on studies of the health effects of the natural social hierarchies found among non-human primates. This study aimed to assess the strength of this evidence. Methodology/Principal Findings A systematic review was carried out to identify all studies of psychosocial factors and coronary artery disease (CAD) in non-human primates. We searched databases (MEDLINE, PsycInfo, EMBASE, and Primatelit from inception to November 2010) to identify experimental and observational studies of the impact of social reorganisation, social instability, and disruption of dominance hierarchies on primate CAD outcomes. We also handsearched bibliographies and examined the citations to those studies in public health articles. Fourteen studies were found which presented evidence on CAD and social status and/or psychosocial stress. These suggested that the association between social status and disease may be sex-specific: in female monkeys dominant status may be protective, with subordinate females having a greater extent of atherosclerosis. In male monkeys the reverse may be the case. Conclusions/Significance Overall, non-human primate studies present only limited evidence for an association between social status and CAD, Despite this, there is selective citation of individual non-human primate studies in reviews and commentaries relating to human disease aetiology. Such generalisation of data from monkey studies to human societies does not appear warranted. PMID:22470414
How to become a top model: impact of animal experimentation on human Salmonella disease research.
Tsolis, Renée M; Xavier, Mariana N; Santos, Renato L; Bäumler, Andreas J
2011-05-01
Salmonella serotypes are a major cause of human morbidity and mortality worldwide. Over the past decades, a series of animal models have been developed to advance vaccine development, provide insights into immunity to infection, and study the pathogenesis of human Salmonella disease. The successive introduction of new animal models, each suited to interrogate previously neglected aspects of Salmonella disease, has ushered in important conceptual advances that continue to have a strong and sustained influence on the ideas driving research on Salmonella serotypes. This article reviews important milestones in the use of animal models to study human Salmonella disease and identify research needs to guide future work.
The Human Microbiome in the Fight Against Tuberculosis
Wood, Madeleine R.; Yu, Elaine A.; Mehta, Saurabh
2017-01-01
The human microbiome is an intriguing potentially modifiable risk factor in our arsenal against Mycobacterium tuberculosis, the leading infectious disease killer globally. Previous studies have shown associations between the human microbiome and pulmonary disease states; however, etiological links between the microbiome and tuberculosis (TB) infection or disease remain unclear. Immunomodulatory roles of the microbiome may prove to be a critical asset in the host response against TB, including in preventing TB infection, reducing progression from latency, mitigating disease severity, and lowering the incidence of drug resistance and coinfections. This review examined the associations between TB and the gut and lung microbiome. Eight studies were identified through a PubMed database search, including one animal study (N = 1), case report (N = 1), and case–control studies (N = 6). TB infection and disease were associated with reduced gastrointestinal microbial diversity in a murine model and human case report. Sputum microbial diversity differed by TB status in case–control studies, although some reported heterogeneous findings. Current evidence suggests that the gut and lung microbiome are associated with TB infection and disease. However, as studies are limited, etiological and longitudinal research is needed to determine clinical relevance. PMID:28719264
Hitomi, Yuki; Tokunaga, Katsushi
2017-01-01
Human genome variation may cause differences in traits and disease risks. Disease-causal/susceptible genes and variants for both common and rare diseases can be detected by comprehensive whole-genome analyses, such as whole-genome sequencing (WGS), using next-generation sequencing (NGS) technology and genome-wide association studies (GWAS). Here, in addition to the application of an NGS as a whole-genome analysis method, we summarize approaches for the identification of functional disease-causal/susceptible variants from abundant genetic variants in the human genome and methods for evaluating their functional effects in human diseases, using an NGS and in silico and in vitro functional analyses. We also discuss the clinical applications of the functional disease causal/susceptible variants to personalized medicine.
Russell, James C; Proctor, Spencer D
2006-01-01
Cardiovascular disease, the leading cause of death in much of the modern world, is the common symptomatic end stage of a number of distinct diseases and, therefore, is multifactorial and polygenetic in character. The two major underlying causes are disorders of lipid metabolism and metabolic syndrome. The ability to develop preventative and ameliorative treatments will depend on animal models that mimic human disease processes. The focus of this review is to identify suitable animal models and insights into cardiovascular disease achieved to date using such models. The ideal animal model of cardiovascular disease will mimic the human subject metabolically and pathophysiologically, will be large enough to permit physiological and metabolic studies, and will develop end-stage disease comparable to those in humans. Given the complex multifactorial nature of cardiovascular disease, no one species will be suitable for all studies. Potential larger animal models are problematic due to cost, ethical considerations, or poor pathophysiological comparability to humans. Rabbits require high-cholesterol diets to develop cardiovascular disease, and there are no rabbit models of metabolic syndrome. Spontaneous mutations in rats provide several complementary models of obesity, hyperlipidemia, insulin resistance, and type 2 diabetes, one of which spontaneously develops cardiovascular disease and ischemic lesions. The mouse, like normal rats, is characteristically resistant to cardiovascular disease, although genetically altered strains respond to cholesterol feeding with atherosclerosis, but not with end-stage ischemic lesions. The most useful and valid species/strains for the study of cardiovascular disease appear to be small rodents, rats, and mice. This fragmented field would benefit from a consensus on well-characterized appropriate models for the study of different aspects of cardiovascular disease and a renewed emphasis on the biology of underlying diseases.
Use of Humanized Mice to Study the Pathogenesis of Autoimmune and Inflammatory Diseases
Koboziev, Iurii; Jones-Hall, Yava; Valentine, John F.; Webb, Cynthia Reinoso; Furr, Kathryn L.; Grisham, Matthew B.
2015-01-01
Animal models of disease have been used extensively by the research community for the past several decades to better understand the pathogenesis of different diseases as well as assess the efficacy and toxicity of different therapeutic agents. Retrospective analyses of numerous preclinical intervention studies using mouse models of acute and chronic inflammatory diseases reveal a generalized failure to translate promising interventions or therapeutics into clinically-effective treatments in patients. Although several possible reasons have been suggested to account for this generalized failure to translate therapeutic efficacy from the laboratory bench to the patient’s bedside, it is becoming increasingly apparent that the mouse immune system may not adequately recapitulate the immuno-pathological mechanisms observed in human diseases. Indeed, it is well-known that >80 major differences exist between mouse and human immunology; all of which contribute to significant differences in immune system development, activation and responses to challenges in innate and adaptive immunity. This inconvenient reality has prompted investigators to attempt to humanize the mouse immune system in order to address important, human-specific questions that are impossible to study in patients. The successful long-term engraftment of human hemato-lymphoid cells in mice would provide investigators with a relatively inexpensive, small animal model to study clinically-relevant mechanisms as well as facilitate the evaluation of human-specific therapies in vivo. The discovery that targeted mutation of the IL-2 receptor common gamma chain in lymphopenic mice allows for the long-term engraftment of functional human immune cells has advanced greatly our ability to humanize the mouse immune system. The objective of this review is to present a brief overview of the recent advances that have been made in the development and use of humanized mice with special emphasis on autoimmune and chronic inflammatory diseases. In addition, we discuss current challenges and possible solutions for utilizing these unique mouse models to define the human-specific immuno-pathological mechanisms responsible for the induction and perpetuation of chronic gut inflammation. PMID:26035036
Human stem cell–derived astrocytes replicate human prions in a PRNP genotype–dependent manner
Krejciova, Zuzana; Alibhai, James; Zhao, Chen; Rzechorzek, Nina M.; Ullian, Erik M.; Manson, Jean
2017-01-01
Prions are infectious agents that cause neurodegenerative diseases such as Creutzfeldt–Jakob disease (CJD). The absence of a human cell culture model that replicates human prions has hampered prion disease research for decades. In this paper, we show that astrocytes derived from human induced pluripotent stem cells (iPSCs) support the replication of prions from brain samples of CJD patients. For experimental exposure of astrocytes to variant CJD (vCJD), the kinetics of prion replication occur in a prion protein codon 129 genotype–dependent manner, reflecting the genotype-dependent susceptibility to clinical vCJD found in patients. Furthermore, iPSC-derived astrocytes can replicate prions associated with the major sporadic CJD strains found in human patients. Lastly, we demonstrate the subpassage of prions from infected to naive astrocyte cultures, indicating the generation of prion infectivity in vitro. Our study addresses a long-standing gap in the repertoire of human prion disease research, providing a new in vitro system for accelerated mechanistic studies and drug discovery. PMID:29141869
Developing injectable immunoglobulins to treat cognitive impairment in Alzheimer's disease.
Steinitz, Michael
2008-05-01
Alzheimer's disease is a devastating disorder, clinically characterized by a comprehensive cognitive decline. The novel strategy of anti-amyloid-beta immunotherapy has been suggested following encouraging results obtained in murine models of Alzheimer's disease, in non-human primates, and in small-scale clinical trials. To examine the choice between active or passive anti-amyloid-beta immunization and the choice of the molecule to which the immune machinery should be targeted, which are central issues in future immune therapy of Alzheimer's disease. Research into the new area of Alzheimer's disease immune therapy is primarily based on in vivo and in vitro studies of murine models of Alzheimer's disease. The studies are hence limited to defined genetic deficiencies. In humans, infusion of anti-amyloid-beta antibodies is considered a safer approach than active anti-amyloid-beta vaccination. Alzheimer's-disease-protective anti-amyloid-beta monoclonal antibodies should target specific epitopes within the amyloid beta(1 42) peptide, avoiding possibly harmful binding to the ubiquitous normal amyloid precursor protein. Since Alzheimer's disease immunotherapy requires repeated infusion of antibodies over a prolonged period of time, Alzheimer's disease patients will tolerate such antibodies provided the latter are exclusively of human origin. Human monoclonal antibodies that correspond to ubiquitous anti-amyloid-beta, present in all healthy humans, might bear important protective characteristics.
Cross-study projections of genomic biomarkers: an evaluation in cancer genomics.
Lucas, Joseph E; Carvalho, Carlos M; Chen, Julia Ling-Yu; Chi, Jen-Tsan; West, Mike
2009-01-01
Human disease studies using DNA microarrays in both clinical/observational and experimental/controlled studies are having increasing impact on our understanding of the complexity of human diseases. A fundamental concept is the use of gene expression as a "common currency" that links the results of in vitro controlled experiments to in vivo observational human studies. Many studies--in cancer and other diseases--have shown promise in using in vitro cell manipulations to improve understanding of in vivo biology, but experiments often simply fail to reflect the enormous phenotypic variation seen in human diseases. We address this with a framework and methods to dissect, enhance and extend the in vivo utility of in vitro derived gene expression signatures. From an experimentally defined gene expression signature we use statistical factor analysis to generate multiple quantitative factors in human cancer gene expression data. These factors retain their relationship to the original, one-dimensional in vitro signature but better describe the diversity of in vivo biology. In a breast cancer analysis, we show that factors can reflect fundamentally different biological processes linked to molecular and clinical features of human cancers, and that in combination they can improve prediction of clinical outcomes.
The dog genome map and its use in mammalian comparative genomics.
Switonski, Marek; Szczerbal, Izabela; Nowacka, Joanna
2004-01-01
The dog genome organization was extensively studied in the last ten years. The most important achievements are the well-developed marker genome maps, including over 3200 marker loci, and a survey of the DNA genome sequence. This knowledge, along with the most advanced map of the human genome, turned out to be very useful in comparative genomic studies. On the one hand, it has promoted the development of marker genome maps of other species of the family Canidae (red fox, arctic fox, Chinese raccoon dog) as well as studies on the evolution of their karyotype. But the most important approach is the comparative analysis of human and canine hereditary diseases. At present, causative gene mutations are known for 30 canine hereditary diseases. A majority of them have human counterparts with similar clinical and molecular features. Studies on identification of genes having a major impact on some multifactorial diseases (hip dysplasia, epilepsy) and cancers (multifocal renal cystadenocarcinoma and nodular dermatofibrosis) are advanced. Very promising are the results of gene therapy for certain canine monogenic diseases (haemophilia, hereditary retinal dystrophy, mucopolysaccharidosis), which have human equivalents. The above-mentioned examples prove a very important model role of the dog in studies of human genetic diseases. On the other hand, the identification of gene mutations responsible for hereditary diseases has a substantial impact on breeding strategy in the dog.
Sexual transmission of Lyme disease: challenging the tickborne disease paradigm.
Stricker, Raphael B; Middelveen, Marianne J
2015-01-01
Lyme disease caused by the spirochete Borrelia burgdorferi has become a major worldwide epidemic. In this article, we explore the clinical, epidemiological and experimental evidence for sexual transmission of Lyme disease in animal models and humans. Although the likelihood of sexual transmission of the Lyme spirochete remains speculative, the possibility of Lyme disease transmission via intimate human contact merits further study.
[PALEOPATHOLOGY OF HUMAN REMAINS].
Minozzi, Simona; Fornaciari, Gino
2015-01-01
Many diseases induce alterations in the human skeleton, leaving traces of their presence in ancient remains. Paleopathological examination of human remains not only allows the study of the history and evolution of the disease, but also the reconstruction of health conditions in the past populations. This paper describes the most interesting diseases observed in skeletal samples from the Roman Imperial Age necropoles found in urban and suburban areas of Rome during archaeological excavations in the last decades. The diseases observed were grouped into the following categories: articular diseases, traumas, infections, metabolic or nutritional diseases, congenital diseases and tumours, and some examples are reported for each group. Although extensive epidemiological investigation in ancient skeletal records is impossible, the palaeopathological study allowed to highlight the spread of numerous illnesses, many of which can be related to the life and health conditions of the Roman population.
Human Mitochondrial Protein Database
National Institute of Standards and Technology Data Gateway
SRD 131 Human Mitochondrial Protein Database (Web, free access) The Human Mitochondrial Protein Database (HMPDb) provides comprehensive data on mitochondrial and human nuclear encoded proteins involved in mitochondrial biogenesis and function. This database consolidates information from SwissProt, LocusLink, Protein Data Bank (PDB), GenBank, Genome Database (GDB), Online Mendelian Inheritance in Man (OMIM), Human Mitochondrial Genome Database (mtDB), MITOMAP, Neuromuscular Disease Center and Human 2-D PAGE Databases. This database is intended as a tool not only to aid in studying the mitochondrion but in studying the associated diseases.
De Wilde, Bram; Beckers, Anneleen; Lindner, Sven; Kristina, Althoff; De Preter, Katleen; Depuydt, Pauline; Mestdagh, Pieter; Sante, Tom; Lefever, Steve; Hertwig, Falk; Peng, Zhiyu; Shi, Le-Ming; Lee, Sangkyun; Vandermarliere, Elien; Martens, Lennart; Menten, Björn; Schramm, Alexander; Fischer, Matthias; Schulte, Johannes; Vandesompele, Jo; Speleman, Frank
2018-02-02
Genetically engineered mouse models have proven to be essential tools for unraveling fundamental aspects of cancer biology and for testing novel therapeutic strategies. To optimally serve these goals, it is essential that the mouse model faithfully recapitulates the human disease. Recently, novel mouse models for neuroblastoma have been developed. Here, we report on the further genomic characterization through exome sequencing and DNA copy number analysis of four of the currently available murine neuroblastoma model systems ( ALK, Th- MYCN, Dbh- MYCN and Lin28b ). The murine tumors revealed a low number of genomic alterations - in keeping with human neuroblastoma - and a positive correlation of the number of genetic lesions with the time to onset of tumor formation was observed. Gene copy number alterations are the hallmark of both murine and human disease and frequently affect syntenic genomic regions. Despite low mutational load, the genes mutated in murine disease were found to be enriched for genes mutated in human disease. Taken together, our study further supports the validity of the tested mouse models for mechanistic and preclinical studies of human neuroblastoma.
Novel approaches to study the involvement of α7-nAChR in human diseases.
Palma, Eleonora; Conti, Luca; Roseti, Cristina; Limatola, Cristina
2012-05-01
The alpha7 nicotinic acetylcholine receptor (α7 nAChR) is widely distributed in the human brain and has been implicated in a number of human central nervous system (CNS) diseases, including Alzheimer's and Parkinson's disease, schizophrenia and autism. Recently, new roles for α7 nAChRs in lung cancer and heart disease have been elucidated. Despite the importance of this receptor in human pathology, many technical difficulties are still encountered when investigating the role of α7 nAChRs. Electrophysiological analysis of the receptor upon heterologous expression or in human tissues was limited by the fast desensitization of α7-mediated nicotinic currents and by tissue availability. In addition, animal models for the human diseases related to α7 nAChRs have long been unavailable. The recent development of new imaging and analysis approaches such as PET and receptor microtransplantation have rendered the study of α7 nAChRs increasingly feasible, paving new roads to the design of therapeutic drugs. This review summarizes the current knowledge and recent findings obtained by these novel approaches.
Peng, Xinxia; Alföldi, Jessica; Gori, Kevin; Eisfeld, Amie J; Tyler, Scott R; Tisoncik-Go, Jennifer; Brawand, David; Law, G Lynn; Skunca, Nives; Hatta, Masato; Gasper, David J; Kelly, Sara M; Chang, Jean; Thomas, Matthew J; Johnson, Jeremy; Berlin, Aaron M; Lara, Marcia; Russell, Pamela; Swofford, Ross; Turner-Maier, Jason; Young, Sarah; Hourlier, Thibaut; Aken, Bronwen; Searle, Steve; Sun, Xingshen; Yi, Yaling; Suresh, M; Tumpey, Terrence M; Siepel, Adam; Wisely, Samantha M; Dessimoz, Christophe; Kawaoka, Yoshihiro; Birren, Bruce W; Lindblad-Toh, Kerstin; Di Palma, Federica; Engelhardt, John F; Palermo, Robert E; Katze, Michael G
2014-12-01
The domestic ferret (Mustela putorius furo) is an important animal model for multiple human respiratory diseases. It is considered the 'gold standard' for modeling human influenza virus infection and transmission. Here we describe the 2.41 Gb draft genome assembly of the domestic ferret, constituting 2.28 Gb of sequence plus gaps. We annotated 19,910 protein-coding genes on this assembly using RNA-seq data from 21 ferret tissues. We characterized the ferret host response to two influenza virus infections by RNA-seq analysis of 42 ferret samples from influenza time-course data and showed distinct signatures in ferret trachea and lung tissues specific to 1918 or 2009 human pandemic influenza virus infections. Using microarray data from 16 ferret samples reflecting cystic fibrosis disease progression, we showed that transcriptional changes in the CFTR-knockout ferret lung reflect pathways of early disease that cannot be readily studied in human infants with cystic fibrosis disease.
Peng, Xinxia; Alföldi, Jessica; Gori, Kevin; Eisfeld, Amie J.; Tyler, Scott R.; Tisoncik-Go, Jennifer; Brawand, David; Law, G. Lynn; Skunca, Nives; Hatta, Masato; Gasper, David J.; Kelly, Sara M.; Chang, Jean; Thomas, Matthew J.; Johnson, Jeremy; Berlin, Aaron M.; Lara, Marcia; Russell, Pamela; Swofford, Ross; Turner-Maier, Jason; Young, Sarah; Hourlier, Thibaut; Aken, Bronwen; Searle, Steve; Sun, Xingshen; Yi, Yaling; Suresh, M.; Tumpey, Terrence M.; Siepel, Adam; Wisely, Samantha M.; Dessimoz, Christophe; Kawaoka, Yoshihiro; Birren, Bruce W.; Lindblad-Toh, Kerstin; Di Palma, Federica; Engelhardt, John F.; Palermo, Robert E.; Katze, Michael G.
2014-01-01
The domestic ferret (Mustela putorius furo) is an important animal model for multiple human respiratory diseases. It is considered the ‘gold standard’ for modeling human influenza virus infection and transmission1–4. Here we describe the 2.41 Gb draft genome assembly of the domestic ferret, constituting 2.28 Gb of sequence plus gaps. We annotate 19,910 protein-coding genes on this assembly using RNA-seq data from 21 ferret tissues. We characterize the ferret host response to two influenza virus infections by RNA-seq analysis of 42 ferret samples from influenza time courses, and show distinct signatures in ferret trachea and lung tissues specific to 1918 or 2009 human pandemic influenza virus infections. Using microarray data from 16 ferret samples reflecting cystic fibrosis (CF) disease progression, we show that transcriptional changes in the CFTR-knockout ferret lung reflect pathways of early disease that cannot be readily studied in human infants with CF disease. PMID:25402615
Modeling Alzheimer’s disease with human induced pluripotent stem (iPS) cells
Mungenast, Alison E.; Siegert, Sandra; Tsai, Li-Huei
2018-01-01
In the last decade, induced pluripotent stem (iPS) cells have revolutionized the utility of human in vitro models of neurological disease. The iPS-derived and differentiated cells allow researchers to study the impact of a distinct cell type in health and disease as well as performing therapeutic drug screens on a human genetic background. In particular, clinical trials for Alzheimer’s disease (AD) have been often failing. Two of the potential reasons are first, the species gap involved in proceeding from initial discoveries in rodent models to human studies, and second, an unsatisfying patient stratification, meaning subgrouping patients based on the disease severity due to the lack of phenotypic and genetic markers. iPS cells overcome this obstacles and will improve our understanding of disease subtypes in AD. They allow researchers conducting in depth characterization of neural cells from both familial and sporadic AD patients as well as preclinical screens on human cells. In this review, we briefly outline the status quo of iPS cell research in neurological diseases along with the general advantages and pitfalls of these models. We summarize how genome-editing techniques such as CRISPR/Cas will allow researchers to reduce the problem of genomic variability inherent to human studies, followed by recent iPS cell studies relevant to AD. We then focus on current techniques for the differentiation of iPS cells into neural cell types that are relevant to AD research. Finally, we discuss how the generation of three-dimensional cell culture systems will be important for understanding AD phenotypes in a complex cellular milieu, and how both two- and three-dimensional iPS cell models can provide platforms for drug discovery and translational studies into the treatment of AD. PMID:26657644
Modeling Alzheimer's disease with human induced pluripotent stem (iPS) cells.
Mungenast, Alison E; Siegert, Sandra; Tsai, Li-Huei
2016-06-01
In the last decade, induced pluripotent stem (iPS) cells have revolutionized the utility of human in vitro models of neurological disease. The iPS-derived and differentiated cells allow researchers to study the impact of a distinct cell type in health and disease as well as performing therapeutic drug screens on a human genetic background. In particular, clinical trials for Alzheimer's disease (AD) have been failing. Two of the potential reasons are first, the species gap involved in proceeding from initial discoveries in rodent models to human studies, and second, an unsatisfying patient stratification, meaning subgrouping patients based on the disease severity due to the lack of phenotypic and genetic markers. iPS cells overcome this obstacles and will improve our understanding of disease subtypes in AD. They allow researchers conducting in depth characterization of neural cells from both familial and sporadic AD patients as well as preclinical screens on human cells. In this review, we briefly outline the status quo of iPS cell research in neurological diseases along with the general advantages and pitfalls of these models. We summarize how genome-editing techniques such as CRISPR/Cas9 will allow researchers to reduce the problem of genomic variability inherent to human studies, followed by recent iPS cell studies relevant to AD. We then focus on current techniques for the differentiation of iPS cells into neural cell types that are relevant to AD research. Finally, we discuss how the generation of three-dimensional cell culture systems will be important for understanding AD phenotypes in a complex cellular milieu, and how both two- and three-dimensional iPS cell models can provide platforms for drug discovery and translational studies into the treatment of AD. Copyright © 2015 Elsevier Inc. All rights reserved.
[Oral microbiota: a promising predictor of human oral and systemic diseases].
Xin, Xu; Junzhi, He; Xuedong, Zhou
2015-12-01
A human oral microbiota is the ecological community of commensal, symbiotic, and pathogenic microorganisms found in human oral cavity. Oral microbiota exists mostly in the form of a biofilm and maintains a dynamic ecological equilibrium with the host body. However, the disturbance of this ecological balance inevitably causes oral infectious diseases, such as dental caries, apical periodontitis, periodontal diseases, pericoronitis, and craniofacial bone osteomyelitis. Oral microbiota is also correlated with many systemic diseases, including cancer, diabetes mellitus, rheumatoid arthritis, cardiovascular diseases, and preterm birth. Hence, oral microbiota has been considered as a potential biomarker of human diseases. The "Human Microbiome Project" and other metagenomic projects worldwide have advanced our knowledge of the human oral microbiota. The integration of these metadata has been the frontier of oral microbiology to improve clinical translation. By reviewing recent progress on studies involving oral microbiota-related oral and systemic diseases, we aimed to propose the essential role of oral microbiota in the prediction of the onset, progression, and prognosis of oral and systemic diseases. An oral microbiota-based prediction model helps develop a new paradigm of personalized medicine and benefits the human health in the post-metagenomics era.
Exploring human disease using the Rat Genome Database.
Shimoyama, Mary; Laulederkind, Stanley J F; De Pons, Jeff; Nigam, Rajni; Smith, Jennifer R; Tutaj, Marek; Petri, Victoria; Hayman, G Thomas; Wang, Shur-Jen; Ghiasvand, Omid; Thota, Jyothi; Dwinell, Melinda R
2016-10-01
Rattus norvegicus, the laboratory rat, has been a crucial model for studies of the environmental and genetic factors associated with human diseases for over 150 years. It is the primary model organism for toxicology and pharmacology studies, and has features that make it the model of choice in many complex-disease studies. Since 1999, the Rat Genome Database (RGD; http://rgd.mcw.edu) has been the premier resource for genomic, genetic, phenotype and strain data for the laboratory rat. The primary role of RGD is to curate rat data and validate orthologous relationships with human and mouse genes, and make these data available for incorporation into other major databases such as NCBI, Ensembl and UniProt. RGD also provides official nomenclature for rat genes, quantitative trait loci, strains and genetic markers, as well as unique identifiers. The RGD team adds enormous value to these basic data elements through functional and disease annotations, the analysis and visual presentation of pathways, and the integration of phenotype measurement data for strains used as disease models. Because much of the rat research community focuses on understanding human diseases, RGD provides a number of datasets and software tools that allow users to easily explore and make disease-related connections among these datasets. RGD also provides comprehensive human and mouse data for comparative purposes, illustrating the value of the rat in translational research. This article introduces RGD and its suite of tools and datasets to researchers - within and beyond the rat community - who are particularly interested in leveraging rat-based insights to understand human diseases. © 2016. Published by The Company of Biologists Ltd.
Vaidya, Anand; Williams, Jonathan S.
2011-01-01
Objective Vitamin D has been implicated in the pathophysiology of extra-skeletal conditions such as hypertension, kidney disease, and diabetes, via its ability to negatively regulate the renin-angiotensin system (RAS). This article reviews the evidence supporting a link between vitamin D and the RAS in these conditions, with specific emphasis on translational observations and their limitations. Methods Literature review of animal and human studies evaluating the role of vitamin D in hypertension, kidney disease, and diabetes. Results Excess activity of the RAS has been implicated in the pathogenesis of hypertension, chronic kidney disease, decreased insulin secretion, and insulin resistance. Animal studies provide strong support for 1,25(OH)2D mediated down-regulation of renin expression and RAS activity via its interaction with the vitamin D receptor. Furthermore, the activity of vitamin D metabolites in animals is associated with reductions in blood pressure, proteinuria and renal injury, and with improved β–cell function. Many observational, and a few interventional, studies in humans have supported these findings; however, there is a lack of well designed prospective human interventional studies to definitively assess clinical outcomes. Conclusion Animal studies implicate vitamin D receptor agonist therapy to lower RAS activity as a potential method to reduce the risk of hypertension, kidney disease, and diabetes. There is a need for more well designed prospective interventional studies to validate this hypothesis in human clinical outcomes. PMID:22075270
Network-based analysis of genotype-phenotype correlations between different inheritance modes.
Hao, Dapeng; Li, Chuanxing; Zhang, Shaojun; Lu, Jianping; Jiang, Yongshuai; Wang, Shiyuan; Zhou, Meng
2014-11-15
Recent studies on human disease have revealed that aberrant interaction between proteins probably underlies a substantial number of human genetic diseases. This suggests a need to investigate disease inheritance mode using interaction, and based on which to refresh our conceptual understanding of a series of properties regarding inheritance mode of human disease. We observed a strong correlation between the number of protein interactions and the likelihood of a gene causing any dominant diseases or multiple dominant diseases, whereas no correlation was observed between protein interaction and the likelihood of a gene causing recessive diseases. We found that dominant diseases are more likely to be associated with disruption of important interactions. These suggest inheritance mode should be understood using protein interaction. We therefore reviewed the previous studies and refined an interaction model of inheritance mode, and then confirmed that this model is largely reasonable using new evidences. With these findings, we found that the inheritance mode of human genetic diseases can be predicted using protein interaction. By integrating the systems biology perspectives with the classical disease genetics paradigm, our study provides some new insights into genotype-phenotype correlations. haodapeng@ems.hrbmu.edu.cn or biofomeng@hotmail.com Supplementary data are available at Bioinformatics online. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Functional annotation of HOT regions in the human genome: implications for human disease and cancer
Li, Hao; Chen, Hebing; Liu, Feng; Ren, Chao; Wang, Shengqi; Bo, Xiaochen; Shu, Wenjie
2015-01-01
Advances in genome-wide association studies (GWAS) and large-scale sequencing studies have resulted in an impressive and growing list of disease- and trait-associated genetic variants. Most studies have emphasised the discovery of genetic variation in coding sequences, however, the noncoding regulatory effects responsible for human disease and cancer biology have been substantially understudied. To better characterise the cis-regulatory effects of noncoding variation, we performed a comprehensive analysis of the genetic variants in HOT (high-occupancy target) regions, which are considered to be one of the most intriguing findings of recent large-scale sequencing studies. We observed that GWAS variants that map to HOT regions undergo a substantial net decrease and illustrate development-specific localisation during haematopoiesis. Additionally, genetic risk variants are disproportionally enriched in HOT regions compared with LOT (low-occupancy target) regions in both disease-relevant and cancer cells. Importantly, this enrichment is biased toward disease- or cancer-specific cell types. Furthermore, we observed that cancer cells generally acquire cancer-specific HOT regions at oncogenes through diverse mechanisms of cancer pathogenesis. Collectively, our findings demonstrate the key roles of HOT regions in human disease and cancer and represent a critical step toward further understanding disease biology, diagnosis, and therapy. PMID:26113264
Functional annotation of HOT regions in the human genome: implications for human disease and cancer.
Li, Hao; Chen, Hebing; Liu, Feng; Ren, Chao; Wang, Shengqi; Bo, Xiaochen; Shu, Wenjie
2015-06-26
Advances in genome-wide association studies (GWAS) and large-scale sequencing studies have resulted in an impressive and growing list of disease- and trait-associated genetic variants. Most studies have emphasised the discovery of genetic variation in coding sequences, however, the noncoding regulatory effects responsible for human disease and cancer biology have been substantially understudied. To better characterise the cis-regulatory effects of noncoding variation, we performed a comprehensive analysis of the genetic variants in HOT (high-occupancy target) regions, which are considered to be one of the most intriguing findings of recent large-scale sequencing studies. We observed that GWAS variants that map to HOT regions undergo a substantial net decrease and illustrate development-specific localisation during haematopoiesis. Additionally, genetic risk variants are disproportionally enriched in HOT regions compared with LOT (low-occupancy target) regions in both disease-relevant and cancer cells. Importantly, this enrichment is biased toward disease- or cancer-specific cell types. Furthermore, we observed that cancer cells generally acquire cancer-specific HOT regions at oncogenes through diverse mechanisms of cancer pathogenesis. Collectively, our findings demonstrate the key roles of HOT regions in human disease and cancer and represent a critical step toward further understanding disease biology, diagnosis, and therapy.
The rabbit as a model for studying lung disease and stem cell therapy.
Kamaruzaman, Nurfatin Asyikhin; Kardia, Egi; Kamaldin, Nurulain 'Atikah; Latahir, Ahmad Zaeri; Yahaya, Badrul Hisham
2013-01-01
No single animal model can reproduce all of the human features of both acute and chronic lung diseases. However, the rabbit is a reliable model and clinically relevant facsimile of human disease. The similarities between rabbits and humans in terms of airway anatomy and responses to inflammatory mediators highlight the value of this species in the investigation of lung disease pathophysiology and in the development of therapeutic agents. The inflammatory responses shown by the rabbit model, especially in the case of asthma, are comparable with those that occur in humans. The allergic rabbit model has been used extensively in drug screening tests, and this model and humans appear to be sensitive to similar drugs. In addition, recent studies have shown that the rabbit serves as a good platform for cell delivery for the purpose of stem-cell-based therapy.
The Rabbit as a Model for Studying Lung Disease and Stem Cell Therapy
Kamaruzaman, Nurfatin Asyikhin; Kamaldin, Nurulain ‘Atikah; Latahir, Ahmad Zaeri; Yahaya, Badrul Hisham
2013-01-01
No single animal model can reproduce all of the human features of both acute and chronic lung diseases. However, the rabbit is a reliable model and clinically relevant facsimile of human disease. The similarities between rabbits and humans in terms of airway anatomy and responses to inflammatory mediators highlight the value of this species in the investigation of lung disease pathophysiology and in the development of therapeutic agents. The inflammatory responses shown by the rabbit model, especially in the case of asthma, are comparable with those that occur in humans. The allergic rabbit model has been used extensively in drug screening tests, and this model and humans appear to be sensitive to similar drugs. In addition, recent studies have shown that the rabbit serves as a good platform for cell delivery for the purpose of stem-cell-based therapy. PMID:23653896
Can We Prevent Obesity-Related Metabolic Diseases by Dietary Modulation of the Gut Microbiota?1
2016-01-01
Obesity increases the risk of type 2 diabetes, cardiovascular diseases, and certain cancers, which are among the leading causes of death worldwide. Obesity and obesity-related metabolic diseases are characterized by specific alterations in the human gut microbiota. Experimental studies with gut microbiota transplantations in mice and in humans indicate that a specific gut microbiota composition can be the cause and not just the consequence of the obese state and metabolic disease, which suggests a potential for gut microbiota modulation in prevention and treatment of obesity-related metabolic diseases. In addition, dietary intervention studies have suggested that modulation of the gut microbiota can improve metabolic risk markers in humans, but a causal role of the gut microbiota in such studies has not yet been established. Here, we review and discuss the role of the gut microbiota in obesity-related metabolic diseases and the potential of dietary modulation of the gut microbiota in metabolic disease prevention and treatment. PMID:26773017
A shift in paradigm towards human biology-based systems for cholestatic-liver diseases.
Noor, Fozia
2015-12-01
Cholestatic-liver diseases (CLDs) arise from diverse causes ranging from genetic factors to drug-induced cholestasis. The so-called diseases of civilization (obesity, diabetes, metabolic disorders, non-alcoholic liver disease, cardiovascular diseases, etc.) are intricately implicated in liver and gall bladder diseases. Although CLDs have been extensively studied, there seem to be important gaps in the understanding of human disease. Despite the fact that many animal models exist and substantial clinical data are available, translation of this knowledge towards therapy has been disappointingly limited. Recent advances in liver cell culture such as in vivo-like 3D cultivation of human primary hepatic cells, human induced pluripotent stem cell-derived hepatocytes; and cutting-edge analytical techniques such as 'omics' technologies and high-content screenings could play a decisive role in deeper mechanistic understanding of CLDs. This Topical Review proposes a roadmap to human biology-based research using omics technologies providing quantitative information on mechanisms in an adverse outcome/disease pathway framework. With modern sensitive tools, a shift in paradigm in human disease research seems timely and even inevitable to overcome species barriers in translation. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.
Human airway epithelial cell cultures for modeling respiratory syncytial virus infection.
Pickles, Raymond J
2013-01-01
Respiratory syncytial virus (RSV) is an important human respiratory pathogen with narrow species tropism. Limited availability of human pathologic specimens during early RSV-induced lung disease and ethical restrictions for RSV challenge studies in the lower airways of human volunteers has slowed our understanding of how RSV causes airway disease and greatly limited the development of therapeutic strategies for reducing RSV disease burden. Our current knowledge of RSV infection and pathology is largely based on in vitro studies using nonpolarized epithelial cell-lines grown on plastic or in vivo studies using animal models semipermissive for RSV infection. Although these models have revealed important aspects of RSV infection, replication, and associated inflammatory responses, these models do not broadly recapitulate the early interactions and potential consequences of RSV infection of the human columnar airway epithelium in vivo. In this chapter, the pro et contra of in vitro models of human columnar airway epithelium and their usefulness in respiratory virus pathogenesis and vaccine development studies will be discussed. The use of such culture models to predict characteristics of RSV infection and the correlation of these findings to the human in vivo situation will likely accelerate our understanding of RSV pathogenesis potentially identifying novel strategies for limiting the severity of RSV-associated airway disease.
Smith, Alec S.T.; Davis, Jennifer; Lee, Gabsang; Mack, David L.
2016-01-01
Engineered in vitro models using human cells, particularly patient-derived induced pluripotent stem cells (iPSCs), offer a potential solution to issues associated with the use of animals for studying disease pathology and drug efficacy. Given the prevalence of muscle diseases in human populations, an engineered tissue model of human skeletal muscle could provide a biologically accurate platform to study basic muscle physiology, disease progression, and drug efficacy and/or toxicity. Such platforms could be used as phenotypic drug screens to identify compounds capable of alleviating or reversing congenital myopathies, such as Duchene muscular dystrophy (DMD). Here, we review current skeletal muscle modeling technologies with a specific focus on efforts to generate biomimetic systems for investigating the pathophysiology of dystrophic muscle. PMID:27109386
Caenorhabditis elegans as a model to study renal development and disease: sexy cilia.
Barr, Maureen M
2005-02-01
The nematode Caenorhabditis elegans has no kidney per se, yet "the worm" has proved to be an excellent model to study renal-related issues, including tubulogenesis of the excretory canal, membrane transport and ion channel function, and human genetic diseases including autosomal dominant polycystic kidney disease (ADPKD). The goal of this review is to explain how C. elegans has provided insight into cilia development, cilia function, and human cystic kidney diseases.
Innate immunity in Alzheimer's disease: the relevance of animal models?
Franco Bocanegra, Diana K; Nicoll, James A R; Boche, Delphine
2018-05-01
The mouse is one of the organisms most widely used as an animal model in biomedical research, due to the particular ease with which it can be handled and reproduced in laboratory. As a member of the mammalian class, mice share with humans many features regarding metabolic pathways, cell morphology and anatomy. However, important biological differences between mice and humans exist and must be taken into consideration when interpreting research results, to properly translate evidence from experimental studies into information that can be useful for human disease prevention and/or treatment. With respect to Alzheimer's disease (AD), much of the experimental information currently known about this disease has been gathered from studies using mainly mice as models. Therefore, it is notably important to fully characterise the differences between mice and humans regarding important aspects of the disease. It is now widely known that inflammation plays an important role in the development of AD, a role that is not only a response to the surrounding pathological environment, but rather seems to be strongly implicated in the aetiology of the disease as indicated by the genetic studies. This review highlights relevant differences in inflammation and in microglia, the innate immune cell of the brain, between mice and humans regarding genetics and morphology in normal ageing, and the relationship of microglia with AD-like pathology, the inflammatory profile, and cognition. We conclude that some noteworthy differences exist between mice and humans regarding microglial characteristics, in distribution, gene expression, and states of activation. This may have repercussions in the way that transgenic mice respond to, and influence, the AD-like pathology. However, despite these differences, human and mouse microglia also show similarities in morphology and behaviour, such that the mouse is a suitable model for studying the role of microglia, as long as these differences are taken into consideration when delineating new strategies to approach the study of neurodegenerative diseases.
2012-01-01
Biologic sex and gonadal hormones matter in human aging and diseases of aging such as Alzheimer’s – and the importance of studying their influences relates directly to human health. The goal of this article is to review the literature to date on sex and hormones in mouse models of Alzheimer’s disease (AD) with an exclusive focus on interpreting the relevance of findings to the human condition. To this end, we highlight advances in AD and in sex and hormone biology, discuss what these advances mean for merging the two fields, review the current mouse model literature, raise major unresolved questions, and offer a research framework that incorporates human reproductive aging for future studies aimed at translational discoveries in this important area. Unraveling human relevant pathways in sex and hormone-based biology may ultimately pave the way to novel and urgently needed treatments for AD and other neurodegenerative diseases. PMID:23126652
Transmission of scrapie prions to primate after an extended silent incubation period.
Comoy, Emmanuel E; Mikol, Jacqueline; Luccantoni-Freire, Sophie; Correia, Evelyne; Lescoutra-Etchegaray, Nathalie; Durand, Valérie; Dehen, Capucine; Andreoletti, Olivier; Casalone, Cristina; Richt, Juergen A; Greenlee, Justin J; Baron, Thierry; Benestad, Sylvie L; Brown, Paul; Deslys, Jean-Philippe
2015-06-30
Classical bovine spongiform encephalopathy (c-BSE) is the only animal prion disease reputed to be zoonotic, causing variant Creutzfeldt-Jakob disease (vCJD) in humans and having guided protective measures for animal and human health against animal prion diseases. Recently, partial transmissions to humanized mice showed that the zoonotic potential of scrapie might be similar to c-BSE. We here report the direct transmission of a natural classical scrapie isolate to cynomolgus macaque, a highly relevant model for human prion diseases, after a 10-year silent incubation period, with features similar to those reported for human cases of sporadic CJD. Scrapie is thus actually transmissible to primates with incubation periods compatible with their life expectancy, although fourfold longer than BSE. Long-term experimental transmission studies are necessary to better assess the zoonotic potential of other prion diseases with high prevalence, notably Chronic Wasting Disease of deer and elk and atypical/Nor98 scrapie.
Transmission of scrapie prions to primate after an extended silent incubation period
Comoy, Emmanuel E.; Mikol, Jacqueline; Luccantoni-Freire, Sophie; Correia, Evelyne; Lescoutra-Etchegaray, Nathalie; Durand, Valérie; Dehen, Capucine; Andreoletti, Olivier; Casalone, Cristina; Richt, Juergen A.; Greenlee, Justin J.; Baron, Thierry; Benestad, Sylvie L.; Brown, Paul; Deslys, Jean-Philippe
2015-01-01
Classical bovine spongiform encephalopathy (c-BSE) is the only animal prion disease reputed to be zoonotic, causing variant Creutzfeldt-Jakob disease (vCJD) in humans and having guided protective measures for animal and human health against animal prion diseases. Recently, partial transmissions to humanized mice showed that the zoonotic potential of scrapie might be similar to c-BSE. We here report the direct transmission of a natural classical scrapie isolate to cynomolgus macaque, a highly relevant model for human prion diseases, after a 10-year silent incubation period, with features similar to those reported for human cases of sporadic CJD. Scrapie is thus actually transmissible to primates with incubation periods compatible with their life expectancy, although fourfold longer than BSE. Long-term experimental transmission studies are necessary to better assess the zoonotic potential of other prion diseases with high prevalence, notably Chronic Wasting Disease of deer and elk and atypical/Nor98 scrapie. PMID:26123044
Update on apelin peptides as putative targets for cardiovascular drug discovery.
Charles, Christopher J
2011-06-01
The physiological importance of GPCR/ligand pathways is highlighted by the fact that numerous pathologies are attributed to their signaling dysfunction. Over 50% of the pharmaceutical drugs currently used to treat human disease are based on compounds that interact with GPCRs. Apelin/APJ constitutes a novel endogenous peptide/GPCR system proposed to be involved in a wide range of physiological functions. Early evidence suggests that apelin/APJ may hold promise as a target for development of novel therapeutic agents which may counteract a number of pathologies including cardiovascular disease. Despite advances in treatment of cardiovascular disease, incidence, prevalence, morbidity and economic costs remain high necessitating the development of new treatment paradigms. This review summarizes apelin/APJ structure, distribution and regulation; presents evidence for a role of apelin in pressure/volume homeostasis and in the pathophysiology of cardiovascular disease; summarizes data on beneficial effects of apelin in preclinical, animal models of cardiovascular disease and measurement of plasma levels of apelin across the full spectrum of cardiovascular disease in humans; and notes the first studies describing bioactivity of apelin peptides in human healthy volunteers and patients with heart failure. More clarity is needed on the precise physiological/pathophysiological role of the apelin/APJ system in human health and disease. Nonetheless, preclinical studies and initial studies in humans show that APJ antagonism may represent a novel therapeutic target for patients with cardiovascular disease. Development of appropriately validated assays for apelin will clarify circulating levels of the peptide in health and disease. Development of suitable agonists/antagonists will pave the way for much needed future studies essential for advancing this promising field of drug discovery.
Chanyi, Ryan M; Craven, Laura; Harvey, Brandon; Reid, Gregor; Silverman, Michael J; Burton, Jeremy P
2017-01-01
The composition and activity of microorganisms in the gut, the microbiome, is emerging as an important factor to consider with regard to the treatment of many diseases. Dysbiosis of the normal community has been implicated in inflammatory bowel disease, Crohn's disease, diabetes and, most notoriously, Clostridium difficile infection. In Canada, the leading treatment strategy for recalcitrant C. difficile infection is to receive faecal material which by nature is filled with microorganisms and their metabolites, from a healthy individual, known as a faecal microbiota transplantation. This influx of bacteria into the gut helps to restore the microbiota to a healthy state, preventing C. difficile from causing further disease. Much of what is known with respect to the microbiota and faecal microbiota transplantation comes from animal studies simulating the human disease. Although these models allow researchers to perform studies that would be difficult in humans, they do not always recapitulate the human microbiome. This makes the translation of these results to humans somewhat questionable. The purpose of this review is to analyse these animal models and discuss the advantages and the disadvantages of them in relation to human translation. By understanding some of the limitation of animal models, we will be better able to design and perform experiments of most relevance to human applications.
Chase, K.; Sargan, D.; Miller, K.; Ostrander, E. A.; Lark, K. G.
2009-01-01
Summary Addison’s disease, an immune-mediated disorder caused by destruction of the adrenal glands, is a rare disorder of Western European populations. Studies indicate that the disorder is polygenic in nature, involving specific alleles of the CTLA-4, DRB1*04 and DQ, Cyp27B1, VDR and MIC-A and -B loci. A similar immune form of Addison’s disease occurs in several breeds of domestic dog, with frequencies ranging from 1.5 to 9.0%. The high frequency of the disease in domestic dog breeds likely reflects the small number of founders associated with many breeds, subsequent inbreeding, and the frequent use of popular sires. The Portuguese Water Dog (PWD) is a significantly affected breed. An analysis of 11 384 PWDs surveyed between 1985 and 1996 suggests a breed-specific disease incidence of 1.5%. As with humans, the disease is typically of late onset. This study involves a genetic comparison of Addison’s disease in the PWD to the analogous disease in humans. The study is facilitated by the existence of complete pedigrees and a relatively high degree of inbreeding among PWDs. The breed originated from 31 founders, with 10 animals responsible for 90% of the current gene pool. We describe, specifically, the identification of two disease-associated loci, on Canis familiaris (CFA) chromosomes CFA12 and 37, which are syntenic with the human DRB1 histocompatibility locus alleles HLA-DRB1* 04 and DRB1*0301, and to a locus for immunosuppression syntenic with CTLA-4. Strong similarities exist therefore in the complex genetic background of Addison’s disease in humans and in the PWD. With the completion of the canine and human genome sequence, the purebred dog is set to become an important comparative model for Addison’s as well as other human immune disorders. PMID:16712648
Genome-wide compendium and functional assessment of in vivo heart enhancers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dickel, Diane E.; Barozzi, Iros; Zhu, Yiwen
Whole-genome sequencing is identifying growing numbers of non-coding variants in human disease studies, but the lack of accurate functional annotations prevents their interpretation. We describe the genome-wide landscape of distant-acting enhancers active in the developing and adult human heart, an organ whose impairment is a predominant cause of mortality and morbidity. Using integrative analysis of > 35 epigenomic data sets from mouse and human pre-and postnatal hearts we created a comprehensive reference of > 80,000 putative human heart enhancers. To illustrate the importance of enhancers in the regulation of genes involved in heart disease, we deleted the mouse orthologs ofmore » two human enhancers near cardiac myosin genes. In both cases, we observe in vivo expression changes and cardiac phenotypes consistent with human heart disease. Our study provides a comprehensive catalogue of human heart enhancers for use in clinical whole-genome sequencing studies and highlights the importance of enhancers for cardiac function.« less
Genome-wide compendium and functional assessment of in vivo heart enhancers
Dickel, Diane E.; Barozzi, Iros; Zhu, Yiwen; ...
2016-10-05
Whole-genome sequencing is identifying growing numbers of non-coding variants in human disease studies, but the lack of accurate functional annotations prevents their interpretation. We describe the genome-wide landscape of distant-acting enhancers active in the developing and adult human heart, an organ whose impairment is a predominant cause of mortality and morbidity. Using integrative analysis of > 35 epigenomic data sets from mouse and human pre-and postnatal hearts we created a comprehensive reference of > 80,000 putative human heart enhancers. To illustrate the importance of enhancers in the regulation of genes involved in heart disease, we deleted the mouse orthologs ofmore » two human enhancers near cardiac myosin genes. In both cases, we observe in vivo expression changes and cardiac phenotypes consistent with human heart disease. Our study provides a comprehensive catalogue of human heart enhancers for use in clinical whole-genome sequencing studies and highlights the importance of enhancers for cardiac function.« less
Genome-wide compendium and functional assessment of in vivo heart enhancers
Dickel, Diane E.; Barozzi, Iros; Zhu, Yiwen; Fukuda-Yuzawa, Yoko; Osterwalder, Marco; Mannion, Brandon J.; May, Dalit; Spurrell, Cailyn H.; Plajzer-Frick, Ingrid; Pickle, Catherine S.; Lee, Elizabeth; Garvin, Tyler H.; Kato, Momoe; Akiyama, Jennifer A.; Afzal, Veena; Lee, Ah Young; Gorkin, David U.; Ren, Bing; Rubin, Edward M.; Visel, Axel; Pennacchio, Len A.
2016-01-01
Whole-genome sequencing is identifying growing numbers of non-coding variants in human disease studies, but the lack of accurate functional annotations prevents their interpretation. We describe the genome-wide landscape of distant-acting enhancers active in the developing and adult human heart, an organ whose impairment is a predominant cause of mortality and morbidity. Using integrative analysis of >35 epigenomic data sets from mouse and human pre- and postnatal hearts we created a comprehensive reference of >80,000 putative human heart enhancers. To illustrate the importance of enhancers in the regulation of genes involved in heart disease, we deleted the mouse orthologs of two human enhancers near cardiac myosin genes. In both cases, we observe in vivo expression changes and cardiac phenotypes consistent with human heart disease. Our study provides a comprehensive catalogue of human heart enhancers for use in clinical whole-genome sequencing studies and highlights the importance of enhancers for cardiac function. PMID:27703156
Tick-Borne Pathogen – Reversed and Conventional Discovery of Disease
Tijsse-Klasen, Ellen; Koopmans, Marion P. G.; Sprong, Hein
2014-01-01
Molecular methods have increased the number of known microorganisms associated with ticks significantly. Some of these newly identified microorganisms are readily linked to human disease while others are yet unknown to cause human disease. The face of tick-borne disease discovery has changed with more diseases now being discovered in a “reversed way,” detecting disease cases only years after the tick-borne microorganism was first discovered. Compared to the conventional discovery of infectious diseases, reverse order discovery presents researchers with new challenges. Estimating public health risks of such agents is especially challenging, as case definitions and diagnostic procedures may initially be missing. We discuss the advantages and shortcomings of molecular methods, serology, and epidemiological studies that might be used to study some fundamental questions regarding newly identified tick-borne diseases. With increased tick-exposure and improved detection methods, more tick-borne microorganisms will be added to the list of pathogens causing disease in humans in the future. PMID:25072045
Modelling the influence of human behaviour on the spread of infectious diseases: a review.
Funk, Sebastian; Salathé, Marcel; Jansen, Vincent A A
2010-09-06
Human behaviour plays an important role in the spread of infectious diseases, and understanding the influence of behaviour on the spread of diseases can be key to improving control efforts. While behavioural responses to the spread of a disease have often been reported anecdotally, there has been relatively little systematic investigation into how behavioural changes can affect disease dynamics. Mathematical models for the spread of infectious diseases are an important tool for investigating and quantifying such effects, not least because the spread of a disease among humans is not amenable to direct experimental study. Here, we review recent efforts to incorporate human behaviour into disease models, and propose that such models can be broadly classified according to the type and source of information which individuals are assumed to base their behaviour on, and according to the assumed effects of such behaviour. We highlight recent advances as well as gaps in our understanding of the interplay between infectious disease dynamics and human behaviour, and suggest what kind of data taking efforts would be helpful in filling these gaps.
Modelling the influence of human behaviour on the spread of infectious diseases: a review
Funk, Sebastian; Salathé, Marcel; Jansen, Vincent A. A.
2010-01-01
Human behaviour plays an important role in the spread of infectious diseases, and understanding the influence of behaviour on the spread of diseases can be key to improving control efforts. While behavioural responses to the spread of a disease have often been reported anecdotally, there has been relatively little systematic investigation into how behavioural changes can affect disease dynamics. Mathematical models for the spread of infectious diseases are an important tool for investigating and quantifying such effects, not least because the spread of a disease among humans is not amenable to direct experimental study. Here, we review recent efforts to incorporate human behaviour into disease models, and propose that such models can be broadly classified according to the type and source of information which individuals are assumed to base their behaviour on, and according to the assumed effects of such behaviour. We highlight recent advances as well as gaps in our understanding of the interplay between infectious disease dynamics and human behaviour, and suggest what kind of data taking efforts would be helpful in filling these gaps. PMID:20504800
Evolutionary Determinants of Genetic Variation in Susceptibility to Infectious Diseases in Humans
Baker, Christi; Antonovics, Janis
2012-01-01
Although genetic variation among humans in their susceptibility to infectious diseases has long been appreciated, little focus has been devoted to identifying patterns in levels of variation in susceptibility to different diseases. Levels of genetic variation in susceptibility associated with 40 human infectious diseases were assessed by a survey of studies on both pedigree-based quantitative variation, as well as studies on different classes of marker alleles. These estimates were correlated with pathogen traits, epidemiological characteristics, and effectiveness of the human immune response. The strongest predictors of levels of genetic variation in susceptibility were disease characteristics negatively associated with immune effectiveness. High levels of genetic variation were associated with diseases with long infectious periods and for which vaccine development attempts have been unsuccessful. These findings are consistent with predictions based on theoretical models incorporating fitness costs associated with the different types of resistance mechanisms. An appreciation of these observed patterns will be a valuable tool in directing future research given that genetic variation in disease susceptibility has large implications for vaccine development and epidemiology. PMID:22242158
Genetically engineered pigs as models for human disease
Perleberg, Carolin; Kind, Alexander
2018-01-01
ABSTRACT Genetically modified animals are vital for gaining a proper understanding of disease mechanisms. Mice have long been the mainstay of basic research into a wide variety of diseases but are not always the most suitable means of translating basic knowledge into clinical application. The shortcomings of rodent preclinical studies are widely recognised, and regulatory agencies around the world now require preclinical trial data from nonrodent species. Pigs are well suited to biomedical research, sharing many similarities with humans, including body size, anatomical features, physiology and pathophysiology, and they already play an important role in translational studies. This role is set to increase as advanced genetic techniques simplify the generation of pigs with precisely tailored modifications designed to replicate lesions responsible for human disease. This article provides an overview of the most promising and clinically relevant genetically modified porcine models of human disease for translational biomedical research, including cardiovascular diseases, cancers, diabetes mellitus, Alzheimer's disease, cystic fibrosis and Duchenne muscular dystrophy. We briefly summarise the technologies involved and consider the future impact of recent technical advances. PMID:29419487
Calahorro, Fernando; Ruiz-Rubio, Manuel
2011-12-01
The nematode Caenorhabditis elegans has a very well-defined and genetically tractable nervous system which offers an effective model to explore basic mechanistic pathways that might be underpin complex human neurological diseases. Here, the role C. elegans is playing in understanding two neurodegenerative conditions, Parkinson's and Alzheimer's disease (AD), and a complex neurological condition, autism, is used as an exemplar of the utility of this model system. C. elegans is an imperfect model of Parkinson's disease because it lacks orthologues of the human disease-related genes PARK1 and LRRK2 which are linked to the autosomal dominant form of this disease. Despite this fact, the nematode is a good model because it allows transgenic expression of these human genes and the study of the impact on dopaminergic neurons in several genetic backgrounds and environmental conditions. For AD, C. elegans has orthologues of the amyloid precursor protein and both human presenilins, PS1 and PS2. In addition, many of the neurotoxic properties linked with Aβ amyloid and tau peptides can be studied in the nematode. Autism spectrum disorder is a complex neurodevelopmental disorder characterised by impairments in human social interaction, difficulties in communication, and restrictive and repetitive behaviours. Establishing C. elegans as a model for this complex behavioural disorder is difficult; however, abnormalities in neuronal synaptic communication are implicated in the aetiology of the disorder. Numerous studies have associated autism with mutations in several genes involved in excitatory and inhibitory synapses in the mammalian brain, including neuroligin, neurexin and shank, for which there are C. elegans orthologues. Thus, several molecular pathways and behavioural phenotypes in C. elegans have been related to autism. In general, the nematode offers a series of advantages that combined with knowledge from other animal models and human research, provides a powerful complementary experimental approach for understanding the molecular mechanisms and underlying aetiology of complex neurological diseases.
[Metabolism of polyunsaturated fatty acids and its value for a human body].
Lyzohub, V H; Zaval's'ka, T V; Horna, O O; Pliskevych, D A; Savchenko, O V
2010-01-01
The article is devoted to the study of metabolism of polynonsaturated fat acids in a human body as antiatherogenous which prevents the development of cardiovascular diseases (ischemic heart disease, hypertension), as well as oncological diseases, a peptic ulcer of the stomach and duodenum.
Reproduction of Epstein-Barr Virus Infection and Pathogenesis in Humanized Mice
2014-01-01
Epstein-Barr virus (EBV) is etiologically associated with a variety of diseases including lymphoproliferative diseases, lymphomas, carcinomas, and autoimmune diseases. Humans are the only natural host of EBV and limited species of new-world monkeys can be infected with the virus in experimental conditions. Small animal models of EBV infection, required for evaluation of novel therapies and vaccines for EBV-associated diseases, have not been available. Recently the development of severely immunodeficient mouse strains enabled production of humanized mice in which human immune system components are reconstituted and express their normal functions. Humanized mice can serve as infection models for human-specific viruses such as EBV that target cells of the immune system. This review summarizes recent studies by the author's group addressing reproduction of EBV infection and pathogenesis in humanized mice. PMID:24605074
Uibo, O; Lambrechts, A; Mascart-Lemone, F
1995-01-01
Immunoglobulin (Ig) A-class anti-endomysium antibodies are superior to other current antibody tests for detecting coeliac disease. We aimed to evaluate the suitability of human oesophagus for the determination of anti-endomysium antibodies. The specificity of monkey and human oesophageal tissue as antigenic substrate were compared using indirect immunofluorescence analysis. Overall, 159 individuals were studied: 56 patients with biopsy-proven coeliac disease (39 with active disease) and 103 controls. The patients' IgA-class anti-endomysium antibodies were compared using unfixed cryostat sections of human and monkey oesophagus. Indirect immunofluorescence analysis was performed with an initial serum sample dilution of 1:5, and if positive, the highest dilution yielding a positive reaction was reported. The anti-endomysium antibody test was positive in 38 out of 39 patients with active coeliac disease using monkey oesophagus (sensitivity 97%) and in all 39 patients with active coeliac disease using human oesophagus (sensitivity 100%). Ten out of 17 coeliac patients on a gluten-free diet had positive anti-endomysium antibodies using monkey oesophagus and 12 using human oesophagus as the antigenic substrate. This test was negative in all 103 controls using both substrates. Our study shows that human oesophageal tissue can be used instead of monkey tissue for determining anti-endomysium antibodies. Human tissue is a more sensitive antigenic substrate than monkey oesophagus and can be used to determine low titres of antibodies. Improving the diagnostic sensitivity of the anti-endomysium antibody test would make an important contribution to screening for coeliac disease.
FlyBase portals to human disease research using Drosophila models
Millburn, Gillian H.; Crosby, Madeline A.; Gramates, L. Sian; Tweedie, Susan
2016-01-01
ABSTRACT The use of Drosophila melanogaster as a model for studying human disease is well established, reflected by the steady increase in both the number and proportion of fly papers describing human disease models in recent years. In this article, we highlight recent efforts to improve the availability and accessibility of the disease model information in FlyBase (http://flybase.org), the model organism database for Drosophila. FlyBase has recently introduced Human Disease Model Reports, each of which presents background information on a specific disease, a tabulation of related disease subtypes, and summaries of experimental data and results using fruit flies. Integrated presentations of relevant data and reagents described in other sections of FlyBase are incorporated into these reports, which are specifically designed to be accessible to non-fly researchers in order to promote collaboration across model organism communities working in translational science. Another key component of disease model information in FlyBase is that data are collected in a consistent format – using the evolving Disease Ontology (an open-source standardized ontology for human-disease-associated biomedical data) – to allow robust and intuitive searches. To facilitate this, FlyBase has developed a dedicated tool for querying and navigating relevant data, which include mutations that model a disease and any associated interacting modifiers. In this article, we describe how data related to fly models of human disease are presented in individual Gene Reports and in the Human Disease Model Reports. Finally, we discuss search strategies and new query tools that are available to access the disease model data in FlyBase. PMID:26935103
Rogalski, Mary A; Gowler, Camden D; Shaw, Clara L; Hufbauer, Ruth A; Duffy, Meghan A
2017-01-19
Humans have contributed to the increased frequency and severity of emerging infectious diseases, which pose a significant threat to wild and domestic species, as well as human health. This review examines major pathways by which humans influence parasitism by altering (co)evolutionary interactions between hosts and parasites on ecological timescales. There is still much to learn about these interactions, but a few well-studied cases show that humans influence disease emergence every step of the way. Human actions significantly increase dispersal of host, parasite and vector species, enabling greater frequency of infection in naive host populations and host switches. Very dense host populations resulting from urbanization and agriculture can drive the evolution of more virulent parasites and, in some cases, more resistant host populations. Human activities that reduce host genetic diversity or impose abiotic stress can impair the ability of hosts to adapt to disease threats. Further, evolutionary responses of hosts and parasites can thwart disease management and biocontrol efforts. Finally, in rare cases, humans influence evolution by eradicating an infectious disease. If we hope to fully understand the factors driving disease emergence and potentially control these epidemics we must consider the widespread influence of humans on host and parasite evolutionary trajectories.This article is part of the themed issue 'Human influences on evolution, and the ecological and societal consequences'. © 2016 The Author(s).
Human stem cell-derived astrocytes replicate human prions in a PRNP genotype-dependent manner.
Krejciova, Zuzana; Alibhai, James; Zhao, Chen; Krencik, Robert; Rzechorzek, Nina M; Ullian, Erik M; Manson, Jean; Ironside, James W; Head, Mark W; Chandran, Siddharthan
2017-12-04
Prions are infectious agents that cause neurodegenerative diseases such as Creutzfeldt-Jakob disease (CJD). The absence of a human cell culture model that replicates human prions has hampered prion disease research for decades. In this paper, we show that astrocytes derived from human induced pluripotent stem cells (iPSCs) support the replication of prions from brain samples of CJD patients. For experimental exposure of astrocytes to variant CJD (vCJD), the kinetics of prion replication occur in a prion protein codon 129 genotype-dependent manner, reflecting the genotype-dependent susceptibility to clinical vCJD found in patients. Furthermore, iPSC-derived astrocytes can replicate prions associated with the major sporadic CJD strains found in human patients. Lastly, we demonstrate the subpassage of prions from infected to naive astrocyte cultures, indicating the generation of prion infectivity in vitro. Our study addresses a long-standing gap in the repertoire of human prion disease research, providing a new in vitro system for accelerated mechanistic studies and drug discovery. © 2017 Krejciova et al.
A Unified Framework for the Infection Dynamics of Zoonotic Spillover and Spread.
Lo Iacono, Giovanni; Cunningham, Andrew A; Fichet-Calvet, Elisabeth; Garry, Robert F; Grant, Donald S; Leach, Melissa; Moses, Lina M; Nichols, Gordon; Schieffelin, John S; Shaffer, Jeffrey G; Webb, Colleen T; Wood, James L N
2016-09-01
A considerable amount of disease is transmitted from animals to humans and many of these zoonoses are neglected tropical diseases. As outbreaks of SARS, avian influenza and Ebola have demonstrated, however, zoonotic diseases are serious threats to global public health and are not just problems confined to remote regions. There are two fundamental, and poorly studied, stages of zoonotic disease emergence: 'spillover', i.e. transmission of pathogens from animals to humans, and 'stuttering transmission', i.e. when limited human-to-human infections occur, leading to self-limiting chains of transmission. We developed a transparent, theoretical framework, based on a generalization of Poisson processes with memory of past human infections, that unifies these stages. Once we have quantified pathogen dynamics in the reservoir, with some knowledge of the mechanism of contact, the approach provides a tool to estimate the likelihood of spillover events. Comparisons with independent agent-based models demonstrates the ability of the framework to correctly estimate the relative contributions of human-to-human vs animal transmission. As an illustrative example, we applied our model to Lassa fever, a rodent-borne, viral haemorrhagic disease common in West Africa, for which data on human outbreaks were available. The approach developed here is general and applicable to a range of zoonoses. This kind of methodology is of crucial importance for the scientific, medical and public health communities working at the interface between animal and human diseases to assess the risk associated with the disease and to plan intervention and appropriate control measures. The Lassa case study revealed important knowledge gaps, and opportunities, arising from limited knowledge of the temporal patterns in reporting, abundance of and infection prevalence in, the host reservoir.
A Unified Framework for the Infection Dynamics of Zoonotic Spillover and Spread
Cunningham, Andrew A.; Fichet-Calvet, Elisabeth; Garry, Robert F.; Grant, Donald S.; Leach, Melissa; Moses, Lina M.; Nichols, Gordon; Schieffelin, John S.; Shaffer, Jeffrey G.; Webb, Colleen T.; Wood, James L. N.
2016-01-01
A considerable amount of disease is transmitted from animals to humans and many of these zoonoses are neglected tropical diseases. As outbreaks of SARS, avian influenza and Ebola have demonstrated, however, zoonotic diseases are serious threats to global public health and are not just problems confined to remote regions. There are two fundamental, and poorly studied, stages of zoonotic disease emergence: ‘spillover’, i.e. transmission of pathogens from animals to humans, and ‘stuttering transmission’, i.e. when limited human-to-human infections occur, leading to self-limiting chains of transmission. We developed a transparent, theoretical framework, based on a generalization of Poisson processes with memory of past human infections, that unifies these stages. Once we have quantified pathogen dynamics in the reservoir, with some knowledge of the mechanism of contact, the approach provides a tool to estimate the likelihood of spillover events. Comparisons with independent agent-based models demonstrates the ability of the framework to correctly estimate the relative contributions of human-to-human vs animal transmission. As an illustrative example, we applied our model to Lassa fever, a rodent-borne, viral haemorrhagic disease common in West Africa, for which data on human outbreaks were available. The approach developed here is general and applicable to a range of zoonoses. This kind of methodology is of crucial importance for the scientific, medical and public health communities working at the interface between animal and human diseases to assess the risk associated with the disease and to plan intervention and appropriate control measures. The Lassa case study revealed important knowledge gaps, and opportunities, arising from limited knowledge of the temporal patterns in reporting, abundance of and infection prevalence in, the host reservoir. PMID:27588425
Animal models of disease shed light on Nipah virus pathogenesis and transmission
de Wit, Emmie; Munster, Vincent J.
2014-01-01
Nipah virus is an emerging virus infection that causes yearly disease outbreaks with high case fatality rates in Bangladesh. Nipah virus causes encephalitis and systemic vasculitis, sometimes in combination with respiratory disease. Pteropus species fruit bats are the natural reservoir of Nipah virus and zoonotic transmission can occur directly or via an intermediate host; human-to-human transmission occurs regularly. In this review we discuss the current state of knowledge on the pathogenesis and transmission of Nipah virus, focusing on dissemination of the virus through its host, known determinants of pathogenicity and routes of zoonotic and human-to-human transmission. Since data from human cases are sparse, this knowledge is largely based on the results of studies performed in animal models that recapitulate Nipah virus disease in humans. PMID:25229234
Transgenic animal models of neurodegeneration based on human genetic studies
Richie, Christopher T.; Hoffer, Barry J.; Airavaara, Mikko
2011-01-01
The identification of genes linked to neurodegenerative diseases such as Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), Huntington's disease (HD) and Parkinson's disease (PD) has led to the development of animal models for studying mechanism and evaluating potential therapies. None of the transgenic models developed based on disease-associated genes have been able to fully recapitulate the behavioral and pathological features of the corresponding disease. However, there has been enormous progress made in identifying potential therapeutic targets and understanding some of the common mechanisms of neurodegeneration. In this review, we will discuss transgenic animal models for AD, ALS, HD and PD that are based on human genetic studies. All of the diseases discussed have active or complete clinical trials for experimental treatments that benefited from transgenic models of the disease. PMID:20931247
Humanized Mouse Model of Ebola Virus Disease Mimics the Immune Responses in Human Disease.
Bird, Brian H; Spengler, Jessica R; Chakrabarti, Ayan K; Khristova, Marina L; Sealy, Tara K; Coleman-McCray, JoAnn D; Martin, Brock E; Dodd, Kimberly A; Goldsmith, Cynthia S; Sanders, Jeanine; Zaki, Sherif R; Nichol, Stuart T; Spiropoulou, Christina F
2016-03-01
Animal models recapitulating human Ebola virus disease (EVD) are critical for insights into virus pathogenesis. Ebola virus (EBOV) isolates derived directly from human specimens do not, without adaptation, cause disease in immunocompetent adult rodents. Here, we describe EVD in mice engrafted with human immune cells (hu-BLT). hu-BLT mice developed EVD following wild-type EBOV infection. Infection with high-dose EBOV resulted in rapid, lethal EVD with high viral loads, alterations in key human antiviral immune cytokines and chemokines, and severe histopathologic findings similar to those shown in the limited human postmortem data available. A dose- and donor-dependent clinical course was observed in hu-BLT mice infected with lower doses of either Mayinga (1976) or Makona (2014) isolates derived from human EBOV cases. Engraftment of the human cellular immune system appeared to be essential for the observed virulence, as nonengrafted mice did not support productive EBOV replication or develop lethal disease. hu-BLT mice offer a unique model for investigating the human immune response in EVD and an alternative animal model for EVD pathogenesis studies and therapeutic screening. Published by Oxford University Press for the Infectious Diseases Society of America 2015. This work is written by (a) US Government employee(s) and is in the public domain in the US.
Parham, Fred; Portier, Christopher J.; Chang, Xiaoqing; Mevissen, Meike
2016-01-01
Using in vitro data in human cell lines, several research groups have investigated changes in gene expression in cellular systems following exposure to extremely low frequency (ELF) and radiofrequency (RF) electromagnetic fields (EMF). For ELF EMF, we obtained five studies with complete microarray data and three studies with only lists of significantly altered genes. Likewise, for RF EMF, we obtained 13 complete microarray datasets and 5 limited datasets. Plausible linkages between exposure to ELF and RF EMF and human diseases were identified using a three-step process: (a) linking genes associated with classes of human diseases to molecular pathways, (b) linking pathways to ELF and RF EMF microarray data, and (c) identifying associations between human disease and EMF exposures where the pathways are significantly similar. A total of 60 pathways were associated with human diseases, mostly focused on basic cellular functions like JAK–STAT signaling or metabolic functions like xenobiotic metabolism by cytochrome P450 enzymes. ELF EMF datasets were sporadically linked to human diseases, but no clear pattern emerged. Individual datasets showed some linkage to cancer, chemical dependency, metabolic disorders, and neurological disorders. RF EMF datasets were not strongly linked to any disorders but strongly linked to changes in several pathways. Based on these analyses, the most promising area for further research would be to focus on EMF and neurological function and disorders. PMID:27656641
Sugimoto, Chie; Fujita, Hiroyoshi; Wakao, Hiroshi
2016-01-01
Mice have frequently been used to model human diseases involving immune dysregulation such as autoimmune and inflammatory diseases. These models help elucidate the mechanisms underlying the disease and in the development of novel therapies. However, if mice are deficient in certain cells and/or effectors associated with human diseases, how can their functions be investigated in this species? Mucosal-associated invariant T (MAIT) cells, a novel innate-like T cell family member, are a good example. MAIT cells are abundant in humans but scarce in laboratory mice. MAIT cells harbor an invariant T cell receptor and recognize nonpeptidic antigens vitamin B2 metabolites from bacteria and yeasts. Recent studies have shown that MAIT cells play a pivotal role in human diseases such as bacterial infections and autoimmune and inflammatory diseases. MAIT cells possess granulysin, a human-specific effector molecule, but granulysin and its homologue are absent in mice. Furthermore, MAIT cells show poor proliferation in vitro. To overcome these problems and further our knowledge of MAIT cells, we have established a method to expand MAIT cells via induced pluripotent stem cells (iPSCs). In this review, we describe recent advances in the field of MAIT cell research and our approach for human disease modeling with iPSC-derived MAIT cells. PMID:27114747
A comparative study of disease genes and drug targets in the human protein interactome
2015-01-01
Background Disease genes cause or contribute genetically to the development of the most complex diseases. Drugs are the major approaches to treat the complex disease through interacting with their targets. Thus, drug targets are critical for treatment efficacy. However, the interrelationship between the disease genes and drug targets is not clear. Results In this study, we comprehensively compared the network properties of disease genes and drug targets for five major disease categories (cancer, cardiovascular disease, immune system disease, metabolic disease, and nervous system disease). We first collected disease genes from genome-wide association studies (GWAS) for five disease categories and collected their corresponding drugs based on drugs' Anatomical Therapeutic Chemical (ATC) classification. Then, we obtained the drug targets for these five different disease categories. We found that, though the intersections between disease genes and drug targets were small, disease genes were significantly enriched in targets compared to their enrichment in human protein-coding genes. We further compared network properties of the proteins encoded by disease genes and drug targets in human protein-protein interaction networks (interactome). The results showed that the drug targets tended to have higher degree, higher betweenness, and lower clustering coefficient in cancer Furthermore, we observed a clear fraction increase of disease proteins or drug targets in the near neighborhood compared with the randomized genes. Conclusions The study presents the first comprehensive comparison of the disease genes and drug targets in the context of interactome. The results provide some foundational network characteristics for further designing computational strategies to predict novel drug targets and drug repurposing. PMID:25861037
A comparative study of disease genes and drug targets in the human protein interactome.
Sun, Jingchun; Zhu, Kevin; Zheng, W; Xu, Hua
2015-01-01
Disease genes cause or contribute genetically to the development of the most complex diseases. Drugs are the major approaches to treat the complex disease through interacting with their targets. Thus, drug targets are critical for treatment efficacy. However, the interrelationship between the disease genes and drug targets is not clear. In this study, we comprehensively compared the network properties of disease genes and drug targets for five major disease categories (cancer, cardiovascular disease, immune system disease, metabolic disease, and nervous system disease). We first collected disease genes from genome-wide association studies (GWAS) for five disease categories and collected their corresponding drugs based on drugs' Anatomical Therapeutic Chemical (ATC) classification. Then, we obtained the drug targets for these five different disease categories. We found that, though the intersections between disease genes and drug targets were small, disease genes were significantly enriched in targets compared to their enrichment in human protein-coding genes. We further compared network properties of the proteins encoded by disease genes and drug targets in human protein-protein interaction networks (interactome). The results showed that the drug targets tended to have higher degree, higher betweenness, and lower clustering coefficient in cancer Furthermore, we observed a clear fraction increase of disease proteins or drug targets in the near neighborhood compared with the randomized genes. The study presents the first comprehensive comparison of the disease genes and drug targets in the context of interactome. The results provide some foundational network characteristics for further designing computational strategies to predict novel drug targets and drug repurposing.
A cellular star atlas: using astrocytes from human pluripotent stem cells for disease studies
Krencik, Robert; Ullian, Erik M.
2013-01-01
What roles do astrocytes play in human disease?This question remains unanswered for nearly every human neurological disorder. Yet, because of their abundance and complexity astrocytes can impact neurological function in many ways. The differentiation of human pluripotent stem cells (hPSCs) into neuronal and glial subtypes, including astrocytes, is becoming routine, thus their use as tools for modeling neurodevelopment and disease will provide one important approach to answer this question. When designing experiments, careful consideration must be given to choosing paradigms for differentiation, maturation, and functional analysis of these temporally asynchronous cellular populations in culture. In the case of astrocytes, they display heterogeneous characteristics depending upon species of origin, brain region, developmental stage, environmental factors, and disease states, all of which may render experimental results highly variable. In this review, challenges and future directions are discussed for using hPSC-derived astroglial progenitors and mature astrocytes for neurodevelopmental studies with a focus on exploring human astrocyte effects upon neuronal function. As new technologies emerge to measure the functions of astrocytes in vitro and in vivo, there is also a need for a standardized source of human astrocytes that are most relevant to the diseases of interest. PMID:23503583
Metabolomics in plants and humans: applications in the prevention and diagnosis of diseases.
Gomez-Casati, Diego F; Zanor, Maria I; Busi, María V
2013-01-01
In the recent years, there has been an increase in the number of metabolomic approaches used, in parallel with proteomic and functional genomic studies. The wide variety of chemical types of metabolites available has also accelerated the use of different techniques in the investigation of the metabolome. At present, metabolomics is applied to investigate several human diseases, to improve their diagnosis and prevention, and to design better therapeutic strategies. In addition, metabolomic studies are also being carried out in areas such as toxicology and pharmacology, crop breeding, and plant biotechnology. In this review, we emphasize the use and application of metabolomics in human diseases and plant research to improve human health.
X-ray diffraction evidence for myelin disorder in brain from humans with Alzheimer's disease.
Chia, L S; Thompson, J E; Moscarello, M A
1984-09-05
Wide-angle X-ray diffraction studies revealed that the lipid phase transition temperature of myelin from brain tissue of humans with Alzheimer's disease was about 12 degrees C lower than that of normal age-matched controls, indicating differences in the physical organization of the myelin lipid bilayer. Elevated levels of malondialdehyde and conjugated diene were found in brain tissue from humans with Alzheimer's disease, indicating an increased amount of lipid peroxidation over the controls. An increase in myelin disorder and in lipid peroxidation can both be correlated with aging in human brain, but the changes in myelin from humans with Alzheimer's disease are more pronounced than in normal aging. These changes might represent severe or accelerated aging.
Network analysis of human diseases using Korean nationwide claims data.
Kim, Jin Hee; Son, Ki Young; Shin, Dong Wook; Kim, Sang Hyuk; Yun, Jae Won; Shin, Jung Hyun; Kang, Mi So; Chung, Eui Heon; Yoo, Kyoung Hun; Yun, Jae Moon
2016-06-01
To investigate disease-disease associations by conducting a network analysis using Korean nationwide claims data. We used the claims data from the Health Insurance Review and Assessment Service-National Patient Sample for the year 2011. Among the 2049 disease codes in the claims data, 1154 specific disease codes were used and combined into 795 representative disease codes. We analyzed for 381 representative codes, which had a prevalence of >0.1%. For disease code pairs of a combination of 381 representative disease codes, P values were calculated by using the χ(2) test and the degrees of associations were expressed as odds ratios (ORs). For 5515 (7.62%) statistically significant disease-disease associations with a large effect size (OR>5), we constructed a human disease network consisting of 369 nodes and 5515 edges. The human disease network shows the distribution of diseases in the disease network and the relationships between diseases or disease groups, demonstrating that diseases are associated with each other, forming a complex disease network. We reviewed 5515 disease-disease associations and classified them according to underlying mechanisms. Several disease-disease associations were identified, but the evidence of these associations is not sufficient and the mechanisms underlying these associations have not been clarified yet. Further research studies are needed to investigate these associations and their underlying mechanisms. Human disease network analysis using claims data enriches the understanding of human diseases and provides new insights into disease-disease associations that can be useful in future research. Copyright © 2016 Elsevier Inc. All rights reserved.
Frank, D N
2011-03-01
The priorities of public health and agricultural sciences intersect through a shared objective to foster better human health. Enhancements in food quality and reductions in the environmental effects of modern agriculture represent 2 distinct paths through which animal sciences can contribute to the cause of public health. Recent developments in the study of human-associated microbial communities (microbiotas), notably in association with disease, indicate that better understanding of the microbial ecology of livestock can contribute to achieving the goals of better foods and a cleaner environment. Culture-independent microbiological technologies now permit comprehensive study of complex microbial communities in their natural environments. Microbiotas associated with both humans and animals provide myriad beneficial services to their hosts that, if lost or diminished, could compromise host health. Dysfunctional microbial communities have been noted in several human conditions, including inflammatory bowel disease, obesity, and antibiotic-associated diarrhea. Examination of the mechanisms by which the human microbiota influences health and disease susceptibility can inform similar studies of host-microbe function in the animal sciences. Insights gained from human studies indicate strategies to raise not only healthier livestock, through selective manipulation of microbial communities, but also healthier humans.
Evolution, revolution and heresy in the genetics of infectious disease susceptibility
Hill, Adrian V. S.
2012-01-01
Infectious pathogens have long been recognized as potentially powerful agents impacting on the evolution of human genetic diversity. Analysis of large-scale case–control studies provides one of the most direct means of identifying human genetic variants that currently impact on susceptibility to particular infectious diseases. For over 50 years candidate gene studies have been used to identify loci for many major causes of human infectious mortality, including malaria, tuberculosis, human immunodeficiency virus/acquired immunodeficiency syndrome, bacterial pneumonia and hepatitis. But with the advent of genome-wide approaches, many new loci have been identified in diverse populations. Genome-wide linkage studies identified a few loci, but genome-wide association studies are proving more successful, and both exome and whole-genome sequencing now offer a revolutionary increase in power. Opinions differ on the extent to which the genetic component to common disease susceptibility is encoded by multiple high frequency or rare variants, and the heretical view that most infectious diseases might even be monogenic has been advocated recently. Review of findings to date suggests that the genetic architecture of infectious disease susceptibility may be importantly different from that of non-infectious diseases, and it is suggested that natural selection may be the driving force underlying this difference. PMID:22312051
Gurley, Emily S.
2017-01-01
Human factors, including contact structure, movement, impact on the environment and patterns of behaviour, can have significant influence on the emergence of novel infectious diseases and the transmission and amplification of established ones. As anthropogenic climate change alters natural systems and global economic forces drive land-use and land-cover change, it becomes increasingly important to understand both the ecological and social factors that impact infectious disease outcomes for human populations. While the field of disease ecology explicitly studies the ecological aspects of infectious disease transmission, the effects of the social context on zoonotic pathogen spillover and subsequent human-to-human transmission are comparatively neglected in the literature. The social sciences encompass a variety of disciplines and frameworks for understanding infectious diseases; however, here we focus on four primary areas of social systems that quantitatively and qualitatively contribute to infectious diseases as social–ecological systems. These areas are social mixing and structure, space and mobility, geography and environmental impact, and behaviour and behaviour change. Incorporation of these social factors requires empirical studies for parametrization, phenomena characterization and integrated theoretical modelling of social–ecological interactions. The social–ecological system that dictates infectious disease dynamics is a complex system rich in interacting variables with dynamically significant heterogeneous properties. Future discussions about infectious disease spillover and transmission in human populations need to address the social context that affects particular disease systems by identifying and measuring qualitatively important drivers. This article is part of the themed issue ‘Opening the black box: re-examining the ecology and evolution of parasite transmission’. PMID:28289265
Development of a Mouse Model of Helicobacter pylori Infection that Mimics Human Disease
NASA Astrophysics Data System (ADS)
Marchetti, Marta; Arico, Beatrice; Burroni, Daniela; Figura, Natale; Rappuoli, Rino; Ghiara, Paolo
1995-03-01
The human pathogen Helicobacter pylori is associated with gastritis, peptic ulcer disease, and gastric cancer. The pathogenesis of H. pylori infection in vivo was studied by adapting fresh clinical isolates of bacteria to colonize the stomachs of mice. A gastric pathology resembling human disease was observed in infections with cytotoxin-producing strains but not with noncytotoxic strains. Oral immunization with purified H. pylori antigens protected mice from bacterial infection. This mouse model will allow the development of therapeutic agents and vaccines against H. pylori infection in humans.
FlyBase portals to human disease research using Drosophila models.
Millburn, Gillian H; Crosby, Madeline A; Gramates, L Sian; Tweedie, Susan
2016-03-01
The use of Drosophila melanogaster as a model for studying human disease is well established, reflected by the steady increase in both the number and proportion of fly papers describing human disease models in recent years. In this article, we highlight recent efforts to improve the availability and accessibility of the disease model information in FlyBase (http://flybase.org), the model organism database for Drosophila. FlyBase has recently introduced Human Disease Model Reports, each of which presents background information on a specific disease, a tabulation of related disease subtypes, and summaries of experimental data and results using fruit flies. Integrated presentations of relevant data and reagents described in other sections of FlyBase are incorporated into these reports, which are specifically designed to be accessible to non-fly researchers in order to promote collaboration across model organism communities working in translational science. Another key component of disease model information in FlyBase is that data are collected in a consistent format --- using the evolving Disease Ontology (an open-source standardized ontology for human-disease-associated biomedical data) - to allow robust and intuitive searches. To facilitate this, FlyBase has developed a dedicated tool for querying and navigating relevant data, which include mutations that model a disease and any associated interacting modifiers. In this article, we describe how data related to fly models of human disease are presented in individual Gene Reports and in the Human Disease Model Reports. Finally, we discuss search strategies and new query tools that are available to access the disease model data in FlyBase. © 2016. Published by The Company of Biologists Ltd.
Acland, Gregory M.
2014-01-01
Considerable clinical and molecular variations have been known in retinal blinding diseases in man and also in dogs. Different forms of retinal diseases occur in specific breed(s) caused by mutations segregating within each isolated breeding population. While molecular studies to find genes and mutations underlying retinal diseases in dogs have benefited largely from the phenotypic and genetic uniformity within a breed, within- and across-breed variations have often played a key role in elucidating the molecular basis. The increasing knowledge of phenotypic, allelic, and genetic heterogeneities in canine retinal degeneration has shown that the overall picture is rather more complicated than initially thought. Over the past 20 years, various approaches have been developed and tested to search for genes and mutations underlying genetic traits in dogs, depending on the availability of genetic tools and sample resources. Candidate gene, linkage analysis, and genome-wide association studies have so far identified 24 mutations in 18 genes underlying retinal diseases in at least 58 dog breeds. Many of these genes have been associated with retinal diseases in humans, thus providing opportunities to study the role in pathogenesis and in normal vision. Application in therapeutic interventions such as gene therapy has proven successful initially in a naturally occurring dog model followed by trials in human patients. Other genes whose human homologs have not been associated with retinal diseases are potential candidates to explain equivalent human diseases and contribute to the understanding of their function in vision. PMID:22065099
Miyadera, Keiko; Acland, Gregory M; Aguirre, Gustavo D
2012-02-01
Considerable clinical and molecular variations have been known in retinal blinding diseases in man and also in dogs. Different forms of retinal diseases occur in specific breed(s) caused by mutations segregating within each isolated breeding population. While molecular studies to find genes and mutations underlying retinal diseases in dogs have benefited largely from the phenotypic and genetic uniformity within a breed, within- and across-breed variations have often played a key role in elucidating the molecular basis. The increasing knowledge of phenotypic, allelic, and genetic heterogeneities in canine retinal degeneration has shown that the overall picture is rather more complicated than initially thought. Over the past 20 years, various approaches have been developed and tested to search for genes and mutations underlying genetic traits in dogs, depending on the availability of genetic tools and sample resources. Candidate gene, linkage analysis, and genome-wide association studies have so far identified 24 mutations in 18 genes underlying retinal diseases in at least 58 dog breeds. Many of these genes have been associated with retinal diseases in humans, thus providing opportunities to study the role in pathogenesis and in normal vision. Application in therapeutic interventions such as gene therapy has proven successful initially in a naturally occurring dog model followed by trials in human patients. Other genes whose human homologs have not been associated with retinal diseases are potential candidates to explain equivalent human diseases and contribute to the understanding of their function in vision.
Sampaziotis, Fotios; de Brito, Miguel Cardoso; Madrigal, Pedro; Bertero, Alessandro; Saeb-Parsy, Kourosh; Soares, Filipa A C; Schrumpf, Elisabeth; Melum, Espen; Karlsen, Tom H; Bradley, J Andrew; Gelson, William Th; Davies, Susan; Baker, Alastair; Kaser, Arthur; Alexander, Graeme J; Hannan, Nicholas R F; Vallier, Ludovic
2015-08-01
The study of biliary disease has been constrained by a lack of primary human cholangiocytes. Here we present an efficient, serum-free protocol for directed differentiation of human induced pluripotent stem cells into cholangiocyte-like cells (CLCs). CLCs show functional characteristics of cholangiocytes, including bile acids transfer, alkaline phosphatase activity, γ-glutamyl-transpeptidase activity and physiological responses to secretin, somatostatin and vascular endothelial growth factor. We use CLCs to model in vitro key features of Alagille syndrome, polycystic liver disease and cystic fibrosis (CF)-associated cholangiopathy. Furthermore, we use CLCs generated from healthy individuals and patients with polycystic liver disease to reproduce the effects of the drugs verapamil and octreotide, and we show that the experimental CF drug VX809 rescues the disease phenotype of CF cholangiopathy in vitro. Our differentiation protocol will facilitate the study of biological mechanisms controlling biliary development, as well as disease modeling and drug screening.
Evolutionary evidence of the effect of rare variants on disease etiology.
Gorlov, I P; Gorlova, O Y; Frazier, M L; Spitz, M R; Amos, C I
2011-03-01
The common disease/common variant hypothesis has been popular for describing the genetic architecture of common human diseases for several years. According to the originally stated hypothesis, one or a few common genetic variants with a large effect size control the risk of common diseases. A growing body of evidence, however, suggests that rare single-nucleotide polymorphisms (SNPs), i.e. those with a minor allele frequency of less than 5%, are also an important component of the genetic architecture of common human diseases. In this study, we analyzed the relevance of rare SNPs to the risk of common diseases from an evolutionary perspective and found that rare SNPs are more likely than common SNPs to be functional and tend to have a stronger effect size than do common SNPs. This observation, and the fact that most of the SNPs in the human genome are rare, suggests that rare SNPs are a crucial element of the genetic architecture of common human diseases. We propose that the next generation of genomic studies should focus on analyzing rare SNPs. Further, targeting patients with a family history of the disease, an extreme phenotype, or early disease onset may facilitate the detection of risk-associated rare SNPs. © 2010 John Wiley & Sons A/S.
Microbial genome-wide association studies: lessons from human GWAS.
Power, Robert A; Parkhill, Julian; de Oliveira, Tulio
2017-01-01
The reduced costs of sequencing have led to whole-genome sequences for a large number of microorganisms, enabling the application of microbial genome-wide association studies (GWAS). Given the successes of human GWAS in understanding disease aetiology and identifying potential drug targets, microbial GWAS are likely to further advance our understanding of infectious diseases. These advances include insights into pressing global health problems, such as antibiotic resistance and disease transmission. In this Review, we outline the methodologies of GWAS, the current state of the field of microbial GWAS, and how lessons from human GWAS can direct the future of the field.
2009-01-01
Background Isoproterenol-induced cardiac hypertrophy in mice has been used in a number of studies to model human cardiac disease. In this study, we compared the transcriptional response of the heart in this model to other animal models of heart failure, as well as to the transcriptional response of human hearts suffering heart failure. Results We performed microarray analyses on RNA from mice with isoproterenol-induced cardiac hypertrophy and mice with exercise-induced physiological hypertrophy and identified 865 and 2,534 genes that were significantly altered in pathological and physiological cardiac hypertrophy models, respectively. We compared our results to 18 different microarray data sets (318 individual arrays) representing various other animal models and four human cardiac diseases and identified a canonical set of 64 genes that are generally altered in failing hearts. We also produced a pairwise similarity matrix to illustrate relatedness of animal models with human heart disease and identified ischemia as the human condition that most resembles isoproterenol treatment. Conclusion The overall patterns of gene expression are consistent with observed structural and molecular differences between normal and maladaptive cardiac hypertrophy and support a role for the immune system (or immune cell infiltration) in the pathology of stress-induced hypertrophy. Cross-study comparisons such as the results presented here provide targets for further research of cardiac disease that might generally apply to maladaptive cardiac stresses and are also a means of identifying which animal models best recapitulate human disease at the transcriptional level. PMID:20003209
Dog as a model in studies on human hereditary diseases and their gene therapy.
Switonski, Marek
2014-03-01
During the last 15 years spectacular progress has been achieved in knowledge on the dog genome organization and the molecular background of hereditary diseases in this species. A majority of canine genetic diseases have their counterparts in humans and thus dogs are considered as a very important large animal model in human biomedicine. Among canine monogenic diseases with known causative gene mutations there are two large groups classified as retinal dystrophies and lysosomal storage diseases. Specific types of these diseases are usually diagnosed in a single or several breeds. A well known disorder, restricted to a single breed, is congenital stationary night blindness described in Briards. This disease is a counterpart of Leber amaurosis in children. On the other hand, one of the most common monogenic human diseases (Duchenne muscular dystrophy), has its canine counterparts in several breeds (e.g., the Golden retriever, Beagle and German short-haired pointer). For some of the canine diseases gene therapy strategy was successfully applied, e.g., for congenital stationary night blindness, rod-cone dystrophy and muccopolysaccharydoses type I, IIIB and VII. Since phenotypic variability between the breeds is exceptionally high, the dog is an interesting model to study the molecular background of congenital malformations (e.g., dwarfism and osteoporosis imperfecta). Also disorders of sexual development (DSD), especially testicular or ovotesticular DSD (78,XX; SRY-negative), which is widely distributed across dozens of breeds, are of particular interest. Studies on the genetic background of canine cancers, a major health problem in this species, are also quite advanced. On the other hand, genetic studies on canine counterparts of major human complex diseases (e.g., obesity, the metabolic syndrome and diabetes mellitus) are still in their infancy. Copyright © 2014 Society for Biology of Reproduction & the Institute of Animal Reproduction and Food Research of Polish Academy of Sciences in Olsztyn. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.
Carver, Scott; Mills, James N.; Parmenter, Cheryl A.; Parmenter, Robert R.; Richardson, Kyle S.; Harris, Rachel L.; Douglass, Richard J.; Kuenzi, Amy J.; Luis, Angela D.
2015-01-01
Understanding the environmental drivers of zoonotic reservoir and human interactions is crucial to understanding disease risk, but these drivers are poorly predicted. We propose a mechanistic understanding of human–reservoir interactions, using hantavirus pulmonary syndrome as a case study. Crucial processes underpinning the disease's incidence remain poorly studied, including the connectivity among natural and peridomestic deer mouse host activity, virus transmission, and human exposure. We found that disease cases were greatest in arid states and declined exponentially with increasing precipitation. Within arid environments, relatively rare climatic conditions (e.g., El Niño) are associated with increased rainfall and reservoir abundance, producing more frequent virus transmission and host dispersal. We suggest that deer mice increase their occupancy of peridomestic structures during spring–summer, amplifying intraspecific transmission and human infection risk. Disease incidence in arid states may increase with predicted climatic changes. Mechanistic approaches incorporating reservoir behavior, reservoir–human interactions, and pathogen spillover could enhance our understanding of global hantavirus ecology, with applications to other directly transmitted zoonoses. PMID:26955081
Peprah, Emmanuel; Xu, Huichun; Tekola-Ayele, Fasil; Royal, Charmaine D.
2014-01-01
Genomic research is one of the tools for elucidating the pathogenesis of diseases of global health relevance, and paving the research dimension to clinical and public health translation. Recent advances in genomic research and technologies have increased our understanding of human diseases, genes associated with these disorders, and the relevant mechanisms. Genome-wide association studies (GWAS) have proliferated since the first studies were published several years ago, and have become an important tool in helping researchers comprehend human variation and the role genetic variants play in disease. However, the need to expand the diversity of populations in GWAS has become increasingly apparent as new knowledge is gained about genetic variation. Inclusion of diverse populations in genomic studies is critical to a more complete understanding of human variation and elucidation of the underpinnings of complex diseases. In this review, we summarize the available data on GWAS in recent-African ancestry populations within the western hemisphere (i.e. African Americans and peoples of the Caribbean) and continental African populations. Furthermore, we highlight ways in which genomic studies in populations of recent African ancestry have led to advances in the areas of malaria, HIV, prostate cancer, and other diseases. Finally, we discuss the advantages of conducting GWAS in recent African ancestry populations in the context of addressing existing and emerging global health conditions. PMID:25427668
Does biodiversity protect humans against infectious disease?
Wood, Chelsea L; Lafferty, Kevin D; DeLeo, Giulio; Young, Hillary S; Hudson, Peter J; Kuris, Armand M
2014-04-01
Control of human infectious disease has been promoted as a valuable ecosystem service arising from the conservation of biodiversity. There are two commonly discussed mechanisms by which biodiversity loss could increase rates of infectious disease in a landscape. First, loss of competitors or predators could facilitate an increase in the abundance of competent reservoir hosts. Second, biodiversity loss could disproportionately affect non-competent, or less competent reservoir hosts, which would otherwise interfere with pathogen transmission to human populations by, for example, wasting the bites of infected vectors. A negative association between biodiversity and disease risk, sometimes called the "dilution effect hypothesis," has been supported for a few disease agents, suggests an exciting win-win outcome for the environment and society, and has become a pervasive topic in the disease ecology literature. Case studies have been assembled to argue that the dilution effect is general across disease agents. Less touted are examples in which elevated biodiversity does not affect or increases infectious disease risk for pathogens of public health concern. In order to assess the likely generality of the dilution effect, we review the association between biodiversity and public health across a broad variety of human disease agents. Overall, we hypothesize that conditions for the dilution effect are unlikely to be met for most important diseases of humans. Biodiversity probably has little net effect on most human infectious diseases but, when it does have an effect, observation and basic logic suggest that biodiversity will be more likely to increase than to decrease infectious disease risk.
Human Hemato-Lymphoid System Mice: Current Use and Future Potential for Medicine
Rongvaux, Anthony; Takizawa, Hitoshi; Strowig, Till; Willinger, Tim; Eynon, Elizabeth E.
2014-01-01
To directly study complex human hemato-lymphoid system physiology and respective system-associated diseases in vivo, human-to-mouse xenotransplantation models for human blood and blood-forming cells and organs have been developed over the past three decades. We here review the fundamental requirements and the remarkable progress made over the past few years in improving these systems, the current major achievements reached by use of these models, and the future challenges to more closely model and study human health and disease and to achieve predictive preclinical testing of both prevention measures and potential new therapies. PMID:23330956
Differential expression of connexin 43 in human autoimmune thyroid disease.
Jiang, Xiao-Yan; Feng, Xiao-Hong; Li, Guo-Yan; Zhao, Qian; Yin, Hui-Qing
2010-05-01
Gap junctions provide a pathway for cell-to-cell communication. Reduced thyroid epithelial cell-cell communication has been reported in some animal models of autoimmune thyroid disease. In order to assess whether this change was similar to human autoimmune thyroid disease, we identified some connexin proteins and their corresponding mRNA in human thyroid gland. The aim of our study was to explore the expression of connexin 43 (Cx43) in the thyroid gland from normal and diseased human thyroid tissue by immunohistochemistry and reverse transcription polymerase chain reaction (RT-PCR). The expression levels of Cx43 in Grave's disease were significantly increased in comparison with those of normal thyroid tissue. There was a significant decrease in expression of Cx43 in Hashimoto's thyroiditis, compared with normal thyroid tissue. These data indicate that changes of Cx43 expression in human autoimmune thyroid disease were associated with variations in thyroid function and hormone secretion. 2009 Elsevier GmbH. All rights reserved.
Use of genome editing tools in human stem cell-based disease modeling and precision medicine.
Wei, Yu-da; Li, Shuang; Liu, Gai-gai; Zhang, Yong-xian; Ding, Qiu-rong
2015-10-01
Precision medicine emerges as a new approach that takes into account individual variability. The successful conduct of precision medicine requires the use of precise disease models. Human pluripotent stem cells (hPSCs), as well as adult stem cells, can be differentiated into a variety of human somatic cell types that can be used for research and drug screening. The development of genome editing technology over the past few years, especially the CRISPR/Cas system, has made it feasible to precisely and efficiently edit the genetic background. Therefore, disease modeling by using a combination of human stem cells and genome editing technology has offered a new platform to generate " personalized " disease models, which allow the study of the contribution of individual genetic variabilities to disease progression and the development of precise treatments. In this review, recent advances in the use of genome editing in human stem cells and the generation of stem cell models for rare diseases and cancers are discussed.
Human Milk and Allergic Diseases: An Unsolved Puzzle
Peroni, Diego G.; Boix-Amorós, Alba; Hsu, Peter S.; Van’t Land, Belinda; Skevaki, Chrysanthi; Collado, Maria Carmen; Garssen, Johan; Geddes, Donna T.; Nanan, Ralph; Slupsky, Carolyn; Wegienka, Ganesa; Kozyrskyj, Anita L.; Warner, John O.
2017-01-01
There is conflicting evidence on the protective role of breastfeeding in relation to the development of allergic sensitisation and allergic disease. Studies vary in methodology and definition of outcomes, which lead to considerable heterogeneity. Human milk composition varies both within and between individuals, which may partially explain conflicting data. It is known that human milk composition is very complex and contains variable levels of immune active molecules, oligosaccharides, metabolites, vitamins and other nutrients and microbial content. Existing evidence suggests that modulation of human breast milk composition has potential for preventing allergic diseases in early life. In this review, we discuss associations between breastfeeding/human milk composition and allergy development. PMID:28817095
Human Milk and Allergic Diseases: An Unsolved Puzzle.
Munblit, Daniel; Peroni, Diego G; Boix-Amorós, Alba; Hsu, Peter S; Van't Land, Belinda; Gay, Melvin C L; Kolotilina, Anastasia; Skevaki, Chrysanthi; Boyle, Robert J; Collado, Maria Carmen; Garssen, Johan; Geddes, Donna T; Nanan, Ralph; Slupsky, Carolyn; Wegienka, Ganesa; Kozyrskyj, Anita L; Warner, John O
2017-08-17
There is conflicting evidence on the protective role of breastfeeding in relation to the development of allergic sensitisation and allergic disease. Studies vary in methodology and definition of outcomes, which lead to considerable heterogeneity. Human milk composition varies both within and between individuals, which may partially explain conflicting data. It is known that human milk composition is very complex and contains variable levels of immune active molecules, oligosaccharides, metabolites, vitamins and other nutrients and microbial content. Existing evidence suggests that modulation of human breast milk composition has potential for preventing allergic diseases in early life. In this review, we discuss associations between breastfeeding/human milk composition and allergy development.
Campbell, Michael C.; Tishkoff, Sarah A.
2010-01-01
Comparative studies of ethnically diverse human populations, particularly in Africa, are important for reconstructing human evolutionary history and for understanding the genetic basis of phenotypic adaptation and complex disease. African populations are characterized by greater levels of genetic diversity, extensive population substructure, and less linkage disequilibrium (LD) among loci compared to non-African populations. Africans also possess a number of genetic adaptations that have evolved in response to diverse climates and diets, as well as exposure to infectious disease. This review summarizes patterns and the evolutionary origins of genetic diversity present in African populations, as well as their implications for the mapping of complex traits, including disease susceptibility. PMID:18593304
Canine DLA diversity: 3. Disease studies.
Kennedy, L J; Barnes, A; Short, A; Brown, J J; Seddon, J; Fleeman, L; Brkljacic, M; Happ, G M; Catchpole, B; Ollier, W E R
2007-04-01
There are many millions of dogs worldwide, and these dogs have many different functions. The most obvious use is providing companionship, but there are also many working dogs, including guide dogs for the blind, hearing dogs, guard dogs and farm dogs, to mention a few. The health and welfare of these dogs is of great concern to dog owners, dog breeders and to those who use dogs in their work. Dogs spontaneously develop many diseases that are very similar to their human counterparts. Dogs may, therefore, provide exceptional animal models for such diseases. Identifying genetic markers in the dog may be easier than in humans, and may then provide useful information about genes that can be transferred to humans. This study looked for associations between DLA and two autoimmune diseases of the dog, diabetes and hypothyroidism. DLA associations were found for both of these diseases.
Trevisan, Marta; Sinigaglia, Alessandro; Desole, Giovanna; Berto, Alessandro; Pacenti, Monia; Palù, Giorgio; Barzon, Luisa
2015-07-13
The recent biotechnology breakthrough of cell reprogramming and generation of induced pluripotent stem cells (iPSCs), which has revolutionized the approaches to study the mechanisms of human diseases and to test new drugs, can be exploited to generate patient-specific models for the investigation of host-pathogen interactions and to develop new antimicrobial and antiviral therapies. Applications of iPSC technology to the study of viral infections in humans have included in vitro modeling of viral infections of neural, liver, and cardiac cells; modeling of human genetic susceptibility to severe viral infectious diseases, such as encephalitis and severe influenza; genetic engineering and genome editing of patient-specific iPSC-derived cells to confer antiviral resistance.
Computational study of ‘HUB’ microRNA in human cardiac diseases
Krishnan, Remya; Nair, Achuthsankar S.; Dhar, Pawan K.
2017-01-01
MicroRNAs (miRNAs) are small non-coding RNAs ~22 nucleotides long that do not encode for proteins but have been reported to influence gene expression in normal and abnormal health conditions. Though a large body of scientific literature on miRNAs exists, their network level profile linking molecules with their corresponding phenotypes, is less explored. Here, we studied a network of 191 human miRNAs reported to play a role in 30 human cardiac diseases. Our aim was to study miRNA network properties like hubness and preferred associations, using data mining, network graph theory and statistical analysis. A total of 16 miRNAs were found to have a disease node connectivity of >5 edges (i.e., they were linked to more than 5 diseases) and were considered hubs in the miRNAcardiac disease network. Alternatively, when diseases were considered as hubs, >10 of miRNAs showed up on each ‘disease hub node’. Of all the miRNAs associated with diseases, 19 miRNAs (19/24= 79.1% of upregulated events) were found to be upregulated in atherosclerosis. The data suggest micro RNAs as early stage biological markers in cardiac conditions with potential towards microRNA based therapeutics. PMID:28479745
Unfoldomics of human diseases: linking protein intrinsic disorder with diseases
Uversky, Vladimir N; Oldfield, Christopher J; Midic, Uros; Xie, Hongbo; Xue, Bin; Vucetic, Slobodan; Iakoucheva, Lilia M; Obradovic, Zoran; Dunker, A Keith
2009-01-01
Background Intrinsically disordered proteins (IDPs) and intrinsically disordered regions (IDRs) lack stable tertiary and/or secondary structure yet fulfills key biological functions. The recent recognition of IDPs and IDRs is leading to an entire field aimed at their systematic structural characterization and at determination of their mechanisms of action. Bioinformatics studies showed that IDPs and IDRs are highly abundant in different proteomes and carry out mostly regulatory functions related to molecular recognition and signal transduction. These activities complement the functions of structured proteins. IDPs and IDRs were shown to participate in both one-to-many and many-to-one signaling. Alternative splicing and posttranslational modifications are frequently used to tune the IDP functionality. Several individual IDPs were shown to be associated with human diseases, such as cancer, cardiovascular disease, amyloidoses, diabetes, neurodegenerative diseases, and others. This raises questions regarding the involvement of IDPs and IDRs in various diseases. Results IDPs and IDRs were shown to be highly abundant in proteins associated with various human maladies. As the number of IDPs related to various diseases was found to be very large, the concepts of the disease-related unfoldome and unfoldomics were introduced. Novel bioinformatics tools were proposed to populate and characterize the disease-associated unfoldome. Structural characterization of the members of the disease-related unfoldome requires specialized experimental approaches. IDPs possess a number of unique structural and functional features that determine their broad involvement into the pathogenesis of various diseases. Conclusion Proteins associated with various human diseases are enriched in intrinsic disorder. These disease-associated IDPs and IDRs are real, abundant, diversified, vital, and dynamic. These proteins and regions comprise the disease-related unfoldome, which covers a significant part of the human proteome. Profound association between intrinsic disorder and various human diseases is determined by a set of unique structural and functional characteristics of IDPs and IDRs. Unfoldomics of human diseases utilizes unrivaled bioinformatics and experimental techniques, paves the road for better understanding of human diseases, their pathogenesis and molecular mechanisms, and helps develop new strategies for the analysis of disease-related proteins. PMID:19594884
Aoshiba, Kazutetsu; Tsuji, Takao; Itoh, Masayuki; Yamaguchi, Kazuhiro; Nakamura, Hiroyuki
2015-01-01
Although many studies have been published on the causes and mechanisms of chronic obstructive pulmonary disease (COPD), the reason for the existence of COPD and the reasons why COPD develops in humans have hardly been studied. Evolutionary medical approaches are required to explain not only the proximate factors, such as the causes and mechanisms of a disease, but the ultimate (evolutionary) factors as well, such as why the disease is present and why the disease develops in humans. According to the concepts of evolutionary medicine, disease susceptibility is acquired as a result of natural selection during the evolutionary process of traits linked to the genes involved in disease susceptibility. In this paper, we discuss the following six reasons why COPD develops in humans based on current evolutionary medical theories: (1) evolutionary constraints; (2) mismatch between environmental changes and evolution; (3) co-evolution with pathogenic microorganisms; (4) life history trade-off; (5) defenses and their costs, and (6) reproductive success at the expense of health. Our perspective pursues evolutionary answers to the fundamental question, 'Why are humans susceptible to this common disease, COPD, despite their long evolutionary history?' We believe that the perspectives offered by evolutionary medicine are essential for researchers to better understand the significance of their work.
Biodiversity and Functional Genomics in the Human Microbiome
Morgan, Xochitl C.; Segata, Nicola; Huttenhower, Curtis
2012-01-01
Over the course of our lives, humans are colonized by a tremendous diversity of commensal microbes, which comprise the human microbiome. The collective genetic potential (metagenome) of the human microbiome is orders of magnitude more than the human genome, and it profoundly affects human health and disease in ways we are only beginning to understand. Advances in computing and high-throughput sequencing have enabled population-level surveys such as MetaHIT and the recently-released Human Microbiome Project, detailed investigations of the microbiome in human disease, and mechanistic studies employing gnotobiotic model organisms. The resulting knowledge of human microbiome composition, function, and range of variation across multiple body sites has begun to assemble a rich picture of commensal host-microbe and microbe- microbe interactions as well as their roles in human health and disease and their potential as diagnostic and therapeutic tools. PMID:23140990
Animal models of disease shed light on Nipah virus pathogenesis and transmission.
de Wit, Emmie; Munster, Vincent J
2015-01-01
Nipah virus is an emerging virus infection that causes yearly disease outbreaks with high case fatality rates in Bangladesh. Nipah virus causes encephalitis and systemic vasculitis, sometimes in combination with respiratory disease. Pteropus species fruit bats are the natural reservoir of Nipah virus and zoonotic transmission can occur directly or via an intermediate host; human-to-human transmission occurs regularly. In this review we discuss the current state of knowledge on the pathogenesis and transmission of Nipah virus, focusing on dissemination of the virus through its host, known determinants of pathogenicity and routes of zoonotic and human-to-human transmission. Since data from human cases are sparse, this knowledge is largely based on the results of studies performed in animal models that recapitulate Nipah virus disease in humans. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.
Micro RNAs from DNA Viruses are Found Widely in Plasma in a Large Observational Human Population.
Koupenova, Milka; Mick, Eric; Corkrey, Heather A; Huan, Tianxiao; Clancy, Lauren; Shah, Ravi; Benjamin, Emelia J; Levy, Daniel; Kurt-Jones, Evelyn A; Tanriverdi, Kahraman; Freedman, Jane E
2018-04-23
Viral infections associate with disease risk and select families of viruses encode miRNAs that control an efficient viral cycle. The association of viral miRNA expression with disease in a large human population has not been previously explored. We sequenced plasma RNA from 40 participants of the Framingham Heart Study (FHS, Offspring Cohort, Visit 8) and identified 3 viral miRNAs from 3 different human Herpesviridae. These miRNAs were mostly related to viral latency and have not been previously detected in human plasma. Viral miRNA expression was then screened in the plasma of 2763 participants of the remaining cohort utilizing high-throughput RT-qPCR. All 3 viral miRNAs associated with combinations of inflammatory or prothrombotic circulating biomarkers (sTNFRII, IL-6, sICAM1, OPG, P-selectin) but did not associate with hypertension, coronary heart disease or cancer. Using a large observational population, we demonstrate that the presence of select viral miRNAs in the human circulation associate with inflammatory biomarkers and possibly immune response, but fail to associate with overt disease. This study greatly extends smaller singular observations of viral miRNAs in the human circulation and suggests that select viral miRNAs, such as those for latency, may not impact disease manifestation.
Arthur, Ronan F; Gurley, Emily S; Salje, Henrik; Bloomfield, Laura S P; Jones, James H
2017-05-05
Human factors, including contact structure, movement, impact on the environment and patterns of behaviour, can have significant influence on the emergence of novel infectious diseases and the transmission and amplification of established ones. As anthropogenic climate change alters natural systems and global economic forces drive land-use and land-cover change, it becomes increasingly important to understand both the ecological and social factors that impact infectious disease outcomes for human populations. While the field of disease ecology explicitly studies the ecological aspects of infectious disease transmission, the effects of the social context on zoonotic pathogen spillover and subsequent human-to-human transmission are comparatively neglected in the literature. The social sciences encompass a variety of disciplines and frameworks for understanding infectious diseases; however, here we focus on four primary areas of social systems that quantitatively and qualitatively contribute to infectious diseases as social-ecological systems. These areas are social mixing and structure, space and mobility, geography and environmental impact, and behaviour and behaviour change. Incorporation of these social factors requires empirical studies for parametrization, phenomena characterization and integrated theoretical modelling of social-ecological interactions. The social-ecological system that dictates infectious disease dynamics is a complex system rich in interacting variables with dynamically significant heterogeneous properties. Future discussions about infectious disease spillover and transmission in human populations need to address the social context that affects particular disease systems by identifying and measuring qualitatively important drivers.This article is part of the themed issue 'Opening the black box: re-examining the ecology and evolution of parasite transmission'. © 2017 The Author(s).
Sharma, Anurag; Wu, Wenzhu; Sung, Biin; Huang, Jing; Tsao, Tiffany; Li, Xiangming; Gomi, Rika; Tsuji, Moriya
2016-01-01
ABSTRACT Respiratory syncytial virus (RSV) is a leading cause of lower respiratory tract disease, which causes high rates of morbidity and mortality in infants and the elderly. Models of human RSV pulmonary disease are needed to better understand RSV pathogenesis and to assess the efficacy of RSV vaccines. We assessed the RSV-specific human innate, humoral, and cellular immune responses in humanized mice (mice with a human immune system [HIS mice]) with functional human CD4+ T and B cells. These mice were generated by introduction of HLA class II genes, various human cytokines, and human B cell activation factor into immunodeficient NOD scid gamma (NSG) mice by the use of an adeno-associated virus vector, followed by engraftment of human hematopoietic stem cells. During the first 3 days of infection, HIS mice lost more weight and cleared RSV faster than NSG mice. Human chemokine (C-C motif) ligand 3 (CCL3) and human interleukin-1β (IL-1β) expression was detected in the RSV-infected HIS mice. The pathological features induced by RSV infection in HIS mice included peribronchiolar inflammation, neutrophil predominance in the bronchioalveolar lavage fluid, and enhanced airway mucus production. Human anti-RSV IgG and RSV-neutralizing antibodies were detected in serum and human anti-RSV mucosal IgA was detected in bronchioalveolar lavage fluid for up to 6 weeks. RSV infection induced an RSV-specific human gamma interferon response in HIS mouse splenocytes. These results indicate that human immune cells can induce features of RSV lung disease, including mucus hyperplasia, in murine lungs and that HIS mice can be used to elicit human anti-RSV humoral and cellular immunity. IMPORTANCE Infections with respiratory syncytial virus (RSV) are common and can cause severe lung disease in infants and the elderly. The lack of a suitable animal model with disease features similar to those in humans has hampered efforts to predict the efficacy of novel anti-RSV therapies and vaccines for use in humans. A murine model consisting of mice with a human immune system (HIS mice) could be useful for assessment of RSV disease and anti-RSV responses specific to humans. This study investigates an HIS mouse model to imitate human RSV disease and immune responses. We found that RSV lung infection in HIS mice results in an RSV-specific pathology that mimics RSV disease in humans and induces human anti-RSV immune responses. This model could be useful for better understanding of human RSV disease and for the development of RSV therapies. PMID:26962219
Sserwadda, Ivan; Amujal, Marion; Namatovu, Norah
2018-01-01
HIV/AIDS, tuberculosis (TB), and malaria are 3 major global public health threats that undermine development in many resource-poor settings. Recently, the notion that positive selection during epidemics or longer periods of exposure to common infectious diseases may have had a major effect in modifying the constitution of the human genome is being interrogated at a large scale in many populations around the world. This positive selection from infectious diseases increases power to detect associations in genome-wide association studies (GWASs). High-throughput sequencing (HTS) has transformed both the management of infectious diseases and continues to enable large-scale functional characterization of host resistance/susceptibility alleles and loci; a paradigm shift from single candidate gene studies. Application of genome sequencing technologies and genomics has enabled us to interrogate the host-pathogen interface for improving human health. Human populations are constantly locked in evolutionary arms races with pathogens; therefore, identification of common infectious disease-associated genomic variants/markers is important in therapeutic, vaccine development, and screening susceptible individuals in a population. This review describes a range of host-pathogen genomic loci that have been associated with disease susceptibility and resistant patterns in the era of HTS. We further highlight potential opportunities for these genetic markers. PMID:29755620
Nipah Virus C and W Proteins Contribute to Respiratory Disease in Ferrets
Satterfield, Benjamin A.; Cross, Robert W.; Fenton, Karla A.; Borisevich, Viktoriya; Agans, Krystle N.; Deer, Daniel J.; Graber, Jessica; Basler, Christopher F.; Mire, Chad E.
2016-01-01
ABSTRACT Nipah virus (NiV) is a highly lethal paramyxovirus that recently emerged as a causative agent of febrile encephalitis and severe respiratory disease in humans. The ferret model has emerged as the preferred small-animal model with which to study NiV disease, but much is still unknown about the viral determinants of NiV pathogenesis, including the contribution of the C protein in ferrets. Additionally, studies have yet to examine the synergistic effects of the various P gene products on pathogenesis in animal models. Using recombinant NiVs (rNiVs), we examine the sole contribution of the NiV C protein and the combined contributions of the C and W proteins in the ferret model of NiV pathogenesis. We show that an rNiV void of C expression resulted in 100% mortality, though with limited respiratory disease, like our previously reported rNiV void of W expression; this finding is in stark contrast to the attenuated phenotype observed in previous hamster studies utilizing rNiVs void of C expression. We also observed that an rNiV void of both C and W expression resulted in limited respiratory disease; however, there was severe neurological disease leading to 60% mortality, and the surviving ferrets demonstrated sequelae similar to those for human survivors of NiV encephalitis. IMPORTANCE Nipah virus (NiV) is a human pathogen capable of causing lethal respiratory and neurological disease. Many human survivors have long-lasting neurological impairment. Using a ferret model, this study demonstrated the roles of the NiV C and W proteins in pathogenesis, where lack of either the C or the W protein independently decreased the severity of clinical respiratory disease but did not decrease lethality. Abolishing both C and W expression, however, dramatically decreased the severity of respiratory disease and the level of destruction of splenic germinal centers. These ferrets still suffered severe neurological disease: 60% succumbed to disease, and the survivors experienced long-term neurological impairment, such as that seen in human survivors. This new ferret NiV C and W knockout model may allow, for the first time, the examination of interventions to prevent or mitigate the neurological damage and sequelae experienced by human survivors. PMID:27147733
Nipah Virus C and W Proteins Contribute to Respiratory Disease in Ferrets.
Satterfield, Benjamin A; Cross, Robert W; Fenton, Karla A; Borisevich, Viktoriya; Agans, Krystle N; Deer, Daniel J; Graber, Jessica; Basler, Christopher F; Geisbert, Thomas W; Mire, Chad E
2016-07-15
Nipah virus (NiV) is a highly lethal paramyxovirus that recently emerged as a causative agent of febrile encephalitis and severe respiratory disease in humans. The ferret model has emerged as the preferred small-animal model with which to study NiV disease, but much is still unknown about the viral determinants of NiV pathogenesis, including the contribution of the C protein in ferrets. Additionally, studies have yet to examine the synergistic effects of the various P gene products on pathogenesis in animal models. Using recombinant NiVs (rNiVs), we examine the sole contribution of the NiV C protein and the combined contributions of the C and W proteins in the ferret model of NiV pathogenesis. We show that an rNiV void of C expression resulted in 100% mortality, though with limited respiratory disease, like our previously reported rNiV void of W expression; this finding is in stark contrast to the attenuated phenotype observed in previous hamster studies utilizing rNiVs void of C expression. We also observed that an rNiV void of both C and W expression resulted in limited respiratory disease; however, there was severe neurological disease leading to 60% mortality, and the surviving ferrets demonstrated sequelae similar to those for human survivors of NiV encephalitis. Nipah virus (NiV) is a human pathogen capable of causing lethal respiratory and neurological disease. Many human survivors have long-lasting neurological impairment. Using a ferret model, this study demonstrated the roles of the NiV C and W proteins in pathogenesis, where lack of either the C or the W protein independently decreased the severity of clinical respiratory disease but did not decrease lethality. Abolishing both C and W expression, however, dramatically decreased the severity of respiratory disease and the level of destruction of splenic germinal centers. These ferrets still suffered severe neurological disease: 60% succumbed to disease, and the survivors experienced long-term neurological impairment, such as that seen in human survivors. This new ferret NiV C and W knockout model may allow, for the first time, the examination of interventions to prevent or mitigate the neurological damage and sequelae experienced by human survivors. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Laser detection of CO2 concentration in human breath at various diseases
NASA Astrophysics Data System (ADS)
Ageev, Boris G.; Nikiforova, Olga Y.
2015-12-01
Absorption spectra of human breath in 10 μm region were recorded by the use of intracavity laser photo-acoustic gas analyzer based on tunable waveguide CO2 laser. Healthy persons and patients with various diseases were studied. For determination of CO2 concentration in exhalation samples gas analyzer was calibrated by reference gaseous mixture CO2-N2. It was obtained that CO2 concentration values in human breath of healthy persons are greater than that of patients with various diseases.
Aktaş, Osman; Aydin, Hakan; Uslu, Hakan
2016-02-17
Human parvovirus B19 is a pathogen that affects different parts of the body. We planned this study because of the lack of data on B19 seroprevalence based on different body-system diseases. The prevalence of parvovirus B19 antibodies was investigated retrospectively in 1239 patients by review of medical records from 2009-2012, according to their diseases classified under general titles in compliance with the International Classification of Diseases (ICD-10). Parvovirus B19-specific antibodies were detected by quantitative enzyme immunoassays. The positivity rate was 27.8% for only IgG, 8.5% for only IgM, and 2.6% for both IgG and IgM. The highest positivity for IgG alone was found in musculoskeletal system and connective tissue diseases (55.9%), while the highest positivity for IgM was found in neoplasms (16.4%). The highest positivity for IgG was seen in rheumatoid arthritis (72.2%) and pregnancy (52.6%), and the highest positivity for total IgM was found in upper respiratory tract disease (21.0%) and hepatic failure (17.1%). Parvovirus B19 seroprevalence was relatively low in northeastern Anatolia compared to most serological studies conducted in other regions. We think that this study has provided the first wide-ranging information on the seroprevalence of B19 in diseases and disorders of the major human body systems.
DGEM--a microarray gene expression database for primary human disease tissues.
Xia, Yuni; Campen, Andrew; Rigsby, Dan; Guo, Ying; Feng, Xingdong; Su, Eric W; Palakal, Mathew; Li, Shuyu
2007-01-01
Gene expression patterns can reflect gene regulations in human tissues under normal or pathologic conditions. Gene expression profiling data from studies of primary human disease samples are particularly valuable since these studies often span many years in order to collect patient clinical information and achieve a large sample size. Disease-to-Gene Expression Mapper (DGEM) provides a beneficial community resource to access and analyze these data; it currently includes Affymetrix oligonucleotide array datasets for more than 40 human diseases and 1400 samples. The data are normalized to the same scale and stored in a relational database. A statistical-analysis pipeline was implemented to identify genes abnormally expressed in disease tissues or genes whose expressions are associated with clinical parameters such as cancer patient survival. Data-mining results can be queried through a web-based interface at http://dgem.dhcp.iupui.edu/. The query tool enables dynamic generation of graphs and tables that are further linked to major gene and pathway resources that connect the data to relevant biology, including Entrez Gene and Kyoto Encyclopedia of Genes and Genomes (KEGG). In summary, DGEM provides scientists and physicians a valuable tool to study disease mechanisms, to discover potential disease biomarkers for diagnosis and prognosis, and to identify novel gene targets for drug discovery. The source code is freely available for non-profit use, on request to the authors.
Neuroproteomic profiling of human body fluids.
Häggmark, Anna; Schwenk, Jochen M; Nilsson, Peter
2016-04-01
Analysis of protein expression and abundance provides a possibility to extend the current knowledge on disease-associated processes and pathways. The human brain is a complex organ and dysfunction or damage can give rise to a variety of neurological diseases. Although many proteins potentially reflecting disease progress are originating from brain, the scarce availability of human tissue material has lead to utilization of body fluids such as cerebrospinal fluid and blood in disease-related research. Within the most common neurological disorders, much effort has been spent on studying the role of a few hallmark proteins in disease pathogenesis but despite extensive investigation, the signatures they provide seem insufficient to fully understand and predict disease progress. In order to expand the view the field of neuroproteomics has lately emerged alongside developing technologies, such as affinity proteomics and mass spectrometry, for multiplexed and high-throughput protein profiling. Here, we provide an overview of how such technologies have been applied to study neurological disease and we also discuss some important considerations concerning discovery of disease-associated profiles. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Applications and Limitations of Mouse Models for Understanding Human Atherosclerosis
von Scheidt, Moritz; Zhao, Yuqi; Kurt, Zeyneb; Pan, Calvin; Zeng, Lingyao; Yang, Xia; Schunkert, Heribert; Lusis, Aldons J.
2017-01-01
Most of the biological understanding of mechanisms underlying coronary artery disease (CAD) derives from studies of mouse models. The identification of multiple CAD loci and strong candidate genes in large human genome-wide association studies (GWAS) presented an opportunity to examine the relevance of mouse models for the human disease. We comprehensively reviewed the mouse literature, including 827 literature-derived genes, and compared it to human data. First, we observed striking concordance of risk factors for atherosclerosis in mice and humans. Second, there was highly significant overlap of mouse genes with human genes identified by GWAS. In particular, of the 46 genes with strong association signals in CAD-GWAS that were studied in mouse models all but one exhibited consistent effects on atherosclerosis-related phenotypes. Third, we compared 178 CAD-associated pathways derived from human GWAS with 263 from mouse studies and observed that over 50% were consistent between both species. PMID:27916529
von Martels, Julius Z H; Sadaghian Sadabad, Mehdi; Bourgonje, Arno R; Blokzijl, Tjasso; Dijkstra, Gerard; Faber, Klaas Nico; Harmsen, Hermie J M
2017-04-01
The microbiota of the gut has many crucial functions in human health. Dysbiosis of the microbiota has been correlated to a large and still increasing number of diseases. Recent studies have mostly focused on analyzing the associations between disease and an aberrant microbiota composition. Functional studies using (in vitro) gut models are required to investigate the precise interactions that occur between specific bacteria (or bacterial mixtures) and gut epithelial cells. As most gut bacteria are obligate or facultative anaerobes, studying their effect on oxygen-requiring human gut epithelial cells is technically challenging. Still, several (anaerobic) bacterial-epithelial co-culture systems have recently been developed that mimic host-microbe interactions occurring in the human gut, including 1) the Transwell "apical anaerobic model of the intestinal epithelial barrier", 2) the Host-Microbiota Interaction (HMI) module, 3) the "Human oxygen-Bacteria anaerobic" (HoxBan) system, 4) the human gut-on-a-chip and 5) the HuMiX model. This review discusses the role of gut microbiota in health and disease and gives an overview of the characteristics and applications of these novel host-microbe co-culture systems. Copyright © 2017 Elsevier Ltd. All rights reserved.
Will Culling White-Tailed Deer Prevent Lyme Disease?
Kugeler, K J; Jordan, R A; Schulze, T L; Griffith, K S; Mead, P S
2016-08-01
White-tailed deer play an important role in the ecology of Lyme disease. In the United States, where the incidence and geographic range of Lyme disease continue to increase, reduction of white-tailed deer populations has been proposed as a means of preventing human illness. The effectiveness of this politically sensitive prevention method is poorly understood. We summarize and evaluate available evidence regarding the effect of deer reduction on vector tick abundance and human disease incidence. Elimination of deer from islands and other isolated settings can have a substantial impact on the reproduction of blacklegged ticks, while reduction short of complete elimination has yielded mixed results. To date, most studies have been conducted in ecologic situations that are not representative to the vast majority of areas with high human Lyme disease risk. Robust evidence linking deer control to reduced human Lyme disease risk is lacking. Currently, there is insufficient evidence to recommend deer population reduction as a Lyme disease prevention measure, except in specific ecologic circumstances. © 2015 Blackwell Verlag GmbH.
Will Culling White-Tailed Deer Prevent Lyme Disease?
Kugeler, K. J.; Jordan, R. A.; Schulze, T. L.; Griffith, K. S.; Mead, P. S.
2015-01-01
Summary White-tailed deer play an important role in the ecology of Lyme disease. In the United States, where the incidence and geographic range of Lyme disease continue to increase, reduction of white-tailed deer populations has been proposed as a means of preventing human illness. The effectiveness of this politically sensitive prevention method is poorly understood. We summarize and evaluate available evidence regarding the effect of deer reduction on vector tick abundance and human disease incidence. Elimination of deer from islands and other isolated settings can have a substantial impact on the reproduction of blacklegged ticks, while reduction short of complete elimination has yielded mixed results. To date, most studies have been conducted in ecologic situations that are not representative to the vast majority of areas with high human Lyme disease risk. Robust evidence linking deer control to reduced human Lyme disease risk is lacking. Currently, there is insufficient evidence to recommend deer population reduction as a Lyme disease prevention measure, except in specific ecologic circumstances. PMID:26684932
Comparing ESC and iPSC-Based Models for Human Genetic Disorders.
Halevy, Tomer; Urbach, Achia
2014-10-24
Traditionally, human disorders were studied using animal models or somatic cells taken from patients. Such studies enabled the analysis of the molecular mechanisms of numerous disorders, and led to the discovery of new treatments. Yet, these systems are limited or even irrelevant in modeling multiple genetic diseases. The isolation of human embryonic stem cells (ESCs) from diseased blastocysts, the derivation of induced pluripotent stem cells (iPSCs) from patients' somatic cells, and the new technologies for genome editing of pluripotent stem cells have opened a new window of opportunities in the field of disease modeling, and enabled studying diseases that couldn't be modeled in the past. Importantly, despite the high similarity between ESCs and iPSCs, there are several fundamental differences between these cells, which have important implications regarding disease modeling. In this review we compare ESC-based models to iPSC-based models, and highlight the advantages and disadvantages of each system. We further suggest a roadmap for how to choose the optimal strategy to model each specific disorder.
Njeru, J; Wareth, G; Melzer, F; Henning, K; Pletz, M W; Heller, R; Neubauer, H
2016-08-22
Brucellosis is a debilitating zoonotic disease affecting humans and animals. A comprehensive, evidence-based assessment of literature and officially available data on animal and human brucellosis for Kenya are missing. The aim of the current review is to provide frequency estimates of brucellosis in humans, animals and risk factors for human infection, and help to understand the current situation in Kenya. A total of accessible 36 national and international publications on brucellosis from 1916 to 2016 were reviewed to estimate the frequency of brucellosis in humans and animals, and strength of associations between potential risk factors and seropositivity in humans in Kenya. The conducted studies revealed only few and fragmented evidence of the disease spatial and temporal distribution in an epidemiological context. Bacteriological evidence revealed the presence of Brucella (B.) abortus and B. melitensis in cattle and human patients, whilst B. suis was isolated from wild rodents only. Similar evidence for Brucella spp infection in small ruminants and other animal species is unavailable. The early and most recent serological studies revealed that animal brucellosis is widespread in all animal production systems. The animal infection pressure in these systems has remained strong due to mixing of large numbers of animals from different geographical regions, movement of livestock in search of pasture, communal sharing of grazing land, and the concentration of animals around water points. Human cases are more likely seen in groups occupationally or domestically exposed to livestock or practicing risky social-cultural activities such as consumption of raw blood and dairy products, and slaughtering of animals within the homesteads. Many brucellosis patients are misdiagnosed and probably mistreated due to lack of reliable laboratory diagnostic support resulting to adverse health outcomes of the patients and routine disease underreporting. We found no studies of disease incidence estimates or disease control efforts. The risk for re-emergence and transmission of brucellosis is evident as a result of the co-existence of animal husbandry activities and social-cultural activities that promote brucellosis transmission. Well-designed countrywide, evidence-based, and multidisciplinary studies of brucellosis at the human/livestock/wildlife interface are needed. These could help to generate reliable frequency and potential impact estimates, to identify Brucella reservoirs, and to propose control strategies of proven efficacy.
LincRNA-p21: Implications in Human Diseases.
Tang, Sai-Sai; Zheng, Bi-Ying; Xiong, Xing-Dong
2015-08-11
Long noncoding RNAs (lncRNAs), which lack significant protein-coding capacity, regulate various biological processes through diverse and as yet poorly understood molecular mechanisms. However, a number of studies in the past few years have documented important functions for lncRNAs in human diseases. Among these lncRNAs, lincRNA-p21 has been proposed to be a novel regulator of cell proliferation, apoptosis and DNA damage response, and involved in the initiation and progression of human diseases. In this review, we summarize the current knowledge of lincRNA-p21, mainly focus on the known biological functions and its underlying mechanisms. Moreover, we highlight the growing body of evidences for the importance of lincRNA-p21 in diverse human diseases, which indicate lincRNA-p21 as a potential diagnostic marker and/or a valuable therapeutic target for these diseases.
COMPARATIVE ANALYSIS OF REACTIVE OXYGEN SPECIES IN HUMAN PLASMA AND BLOOD
Reactive oxygen species (ROS) are commonly associated with diseased states (including asthma, cardiovascular disease, cancer) infections, and exposure to various toxicants in humans. It is of interest in epidemiology studies to characterize the association of oxidative stress in...
A One Health Approach to Hypertrophic Cardiomyopathy
Ueda, Yu; Stern, Joshua A.
2017-01-01
Hypertrophic cardiomyopathy (HCM) is the most common inherited cardiac disease in humans and results in significant morbidity and mortality. Research over the past 25 years has contributed enormous insight into this inherited disease particularly in the areas of genetics, molecular mechanisms, and pathophysiology. Our understanding continues to be limited by the heterogeneity of clinical presentations with various genetic mutations associated with HCM. Transgenic mouse models have been utilized especially studying the genotypic and phenotypic interactions. However, mice possess intrinsic cardiac and hemodynamic differences compared to humans and have limitations preventing their direct translation. Other animal models of HCM have been studied or generated in part to overcome these limitations. HCM in cats shows strikingly similar molecular, histopathological, and genetic similarities to human HCM, and offers an important translational opportunity for the study of this disease. Recently, inherited left ventricular hypertrophy in rhesus macaques was identified and collaborative investigations have been conducted to begin to develop a non-human primate HCM model. These naturally-occurring large-animal models may aid in advancing our understanding of HCM and developing novel therapeutic approaches to this disease. This review will highlight the features of HCM in humans and the relevant available and developing animal models of this condition. PMID:28955182
Baumgärtner, J; Bieri, M; Buffoni, G; Gilioli, G; Gopalan, H; Greiling, J; Tikubet, G; Van Schayk, I
2001-01-01
A concept of an ecosystem approach to human health improvement in Sub-Saharan Africa is presented here. Three factors mainly affect the physical condition of the human body: the abiotic environment, vector-transmitted diseases, and natural resources. Our concept relies on ecological principles embedded in a social context and identifies three sets of subsystems for study and management: human disease subsystems, natural resource subsystems, and decision-support subsystems. To control human diseases and to secure food from resource subsystems including livestock or crops, integrated preventive approaches are preferred over exclusively curative and sectorial approaches. Environmental sustainability - the basis for managing matter and water flows - contributes to a healthy human environment and constitutes the basis for social sustainability. For planning and implementation of the human health improvement scheme, participatory decision-support subsystems adapted to the local conditions need to be designed through institutional arrangements. The applicability of this scheme is demonstrated in urban and rural Ethiopia.
Of mice and men: molecular genetics of congenital heart disease.
Andersen, Troels Askhøj; Troelsen, Karin de Linde Lind; Larsen, Lars Allan
2014-04-01
Congenital heart disease (CHD) affects nearly 1 % of the population. It is a complex disease, which may be caused by multiple genetic and environmental factors. Studies in human genetics have led to the identification of more than 50 human genes, involved in isolated CHD or genetic syndromes, where CHD is part of the phenotype. Furthermore, mapping of genomic copy number variants and exome sequencing of CHD patients have led to the identification of a large number of candidate disease genes. Experiments in animal models, particularly in mice, have been used to verify human disease genes and to gain further insight into the molecular pathology behind CHD. The picture emerging from these studies suggest that genetic lesions associated with CHD affect a broad range of cellular signaling components, from ligands and receptors, across down-stream effector molecules to transcription factors and co-factors, including chromatin modifiers.
van Baarlen, Peter; van Belkum, Alex; Thomma, Bart P H J
2007-02-01
Relatively simple eukaryotic model organisms such as the genetic model weed plant Arabidopsis thaliana possess an innate immune system that shares important similarities with its mammalian counterpart. In fact, some human pathogens infect Arabidopsis and cause overt disease with human symptomology. In such cases, decisive elements of the plant's immune system are likely to be targeted by the same microbial factors that are necessary for causing disease in humans. These similarities can be exploited to identify elementary microbial pathogenicity factors and their corresponding targets in a green host. This circumvents important cost aspects that often frustrate studies in humans or animal models and, in addition, results in facile ethical clearance.
Edwards, Marten J; Barbalato, Laura A; Makkapati, Amulya; Pham, Katerina D; Bugbee, Louise M
2015-09-01
Several human pathogens are transmitted by the blacklegged tick, Ixodes scapularis. These include the spirochetes that cause Lyme disease (Borrelia burgdorferi) which is endemic to the Lehigh Valley region of eastern Pennsylvania. Emerging and currently rare tick-borne diseases have been of increasing concern in this region, including tick-borne relapsing fever (caused by Borrelia miyamotoi), human granulocytic anaplasmosis (caused by Anaplasma phagocytophilum), and human babesiosis (caused by Babesia microti). Real-time PCR assays and in some instances, conventional PCR followed by DNA sequencing, were used to screen 423 DNA samples that were prepared from questing adult and nymph stage I. scapularis ticks for infection with four tick-borne human pathogens. B. burgdorferi was detected in 23.2% of the sampled ticks, while B. miyamotoi, B. microti and a human variant of A. phagocytophilum were detected in less than 0.5% of the ticks. Our results are consistent with those expected in a region where Lyme disease is prevalent and human cases of tick-borne relapsing fever, babesiosis and human granulocytic anaplasmosis are not currently widespread. It is expected that this study will serve as a baseline for future studies of tick-borne pathogens in an area that is in close proximity to regions of high endemicity for Lyme disease, human granulocytic anaplasmosis and human babesiosis. Copyright © 2015 Elsevier GmbH. All rights reserved.
Hirschsprung's disease: A bridge for science and surgery.
Tam, Paul K H
2016-01-01
Understanding the true nature of the disease provided the basis for appropriate surgery for Hirschsprung's disease some 60 years ago. Nevertheless, surgical outcome remains unsatisfactory. Advances in diagnosis and treatment will depend on the elucidation of the pathogenesis and disease heterogeneity. This lecture outlines the author's attempt in the past 30 years to bridge some of the gaps of knowledge in Hirschsprung's disease. Studies of human fetal gut and aganglionic gut gave insight into the complexity of the human enteric nervous system, but the more fruitful studies came from genetic studies in which disease-causing genes were discovered, and the importance of noncoding mutations conferring disease susceptibility was unraveled. Animal models and pluripotent stem cell studies allowed elucidation of the interacting gene-cell-microenvironment signaling pathways for neural crest proliferation, migration, and differentiation. Hirschsprung's disease has been a bridge for science and surgery. An integrative approach could provide breakthroughs in the diagnosis and treatment strategies of this complex condition, leading to improved outcome. Copyright © 2016 Elsevier Inc. All rights reserved.
Mice, humans and haplotypes--the hunt for disease genes in SLE.
Rigby, R J; Fernando, M M A; Vyse, T J
2006-09-01
Defining the polymorphisms that contribute to the development of complex genetic disease traits is a challenging, although increasingly tractable problem. Historically, the technical difficulties in conducting association studies across the entire human genome are such that murine models have been used to generate candidate genes for analysis in human complex diseases, such as SLE. In this article we discuss the advantages and disadvantages of this approach and specifically address some assumptions made in the transition from studying one species to another, using lupus as an example. These issues include differences in genetic structure and genetic organisation which are a reflection on the population history. Clearly there are major differences in the histories of the human population and inbred laboratory strains of mice. Both human and murine genomes do exhibit structure at the genetic level. That is to say, they comprise haplotypes which are genomic regions that carry runs of polymorphisms that are not independently inherited. Haplotypes therefore reduce the number of combinations of the polymorphisms in the DNA in that region and facilitate the identification of disease susceptibility genes in both mice and humans. There are now novel means of generating candidate genes in SLE using mutagenesis (with ENU) in mice and identifying mice that generate antinuclear autoimmunity. In addition, murine models still provide a valuable means of exploring the functional consequences of genetic variation. However, advances in technology are such that human geneticists can now screen large fractions of the human genome for disease associations using microchip technologies that provide information on upwards of 100,000 different polymorphisms. These approaches are aimed at identifying haplotypes that carry disease susceptibility mutations and rely less on the generation of candidate genes.
MetaMap: An atlas of metatranscriptomic reads in human disease-related RNA-seq data.
Simon, L M; Karg, S; Westermann, A J; Engel, M; Elbehery, A H A; Hense, B; Heinig, M; Deng, L; Theis, F J
2018-06-12
With the advent of the age of big data in bioinformatics, large volumes of data and high performance computing power enable researchers to perform re-analyses of publicly available datasets at an unprecedented scale. Ever more studies imply the microbiome in both normal human physiology and a wide range of diseases. RNA sequencing technology (RNA-seq) is commonly used to infer global eukaryotic gene expression patterns under defined conditions, including human disease-related contexts, but its generic nature also enables the detection of microbial and viral transcripts. We developed a bioinformatic pipeline to screen existing human RNA-seq datasets for the presence of microbial and viral reads by re-inspecting the non-human-mapping read fraction. We validated this approach by recapitulating outcomes from 6 independent controlled infection experiments of cell line models and comparison with an alternative metatranscriptomic mapping strategy. We then applied the pipeline to close to 150 terabytes of publicly available raw RNA-seq data from >17,000 samples from >400 studies relevant to human disease using state-of-the-art high performance computing systems. The resulting data of this large-scale re-analysis are made available in the presented MetaMap resource. Our results demonstrate that common human RNA-seq data, including those archived in public repositories, might contain valuable information to correlate microbial and viral detection patterns with diverse diseases. The presented MetaMap database thus provides a rich resource for hypothesis generation towards the role of the microbiome in human disease. Additionally, codes to process new datasets and perform statistical analyses are made available at https://github.com/theislab/MetaMap.
Diuk-Wasser, Maria A.; Vannier, Edouard
2015-01-01
Ixodes ticks maintain a large and diverse array of human pathogens in the enzootic cycle, including Borrelia burgdorferi and Babesia microti. Despite the poor ecological fitness of B. microti, babesiosis has recently emerged in areas endemic for Lyme disease. Studies in ticks, reservoir hosts and humans indicate that coinfection with B. burgdorferi and B. microti is common, promotes transmission and emergence of B. microti in the enzootic cycle, and causes greater disease severity and duration in humans. These integrative studies may serve as a paradigm for the study of other vector-borne coinfections. Identifying ecological drivers of pathogen emergence and host factors that fuel disease severity will help guide the design of effective curative and prevention strategies. PMID:26613664
Genetic Variation and Adaptation in Africa: Implications for Human Evolution and Disease
Gomez, Felicia; Hirbo, Jibril; Tishkoff, Sarah A.
2014-01-01
Because modern humans originated in Africa and have adapted to diverse environments, African populations have high levels of genetic and phenotypic diversity. Thus, genomic studies of diverse African ethnic groups are essential for understanding human evolutionary history and how this leads to differential disease risk in all humans. Comparative studies of genetic diversity within and between African ethnic groups creates an opportunity to reconstruct some of the earliest events in human population history and are useful for identifying patterns of genetic variation that have been influenced by recent natural selection. Here we describe what is currently known about genetic variation and evolutionary history of diverse African ethnic groups. We also describe examples of recent natural selection in African genomes and how these data are informative for understanding the frequency of many genetic traits, including those that cause disease susceptibility in African populations and populations of recent African descent. PMID:24984772
3D engineered cardiac tissue models of human heart disease: learning more from our mice.
Ralphe, J Carter; de Lange, Willem J
2013-02-01
Mouse engineered cardiac tissue constructs (mECTs) are a new tool available to study human forms of genetic heart disease within the laboratory. The cultured strips of cardiac cells generate physiologic calcium transients and twitch force, and respond to electrical pacing and adrenergic stimulation. The mECT can be made using cells from existing mouse models of cardiac disease, providing a robust readout of contractile performance and allowing a rapid assessment of genotype-phenotype correlations and responses to therapies. mECT represents an efficient and economical extension to the existing tools for studying cardiac physiology. Human ECTs generated from iPSCMs represent the next logical step for this technology and offer significant promise of an integrated, fully human, cardiac tissue model. Copyright © 2013. Published by Elsevier Inc.
Generation of genetically-engineered animals using engineered endonucleases.
Lee, Jong Geol; Sung, Young Hoon; Baek, In-Jeoung
2018-05-17
The key to successful drug discovery and development is to find the most suitable animal model of human diseases for the preclinical studies. The recent emergence of engineered endonucleases is allowing for efficient and precise genome editing, which can be used to develop potentially useful animal models for human diseases. In particular, zinc finger nucleases, transcription activator-like effector nucleases, and the clustered regularly interspaced short palindromic repeat systems are revolutionizing the generation of diverse genetically-engineered experimental animals including mice, rats, rabbits, dogs, pigs, and even non-human primates that are commonly used for preclinical studies of the drug discovery. Here, we describe recent advances in engineered endonucleases and their application in various laboratory animals. We also discuss the importance of genome editing in animal models for more closely mimicking human diseases.
The human secretome atlas initiative: Implications in health and disease conditions
Brown, Kristy J; Seol, Haeri; Pillai, Dinesh K; Sankoorikal, Binu-John; Formolo, Catherine A; Mac, Jenny; Edwards, Nathan J.; Rose, Mary C; Hathout, Yetrib
2013-01-01
Proteomic analysis of human body fluids is highly challenging, therefore many researchers are redirecting efforts towards secretome profiling. The goal is to define potential biomarkers and therapeutic targets in the secretome that can be traced back in accessible human body fluids. However, currently there is a lack of secretome profiles of normal human primary cells making it difficult to assess the biological meaning of current findings. In this study we sought to establish secretome profiles of human primary cells obtained from healthy donors with the goal of building a human secretome atlas. Such an atlas can be used as a reference for discovery of potential disease associated biomarkers and eventually novel therapeutic targets. As a preliminary study, secretome profiles were established for six different types of human primary cell cultures and checked for overlaps with the three major human body fluids including plasma, cerebrospinal fluid and urine. About 67% of the 1054 identified proteins in the secretome of these primary cells occurred in at least one body fluid. Furthermore, comparison of the secretome profiles of two human glioblastoma cell lines to this new human secretome atlas enabled unambiguous identification of potential brain tumor biomarkers. These biomarkers can be easily monitored in different body fluids using stable isotope labeled standard proteins. The long term goal of this study is to establish a comprehensive online human secretome atlas for future use as a reference for any disease related secretome study. PMID:23603790
Santer, Melvin
2009-01-01
During the years 1714 to 1721, Richard Bradley, who was later to become the first Professor of Botany at Cambridge University, proposed a unified, unique, living agent theory of the cause of infectious diseases of plants and animals and the plague of humans. Bradley's agents included microscopic organisms, revealed by the studies of Robert Hooke and Antony van Leeuwenhoek. His theory derived from his experimental studies of plants and their diseases and from microscopic observation of animalcules in different naturally occurring and artificial environments. He concluded that there was a microscopic world of "insects" that lived and reproduced under the appropriate conditions, and that infectious diseases of plants were caused by such "insects." Since there are structural and functional similarities between plants and animals, Bradley concluded that microscopic organisms caused human and animal infectious diseases as well. However, his living agent cause of infectious diseases was not accepted by the contemporary scientific society.
Computational approaches for understanding the diagnosis and treatment of Parkinson’s disease
Smith, Stephen L.; Lones, Michael A.; Bedder, Matthew; Alty, Jane E.; Cosgrove, Jeremy; Maguire, Richard J.; Pownall, Mary Elizabeth; Ivanoiu, Diana; Lyle, Camille; Cording, Amy; Elliott, Christopher J.H.
2015-01-01
This study describes how the application of evolutionary algorithms (EAs) can be used to study motor function in humans with Parkinson’s disease (PD) and in animal models of PD. Human data is obtained using commercially available sensors via a range of non-invasive procedures that follow conventional clinical practice. EAs can then be used to classify human data for a range of uses, including diagnosis and disease monitoring. New results are presented that demonstrate how EAs can also be used to classify fruit flies with and without genetic mutations that cause Parkinson’s by using measurements of the proboscis extension reflex. The case is made for a computational approach that can be applied across human and animal studies of PD and lays the way for evaluation of existing and new drug therapies in a truly objective way. PMID:26577157
Human Embryonic Stem Cell Therapy in Crohn’s Disease: A Case Report
Shroff, Geeta
2016-01-01
Patient: Male, 21 Final Diagnosis: Crohn’s disease Symptoms: Intolerance to specific foods • abdominal pain and diarrhea Medication: Human embryonic stem cell therapy Clinical Procedure: Human embryonic stem cell transplantation Specialty: Gastroenterology Objective: Unusual or unexpected effect of treatment Background: Crohn’s disease is a chronic inflammatory disease of the intestines, mainly the colon and ileum, related with ulcers and fistulae. It is estimated to affect 565 000 people in the United States. Currently available therapies, such as antibiotics, thiopurines, and anti-tumor necrosis factor-alpha agents, are only observed to reduce the complications associated with Crohn’s disease and to improve quality of life, but cannot cure the disease. Stem cell therapy appears to have certain advantages over conventional therapies. Our study aimed to evaluate the efficacy of human embryonic stem cell therapy in a patient with Crohn’s disease. Case Report: A 21-year-old male with chief complaints of intolerance to specific foods, abdominal pain, and diarrhea underwent human embryonic stem cell therapy for two months. After undergoing human embryonic stem cell therapy, the patient showed symptomatic relief. He had no complaints of back pain, abdominal pain, or diarrhea and had improved digestion. The patient had no signs and symptoms of skin infection, and had improved limb stamina, strength, and endurance. The condition of patient was stable after the therapy. Conclusions: Human embryonic stem cell therapy might serve as a new optimistic treatment approach for Crohn’s disease. PMID:26923312
Host genetics of Epstein-Barr virus infection, latency and disease.
Houldcroft, Charlotte J; Kellam, Paul
2015-03-01
Epstein-Barr virus (EBV) infects 95% of the adult population and is the cause of infectious mononucleosis. It is also associated with 1% of cancers worldwide, such as nasopharyngeal carcinoma, Hodgkin's lymphoma and Burkitt's lymphoma. Human and cancer genetic studies are now major forces determining gene variants associated with many cancers, including nasopharyngeal carcinoma and Hodgkin's lymphoma. Host genetics is also important in infectious disease; however, there have been no large-scale efforts towards understanding the contribution that human genetic variation plays in primary EBV infection and latency. This review covers 25 years of studies into host genetic susceptibility to EBV infection and disease, from candidate gene studies, to the first genome-wide association study of EBV antibody response, and an EBV-status stratified genome-wide association study of Hodgkin's lymphoma. Although many genes are implicated in EBV-related disease, studies are often small, not replicated or followed up in a different disease. Larger, appropriately powered genomic studies to understand the host response to EBV will be needed to move our understanding of the biology of EBV infection beyond the handful of genes currently identified. Fifty years since the discovery of EBV and its identification as a human oncogenic virus, a glimpse of the future is shown by the first whole-genome and whole-exome studies, revealing new human genes at the heart of the host-EBV interaction. © 2014 The Authors Reviews in Medical Virology published by John Wiley & Sons Ltd.
Host genetics of Epstein–Barr virus infection, latency and disease
Houldcroft, Charlotte J; Kellam, Paul
2015-01-01
Epstein–Barr virus (EBV) infects 95% of the adult population and is the cause of infectious mononucleosis. It is also associated with 1% of cancers worldwide, such as nasopharyngeal carcinoma, Hodgkin's lymphoma and Burkitt's lymphoma. Human and cancer genetic studies are now major forces determining gene variants associated with many cancers, including nasopharyngeal carcinoma and Hodgkin's lymphoma. Host genetics is also important in infectious disease; however, there have been no large-scale efforts towards understanding the contribution that human genetic variation plays in primary EBV infection and latency. This review covers 25 years of studies into host genetic susceptibility to EBV infection and disease, from candidate gene studies, to the first genome-wide association study of EBV antibody response, and an EBV-status stratified genome-wide association study of Hodgkin's lymphoma. Although many genes are implicated in EBV-related disease, studies are often small, not replicated or followed up in a different disease. Larger, appropriately powered genomic studies to understand the host response to EBV will be needed to move our understanding of the biology of EBV infection beyond the handful of genes currently identified. Fifty years since the discovery of EBV and its identification as a human oncogenic virus, a glimpse of the future is shown by the first whole-genome and whole-exome studies, revealing new human genes at the heart of the host–EBV interaction. © 2014 The Authors. Reviews in Medical Virology published by John Wiley & Sons Ltd. PMID:25430668
Blakely, Pennelope K; Delekta, Phillip C; Miller, David J; Irani, David N
2015-02-01
While alphaviruses spread naturally via mosquito vectors, some can also be transmitted as aerosols making them potential bioterrorism agents. One such pathogen, western equine encephalitis virus (WEEV), causes fatal human encephalitis via multiple routes of infection and thus presumably via multiple mechanisms. Although WEEV also produces acute encephalitis in non-human primates, a small animal model that recapitulates features of human disease would be useful for both pathogenesis studies and to evaluate candidate antiviral therapies. We have optimized conditions to infect mice with a low passage isolate of WEEV, thereby allowing detailed investigation of virus tropism, replication, neuroinvasion, and neurovirulence. We find that host factors strongly influence disease outcome, and in particular, that age, gender, and genetic background all have significant effects on disease susceptibility independent of virus tropism or replication within the central nervous system. Our data show that experimental variables can be adjusted in mice to recapitulate disease features known to occur in both non-human primates and humans, thus aiding further study of WEEV pathogenesis and providing a realistic therapeutic window for antiviral drug delivery.
Blakely, Pennelope K.; Delekta, Phillip C.; Miller, David J.; Irani, David N.
2014-01-01
While alphaviruses spread naturally via mosquito vectors, some can also be transmitted as aerosols making them potential bioterrorism agents. One such pathogen, western equine encephalitis virus (WEEV), causes fatal human encephalitis via multiple routes of infection and thus presumably via multiple mechanisms. Although WEEV also produces acute encephalitis in non-human primates, a small animal model that recapitulates features of human disease would be useful for both pathogenesis studies and to evaluate candidate antiviral therapies. We have optimized conditions to infect mice with a low passage isolate of WEEV, thereby allowing detailed investigation of virus tropism, replication, neuroinvasion, and neurovirulence. We find that host factors strongly influence disease outcome, and in particular that age, gender and genetic background all have significant effects on disease susceptibility independent of virus tropism or replication within the central nervous system. Our data show that experimental variables can be adjusted in mice to recapitulate disease features known to occur in both non-human primates and humans, thus aiding further study of WEEV pathogenesis and providing a realistic therapeutic window for antiviral drug delivery. PMID:25361697
Human Induced Pluripotent Stem Cell-Derived Macrophages for Unraveling Human Macrophage Biology.
Zhang, Hanrui; Reilly, Muredach P
2017-11-01
Despite a substantial appreciation for the critical role of macrophages in cardiometabolic diseases, understanding of human macrophage biology has been hampered by the lack of reliable and scalable models for cellular and genetic studies. Human induced pluripotent stem cell (iPSC)-derived macrophages (IPSDM), as an unlimited source of subject genotype-specific cells, will undoubtedly play an important role in advancing our understanding of the role of macrophages in human diseases. In this review, we summarize current literature in the differentiation and characterization of IPSDM at phenotypic, functional, and transcriptomic levels. We emphasize the progress in differentiating iPSC to tissue resident macrophages, and in understanding the ontogeny of in vitro differentiated IPSDM that resembles primitive hematopoiesis, rather than adult definitive hematopoiesis. We review the application of IPSDM in modeling both Mendelian genetic disorders and host-pathogen interactions. Finally, we highlighted the potential areas of research using IPSDM in functional validation of coronary artery disease loci in genome-wide association studies, functional genomic analyses, drug testing, and cell therapeutics in cardiovascular diseases. © 2017 American Heart Association, Inc.
Borsotti, Chiara; Danzl, Nichole M; Nauman, Grace; Hölzl, Markus A; French, Clare; Chavez, Estefania; Khosravi-Maharlooei, Mohsen; Glauzy, Salome; Delmotte, Fabien R; Meffre, Eric; Savage, David G; Campbell, Sean R; Goland, Robin; Greenberg, Ellen; Bi, Jing; Satwani, Prakash; Yang, Suxiao; Bathon, Joan; Winchester, Robert; Sykes, Megan
2017-10-24
B cells play a major role in antigen presentation and antibody production in the development of autoimmune diseases, and some of these diseases disproportionally occur in females. Moreover, immune responses tend to be stronger in female vs male humans and mice. Because it is challenging to distinguish intrinsic from extrinsic influences on human immune responses, we used a personalized immune (PI) humanized mouse model, in which immune systems were generated de novo from adult human hematopoietic stem cells (HSCs) in immunodeficient mice. We assessed the effect of recipient sex and of donor autoimmune diseases (type 1 diabetes [T1D] and rheumatoid arthritis [RA]) on human B-cell development in PI mice. We observed that human B-cell levels were increased in female recipients regardless of the source of human HSCs or the strain of immunodeficient recipient mice. Moreover, mice injected with T1D- or RA-derived HSCs displayed B-cell abnormalities compared with healthy control HSC-derived mice, including altered B-cell levels, increased proportions of mature B cells and reduced CD19 expression. Our study revealed an HSC-extrinsic effect of recipient sex on human B-cell reconstitution. Moreover, the PI humanized mouse model revealed HSC-intrinsic defects in central B-cell tolerance that recapitulated those in patients with autoimmune diseases. These results demonstrate the utility of humanized mouse models as a tool to better understand human immune cell development and regulation.
Gene expression in the aging human brain: an overview.
Mohan, Adith; Mather, Karen A; Thalamuthu, Anbupalam; Baune, Bernhard T; Sachdev, Perminder S
2016-03-01
The review aims to provide a summary of recent developments in the study of gene expression in the aging human brain. Profiling differentially expressed genes or 'transcripts' in the human brain over the course of normal aging has provided valuable insights into the biological pathways that appear activated or suppressed in late life. Genes mediating neuroinflammation and immune system activation in particular, show significant age-related upregulation creating a state of vulnerability to neurodegenerative and neuropsychiatric disease in the aging brain. Cellular ionic dyshomeostasis and age-related decline in a host of molecular influences on synaptic efficacy may underlie neurocognitive decline in later life. Critically, these investigations have also shed light on the mobilization of protective genetic responses within the aging human brain that help determine health and disease trajectories in older age. There is growing interest in the study of pre and posttranscriptional regulators of gene expression, and the role of noncoding RNAs in particular, as mediators of the phenotypic diversity that characterizes human brain aging. Gene expression studies in healthy brain aging offer an opportunity to unravel the intricately regulated cellular underpinnings of neurocognitive aging as well as disease risk and resiliency in late life. In doing so, new avenues for early intervention in age-related neurodegenerative disease could be investigated with potentially significant implications for the development of disease-modifying therapies.
Modeling the Western Diet for Preclinical Investigations.
Hintze, Korry J; Benninghoff, Abby D; Cho, Clara E; Ward, Robert E
2018-05-01
Rodent models have been invaluable for biomedical research. Preclinical investigations with rodents allow researchers to investigate diseases by using study designs that are not suitable for human subjects. The primary criticism of preclinical animal models is that results are not always translatable to humans. Some of this lack of translation is due to inherent differences between species. However, rodent models have been refined over time, and translatability to humans has improved. Transgenic animals have greatly aided our understanding of interactions between genes and disease and have narrowed the translation gap between humans and model animals. Despite the technological innovations of animal models through advances in genetics, relatively little attention has been given to animal diets. Namely, developing diets that replicate what humans eat will help make animal models more relevant to human populations. This review focuses on commonly used rodent diets that are used to emulate the Western dietary pattern in preclinical studies of obesity and type 2 diabetes, nonalcoholic liver disease, maternal nutrition, and colorectal cancer.
Effects of organic food consumption on human health; the jury is still out!
Barański, Marcin; Rempelos, Leonidas; Iversen, Per Ole; Leifert, Carlo
2017-01-01
The most recent systematic literature reviews and meta-analyses have indicated significant and nutritionally-relevant composition differences between organic and conventional foods. This included higher antioxidant, but lower cadmium and pesticide levels in organic crops, and higher omega-3 fatty acids concentrations in organic meat and dairy products. Also, results from a small number of human cohort studies indicate that there are positive associations between organic food consumption and reduced risk/incidence of certain acute diseases (e.g. pre-eclampsia, hypospadias) and obesity. Concerns about potential negative health impacts of organic food consumption (e.g. risks linked to lower iodine levels in organic milk) have also been raised, but are not currently supported by evidence from human cohort studies. However, there is virtually no published data from (1) long-term cohort studies focusing on chronic diseases (e.g. cardiovascular disease, diabetes, cancer, and neurodegenerative conditions) and (2) controlled human dietary intervention studies comparing effects of organic and conventional diets. It is therefore currently not possible to quantify to what extent organic food consumption may affect human health.
Effects of organic food consumption on human health; the jury is still out!
Barański, Marcin; Rempelos, Leonidas; Iversen, Per Ole; Leifert, Carlo
2017-01-01
ABSTRACT The most recent systematic literature reviews and meta-analyses have indicated significant and nutritionally-relevant composition differences between organic and conventional foods. This included higher antioxidant, but lower cadmium and pesticide levels in organic crops, and higher omega-3 fatty acids concentrations in organic meat and dairy products. Also, results from a small number of human cohort studies indicate that there are positive associations between organic food consumption and reduced risk/incidence of certain acute diseases (e.g. pre-eclampsia, hypospadias) and obesity. Concerns about potential negative health impacts of organic food consumption (e.g. risks linked to lower iodine levels in organic milk) have also been raised, but are not currently supported by evidence from human cohort studies. However, there is virtually no published data from (1) long-term cohort studies focusing on chronic diseases (e.g. cardiovascular disease, diabetes, cancer, and neurodegenerative conditions) and (2) controlled human dietary intervention studies comparing effects of organic and conventional diets. It is therefore currently not possible to quantify to what extent organic food consumption may affect human health. PMID:28326003
Yang, Xiaofei; Gao, Lin; Guo, Xingli; Shi, Xinghua; Wu, Hao; Song, Fei; Wang, Bingbo
2014-01-01
Increasing evidence has indicated that long non-coding RNAs (lncRNAs) are implicated in and associated with many complex human diseases. Despite of the accumulation of lncRNA-disease associations, only a few studies had studied the roles of these associations in pathogenesis. In this paper, we investigated lncRNA-disease associations from a network view to understand the contribution of these lncRNAs to complex diseases. Specifically, we studied both the properties of the diseases in which the lncRNAs were implicated, and that of the lncRNAs associated with complex diseases. Regarding the fact that protein coding genes and lncRNAs are involved in human diseases, we constructed a coding-non-coding gene-disease bipartite network based on known associations between diseases and disease-causing genes. We then applied a propagation algorithm to uncover the hidden lncRNA-disease associations in this network. The algorithm was evaluated by leave-one-out cross validation on 103 diseases in which at least two genes were known to be involved, and achieved an AUC of 0.7881. Our algorithm successfully predicted 768 potential lncRNA-disease associations between 66 lncRNAs and 193 diseases. Furthermore, our results for Alzheimer's disease, pancreatic cancer, and gastric cancer were verified by other independent studies. PMID:24498199
Canela, Andrés; Vera, Elsa; Klatt, Peter; Blasco, María A
2007-03-27
A major limitation of studies of the relevance of telomere length to cancer and age-related diseases in human populations and to the development of telomere-based therapies has been the lack of suitable high-throughput (HT) assays to measure telomere length. We have developed an automated HT quantitative telomere FISH platform, HT quantitative FISH (Q-FISH), which allows the quantification of telomere length as well as percentage of short telomeres in large human sample sets. We show here that this technique provides the accuracy and sensitivity to uncover associations between telomere length and human disease.
Human Embryonic Stem Cell Therapy in Crohn's Disease: A Case Report.
Shroff, Geeta
2016-02-29
Crohn's disease is a chronic inflammatory disease of the intestines, mainly the colon and ileum, related with ulcers and fistulae. It is estimated to affect 565,000 people in the United States. Currently available therapies, such as antibiotics, thiopurines, and anti-tumor necrosis factor-alpha agents, are only observed to reduce the complications associated with Crohn's disease and to improve quality of life, but cannot cure the disease. Stem cell therapy appears to have certain advantages over conventional therapies. Our study aimed to evaluate the efficacy of human embryonic stem cell therapy in a patient with Crohn's disease. A 21-year-old male with chief complaints of intolerance to specific foods, abdominal pain, and diarrhea underwent human embryonic stem cell therapy for two months. After undergoing human embryonic stem cell therapy, the patient showed symptomatic relief. He had no complaints of back pain, abdominal pain, or diarrhea and had improved digestion. The patient had no signs and symptoms of skin infection, and had improved limb stamina, strength, and endurance. The condition of patient was stable after the therapy. Human embryonic stem cell therapy might serve as a new optimistic treatment approach for Crohn's disease.
Interactome of the hepatitis C virus: Literature mining with ANDSystem.
Saik, Olga V; Ivanisenko, Timofey V; Demenkov, Pavel S; Ivanisenko, Vladimir A
2016-06-15
A study of the molecular genetics mechanisms of host-pathogen interactions is of paramount importance in developing drugs against viral diseases. Currently, the literature contains a huge amount of information that describes interactions between HCV and human proteins. In addition, there are many factual databases that contain experimentally verified data on HCV-host interactions. The sources of such data are the original data along with the data manually extracted from the literature. However, the manual analysis of scientific publications is time consuming and, because of this, databases created with such an approach often do not have complete information. One of the most promising methods to provide actualisation and completeness of information is text mining. Here, with the use of a previously developed method by the authors using ANDSystem, an automated extraction of information on the interactions between HCV and human proteins was conducted. As a data source for the text mining approach, PubMed abstracts and full text articles were used. Additionally, external factual databases were analyzed. On the basis of this analysis, a special version of ANDSystem, extended with the HCV interactome, was created. The HCV interactome contains information about the interactions between 969 human and 11 HCV proteins. Among the 969 proteins, 153 'new' proteins were found not previously referred to in any external databases of protein-protein interactions for HCV-host interactions. Thus, the extended ANDSystem possesses a more comprehensive detailing of HCV-host interactions versus other existing databases. It was interesting that HCV proteins more preferably interact with human proteins that were already involved in a large number of protein-protein interactions as well as those associated with many diseases. Among human proteins of the HCV interactome, there were a large number of proteins regulated by microRNAs. It turned out that the results obtained for protein-protein interactions and microRNA-regulation did not depend on how well the proteins were studied, while protein-disease interactions appeared to be dependent on the level of study. In particular, the mean number of diseases linked to well-studied proteins (proteins were considered well-studied if they were mentioned in 50 or more PubMed publications) from the HCV interactome was 20.8, significantly exceeding the mean number of associations with diseases (10.1) for the total set of well-studied human proteins present in ANDSystem. For proteins not highly poorly-studied investigated, proteins from the HCV interactome (each protein was referred to in less than 50 publications) distribution of the number of diseases associated with them had no statistically significant differences from the distribution of the number of diseases associated with poorly-studied proteins based on the total set of human proteins stored in ANDSystem. With this, the average number of associations with diseases for the HCV interactome and the total set of human proteins were 0.3 and 0.2, respectively. Thus, ANDSystem, extended with the HCV interactome, can be helpful in a wide range of issues related to analyzing HCV-host interactions in the search for anti-HCV drug targets. The demo version of the extended ANDSystem covered here containing only interactions between human proteins, genes, metabolites, diseases, miRNAs and molecular-genetic pathways, as well as interactions between human proteins/genes and HCV proteins, is freely available at the following web address: http://www-bionet.sscc.ru/psd/andhcv/. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.
Swindell, William R; Johnston, Andrew; Carbajal, Steve; Han, Gangwen; Wohn, Christian; Lu, Jun; Xing, Xianying; Nair, Rajan P; Voorhees, John J; Elder, James T; Wang, Xiao-Jing; Sano, Shigetoshi; Prens, Errol P; DiGiovanni, John; Pittelkow, Mark R; Ward, Nicole L; Gudjonsson, Johann E
2011-04-04
Development of a suitable mouse model would facilitate the investigation of pathomechanisms underlying human psoriasis and would also assist in development of therapeutic treatments. However, while many psoriasis mouse models have been proposed, no single model recapitulates all features of the human disease, and standardized validation criteria for psoriasis mouse models have not been widely applied. In this study, whole-genome transcriptional profiling is used to compare gene expression patterns manifested by human psoriatic skin lesions with those that occur in five psoriasis mouse models (K5-Tie2, imiquimod, K14-AREG, K5-Stat3C and K5-TGFbeta1). While the cutaneous gene expression profiles associated with each mouse phenotype exhibited statistically significant similarity to the expression profile of psoriasis in humans, each model displayed distinctive sets of similarities and differences in comparison to human psoriasis. For all five models, correspondence to the human disease was strong with respect to genes involved in epidermal development and keratinization. Immune and inflammation-associated gene expression, in contrast, was more variable between models as compared to the human disease. These findings support the value of all five models as research tools, each with identifiable areas of convergence to and divergence from the human disease. Additionally, the approach used in this paper provides an objective and quantitative method for evaluation of proposed mouse models of psoriasis, which can be strategically applied in future studies to score strengths of mouse phenotypes relative to specific aspects of human psoriasis.
Curcumin, a component of turmeric: from farm to pharmacy.
Gupta, Subash C; Kismali, Gorkem; Aggarwal, Bharat B
2013-01-01
Curcumin, an active polyphenol of the golden spice turmeric, is a highly pleiotropic molecule with the potential to modulate the biological activity of a number of signaling molecules. Traditionally, this polyphenol has been used in Asian countries to treat such human ailments as acne, psoriasis, dermatitis, and rash. Recent studies have indicated that curcumin can target newly identified signaling pathways including those associated with microRNA, cancer stem cells, and autophagy. Extensive research from preclinical and clinical studies has delineated the molecular basis for the pharmaceutical uses of this polyphenol against cancer, pulmonary diseases, neurological diseases, liver diseases, metabolic diseases, autoimmune diseases, cardiovascular diseases, and numerous other chronic diseases. Multiple studies have indicated the safety and efficacy of curcumin in numerous animals including rodents, monkeys, horses, rabbits, and cats and have provided a solid basis for evaluating its safety and efficacy in humans. To date, more than 65 human clinical trials of curcumin, which included more than 1000 patients, have been completed, and as many as 35 clinical trials are underway. Curcumin is now used as a supplement in several countries including the United States, India, Japan, Korea, Thailand, China, Turkey, South Africa, Nepal, and Pakistan. In this review, we provide evidence for the pharmaceutical uses of curcumin for various diseases. Copyright © 2013 International Union of Biochemistry and Molecular Biology, Inc.
Perfetti, Vittorio; Baldanti, Fausto; Lenti, Marco Vincenzo; Vanoli, Alessandro; Biagi, Federico; Gatti, Marta; Riboni, Roberta; Dallera, Elena; Paulli, Marco; Pedrazzoli, Paolo; Corazza, Gino Roberto
2016-08-01
Refractory celiac disease is characterized by mucosal damage in patients with celiac disease despite a gluten-free diet. Little is known about the mechanisms that cause persistent intestinal inflammation in these patients. We performed a case-control study of 17 consecutive patients diagnosed with refractory celiac disease from 2001 through 2014 (median age, 51 y; 10 women) and 24 patients with uncomplicated celiac disease (controls) to determine whether refractory disease is associated with infection by lymphotropic oncogenic viruses. We performed real-time PCR analyses of duodenal biopsy samples from all patients to detect Epstein-Barr virus (EBV), human herpesvirus-8, and human T-cell lymphotropic virus-I, -II, or -III. We used in situ hybridization and immunohistochemical analyses to identify infected cells and viral proteins. We did not detect human herpesvirus-8 or human T-cell lymphotropic viruses in any of the biopsy specimens. However, 12 of 17 (70.5%) biopsy specimens from patients with refractory celiac disease were positive for EBV, compared with 4 of 24 (16.6%) biopsy specimens from controls (P < .001). EBV was detected in inflammatory cells and enterocytes. An analysis of latency- and replication-associated proteins confirmed active infection. Further studies are needed to determine whether EBV infection contributes to the pathogenesis of refractory celiac disease and enteropathy-associated T-cell lymphoma. Copyright © 2016 AGA Institute. Published by Elsevier Inc. All rights reserved.
Concise Review: Stem Cell Trials Using Companion Animal Disease Models.
Hoffman, Andrew M; Dow, Steven W
2016-07-01
Studies to evaluate the therapeutic potential of stem cells in humans would benefit from more realistic animal models. In veterinary medicine, companion animals naturally develop many diseases that resemble human conditions, therefore, representing a novel source of preclinical models. To understand how companion animal disease models are being studied for this purpose, we reviewed the literature between 2008 and 2015 for reports on stem cell therapies in dogs and cats, excluding laboratory animals, induced disease models, cancer, and case reports. Disease models included osteoarthritis, intervertebral disc degeneration, dilated cardiomyopathy, inflammatory bowel diseases, Crohn's fistulas, meningoencephalomyelitis (multiple sclerosis-like), keratoconjunctivitis sicca (Sjogren's syndrome-like), atopic dermatitis, and chronic (end-stage) kidney disease. Stem cells evaluated in these studies included mesenchymal stem-stromal cells (MSC, 17/19 trials), olfactory ensheathing cells (OEC, 1 trial), or neural lineage cells derived from bone marrow MSC (1 trial), and 16/19 studies were performed in dogs. The MSC studies (13/17) used adipose tissue-derived MSC from either allogeneic (8/13) or autologous (5/13) sources. The majority of studies were open label, uncontrolled studies. Endpoints and protocols were feasible, and the stem cell therapies were reportedly safe and elicited beneficial patient responses in all but two of the trials. In conclusion, companion animals with naturally occurring diseases analogous to human conditions can be recruited into clinical trials and provide realistic insight into feasibility, safety, and biologic activity of novel stem cell therapies. However, improvements in the rigor of manufacturing, study design, and regulatory compliance will be needed to better utilize these models. Stem Cells 2016;34:1709-1729. © 2016 AlphaMed Press.
Alterations of urinary metabolite profile in model diabetic nephropathy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stec, Donald F.; Wang, Suwan; Stothers, Cody
2015-01-09
Highlights: • {sup 1}H NMR spectroscopy was employed to study urinary metabolite profile in diabetic mouse models. • Mouse urinary metabolome showed major changes that are also found in human diabetic nephropathy. • These models can be new tools to study urinary biomarkers that are relevant to human disease. - Abstract: Countering the diabetes pandemic and consequent complications, such as nephropathy, will require better understanding of disease mechanisms and development of new diagnostic methods. Animal models can be versatile tools in studies of diabetic renal disease when model pathology is relevant to human diabetic nephropathy (DN). Diabetic models using endothelialmore » nitric oxide synthase (eNOS) knock-out mice develop major renal lesions characteristic of human disease. However, it is unknown whether they can also reproduce changes in urinary metabolites found in human DN. We employed Type 1 and Type 2 diabetic mouse models of DN, i.e. STZ-eNOS{sup −/−} C57BLKS and eNOS{sup −/−} C57BLKS db/db, with the goal of determining changes in urinary metabolite profile using proton nuclear magnetic resonance (NMR). Six urinary metabolites with significantly lower levels in diabetic compared to control mice have been identified. Specifically, major changes were found in metabolites from tricarboxylic acid (TCA) cycle and aromatic amino acid catabolism including 3-indoxyl sulfate, cis-aconitate, 2-oxoisocaproate, N-phenyl-acetylglycine, 4-hydroxyphenyl acetate, and hippurate. Levels of 4-hydroxyphenyl acetic acid and hippuric acid showed the strongest reverse correlation to albumin-to-creatinine ratio (ACR), which is an indicator of renal damage. Importantly, similar changes in urinary hydroxyphenyl acetate and hippurate were previously reported in human renal disease. We demonstrated that STZ-eNOS{sup −/−} C57BLKS and eNOS{sup −/−} C57BLKS db/db mouse models can recapitulate changes in urinary metabolome found in human DN and therefore can be useful new tools in metabolomic studies relevant to human pathology.« less
The Human Microbiome: Our Second Genome*
Grice, Elizabeth A.; Segre, Julia A.
2012-01-01
The human genome has been referred to as the blueprint of human biology. In this review we consider an essential but largely ignored overlay to that blueprint, the human microbiome, which is composed of those microbes that live in and on our bodies. The human microbiome is a source of genetic diversity, a modifier of disease, an essential component of immunity, and a functional entity that influences metabolism and modulates drug interactions. Characterization and analysis of the human microbiome have been greatly catalyzed by advances in genomic technologies. We discuss how these technologies have shaped this emerging field of study and advanced our understanding of the human microbiome. We also identify future challenges, many of which are common to human genetic studies, and predict that in the future, analyzing genetic variation and risk of human disease will sometimes necessitate the integration of human and microbial genomic data sets. PMID:22703178
LincRNA-p21: Implications in Human Diseases
Tang, Sai-Sai; Zheng, Bi-Ying; Xiong, Xing-Dong
2015-01-01
Long noncoding RNAs (lncRNAs), which lack significant protein-coding capacity, regulate various biological processes through diverse and as yet poorly understood molecular mechanisms. However, a number of studies in the past few years have documented important functions for lncRNAs in human diseases. Among these lncRNAs, lincRNA-p21 has been proposed to be a novel regulator of cell proliferation, apoptosis and DNA damage response, and involved in the initiation and progression of human diseases. In this review, we summarize the current knowledge of lincRNA-p21, mainly focus on the known biological functions and its underlying mechanisms. Moreover, we highlight the growing body of evidences for the importance of lincRNA-p21 in diverse human diseases, which indicate lincRNA-p21 as a potential diagnostic marker and/or a valuable therapeutic target for these diseases. PMID:26270659
Moore, Jason H; Boczko, Erik M; Summar, Marshall L
2005-02-01
Understanding how DNA sequence variations impact human health through a hierarchy of biochemical and physiological systems is expected to improve the diagnosis, prevention, and treatment of common, complex human diseases. We have previously developed a hierarchical dynamic systems approach based on Petri nets for generating biochemical network models that are consistent with genetic models of disease susceptibility. This modeling approach uses an evolutionary computation approach called grammatical evolution as a search strategy for optimal Petri net models. We have previously demonstrated that this approach routinely identifies biochemical network models that are consistent with a variety of genetic models in which disease susceptibility is determined by nonlinear interactions between two or more DNA sequence variations. We review here this approach and then discuss how it can be used to model biochemical and metabolic data in the context of genetic studies of human disease susceptibility.
Li, Rui; Sun, Le; Fang, Ai; Li, Peng; Wu, Qian; Wang, Xiaoqun
2017-11-01
The development of a cerebral organoid culture in vitro offers an opportunity to generate human brain-like organs to investigate mechanisms of human disease that are specific to the neurogenesis of radial glial (RG) and outer radial glial (oRG) cells in the ventricular zone (VZ) and subventricular zone (SVZ) of the developing neocortex. Modeling neuronal progenitors and the organization that produces mature subcortical neuron subtypes during early stages of development is essential for studying human brain developmental diseases. Several previous efforts have shown to grow neural organoid in culture dishes successfully, however we demonstrate a new paradigm that recapitulates neocortical development process with VZ, OSVZ formation and the lamination organization of cortical layer structure. In addition, using patient-specific induced pluripotent stem cells (iPSCs) with dysfunction of the Aspm gene from a primary microcephaly patient, we demonstrate neurogenesis defects result in defective neuronal activity in patient organoids, suggesting a new strategy to study human developmental diseases in central nerve system.
Towards a 21st century roadmap for biomedical research and ...
Decades of costly failures in translating drug candidates from preclinical disease models to human therapeutic use warrant reconsideration of the priority placed on animal models in biomedical research. Following an international workshop attended by experts from academia, government institutions, research funding bodies and the corporate and NGO sectors, this consensus report analyses, as case studies, five disease areas with major unmet needs for new treatments. In view of the scientifically driven transition towards a human pathways-based paradigm in toxicology, a similar paradigm shift appears to be justified in biomedical research. There is a pressing need for an approach that strategically implements advanced, human biology-based models and tools to understand disease pathways at multiple biological scales. We present recommendations to help achieve this. To discover and develop new therapies, we need 21-century roadmaps for biomedical research based on multiscale human disease pathways, and supported by policy and funding strategies that prioritise human relevance.
The Gut Microbiota in Immune-Mediated Inflammatory Diseases
Forbes, Jessica D.; Van Domselaar, Gary; Bernstein, Charles N.
2016-01-01
The collection of microbes and their genes that exist within and on the human body, collectively known as the microbiome has emerged as a principal factor in human health and disease. Humans and microbes have established a symbiotic association over time, and perturbations in this association have been linked to several immune-mediated inflammatory diseases (IMID) including inflammatory bowel disease, rheumatoid arthritis, and multiple sclerosis. IMID is a term used to describe a group of chronic, highly disabling diseases that affect different organ systems. Though a cornerstone commonality between IMID is the idiopathic nature of disease, a considerable portion of their pathobiology overlaps including epidemiological co-occurrence, genetic susceptibility loci and environmental risk factors. At present, it is clear that persons with an IMID are at an increased risk for developing comorbidities, including additional IMID. Advancements in sequencing technologies and a parallel explosion of 16S rDNA and metagenomics community profiling studies have allowed for the characterization of microbiomes throughout the human body including the gut, in a myriad of human diseases and in health. The main challenge now is to determine if alterations of gut flora are common between IMID or, if particular changes in the gut community are in fact specific to a single disease. Herein, we review and discuss the relationships between the gut microbiota and IMID. PMID:27462309
Added sugars and risk factors for obesity, diabetes and heart disease.
Rippe, J M; Angelopoulos, T J
2016-03-01
The effects of added sugars on various chronic conditions are highly controversial. Some investigators have argued that added sugars increase the risk of obesity, diabetes and cardiovascular disease. However, few randomized controlled trials are available to support these assertions. The literature is further complicated by animal studies, as well as studies which compare pure fructose to pure glucose (neither of which is consumed to any appreciable degree in the human diet) and studies where large doses of added sugars beyond normal levels of human consumption have been administered. Various scientific and public health organizations have offered disparate recommendations for upper limits of added sugar. In this article, we will review recent randomized controlled trials and prospective cohort studies. We conclude that the normal added sugars in the human diet (for example, sucrose, high-fructose corn syrup and isoglucose) when consumed within the normal range of normal human consumption or substituted isoenergetically for other carbohydrates, do not appear to cause a unique risk of obesity, diabetes or cardiovascular disease.
Wood, James L. N.; Leach, Melissa; Waldman, Linda; MacGregor, Hayley; Fooks, Anthony R.; Jones, Kate E.; Restif, Olivier; Dechmann, Dina; Hayman, David T. S.; Baker, Kate S.; Peel, Alison J.; Kamins, Alexandra O.; Fahr, Jakob; Ntiamoa-Baidu, Yaa; Suu-Ire, Richard; Breiman, Robert F.; Epstein, Jonathan H.; Field, Hume E.; Cunningham, Andrew A.
2012-01-01
Many serious emerging zoonotic infections have recently arisen from bats, including Ebola, Marburg, SARS-coronavirus, Hendra, Nipah, and a number of rabies and rabies-related viruses, consistent with the overall observation that wildlife are an important source of emerging zoonoses for the human population. Mechanisms underlying the recognized association between ecosystem health and human health remain poorly understood and responding appropriately to the ecological, social and economic conditions that facilitate disease emergence and transmission represents a substantial societal challenge. In the context of disease emergence from wildlife, wildlife and habitat should be conserved, which in turn will preserve vital ecosystem structure and function, which has broader implications for human wellbeing and environmental sustainability, while simultaneously minimizing the spillover of pathogens from wild animals into human beings. In this review, we propose a novel framework for the holistic and interdisciplinary investigation of zoonotic disease emergence and its drivers, using the spillover of bat pathogens as a case study. This study has been developed to gain a detailed interdisciplinary understanding, and it combines cutting-edge perspectives from both natural and social sciences, linked to policy impacts on public health, land use and conservation. PMID:22966143
Aebersold, Ruedi; Bader, Gary D; Edwards, Aled M; van Eyk, Jennifer E; Kussmann, Martin; Qin, Jun; Omenn, Gilbert S
2013-01-04
The biology and disease oriented branch of the Human Proteome Project (B/D-HPP) was established by the Human Proteome Organization (HUPO) with the main goal of supporting the broad application of state-of the-art measurements of proteins and proteomes by life scientists studying the molecular mechanisms of biological processes and human disease. This will be accomplished through the generation of research and informational resources that will support the routine and definitive measurement of the process or disease relevant proteins. The B/D-HPP is highly complementary to the C-HPP and will provide datasets and biological characterization useful to the C-HPP teams. In this manuscript we describe the goals, the plans, and the current status of the of the B/D-HPP.
Human immune system mouse models of Ebola virus infection.
Spengler, Jessica R; Prescott, Joseph; Feldmann, Heinz; Spiropoulou, Christina F
2017-08-01
Human immune system (HIS) mice, immunodeficient mice engrafted with human cells (with or without donor-matched tissue), offer a unique opportunity to study pathogens that cause disease predominantly or exclusively in humans. Several HIS mouse models have recently been used to study Ebola virus (EBOV) infection and disease. The results of these studies are encouraging and support further development and use of these models in Ebola research. HIS mice provide a small animal model to study EBOV isolates, investigate early viral interactions with human immune cells, screen vaccines and therapeutics that modulate the immune system, and investigate sequelae in survivors. Here we review existing models, discuss their use in pathogenesis studies and therapeutic screening, and highlight considerations for study design and analysis. Finally, we point out caveats to current models, and recommend future efforts for modeling EBOV infection in HIS mice. Published by Elsevier B.V.
ERIC Educational Resources Information Center
Gardiner, Katheleen
2009-01-01
Mouse models are a standard tool in the study of many human diseases, providing insights into the normal functions of a gene, how these are altered in disease and how they contribute to a disease process, as well as information on drug action, efficacy and side effects. Our knowledge of human genes, their genetics, functions, interactions and…
NASA Astrophysics Data System (ADS)
Perez-Saez, Javier; Bertuzzo, Enrico; Frohelich, Jean-Marc; Mande, Theophile; Ceperley, Natalie; Sou, Mariam; Yacouba, Hamma; Maiga, Hamadou; Sokolow, Susanne; De Leo, Giulio; Casagrandi, Renato; Gatto, Marino; Mari, Lorenzo; Rinaldo, Andrea
2015-04-01
We study the spatial geography of schistosomiasis in the african context of Burkina Faso by means of a spatially explicit model of disease dynamics and spread. The relevance of our work lies in its ability to describe quantitatively a geographic stratification of the disease burden capable of reproducing important spatial differences, and drivers/controls of disease spread. Among the latters, we consider specifically the development and management of water resources which have been singled out empirically as an important risk factor for schistosomiasis. The model includes remotely acquired and objectively manipulated information on the distributions of population, infrastructure, elevation and climatic drivers. It also includes a general description of human mobility and addresses a first-order characterization of the ecology of the intermediate host of the parasite causing the disease based on maximum entropy learning of relevant environmenal covariates. Spatial patterns of the disease were analyzed about their disease-free equilibrium by proper extraction and mapping of suitable eigenvectors of the Jacobian matrix subsuming all stability properties of the system. Human mobility was found to be a primary control of both pathogen invasion success and of the overall distribution of disease burden. The effects of water resources development were studied by accounting for the (prior and posterior) average distances of human settlements from water bodies that may serve as suitable habitats to the intermediate host of the parasite. Water developments, in combination with human mobility, were quantitatively related to disease spread into regions previously nearly disease-free and to large-scale empirical incidence patterns. We concluded that while the model still needs refinements based on field and epidemiological evidence, the framework proposed provides a powerful tool for large-scale, long-term public health planning and management of schistosomiasis.
Linking Microbiota to Human Diseases: A Systems Biology Perspective.
Wu, Hao; Tremaroli, Valentina; Bäckhed, Fredrik
2015-12-01
The human gut microbiota encompasses a densely populated ecosystem that provides essential functions for host development, immune maturation, and metabolism. Alterations to the gut microbiota have been observed in numerous diseases, including human metabolic diseases such as obesity, type 2 diabetes (T2D), and irritable bowel syndrome, and some animal experiments have suggested causality. However, few studies have validated causality in humans and the underlying mechanisms remain largely to be elucidated. We discuss how systems biology approaches combined with new experimental technologies may disentangle some of the mechanistic details in the complex interactions of diet, microbiota, and host metabolism and may provide testable hypotheses for advancing our current understanding of human-microbiota interaction. Copyright © 2015 Elsevier Ltd. All rights reserved.
Histopathological retrospective study of canine renal disease in Korea, 2003~2008
Yhee, Ji-Young; Yu, Chi-Ho; Kim, Jong-Hyuk; Im, Keum-Soon; Chon, Seung-Ki
2010-01-01
Renal disease includes conditions affecting the glomeruli, tubules, interstitium, pelvis, and vasculature. Diseases of the kidney include glomerular diseases, diseases of the tubules and interstitium, diseases of renal pelvis, and developmental abnormalities. Renal tissue samples (n = 70) submitted to the Department of Veterinary Pathology of Konkuk University from 2003 to 2008 were included in this study. Tissue histopathology was performed using light microscopy with hematoxylin and eosin stains. Masson's trichrome, Congo Red, and Warthin starry silver staining were applied in several individual cases. Glomerular diseases (22.9%), tubulointerstitial diseases (8.6%), neoplastic diseases (8.6%), conditions secondary to urinary obstruction (24.3%), and other diseases (35.7%) were identified. Glomerulonephritis (GN) cases were classified as acute proliferative GN (5.7%), membranous GN (4.3%), membranoproliferative GN (4.3%), focal segmental GN (2.9%), and other GN (4.2%). The proportion of canine GN cases presently identified was not as high as the proportions identified in human studies. Conversely, urinary obstruction and end-stage renal disease cases were relatively higher in dogs than in human populations. PMID:21113095
Models of acute and chronic pancreatitis.
Lerch, Markus M; Gorelick, Fred S
2013-06-01
Animal models of acute and chronic pancreatitis have been created to examine mechanisms of pathogenesis, test therapeutic interventions, and study the influence of inflammation on the development of pancreatic cancer. In vitro models can be used to study early stage, short-term processes that involve acinar cell responses. Rodent models reproducibly develop mild or severe disease. One of the most commonly used pancreatitis models is created by administration of supraphysiologic concentrations of caerulein, an ortholog of cholecystokinin. Induction of chronic pancreatitis with factors thought to have a role in human disease, such as combinations of lipopolysaccharide and chronic ethanol feeding, might be relevant to human disease. Models of autoimmune chronic pancreatitis have also been developed. Most models, particularly of chronic pancreatitis, require further characterization to determine which features of human disease they include. Copyright © 2013 AGA Institute. Published by Elsevier Inc. All rights reserved.
Human Milk Oligosaccharides and the Preterm Infant: A Journey in Sickness and in Health.
Moukarzel, Sara; Bode, Lars
2017-03-01
Human milk oligosaccharides (HMOs) are a group of approximately 200 different unconjugated sugar structures in human milk proposed to support infant growth and development. Data from several preclinical animal studies and human cohort studies suggest HMOs reduce preterm infant mortality and morbidity by shaping the gut microbiome and protecting against necrotizing enterocolitis, candidiasis, and several other immune-related diseases. Current feeding practices and clinical algorithms do not consider infant HMO intake when assessing dietary adequacy or disease risk. Advancements in HMO analytical methodologies and HMO synthesis facilitate cohort and intervention studies to investigate which particular HMOs are most relevant in supporting preterm infants. Copyright © 2016 Elsevier Inc. All rights reserved.
The Status of Human and Animal Fascioliasis in Iran: A Narrative Review Article
ASHRAFI, Keyhan
2015-01-01
Background: The public health importance of human fascioliasis has increased during last few decades due to the appearance of new emerging and re-emerging foci in many countries. Iran, as the most important focus of human disease in Asia, has been included among six countries known to have a serious problem with fascioliasis by WHO. Various aspects of the disease in Iran are discussed in this review. Methods: This narrative review covers all information about human and animal fascioliasis in Iran, which has been published in local and international journals from 1960 to 2014 using various databases including PubMed, SID, Google Scholar, Scopus, Science Direct. Results: During the period of the study the infection rates of 0.1% to 91.4% was noted in various livestock. Despite the higher infection rates of livestock in southern areas in past decades, human disease has been mostly encountered in northern Provinces especially in Guilan. Recent studies indicate noticeable decrease in prevalence rates of veterinary fascioliasis in Iran, however the prevalence rates of fascioliasis in livestock in northern Provinces of Guilan and Mazandaran seem to remain at a higher level in comparison to other parts. New foci of the disease have also been reported recently. Conclusion: While the prevalence of animal fascioliasis has decreased during last decades, human fascioliasis emerged as a public health problem in the country. The validity of new foci of human fascioliasis needs complementary standard studies. PMID:26622287
Modeling Huntington׳s disease with patient-derived neurons.
Mattis, Virginia B; Svendsen, Clive N
2017-02-01
Huntington׳s Disease (HD) is a fatal neurodegenerative disorder caused by expanded polyglutamine repeats in the Huntingtin (HTT) gene. While the gene was identified over two decades ago, it remains poorly understood why mutant HTT (mtHTT) is initially toxic to striatal medium spiny neurons (MSNs). Models of HD using non-neuronal human patient cells and rodents exhibit some characteristic HD phenotypes. While these current models have contributed to the field, they are limited in disease manifestation and may vary in their response to treatments. As such, human HD patient MSNs for disease modeling could greatly expand the current understanding of HD and facilitate the search for a successful treatment. It is now possible to use pluripotent stem cells, which can generate any tissue type in the body, to study and potentially treat HD. This review covers disease modeling in vitro and, via chimeric animal generation, in vivo using human HD patient MSNs differentiated from embryonic stem cells or induced pluripotent stem cells. This includes an overview of the differentiation of pluripotent cells into MSNs, the established phenotypes found in cell-based models and transplantation studies using these cells. This review not only outlines the advancements in the rapidly progressing field of HD modeling using neurons derived from human pluripotent cells, but also it highlights several remaining controversial issues such as the 'ideal' series of pluripotent lines, the optimal cell types to use and the study of a primarily adult-onset disease in a developmental model. This article is part of a Special Issue entitled SI: Exploiting human neurons. Copyright © 2015 Elsevier B.V. All rights reserved.
Wada, Yoshinao; Dell, Anne; Haslam, Stuart M; Tissot, Bérangère; Canis, Kévin; Azadi, Parastoo; Bäckström, Malin; Costello, Catherine E; Hansson, Gunnar C; Hiki, Yoshiyuki; Ishihara, Mayumi; Ito, Hiromi; Kakehi, Kazuaki; Karlsson, Niclas; Hayes, Catherine E; Kato, Koichi; Kawasaki, Nana; Khoo, Kay-Hooi; Kobayashi, Kunihiko; Kolarich, Daniel; Kondo, Akihiro; Lebrilla, Carlito; Nakano, Miyako; Narimatsu, Hisashi; Novak, Jan; Novotny, Milos V; Ohno, Erina; Packer, Nicolle H; Palaima, Elizabeth; Renfrow, Matthew B; Tajiri, Michiko; Thomsson, Kristina A; Yagi, Hirokazu; Yu, Shin-Yi; Taniguchi, Naoyuki
2010-04-01
The Human Proteome Organisation Human Disease Glycomics/Proteome Initiative recently coordinated a multi-institutional study that evaluated methodologies that are widely used for defining the N-glycan content in glycoproteins. The study convincingly endorsed mass spectrometry as the technique of choice for glycomic profiling in the discovery phase of diagnostic research. The present study reports the extension of the Human Disease Glycomics/Proteome Initiative's activities to an assessment of the methodologies currently used for O-glycan analysis. Three samples of IgA1 isolated from the serum of patients with multiple myeloma were distributed to 15 laboratories worldwide for O-glycomics analysis. A variety of mass spectrometric and chromatographic procedures representative of current methodologies were used. Similar to the previous N-glycan study, the results convincingly confirmed the pre-eminent performance of MS for O-glycan profiling. Two general strategies were found to give the most reliable data, namely direct MS analysis of mixtures of permethylated reduced glycans in the positive ion mode and analysis of native reduced glycans in the negative ion mode using LC-MS approaches. In addition, mass spectrometric methodologies to analyze O-glycopeptides were also successful.
Nikolić, Miloš; Papantonis, Argyris
2017-01-01
Abstract Genome-wide association studies (GWAS) have emerged as a powerful tool to uncover the genetic basis of human common diseases, which often show a complex, polygenic and multi-factorial aetiology. These studies have revealed that 70–90% of all single nucleotide polymorphisms (SNPs) associated with common complex diseases do not occur within genes (i.e. they are non-coding), making the discovery of disease-causative genetic variants and the elucidation of the underlying pathological mechanisms far from straightforward. Based on emerging evidences suggesting that disease-associated SNPs are frequently found within cell type-specific regulatory sequences, here we present GARLIC (GWAS-based Prediction Toolkit for Connecting Diseases and Cell Types), a user-friendly, multi-purpose software with an associated database and online viewer that, using global maps of cis-regulatory elements, can aetiologically connect human diseases with relevant cell types. Additionally, GARLIC can be used to retrieve potential disease-causative genetic variants overlapping regulatory sequences of interest. Overall, GARLIC can satisfy several important needs within the field of medical genetics, thus potentially assisting in the ultimate goal of uncovering the elusive and complex genetic basis of common human disorders. PMID:28007912
Low-Density microarray technologies for rapid human norovirus genotyping
USDA-ARS?s Scientific Manuscript database
Human noroviruses (HuNoV) are the most common cause of food borne disease and viruses are likely responsible for a large proportion of foodborne diseases of unknown etiology. Recent advancements in molecular biology, bioinformatics, epidemiology, and risk analysis have aided the study of these agent...
Schmouth, Jean-François; Bonaguro, Russell J.; Corso-Diaz, Ximena; Simpson, Elizabeth M.
2012-01-01
An increasing body of literature from genome-wide association studies and human whole-genome sequencing highlights the identification of large numbers of candidate regulatory variants of potential therapeutic interest in numerous diseases. Our relatively poor understanding of the functions of non-coding genomic sequence, and the slow and laborious process of experimental validation of the functional significance of human regulatory variants, limits our ability to fully benefit from this information in our efforts to comprehend human disease. Humanized mouse models (HuMMs), in which human genes are introduced into the mouse, suggest an approach to this problem. In the past, HuMMs have been used successfully to study human disease variants; e.g., the complex genetic condition arising from Down syndrome, common monogenic disorders such as Huntington disease and β-thalassemia, and cancer susceptibility genes such as BRCA1. In this commentary, we highlight a novel method for high-throughput single-copy site-specific generation of HuMMs entitled High-throughput Human Genes on the X Chromosome (HuGX). This method can be applied to most human genes for which a bacterial artificial chromosome (BAC) construct can be derived and a mouse-null allele exists. This strategy comprises (1) the use of recombineering technology to create a human variant–harbouring BAC, (2) knock-in of this BAC into the mouse genome using Hprt docking technology, and (3) allele comparison by interspecies complementation. We demonstrate the throughput of the HuGX method by generating a series of seven different alleles for the human NR2E1 gene at Hprt. In future challenges, we consider the current limitations of experimental approaches and call for a concerted effort by the genetics community, for both human and mouse, to solve the challenge of the functional analysis of human regulatory variation. PMID:22396661
Ng, V; Sargeant, J M
2016-05-01
Zoonoses pose a significant burden of illness in North America. Zoonoses represent an additional threat to public health because the natural reservoirs are often animals, particularly wildlife, thus eluding control efforts such as quarantine, vaccination and social distancing. As there are limited resources available, it is necessary to prioritize diseases in order to allocate resources to those posing the greatest public health threat. Many studies have attempted to prioritize zoonoses, but challenges exist. This study uses a quantitative approach, conjoint analysis (CA), to overcome some limitations of traditional disease prioritization exercises. We used CA to conduct a zoonoses prioritization study involving a range of human and animal health professionals across North America; these included epidemiologists, public health practitioners, research scientists, physicians, veterinarians, laboratory technicians and nurses. A total of 699 human health professionals (HHP) and 585 animal health professionals (AHP) participated in this study. We used CA to prioritize 62 zoonotic diseases using 21 criteria. Our findings suggest CA can be used to produce reasonable criteria scores for disease prioritization. The fitted models were satisfactory for both groups with a slightly better fit for AHP compared to HHP (84.4% certainty fit versus 83.6%). Human-related criteria were more influential for HHP in their decision to prioritize zoonoses, while animal-related criteria were more influential for AHP resulting in different disease priority lists. While the differences were not statistically significant, a difference of one or two ranks could be considered important for some individuals. A potential solution to address the varying opinions is discussed. The scientific framework for disease prioritization presented can be revised on a regular basis by updating disease criteria to reflect diseases as they evolve over time; such a framework is of value allowing diseases of highest impact to be identified routinely for resource allocation. © 2015 Blackwell Verlag GmbH.
Fullen, Daniel J.; Murray, Bryan; Mori, Julie; Catchpole, Andrew; Borley, Daryl W.; Murray, Edward J.; Balaratnam, Ganesh; Gilbert, Anthony; Mann, Alex; Hughes, Fiona; Lambkin-Williams, Rob
2016-01-01
Background Human Rhinovirus infection is an important precursor to asthma and chronic obstructive pulmonary disease exacerbations and the Human Viral Challenge model may provide a powerful tool in studying these and other chronic respiratory diseases. In this study we have reported the production and human characterisation of a new Wild-Type HRV-16 challenge virus produced specifically for this purpose. Methods and Stock Development A HRV-16 isolate from an 18 year old experimentally infected healthy female volunteer (University of Virginia Children’s Hospital, USA) was obtained with appropriate medical history and consent. We manufactured a new HRV-16 stock by minimal passage in a WI-38 cell line under Good Manufacturing Practice conditions. Having first subjected the stock to rigorous adventitious agent testing and determining the virus suitability for human use, we conducted an initial safety and pathogenicity clinical study in adult volunteers in our dedicated clinical quarantine facility in London. Human Challenge and Conclusions In this study we have demonstrated the new Wild-Type HRV-16 Challenge Virus to be both safe and pathogenic, causing an appropriate level of disease in experimentally inoculated healthy adult volunteers. Furthermore, by inoculating volunteers with a range of different inoculum titres, we have established the minimum inoculum titre required to achieve reproducible disease. We have demonstrated that although inoculation titres as low as 1 TCID50 can produce relatively high infection rates, the optimal titre for progression with future HRV challenge model development with this virus stock was 10 TCID50. Studies currently underway are evaluating the use of this virus as a challenge agent in asthmatics. Trial Registration ClinicalTrials.gov NCT02522832 PMID:27936016
Not lost in translation: how study of diseases in our pets can benefit them and us.
Henry, Carolyn J; Bryan, Jeffrey N
2013-01-01
Practice-changing medical discovery requires preclinical and clinical assessment be carried out using appropriate disease models. There is growing awareness of companion animals with naturally-occurring disease as such models. They offer significant advantages over more traditional in vivo models of induced disease. This review describes current efforts to promote translation of discoveries between human and veterinary medicine in order to more rapidly and efficiently make progress in improving the health of all human and animal patients.
Comparative Pathology of Aging Great Apes: Bonobos, Chimpanzees, Gorillas, and Orangutans.
Lowenstine, L J; McManamon, R; Terio, K A
2016-03-01
The great apes (chimpanzees, bonobos, gorillas, and orangutans) are our closest relatives. Despite the many similarities, there are significant differences in aging among apes, including the human ape. Common to all are dental attrition, periodontitis, tooth loss, osteopenia, and arthritis, although gout is uniquely human and spondyloarthropathy is more prevalent in apes than humans. Humans are more prone to frailty, sarcopenia, osteoporosis, longevity past reproductive senescence, loss of brain volume, and Alzheimer dementia. Cerebral vascular disease occurs in both humans and apes. Cardiovascular disease mortality increases in aging humans and apes, but coronary atherosclerosis is the most significant type in humans. In captive apes, idiopathic myocardial fibrosis and cardiomyopathy predominate, with arteriosclerosis of intramural coronary arteries. Similar cardiac lesions are occasionally seen in wild apes. Vascular changes in heart and kidneys and aortic dissections in gorillas and bonobos suggest that hypertension may be involved in pathogenesis. Chronic kidney disease is common in elderly humans and some aging apes and is linked with cardiovascular disease in orangutans. Neoplasms common to aging humans and apes include uterine leiomyomas in chimpanzees, but other tumors of elderly humans, such as breast, prostate, lung, and colorectal cancers, are uncommon in apes. Among the apes, chimpanzees have been best studied in laboratory settings, and more comparative research is needed into the pathology of geriatric zoo-housed and wild apes. Increasing longevity of humans and apes makes understanding aging processes and diseases imperative for optimizing quality of life in all the ape species. © The Author(s) 2015.
Human Microbiome Acquisition and Bioinformatic Challenges in Metagenomic Studies
2018-01-01
The study of the human microbiome has become a very popular topic. Our microbial counterpart, in fact, appears to play an important role in human physiology and health maintenance. Accordingly, microbiome alterations have been reported in an increasing number of human diseases. Despite the huge amount of data produced to date, less is known on how a microbial dysbiosis effectively contributes to a specific pathology. To fill in this gap, other approaches for microbiome study, more comprehensive than 16S rRNA gene sequencing, i.e., shotgun metagenomics and metatranscriptomics, are becoming more widely used. Methods standardization and the development of specific pipelines for data analysis are required to contribute to and increase our understanding of the human microbiome relationship with health and disease status. PMID:29382070
Teaching human parasitology in China
2012-01-01
China has approximately one-fifth of the world’s population. Despite the recent success in controlling major parasitic diseases, parasitic diseases remain a significant human health problem in China. Hence, the discipline of human parasitology is considered as a core subject for undergraduate and postgraduate students of the medical sciences. We consider the teaching of human parasitology to be fundamental to the training of medical students, to the continued research on parasitic diseases, and to the prevention and control of human parasitic diseases. Here, we have summarized the distribution of educational institutions in China, particularly those that teach parasitology. In addition, we have described some existing parasitology courses in detail as well as the teaching methods used for different types of medical students. Finally, we have discussed the current problems in and reforms to human parasitology education. Our study indicates that 304 regular higher education institutions in China offer medical or related education. More than 70 universities have an independent department of parasitology that offers approximately 10 different parasitology courses. In addition, six universities in China have established excellence-building courses in human parasitology. PMID:22520237
Adeno-associated virus–targeted disruption of the CFTR gene in cloned ferrets
Sun, Xingshen; Yan, Ziying; Yi, Yaling; Li, Ziyi; Lei, Diana; Rogers, Christopher S.; Chen, Juan; Zhang, Yulong; Welsh, Michael J.; Leno, Gregory H.; Engelhardt, John F.
2008-01-01
Somatic cell gene targeting combined with nuclear transfer cloning presents tremendous potential for the creation of new, large-animal models of human diseases. Mouse disease models often fail to reproduce human phenotypes, underscoring the need for the generation and study of alternative disease models. Mice deficient for CFTR have been poor models for cystic fibrosis (CF), lacking many aspects of human CF lung disease. In this study, we describe the production of a CFTR gene–deficient model in the domestic ferret using recombinant adeno-associated virus–mediated gene targeting in fibroblasts, followed by nuclear transfer cloning. As part of this approach, we developed a somatic cell rejuvenation protocol using serial nuclear transfer to produce live CFTR-deficient clones from senescent gene-targeted fibroblasts. We transferred 472 reconstructed embryos into 11 recipient jills and obtained 8 healthy male ferret clones heterozygous for a disruption in exon 10 of the CFTR gene. To our knowledge, this study represents the first description of genetically engineered ferrets and describes an approach that may be of substantial utility in modeling not only CF, but also other genetic diseases. PMID:18324338
Endometriosis research: animal models for the study of a complex disease.
Tirado-González, Irene; Barrientos, Gabriela; Tariverdian, Nadja; Arck, Petra C; García, Mariana G; Klapp, Burghard F; Blois, Sandra M
2010-11-01
Endometriosis is a common gynaecological disease that is characterized and defined as the presence of endometrial tissue outside the uterus, causing painful periods and subfertility in approximately 10% of women. After more than 50 years of research, little is known about the mechanisms underlying the development and establishment of this condition. Animal models allow us to study the temporal sequence of events involved in disease establishment and progression. Also, because this disease occurs spontaneously only in humans and non-human primates and there are practical problems associated with studying the disease, animal models have been developed for the evaluation of endometriosis. This review describes the animal models for endometriosis that have been used to date, highlighting their importance for the investigation of disease mechanisms that would otherwise be more difficult to elucidate, and proposing new alternatives aimed at overcoming some of these limitations. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
Evolutionary Medicine: The Ongoing Evolution of Human Physiology and Metabolism.
Rühli, Frank; van Schaik, Katherine; Henneberg, Maciej
2016-11-01
The field of evolutionary medicine uses evolutionary principles to understand changes in human anatomy and physiology that have occurred over time in response to environmental changes. Through this evolutionary-based approach, we can understand disease as a consequence of anatomical and physiological "trade-offs" that develop to facilitate survival and reproduction. We demonstrate how diachronic study of human anatomy and physiology is fundamental for an increased understanding of human health and disease. ©2016 Int. Union Physiol. Sci./Am. Physiol. Soc.
Vaidya, Anand; Williams, Jonathan S
2012-04-01
Vitamin D has been implicated in the pathophysiology of extraskeletal conditions such as hypertension, kidney disease, and diabetes via its ability to negatively regulate the renin-angiotensin system (RAS). This article reviews the evidence supporting a link between vitamin D and the RAS in these conditions, with specific emphasis on translational observations and their limitations. A literature review of animal and human studies evaluating the role of vitamin D in hypertension, kidney disease, and diabetes was performed. Excess activity of the RAS has been implicated in the pathogenesis of hypertension, chronic kidney disease, decreased insulin secretion, and insulin resistance. Animal studies provide strong support for 1,25-dihydroxyvitamin D(3)-mediated downregulation of renin expression and RAS activity via its interaction with the vitamin D receptor. Furthermore, the activity of vitamin D metabolites in animals is associated with reductions in blood pressure, proteinuria and renal injury, and with improved β-cell function. Many observational, and a few interventional, studies in humans have supported these findings; however, there is a lack of well-designed prospective human interventional studies to definitively assess clinical outcomes. There is a need for more well-designed prospective interventional studies to validate this hypothesis in human clinical outcomes. Copyright © 2012 Elsevier Inc. All rights reserved.
Epigenetics: relevance and implications for public health.
Rozek, Laura S; Dolinoy, Dana C; Sartor, Maureen A; Omenn, Gilbert S
2014-01-01
Improved understanding of the multilayer regulation of the human genome has led to a greater appreciation of environmental, nutritional, and epigenetic risk factors for human disease. Chromatin remodeling, histone tail modifications, and DNA methylation are dynamic epigenetic changes responsive to external stimuli. Careful interpretation can provide insights for actionable public health through collaboration between population and basic scientists and through integration of multiple data sources. We review key findings in environmental epigenetics both in human population studies and in animal models, and discuss the implications of these results for risk assessment and public health protection. To ultimately succeed in identifying epigenetic mechanisms leading to complex phenotypes and disease, researchers must integrate the various animal models, human clinical approaches, and human population approaches while paying attention to life-stage sensitivity, to generate effective prescriptions for human health evaluation and disease prevention.
Protein disorder in the human diseasome: unfoldomics of human genetic diseases
Midic, Uros; Oldfield, Christopher J; Dunker, A Keith; Obradovic, Zoran; Uversky, Vladimir N
2009-01-01
Background Intrinsically disordered proteins lack stable structure under physiological conditions, yet carry out many crucial biological functions, especially functions associated with regulation, recognition, signaling and control. Recently, human genetic diseases and related genes were organized into a bipartite graph (Goh KI, Cusick ME, Valle D, Childs B, Vidal M, et al. (2007) The human disease network. Proc Natl Acad Sci U S A 104: 8685–8690). This diseasome network revealed several significant features such as the common genetic origin of many diseases. Methods and findings We analyzed the abundance of intrinsic disorder in these diseasome network proteins by means of several prediction algorithms, and we analyzed the functional repertoires of these proteins based on prior studies relating disorder to function. Our analyses revealed that (i) Intrinsic disorder is common in proteins associated with many human genetic diseases; (ii) Different disease classes vary in the IDP contents of their associated proteins; (iii) Molecular recognition features, which are relatively short loosely structured protein regions within mostly disordered sequences and which gain structure upon binding to partners, are common in the diseasome, and their abundance correlates with the intrinsic disorder level; (iv) Some disease classes have a significant fraction of genes affected by alternative splicing, and the alternatively spliced regions in the corresponding proteins are predicted to be highly disordered; and (v) Correlations were found among the various diseasome graph-related properties and intrinsic disorder. Conclusion These observations provide the basis for the construction of the human-genetic-disease-associated unfoldome. PMID:19594871
Human susceptibility to legionnaires' disease.
Berrington, William R; Hawn, Thomas R
2013-01-01
Legionella pneumophila is a facultative intracellular pathogen that is an important cause of pneumonia. Although host factors that may predispose to acquisition of Legionnaire's Disease (LD) include comorbid illnesses (e.g., diabetes, chronic lung disease), age, male sex, and smoking, many individuals have no identifiable risk factors. Some studies suggest that genetic factors may enhance susceptibility to LD. In this chapter we discuss current techniques and scientific methods to identify genetic susceptibility factors. These genetic studies provide insight into the human immune response to intracellular pathogens and may improve strategies for treatment and vaccine development.
Wildlife disease and environmental health in Alaska
Van Hemert, Caroline; Pearce, John; Oakley, Karen; Whalen, Mary
2013-01-01
Environmental health is defined by connections between the physical environment, ecological health, and human health. Current research within the U.S. Geological Survey (USGS) recognizes the importance of this integrated research philosophy, which includes study of disease and pollutants as they pertain to wildlife and humans. Due to its key geographic location and significant wildlife resources, Alaska is a critical area for future study of environmental health.
Local disease-ecosystem-livelihood dynamics: reflections from comparative case studies in Africa.
Leach, Melissa; Bett, Bernard; Said, M; Bukachi, Salome; Sang, Rosemary; Anderson, Neil; Machila, Noreen; Kuleszo, Joanna; Schaten, Kathryn; Dzingirai, Vupenyu; Mangwanya, Lindiwe; Ntiamoa-Baidu, Yaa; Lawson, Elaine; Amponsah-Mensah, Kofi; Moses, Lina M; Wilkinson, Annie; Grant, Donald S; Koninga, James
2017-07-19
This article explores the implications for human health of local interactions between disease, ecosystems and livelihoods. Five interdisciplinary case studies addressed zoonotic diseases in African settings: Rift Valley fever (RVF) in Kenya, human African trypanosomiasis in Zambia and Zimbabwe, Lassa fever in Sierra Leone and henipaviruses in Ghana. Each explored how ecological changes and human-ecosystem interactions affect pathogen dynamics and hence the likelihood of zoonotic spillover and transmission, and how socially differentiated peoples' interactions with ecosystems and animals affect their exposure to disease. Cross-case analysis highlights how these dynamics vary by ecosystem type, across a range from humid forest to semi-arid savannah; the significance of interacting temporal and spatial scales; and the importance of mosaic and patch dynamics. Ecosystem interactions and services central to different people's livelihoods and well-being include pastoralism and agro-pastoralism, commercial and subsistence crop farming, hunting, collecting food, fuelwood and medicines, and cultural practices. There are synergies, but also tensions and trade-offs, between ecosystem changes that benefit livelihoods and affect disease. Understanding these can inform 'One Health' approaches towards managing ecosystems in ways that reduce disease risks and burdens.This article is part of the themed issue 'One Health for a changing world: zoonoses, ecosystems and human well-being'. © 2017 The Authors.
Stebler, N; Schuepbach-Regula, G; Braam, P; Falzon, L C
2015-09-01
Zoonotic diseases have a significant impact on public health globally. To prevent or reduce future zoonotic outbreaks, there is a constant need to invest in research and surveillance programs while updating risk management strategies. However, given the limited resources available, disease prioritization based on the need for their control and surveillance is important. This study was performed to identify and weight disease criteria for the prioritization of zoonotic diseases in Switzerland using a semi-quantitative research method based on expert opinion. Twenty-eight criteria relevant for disease control and surveillance, classified under five domains, were selected following a thorough literature review, and these were evaluated and weighted by seven experts from the Swiss Federal Veterinary Office using a modified Delphi panel. The median scores assigned to each criterion were then used to rank 16 notifiable and/or emerging zoonoses in Switzerland. The experts weighted the majority of the criteria similarly, and the top three criteria were Severity of disease in humans, incidence and prevalence of the disease in humans and treatment in humans. Based on these weightings, the three highest ranked diseases were Avian Influenza, Bovine Spongiform Encephalitis, and Bovine Tuberculosis. Overall, this study provided a preliminary list of criteria relevant for disease prioritization in Switzerland. These were further evaluated in a companion study which involved a quantitative prioritization method and multiple stakeholders. Copyright © 2015 Elsevier B.V. All rights reserved.
Krassowski, Michal; Paczkowska, Marta; Cullion, Kim; Huang, Tina; Dzneladze, Irakli; Ouellette, B F Francis; Yamada, Joseph T; Fradet-Turcotte, Amelie
2018-01-01
Abstract Interpretation of genetic variation is needed for deciphering genotype-phenotype associations, mechanisms of inherited disease, and cancer driver mutations. Millions of single nucleotide variants (SNVs) in human genomes are known and thousands are associated with disease. An estimated 21% of disease-associated amino acid substitutions corresponding to missense SNVs are located in protein sites of post-translational modifications (PTMs), chemical modifications of amino acids that extend protein function. ActiveDriverDB is a comprehensive human proteo-genomics database that annotates disease mutations and population variants through the lens of PTMs. We integrated >385,000 published PTM sites with ∼3.6 million substitutions from The Cancer Genome Atlas (TCGA), the ClinVar database of disease genes, and human genome sequencing projects. The database includes site-specific interaction networks of proteins, upstream enzymes such as kinases, and drugs targeting these enzymes. We also predicted network-rewiring impact of mutations by analyzing gains and losses of kinase-bound sequence motifs. ActiveDriverDB provides detailed visualization, filtering, browsing and searching options for studying PTM-associated mutations. Users can upload mutation datasets interactively and use our application programming interface in pipelines. Integrative analysis of mutations and PTMs may help decipher molecular mechanisms of phenotypes and disease, as exemplified by case studies of TP53, BRCA2 and VHL. The open-source database is available at https://www.ActiveDriverDB.org. PMID:29126202
Current understanding of the human microbiome.
Gilbert, Jack A; Blaser, Martin J; Caporaso, J Gregory; Jansson, Janet K; Lynch, Susan V; Knight, Rob
2018-04-10
Our understanding of the link between the human microbiome and disease, including obesity, inflammatory bowel disease, arthritis and autism, is rapidly expanding. Improvements in the throughput and accuracy of DNA sequencing of the genomes of microbial communities that are associated with human samples, complemented by analysis of transcriptomes, proteomes, metabolomes and immunomes and by mechanistic experiments in model systems, have vastly improved our ability to understand the structure and function of the microbiome in both diseased and healthy states. However, many challenges remain. In this review, we focus on studies in humans to describe these challenges and propose strategies that leverage existing knowledge to move rapidly from correlation to causation and ultimately to translation into therapies.
Current understanding of the human microbiome
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gilbert, Jack A.; Blaser, Martin J.; Caporaso, J. Gregory
Our understanding of the link between the human microbiome and disease, including obesity, inflammatory bowel disease, arthritis and autism, is rapidly expanding. Improvements in the throughput and accuracy of DNA sequencing of the genomes of microbial communities associated with human samples, complemented by analysis of transcriptomes, proteomes, metabolomes and immunomes, and mechanistic experiments in model systems, have vastly improved our ability to understand the structure and function of the microbiome in both diseased and healthy states. However, many challenges remain. In this Review we focus on studies in humans to describe these challenges, and propose strategies that leverage existing knowledgemore » to move rapidly from correlation to causation, and ultimately to translation.« less
Mapping Neurodegenerative Disease Onset and Progression.
Seeley, William W
2017-08-01
Brain networks have been of long-standing interest to neurodegeneration researchers, including but not limited to investigators focusing on conventional prion diseases, which are known to propagate along neural pathways. Tools for human network mapping, however, remained inadequate, limiting our understanding of human brain network architecture and preventing clinical research applications. Until recently, neuropathological studies were the only viable approach to mapping disease onset and progression in humans but required large autopsy cohorts and laborious methods for whole-brain sectioning and staining. Despite important advantages, postmortem studies cannot address in vivo, physiological, or longitudinal questions and have limited potential to explore early-stage disease except for the most common disorders. Emerging in vivo network-based neuroimaging strategies have begun to address these issues, providing data that complement the neuropathological tradition. Overall, findings to date highlight several fundamental principles of neurodegenerative disease anatomy and pathogenesis, as well as some enduring mysteries. These principles and mysteries provide a road map for future research. Copyright © 2017 Cold Spring Harbor Laboratory Press; all rights reserved.
Craddock, Nick; Hurles, Matthew E; Cardin, Niall; Pearson, Richard D; Plagnol, Vincent; Robson, Samuel; Vukcevic, Damjan; Barnes, Chris; Conrad, Donald F; Giannoulatou, Eleni; Holmes, Chris; Marchini, Jonathan L; Stirrups, Kathy; Tobin, Martin D; Wain, Louise V; Yau, Chris; Aerts, Jan; Ahmad, Tariq; Andrews, T Daniel; Arbury, Hazel; Attwood, Anthony; Auton, Adam; Ball, Stephen G; Balmforth, Anthony J; Barrett, Jeffrey C; Barroso, Inês; Barton, Anne; Bennett, Amanda J; Bhaskar, Sanjeev; Blaszczyk, Katarzyna; Bowes, John; Brand, Oliver J; Braund, Peter S; Bredin, Francesca; Breen, Gerome; Brown, Morris J; Bruce, Ian N; Bull, Jaswinder; Burren, Oliver S; Burton, John; Byrnes, Jake; Caesar, Sian; Clee, Chris M; Coffey, Alison J; Connell, John M C; Cooper, Jason D; Dominiczak, Anna F; Downes, Kate; Drummond, Hazel E; Dudakia, Darshna; Dunham, Andrew; Ebbs, Bernadette; Eccles, Diana; Edkins, Sarah; Edwards, Cathryn; Elliot, Anna; Emery, Paul; Evans, David M; Evans, Gareth; Eyre, Steve; Farmer, Anne; Ferrier, I Nicol; Feuk, Lars; Fitzgerald, Tomas; Flynn, Edward; Forbes, Alistair; Forty, Liz; Franklyn, Jayne A; Freathy, Rachel M; Gibbs, Polly; Gilbert, Paul; Gokumen, Omer; Gordon-Smith, Katherine; Gray, Emma; Green, Elaine; Groves, Chris J; Grozeva, Detelina; Gwilliam, Rhian; Hall, Anita; Hammond, Naomi; Hardy, Matt; Harrison, Pile; Hassanali, Neelam; Hebaishi, Husam; Hines, Sarah; Hinks, Anne; Hitman, Graham A; Hocking, Lynne; Howard, Eleanor; Howard, Philip; Howson, Joanna M M; Hughes, Debbie; Hunt, Sarah; Isaacs, John D; Jain, Mahim; Jewell, Derek P; Johnson, Toby; Jolley, Jennifer D; Jones, Ian R; Jones, Lisa A; Kirov, George; Langford, Cordelia F; Lango-Allen, Hana; Lathrop, G Mark; Lee, James; Lee, Kate L; Lees, Charlie; Lewis, Kevin; Lindgren, Cecilia M; Maisuria-Armer, Meeta; Maller, Julian; Mansfield, John; Martin, Paul; Massey, Dunecan C O; McArdle, Wendy L; McGuffin, Peter; McLay, Kirsten E; Mentzer, Alex; Mimmack, Michael L; Morgan, Ann E; Morris, Andrew P; Mowat, Craig; Myers, Simon; Newman, William; Nimmo, Elaine R; O'Donovan, Michael C; Onipinla, Abiodun; Onyiah, Ifejinelo; Ovington, Nigel R; Owen, Michael J; Palin, Kimmo; Parnell, Kirstie; Pernet, David; Perry, John R B; Phillips, Anne; Pinto, Dalila; Prescott, Natalie J; Prokopenko, Inga; Quail, Michael A; Rafelt, Suzanne; Rayner, Nigel W; Redon, Richard; Reid, David M; Renwick; Ring, Susan M; Robertson, Neil; Russell, Ellie; St Clair, David; Sambrook, Jennifer G; Sanderson, Jeremy D; Schuilenburg, Helen; Scott, Carol E; Scott, Richard; Seal, Sheila; Shaw-Hawkins, Sue; Shields, Beverley M; Simmonds, Matthew J; Smyth, Debbie J; Somaskantharajah, Elilan; Spanova, Katarina; Steer, Sophia; Stephens, Jonathan; Stevens, Helen E; Stone, Millicent A; Su, Zhan; Symmons, Deborah P M; Thompson, John R; Thomson, Wendy; Travers, Mary E; Turnbull, Clare; Valsesia, Armand; Walker, Mark; Walker, Neil M; Wallace, Chris; Warren-Perry, Margaret; Watkins, Nicholas A; Webster, John; Weedon, Michael N; Wilson, Anthony G; Woodburn, Matthew; Wordsworth, B Paul; Young, Allan H; Zeggini, Eleftheria; Carter, Nigel P; Frayling, Timothy M; Lee, Charles; McVean, Gil; Munroe, Patricia B; Palotie, Aarno; Sawcer, Stephen J; Scherer, Stephen W; Strachan, David P; Tyler-Smith, Chris; Brown, Matthew A; Burton, Paul R; Caulfield, Mark J; Compston, Alastair; Farrall, Martin; Gough, Stephen C L; Hall, Alistair S; Hattersley, Andrew T; Hill, Adrian V S; Mathew, Christopher G; Pembrey, Marcus; Satsangi, Jack; Stratton, Michael R; Worthington, Jane; Deloukas, Panos; Duncanson, Audrey; Kwiatkowski, Dominic P; McCarthy, Mark I; Ouwehand, Willem; Parkes, Miles; Rahman, Nazneen; Todd, John A; Samani, Nilesh J; Donnelly, Peter
2010-04-01
Copy number variants (CNVs) account for a major proportion of human genetic polymorphism and have been predicted to have an important role in genetic susceptibility to common disease. To address this we undertook a large, direct genome-wide study of association between CNVs and eight common human diseases. Using a purpose-designed array we typed approximately 19,000 individuals into distinct copy-number classes at 3,432 polymorphic CNVs, including an estimated approximately 50% of all common CNVs larger than 500 base pairs. We identified several biological artefacts that lead to false-positive associations, including systematic CNV differences between DNAs derived from blood and cell lines. Association testing and follow-up replication analyses confirmed three loci where CNVs were associated with disease-IRGM for Crohn's disease, HLA for Crohn's disease, rheumatoid arthritis and type 1 diabetes, and TSPAN8 for type 2 diabetes-although in each case the locus had previously been identified in single nucleotide polymorphism (SNP)-based studies, reflecting our observation that most common CNVs that are well-typed on our array are well tagged by SNPs and so have been indirectly explored through SNP studies. We conclude that common CNVs that can be typed on existing platforms are unlikely to contribute greatly to the genetic basis of common human diseases.
Zebrafish: An Important Tool for Liver Disease Research
Goessling, Wolfram; Sadler, Kirsten C.
2016-01-01
As the incidence of hepatobiliary diseases increases, we must improve our understanding of the molecular, cellular, and physiological factors that contribute to the pathogenesis of liver disease. Animal models help us identify disease mechanisms that might be targeted therapeutically. Zebrafish (Danio rerio) have traditionally been used to study embryonic development but are also important to the study of liver disease. Zebrafish embryos develop rapidly; all of their digestive organs are mature in larvae by 5 days of age. At this stage, they can develop hepatobiliary diseases caused by developmental defects or toxin- or ethanol-induced injury and manifest premalignant changes within weeks. Zebrafish are similar to humans in hepatic cellular composition, function, signaling, and response to injury as well as the cellular processes that mediate liver diseases. Genes are highly conserved between humans and zebrafish, making them a useful system to study the basic mechanisms of liver disease. We can perform genetic screens to identify novel genes involved in specific disease processes and chemical screens to identify pathways and compounds that act on specific processes. We review how studies of zebrafish have advanced our understanding of inherited and acquired liver diseases as well as liver cancer and regeneration. PMID:26319012
Canine mammary tumors as a model for human disease.
Abdelmegeed, Somaia M; Mohammed, Sulma
2018-06-01
Animal models for examining human breast cancer (HBC) carcinogenesis have been extensively studied and proposed. With the recent advent of immunotherapy, significant attention has been focused on the dog as a model for human cancer. Dogs develop mammary tumors and other cancer types spontaneously with an intact immune system, which exhibit a number of clinical and molecular similarities to HBC. In addition to the spontaneous tumor presentation, the clinical similarities between human and canine mammary tumors (CMT) include the age at onset, hormonal etiology and course of the diseases. Furthermore, factors that affect the disease outcome, including tumor size, stage and lymph node invasion, are similar in HBC and CMT. Similarly, the molecular characteristics of steroid receptor, epidermal growth factor, proliferation marker, metalloproteinase and cyclooxygenase expression, and the mutation of the p53 tumor suppressor gene in CMT, mimic HBC. Furthermore, ductal carcinomas in situ in human and canine mammary glands are particularly similar in their pathological, molecular and visual characteristics. These CMT characteristics and their similarities to HBC indicate that the dog could be an excellent model for the study of human disease. These similarities are discussed in detail in the present review, and are compared with the in vitro and other in vivo animal models available.
Rühli, Frank Jakobus; Henneberg, Maciej
2013-04-29
Evolutionary medicine (EM) is a growing field focusing on the evolutionary basis of human diseases and their changes through time. To date, the majority of EM studies have used pure theories of hominin macroevolution to explain the present-day state of human health. Here, we propose a different approach by addressing more empirical and health-oriented research concerning past, current and future microevolutionary changes of human structure, functions and pathologies. Studying generation-to-generation changes of human morphology that occurred in historical times, and still occur in present-day populations under the forces of evolution, helps to explain medical conditions and warns clinicians that their current practices may influence future humans. Also, analyzing historic tissue specimens such as mummies is crucial in order to address the molecular evolution of pathogens, of the human genome, and their coadaptations.
Swindell, William R.; Johnston, Andrew; Carbajal, Steve; Han, Gangwen; Wohn, Christian; Lu, Jun; Xing, Xianying; Nair, Rajan P.; Voorhees, John J.; Elder, James T.; Wang, Xiao-Jing; Sano, Shigetoshi; Prens, Errol P.; DiGiovanni, John; Pittelkow, Mark R.; Ward, Nicole L.; Gudjonsson, Johann E.
2011-01-01
Development of a suitable mouse model would facilitate the investigation of pathomechanisms underlying human psoriasis and would also assist in development of therapeutic treatments. However, while many psoriasis mouse models have been proposed, no single model recapitulates all features of the human disease, and standardized validation criteria for psoriasis mouse models have not been widely applied. In this study, whole-genome transcriptional profiling is used to compare gene expression patterns manifested by human psoriatic skin lesions with those that occur in five psoriasis mouse models (K5-Tie2, imiquimod, K14-AREG, K5-Stat3C and K5-TGFbeta1). While the cutaneous gene expression profiles associated with each mouse phenotype exhibited statistically significant similarity to the expression profile of psoriasis in humans, each model displayed distinctive sets of similarities and differences in comparison to human psoriasis. For all five models, correspondence to the human disease was strong with respect to genes involved in epidermal development and keratinization. Immune and inflammation-associated gene expression, in contrast, was more variable between models as compared to the human disease. These findings support the value of all five models as research tools, each with identifiable areas of convergence to and divergence from the human disease. Additionally, the approach used in this paper provides an objective and quantitative method for evaluation of proposed mouse models of psoriasis, which can be strategically applied in future studies to score strengths of mouse phenotypes relative to specific aspects of human psoriasis. PMID:21483750
Geographic Expansion of Lyme Disease in Michigan, 2000-2014.
Lantos, Paul M; Tsao, Jean; Nigrovic, Lise E; Auwaerter, Paul G; Fowler, Vance G; Ruffin, Felicia; Foster, Erik; Hickling, Graham
2017-01-01
Most Lyme disease cases in the Midwestern United States are reported in Minnesota and Wisconsin. In recent years, however, a widening geographic extent of Lyme disease has been noted with evidence of expansion eastwards into Michigan and neighboring states with historically low incidence rates. We collected confirmed and probable cases of Lyme disease from 2000 through 2014 from the Michigan Department of Health and Human Services, entering them in a geographic information system. We performed spatial focal cluster analyses to characterize Lyme disease expansion. We compared the distribution of human cases with recent Ixodes scapularis tick distribution studies. Lyme disease cases in both the Upper and Lower Peninsulas of Michigan expanded more than 5-fold over the study period. Although increases were seen throughout the Upper Peninsula, the Lower Peninsula particularly expanded along the Indiana border north along the eastern shore of Lake Michigan. Human cases corresponded to a simultaneous expansion in established I scapularis tick populations. The geographic distribution of Lyme disease cases significantly expanded in Michigan between 2000 and 2014, particularly northward along the Lake Michigan shore. If such dynamic trends continue, Michigan-and possibly neighboring areas of Indiana, Ohio, and Ontario, Canada-can expect a continued increase in Lyme disease cases. © The Author 2017. Published by Oxford University Press on behalf of Infectious Diseases Society of America.
Dog Models of Naturally Occurring Cancer
Rowell, Jennie L.; McCarthy, Donna O.; Alvarez, Carlos E.
2011-01-01
Studies using dogs provide an ideal solution to the gap in animal models of natural disease and translational medicine. This is evidenced by approximately 400 inherited disorders being characterized in domesticated dogs, most of which are relevant to humans. There are several hundred isolated populations of dogs (breeds) and each has vastly reduced genetic variation compared to humans; this simplifies disease mapping and pharmacogenomics. Dogs age five to eight-fold faster than humans, share environments with their owners, are usually kept until old age, and receive a high level of health care. Farseeing investigators recognized this potential and, over the last decade, developed the necessary tools and infrastructure to utilize this powerful model of human disease, including the sequencing of the dog genome in 2005. Here we review the nascent convergence of genetic and translational canine models of spontaneous disease, focusing on cancer. PMID:21439907
de Silva, Aravinda M; Harris, Eva
2018-06-01
Dengue virus (DENV) is the most common arthropod-borne viral disease of humans. Although effective vaccines exist against other flaviviral diseases like yellow fever and Japanese encephalitis, dengue vaccine development is complicated by the presence of four virus serotypes and the possibility of partial immunity enhancing dengue disease severity. Several live attenuated dengue vaccines are being tested in human clinical trials. Initial results are mixed, with variable efficacy depending on DENV serotype and previous DENV exposure. Here, we highlight recent discoveries about the human antibody response to DENV and propose guidelines for advancing development of safe and effective dengue vaccines. Copyright © 2018 Cold Spring Harbor Laboratory Press; all rights reserved.
Kelemen, Arpad; Vasilakos, Athanasios V; Liang, Yulan
2009-09-01
Comprehensive evaluation of common genetic variations through association of single-nucleotide polymorphism (SNP) structure with common complex disease in the genome-wide scale is currently a hot area in human genome research due to the recent development of the Human Genome Project and HapMap Project. Computational science, which includes computational intelligence (CI), has recently become the third method of scientific enquiry besides theory and experimentation. There have been fast growing interests in developing and applying CI in disease mapping using SNP and haplotype data. Some of the recent studies have demonstrated the promise and importance of CI for common complex diseases in genomic association study using SNP/haplotype data, especially for tackling challenges, such as gene-gene and gene-environment interactions, and the notorious "curse of dimensionality" problem. This review provides coverage of recent developments of CI approaches for complex diseases in genetic association study with SNP/haplotype data.
Roadside ecology and epidemiology of tick-borne diseases.
Haemig, Paul D; Waldenstrom, Jonas; Olsen, Bjorn
2008-01-01
When humans, pets and livestock walk along roads, they may encounter questing ticks and tick-borne pathogens. A new field of environmental science called road ecology can help researchers study the complex epidemiology of tick-borne diseases in the unique roadside environment. This paper reviews some of the important ways that roads alter the distribution, abundance and behaviour of wildlife species that are involved in the enzootic cycles of tick-borne diseases. Compared to the surrounding landscape, roadways often constitute a different environment and hence there is no assurance that disease risk along roads will be the same as in the adjacent landscape, or that disease control measures taken in the surrounding landscape will work in the adjacent roadway. Since roadways have their own special ecological conditions, are used extensively by the human populace and play strategic roles in community security, we believe that roadways should be one of the habitats where tick-borne diseases are studied. It is amazing that at this late period of human history, epidemiological research along such important corridors has been almost completely ignored.
Redel, Bethany K; Prather, Randall S
2016-04-01
Animal models of human diseases are critically necessary for developing an in-depth knowledge of disease development and progression. In addition, animal models are vital to the development of potential treatments or even cures for human diseases. Pigs are exceptional models as their size, physiology, and genetics are closer to that of humans than rodents. In this review, we discuss the use of pigs in human translational research and the evolving technology that has increased the efficiency of genetically engineering pigs. With the emergence of the clustered, regularly interspaced, short palindromic repeat (CRISPR)/CRISPR-associated (Cas) protein 9 system technology, the cost and time it takes to genetically engineer pigs has markedly decreased. We will also discuss the use of another meganuclease, the transcription activator-like effector nucleases , to produce pigs with severe combined immunodeficiency by developing targeted modifications of the recombination activating gene 2 (RAG2).RAG2mutant pigs may become excellent animals to facilitate the development of xenotransplantation, regenerative medicine, and tumor biology. The use of pig biomedical models is vital for furthering the knowledge of, and for treating human, diseases. © The Author(s) 2015.
Can Neglected Tropical Diseases Compromise Human Wellbeing in Sex-, Age-, and Trait-Specific Ways?
Geary, David C.
2016-01-01
Traits that facilitate competition for reproductive resources or that influence mate choice have evolved to signal resilience to infectious disease and other stressors. As a result, the dynamics of competition and choice can, in theory, be used to generate predictions about sex-, age-, and trait-specific vulnerabilities for any sexually reproducing species, including humans. These dynamics and associated vulnerabilities are reviewed for nonhuman species, focusing on traits that are compromised by exposure to parasites. Using the same approach, sex-, age-, and trait-specific vulnerabilities to parasitic disease are illustrated for children’s and adolescent’s physical growth and fitness. Suggestions are then provided for widening the assessment of human vulnerabilities to include age-appropriate measures of behavioral (e.g., children’s play) and cognitive (e.g., language fluency) traits. These are traits that are likely to be compromised by infection in age- and sex-specific ways. Inclusion of these types of measures in studies of neglected tropic diseases has the potential to provide a more nuanced understanding of how these diseases undermine human wellbeing and may provide a useful means to study the efficacy of associated treatments. PMID:27077746
Transforming growth factor beta-1 expression in macrophages of human chronic periapical diseases.
Liang, Z-Z; Li, J; Huang, S-G
2017-03-30
The objective of this study was to observe the distribution of macrophages (MPs) expressing transforming growth factor beta-1 (TGF-β1) in tissue samples from patients with different human chronic periapical diseases. In this study, samples were collected from 75 volunteers, who were divided into three groups according to classified standards, namely, healthy control (N = 25), periapical granuloma (N = 25), and periapical cyst (N = 25). The samples were fixed in 10% buffered formalin for more than 48 h, dehydrated, embedded, and stained with hematoxylin and eosin for histopathology. Double immunofluorescence was conducted to analyze the expression of TGF-β-CD14 double-positive MPs in periapical tissues. The number of double-positive cells (cells/mm 2 ) were significantly higher in the chronic periapical disease tissues (P < 0.01) compared to that in the control tissue; in addition, the density of TGF-β1-CD14 double positive cells was significantly higher in the periapical cyst group than in the periapical granuloma group (P < 0.01). The number of TGF-β1 expressing macrophages varied with human chronic periapical diseases. The TGF-β1-CD14 double-positive cells might play an important role in the pathology of human chronic periapical diseases.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-20
... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health The Agricultural Health Study: A Prospective Cohort Study of Cancer and Other Disease Among Men and Women in Agriculture (NCI... Study of Cancer and Other Disease Among Men and Women in Agriculture (NCI)'' was submitted with errors...
Tea and Health: Studies in Humans
Khan, Naghma; Mukhtar, Hasan
2014-01-01
Tea, next to water is the cheapest beverage humans consume. Drinking the beverage tea has been considered a health-promoting habit since ancient times. The modern medicinal research is providing a scientific basis for this belief. The evidence supporting the health benefits of tea drinking grows stronger with each new study that is published in the scientific literature. Tea plant Camellia sinensis has been cultivated for thousands of years and its leaves have been used for medicinal purposes. Tea is used as a popular beverage worldwide and its ingredients are now finding medicinal benefits. Encouraging data showing cancer-preventive effects of green tea from cell-culture, animal and human studies have emerged. Evidence is accumulating that black tea may have similar beneficial effects. Tea consumption has also been shown to be useful for prevention of many debilitating human diseases that include maintenance of cardiovascular and metabolic health. Various studies suggest that polyphenolic compounds present in green and black tea are associated with beneficial effects in prevention of cardiovascular diseases, particularly of atherosclerosis and coronary heart disease. In addition, anti-aging, antidiabetic and many other health beneficial effects associated with tea consumption are described. Evidence is accumulating that catechins and theaflavins, which are the main polyphenolic compounds of green and black tea, respectively, are responsible for most of the physiological effects of tea. This article describes the evidences from clinical and epidemiological studies in the prevention of chronic diseases like cancer and cardiovascular diseases and general health promotion associated with tea consumption. PMID:23448443
The emergence of human-evolutionary medical genomics
Crespi, Bernard J
2011-01-01
In this review, I describe how evolutionary genomics is uniquely suited to spearhead advances in understanding human disease risk, owing to the privileged position of genes as fundamental causes of phenotypic variation, and the ability of population genetic and phylogenetic methods to robustly infer processes of natural selection, drift, and mutation from genetic variation at the levels of family, population, species, and clade. I first provide an overview of models for the origins and maintenance of genetically based disease risk in humans. I then discuss how analyses of genetic disease risk can be dovetailed with studies of positive and balancing selection, to evaluate the degree to which the ‘genes that make us human’ also represent the genes that mediate risk of polygenic disease. Finally, I present four basic principles for the nascent field of human evolutionary medical genomics, each of which represents a process that is nonintuitive from a proximate perspective. Joint consideration of these principles compels novel forms of interdisciplinary analyses, most notably studies that (i) analyze tradeoffs at the level of molecular genetics, and (ii) identify genetic variants that are derived in the human lineage or in specific populations, and then compare individuals with derived versus ancestral alleles. PMID:25567974
Wiznia, Daniel H.; Christos, Paul J.; LaBonte, Andrew M.
2014-01-01
The study described in this article examined the relationship between the incidence rate of deer vehicle accidents (DVAs), a proxy for measuring the interaction between populations of humans and deer, and human Lyme disease incidence rate. The authors also examined the relationship between deer population density and human Lyme incidence rate. They analyzed data from Connecticut’s Department of Environmental Protection and the Department of Public Health from 1999 through 2008 by deer management zone (DMZ) and town. For DVA incidence rate versus Lyme incidence rate for both DMZs and towns, most of the correlation coefficients computed yearly were moderate to strong and all of the p-values were significant. A weak correlation was observed between deer population density and Lyme disease incidence rate by DMZ. The authors propose DVAs as a proxy for measuring the interaction between coexisting populations of humans and deer. The authors’ study suggests that additional investigations of DVAs and their relationship to Lyme disease to further assess the utility of public health interventions are warranted. PMID:23621054
How informative is the mouse for human gut microbiota research?
Nguyen, Thi Loan Anh; Vieira-Silva, Sara; Liston, Adrian; Raes, Jeroen
2015-01-01
The microbiota of the human gut is gaining broad attention owing to its association with a wide range of diseases, ranging from metabolic disorders (e.g. obesity and type 2 diabetes) to autoimmune diseases (such as inflammatory bowel disease and type 1 diabetes), cancer and even neurodevelopmental disorders (e.g. autism). Having been increasingly used in biomedical research, mice have become the model of choice for most studies in this emerging field. Mouse models allow perturbations in gut microbiota to be studied in a controlled experimental setup, and thus help in assessing causality of the complex host-microbiota interactions and in developing mechanistic hypotheses. However, pitfalls should be considered when translating gut microbiome research results from mouse models to humans. In this Special Article, we discuss the intrinsic similarities and differences that exist between the two systems, and compare the human and murine core gut microbiota based on a meta-analysis of currently available datasets. Finally, we discuss the external factors that influence the capability of mouse models to recapitulate the gut microbiota shifts associated with human diseases, and investigate which alternative model systems exist for gut microbiota research. PMID:25561744
How informative is the mouse for human gut microbiota research?
Nguyen, Thi Loan Anh; Vieira-Silva, Sara; Liston, Adrian; Raes, Jeroen
2015-01-01
The microbiota of the human gut is gaining broad attention owing to its association with a wide range of diseases, ranging from metabolic disorders (e.g. obesity and type 2 diabetes) to autoimmune diseases (such as inflammatory bowel disease and type 1 diabetes), cancer and even neurodevelopmental disorders (e.g. autism). Having been increasingly used in biomedical research, mice have become the model of choice for most studies in this emerging field. Mouse models allow perturbations in gut microbiota to be studied in a controlled experimental setup, and thus help in assessing causality of the complex host-microbiota interactions and in developing mechanistic hypotheses. However, pitfalls should be considered when translating gut microbiome research results from mouse models to humans. In this Special Article, we discuss the intrinsic similarities and differences that exist between the two systems, and compare the human and murine core gut microbiota based on a meta-analysis of currently available datasets. Finally, we discuss the external factors that influence the capability of mouse models to recapitulate the gut microbiota shifts associated with human diseases, and investigate which alternative model systems exist for gut microbiota research. © 2015. Published by The Company of Biologists Ltd.
Standardized morbidity ratio for leptospirosis mapping in Malaysia
NASA Astrophysics Data System (ADS)
Awang, Aznida Che; Samat, Nor Azah
2017-05-01
Leptospirosis is a worldwide zoonotic disease that affects human health in many parts of the world including Malaysia. Leptospirosis is a disease caused by the infection of pathogenic Leptospira genus called Spirochaetes. Leptospirosis can be transmitted directly or indirectly from rats to human. The human infection is usually caused by human contact with urine or tissues of infected animal. This disease can be spread through mucus membrane such as mouth, nose and eyes, ingestion of contaminated food and water and also exposed injured skin to contaminated water or soil. There is still no vaccine currently available for the prevention or treatment of leptospirosis disease but this disease can be treated if it is diagnosed early. Therefore, the aim of this study is to estimate the relative risk for leptospirosis disease based initially on the most common statistic used in the study of disease mapping called Standardized Morbidity Ratio (SMR). We then apply SMR to leptospirosis data obtained in Malaysia. The results show that the states of Melaka have very high risk areas. The states of Kedah, Terengganu and Kelantan are identified as high risk areas. The states of Perak, Perlis, Sabah and Sarawak showed medium risk areas. This is followed by low risk by other states except Pahang, Johor and Labuan with very low risk areas. In conclusion, SMR method is the best method for mapping leptospirosis because by referring to the relative risk maps, the states that deserve closer look and disease prevention can be identified.
Ng, Victoria; Sargeant, Jan M.
2012-01-01
Background Zoonotic diseases account for over 60% of all communicable diseases causing illness in humans and 75% of recently emerging infectious diseases. As limited resources are available for the control and prevention of zoonotic diseases, it is necessary to prioritize diseases in order to direct resources into those with the greatest needs. The selection of criteria for prioritization has traditionally been on the basis of expert opinion; however, details of the methods used to identify criteria from expert opinion often are not published and a full range of criteria may not be captured by expert opinion. Methodology/Principal Findings This study used six focus groups to identify criteria for the prioritization of zoonotic diseases in Canada. Focus groups included people from the public, animal health professionals and human health professionals. A total of 59 criteria were identified for prioritizing zoonotic diseases. Human-related criteria accounted for the highest proportion of criteria identified (55%), followed by animal-related criteria (26%) then pathogen/disease-related criteria (19%). Similarities and differences were observed in the identification and scoring of criteria for disease prioritization between groups; the public groups were strongly influenced by the individual-level of disease burden, the responsibility of the scientific community in disease prioritization and the experiences of recent events while the professional groups were influenced by the societal- and population-level of disease burden and political and public pressure. Conclusions/Significance This was the first study to describe a mixed semi-quantitative and qualitative approach to deriving criteria for disease prioritization. This was also the first study to involve the opinion of the general public regarding disease prioritization. The number of criteria identified highlights the difficulty in prioritizing zoonotic diseases. The method presented in this paper has formulated a comprehensive list of criteria that can be used to inform future disease prioritization studies. PMID:22238648
Small-animal research imaging devices.
Fine, Eugene J; Herbst, Lawrence; Jelicks, Linda A; Koba, Wade; Theele, Daniel
2014-01-01
The scientific study of living animals may be dated to Aristotle's original dissections, but modern animal studies are perhaps a century in the making, and advanced animal imaging has emerged only during the past few decades. In vivo imaging now occupies a growing role in the scientific research paradigm. Imaging of small animals has been particularly useful to help understand human molecular biology and pathophysiology using rodents, especially using genetically engineered mice (GEM) with spontaneous diseases that closely mimic human diseases. Specific examples of GEM models of veterinary diseases exist, but in general, GEM for veterinary research has lagged behind human research applications. However, the development of spontaneous disease models from GEM may also hold potential for veterinary research. The imaging techniques most widely used in small-animal research are CT, PET, single-photon emission CT, MRI, and optical fluorescent and luminescent imaging. Copyright © 2014 Elsevier Inc. All rights reserved.
Workshop Report: The Medaka Model for Comparative Assessment of Human Disease Mechanisms
Obara, Tomoko
2015-01-01
Results of recent studies showing the utility of medaka as a model of various human disease states were presented at the 7th Aquatic Models of Human Disease Conference (December 13–18, 2014, Austin, TX). This conference brought together many of the most highly regarded national and international scientists that employ the medaka model in their investigations. To take advantage of this opportunity, a cohort of established medaka researchers were asked to stay an extra day and represent the medaka scientific community in a workshop entitled “The Medaka Model for Comparative Assessment of Human Disease Mechanisms”. The central purpose of this medaka workshop was to assess current use and project the future resource needs of the American medaka research community. The workshop sought to spur discussions of issues that would promote more informative comparative disease model studies. Finally, workshop attendees met together to propose, discuss, and agree on recommendations regarding the most effective research resources needed to enable US scientists to perform experiments leading to impacting experimental results that directly translate to human disease. Consistent with this central purpose, the workshop was divided into two sessions of invited speakers having expertise and experience in the session topics. The workshop hosted 20 scientific participants (Appendices 1 and 2) and of these, nine scientists presented formal talks. Here, we present a summary report stemming from workshop presentations and subsequent round table discussions, and forward recommendations from this group that we believe represent views of the overall medaka research community. PMID:26099189
Thumbi, S. M.; Njenga, M. Kariuki; Marsh, Thomas L.; Noh, Susan; Otiang, Elkanah; Munyua, Peninah; Ochieng, Linus; Ogola, Eric; Yoder, Jonathan; Audi, Allan; Montgomery, Joel M.; Bigogo, Godfrey; Breiman, Robert F.; Palmer, Guy H.; McElwain, Terry F.
2015-01-01
Background For most rural households in sub-Saharan Africa, healthy livestock play a key role in averting the burden associated with zoonotic diseases, and in meeting household nutritional and socio-economic needs. However, there is limited understanding of the complex nutritional, socio-economic, and zoonotic pathways that link livestock health to human health and welfare. Here we describe a platform for integrated human health, animal health and economic welfare analysis designed to address this challenge. We provide baseline epidemiological data on disease syndromes in humans and the animals they keep, and provide examples of relationships between human health, animal health and household socio-economic status. Method We designed a study to obtain syndromic disease data in animals along with economic and behavioral information for 1500 rural households in Western Kenya already participating in a human syndromic disease surveillance study. Data collection started in February 2013, and each household is visited bi-weekly and data on four human syndromes (fever, jaundice, diarrhea and respiratory illness) and nine animal syndromes (death, respiratory, reproductive, musculoskeletal, nervous, urogenital, digestive, udder disorders, and skin disorders in cattle, sheep, goats and chickens) are collected. Additionally, data from a comprehensive socio-economic survey is collected every 3 months in each of the study households. Findings Data from the first year of study showed 93% of the households owned at least one form of livestock (55%, 19%, 41% and 88% own cattle, sheep, goats and chickens respectively). Digestive disorders, mainly diarrhea episodes, were the most common syndromes observed in cattle, goats and sheep, accounting for 56% of all livestock syndromes, followed by respiratory illnesses (18%). In humans, respiratory illnesses accounted for 54% of all illnesses reported, followed by acute febrile illnesses (40%) and diarrhea illnesses (5%). While controlling for household size, the incidence of human illness increased 1.31-fold for every 10 cases of animal illness or death observed (95% CI 1.16–1.49). Access and utilization of animal source foods such as milk and eggs were positively associated with the number of cattle and chickens owned by the household. Additionally, health care seeking was correlated with household incomes and wealth, which were in turn correlated with livestock herd size. Conclusion This study platform provides a unique longitudinal dataset that allows for the determination and quantification of linkages between human and animal health, including the impact of healthy animals on human disease averted, malnutrition, household educational attainment, and income levels. PMID:25798951
Thumbi, S M; Njenga, M Kariuki; Marsh, Thomas L; Noh, Susan; Otiang, Elkanah; Munyua, Peninah; Ochieng, Linus; Ogola, Eric; Yoder, Jonathan; Audi, Allan; Montgomery, Joel M; Bigogo, Godfrey; Breiman, Robert F; Palmer, Guy H; McElwain, Terry F
2015-01-01
For most rural households in sub-Saharan Africa, healthy livestock play a key role in averting the burden associated with zoonotic diseases, and in meeting household nutritional and socio-economic needs. However, there is limited understanding of the complex nutritional, socio-economic, and zoonotic pathways that link livestock health to human health and welfare. Here we describe a platform for integrated human health, animal health and economic welfare analysis designed to address this challenge. We provide baseline epidemiological data on disease syndromes in humans and the animals they keep, and provide examples of relationships between human health, animal health and household socio-economic status. We designed a study to obtain syndromic disease data in animals along with economic and behavioral information for 1500 rural households in Western Kenya already participating in a human syndromic disease surveillance study. Data collection started in February 2013, and each household is visited bi-weekly and data on four human syndromes (fever, jaundice, diarrhea and respiratory illness) and nine animal syndromes (death, respiratory, reproductive, musculoskeletal, nervous, urogenital, digestive, udder disorders, and skin disorders in cattle, sheep, goats and chickens) are collected. Additionally, data from a comprehensive socio-economic survey is collected every 3 months in each of the study households. Data from the first year of study showed 93% of the households owned at least one form of livestock (55%, 19%, 41% and 88% own cattle, sheep, goats and chickens respectively). Digestive disorders, mainly diarrhea episodes, were the most common syndromes observed in cattle, goats and sheep, accounting for 56% of all livestock syndromes, followed by respiratory illnesses (18%). In humans, respiratory illnesses accounted for 54% of all illnesses reported, followed by acute febrile illnesses (40%) and diarrhea illnesses (5%). While controlling for household size, the incidence of human illness increased 1.31-fold for every 10 cases of animal illness or death observed (95% CI 1.16-1.49). Access and utilization of animal source foods such as milk and eggs were positively associated with the number of cattle and chickens owned by the household. Additionally, health care seeking was correlated with household incomes and wealth, which were in turn correlated with livestock herd size. This study platform provides a unique longitudinal dataset that allows for the determination and quantification of linkages between human and animal health, including the impact of healthy animals on human disease averted, malnutrition, household educational attainment, and income levels.
Precone, Vincenza; Del Monaco, Valentina; Esposito, Maria Valeria; De Palma, Fatima Domenica Elisa; Ruocco, Anna; D'Argenio, Valeria
2015-01-01
Next-generation sequencing (NGS) technologies have greatly impacted on every field of molecular research mainly because they reduce costs and increase throughput of DNA sequencing. These features, together with the technology's flexibility, have opened the way to a variety of applications including the study of the molecular basis of human diseases. Several analytical approaches have been developed to selectively enrich regions of interest from the whole genome in order to identify germinal and/or somatic sequence variants and to study DNA methylation. These approaches are now widely used in research, and they are already being used in routine molecular diagnostics. However, some issues are still controversial, namely, standardization of methods, data analysis and storage, and ethical aspects. Besides providing an overview of the NGS-based approaches most frequently used to study the molecular basis of human diseases at DNA level, we discuss the principal challenges and applications of NGS in the field of human genomics. PMID:26665001
The Arab genome: Health and wealth.
Zayed, Hatem
2016-11-05
The 22 Arab nations have a unique genetic structure, which reflects both conserved and diverse gene pools due to the prevalent endogamous and consanguineous marriage culture and the long history of admixture among different ethnic subcultures descended from the Asian, European, and African continents. Human genome sequencing has enabled large-scale genomic studies of different populations and has become a powerful tool for studying disease predictions and diagnosis. Despite the importance of the Arab genome for better understanding the dynamics of the human genome, discovering rare genetic variations, and studying early human migration out of Africa, it is poorly represented in human genome databases, such as HapMap and the 1000 Genomes Project. In this review, I demonstrate the significance of sequencing the Arab genome and setting an Arab genome reference(s) for better understanding the molecular pathogenesis of genetic diseases, discovering novel/rare variants, and identifying a meaningful genotype-phenotype correlation for complex diseases. Copyright © 2016. Published by Elsevier B.V.
Network Medicine: A Network-based Approach to Human Disease
Barabási, Albert-László; Gulbahce, Natali; Loscalzo, Joseph
2011-01-01
Given the functional interdependencies between the molecular components in a human cell, a disease is rarely a consequence of an abnormality in a single gene, but reflects the perturbations of the complex intracellular network. The emerging tools of network medicine offer a platform to explore systematically not only the molecular complexity of a particular disease, leading to the identification of disease modules and pathways, but also the molecular relationships between apparently distinct (patho)phenotypes. Advances in this direction are essential to identify new diseases genes, to uncover the biological significance of disease-associated mutations identified by genome-wide association studies and full genome sequencing, and to identify drug targets and biomarkers for complex diseases. PMID:21164525
Inherited secondary nephrogenic diabetes insipidus: concentrating on humans.
Bockenhauer, D; Bichet, D G
2013-04-15
The study of human physiology is paramount to understanding disease and developing rational and targeted treatments. Conversely, the study of human disease can teach us a lot about physiology. Investigations into primary inherited nephrogenic diabetes insipidus (NDI) have contributed enormously to our understanding of the mechanisms of urinary concentration and identified the vasopressin receptor AVPR2, as well as the water channel aquaporin-2 (AQP2), as key players in water reabsorption in the collecting duct. Yet, there are also secondary forms of NDI, for instance as a complication of lithium treatment. The focus of this review is secondary NDI associated with inherited human diseases, such as Bartter syndrome or apparent mineralocorticoid excess. Currently, the underlying pathophysiology of this inherited secondary NDI is unclear, but there appears to be true AQP2 deficiency. To better understand the underlying mechanism(s), collaboration between clinical and experimental physiologists is essential to further investigate these observations in appropriate experimental models.
Colonic spirochetosis in animals and humans.
Smith, James L
2005-07-01
Colonic spirochetosis is a disease caused by the gram-negative bacteria Brachyspira aalborgi and Brachyspira pilosicoli. B. pilosicoli induces disease in both humans and animals, whereas B. aalborgi affects only humans and higher primates. Symptoms in humans include diarrhea, rectal bleeding, and abdominal cramps. Colonic spirochetosis is common in third world countries; however, in developed countries, the disease is observed mainly in homosexual males. Terminally ill patients infected with Brachyspira are particularly at risk for developing spirochetemia. Diarrhea, poor growth performance, and decreased feed-to-gain efficiency is seen in pigs with colonic spirochetosis. The disease in chickens is characterized by delayed and/or reduced egg production, diarrhea, poor feed conversion, and retarded growth. Thus, colonic spirochetosis can represent a serious economic loss in the swine and poultry industries. The organisms are transmitted by the fecal-oral route, and several studies have demonstrated that human, primate, pig, dog, or bird strains of B. pilosicoli can be transmitted to pigs, chickens, and mice. B. pilosicoli may be a zoonotic pathogen, and although it has not been demonstrated, there is a possibility that both B. pilosicoli and B. aalborgi can be transferred to humans via contact with the feces of infected animals, meat from infected animals, or food contaminated by food handlers. Neither B. pilosicoli nor B. aalborgi has been well characterized in terms of basic cellular functions, pathogenicity, or genetics. Studies are needed to more thoroughly understand these Brachyspira species and their disease mechanisms.
Biodiversity inhibits parasites: Broad evidence for the dilution effect.
Civitello, David J; Cohen, Jeremy; Fatima, Hiba; Halstead, Neal T; Liriano, Josue; McMahon, Taegan A; Ortega, C Nicole; Sauer, Erin Louise; Sehgal, Tanya; Young, Suzanne; Rohr, Jason R
2015-07-14
Infectious diseases of humans, wildlife, and domesticated species are increasing worldwide, driving the need to understand the mechanisms that shape outbreaks. Simultaneously, human activities are drastically reducing biodiversity. These concurrent patterns have prompted repeated suggestions that biodiversity and disease are linked. For example, the dilution effect hypothesis posits that these patterns are causally related; diverse host communities inhibit the spread of parasites via several mechanisms, such as by regulating populations of susceptible hosts or interfering with parasite transmission. However, the generality of the dilution effect hypothesis remains controversial, especially for zoonotic diseases of humans. Here we provide broad evidence that host diversity inhibits parasite abundance using a meta-analysis of 202 effect sizes on 61 parasite species. The magnitude of these effects was independent of host density, study design, and type and specialization of parasites, indicating that dilution was robust across all ecological contexts examined. However, the magnitude of dilution was more closely related to the frequency, rather than density, of focal host species. Importantly, observational studies overwhelmingly documented dilution effects, and there was also significant evidence for dilution effects of zoonotic parasites of humans. Thus, dilution effects occur commonly in nature, and they may modulate human disease risk. A second analysis identified similar effects of diversity in plant-herbivore systems. Thus, although there can be exceptions, our results indicate that biodiversity generally decreases parasitism and herbivory. Consequently, anthropogenic declines in biodiversity could increase human and wildlife diseases and decrease crop and forest production.
Aeby, Greta S.; Williams, Gareth J.; Franklin, Erik C.; Haapkyla, Jessica; Harvell, C. Drew; Neale, Stephen; Page, Cathie A.; Raymundo, Laurie; Vargas-Angel, Bernardo; Willis, Bette L.; Work, Thierry M.; Davy, Simon K.
2011-01-01
Growth anomalies (GAs) are common, tumor-like diseases that can cause significant morbidity and decreased fecundity in the major Indo-Pacific reef-building coral genera, Acropora and Porites. GAs are unusually tractable for testing hypotheses about drivers of coral disease because of their pan-Pacific distributions, relatively high occurrence, and unambiguous ease of identification. We modeled multiple disease-environment associations that may underlie the prevalence of Acropora growth anomalies (AGA) (n = 304 surveys) and Porites growth anomalies (PGA) (n = 602 surveys) from across the Indo-Pacific. Nine predictor variables were modeled, including coral host abundance, human population size, and sea surface temperature and ultra-violet radiation anomalies. Prevalence of both AGAs and PGAs were strongly host density-dependent. PGAs additionally showed strong positive associations with human population size. Although this association has been widely posited, this is one of the first broad-scale studies unambiguously linking a coral disease with human population size. These results emphasize that individual coral diseases can show relatively distinct patterns of association with environmental predictors, even in similar diseases (growth anomalies) found on different host genera (Acropora vs. Porites). As human densities and environmental degradation increase globally, the prevalence of coral diseases like PGAs could increase accordingly, halted only perhaps by declines in host density below thresholds required for disease establishment.
Franklin, Erik C.; Haapkyla, Jessica; Harvell, C. Drew; Neale, Stephen; Page, Cathie A.; Raymundo, Laurie; Vargas-Ángel, Bernardo; Willis, Bette L.; Work, Thierry M.; Davy, Simon K.
2011-01-01
Growth anomalies (GAs) are common, tumor-like diseases that can cause significant morbidity and decreased fecundity in the major Indo-Pacific reef-building coral genera, Acropora and Porites. GAs are unusually tractable for testing hypotheses about drivers of coral disease because of their pan-Pacific distributions, relatively high occurrence, and unambiguous ease of identification. We modeled multiple disease-environment associations that may underlie the prevalence of Acropora growth anomalies (AGA) (n = 304 surveys) and Porites growth anomalies (PGA) (n = 602 surveys) from across the Indo-Pacific. Nine predictor variables were modeled, including coral host abundance, human population size, and sea surface temperature and ultra-violet radiation anomalies. Prevalence of both AGAs and PGAs were strongly host density-dependent. PGAs additionally showed strong positive associations with human population size. Although this association has been widely posited, this is one of the first broad-scale studies unambiguously linking a coral disease with human population size. These results emphasize that individual coral diseases can show relatively distinct patterns of association with environmental predictors, even in similar diseases (growth anomalies) found on different host genera (Acropora vs. Porites). As human densities and environmental degradation increase globally, the prevalence of coral diseases like PGAs could increase accordingly, halted only perhaps by declines in host density below thresholds required for disease establishment. PMID:21365011
Human figure drawings by children with Duchenne's muscular dystrophy.
Pope-Grattan, M M; Burnett, C N; Wolfe, C V
1976-02-01
Seventy-two human figure drawings by forty-three patients who had a diagnosis of Duchenne's muscular dystrophy were examined. The study includes a description of these human figure drawings according to eleven emotional indicators and according to directionality quadrants. When the human figure drawings were used as a projective tool, four personality traits of some of the children were identified: physical inadequacy, immaturity, body anxiety, and insecurity. Both the emotional indicators and the quadrant in which the figures appeared were examined in relation to stages of the disease process to see if the human figure drawings of the children might reflect more stress and anxiety at a particular stage of the disease. Suggestions for improvements and recommendations for future study are given.
Molecular networks and the evolution of human cognitive specializations.
Fontenot, Miles; Konopka, Genevieve
2014-12-01
Inroads into elucidating the origins of human cognitive specializations have taken many forms, including genetic, genomic, anatomical, and behavioral assays that typically compare humans to non-human primates. While the integration of all of these approaches is essential for ultimately understanding human cognition, here, we review the usefulness of coexpression network analysis for specifically addressing this question. An increasing number of studies have incorporated coexpression networks into brain expression studies comparing species, disease versus control tissue, brain regions, or developmental time periods. A clearer picture has emerged of the key genes driving brain evolution, as well as the developmental and regional contributions of gene expression patterns important for normal brain development and those misregulated in cognitive diseases. Copyright © 2014 Elsevier Ltd. All rights reserved.
Evolution, epidemiology, and population genetics of black flies (Diptera: Simuliidae).
Adler, Peter H; Cheke, Robert A; Post, Rory J
2010-10-01
More than 2000 species of black flies feed on vertebrate blood; 1.5% of all species are vectors of pathogens that cause human diseases. Of nine simuliid-borne animal diseases, only two, mansonellosis and onchocerciasis, afflict humans. Onchocerciasis is a debilitating disease infecting an estimated 40 million people in Africa, Latin America, and Yemen, whereas mansonellosis is a mild disease in the Neotropics. Cytogenetic studies of natural populations of more than 500 species of black flies have revealed that the classic morphospecies of taxonomists is typically a complex of two or more reproductively isolated entities, or sibling (cryptic) species. Most vectors of human pathogens are sibling species, each ecologically unique in traits such as breeding habitats, dispersal capabilities, and degree of vector competence. We review the evolution of black flies, the cytogenetics that have revealed about 260 cytologically distinct entities, the molecular studies that continue to expose additional hidden biodiversity, and a case study of the epidemiology of the Simulium damnosum complex, the largest species complex of blood-feeding arthropods on Earth and the premier group of black flies responsible for human onchocerciasis. Copyright 2010 Elsevier B.V. All rights reserved.
Integrated rare variant-based risk gene prioritization in disease case-control sequencing studies.
Lin, Jhih-Rong; Zhang, Quanwei; Cai, Ying; Morrow, Bernice E; Zhang, Zhengdong D
2017-12-01
Rare variants of major effect play an important role in human complex diseases and can be discovered by sequencing-based genome-wide association studies. Here, we introduce an integrated approach that combines the rare variant association test with gene network and phenotype information to identify risk genes implicated by rare variants for human complex diseases. Our data integration method follows a 'discovery-driven' strategy without relying on prior knowledge about the disease and thus maintains the unbiased character of genome-wide association studies. Simulations reveal that our method can outperform a widely-used rare variant association test method by 2 to 3 times. In a case study of a small disease cohort, we uncovered putative risk genes and the corresponding rare variants that may act as genetic modifiers of congenital heart disease in 22q11.2 deletion syndrome patients. These variants were missed by a conventional approach that relied on the rare variant association test alone.
Duan, Rui-Dong
2018-02-27
Alkaline sphingomyelinase cleaves phosphocholine from sphingomyelin, platelet-activating factor, lysophosphatidylcholine, and less effectively phosphatidylcholine. The enzyme shares no structure similarities with acid or neutral sphingomyelinase but belongs to ecto-nucleotide pyrophosphatase/phosphodiesterase (NPP) family and therefore is also called NPP7 nowadays. The enzyme is expressed in the intestinal mucosa in many species and additionally in human liver. The enzyme in the intestinal tract has been extensively studied but not that in human liver. Studies on intestinal alkaline sphingomyelinase show that it inhibits colonic tumorigenesis and inflammation, hydrolyses dietary sphingomyelin, and stimulates cholesterol absorption. The review aims to summarize the current knowledge on liver alkaline sphingomyelinase in human and strengthen the necessity for close study on this unique human enzyme in hepatobiliary diseases.
Epidemiologic studies of the human microbiome and cancer.
Vogtmann, Emily; Goedert, James J
2016-02-02
The human microbiome, which includes the collective genome of all bacteria, archaea, fungi, protists, and viruses found in and on the human body, is altered in many diseases and may substantially affect cancer risk. Previously detected associations of individual bacteria (e.g., Helicobacter pylori), periodontal disease, and inflammation with specific cancers have motivated studies considering the association between the human microbiome and cancer risk. This short review summarises microbiome research, focusing on published epidemiological associations with gastric, oesophageal, hepatobiliary, pancreatic, lung, colorectal, and other cancers. Large, prospective studies of the microbiome that employ multidisciplinary laboratory and analysis methods, as well as rigorous validation of case status, are likely to yield translational opportunities to reduce cancer morbidity and mortality by improving prevention, screening, and treatment.
Epidemiologic studies of the human microbiome and cancer
Vogtmann, Emily; Goedert, James J
2016-01-01
The human microbiome, which includes the collective genome of all bacteria, archaea, fungi, protists, and viruses found in and on the human body, is altered in many diseases and may substantially affect cancer risk. Previously detected associations of individual bacteria (e.g., Helicobacter pylori), periodontal disease, and inflammation with specific cancers have motivated studies considering the association between the human microbiome and cancer risk. This short review summarises microbiome research, focusing on published epidemiological associations with gastric, oesophageal, hepatobiliary, pancreatic, lung, colorectal, and other cancers. Large, prospective studies of the microbiome that employ multidisciplinary laboratory and analysis methods, as well as rigorous validation of case status, are likely to yield translational opportunities to reduce cancer morbidity and mortality by improving prevention, screening, and treatment. PMID:26730578
NASA Astrophysics Data System (ADS)
Park, Solip; Yang, Jae-Seong; Kim, Jinho; Shin, Young-Eun; Hwang, Jihye; Park, Juyong; Jang, Sung Key; Kim, Sanguk
2012-10-01
The extent to which evolutionary changes have impacted the phenotypic relationships among human diseases remains unclear. In this work, we report that phenotypically similar diseases are connected by the evolutionary constraints on human disease genes. Human disease groups can be classified into slowly or rapidly evolving classes, where the diseases in the slowly evolving class are enriched with morphological phenotypes and those in the rapidly evolving class are enriched with physiological phenotypes. Our findings establish a clear evolutionary connection between disease classes and disease phenotypes for the first time. Furthermore, the high comorbidity found between diseases connected by similar evolutionary constraints enables us to improve the predictability of the relative risk of human diseases. We find the evolutionary constraints on disease genes are a new layer of molecular connection in the network-based exploration of human diseases.
Park, Solip; Yang, Jae-Seong; Kim, Jinho; Shin, Young-Eun; Hwang, Jihye; Park, Juyong; Jang, Sung Key; Kim, Sanguk
2012-01-01
The extent to which evolutionary changes have impacted the phenotypic relationships among human diseases remains unclear. In this work, we report that phenotypically similar diseases are connected by the evolutionary constraints on human disease genes. Human disease groups can be classified into slowly or rapidly evolving classes, where the diseases in the slowly evolving class are enriched with morphological phenotypes and those in the rapidly evolving class are enriched with physiological phenotypes. Our findings establish a clear evolutionary connection between disease classes and disease phenotypes for the first time. Furthermore, the high comorbidity found between diseases connected by similar evolutionary constraints enables us to improve the predictability of the relative risk of human diseases. We find the evolutionary constraints on disease genes are a new layer of molecular connection in the network-based exploration of human diseases.
Head, Elizabeth; Schmitt, Frederick A.; Davis, Paulina R.; Neltner, Janna H.; Jicha, Gregory A.; Abner, Erin L.; Smith, Charles D.; Van Eldik, Linda J.; Kryscio, Richard J.; Scheff, Stephen W.
2011-01-01
Human studies are reviewed concerning whether “aging”-related mechanisms contribute to Alzheimer’s disease (AD) pathogenesis. AD is defined by specific neuropathology: neuritic amyloid plaques and neocortical neurofibrillary tangles. AD pathology is driven by genetic factors related not to aging per se, but instead to the amyloid precursor protein (APP). In contrast to genes involved in APP-related mechanisms, there is no firm connection between genes implicated in human “accelerated aging” diseases (progerias) and AD. The epidemiology of AD in advanced age is highly relevant but deceptively challenging to address given the low autopsy rates in most countries. In extreme old age, brain diseases other than AD approximate AD prevalence while the impact of AD pathology appears to peak by age 95 and decline thereafter. Many distinct brain diseases other than AD afflict older human brains and contribute to cognitive impairment. Additional prevalent pathologies include cerebrovascular disease and hippocampal sclerosis, both high-morbidity brain diseases that appear to peak in incidence later than AD chronologically. Because of these common brain diseases of extreme old age, the epidemiology differs between clinical “dementia” and the subset of dementia cases with AD pathology. Additional aging-associated mechanisms for cognitive decline such as diabetes and synapse loss have been linked to AD and these hypotheses are discussed. Criteria are proposed to define an “aging-linked” disease, and AD fails all of these criteria. In conclusion, it may be most fruitful to focus attention on specific pathways involved in AD rather than attributing it to an inevitable consequence of aging. PMID:21516511
Krejciova, Zuzana; De Sousa, Paul; Manson, Jean; Ironside, James W.; Head, Mark W.
2014-01-01
The molecular mechanisms involved in human cellular susceptibility to prion infection remain poorly defined. This is due, in part, to the absence of any well characterized and relevant cultured human cells susceptible to infection with human prions, such as those involved in Creutzfeldt-Jakob disease. In variant Creutzfeldt-Jakob disease, prion replication is thought to occur first in the lymphoreticular system and then spread into the brain. We have, therefore, examined the susceptibility of a human tonsil-derived follicular dendritic cell-like cell line (HK) to prion infection. HK cells were found to display a readily detectable, time-dependent increase in cell-associated abnormal prion protein (PrPTSE) when exposed to medium spiked with Creutzfeldt-Jakob disease brain homogenate, resulting in a coarse granular perinuclear PrPTSE staining pattern. Despite their high level of cellular prion protein expression, HK cells failed to support infection, as judged by longer term maintenance of PrPTSE accumulation. Colocalization studies revealed that exposure of HK cells to brain homogenate resulted in increased numbers of detectable lysosomes and that these structures immunostained intensely for PrPTSE after exposure to Creutzfeldt-Jakob disease brain homogenate. Our data suggest that human follicular dendritic-like cells and perhaps other human cell types are able to avoid prion infection by efficient lysosomal degradation of PrPTSE. PMID:24183781
Cardiomyocyte-Specific Telomere Shortening is a Distinct Signature of Heart Failure in Humans.
Sharifi-Sanjani, Maryam; Oyster, Nicholas M; Tichy, Elisia D; Bedi, Kenneth C; Harel, Ofer; Margulies, Kenneth B; Mourkioti, Foteini
2017-09-07
Telomere defects are thought to play a role in cardiomyopathies, but the specific cell type affected by the disease in human hearts is not yet identified. The aim of this study was to systematically evaluate the cell type specificity of telomere shortening in patients with heart failure in relation to their cardiac disease, age, and sex. We studied cardiac tissues from patients with heart failure by utilizing telomere quantitative fluorescence in situ hybridization, a highly sensitive method with single-cell resolution. In this study, total of 63 human left ventricular samples, including 37 diseased and 26 nonfailing donor hearts, were stained for telomeres in combination with cardiomyocyte- or α-smooth muscle cell-specific markers, cardiac troponin T, and smooth muscle actin, respectively, and assessed for telomere length. Patients with heart failure demonstrate shorter cardiomyocyte telomeres compared with nonfailing donors, which is specific only to cardiomyocytes within diseased human hearts and is associated with cardiomyocyte DNA damage. Our data further reveal that hypertrophic hearts with reduced ejection fraction exhibit the shortest telomeres. In contrast to other reported cell types, no difference in cardiomyocyte telomere length is evident with age. However, under the disease state, telomere attrition manifests in both young and older patients with cardiac hypertrophy. Finally, we demonstrate that cardiomyocyte-telomere length is better sustained in women than men under diseased conditions. This study provides the first evidence of cardiomyocyte-specific telomere shortening in heart failure. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.
Driver, John P; Chen, Yi-Guang; Mathews, Clayton E
2012-01-01
Although once widely anticipated to unlock how human type 1 diabetes (T1D) develops, extensive study of the nonobese diabetic (NOD) mouse has failed to yield effective treatments for patients with the disease. This has led many to question the usefulness of this animal model. While criticism about the differences between NOD and human T1D is legitimate, in many cases disease in both species results from perturbations modulated by the same genes or different genes that function within the same biological pathways. Like in humans, unusual polymorphisms within an MHC class II molecule contributes the most T1D risk in NOD mice. This insight supports the validity of this model and suggests the NOD has been improperly utilized to study how to cure or prevent disease in patients. Indeed, clinical trials are far from administering T1D therapeutics to humans at the same concentration ranges and pathological states that inhibit disease in NOD mice. Until these obstacles are overcome it is premature to label the NOD mouse a poor surrogate to test agents that cure or prevent T1D. An additional criticism of the NOD mouse is the past difficulty in identifying genes underlying T1D using conventional mapping studies. However, most of the few diabetogenic alleles identified to date appear relevant to the human disorder. This suggests that rather than abandoning genetic studies in NOD mice, future efforts should focus on improving the efficiency with which diabetes susceptibility genes are detected. The current review highlights why the NOD mouse remains a relevant and valuable tool to understand the genes and their interactions that promote autoimmune diabetes and therapeutics that inhibit this disease. It also describes a new range of technologies that will likely transform how the NOD mouse is used to uncover the genetic causes of T1D for years to come.
Vaccines for Canine Leishmaniasis
Palatnik-de-Sousa, Clarisa B.
2012-01-01
Leishmaniasis is the third most important vector-borne disease worldwide. Visceral leishmaniasis (VL) is a severe and frequently lethal protozoan disease of increasing incidence and severity due to infected human and dog migration, new geographical distribution of the insect due to global warming, coinfection with immunosuppressive diseases, and poverty. The disease is an anthroponosis in India and Central Africa and a canid zoonosis (ZVL) in the Americas, the Middle East, Central Asia, China, and the Mediterranean. The ZVL epidemic has been controlled by one or more measures including the culling of infected dogs, treatment of human cases, and insecticidal treatment of homes and dogs. However, the use of vaccines is considered the most cost–effective control tool for human and canine disease. Since the severity of the disease is related to the generation of T-cell immunosuppression, effective vaccines should be capable of sustaining or enhancing the T-cell immunity. In this review we summarize the clinical and parasitological characteristics of ZVL with special focus on the cellular and humoral canine immune response and review state-of-the-art vaccine development against human and canine VL. Experimental vaccination against leishmaniasis has evolved from the practice of leishmanization with living parasites to vaccination with crude lysates, native parasite extracts to recombinant and DNA vaccination. Although more than 30 defined vaccines have been studied in laboratory models no human formulation has been licensed so far; however three second-generation canine vaccines have already been registered. As expected for a zoonotic disease, the recent preventive vaccination of dogs in Brazil has led to a reduction in the incidence of canine and human disease. The recent identification of several Leishmania proteins with T-cell epitopes anticipates development of a multiprotein vaccine that will be capable of protecting both humans and dogs against VL. PMID:22566950
The humankind genome: from genetic diversity to the origin of human diseases.
Belizário, Jose E
2013-12-01
Genome-wide association studies have failed to establish common variant risk for the majority of common human diseases. The underlying reasons for this failure are explained by recent studies of resequencing and comparison of over 1200 human genomes and 10 000 exomes, together with the delineation of DNA methylation patterns (epigenome) and full characterization of coding and noncoding RNAs (transcriptome) being transcribed. These studies have provided the most comprehensive catalogues of functional elements and genetic variants that are now available for global integrative analysis and experimental validation in prospective cohort studies. With these datasets, researchers will have unparalleled opportunities for the alignment, mining, and testing of hypotheses for the roles of specific genetic variants, including copy number variations, single nucleotide polymorphisms, and indels as the cause of specific phenotypes and diseases. Through the use of next-generation sequencing technologies for genotyping and standardized ontological annotation to systematically analyze the effects of genomic variation on humans and model organism phenotypes, we will be able to find candidate genes and new clues for disease's etiology and treatment. This article describes essential concepts in genetics and genomic technologies as well as the emerging computational framework to comprehensively search websites and platforms available for the analysis and interpretation of genomic data.
Antibody-dependent enhancement of severe dengue disease in humans*
Katzelnick, Leah C.; Gresh, Lionel; Halloran, M. Elizabeth; Mercado, Juan Carlos; Kuan, Guillermina; Gordon, Aubree; Balmaseda, Angel; Harris, Eva
2018-01-01
For dengue viruses (DENV1-4), a specific range of antibody titer has been shown to enhance viral replication in vitro and severe disease in animal models. Although suspected, such antibody-dependent enhancement (ADE) of severe disease has not been shown to occur in humans. Using multiple statistical approaches to study a long-term pediatric cohort in Nicaragua, we show that risk of severe dengue disease is highest within a narrow range of pre-existing anti-DENV antibody titers. By contrast, we observe protection from all symptomatic dengue disease at high antibody titers. Thus, immune correlates of severe dengue must be evaluated separately from correlates of protection against symptomatic disease. These results have implications for studies of dengue pathogenesis and for vaccine development, because enhancement, not just lack of protection, is of concern. PMID:29097492
Nucleotide excision repair deficient mouse models and neurological disease
Niedernhofer, Laura J.
2008-01-01
Nucleotide excision repair (NER) is a highly conserved mechanism to remove helix-distorting DNA base damage. A major substrate for NER is DNA damage caused by environmental genotoxins, most notably ultraviolet radiation. Xeroderma pigmentosum, Cockayne syndrome and trichothiodystrophy are three human diseases caused by inherited defects in NER. The symptoms and severity of these diseases vary dramatically, ranging from profound developmental delay to cancer predisposition and accelerated aging. All three syndromes include neurological disease, indicating an important role for NER in protecting against spontaneous DNA damage as well. To study the pathophysiology caused by DNA damage, numerous mouse models of NER deficiency were generated by knocking-out genes required for NER or knocking-in disease-causing human mutations. This review explores the utility of these mouse models to study neurological disease caused by NER deficiency. PMID:18272436
Keenan, Alexandra B; Jenkins, Sherry L; Jagodnik, Kathleen M; Koplev, Simon; He, Edward; Torre, Denis; Wang, Zichen; Dohlman, Anders B; Silverstein, Moshe C; Lachmann, Alexander; Kuleshov, Maxim V; Ma'ayan, Avi; Stathias, Vasileios; Terryn, Raymond; Cooper, Daniel; Forlin, Michele; Koleti, Amar; Vidovic, Dusica; Chung, Caty; Schürer, Stephan C; Vasiliauskas, Jouzas; Pilarczyk, Marcin; Shamsaei, Behrouz; Fazel, Mehdi; Ren, Yan; Niu, Wen; Clark, Nicholas A; White, Shana; Mahi, Naim; Zhang, Lixia; Kouril, Michal; Reichard, John F; Sivaganesan, Siva; Medvedovic, Mario; Meller, Jaroslaw; Koch, Rick J; Birtwistle, Marc R; Iyengar, Ravi; Sobie, Eric A; Azeloglu, Evren U; Kaye, Julia; Osterloh, Jeannette; Haston, Kelly; Kalra, Jaslin; Finkbiener, Steve; Li, Jonathan; Milani, Pamela; Adam, Miriam; Escalante-Chong, Renan; Sachs, Karen; Lenail, Alex; Ramamoorthy, Divya; Fraenkel, Ernest; Daigle, Gavin; Hussain, Uzma; Coye, Alyssa; Rothstein, Jeffrey; Sareen, Dhruv; Ornelas, Loren; Banuelos, Maria; Mandefro, Berhan; Ho, Ritchie; Svendsen, Clive N; Lim, Ryan G; Stocksdale, Jennifer; Casale, Malcolm S; Thompson, Terri G; Wu, Jie; Thompson, Leslie M; Dardov, Victoria; Venkatraman, Vidya; Matlock, Andrea; Van Eyk, Jennifer E; Jaffe, Jacob D; Papanastasiou, Malvina; Subramanian, Aravind; Golub, Todd R; Erickson, Sean D; Fallahi-Sichani, Mohammad; Hafner, Marc; Gray, Nathanael S; Lin, Jia-Ren; Mills, Caitlin E; Muhlich, Jeremy L; Niepel, Mario; Shamu, Caroline E; Williams, Elizabeth H; Wrobel, David; Sorger, Peter K; Heiser, Laura M; Gray, Joe W; Korkola, James E; Mills, Gordon B; LaBarge, Mark; Feiler, Heidi S; Dane, Mark A; Bucher, Elmar; Nederlof, Michel; Sudar, Damir; Gross, Sean; Kilburn, David F; Smith, Rebecca; Devlin, Kaylyn; Margolis, Ron; Derr, Leslie; Lee, Albert; Pillai, Ajay
2018-01-24
The Library of Integrated Network-Based Cellular Signatures (LINCS) is an NIH Common Fund program that catalogs how human cells globally respond to chemical, genetic, and disease perturbations. Resources generated by LINCS include experimental and computational methods, visualization tools, molecular and imaging data, and signatures. By assembling an integrated picture of the range of responses of human cells exposed to many perturbations, the LINCS program aims to better understand human disease and to advance the development of new therapies. Perturbations under study include drugs, genetic perturbations, tissue micro-environments, antibodies, and disease-causing mutations. Responses to perturbations are measured by transcript profiling, mass spectrometry, cell imaging, and biochemical methods, among other assays. The LINCS program focuses on cellular physiology shared among tissues and cell types relevant to an array of diseases, including cancer, heart disease, and neurodegenerative disorders. This Perspective describes LINCS technologies, datasets, tools, and approaches to data accessibility and reusability. Copyright © 2017 Elsevier Inc. All rights reserved.
Role of Ultraviolet Radiation in Papillomavirus-Induced Disease
Uberoi, Aayushi; Yoshida, Satoshi; Frazer, Ian H.; Pitot, Henry C.; Lambert, Paul F.
2016-01-01
Human papillomaviruses are causally associated with 5% of human cancers. The recent discovery of a papillomavirus (MmuPV1) that infects laboratory mice provides unique opportunities to study the life cycle and pathogenesis of papillomaviruses in the context of a genetically manipulatable host organism. To date, MmuPV1-induced disease has been found largely to be restricted to severely immunodeficient strains of mice. In this study, we report that ultraviolet radiation (UVR), specifically UVB spectra, causes wild-type strains of mice to become highly susceptible to MmuPV1-induced disease. MmuPV1-infected mice treated with UVB develop warts that progress to squamous cell carcinoma. Our studies further indicate that UVB induces systemic immunosuppression in mice that correlates with susceptibility to MmuPV1-associated disease. These findings provide new insight into how MmuPV1 can be used to study the life cycle of papillomaviruses and their role in carcinogenesis, the role of host immunity in controlling papillomavirus-associated pathogenesis, and a basis for understanding in part the role of UVR in promoting HPV infection in humans. PMID:27244228
Role of Ultraviolet Radiation in Papillomavirus-Induced Disease.
Uberoi, Aayushi; Yoshida, Satoshi; Frazer, Ian H; Pitot, Henry C; Lambert, Paul F
2016-05-01
Human papillomaviruses are causally associated with 5% of human cancers. The recent discovery of a papillomavirus (MmuPV1) that infects laboratory mice provides unique opportunities to study the life cycle and pathogenesis of papillomaviruses in the context of a genetically manipulatable host organism. To date, MmuPV1-induced disease has been found largely to be restricted to severely immunodeficient strains of mice. In this study, we report that ultraviolet radiation (UVR), specifically UVB spectra, causes wild-type strains of mice to become highly susceptible to MmuPV1-induced disease. MmuPV1-infected mice treated with UVB develop warts that progress to squamous cell carcinoma. Our studies further indicate that UVB induces systemic immunosuppression in mice that correlates with susceptibility to MmuPV1-associated disease. These findings provide new insight into how MmuPV1 can be used to study the life cycle of papillomaviruses and their role in carcinogenesis, the role of host immunity in controlling papillomavirus-associated pathogenesis, and a basis for understanding in part the role of UVR in promoting HPV infection in humans.
Aliouat-Denis, Cécile-Marie; Chabé, Magali; Delhaes, Laurence; Dei-Cas, Eduardo
2014-01-01
In the last few decades, aerially transmitted human fungal pathogens have been increasingly recognized to impact the clinical course of chronic pulmonary diseases, such as asthma, cystic fibrosis or chronic obstructive pulmonary disease. Thanks to recent development of culture-free high-throughput sequencing methods, the metagenomic approaches are now appropriate to detect, identify and even quantify prokaryotic or eukaryotic microorganism communities inhabiting human respiratory tract and to access the complexity of even low-burden microbe communities that are likely to play a role in chronic pulmonary diseases. In this review, we explore how metagenomics and comparative genomics studies can alleviate fungal culture bottlenecks, improve our knowledge about fungal biology, lift the veil on cross-talks between host lung and fungal microbiota, and gain insights into the pathogenic impact of these aerially transmitted fungi that affect human beings. We reviewed metagenomic studies and comparative genomic analyses of carefully chosen microorganisms, and confirmed the usefulness of such approaches to better delineate biology and pathogenesis of aerially transmitted human fungal pathogens. Efforts to generate and efficiently analyze the enormous amount of data produced by such novel approaches have to be pursued, and will potentially provide the patients suffering from chronic pulmonary diseases with a better management. This manuscript is part of the series of works presented at the "V International Workshop: Molecular genetic approaches to the study of human pathogenic fungi" (Oaxaca, Mexico, 2012). Copyright © 2013 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.
Effect of Exercise Training on Hippocampal Volume in Humans: A Pilot Study
ERIC Educational Resources Information Center
Parker, Beth A.; Thompson, Paul D.; Jordan, Kathryn C.; Grimaldi, Adam S.; Assaf, Michal; Jagannathan, Kanchana; Pearlson, Godfrey D.
2011-01-01
The hippocampus is the primary site of memory and learning in the brain. Both normal aging and various disease pathologies (e.g., alcoholism, schizophrenia, and major depressive disorder) are associated with lower hippocampal volumes in humans and hippocampal atrophy predicts progression of Alzheimers disease. In animals, there is convincing…
Factors affecting interactome-based prediction of human genes associated with clinical signs.
González-Pérez, Sara; Pazos, Florencio; Chagoyen, Mónica
2017-07-17
Clinical signs are a fundamental aspect of human pathologies. While disease diagnosis is problematic or impossible in many cases, signs are easier to perceive and categorize. Clinical signs are increasingly used, together with molecular networks, to prioritize detected variants in clinical genomics pipelines, even if the patient is still undiagnosed. Here we analyze the ability of these network-based methods to predict genes that underlie clinical signs from the human interactome. Our analysis reveals that these approaches can locate genes associated with clinical signs with variable performance that depends on the sign and associated disease. We analyzed several clinical and biological factors that explain these variable results, including number of genes involved (mono- vs. oligogenic diseases), mode of inheritance, type of clinical sign and gene product function. Our results indicate that the characteristics of the clinical signs and their related diseases should be considered for interpreting the results of network-prediction methods, such as those aimed at discovering disease-related genes and variants. These results are important due the increasing use of clinical signs as an alternative to diseases for studying the molecular basis of human pathologies.
Williams, Marshall V.; Cox, Brandon; Ariza, Maria Eugenia
2016-01-01
The human herpesviruses are ubiquitous viruses and have a prevalence of over 90% in the adult population. Following a primary infection they establish latency and can be reactivated over a person’s lifetime. While it is well accepted that human herpesviruses are implicated in numerous diseases ranging from dermatological and autoimmune disease to cancer, the role of lytic proteins in the pathophysiology of herpesvirus-associated diseases remains largely understudies. Only recently have we begun to appreciate the importance of lytic proteins produced during reactivation of the virus, in particular the deoxyuridine triphosphate nucleotidohydrolases (dUTPase), as key modulators of the host innate and adaptive immune responses. In this review, we provide evidence from animal and human studies of the Epstein–Barr virus as a prototype, supporting the notion that herpesviruses dUTPases are a family of proteins with unique immunoregulatory functions that can alter the inflammatory microenvironment and thus exacerbate the immune pathology of herpesvirus-related diseases including myalgic encephalomyelitis/chronic fatigue syndrome, autoimmune diseases, and cancer. PMID:28036046
A role for astroglia in prion diseases.
Aguzzi, Adriano; Liu, Yingjun
2017-12-04
In this issue of JEM, Krejciova et al. (https://doi.org/10.1084/jem.20161547) report that astrocytes derived from human iPSCs can replicate human CJD prions. These observations provide a new, potentially very valuable model for studying human prions in cellula and for identifying antiprion compounds that might serve as clinical candidates. Furthermore, they add to the evidence that astrocytes may not be just innocent bystanders in prion diseases. © 2017 Aguzzi and Liu.
Salivary pH, calcium, phosphorus and selected enzymes in healthy dogs: a pilot study.
Iacopetti, Ilaria; Perazzi, Anna; Badon, Tamara; Bedin, Silvia; Contiero, Barbara; Ricci, Rebecca
2017-11-10
Saliva in dogs, as in humans, is a complex fluid secreted by different salivary glands in the oral cavity to protect the oral mucosa and teeth. The use of saliva as a substitute for blood in diagnosing and prognosticating disease in humans is widely accepted. Salivary biochemistry has also been used as a marker for periodontal disease in humans. No studies have as yet investigated the relation between salivary biochemistry and periodontal disease in dogs, however; neither has the salivary composition of healthy dogs with no oral disease been assessed. The purpose of this study was to obtain an overview on pH distribution and a set of salivary biochemical analytes (calcium, phosphorus, lactate dehydrogenase, lysozyme and amylase) commonly related to oral health in humans in a subset population of healthy young dogs with no periodontal disease or previous oral disease. Data were analyzed to gather salivary reference ranges for pH and each parameter and to assess a possible correlation between salivary and serum analytes. Twenty-nine adult client-owned dogs were recruited for the study. Lactate dehydrogenase and lysozyme showed higher concentrations in saliva than in serum, whereas amylase showed the contrary. Salivary biochemistry values did not differ between males and females or between non-neutered and neutered individuals. No significant correlations between salivary and serum calcium, phosphorus, lactate dehydrogenase, amylase and lysozyme were identified in this study. Data allowed intervals for the salivary pH and other analytes investigated to be obtained from healthy dogs with healthy oral conditions. These preliminary data can contribute to enlarge our understanding of the functional role of saliva and its relation to oral health in dogs.
Chen, Z; Lönnberg, T; Lahesmaa, R
2013-08-01
Current knowledge of helper T cell differentiation largely relies on data generated from mouse studies. To develop therapeutical strategies combating human diseases, understanding the molecular mechanisms how human naïve T cells differentiate to functionally distinct T helper (Th) subsets as well as studies on human differentiated Th cell subsets is particularly valuable. Systems biology approaches provide a holistic view of the processes of T helper differentiation, enable discovery of new factors and pathways involved and generation of new hypotheses to be tested to improve our understanding of human Th cell differentiation and immune-mediated diseases. Here, we summarize studies where high-throughput systems biology approaches have been exploited to human primary T cells. These studies reveal new factors and signalling pathways influencing T cell differentiation towards distinct subsets, important for immune regulation. Such information provides new insights into T cell biology and into targeting immune system for therapeutic interventions. © 2013 John Wiley & Sons Ltd.
Ghosh, Somiranjan; Zang, Shizhu; Mitra, Partha S; Ghimbovschi, Svetlana; Hoffman, Eric P; Dutta, Sisir K
2011-07-01
Several reports have indicated that low level of polychlorinated biphenyl (PCB) exposure can adversely affect a multitude of physiological disorders and diseases in in vitro, in vivo, and as reported in epidemiological studies. This investigation is focused on the possible contribution of two most prevalent PCB congeners in vitro in developing toxicities. We used PCBs 138 and 153 at the human equivalence level as model agents to test their specificity in developing toxicities. We chose a global approach using oligonucleotide microarray technology to investigate modulated gene expression for biological effects, upon exposure of PCBs, followed by Ingenuity Pathway Analysis (IPA), to understand the underlying consequence in developing disease and disorders. We performed in vitro studies with human peripheral blood mononuclear cells (PBMC), where PBMC cells were exposed to respective PCBs for 48 h. Overall, our observation on gene expression indicated that PCB produces a unique signature affecting different pathways, specific for each congener. While analyzing these data through IPA, the prominent and interesting disease and disorders were neurological disease, cancer, cardiovascular disease, respiratory disease, as well as endocrine system disorders, genetic disorders, and reproductive system disease. They showed strong resemblances with in vitro, in vivo, and in the epidemiological studies. A distinct difference was observed in renal and urological diseases, organisimal injury and abnormalities, dental disease, ophthalmic disease, and psychological disorders, which are only revealed by PCB 138 exposure, but not in PCB 153. The present study emphasizes the challenges of global gene expression in vitro and was correlated with the results of exposed human population. The microarray results give a molecular mechanistic insight and functional effects, following PCB exposure. The extent of changes in genes related to several possible mode(s) of action highlights the changes in cellular functions and signaling pathways that play major roles. In addition to understanding the pathways related to mode of action for chemicals, these data could lead to the identification of genomic signatures that could be used for screening of chemicals for their potential to cause disease and developmental disorders. Copyright © 2011 Elsevier Ltd. All rights reserved.
Characterization of the canine urinary proteome.
Brandt, Laura E; Ehrhart, E J; Scherman, Hataichanok; Olver, Christine S; Bohn, Andrea A; Prenni, Jessica E
2014-06-01
Urine is an attractive biofluid for biomarker discovery as it is easy and minimally invasive to obtain. While numerous studies have focused on the characterization of human urine, much less research has focused on canine urine. The objectives of this study were to characterize the universal canine urinary proteome (both soluble and exosomal), to determine the overlap between the canine proteome and a representative human urinary proteome study, to generate a resource for future canine studies, and to determine the suitability of the dog as a large animal model for human diseases. The soluble and exosomal fractions of normal canine urine were characterized using liquid chromatography tandem mass spectrometry (LC-MS/MS). Biological Networks Gene Ontology (BiNGO) software was utilized to assign the canine urinary proteome to respective Gene Ontology categories, such as Cellular Component, Molecular Function, and Biological Process. Over 500 proteins were confidently identified in normal canine urine. Gene Ontology analysis revealed that exosomal proteins were largely derived from an intracellular location, while soluble proteins included both extracellular and membrane proteins. Exosome proteins were assigned to metabolic processes and localization, while soluble proteins were primarily annotated to specific localization processes. Several proteins identified in normal canine urine have previously been identified in human urine where these proteins are related to various extrarenal and renal diseases. The results of this study illustrate the potential of the dog as an animal model for human disease states and provide the framework for future studies of canine renal diseases. © 2014 American Society for Veterinary Clinical Pathology and European Society for Veterinary Clinical Pathology.
Connecting the Human Variome Project to nutrigenomics.
Kaput, Jim; Evelo, Chris T; Perozzi, Giuditta; van Ommen, Ben; Cotton, Richard
2010-12-01
Nutrigenomics is the science of analyzing and understanding gene-nutrient interactions, which because of the genetic heterogeneity, varying degrees of interaction among gene products, and the environmental diversity is a complex science. Although much knowledge of human diversity has been accumulated, estimates suggest that ~90% of genetic variation has not yet been characterized. Identification of the DNA sequence variants that contribute to nutrition-related disease risk is essential for developing a better understanding of the complex causes of disease in humans, including nutrition-related disease. The Human Variome Project (HVP; http://www.humanvariomeproject.org/) is an international effort to systematically identify genes, their mutations, and their variants associated with phenotypic variability and indications of human disease or phenotype. Since nutrigenomic research uses genetic information in the design and analysis of experiments, the HVP is an essential collaborator for ongoing studies of gene-nutrient interactions. With the advent of next generation sequencing methodologies and the understanding of the undiscovered variation in human genomes, the nutrigenomic community will be generating novel sequence data and results. The guidelines and practices of the HVP can guide and harmonize these efforts.
Connecting the Human Variome Project to nutrigenomics
Evelo, Chris T.; Perozzi, Giuditta; van Ommen, Ben; Cotton, Richard
2010-01-01
Nutrigenomics is the science of analyzing and understanding gene–nutrient interactions, which because of the genetic heterogeneity, varying degrees of interaction among gene products, and the environmental diversity is a complex science. Although much knowledge of human diversity has been accumulated, estimates suggest that ~90% of genetic variation has not yet been characterized. Identification of the DNA sequence variants that contribute to nutrition-related disease risk is essential for developing a better understanding of the complex causes of disease in humans, including nutrition-related disease. The Human Variome Project (HVP; http://www.humanvariomeproject.org/) is an international effort to systematically identify genes, their mutations, and their variants associated with phenotypic variability and indications of human disease or phenotype. Since nutrigenomic research uses genetic information in the design and analysis of experiments, the HVP is an essential collaborator for ongoing studies of gene–nutrient interactions. With the advent of next generation sequencing methodologies and the understanding of the undiscovered variation in human genomes, the nutrigenomic community will be generating novel sequence data and results. The guidelines and practices of the HVP can guide and harmonize these efforts. PMID:28300226
Gurda, Brittney L; Bradbury, Allison M; Vite, Charles H
2017-09-01
For many lethal or debilitating genetic disorders in patients there are no satisfactory therapies. Several barriers exist that hinder the developments of effective therapies including the limited availability of clinically relevant animal models that faithfully recapitulate human genetic disease. In 1974, the Referral Center for Animal Models of Human Genetic Disease (RCAM) was established by Dr. Donald F. Patterson and continued by Dr. Mark E. Haskins at the University of Pennsylvania with the mission to discover, understand, treat, and maintain breeding colonies of naturally occurring hereditary disorders in dogs and cats that are orthologous to those found in human patients. Although non-human primates, sheep, and pig models are also available within the medical community, naturally occurring diseases are rarely identified in non-human primates, and the vast behavioral, clinicopathological, physiological, and anatomical knowledge available regarding dogs and cats far surpasses what is available in ovine and porcine species. The canine and feline models that are maintained at RCAM are presented here with a focus on preclinical therapy data. Clinical studies that have been generated from preclinical work in these models are also presented.
A lethal disease model for New World hantaviruses using immunosuppressed Syrian hamsters.
Vergote, Valentijn; Laenen, Lies; Vanmechelen, Bert; Van Ranst, Marc; Verbeken, Erik; Hooper, Jay W; Maes, Piet
2017-10-01
Hantavirus, the hemorrhagic causative agent of two clinical diseases, is found worldwide with variation in severity, incidence and mortality. The most lethal hantaviruses are found on the American continent where the most prevalent viruses like Andes virus and Sin Nombre virus are known to cause hantavirus pulmonary syndrome. New World hantavirus infection of immunocompetent hamsters results in an asymptomatic infection except for Andes virus and Maporal virus; the only hantaviruses causing a lethal disease in immunocompetent Syrian hamsters mimicking hantavirus pulmonary syndrome in humans. Hamsters, immunosuppressed with dexamethasone and cyclophosphamide, were infected intramuscularly with different New World hantavirus strains (Bayou virus, Black Creek Canal virus, Caño Delgadito virus, Choclo virus, Laguna Negra virus, and Maporal virus). In the present study, we show that immunosuppression of hamsters followed by infection with a New World hantavirus results in an acute disease that precisely mimics both hantavirus disease in humans and Andes virus infection of hamsters. Infected hamsters showed specific clinical signs of disease and moreover, histological analysis of lung tissue showed signs of pulmonary edema and inflammation within alveolar septa. In this study, we were able to infect immunosuppressed hamsters with different New World hantaviruses reaching a lethal outcome with signs of disease mimicking human disease.
Mannose Binding Lectin Is Required for Alphavirus-Induced Arthritis/Myositis
Whitmore, Alan C.; Blevins, Lance K.; Hueston, Linda; Fraser, Robert J.; Herrero, Lara J.; Ramirez, Ruben; Smith, Paul N.; Mahalingam, Suresh; Heise, Mark T.
2012-01-01
Mosquito-borne alphaviruses such as chikungunya virus and Ross River virus (RRV) are emerging pathogens capable of causing large-scale epidemics of virus-induced arthritis and myositis. The pathology of RRV-induced disease in both humans and mice is associated with induction of the host inflammatory response within the muscle and joints, and prior studies have demonstrated that the host complement system contributes to development of disease. In this study, we have used a mouse model of RRV-induced disease to identify and characterize which complement activation pathways mediate disease progression after infection, and we have identified the mannose binding lectin (MBL) pathway, but not the classical or alternative complement activation pathways, as essential for development of RRV-induced disease. MBL deposition was enhanced in RRV infected muscle tissue from wild type mice and RRV infected MBL deficient mice exhibited reduced disease, tissue damage, and complement deposition compared to wild-type mice. In contrast, mice deficient for key components of the classical or alternative complement activation pathways still developed severe RRV-induced disease. Further characterization of MBL deficient mice demonstrated that similar to C3−/− mice, viral replication and inflammatory cell recruitment were equivalent to wild type animals, suggesting that RRV-mediated induction of complement dependent immune pathology is largely MBL dependent. Consistent with these findings, human patients diagnosed with RRV disease had elevated serum MBL levels compared to healthy controls, and MBL levels in the serum and synovial fluid correlated with severity of disease. These findings demonstrate a role for MBL in promoting RRV-induced disease in both mice and humans and suggest that the MBL pathway of complement activation may be an effective target for therapeutic intervention for humans suffering from RRV-induced arthritis and myositis. PMID:22457620
Jian, Jun-Meng; Chen, Da; Han, Fu-Juan; Guo, Ying; Zeng, Lixi; Lu, Xingwen; Wang, Fei
2018-09-15
PFASs are widely distributed in natural and living environment and can enter human bodies via different routes. Many studies have reported that PFASs may be associated with human diseases, such as urine acid and thyroid diseases. In this study, we reviewed PFAS levels in human bodies reported in past seven years, including blood, urine, milk, and tissues (hair and nails). Most studies focused on human blood. Blood type, spatiality, human age, and gender were found to have a strong relationship with PFAS levels in blood samples. The PFAS distribution in urine samples was reported to be associated with the chain length of PFASs and human gender. Urinary excretion was found to be an important pathway of PFAS elimination. PFAS levels in human milk might be affected by various factors, such as mothers' age, dietary habit, parity of mothers and the interval of interpregnancy. Data in hair and nails remain very limited, but these matrices offer a non-invasive approach to evaluate human exposure to PFASs. Copyright © 2018 Elsevier B.V. All rights reserved.
Pandey, Udai Bhan
2011-01-01
The common fruit fly, Drosophila melanogaster, is a well studied and highly tractable genetic model organism for understanding molecular mechanisms of human diseases. Many basic biological, physiological, and neurological properties are conserved between mammals and D. melanogaster, and nearly 75% of human disease-causing genes are believed to have a functional homolog in the fly. In the discovery process for therapeutics, traditional approaches employ high-throughput screening for small molecules that is based primarily on in vitro cell culture, enzymatic assays, or receptor binding assays. The majority of positive hits identified through these types of in vitro screens, unfortunately, are found to be ineffective and/or toxic in subsequent validation experiments in whole-animal models. New tools and platforms are needed in the discovery arena to overcome these limitations. The incorporation of D. melanogaster into the therapeutic discovery process holds tremendous promise for an enhanced rate of discovery of higher quality leads. D. melanogaster models of human diseases provide several unique features such as powerful genetics, highly conserved disease pathways, and very low comparative costs. The fly can effectively be used for low- to high-throughput drug screens as well as in target discovery. Here, we review the basic biology of the fly and discuss models of human diseases and opportunities for therapeutic discovery for central nervous system disorders, inflammatory disorders, cardiovascular disease, cancer, and diabetes. We also provide information and resources for those interested in pursuing fly models of human disease, as well as those interested in using D. melanogaster in the drug discovery process. PMID:21415126
Reverse engineering human neurodegenerative disease using pluripotent stem cell technology.
Liu, Ying; Deng, Wenbin
2016-05-01
With the technology of reprogramming somatic cells by introducing defined transcription factors that enables the generation of "induced pluripotent stem cells (iPSCs)" with pluripotency comparable to that of embryonic stem cells (ESCs), it has become possible to use this technology to produce various cells and tissues that have been difficult to obtain from living bodies. This advancement is bringing forth rapid progress in iPSC-based disease modeling, drug screening, and regenerative medicine. More and more studies have demonstrated that phenotypes of adult-onset neurodegenerative disorders could be rather faithfully recapitulated in iPSC-derived neural cell cultures. Moreover, despite the adult-onset nature of the diseases, pathogenic phenotypes and cellular abnormalities often exist in early developmental stages, providing new "windows of opportunity" for understanding mechanisms underlying neurodegenerative disorders and for discovering new medicines. The cell reprogramming technology enables a reverse engineering approach for modeling the cellular degenerative phenotypes of a wide range of human disorders. An excellent example is the study of the human neurodegenerative disease amyotrophic lateral sclerosis (ALS) using iPSCs. ALS is a progressive neurodegenerative disease characterized by the loss of upper and lower motor neurons (MNs), culminating in muscle wasting and death from respiratory failure. The iPSC approach provides innovative cell culture platforms to serve as ALS patient-derived model systems. Researchers have converted iPSCs derived from ALS patients into MNs and various types of glial cells, all of which are involved in ALS, to study the disease. The iPSC technology could be used to determine the role of specific genetic factors to track down what's wrong in the neurodegenerative disease process in the "disease-in-a-dish" model. Meanwhile, parallel experiments of targeting the same specific genes in human ESCs could also be performed to control and to complement the iPSC-based approach for ALS disease modeling studies. Much knowledge has been generated from the study of both ALS iPSCs and ESCs. As these methods have advantages and disadvantages that should be balanced on experimental design in order for them to complement one another, combining the diverse methods would help build an expanded knowledge of ALS pathophysiology. The goals are to reverse engineer the human disease using ESCs and iPSCs, generate lineage reporter lines and in vitro disease models, target disease related genes, in order to better understand the molecular and cellular mechanisms of differentiation regulation along neural (neuronal versus glial) lineages, to unravel the pathogenesis of the neurodegenerative disease, and to provide appropriate cell sources for replacement therapy. This article is part of a Special Issue entitled SI: PSC and the brain. Copyright © 2015 Elsevier B.V. All rights reserved.
2013-01-01
Evolutionary medicine (EM) is a growing field focusing on the evolutionary basis of human diseases and their changes through time. To date, the majority of EM studies have used pure theories of hominin macroevolution to explain the present-day state of human health. Here, we propose a different approach by addressing more empirical and health-oriented research concerning past, current and future microevolutionary changes of human structure, functions and pathologies. Studying generation-to-generation changes of human morphology that occurred in historical times, and still occur in present-day populations under the forces of evolution, helps to explain medical conditions and warns clinicians that their current practices may influence future humans. Also, analyzing historic tissue specimens such as mummies is crucial in order to address the molecular evolution of pathogens, of the human genome, and their coadaptations. PMID:23627943
Animal models of aging research: implications for human aging and age-related diseases.
Mitchell, Sarah J; Scheibye-Knudsen, Morten; Longo, Dan L; de Cabo, Rafael
2015-01-01
Aging is characterized by an increasing morbidity and functional decline that eventually results in the death of an organism. Aging is the largest risk factor for numerous human diseases, and understanding the aging process may thereby facilitate the development of new treatments for age-associated diseases. The use of humans in aging research is complicated by many factors, including ethical issues; environmental and social factors; and perhaps most importantly, their long natural life span. Although cellular models of human disease provide valuable mechanistic information, they are limited in that they may not replicate the in vivo biology. Almost all organisms age, and thus animal models can be useful for studying aging. Herein, we review some of the major models currently used in aging research and discuss their benefits and pitfalls, including interventions known to extend life span and health span. Finally, we conclude by discussing the future of animal models in aging research.
Human land use influences chronic wasting disease prevalence in mule deer
Farnsworth, Matthew L.; Wolfe, L.L.; Hobbs, N.T.; Burnham, K.P.; Williams, E.S.; Theobald, D.M.; Conner, M.M.; Miller, M.W.
2005-01-01
Human alteration of landscapes can affect the distribution, abundance, and behavior of wildlife. We explored the effects of human land use on the prevalence of chronic wasting disease (CWD) in mule deer (Odocoileus hemionus) populations residing in north-central Colorado. We chose best approximating models estimating CWD prevalence in relation to differences in human land use, sex, and geographic location. Prevalence was higher in developed areas and among male deer, suggesting anthropogenic influences on the occurrence of disease. We also found a relatively high degree of variation in prevalence across the three study sites, suggesting that spatial patterns in disease may be influenced by other factors operating at a broader, landscape scale. Our results suggest that multiple factors, including changes in land use, differences in exposure risk between sexes, and landscape-scaled heterogeneity, are associated with CWD prevalence in north-central Colorado.
Human risk of infection with Borrelia burgdorferi, the Lyme disease agent, in eastern United States.
Diuk-Wasser, Maria A; Hoen, Anne Gatewood; Cislo, Paul; Brinkerhoff, Robert; Hamer, Sarah A; Rowland, Michelle; Cortinas, Roberto; Vourc'h, Gwenaël; Melton, Forrest; Hickling, Graham J; Tsao, Jean I; Bunikis, Jonas; Barbour, Alan G; Kitron, Uriel; Piesman, Joseph; Fish, Durland
2012-02-01
The geographic pattern of human risk for infection with Borrelia burgdorferi sensu stricto, the tick-borne pathogen that causes Lyme disease, was mapped for the eastern United States. The map is based on standardized field sampling in 304 sites of the density of Ixodes scapularis host-seeking nymphs infected with B. burgdorferi, which is closely associated with human infection risk. Risk factors for the presence and density of infected nymphs were used to model a continuous 8 km×8 km resolution predictive surface of human risk, including confidence intervals for each pixel. Discontinuous Lyme disease risk foci were identified in the Northeast and upper Midwest, with a transitional zone including sites with uninfected I. scapularis populations. Given frequent under- and over-diagnoses of Lyme disease, this map could act as a tool to guide surveillance, control, and prevention efforts and act as a baseline for studies tracking the spread of infection.
Ochratoxin A and human health risk: a review of the evidence.
Bui-Klimke, Travis R; Wu, Felicia
2015-01-01
Ochratoxin A (OTA) is a mycotoxin produced by several fungal species including Aspergillus ochraceus, A. carbonarius, A. niger, and Penicillium verrucosum. OTA causes nephrotoxicity and renal tumors in a variety of animal species; however, human health effects are less well-characterized. Various studies have linked OTA exposure with the human diseases Balkan endemic nephropathy (BEN) and chronic interstitial nephropathy (CIN), as well as other renal diseases. This study reviews the epidemiological literature on OTA exposure and adverse health effects in different populations worldwide, and assesses the potential human health risks of OTA exposure. Epidemiological studies identified in a systematic review were used to calculate unadjusted odds ratios for OTA associated with various health endpoints. With one exception, there appears to be no statistically significant evidence for human health risks associated with OTA exposure. One Egyptian study showed a significantly higher risk of nephritic syndrome in those with very high urinary OTA levels compared with relatively unexposed individuals; however, other potential risk factors were not controlled for in the study. Larger cohort or case-control studies are needed in the future to better establish potential OTA-related human health effects, and further duplicate-diet studies are needed to validate biomarkers of OTA exposure in humans.
New frontiers in human cell biology and medicine: can pluripotent stem cells deliver?
Goldstein, Lawrence S B
2012-11-12
Human pluripotent stem cells provide enormous opportunities to treat disease using cell therapy. But human stem cells can also drive biomedical and cell biological discoveries in a human model system, which can be directly linked to understanding disease or developing new therapies. Finally, rigorous scientific studies of these cells can and should inform the many science and medical policy issues that confront the translation of these technologies to medicine. In this paper, I discuss these issues using amyotrophic lateral sclerosis as an example.
[The gastrointestinal tract microbiom in connective tissue diseases].
Krajewska-Włodarczyk, Magdalena
Factors such as genetics, the environment, infections, and the human body microbiota, mainly gastrointestinal tract microbiota may play a role in the pathogenesis of autoimmune disorders. There is an increasing evidence that suggest an association between gastrointestinal tract dysbiosis, and in particular gut dysbiosis, and connective tissue diseases but it still remains unclear whether alterations in the microbiome are a pathogenic cause or an effect of autoimmune disease. Given the strong variability and abundance of microbes living in close relation with human host, it becomes a difficult task to define what should be considered the normal or the favorable microbiome. Further studies are needed to establish how the human microbiome contributes to disease susceptibility, and to characterize the role of microbial diversity in the pathogenesis of connective tissue diseases and their clinical manifestations. The identification of dysbiosis specific for certain connective tissue diseases may help in the development of an individualized management for each patient. This review aims to summarize current data on the role of the gastrointestinal tract microbiome in connective tissue diseases.
Miyagaki, Tomomitsu; Fujimoto, Manabu; Sato, Shinichi
2015-10-01
B cells have been generally considered to be positive regulators of immune responses because of their ability to produce antigen-specific antibodies and to activate T cells through antigen presentation. Impairment of B cell development and function may cause inflammatory and autoimmune diseases. Recently, specific B cell subsets that can negatively regulate immune responses have been described in mouse models of a wide variety of inflammatory and autoimmune diseases. The concept of those B cells, termed regulatory B cells, is now recognized as important in the murine immune system. Among several regulatory B cell subsets, IL-10-producing regulatory B cells are the most widely investigated. On the basis of discoveries from studies of such mice, human regulatory B cells that produce IL-10 in most cases are becoming an active area of research. There have been emerging data suggesting the importance of human regulatory B cells in various diseases. Revealing the immune regulation mechanisms of human regulatory B cells in human inflammatory and autoimmune diseases could lead to the development of novel B cell targeted therapies. This review highlights the current knowledge on regulatory B cells, mainly IL-10-producing regulatory B cells, in animal models of inflammatory and autoimmune diseases and in clinical research using human samples. © The Japanese Society for Immunology. 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Development and application of Human Genome Epidemiology
NASA Astrophysics Data System (ADS)
Xu, Jingwen
2017-12-01
Epidemiology is a science that studies distribution of diseases and health in population and its influencing factors, it also studies how to prevent and cure disease and promote health strategies and measures. Epidemiology has developed rapidly in recent years and it is an intercross subject with various other disciplines to form a series of branch disciplines such as Genetic epidemiology, molecular epidemiology, drug epidemiology and tumor epidemiology. With the implementation and completion of Human Genome Project (HGP), Human Genome Epidemiology (HuGE) has emerged at this historic moment. In this review, the development of Human Genome Epidemiology, research content, the construction and structure of relevant network, research standards, as well as the existing results and problems are briefly outlined.
Mapping and annotating obesity-related genes in pig and human genomes.
Martelli, Pier Luigi; Fontanesi, Luca; Piovesan, Damiano; Fariselli, Piero; Casadio, Rita
2014-01-01
Background. Obesity is a major health problem in both developed and emerging countries. Obesity is a complex disease whose etiology involves genetic factors in strong interplay with environmental determinants and lifestyle. The discovery of genetic factors and biological pathways underlying human obesity is hampered by the difficulty in controlling the genetic background of human cohorts. Animal models are then necessary to further dissect the genetics of obesity. Pig has emerged as one of the most attractive models, because of the similarity with humans in the mechanisms regulating the fat deposition. Results. We collected the genes related to obesity in humans and to fat deposition traits in pig. We localized them on both human and pig genomes, building a map useful to interpret comparative studies on obesity. We characterized the collected genes structurally and functionally with BAR+ and mapped them on KEGG pathways and on STRING protein interaction network. Conclusions. The collected set consists of 361 obesity related genes in human and pig genomes. All genes were mapped on the human genome, and 54 could not be localized on the pig genome (release 2012). Only for 3 human genes there is no counterpart in pig, confirming that this animal is a good model for human obesity studies. Obesity related genes are mostly involved in regulation and signaling processes/pathways and relevant connection emerges between obesity-related genes and diseases such as cancer and infectious diseases.
Computational Prediction of Alzheimer’s and Parkinson’s Disease MicroRNAs in Domestic Animals
Wang, Hai Yang; Lin, Zi Li; Yu, Xian Feng; Bao, Yuan; Cui, Xiang-Shun; Kim, Nam-Hyung
2016-01-01
As the most common neurodegenerative diseases, Alzheimer’s disease (AD) and Parkinson’s disease (PD) are two of the main health concerns for the elderly population. Recently, microRNAs (miRNAs) have been used as biomarkers of infectious, genetic, and metabolic diseases in humans but they have not been well studied in domestic animals. Here we describe a computational biology study in which human AD- and PD-associated miRNAs (ADM and PDM) were utilized to predict orthologous miRNAs in the following domestic animal species: dog, cow, pig, horse, and chicken. In this study, a total of 121 and 70 published human ADM and PDM were identified, respectively. Thirty-seven miRNAs were co-regulated in AD and PD. We identified a total of 105 unrepeated human ADM and PDM that had at least one 100% identical animal homolog, among which 81 and 54 showed 100% sequence identity with 241 and 161 domestic animal miRNAs, respectively. Over 20% of the total mature horse miRNAs (92) showed perfect matches to AD/PD-associated miRNAs. Pigs, dogs, and cows have similar numbers of AD/PD-associated miRNAs (63, 62, and 59). Chickens had the least number of perfect matches (34). Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses suggested that humans and dogs are relatively similar in the functional pathways of the five selected highly conserved miRNAs. Taken together, our study provides the first evidence for better understanding the miRNA-AD/PD associations in domestic animals, and provides guidance to generate domestic animal models of AD/PD to replace the current rodent models. PMID:26954182
Vinson, Amanda; Prongay, Kamm; Ferguson, Betsy
2013-01-01
Complex diseases (e.g., cardiovascular disease and type 2 diabetes, among many others) pose the biggest threat to human health worldwide and are among the most challenging to investigate. Susceptibility to complex disease may be caused by multiple genetic variants (GVs) and their interaction, by environmental factors, and by interaction between GVs and environment, and large study cohorts with substantial analytical power are typically required to elucidate these individual contributions. Here, we discuss the advantages of both power and feasibility afforded by the use of extended pedigrees of rhesus macaques (Macaca mulatta) for genetic studies of complex human disease based on next-generation sequence data. We present these advantages in the context of previous research conducted in rhesus macaques for several representative complex diseases. We also describe a single, multigeneration pedigree of Indian-origin rhesus macaques and a sample biobank we have developed for genetic analysis of complex disease, including power of this pedigree to detect causal GVs using either genetic linkage or association methods in a variance decomposition approach. Finally, we summarize findings of significant heritability for a number of quantitative traits that demonstrate that genetic contributions to risk factors for complex disease can be detected and measured in this pedigree. We conclude that the development and application of an extended pedigree to analysis of complex disease traits in the rhesus macaque have shown promising early success and that genome-wide genetic and higher order -omics studies in this pedigree are likely to yield useful insights into the architecture of complex human disease. PMID:24174435
Can the silkworm (Bombyx mori) be used as a human disease model?
Tabunoki, Hiroko; Bono, Hidemasa; Ito, Katsuhiko; Yokoyama, Takeshi
2016-02-01
Bombyx mori (silkworm) is the most famous lepidopteran in Japan. B. mori has long been used in the silk industry and also as a model insect for agricultural research. In recent years, B. mori has attracted interest in its potential for use in pathological analysis of model animals. For example, the human macular carotenoid transporter was discovered using information of B. mori carotenoid transporter derived from yellow-cocoon strain. The B. mori carotenoid transport system is useful in human studies. To develop a human disease model, we characterized the human homologs of B. mori, and by constructing KAIKO functional annotation pipeline, and to analyze gene expression profile of a unique B. mori mutant strain using microarray analysis. As a result, we identified a novel molecular network involved in Parkinson's disease. Here we describe the potential use of a spontaneous mutant silkworm strain as a human disease model. We also summarize recent progress in the application of genomic information for annotation of human homologs in B. mori. The B. mori mutant will provide a clue to pathological mechanisms, and the findings will be helpful for the development of therapies and for medical drug discovery.
Complex disease and phenotype mapping in the domestic dog
Hayward, Jessica J.; Castelhano, Marta G.; Oliveira, Kyle C.; Corey, Elizabeth; Balkman, Cheryl; Baxter, Tara L.; Casal, Margret L.; Center, Sharon A.; Fang, Meiying; Garrison, Susan J.; Kalla, Sara E.; Korniliev, Pavel; Kotlikoff, Michael I.; Moise, N. S.; Shannon, Laura M.; Simpson, Kenneth W.; Sutter, Nathan B.; Todhunter, Rory J.; Boyko, Adam R.
2016-01-01
The domestic dog is becoming an increasingly valuable model species in medical genetics, showing particular promise to advance our understanding of cancer and orthopaedic disease. Here we undertake the largest canine genome-wide association study to date, with a panel of over 4,200 dogs genotyped at 180,000 markers, to accelerate mapping efforts. For complex diseases, we identify loci significantly associated with hip dysplasia, elbow dysplasia, idiopathic epilepsy, lymphoma, mast cell tumour and granulomatous colitis; for morphological traits, we report three novel quantitative trait loci that influence body size and one that influences fur length and shedding. Using simulation studies, we show that modestly larger sample sizes and denser marker sets will be sufficient to identify most moderate- to large-effect complex disease loci. This proposed design will enable efficient mapping of canine complex diseases, most of which have human homologues, using far fewer samples than required in human studies. PMID:26795439
The genetics of multiple sclerosis: review of current and emerging candidates
Muñoz-Culla, Maider; Irizar, Haritz; Otaegui, David
2013-01-01
Multiple sclerosis (MS) is a complex disease in which environmental, genetic, and epigenetic factors determine the risk of developing the disease. The human leukocyte antigen region is the strongest susceptibility locus linked to MS, but it does not explain the whole heritability of the disease. To find other non-human leukocyte antigen loci associated with the disease, high-throughput genotyping, sequencing, and gene-expression studies have been performed, producing a valuable quantity of information. An overview of the genomic and expression studies is provided in this review, as well as microRNA-expression studies, highlighting the importance of combining all the layers of information in order to elucidate the causes or pathological mechanisms occurring in the disease. Genetics in MS is a promising field that is presumably going to be very productive in the next decade understanding the cross talk between all the factors contributing to the development of MS. PMID:24019748
A pathway-based view of human diseases and disease relationships.
Li, Yong; Agarwal, Pankaj
2009-01-01
It is increasingly evident that human diseases are not isolated from each other. Understanding how different diseases are related to each other based on the underlying biology could provide new insights into disease etiology, classification, and shared biological mechanisms. We have taken a computational approach to studying disease relationships through 1) systematic identification of disease associated genes by literature mining, 2) associating diseases to biological pathways where disease genes are enriched, and 3) linking diseases together based on shared pathways. We identified 4,195 candidate disease associated genes for 1028 diseases. On average, about 50% of disease associated genes of a disease are statistically mapped to pathways. We generated a disease network which consists of 591 diseases and 6,931 disease relationships. We examined properties of this network and provided examples of novel disease relationships which cannot be readily captured through simple literature search or gene overlap analysis. Our results could potentially provide insights into the design of novel, pathway-guided therapeutic interventions for diseases.
The human gut microbiome: current knowledge, challenges, and future directions.
Dave, Maneesh; Higgins, Peter D; Middha, Sumit; Rioux, Kevin P
2012-10-01
The Human Genome Project was completed a decade ago, leaving a legacy of process, tools, and infrastructure now being turned to the study of the microbes that reside in and on the human body as determinants of health and disease, and has been branded "The Human Microbiome Project." Of the various niches under investigation, the human gut houses the most complex and abundant microbial community and is an arena for important host-microbial interactions that have both local and systemic impact. Initial studies of the human microbiome have been largely descriptive, a testing ground for innovative molecular techniques and new hypotheses. Methods for studying the microbiome have quickly evolved from low-resolution surveys of microbial community structure to high-definition description of composition, function, and ecology. Next-generation sequencing technologies combined with advanced bioinformatics place us at the doorstep of revolutionary insight into the composition, capability, and activity of the human intestinal microbiome. Renewed efforts to cultivate previously "uncultivable" microbes will be important to the overall understanding of gut ecology. There remain numerous methodological challenges to the effective study and understanding of the gut microbiome, largely relating to study design, sample collection, and the number of predictor variables. Strategic collaboration of clinicians, microbiologists, molecular biologists, computational scientists, and bioinformaticians is the ideal paradigm for success in this field. Meaningful interpretation of the gut microbiome requires that host genetic and environmental influences be controlled or accounted for. Understanding the gut microbiome in healthy humans is a foundation for discovering its influence in various important gastrointestinal and nutritional diseases (eg, inflammatory bowel disease, diabetes, and obesity), and for rational translation to human health gains. Copyright © 2012 Mosby, Inc. All rights reserved.
2011-01-01
MicroRNAs (miRNAs) are small noncoding RNA molecules that negatively regulate gene expression via degradation or translational repression of their target messenger RNAs (mRNAs). Recent studies have clearly demonstrated that miRNAs play critical roles in several biologic processes, including cell cycle, differentiation, cell development, cell growth, and apoptosis and that miRNAs are highly expressed in regulatory T (Treg) cells and a wide range of miRNAs are involved in the regulation of immunity and in the prevention of autoimmunity. It has been increasingly reported that miRNAs are associated with various human diseases like autoimmune disease, skin disease, neurological disease and psychiatric disease. Recently, the identification of mi- RNAs in skin has added a new dimension in the regulatory network and attracted significant interest in this novel layer of gene regulation. Although miRNA research in the field of dermatology is still relatively new, miRNAs have been the subject of much dermatological interest in skin morphogenesis and in regulating angiogenesis. In addition, miRNAs are moving rapidly onto center stage as key regulators of neuronal development and function in addition to important contributions to neurodegenerative disorder. Moreover, there is now compelling evidence that dysregulation of miRNA networks is implicated in the development and onset of human neruodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, Huntington's disease, Tourette's syndrome, Down syndrome, depression and schizophrenia. In this review, I briefly summarize the current studies about the roles of miRNAs in various autoimmune diseases, skin diseases, psychoneurological disorders and mental stress. PMID:22194706
KERIS: kaleidoscope of gene responses to inflammation between species
Li, Peng; Tompkins, Ronald G; Xiao, Wenzhong
2017-01-01
A cornerstone of modern biomedical research is the use of animal models to study disease mechanisms and to develop new therapeutic approaches. In order to help the research community to better explore the similarities and differences of genomic response between human inflammatory diseases and murine models, we developed KERIS: kaleidoscope of gene responses to inflammation between species (available at http://www.igenomed.org/keris/). As of June 2016, KERIS includes comparisons of the genomic response of six human inflammatory diseases (burns, trauma, infection, sepsis, endotoxin and acute respiratory distress syndrome) and matched mouse models, using 2257 curated samples from the Inflammation and the Host Response to Injury Glue Grant studies and other representative studies in Gene Expression Omnibus. A researcher can browse, query, visualize and compare the response patterns of genes, pathways and functional modules across different diseases and corresponding murine models. The database is expected to help biologists choosing models when studying the mechanisms of particular genes and pathways in a disease and prioritizing the translation of findings from disease models into clinical studies. PMID:27789704
NASA Astrophysics Data System (ADS)
Sedionoto, Blego; Anamnart, Witthaya
2018-02-01
Hookworm infection and Stronyloidiasis are public health problem in the worldwide which both of them could infective in human by penetrated on skin and they have potential risk from Gastrointestinal zoonotic helminths of pets, including cats. We investigated the prevalence soil transmitted helminths infection in human and cats used modified Formal-Ether Concentration and agar plate culture. Fecal samples of 23 cats and human from Naitung and Subua Villages (area study 1), and fecal samples of 15 cats and 17 humans from Thasala Beach villages (area study 2) were collected. Result of study in area study 1 showed prevalence of infection in human was not hookworm and strongyloidiasis but 10% humans have infected Ascaris and Tricuris, and in cats have infected by hookworm 75.2% and S. strercoralis 8.5%, toxocara 13%, spirometra 13% and overall prevalence 82.5%. In area study 2 showed in human has infected by Trichuris 100% and S. stercoralis 29.4% and in cats have infected by hookworm 100% and S. strercoralis 40%, toxocora 20%, and spirometra 20%. Helminth infection found in both humans in two areas study are S. strercoralis. Hookworms were the most common helminth in cats but did not connection with infection in human, while S. strercoralis was helminth infection in cats which has potential zoonotic disease to human.
Rüb, U; Seidel, K; Heinsen, H; Vonsattel, J P; den Dunnen, W F; Korf, H W
2016-11-01
Huntington's disease (HD) is an autosomal dominantly inherited, and currently untreatable, neuropsychiatric disorder. This progressive and ultimately fatal disease is named after the American physician George Huntington and according to the underlying molecular biological mechanisms is assigned to the human polyglutamine or CAG-repeat diseases. In the present article we give an overview of the currently known neurodegenerative hallmarks of the brains of HD patients. Subsequent to recent pathoanatomical studies the prevailing reductionistic concept of HD as a human neurodegenerative disease, which is primarily and more or less exclusively confined to the striatum (ie, caudate nucleus and putamen) has been abandoned. Many recent studies have improved our neuropathological knowledge of HD; many of the early groundbreaking findings of neuropathological HD research have been rediscovered and confirmed. The results of this investigation have led to the stepwise revision of the simplified pathoanatomical and pathophysiological HD concept and culminated in the implementation of the current concept of HD as a multisystem degenerative disease of the human brain. The multisystem character of the neuropathology of HD is emphasized by a brain distribution pattern of neurodegeneration (i) which apart from the striatum includes the cerebral neo-and allocortex, thalamus, pallidum, brainstem and cerebellum, and which (ii) therefore, shares more similarities with polyglutamine spinocerebellar ataxias than previously thought. © 2016 International Society of Neuropathology.
Homophila: human disease gene cognates in Drosophila
Chien, Samson; Reiter, Lawrence T.; Bier, Ethan; Gribskov, Michael
2002-01-01
Although many human genes have been associated with genetic diseases, knowing which mutations result in disease phenotypes often does not explain the etiology of a specific disease. Drosophila melanogaster provides a powerful system in which to use genetic and molecular approaches to investigate human genetic diseases. Homophila is an intergenomic resource linking the human and fly genomes in order to stimulate functional genomic investigations in Drosophila that address questions about genetic disease in humans. Homophila provides a comprehensive linkage between the disease genes compiled in Online Mendelian Inheritance in Man (OMIM) and the complete Drosophila genomic sequence. Homophila is a relational database that allows searching based on human disease descriptions, OMIM number, human or fly gene names, and sequence similarity, and can be accessed at http://homophila.sdsc.edu. PMID:11752278
Animal Models of Ebolavirus Infection
Claire, Marisa C St; Ragland, Dan R; Bollinger, Laura; Jahrling, Peter B
2017-01-01
Ebola virus is a highly pathogenic member of the family Filoviridae that causes a severe hemorrhagic disease in humans and NHP. The 2013–2016 West African outbreak has increased interest in the development and refinement of animal models of Ebola virus disease. These models are used to test countermeasures and vaccines, gain scientific insights into the mechanisms of disease progression and transmission, and study key correlates of immunology. Ebola virus is classified as a BSL4 pathogen and Category A agent, for which the United States government requires preparedness in case of bioterrorism. Rodents, such as Syrian golden hamsters (Mesocricetus auratus), mice (Mus musculus), and guinea pigs (Cavia porcellus), are the most common research species. However, NHP, especially macaques, are favored for Ebola virus disease research due to similarities with humans regarding the pathogenesis, clinical presentation, laboratory findings, and causes of fatality. To satisfy the regulatory requirements for approval of countermeasures against high-consequence pathogens, the FDA instituted the Animal Rule, which permits efficacy studies in animal models in place of human clinical data when such studies are not feasible or ethical. This review provides a comprehensive summary of various animal models and their use in Ebola virus disease research. PMID:28662754
Randles, Lucy G; Dawes, Gwen J S; Wensley, Beth G; Steward, Annette; Nickson, Adrian A; Clarke, Jane
2013-01-01
Studying the effects of pathogenic mutations is more complex in multidomain proteins when compared with single domains: mutations occurring at domain boundaries may have a large effect on a neighbouring domain that will not be detected in a single-domain system. To demonstrate this, we present a study that utilizes well-characterized model protein domains from human spectrin to investigate the effect of disease-and non-disease-causing single point mutations occurring at the boundaries of human spectrin repeats. Our results show that mutations in the single domains have no clear correlation with stability and disease; however, when studied in a tandem model system, the disease-causing mutations are shown to disrupt stabilizing interactions that exist between domains. This results in a much larger decrease in stability than would otherwise have been predicted, and demonstrates the importance of studying such mutations in the correct protein context. PMID:23241237
Variation in recombination rate may bias human genetic disease mapping studies.
Boyle, A Susannah; Noor, Mohamed A F
2004-11-01
The availability of the human genome sequence and variability information (as from the International HapMap project) will enhance our ability to map genetic disorders and choose targets for therapeutic intervention. However, several factors, such as regional variation in recombination rate, can bias conclusions from genetic mapping studies. Here, we examine the impact of regional variation in recombination rate across the human genome. Through computer simulations and literature surveys, we conclude that genetic disorders have been mapped to regions of low recombination more often than expected if such diseases were randomly distributed across the genome. This concentration in low recombination regions may be an artifact, and disorders appearing to be caused by a few genes of large effect may be polygenic. Future genetic mapping studies should be conscious of this potential complication by noting the regional recombination rate of regions implicated in diseases.
Silkworm: A Promising Model Organism in Life Science.
Meng, Xu; Zhu, Feifei; Chen, Keping
2017-09-01
As an important economic insect, silkworm Bombyx mori (L.) (Lepidoptera: Bombycidae) has numerous advantages in life science, such as low breeding cost, large progeny size, short generation time, and clear genetic background. Additionally, there are rich genetic resources associated with silkworms. The completion of the silkworm genome has further accelerated it to be a modern model organism in life science. Genomic studies showed that some silkworm genes are highly homologous to certain genes related to human hereditary disease and, therefore, are a candidate model for studying human disease. In this article, we provided a review of silkworm as an important model in various research areas, including human disease, screening of antimicrobial agents, environmental safety monitoring, and antitumor studies. In addition, the application potentiality of silkworm model in life sciences was discussed. © The Author 2017. Published by Oxford University Press on behalf of Entomological Society of America.
Human pluripotent stem cells in modeling human disorders: the case of fragile X syndrome.
Vershkov, Dan; Benvenisty, Nissim
2017-01-01
Human pluripotent stem cells (PSCs) generated from affected blastocysts or from patient-derived somatic cells are an emerging platform for disease modeling and drug discovery. Fragile X syndrome (FXS), the leading cause of inherited intellectual disability, was one of the first disorders modeled in both embryonic stem cells and induced PCSs and can serve as an exemplary case for the utilization of human PSCs in the study of human diseases. Over the past decade, FXS-PSCs have been used to address the fundamental questions regarding the pathophysiology of FXS. In this review we summarize the methodologies for generation of FXS-PSCs, discuss their advantages and disadvantages compared with existing modeling systems and describe their utilization in the study of FXS pathogenesis and in the development of targeted treatment.
Morris, Alison; Paulson, Joseph N; Talukder, Hisham; Tipton, Laura; Kling, Heather; Cui, Lijia; Fitch, Adam; Pop, Mihai; Norris, Karen A; Ghedin, Elodie
2016-07-08
Longitudinal studies of the lung microbiome are challenging due to the invasive nature of sample collection. In addition, studies of the lung microbiome in human disease are usually performed after disease onset, limiting the ability to determine early events in the lung. We used a non-human primate model to assess lung microbiome alterations over time in response to an HIV-like immunosuppression and determined impact of the lung microbiome on development of obstructive lung disease. Cynomolgous macaques were infected with the SIV-HIV chimeric virus SHIV89.6P. Bronchoalveolar lavage fluid samples were collected pre-infection and every 4 weeks for 53 weeks post-infection. The microbiota was characterized at each time point by 16S ribosomal RNA (rRNA) sequencing. We observed individual variation in the composition of the lung microbiota with a proportion of the macaques having Tropheryma whipplei as the dominant organism in their lungs. Bacterial communities varied over time both within and between animals, but there did not appear to be a systematic alteration due to SHIV infection. Development of obstructive lung disease in the SHIV-infected animals was characterized by a relative increase in abundance of oral anaerobes. Network analysis further identified a difference in community composition that accompanied the development of obstructive disease with negative correlations between members of the obstructed and non-obstructed groups. This emphasizes how species shifts can impact multiple other species, potentially resulting in disease. This study is the first to investigate the dynamics of the lung microbiota over time and in response to immunosuppression in a non-human primate model. The persistence of oral bacteria in the lung and their association with obstruction suggest a potential role in pathogenesis. The lung microbiome in the non-human primate is a valuable tool for examining the impact of the lung microbiome in human health and disease.
Yamamoto, Toshiyuki; Ito, Ryotaro; Brooks, Jenna M.; Guzman-Lepe, Jorge; Galambos, Csaba; Fong, Jason V.; Deutsch, Melvin; Quader, Mubina A.; Yamanouchi, Kosho; Kabarriti, Rafi; Mehta, Keyur; Soto-Gutierrez, Alejandro; Roy-Chowdhury, Jayanta; Locker, Joseph; Abe, Michio; Enke, Charles A.; Baranowska-Kortylewicz, Janina; Solberg, Timothy D.; Guha, Chandan; Fox, Ira J.
2014-01-01
Background Human liver has an unusual sensitivity to radiation that limits its use in cancer therapy or in preconditioning for hepatocyte transplantation. Since the characteristic venocclusive lesions of radiation-induced liver disease do not occur in rodents, there has been no experimental model to investigate the limits of safe radiation therapy or explore the pathogenesis of hepatic venocclusive disease. Methods We performed a dose escalation study in a primate, the cynomolgus monkey, using hypofractionated stereotactic body radiotherapy in 13 animals. Results At doses ≥40Gy, animals developed a systemic syndrome resembling human radiation-induced liver disease, consisting of decreased albumin, elevated alkaline phosphatase, loss of appetite, ascites, and normal bilirubin. Higher radiation doses were lethal, causing severe disease that required euthanasia approximately 10 weeks after radiation. Even at lower doses where radiation-induced liver disease was mild or non-existent, latent and significant injury to hepatocytes was demonstrated by asialoglycoprotein-mediated functional imaging. These monkeys developed hepatic failure with encephalopathy when they received parenteral nutrition containing high concentrations of glucose. Histologically, livers showed central obstruction via an unusual intimal swelling that progressed to central fibrosis. Conclusions The cynomolgus monkey, as the first animal model of human venocclusive radiation-induced liver disease, provides a resource for characterizing the early changes and pathogenesis of venocclusion, for establishing nonlethal therapeutic dosages, and for examining experimental therapies to minimize radiation injury. PMID:24315566
Zebrafish: an important tool for liver disease research.
Goessling, Wolfram; Sadler, Kirsten C
2015-11-01
As the incidence of hepatobiliary diseases increases, we must improve our understanding of the molecular, cellular, and physiological factors that contribute to the pathogenesis of liver disease. Animal models help us identify disease mechanisms that might be targeted therapeutically. Zebrafish (Danio rerio) have traditionally been used to study embryonic development but are also important to the study of liver disease. Zebrafish embryos develop rapidly; all of their digestive organs are mature in larvae by 5 days of age. At this stage, they can develop hepatobiliary diseases caused by developmental defects or toxin- or ethanol-induced injury and manifest premalignant changes within weeks. Zebrafish are similar to humans in hepatic cellular composition, function, signaling, and response to injury as well as the cellular processes that mediate liver diseases. Genes are highly conserved between humans and zebrafish, making them a useful system to study the basic mechanisms of liver disease. We can perform genetic screens to identify novel genes involved in specific disease processes and chemical screens to identify pathways and compounds that act on specific processes. We review how studies of zebrafish have advanced our understanding of inherited and acquired liver diseases as well as liver cancer and regeneration. Copyright © 2015 AGA Institute. Published by Elsevier Inc. All rights reserved.
Ford, Dayton J; Ropka, Stacie L; Collins, George H; Jubelt, Burk
2002-09-01
Human paralytic poliomyelitis results from the destruction of spinal cord anterior horn motor neurons by human poliovirus (PV). CNS disease pathology similar to human poliomyelitis has been observed in experimentally infected chimpanzees, monkeys and wild-type mice. In this study we present a detailed examination of the clinical and histopathological features in the wild-type mouse after intracranial (i.c.) and novel intramuscular (i.m.) injection of poliovirus. Either route of poliovirus administration results in a clinical disease characterized predominately by flaccid paralysis. The observed histopathological features are compared with the histopathology reported for human paralytic poliomyelitis, experimentally infected chimpanzees, monkeys and transgenic mice expressing the human poliovirus receptor (hPVR). The observation of flaccid paralysis and anterior horn motor neuron destruction mirrors what is observed in human paralytic poliomyelitis. Our results suggest that the neuropathology observed in the wild-type mouse model is similar to what has been observed in both the human disease and in other experimental animal models, with the possible exception of the transgenic mouse model. The observed neuropathology of the wild-type mouse model more closely reflects what has been observed in human poliomyelitis, as well as in experimentally infected chimpanzees and monkeys, than does the hPVR transgenic mouse model. The previously reported poliovirus-induced white matter demyelinating disease was not observed.
Proteomic Analysis of the Human Olfactory Bulb.
Dammalli, Manjunath; Dey, Gourav; Madugundu, Anil K; Kumar, Manish; Rodrigues, Benvil; Gowda, Harsha; Siddaiah, Bychapur Gowrishankar; Mahadevan, Anita; Shankar, Susarla Krishna; Prasad, Thottethodi Subrahmanya Keshava
2017-08-01
The importance of olfaction to human health and disease is often underappreciated. Olfactory dysfunction has been reported in association with a host of common complex diseases, including neurological diseases such as Alzheimer's disease and Parkinson's disease. For health, olfaction or the sense of smell is also important for most mammals, for optimal engagement with their environment. Indeed, animals have developed sophisticated olfactory systems to detect and interpret the rich information presented to them to assist in day-to-day activities such as locating food sources, differentiating food from poisons, identifying mates, promoting reproduction, avoiding predators, and averting death. In this context, the olfactory bulb is a vital component of the olfactory system receiving sensory information from the axons of the olfactory receptor neurons located in the nasal cavity and the first place that processes the olfactory information. We report in this study original observations on the human olfactory bulb proteome in healthy subjects, using a high-resolution mass spectrometry-based proteomic approach. We identified 7750 nonredundant proteins from human olfactory bulbs. Bioinformatics analysis of these proteins showed their involvement in biological processes associated with signal transduction, metabolism, transport, and olfaction. These new observations provide a crucial baseline molecular profile of the human olfactory bulb proteome, and should assist the future discovery of biomarker proteins and novel diagnostics associated with diseases characterized by olfactory dysfunction.
Agrawal, Sonal; Berggren, Kiersten L.; Marks, Eileen; Fox, Jonathan H.
2017-01-01
Abstract Context Accumulation of brain iron is linked to aging and protein-misfolding neurodegenerative diseases. High iron intake may influence important brain health outcomes in later life. Objective The aim of this systematic review was to examine evidence from animal and human studies of the effects of high iron intake or peripheral iron status on adult cognition, brain aging, and neurodegeneration. Data Sources MEDLINE, Scopus, CAB Abstracts, the Cochrane Central Register of Clinical Trials, and OpenGrey databases were searched. Study Selection Studies investigating the effect of elevated iron intake at all postnatal life stages in mammalian models and humans on measures of adult brain health were included. Data Extraction Data were extracted and evaluated by two authors independently, with discrepancies resolved by discussion. Neurodegenerative disease diagnosis and/or behavioral/cognitive, biochemical, and brain morphologic findings were used to study the effects of iron intake or peripheral iron status on brain health. Risk of bias was assessed for animal and human studies. PRISMA guidelines for reporting systematic reviews were followed. Results Thirty-four preclinical and 14 clinical studies were identified from database searches. Thirty-three preclinical studies provided evidence supporting an adverse effect of nutritionally relevant high iron intake in neonates on brain-health-related outcomes in adults. Human studies varied considerably in design, quality, and findings; none investigated the effects of high iron intake in neonates/infants. Conclusions Human studies are needed to verify whether dietary iron intake levels used in neonates/infants to prevent iron deficiency have effects on brain aging and neurodegenerative disease outcomes. PMID:28505363
Wang, Zhi-Bo; Zhang, Xiaoqing; Li, Xue-Jun
2013-01-01
Establishing human cell models of spinal muscular atrophy (SMA) to mimic motor neuron-specific phenotypes holds the key to understanding the pathogenesis of this devastating disease. Here, we developed a closely representative cell model of SMA by knocking down the disease-determining gene, survival motor neuron (SMN), in human embryonic stem cells (hESCs). Our study with this cell model demonstrated that knocking down of SMN does not interfere with neural induction or the initial specification of spinal motor neurons. Notably, the axonal outgrowth of spinal motor neurons was significantly impaired and these disease-mimicking neurons subsequently degenerated. Furthermore, these disease phenotypes were caused by SMN-full length (SMN-FL) but not SMN-Δ7 (lacking exon 7) knockdown, and were specific to spinal motor neurons. Restoring the expression of SMN-FL completely ameliorated all of the disease phenotypes, including specific axonal defects and motor neuron loss. Finally, knockdown of SMN-FL led to excessive mitochondrial oxidative stress in human motor neuron progenitors. The involvement of oxidative stress in the degeneration of spinal motor neurons in the SMA cell model was further confirmed by the administration of N-acetylcysteine, a potent antioxidant, which prevented disease-related apoptosis and subsequent motor neuron death. Thus, we report here the successful establishment of an hESC-based SMA model, which exhibits disease gene isoform specificity, cell type specificity, and phenotype reversibility. Our model provides a unique paradigm for studying how motor neurons specifically degenerate and highlights the potential importance of antioxidants for the treatment of SMA. PMID:23208423
Brown, Emma S; Allsopp, Philip J; Magee, Pamela J; Gill, Chris I R; Nitecki, Sonja; Strain, Conall R; McSorley, Emeir M
2014-03-01
Seaweeds may have an important role in modulating chronic disease. Rich in unique bioactive compounds not present in terrestrial food sources, including different proteins (lectins, phycobiliproteins, peptides, and amino acids), polyphenols, and polysaccharides, seaweeds are a novel source of compounds with potential to be exploited in human health applications. Purported benefits include antiviral, anticancer, and anticoagulant properties as well as the ability to modulate gut health and risk factors for obesity and diabetes. Though the majority of studies have been performed in cell and animal models, there is evidence of the beneficial effect of seaweed and seaweed components on markers of human health and disease status. This review is the first to critically evaluate these human studies, aiming to draw attention to gaps in current knowledge, which will aid the planning and implementation of future studies.
Surface tension in human pathophysiology and its application as a medical diagnostic tool
Fathi-Azarbayjani, Anahita; Jouyban, Abolghasem
2015-01-01
Introduction: Pathological features of disease appear to be quite different. Despite this diversity, the common feature of various disorders underlies physicochemical and biochemical factors such as surface tension. Human biological fluids comprise various proteins and phospholipids which are capable of adsorption at fluid interfaces and play a vital role in the physiological function of human organs. Surface tension of body fluids correlates directly to the development of pathological states. Methods: In this review, the variety of human diseases mediated by the surface tension changes of biological phenomena and the failure of biological fluids to remain in their native state are discussed. Results: Dynamic surface tension measurements of human biological fluids depend on various parameters such as sex, age and changes during pregnancy or certain disease. It is expected that studies of surface tension behavior of human biological fluids will provide additional information and might become useful in medical practice. Theoretical background on surface tension measurement and surface tension values of reference fluids obtained from healthy and sick patients are depicted. Conclusion: It is well accepted that no single biomarker will be effective in clinical diagnosis. The surface tension measurement combined with routine lab tests may be a novel non-invasive method which can not only facilitate the discovery of diagnostic models for various diseases and its severity, but also be a useful tool for monitoring treatment efficacy. We therefore expect that studies of surface tension behavior of human biological fluids will provide additional useful information in medical practice. PMID:25901295
The gut microbiota and obesity: from correlation to causality.
Zhao, Liping
2013-09-01
The gut microbiota has been linked with chronic diseases such as obesity in humans. However, the demonstration of causality between constituents of the microbiota and specific diseases remains an important challenge in the field. In this Opinion article, using Koch's postulates as a conceptual framework, I explore the chain of causation from alterations in the gut microbiota, particularly of the endotoxin-producing members, to the development of obesity in both rodents and humans. I then propose a strategy for identifying the causative agents of obesity in the human microbiota through a combination of microbiome-wide association studies, mechanistic analysis of host responses and the reproduction of diseases in gnotobiotic animals.
Miller, Ryan S.; Sweeney, Steven J.; Slootmaker, Chris; Grear, Daniel A.; DiSalvo, Paul A.; Kiser, Deborah; Shwiff, Stephanie A.
2017-01-01
Cross-species disease transmission between wildlife, domestic animals and humans is an increasing threat to public and veterinary health. Wild pigs are increasingly a potential veterinary and public health threat. Here we investigate 84 pathogens and the host species most at risk for transmission with wild pigs using a network approach. We assess the risk to agricultural and human health by evaluating the status of these pathogens and the co-occurrence of wild pigs, agriculture and humans. We identified 34 (87%) OIE listed swine pathogens that cause clinical disease in livestock, poultry, wildlife, and humans. On average 73% of bacterial, 39% of viral, and 63% of parasitic pathogens caused clinical disease in other species. Non-porcine livestock in the family Bovidae shared the most pathogens with swine (82%). Only 49% of currently listed OIE domestic swine diseases had published wild pig surveillance studies. The co-occurrence of wild pigs and farms increased annually at a rate of 1.2% with as much as 57% of all farms and 77% of all agricultural animals co-occurring with wild pigs. The increasing co-occurrence of wild pigs with livestock and humans along with the large number of pathogens shared is a growing risk for cross-species transmission.
Miller, Ryan S; Sweeney, Steven J; Slootmaker, Chris; Grear, Daniel A; Di Salvo, Paul A; Kiser, Deborah; Shwiff, Stephanie A
2017-08-10
Cross-species disease transmission between wildlife, domestic animals and humans is an increasing threat to public and veterinary health. Wild pigs are increasingly a potential veterinary and public health threat. Here we investigate 84 pathogens and the host species most at risk for transmission with wild pigs using a network approach. We assess the risk to agricultural and human health by evaluating the status of these pathogens and the co-occurrence of wild pigs, agriculture and humans. We identified 34 (87%) OIE listed swine pathogens that cause clinical disease in livestock, poultry, wildlife, and humans. On average 73% of bacterial, 39% of viral, and 63% of parasitic pathogens caused clinical disease in other species. Non-porcine livestock in the family Bovidae shared the most pathogens with swine (82%). Only 49% of currently listed OIE domestic swine diseases had published wild pig surveillance studies. The co-occurrence of wild pigs and farms increased annually at a rate of 1.2% with as much as 57% of all farms and 77% of all agricultural animals co-occurring with wild pigs. The increasing co-occurrence of wild pigs with livestock and humans along with the large number of pathogens shared is a growing risk for cross-species transmission.
Food webs in the human body: linking ecological theory to viral dynamics.
Murall, Carmen Lía; McCann, Kevin S; Bauch, Chris T
2012-01-01
The dynamics of in-host infections are central to predicting the progression of natural infections and the effectiveness of drugs or vaccines, however, they are not well understood. Here, we apply food web theory to in-host disease networks of the human body that are structured similarly to food web models that treat both predation and competition simultaneously. We show that in-host trade-offs, an under-studied aspect of disease ecology, are fundamental to understanding the outcomes of competing viral strains under differential immune responses. Further, and importantly, our analysis shows that the outcome of competition between virulent and non-virulent strains can be highly contingent on the abiotic conditions prevailing in the human body. These results suggest the alarming idea that even subtle behavioral changes that alter the human body (e.g. weight gain, smoking) may switch the environmental conditions in a manner that suddenly allows a virulent strain to dominate and replace less virulent strains. These ecological results therefore cast new light on the control of disease in the human body, and highlight the importance of longitudinal empirical studies across host variation gradients, as well as, of studies focused on delineating life history trade-offs within hosts.
Gene expression regulation by upstream open reading frames and human disease.
Barbosa, Cristina; Peixeiro, Isabel; Romão, Luísa
2013-01-01
Upstream open reading frames (uORFs) are major gene expression regulatory elements. In many eukaryotic mRNAs, one or more uORFs precede the initiation codon of the main coding region. Indeed, several studies have revealed that almost half of human transcripts present uORFs. Very interesting examples have shown that these uORFs can impact gene expression of the downstream main ORF by triggering mRNA decay or by regulating translation. Also, evidence from recent genetic and bioinformatic studies implicates disturbed uORF-mediated translational control in the etiology of many human diseases, including malignancies, metabolic or neurologic disorders, and inherited syndromes. In this review, we will briefly present the mechanisms through which uORFs regulate gene expression and how they can impact on the organism's response to different cell stress conditions. Then, we will emphasize the importance of these structures by illustrating, with specific examples, how disturbed uORF-mediated translational control can be involved in the etiology of human diseases, giving special importance to genotype-phenotype correlations. Identifying and studying more cases of uORF-altering mutations will help us to understand and establish genotype-phenotype associations, leading to advancements in diagnosis, prognosis, and treatment of many human disorders.
Food Webs in the Human Body: Linking Ecological Theory to Viral Dynamics
Murall, Carmen Lía; McCann, Kevin S.; Bauch, Chris T.
2012-01-01
The dynamics of in-host infections are central to predicting the progression of natural infections and the effectiveness of drugs or vaccines, however, they are not well understood. Here, we apply food web theory to in-host disease networks of the human body that are structured similarly to food web models that treat both predation and competition simultaneously. We show that in-host trade-offs, an under-studied aspect of disease ecology, are fundamental to understanding the outcomes of competing viral strains under differential immune responses. Further, and importantly, our analysis shows that the outcome of competition between virulent and non-virulent strains can be highly contingent on the abiotic conditions prevailing in the human body. These results suggest the alarming idea that even subtle behavioral changes that alter the human body (e.g. weight gain, smoking) may switch the environmental conditions in a manner that suddenly allows a virulent strain to dominate and replace less virulent strains. These ecological results therefore cast new light on the control of disease in the human body, and highlight the importance of longitudinal empirical studies across host variation gradients, as well as, of studies focused on delineating life history trade-offs within hosts. PMID:23155409
Review article: the human intestinal virome in health and disease.
Carding, S R; Davis, N; Hoyles, L
2017-11-01
The human virome consists of animal-cell viruses causing transient infections, bacteriophage (phage) predators of bacteria and archaea, endogenous retroviruses and viruses causing persistent and latent infections. High-throughput, inexpensive, sensitive sequencing methods and metagenomics now make it possible to study the contribution dsDNA, ssDNA and RNA virus-like particles make to the human virome, and in particular the intestinal virome. To review and evaluate the pioneering studies that have attempted to characterise the human virome and generated an increased interest in understanding how the intestinal virome might contribute to maintaining health, and the pathogenesis of chronic diseases. Relevant virome-related articles were selected for review following extensive language- and date-unrestricted, electronic searches of the literature. The human intestinal virome is personalised and stable, and dominated by phages. It develops soon after birth in parallel with prokaryotic communities of the microbiota, becoming established during the first few years of life. By infecting specific populations of bacteria, phages can alter microbiota structure by killing host cells or altering their phenotype, enabling phages to contribute to maintaining intestinal homeostasis or microbial imbalance (dysbiosis), and the development of chronic infectious and autoimmune diseases including HIV infection and Crohn's disease, respectively. Our understanding of the intestinal virome is fragmented and requires standardised methods for virus isolation and sequencing to provide a more complete picture of the virome, which is key to explaining the basis of virome-disease associations, and how enteric viruses can contribute to disease aetiologies and be rationalised as targets for interventions. © 2017 The Authors. Alimentary Pharmacology & Therapeutics published by John Wiley & Sons Ltd.
Zebrafish models for the functional genomics of neurogenetic disorders.
Kabashi, Edor; Brustein, Edna; Champagne, Nathalie; Drapeau, Pierre
2011-03-01
In this review, we consider recent work using zebrafish to validate and study the functional consequences of mutations of human genes implicated in a broad range of degenerative and developmental disorders of the brain and spinal cord. Also we present technical considerations for those wishing to study their own genes of interest by taking advantage of this easily manipulated and clinically relevant model organism. Zebrafish permit mutational analyses of genetic function (gain or loss of function) and the rapid validation of human variants as pathological mutations. In particular, neural degeneration can be characterized at genetic, cellular, functional, and behavioral levels. Zebrafish have been used to knock down or express mutations in zebrafish homologs of human genes and to directly express human genes bearing mutations related to neurodegenerative disorders such as spinal muscular atrophy, ataxia, hereditary spastic paraplegia, amyotrophic lateral sclerosis (ALS), epilepsy, Huntington's disease, Parkinson's disease, fronto-temporal dementia, and Alzheimer's disease. More recently, we have been using zebrafish to validate mutations of synaptic genes discovered by large-scale genomic approaches in developmental disorders such as autism, schizophrenia, and non-syndromic mental retardation. Advances in zebrafish genetics such as multigenic analyses and chemical genetics now offer a unique potential for disease research. Thus, zebrafish hold much promise for advancing the functional genomics of human diseases, the understanding of the genetics and cell biology of degenerative and developmental disorders, and the discovery of therapeutics. This article is part of a Special Issue entitled Zebrafish Models of Neurological Diseases. Copyright © 2010 Elsevier B.V. All rights reserved.
Chen, Xing; Niu, Ya-Wei; Wang, Guang-Hui; Yan, Gui-Ying
2017-12-12
Recently, as the research of microRNA (miRNA) continues, there are plenty of experimental evidences indicating that miRNA could be associated with various human complex diseases development and progression. Hence, it is necessary and urgent to pay more attentions to the relevant study of predicting diseases associated miRNAs, which may be helpful for effective prevention, diagnosis and treatment of human diseases. Especially, constructing computational methods to predict potential miRNA-disease associations is worthy of more studies because of the feasibility and effectivity. In this work, we developed a novel computational model of multiple kernels learning-based Kronecker regularized least squares for MiRNA-disease association prediction (MKRMDA), which could reveal potential miRNA-disease associations by automatically optimizing the combination of multiple kernels for disease and miRNA. MKRMDA obtained AUCs of 0.9040 and 0.8446 in global and local leave-one-out cross validation, respectively. Meanwhile, MKRMDA achieved average AUCs of 0.8894 ± 0.0015 in fivefold cross validation. Furthermore, we conducted three different kinds of case studies on some important human cancers for further performance evaluation. In the case studies of colonic cancer, esophageal cancer and lymphoma based on known miRNA-disease associations in HMDDv2.0 database, 76, 94 and 88% of the corresponding top 50 predicted miRNAs were confirmed by experimental reports, respectively. In another two kinds of case studies for new diseases without any known associated miRNAs and diseases only with known associations in HMDDv1.0 database, the verified ratios of two different cancers were 88 and 94%, respectively. All the results mentioned above adequately showed the reliable prediction ability of MKRMDA. We anticipated that MKRMDA could serve to facilitate further developments in the field and the follow-up investigations by biomedical researchers.
Advances in Swine Biomedical Model Genomics
Lunney, Joan K.
2007-01-01
This review is a short update on the diversity of swine biomedical models and the importance of genomics in their continued development. The swine has been used as a major mammalian model for human studies because of the similarity in size and physiology, and in organ development and disease progression. The pig model allows for deliberately timed studies, imaging of internal vessels and organs using standard human technologies, and collection of repeated peripheral samples and, at kill, detailed mucosal tissues. The ability to use pigs from the same litter, or cloned or transgenic pigs, facilitates comparative analyses and genetic mapping. The availability of numerous well defined cell lines, representing a broad range of tissues, further facilitates testing of gene expression, drug susceptibility, etc. Thus the pig is an excellent biomedical model for humans. For genomic applications it is an asset that the pig genome has high sequence and chromosome structure homology with humans. With the swine genome sequence now well advanced there are improving genetic and proteomic tools for these comparative analyses. The review will discuss some of the genomic approaches used to probe these models. The review will highlight genomic studies of melanoma and of infectious disease resistance, discussing issues to consider in designing such studies. It will end with a short discussion of the potential for genomic approaches to develop new alternatives for control of the most economically important disease of pigs, porcine reproductive and respiratory syndrome (PRRS), and the potential for applying knowledge gained with this virus for human viral infectious disease studies. PMID:17384736
Narula, Shifa; Tandon, Simran; Singh, Shrawan Kumar; Tandon, Chanderdeep
2016-11-01
Kidney stone formation is a highly prevalent disease, affecting 8-10% of the human population worldwide. Proteins are the major constituents of human kidney stone's organic matrix and considered to play critical role in the pathogenesis of disease but their mechanism of modulation still needs to be explicated. Therefore, in this study we investigated the effect of human kidney stone matrix proteins on the calcium oxalate monohydrate (COM) mediated cellular injury. The renal epithelial cells (MDCK) were exposed to 200μg/ml COM crystals to induce injury. The effect of proteins isolated from human kidney stone was studied on COM injured cells. The alterations in cell-crystal interactions were examined by phase contrast, polarizing, fluorescence and scanning electron microscopy. Moreover, its effect on the extent of COM induced cell injury, was quantified by flow cytometric analysis. Our study indicated the antilithiatic potential of human kidney stone proteins on COM injured MDCK cells. Flow cytometric analysis and fluorescence imaging ascertained that matrix proteins decreased the extent of apoptotic injury caused by COM crystals on MDCK cells. Moreover, the electron microscopic studies of MDCK cells revealed that matrix proteins caused significant dissolution of COM crystals, indicating cytoprotection against the impact of calcium oxalate injury. The present study gives insights into the mechanism implied by urinary proteins to restrain the pathogenesis of kidney stone disease. This will provide a better understanding of the formation of kidney stones which can be useful for the proper management of the disease. Copyright © 2016 Elsevier Inc. All rights reserved.
Musunuru, Kiran; Sheikh, Farah; Gupta, Rajat M; Houser, Steven R; Maher, Kevin O; Milan, David J; Terzic, Andre; Wu, Joseph C
2018-01-01
Induced pluripotent stem cells (iPSCs) offer an unprece-dented opportunity to study human physiology and disease at the cellular level. They also have the potential to be leveraged in the practice of precision medicine, for example, personalized drug testing. This statement comprehensively describes the provenance of iPSC lines, their use for cardiovascular disease modeling, their use for precision medicine, and strategies through which to promote their wider use for biomedical applications. Human iPSCs exhibit properties that render them uniquely qualified as model systems for studying human diseases: they are of human origin, which means they carry human genomes; they are pluripotent, which means that in principle, they can be differentiated into any of the human body's somatic cell types; and they are stem cells, which means they can be expanded from a single cell into millions or even billions of cell progeny. iPSCs offer the opportunity to study cells that are genetically matched to individual patients, and genome-editing tools allow introduction or correction of genetic variants. Initial progress has been made in using iPSCs to better understand cardiomyopathies, rhythm disorders, valvular and vascular disorders, and metabolic risk factors for ischemic heart disease. This promising work is still in its infancy. Similarly, iPSCs are only just starting to be used to identify the optimal medications to be used in patients from whom the cells were derived. This statement is intended to (1) summarize the state of the science with respect to the use of iPSCs for modeling of cardiovascular traits and disorders and for therapeutic screening; (2) identify opportunities and challenges in the use of iPSCs for disease modeling and precision medicine; and (3) outline strategies that will facilitate the use of iPSCs for biomedical applications. This statement is not intended to address the use of stem cells as regenerative therapy, such as transplantation into the body to treat ischemic heart disease or heart failure. © 2018 American Heart Association, Inc.
Cobbold, S; Holmes, M; Willett, B
1994-08-01
There is now a wide range of immunological reagents that can be used in the diagnosis and treatment of diseases in the companion animals (dogs, cats and horses). Many of these diseases are the veterinary equivalents of human conditions, and may therefore provide good models to study basic pathogenic mechanisms.
Evaluation of Buccal Cell Samples for Studies of Oral Microbiota.
Yu, Guoqin; Phillips, Steve; Gail, Mitchell H; Goedert, James J; Humphrys, Michael; Ravel, Jacques; Ren, Yanfang; Caporaso, Neil E
2017-02-01
The human microbiota is postulated to affect cancer risk, but collecting microbiota specimens with prospective follow-up for diseases will take time. Buccal cell samples have been obtained from mouthwash for the study of human genomic DNA in many cohort studies. Here, we evaluate the feasibility of using buccal cell samples to examine associations of human microbiota and disease risk. We obtained buccal cells from mouthwash in 41 healthy participants using a protocol that is widely employed to obtain buccal cells for the study of human DNA. We compared oral microbiota from buccal cells with that from eight other oral sample types collected by following the protocols of the Human Microbiome Project. Microbiota profiles were determined by sequencing 16S rRNA gene V3-V4 region. Compared with each of the eight other oral samples, the buccal cell samples had significantly more observed species (P < 0.002) and higher alpha diversity (Shannon index, P < 0.02). The microbial communities were more similar (smaller beta diversity) among buccal cells samples than in the other samples (P < 0.001 for 12 of 16 weighted and unweighted UniFrac distance comparisons). Buccal cell microbial profiles closely resembled saliva but were distinct from dental plaque and tongue dorsum. Stored buccal cell samples in prospective cohort studies are a promising resource to study associations of oral microbiota with disease. The feasibility of using existing buccal cell collections in large prospective cohorts allows investigations of the role of oral microbiota in chronic disease etiology in large population studies possible today. Cancer Epidemiol Biomarkers Prev; 26(2); 249-53. ©2016 AACR. ©2016 American Association for Cancer Research.
EPIDEMIOLOGIC CONCEPTS FOR INTERPRETING FINDINGS IN STUDIES OF DRINKING WATER EXPOSURES
To the inexperienced, environmental epidemiology may appear to be an uncomplicated, straightforward approach to studying exposure-disease associations in human populations. The studies can provide useful information about the risks of environmental exposures that human populatio...
2013-01-01
Neurodegenerative diseases (NDs) are chronic degenerative diseases of the central nervous system (CNS), which affect 37 million people worldwide. As the lifespan increases, the NDs are the fourth leading cause of death in the developed countries and becoming increasingly prevalent in developing countries. Despite considerable research, the underlying mechanisms remain poorly understood. Although the large majority of studies do not show support for the involvement of pathogenic aetiology in classical NDs, a number of emerging studies show support for possible association of viruses with classical neurodegenerative diseases in humans. Space does not permit for extensive details to be discussed here on non-viral-induced neurodegenerative diseases in humans, as they are well described in literature. Viruses induce alterations and degenerations of neurons both directly and indirectly. Their ability to attack the host immune system, regions of nervous tissue implies that they can interfere with the same pathways involved in classical NDs in humans. Supporting this, many similarities between classical NDs and virus-mediated neurodegeneration (non-classical) have been shown at the anatomic, sub-cellular, genomic and proteomic levels suggesting that viruses can explain neurodegenerative disorders mechanistically. The main objective of this review is to provide readers a detailed snapshot of similarities viral and non-viral neurodegenerative diseases share, so that mechanistic pathways of neurodegeneration in human NDs can be clearly understood. Viruses can guide us to unveil these pathways in human NDs. This will further stimulate the birth of new concepts in the biological research, which is needed for gaining deeper insights into the treatment of human NDs and delineate mechanisms underlying neurodegeneration. PMID:23724961
Ingram, Donald K; Roth, George S; Lane, Mark A; Ottinger, Mary Ann; Zou, Sige; de Cabo, Rafael; Mattison, Julie A
2006-06-01
Based on results emerging from long-term studies of dietary restriction in rhesus monkeys, we offer our views regarding whether dietary restriction can increase longevity in humans. Because lifespan data in monkeys remain inconclusive currently, we respond that "we do not for sure". Based on the vast literature regarding the effects of healthy, low calorie diets on health and longevity in a wide range of species, including humans, and based on data emerging from monkey studies suggesting that dietary restriction improves markers of disease risk and health, we respond that "we think so." Because it is unlikely that an experimental study will ever be designed to address this question in humans, we respond that "we think we will never know for sure." We suggest that debate of this question is clearly an academic exercise; thus, we would suggest that the more compelling discussion should focus on whether basic mechanisms of DR can be discovered and if such discoveries can lead to the development of effective DR mimetics. Even if proof that DR or DR mimetics can increase longevity in humans will likely never emerge, we would suggest that endpoints regarding disease risk and disease incidence as well as maintenance of function can be examined in human clinical trials, and that these will be highly relevant for evaluating the effectiveness of such treatments.
Abel, Laurent; Fellay, Jacques; Haas, David W; Schurr, Erwin; Srikrishna, Geetha; Urbanowski, Michael; Chaturvedi, Nimisha; Srinivasan, Sudha; Johnson, Daniel H; Bishai, William R
2018-03-01
Tuberculosis is an ancient human disease, estimated to have originated and evolved over thousands of years alongside modern human populations. Despite considerable advances in disease control, tuberculosis remains one of the world's deadliest communicable diseases with 10 million incident cases and 1·8 million deaths in 2015 alone based on the annual WHO report, due to inadequate health service resources in less-developed regions of the world, and exacerbated by the HIV/AIDS pandemic and emergence of multidrug-resistant strains of Mycobacterium tuberculosis. Recent findings from studies of tuberculosis infection and of patients with Mendelian predisposition to severe tuberculosis have started to reveal human loci influencing tuberculosis outcomes. In this Review, we assess the current understanding of the contribution of host genetics to disease susceptibility and to drug treatment. Despite remarkable progress in technology, only a few associated genetic variants have so far been identified, strongly indicating the need for larger global studies that investigate both common and under-represented rare variants to develop new approaches to combat the disease. Pharmacogenomic discoveries are also likely to lead to more efficient drug design and development, and ultimately safer and more effective therapies for tuberculosis. Copyright © 2018 Elsevier Ltd. All rights reserved.
Radiosynthesis and evaluation of novel acetylcholine receptor radioligands
NASA Astrophysics Data System (ADS)
Pimlott, Sally L.
Neuroreceptor single photon emission computed tomography (SPECT) imaging provides a powerful tool for the evaluation of the function of a neurotransmitter system in normal and or disease states in the living human brain. The cholinergic system is involved in the control of a variety of complex functions including learning, memory and modulation of behaviour. Deficits in the cholinergic system have been found in a number of neurological diseases, such as Alzheimer's disease, dementia with Lewy bodies, Parkinson's disease and Epilepsy. Acetylcholine receptors (AChRs) are divided into two classes, muscarinic and nicotinic. The aim of this project was to develop two novel SPECT AChR ligands: (R,R)[123I]I-QNB, a M1 subtype selective muscarinic acetylcholine receptor (mAChR) ligand, and 5-[123I]-A-85380, a alpha4beta2 subtype selective nicotinic receptor (nAChR) ligand, for use in human SPECT imaging studies. The calculation of the binding potential of a ligand can be used to obtain quantitative information from a SPECT scan, enabling comparisons to be made between studies. Methodological issues involved in the calculation of binding potential are therefore crucial for the accuracy of results. A particularly important parameter is the amount of authentic radioligand available to cross the blood brain barrier. This was characterised in the research performed for this thesis. The radiosynthesis of two novel neuroreceptor radioligands has been optimised for use in humans. (R, R)[123I]I-QNB has been used in human studies to provide useful information on the human mAChR function in disease. Pre-clinical evaluation of 5-[123I]-A-85380 provided useful information for in vivo human studies. Both radioligands are concluded to successfully provide novel information on the function of the acetylcholine system. Methodological issues involved in the blood metabolite analysis and measurement of plasma protein binding have been investigated and discussed, with particular reference made to the factors that must be taken into account when designing these experiments. (Abstract shortened by ProQuest.).
Coccini, Teresa; Manzo, Luigi; De Simone, Uliana; Acerbi, Davide; Roda, Elisa
2012-01-01
There is strong epidemiological evidence that air pollution exposure (short- and long-term, i.e. < 24 hr to 3 weeks, and year/s) is related to exacerbation of cardiovascular and respiratory diseases. Data from toxicological and basic science/molecular studies, controlled animal and human exposures and human panel studies have demonstrated several mechanisms by which particle exposure may both trigger acute events as well as prompt the chronic development of cardiovascular diseases. These pollutant-mediated biological mechanisms are supporting the potential use of haematic (inflammation/coagulation/oxidative stress) markers of effects in cardio-respiratory diseases. Various examples from in vitro, in vivo and epidemiological investigations are reported, together with some novel technologies that should provide with new tools for research in these diseases and improve the knowledge about any linkage of local and systemic inflammation and clinical features of these diseases (in particular COPD), including lung function, exacerbations, disease progression, and mortality.
Early life programming and the risk of non-alcoholic fatty liver disease.
Lynch, C; Chan, C S; Drake, A J
2017-06-01
Non-alcoholic fatty liver disease (NAFLD) is associated with obesity, insulin resistance, type 2 diabetes and cardiovascular disease and can be considered the hepatic manifestation of the metabolic syndrome. NAFLD represents a spectrum of disease, from the relatively benign simple steatosis to the more serious non-alcoholic steatohepatitis, which can progress to liver cirrhosis, hepatocellular carcinoma and end-stage liver failure, necessitating liver transplantation. Although the increasing prevalence of NAFLD in developed countries has substantial implications for public health, many of the precise mechanisms accounting for the development and progression of NAFLD are unclear. The environment in early life is an important determinant of cardiovascular disease risk in later life and studies suggest this also extends to NAFLD. Here we review data from animal models and human studies which suggest that fetal and early life exposure to maternal under- and overnutrition, excess glucocorticoids and environmental pollutants may confer an increased susceptibility to NAFLD development and progression in offspring and that such effects may be sex-specific. We also consider studies aimed at identifying potential dietary and pharmacological interventions aimed at reducing this risk. We suggest that further human epidemiological studies are needed to ensure that data from animal models are relevant to human health.
[Human milk, immune responses and health effects].
Løland, Beate Fossum; Baerug, Anne B; Nylander, Gro
2007-09-20
Besides providing optimal nutrition to infants, human milk contains a multitude of immunological components. These components are important for protection against infections and also support the development and maturation of the infant's own immune system. This review focuses on the function of some classical immunocomponents of human milk. Relevant studies are presented that describe health benefits of human milk for the child and of lactation for the mother. Relevant articles were found mainly by searching PubMed. Humoral and cellular components of human milk confer protection against infections in the respiratory--, gastrointestinal--and urinary tract. Human milk also protects premature children from neonatal sepsis and necrotizing enterocolitis. There is evidence that human milk may confer long-term benefits such as lower risk of certain autoimmune diseases, inflammatory bowel disease and probably some malignancies. Human milk possibly affects components of the metabolic syndrome. Recent studies demonstrate long-term health benefits of lactation also for the mother. A reduced incidence of breast cancer is best documented. An increasing number of studies indicate protection against ovarian cancer, rheumatoid arthritis and type II diabetes.
Using a Virtual Population to Authentically Teach Epidemiology and Biostatistics
ERIC Educational Resources Information Center
Dunn, Peter K.; Donnison, Sharn; Cole, Rachel; Bulmer, Michael
2017-01-01
Epidemiology is the study of the distribution of disease in human populations. This means that authentically teaching primary data collection in epidemiology is difficult as students cannot easily access suitable human populations. Using an action research methodology, this paper studied the use of a virtual human population (called "The…
Costa, Lucio G; Cole, Toby B; Coburn, Jacki; Chang, Yu-Chi; Dao, Khoi; Roque, Pamela
2014-01-01
In addition to increased morbidity and mortality caused by respiratory and cardiovascular diseases, air pollution may also negatively affect the brain and contribute to central nervous system diseases. Air pollution is a mixture comprised of several components, of which ultrafine particulate matter (UFPM; <100 nm) is of much concern, as these particles can enter the circulation and distribute to most organs, including the brain. A major constituent of ambient UFPM is represented by traffic-related air pollution, mostly ascribed to diesel exhaust (DE). Human epidemiological studies and controlled animal studies have shown that exposure to air pollution may lead to neurotoxicity. In addition to a variety of behavioral abnormalities, two prominent effects caused by air pollution are oxidative stress and neuroinflammation, which are seen in both humans and animals and are confirmed by in vitro studies. Among factors which can affect neurotoxic outcomes, age is considered the most relevant. Human and animal studies suggest that air pollution (and DE) may cause developmental neurotoxicity and may contribute to the etiology of neurodevelopmental disorders, including autistic spectrum disorders. In addition, air pollution exposure has been associated with increased expression of markers of neurodegenerative disease pathologies.
Functional impact of the human mobilome.
Babatz, Timothy D; Burns, Kathleen H
2013-06-01
The human genome is replete with interspersed repetitive sequences derived from the propagation of mobile DNA elements. Three families of human retrotransposons remain active today: LINE1, Alu, and SVA elements. Since 1988, de novo insertions at previously recognized disease loci have been shown to generate highly penetrant alleles in Mendelian disorders. Only recently has the extent of germline-transmitted retrotransposon insertion polymorphism (RIP) in human populations been fully realized. Also exciting are recent studies of somatic retrotransposition in human tissues and reports of tumor-specific insertions, suggesting roles in tissue heterogeneity and tumorigenesis. Here we discuss mobile elements in human disease with an emphasis on exciting developments from the last several years. Copyright © 2013 Elsevier Ltd. All rights reserved.
Burns, Terry C; Li, Matthew D; Mehta, Swapnil; Awad, Ahmed J; Morgan, Alexander A
2015-07-15
Translational research for neurodegenerative disease depends intimately upon animal models. Unfortunately, promising therapies developed using mouse models mostly fail in clinical trials, highlighting uncertainty about how well mouse models mimic human neurodegenerative disease at the molecular level. We compared the transcriptional signature of neurodegeneration in mouse models of Alzheimer׳s disease (AD), Parkinson׳s disease (PD), Huntington׳s disease (HD) and amyotrophic lateral sclerosis (ALS) to human disease. In contrast to aging, which demonstrated a conserved transcriptome between humans and mice, only 3 of 19 animal models showed significant enrichment for gene sets comprising the most dysregulated up- and down-regulated human genes. Spearman׳s correlation analysis revealed even healthy human aging to be more closely related to human neurodegeneration than any mouse model of AD, PD, ALS or HD. Remarkably, mouse models frequently upregulated stress response genes that were consistently downregulated in human diseases. Among potential alternate models of neurodegeneration, mouse prion disease outperformed all other disease-specific models. Even among the best available animal models, conserved differences between mouse and human transcriptomes were found across multiple animal model versus human disease comparisons, surprisingly, even including aging. Relative to mouse models, mouse disease signatures demonstrated consistent trends toward preserved mitochondrial function protein catabolism, DNA repair responses, and chromatin maintenance. These findings suggest a more complex and multifactorial pathophysiology in human neurodegeneration than is captured through standard animal models, and suggest that even among conserved physiological processes such as aging, mice are less prone to exhibit neurodegeneration-like changes. This work may help explain the poor track record of mouse-based translational therapies for neurodegeneration and provides a path forward to critically evaluate and improve animal models of human disease. Copyright © 2015 Elsevier B.V. All rights reserved.
Defining the Role of Essential Genes in Human Disease
Robertson, David L.; Hentges, Kathryn E.
2011-01-01
A greater understanding of the causes of human disease can come from identifying characteristics that are specific to disease genes. However, a full understanding of the contribution of essential genes to human disease is lacking, due to the premise that these genes tend to cause developmental abnormalities rather than adult disease. We tested the hypothesis that human orthologs of mouse essential genes are associated with a variety of human diseases, rather than only those related to miscarriage and birth defects. We segregated human disease genes according to whether the knockout phenotype of their mouse ortholog was lethal or viable, defining those with orthologs producing lethal knockouts as essential disease genes. We show that the human orthologs of mouse essential genes are associated with a wide spectrum of diseases affecting diverse physiological systems. Notably, human disease genes with essential mouse orthologs are over-represented among disease genes associated with cancer, suggesting links between adult cellular abnormalities and developmental functions. The proteins encoded by essential genes are highly connected in protein-protein interaction networks, which we find correlates with an over-representation of nuclear proteins amongst essential disease genes. Disease genes associated with essential orthologs also are more likely than those with non-essential orthologs to contribute to disease through an autosomal dominant inheritance pattern, suggesting that these diseases may actually result from semi-dominant mutant alleles. Overall, we have described attributes found in disease genes according to the essentiality status of their mouse orthologs. These findings demonstrate that disease genes do occupy highly connected positions in protein-protein interaction networks, and that due to the complexity of disease-associated alleles, essential genes cannot be ignored as candidates for causing diverse human diseases. PMID:22096564
Integration of Multiple Genomic and Phenotype Data to Infer Novel miRNA-Disease Associations
Zhou, Meng; Cheng, Liang; Yang, Haixiu; Wang, Jing; Sun, Jie; Wang, Zhenzhen
2016-01-01
MicroRNAs (miRNAs) play an important role in the development and progression of human diseases. The identification of disease-associated miRNAs will be helpful for understanding the molecular mechanisms of diseases at the post-transcriptional level. Based on different types of genomic data sources, computational methods for miRNA-disease association prediction have been proposed. However, individual source of genomic data tends to be incomplete and noisy; therefore, the integration of various types of genomic data for inferring reliable miRNA-disease associations is urgently needed. In this study, we present a computational framework, CHNmiRD, for identifying miRNA-disease associations by integrating multiple genomic and phenotype data, including protein-protein interaction data, gene ontology data, experimentally verified miRNA-target relationships, disease phenotype information and known miRNA-disease connections. The performance of CHNmiRD was evaluated by experimentally verified miRNA-disease associations, which achieved an area under the ROC curve (AUC) of 0.834 for 5-fold cross-validation. In particular, CHNmiRD displayed excellent performance for diseases without any known related miRNAs. The results of case studies for three human diseases (glioblastoma, myocardial infarction and type 1 diabetes) showed that all of the top 10 ranked miRNAs having no known associations with these three diseases in existing miRNA-disease databases were directly or indirectly confirmed by our latest literature mining. All these results demonstrated the reliability and efficiency of CHNmiRD, and it is anticipated that CHNmiRD will serve as a powerful bioinformatics method for mining novel disease-related miRNAs and providing a new perspective into molecular mechanisms underlying human diseases at the post-transcriptional level. CHNmiRD is freely available at http://www.bio-bigdata.com/CHNmiRD. PMID:26849207
Integration of Multiple Genomic and Phenotype Data to Infer Novel miRNA-Disease Associations.
Shi, Hongbo; Zhang, Guangde; Zhou, Meng; Cheng, Liang; Yang, Haixiu; Wang, Jing; Sun, Jie; Wang, Zhenzhen
2016-01-01
MicroRNAs (miRNAs) play an important role in the development and progression of human diseases. The identification of disease-associated miRNAs will be helpful for understanding the molecular mechanisms of diseases at the post-transcriptional level. Based on different types of genomic data sources, computational methods for miRNA-disease association prediction have been proposed. However, individual source of genomic data tends to be incomplete and noisy; therefore, the integration of various types of genomic data for inferring reliable miRNA-disease associations is urgently needed. In this study, we present a computational framework, CHNmiRD, for identifying miRNA-disease associations by integrating multiple genomic and phenotype data, including protein-protein interaction data, gene ontology data, experimentally verified miRNA-target relationships, disease phenotype information and known miRNA-disease connections. The performance of CHNmiRD was evaluated by experimentally verified miRNA-disease associations, which achieved an area under the ROC curve (AUC) of 0.834 for 5-fold cross-validation. In particular, CHNmiRD displayed excellent performance for diseases without any known related miRNAs. The results of case studies for three human diseases (glioblastoma, myocardial infarction and type 1 diabetes) showed that all of the top 10 ranked miRNAs having no known associations with these three diseases in existing miRNA-disease databases were directly or indirectly confirmed by our latest literature mining. All these results demonstrated the reliability and efficiency of CHNmiRD, and it is anticipated that CHNmiRD will serve as a powerful bioinformatics method for mining novel disease-related miRNAs and providing a new perspective into molecular mechanisms underlying human diseases at the post-transcriptional level. CHNmiRD is freely available at http://www.bio-bigdata.com/CHNmiRD.
Prediction of microRNAs Associated with Human Diseases Based on Weighted k Most Similar Neighbors
Guo, Maozu; Guo, Yahong; Li, Jinbao; Ding, Jian; Liu, Yong; Dai, Qiguo; Li, Jin; Teng, Zhixia; Huang, Yufei
2013-01-01
Background The identification of human disease-related microRNAs (disease miRNAs) is important for further investigating their involvement in the pathogenesis of diseases. More experimentally validated miRNA-disease associations have been accumulated recently. On the basis of these associations, it is essential to predict disease miRNAs for various human diseases. It is useful in providing reliable disease miRNA candidates for subsequent experimental studies. Methodology/Principal Findings It is known that miRNAs with similar functions are often associated with similar diseases and vice versa. Therefore, the functional similarity of two miRNAs has been successfully estimated by measuring the semantic similarity of their associated diseases. To effectively predict disease miRNAs, we calculated the functional similarity by incorporating the information content of disease terms and phenotype similarity between diseases. Furthermore, the members of miRNA family or cluster are assigned higher weight since they are more probably associated with similar diseases. A new prediction method, HDMP, based on weighted k most similar neighbors is presented for predicting disease miRNAs. Experiments validated that HDMP achieved significantly higher prediction performance than existing methods. In addition, the case studies examining prostatic neoplasms, breast neoplasms, and lung neoplasms, showed that HDMP can uncover potential disease miRNA candidates. Conclusions The superior performance of HDMP can be attributed to the accurate measurement of miRNA functional similarity, the weight assignment based on miRNA family or cluster, and the effective prediction based on weighted k most similar neighbors. The online prediction and analysis tool is freely available at http://nclab.hit.edu.cn/hdmpred. PMID:23950912
A Scaled Framework for CRISPR Editing of Human Pluripotent Stem Cells to Study Psychiatric Disease.
Hazelbaker, Dane Z; Beccard, Amanda; Bara, Anne M; Dabkowski, Nicole; Messana, Angelica; Mazzucato, Patrizia; Lam, Daisy; Manning, Danielle; Eggan, Kevin; Barrett, Lindy E
2017-10-10
Scaling of CRISPR-Cas9 technology in human pluripotent stem cells (hPSCs) represents an important step for modeling complex disease and developing drug screens in human cells. However, variables affecting the scaling efficiency of gene editing in hPSCs remain poorly understood. Here, we report a standardized CRISPR-Cas9 approach, with robust benchmarking at each step, to successfully target and genotype a set of psychiatric disease-implicated genes in hPSCs and provide a resource of edited hPSC lines for six of these genes. We found that transcriptional state and nucleosome positioning around targeted loci was not correlated with editing efficiency. However, editing frequencies varied between different hPSC lines and correlated with genomic stability, underscoring the need for careful cell line selection and unbiased assessments of genomic integrity. Together, our step-by-step quantification and in-depth analyses provide an experimental roadmap for scaling Cas9-mediated editing in hPSCs to study psychiatric disease, with broader applicability for other polygenic diseases. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
Lübke, Torben; Lobel, Peter; Sleat, David
2009-01-01
Defects in lysosomal function have been associated with numerous monogenic human diseases typically classified as lysosomal storage diseases. However, there is increasing evidence that lysosomal proteins are also involved in more widespread human diseases including cancer and Alzheimer disease. Thus, there is a continuing interest in understanding the cellular functions of the lysosome and an emerging approach to this is the identification of its constituent proteins by proteomic analyses. To date, the mammalian lysosome has been shown to contain ~ 60 soluble luminal proteins and ~25 transmembrane proteins. However, recent proteomic studies based upon affinity purification of soluble components or subcellular fractionation to obtain both soluble and membrane components suggest that there may be many more of both classes of protein resident within this organelle than previously appreciated. Discovery of such proteins has important implications for understanding the function and the dynamics of the lysosome but can also lead the way towards the discovery of the genetic basis for human diseases of hitherto unknown etiology. Here, we describe current approaches to lysosomal proteomics and data interpretation and review the new lysosomal proteins that have recently emerged from such studies. PMID:18977398
Determinants of initiation and progression of idiopathic pulmonary fibrosis
Kottmann, Robert Matthew; Hogan, Christopher M.; Phipps, Richard P.; Sime, Patricia J.
2013-01-01
IPF is a devastating disease with few therapeutic options. The precise aetiology of IPF remains elusive. However, our understanding of the pathologic processes involved in the initiation and progression of this disease is improving. Data on the mechanisms underlying IPF have been generated from epidemiologic investigations as well as cellular and molecular studies of human tissues. Although no perfect animal model of human IPF exists, pre-clinical animal studies have helped define pathways which are likely important in human disease. Epithelial injury, fibroblast activation and repetitive cycles of injury and abnormal repair are almost certainly key events. Factors which have been associated with initiation and/or progression of IPF include viral infections, abnormal cytokine, chemokine and growth factor production, oxidant stress, autoimmunity, inhalational of toxicants and gastro-oesophageal reflux disease. Furthermore, recent evidence identifies a role for a variety of genetic and epigenetic abnormalities ranging from mutations in surfactant protein C to abnormalities in telomere length and telomerase activity. The challenge remains to identify additional inciting agents and key dysregulated pathways that lead to disease progression so that we can develop targeted therapies to treat or prevent this serious disease. PMID:19740254
Xiao, Ran; Li, Shan; Cao, Qian; Wang, Xiuling; Yan, Qiujin; Tu, Xiaoning; Zhu, Ying; Zhu, Fan
2017-06-01
Human endogenous retrovirus W env (HERV-W env) plays a critical role in many neuropsychological diseases such as schizophrenia and multiple sclerosis (MS). These diseases are accompanied by immunological reactions in the central nervous system (CNS). Microglia are important immunocytes in brain inflammation that can produce a gasotransmitter-nitric oxide (NO). NO not only plays a role in the function of neuronal cells but also participates in the pathogenesis of various neuropsychological diseases. In this study, we reported increased NO production in CHME-5 microglia cells after they were transfected with HERV-W env. Moreover, HERV-W env increased the expression and function of human inducible nitric oxide synthase (hiNOS) and enhanced the promoter activity of hiNOS. Microglial migration was also enhanced. These data revealed that HERV-W env might contribute to increase NO production and microglial migration ability in neuropsychological disorders by regulating the expression of inducible NOS. Results from this study might lead to the identification of novel targets for the treatment of neuropsychological diseases, including neuroinflammatory diseases, stroke, and neurodegenerative diseases.
Humanized mouse models: Application to human diseases.
Ito, Ryoji; Takahashi, Takeshi; Ito, Mamoru
2018-05-01
Humanized mice are superior to rodents for preclinical evaluation of the efficacy and safety of drug candidates using human cells or tissues. During the past decade, humanized mouse technology has been greatly advanced by the establishment of novel platforms of genetically modified immunodeficient mice. Several human diseases can be recapitulated using humanized mice due to the improved engraftment and differentiation capacity of human cells or tissues. In this review, we discuss current advanced humanized mouse models that recapitulate human diseases including cancer, allergy, and graft-versus-host disease. © 2017 Wiley Periodicals, Inc.
2016-01-01
Periodontal disease afflicts 20% of world population. This process usually occurs in the form of being lethargic and chronic, and consequently this disease is known as chronic process. All chronic diseases constantly cause activation of the immune system, and therefore the presentation of microbial peptides which are presented to lymphocytes by professional antigen presenting cells can present microbial peptides very similar to important structures of human economy causing autoimmune diseases, process known as molecular mimicry. Thus, the aim of this study was to verify the presence of molecular mimicry phenomenon between periodontopathogens and human proteins. Blasting microbes of Socransky periodontal complexes against human collagen were performed and then the proteins with similarities were modelled and were screened in the MHI binding virtual methods. The epitopes selected were produced and plasma of chronic periodontal volunteers was obtained and a dot immunobinding assay was performed. Hypothetical protein of Prevotella sp. and human collagen epitopes with high similarities were positive for dot immunobinding assay. With this result it can be suggested that the mimicry phenomena can occur on periodontal disease. PMID:28116146
The Oral Microbiome Bank of China.
Xian, Peng; Xuedong, Zhou; Xin, Xu; Yuqing, Li; Yan, Li; Jiyao, Li; Xiaoquan, Su; Shi, Huang; Jian, Xu; Ga, Liao
2018-05-03
The human microbiome project (HMP) promoted further understanding of human oral microbes. However, research on the human oral microbiota has not made as much progress as research on the gut microbiota. Currently, the causal relationship between the oral microbiota and oral diseases remains unclear, and little is known about the link between the oral microbiota and human systemic diseases. To further understand the contribution of the oral microbiota in oral diseases and systemic diseases, a Human Oral Microbiome Database (HOMD) was established in the US. The HOMD includes 619 taxa in 13 phyla, and most of the microorganisms are from American populations. Due to individual differences in the microbiome, the HOMD does not reflect the Chinese oral microbial status. Herein, we established a new oral microbiome database-the Oral Microbiome Bank of China (OMBC, http://www.sklod.org/ombc ). Currently, the OMBC includes information on 289 bacterial strains and 720 clinical samples from the Chinese population, along with lab and clinical information. The OMBC is the first curated description of a Chinese-associated microbiome; it provides tools for use in investigating the role of the oral microbiome in health and diseases, and will give the community abundant data and strain information for future oral microbial studies.
Nouvellet, Pierre; Dumonteil, Eric; Gourbière, Sébastien
2013-11-01
Chagas disease has a major impact on human health in Latin America and is becoming of global concern due to international migrations. Trypanosoma cruzi, the etiological agent of the disease, is one of the rare human parasites transmitted by the feces of its vector, as it is unable to reach the salivary gland of the insect. This stercorarian transmission is notoriously poorly understood, despite its crucial role in the ecology and evolution of the pathogen and the disease. The objective of this study was to quantify the probability of T. cruzi vectorial transmission to humans, and to use such an estimate to predict human prevalence from entomological data. We developed several models of T. cruzi transmission to estimate the probability of transmission from vector to host. Using datasets from the literature, we estimated the probability of transmission per contact with an infected triatomine to be 5.8 × 10(-4) (95%CI: [2.6 ; 11.0] × 10(-4)). This estimate was consistent across triatomine species, robust to variations in other parameters, and corresponded to 900-4,000 contacts per case. Our models subsequently allowed predicting human prevalence from vector abundance and infection rate in 7/10 independent datasets covering various triatomine species and epidemiological situations. This low probability of T. cruzi transmission reflected well the complex and unlikely mechanism of transmission via insect feces, and allowed predicting human prevalence from basic entomological data. Although a proof of principle study would now be valuable to validate our models' predictive ability in an even broader range of entomological and ecological settings, our quantitative estimate could allow switching the evaluation of disease risk and vector control program from purely entomological indexes to parasitological measures, as commonly done for other major vector borne diseases. This might lead to different quantitative perspectives as these indexes are well known not to be proportional one to another.
Nouvellet, Pierre; Dumonteil, Eric; Gourbière, Sébastien
2013-01-01
Chagas disease has a major impact on human health in Latin America and is becoming of global concern due to international migrations. Trypanosoma cruzi, the etiological agent of the disease, is one of the rare human parasites transmitted by the feces of its vector, as it is unable to reach the salivary gland of the insect. This stercorarian transmission is notoriously poorly understood, despite its crucial role in the ecology and evolution of the pathogen and the disease. The objective of this study was to quantify the probability of T. cruzi vectorial transmission to humans, and to use such an estimate to predict human prevalence from entomological data. We developed several models of T. cruzi transmission to estimate the probability of transmission from vector to host. Using datasets from the literature, we estimated the probability of transmission per contact with an infected triatomine to be 5.8×10−4 (95%CI: [2.6 ; 11.0]×10−4). This estimate was consistent across triatomine species, robust to variations in other parameters, and corresponded to 900–4,000 contacts per case. Our models subsequently allowed predicting human prevalence from vector abundance and infection rate in 7/10 independent datasets covering various triatomine species and epidemiological situations. This low probability of T. cruzi transmission reflected well the complex and unlikely mechanism of transmission via insect feces, and allowed predicting human prevalence from basic entomological data. Although a proof of principle study would now be valuable to validate our models' predictive ability in an even broader range of entomological and ecological settings, our quantitative estimate could allow switching the evaluation of disease risk and vector control program from purely entomological indexes to parasitological measures, as commonly done for other major vector borne diseases. This might lead to different quantitative perspectives as these indexes are well known not to be proportional one to another. PMID:24244766
Curcumin as a natural regulator of monocyte chemoattractant protein-1.
Karimian, Maryam Saberi; Pirro, Matteo; Majeed, Muhammed; Sahebkar, Amirhossein
2017-02-01
Monocyte chemoattractant/chemotactic protein-1 (MCP-1), a member of the CC chemokine family, is one of the key chemokines that regulate migration and tissue infiltration of monocytes/macrophages. Its role in the pathophysiology of several inflammatory diseases has been widely recognized, thus making MCP-1 a possible target for anti-inflammatory treatments. Curcumin (diferuloylmethane) is a natural polyphenol derived from the rhizomes of Curcuma Longa L. (turmeric). Anti-inflammatory action underlies numerous pharmacological effects of curcumin in the control and prevention of several diseases. The purpose of this review is to evaluate the effects of curcumin on the regulation of MCP-1 as a key mediator of chemotaxis and inflammation, and the biological consequences thereof. In vitro studies have shown that curcumin can decrease MCP-1 production in various cell lines. Animal studies have also revealed that curcumin can attenuate MCP-1 expression and improve a range of inflammatory diseases through multiple molecular targets and mechanisms of action. There is limited data from human clinical trials showing the decreasing effect of curcumin on MCP-1 concentrations and improvement of the course of inflammatory diseases. Most of the in vitro and animal studies confirm that curcumin exert its MCP-1-lowering and anti-inflammatory effects by down-regulating the mitogen-activated protein kinase (MAPK) and NF-κB signaling pathway. As yet, there is limited data from human clinical trials showing the effect of curcumin on MCP-1 levels and improvement of the course of inflammatory diseases. More evidence, especially from human studies, is needed to better assess the effects of curcumin on circulating MCP-1 in different human diseases and the role of this modulatory effect in the putative anti-inflammatory properties of curcumin. Copyright © 2016 Elsevier Ltd. All rights reserved.
Elbahesh, Husni; Schughart, Klaus
2016-05-19
Influenza A viruses (IAV) are zoonotic pathogens that pose a major threat to human and animal health. Influenza virus disease severity is influenced by viral virulence factors as well as individual differences in host response. We analyzed gene expression changes in the blood of infected mice using a previously defined set of signature genes that was derived from changes in the blood transcriptome of IAV-infected human volunteers. We found that the human signature was reproduced well in the founder strains of the Collaborative Cross (CC) mice, thus demonstrating the relevance and importance of mouse experimental model systems for studying human influenza disease.
Medina-Carmona, Encarnación; Fuchs, Julian E; Gavira, Jose A; Mesa-Torres, Noel; Neira, Jose L; Salido, Eduardo; Palomino-Morales, Rogelio; Burgos, Miguel; Timson, David J; Pey, Angel L
2017-09-15
Human proteins are vulnerable towards disease-associated single amino acid replacements affecting protein stability and function. Interestingly, a few studies have shown that consensus amino acids from mammals or vertebrates can enhance protein stability when incorporated into human proteins. Here, we investigate yet unexplored relationships between the high vulnerability of human proteins towards disease-associated inactivation and recent evolutionary site-specific divergence of stabilizing amino acids. Using phylogenetic, structural and experimental analyses, we show that divergence from the consensus amino acids at several sites during mammalian evolution has caused local protein destabilization in two human proteins linked to disease: cancer-associated NQO1 and alanine:glyoxylate aminotransferase, mutated in primary hyperoxaluria type I. We demonstrate that a single consensus mutation (H80R) acts as a disease suppressor on the most common cancer-associated polymorphism in NQO1 (P187S). The H80R mutation reactivates P187S by enhancing FAD binding affinity through local and dynamic stabilization of its binding site. Furthermore, we show how a second suppressor mutation (E247Q) cooperates with H80R in protecting the P187S polymorphism towards inactivation through long-range allosteric communication within the structural ensemble of the protein. Our results support that recent divergence of consensus amino acids may have occurred with neutral effects on many functional and regulatory traits of wild-type human proteins. However, divergence at certain sites may have increased the propensity of some human proteins towards inactivation due to disease-associated mutations and polymorphisms. Consensus mutations also emerge as a potential strategy to identify structural hot-spots in proteins as targets for pharmacological rescue in loss-of-function genetic diseases. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
2010-01-01
Background In recent years, the field of vaccines for diseases such as Human Immunodeficiency Virus (HIV) which take a heavy toll in developing countries has faced major failures. This has led to a call for more basic science research, and development as well as evaluation of new vaccine candidates. Human-animal chimeras, developed with a 'humanized' immune system could be useful to study infectious diseases, including many neglected diseases. These would also serve as an important tool for the efficient testing of new vaccine candidates to streamline promising candidates for further trials in humans. However, developing human-animal chimeras has proved to be controversial. Discussion Development of human-animal chimeras for vaccine development has been slowed down because of opposition by some philosophers, ethicists and policy makers in the west-they question the moral status of such animals, and also express discomfort about transgression of species barriers. Such opposition often uses a contemporary western world view as a reference point. Human-animal chimeras are often being created for diseases which cause significantly higher morbidity and mortality in the developing world as compared to the developed world. We argue in our commentary that given this high disease burden, we should look at socio-cultural perspectives on human-animal chimera like beings in the developing world. On examination, it's clear that such beings have been part of mythology and cultural descriptions in many countries in the developing world. Summary To ensure that important research on diseases afflicting millions like malaria, HIV, Hepatitis-C and dengue continues to progress, we recommend supporting human-animal chimera research for vaccine development in developing countries (especially China and India which have growing technical expertise in the area). The negative perceptions in some parts of the west about human-animal chimeras can be used as an opportunity for nurturing important vaccine development research in the developing world. PMID:20482820
Exploring Animal Models That Resemble Idiopathic Pulmonary Fibrosis
Tashiro, Jun; Rubio, Gustavo A.; Limper, Andrew H.; Williams, Kurt; Elliot, Sharon J.; Ninou, Ioanna; Aidinis, Vassilis; Tzouvelekis, Argyrios; Glassberg, Marilyn K.
2017-01-01
Large multicenter clinical trials have led to two recently approved drugs for patients with idiopathic pulmonary fibrosis (IPF); yet, both of these therapies only slow disease progression and do not provide a definitive cure. Traditionally, preclinical trials have utilized mouse models of bleomycin (BLM)-induced pulmonary fibrosis—though several limitations prevent direct translation to human IPF. Spontaneous pulmonary fibrosis occurs in other animal species, including dogs, horses, donkeys, and cats. While the fibrotic lungs of these animals share many characteristics with lungs of patients with IPF, current veterinary classifications of fibrotic lung disease are not entirely equivalent. Additional studies that profile these examples of spontaneous fibroses in animals for similarities to human IPF should prove useful for both human and animal investigators. In the meantime, studies of BLM-induced fibrosis in aged male mice remain the most clinically relevant model for preclinical study for human IPF. Addressing issues such as time course of treatment, animal size and characteristics, clinically irrelevant treatment endpoints, and reproducibility of therapeutic outcomes will improve the current status of preclinical studies. Elucidating the mechanisms responsible for the development of fibrosis and disrepair associated with aging through a collaborative approach between researchers will promote the development of models that more accurately represent the realm of interstitial lung diseases in humans. PMID:28804709
A geographically-diverse collection of 418 human gut microbiome pathway genome databases
Hahn, Aria S.; Altman, Tomer; Konwar, Kishori M.; Hanson, Niels W.; Kim, Dongjae; Relman, David A.; Dill, David L.; Hallam, Steven J.
2017-01-01
Advances in high-throughput sequencing are reshaping how we perceive microbial communities inhabiting the human body, with implications for therapeutic interventions. Several large-scale datasets derived from hundreds of human microbiome samples sourced from multiple studies are now publicly available. However, idiosyncratic data processing methods between studies introduce systematic differences that confound comparative analyses. To overcome these challenges, we developed GutCyc, a compendium of environmental pathway genome databases (ePGDBs) constructed from 418 assembled human microbiome datasets using MetaPathways, enabling reproducible functional metagenomic annotation. We also generated metabolic network reconstructions for each metagenome using the Pathway Tools software, empowering researchers and clinicians interested in visualizing and interpreting metabolic pathways encoded by the human gut microbiome. For the first time, GutCyc provides consistent annotations and metabolic pathway predictions, making possible comparative community analyses between health and disease states in inflammatory bowel disease, Crohn’s disease, and type 2 diabetes. GutCyc data products are searchable online, or may be downloaded and explored locally using MetaPathways and Pathway Tools. PMID:28398290
Genetics, epidemiology, and cancer disparities: is it black and white?
Rebbeck, Timothy R; Halbert, Chanita Hughes; Sankar, Pamela
2006-05-10
Epidemiologic studies attempt to understand the distribution and determinants of human disease. Epidemiologic research often incorporates information about race, ethnicity, or ancestry, usually as a self-identified race or ethnicity (SIRE) variable. Differences in the distribution and determinants of disease on the basis of SIRE may be identified in these studies. In addition, genetic and other biologic differences according to SIRE are frequently reported. If these differences are real and meaningful, they may have value in identifying disease-causative or -preventive factors, and thus may be beneficial to human health. However, the concepts of race, ethnicity, or ancestry are often poorly considered or crudely applied, particularly in genetic studies of disease etiology or outcome. Consequently, results suggesting genetic differences with respect to disease etiology or outcome across SIRE groups may not be meaningful; in fact, these differences may prove harmful if they propagate stereotypes or spurious differences. Therefore, it is critical to properly consider the meaning, definitions, and use of race, ethnicity, or ancestry in molecular epidemiologic studies.
Hakenberg, Jörg; Cheng, Wei-Yi; Thomas, Philippe; Wang, Ying-Chih; Uzilov, Andrew V; Chen, Rong
2016-01-08
Data from a plethora of high-throughput sequencing studies is readily available to researchers, providing genetic variants detected in a variety of healthy and disease populations. While each individual cohort helps gain insights into polymorphic and disease-associated variants, a joint perspective can be more powerful in identifying polymorphisms, rare variants, disease-associations, genetic burden, somatic variants, and disease mechanisms. We have set up a Reference Variant Store (RVS) containing variants observed in a number of large-scale sequencing efforts, such as 1000 Genomes, ExAC, Scripps Wellderly, UK10K; various genotyping studies; and disease association databases. RVS holds extensive annotations pertaining to affected genes, functional impacts, disease associations, and population frequencies. RVS currently stores 400 million distinct variants observed in more than 80,000 human samples. RVS facilitates cross-study analysis to discover novel genetic risk factors, gene-disease associations, potential disease mechanisms, and actionable variants. Due to its large reference populations, RVS can also be employed for variant filtration and gene prioritization. A web interface to public datasets and annotations in RVS is available at https://rvs.u.hpc.mssm.edu/.
The role of intestinal microbiota in the pathogenesis of metabolic diseases.
Węgielska, Iwona; Suliburska, Joanna
2016-01-01
The incidence of metabolic diseases is increasing rapidly all over the world. This situation has led researchers to attempt to explain the pathomechanisms of these disorders and to develop specific recommendations for the prevention and treatment of diseases such as obesity, type-2 diabetes, and atherosclerosis. Recent studies show clear evidence of the role of human intestinal microbiota in health and in predispositions to diseases. Gut microbiota affect a number of complex metabolic reactions, significantly altering the functioning of the human body. Numerous experiments have shown the key role played by the formation process of the intestinal ecosystem in the early stages of human life for programming its metabolic health. The following article is a compilation of the literature available on the formation of the complex intestinal ecosystem and its impact on the incidence of diseases such as obesity, type-2 diabetes, and atherosclerosis.
Metagenomics: A New Way to Illustrate the Crosstalk between Infectious Diseases and Host Microbiome
Zhang, Yinfeng; Lun, Cheuk-Yin; Tsui, Stephen Kwok-Wing
2015-01-01
Microbes have co-evolved with human beings for millions of years. They play a very important role in maintaining the health of the host. With the advancement in next generation sequencing technology, the microbiome profiling in the host can be obtained under different circumstances. This review focuses on the current knowledge of the alteration of complex microbial communities upon the infection of different pathogens, such as human immunodeficiency virus, hepatitis B virus, influenza virus, and Mycobacterium tuberculosis, at different body sites. It is believed that the increased understanding of the correlation between infectious disease and the alteration of the microbiome can contribute to better management of disease progression in the future. However, future studies may need to be more integrative so as to establish the exact causality of diseases by analyzing the correlation between microorganisms within the human host and the pathogenesis of infectious diseases. PMID:26540050
The roles of the exoribonucleases DIS3L2 and XRN1 in human disease.
Pashler, Amy L; Towler, Benjamin P; Jones, Christopher I; Newbury, Sarah F
2016-10-15
RNA degradation is a vital post-transcriptional process which ensures that transcripts are maintained at the correct level within the cell. DIS3L2 and XRN1 are conserved exoribonucleases that are critical for the degradation of cytoplasmic RNAs. Although the molecular mechanisms of RNA degradation by DIS3L2 and XRN1 have been well studied, less is known about their specific roles in the development of multicellular organisms or human disease. This review focusses on the roles of DIS3L2 and XRN1 in the pathogenesis of human disease, particularly in relation to phenotypes seen in model organisms. The known diseases associated with loss of activity of DIS3L2 and XRN1 are discussed, together with possible mechanisms and cellular pathways leading to these disease conditions. © 2016 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.
Imaging polarimetry of macular disease
NASA Astrophysics Data System (ADS)
Miura, Masahiro; Elsner, Ann E.; Petrig, Benno L.; VanNasdale, Dean A.; Zhao, Yanming; Iwasaki, Takuya
2008-02-01
Polarization properties of the human eye have long been used to study the tissues of the human retina, as well as to improve retinal imaging, and several new technologies using polarized light are in use or under development. 1-8 The most typical polarimetry technique in ophthalmology clinic is a scanning laser polarimetry for the glaucoma diagnosis. 1,2 In the original conceptualization, the thickness of the retinal nerve fiber layer is estimated using the birefringent component of light returning from the ocular fundus. More recently, customized software to analyze data from scanning laser polarimetry was developed to investigate the polarization properties of the macular disease. 5-8 In this study, we analyzed macular disease with imaging polarimetry, which provides a method for the noninvasive assessment of macular disease.
Smidowicz, Angelika; Regula, Julita
2015-11-01
The inflammatory process plays an important role in the pathogenesis of many chronic diseases, such as cardiovascular diseases, diabetes mellitus type 2, and metabolic syndrome. Serum C-reactive protein (CRP) and interleukin-6 (IL-6) are widely tested inflammatory markers involved in the development of these diseases. Several studies indicate a relation between nutritional status and the concentrations of human high-sensitivity CRP and IL-6. Similarly, the role of diet in reducing inflammation and thereby modulating the risk of non-communicable diseases is supported by numerous studies. This review focuses on the effects of the selected nutrition models in humans on the concentrations of CRP and IL-6. It seems that the Mediterranean diet model is most effective in inhibiting inflammation. The Dietary Approaches to Stop Hypertension model and the plant nutrition model also have proven to be beneficial. The data on low-fat and low-carbohydrate diets are inconclusive. Comprehensive studies are necessary, taking into account the cumulative effect of dietary and other factors on the inflammatory process. © 2015 American Society for Nutrition.
LITTLE FISH, BIG DATA: ZEBRAFISH AS A MODEL FOR CARDIOVASCULAR AND METABOLIC DISEASE.
Gut, Philipp; Reischauer, Sven; Stainier, Didier Y R; Arnaout, Rima
2017-07-01
The burden of cardiovascular and metabolic diseases worldwide is staggering. The emergence of systems approaches in biology promises new therapies, faster and cheaper diagnostics, and personalized medicine. However, a profound understanding of pathogenic mechanisms at the cellular and molecular levels remains a fundamental requirement for discovery and therapeutics. Animal models of human disease are cornerstones of drug discovery as they allow identification of novel pharmacological targets by linking gene function with pathogenesis. The zebrafish model has been used for decades to study development and pathophysiology. More than ever, the specific strengths of the zebrafish model make it a prime partner in an age of discovery transformed by big-data approaches to genomics and disease. Zebrafish share a largely conserved physiology and anatomy with mammals. They allow a wide range of genetic manipulations, including the latest genome engineering approaches. They can be bred and studied with remarkable speed, enabling a range of large-scale phenotypic screens. Finally, zebrafish demonstrate an impressive regenerative capacity scientists hope to unlock in humans. Here, we provide a comprehensive guide on applications of zebrafish to investigate cardiovascular and metabolic diseases. We delineate advantages and limitations of zebrafish models of human disease and summarize their most significant contributions to understanding disease progression to date. Copyright © 2017 the American Physiological Society.
Cong, Yu; Lentz, Margaret R; Lara, Abigail; Alexander, Isis; Bartos, Christopher; Bohannon, J Kyle; Hammoud, Dima; Huzella, Louis; Jahrling, Peter B; Janosko, Krisztina; Jett, Catherine; Kollins, Erin; Lackemeyer, Matthew; Mollura, Daniel; Ragland, Dan; Rojas, Oscar; Solomon, Jeffrey; Xu, Ziyue; Munster, Vincent; Holbrook, Michael R
2017-04-01
Nipah virus (NiV) is a paramyxovirus (genus Henipavirus) that emerged in the late 1990s in Malaysia and has since been identified as the cause of sporadic outbreaks of severe febrile disease in Bangladesh and India. NiV infection is frequently associated with severe respiratory or neurological disease in infected humans with transmission to humans through inhalation, contact or consumption of NiV contaminated foods. In the work presented here, the development of disease was investigated in the African Green Monkey (AGM) model following intratracheal (IT) and, for the first time, small-particle aerosol administration of NiV. This study utilized computed tomography (CT) and magnetic resonance imaging (MRI) to temporally assess disease progression. The host immune response and changes in immune cell populations over the course of disease were also evaluated. This study found that IT and small-particle administration of NiV caused similar disease progression, but that IT inoculation induced significant congestion in the lungs while disease following small-particle aerosol inoculation was largely confined to the lower respiratory tract. Quantitative assessment of changes in lung volume found up to a 45% loss in IT inoculated animals. None of the subjects in this study developed overt neurological disease, a finding that was supported by MRI analysis. The development of neutralizing antibodies was not apparent over the 8-10 day course of disease, but changes in cytokine response in all animals and activated CD8+ T cell numbers suggest the onset of cell-mediated immunity. These studies demonstrate that IT and small-particle aerosol infection with NiV in the AGM model leads to a severe respiratory disease devoid of neurological indications. This work also suggests that extending the disease course or minimizing the impact of the respiratory component is critical to developing a model that has a neurological component and more accurately reflects the human condition.
Cong, Yu; Lentz, Margaret R.; Lara, Abigail; Alexander, Isis; Bartos, Christopher; Bohannon, J. Kyle; Hammoud, Dima; Huzella, Louis; Jahrling, Peter B.; Janosko, Krisztina; Jett, Catherine; Kollins, Erin; Lackemeyer, Matthew; Mollura, Daniel; Ragland, Dan; Rojas, Oscar; Solomon, Jeffrey; Xu, Ziyue; Munster, Vincent
2017-01-01
Nipah virus (NiV) is a paramyxovirus (genus Henipavirus) that emerged in the late 1990s in Malaysia and has since been identified as the cause of sporadic outbreaks of severe febrile disease in Bangladesh and India. NiV infection is frequently associated with severe respiratory or neurological disease in infected humans with transmission to humans through inhalation, contact or consumption of NiV contaminated foods. In the work presented here, the development of disease was investigated in the African Green Monkey (AGM) model following intratracheal (IT) and, for the first time, small-particle aerosol administration of NiV. This study utilized computed tomography (CT) and magnetic resonance imaging (MRI) to temporally assess disease progression. The host immune response and changes in immune cell populations over the course of disease were also evaluated. This study found that IT and small-particle administration of NiV caused similar disease progression, but that IT inoculation induced significant congestion in the lungs while disease following small-particle aerosol inoculation was largely confined to the lower respiratory tract. Quantitative assessment of changes in lung volume found up to a 45% loss in IT inoculated animals. None of the subjects in this study developed overt neurological disease, a finding that was supported by MRI analysis. The development of neutralizing antibodies was not apparent over the 8–10 day course of disease, but changes in cytokine response in all animals and activated CD8+ T cell numbers suggest the onset of cell-mediated immunity. These studies demonstrate that IT and small-particle aerosol infection with NiV in the AGM model leads to a severe respiratory disease devoid of neurological indications. This work also suggests that extending the disease course or minimizing the impact of the respiratory component is critical to developing a model that has a neurological component and more accurately reflects the human condition. PMID:28388650
Race, Brent; Phillips, Katie; Kraus, Allison; Chesebro, Bruce
2016-07-03
Tauopathies are a family of neurodegenerative diseases in which fibrils of human hyperphosphorylated tau (P-tau) are believed to cause neuropathology. In Alzheimer disease, P-tau associates with A-beta amyloid and contributes to disease pathogenesis. In familial human prion diseases and variant CJD, P-tau often co-associates with prion protein amyloid, and might also accelerate disease progression. To test this latter possibility, here we compared progression of amyloid prion disease in vivo after scrapie infection of mice with and without expression of human tau. The mice used expressed both anchorless prion protein (PrP) and membrane-anchored PrP, that generate disease associated amyloid and non-amyloid PrP (PrPSc) after scrapie infection. Human P-tau induced by scrapie infection was only rarely associated with non-amyloid PrPSc, but abundant human P-tau was detected at extracellular, perivascular and axonal deposits associated with amyloid PrPSc. This pathology was quite similar to that seen in familial prion diseases. However, association of human and mouse P-tau with amyloid PrPSc did not diminish survival time following prion infection in these mice. By analogy, human P-tau may not affect prion disease progression in humans. Alternatively, these results might be due to other factors, including rapidity of disease, blocking effects by mouse tau, or low toxicity of human P-tau in this model.
The die is cast: arsenic exposure in early life and disease susceptibility.
Thomas, David J
2013-12-16
Early life exposure to arsenic in humans and mice produces similar patterns of disease in later life. Given the long interval between exposure and effect, epigenetic effects of early life exposure to arsenic may account for the development and progression of disease in both species. Mode of action and dosimetric studies in the mouse may help assess the role of age at exposure as a factor in susceptibility to the toxic and carcinogenic effects of arsenic in humans.
Cell biology, biophysics, and mechanobiology: From the basics to Clinics.
Zeng, Y
2017-04-29
Cell biology, biomechanics and biophysics are the key subjects that guide our understanding in diverse areas of tissue growth, development, remodeling and homeostasis. Novel discoveries such as molecular mechanism, and mechanobiological mechanism in cell biology, biomechanics and biophysics play essential roles in our understanding of the pathogenesis of various human diseases, as well as in designing the treatment of these diseases. In addition, studies in these areas will also facilitate early diagnostics of human diseases, such as cardiovascular diseases and cancer. In this special issue, we collected 10 original research articles and 1 review...
MicroRNA therapeutics in cardiovascular medicine
Thum, Thomas
2012-01-01
Cardiovascular diseases are the most common causes of human morbidity and mortality despite significant therapeutic improvements by surgical, interventional and pharmacological approaches in the last decade. MicroRNAs (miRNAs) are important and powerful mediators in a wide range of diseases and thus emerged as interesting new drug targets. An array of animal and even human miRNA-based therapeutic studies has been performed, which validate miRNAs as being successfully targetable to treat a wide range of diseases. Here, the current knowledge about miRNAs therapeutics in cardiovascular diseases on their way to clinical use are reviewed and discussed. PMID:22162462
Chun, Yong Soon; Chaudhari, Pooja; Jang, Yoon-Young
2010-12-14
The recent advances in the induced pluripotent stem cell (iPSC) research have significantly changed our perspectives on regenerative medicine by providing researchers with a unique tool to derive disease-specific stem cells for study. In this review, we describe the human iPSC generation from developmentally diverse origins (i.e. endoderm-, mesoderm-, and ectoderm- tissue derived human iPSCs) and multistage hepatic differentiation protocols, and discuss both basic and clinical applications of these cells including disease modeling, drug toxicity screening/drug discovery, gene therapy and cell replacement therapy.
Chapuis-Taillard, Caroline; de Vallière, Serge; Bochud, Pierre-Yves
2009-01-07
In 2008, several publications have highlighted the role of climate change and globalization on the epidemiology of infectious diseases. Studies have shown the extension towards Europe of diseases such as Crimea-Congo fever (Kosovo, Turkey and Bulgaria), leismaniosis (Cyprus) and chikungunya virus infection (Italy). The article also contains comments on Plasmodium knowlesi, a newly identified cause of severe malaria in humans, as well as an update on human transmission of the H5NI avian influenza virus. It also mentions new data on Bell's palsy as well as two vaccines (varicella-zoster and pneumococcus), and provides a list of recent guidelines for the treatment of common infectious diseases.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-01
... DEPARTMENT OF HEALTH AND HUMAN SERVICES Centers for Disease Control and Prevention Disease... Series among Adolescent Females, IP12-004, and Intervention Study to Increase Use of Standing Orders... Series among Adolescent Females, FOA IP12-004; and Intervention Study to Increase Use of Standing Orders...
Genome-wide association mapping identifies multiple loci for a canine SLE-related disease complex.
Wilbe, Maria; Jokinen, Päivi; Truvé, Katarina; Seppala, Eija H; Karlsson, Elinor K; Biagi, Tara; Hughes, Angela; Bannasch, Danika; Andersson, Göran; Hansson-Hamlin, Helene; Lohi, Hannes; Lindblad-Toh, Kerstin
2010-03-01
The unique canine breed structure makes dogs an excellent model for studying genetic diseases. Within a dog breed, linkage disequilibrium is extensive, enabling genome-wide association (GWA) with only around 15,000 SNPs and fewer individuals than in human studies. Incidences of specific diseases are elevated in different breeds, indicating that a few genetic risk factors might have accumulated through drift or selective breeding. In this study, a GWA study with 81 affected dogs (cases) and 57 controls from the Nova Scotia duck tolling retriever breed identified five loci associated with a canine systemic lupus erythematosus (SLE)-related disease complex that includes both antinuclear antibody (ANA)-positive immune-mediated rheumatic disease (IMRD) and steroid-responsive meningitis-arteritis (SRMA). Fine mapping with twice as many dogs validated these loci. Our results indicate that the homogeneity of strong genetic risk factors within dog breeds allows multigenic disorders to be mapped with fewer than 100 cases and 100 controls, making dogs an excellent model in which to identify pathways involved in human complex diseases.
Molecular Imaging of Neuropsychiatric Symptoms in Alzheimer’s and Parkinson’s disease
Hirao, Kentaro; Pontone, Gregory M.; Smith, Gwenn S.
2015-01-01
Neuropsychiatric symptoms (NPS) are very common in neurodegenerative diseases and are a major contributor to disability and caregiver burden. There is accumulating evidence that NPS may be a prodrome of neurodegenerative diseases and are associated with functional decline. The medications used to treat these symptoms in younger patients are not very effective in patients with neurodegenerative disease and may have serious side effects. An understanding of the neurobiology of NPS is critical for the development of more effective intervention strategies. Targeting these symptoms may also have implications for prevention of cognitive or motor decline. Molecular brain imaging represents a bridge between basic and clinical observations and provides many opportunities for translation from animal models and human post-mortem studies to in vivo human studies. Molecular brain imaging studies in Alzheimer’s disease (AD) and Parkinson’s disease (PD) are reviewed with a primary focus on positron emission tomography studies of NPS. Future directions for the field of molecular imaging in AD and PD to understand the neurobiology of NPS will be discussed. PMID:25446948
Sirugo, Giorgio; Hennig, Branwen J; Adeyemo, Adebowale A; Matimba, Alice; Newport, Melanie J; Ibrahim, Muntaser E; Ryckman, Kelli K; Tacconelli, Alessandra; Mariani-Costantini, Renato; Novelli, Giuseppe; Soodyall, Himla; Rotimi, Charles N; Ramesar, Raj S; Tishkoff, Sarah A; Williams, Scott M
2008-07-01
Africa is the ultimate source of modern humans and as such harbors more genetic variation than any other continent. For this reason, studies of the patterns of genetic variation in African populations are crucial to understanding how genes affect phenotypic variation, including disease predisposition. In addition, the patterns of extant genetic variation in Africa are important for understanding how genetic variation affects infectious diseases that are a major problem in Africa, such as malaria, tuberculosis, schistosomiasis, and HIV/AIDS. Therefore, elucidating the role that genetic susceptibility to infectious diseases plays is critical to improving the health of people in Africa. It is also of note that recent and ongoing social and cultural changes in sub-Saharan Africa have increased the prevalence of non-communicable diseases that will also require genetic analyses to improve disease prevention and treatment. In this review we give special attention to many of the past and ongoing studies, emphasizing those in Sub-Saharan Africans that address the role of genetic variation in human disease.
Human organoid cultures: transformative new tools for human virus studies.
Ramani, Sasirekha; Crawford, Sue E; Blutt, Sarah E; Estes, Mary K
2018-04-01
Studies of human infectious diseases have been limited by the paucity of functional models that mimic normal human physiology and pathophysiology. Recent advances in the development of multicellular, physiologically active organotypic cultures produced from embryonic and pluripotent stem cells, as well as from stem cells isolated from biopsies and surgical specimens are allowing unprecedented new studies and discoveries about host-microbe interactions. Here, we summarize recent developments in the use of organoids for studying human viral pathogens, including intestinal infections with human rotavirus, norovirus, enteroviruses and adenoviruses (intestinal organoids and enteroids), neuronal infections with Zika virus (cerebral organoids) and respiratory infections with respiratory syncytial virus in (lung bud organoids). Biologic discovery of host-specific genetic and epigenetic factors affecting infection, and responses to infection that lead to disease are possible with the use of organoid cultures. Continued development to increase the complexity of these cultures by including components of the normal host tissue microenvironment such as immune cells, blood vessels and microbiome, will facilitate studies on human viral pathogenesis, and advance the development of platforms for pre-clinical evaluation of vaccines, antivirals and therapeutics. Copyright © 2018 Elsevier B.V. All rights reserved.
MACF1, versatility in tissue-specific function and in human disease.
Hu, Lifang; Xiao, Yunyun; Xiong, Zhipeng; Zhao, Fan; Yin, Chong; Zhang, Yan; Su, Peihong; Li, Dijie; Chen, Zhihao; Ma, Xiaoli; Zhang, Ge; Qian, Airong
2017-09-01
Spectraplakins are a family of evolutionarily conserved gigantic proteins and play critical roles in many cytoskeleton-related processes. Microtubule actin crosslinking factor 1 (MACF1) is one of the most versatile spectraplakin with multiple isoforms. As a broadly expressed mammalian spectraplakin, MACF1 is important in maintaining normal functions of many tissues. The loss-of-function studies using knockout mouse models reveal the pivotal roles of MACF1 in embryo development, skin integrity maintenance, neural development, bone formation, and colonic paracellular permeability. Mutation in the human MACF1 gene causes a novel myopathy genetic disease. In addition, abnormal expression of MACF1 is associated with schizophrenia, Parkinson's disease, cancer and osteoporosis. This demonstrates the crucial roles of MACF1 in physiology and pathology. Here, we review the research advances of MACF1's roles in specific tissue and in human diseases, providing the perspectives of MACF1 for future studies. Copyright © 2017. Published by Elsevier Ltd.
Causality in medicine: the case of tumours and viruses.
Vonka, V
2000-01-01
Clarification of the aetiology of chronic human diseases such as atherosclerosis or cancer is one of the dominant topics in contemporary medical research. It is believed that identification of the causal factors will enable more efficient prevention and diagnosis of these diseases and, in some instances, also permit more effective therapy. The task is difficult because of the multistep and multifactorial origin of these diseases. A special case in contemporary aetiological studies is definition of the role of viruses in the pathogenesis of human cancer. Virus-associated cancer develops only in a small minority of infected subjects, which implies that, if the virus does play a role in the pathogenesis of the malignancy, other factors must also be involved. In this paper the author attempts to review the present methodological approaches to aetiological studies of chronic diseases, discusses the role of criteria for identifying causal relationships and proposes guidelines that might help to determine the role of viruses in human cancer. PMID:11205344
GuLF Study: The Gulf Long-Term Follow-Up Study
... Environmental Influences on Child Health Outcomes (ECHO) Exposure Biology Global Environmental Health Gulf Oil Spill Response Efforts ... to investigate the interplay between environmental exposures, human biology, genetics, and common diseases to help prevent disease ...
Role of visceral adipose tissue in aging.
Huffman, Derek M; Barzilai, Nir
2009-10-01
Visceral fat (VF) accretion is a hallmark of aging in humans. Epidemiologic studies have implicated abdominal obesity as a major risk factor for insulin resistance, type 2 diabetes, cardiovascular disease, metabolic syndrome and death. Studies utilizing novel rodent models of visceral obesity and surgical strategies in humans have been undertaken to determine if subcutaneous (SC) abdominal or VF are causally linked to age-related diseases. Specific depletion or expansion of the VF depot using genetic or surgical tools in rodents has been shown to have direct effects on disease risk. In contrast, surgically removing large quantities of SC fat does not consistently improve metabolic parameters in humans or rodents, while benefits were observed with SC fat expansion in mice, suggesting that SC fat accrual is not an important contributor to metabolic decline. There is also compelling evidence in humans that abdominal obesity is a stronger risk factor for mortality risk than general obesity. Likewise, we have shown that surgical removal of VF improves mean and maximum lifespan in rats, providing the first causal evidence that VF depletion may be an important underlying cause of improved lifespan with caloric restriction. This review provides both corollary and causal evidence for the importance of accounting for body fat distribution, and specifically VF, when assessing disease and mortality risk. Given the hazards of VF accumulation on health, treatment strategies aimed at selectively depleting VF should be considered as a viable tool to effectively reduce disease risk in humans.
Bilbo, Staci D; Wray, Gregory A; Perkins, Sarah E; Parker, William
2011-10-01
A wide range of hyperimmune-associated diseases plague post-industrial society, with a prevalence and impact that is staggering. Strong evidence points towards a loss of helminths from the ecosystem of the human body (the human biome) as the most important factor in this epidemic. Helminths, intestinal worms which are largely eradicated by elements of post-industrial culture including toilets and water treatment facilities, have an otherwise ubiquitous presence in vertebrates, and have co-evolved with the immune system. Not only do helminths discourage allergic and autoimmune reactions by diverting the immune system away from these pathologic processes and stimulating host regulatory networks, helminths release a variety of factors which down-modulate the immune system. A comprehensive view of hyperimmune-related disease based on studies in immunology, parasitology, evolutionary biology, epidemiology, and neurobiology indicates that the effects of biome depletion may not yet be fully realized, and may have an unexpectedly broad impact on many areas of human biology, including cognition. Fortunately, colonization with helminths results in a cure of numerous autoimmune and allergic diseases in laboratory rodents, and clinical studies in humans have indicated their utility for treatment of both multiple sclerosis and inflammatory bowel disease. Based on these considerations, commitment of considerable resources toward understanding the effects of "biome depletion" and systematically evaluating the most effective approach toward biome reconstitution is strongly encouraged. Copyright © 2011 Elsevier Ltd. All rights reserved.
Herzog, Sereina A; Blaizot, Stéphanie; Hens, Niel
2017-12-18
Mathematical models offer the possibility to investigate the infectious disease dynamics over time and may help in informing design of studies. A systematic review was performed in order to determine to what extent mathematical models have been incorporated into the process of planning studies and hence inform study design for infectious diseases transmitted between humans and/or animals. We searched Ovid Medline and two trial registry platforms (Cochrane, WHO) using search terms related to infection, mathematical model, and study design from the earliest dates to October 2016. Eligible publications and registered trials included mathematical models (compartmental, individual-based, or Markov) which were described and used to inform the design of infectious disease studies. We extracted information about the investigated infection, population, model characteristics, and study design. We identified 28 unique publications but no registered trials. Focusing on compartmental and individual-based models we found 12 observational/surveillance studies and 11 clinical trials. Infections studied were equally animal and human infectious diseases for the observational/surveillance studies, while all but one between humans for clinical trials. The mathematical models were used to inform, amongst other things, the required sample size (n = 16), the statistical power (n = 9), the frequency at which samples should be taken (n = 6), and from whom (n = 6). Despite the fact that mathematical models have been advocated to be used at the planning stage of studies or surveillance systems, they are used scarcely. With only one exception, the publications described theoretical studies, hence, not being utilised in real studies.
Hygiene pests as vectors for parasitic and bacterial diseases in humans
Cholewiński, Marcin; Derda, Monika; Hadaś, Edward
Diseases transmitted by hygiene pests remain a very serious problem in spite of fast developments in science and medicine. The present study focuses on pests carrying germs that pose a threat to human health and life. The quick pace of life, the need to satisfy human needs and mass production of food sometimes result in flagrant sanitary, hygienic and epidemiological deficiencies. These irregularities are conducive to hygiene pests, which, when not held in check by proper control measures, may act more efficiently and quickly.
On the role of autophagy in human diseases: a gender perspective
Lista, Pasquale; Straface, Elisabetta; Brunelleschi, Sandra; Franconi, Flavia; Malorni, Walter
2011-01-01
Abstract Cytopathological features of cells from males and females, i.e. XX and XY isolated cells, have been demonstrated to represent a key variable in the mechanism underlying gender disparity in human diseases. Major insights came from the studies of gender differences in cell fate, e.g. in apoptotic susceptibility. We report here some novel insights recently emerged from literature that are referred as to a cytoprotection mechanism by which cells recycle cytoplasm and dispose of excess or defective organelles, i.e. autophagy. Autophagy and related genes have first been identified in yeast. Orthologue genes have subsequently been found in other organisms, including human beings. This stimulated the research in the field and, thanks to the use of molecular genetics and cell biology in different model systems, autophagy gained the attention of several research groups operating to analyse the pathogenetic mechanisms of human diseases. It remains unclear, however, whether autophagy can exert a protective effect or instead contribute to the pathogenesis of important human diseases. On the basis of the growing importance of sex/gender as key determinant of human pathology and of the known differences between males and females in the onset, progression, drug susceptibility and outcome of a plethora of diseases, the idea that autophagy could represent key and critical factor should be taken into account. In the review, we summarize our current knowledge about the role of autophagy in some paradigmatic human diseases (cancer, neurodegenerative, autoimmune, cardiovascular) and the role of ‘cell sex’ differences in this context. PMID:21362130
Effects of exercise training on the cardiovascular system: pharmacological approaches.
Zanesco, Angelina; Antunes, Edson
2007-06-01
Physical exercise promotes beneficial health effects by preventing or reducing the deleterious effects of pathological conditions, such as arterial hypertension, coronary artery disease, atherosclerosis, diabetes mellitus, osteoporosis, Parkinson's disease, and Alzheimer disease. Human movement studies are becoming an emerging science in the epidemiological area and public health. A great number of studies have shown that exercise training, in general, reduces sympathetic activity and/or increases parasympathetic tonus either in human or laboratory animals. Alterations in autonomic nervous system have been correlated with reduction in heart rate (resting bradycardia) and blood pressure, either in normotensive or hypertensive subjects. However, the underlying mechanisms by which physical exercise produce bradycardia and reduces blood pressure has not been fully understood. Pharmacological studies have particularly contributed to the comprehension of the role of receptor and transduction signaling pathways on the heart and blood vessels in response to exercise training. This review summarizes and examines the data from studies using animal models and human to determine the effect of exercise training on the cardiovascular system.
Conditional Lineage Ablation to Model Human Diseases
NASA Astrophysics Data System (ADS)
Lee, Paul; Morley, Gregory; Huang, Qian; Fischer, Avi; Seiler, Stephanie; Horner, James W.; Factor, Stephen; Vaidya, Dhananjay; Jalife, Jose; Fishman, Glenn I.
1998-09-01
Cell loss contributes to the pathogenesis of many inherited and acquired human diseases. We have developed a system to conditionally ablate cells of any lineage and developmental stage in the mouse by regulated expression of the diphtheria toxin A (DTA) gene by using tetracycline-responsive promoters. As an example of this approach, we targeted expression of DTA to the hearts of adult mice to model structural abnormalities commonly observed in human cardiomyopathies. Induction of DTA expression resulted in cell loss, fibrosis, and chamber dilatation. As in many human cardiomyopathies, transgenic mice developed spontaneous arrhythmias in vivo, and programmed electrical stimulation of isolated-perfused transgenic hearts demonstrated a strikingly high incidence of spontaneous and inducible ventricular tachycardia. Affected mice showed marked perturbations of cardiac gap junction channel expression and localization, including a subset with disorganized epicardial activation patterns as revealed by optical action potential mapping. These studies provide important insights into mechanisms of arrhythmogenesis and suggest that conditional lineage ablation may have wide applicability for studies of disease pathogenesis.
Regulatory T cells in human disease and their potential for therapeutic manipulation
Taams, Leonie S; Palmer, Donald B; Akbar, Arne N; Robinson, Douglas S; Brown, Zarin; Hawrylowicz, Catherine M
2006-01-01
Regulatory T cells are proposed to play a central role in the maintenance of immunological tolerance in the periphery, and studies in many animal models demonstrate their capacity to inhibit inflammatory pathologies in vivo. At a recent meeting [Clinical Application of Regulatory T Cells, 7–8 April 2005, Horsham, UK, organized by the authors of this review, in collaboration with the British Society for Immunology and Novartis] evidence was discussed that certain human autoimmune, infectious and allergic diseases are associated with impaired regulatory T-cell function. In contrast, evidence from several human cancer studies and some infections indicates that regulatory T cells may impair the development of protective immunity. Importantly, certain therapies, both those that act non-specifically to reduce inflammation and antigen-specific immunotherapies, may induce or enhance regulatory T-cell function. The purpose of this review was to summarize current knowledge on regulatory T-cell function in human disease, and to assess critically how this can be tailored to suit the therapeutic manipulation of immunity. PMID:16630018
The economic impact of pig-associated parasitic zoonosis in Northern Lao PDR.
Choudhury, Adnan Ali Khan; Conlan, James V; Racloz, Vanessa Nadine; Reid, Simon Andrew; Blacksell, Stuart D; Fenwick, Stanley G; Thompson, Andrew R C; Khamlome, Boualam; Vongxay, Khamphouth; Whittaker, Maxine
2013-03-01
The parasitic zoonoses human cysticercosis (Taenia solium), taeniasis (other Taenia species) and trichinellosis (Trichinella species) are endemic in the Lao People's Democratic Republic (Lao PDR). This study was designed to quantify the economic burden pig-associated zoonotic disease pose in Lao PDR. In particular, the analysis included estimation of the losses in the pork industry as well as losses due to human illness and lost productivity. A Markov-probability based decision-tree model was chosen to form the basis of the calculations to estimate the economic and public health impacts of taeniasis, trichinellosis and cysticercosis. Two different decision trees were run simultaneously on the model's human cohort. A third decision tree simulated the potential impacts on pig production. The human capital method was used to estimate productivity loss. The results found varied significantly depending on the rate of hospitalisation due to neurocysticerosis. This study is the first systematic estimate of the economic impact of pig-associated zoonotic diseases in Lao PDR that demonstrates the significance of the diseases in that country.
GIS and Remote Sensing Use in the Exploration of Lyme Disease Epidemiology
Ozdenerol, Esra
2015-01-01
Given the relatively recent recognition of Lyme disease (LD) by CDC in 1990 as a nationally notifiable infectious condition, the rise of reported human cases every year argues for a better understanding of its geographic scope. The aim of this inquiry was to explore research conducted on spatiotemporal patterns of Lyme disease in order to identify strategies for implementing vector and reservoir-targeted interventions. The focus of this review is on the use of GIS-based methods to study populations of the reservoir hosts, vectors and humans in addition to the spatiotemporal interactions between these populations. New GIS-based studies are monitoring occurrence at the macro-level, and helping pinpoint areas of occurrence at the micro-level, where spread within populations of reservoir hosts, clusters of infected ticks and tick to human transmission may be better understood. PMID:26633445
Concise Review: Kidney Generation with Human Pluripotent Stem Cells.
Morizane, Ryuji; Miyoshi, Tomoya; Bonventre, Joseph V
2017-11-01
Chronic kidney disease (CKD) is a worldwide health care problem, resulting in increased cardiovascular mortality and often leading to end-stage kidney disease, where patients require kidney replacement therapies such as hemodialysis or kidney transplantation. Loss of functional nephrons contributes to the progression of CKD, which can be attenuated but not reversed due to inability to generate new nephrons in human adult kidneys. Human pluripotent stem cells (hPSCs), by virtue of their unlimited self-renewal and ability to differentiate into cells of all three embryonic germ layers, are attractive sources for kidney regenerative therapies. Recent advances in stem cell biology have identified key signals necessary to maintain stemness of human nephron progenitor cells (NPCs) in vitro, and led to establishment of protocols to generate NPCs and nephron epithelial cells from human fetal kidneys and hPSCs. Effective production of large amounts of human NPCs and kidney organoids will facilitate elucidation of developmental and pathobiological pathways, kidney disease modeling and drug screening as well as kidney regenerative therapies. We summarize the recent studies to induce NPCs and kidney cells from hPSCs, studies of NPC expansion from mouse and human embryonic kidneys, and discuss possible approaches in vivo to regenerate kidneys with cell therapies and the development of bioengineered kidneys. Stem Cells 2017;35:2209-2217. © 2017 AlphaMed Press.
Influence of complex childhood diseases on variation in growth and skeletal development.
Zemel, Babette S
2017-03-01
The study of human growth and skeletal development by human biologists is framed by the larger theoretical concerns regarding the underpinnings of population variation and human evolution. This unique perspective is directly relevant to the assessment of child health and well-being at the individual and group level, as well as the construction of growth charts. Environmental, behavioral (nutrition and physical activity), and disease-related factors can prevent attainment of full genetic potential for growth. Undernutrition is most often the cause of growth faltering and poor skeletal development. Disease related factors, such as malabsorption, inflammation, and immobility also have profound effects. These effects will be illustrated with examples from diseases such as cystic fibrosis, inflammatory bowel disease, and Down syndrome. The need for separate growth charts for children with genetic disorders is often controversial because of potential medical and/or nutritional complications associated with some disorders. Children with Alagille syndrome and Down syndrome will be used to illustrate the advantages and limitations of syndrome-specific charts. This overview of health and disease effects on growth and skeletal development provides insights into the plasticity of human growth and its sensitivity to overall health and well-being. © 2017 Wiley Periodicals, Inc.
Cardiovascular Disease and Cancer: Student Awareness Activities.
ERIC Educational Resources Information Center
Meyer, James H., Comp.
Awareness activities pertaining to cancer and cardiovascular disease are presented as a supplement for high school science classes. The exercises can be used to enrich units of study dealing with the circulatory system, the cell, or human diseases. Eight activities deal with the following topics: (1) cardiovascular disease risk factors; (2)…
Waddington, Claire S; Darton, Thomas C; Woodward, William E; Angus, Brian; Levine, Myron M; Pollard, Andrew J
2014-05-01
Typhoid infection causes considerable morbidity and mortality worldwide, particularly in settings where lack of clean water and inadequate sanitation facilitate disease spread through faecal-oral transmission. Improved understanding of the pathogenesis, immune control and microbiology of Salmonella Typhi infection can help accelerate the development of improved vaccines and diagnostic tests necessary for disease control. S. Typhi is a human-restricted pathogen; therefore animal models are limited in their relevance to human infection. During the latter half of the 20th century, induced human infection ("challenge") studies with S. Typhi were used effectively to assess quantitatively the human host response to challenge and to measure directly the efficacy of typhoid vaccines in preventing clinical illness. Here, the findings of these historic challenge studies are reviewed, highlighting the pivotal role that challenge studies have had in improving our understanding of the host-pathogen interaction, and illustrating issues relevant to modern typhoid challenge model design. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.
Rabaa, Maia A; Tue, Ngo Tri; Phuc, Tran My; Carrique-Mas, Juan; Saylors, Karen; Cotten, Matthew; Bryant, Juliet E; Nghia, Ho Dang Trung; Cuong, Nguyen Van; Pham, Hong Anh; Berto, Alessandra; Phat, Voong Vinh; Dung, Tran Thi Ngoc; Bao, Long Hoang; Hoa, Ngo Thi; Wertheim, Heiman; Nadjm, Behzad; Monagin, Corina; van Doorn, H Rogier; Rahman, Motiur; Tra, My Phan Vu; Campbell, James I; Boni, Maciej F; Tam, Pham Thi Thanh; van der Hoek, Lia; Simmonds, Peter; Rambaut, Andrew; Toan, Tran Khanh; Van Vinh Chau, Nguyen; Hien, Tran Tinh; Wolfe, Nathan; Farrar, Jeremy J; Thwaites, Guy; Kellam, Paul; Woolhouse, Mark E J; Baker, Stephen
2015-12-01
The effect of newly emerging or re-emerging infectious diseases of zoonotic origin in human populations can be potentially catastrophic, and large-scale investigations of such diseases are highly challenging. The monitoring of emergence events is subject to ascertainment bias, whether at the level of species discovery, emerging disease events, or disease outbreaks in human populations. Disease surveillance is generally performed post hoc, driven by a response to recent events and by the availability of detection and identification technologies. Additionally, the inventory of pathogens that exist in mammalian and other reservoirs is incomplete, and identifying those with the potential to cause disease in humans is rarely possible in advance. A major step in understanding the burden and diversity of zoonotic infections, the local behavioral and demographic risks of infection, and the risk of emergence of these pathogens in human populations is to establish surveillance networks in populations that maintain regular contact with diverse animal populations, and to simultaneously characterize pathogen diversity in human and animal populations. Vietnam has been an epicenter of disease emergence over the last decade, and practices at the human/animal interface may facilitate the likelihood of spillover of zoonotic pathogens into humans. To tackle the scientific issues surrounding the origins and emergence of zoonotic infections in Vietnam, we have established The Vietnam Initiative on Zoonotic Infections (VIZIONS). This countrywide project, in which several international institutions collaborate with Vietnamese organizations, is combining clinical data, epidemiology, high-throughput sequencing, and social sciences to address relevant one-health questions. Here, we describe the primary aims of the project, the infrastructure established to address our scientific questions, and the current status of the project. Our principal objective is to develop an integrated approach to the surveillance of pathogens circulating in both human and animal populations and assess how frequently they are exchanged. This infrastructure will facilitate systematic investigations of pathogen ecology and evolution, enhance understanding of viral cross-species transmission events, and identify relevant risk factors and drivers of zoonotic disease emergence.
Cao, Lei; Tan, Lan; Jiang, Teng; Zhu, Xi-Chen; Yu, Jin-Tai
2015-08-01
Although most neurodegenerative diseases have been closely related to aberrant accumulation of aggregation-prone proteins in neurons, understanding their pathogenesis remains incomplete, and there is no treatment to delay the onset or slow the progression of many neurodegenerative diseases. The availability of induced pluripotent stem cells (iPSCs) in recapitulating the phenotypes of several late-onset neurodegenerative diseases marks the new era in in vitro modeling. The iPSC collection represents a unique and well-characterized resource to elucidate disease mechanisms in these diseases and provides a novel human stem cell platform for screening new candidate therapeutics. Modeling human diseases using iPSCs has created novel opportunities for both mechanistic studies as well as for the discovery of new disease therapies. In this review, we introduce iPSC-based disease modeling in neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. In addition, we discuss the implementation of iPSCs in drug discovery associated with some new techniques.
Network Medicine: From Cellular Networks to the Human Diseasome
NASA Astrophysics Data System (ADS)
Barabasi, Albert-Laszlo
2014-03-01
Given the functional interdependencies between the molecular components in a human cell, a disease is rarely a consequence of an abnormality in a single gene, but reflects the perturbations of the complex intracellular network. The tools of network science offer a platform to explore systematically not only the molecular complexity of a particular disease, leading to the identification of disease modules and pathways, but also the molecular relationships between apparently distinct (patho)phenotypes. Advances in this direction not only enrich our understanding of complex systems, but are also essential to identify new disease genes, to uncover the biological significance of disease-associated mutations identified by genome-wide association studies and full genome sequencing, and to identify drug targets and biomarkers for complex diseases.
Chen, Rong; Corona, Erik; Sikora, Martin; Dudley, Joel T.; Morgan, Alex A.; Moreno-Estrada, Andres; Nilsen, Geoffrey B.; Ruau, David; Lincoln, Stephen E.; Bustamante, Carlos D.; Butte, Atul J.
2012-01-01
Many disease-susceptible SNPs exhibit significant disparity in ancestral and derived allele frequencies across worldwide populations. While previous studies have examined population differentiation of alleles at specific SNPs, global ethnic patterns of ensembles of disease risk alleles across human diseases are unexamined. To examine these patterns, we manually curated ethnic disease association data from 5,065 papers on human genetic studies representing 1,495 diseases, recording the precise risk alleles and their measured population frequencies and estimated effect sizes. We systematically compared the population frequencies of cross-ethnic risk alleles for each disease across 1,397 individuals from 11 HapMap populations, 1,064 individuals from 53 HGDP populations, and 49 individuals with whole-genome sequences from 10 populations. Type 2 diabetes (T2D) demonstrated extreme directional differentiation of risk allele frequencies across human populations, compared with null distributions of European-frequency matched control genomic alleles and risk alleles for other diseases. Most T2D risk alleles share a consistent pattern of decreasing frequencies along human migration into East Asia. Furthermore, we show that these patterns contribute to disparities in predicted genetic risk across 1,397 HapMap individuals, T2D genetic risk being consistently higher for individuals in the African populations and lower in the Asian populations, irrespective of the ethnicity considered in the initial discovery of risk alleles. We observed a similar pattern in the distribution of T2D Genetic Risk Scores, which are associated with an increased risk of developing diabetes in the Diabetes Prevention Program cohort, for the same individuals. This disparity may be attributable to the promotion of energy storage and usage appropriate to environments and inconsistent energy intake. Our results indicate that the differential frequencies of T2D risk alleles may contribute to the observed disparity in T2D incidence rates across ethnic populations. PMID:22511877
ERIC Educational Resources Information Center
Kershaw, Trace S.; Ethier, Kathleen A.; Milan, Stephanie; Lewis, Jessica B.; Niccolai, Linda M.; Meade, Christina; Ickovics, Jeannette R.
2005-01-01
Risky sexual behavior can lead to pregnancy, sexually transmitted diseases (STDs), and human immunodeficiency virus (HIV). Our study of 300 adolescent females takes an integrative approach by incorporating these multiple outcomes to assess the influence of risk perceptions on sexual behavior by (1) identifying subgroups of perceived susceptibility…
Endocrinology Meets Metabolomics: Achievements, Pitfalls, and Challenges.
Tokarz, Janina; Haid, Mark; Cecil, Alexander; Prehn, Cornelia; Artati, Anna; Möller, Gabriele; Adamski, Jerzy
2017-10-01
The metabolome, although very dynamic, is sufficiently stable to provide specific quantitative traits related to health and disease. Metabolomics requires balanced use of state-of-the-art study design, chemical analytics, biostatistics, and bioinformatics to deliver meaningful answers to contemporary questions in human disease research. The technology is now frequently employed for biomarker discovery and for elucidating the mechanisms underlying endocrine-related diseases. Metabolomics has also enriched genome-wide association studies (GWAS) in this area by providing functional data. The contributions of rare genetic variants to metabolome variance and to the human phenotype have been underestimated until now. Copyright © 2017 Elsevier Ltd. All rights reserved.
Hwang, Jusun; Lee, Kyunglee; Walsh, Daniel P.; Kim, SangWha; Sleeman, Jonathan M.; Lee, Hang
2018-01-01
Wildlife-associated diseases and pathogens have increased in importance; however, management of a large number of diseases and diversity of hosts is prohibitively expensive. Thus, the determination of priority wildlife pathogens and risk factors for disease emergence is warranted. We used an online questionnaire survey to assess release and exposure risks, and consequences of wildlife-associated diseases and pathogens in the Republic of Korea (ROK). We also surveyed opinions on pathways for disease exposure, and risk factors for disease emergence and spread. For the assessment of risk, we employed a two-tiered, statistical K-means clustering algorithm to group diseases into three levels (high, medium and low) of perceived risk based on release and exposure risks, societal consequences and the level of uncertainty of the experts’ opinions. To examine the experts’ perceived risk of routes of introduction of pathogens and disease amplification and spread, we used a Bayesian, multivariate normal order-statistics model. Six diseases or pathogens, including four livestock and two wildlife diseases, were identified as having high risk with low uncertainty. Similarly, 13 diseases were characterized as having high risk with medium uncertainty with three of these attributed to livestock, six associated with human disease, and the remainder having the potential to affect human, livestock and wildlife (i.e., One Health). Lastly, four diseases were described as high risk with high certainty, and were associated solely with fish diseases. Experts identified migration of wildlife, international human movement and illegal importation of wildlife as the three routes posing the greatest risk of pathogen introduction into ROK. Proximity of humans, livestock and wildlife was the most significant risk factor for promoting the spread of wildlife-associated diseases and pathogens, followed by high density of livestock populations, habitat loss and environmental degradation, and climate change. This study provides useful information to decision makers responsible for allocating resources to address disease risks. This approach provided a rapid, cost-effective method of risk assessment of wildlife-associated diseases and pathogens for which the published literature is sparse.
Analysis of Craniocardiac Malformations in Xenopus using Optical Coherence Tomography
Deniz, Engin; Jonas, Stephan; Hooper, Michael; N. Griffin, John; Choma, Michael A.; Khokha, Mustafa K.
2017-01-01
Birth defects affect 3% of children in the United States. Among the birth defects, congenital heart disease and craniofacial malformations are major causes of mortality and morbidity. Unfortunately, the genetic mechanisms underlying craniocardiac malformations remain largely uncharacterized. To address this, human genomic studies are identifying sequence variations in patients, resulting in numerous candidate genes. However, the molecular mechanisms of pathogenesis for most candidate genes are unknown. Therefore, there is a need for functional analyses in rapid and efficient animal models of human disease. Here, we coupled the frog Xenopus tropicalis with Optical Coherence Tomography (OCT) to create a fast and efficient system for testing craniocardiac candidate genes. OCT can image cross-sections of microscopic structures in vivo at resolutions approaching histology. Here, we identify optimal OCT imaging planes to visualize and quantitate Xenopus heart and facial structures establishing normative data. Next we evaluate known human congenital heart diseases: cardiomyopathy and heterotaxy. Finally, we examine craniofacial defects by a known human teratogen, cyclopamine. We recapitulate human phenotypes readily and quantify the functional and structural defects. Using this approach, we can quickly test human craniocardiac candidate genes for phenocopy as a critical first step towards understanding disease mechanisms of the candidate genes. PMID:28195132
Epigenetic effects of human breast milk.
Verduci, Elvira; Banderali, Giuseppe; Barberi, Salvatore; Radaelli, Giovanni; Lops, Alessandra; Betti, Federica; Riva, Enrica; Giovannini, Marcello
2014-04-24
A current aim of nutrigenetics is to personalize nutritional practices according to genetic variations that influence the way of digestion and metabolism of nutrients introduced with the diet. Nutritional epigenetics concerns knowledge about the effects of nutrients on gene expression. Nutrition in early life or in critical periods of development, may have a role in modulating gene expression, and, therefore, have later effects on health. Human breast milk is well-known for its ability in preventing several acute and chronic diseases. Indeed, breastfed children may have lower risk of neonatal necrotizing enterocolitis, infectious diseases, and also of non-communicable diseases, such as obesity and related-disorders. Beneficial effects of human breast milk on health may be associated in part with its peculiar components, possible also via epigenetic processes. This paper discusses about presumed epigenetic effects of human breast milk and components. While evidence suggests that a direct relationship may exist of some components of human breast milk with epigenetic changes, the mechanisms involved are still unclear. Studies have to be conducted to clarify the actual role of human breast milk on genetic expression, in particular when linked to the risk of non-communicable diseases, to potentially benefit the infant's health and his later life.
Strain hypothesis of Toxoplasma gondii infection on the outcome of human diseases
Xiao, Jianchun; Yolken, Robert H.
2015-01-01
The intracellular protozoan Toxoplasma gondii is an exceptionally successful food- and waterborne parasite that infects approximately 1 billion people worldwide. Genotyping of T. gondii isolates from all continents revealed a complex population structure. Recent research supports the notion that T. gondii genotype may be associated with disease severity. Here, we (1) discuss molecular and serological approaches for designation of T. gondii strain type, (2) overview the literatures on the association of T. gondii strain type and the outcome of human disease, and (3) explore possible mechanisms underlying these strain specific pathology and severity of human toxoplasmosis. Although no final conclusions can be drawn, it is clear that virulent strains (e. g. strains containing type I or atypical alleles) are significantly more often associated with increased frequency and severity of human toxoplasmosis. The significance of highly virulent strains can cause severe diseases in immunocompetent patients and might implicated in brain disorders such as schizophrenia should led to reconsideration of toxoplasmosis. Further studies that combine parasite strain typing and human factor analysis (e.g. immune status and genetic background) are required for better understanding of human susceptibility or resistance to toxoplasmosis. PMID:25600911
Gurda, Brittney L.; Bradbury, Allison M.; Vite, Charles H.
2017-01-01
For many lethal or debilitating genetic disorders in patients there are no satisfactory therapies. Several barriers exist that hinder the developments of effective therapies including the limited availability of clinically relevant animal models that faithfully recapitulate human genetic disease. In 1974, the Referral Center for Animal Models of Human Genetic Disease (RCAM) was established by Dr. Donald F. Patterson and continued by Dr. Mark E. Haskins at the University of Pennsylvania with the mission to discover, understand, treat, and maintain breeding colonies of naturally occurring hereditary disorders in dogs and cats that are orthologous to those found in human patients. Although non-human primates, sheep, and pig models are also available within the medical community, naturally occurring diseases are rarely identified in non-human primates, and the vast behavioral, clinicopathological, physiological, and anatomical knowledge available regarding dogs and cats far surpasses what is available in ovine and porcine species. The canine and feline models that are maintained at RCAM are presented here with a focus on preclinical therapy data. Clinical studies that have been generated from preclinical work in these models are also presented. PMID:28955181
The role of one health in wildlife conservation: a challenge and opportunity.
Buttke, Danielle E; Decker, Daniel J; Wild, Margaret A
2015-01-01
Numerous emerging infectious diseases (EIDs) have arisen from or been identified in wildlife, with health implications for both humans and wildlife. In the practice of wildlife conservation, to date most attention has focused on the threat EIDs pose to biodiversity and wildlife population viability. In the popular media and public eye, however, wildlife is often only portrayed as the cause of EIDs and resultant human health impacts. There is little coverage on the roles of human-induced habitat destruction or wildlife population stress in EID spread, nor the negative impacts of disease on wildlife. Here, we focus on a little-studied and seldom discussed concern: how real and perceived risks of wildlife-associated diseases for human and companion animal health might erode public support for wildlife conservation. We believe that wildlife-associated EIDs and public perceptions of these risks are among the most important threats to wildlife conservation. In light of this concern, we explore the challenges and opportunities for addressing this situation in a One Health context that emphasizes the interdisciplinary collaboration and the inextricable nature of human and animal health and disease.
Indoor mold, toxigenic fungi, and Stachybotrys chartarum: infectious disease perspective.
Kuhn, D M; Ghannoum, M A
2003-01-01
Damp buildings often have a moldy smell or obvious mold growth; some molds are human pathogens. This has caused concern regarding health effects of moldy indoor environments and has resulted in many studies of moisture- and mold-damaged buildings. Recently, there have been reports of severe illness as a result of indoor mold exposure, particularly due to Stachybotrys chartarum. While many authors describe a direct relationship between fungal contamination and illness, close examination of the literature reveals a confusing picture. Here, we review the evidence regarding indoor mold exposure and mycotoxicosis, with an emphasis on S. chartarum. We also examine possible end-organ effects, including pulmonary, immunologic, neurologic, and oncologic disorders. We discuss the Cleveland infant idiopathic pulmonary hemorrhage reports in detail, since they provided important impetus for concerns about Stachybotrys. Some valid concerns exist regarding the relationship between indoor mold exposure and human disease. Review of the literature reveals certain fungus-disease associations in humans, including ergotism (Claviceps species), alimentary toxic aleukia (Fusarium), and liver disease (Aspergillys). While many papers suggest a similar relationship between Stachybotrys and human disease, the studies nearly uniformly suffer from significant methodological flaws, making their findings inconclusive. As a result, we have not found well-substantiated supportive evidence of serious illness due to Stachybotrys exposure in the contemporary environment. To address issues of indoor mold-related illness, there is an urgent need for studies using objective markers of illness, relevant animal models, proper epidemiologic techniques, and examination of confounding factors.
Indoor Mold, Toxigenic Fungi, and Stachybotrys chartarum: Infectious Disease Perspective
Kuhn, D. M.; Ghannoum, M. A.
2003-01-01
Damp buildings often have a moldy smell or obvious mold growth; some molds are human pathogens. This has caused concern regarding health effects of moldy indoor environments and has resulted in many studies of moisture- and mold-damaged buildings. Recently, there have been reports of severe illness as a result of indoor mold exposure, particularly due to Stachybotrys chartarum. While many authors describe a direct relationship between fungal contamination and illness, close examination of the literature reveals a confusing picture. Here, we review the evidence regarding indoor mold exposure and mycotoxicosis, with an emphasis on S. chartarum. We also examine possible end-organ effects, including pulmonary, immunologic, neurologic, and oncologic disorders. We discuss the Cleveland infant idiopathic pulmonary hemorrhage reports in detail, since they provided important impetus for concerns about Stachybotrys. Some valid concerns exist regarding the relationship between indoor mold exposure and human disease. Review of the literature reveals certain fungus-disease associations in humans, including ergotism (Claviceps species), alimentary toxic aleukia (Fusarium), and liver disease (Aspergillys). While many papers suggest a similar relationship between Stachybotrys and human disease, the studies nearly uniformly suffer from significant methodological flaws, making their findings inconclusive. As a result, we have not found well-substantiated supportive evidence of serious illness due to Stachybotrys exposure in the contemporary environment. To address issues of indoor mold-related illness, there is an urgent need for studies using objective markers of illness, relevant animal models, proper epidemiologic techniques, and examination of confounding factors. PMID:12525430
Using Zebrafish to Test the Genetic Basis of Human Craniofacial Diseases.
Machado, R Grecco; Eames, B Frank
2017-10-01
Genome-wide association studies (GWASs) opened an innovative and productive avenue to investigate the molecular basis of human craniofacial disease. However, GWASs identify candidate genes only; they do not prove that any particular one is the functional villain underlying disease or just an unlucky genomic bystander. Genetic manipulation of animal models is the best approach to reveal which genetic loci identified from human GWASs are functionally related to specific diseases. The purpose of this review is to discuss the potential of zebrafish to resolve which candidate genetic loci are mechanistic drivers of craniofacial diseases. Many anatomic, embryonic, and genetic features of craniofacial development are conserved among zebrafish and mammals, making zebrafish a good model of craniofacial diseases. Also, the ability to manipulate gene function in zebrafish was greatly expanded over the past 20 y, enabling systems such as Gateway Tol2 and CRISPR-Cas9 to test gain- and loss-of-function alleles identified from human GWASs in coding and noncoding regions of DNA. With the optimization of genetic editing methods, large numbers of candidate genes can be efficiently interrogated. Finding the functional villains that underlie diseases will permit new treatments and prevention strategies and will increase understanding of how gene pathways operate during normal development.
WormQTLHD—a web database for linking human disease to natural variation data in C. elegans
van der Velde, K. Joeri; de Haan, Mark; Zych, Konrad; Arends, Danny; Snoek, L. Basten; Kammenga, Jan E.; Jansen, Ritsert C.; Swertz, Morris A.; Li, Yang
2014-01-01
Interactions between proteins are highly conserved across species. As a result, the molecular basis of multiple diseases affecting humans can be studied in model organisms that offer many alternative experimental opportunities. One such organism—Caenorhabditis elegans—has been used to produce much molecular quantitative genetics and systems biology data over the past decade. We present WormQTLHD (Human Disease), a database that quantitatively and systematically links expression Quantitative Trait Loci (eQTL) findings in C. elegans to gene–disease associations in man. WormQTLHD, available online at http://www.wormqtl-hd.org, is a user-friendly set of tools to reveal functionally coherent, evolutionary conserved gene networks. These can be used to predict novel gene-to-gene associations and the functions of genes underlying the disease of interest. We created a new database that links C. elegans eQTL data sets to human diseases (34 337 gene–disease associations from OMIM, DGA, GWAS Central and NHGRI GWAS Catalogue) based on overlapping sets of orthologous genes associated to phenotypes in these two species. We utilized QTL results, high-throughput molecular phenotypes, classical phenotypes and genotype data covering different developmental stages and environments from WormQTL database. All software is available as open source, built on MOLGENIS and xQTL workbench. PMID:24217915
WormQTLHD--a web database for linking human disease to natural variation data in C. elegans.
van der Velde, K Joeri; de Haan, Mark; Zych, Konrad; Arends, Danny; Snoek, L Basten; Kammenga, Jan E; Jansen, Ritsert C; Swertz, Morris A; Li, Yang
2014-01-01
Interactions between proteins are highly conserved across species. As a result, the molecular basis of multiple diseases affecting humans can be studied in model organisms that offer many alternative experimental opportunities. One such organism-Caenorhabditis elegans-has been used to produce much molecular quantitative genetics and systems biology data over the past decade. We present WormQTL(HD) (Human Disease), a database that quantitatively and systematically links expression Quantitative Trait Loci (eQTL) findings in C. elegans to gene-disease associations in man. WormQTL(HD), available online at http://www.wormqtl-hd.org, is a user-friendly set of tools to reveal functionally coherent, evolutionary conserved gene networks. These can be used to predict novel gene-to-gene associations and the functions of genes underlying the disease of interest. We created a new database that links C. elegans eQTL data sets to human diseases (34 337 gene-disease associations from OMIM, DGA, GWAS Central and NHGRI GWAS Catalogue) based on overlapping sets of orthologous genes associated to phenotypes in these two species. We utilized QTL results, high-throughput molecular phenotypes, classical phenotypes and genotype data covering different developmental stages and environments from WormQTL database. All software is available as open source, built on MOLGENIS and xQTL workbench.
Trends in research involving human beings in Brazil.
Silva, Ricardo Eccard da; Novaes, Maria Rita Carvalho; Pastor, Elza Martínez; Barragan, Elena; Amato, Angélica Amorim
2015-02-01
Developing countries have experienced a dramatic increase in the number of clinical studies in the last decades. The aim of this study was to describe 1) the number of clinical trials submitted to the Brazilian Health Surveillance Agency (Agência Nacional de Vigilância Sanitária, Anvisa) from 2007 to 2012 and the number of human-subject research projects approved by research ethics committees (RECs) and the National Research Ethics Committee (Comissão Nacional de Ética em Pesquisa, CONEP) in Brazil from 2007 to 2011 and 2) the diseases most frequently studied in Brazilian states in clinical trials approved in the country from 2009 to 2012, based on information from an Anvisa databank. Two databases were used: 1) the National Information System on Research Ethics Involving Human Beings (Sistema Nacional de Informação Sobre Ética em Pesquisa envolvendo Seres Humanos, SISNEP) and 2) Anvisa's Clinical Research Control System (Sistema de Controle de Pesquisa Clínica, SCPC). Data from the SCPC indicated an increase of 32.7% in the number of clinical trials submitted to Anvisa, and data from the SISNEP showed an increase of 69.9% in those approved by RECs and CONEP (from 18 160 in 2007 to 30 860 in 2011). Type 2 diabetes (26.0%) and breast cancer (20.5%)-related to the main causes of mortality in Brazil-were the two most frequently studied diseases. The so-called neglected diseases, such as dengue fever, were among the least studied diseases in approved clinical trials, despite their significant impact on social, economic, and health indicators in Brazil. Overall, the data indicated 1) a clear trend toward more research involving human beings in Brazil, 2) good correspondence between diseases most studied in clinical trials approved by Anvisa and the main causes of death in Brazil, and 3) a low level of attention to neglected diseases, an issue that should be considered in setting future research priorities, given their socioeconomic and health effects.
The nutritional geometry of liver disease including non-alcoholic fatty liver disease.
Simpson, Stephen J; Raubenheimer, David; Cogger, Victoria C; Macia, Laurence; Solon-Biet, Samantha M; Le Couteur, David G; George, Jacob
2018-02-01
Nutrition has a profound effect on chronic liver disease, especially non-alcoholic fatty liver disease (NAFLD). Most observational studies and clinical trials have focussed on the effects of total energy intake, or the intake of individual macronutrients and certain micronutrients, such as vitamin D, on liver disease. Although these studies have shown the importance of nutrition on hepatic outcomes, there is not yet any unifying framework for understanding the relationship between diet and liver disease. The Geometric Framework for Nutrition (GFN) is an innovative model for designing nutritional experiments or interpreting nutritional data that can determine the effects of nutrients and their interactions on animal behaviour and phenotypes. Recently the GFN has provided insights into the relationship between dietary energy and macronutrients on obesity and ageing in mammals including humans. Mouse studies using the GFN have disentangled the effects of macronutrients on fatty liver and the gut microbiome. The GFN is likely to play a significant role in disentangling the effects of nutrients on liver disease, especially NAFLD, in humans. Copyright © 2017 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.
A review of human leptospirosis in Malaysia.
El Jalii, I M; Bahaman, A R
2004-12-01
This paper reviews the literature on human leptospirosis in Malaysia from its first description in 1925 until the present day. Fletcher diagnosed the first case of human leptospirosis in Malaysia in 1925. Following Fletcher, many investigations on human leptospirosis in Malaysia disclosed a high prevalence of infection. These investigations indicated that the disease was endemic in the country. Examination of 1993 suspected human cases of leptospirosis by Tan indicated 28 % of the cases were positive. In a recent survey, 2190 serum samples from patients with different clinical manifestations in the country disclosed 12.6% were positive for antibodies to leptospires. The risk to leptospiral infection with respect to occupation, location, sex, race and age groups was demonstrated. Both civilians and military personnel were affected. Thirty-seven serovars from thirteen serogroups have been identified in the country. Recent studies on animal leptospirosis showed that the disease was highly endemic in the animal population. It is considered that the majority of leptospirosis cases in humans were due to association of man with animals and disease-infected environment.
Shiga toxin-producing Escherichia coli in swine: the public health perspective
Tseng, Marion; Fratamico, Pina M.; Manning, Shannon D.; Funk, Julie A.
2014-01-01
Shiga toxin-producing Escherichia coli (STEC) strains are food-borne pathogens that are an important public health concern. STEC infection is associated with severe clinical diseases in human beings, including hemorrhagic colitis (HC) and hemolytic uremic syndrome (HUS), which can lead to kidney failure and death. Cattle are the most important STEC reservoir. However, a number of STEC outbreaks and HUS cases have been attributed to pork products. In swine, STEC strains are known to be associated with edema disease. Nevertheless, the relationship between STEC of swine origin and human illness has yet to be determined. This review critically summarizes epidemiologic and biological studies of swine STEC. Several epidemiologic studies conducted in multiple regions of the world have demonstrated that domestic swine can carry and shed STEC. Moreover, animal studies have demonstrated that swine are susceptible to STEC O157:H7 infection and can shed the bacterium for 2 months. A limited number of molecular epidemiologic studies, however, have provided conflicting evidence regarding the relationship between swine STEC and human illness. The role that swine play in STEC transmission to people and the contribution to human disease frequency requires further evaluation. PMID:24397985
Vitale, Augusto; Manciocco, Arianna; Alleva, Enrico
2009-01-01
The aim of this paper is to offer an ethical perspective on the use of non-human primates in neurobiological studies, using the Parkinson's disease (PD) as an important case study. We refer, as theoretical framework, to the 3R principle, originally proposed by Russell and Burch [Russell, W.M.S., Burch, R.L., 1959. The Principles of Humane Experimental Technique. Universities Federation for Animal Welfare Wheathampstead, England (reprinted in 1992)]. Then, the use of non-human primates in the study of PD will be discussed in relation to the concepts of Replacement, Reduction, and Refinement. Replacement and Reduction result to be the more problematic concept to be applied, whereas Refinement offers relatively more opportunities of improvement. However, although in some cases the 3R principle shows its applicative limits, its value, as conceptual and inspirational tool remains extremely valuable. It suggests to the researchers a series of questions, both theoretical and methodological, which can have the results of improving the quality of life on the experimental models, the quality of the scientific data, and the public perception from the non-scientist community.
Soy and Gut Microbiota: Interaction and Implication for Human Health.
Huang, Haiqiu; Krishnan, Hari B; Pham, Quynhchi; Yu, Liangli Lucy; Wang, Thomas T Y
2016-11-23
Soy (Glycine max) is a major commodity in the United States, and soy foods are gaining popularity due to their reported health-promoting effects. In the past two decades, soy and soy bioactive components have been studied for their health-promoting/disease-preventing activities and potential mechanisms of action. Recent studies have identified gut microbiota as an important component in the human body ecosystem and possibly a critical modulator of human health. Soy foods' interaction with the gut microbiota may critically influence many aspects of human development, physiology, immunity, and nutrition at different stages of life. This review summarizes current knowledge on the effects of soy foods and soy components on gut microbiota population and composition. It was found, although results vary in different studies, in general, both animal and human studies have shown that consumption of soy foods can increase the levels of bifidobacteria and lactobacilli and alter the ratio between Firmicutes and Bacteroidetes. These changes in microbiota are consistent with reported reductions in pathogenic bacteria populations in the gut, thereby lowering the risk of diseases and leading to beneficial effects on human health.
Tholey, Andreas; Taylor, Nicolas L; Heazlewood, Joshua L; Bendixen, Emøke
2017-12-01
Mapping of the human proteome has advanced significantly in recent years and will provide a knowledge base to accelerate our understanding of how proteins and protein networks can affect human health and disease. However, providing solutions to human health challenges will likely fail if insights are exclusively based on studies of human samples and human proteomes. In recent years, it has become evident that human health depends on an integrated understanding of the many species that make human life possible. These include the commensal microorganisms that are essential to human life, pathogens, and food species as well as the classic model organisms that enable studies of biological mechanisms. The Human Proteome Organization (HUPO) initiative on multiorganism proteomes (iMOP) works to support proteome research undertaken on nonhuman species that remain widely under-studied compared with the progress in human proteome research. This perspective argues the need for further research on multiple species that impact human life. We also present an update on recent progress in model organisms, microbiota, and food species, address the emerging problem of antibiotics resistance, and outline how iMOP activities could lead to a more inclusive approach for the human proteome project (HPP) to better support proteome research aimed at improving human health and furthering knowledge on human biology.
... common diseases to help prevent disease and improve human health. Explore Research Funding Opportunities Grants Grants Explore Grants ... health sciences to understand human disease and improve human health. Use the search box to see research highlights ...
Q fever is an old and neglected zoonotic disease in Kenya: a systematic review.
Njeru, J; Henning, K; Pletz, M W; Heller, R; Neubauer, H
2016-04-05
Q fever is a neglected zoonosis caused by the bacterium Coxiella burnetii. The knowledge of the epidemiology of Q fever in Kenya is limited with no attention to control and prevention programs. The purpose of this review is to understand the situation of Q fever in human and animal populations in Kenya in the past 60 years, and help identify future research priorities for the country. Databases were searched for national and international scientific studies or reports on Q fever. We included studies and reports published between 1950 and 2015 if they reported on Q fever prevalence, incidence, and infection control programs in Kenya. Data were extracted with respect to studies on prevalence of Coxiella infections, study design, study region, the study populations involved, and sorted according to the year of the study. We identified 15 studies and reports which qualified for data extraction. Human seroprevalence studies revealed evidence of C. burnetii infections ranging from 3 to 35.8% in all regions in which surveys were made and two Q fever outbreak episodes. Coxiella burnetii infections found in cattle 7.4-51.1%, sheep 6.7-20%, camels 20-46%, and goats 20-46% revealed variation based on ecoregions and the year of study. Farming and lack of protective clothing were associated with increased seropositivity among humans. However, high quality data is lacking on Q fever awareness, underlying cultural-economic factors influencing C. burnetii infection, and how the pathogen cycles may be embedded in livestock production and management systems in the economically and ecologically different Kenyan regions. We found no studies on national disease incidence estimates or disease surveillance and control efforts. Coxiella burnetii infections are common in human and in a wide range of animal populations but are still unrecognized and underestimated thus presenting a significant human and animal health threat in Kenya. The factors influencing pathogen transmission, persistence and spread are poorly understood. Integrated disease surveillance and prevention/control programs are needed in Kenya.
Validation of a Cost-Efficient Multi-Purpose SNP Panel for Disease Based Research
Hou, Liping; Phillips, Christopher; Azaro, Marco; Brzustowicz, Linda M.; Bartlett, Christopher W.
2011-01-01
Background Here we present convergent methodologies using theoretical calculations, empirical assessment on in-house and publicly available datasets as well as in silico simulations, that validate a panel of SNPs for a variety of necessary tasks in human genetics disease research before resources are committed to larger-scale genotyping studies on those samples. While large-scale well-funded human genetic studies routinely have up to a million SNP genotypes, samples in a human genetics laboratory that are not yet part of such studies may be productively utilized in pilot projects or as part of targeted follow-up work though such smaller scale applications require at least some genome-wide genotype data for quality control purposes such as DNA “barcoding” to detect swaps or contamination issues, determining familial relationships between samples and correcting biases due to population effects such as population stratification in pilot studies. Principal Findings Empirical performance in classification of relative types for any two given DNA samples (e.g., full siblings, parental, etc) indicated that for outbred populations the panel performs sufficiently to classify relationship in extended families and therefore also for smaller structures such as trios and for twin zygosity testing. Additionally, familial relationships do not significantly diminish the (mean match) probability of sharing SNP genotypes in pedigrees, further indicating the uniqueness of the “barcode.” Simulation using these SNPs for an African American case-control disease association study demonstrated that population stratification, even in complex admixed samples, can be adequately corrected under a range of disease models using the SNP panel. Conclusion The panel has been validated for use in a variety of human disease genetics research tasks including sample barcoding, relationship verification, population substructure detection and statistical correction. Given the ease of genotyping our specific assay contained herein, this panel represents a useful and economical panel for human geneticists. PMID:21611176
Ferreira, Luiz F; Jansen, Ana M; Araújo, Adauto
2011-09-01
The classical hypothesis proposes that Chagas disease has been originated in the Andean region among prehistoric people when they started domesticating animals, changing to sedentary habits, and adopting agriculture. These changes in their way of life happened nearly 6,000 years ago. However, paleoparasitological data based on molecular tools showed that Trypanosoma cruzi infection and Chagas disease were commonly found both in South and North American prehistoric populations long before that time, suggesting that Chagas disease may be as old as the human presence in the American continent. The study of the origin and dispersion of Trypanosoma cruzi infection among prehistoric human populations may help in the comprehension of the clinical and epidemiological questions on Chagas disease that still remain unanswered.
Avian Influenza Viruses, Inflammation, and CD8+ T Cell Immunity
Wang, Zhongfang; Loh, Liyen; Kedzierski, Lukasz; Kedzierska, Katherine
2016-01-01
Avian influenza viruses (AIVs) circulate naturally in wild aquatic birds, infect domestic poultry, and are capable of causing sporadic bird-to-human transmissions. AIVs capable of infecting humans include a highly pathogenic AIV H5N1, first detected in humans in 1997, and a low pathogenic AIV H7N9, reported in humans in 2013. Both H5N1 and H7N9 cause severe influenza disease in humans, manifested by acute respiratory distress syndrome, multi-organ failure, and high mortality rates of 60% and 35%, respectively. Ongoing circulation of H5N1 and H7N9 viruses in wild birds and poultry, and their ability to infect humans emphasizes their epidemic and pandemic potential and poses a public health threat. It is, thus, imperative to understand the host immune responses to the AIVs so we can control severe influenza disease caused by H5N1 or H7N9 and rationally design new immunotherapies and vaccines. This review summarizes our current knowledge on AIV epidemiology, disease symptoms, inflammatory processes underlying the AIV infection in humans, and recent studies on universal pre-existing CD8+ T cell immunity to AIVs. Immune responses driving the host recovery from AIV infection in patients hospitalized with severe influenza disease are also discussed. PMID:26973644
Campos, Roseane; Santos, Márcio; Tunon, Gabriel; Cunha, Luana; Magalhães, Lucas; Moraes, Juliana; Ramalho, Danielle; Lima, Sanmy; Pacheco, José Antônio; Lipscomb, Michael; Ribeiro de Jesus, Amélia; Pacheco de Almeida, Roque
2017-05-11
Visceral leishmaniasis (VL) is a systemic disease endemic in tropical countries and transmitted through sand flies. In particular, Canis familiaris (or domesticated dogs) are believed to be a major urban reservoir for the parasite causing the disease Leishmania. The average number of human VL cases was 58 per year in the state of Sergipe. The city of Aracaju, capital of Sergipe in Northeastern Brazil, had 159 cases of VL in humans. Correlatively, the percentage of serologically positive dogs for leishmaniasis increased from 4.73% in 2008 to 12.69% in 2014. Thus, these studies aimed to delineate the spatial distribution and epidemiological aspects of human and canine VL as mutually supportive for increased incidence. The number of human cases of VL and the frequency of canine positive serology for VL both increased between 2008 and 2014. Spatial distribution analyses mapped areas of the city with the highest concentration of human and canine VL cases. The neighbourhoods that showed the highest disease frequency were located on the outskirts of the city and in urbanised areas or subjected to development. Exponential increase in VL-positive dogs further suggests that the disease is expanding in urban areas, where it can serve as a reservoir for transmission of dogs to humans via the sand fly vector.
Rashidi, Maasoume; Poursafa, Parinaz
2014-01-01
Background: As geographic science discusses the analysis of environment, human beings and their mutual relations, thus the field of medical geography consists of being inspired from the relations between these two factors, analyzing environmental factors, their identification them and the state of their effects on human health, as well as determining the location of these factors. Some hazards that threat human health are the results of environmental factors and the relevant pollutions. Some important categories of diseases including (Shortness of Breath or, Dyspnea) have considerable differences in various places, as observed in their spatial prevalence and distribution maps. Methods: The record of patients with Dyspnea diseases were prepared for this descriptive research, for the period of 2009-2011, from the provincial health center, with the questionnaires were excluded patients with a family history of disease and the spatial diagram for disease prevalence was drawn according to the prepared data. The arsenic geographical distribution diagram in Isfahan province was also prepared and then the relation between an element of Arsenic in the province and the Dyspnea diseases were analyzed. Results: The analyses showed that the highest rate of Arsenic is entered the soil via fertilizers to come eventually into the food cycle of humans. By analyzing the amount of used fertilizers in Isfahan province and the dispersion diagram of Arsenic in Isfahan province, it was found that the highest frequency of Arsenic is in places having agricultural base. The spatial dispersion of Dyspnea diseases also showed that the spreading of Dyspnea diseases is greater in places with higher scale of Arsenic. Conclusions: This study is a logical justification between the two diagrams to confirm the hypothesis regarding the effect of arsenic on Dyspnea. PMID:25538832
Aguirre, A Alonso
2017-12-15
The fundamental human threats to biodiversity including habitat destruction, globalization, and species loss have led to ecosystem disruptions altering infectious disease transmission patterns, the accumulation of toxic pollutants, and the invasion of alien species and pathogens. To top it all, the profound role of climate change on many ecological processes has affected the inability of many species to adapt to these relatively rapid changes. This special issue, "Zoonotic Disease Ecology: Effects on Humans, Domestic Animals and Wildlife," explores the complex interactions of emerging infectious diseases across taxa linked to many of these anthropogenic and environmental drivers. Selected emerging zoonoses including RNA viruses, Rift Valley fever, trypanosomiasis, Hanta virus infection, and other vector-borne diseases are discussed in detail. Also, coprophagous beetles are proposed as important vectors in the transmission and maintenance of infectious pathogens. An overview of the impacts of climate change in emerging disease ecology within the context of Brazil as a case study is provided. Animal Care and Use Committee requirements were investigated, concluding that ecology journals have low rates of explicit statements regarding the welfare and wellbing of wildlife during experimental studies. Most of the solutions to protect biodiversity and predicting and preventing the next epidemic in humans originating from wildlife are oriented towards the developed world and are less useful for biodiverse, low-income economies. We need the development of regional policies to address these issues at the local level.
Brouat, Carine; Rahelinirina, Soanandrasana; Loiseau, Anne; Rahalison, Lila; Rajerison, Minoariso; Laffly, Dominique; Handschumacher, Pascal; Duplantier, Jean-Marc
2013-01-01
Landscape may affect the distribution of infectious diseases by influencing the population density and dispersal of hosts and vectors. Plague (Yersinia pestis infection) is a highly virulent, re-emerging disease, the ecology of which has been scarcely studied in Africa. Human seroprevalence data for the major plague focus of Madagascar suggest that plague spreads heterogeneously across the landscape as a function of the relief. Plague is primarily a disease of rodents. We therefore investigated the relationship between disease distribution and the population genetic structure of the black rat, Rattus rattus, the main reservoir of plague in Madagascar. We conducted a comparative study of plague seroprevalence and genetic structure (15 microsatellite markers) in rat populations from four geographic areas differing in topology, each covering about 150-200 km(2) within the Madagascan plague focus. The seroprevalence levels in the rat populations mimicked those previously reported for humans. As expected, rat populations clearly displayed a more marked genetic structure with increasing relief. However, the relationship between seroprevalence data and genetic structure differs between areas, suggesting that plague distribution is not related everywhere to the effective dispersal of rats. Genetic diversity estimates suggested that plague epizootics had only a weak impact on rat population sizes. In the highlands of Madagascar, plague dissemination cannot be accounted for solely by the effective dispersal of the reservoir. Human social activities may also be involved in spreading the disease in rat and human populations.
Human West Nile Virus Disease Outbreak in Pakistan, 2015–2016
Khan, Erum; Barr, Kelli L.; Farooqi, Joveria Qais; Prakoso, Dhani; Abbas, Alizae; Khan, Zain Y.; Ashi, Shanze; Imtiaz, Kehkashan; Aziz, Z.; Malik, Faisal; Lednicky, John A.; Long, Maureen T.
2018-01-01
Like most of the world, Pakistan has seen an increase in mosquito-transmitted diseases in recent years. The magnitude and distribution of these diseases are poorly understood as Pakistan does not have a nation-wide system for reporting disease. A cross-sectional study to determine which flaviviruses were causing of arboviral disease in Pakistan was instituted. West Nile virus (WNV) is a cause of seasonal fever with neurotropic findings in countries that share borders with Pakistan. Here, we describe the active and persistent circulation of WNV in humans in the southern region of Pakistan. This is the first report of WNV causing neurological disease in human patients in this country. Of 997 enrolled patients presenting with clinical features suggestive of arboviral disease, 105 were positive for WNV IgM antibodies, and 71 of these patients possessed WNV-specific neutralizing antibodies. Cross-reactivity of WNV IgM antibodies with Japanese encephalitis virus (JEV) occurred in 75 of these 105 patients. WNV co-infections with Dengue viruses were not a contributing factor for the severity of disease. Nor did prior exposure to dengue virus contribute to incidence of neurological involvement in WNV-infected patients. Patients with WNV infections were more likely to present with altered mental status, seizures, and reduced Glasgow Coma scores when compared with JEV-infected patients. Human WNV cases and vector numbers exhibited a temporal correlation with climate. PMID:29535994
Human West Nile Virus Disease Outbreak in Pakistan, 2015-2016.
Khan, Erum; Barr, Kelli L; Farooqi, Joveria Qais; Prakoso, Dhani; Abbas, Alizae; Khan, Zain Y; Ashi, Shanze; Imtiaz, Kehkashan; Aziz, Z; Malik, Faisal; Lednicky, John A; Long, Maureen T
2018-01-01
Like most of the world, Pakistan has seen an increase in mosquito-transmitted diseases in recent years. The magnitude and distribution of these diseases are poorly understood as Pakistan does not have a nation-wide system for reporting disease. A cross-sectional study to determine which flaviviruses were causing of arboviral disease in Pakistan was instituted. West Nile virus (WNV) is a cause of seasonal fever with neurotropic findings in countries that share borders with Pakistan. Here, we describe the active and persistent circulation of WNV in humans in the southern region of Pakistan. This is the first report of WNV causing neurological disease in human patients in this country. Of 997 enrolled patients presenting with clinical features suggestive of arboviral disease, 105 were positive for WNV IgM antibodies, and 71 of these patients possessed WNV-specific neutralizing antibodies. Cross-reactivity of WNV IgM antibodies with Japanese encephalitis virus (JEV) occurred in 75 of these 105 patients. WNV co-infections with Dengue viruses were not a contributing factor for the severity of disease. Nor did prior exposure to dengue virus contribute to incidence of neurological involvement in WNV-infected patients. Patients with WNV infections were more likely to present with altered mental status, seizures, and reduced Glasgow Coma scores when compared with JEV-infected patients. Human WNV cases and vector numbers exhibited a temporal correlation with climate.
Boryło, Alicja; Skwarzec, Bogdan; Romańczyk, Grzegorz; Siebert, Janusz
The determination of polonium 210 Po in human blood samples is presented and discussed in this paper. The human blood samples were collected from patients of Medical University of Gdańsk with ischaemic heart disease ( morbus ischaemicus cordis , MIC ). The polonium concentrations in analyzed human blood samples are very differentiated. 210 Po is of particular interest in public health and although is present in the environment in extremely low amounts, it is easily bioaccumulated to the human body. The study shows that the amount of 210 Po that is incorporated into the human body depends on the food habits and some difference in its levels could be observed between smokers and non-smokers.
Johnson, Eric S; Ndetan, Harrison
2011-02-01
The role of the biological environment in the occurrence of many chronic human diseases has been little studied. Humans are commonly exposed to transmissible agents that infect and cause a wide variety of subacute and chronic diseases in chickens and turkeys. The objective of this study is to investigate whether these agents cause similar diseases in humans, by studying workers in poultry slaughtering and processing plants who have one of the highest human exposures to these agents. Mortality in poultry workers was compared with that in the United States general population through the estimation of standardized mortality ratios. Excess mortality from infectious and parasitic diseases was observed in the poultry workers. In addition, excess occurrences of deaths involving several sites of the cardiovascular, neurological, endocrine, gastrointestinal and reproductive systems, were observed, although the numbers involved were few in some instances. The results indicate that poultry workers are at increased risk of dying from certain causes of death, including infections. This is consistent with other reports. Although it is possible that occupational exposure to transmissible agents present in poultry may be one of the causes of the excess occurrence of some of these diseases, other factors that were not considered because of the nature of the study design, could be equally important. Also, the small number of deaths involved in some instances calls for caution in interpreting the results. However, the study is important, as it has succeeded in newly identified areas that need further research, and which may have implications not only for workers, but also for the general population. Copyright © 2010 Elsevier Ltd. All rights reserved.
A DNA methylation fingerprint of 1628 human samples
Fernandez, Agustin F.; Assenov, Yassen; Martin-Subero, Jose Ignacio; Balint, Balazs; Siebert, Reiner; Taniguchi, Hiroaki; Yamamoto, Hiroyuki; Hidalgo, Manuel; Tan, Aik-Choon; Galm, Oliver; Ferrer, Isidre; Sanchez-Cespedes, Montse; Villanueva, Alberto; Carmona, Javier; Sanchez-Mut, Jose V.; Berdasco, Maria; Moreno, Victor; Capella, Gabriel; Monk, David; Ballestar, Esteban; Ropero, Santiago; Martinez, Ramon; Sanchez-Carbayo, Marta; Prosper, Felipe; Agirre, Xabier; Fraga, Mario F.; Graña, Osvaldo; Perez-Jurado, Luis; Mora, Jaume; Puig, Susana; Prat, Jaime; Badimon, Lina; Puca, Annibale A.; Meltzer, Stephen J.; Lengauer, Thomas; Bridgewater, John; Bock, Christoph; Esteller, Manel
2012-01-01
Most of the studies characterizing DNA methylation patterns have been restricted to particular genomic loci in a limited number of human samples and pathological conditions. Herein, we present a compromise between an extremely comprehensive study of a human sample population with an intermediate level of resolution of CpGs at the genomic level. We obtained a DNA methylation fingerprint of 1628 human samples in which we interrogated 1505 CpG sites. The DNA methylation patterns revealed show this epigenetic mark to be critical in tissue-type definition and stemness, particularly around transcription start sites that are not within a CpG island. For disease, the generated DNA methylation fingerprints show that, during tumorigenesis, human cancer cells underwent a progressive gain of promoter CpG-island hypermethylation and a loss of CpG methylation in non-CpG-island promoters. Although transformed cells are those in which DNA methylation disruption is more obvious, we observed that other common human diseases, such as neurological and autoimmune disorders, had their own distinct DNA methylation profiles. Most importantly, we provide proof of principle that the DNA methylation fingerprints obtained might be useful for translational purposes by showing that we are able to identify the tumor type origin of cancers of unknown primary origin (CUPs). Thus, the DNA methylation patterns identified across the largest spectrum of samples, tissues, and diseases reported to date constitute a baseline for developing higher-resolution DNA methylation maps and provide important clues concerning the contribution of CpG methylation to tissue identity and its changes in the most prevalent human diseases. PMID:21613409
Fecal microbiota transplantation and its potential therapeutic uses in gastrointestinal disorders.
Heath, Ryan D; Cockerell, Courtney; Mankoo, Ravinder; Ibdah, Jamal A; Tahan, Veysel
2018-01-01
Typical human gut flora has been well characterized in previous studies and has been noted to have significant differences when compared with the typical microbiome of various disease states involving the gastrointestinal tract. Such diseases include Clostridium difficile colitis, inflammatory bowel disease, functional bowel syndromes, and various states of liver disease. A growing number of studies have investigated the use of a fecal microbiota transplant as a potential therapy for these disease states.
Fecal microbiota transplantation and its potential therapeutic uses in gastrointestinal disorders
Heath, Ryan D.; Cockerell, Courtney; Mankoo, Ravinder; Ibdah, Jamal A.; Tahan, Veysel
2018-01-01
Typical human gut flora has been well characterized in previous studies and has been noted to have significant differences when compared with the typical microbiome of various disease states involving the gastrointestinal tract. Such diseases include Clostridium difficile colitis, inflammatory bowel disease, functional bowel syndromes, and various states of liver disease. A growing number of studies have investigated the use of a fecal microbiota transplant as a potential therapy for these disease states. PMID:29607440
Assenga, Justine A.; Matemba, Lucas E.; Muller, Shabani K.; Mhamphi, Ginethon G.; Kazwala, Rudovick R.
2015-01-01
Background Leptospirosis is a worldwide zoonotic disease and a serious, under-reported public health problem, particularly in rural areas of Tanzania. In the Katavi-Rukwa ecosystem, humans, livestock and wildlife live in close proximity, which exposes them to the risk of a number of zoonotic infectious diseases, including leptospirosis. Methodology/Principal Findings A cross-sectional epidemiological study was carried out in the Katavi region, South-west Tanzania, to determine the seroprevalence of Leptospira spp in humans, domestic ruminants and wildlife. Blood samples were collected from humans (n = 267), cattle (n = 1,103), goats (n = 248), buffaloes (n = 38), zebra (n = 2), lions (n = 2), rodents (n = 207) and shrews (n = 11). Decanted sera were tested using the Microscopic Agglutination Test (MAT) for antibodies against six live serogroups belonging to the Leptospira spp, with a cutoff point of ≥ 1:160. The prevalence of leptospiral antibodies was 29.96% in humans, 30.37% in cattle, 8.47% in goats, 28.95% in buffaloes, 20.29% in rodents and 9.09% in shrews. Additionally, one of the two samples in lions was seropositive. A significant difference in the prevalence P<0.05 was observed between cattle and goats. No significant difference in prevalence was observed with respect to age and sex in humans or any of the sampled animal species. The most prevalent serogroups with antibodies of Leptospira spp were Sejroe, Hebdomadis, Grippotyphosa, Icterohaemorrhagie and Australis, which were detected in humans, cattle, goats and buffaloes; Sejroe and Grippotyphosa, which were detected in a lion; Australis, Icterohaemorrhagie and Grippotyphosa, which were detected in rodents; and Australis, which was detected in shrews. Antibodies to serogroup Ballum were detected only in humans. Conclusions The results of this study demonstrate that leptospiral antibodies are widely prevalent in humans, livestock and wildlife from the Katavi-Rukwa ecosystem. The disease poses a serious economic and public health threat in the study area. This epidemiological study provides information on circulating serogroups, which will be essential in designing intervention measures to reduce the risk of disease transmission. PMID:25806825
Human alpha defensin 5 is a candidate biomarker to delineate inflammatory bowel disease
Williams, Amanda D.; Korolkova, Olga Y.; Sakwe, Amos M.; Geiger, Timothy M.; James, Samuel D.; Muldoon, Roberta L.; Herline, Alan J.; Goodwin, J. Shawn; Izban, Michael G.; Washington, Mary K.; Smoot, Duane T.; Ballard, Billy R.; Gazouli, Maria
2017-01-01
Inability to distinguish Crohn's colitis from ulcerative colitis leads to the diagnosis of indeterminate colitis. This greatly effects medical and surgical care of the patient because treatments for the two diseases vary. Approximately 30 percent of inflammatory bowel disease patients cannot be accurately diagnosed, increasing their risk of inappropriate treatment. We sought to determine whether transcriptomic patterns could be used to develop diagnostic biomarker(s) to delineate inflammatory bowel disease more accurately. Four patients groups were assessed via whole-transcriptome microarray, qPCR, Western blot, and immunohistochemistry for differential expression of Human α-Defensin-5. In addition, immunohistochemistry for Paneth cells and Lysozyme, a Paneth cell marker, was also performed. Aberrant expression of Human α-Defensin-5 levels using transcript, Western blot, and immunohistochemistry staining levels was significantly upregulated in Crohn's colitis, p< 0.0001. Among patients with indeterminate colitis, Human α-Defensin-5 is a reliable differentiator with a positive predictive value of 96 percent. We also observed abundant ectopic crypt Paneth cells in all colectomy tissue samples of Crohn's colitis patients. In a retrospective study, we show that Human α-Defensin-5 could be used in indeterminate colitis patients to determine if they have either ulcerative colitis (low levels of Human α-Defensin-5) or Crohn's colitis (high levels of Human α-Defensin-5). Twenty of 67 patients (30 percent) who underwent restorative proctocolectomy for definitive ulcerative colitis were clinically changed to de novo Crohn's disease. These patients were profiled by Human α-Defensin-5 immunohistochemistry. All patients tested strongly positive. In addition, we observed by both hematoxylin and eosin and Lysozyme staining, a large number of ectopic Paneth cells in the colonic crypt of Crohn's colitis patient samples. Our experiments are the first to show that Human α-Defensin-5 is a potential candidate biomarker to molecularly differentiate Crohn's colitis from ulcerative colitis, to our knowledge. These data give us both a potential diagnostic marker in Human α-Defensin-5 and insight to develop future mechanistic studies to better understand crypt biology in Crohn's colitis. PMID:28817680
Colombo, A. P. V.; Paster, B. J.; Grimaldi, G.; Lourenço, T. G. B.; Teva, A.; Campos-Neto, A.; McCluskey, J.; Kleanthous, H.; Van Dyke, T. E.; Stashenko, P.
2017-01-01
ABSTRACT Background: Non-human primates appear to represent the most faithful model of human disease, but to date the oral microbiome in macaques has not been fully characterized using next-generation sequencing. Objective: In the present study, we characterized the clinical and microbiological features of naturally occurring periodontitis in non-human primates (Macaca mulatta). Design: Clinical parameters of periodontitis including probing pocket depth (PD) and bleeding on probing (BOP) were measured in 40 adult macaques (7–22 yrs), at six sites per tooth. Subgingival plaque was collected from diseased and healthy sites, and subjected to 16S rDNA sequencing and identification at the species or higher taxon level. Results: All macaques had mild periodontitis at minimum, with numerous sites of PD ≥ 4 mm and BOP. A subset (14/40) had moderate-severe disease, with >2 sites with PD ≥ 5mm, deeper mean PD, and more BOP. Animals with mild vs moderate-severe disease were identical in age, suggesting genetic heterogeneity. 16S rDNA sequencing revealed that all macaques had species that were identical to those in humans or closely related to human counterparts, including Porphyromonas gingivalis which was present in all animals. Diseased and healthy sites harboured distinct microbiomes; however there were no significant differences in the microbiomes in moderate-severe vs. mild periodontitis. Conclusions: Naturally occurring periodontitis in older macaques closely resembles human adult periodontitis, thus validating a useful model to evaluate novel anti-microbial therapies. PMID:29805776
Characterization of clinical signs in the human interactome.
Chagoyen, Monica; Pazos, Florencio
2016-06-15
Many diseases are related by shared associated molecules and pathways, exhibiting comorbidities and common phenotypes, an indication of the continuous nature of the human pathological landscape. Although it is continuous, this landscape is always partitioned into discrete diseases when studied at the molecular level. Clinical signs are also important phenotypic descriptors that can reveal the molecular mechanisms that underlie pathological states, but have seldom been the subject of systemic research. Here, we quantify the modular nature of the clinical signs associated with genetic diseases in the human interactome. We found that clinical signs are reflected as modules at the molecular network level, to at least to the same extent as diseases. They can thus serve as a valid complementary partition of the human pathological landscape, with implications for etiology research, diagnosis and treatment. monica.chagoyen@cnb.csic.es Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Human Risk of Infection with Borrelia burgdorferi, the Lyme Disease Agent, in Eastern United States
Diuk-Wasser, Maria A.; Hoen, Anne Gatewood; Cislo, Paul; Brinkerhoff, Robert; Hamer, Sarah A.; Rowland, Michelle; Cortinas, Roberto; Vourc'h, Gwenaël; Melton, Forrest; Hickling, Graham J.; Tsao, Jean I.; Bunikis, Jonas; Barbour, Alan G.; Kitron, Uriel; Piesman, Joseph; Fish, Durland
2012-01-01
The geographic pattern of human risk for infection with Borrelia burgdorferi sensu stricto, the tick-borne pathogen that causes Lyme disease, was mapped for the eastern United States. The map is based on standardized field sampling in 304 sites of the density of Ixodes scapularis host-seeking nymphs infected with B. burgdorferi, which is closely associated with human infection risk. Risk factors for the presence and density of infected nymphs were used to model a continuous 8 km×8 km resolution predictive surface of human risk, including confidence intervals for each pixel. Discontinuous Lyme disease risk foci were identified in the Northeast and upper Midwest, with a transitional zone including sites with uninfected I. scapularis populations. Given frequent under- and over-diagnoses of Lyme disease, this map could act as a tool to guide surveillance, control, and prevention efforts and act as a baseline for studies tracking the spread of infection. PMID:22302869
HU, TING; DARABOS, CHRISTIAN; CRICCO, MARIA E.; KONG, EMILY; MOORE, JASON H.
2014-01-01
The large volume of GWAS data poses great computational challenges for analyzing genetic interactions associated with common human diseases. We propose a computational framework for characterizing epistatic interactions among large sets of genetic attributes in GWAS data. We build the human phenotype network (HPN) and focus around a disease of interest. In this study, we use the GLAUGEN glaucoma GWAS dataset and apply the HPN as a biological knowledge-based filter to prioritize genetic variants. Then, we use the statistical epistasis network (SEN) to identify a significant connected network of pairwise epistatic interactions among the prioritized SNPs. These clearly highlight the complex genetic basis of glaucoma. Furthermore, we identify key SNPs by quantifying structural network characteristics. Through functional annotation of these key SNPs using Biofilter, a software accessing multiple publicly available human genetic data sources, we find supporting biomedical evidences linking glaucoma to an array of genetic diseases, proving our concept. We conclude by suggesting hypotheses for a better understanding of the disease. PMID:25592582
Animal Models for Periodontal Disease
Oz, Helieh S.; Puleo, David A.
2011-01-01
Animal models and cell cultures have contributed new knowledge in biological sciences, including periodontology. Although cultured cells can be used to study physiological processes that occur during the pathogenesis of periodontitis, the complex host response fundamentally responsible for this disease cannot be reproduced in vitro. Among the animal kingdom, rodents, rabbits, pigs, dogs, and nonhuman primates have been used to model human periodontitis, each with advantages and disadvantages. Periodontitis commonly has been induced by placing a bacterial plaque retentive ligature in the gingival sulcus around the molar teeth. In addition, alveolar bone loss has been induced by inoculation or injection of human oral bacteria (e.g., Porphyromonas gingivalis) in different animal models. While animal models have provided a wide range of important data, it is sometimes difficult to determine whether the findings are applicable to humans. In addition, variability in host responses to bacterial infection among individuals contributes significantly to the expression of periodontal diseases. A practical and highly reproducible model that truly mimics the natural pathogenesis of human periodontal disease has yet to be developed. PMID:21331345
Huang, Chunlin; Liu, Xingwu; Sun, Shiwei; Li, Shuai Cheng; Deng, Minghua; He, Guangxue; Zhang, Haicang; Wang, Chao; Zhou, Yang; Zhao, Yanlin; Bu, Dongbo
2016-01-01
In this study, we present representative human contact networks among Chinese college students. Unlike schools in the US, human contacts within Chinese colleges are extremely clustered, partly due to the highly organized lifestyle of Chinese college students. Simulations of influenza spreading across real contact networks are in good accordance with real influenza records; however, epidemic simulations across idealized scale-free or small-world networks show considerable overestimation of disease prevalence, thus challenging the widely-applied idealized human contact models in epidemiology. Furthermore, the special contact pattern within Chinese colleges results in disease spreading patterns distinct from those of the US schools. Remarkably, class cancelation, though simple, shows a mitigating power equal to quarantine/vaccination applied on ~25% of college students, which quantitatively explains its success in Chinese colleges during the SARS period. Our findings greatly facilitate reliable prediction of epidemic prevalence, and thus should help establishing effective strategies for respiratory infectious diseases control. PMID:27526868
A 3D human neural cell culture system for modeling Alzheimer’s disease
Kim, Young Hye; Choi, Se Hoon; D’Avanzo, Carla; Hebisch, Matthias; Sliwinski, Christopher; Bylykbashi, Enjana; Washicosky, Kevin J.; Klee, Justin B.; Brüstle, Oliver; Tanzi, Rudolph E.; Kim, Doo Yeon
2015-01-01
Stem cell technologies have facilitated the development of human cellular disease models that can be used to study pathogenesis and test therapeutic candidates. These models hold promise for complex neurological diseases such as Alzheimer’s disease (AD) because existing animal models have been unable to fully recapitulate all aspects of pathology. We recently reported the characterization of a novel three-dimensional (3D) culture system that exhibits key events in AD pathogenesis, including extracellular aggregation of β-amyloid and accumulation of hyperphosphorylated tau. Here we provide instructions for the generation and analysis of 3D human neural cell cultures, including the production of genetically modified human neural progenitor cells (hNPCs) with familial AD mutations, the differentiation of the hNPCs in a 3D matrix, and the analysis of AD pathogenesis. The 3D culture generation takes 1–2 days. The aggregation of β-amyloid is observed after 6-weeks of differentiation followed by robust tau pathology after 10–14 weeks. PMID:26068894
Le, Duc-Hau; Dao, Lan T M
2018-05-23
Recently, many long non-coding RNAs (lncRNAs) have been identified and their biological function has been characterized; however, our understanding of their underlying molecular mechanisms related to disease is still limited. To overcome the limitation in experimentally identifying disease-lncRNA associations, computational methods have been proposed as a powerful tool to predict such associations. These methods are usually based on the similarities between diseases or lncRNAs since it was reported that similar diseases are associated with functionally similar lncRNAs. Therefore, prediction performance is highly dependent on how well the similarities can be captured. Previous studies have calculated the similarity between two diseases by mapping exactly each disease to a single Disease Ontology (DO) term, and then use a semantic similarity measure to calculate the similarity between them. However, the problem of this approach is that a disease can be described by more than one DO terms. Until now, there is no annotation database of DO terms for diseases except for genes. In contrast, Human Phenotype Ontology (HPO) is designed to fully annotate human disease phenotypes. Therefore, in this study, we constructed disease similarity networks/matrices using HPO instead of DO. Then, we used these networks/matrices as inputs of two representative machine learning-based and network-based ranking algorithms, that is, regularized least square and heterogeneous graph-based inference, respectively. The results showed that the prediction performance of the two algorithms on HPO-based is better than that on DO-based networks/matrices. In addition, our method can predict 11 novel cancer-associated lncRNAs, which are supported by literature evidence. Copyright © 2018 Elsevier Ltd. All rights reserved.
Yago, Toru; Nanke, Yuki; Kawamoto, Manabu; Yamanaka, Hisashi; Kotake, Shigeru
2012-08-01
Tacrolimus (FK506, Prograf®) is an orally available, T cell specific and anti-inflammatory agent that has been proposed as a therapeutic drug in rheumatoid arthritis (RA) patients. It has been known that T cells have a critical role in the pathogenesis of RA. Recent studies suggest that Th17 cells, which mainly produce IL-17, are involved in many autoimmune inflammatory disease including RA. The present study was undertaken to assess the effect of tacrolimus on IL-17-induced human osteoclastogenesis and human Th17 differentiation. Human CD14(+) monocytes were cultured in the presence of macrophage-colony stimulating factor (M-CSF) and IL-17. From day 4, tacrolimus was added to these cultures. Osteoclasts were immunohistologically stained for vitronectin receptor 10days later. IL-17 production from activated T cells stimulated with IL-23 was measured by enzyme-linked immunosorbent assay (ELISA). Th17 differentiation from naïve T cells was assayed by flow cytometry. Tacrolimus potently inhibited IL-17-induced osteoclastogenesis from human monocytes and osteoclast activation. Addition of tacrolimus also reduced production of IL-17 in human activated T cells stimulated with IL-23. Interestingly, the population of human IL-17(+)IFN-γ(-) CD4 T cells or IL-17(+)TNF-α(+) CD4 T cells were decreased by adding of tacrolimus. The present study demonstrates that the inhibitory effect of tacrolimus on IL-17-induced osteoclastogenesis from human monocytes. Tacrolimus also inhibited expression of IL-17 or TNF-α by reducing the proportion of Th17, suggesting that therapeutic effect on Th17-associated disease such as RA, inflammatory bowel disease, multiple sclerosis, psoriasis, or allograft rejection. Copyright © 2012 Elsevier Ltd. All rights reserved.
Diabetes-associated dry eye syndrome in a new humanized transgenic model of type 1 diabetes.
Imam, Shahnawaz; Elagin, Raya B; Jaume, Juan Carlos
2013-01-01
Patients with Type 1 Diabetes (T1D) are at high risk of developing lacrimal gland dysfunction. We have developed a new model of human T1D using double-transgenic mice carrying HLA-DQ8 diabetes-susceptibility haplotype instead of mouse MHC-class II and expressing the human beta cell autoantigen Glutamic Acid Decarboxylase in pancreatic beta cells. We report here the development of dry eye syndrome (DES) after diabetes induction in our humanized transgenic model. Double-transgenic mice were immunized with DNA encoding human GAD65, either naked or in adenoviral vectors, to induce T1D. Mice monitored for development of diabetes developed lacrimal gland dysfunction. Animals developed lacrimal gland disease (classically associated with diabetes in Non Obese Diabetic [NOD] mice and with T1D in humans) as they developed glucose intolerance and diabetes. Animals manifested obvious clinical signs of dry eye syndrome (DES), from corneal erosions to severe keratitis. Histological studies of peri-bulbar areas revealed lymphocytic infiltration of glandular structures. Indeed, infiltrative lesions were observed in lacrimal/Harderian glands within weeks following development of glucose intolerance. Lesions ranged from focal lymphocytic infiltration to complete acinar destruction. We observed a correlation between the severity of the pancreatic infiltration and the severity of the ocular disease. Our results demonstrate development of DES in association with antigen-specific insulitis and diabetes following immunization with clinically relevant human autoantigen concomitantly expressed in pancreatic beta cells of diabetes-susceptible mice. As in the NOD mouse model and as in human T1D, our animals developed diabetes-associated DES. This specific finding stresses the relevance of our model for studying these human diseases. We believe our model will facilitate studies to prevent/treat diabetes-associated DES as well as human diabetes.
Barth, Andreas S; Kumordzie, Ami; Frangakis, Constantine; Margulies, Kenneth B; Cappola, Thomas P; Tomaselli, Gordon F
2011-10-01
Systolic heart failure (HF) is a complex systemic syndrome that can result from a wide variety of clinical conditions and gene mutations. Despite phenotypic similarities, characterized by ventricular dilatation and reduced contractility, the extent of common and divergent gene expression between different forms of HF remains a matter of intense debate. Using a meta-analysis of 28 experimental (mouse, rat, dog) and human HF microarray studies, we demonstrate that gene expression changes are characterized by a coordinated and reciprocal regulation of major metabolic and signaling pathways. In response to a wide variety of stressors in animal models of HF, including ischemia, pressure overload, tachypacing, chronic isoproterenol infusion, Chagas disease, and transgenic mouse models, major metabolic pathways are invariably downregulated, whereas cell signaling pathways are upregulated. In contrast to this uniform transcriptional pattern that recapitulates a fetal gene expression program in experimental animal models of HF, human HF microarray studies displayed a greater heterogeneity, with some studies even showing upregulation of metabolic and downregulation of signaling pathways in end-stage human hearts. These discrepant results between animal and human studies are due to a number of factors, prominently cardiac disease and variable exposure to cold cardioplegic solution in nonfailing human samples, which can downregulate transcripts involved in oxidative phosphorylation (OXPHOS), thus mimicking gene expression patterns observed in failing samples. Additionally, β-blockers and ACE inhibitor use in end-stage human HF was associated with higher levels of myocardial OXPHOS transcripts, thus partially reversing the fetal gene expression pattern. In human failing samples, downregulation of metabolism was associated with hemodynamic markers of disease severity. Irrespective of the etiology, gene expression in failing myocardium is characterized by downregulation of metabolic transcripts and concomitant upregulation of cell signaling pathways. Gene expression changes along this metabolic-signaling axis in mammalian myocardium are a consistent feature in the heterogeneous transcriptional response observed in phenotypically similar models of HF.
Vilela, F P; Frazão, M R; Rodrigues, D P; Costa, R G; Casas, M R T; Fernandes, S A; Falcão, J P; Campioni, F
2018-02-01
Salmonella Dublin is strongly adapted to cattle causing enteritis and/or systemic disease with high rates of mortality. However, it can be sporadically isolated from humans, usually causing serious disease, especially in patients with underlying chronic diseases. The aim of this study was to molecularly type S. Dublin strains isolated from humans and animals in Brazil to verify the diversity of these strains as well as to ascertain possible differences between strains isolated from humans and animals. Moreover, the presence of the capsular antigen Vi and the plasmid profile was characterized in addition to the anti-microbial resistance against 15 drugs. For this reason, 113 S. Dublin strains isolated between 1983 and 2016 from humans (83) and animals (30) in Brazil were typed by PFGE and MLVA. The presence of the capsular antigen Vi was verified by PCR, and the phenotypic expression of the capsular antigen was determined serologically. Also, a plasmid analysis for each strain was carried out. The strains studied were divided into 35 different PFGE types and 89 MLVA-types with a similarity of ≥80% and ≥17.5%, respectively. The plasmid sizes found ranged from 2 to >150 kb and none of the strains studied presented the capsular antigen Vi. Resistance or intermediate resistance was found in 23 strains (20.3%) that were resistant to ampicillin, ciprofloxacin, chloramphenicol, imipenem, nalidixic acid, piperacillin, streptomycin and/or tetracycline. The majority of the S. Dublin strains studied and isolated over a 33-year period may descend from a common subtype that has been contaminating humans and animals in Brazil and able to cause invasive disease even in the absence of the capsular antigen. The higher diversity of resistance phenotypes in human isolates, as compared with animal strains, may be a reflection of the different anti-microbial treatments used to control S. Dublin infections in humans in Brazil. © 2017 Blackwell Verlag GmbH.
Twin methodology in epigenetic studies.
Tan, Qihua; Christiansen, Lene; von Bornemann Hjelmborg, Jacob; Christensen, Kaare
2015-01-01
Since the final decades of the last century, twin studies have made a remarkable contribution to the genetics of human complex traits and diseases. With the recent rapid development in modern biotechnology of high-throughput genetic and genomic analyses, twin modelling is expanding from analysis of diseases to molecular phenotypes in functional genomics especially in epigenetics, a thriving field of research that concerns the environmental regulation of gene expression through DNA methylation, histone modification, microRNA and long non-coding RNA expression, etc. The application of the twin method to molecular phenotypes offers new opportunities to study the genetic (nature) and environmental (nurture) contributions to epigenetic regulation of gene activity during developmental, ageing and disease processes. Besides the classical twin model, the case co-twin design using identical twins discordant for a trait or disease is becoming a popular and powerful design for epigenome-wide association study in linking environmental exposure to differential epigenetic regulation and to disease status while controlling for individual genetic make-up. It can be expected that novel uses of twin methods in epigenetic studies are going to help with efficiently unravelling the genetic and environmental basis of epigenomics in human complex diseases. © 2015. Published by The Company of Biologists Ltd.
Understanding the aetiology and resolution of chronic otitis media from animal and human studies
Thornton, Ruth B.; Kirkham, Lea-Ann S.; Kerschner, Joseph E.; Cheeseman, Michael T.
2017-01-01
ABSTRACT Inflammation of the middle ear, known clinically as chronic otitis media, presents in different forms, such as chronic otitis media with effusion (COME; glue ear) and chronic suppurative otitis media (CSOM). These are highly prevalent diseases, especially in childhood, and lead to significant morbidity worldwide. However, much remains unclear about this disease, including its aetiology, initiation and perpetuation, and the relative roles of mucosal and leukocyte biology, pathogens, and Eustachian tube function. Chronic otitis media is commonly modelled in mice but most existing models only partially mimic human disease and many are syndromic. Nevertheless, these models have provided insights into potential disease mechanisms, and have implicated altered immune signalling, mucociliary function and Eustachian tube function as potential predisposing mechanisms. Clinical studies of chronic otitis media have yet to implicate a particular molecular pathway or mechanism, and current human genetic studies are underpowered. We also do not fully understand how existing interventions, such as tympanic membrane repair, work, nor how chronic otitis media spontaneously resolves. This Clinical Puzzle article describes our current knowledge of chronic otitis media and the existing research models for this condition. It also identifies unanswered questions about its pathogenesis and treatment, with the goal of advancing our understanding of this disease to aid the development of novel therapeutic interventions. PMID:29125825
Lugo-Martinez, Jose; Pejaver, Vikas; Pagel, Kymberleigh A.; Mort, Matthew; Cooper, David N.; Mooney, Sean D.; Radivojac, Predrag
2016-01-01
Elucidating the precise molecular events altered by disease-causing genetic variants represents a major challenge in translational bioinformatics. To this end, many studies have investigated the structural and functional impact of amino acid substitutions. Most of these studies were however limited in scope to either individual molecular functions or were concerned with functional effects (e.g. deleterious vs. neutral) without specifically considering possible molecular alterations. The recent growth of structural, molecular and genetic data presents an opportunity for more comprehensive studies to consider the structural environment of a residue of interest, to hypothesize specific molecular effects of sequence variants and to statistically associate these effects with genetic disease. In this study, we analyzed data sets of disease-causing and putatively neutral human variants mapped to protein 3D structures as part of a systematic study of the loss and gain of various types of functional attribute potentially underlying pathogenic molecular alterations. We first propose a formal model to assess probabilistically function-impacting variants. We then develop an array of structure-based functional residue predictors, evaluate their performance, and use them to quantify the impact of disease-causing amino acid substitutions on catalytic activity, metal binding, macromolecular binding, ligand binding, allosteric regulation and post-translational modifications. We show that our methodology generates actionable biological hypotheses for up to 41% of disease-causing genetic variants mapped to protein structures suggesting that it can be reliably used to guide experimental validation. Our results suggest that a significant fraction of disease-causing human variants mapping to protein structures are function-altering both in the presence and absence of stability disruption. PMID:27564311
Lugo-Martinez, Jose; Pejaver, Vikas; Pagel, Kymberleigh A; Jain, Shantanu; Mort, Matthew; Cooper, David N; Mooney, Sean D; Radivojac, Predrag
2016-08-01
Elucidating the precise molecular events altered by disease-causing genetic variants represents a major challenge in translational bioinformatics. To this end, many studies have investigated the structural and functional impact of amino acid substitutions. Most of these studies were however limited in scope to either individual molecular functions or were concerned with functional effects (e.g. deleterious vs. neutral) without specifically considering possible molecular alterations. The recent growth of structural, molecular and genetic data presents an opportunity for more comprehensive studies to consider the structural environment of a residue of interest, to hypothesize specific molecular effects of sequence variants and to statistically associate these effects with genetic disease. In this study, we analyzed data sets of disease-causing and putatively neutral human variants mapped to protein 3D structures as part of a systematic study of the loss and gain of various types of functional attribute potentially underlying pathogenic molecular alterations. We first propose a formal model to assess probabilistically function-impacting variants. We then develop an array of structure-based functional residue predictors, evaluate their performance, and use them to quantify the impact of disease-causing amino acid substitutions on catalytic activity, metal binding, macromolecular binding, ligand binding, allosteric regulation and post-translational modifications. We show that our methodology generates actionable biological hypotheses for up to 41% of disease-causing genetic variants mapped to protein structures suggesting that it can be reliably used to guide experimental validation. Our results suggest that a significant fraction of disease-causing human variants mapping to protein structures are function-altering both in the presence and absence of stability disruption.
Human genetics of infectious diseases: a unified theory
Casanova, Jean-Laurent; Abel, Laurent
2007-01-01
Since the early 1950s, the dominant paradigm in the human genetics of infectious diseases postulates that rare monogenic immunodeficiencies confer vulnerability to multiple infectious diseases (one gene, multiple infections), whereas common infections are associated with the polygenic inheritance of multiple susceptibility genes (one infection, multiple genes). Recent studies, since 1996 in particular, have challenged this view. A newly recognised group of primary immunodeficiencies predisposing the individual to a principal or single type of infection is emerging. In parallel, several common infections have been shown to reflect the inheritance of one major susceptibility gene, at least in some populations. This novel causal relationship (one gene, one infection) blurs the distinction between patient-based Mendelian genetics and population-based complex genetics, and provides a unified conceptual frame for exploring the molecular genetic basis of infectious diseases in humans. PMID:17255931
National Institutes of Health funding for behavioral interventions to prevent chronic diseases.
Calitz, Chris; Pollack, Keshia M; Millard, Chris; Yach, Derek
2015-04-01
Chronic non-communicable diseases (NCDs) cause the majority of premature deaths, disability, and healthcare expenditures in the U.S. Six largely modifiable risk behaviors and factors (tobacco use, poor nutrition, physical inactivity, alcohol abuse, drug abuse, and poor mental health) account for more than 50% of premature mortality and considerably more morbidity and disability. The IOM proposed that population burden of disease and preventability should be major determinants of the amount of research funding provided by the U.S. NIH. Data on NIH prevention funding between fiscal years 2010 and 2012 for human behavioral interventions that target the modifiable risk factors of NCDs were analyzed during 2013-2014. The NIH prevention portfolio comprises approximately 37% human behavioral studies and 63% basic biomedical, genetic, and animal studies. Approximately 65% of studies were secondary prevention versus 23% for primary prevention, and 71% of studies intervened at the individual and family levels. Diet and exercise were the most-studied risk factors (41%), and few studies conducted economic analyses (12%). NIH spends an estimated $2.2-$2.6 billion annually (7%-9% of the total of $30 billion) on human behavioral interventions to prevent NCDs. Although NIH prevention funding broadly aligns with the current burden of disease, overall funding remains low compared to funding for treatment, which suggests funding misalignment with the preventability of chronic diseases. Copyright © 2015 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.
Henderson, Cailin; Goldbach-Mansky, Raphaela
2010-01-01
INTRODUCTION Interleukin -1 was the first cytokine identified and is a powerful inducer of fever and inflammation. The biologically active receptor for IL-1, shares signaling pathways with some pathogen recognition receptors, the toll like receptors (TLRs) which early on suggested an important role in innate immune function. DISCUSSION The discovery that some intracellular “danger receptors”, the NOD like receptors (NLRs) can assemble to form multimolecular platforms, the inflammasomes, that not only sense intracellular danger but also activate IL-1β, has provided the molecular basis for the integration of IL-1 as an early response mediator in danger recognition. The critical role of balancing IL-1 production and signaling in human disease has recently been demonstrated in rare human monogenic diseases with mutations that affect the meticulous control of IL-1 production, release and signaling by leading to decreased or increased TLR/IL-1 signaling. In diseases of decreased TLR/IL-1 signaling (IRAK-4 and MyD88 deficiencies) patients are at risk for infections with gram positive organisms; and in diseases of increased signaling, patients develop systemic autoinflammatory diseases (Cryopyrin associated periodic syndromes (CAPS), and deficiency of the IL-1 receptor antagonist (DIRA)). CONCLUSION Monogenic defects in a number of rare diseases that affect the balance of TLR/IL-1 signaling have provided us with opportunities to study the systemic effects of IL-1 in human diseases. The molecular defects in CAPS and DIRA provided a therapeutic rationale for targeting IL-1 and the impressive clinical results from IL-1 blocking therapies have undoubtedly confirmed the pivotal role of IL-1 in human disease and spurred the exploration of modifying IL-1 signaling in a number of genetically complex common human diseases. PMID:20353899
Wagner, T.; Benbow, M.E.; Brenden, T.O.; Qi, J.; Johnson, R.C.
2008-01-01
Background: Buruli ulcer (BU) disease, caused by infection with the environmental mycobacterium M. ulcerans, is an emerging infectious disease in many tropical and sub-tropical countries. Although vectors and modes of transmission remain unknown, it is hypothesized that the transmission of BU disease is associated with human activities in or around aquatic environments, and that characteristics of the landscape (e.g., land use/cover) play a role in mediating BU disease. Several studies performed at relatively small spatial scales (e.g., within a single village or region of a country) support these hypotheses; however, if BU disease is associated with land use/cover characteristics, either through spatial constraints on vector-host dynamics or by mediating human activities, then large-scale (i.e., country-wide) associations should also emerge. The objectives of this study were to (1) investigate associations between BU disease prevalence in villages in Benin, West Africa and surrounding land use/cover patterns and other map-based characteristics, and (2) identify areas with greater and lower than expected prevalence rates (i.e., disease clusters) to assist with the development of prevention and control programs. Results: Our landscape-based models identified low elevation, rural villages surrounded by forest land cover, and located in drainage basins with variable wetness patterns as being associated with higher BU disease prevalence rates. We also identified five spatial disease clusters. Three of the five clusters contained villages with greater than expected prevalence rates and two clusters contained villages with lower than expected prevalence rates. Those villages with greater than expected BU disease prevalence rates spanned a fairly narrow region of south-central Benin. Conclusion: Our analyses suggest that interactions between natural land cover and human alterations to the landscape likely play a role in the dynamics of BU disease. For example, urbanization, potentially by providing access to protected water sources, may reduce the likelihood of becoming infected with BU disease. Villages located at low elevations may have higher BU disease prevalence rates due to their close spatial proximity to high risk environments. In addition, forest land cover and drainage basins with variable wetness patterns may be important for providing suitable growth conditions for M. ulcerans, influencing the distribution and abundance of vectors, or mediating vector-human interactions. The identification of disease clusters in this study provides direction for future research aimed at better understanding these and other environmental and social determinants involved in BU disease outbreaks. ?? 2008 Wagner et al; licensee BioMed Central Ltd.
Wagner, Tyler; Benbow, M Eric; Brenden, Travis O; Qi, Jiaguo; Johnson, R Christian
2008-01-01
Background Buruli ulcer (BU) disease, caused by infection with the environmental mycobacterium M. ulcerans, is an emerging infectious disease in many tropical and sub-tropical countries. Although vectors and modes of transmission remain unknown, it is hypothesized that the transmission of BU disease is associated with human activities in or around aquatic environments, and that characteristics of the landscape (e.g., land use/cover) play a role in mediating BU disease. Several studies performed at relatively small spatial scales (e.g., within a single village or region of a country) support these hypotheses; however, if BU disease is associated with land use/cover characteristics, either through spatial constraints on vector-host dynamics or by mediating human activities, then large-scale (i.e., country-wide) associations should also emerge. The objectives of this study were to (1) investigate associations between BU disease prevalence in villages in Benin, West Africa and surrounding land use/cover patterns and other map-based characteristics, and (2) identify areas with greater and lower than expected prevalence rates (i.e., disease clusters) to assist with the development of prevention and control programs. Results Our landscape-based models identified low elevation, rural villages surrounded by forest land cover, and located in drainage basins with variable wetness patterns as being associated with higher BU disease prevalence rates. We also identified five spatial disease clusters. Three of the five clusters contained villages with greater than expected prevalence rates and two clusters contained villages with lower than expected prevalence rates. Those villages with greater than expected BU disease prevalence rates spanned a fairly narrow region of south-central Benin. Conclusion Our analyses suggest that interactions between natural land cover and human alterations to the landscape likely play a role in the dynamics of BU disease. For example, urbanization, potentially by providing access to protected water sources, may reduce the likelihood of becoming infected with BU disease. Villages located at low elevations may have higher BU disease prevalence rates due to their close spatial proximity to high risk environments. In addition, forest land cover and drainage basins with variable wetness patterns may be important for providing suitable growth conditions for M. ulcerans, influencing the distribution and abundance of vectors, or mediating vector-human interactions. The identification of disease clusters in this study provides direction for future research aimed at better understanding these and other environmental and social determinants involved in BU disease outbreaks. PMID:18505567
Agrawal, Sonal; Berggren, Kiersten L; Marks, Eileen; Fox, Jonathan H
2017-06-01
Accumulation of brain iron is linked to aging and protein-misfolding neurodegenerative diseases. High iron intake may influence important brain health outcomes in later life. The aim of this systematic review was to examine evidence from animal and human studies of the effects of high iron intake or peripheral iron status on adult cognition, brain aging, and neurodegeneration. MEDLINE, Scopus, CAB Abstracts, the Cochrane Central Register of Clinical Trials, and OpenGrey databases were searched. Studies investigating the effect of elevated iron intake at all postnatal life stages in mammalian models and humans on measures of adult brain health were included. Data were extracted and evaluated by two authors independently, with discrepancies resolved by discussion. Neurodegenerative disease diagnosis and/or behavioral/cognitive, biochemical, and brain morphologic findings were used to study the effects of iron intake or peripheral iron status on brain health. Risk of bias was assessed for animal and human studies. PRISMA guidelines for reporting systematic reviews were followed. Thirty-four preclinical and 14 clinical studies were identified from database searches. Thirty-three preclinical studies provided evidence supporting an adverse effect of nutritionally relevant high iron intake in neonates on brain-health-related outcomes in adults. Human studies varied considerably in design, quality, and findings; none investigated the effects of high iron intake in neonates/infants. Human studies are needed to verify whether dietary iron intake levels used in neonates/infants to prevent iron deficiency have effects on brain aging and neurodegenerative disease outcomes. © The Author(s) 2017. Published by Oxford University Press on behalf of the International Life Sciences Institute.
A cross-species analysis method to analyze animal models' similarity to human's disease state
2012-01-01
Background Animal models are indispensable tools in studying the cause of human diseases and searching for the treatments. The scientific value of an animal model depends on the accurate mimicry of human diseases. The primary goal of the current study was to develop a cross-species method by using the animal models' expression data to evaluate the similarity to human diseases' and assess drug molecules' efficiency in drug research. Therefore, we hoped to reveal that it is feasible and useful to compare gene expression profiles across species in the studies of pathology, toxicology, drug repositioning, and drug action mechanism. Results We developed a cross-species analysis method to analyze animal models' similarity to human diseases and effectiveness in drug research by utilizing the existing animal gene expression data in the public database, and mined some meaningful information to help drug research, such as potential drug candidates, possible drug repositioning, side effects and analysis in pharmacology. New animal models could be evaluated by our method before they are used in drug discovery. We applied the method to several cases of known animal model expression profiles and obtained some useful information to help drug research. We found that trichostatin A and some other HDACs could have very similar response across cell lines and species at gene expression level. Mouse hypoxia model could accurately mimic the human hypoxia, while mouse diabetes drug model might have some limitation. The transgenic mouse of Alzheimer was a useful model and we deeply analyzed the biological mechanisms of some drugs in this case. In addition, all the cases could provide some ideas for drug discovery and drug repositioning. Conclusions We developed a new cross-species gene expression module comparison method to use animal models' expression data to analyse the effectiveness of animal models in drug research. Moreover, through data integration, our method could be applied for drug research, such as potential drug candidates, possible drug repositioning, side effects and information about pharmacology. PMID:23282076
Biscornet, Leon; Dellagi, Koussay; Pagès, Frédéric; Bibi, Jastin; de Comarmond, Jeanine; Mélade, Julien; Govinden, Graham; Tirant, Maria; Gomard, Yann; Guernier, Vanina; Lagadec, Erwan; Mélanie, Jimmy; Rocamora, Gérard; Le Minter, Gildas; Jaubert, Julien; Mavingui, Patrick
2017-01-01
Background Leptospirosis is a bacterial zoonosis caused by pathogenic Leptospira for which rats are considered as the main reservoir. Disease incidence is higher in tropical countries, especially in insular ecosystems. Our objectives were to determine the current burden of leptospirosis in Seychelles, a country ranking first worldwide according to historical data, to establish epidemiological links between animal reservoirs and human disease, and to identify drivers of transmission. Methods A total of 223 patients with acute febrile symptoms of unknown origin were enrolled in a 12-months prospective study and tested for leptospirosis through real-time PCR, IgM ELISA and MAT. In addition, 739 rats trapped throughout the main island were investigated for Leptospira renal carriage. All molecularly confirmed positive samples were further genotyped. Results A total of 51 patients fulfilled the biological criteria of acute leptospirosis, corresponding to an annual incidence of 54.6 (95% CI 40.7–71.8) per 100,000 inhabitants. Leptospira carriage in Rattus spp. was overall low (7.7%) but dramatically higher in Rattus norvegicus (52.9%) than in Rattus rattus (4.4%). Leptospira interrogans was the only detected species in both humans and rats, and was represented by three distinct Sequence Types (STs). Two were novel STs identified in two thirds of acute human cases while noteworthily absent from rats. Conclusions This study shows that human leptospirosis still represents a heavy disease burden in Seychelles. Genotype data suggests that rats are actually not the main reservoir for human disease. We highlight a rather limited efficacy of preventive measures so far implemented in Seychelles. This could result from ineffective control measures of excreting animal populations, possibly due to a misidentification of the main contaminating reservoir(s). Altogether, presented data stimulate the exploration of alternative reservoir animal hosts. PMID:28846678
Biscornet, Leon; Dellagi, Koussay; Pagès, Frédéric; Bibi, Jastin; de Comarmond, Jeanine; Mélade, Julien; Govinden, Graham; Tirant, Maria; Gomard, Yann; Guernier, Vanina; Lagadec, Erwan; Mélanie, Jimmy; Rocamora, Gérard; Le Minter, Gildas; Jaubert, Julien; Mavingui, Patrick; Tortosa, Pablo
2017-08-01
Leptospirosis is a bacterial zoonosis caused by pathogenic Leptospira for which rats are considered as the main reservoir. Disease incidence is higher in tropical countries, especially in insular ecosystems. Our objectives were to determine the current burden of leptospirosis in Seychelles, a country ranking first worldwide according to historical data, to establish epidemiological links between animal reservoirs and human disease, and to identify drivers of transmission. A total of 223 patients with acute febrile symptoms of unknown origin were enrolled in a 12-months prospective study and tested for leptospirosis through real-time PCR, IgM ELISA and MAT. In addition, 739 rats trapped throughout the main island were investigated for Leptospira renal carriage. All molecularly confirmed positive samples were further genotyped. A total of 51 patients fulfilled the biological criteria of acute leptospirosis, corresponding to an annual incidence of 54.6 (95% CI 40.7-71.8) per 100,000 inhabitants. Leptospira carriage in Rattus spp. was overall low (7.7%) but dramatically higher in Rattus norvegicus (52.9%) than in Rattus rattus (4.4%). Leptospira interrogans was the only detected species in both humans and rats, and was represented by three distinct Sequence Types (STs). Two were novel STs identified in two thirds of acute human cases while noteworthily absent from rats. This study shows that human leptospirosis still represents a heavy disease burden in Seychelles. Genotype data suggests that rats are actually not the main reservoir for human disease. We highlight a rather limited efficacy of preventive measures so far implemented in Seychelles. This could result from ineffective control measures of excreting animal populations, possibly due to a misidentification of the main contaminating reservoir(s). Altogether, presented data stimulate the exploration of alternative reservoir animal hosts.
A cross-species analysis method to analyze animal models' similarity to human's disease state.
Yu, Shuhao; Zheng, Lulu; Li, Yun; Li, Chunyan; Ma, Chenchen; Li, Yixue; Li, Xuan; Hao, Pei
2012-01-01
Animal models are indispensable tools in studying the cause of human diseases and searching for the treatments. The scientific value of an animal model depends on the accurate mimicry of human diseases. The primary goal of the current study was to develop a cross-species method by using the animal models' expression data to evaluate the similarity to human diseases' and assess drug molecules' efficiency in drug research. Therefore, we hoped to reveal that it is feasible and useful to compare gene expression profiles across species in the studies of pathology, toxicology, drug repositioning, and drug action mechanism. We developed a cross-species analysis method to analyze animal models' similarity to human diseases and effectiveness in drug research by utilizing the existing animal gene expression data in the public database, and mined some meaningful information to help drug research, such as potential drug candidates, possible drug repositioning, side effects and analysis in pharmacology. New animal models could be evaluated by our method before they are used in drug discovery. We applied the method to several cases of known animal model expression profiles and obtained some useful information to help drug research. We found that trichostatin A and some other HDACs could have very similar response across cell lines and species at gene expression level. Mouse hypoxia model could accurately mimic the human hypoxia, while mouse diabetes drug model might have some limitation. The transgenic mouse of Alzheimer was a useful model and we deeply analyzed the biological mechanisms of some drugs in this case. In addition, all the cases could provide some ideas for drug discovery and drug repositioning. We developed a new cross-species gene expression module comparison method to use animal models' expression data to analyse the effectiveness of animal models in drug research. Moreover, through data integration, our method could be applied for drug research, such as potential drug candidates, possible drug repositioning, side effects and information about pharmacology.
Improving the physiological realism of experimental models.
Vinnakota, Kalyan C; Cha, Chae Y; Rorsman, Patrik; Balaban, Robert S; La Gerche, Andre; Wade-Martins, Richard; Beard, Daniel A; Jeneson, Jeroen A L
2016-04-06
The Virtual Physiological Human (VPH) project aims to develop integrative, explanatory and predictive computational models (C-Models) as numerical investigational tools to study disease, identify and design effective therapies and provide an in silico platform for drug screening. Ultimately, these models rely on the analysis and integration of experimental data. As such, the success of VPH depends on the availability of physiologically realistic experimental models (E-Models) of human organ function that can be parametrized to test the numerical models. Here, the current state of suitable E-models, ranging from in vitro non-human cell organelles to in vivo human organ systems, is discussed. Specifically, challenges and recent progress in improving the physiological realism of E-models that may benefit the VPH project are highlighted and discussed using examples from the field of research on cardiovascular disease, musculoskeletal disorders, diabetes and Parkinson's disease.
Wefers, Benedikt; Meyer, Melanie; Ortiz, Oskar; Hrabé de Angelis, Martin; Hansen, Jens; Wurst, Wolfgang; Kühn, Ralf
2013-01-01
The study of genetic disease mechanisms relies mostly on targeted mouse mutants that are derived from engineered embryonic stem (ES) cells. Nevertheless, the establishment of mutant ES cells is laborious and time-consuming, restricting the study of the increasing number of human disease mutations discovered by high-throughput genomic analysis. Here, we present an advanced approach for the production of mouse disease models by microinjection of transcription activator-like effector nucleases (TALENs) and synthetic oligodeoxynucleotides into one-cell embryos. Within 2 d of embryo injection, we created and corrected chocolate missense mutations in the small GTPase RAB38; a regulator of intracellular vesicle trafficking and phenotypic model of Hermansky-Pudlak syndrome. Because ES cell cultures and targeting vectors are not required, this technology enables instant germline modifications, making heterozygous mutants available within 18 wk. The key features of direct mutagenesis by TALENs and oligodeoxynucleotides, minimal effort and high speed, catalyze the generation of future in vivo models for the study of human disease mechanisms and interventions. PMID:23426636
The druggable genome and support for target identification and validation in drug development.
Finan, Chris; Gaulton, Anna; Kruger, Felix A; Lumbers, R Thomas; Shah, Tina; Engmann, Jorgen; Galver, Luana; Kelley, Ryan; Karlsson, Anneli; Santos, Rita; Overington, John P; Hingorani, Aroon D; Casas, Juan P
2017-03-29
Target identification (determining the correct drug targets for a disease) and target validation (demonstrating an effect of target perturbation on disease biomarkers and disease end points) are important steps in drug development. Clinically relevant associations of variants in genes encoding drug targets model the effect of modifying the same targets pharmacologically. To delineate drug development (including repurposing) opportunities arising from this paradigm, we connected complex disease- and biomarker-associated loci from genome-wide association studies to an updated set of genes encoding druggable human proteins, to agents with bioactivity against these targets, and, where there were licensed drugs, to clinical indications. We used this set of genes to inform the design of a new genotyping array, which will enable association studies of druggable genes for drug target selection and validation in human disease. Copyright © 2017, American Association for the Advancement of Science.
Landscape epidemiology of emerging infectious diseases in natural and human-altered ecosystems
Ross K. Meentemeyer; Sarah E. Haas; Tomas Vaclavik
2012-01-01
A central challenge to studying emerging infectious diseases (EIDs) is a landscape dilemma: Our best empirical understanding of disease dynamics occurs at local scales, whereas pathogen invasions and management occur over broad spatial extents. The burgeoning field of landscape epidemiology integrates concepts and approaches from disease ecology with the...
Bahmad, Hisham; Hadadeh, Ola; Chamaa, Farah; Cheaito, Katia; Darwish, Batoul; Makkawi, Ahmad-Kareem; Abou-Kheir, Wassim
2017-01-01
With the help of several inducing factors, somatic cells can be reprogrammed to become induced pluripotent stem cell (iPSCs) lines. The success is in obtaining iPSCs almost identical to embryonic stem cells (ESCs), therefore various approaches have been tested and ultimately several ones have succeeded. The importance of these cells is in how they serve as models to unveil the molecular pathways and mechanisms underlying several human diseases, and also in its potential roles in the development of regenerative medicine. They further aid in the development of regenerative medicine, autologous cell therapy and drug or toxicity screening. Here, we provide a comprehensive overview of the recent development in the field of iPSCs research, specifically for modeling human neurological and neurodegenerative diseases, and its applications in neurotrauma. These are mainly characterized by progressive functional or structural neuronal loss rendering them extremely challenging to manage. Many of these diseases, including Parkinson's disease (PD), Huntington's disease (HD), Amyotrophic lateral sclerosis (ALS) and Alzheimer's disease (AD) have been explored in vitro . The main purpose is to generate patient-specific iPS cell lines from the somatic cells that carry mutations or genetic instabilities for the aim of studying their differentiation potential and behavior. This new technology will pave the way for future development in the field of stem cell research anticipating its use in clinical settings and in regenerative medicine in order to treat various human diseases, including neurological and neurodegenerative diseases.
Sustained synchronized neuronal network activity in a human astrocyte co-culture system
Kuijlaars, Jacobine; Oyelami, Tutu; Diels, Annick; Rohrbacher, Jutta; Versweyveld, Sofie; Meneghello, Giulia; Tuefferd, Marianne; Verstraelen, Peter; Detrez, Jan R.; Verschuuren, Marlies; De Vos, Winnok H.; Meert, Theo; Peeters, Pieter J.; Cik, Miroslav; Nuydens, Rony; Brône, Bert; Verheyen, An
2016-01-01
Impaired neuronal network function is a hallmark of neurodevelopmental and neurodegenerative disorders such as autism, schizophrenia, and Alzheimer’s disease and is typically studied using genetically modified cellular and animal models. Weak predictive capacity and poor translational value of these models urge for better human derived in vitro models. The implementation of human induced pluripotent stem cells (hiPSCs) allows studying pathologies in differentiated disease-relevant and patient-derived neuronal cells. However, the differentiation process and growth conditions of hiPSC-derived neurons are non-trivial. In order to study neuronal network formation and (mal)function in a fully humanized system, we have established an in vitro co-culture model of hiPSC-derived cortical neurons and human primary astrocytes that recapitulates neuronal network synchronization and connectivity within three to four weeks after final plating. Live cell calcium imaging, electrophysiology and high content image analyses revealed an increased maturation of network functionality and synchronicity over time for co-cultures compared to neuronal monocultures. The cells express GABAergic and glutamatergic markers and respond to inhibitors of both neurotransmitter pathways in a functional assay. The combination of this co-culture model with quantitative imaging of network morphofunction is amenable to high throughput screening for lead discovery and drug optimization for neurological diseases. PMID:27819315
Cha, Kihoon; Hwang, Taeho; Oh, Kimin; Yi, Gwan-Su
2015-01-01
It has been reported that several brain diseases can be treated as transnosological manner implicating possible common molecular basis under those diseases. However, molecular level commonality among those brain diseases has been largely unexplored. Gene expression analyses of human brain have been used to find genes associated with brain diseases but most of those studies were restricted either to an individual disease or to a couple of diseases. In addition, identifying significant genes in such brain diseases mostly failed when it used typical methods depending on differentially expressed genes. In this study, we used a correlation-based biclustering approach to find coexpressed gene sets in five neurodegenerative diseases and three psychiatric disorders. By using biclustering analysis, we could efficiently and fairly identified various gene sets expressed specifically in both single and multiple brain diseases. We could find 4,307 gene sets correlatively expressed in multiple brain diseases and 3,409 gene sets exclusively specified in individual brain diseases. The function enrichment analysis of those gene sets showed many new possible functional bases as well as neurological processes that are common or specific for those eight diseases. This study introduces possible common molecular bases for several brain diseases, which open the opportunity to clarify the transnosological perspective assumed in brain diseases. It also showed the advantages of correlation-based biclustering analysis and accompanying function enrichment analysis for gene expression data in this type of investigation.
2015-01-01
Background It has been reported that several brain diseases can be treated as transnosological manner implicating possible common molecular basis under those diseases. However, molecular level commonality among those brain diseases has been largely unexplored. Gene expression analyses of human brain have been used to find genes associated with brain diseases but most of those studies were restricted either to an individual disease or to a couple of diseases. In addition, identifying significant genes in such brain diseases mostly failed when it used typical methods depending on differentially expressed genes. Results In this study, we used a correlation-based biclustering approach to find coexpressed gene sets in five neurodegenerative diseases and three psychiatric disorders. By using biclustering analysis, we could efficiently and fairly identified various gene sets expressed specifically in both single and multiple brain diseases. We could find 4,307 gene sets correlatively expressed in multiple brain diseases and 3,409 gene sets exclusively specified in individual brain diseases. The function enrichment analysis of those gene sets showed many new possible functional bases as well as neurological processes that are common or specific for those eight diseases. Conclusions This study introduces possible common molecular bases for several brain diseases, which open the opportunity to clarify the transnosological perspective assumed in brain diseases. It also showed the advantages of correlation-based biclustering analysis and accompanying function enrichment analysis for gene expression data in this type of investigation. PMID:26043779
Studying Kidney Disease Using Tissue and Genome Engineering in Human Pluripotent Stem Cells.
Garreta, Elena; González, Federico; Montserrat, Núria
2018-01-01
Kidney morphogenesis and patterning have been extensively studied in animal models such as the mouse and zebrafish. These seminal studies have been key to define the molecular mechanisms underlying this complex multistep process. Based on this knowledge, the last 3 years have witnessed the development of a cohort of protocols allowing efficient differentiation of human pluripotent stem cells (hPSCs) towards defined kidney progenitor populations using two-dimensional (2D) culture systems or through generating organoids. Kidney organoids are three-dimensional (3D) kidney-like tissues, which are able to partially recapitulate kidney structure and function in vitro. The current possibility to combine state-of-the art tissue engineering with clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated systems 9 (Cas9)-mediated genome engineering provides an unprecedented opportunity for studying kidney disease with hPSCs. Recently, hPSCs with genetic mutations introduced through CRISPR/Cas9-mediated genome engineering have shown to produce kidney organoids able to recapitulate phenotypes of polycystic kidney disease and glomerulopathies. This mini review provides an overview of the most recent advances in differentiation of hPSCs into kidney lineages, and the latest implementation of the CRISPR/Cas9 technology in the organoid setting, as promising platforms to study human kidney development and disease. © 2017 S. Karger AG, Basel.
Koob, Andrew O; Shaked, Gideon M; Bender, Andreas; Bisquertt, Alejandro; Rockenstein, Edward; Masliah, Eliezer
2014-12-03
Neurogranin is a calmodulin binding protein that has been implicated in learning and memory, long-term potentiation and synaptic plasticity. Neurons expressing neurogranin in the cortex degenerate in late stages of Parkinson's disease with widespread α-synuclein pathology. While analyzing neurogranin gene expression levels through rtPCR in brains of mouse models overexpressing human α-synuclein, we found levels were elevated 2.5 times when compared to nontransgenic animals. Immunohistochemistry in the cortex revealed colocalization between α-synuclein and neurogranin in mouse transgenics when compared to control mice. Coimmunoprecipitation studies in the superior temporal cortex in humans confirmed interaction between α-synuclein and neurogranin, and decreased interaction between α-synuclein and neurogranin was noticed in patients diagnosed with Parkinson's disease when compared to normal control brains. Additionally, phosphorylated neurogranin levels were also decreased in the human superior temporal cortex in patients diagnosed with Parkinson's disease and patients diagnosed with dementia with Lewy bodies. Here, we show for the first time that neurogranin binds to α-synuclein in the human cortex, and this interaction decreases in Parkinson's disease along with the phosphorylation of neurogranin, a molecular process thought to be involved in learning and memory. Copyright © 2014 Elsevier B.V. All rights reserved.
Koob, Andrew O.; Shaked, Gideon M.; Bender, Andreas; Bisquertt, Alejandro; Rockenstein, Edward; Masliah, Eliezer
2016-01-01
Neurogranin is a calmodulin binding protein that has been implicated in learning and memory, long-term potentiation and synaptic plasticity. Neurons expressing neurogranin in the cortex degenerate in late stages of Parkinson’s disease with widespread α-synuclein pathology. While analyzing neurogranin gene expression levels through rtPCR in brains of mouse models overexpressing human α-synuclein, we found levels were elevated 2.5 times when compared to nontransgenic animals. Immunohistochemistry in the cortex revealed colocalization between α-synuclein and neurogranin in mouse transgenics when compared to control mice. Coimmunoprecipitation studies in the superior temporal cortex in humans confirmed interaction between α-synuclein and neurogranin, and decreased interaction between α-synuclein and neurogranin was noticed in patients diagnosed with Parkinson’s disease when compared to normal control brains. Additionally, phosphorylated neurogranin levels were also decreased in the human superior temporal cortex in patients diagnosed with Parkinson’s disease and patients diagnosed with dementia with Lewy bodies. Here, we show for the first time that neurogranin binds to α-synuclein in the human cortex, and this interaction decreases in Parkinson’s disease along with the phosphorylation of neurogranin, a molecular process thought to be involved in learning and memory. PMID:25446004
Bossart, Katharine N; Zhu, Zhongyu; Middleton, Deborah; Klippel, Jessica; Crameri, Gary; Bingham, John; McEachern, Jennifer A; Green, Diane; Hancock, Timothy J; Chan, Yee-Peng; Hickey, Andrew C; Dimitrov, Dimiter S; Wang, Lin-Fa; Broder, Christopher C
2009-10-01
Nipah virus is a broadly tropic and highly pathogenic zoonotic paramyxovirus in the genus Henipavirus whose natural reservoirs are several species of Pteropus fruit bats. Nipah virus has repeatedly caused outbreaks over the past decade associated with a severe and often fatal disease in humans and animals. Here, a new ferret model of Nipah virus pathogenesis is described where both respiratory and neurological disease are present in infected animals. Severe disease occurs with viral doses as low as 500 TCID(50) within 6 to 10 days following infection. The underlying pathology seen in the ferret closely resembles that seen in Nipah virus infected humans, characterized as a widespread multisystemic vasculitis, with virus replicating in highly vascular tissues including lung, spleen and brain, with recoverable virus from a variety of tissues. Using this ferret model a cross-reactive neutralizing human monoclonal antibody, m102.4, targeting the henipavirus G glycoprotein was evaluated in vivo as a potential therapeutic agent. All ferrets that received m102.4 ten hours following a high dose oral-nasal Nipah virus challenge were protected from disease while all controls died. This study is the first successful post-exposure passive antibody therapy for Nipah virus using a human monoclonal antibody.