Sample records for study hydrothermal stability

  1. [Study on hydrothermal stability of the collagen].

    PubMed

    Wang, Yajuan; Chen, Hui; Shan, Zhihua

    2009-02-01

    The low hydrothermal stability of the raw collagen restricts its usage. To improve the hydrothermal stability of collagen, two kinds of materials with weak astringency were used by experts. The research proved that the synergistic effect was formed during the process. In this study, by using UV, FT-IR, 13CNMR spectra and elemental analysis on the salicylic acid and metal-salicylic complexes, we could get the structural formula of every compound. And then, the hide powder was treated with the compounds. At last, the treated hide powder was tested by DSC. It could be presumed that the Rigid Matrix formed between the collagen doses can increase the hydrothermal stability of raw collagen, The result indicated that salicylic-chrome with large stable constant was better than others in improving the heat resistance of raw collagen, and the denaturalization temperature of hide powder treated with salicylic-chrome was 146.7 degrees C. Salicylic-aluminum was in the second place, the relevant temperature being 145.7 degrees C.

  2. On the hydrothermal stability of Cu/SSZ-13 SCR catalysts

    DOE PAGES

    Gao, Feng; Szanyi, Janos

    2018-05-07

    Cu/SSZ-13 SCR catalysts have been extensively studied in the past decade or so. Hydrothermal stability of these catalysts has been identified as the most important criterion for application. In this perspective, we describe recent atomic-level understanding of their hydrothermal stability. In particular, electron paramagnetic resonance (EPR) is shown to rather accurately quantify isolated Cu(II) ions and CuO clusters in fresh and aged catalysts to demonstrate the remarkable hydrothermal stability for Cu 2+ ions located in 6-membered ring windows, and the conversion of [Cu(OH)] + ions in Chabazite cages to CuO clusters. The hydrothermal stability difference of the two isolated Cu(II)more » ions is confirmed with DFT simulations and the conversion of [Cu(OH)] + to CuO is proposed to involve formation, migration and condensation of Cu(OH) 2 intermediates. The structural destructive role of CuO clusters is attributed to mesopore formation from their migration, which more severely damages the catalysts than dealumination. Lastly, perspectives are given on new strategies for low-temperature NO x removal, rational design and refinement of Cu/SSZ-13, and development of new Cu/zeolite SCR catalysts with even better performance than the state-of-the-art Cu/SSZ-13.« less

  3. On the hydrothermal stability of Cu/SSZ-13 SCR catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Feng; Szanyi, Janos

    Cu/SSZ-13 SCR catalysts have been extensively studied in the past decade or so. Hydrothermal stability of these catalysts has been identified as the most important criterion for application. In this perspective, we describe recent atomic-level understanding of their hydrothermal stability. In particular, electron paramagnetic resonance (EPR) is shown to rather accurately quantify isolated Cu(II) ions and CuO clusters in fresh and aged catalysts to demonstrate the remarkable hydrothermal stability for Cu 2+ ions located in 6-membered ring windows, and the conversion of [Cu(OH)] + ions in Chabazite cages to CuO clusters. The hydrothermal stability difference of the two isolated Cu(II)more » ions is confirmed with DFT simulations and the conversion of [Cu(OH)] + to CuO is proposed to involve formation, migration and condensation of Cu(OH) 2 intermediates. The structural destructive role of CuO clusters is attributed to mesopore formation from their migration, which more severely damages the catalysts than dealumination. Lastly, perspectives are given on new strategies for low-temperature NO x removal, rational design and refinement of Cu/SSZ-13, and development of new Cu/zeolite SCR catalysts with even better performance than the state-of-the-art Cu/SSZ-13.« less

  4. SiC-dopped MCM-41 materials with enhanced thermal and hydrothermal stabilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yingyong; Jin, Guoqiang; Tong, Xili

    2011-11-15

    Graphical abstract: Novel SiC-dopped MCM-41 materials were synthesized by adding silicon carbide suspension in the molecular sieve precursor solvent followed by in situ hydrothermal synthesis. The dopped materials have a wormhole-like mesoporous structure and exhibit enhanced thermal and hydrothermal stabilities. Highlights: {yields} SiC-dopped MCM-41 was synthesized by in situ hydrothermal synthesis of molecular sieve precursor combined with SiC. {yields} The dopped MCM-41 materials show a wormhole-like mesoporous structure. {yields} The thermal stability of the dopped materials have an increment of almost 100 {sup o}C compared with the pure MCM-41. {yields} The hydrothermal stability of the dopped materials is also bettermore » than that of the pure MCM-41. -- Abstract: SiC-dopped MCM-41 mesoporous materials were synthesized by the in situ hydrothermal synthesis, in which a small amount of SiC was added in the precursor solvent of molecular sieve before the hydrothermal treatment. The materials were characterized by X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, N{sub 2} physical adsorption and thermogravimetric analysis, respectively. The results show that the thermal and hydrothermal stabilities of MCM-41 materials can be improved obviously by incorporating a small amount of SiC. The structure collapse temperature of SiC-dopped MCM-41 materials is 100 {sup o}C higher than that of pure MCM-41 according to the differential scanning calorimetry analysis. Hydrothermal treatment experiments also show that the pure MCM-41 will losses it's ordered mesoporous structure in boiling water for 24 h while the SiC-dopped MCM-41 materials still keep partial porous structure.« less

  5. Toward Rational Design of Cu/SSZ-13 Selective Catalytic Reduction Catalysts: Implications from Atomic-Level Understanding of Hydrothermal Stability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, James; Wang, Yilin; Walter, Eric D.

    The hydrothermal stability of Cu/SSZ-13 SCR catalysts has been extensively studied, yet atomic level understanding of changes to the zeolite support and the Cu active sites during hydrothermal aging are still lacking. In this work, via the utilization of spectroscopic methods including solid-state 27Al and 29Si NMR, EPR, DRIFTS, and XPS, together with imaging and elemental mapping using STEM, detailed kinetic analyses, and theoretical calculations with DFT, various Cu species, including two types of isolated active sites and CuOx clusters, were precisely quantified for samples hydrothermally aged under varying conditions. This quantification convincingly confirms the exceptional hydrothermal stability of isolatedmore » Cu2+-2Z sites, and the gradual conversion of [Cu(OH)]+-Z to CuOx clusters with increasing aging severity. This stability difference is rationalized from the hydrolysis activation barrier difference between the two isolated sites via DFT. Discussions are provided on the nature of the CuOx clusters, and their possible detrimental roles on catalyst stability. Finally, a few rational design principles for Cu/SSZ-13 are derived rigorously from the atomic-level understanding of this catalyst obtained here. The authors gratefully acknowledge the US Department of Energy (DOE), Energy Efficiency and Renewable Energy, Vehicle Technologies Office for the support of this work. Computing time was granted by a user proposal at the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) and by the National Energy Research Scientific Computing Center (NERSC). The experimental studies described in this paper were performed in the EMSL, a national scientific user facility sponsored by the DOE’s Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). PNNL is operated for the US DOE by Battelle.« less

  6. Enhanced hydrothermal stability of Cu-ZSM-5 catalyst via surface modification in the selective catalytic reduction of NO with NH3

    NASA Astrophysics Data System (ADS)

    Zhang, Tao; Shi, Juan; Liu, Jian; Wang, Daxi; Zhao, Zhen; Cheng, Kai; Li, Jianmei

    2016-07-01

    The surface of Cu-ZSM-5 catalyst was modified by chemical liquid deposition (CLD) of tetraethoxysilane (TEOS) for enhancing its hydrothermal stability in the selective catalytic reduction of NO with NH3. After hydrothermal aging at 750 °C for 13 h, the catalytic performance of Cu-ZSM-5-Aged catalyst was significantly reduced for NO reduction in the entire temperature range, while that of Cu-ZSM-5-CLD-Aged catalyst was affected very little. The characterization results indicated that an inert silica layer was deposited on the surface of Cu-ZSM-5 and formed a protective layer, which prevents the detachment of Cu2+ from ZSM-5 ion-exchange positions and the dealumination of zeolite during the hydrothermal aging process. Based on the data it is hypothesized to be the primary reason for the high hydrothermal stability of Cu-ZSM-5-CLD catalyst.

  7. Layered double hydroxide using hydrothermal treatment: morphology evolution, intercalation and release kinetics of diclofenac sodium

    NASA Astrophysics Data System (ADS)

    Joy, Mathew; Iyengar, Srividhya J.; Chakraborty, Jui; Ghosh, Swapankumar

    2017-12-01

    The present work demonstrates the possibilities of hydrothermal transformation of Zn-Al layered double hydroxide (LDH) nanostructure by varying the synthetic conditions. The manipulation in washing step before hydrothermal treatment allows control over crystal morphologies, size and stability of their aqueous solutions. We examined the crystal growth process in the presence and the absence of extra ions during hydrothermal treatment and its dependence on the drug (diclofenac sodium (Dic-Na)) loading and release processes. Hexagonal plate-like crystals show sustained release with ˜90% of the drug from the matrix in a week, suggesting the applicability of LDH nanohybrids in sustained drug delivery systems. The fits to the release kinetics data indicated the drug release as a diffusion-controlled release process. LDH with rod-like morphology shows excellent colloidal stability in aqueous suspension, as studied by photon correlation spectroscopy.

  8. Hydrothermal stability of adenine under controlled fugacities of N2, CO2 and H2.

    PubMed

    Franiatte, Michael; Richard, Laurent; Elie, Marcel; Nguyen-Trung, Chinh; Perfetti, Erwan; LaRowe, Douglas E

    2008-04-01

    An experimental study has been carried out on the stability of adenine (one of the five nucleic acid bases) under hydrothermal conditions. The experiments were performed in sealed autoclaves at 300 degrees C under fugacities of CO(2), N(2) and H(2) supposedly representative of those in marine hydrothermal systems on the early Earth. The composition of the gas phase was obtained from the degradation of oxalic acid, sodium nitrite and ammonium chloride, and the oxidation of metallic iron. The results of the experiments indicate that after 200 h, adenine is still present in detectable concentration in the aqueous phase. In fact, the concentration of adenine does not seem to be decreasing after approximately 24 h, which suggests that an equilibrium state may have been established with the inorganic constituents of the hydrothermal fluid. Such a conclusion is corroborated by independent thermodynamic calculations.

  9. [Effect of sodium carbonate assisted hydrothermal process on heavy metals stabilization in medical waste incinerator fly ash].

    PubMed

    Jin, Jian; Li, Xiao-dong; Chi, Yong; Yan, Jian-hua

    2010-04-01

    A sodium carbonate assisted hydrothermal process was induced to stabilize the fly ash from medical waste incinerator. The results showed that sodium carbonate assisted hydrothermal process reduced the heavy metals leachability of fly ash, and the heavy metal waste water from the process would not be a secondary pollution. The leachability of heavy metals studied in this paper were Cd 1.97 mg/L, Cr 1.56 mg/L, Cu 2.56 mg/L, Mn 17.30 mg/L, Ni 1.65 mg/L, Pb 1.56 mg/L and Zn 189.00 mg/L, and after hydrothermal process with the optimal experimental condition (Na2CO3/fly ash dosage = 5/20, reaction time = 8 h, L/S ratio = 10/1) the leachability reduced to < 0.02 mg/L for Cd, Cr, Cu, Mn, Ni, Pb, and 0.05 mg/L for Zn, according to GB 5085.3-2007. Meanwhile, the concentrations of heavy metals in effluent after hydrothermal process were less than 0.8 mg/L. The heavy metals leachability and concentration in effluent reduced with prolonged reaction time. Prolonged aging can affect the leachability of metals as solids become more crystalline, and heavy metals transferred inside of crystalline. The mechanism of heavy metal stabilization can be concluded to the co precipitation and adsorption effect of aluminosilicates formation, crystallization and aging process.

  10. Basin-scale transport of hydrothermal dissolved metals across the South Pacific Ocean.

    PubMed

    Resing, Joseph A; Sedwick, Peter N; German, Christopher R; Jenkins, William J; Moffett, James W; Sohst, Bettina M; Tagliabue, Alessandro

    2015-07-09

    Hydrothermal venting along mid-ocean ridges exerts an important control on the chemical composition of sea water by serving as a major source or sink for a number of trace elements in the ocean. Of these, iron has received considerable attention because of its role as an essential and often limiting nutrient for primary production in regions of the ocean that are of critical importance for the global carbon cycle. It has been thought that most of the dissolved iron discharged by hydrothermal vents is lost from solution close to ridge-axis sources and is thus of limited importance for ocean biogeochemistry. This long-standing view is challenged by recent studies which suggest that stabilization of hydrothermal dissolved iron may facilitate its long-range oceanic transport. Such transport has been subsequently inferred from spatially limited oceanographic observations. Here we report data from the US GEOTRACES Eastern Pacific Zonal Transect (EPZT) that demonstrate lateral transport of hydrothermal dissolved iron, manganese, and aluminium from the southern East Pacific Rise (SEPR) several thousand kilometres westward across the South Pacific Ocean. Dissolved iron exhibits nearly conservative (that is, no loss from solution during transport and mixing) behaviour in this hydrothermal plume, implying a greater longevity in the deep ocean than previously assumed. Based on our observations, we estimate a global hydrothermal dissolved iron input of three to four gigamoles per year to the ocean interior, which is more than fourfold higher than previous estimates. Complementary simulations with a global-scale ocean biogeochemical model suggest that the observed transport of hydrothermal dissolved iron requires some means of physicochemical stabilization and indicate that hydrothermally derived iron sustains a large fraction of Southern Ocean export production.

  11. Crystallization stabilization mechanism of yttria-doped zirconia by hydrothermal treatment of mechanical mixtures of zirconia xerogel and crystalline yttria

    NASA Astrophysics Data System (ADS)

    Dell'Agli, G.; Mascolo, G.; Mascolo, M. C.; Pagliuca, C.

    2005-06-01

    Mechanical mixtures of zirconia xerogel and crystalline Y 2O 3 were hydrothermally treated by microwave and traditional route, respectively. Some mixtures were used either as powders form or as cylindrical compacts isostatically pressed at 150 MPa. The microwave-hydrothermal treatments were performed at 110, 150 and 200 °C for reaction times up to 2 h, whereas the traditional hydrothermal treatments were performed at 110 °C at increasing reaction times up to 7 days. All the treatments were performed in the presence of diluted (0.2 M) or concentrated (2.0 M) solution of (K 2CO 3+KOH) mineralizer. The crystallization-stabilization mechanism of synthesized Y-based zirconia powders and the reaction times for the full crystallization at the low temperature of hydrothermal treatments are discussed.

  12. Peptide synthesis in early earth hydrothermal systems

    USGS Publications Warehouse

    Lemke, K.H.; Rosenbauer, R.J.; Bird, D.K.

    2009-01-01

    We report here results from experiments and thermodynamic calculations that demonstrate a rapid, temperature-enhanced synthesis of oligopeptides from the condensation of aqueous glycine. Experiments were conducted in custom-made hydrothermal reactors, and organic compounds were characterized with ultraviolet-visible procedures. A comparison of peptide yields at 260??C with those obtained at more moderate temperatures (160??C) gives evidence of a significant (13 kJ ?? mol-1) exergonic shift. In contrast to previous hydrothermal studies, we demonstrate that peptide synthesis is favored in hydrothermal fluids and that rates of peptide hydrolysis are controlled by the stability of the parent amino acid, with a critical dependence on reactor surface composition. From our study, we predict that rapid recycling of product peptides from cool into near-supercritical fluids in mid-ocean ridge hydrothermal systems will enhance peptide chain elongation. It is anticipated that the abundant hydrothermal systems on early Earth could have provided a substantial source of biomolecules required for the origin of life. Astrobiology 9, 141-146. ?? 2009 Mary Ann Liebert, Inc. 2009.

  13. Hydrothermal simulation experiments as a tool for studies of the origin of life on Earth and other terrestrial planets: a review.

    PubMed

    Holm, Nils G; Andersson, Eva

    2005-08-01

    The potential of life's origin in submarine hydrothermal systems has been evaluated by a number of investigators by conducting high temperature-high pressure experiments involving organic compounds. In the majority of these experiments little attention has been paid to the importance of constraining important parameters, such as the pH and the redox state of the system. This is particularly revealed in the apparent difficulties in interpreting experimental data from hydrothermal organic synthesis and stability studies. However, in those cases where common mineral assemblages have been used in an attempt to buffer the pH and redox conditions to geologically and geochemically realistic values, theoretical and experimental data seem to converge. The use of mineral buffer assemblages provides a convenient way by which to constrain the experimental conditions. Studies at high temperatures and pressure in the laboratory have revealed a number of reactions that proceed rapidly in hydrothermal fluids, including the Strecker synthesis of amino acids. In other cases, the verification of postulated abiotic reaction mechanisms has not been possible, at least for large molecules such as large fatty acids and hydrocarbons. This includes the Fischer-Tropsch synthesis reaction. High temperature-high pressure experimental methods have been developed and used successfully for a long time in, for example, mineral solubility studies under hydrothermal conditions. By taking advantage of this experimental experience new and, at times, unexpected directions can be taken in bioorganic geochemistry, one being, for instance, primitive two-dimensional information coding. This article critically reviews some of the organic synthesis and stability experiments that have been conducted under simulated submarine hydrothermal conditions. We also discuss some of the theoretical and practical considerations that apply to hydrothermal laboratory studies of organic molecules related to the origin of life on Earth and probably also to the other terrestrial planets.

  14. Hydrothermal transport, deposition, and fractionation of the REE: Experimental data and thermodynamic calculations

    DOE PAGES

    Migdisov, Artaches; Williams-Jones, A. E.; Brugger, J.; ...

    2016-06-11

    For many years, our understanding of the behavior of the REE in hydrothermal systems was based on semi-empirical estimates involving extrapolation of thermodynamic data obtained at 25 °C. Since then, a substantial body of experimental data has accumulated on the stability of aqueous complexes of the REE. These data have shown that some of the predictions of Haas et al. (1995) are accurate, but others may be in error by several orders of magnitude. However, application of the data in modeling hydrothermal transport and deposition of the REE has been severely hampered by the lack of data on the thermodynamicmore » properties of even the most common REE minerals. The discrepancies between the predictions and experimental determinations of the thermodynamic properties of aqueous REE species, together with the paucity of data on the stability of REE minerals, raise serious questions about the reliability of some models that have been proposed for the hydrothermal mobility of these critical metals. In this contribution, we review a body of high-temperature experimental data collected over the past 15 years on the stability of REE aqueous species and minerals. Using this new thermodynamic dataset, we re-evaluate the mechanisms responsible for hydrothermal transport and deposition of the REE. We also discuss the mechanisms that can result in REE fractionation during their hydrothermal transport and deposition. Here, our calculations suggest that in hydrothermal solutions, the main REE transporting ligands are chloride and sulfate, whereas fluoride, carbonate, and phosphate likely play an important role as depositional ligands. In addition to crystallographic fractionation, which is based on the differing affinity of mineral structures for the REE, our models suggest that the REE can be fractionated hydrothermally due to the differences in the stability of the LREE and HREE as aqueous chloride complexes.« less

  15. Synthesis of Mesoporous Nanocrystalline Zirconia by Surfactant-Assisted Hydrothermal Approach.

    PubMed

    Nath, Soumav; Biswas, Ashik; Kour, Prachi P; Sarma, Loka S; Sur, Ujjal Kumar; Ankamwar, Balaprasad G

    2018-08-01

    In this paper, we have reported the chemical synthesis of thermally stable mesoporous nanocrystalline zirconia with high surface area using a surfactant-assisted hydrothermal approach. We have employed different type of surfactants such as CTAB, SDS and Triton X-100 in our synthesis. The synthesized nanocrystalline zirconia multistructures exhibit various morphologies such as rod, mortar-pestle with different particle sizes. We have characterized the zirconia multistructures by X-ray diffraction study, Field emission scanning electron microscopy, Attenuated total refection infrared spectroscopy, UV-Vis spectroscopy and photoluminescence spectroscopy. The thermal stability of as synthesized zirconia multistructures was studied by thermo gravimetric analysis, which shows the high thermal stability of nanocrystalline zirconia around 900 °C temperature.

  16. Stability of fluorite-type La 2Ce 2O 7 under extreme conditions

    DOE PAGES

    Zhang, F. X.; Tracy, C. L.; Lang, M.; ...

    2016-03-03

    Here, the structural stability of fluorite-type La 2Ce 2O 7 was studied at pressure up to ~40 GPa and under hydrothermal conditions (~1 GPa, 350 °C), respectively, using synchrotron x-ray diffraction (XRD) and Raman scattering measurements. XRD measurements indicated that fluorite-type La 2Ce 2O 7 is not stable at pressures greater than 22.6 GPa and slowly transforms to a high-pressure phase. The high-pressure phase is not stable and changes back to the fluorite-type structure when pressure is released. The La 2Ce 2O 7 fluorite is also not stable under hydrothermal conditions and begins to react with water at 200~250 °C.more » Both Raman and XRD results suggest that lanthanum hydroxide La(OH) 3 and La 3+-doped CeO 2 fluorite are the dominant products after hydrothermal treatment.« less

  17. Effect of Hydrothermal Treatment on Structural and Catalytic Properties of [CTA]-MCM-41 Silica.

    PubMed

    Zapelini, Iago W; Silva, Laura L; Cardoso, Dilson

    2018-05-21

    The [CTA]-MCM-41 hybrid silica is a useful and simply prepared heterogeneous basic catalyst for the transesterification reaction. Here, the effect of hydrothermal treatment during catalyst preparation was investigated, with the aim of improving the structural stability of this catalyst during the reaction. It was observed that the hydrothermal step led to the formation of a material with a higher degree of organization and a greater wall thickness, which improved its structural stability. However, the catalyst prepared using this treatment presented lower catalytic activity, due to the presence of fewer active sites.

  18. [Novel process utilizing alkalis assisted hydrothermal process to stabilize heavy metals both from municipal solid waste or medical waste incinerator fly ash and waste water].

    PubMed

    Wang, Lei; Jin, Jian; Li, Xiao-dong; Chi, Yong; Yan, Jian-hua

    2010-08-01

    An alkalis assisted hydrothermal process was induced to stabilize heavy metals both from municipal solid waste or medical waste incinerator fly ash and waste water. The results showed that alkalis assisted hydrothermal process removed the heavy metals effectively from the waste water, and reduced leachability of fly ash after process. The heavy metal leachabilities of fly ash studied in this paper were Mn 17,300 microg/L,Ni 1650 microg/L, Cu 2560 microg/L, Zn 189,000 microg/L, Cd 1970 microg/L, Pb 1560 microg/L for medical waste incinerator fly ash; Mn 17.2 microg/L, Ni 8.32 microg/L, Cu 235.2 microg/L, Zn 668.3 microg/L, Cd 2.81 microg/L, Pb 7200 microg/L for municipal solid waste incinerator fly ash. After hydrothermal process with experimental condition [Na2CO3 dosage (5 g Na2CO3/50 g fly ash), reaction time = 10 h, L/S ratio = 10/1], the heavy metal removal efficiencies of medical waste incinerator fly ash were 86.2%-97.3%, and 94.7%-99.6% for municipal solid waste incinerator fly ash. The leachabilities of both two kinds of fly ash were lower than that of the Chinese national limit. The mechanism of heavy metal stabilization can be concluded to the chemisorption and physically encapsulation effects of aluminosilicates during its formation, crystallization and aging process, the high pH value has some contribution to the heavy metal removal and stabilization.

  19. Silylated Zeolites With Enhanced Hydrothermal Stability for the Aqueous-Phase Hydrogenation of Levulinic Acid to γ-Valerolactone

    PubMed Central

    Vu, Hue-Tong; Harth, Florian M.; Wilde, Nicole

    2018-01-01

    A systematic silylation approach using mono-, di-, and trichlorosilanes with different alkyl chain lengths was employed to enhance the hydrothermal stability of zeolite Y. DRIFT spectra of the silylated zeolites indicate that the attachment of the silanes takes place at surface silanol groups. Regarding hydrothermal stability under aqueous-phase processing (APP) conditions, i.e., pH ≈ 2, 473 K and autogenous pressure, the selective silylation of the zeolite surface using monochlorosilanes has no considerable influence. By using trichlorosilanes, the hydrothermal stability of zeolite Y can be improved significantly as proven by a stability test in an aqueous solution of 0.2 M levulinic acid (LA) and 0.6 M formic acid (FA) at 473 K. However, the silylation with trichlorosilanes results in a significant loss of total specific pore volume and total specific surface area, e.g., 0.35 cm3 g−1 and 507 m2 g−1 for the silylated zeolite Y functionalized with n-octadecyltrichlorosilane compared to 0.51 cm3 g−1 and 788 m2 g−1 for the parent zeolite Y. The hydrogenation of LA to γ-valerolactone (GVL) was conducted over 3 wt.-% Pt on zeolite Y (3PtY) silylated with either n-octadecyltrichlorosilane or methyltrichlorosilane using different reducing agents, e.g., FA or H2. While in the stability test an enhanced hydrothermal stability was found for zeolite Y silylated with n-octadecyltrichlorosilane, its stability in the hydrogenation of LA was far less pronounced. Only by applying an excess amount of methyltrichlorosilane, i.e., 10 mmol per 1 g of zeolite Y, presumably resulting in a high degree of polymerization among the silanes, a recognizable improvement of the stability of the 3 PtY catalyst could be achieved. Nonetheless, the pore blockage found for zeolite Y silylated with an excess amount of methyltrichlorosilane was reflected in a drastically lower GVL yield at 493 K using FA as reducing agent, i.e., 12 vs. 34% for 3PtY after 24 h. PMID:29868552

  20. Silylated Zeolites with Enhanced Hydrothermal Stability for the Aqueous-Phase Hydrogenation of Levulinic Acid to γ-Valerolactone

    NASA Astrophysics Data System (ADS)

    Vu, Hue-Tong; Harth, Florian M.; Wilde, Nicole

    2018-05-01

    A systematic silylation approach using mono-, di- and trichlorosilanes with different alkyl chain lengths was employed to enhance the hydrothermal stability of zeolite Y. DRIFT spectra of the silylated zeolites indicate that the attachment of the silanes takes place at surface silanol groups. Regarding hydrothermal stability under aqueous-phase processing conditions, i.e., pH ≈ 2, 473 K and autogenous pressure, the selective silylation of the zeolite surface using monochlorosilanes has no considerable influence. By using trichlorosilanes, the hydrothermal stability of zeolite Y can be improved significantly as proven by a stability test in an aqueous solution of 0.6 M levulinic acid (LA) and 0.2 M formic acid (FA) at 473 K. However, the silylation with trichlorosilanes results in a significant loss of total specific pore volume and total specific surface area, e.g., 0.35 cm3 g-1 and 507 m2 g 1 for the silylated zeolite Y functionalized with n octadecyltrichlorosilane compared to 0.51 cm3 g 1 and 788 m2 g-1 for the parent zeolite Y. The hydrogenation of LA to γ valerolactone (GVL) was conducted over 3 wt.-% Pt on zeolite Y (3PtY) silylated with either n octadecyltrichlorosilane or methyltrichlorosilane using different reducing agents, e.g., FA or H2. While in the stability test an enhanced hydrothermal stability was found for zeolite Y silylated with n octadecyltrichlorosilane, its stability in the hydrogenation of LA was far less pronounced. Only by applying an excess amount of methyltrichlorosilane, i.e., 10 mmol per 1 g of zeolite Y, presumably resulting in a high degree of polymerization among the silanes, a recognizable improvement of the stability of the 3 PtY catalyst could be achieved. Nonetheless, the pore blockage found for zeolite Y silylated with an excess amount of methyltrichlorosilane was reflected in a drastically lower GVL yield at 493 K using FA as reducing agent, i.e., 12% vs. 34% for 3PtY after 24 h.

  1. The migration and transformation behaviors of heavy metals during the hydrothermal treatment of sewage sludge.

    PubMed

    Huang, Hua-Jun; Yuan, Xing-Zhong

    2016-01-01

    Various hydrothermal treatment methods, including hydrothermal carbonization, liquefaction and sub/super-critical water gasification, have been applied to the disposal of sewage sludge for producing bio-materials or bio-fuels. It has become a research hotspot whether the heavy metals contained in sewage sludge can be well treated/stabilized after the hydrothermal treatments. This review firstly summarized the methods of assessing heavy metals' contamination level/risk and then discussed the migration and transformation behaviors of heavy metals from the following aspects: the effect of reaction temperature, the effect of additives (catalysts and other biomass), the effect of the type of solvent and the effect of reaction time. This review can provide an important reference for the further study of the migration and transformation behaviors of heavy metals during the hydrothermal treatment of sewage sludge. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Fate of copper complexes in hydrothermally altered deep-sea sediments from the Central Indian Ocean Basin.

    PubMed

    Chakraborty, Parthasarathi; Sander, Sylvia G; Jayachandran, Saranya; Nath, B Nagender; Nagaraju, G; Chennuri, Kartheek; Vudamala, Krushna; Lathika, N; Mascarenhas-Pereira, Maria Brenda L

    2014-11-01

    The current study aims to understand the speciation and fate of Cu complexes in hydrothermally altered sediments from the Central Indian Ocean Basin and assess the probable impacts of deep-sea mining on speciation of Cu complexes and assess the Cu flux from this sediment to the water column in this area. This study suggests that most of the Cu was strongly associated with different binding sites in Fe-oxide phases of the hydrothermally altered sediments with stabilities higher than that of Cu-EDTA complexes. The speciation of Cu indicates that hydrothermally influenced deep-sea sediments from Central Indian Ocean Basin may not significantly contribute to the global Cu flux. However, increasing lability of Cu-sediment complexes with increasing depth of sediment may increase bioavailability and Cu flux to the global ocean during deep-sea mining. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. The stability of amino acids at submarine hydrothermal vent temperatures

    NASA Technical Reports Server (NTRS)

    Bada, Jeffrey L.; Miller, Stanley L.; Zhao, Meixun

    1995-01-01

    It has been postulated that amino acid stability at hydrothermal vent temperatures is controlled by a metastable thermodynamic equilibrium rather than by kinetics. Experiments reported here demonstrate that the amino acids are irreversibly destroyed by heating at 240 C and that quasi-equilibrium calculations give misleading descriptions of the experimental observations. Equilibrium thermodynamic calculations are not applicable to organic compounds under high-temperature submarine vent conditions.

  4. Improvement of water resistance and dimensional stability of wood through titanium dioxide coating

    Treesearch

    Qingfeng Sun; Haipeng Yu; Yixing Liu; Jian Li; Yun Lu; John F. Hunt

    2010-01-01

    Moisture absorption and dimensional distortion are the major drawbacks of wood utilization as building material. In this study, poplar wood coated with a thin layer of titanium dioxide (TiO2) was prepared by the cosolvent-controlled hydrothermal method. Subsequently, its moisture absorption and dimensional stability were examined. Scanning...

  5. Methods to enhance the characteristics of hydrothermally prepared slurry fuels

    DOEpatents

    Anderson, Chris M.; Musich, Mark A.; Mann, Michael D.; DeWall, Raymond A.; Richter, John J.; Potas, Todd A.; Willson, Warrack G.

    2000-01-01

    Methods for enhancing the flow behavior and stability of hydrothermally treated slurry fuels. A mechanical high-shear dispersion and homogenization device is used to shear the slurry fuel. Other improvements include blending the carbonaceous material with a form of coal to reduce or eliminate the flocculation of the slurry, and maintaining the temperature of the hydrothermal treatment between approximately 300.degree. to 350.degree. C.

  6. Hydrothermal synthesis of nanostructured graphene/polyaniline composites as high-capacitance electrode materials for supercapacitors

    PubMed Central

    Wang, Ronghua; Han, Meng; Zhao, Qiannan; Ren, Zonglin; Guo, Xiaolong; Xu, Chaohe; Hu, Ning; Lu, Li

    2017-01-01

    As known to all, hydrothermal synthesis is a powerful technique for preparing inorganic and organic materials or composites with different architectures. In this reports, by controlling hydrothermal conditions, nanostructured polyaniline (PANi) in different morphologies were composited with graphene sheets (GNS) and used as electrode materials of supercapacitors. Specifically, ultrathin PANi layers with total thickness of 10–20 nm are uniformly composited with GNS by a two-step hydrothermal-assistant chemical oxidation polymerization process; while PANi nanofibers with diameter of 50~100 nm are obtained by a one-step direct hydrothermal process. Benefitting from the ultrathin layer and porous structure, the sheet-like GNS/PANi composites can deliver specific capacitances of 532.3 to 304.9 F/g at scan rates of 2 to 50 mV/s. And also, this active material showed very good stability with capacitance retention as high as ~99.6% at scan rate of 50 mV/s, indicating a great potential for using in supercapacitors. Furthermore, the effects of hydrothermal temperatures on the electrochemical performances were systematically studied and discussed. PMID:28291246

  7. Hydrothermal circulation at Mount St. Helens determined by self-potential measurements

    USGS Publications Warehouse

    Bedrosian, P.A.; Unsworth, M.J.; Johnston, M.J.S.

    2007-01-01

    The distribution of hydrothermal circulation within active volcanoes is of importance in identifying regions of hydrothermal alteration which may in turn control explosivity, slope stability and sector collapse. Self-potential measurements, indicative of fluid circulation, were made within the crater of Mount St. Helens in 2000 and 2001. A strong dipolar anomaly in the self-potential field was detected on the north face of the 1980-86 lava dome. This anomaly reaches a value of negative one volt on the lower flanks of the dome and reverses sign toward the dome summit. The anomaly pattern is believed to result from a combination of thermoelectric, electrokinetic, and fluid disruption effects within and surrounding the dome. Heat supplied from a cooling dacite magma very likely drives a shallow hydrothermal convection cell within the dome. The temporal stability of the SP field, low surface recharge rate, and magmatic component to fumarole condensates and thermal waters suggest the hydrothermal system is maintained by water vapor exsolved from the magma and modulated on short time scales by surface recharge. ?? 2006 Elsevier B.V. All rights reserved.

  8. Stability of Nanocrystalline Spark Plasma Sintered 3Y-TZP

    PubMed Central

    Chintapalli, Ravikiran; Mestra, Alvaro; García Marro, Fernando; Yan, Haixue; Reece, Michael; Anglada, Marc

    2010-01-01

    Spark plasma sintered 3Y-TZP has been investigated with respect to hydrothermal ageing and grinding. The sintering was performed between the temperatures of 1,100 and 1,600 °C for a soaking time of 5 minutes and the resulting materials were obtained with grain sizes between 65 to 800 nm and relative densities between 88.5 to 98.8%. Experiments on hydrothermal ageing in water vapour at 131 °C, 2 bars during 60 hours shows that phase stability is retained, elastic modulus and hardness of near surface region measured by nanoindentation does not change in fine grain (<200 nm) materials, in spite of porosity. In ground specimens, very small amount of transformation was found for all grain sizes studied.

  9. Preparation and characterization of titania-deposited silica composite hollow fiber membranes with high hydrothermal stability.

    PubMed

    Kwon, Young-Nam; Kim, In-Chul

    2013-11-01

    Hydrothermal stability of a porous nickel-supported silica membrane was successfully improved by deposition of titania multilayers on colloidal silica particles embedded in the porous nickel fiber support. Porous nickel-supported silica membranes were prepared by means of a dipping-freezing-fast drying (DFF) method. The titania layers were deposited on colloidal silica particles by repeating hydrolysis and condensation reactions of titanium isopropoxide on the silica particle surfaces. The deposition of thin titania layers on the nickel-supported silica membrane was verified by various analytical tools. The water flux and the solute rejection of the porous Ni fiber-supported silica membranes did not change after titania layer deposition, indicating that thickness of titania layers deposited on silica surface is enough thin not to affect the membrane performance. Moreover, improvement of the hydrothermal stability in the titania-deposited silica membranes was confirmed by stability tests, indicating that thin titania layers deposited on silica surface played an important role as a diffusion barrier against 90 degrees C water into silica particles.

  10. One-step synthesis of hydrothermally stable mesoporous aluminosilicates with strong acidity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang Dongjiang; School of Physical and Chemical Sciences, Queensland University of Technology, Brisbane, QLD 4001; Xu Yao

    2008-09-15

    Using tetraethylorthosilicate (TEOS), polymethylhydrosiloxane (PMHS) and aluminium isopropoxide (AIP) as the reactants, through a one-step nonsurfactant route based on PMHS-TEOS-AIP co-polycondensation, hydrothermally stable mesoporous aluminosilicates with different Si/Al molar ratios were successfully prepared. All samples exclusively showed narrow pore size distribution centered at 3.6 nm. To assess the hydrothermal stability, samples were subjected to 100 deg. C distilled water for 300 h. The boiled mesoporous aluminosilicates have nearly the same N{sub 2} adsorption-desorption isotherms and the same pore size distributions as those newly synthesized ones, indicating excellent hydrothermal stability. The {sup 29}Si MAS NMR spectra confirmed that PMHS and TEOSmore » have jointly condensed and CH{sub 3} groups have been introduced into the materials. The {sup 27}Al MAS NMR spectra indicated that Al atoms have been incorporated in the mesopore frameworks. The NH{sub 3} temperature-programmed desorption showed strong acidity. Due to the existence of large amount of CH{sub 3} groups, the mesoporous aluminosilicates obtained good hydrophobicity. Owing to the relatively large pore and the strong acidity provided by the uniform four-coordinated Al atoms, the excellent catalytic performance for 1,3,5-triisopropylbenzene cracking was acquired easily. The materials may be a profitable complement for the synthesis of solid acid catalysts. - Graphical abstract: Based on the nonsurfactant method, a facile one-step synthesis route has been developed to prepare methyl-modified mesoporous aluminosilicates that possessed hydrothermal stability and strong acidity.« less

  11. Rare Earth Oxide Fluoride Nanoparticles And Hydrothermal Method For Forming Nanoparticles

    DOEpatents

    Fulton, John L.; Hoffmann, Markus M.

    2003-12-23

    A hydrothermal method for forming nanoparticles of a rare earth element, oxygen and fluorine has been discovered. Nanoparticles comprising a rare earth element, oxygen and fluorine are also described. These nanoparticles can exhibit excellent refractory properties as well as remarkable stability in hydrothermal conditions. The nanoparticles can exhibit excellent properties for numerous applications including fiber reinforcement of ceramic composites, catalyst supports, and corrosion resistant coatings for high-temperature aqueous solutions.

  12. Rare earth oxide fluoride nanoparticles and hydrothermal method for forming nanoparticles

    DOEpatents

    Fulton, John L [Richland, WA; Hoffmann, Markus M [Richland, WA

    2001-11-13

    A hydrothermal method for forming nanoparticles of a rare earth element, oxygen and fluorine has been discovered. Nanoparticles comprising a rare earth element, oxygen and fluorine are also described. These nanoparticles can exhibit excellent refractory properties as well as remarkable stability in hydrothermal conditions. The nanoparticles can exhibit excellent properties for numerous applications including fiber reinforcement of ceramic composites, catalyst supports, and corrosion resistant coatings for high-temperature aqueous solutions.

  13. Effect of Si/Al ratio on catalytic performance of hydrothermally aged Cu-SSZ-13 for the NH3-SCR of NO in simulated diesel exhaust

    NASA Astrophysics Data System (ADS)

    Han, Shuai; Cheng, Jin; Zheng, Changkun; Ye, Qing; Cheng, Shuiyuan; Kang, Tianfang; Dai, Hongxing

    2017-10-01

    The hydrothermal stability of the CuSSZ-13 samples with various Si/Al ratios was examined. The NO conversions in the NH3-SCR and NH3 oxidation were measured. Physicochemical properties of the samples were characterized by means of a number of analytical techniques. It is shown that the NH3-SCR activity and hydrothermal stability of the CuSSZ-13 samples decreased with the rise in Si/Al ratio. Such decreases were attributed to the drop in the amount of the isolated Cu2+ in the D6R and CHA cage of the CuSSZ-13 samples. Part of the isolated Cu2+ ions were transformed to CuO after hydrothermal aging treatment, especially in the high-Si/Al-ratio samples. A large amount of the aggregated CuO destroyed the skeleton structure of SSZ-13, leading to the deactivation of the samples.

  14. Enhanced Hydrothermal Stability and Catalytic Activity of La x Zr y O z Mixed Oxides for the Ketonization of Acetic Acid in the Aqueous Condensed Phase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lopez-Ruiz, Juan A.; Cooper, Alan R.; Li, Guosheng

    Common ketonization catalysts such as ZrO2, CeO2, CexZryOz, and TiO2-based catalysts have been reported to lose surface area, undergo phase-transformation, and lose catalytic activity when utilized in the condensed aqueous phase. In this work, we synthesized and tested a series of LaxZryOz mixed metal oxides with different La:Zr atomic ratios with the goal of enhancing the catalytic activity and stability for the ketonization of acetic acid in condensed aqueous media at 568 K. We synthesized a hydrothermally stable LaxZryOz mixed-metal oxide catalyst with enhanced ketonization activities 360 and 40 times more active than La2O3 and ZrO2, respectively. Catalyst characterization techniquesmore » suggest that the formation of a hydrothermally stable catalyst which is isomorphic with tetragonal-ZrO2 under hydrothermal reaction conditions.« less

  15. L-Cysteine capped CdTe-CdS core-shell quantum dots: preparation, characterization and immuno-labeling of HeLa cells.

    PubMed

    Zhang, Hongyan; Sun, Pan; Liu, Chang; Gao, Huanyu; Xu, Linru; Fang, Jin; Wang, Meng; Liu, Jinling; Xu, Shukun

    2011-01-01

    Functionalized CdTe-CdS core-shell quantum dots (QDs) were synthesized in aqueous solution via water-bathing combined hydrothermal method using L-cysteine (L-Cys) as a stabilizer. This method possesses both the advantages of water-bathing and hydrothermal methods for preparing high-quality QDs with markedly reduced synthesis time, and better stability than a lone hydrothermal method. The QDs were characterized by transmission electronic microscopy and powder X-ray diffraction and X-ray photoelectron spectroscopy. The CdTe-CdS QDs with core-shell structure showed both enhanced fluorescence and better photo stability than nude CdTe QDs. After conjugating with antibody rabbit anti-CEACAM8 (CD67), the as-prepared l-Cys capped CdTe-CdS QDs were successfully used as fluorescent probes for the direct immuno-labeling and imaging of HeLa cells. It was indicated that this kind of QD would have application potential in bio-labeling and cell imaging. Copyright © 2009 John Wiley & Sons, Ltd.

  16. Steric hindrance and the enhanced stability of light rare-earth elements in hydrothermal fluids

    USGS Publications Warehouse

    Mayanovic, Robert A.; Anderson, Alan J.; Bassett, William A.; Chou, I.-Ming

    2009-01-01

    A series of X-ray absorption spectroscopy (XAS) experiments were made to determine the structure and stability of aqueous REE (La, Nd, Gd, and Yb) chloride complexes to 500 ??C and 520 MPa. The REE3+ ions exhibit inner-sphere chloroaqua complexation with a steady increase of chloride coordination with increasing temperature in the 150 to 500 ??C range. Furthermore, the degree of chloride coordination of REE3+ inner-sphere chloroaqua complexes decreases significantly from light to heavy REE. These results indicate that steric hindrance drives the reduction of chloride coordination of REE3+ inner-sphere chloroaqua complexes from light to heavy REE. This results in greater stability and preferential transport of light REE3+ over heavy REE3+ ions in saline hydrothermal fluids. Accordingly, the preferential mobility of light REE directly influences the relative abundance of REE in rocks and minerals and thus needs to be considered in geochemical modeling of petrogenetic and ore-forming processes affected by chloride-bearing hydrothermal fluids.

  17. Aluminosilicate nanoparticles for catalytic hydrocarbon cracking.

    PubMed

    Liu, Yu; Pinnavaia, Thomas J

    2003-03-05

    Aluminosilicate nanoparticles containing 9.0-20 nm mesopores were prepared through the use of protozeolitic nanoclusters as the inorganic precursor and starch as a porogen. The calcined, porogen-free composition containing 2 mol % aluminum exhibited the porosity, hydrothermal stability, and acidity needed for the cracking of very large hydrocarbons. In fact, the hydrothermal stability of the nanoparticles to pure steam at 800 degrees C, along with the cumene cracking activity, surpassed the analogous performance properties of ultrastable Y zeolite, the main catalyst component of commercial cracking catalysts. The remarkable hydrothermal stability and catalytic reactivity of the new nanoparticles are attributable to a unique combination of two factors, the presence of protozeolitic nanoclusters in the pore walls and the unprecedented pore wall thickness (7-15 nm). In addition, the excellent catalytic longevity of the nanoparticles is most likely facilitated by the small domain size of the nanoparticles that greatly improves access to the acid sites on the pore walls and minimizes the diffusion length of coke precursors out of the pores.

  18. Rheological and stability aspects of dry and hydrothermally heat treated aleurone-rich wheat milling fraction.

    PubMed

    Bucsella, Blanka; Takács, Ágnes; von Reding, Walter; Schwendener, Urs; Kálmán, Franka; Tömösközi, Sándor

    2017-04-01

    Novel aleurone-rich wheat milling fraction developed and produced on industry scale is investigated. The special composition of the novel flour with high protein, dietary fiber and fat content results in a unique combination of the mixing and viscosity properties. Due to the high lipid concentration, the fraction is exposed to fast rancidity. Dry heat (100°C for 12min) and hydrothermal treatment processes (96°C for 6min with 0-20 L/h steam) were applied on the aleurone-rich flour to modify the technological properties. The chemical, structural changes; the extractability of protein, carbohydrate and phenolic components and the rheological characteristics of the flours were evaluated. The dry treated flour decreased protein and carbohydrate extractability, shortened dough development time, reduced gel strength and enhanced the gelling ability. Hydrothermal treatment caused changes in the phenolic content improved the dough stability and -resistance. Heat treatment processes were able to extend the stability of the flour. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Survivability and Abiotic Reactions of Selected Amino Acids in Different Hydrothermal System Simulators

    NASA Astrophysics Data System (ADS)

    Chandru, Kuhan; Imai, Eiichi; Kaneko, Takeo; Obayashi, Yumiko; Kobayashi, Kensei

    2013-04-01

    We tested the stability and reaction of several amino acids using hydrothermal system simulators: an autoclave and two kinds of flow reactors at 200-250 °C. This study generally showed that there is a variation in the individual amino acids survivability in the simulators. This is mainly attributed to the following factors; heat time, cold quenching exposure, metal ions and also silica. We observed that, in a rapid heating flow reactor, high aggregation and/or condensation of amino acids could occur even during a heat exposure of 2 min. We also monitored their stability in a reflow-type of simulator for 120 min at 20 min intervals. The non-hydrolyzed and hydrolyzed samples for this system showed a similar degradation only in the absence of metal ions.

  20. Hydrothermal synthesis of PEDOT/rGO composite for supercapacitor applications

    NASA Astrophysics Data System (ADS)

    Ahmed, Sultan; Rafat, M.

    2018-01-01

    In this study, PEDOT/rGO composite has been successfully synthesized using hydrothermal method. Precursor solution of EDOT monomer was mixed with a predetermined solution of graphene oxide (GO). The resultant mixture was then hydrothermally treated. Surface morphology, crystal structure vibrational response and thermal stability have been studied using standard characterization techniques: field-emission scanning electron microscopy, X-ray diffraction, Raman spectroscopy and thermo-gravimetric analysis. The observed results confirm that the required composite of PEDOT/rGO has indeed been synthesized. Electrochemical properties of the synthesized product were studied in 6 M KOH aqueous solution, using characterization techniques such as: cyclic voltammetry, electrochemical impedance spectroscopy and galvanostatic charge-discharge measurements. The results show a high value of specific capacitance (102.8 F g-1) at 10 mV s-1, indicating that the composite can be profitably used for energy storage devices.

  1. Stability of peptides in high-temperature aqueous solutions

    NASA Astrophysics Data System (ADS)

    Shock, Everett L.

    1992-09-01

    Estimated standard molal thermodynamic properties of aqueous dipeptides and their constituent amino acids indicate that temperature increases correspond to increased stability of peptide bonds relative to hydrolysis reactions. Pressure increases cause slight decreases in peptide bond stability, which are generally offset by greater stability caused by temperature increases along geothermal gradients. These calculations suggest that peptides, polypeptides, and proteins may survive hydrothermal alteration of organic matter depending on the rates of the hydrolysis reactions. Extremely thermophilic organisms may be able to take advantage of the decreased energy required to form peptide bonds in order to maintain structural proteins and enzymes at elevated temperatures and pressures. As the rates of hydrolysis reactions increase with increasing temperature, formation of peptide bonds may become a facile process in hydrothermal systems and deep in sedimentary basins.

  2. Structural transformation of crystallized debranched cassava starch during dual hydrothermal treatment in relation to enzyme digestibility.

    PubMed

    Boonna, Sureeporn; Tongta, Sunanta

    2018-07-01

    Structural transformation of crystallized debranched cassava starch prepared by temperature cycling (TC) treatment and then subjected to annealing (ANN), heat-moisture treatment (HMT) and dual hydrothermal treatments of ANN and HMT was investigated. The relative crystallinity, lateral crystal size, melting temperature and resistant starch (RS) content increased for all hydrothermally treated samples, but the slowly digestible starch (SDS) content decreased. The RS content followed the order: HMT → ANN > HMT > ANN → HMT > ANN > TC, respectively. The HMT → ANN sample showed a larger lateral crystal size with more homogeneity, whereas the ANN → HMT sample had a smaller lateral crystal size with a higher melting temperature. After cooking at 50% moisture, the increased RS content of samples was observed, particularly for the ANN → HMT sample. These results suggest that structural changes of crystallized debranched starch during hydrothermal treatments depend on initial crystalline characteristics and treatment sequences, influencing thermal stability, enzyme digestibility, and cooking stability. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Volcano collapse promoted by hydrothermal alteration and edifice shape, Mount Rainier, Washington

    USGS Publications Warehouse

    Reid, M.E.; Sisson, T.W.; Brien, D.L.

    2001-01-01

    Catastrophic collapses of steep volcano flanks threaten many populated regions, and understanding factors that promote collapse could save lives and property. Large collapses of hydrothermally altered parts of Mount Rainier have generated far-traveled debris flows; future flows would threaten densely populated parts of the Puget Sound region. We evaluate edifice collapse hazards at Mount Rainier using a new three-dimensional slope stability method incorporating detailed geologic mapping and subsurface geophysical imaging to determine distributions of strong (fresh) and weak (altered) rock. Quantitative three-dimensional slope stability calculations reveal that sizeable flank collapse (>0.1 km3) is promoted by voluminous, weak, hydrothermally altered rock situated high on steep slopes. These conditions exist only on Mount Rainier's upper west slope, consistent with the Holocene debris-flow history. Widespread alteration on lower flanks or concealed in regions of gentle slope high on the edifice does not greatly facilitate collapse. Our quantitative stability assessment method can also provide useful hazard predictions using reconnaissance geologic information and is a potentially rapid and inexpensive new tool for aiding volcano hazard assessments.

  4. Enhanced Hydrothermal Stability and Catalytic Performance of HKUST-1 by Incorporating Carboxyl-Functionalized Attapulgite.

    PubMed

    Yuan, Bo; Yin, Xiao-Qian; Liu, Xiao-Qin; Li, Xing-Yang; Sun, Lin-Bing

    2016-06-29

    Much attention has been paid to metal-organic frameworks (MOFs) due to their large surface areas, tunable functionality, and diverse structure. Nevertheless, most reported MOFs show poor hydrothermal stability, which seriously hinders their applications. Here a strategy is adopted to tailor the properties of MOFs by means of incorporating carboxyl-functionalized natural clay attapulgite (ATP) into HKUST-1, a well-known MOF. A new type of hybrid material was thus fabricated from the hybridization of HKUST-1 and ATP. Our results indicated that the hydrothermal stability of the MOFs as well as the catalytic performance was apparently improved. The frameworks of HKUST-1 were severely destroyed after hydrothermal treatment (hot water vapor, 60 °C), while that of the hybrid materials was maintained. For the hybrid materials containing 8.4 wt % of ATP, the surface area reached 1302 m(2)·g(-1) and was even higher than that of pristine HKUST-1 (1245 m(2)·g(-1)). In the ring-opening of styrene oxide, the conversion reached 98.9% at only 20 min under catalysis from the hybrid material, which was obviously higher than that over pristine HKUST-1 (80.9%). Moreover, the hybrid materials showed excellent reusability and the catalytic activity was recoverable without loss after six cycles. Our materials provide promising candidates for heterogeneous catalysis owing to the good catalytic activity and reusability.

  5. Experimental Investigation of Organic Synthesis in Hydrothermal Environments

    NASA Technical Reports Server (NTRS)

    Shock, Everett L.

    1998-01-01

    Seafloor hydrothermal systems may be the most likely locations on the early Earth for the emergence of life. Because of the disequilibrium inherent in such dynamic, mixing environments, abundant chemical energy would have been available for formation of the building blocks of life. In addition, theoretical studies suggest that organic compounds in these conditions would reach metastable states, due to kinetic barriers to the formation of stable equilibrium products (CO2 and methane). The speciation of organic carbon in metastable states is highly dependent on the oxidation state, pH, temperature, pressure and bulk composition of the system. The goal of our research is to investigate the effects of a number external variables on the formation, transformation, and stability of organic compounds at hydrothermal conditions. We have begun experimental work to attempt to control the oxidation state of simulated hydrothermal systems by using buffers composed of mineral powders and gas mixtures. We are also beginning to test the stability of organic compounds under these conditions. The experiments are being performed using the hydrothermal bomb apparatus at the U.S. Geological Survey in Menlo Park, CA and the supercritical water oxidizer (SCWO) at NASA Ames Research Center in Moffet Field, CA. The amino acids decomposed rapidly. Even after the approximately 15 minutes between addition of the amino acids and the first sampling, no amino acids were detected in the PPM system by GC- MS, while in the FeFeO system the amino acids were present at a level of less than 50% of original. Carboxylic acids, ammonia, and CO2 were the main products, along with some unidentified compounds. The ratios of carboxylic acids and concentrations of other products seem to have remained stable during the experiments, consistent with observations of other metastable systems and theoretical predictions.

  6. Synthesis of multi-hierarchical structured yttria-stabilized zirconia powders and their enhanced thermophysical properties

    NASA Astrophysics Data System (ADS)

    Cao, Fengmei; Gao, Yanfeng; Chen, Hongfei; Liu, Xinling; Tang, Xiaoping; Luo, Hongjie

    2013-06-01

    Multi-hierarchical structured yttria-stabilized zirconia (YSZ) powders were successfully synthesized by a hydrothermal-calcination process. The morphology, crystallinity, and microstructure of the products were characterized by SEM, XRD, TEM, and BET. A possible formation mechanism of the unique structure formed during hydrothermal processing was also investigated. The measured thermophysical results indicated that the prepared YSZ powders had a low thermal conductivity (0.63-1.27 W m-1 K-1), good short-term high-temperature stability up to 1300 °C. The influence of the morphology and microstructure on their thermophysical properties was briefly discussed. The unique multi-hierarchical structure makes the prepared YSZ powders candidates for use in enhanced applications involving thermal barrier coatings.

  7. One-Step Hydrothermal-Electrochemical Route to Carbon-Stabilized Anatase Powders

    NASA Astrophysics Data System (ADS)

    Tao, Ying; Yi, Danqing; Zhu, Baojun

    2013-04-01

    Black carbon-stabilized anatase particles were prepared by a simple one-step hydrothermal-electrochemical method using glucose and titanium citrate as the carbon and titanium source, respectively. Morphological, chemical, structural, and electrochemical characterizations of these powders were carried out by Raman spectroscopy, Fourier-transform infrared spectroscopy, x-ray diffraction, scanning electron microscopy, and cyclic voltammetry. It was revealed that 200-nm carbon/anatase TiO2 was homogeneously dispersed, and the powders exhibited excellent cyclic performance at high current rates of 0.05 V/s. The powders are interesting potential materials that could be used as anodes for lithium-ion batteries.

  8. Spherical V-Fe-MCM-48: The Synthesis, Characterization and Hydrothermal Stability.

    PubMed

    Qian, Wang; Wang, Haiqing; Chen, Jin; Kong, Yan

    2015-04-14

    Spherical MCM-48 mesoporous sieve co-doped with vanadium and iron was successfully synthesized via one-step hydrothermal method. The material was characterized by X-ray diffraction (XRD), nitrogen adsorption-desorption isotherms, inductively coupled plasma (ICP), scanning electron microscopy (SEM), transmission electron microscopy (TEM), diffuse reflectance UV-vis spectra, and X-ray photoelectron spectra (XPS) techniques. Results indicated that the V-Fe-MCM-48 showed an ordered 3D cubic mesostructure with spherical morphology, narrow pore size distribution and high specific surface area. Most of vanadium and iron atoms existing as tetrahedral V 4+ and Fe 3+ species were co-doped into the silicate framework. The particle sizes of V-Fe-MCM-48 were smaller and the specific area was much higher than those of of V-MCM-48. Additionally, the synthesized V-Fe-MCM-48 exhibited improved hydrothermal stability compared with the pure MCM-48.

  9. Spherical V-Fe-MCM-48: The Synthesis, Characterization and Hydrothermal Stability

    PubMed Central

    Qian, Wang; Wang, Haiqing; Chen, Jin; Kong, Yan

    2015-01-01

    Spherical MCM-48 mesoporous sieve co-doped with vanadium and iron was successfully synthesized via one-step hydrothermal method. The material was characterized by X-ray diffraction (XRD), nitrogen adsorption-desorption isotherms, inductively coupled plasma (ICP), scanning electron microscopy (SEM), transmission electron microscopy (TEM), diffuse reflectance UV-vis spectra, and X-ray photoelectron spectra (XPS) techniques. Results indicated that the V-Fe-MCM-48 showed an ordered 3D cubic mesostructure with spherical morphology, narrow pore size distribution and high specific surface area. Most of vanadium and iron atoms existing as tetrahedral V4+ and Fe3+ species were co-doped into the silicate framework. The particle sizes of V-Fe-MCM-48 were smaller and the specific area was much higher than those of of V-MCM-48. Additionally, the synthesized V-Fe-MCM-48 exhibited improved hydrothermal stability compared with the pure MCM-48. PMID:28788030

  10. Negative results of growing titania nanotubes on cellulose nanocrystals - Effect of hydrothermal reaction

    NASA Astrophysics Data System (ADS)

    Chamakh, Mariem Mohamed; Ponnamma, Deepalekshmi; Al-Maadeed, Mariam Al Ali

    Titania nanotubes (TiO2 nanotubes or TNT) are grown hydrothermally on cellulose nanocrystals (CNC) synthesized from microcrystalline cellulose. It is observed that the CNC are lost during synthesis due to its low thermal stability. This negative result of metal growth on CNC and its influence on thermal degradation are reported here.

  11. Promotional effect of Al2O3 on WO3/CeO2-ZrO2 monolithic catalyst for selective catalytic reduction of nitrogen oxides with ammonia after hydrothermal aging treatment

    NASA Astrophysics Data System (ADS)

    Xu, Haidi; Liu, Shuang; Wang, Yun; Lin, Qingjin; Lin, Chenlu; Lan, Li; Wang, Qin; Chen, Yaoqiang

    2018-01-01

    Hydrothermal stability of catalysts for selective catalytic reduction of NOx with NH3 (NH3-SCR) has always been recognized as a challenge in development of candidate catalysts for applications in diesel engine emissions. In this study, Al2O3 was introduced into CeO2-ZrO2 to improve the NH3-SCR activity of WO3/CeO2-ZrO2 after hydrothermal aging (HA) treatment at 800 °C for 12 h. The activity results indicated that the NH3-SCR activity of WO3/CeO2-ZrO2-HA was obviously improved in the whole reaction temperature range after doping Al2O3 into CeO2-ZrO2, for example, the average and maximum NOx conversion were separately increased by ca. 20% and 25% after HA treatment. XRD, Raman, TEM and EDX results revealed that the introduction of Al2O3 inhibited the sintering and agglomeration of CeO2-ZrO2 and WO3 and the formation of Ce2(WO4)3 after HA treatment. Accordingly, WO3/CeO2-ZrO2-Al2O3-HA showed remarkably improved structural stability and reducibility, increased surface acidity, and facilitated the reactivity between adsorbed NH3 and nitrate species, which together contributed to its better catalytic performance after hydrothermal aging treatment.

  12. Concerns of Hydrothermal Degradation in CAD/CAM Zirconia

    PubMed Central

    Kim, J.-W.; Covel, N.S.; Guess, P.C.; Rekow, E.D.; Zhang, Y.

    2010-01-01

    Zirconia-based restorations are widely used in prosthetic dentistry; however, their susceptibility to hydrothermal degradation remains elusive. We hypothesized that CAD/CAM machining and subsequent surface treatments, i.e., grinding and/or grit-blasting, have marked effects on the hydrothermal degradation behavior of Y-TZP. CAD/CAM-machined Y-TZP plates (0.5 mm thick), both with and without subsequent grinding with various grit sizes or grit-blasting with airborne alumina particles, were subjected to accelerated aging tests in a steam autoclave. Results showed that the CAD/CAM-machined surfaces initially exhibited superior hydrothermal degradation resistance, but deteriorated at a faster rate upon prolonged autoclave treatment compared with ground and grit-blasted surfaces. The accelerated hydrothermal degradation of CAD/CAM surfaces is attributed to the CAD/CAM machining damage and the absence of surface compressive stresses in the fully sintered material. Clinical relevance for surface treatments of zirconia frameworks in terms of hydrothermal and structural stabilities is addressed. PMID:19966039

  13. Volcanic and Hydrothermal Activity of the North Su Volcano: New Insights from Repeated Bathymetric Surveys and ROV Observations

    NASA Astrophysics Data System (ADS)

    Thal, J.; Bach, W.; Tivey, M.; Yoerger, D.

    2013-12-01

    Bathymetric data from cruises in 2002, 2006, and 2011 were combined and compared to determine the evolution of volcanic activity, seafloor structures, erosional features and to identify and document the distribution of hydrothermal vents on North Su volcano, SuSu Knolls, eastern Manus Basin (Papua New Guinea). Geologic mapping based on ROV observations from 2006 (WHOI Jason-2) and 2011 (MARUM Quest-4000) combined with repeated bathymetric surveys from 2002 and 2011 are used to identify morphologic features on the slopes of North Su and to track temporal changes. ROV MARUM Quest-4000 bathymetry was used to develop a 10 m grid of the top of North Su to precisely depict recent changes. In 2006, the south slope of North Su was steeply sloped and featured numerous white smoker vents discharging acid sulfate waters. These vents were covered by several tens of meters of sand- to gravel-sized volcanic material in 2011. The growth of this new cone changed the bathymetry of the south flank of North Su up to ~50 m and emplaced ~0.014 km3 of clastic volcanic material. This material is primarily comprised of fractured altered dacite and massive fresh dacite as well as crystals of opx, cpx, olivine and plagioclase. There is no evidence for pyroclastic fragmentation, so we hypothesize that the fragmentation is likely related to hydrothermal explosions. Hydrothermal activity varies over a short (~50 m) lateral distance from 'flashing' black smokers to acidic white smoker vents. Within 2 weeks of observation time in 2011, the white smoker vents varied markedly in activity suggesting a highly episodic hydrothermal system. Based on ROV video recordings, we identified steeply sloping (up to 30°) slopes exposing pillars and walls of hydrothermal cemented volcaniclastic material representing former fluid upflow zones. These features show that hydrothermal activity has increased slope stability as hydrothermal cementation has prevented slope collapse. Additionally, in some places, hydrothermal crusts cover loose volcaniclastic material on the steep slopes and stabilize them.

  14. Structural variation of eucalyptus lignin in a combination of hydrothermal and alkali treatments.

    PubMed

    Sun, Shao-Ni; Li, Han-Yin; Cao, Xue-Fei; Xu, Feng; Sun, Run-Cang

    2015-01-01

    In this work, the structural features of the lignin isolated with 2% NaOH at 90°C for 2.5h from the hydrothermally pretreated eucalyptus fibers at different temperatures (100-200°C) for different times (15-60min) were thoroughly investigated. Results showed that the hydrothermal pretreatment facilitated the separation of alkali lignin from the pretreated fibers. It was found that the linkages of β-O-4, β-β, and β-5 decreased gradually with the increase of hydrothermal severity. Furthermore, decreased molecular weights (1630-510g/mol), associated carbohydrates contents (1.99-0.05%) and aliphatic OH contents (3.37-0.65mmol/g), and increased phenolic OH contents (0.71-2.98mmol/g) and thermal stability of the alkali lignins were observed with the increase of the hydrothermal severity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Hydrothermally synthesized PZT film grown in highly concentrated KOH solution with large electromechanical coupling coefficient for resonator.

    PubMed

    Feng, Guo-Hua; Lee, Kuan-Yi

    2017-12-01

    This paper presents a study of lead zirconate titanate (PZT) films hydrothermally grown on a dome-shaped titanium diaphragm. Few articles in the literature address the implementation of hydrothermal PZT films on curved-diaphragm substrates for resonators. In this study, a 50-μm-thick titanium sheet is embossed using balls of designed dimensions to shape a dome-shaped cavity array. Through single-process hydrothermal synthesis, PZT films are grown on both sides of the processed titanium diaphragm with good adhesion and uniformity. The hydrothermal synthesis process involves a high concentration of potassium hydroxide solution and excess amounts of lead acetate and zirconium oxychloride octahydrate. Varied deposition times and temperatures of PZT films are investigated. The grown films are characterized by X-ray diffraction and scanning electron microscopy. The 10-μm-thick PZT dome-shaped resonators with 60- and 20-μm-thick supporting layers are implemented and further tested. Results for both resonators indicate that large electromechanical coupling coefficients and a series resonance of 95 MHz from 14 MHz can be attained. The device is connected to a complementary metal-oxide-semiconductor integrated circuit for analysis of oscillator applications. The oscillator reaches a Q value of 6300 in air. The resonator exhibits a better sensing stability when loaded with water when compared with air.

  16. Hydrothermally synthesized PZT film grown in highly concentrated KOH solution with large electromechanical coupling coefficient for resonator

    PubMed Central

    Lee, Kuan-Yi

    2017-01-01

    This paper presents a study of lead zirconate titanate (PZT) films hydrothermally grown on a dome-shaped titanium diaphragm. Few articles in the literature address the implementation of hydrothermal PZT films on curved-diaphragm substrates for resonators. In this study, a 50-μm-thick titanium sheet is embossed using balls of designed dimensions to shape a dome-shaped cavity array. Through single-process hydrothermal synthesis, PZT films are grown on both sides of the processed titanium diaphragm with good adhesion and uniformity. The hydrothermal synthesis process involves a high concentration of potassium hydroxide solution and excess amounts of lead acetate and zirconium oxychloride octahydrate. Varied deposition times and temperatures of PZT films are investigated. The grown films are characterized by X-ray diffraction and scanning electron microscopy. The 10-μm-thick PZT dome-shaped resonators with 60- and 20-μm-thick supporting layers are implemented and further tested. Results for both resonators indicate that large electromechanical coupling coefficients and a series resonance of 95 MHz from 14 MHz can be attained. The device is connected to a complementary metal–oxide–semiconductor integrated circuit for analysis of oscillator applications. The oscillator reaches a Q value of 6300 in air. The resonator exhibits a better sensing stability when loaded with water when compared with air. PMID:29308260

  17. Hydrothermally synthesized PZT film grown in highly concentrated KOH solution with large electromechanical coupling coefficient for resonator

    NASA Astrophysics Data System (ADS)

    Feng, Guo-Hua; Lee, Kuan-Yi

    2017-12-01

    This paper presents a study of lead zirconate titanate (PZT) films hydrothermally grown on a dome-shaped titanium diaphragm. Few articles in the literature address the implementation of hydrothermal PZT films on curved-diaphragm substrates for resonators. In this study, a 50-μm-thick titanium sheet is embossed using balls of designed dimensions to shape a dome-shaped cavity array. Through single-process hydrothermal synthesis, PZT films are grown on both sides of the processed titanium diaphragm with good adhesion and uniformity. The hydrothermal synthesis process involves a high concentration of potassium hydroxide solution and excess amounts of lead acetate and zirconium oxychloride octahydrate. Varied deposition times and temperatures of PZT films are investigated. The grown films are characterized by X-ray diffraction and scanning electron microscopy. The 10-μm-thick PZT dome-shaped resonators with 60- and 20-μm-thick supporting layers are implemented and further tested. Results for both resonators indicate that large electromechanical coupling coefficients and a series resonance of 95 MHz from 14 MHz can be attained. The device is connected to a complementary metal-oxide-semiconductor integrated circuit for analysis of oscillator applications. The oscillator reaches a Q value of 6300 in air. The resonator exhibits a better sensing stability when loaded with water when compared with air.

  18. Uniformity and diversity in the composition of mineralizing fluids from hydrothermal vents on the southern Juan de Fuca Ridge.

    USGS Publications Warehouse

    Philpotts, J.A.; Aruscavage, P. J.; Von Damm, Karen L.

    1987-01-01

    Abundances of Li, Na, K, Rb, Ca, Sr, Ba, Mn, Fe, Zn, and Si have been determined in fluid samples from 7 vents located in three areas on the southern Juan de Fuca Ridge. The hydrothermal component estimated from the Mg contents of the samples ranges from 7% to 76%. Concentrations of Fe and Si, among other elements, in acid-stabilized solutions appear to be generally representative of the parental hydrothermal fluids, but some Zn determinations and most Ba values appear to be too low.-from Authors

  19. Comparison of the effects of different heat treatment processes on rheological properties of cake and bread wheat flours.

    PubMed

    Bucsella, Blanka; Takács, Ágnes; Vizer, Viktoria; Schwendener, Urs; Tömösközi, Sándor

    2016-01-01

    Dry and hydrothermal heat treatments are efficient for modifying the technological-functional and shelf-life properties of wheat milling products. Dry heat treatment process is commonly used to enhance the volume of cakes. Hydrothermal heat treatment makes wheat flours suitable as thickener agents. In this study, cake and bread wheat flours that differed in baking properties were exposed to dry (100 °C, 12 min) and hydrothermal (95 °C, 5 min, 5-20 l/h water) heat treatments. Rheological differences caused by the treatments were investigated in a diluted slurry and in a dough matrix. Dry heat treatment resulted in enhanced dough stability. This effect was significantly higher in the cake flour than the bread flour. Altered viscosity properties of the bread flour in the slurry matrix were also observed. The characteristics of hydrothermally treated samples showed matrix dependency: their viscosity increases in the slurry and decreases in the dough matrix. These results can support us to produce flour products with specific techno-functional properties. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Che, Guang-Bo, E-mail: guangboche@jlnu.edu.cn; Liu, Shu-Yu; Zhang, Qing

    Four new lanthanide complexes [Ln(O–NCP){sub 2}(NO{sub 3})]{sub n} based on multifunctional N,O-donor ligand 2-(2-carboxyphenyl)imidazo(4,5-f)-(1,10)phenanthroline (O–HNCP) and Ln(NO{sub 3}){sub 3}·6H{sub 2}O (Ln=Nd(1), La(2), Sm(3), Eu(4)) have been achieved under hydrothermal conditions and characterized by elemental analyses, infrared spectra and single crystal X-ray diffraction. Structural analyses revealed that all of these four complexes possess similar two-dimensional layer structures. In addition, thermal stability and luminescent properties of these complexes were also investigated. - Graphical abstract: A series of lanthanide(III) coordination polymers with intriguing structures based on 2-(2-carboxyphenyl)imidazo(4,5-f)-(1,10)phenanthroline ligand have been hydrothermally synthesized. The thermal stabilities and photoluminescence properties of these complexes have beenmore » investigated. - Highlights: • Four lanthanide(III) complexes have been hydrothermally synthesized. • The N,O-donor O–HNCP was used as the ligand. • TGA and PL properties of complexes 1–4 have been investigated.« less

  1. Synthesis of nanoporous TiO2 materials using a doubly surfactant system and applying them as useful adsorbents

    NASA Astrophysics Data System (ADS)

    Anbia, Mansoor; Khosravi, Faezeh

    Hydrothermal and non-hydrothermal nanoporous TiO2 materials were synthesized via a doubly surfactant route by using cationic cetyltrimethylammonium bromide and anionic sodium dodecyl sulfate surfactants as the molecular template/structure directing agent. Hydrothermal treatment was performed for comparison. The bulk chemical and phase compositions, crystalline structures, particle morphologies, thermal stabilities and surface texturing were determined by means of X-ray powder analysis, SEM and N2 sorptiometry. The nanoporous TiO2 materials were found to have a spherical morphology with a diameter range of 50-200 nm and a high surface area (390 m2 g-1). Hydrothermal and non-hydrothermal nanoporous TiO2 materials were applied for adsorption of heavy metal cations and the toxic organic compound, copper phthalocyanine, from water for evaluation of their adsorption properties. Both nanoporous TiO2 materials were found to have similar adsorption capacities toward heavy metal cations and CuPc. Both hydrothermal and non-hydrothermal TiO2 nanoporous materials were found to have very good potential for application as a new adsorbent especially for adsorbing heavy metal cations from wastewaters.

  2. Zinc complexation in chloride-rich hydrothermal fluids (25-600 °C): A thermodynamic model derived from ab initio molecular dynamics

    NASA Astrophysics Data System (ADS)

    Mei, Yuan; Sherman, David M.; Liu, Weihua; Etschmann, Barbara; Testemale, Denis; Brugger, Joël

    2015-02-01

    The solubility of zinc minerals in hydrothermal fluids is enhanced by chloride complexation of Zn2+. Thermodynamic models of these complexation reactions are central to models of Zn transport and ore formation. However, existing thermodynamic models, derived from solubility measurements, are inconsistent with spectroscopic measurements of Zn speciation. Here, we used ab initio molecular dynamics simulations (with the PBE exchange-correlation functional) to predict the speciation of Zn-Cl complexes from 25 to 600 °C. We also obtained in situ XAS measurements of Zn-Cl solutions at 30-600 °C. Qualitatively, the simulations reproduced the main features derived from in situ XANES and EXAFS measurements: octahedral to tetrahedral transition with increasing temperature and salinity, stability of ZnCl42- at high chloride concentration up to ⩾500 °C, and increasing stability of the trigonal planar [ZnCl3]- complex at high temperature. Having confirmed the dominant species, we directly determined the stability constants for the Zn-Cl complexes using thermodynamic integration along constrained Zn-Cl distances in a series of MD simulations. We corrected our stability constants to infinite dilution using the b-dot model for the activity coefficients of the solute species. In order to compare the ab initio results with experiments, we need to re-model the existing solubility data using the species we identified in our MD simulations. The stability constants derived from refitting published experimental data are in reasonable agreement with those we obtained using ab initio MD simulations. Our new thermodynamic model accurately predicts the experimentally observed changes in ZnO(s) and ZnCO3(s) solubility as a function of chloride concentration from 200 (Psat) to 600 °C (2000 bar). This study demonstrates that metal speciation and geologically useful stability constants can be derived for species in hydrothermal fluids from ab initio MD simulations even at the generalized gradient approximation for exchange-correlation. We caution, however, that simulations are mostly reliable at high T where ligand exchange is fast enough to yield thermodynamic averages over the timescales of the simulations.

  3. Whakaari (White Island volcano, New Zealand): Magma-hydrothermal laboratory

    NASA Astrophysics Data System (ADS)

    Lavallee, Yan; Heap, Michael J.; Reuschle, Thierry; Mayer, Klaus; Scheu, Bettina; Gilg, H. Albert; Kennedy, Ben M.; Letham-Brake, Mark; Jolly, Arthur; Dingwell, Donald B.

    2015-04-01

    Whakaari, active andesitic stratovolcano of the Taupo Volcanic Zone (New Zealand), hosts an open, highly reactive hydrothermal system in the amphitheatre of an earlier sector collapse. Its recent volcanic activity is primarily characterized by sequences of steam-driven (phreatic) and phreatomagmatic explosive eruptions, although a lava dome briefly extruded in 2012. The volcano provides a natural laboratory for the study of aggressive fluids on the permeability of the hydrothermal system, on phreatomagmatic volcanism as well as on the volcano edifice structural stability. Here, we present a holistic experimental dataset on the reservoir rocks properties (mineralogy, permeability, seismic velocity) and their response to changes in stress (strength, deformation mechanisms, fragmentation) and temperature (mineralogical breakdown). We show that the advance degree of alteration in the system, nearly replaced all the original rock-forming minerals. This alteration has produced generally weak rocks, which, when subjected to a differential stress, can undergo transition from a dilatant response (brittle) to a compactant response with a mere confining pressure of about 15-20 MPa (corresponding to depth of about 1 km). Thermal stressing experiments reveal that the alteration phases breakdown at 500 °C (alunite) and 700 °C (dehydrated alum and sulphur), generating much weakened skeletal rocks, deteriorated by a mass loss of 20 wt.%, resulting in an increase in porosity and permeability of about 15 vol.% and an order of magnitude, respectively. Novel thermal stressing tests at high-heating rates (<1000 K/min) suggest that the onset of this mineralogical debilitation is pushed to higher temperatures with heating rates, carrying implication for the stability of the reservoir rocks and explosions during magma movement at variable rates in the upper edifice. Rock strength imposes an important control on the stability of volcanic edifices and of the hydrothermal reservoir rocks, especially when considering the high potential energy stored as fluids in these porous rocks. Recent unrest at Whakaari has resulted in the near sudden generation of phreatomagmatic activity. Here, we complete our experimental description of these rocks by discussing the result of rapid decompression experiments on the rocks stoked with supercritical fluids. The results constrain the violence of these steam-driven events and highlight the predisposition of thermally unstable rocks in hydrothermal system to undergo sudden phreatic eruptions.

  4. Hydrothermal synthesis of superparamagnetic Fe{sub 3}O{sub 4} nanoparticles with ionic liquids as stabilizer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xiao-Di, E-mail: liuxiaodiny@126.com; Chen, Hao; Liu, Shan-Shan

    2015-02-15

    Highlights: • Superparamagnetic Fe{sub 3}O{sub 4} nanoparticles with good dispersity have been synthesized via hydrothermal method. • Ionic liquid [C{sub 16}mim]Cl acts as stabilizer for the Fe{sub 3}O{sub 4} nanoparticles. • Fe{sub 3}O{sub 4} nanoparticles have a saturation magnetization of 67.69 emu/g at 300 K. - Abstract: Superparamagnetic Fe{sub 3}O{sub 4} nanoparticles have been successfully synthesized under hydrothermal condition with the assistant of ionic liquid 1-hexadecyl-3-methylimidazolium chloride ([C{sub 16}mim]Cl). The structure and morphology of the sample have been investigated by X-ray diffraction (XRD), X-ray photoelectron spectra (XPS), transmission electron microscopy (TEM), and high-resolution TEM (HRTEM), and the results indicate thatmore » the as-synthesized inverse spinel Fe{sub 3}O{sub 4} nanoparticles have an average diameter of about 10 nm and exhibit relatively good dispersity. More importantly, it is found that [C{sub 16}mim]Cl acts as stabilizer for the Fe{sub 3}O{sub 4} nanoparticles by adsorbing on the particles surfaces to prevent the agglomeration. In addition, the obtained superparamagnetic Fe{sub 3}O{sub 4} nanoparticles have a saturation magnetization of 67.69 emu/g at 300 K.« less

  5. Synthesis and characterization of CuAlO(2) and AgAlO(2) delafossite oxides through low-temperature hydrothermal methods.

    PubMed

    Xiong, Dehua; Zeng, Xianwei; Zhang, Wenjun; Wang, Huan; Zhao, Xiujian; Chen, Wei; Cheng, Yi-Bing

    2014-04-21

    In this work, we present one-step low temperature hydrothermal synthesis of submicrometer particulate CuAlO2 and AgAlO2 delafossite oxides, which are two important p-type transparent conducting oxides. The synthesis parameters that affect the crystal formation processes and the product morphologies, including the selection of starting materials and their molar ratios, the pH value of precursors, the hydrothermal temperature, pressure, and reaction time, have been studied. CuAlO2 crystals have been synthesized from the starting materials of CuCl and NaAlO2 at 320-400 °C, and from Cu2O and Al2O3 at 340-400 °C, respectively. AgAlO2 crystals have been successfully synthesized at the low temperature of 190 °C, using AgNO3 and Al(NO3)3 as the starting materials and NaOH as the mineralizer. The detailed elemental compositions, thermal stability, optical properties, and synthesis mechanisms of CuAlO2 and AgAlO2 also have been studied. Noteworthy is the fact that both CuAlO2 and AgAlO2 can be stabilized up to 800 °C, and their optical transparency can reach 60%-85% in the visible range. Besides, it is believed the crystal formation mechanisms uncovered in the synthesis of CuAlO2 and AgAlO2 will prove insightful guildlines for the preparation of other delafossite oxides.

  6. Hydrothermal Synthesized of CoMoO4 Microspheres as Excellent Electrode Material for Supercapacitor.

    PubMed

    Li, Weixia; Wang, Xianwei; Hu, Yanchun; Sun, Lingyun; Gao, Chang; Zhang, Cuicui; Liu, Han; Duan, Meng

    2018-04-24

    The single-phase CoMoO 4 was prepared via a facile hydrothermal method coupled with calcination treatment at 400 °C. The structures, morphologies, and electrochemical properties of samples with different hydrothermal reaction times were investigated. The microsphere structure, which consisted of nanoflakes, was observed in samples. The specific capacitances at 1 A g -1 are 151, 182, 243, 384, and 186 F g -1 for samples with the hydrothermal times of 1, 4, 8, 12, and 24 h, respectively. In addition, the sample with the hydrothermal time of 12 h shows a good rate capability, and there is 45% retention of initial capacitance when the current density increases from 1 to 8 A g -1 . The high retain capacitances of samples show the fine long-cycle stability after 1000 charge-discharge cycles at current density of 8 A g -1 . The results indicate that CoMoO 4 samples could be a choice of excellent electrode materials for supercapacitor.

  7. Hydrothermal Synthesized of CoMoO4 Microspheres as Excellent Electrode Material for Supercapacitor

    NASA Astrophysics Data System (ADS)

    Li, Weixia; Wang, Xianwei; Hu, Yanchun; Sun, Lingyun; Gao, Chang; Zhang, Cuicui; Liu, Han; Duan, Meng

    2018-04-01

    The single-phase CoMoO4 was prepared via a facile hydrothermal method coupled with calcination treatment at 400 °C. The structures, morphologies, and electrochemical properties of samples with different hydrothermal reaction times were investigated. The microsphere structure, which consisted of nanoflakes, was observed in samples. The specific capacitances at 1 A g-1 are 151, 182, 243, 384, and 186 F g-1 for samples with the hydrothermal times of 1, 4, 8, 12, and 24 h, respectively. In addition, the sample with the hydrothermal time of 12 h shows a good rate capability, and there is 45% retention of initial capacitance when the current density increases from 1 to 8 A g-1. The high retain capacitances of samples show the fine long-cycle stability after 1000 charge-discharge cycles at current density of 8 A g-1. The results indicate that CoMoO4 samples could be a choice of excellent electrode materials for supercapacitor.

  8. Ammonium stability and nitrogen isotope fractionations for NH4+-NH3(aq)-NH3(gas) systems at 20-70 °C and pH of 2-13: Applications to habitability and nitrogen cycling in low-temperature hydrothermal systems

    NASA Astrophysics Data System (ADS)

    Li, Long; Lollar, Barbara Sherwood; Li, Hong; Wortmann, Ulrich G.; Lacrampe-Couloume, Georges

    2012-05-01

    Ammonium/ammonia is an essential nutrient and energy source to support life in oceanic and terrestrial hydrothermal systems. Thus the stability of ammonium is crucial to determine the habitability or ecological structure in hydrothermal environments, but still not well understood. To date, the lack of constraints on nitrogen isotope fractionations between ammonium and ammonia has limited the application of nitrogen isotopes to trace (bio)geochemical processes in such environments. In this study, we carried out laboratory experiments to (1) examine the stability of ammonium in an ammonium sulfate solution under temperature conditions from 20 to 70 °C and pH from 2.1 to 12.6 and (2) determine nitrogen isotope fractionation between ammonium and ammonia. Our experimental results show that ammonium is stable under the experimental temperatures when pH is less than 6. In experiments with starting pH greater than 8, significant ammonium was lost as a result of dissociation of ammonium and degassing of ammonia product. Nitrogen concentrations in the fluids decreased by more than 50% in the first two hours, indicating extremely fast effusion rates of ammonia. This implies that ammonium at high pH fluids (e.g., Lost City Hydrothermal Vents, Oman ophiolite hyperalkaline springs) may not be stable. Habitable environments may be more favorable at the leading edge of a pH gradient toward more acidic conditions, where the fluid can efficiently trap any ammonia transferred from a high pH vent. Although modeling shows that high temperature, low pH hydrothermal vents (e.g., Rainbow hydrothermal vent) may have the capability to retain ammonium, their high temperatures may limit habitability. The habitable zone associated with such a hydrothermal vent is likely at the lower front of a temperature gradient. In contrast, modeling of ammonium in deep terrestrial systems, suggests that saline fracture waters in crystalline rocks such as described in the Canadian Shield and in the Witwatersrand Basin, South Africa may also provide habitable environments for life. The nitrogen isotope results of remaining ammonium from the partial dissociation experiments fit well with a batch equilibrium model, indicating equilibrium nitrogen isotope fractionations have been reached between ammonium and its dissociation product aqueous ammonia. Modeling yielded nitrogen isotope fractionations between ammonium and aqueous ammonia were 45.4‰ at 23 °C, 37.7‰ at 50 °C, and 33.5‰ at 70 °C, respectively. A relationship between nitrogen equilibrium isotope fractionation and temperature is determined for the experimental temperature range as: 103·lnα(aq)=25.94×{103}/{T}-42.25 Integrated with three previous theoretical estimates on nitrogen isotope equilibrium fractionations between ammonium and gaseous ammonia, we achieved three possible temperature-dependent nitrogen isotope equilibrium fractionation between aqueous ammonia and gaseous ammonia:

  9. Preparation of monolithic silica-chitin composite under extreme biomimetic conditions.

    PubMed

    Bazhenov, Vasilii V; Wysokowski, Marcin; Petrenko, Iaroslav; Stawski, Dawid; Sapozhnikov, Philipp; Born, René; Stelling, Allison L; Kaiser, Sabine; Jesionowski, Teofil

    2015-05-01

    Chitin is a widespread renewable biopolymer that is extensively distributed in the natural world. The high thermal stability of chitin provides an opportunity to develop novel inorganic-organic composites under hydrothermal synthesis conditions in vitro. For the first time, in this work we prepared monolithic silica-chitin composite under extreme biomimetic conditions (80°C and pH 1.5) using three dimensional chitinous matrices isolated from the marine sponge Aplysina cauliformis. The resulting material was studied using light and fluorescence microscopy, scanning electron microscopy, Fourier transform infrared spectroscopy. A mechanism for the silica-chitin interaction after exposure to these hydrothermal conditions is proposed and discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Hydrothermal synthesis and characterization of a novel supramolecular network compound of Co(NIA) 2(H 2O) 4 with molecular ladder hydrogen bond chains (NIA=nicotinate)

    NASA Astrophysics Data System (ADS)

    Jia, Hong-Bin; Yu, Jie-Hui; Xu, Ji-Qing; Ye, Ling; Ding, Hong; Jing, Wei-Jie; Wang, Tie-Gang; Xu, Jia-Ning; Li, Zeng-Chun

    2002-10-01

    By hydrothermal method, a novel supramolecular compound, Co(NIA) 2(H 2O) 4 was synthesized and its structure was characterized with elemental analysis, FT-IR spectrum, TGA and X-ray diffractometer, indicating that it is a novel polyporous supramolecule with molecular ladder hydrogen-bonded chains. TGA curve shows its thermal stability up to 520 °C.

  11. Formation mechanism of rectangular-ambulatory-plane TiO2 plates: an insight into the role of hydrofluoric acid.

    PubMed

    Zou, Yajun; Gao, Ge; Wang, Zhenyu; Shi, Jian-Wen; Wang, Hongkang; Ma, Dandan; Fan, Zhaoyang; Chen, Xin; Wang, Zeyan; Niu, Chunming

    2018-06-13

    A novel rectangular-ambulatory-plane TiO2 plate with exposed {001} facets was developed for the first time via a facile microwave-assisted hydrothermal approach in the presence of HF solution. Solid evidence demonstrated that HF plays dual roles in the hydrothermal process, both as a stabilizer for the {001} facet growth and as an etching reagent selectively destroying the {001} facets.

  12. Aqueous Isolation of 17-Nuclear Zr-/Hf- Oxide Clusters during the Hydrothermal Synthesis of ZrO2/HfO2.

    PubMed

    Sung, Qing; Liu, Caiyun; Zhang, Guanyun; Zhang, Jian; Tung, Chen-Ho; Wang, Yifeng

    2018-06-21

    Novel 17-nuclear Zr-/Hf- oxide clusters ({Zr17} and {Hf17}) are isolated from aqueous systems. In the clusters, Zr/Hf ions are connected via μ3-O, μ3-OH and μ2-OH linkages into a pinwheel core which is wrapped with SO42-, HCOO- and aqua ligands. Octahedral hexanuclear Zr-/Hf- oxide clusters ({Zr6}oct and {Hf6}oct) are also isolated from the same hydrothermal system by decreasing the synthesis temperature. Structural analysis, synthetic conditions, vibrational spectra and ionic conductivity of the clusters are studied. Structural studies and synthesis inspection suggest that formation of {Zr6}oct and {Zr17} involves assembly of the same transferable building blocks, but the condensation degree and thermodynamic stability of the products increase with hydrothermal temperature. The role of {Zr6}oct and {Zr17} in the formation of ZrO2 nanocrystals are then discussed in the scenario of nonclassical nucleation theory. Besides, the Zr-oxide clusters exhibit ionic conductivity due to the mobility of protons. This study not only adds new members to the Zr-/Hf- oxide cluster family, but also establishes a connection from Zr4+ ions to ZrO2 in the hydrothermal preparation of zirconium oxide nanomaterials. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Hydrothermal synthesis of thiol-capped CdTe nanoparticles and their optical properties.

    PubMed

    Bu, Hang-Beom; Kikunaga, Hayato; Shimura, Kunio; Takahasi, Kohji; Taniguchi, Taichi; Kim, DaeGwi

    2013-02-28

    Water soluble nanoparticles (NPs) with a high emission property were synthesized via hydrothermal routes. In this report, we chose thiol ligand N-acetyl-L-cysteine as the ideal stabilizer and have successfully employed it to synthesize readily size-controllable CdTe NPs in a reaction of only one step. Hydrothermal synthesis of CdTe NPs has been carried out in neutral or basic conditions so far. We found out that the pH value of precursor solutions plays an important role in the uniformity of the particle size. Actually, high quality CdTe NPs were synthesized under mild acidic conditions of pH 5. The resultant NPs indicated good visible light-emitting properties and stability. Further, the experimental results showed that the reaction temperature influenced significantly the growth rate and the maximum size of the NPs. The CdTe NPs with a high photoluminescence quantum yield (the highest value: 57%) and narrower half width at half maximum (the narrowest value: 33 nm) were attained in very short time, within 40 minutes, reaching diameters of 2.3 to 4.3 nm. The PL intensity was increased with an increase in the reaction time, reflecting the suppression of nonradiative recombination processes. Furthermore, the formation of CdTe/CdS core-shell structures was discussed from the viewpoint of PL dynamics and X-ray diffraction studies.

  14. Impact of hydrothermalism on the ocean iron cycle

    PubMed Central

    Resing, Joseph

    2016-01-01

    As the iron supplied from hydrothermalism is ultimately ventilated in the iron-limited Southern Ocean, it plays an important role in the ocean biological carbon pump. We deploy a set of focused sensitivity experiments with a state of the art global model of the ocean to examine the processes that regulate the lifetime of hydrothermal iron and the role of different ridge systems in governing the hydrothermal impact on the Southern Ocean biological carbon pump. Using GEOTRACES section data, we find that stabilization of hydrothermal iron is important in some, but not all regions. The impact on the Southern Ocean biological carbon pump is dominated by poorly explored southern ridge systems, highlighting the need for future exploration in this region. We find inter-basin differences in the isopycnal layer onto which hydrothermal Fe is supplied between the Atlantic and Pacific basins, which when combined with the inter-basin contrasts in oxidation kinetics suggests a muted influence of Atlantic ridges on the Southern Ocean biological carbon pump. Ultimately, we present a range of processes, operating at distinct scales, that must be better constrained to improve our understanding of how hydrothermalism affects the ocean cycling of iron and carbon. This article is part of the themed issue ‘Biological and climatic impacts of ocean trace element chemistry’. PMID:29035256

  15. Impact of hydrothermalism on the ocean iron cycle.

    PubMed

    Tagliabue, Alessandro; Resing, Joseph

    2016-11-28

    As the iron supplied from hydrothermalism is ultimately ventilated in the iron-limited Southern Ocean, it plays an important role in the ocean biological carbon pump. We deploy a set of focused sensitivity experiments with a state of the art global model of the ocean to examine the processes that regulate the lifetime of hydrothermal iron and the role of different ridge systems in governing the hydrothermal impact on the Southern Ocean biological carbon pump. Using GEOTRACES section data, we find that stabilization of hydrothermal iron is important in some, but not all regions. The impact on the Southern Ocean biological carbon pump is dominated by poorly explored southern ridge systems, highlighting the need for future exploration in this region. We find inter-basin differences in the isopycnal layer onto which hydrothermal Fe is supplied between the Atlantic and Pacific basins, which when combined with the inter-basin contrasts in oxidation kinetics suggests a muted influence of Atlantic ridges on the Southern Ocean biological carbon pump. Ultimately, we present a range of processes, operating at distinct scales, that must be better constrained to improve our understanding of how hydrothermalism affects the ocean cycling of iron and carbon.This article is part of the themed issue 'Biological and climatic impacts of ocean trace element chemistry'. © 2016 The Author(s).

  16. NH 3-SCR on Cu, Fe and Cu + Fe exchanged beta and SSZ-13 catalysts: Hydrothermal aging and propylene poisoning effects

    DOE PAGES

    Wang, Aiyong; Wang, Yilin; Walter, Eric D.; ...

    2017-10-07

    Cu, Fe and Cu + Fe ion exchanged Beta and SSZ-13 catalysts were prepared by solution ion exchange using commercial NH 4/Beta, and NH 4/SSZ-13 that was prepared in-house. To study hydrothermal aging effects, Beta supported catalysts were aged hydrothermally at 700 °C and SSZ-13 supported catalysts were aged at 750 °C. In order to reveal the effects of Fe addition in the co-exchanged catalysts, these catalysts were characterized by means of powder X-ray diffraction (XRD), N 2 adsorption-desorption, electron paramagnetic resonance (EPR), 27Al-nuclear magnetic resonance ( 27Al-NMR) and propylene coking followed with temperature programmed reaction (TPR), and further testedmore » with standard NH 3-SCR with and without the presence of propylene. Collectively, the catalyst characterizations and reaction testing indicated minor beneficial effects of Fe addition in Cu,Fe/Beta, where NH 3-SCR activity, N 2 selectivity and hydrothermal stability were all slightly improved. In contrast, Fe addition did not show apparent beneficial effects in low-temperature SCR for the Cu,Fe/SSZ-13 case. In conclusion, at elevated reaction temperatures, however, the presence of Fe indeed considerably improved NO conversion and N 2 selectivity for the hydrothermally aged Cu,Fe/SSZ-13 catalyst in the presence of propylene.« less

  17. NH 3-SCR on Cu, Fe and Cu + Fe exchanged beta and SSZ-13 catalysts: Hydrothermal aging and propylene poisoning effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Aiyong; Wang, Yilin; Walter, Eric D.

    Cu, Fe and Cu + Fe ion exchanged Beta and SSZ-13 catalysts were prepared by solution ion exchange using commercial NH 4/Beta, and NH 4/SSZ-13 that was prepared in-house. To study hydrothermal aging effects, Beta supported catalysts were aged hydrothermally at 700 °C and SSZ-13 supported catalysts were aged at 750 °C. In order to reveal the effects of Fe addition in the co-exchanged catalysts, these catalysts were characterized by means of powder X-ray diffraction (XRD), N 2 adsorption-desorption, electron paramagnetic resonance (EPR), 27Al-nuclear magnetic resonance ( 27Al-NMR) and propylene coking followed with temperature programmed reaction (TPR), and further testedmore » with standard NH 3-SCR with and without the presence of propylene. Collectively, the catalyst characterizations and reaction testing indicated minor beneficial effects of Fe addition in Cu,Fe/Beta, where NH 3-SCR activity, N 2 selectivity and hydrothermal stability were all slightly improved. In contrast, Fe addition did not show apparent beneficial effects in low-temperature SCR for the Cu,Fe/SSZ-13 case. In conclusion, at elevated reaction temperatures, however, the presence of Fe indeed considerably improved NO conversion and N 2 selectivity for the hydrothermally aged Cu,Fe/SSZ-13 catalyst in the presence of propylene.« less

  18. How ligands improve the hydrothermal stability and affect the adsorption in the IRMOF family.

    PubMed

    Bellarosa, Luca; Gutiérrez-Sevillano, Juan J; Calero, Sofía; López, Núria

    2013-10-28

    Metal-Organic Frameworks are considered to be the next generation of sorbents both because of their synthetic versatility and high selectivity potential. In the first generation (IRMOF), the main drawback for commercial implementation is the lack of hydrothermal stability. Even if several studies have been conducted to elucidate the reasons behind their structural weakness in humid environments, how apparently small changes in the stoichiometry of the building units affect the stability of the lattice is still poorly understood. Using density functional theory and ab initio molecular dynamics we investigated the reason behind the different behaviour of several substituted IRMOF-1 structures. We show that hydrophilic variations in the organic linkers work as new basins of attraction for the incoming water molecules, thus depleting the water content at the metal center. To confirm this, we performed Monte Carlo simulations to provide insights into the adsorption energies and check the effectiveness of the adsorption sites in the substituted structures for a variety of polar and non-polar molecules. The results show that linker modification affects molecular adsorption and can improve the overall stability of the lattice redirecting water to the new sites in the case of hydrophilic units. Three key parameters have been singled out to rationalize this behaviour, and used to predict the favoured adsorption sites in the case of gas mixtures.

  19. Highly-translucent, strong and aging-resistant 3Y-TZP ceramics for dental restoration by grain boundary segregation.

    PubMed

    Zhang, Fei; Vanmeensel, Kim; Batuk, Maria; Hadermann, Joke; Inokoshi, Masanao; Van Meerbeek, Bart; Naert, Ignace; Vleugels, Jef

    2015-04-01

    Latest trends in dental restorative ceramics involve the development of full-contour 3Y-TZP ceramics which can avoid chipping of veneering porcelains. Among the challenges are the low translucency and the hydrothermal stability of 3Y-TZP ceramics. In this work, different trivalent oxides (Al2O3, Sc2O3, Nd2O3 and La2O3) were selected to dope 3Y-TZP ceramics. Results show that dopant segregation was a key factor to design hydrothermally stable and high-translucent 3Y-TZP ceramics and the cation dopant radius could be used as a controlling parameter. A large trivalent dopant, oversized as compared to Zr(4+), exhibiting strong segregation at the ZrO2 grain boundary was preferred. The introduction of 0.2 mol% La2O3 in conventional 0.1-0.25 wt.% Al2O3-doped 3Y-TZP resulted in an excellent combination of high translucency and superior hydrothermal stability, while retaining excellent mechanical properties. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  20. Hydrothermal stability of SAPO-34 for refrigeration and air conditioning applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Haijun; Cui, Qun, E-mail: cuiqun@njtech.edu.cn; Wu, Juan

    Graphical abstract: The SAPO-34 was synthesized by a hydrothermal method using diethylamine as a template. Water adsorption strength on SAPO-34 is between that on 13X and A type silica gel. During 100–400 Pa, the water uptake on SAPO-34 increases sensitively to pressure, and equilibrium water uptake reaches 0.35 kg/kg, 25% higher than 13X. SAPO-34 shows no significant reduced cyclic water uptake over 60 cycles. Most of the initial SAPO-34 phase is restored, while the regular cubic-like morphology is well maintained, and the specific surface area only decreases by 8.6%. - Highlights: • Water adsorption strength on SAPO-34 is between thatmore » on 13X and A type silica gel. During 100–400 Pa, the water uptake on SAPO-34 increases sensitively to pressure, and equilibrium water uptake reaches 0.35 kg/kg, 25% higher than 13X. • SAPO-34 with diethylamine as the template shows no significant reduced cyclic water uptake over 60 cycles, and most of the initial SAPO-34 phase is well maintained. • SAPO-34 has an excellent adsorption performance and a good hydrothermal stability, thus is promising for application in adsorption refrigeration. - Abstract: Hydrothermal stability is one of the crucial factors in applying SAPO-34 molecular sieve to adsorption refrigration. The SAPO-34 was synthesized by a hydrothermal method using diethylamine as a template. Both a vacuum gravimetric method and an intelligent gravimetric analyzer were applied to analyze the water adsorption performance of SAPO-34. Cyclic hydrothermal performance was determined on the modified simulation adsorption refrigeration test rig. Crystal phase, morphology, and porosity of SAPO-34 were characterized by X-ray diffraction, scanning electron microscopy, and N{sub 2} sorption, respectively. The results show that, water adsorption strength on SAPO-34 is between that on 13X and A type silica gel. During 100–400 Pa, the water uptake on SAPO-34 increases sensitively to pressure, and equilibrium water uptake reaches 0.35 kg/kg, 25% higher than 13X. SAPO-34 shows no significant reduced cyclic water uptake over 60 cycles. Most of the initial SAPO-34 phase is restored, while the regular cubic-like morphology is well maintained, and the specific surface area only decreases by 8.6%.« less

  1. Effect of hydrothermal pretreatment on the structural changes of alkaline ethanol lignin from wheat straw.

    PubMed

    Chen, Xue; Li, Hanyin; Sun, Shaoni; Cao, Xuefei; Sun, Runcang

    2016-12-16

    Due to the enormous abundance of lignin and its unique aromatic nature, lignin has great potential for the production of industrially useful fuels, chemicals, and materials. However, the rigid and compact structure of the plant cell walls significantly blocks the separation of lignin. In this study, wheat straw was hydrothermally pretreated at different temperatures (120-200 °C) followed by post-treatment with 70% ethanol containing 1% NaOH to improve the isolation of lignin. Results demonstrated that the content of associated carbohydrates of the lignin fractions was gradually reduced with the increment of the hydrothermal severity. The structure of the lignins changed regularly with the increase of the pretreatment temperature from 120 to 200 °C. In particular, the contents of β-O-4', β-β', β-5' linkages and aliphatic OH in the lignins showed a tendency of decrease, while the content of phenolic OH and thermal stability of the lignin fractions increased steadily as the increment of the pretreatment temperature.

  2. Effect of hydrothermal pretreatment on the structural changes of alkaline ethanol lignin from wheat straw

    NASA Astrophysics Data System (ADS)

    Chen, Xue; Li, Hanyin; Sun, Shaoni; Cao, Xuefei; Sun, Runcang

    2016-12-01

    Due to the enormous abundance of lignin and its unique aromatic nature, lignin has great potential for the production of industrially useful fuels, chemicals, and materials. However, the rigid and compact structure of the plant cell walls significantly blocks the separation of lignin. In this study, wheat straw was hydrothermally pretreated at different temperatures (120-200 °C) followed by post-treatment with 70% ethanol containing 1% NaOH to improve the isolation of lignin. Results demonstrated that the content of associated carbohydrates of the lignin fractions was gradually reduced with the increment of the hydrothermal severity. The structure of the lignins changed regularly with the increase of the pretreatment temperature from 120 to 200 °C. In particular, the contents of β-O-4‧, β-β‧, β-5‧ linkages and aliphatic OH in the lignins showed a tendency of decrease, while the content of phenolic OH and thermal stability of the lignin fractions increased steadily as the increment of the pretreatment temperature.

  3. Catalytic hydrothermal upgrading of crude bio-oils produced from different thermo-chemical conversion routes of microalgae.

    PubMed

    Duan, Peigao; Wang, Bing; Xu, Yuping

    2015-06-01

    This study presents experimental results that compare the use of hydrothermal liquefaction (HTL), alcoholysis (Al), pyrolysis (Py) and hydropyrolysis (HPy) for the production of bio-oil from a microalga (Chlorella pyrenoidosa) and the catalytic hydrothermal upgrading of crude bio-oils produced by these four conversion routes. The yields and compositions of bio-oil, solid residue, and gases were evaluated and compared. HTL resulted in a bio-oil that has a higher energy density and superior fuel properties, such as thermal and storage stabilities, compared with the other three conversion routes. The N in crude bio-oils produced from Py and HPy is more easily removed than that in the bio-oils produced from HTL and Al. The upgraded bio-oils contain reduced amounts of certain O-containing and N-containing compounds and significantly increased saturated hydrocarbon contents. All of the upgraded bio-oils have a larger fraction boiling below 350°C than their corresponding crude bio-oils. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Zr/ZrO2 sensors for in situ measurement of pH in high-temperature and -pressure aqueous solutions.

    PubMed

    Zhang, R H; Zhang, X T; Hu, S M

    2008-04-15

    The aim of this study is to develop new pH sensors that can be used to test and monitor hydrogen ion activity in hydrothermal conditions. A Zr/ZrO2 oxidation electrode is fabricated for in situ pH measurement of high-temperature aqueous solutions. This sensor responds rapidly and precisely to pH over a wide range of temperature and pressure. The Zr/ZrO2 electrode was made by oxidizing zirconium metal wire with Na2CO3 melt, which produced a thin film of ZrO2 on its surface. Thus, an oxidation-reduction electrode was produced. The Zr/ZrO2 electrode has a good electrochemical stability over a wide range of pH in high-temperature aqueous solutions when used with a Ag/AgCl reference electrode. Measurements of the Zr/ZrO2 sensor potential against a Ag/AgCl reference electrode is shown to vary linearly with pH between temperatures 20 and 200 degrees C. The slope of the potential versus pH at high temperature is slightly below the theoretical value indicated by the Nernst equation; such deviation is attributed to the fact that the sensor is not strictly at equilibrium with the solution to be tested in a short period of time. The Zr/ZrO2 sensor can be calibrated over the conditions that exist in the natural deep-seawater. Our studies showed that the Zr/ZrO2 electrode is a suitable pH sensor for the hydrothermal systems at midocean ridge or other geothermal systems with the high-temperature environment. Yttria-stabilized zirconia sensors have also been used to investigate the pH of hydrothermal fluids in hot springs vents at midocean ridge. These sensors, however, are not sensitive below 200 degrees C. Zr/ZrO2 sensors have wider temperature range and can be severed as good alternative sensors for measuring the pH of hydrothermal fluids.

  5. Grinding With Diamond Burs and Hydrothermal Aging of a Y-TZP Material: Effect on the Material Surface Characteristics and Bacterial Adhesion.

    PubMed

    Dutra, Dam; Pereira, Gkr; Kantorski, K Z; Exterkate, Ram; Kleverlaan, C J; Valandro, L F; Zanatta, F B

    The aim of this study was to evaluate the effect of grinding with diamond burs and low-temperature aging on the material surface characteristics and bacteria adhesion on a yttrium-stabilized tetragonal zirconia polycrystalline (Y-TZP) surface. Y-TZP specimens were made from presintered blocks, sintered as recommended by the manufacturer, and assigned into six groups according to two factors-grinding (three levels: as sintered, grinding with extra-fine diamond bur [25-μm grit], and grinding with coarse diamond bur [181-μm grit]) and hydrothermal aging-to promote low-temperature degradation (two levels: presence/absence). Phase transformation (X-ray diffractometer), surface roughness, micromorphological patterns (atomic force microscopy), and contact angle (goniometer) were analyzed. Bacterial adhesion (colony-forming units [CFU]/biofilm) was quantified using an in vitro polymicrobial biofilm model. Both the surface treatment and hydrothermal aging promoted an increase in m-phase content. Roughness values increased as a function of increasing bur grit sizes. Grinding with a coarse diamond bur resulted in significantly lower values of contact angle (p<0.05) when compared with the extra-fine and control groups, while there were no differences (p<0.05) after hydrothermal aging simulation. The CFU/biofilm results showed that neither the surface treatment nor hydrothermal aging simulation significantly affected the bacteria adherence (p>0.05). Grinding with diamond burs and hydrothermal aging modified the Y-TZP surface properties; however, these properties had no effect on the amount of bacteria adhesion on the material surface.

  6. Three-dimensional geophysical mapping of shallow water saturated altered rocks at Mount Baker, Washington: Implications for slope stability

    NASA Astrophysics Data System (ADS)

    Finn, Carol A.; Deszcz-Pan, Maryla; Ball, Jessica L.; Bloss, Benjamin J.; Minsley, Burke J.

    2018-05-01

    Water-saturated hydrothermal alteration reduces the strength of volcanic edifices, increasing the potential for catastrophic sector collapses that can lead to far traveled and destructive debris flows. Intense hydrothermal alteration significantly lowers the resistivity and magnetization of volcanic rock and therefore hydrothermally altered rocks can be identified with helicopter electromagnetic and magnetic measurements. Geophysical models constrained by rock properties and geologic mapping show that intensely altered rock is restricted to two small (500 m diameter), >150 m thick regions around Sherman Crater and Dorr Fumarole Field at Mount Baker, Washington. This distribution of alteration contrasts with much thicker and widespread alteration encompassing the summits of Mounts Adams and Rainier prior to the 5600 year old Osceola collapse, which is most likely due to extreme erosion and the limited duration of summit magmatism at Mount Baker. In addition, the models suggest that the upper 300 m of rock contains water which could help to lubricate potential debris flows. Slope stability modeling incorporating the geophysically modeled distribution of alteration and water indicates that the most likely and largest ( 0.1 km3) collapses are from the east side of Sherman Crater. Alteration at Dorr Fumarole Field raises the collapse hazard there, but not significantly because of its lower slope angles. Geochemistry and analogs from other volcanoes suggest a model for the edifice hydrothermal system.

  7. Hydrothermal synthesis of TiO2/WO3 compositions and their photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Pyachin, Sergey A.; Karpovich, Natalia F.; Zaitsev, Alexey V.; Makarevich, Konstantin S.; Burkov, Alexander A.; Ustinov, Alexander Yu.

    2016-11-01

    Photocatalytic activity, optical properties, thermal stability, phase patterns and morphology of nano-size TiO2/WO3 compositions obtained from organic precursors through hydrothermal synthesis have been studied. It has been shown that doping of anatase nanoparticles with tungsten W+6 results in particle diameter reduction from 35 to 10 nm; decrease in width of the band gap from 3.15 eV to 2.91 eV and increase in temperature of phase transition of anatase to rutile up to 980oC. Catalytic activity of TiO2/WO3 (4 mol.%) composition under photochemical methylene blue (MB) oxidation by simulated solar light exceeds that of undoped anatase (obtained in the same way) 6-fold.

  8. Catalytic hydrothermal pretreatment of corncob into xylose and furfural via solid acid catalyst.

    PubMed

    Li, Huiling; Deng, Aojie; Ren, Junli; Liu, Changyu; Lu, Qi; Zhong, Linjie; Peng, Feng; Sun, Runcang

    2014-04-01

    Selectively catalytic hydrothermal pretreatment of corncob into xylose and furfural has been developed in this work using solid acid catalyst (SO4(2-)/TiO2-ZrO2/La(3+)). The effects of corncob-to-water ratio, reaction temperature and residence time on the performance of catalytic hydrothermal pretreatment were investigated. Results showed that the solid residues contained mainly lignin and cellulose, which was indicative of the efficient removal of hemicelluloses from corncob by hydrothermal method. The prepared catalyst with high thermal stability and strong acid sites originated from the acid functional groups was confirmed to contribute to the hydrolysis of polysaccharides into monosaccharides followed by dehydration into furfural. Highest furfural yield (6.18 g/100g) could be obtained at 180°C for 120 min with 6.80 g/100g xylose yield when the corncob/water ratio of was 10:100. Therefore, selectively catalytic hydrothermal pretreatment of lignocellulosic biomass into important platform chemicals by solid acids is considered to be a potential treatment for biodiesel and chemical production. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Facile hydrothermal method for synthesizing nitrogen-doped graphene nanoplatelets using aqueous ammonia: dispersion, stability in solvents and thermophysical performances

    NASA Astrophysics Data System (ADS)

    Shafiah Shazali, Siti; Amiri, Ahmad; Zubir, Mohd. Nashrul Mohd; Rozali, Shaifulazuar; Zakuan Zabri, Mohd; Sabri, Mohd Faizul Mohd

    2018-03-01

    A simple and green approach has been developed to synthesize nitrogen-doped graphene nanoplatelets (N-doped GNPs) for mass production with a very high stability in different solvents e.g. water, ethylene glycol, methanol, ethanol, and 1-hexanol. The strategy is based on mild oxidation of GNPs using hydrogen peroxide and doping with nitrogen using hydrothermal process. The modification of N-doped GNPs was demonstrated by FTIR, TGA, XPS, Raman spectroscopy and high resolution-transmission electron microscope (HRTEM). Further study was carried out by using N-doped GNPs as an additive to prepare different colloidal dispersions. Water-based N-doped GNPs, methanol-based N-doped GNPs, ethanol-based N-doped GNPs, ethylene-glycol based N-doped GNPs and 1-hexanol-based N-doped GNPs dispersions at 0.01 wt.% shown great colloidal stabilities, indicating 17%, 29%, 33%, 18%, and 43% sedimentations after a 15-days period, respectively. The thermophysical properties e.g., viscosity and thermal conductivity of water-based N-doped GNP nanofluids were also evaluated for different weight concentrations of 0.100, 0.075, 0.050, and 0.025 wt.%. Through this, it is found that the obtained dispersions have great potential to be used as working fluids for industrial thermal systems.

  10. Hydrothermal synthesis of NiWO4 crystals for high performance non-enzymatic glucose biosensors

    NASA Astrophysics Data System (ADS)

    Mani, Sivakumar; Vediyappan, Veeramani; Chen, Shen-Ming; Madhu, Rajesh; Pitchaimani, Veerakumar; Chang, Jia-Yaw; Liu, Shang-Bin

    2016-04-01

    A facile hydrothermal route for the synthesis of ordered NiWO4 nanocrystals, which show promising applications as high performance non-enzymatic glucose sensor is reported. The NiWO4-modified electrodes showed excellent sensitivity (269.6 μA mM-1 cm-2) and low detection limit (0.18 μM) for detection of glucose with desirable selectivity, stability, and tolerance to interference, rendering their prospective applications as cost-effective, enzyme-free glucose sensors.

  11. Hydrothermal synthesis of NiWO4 crystals for high performance non-enzymatic glucose biosensors.

    PubMed

    Mani, Sivakumar; Vediyappan, Veeramani; Chen, Shen-Ming; Madhu, Rajesh; Pitchaimani, Veerakumar; Chang, Jia-Yaw; Liu, Shang-Bin

    2016-04-18

    A facile hydrothermal route for the synthesis of ordered NiWO4 nanocrystals, which show promising applications as high performance non-enzymatic glucose sensor is reported. The NiWO4-modified electrodes showed excellent sensitivity (269.6 μA mM(-1 )cm(-2)) and low detection limit (0.18 μM) for detection of glucose with desirable selectivity, stability, and tolerance to interference, rendering their prospective applications as cost-effective, enzyme-free glucose sensors.

  12. International Conference on the Science and Technology of Zirconia (ZrO2IV) (4th) Held in Anaheim, California on Nov 1-3, 1989

    DTIC Science & Technology

    1990-02-01

    niobia-zirconia powder from freshly precipitated hydrous zirconia and niobium- Different ceria stabilized TZP ceram- ammonium oxalate . Zirconia powders...C :1RCONIA, Chen-Feng Kao and Tsu-Meng BY HYDROTHERMAL PRECIPITATION METHOD, S. P Fueng, Dept of Chemical Engineering, Somiya*, Nishi-Tokyo Univ...under Y increased with an increase of pH values. hydrothermal condition. Mixed solutions of b Drain size decreased and sintering density ZrOCl2, YCl 3

  13. Highly concentrated, stable nitrogen-doped graphene for supercapacitors: Simultaneous doping and reduction

    NASA Astrophysics Data System (ADS)

    Jiang, Baojiang; Tian, Chungui; Wang, Lei; Sun, Li; Chen, Chen; Nong, Xiaozhen; Qiao, Yingjie; Fu, Honggang

    2012-02-01

    In this work, we developed a concentrated ammonia-assisted hydrothermal method to obtain N-doped graphene sheets by simultaneous N-doping and reduction of graphene oxide (GO) sheets. The effects of hydrothermal temperature on the surface chemistry and the structure of N-doped graphene sheets were also investigated. X-ray photoelectron spectroscopy (XPS) study of N-doped graphene reveals that the highest doping level of 7.2% N is achieved at 180 °C for 12 h. N binding configurations of sample consist of pyridine N, quaternary N, and pyridine-N oxides. N doping is accompanied by the reduction of GO with decreases in oxygen levels from 34.8% in GO down to 8.5% in that of N-doped graphene. Meanwhile, the sample exhibits excellent N-doped thermal stability. Electrical measurements demonstrate that products have higher capacitive performance than that of pure graphene, the maximum specific capacitance of 144.6 F/g can be obtained which ascribe the pseudocapacitive effect from the N-doping. The samples also show excellent long-term cycle stability of capacitive performance.

  14. Sequestration and disposal of dissolved Cs+ using zeolite 13X

    NASA Astrophysics Data System (ADS)

    Park, M.; Park, J.; Jeong, H. Y.

    2017-12-01

    Low-to-intermediate level liquid radioactive wastes (LILLW) typically contain high levels of radioactive 137Cs. Due to the great radiational and thermal stability as well as the high selectivity, zeolite has been commonly utilized to sequester radioactive isotopes from nuclear wastewater effluents. In this study, an Al-rich synthetic zeolite 13X was evaluated for the sorption capacity of Cs+ as a function of pH (4.0-10.5), ionic strength (0.05 and 0.2 M), and initial Cs+ concentration (1×10-6-5×10-3 M). For safe disposal, Cs+-exchanged 13X was both thermally and hydrothermally treated under different temperature and pressure. Subsequently, the resultant materials were examined for the phase transition by X-ray diffraction (XRD) and the local coordination chemistry by X-ray absorption spectroscopy (XAS). Our experimental results will detail the Cs+ sorption behavior by 13X under varying solution compositions. Also, the structural changes of Cs+-exchanged 13X upon thermal and hydrothermal treatment will be delineated to assess the stability of Cs+ in the treated materials.

  15. Using polyfurfuryl alcohol to improve the hydrothermal stability of mesoporous oxides for reactions in the aqueous phase

    USDA-ARS?s Scientific Manuscript database

    Hydrodeoxygenation (HDO) of bio-oils derived from the pyrolysis of woody biomass is required to improve the stability and heating value of the liquid hydrocarbon products. Since pyrolysis produces bio-oils having up to 30 vol% water, HDO catalysts must not only be active and selective, but also sta...

  16. A multidisciplinary approach to quantify the permeability of the Whakaari/White Island volcanic hydrothermal system (Taupo Volcanic Zone, New Zealand)

    NASA Astrophysics Data System (ADS)

    Heap, Michael J.; Kennedy, Ben M.; Farquharson, Jamie I.; Ashworth, James; Mayer, Klaus; Letham-Brake, Mark; Reuschlé, Thierry; Gilg, H. Albert; Scheu, Bettina; Lavallée, Yan; Siratovich, Paul; Cole, Jim; Jolly, Arthur D.; Baud, Patrick; Dingwell, Donald B.

    2017-02-01

    Our multidisciplinary study aims to better understand the permeability of active volcanic hydrothermal systems, a vital prerequisite for modelling and understanding their behaviour and evolution. Whakaari/White Island volcano (an active stratovolcano at the north-eastern end of the Taupo Volcanic Zone of New Zealand) hosts a highly reactive hydrothermal system and represents an ideal natural laboratory to undertake such a study. We first gained an appreciation of the different lithologies at Whakaari and (where possible) their lateral and vertical extent through reconnaissance by land, sea, and air. The main crater, filled with tephra deposits, is shielded by a volcanic amphitheatre comprising interbedded lavas, lava breccias, and tuffs. We deployed field techniques to measure the permeability and density/porosity of (1) > 100 hand-sized sample blocks and (2) layered unlithified deposits in eight purpose-dug trenches. Our field measurements were then groundtruthed using traditional laboratory techniques on almost 150 samples. Our measurements highlight that the porosity of the materials at Whakaari varies from ∼ 0.01 to ∼ 0.7 and permeability varies by eight orders of magnitude (from ∼ 10-19 to ∼ 10-11 m2). The wide range in physical and hydraulic properties is the result of the numerous lithologies and their varied microstructures and alteration intensities, as exposed by a combination of macroscopic and microscopic (scanning electron microscopy) observations, quantitative mineralogical studies (X-ray powder diffraction), and mercury porosimetry. An understanding of the spatial distribution of lithology and alteration style/intensity is therefore important to decipher fluid flow within the Whakaari volcanic hydrothermal system. We align our field observations and porosity/permeability measurements to construct a schematic cross section of Whakaari that highlights the salient findings of our study. Taken together, the alteration typical of a volcanic hydrothermal system can result in increases (due to alteration-induced dissolution and fracturing) and decreases (due to hydrothermal precipitation) to permeability. Importantly, a decrease in permeability-be it due to fracture sealing in lava, pore-filling alunite precipitation in tuff, near-vent cementation by sulphur, and/or well-sorted layers of fine ash-can result in pore pressure augmentation. An increase in pore pressure could result in ground deformation, seismicity, jeopardise the stability of the volcanic slopes, and/or drive the wide variety of eruptions observed at Whakaari. Our systematic study offers the most complete porosity-permeability dataset for a volcanic hydrothermal system to date. These new data will inform and support modelling, unrest monitoring, and eruption characterisation at Whakaari and other hydrothermally modified volcanic systems worldwide.

  17. REE controls in ultramafic hosted MOR hydrothermal systems: An experimental study at elevated temperature and pressure

    NASA Astrophysics Data System (ADS)

    Allen, Douglas E.; Seyfried, W. E.

    2005-02-01

    A hydrothermal experiment involving peridotite and a coexisting aqueous fluid was conducted to assess the role of dissolved Cl - and redox on REE mobility at 400°C, 500 bars. Data show that the onset of reducing conditions enhances the stability of soluble Eu +2 species. Moreover, Eu +2 forms strong aqueous complexes with dissolved Cl - at virtually all redox conditions. Thus, high Cl - concentrations and reducing conditions can combine to reinforce Eu mobility. Except for La, trivalent REE are not greatly affected by fluid speciation under the chemical and physical condition considered, suggesting control by secondary mineral-fluid partitioning. LREE enrichment and positive Eu anomalies observed in fluids from the experiment are remarkably similar to patterns of REE mobility in vent fluids issuing from basalt- and peridotite-hosted hydrothermal systems. This suggests that the chondrite normalized REE patterns are influenced greatly by fluid speciation effects and secondary mineral formation processes. Accordingly, caution must be exercised when using REE in hydrothermal vent fluids to infer REE sources in subseafloor reaction zones from which the fluids are derived. Although vent fluid patterns having LREE enrichment and positive Eu anomalies are typically interpreted to suggest plagioclase recrystallization reactions, this need not always be the case.

  18. Effect of Temperature and Growth Time on Vertically Aligned ZnO Nanorods by Simplified Hydrothermal Technique for Photoelectrochemical Cells.

    PubMed

    Mohd Fudzi, Laimy; Zainal, Zulkarnain; Lim, Hong Ngee; Chang, Sook-Keng; Holi, Araa Mebdir; Sarif Mohd Ali, Mahanim

    2018-04-29

    Despite its large band gap, ZnO has wide applicability in many fields ranging from gas sensors to solar cells. ZnO was chosen over other materials because of its large exciton binding energy (60 meV) and its stability to high-energy radiation. In this study, ZnO nanorods were deposited on ITO glass via a simple dip coating followed by a hydrothermal growth. The morphological, structural and compositional characteristics of the prepared films were analyzed using X-ray diffractometry (XRD), field emission scanning electron microscopy (FESEM), and ultraviolet-visible spectroscopy (UV-Vis). Photoelectrochemical conversion efficiencies were evaluated via photocurrent measurements under calibrated halogen lamp illumination. Thin film prepared at 120 °C for 4 h of hydrothermal treatment possessed a hexagonal wurtzite structure with the crystallite size of 19.2 nm. The average diameter of the ZnO nanorods was 37.7 nm and the thickness was found to be 2680.2 nm. According to FESEM images, as the hydrothermal growth temperature increases, the nanorod diameter become smaller. Moreover, the thickness of the nanorods increase with the growth time. Therefore, the sample prepared at 120 °C for 4 h displayed an impressive photoresponse by achieving high current density of 0.1944 mA/cm².

  19. Controllable preparation of flower-like brookite TiO{sub 2} nanostructures via one-step hydrothermal method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zou, Yunling; College of Science, Civil Aviation University of China, Tianjin 300300; Tan, Xin

    Highlights: • Flower-like brookite TiO{sub 2} structures were prepared by hydrothermal method. • PVP not only acted as a dispersant but also stabilized the layered structure. • The resulted brookite TiO{sub 2} showed high photocatalytic activity under UV irradiation. - Abstract: Flower-like brookite TiO{sub 2} nanostructures were controllable prepared by a one-step hydrothermal method by changing experimental conditions, such as hydrothermal temperature, reaction time and the amount of polyvinylpyrrolidone. The photocatalytic activities of the samples were investigated by degradation of methylene blue (MB) in aqueous solution under UV light irradiation. It was found that the formation of brookite TiO{sub 2}more » nanostructures with various morphologies could be well controlled by the adjustment of hydrothermal temperature, reaction time and the amount of surfactant, and the morphology of the products changed from spindle-like structures to flower-like structures with the increase of hydrothermal temperature, reaction time and the amount of surfactant. The photocatalytic tests indicate that the flower-like brookite TiO{sub 2} nanostructures shows high photocatalytic activity in degradation of methylene blue (MB) under UV light irradiation. The formation mechanism of flower-like brookite TiO{sub 2} nanostructures was also discussed in detail based on the above investigations.« less

  20. Three-dimensional geophysical mapping of shallow water saturated altered rocks at Mount Baker, Washington: Implications for slope stability

    USGS Publications Warehouse

    Finn, Carol A.; Deszcz-Pan, Maria; Ball, Jessica L.; Bloss, Benjamin J.; Minsley, Burke J.

    2018-01-01

    Water-saturated hydrothermal alteration reduces the strength of volcanic edifices, increasing the potential for catastrophic sector collapses that can lead to far traveled and destructive debris flows. Intense hydrothermal alteration significantly lowers the resistivity and magnetization of volcanic rock and therefore hydrothermally altered rocks can be identified with helicopter electromagnetic and magnetic measurements. Geophysical models constrained by rock properties and geologic mapping show that intensely altered rock is restricted to two small (500 m diameter), >150 m thick regions around Sherman Crater and Dorr Fumarole Field at Mount Baker, Washington. This distribution of alteration contrasts with much thicker and widespread alteration encompassing the summits of Mounts Adams and Rainier prior to the 5600 year old Osceola collapse, which is most likely due to extreme erosion and the limited duration of summit magmatism at Mount Baker. In addition, the models suggest that the upper ~300 m of rock contains water which could help to lubricate potential debris flows. Slope stability modeling incorporating the geophysically modeled distribution of alteration and water indicates that the most likely and largest (~0.1 km3) collapses are from the east side of Sherman Crater. Alteration at Dorr Fumarole Field raises the collapse hazard there, but not significantly because of its lower slope angles. Geochemistry and analogs from other volcanoes suggest a model for the edifice hydrothermal system.

  1. Formation of hydrothermal biochar and char stability in soils

    NASA Astrophysics Data System (ADS)

    Baumert, Julia; Gleixner, Gerd

    2010-05-01

    The use of charcoal as an artificial soil additive is suggested to beneficially modify degraded soil, reduce greenhouse gas emission and improve crop yields. So far research has been mainly done using pyrolysis chars which are produced by dry pyrolysis of biomass. Here we used hydrothermal carbonisation (HTC). In this process wet biomass is converted to char at moderate temperatures (~200°C). Due to the exothermal carbonisation reaction this process is almost energy neutral, i.e. the energy needed to start the carbonisation equals the energy released during carbonisation. Different process parameters have been used to modify the properties of the produced chars. We examined the chemical and morphological properties of hydrothermally synthesized biochar. Cellulose, yeast and sucrose were used as model substances for a range of parent material types like organic and garden waste as well as residues from biogas production. By modifying the process conditions of hydrothermal carbonisation concerning temperature (180°C to 220°C) and duration (6 hours to 24 hours) we produced a variety of different biochars. Our findings suggest that the elemental composition and the thermal stability of resulting chars depend on the feedstock and production conditions. Functional group chemistry determined by NMR shows that the aromaticity of the product increases as a function of temperature whereas the amount of O-alkylic compounds declines, concurrently. Our results show that the properties of the biochar can be manipulated by the modification of process conditions. This opens the opportunity to adjust the charcoal to a given soil type.

  2. Dissolved iron anomaly in the deep tropical-subtropical Pacific: Evidence for long-range transport of hydrothermal iron

    NASA Astrophysics Data System (ADS)

    Wu, Jingfeng; Wells, Mark L.; Rember, Robert

    2011-01-01

    Dissolved iron profiles along a north-south transect along 158°W in the tropical Pacific show evidence of two deepwater anomalies. The first extends from Station ALOHA (22.78°N) to the equator at ˜1000-1500 m and lies below the maximum apparent oxygen utilization and nutrient (N, P) concentrations. The feature is not supported by vertical export processes, but instead corresponds with the lateral dilution field of δ 3He derived from the Loihi seamount, Hawaii, though a sediment source associated with the Hawaiian Island Chain cannot be entirely ruled out. The second, deeper (2000-3000 m) anomaly occurs in tropical South Pacific waters (7°S) and also does not correlate with the depths of maximum nutrient concentrations or apparent oxygen utilization, but it does coincide closely with δ 3He emanating from the East Pacific Rise, more than 5000 km to the east. We hypothesize that these anomalies represent the long-range (>2000 km) transport of hydrothermal iron residuals, stabilized against scavenging by complexation with excess organic ligands in the plume source regions. Such trace leakage of hydrothermal iron to distal plume regions would have been difficult to identify in most hydrothermal vent mapping studies because low analytical detection limits were not needed for the proximal plume regions. These findings suggest that hydrothermal activity may represent a major source of dissolved iron throughout the South Pacific deep basin today, as well as other regions having high mid-ocean spreading rates in the geologic past. In particular, we hypothesize that high spreading rates along the South Atlantic and Southern Ocean mid-oceanic ridges, combined with the upwelling ventilation of these distal hydrothermal plumes, may have increased ocean productivity and carbon export in the Southern Ocean. Assessing the magnitude and persistence of dissolved hydrothermal iron in basin scale deep waters will be important for understanding the marine biogeochemistry of iron and, potentially, on ocean productivity and climate change during the geologic past.

  3. Hydrothermal treatment of chestnut shells (Castanea sativa) to produce oligosaccharides and antioxidant compounds.

    PubMed

    Gullón, Beatriz; Eibes, Gemma; Dávila, Izaskun; Moreira, María Teresa; Labidi, Jalel; Gullón, Patricia

    2018-07-15

    Hydrothermal treatment is an environmentally friendly technology that allows the solubilisation of hemicellulosic oligosaccharides with potential for their use as prebiotics. The purpose of this study was to solubilize oligosaccharides and antioxidant compounds from chestnut shells by a hydrothermal processing. The highest content of oligosaccharides (18.3 g/L), with a relatively low level of monosaccharides (2.4 g/L) and degradation products (0.5 g/L) was obtained at 180 °C (severity of 3.08). In addition, the liquors presented a high content of phenolic and flavonoid compounds with good antioxidant properties. The GC-MS revealed that the most abundant phenolic compound was pyrogallol (13.2%). The molecular weight distribution of the solubilization products showed that a 26.5% presented an apparent Mw of 6077 g/mol and a 73.5% presented an apparent Mw of 586 g/mol with a high polydispersity index. MALDI-TOF, FTIR, and TGA analyses revealed structural information of these compounds and their thermal stability. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Effect of hydrothermal pretreatment on the structural changes of alkaline ethanol lignin from wheat straw

    PubMed Central

    Chen, Xue; Li, Hanyin; Sun, Shaoni; Cao, Xuefei; Sun, Runcang

    2016-01-01

    Due to the enormous abundance of lignin and its unique aromatic nature, lignin has great potential for the production of industrially useful fuels, chemicals, and materials. However, the rigid and compact structure of the plant cell walls significantly blocks the separation of lignin. In this study, wheat straw was hydrothermally pretreated at different temperatures (120–200 °C) followed by post-treatment with 70% ethanol containing 1% NaOH to improve the isolation of lignin. Results demonstrated that the content of associated carbohydrates of the lignin fractions was gradually reduced with the increment of the hydrothermal severity. The structure of the lignins changed regularly with the increase of the pretreatment temperature from 120 to 200 °C. In particular, the contents of β-O-4′, β-β′, β-5′ linkages and aliphatic OH in the lignins showed a tendency of decrease, while the content of phenolic OH and thermal stability of the lignin fractions increased steadily as the increment of the pretreatment temperature. PMID:27982101

  5. Syntheses, structures and properties of four 3D microporous lanthanide coordination polymers based on 3,5-pyrazoledicarboxylate and oxalate ligands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Juan; Wang, Ji-Jiang; Hu, Huai-Ming, E-mail: ChemHu1@NWU.EDU.CN

    2014-04-01

    Four three-dimensional lanthanide coordination polymers with reversible structural interconversions, [Ln{sub 2}(Hpdc){sub 2}(C{sub 2}O{sub 4})(H{sub 2}O){sub 4}]{sub n}·2nH{sub 2}O [Ln=Sm (1), Eu (2), Tb (3) and Dy (4)], have been synthesized by hydrothermal reactions of lanthanide nitrates with 3,5-pyrazoledicarboxylic (H{sub 3}pdc) and oxalic acids. It is noteworthy that there is an in situ reaction in 1, in which H{sub 3}pdc was decomposed into (ox){sup 2−} with Cu(II)–Sm(III) synergistic effect under hydrothermal conditions. These compounds are isostructural and crystallized in the monoclinic P2{sub 1}/c space group. The Ln(III) ions are eight-coordinated with dodecahedron coordination geometry. These polyhedra are linked by oxalate groupsmore » to form 1D zigzag chain, which are further connected by 3,5-pyrazoledicarboxylate to extend similar 3D frameworks with channels along c-axis in 1–4. These coordination polymers display the characteristic emission bands of the Ln(III) ions in the solid state and possess good thermal stabilities. - Graphical abstract: Four 3D microporous lanthanide coordination polymers with reversible structural interconversion have been synthesized. They exhibit characteristic emission bands of the lanthanide ions and possess great thermal stability. - Highlights: • Four lanthanide coordination polymers have been hydrothermal synthesized. • There is an in situ reaction in 1 in which H{sub 3}pdc was decomposed into (ox){sup 2−} with the Cu(II)–Sm(III) synergistic effect under hydrothermal conditions. • TGA and XRD studies reveal that upon hydration–dehydration, compounds 1–4 undergo a reversible structural interconversion process through a cooling-heating cycle. • Compounds 1–4 exhibit characteristic lanthanide-centered luminescence.« less

  6. One-step hydrothermal synthesis of hexangular starfruit-like vanadium oxide for high power aqueous supercapacitors

    NASA Astrophysics Data System (ADS)

    Shao, Jie; Li, Xinyong; Qu, Qunting; Zheng, Honghe

    2012-12-01

    Homogenous hexangular starfruit-like vanadium oxide was prepared for the first time by a one-step hydrothermal method. The assembly process of hexangular starfruit-like structure was observed from TEM images. The electrochemical performance of starfruit-like vanadium oxide was examined by cyclic voltammetry and galvanostatic charge/discharge. The obtained starfruit-like vanadium oxide exhibits a high power capability (19 Wh kg-1 at the specific power of 3.4 kW kg-1) and good cycling stability for supercapacitors application.

  7. Hydrothermal synthesis of bismuth germanium oxide

    DOEpatents

    Boyle, Timothy J.

    2016-12-13

    A method for the hydrothermal synthesis of bismuth germanium oxide comprises dissolving a bismuth precursor (e.g., bismuth nitrate pentahydrate) and a germanium precursor (e.g., germanium dioxide) in water and heating the aqueous solution to an elevated reaction temperature for a length of time sufficient to produce the eulytite phase of bismuth germanium oxide (E-BGO) with high yield. The E-BGO produced can be used as a scintillator material. For example, the air stability and radioluminescence response suggest that the E-BGO can be employed for medical applications.

  8. Hydrothermal synthesis of cobalt sulfide nanotubes: The size control and its application in supercapacitors

    NASA Astrophysics Data System (ADS)

    Wan, Houzhao; Ji, Xiao; Jiang, Jianjun; Yu, Jingwen; Miao, Ling; Zhang, Li; Bie, Shaowei; Chen, Haichao; Ruan, Yunjun

    2013-12-01

    Cobalt sulfide nanotubes are synthesized by hydrothermal method. The precursor is characterized by XRD, FTIR and SEM. We study the influence of temperature on the evolution of this special coarse shape nanostructure and analyze relationship between the sizes of cobalt sulfide nanotubes and the capacitive properties of active materials. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) are used to study the effects of microstructure and morphology of the samples on their capacitance and conductivity. The specific capacitance of cobalt sulfide nanotubes (obtained in 80 °C) electrode exhibits a capacitance of 285 F g-1 at the current density of 0.5 A g-1 as well as rather good cycling stability. Moreover, during the cycling process, the coulombic efficiency remains 99%. The as-prepared cobalt sulfide nanotubes electrode exhibits excellent electrochemical performance as electrode materials for supercapacitors.

  9. Hydrothermal Signatures at Gale Crater, Mars, and Possible In-Situ Formation of Tridymite

    NASA Astrophysics Data System (ADS)

    Yen, A. S.; Morris, R. V.; Gellert, R.; Berger, J. A.; Sutter, B.; Downs, R. T.; Bristow, T.; Treiman, A. H.; Ming, D. W.; Achilles, C.; Blake, D. F.; Chipera, S.; Clark, B. C.; Craig, P.; Morrison, S. M.; Rampe, E. B.; Schmidt, M. E.; Schwenzer, S. P.; Thompson, L. M.; Vaniman, D.

    2017-12-01

    The occurrence of tridymite, a high temperature SiO2 polymorph definitively identified by the Curiosity rover in the Buckskin mudstone sample at Gale crater, Mars, has been attributed to detrital accumulation of rhyolitic material. This interpretation of a detrital origin is revisited in light of the observation that the tridymite-hosting sediments appear to have interacted with the same fluids that produced alteration halos in the overlying sandstone. The alteration halos in the Stimson sandstone are light-toned, elevated silica zones within 50 cm of a central fracture. They have likely experienced chemical leaching under acidic conditions resulting in depletion of metals (including Al), retention of Ti, formation of amorphous iron sulfates, 50% reduction of the pyroxene:plagioclase ratio, a factor of two increase in the Fe/Mn ratio, and passive enrichment of Si. This alteration is not constrained (nor precluded) to have occurred at elevated temperatures, but there are abundant indicators of hydrothermal activity within Gale crater. High concentrations of Ge, Zn, Ni, Pb, Cu, Se and Ga in a variety of samples analyzed by the Alpha Particle X-ray Spectrometer are indicative of mobility in hydrothermal solutions. Mineralogy of Gale crater samples determined by the CheMin X-ray diffraction instrument includes phases which may be associated with hydrothermal activity (smectites, anhydrite, hematite), but definitive detections of mineral assemblages that are necessarily hydrothermal in origin remain absent. The nearly identical patterns of enriched and depleted elements of the Stimson alteration halos (relative to parent rocks) and the tridymite-bearing unit (relative to typical mudstone samples) require the consideration of co-genetic origins. Cristobalite, a SiO2 polymorph stable above 1470°C found in the Buckskin sample, is known to form in hydrothermal solutions at temperatures well below its stability field (Henderson et al., 1971). Formation of well-crystalline tridymite at temperatures below its thermodynamic stability range (870-1470°C) has not been established, but cannot be excluded. Thus, the possibility that the fluids responsible for the passive enrichment of silica in the Stimson alteration halos also resulted in the in-situ formation of tridymite deserves further consideration.

  10. Sub-micron Cu/SSZ-13: Synthesis and application as selective catalytic reduction (SCR) catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prodinger, Sebastian; Derewinski, Miroslaw A.; Wang, Yilin

    For the first time, sub-micron Cu/SSZ-13, obtained by modifying an existing synthesis procedure, was shown to be an effective and stable catalyst for selective catalytic reduction reactions, such as NO reduction. Characterization of the materials with X-ray diffraction, N2-physisorption and 27Al MAS NMR shows that hydrothermal aging, simulating SCR reaction conditions, is more destructive in respect to dealumination for smaller particles prior to Cu-exchange. However, the catalytic performance and hydrothermal stability for Cu/SSZ-13 is independent of the particle size. In particular, the stability of tetrahedral framework Al is improved in the sub-micron Cu/SSZ-13 catalysts of comparable Cu loading. This indicatesmore » that variations in the Al distribution for different SSZ-13 synthesis procedures have a more critical influence on stabilizing isolated Cu-ions during harsh hydrothermal aging than the particle size. This study is of high interest for applications in vehicular DeNOx technologies where high loadings of active species on wash coats can be achieved by using sub-micron Cu/SSZ-13. The authors would like to thank B. W. Arey and J. J. Ditto for performing electron microscope imaging. The authors gratefully acknowledge the US Department of Energy (DOE), Energy Efficiency and Renewable Energy, Vehicle Technologies Office for the support of this work. S. P and M. A. D also acknowledge support by the Materials Synthesis and Simulation Across Scales (MS3 Initiative) conducted under the Laboratory Directed Research & Development Program at PNNL. The research described in this paper was performed in the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the DOE’s Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). PNNL is operated for the US DOE by Battelle.« less

  11. pH-regulative synthesis of Na 3(VPO 4) 2F 3 nanoflowers and their improved Na cycling stability

    DOE PAGES

    Qi, Yuruo; Mu, Linqin; Zhao, Junmei; ...

    2016-04-08

    Na-ion batteries are becoming increasingly attractive as a low cost energy storage device. Sodium vanadium fluorophosphates have been studied extensively recently due to their high storage capacity and high discharge voltage. Shape and size often have a crucial influence over the properties. The controlling synthesis of nanoparticles with special microstructures is significant, which becomes a challenging issue and has drawn considerable attention. In this study, Na 3(VPO 4) 2F 3 nanoflowers have been synthesized via a pH-regulative low-temperature (120 °C) hydro-thermal route. In particular, it is a green route without any organic compounds involved. The hydro-thermal reaction time for themore » formation of Na 3(VPO 4) 2F 3 nanoflowers has also been investigated. A weak acid environment (pH = 2.60) with the possible presence of hydrogen fluoride molecules is necessary for the formation of the desired nanoflower microstructures. Moreover, compared to the nanoparticles obtained by Na 2HPO 4·12H 2O, the as-synthesized Na 3(VPO 4) 2F 3 nanoflowers showed an excellent Na-storage performance in terms of superior cycle stability, even without any further carbon coating or high-temperature treatment.« less

  12. Evaluating structure selection in the hydrothermal growth of FeS 2 pyrite and marcasite

    DOE PAGES

    Kitchaev, Daniil A.; Ceder, Gerbrand

    2016-12-14

    While the ab initio prediction of the properties of solids and their optimization towards new proposed materials is becoming established, little predictive theory exists as to which metastable materials can be made and how, impeding their experimental realization. Here we propose a quasi-thermodynamic framework for predicting the hydrothermal synthetic accessibility of metastable materials and apply this model to understanding the phase selection between the pyrite and marcasite polymorphs of FeS 2. We demonstrate that phase selection in this system can be explained by the surface stability of the two phases as a function of ambient pH within nano-size regimes relevantmore » to nucleation. This result suggests that a first-principles understanding of nano-size phase stability in realistic synthesis environments can serve to explain or predict the synthetic accessibility of structural polymorphs, providing a guideline to experimental synthesis via efficient computational materials design.« less

  13. Global Assessment of Volcanic Debris Hazards from Space

    NASA Technical Reports Server (NTRS)

    Watters, Robert J.

    2003-01-01

    Hazard (slope stability) assessment for different sectors of volcano edifices was successfully obtained from volcanoes in North and South America. The assessment entailed Hyperion images to locate portions of the volcano that were hydrothermally altered to clay rich rocks with zones that were also rich in alunite and other minerals. The identified altered rock zones were field checked and sampled. The rock strength of these zones was calculated from the field and laboratory measurements. Volcano modeling utilizing the distinct element method and limit equilibrium technique, with the calculated strength data was used to assess stability and deformation of the edifice. Modeling results give indications of possible failure volumes, velocities and direction. The models show the crucial role hydrothermally weak rock plays in reducing the strength o the volcano edifice and the rapid identification of weak rock through remote sensing techniques. Volcanoes were assessed in the Cascade Range (USA), Mexico, and Chile (ongoing).

  14. Aldehydes in hydrothermal solution - Standard partial molal thermodynamic properties and relative stabilities at high temperatures and pressures

    NASA Technical Reports Server (NTRS)

    Schulte, Mitchell D.; Shock, Everett L.

    1993-01-01

    Aldehydes are common in a variety of geologic environments and are derived from a number of sources, both natural and anthropogenic. Experimental data for aqueous aldehydes were taken from the literature and used, along with parameters for the revised Helgeson-Kirkham-Flowers (HKF) equations of state, to estimate standard partial molal thermodynamic data for aqueous straight-chain alkyl aldehydes at high temperatures and pressures. Examples of calculations involving aldehydes in geological environments are given, and the stability of aldehydes relative to carboxylic acids is evaluated. These calculations indicate that aldehydes may be intermediates in the formation of carboxylic acids from hydrocarbons in sedimentary basin brines and hydrothermal systems like they are in the atmosphere. The data and parameters summarized here allow evaluation of the role of aldehydes in the formation of prebiotic precursors, such as amino acids and hydroxy acids on the early Earth and in carbonaceous chondrite parent bodies.

  15. Sonochemical fabrication of fluorinated mesoporous titanium dioxide microspheres

    NASA Astrophysics Data System (ADS)

    Yu, Changlin; Yu, Jimmy C.; Chan, Mui

    2009-05-01

    A sonochemical-hydrothermal method for preparing fluorinated mesoporous TiO 2 microspheres was developed. Formation of mesoporous TiO 2 and doping of fluorine was achieved by sonication and then hydrothermal treatment of a solution containing titanium isopropoxide, template, and sodium fluoride. The as-synthesized TiO 2 microspheres were characterized by X-ray diffraction (XRD), Fourier translation infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray (EDX) spectroscopy, photoluminescence spectroscopy (PL), and BET surface areas. The P123 template was removed completely during the hydrothermal and washing steps, which was different from the conventional calcination treatment. The as- synthesized TiO 2 microspheres had good crystallinity and high stability. Results from the photocatalytic degradation of methylene blue (MB) showed that fluorination could remarkably improve the photocatalytic activity of titanium dioxide.

  16. Environmental effects on graphite fiber reinforced PMR-15 polyimide

    NASA Technical Reports Server (NTRS)

    Serafini, T. T.; Hanson, M. P.

    1980-01-01

    Studies were conducted to establish the effects of thermo-oxidative and hydrothermal exposure on the mechanical properties of T300 graphite fabric reinforced PMR-15 composites. The effects of hydrothermal exposure on the mechanical properties of HTS-2 continuous graphite fiber composites were also investigated. The thermo-oxidative stability characteristics of T300 fabric and T300 fabric/PMR-15 composites were determined. Flexural strengths of specimens were determined. The useful lifetime of T300 fabric/PMR-15 composites in air at 316 C was found to be about 100 hours. The useful lifetimes in air at 228 and 260 C were determined to be 500 and 1000 hours, respectively. Absorbed moisture was found to reduce the elevated temperature properties of both the T300 fabricate and HTS-2 continuous fiber composites. The moisture effect was found to be reversible.

  17. Polymer dots grafted TiO2 nanohybrids as high performance visible light photocatalysts.

    PubMed

    Li, Gen; Wang, Feng; Liu, Peng; Chen, Zheming; Lei, Ping; Xu, Zhongshan; Li, Zengxi; Ding, Yanfen; Zhang, Shimin; Yang, Mingshu

    2018-04-01

    As a new member of carbon dots (CDs), Polymer dots (PDs) prepared by hydrothermal treatment of polymers, usually consist of the carbon core and the connected partially degraded polymer chains. This type of CDs might possess aqueous solubility, non-toxicity, excellent stability against photo-bleaching and high visible light activity. In this research, PDs were prepared by a moderate hydrothermal treatment of polyvinyl alcohol, and PDs grafted TiO 2 (PDs-TiO 2 ) nanohybrids with TiOC bonds were prepared by a facile in-situ hydrothermal treatment of PDs and Ti (SO 4 ) 2 . Under visible light irradiation, the PDs-TiO 2 demonstrate excellent photocatalytic activity for methyl orange degradation, and the photocatalytic rate constant of PDs-TiO 2 is 3.6 and 9.5 times higher than that of pure TiO 2 and commercial P25, respectively. In addition, the PDs-TiO 2 exhibit good recycle stability under UV-Vis light irradiation. The interfacial TiOC bonds and the π-conjugated structures in PDs-TiO 2 can act as the pathways to quickly transfer the excited electrons between PDs and TiO 2 , therefore contribute to the excellent photocatalytic activity. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Spontaneous Ignition of Hydrothermal Flames in Supercritical Ethanol Water Solutions

    NASA Technical Reports Server (NTRS)

    Hicks, Michael C.; Hegde, Uday G.; Kojima, Jun J.

    2017-01-01

    Results are reported from recent tests where hydrothermal flames spontaneously ignited in a Supercritical Water Oxidation (SCWO) Test Cell. Hydrothermal flames are generally categorized as flames that occur when appropriate concentrations of fuel and oxidizer are present in supercritical water (SCW); i.e., water at conditions above its critical point (218 atm and 374 C). A co-flow injector was used to inject fuel, comprising an aqueous solution of 30-vol to 50-vol ethanol, and air into a reactor held at constant pressure and filled with supercritical water at approximately 240 atm and 425 C. Hydrothermal flames auto-ignited and quickly stabilized as either laminar or turbulent diffusion flames, depending on the injection velocities and test cell conditions. Two orthogonal views, one of which provided a backlit shadowgraphic image, provided visual observations. Optical emission measurements of the steady state flame were made over a spectral range spanning the ultraviolet (UV) to the near infrared (NIR) using a high-resolution, high-dynamic-range spectrometer. Depending on the fuel air flow ratios varying degrees of sooting were observed and are qualitatively compared using light absorption comparisons from backlit images.

  19. Preparation of α-alumina nanoparticles with various shapes via hydrothermal phase transformation under supercritical water conditions

    NASA Astrophysics Data System (ADS)

    Hakuta, Y.; Nagai, N.; Suzuki, Y.-H.; Kodaira, T.; Bando, K. K.; Takashima, H.; Mizukami, F.

    2013-12-01

    Alumina (Al2O3) fine particles are widely used as industrial materials including fillers for metal or plastics, paints, polisher, cosmetics and electric substrates, due to its high hardness, chemical stability, and high thermal conductivity. The performance of those industrial products is closely related to the particle size or shape of the alumina particles used, and thus a new synthetic method to control size, shape, and crystal structure of the aluminum oxide is desired for the improvement of the performance. Hydrothermal phase transformation using various aluminum compounds such as oxide, hydroxide, and salt as a staring material, is known as one of the synthetic methods for producing alumina fine particles; however, the influence about the size and shape of the starting aluminum compounds has been little mentioned, although they strongly affect the size and shape of the final products. In this study, we investigated the influence of the shape, size and crystal structure of the starting aluminum compounds on those of the products, and newly succeeded in the production of rod-like α-Al2O3 nanoparticles from fibrous boehmite nanoparticles using hydrothermal phase transformation under supercritical water conditions.

  20. Understanding the crystallization mechanism of delafossite CuGaO2 for controlled hydrothermal synthesis of nanoparticles and nanoplates.

    PubMed

    Yu, Mingzhe; Draskovic, Thomas I; Wu, Yiying

    2014-06-02

    The delafossite CuGaO2 is an important p-type transparent conducting oxide for both fundamental science and industrial applications. An emerging application is for p-type dye-sensitized solar cells. Obtaining delafossite CuGaO2 nanoparticles is challenging but desirable for efficient dye loading. In this work, the phase formation and crystal growth mechanism of delafossite CuGaO2 under low-temperature (<250 °C) hydrothermal conditions are systematically studied. The stabilization of Cu(I) cations in aqueous solution and the controlling of the hydrolysis of Ga(III) species are two crucial factors that determine the phase formation. The oriented attachment (OA) growth is proposed as the crystal growth mechanism to explain the formation of large CuGaO2 nanoplates. Importantly, by suppressing this OA process, delafossite CuGaO2 nanoparticles that are 20 nm in size were successfully synthesized for the first time. Moreover, considering the structural and chemical similarities between the Cu-based delafossite series compounds, the understanding of the hydrothermal chemistry and crystallization mechanism of CuGaO2 should also benefit syntheses of other similar delafossites such as CuAlO2 and CuScO2.

  1. Asymmetrical structure, hydrothermal system and edifice stability: The case of Ubinas volcano, Peru, revealed by geophysical surveys

    NASA Astrophysics Data System (ADS)

    Gonzales, Katherine; Finizola, Anthony; Lénat, Jean-François; Macedo, Orlando; Ramos, Domingo; Thouret, Jean-Claude; Fournier, Nicolas; Cruz, Vicentina; Pistre, Karine

    2014-04-01

    Ubinas volcano, the historically most active volcano in Peru straddles a low-relief high plateau and the flank of a steep valley. A multidisciplinary geophysical study has been performed to investigate the internal structure and the fluids flow within the edifice. We conducted 10 self-potential (SP) radial (from summit to base) profiles, 15 audio magnetotelluric (AMT) soundings on the west flank and a detailed survey of SP and soil temperature measurements on the summit caldera floor. The typical “V” shape of the SP radial profiles has been interpreted as the result of a hydrothermal zone superimposed on a hydrogeological zone in the upper parts of the edifice, and depicts a sub-circular SP positive anomaly, about 6 km in diameter. The latter is centred on the summit, and is characterised by a larger extension on the western flank located on the low-relief high plateau. The AMT resistivity model shows the presence of a conductive body beneath the summit at a depth comparable to that of the bottom of the inner south crater in the present-day caldera, where intense hydrothermal manifestations occur. The lack of SP and temperature anomalies on the present caldera floor suggests a self-sealed hydrothermal system, where the inner south crater acts as a pressure release valve. Although no resistivity data exists on the eastern flank, we presume, based on the asymmetry of the basement topography, and the amplitude of SP anomalies on the east flank, which are approximately five fold that on the west flank, that gravitational flow of hydrothermal fluids may occur towards the deep valley of Ubinas. This hypothesis, supported by the presence of hot springs and faults on the eastern foot of the edifice, reinforces the idea that a large part of the southeast flank of the Ubinas volcano may be altered by hydrothermal activity and will tend to be less stable. One of the major findings that stems from this study is that the slope of the basement on which a volcano has grown plays a major role in the geometry of the hydrothermal systems. Another case of asymmetrical composite cone edifice, built on a steep topography, is observed on El Misti volcano (situated 70 km west of Ubinas), which exhibits a similar SP pattern. These types of edifices have a high potential of spreading and sliding along the slope owing to the thicker accumulation of low cohesion and hydrothermally altered volcanic products.

  2. A mineralogical and granulometric study of Cayambe volcano debris avalanche deposit

    NASA Astrophysics Data System (ADS)

    Detienne, M.; Delmelle, P.; Guevara, A.; Samaniego, P.; Bustillos, J.; Sonnet, P.; Opfergelt, S.

    2013-12-01

    Volcano flank/sector collapse represents one of the most catastrophic volcanic hazards. Various volcanic and non-volcanic processes are known to decrease the stability of a volcanic cone, eventually precipitating its gravitational failure. Among them, hydrothermal alteration of volcanic rocks leading to clay mineral formation is recognized as having a large negative impact on rock strength properties. Furthermore, the presence of hydrothermal clays in the collapsing mass influences the behavior of the associated volcanic debris avalanche. In particular, clay-containing debris avalanches seem to travel farther and spread more widely than avalanches of similar volume but which do not incorporate hydrothermally-altered materials. However, the relationship between hydrothermal alteration, flank collapse and debris avalanche behavior is not well understood. The objective of this study is to better determine the volume and composition of hydrothermal clay minerals in the poorly characterized debris avalanche deposit (DAD) of Cayambe composite volcano, located in a densely populated area ~70 km northeast of Quito, Ecuador. Cayambe DAD originated from a sector collapse, which occurred less than 200 ka ago. The DAD is 10-20 m thick and has an estimated total volume of ~0.85 Km3. The H/L ratio (where H is the vertical drop and L is the travel distance of the avalanche) for Cayambe DAD is ~0.095, suggesting a high mobility. In the medial-distal zone, at 9-20 km from its source, the DAD consists of an unstratified and unsorted matrix supporting millimetric to metric clasts. It has a matrix facies (i.e. rich in particles < 2 mm) enriched in hydrothermally-altered materials. Preliminary results of granulometry measurements indicate that the matrix corresponds to ~55 wt.% of the deposit and suggest that the DAD behaved as a cohesive debris flow. Analysis of 13 matrix samples reveals a large variability in particle size distribution. This may reflect poor mixing of the collapsed material during transport. The clay fraction content in the matrix ranges from 15 to 30 wt.%, and does not show a relationship with the sample position in the DAD. Mineralogical determinations are in progress and will be presented.

  3. An Assessment of Magma-Hydrothermal Heat Output at the Costa Rica Rift

    NASA Astrophysics Data System (ADS)

    Lowell, R. P.; Morales Maqueda, M. A.; Banyte, D.; Zhang, L.; Tong, V.; Hobbs, R. W.; Harris, R. N.

    2016-12-01

    A joint geophysical/physical oceanographic investigation of the Costa Rica Ridge as part of the OSCAR (Oceanographic and Seismic Characterization of heat dissipation and alteration by hydrothermal fluids at an Axial Ridge) research program enables us to estimate hydrothermal heat output and its likely link to a sub-axial magma lens (AML). In December 2014, a number of tow-yo casts were made along and near the ridge axis where seismic reflection data collected in 1994 showed the presence of seismic reflector interpreted to be an AML at a depth of about 2800 m below the seafloor. A decline in beam transmission in a ≈ 200 m thick region located approximately 800 to 900 meters above the seafloor indicated the presence of a hydrothermal plume. CTD data collected above the ridge yielded a weighted average buoyancy frequency of approximately 19.3 x 10-8 s-2. Assuming a mean hydrothermal vent temperature of 350°C, buoyant plume theory yields a heat output between 400 and 600 MW. Application of the single-pass modeling approach to the hydrothermal system, yields an estimated mass flow between 210 and 337 kg/s, and the mean product of crustal permeability x discharge area ranges between 6 and 10 x 10-9 m4. A multichannel seismic profile collected in 2015 indicates the presence of a reflector 5 km along-axis and < 100 m wide, in approximately the same location as the 1994 survey, suggesting that magma-driven hydrothermal heat output may have exhibited stability on a decadal time scale. The relatively small size of the inferred AML, when coupled to the heat output estimate and the single-pass model, suggests that the conductive boundary layer at the top the AML is 2m thick and that the AML must be frequently replenished to maintain stable heat output. Assuming the hydrothermal system is driven by magmatic latent heat, a 100 m thick AML could have powered a 100 MW hydrothermal system for 20 years, while inputting 5 x 107 m3 of melt into the axis. These results indicate hydrothermal heat output at the Costa Rica Ridge is time-varying.

  4. Thermal stability enhancement of modified carboxymethyl cellulose films using SnO2 nanoparticles.

    PubMed

    Baniasad, Arezou; Ghorbani, Mohsen

    2016-05-01

    In this study, in-situ and ex-situ hydrothermal synthesis procedures were applied to synthesize novel CMC/porous SnO2 nanocomposites from rice husk extracted carboxymethyl cellulose (CMC) biopolymer. In addition, the effects of SnO2 nanoparticles on thermal stability of the prepared nanocomposite were specifically studied. Products were investigated in terms of morphology, particle size, chemical structure, crystallinity and thermal stability by using field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and thermogravimetric analysis (TGA), respectively. Presence of characteristic bands in the FTIR spectra of samples confirmed the successful formation of CMC and CMC/SnO2 nanocomposites. In addition, FESEM images revealed four different morphologies of porous SnO2 nanoparticles including nanospheres, microcubes, nanoflowers and olive-like nanoparticles with hollow cores which were formed on CMC. These nanoparticles possessed d-spacing values of 3.35Å. Thermal stability measurements revealed that introduction of SnO2 nanoparticles in the structure of CMC enhanced stability of CMC to 85%. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Nanodiamond finding in the hyblean shallow mantle xenoliths.

    PubMed

    Simakov, S K; Kouchi, A; Mel'nik, N N; Scribano, V; Kimura, Y; Hama, T; Suzuki, N; Saito, H; Yoshizawa, T

    2015-06-01

    Most of Earth's diamonds are connected with deep-seated mantle rocks; however, in recent years, μm-sized diamonds have been found in shallower metamorphic rocks, and the process of shallow-seated diamond formation has become a hotly debated topic. Nanodiamonds occur mainly in chondrite meteorites associated with organic matter and water. They can be synthesized in the stability field of graphite from organic compounds under hydrothermal conditions. Similar physicochemical conditions occur in serpentinite-hosted hydrothermal systems. Herein, we report the first finding of nanodiamonds, primarily of 6 and 10 nm, in Hyblean asphaltene-bearing serpentinite xenoliths (Sicily, Italy). The discovery was made by electron microscopy observations coupled with Raman spectroscopy analyses. The finding reveals new aspects of carbon speciation and diamond formation in shallow crustal settings. Nanodiamonds can grow during the hydrothermal alteration of ultramafic rocks, as well as during the lithogenesis of sediments bearing organic matter.

  6. Hierarchical Na-doped cubic ZrO{sub 2} synthesis by a simple hydrothermal route and its application in biodiesel production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lara-García, Hugo A.; Romero-Ibarra, Issis C.; Pfeiffer, Heriberto, E-mail: pfeiffer@iim.unam.mx

    Hierarchical growth of cubic ZrO{sub 2} phase was successfully synthesized via a simple hydrothermal process in the presence of different surfactants (cationic, non-ionic and anionic) and sodium hydroxide. The structural and microstructural characterizations of different ZrO{sub 2} powders were performed using various techniques, such as X-ray diffraction, transmission electron microscopy, N{sub 2} adsorption–desorption, scanning electron microscopy and infrared. Results indicated that sodium addition stabilized the cubic ZrO{sub 2} phase by a Na-doping process, independently of the surfactant used. In contrast, microstructural characteristics varied as a function of the surfactant and sodium presence. In addition, water vapor (H{sub 2}O) and carbonmore » dioxide (CO{sub 2}) sorption properties were evaluated on ZrO{sub 2} samples. Results evidenced that sample surface reactivity changed as a function of the sodium content. Finally, this surface reactivity was evaluated on the biodiesel transesterification reaction using the different synthesized samples, obtaining yields of 93%. - Graphical abstract: Hierarchical growth of cubic Na-ZrO{sub 2} phase was synthesized by hydrothermal processes in the presence of surfactants and sodium. Sodium addition stabilized the cubic phase by a Na-doping process, while the microstructural characteristics varied with surfactants. Finally, this surface reactivity was evaluated on the biodiesel transesterification reaction. - Highlights: • Cubic-ZrO{sub 2} phase was synthesized via a simple hydrothermal process. • ZrO{sub 2} structure and microstructures changed as a function of the surfactant. • Cubic-ZrO{sub 2} phase was evaluated on the biodiesel transesterification reaction.« less

  7. Synthesis of bilayer MoS{sub 2} nanosheets by a facile hydrothermal method and their methyl orange adsorption capacity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ye, Lijuan; Xu, Haiyan; Zhang, Dingke

    2014-07-01

    Highlights: • Hexagonal phase of MoS{sub 2} nanosheets was synthesized by a facile hydrothermal method. • FE-SEM and TEM images show the sheets-like morphology of MoS{sub 2}. • Bilayer MoS{sub 2} can be grown under the optimized mole ratio of 2:1 of S:Mo at 180 °C for 50 h. • The MoS{sub 2} nanosheets possess high methyl orange adsorption capacity due to the large surface area. - Abstract: Molybdenum disulfide (MoS{sub 2}) nanosheets have received significant attention recently due to the potential applications for exciting physics and technology. Here we show that MoS{sub 2} nanosheets can be prepared by amore » facile hydrothermal method. The study of the properties of the MoS{sub 2} nanosheets prepared at different conditions suggests that the mole ratio of precursors and hydrothermal time significantly influences the purity, crystalline quality and thermal stability of MoS{sub 2}. X-ray diffraction, Raman spectra and transmission electron microscopy results indicate that bilayer MoS{sub 2} can be grown under an optimized mole ratio of 2:1 of S:Mo at 180 °C for 50 h. Moreover, such ultrathin nanosheets exhibit a prominent photoluminescence and possess high methyl orange adsorption capacity due to the large surface area, which can be potentially used in photodevice and photochemical catalyst.« less

  8. Agro-industrial waste to solid biofuel through hydrothermal carbonization.

    PubMed

    Basso, Daniele; Patuzzi, Francesco; Castello, Daniele; Baratieri, Marco; Rada, Elena Cristina; Weiss-Hortala, Elsa; Fiori, Luca

    2016-01-01

    In this paper, the use of grape marc for energy purposes was investigated. Grape marc is a residual lignocellulosic by-product from the winery industry, which is present in every world region where vine-making is addressed. Among the others, hydrothermal carbonization was chosen as a promising alternative thermochemical process, suitable for the treatment of this high moisture substrate. Through a 50 mL experimental apparatus, hydrothermal carbonization tests were performed at several temperatures (namely: 180, 220 and 250 °C) and residence times (1, 3, 8 h). Analyses on both the solid and the gaseous phases obtained downstream of the process were performed. In particular, solid and gas yields versus the process operational conditions were studied and the obtained hydrochar was evaluated in terms of calorific value, elemental analysis, and thermal stability. Data testify that hydrochar form grape marc presents interesting values of HHV (in the range 19.8-24.1 MJ/kg) and physical-chemical characteristics which make hydrochar exploitable as a solid biofuel. In the meanwhile, the amount of gases produced is very small, if compared to other thermochemical processes. This represents an interesting result when considering environmental issues. Statistical analysis of data allows to affirm that, in the chosen range of operational conditions, the process is influenced more by temperature than residence time. These preliminary results support the option of upgrading grape marc toward its energetic valorisation through hydrothermal carbonization. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Hydrothermal transformation of dried grass into graphitic carbon-based high performance electrocatalyst for oxygen reduction reaction.

    PubMed

    Zhang, Haimin; Wang, Yun; Wang, Dan; Li, Yibing; Liu, Xiaolu; Liu, Porun; Yang, Huagui; An, Taicheng; Tang, Zhiyong; Zhao, Huijun

    2014-08-27

    In this work, we present a low cost and environmentally benign hydrothermal method using dried grass as the sole starting material without any synthetic chemicals to directly produce high quality nitrogen-doped carbon nanodot/nanosheet aggregates (N-CNAs), achieving a high yield of 25.2%. The fabricated N-CNAs possess an N/C atomic ratio of 3.41%, consist of three typed of doped N at a ratio of 2.6 (pyridinic):1.7 (pyrrolic):1 (graphitic). The experimental results reveal that for oxygen reduction reaction (ORR), the performance of N-CNAs, in terms of electrocatalytic activity, stability and resistance to crossover effects, is better or comparable to the commercial Pt/C electrocatalyst. The theoretical studies further indicate that the doped pyridinic-N plays a key role for N-CNAs' excellent four-electron ORR electrocatalytic activity. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Radiolysis and Termolysis of Tetradecanoic Acid and Docosanoic Acid in Physicochemical Conditions Similar to Hydrothermal Vents

    NASA Astrophysics Data System (ADS)

    Cruz-Castañeda, J.; Negrón-Mendoza, A.; Ramos-Bernal, S.; Colín-García, M.; Heredia, A.

    2017-11-01

    Our results show the stability of carboxylic acids against different energy sources. Additionally, the reaction products may have importance in chemical evolution, since they could function as reagents towards synthesis of other important compounds.

  11. Synthesis, characterization and rate capability performance of the micro-porous MnO{sub 2} nanowires as cathode material in lithium batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R, Ranjusha; S, Sonia T.; S, Roshny

    Graphical abstract: Translating MnO{sub 2} nanowires as cathode materials in coin cell and studying their discharge behavior and cycling stability at different C-rates. - Highlights: • MnO{sub 2} nanowires have been synthesized via hydrothermal route. • The nanowires were employed as cathode materials in Li-batteries. • Discharge and cycling stability were studied at different C-rates. • Specific capacity and power density of 251 mAh g{sup −1} and 200 W kg{sup −1} were attained. - Abstract: A peculiar architecture of one-dimensional MnO{sub 2} nanowires was synthesized by an optimized hydrothermal route and has been lucratively exploited to fabricate highly efficient microporousmore » electrode overlays for lithium batteries. These fabricated electrodes comprised of interconnected nanoscale units with wire-shaped profile which exhibits high aspect ratio in the order of 10{sup 2}. Their outstanding intercalation/de-intercalation prerogatives have also been studied to fabricate lithium coin cells which revealed a significant specific capacity and power density of 251 mAh g{sup −1} and 200 W kg{sup −1}, respectively. A detailed electrochemical study was performed to elucidate how surface morphology and redox reaction behaviors underlying these electrodes influence the cyclic behavior of the electrode. Rate capability tests at different C-rates were performed to evaluate the capacity and cycling performance of these coin cells.« less

  12. Microwave hydrothermal transformation of amorphous calcium carbonate nanospheres and application in protein adsorption.

    PubMed

    Qi, Chao; Zhu, Ying-Jie; Chen, Feng

    2014-03-26

    Calcium carbonate and calcium phosphate are the main components of biominerals. Among all of the forms of biominerals, amorphous calcium carbonate (ACC) and amorphous calcium phosphate (ACP) are the most important forms because they play a pivotal role in the process of biomineralization and are the precursors to the crystalline polymorphs. In this work, we first synthesized ACC in vitro using adenosine 5'-triphosphate disodium salt (ATP) as the stabilizer and investigated the transformation of the ACC under microwave hydrothermal conditions, and ACC/ACP composite nanospheres and carbonated hydroxyapatite (CHA) nanospheres were successfully prepared. In this novel strategy, ATP has two main functions: it serves as the stabilizer for ACC and the phosphorus source for ACP and CHA. Most importantly, the morphology and the size of the ACC precursor can be well-preserved after microwave heating, so it provides a new method for the preparation of calcium phosphate nanostructured materials using phosphorus-containing biomolecule-stabilized ACC as the precursor. Furthermore, the as-prepared ACC/ACP composite nanospheres have excellent biocompatibility and high protein adsorption capacity, indicating that they are promising for applications in biomedical fields such as drug delivery and protein adsorption.

  13. Nanoparticle titanium dioxide aqueous interfacial energy can be modified to control phase stability, coarsening, and morphology

    NASA Astrophysics Data System (ADS)

    Finnegan, Michael Patrick

    The effect of solution chemistry on the phase stability, coarsening kinetics and morphology of titanium dioxide (TiO2) nanoparticles is investigated in order to attain efficient production pathways to desired nano-structures with optimal properties. To obtain sample, TiO2 was synthesized via hydrolysis of titanium isopropoxide producing an 85% anatase/15% brookite mixture. The titania was hydrothermally heated in an array of temperatures and pH values for various times. There are distinct phase stability fields for nanoscale titania based on pH alone due to slight interface charging behavior differences among the polymorphs. The mixture transforms to rutile below the pH of zero point of charge (ZPC) and remains anatase above the ZPC. This phenomenon is partially reversible. The solution chemistry also dictates the hydrothermal coarsening mechanism of the anatase polymorph. Ostwald ripening (OR) takes place in basic pH where titania solubility is elevated relative to neutral pH where lower solubility prevents rapid OR but allows for coarsening via oriented attachment (OA) of nanoparticles. This OA event can alter the symmetry of anatase causing unexpected and perhaps technically useful morphologies such as straight and curved nanorods during coarsening.

  14. Development of a Test for Evaluation of the Hydrothermal Stability of Sorbents Used in Closed-Loop CO2 Removal Systems

    NASA Technical Reports Server (NTRS)

    Knox, James C.; Gauto, Hernando; Miller, Lee A.

    2015-01-01

    The International Space Station Carbon Dioxide Removal Assembly uses zeolite 5A molecular sieve material packed into beds for the capture of cabin CO2. The beds are cyclically heated to drive off the CO2 and restore the removal capacity. Over time, the sorbent material has been found to break down resulting in dust that restricts flow through the beds. Humidity adsorbed in the 5A zeolite when it is heated is a suspected cause of this sorbent degradation. To evaluate the impact of adsorbed water during thermal cycling, the Hydrothermal Stability Test was developed. The test configuration provides comparative side-by-side flow restriction data for two sorbent materials at specifically controlled humidity levels. While the initial focus of the testing is on 5A zeolite materials currently used on the ISS, the system will also be used to evaluate future candidate materials. This paper describes the approach, the test system, current results, and future testing.

  15. Large H2 storage capacity of a new polyhedron-based metal-organic framework with high thermal and hygroscopic stability.

    PubMed

    Hong, Seunghee; Oh, Minhak; Park, Mira; Yoon, Ji Woong; Chang, Jong-San; Lah, Myoung Soo

    2009-09-28

    Two metal-organic frameworks (MOFs) based on metal-organic cuboctahedra were prepared using a rigid C3 symmetric ligand, where Zn polyhedron-based MOF (PMOF-2(Zn)) did not show any significant gas sorption behavior, whereas the isostructural Cu polyhedron-based MOF (PMOF-2(Cu)) showed a large surface area of approximately 4180 m2 g(-1), high hydrothermal stability, and very promising H2 sorption properties.

  16. High thermal stability and antiferromagnetic properties of a 3D Mn(II)-organic framework with metal carboxylate chains

    NASA Astrophysics Data System (ADS)

    Han, Lei; Zhou, Yan; Wang, Xiu-Teng; Li, Xing; Tong, Ming-Liang

    2009-04-01

    A novel three-dimensional metal-organic framework, [Mn 2(hfipbb) 2(bpy)] n ( 1) (H 2hfipbb = 4,4'-(hexafluoroisopropylidene)bis(benzoic acid), bpy = 4,4'-bipyridine), has been hydrothermally synthesized and structurally characterized. The complex consists of metal carboxylate chains, which are cross-linked to six adjacent chains through organic moieties forming extended three-dimensional networks. Complex 1 exhibits high thermal stability (450 °C) and antiferromagnetic properties.

  17. Natural cotton as precursor for the refractory boron carbide—a hydrothermal synthesis and characterization

    NASA Astrophysics Data System (ADS)

    Saritha Devi, H. V.; Swapna, M. S.; Raj, Vimal; Ambadas, G.; Sankararaman, S.

    2018-01-01

    Boron carbide (B4C) is an excellent covalent carbide that finds applications in industries and nuclear power plants. The present synthesis methods of boron carbide are expensive and involve the use of toxic chemicals that adversely affect environment. In the present work, we report for the first time the use of the hydrothermal method for converting the cellulose from cotton as the carbon precursor for B4C. The carbon precursor is converted into functionalized porous carbonaceous material by hydrothermal treatment followed by sodium borohydride. It is further treated with boric acid to make it a B4C precursor. The precursor is characterized by UV-visible diffuse reflectance, Raman, Fourier transform infrared, photoluminescent and energy dispersive spectroscopy. The morphology and structure analysis is carried out using field emission scanning electron microscopy and x-ray diffraction techniques. The results of structural and optical characterization of the sample synthesized are compared with the commercial B4C. The thermal stability of the sample is studied by thermogravimetric analysis. The sample annealed at 700 °C is found to be B4C devoid of amorphous carbon with a yield of 44.7%. The analysis reveals the formation of boron carbide from the sample.

  18. Polyethylene Glycol Based Graphene Aerogel Confined Phase Change Materials with High Thermal Stability.

    PubMed

    Fu, Yang; Xiong, Weilai; Wang, Jianying; Li, Jinghua; Mei, Tao; Wang, Xianbao

    2018-05-01

    Polyethylene glycol (PEG) based graphene aerogel (GA) confined shaped-stabilized phase change materials (PCMs) are simply prepared by a one-step hydrothermal method. Three-dimensional GA inserted by PEG molecule chains, as a supporting material, obtained by reducing graphene oxide sheets, is used to keep their stabilized shape during a phase change process. The volume of GA is obviously expended after adding PEG, and only 9.8 wt% of GA make the composite achieve high energy efficiency without leakage during their phase change because of hydrogen bonding widely existing in the GA/PEG composites (GA-PCMs). The heat storage energy of GA-PCMs is 164.9 J/g, which is 90.2% of the phase change enthalpy of pure PEG. In addition, this composite inherits the natural thermal properties of graphene and thus shows enhanced thermal conductivity compared with pure PEG. This novel study provides an efficient way to fabricate shape-stabilized PCMs with a high content of PEG for thermal energy storage.

  19. Insights into the Hydrothermal Stability of Triamine-Functionalized SBA-15 Silica for CO2 Adsorption.

    PubMed

    Jahandar Lashaki, Masoud; Ziaei-Azad, Hessam; Sayari, Abdelhamid

    2017-10-23

    The hydrothermal stability of triamine-grafted, large-pore SBA-15 CO 2 adsorbents was studied by using steam stripping. Following two 3 h cycles of steam regeneration, lower CO 2 uptakes, lower CO 2 /N ratios, and slower adsorption kinetics were observed relative to fresh samples, particularly at the lowest adsorption temperature (25 °C). CO 2 adsorption measurements for a selected sample exposed to 48 h of steam stripping depicted that after the initial loss during the first exposure to steam (3-6 h), the adsorptive properties stabilized. For higher adsorption temperatures (i.e., 50 and 75 °C), however, all adsorptive properties remained almost unchanged after steaming, indicating the significance of diffusional limitations. Thermogravimetric analysis and FTIR spectroscopy on grafted samples before and after steam stripping showed no amine leaching and no change in the chemical nature of the amine groups, respectively. Also, a six-cycle CO 2 adsorption/desorption experiment under dry conditions showed no thermal degradation. However, N 2 adsorption measurement at 77 K showed significant reductions in the BET surface area of the grafted samples following steaming. Based on the pore size distribution of calcined, grafted samples before and after steaming, it is proposed that exposure to steam restructured the grafted materials, causing mass transfer resistance. It is inferred that triamine-grafted, large-pore SBA-15 adsorbents are potential candidates for CO 2 capture at relatively high temperatures (50-75 °C; for example, flue gas) combined with steam regeneration. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Hyaluronic acid-modified hydrothermally synthesized iron oxide nanoparticles for targeted tumor MR imaging.

    PubMed

    Li, Jingchao; He, Yao; Sun, Wenjie; Luo, Yu; Cai, Hongdong; Pan, Yunqi; Shen, Mingwu; Xia, Jindong; Shi, Xiangyang

    2014-04-01

    We report a polyethyleneimine (PEI)-mediated approach to synthesizing hyaluronic acid (HA)-targeted magnetic iron oxide nanoparticles (Fe3O4 NPs) for in vivo targeted tumor magnetic resonance (MR) imaging applications. In this work, Fe3O4 NPs stabilized by PEI were first synthesized via a one-pot hydrothermal method. The formed PEI-stabilized Fe3O4 NPs were then modified with fluorescein isothiocyanate (FI) and HA with two different molecular weights to obtain two different Fe3O4 NPs (Fe3O4-PEI-FI-HA6K and Fe3O4-PEI-FI-HA31K NPs) with a size of 15-16 nm. The formed HA-modified multifunctional Fe3O4 NPs were characterized via different techniques. We show that the multifunctional Fe3O4 NPs are water-dispersible and colloidal stable in different aqueous media. In vitro cell viability and hemolysis studies reveal that the particles are quite cytocompatible and hemocompatible in the given concentration range. Furthermore, confocal microscopy and flow cytometry data demonstrate that HA-targeted Fe3O4 NPs are able to be uptaken specifically by cancer cells overexpressing CD44 receptors, and be used as efficient probes for targeted MR imaging of cancer cells in vitro and xenografted tumor models in vivo. With the tunable amine-based conjugation chemistry, the PEI-stabilized Fe3O4 NPs may be functionalized with other biological ligands or drugs for diagnosis and therapy of different biological systems. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Preparation of meta-stable phases of barium titanate by Sol-hydrothermal method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Selvaraj, Mahalakshmi; Department of Material Science, School of Chemistry, Madurai Kamaraj University, Tamilnadu Madurai-625 021; Venkatachalapathy, V.

    2015-11-15

    Two low-cost chemical methods of sol–gel and the hydrothermal process have been strategically combined to fabricate barium titanate (BaTiO{sub 3}) nanopowders. This method was tested for various synthesis temperatures (100 °C to 250 °C) employing barium dichloride (BaCl{sub 2}) and titanium tetrachloride (TiCl{sub 4}) as precursors and sodium hydroxide (NaOH) as mineralizer for synthesis of BaTiO{sub 3} nanopowders. The as-prepared BaTiO{sub 3} powders were investigated for structural characteristics using x-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The overall analysis indicates that the hydrothermal conditions create a gentle environment to promote the formation of crystalline phasemore » directly from amorphous phase at the very low processing temperatures investigated. XRD analysis showed phase transitions from cubic - tetragonal - orthorhombic - rhombohedral with increasing synthesis temperature and calculated grain sizes were 34 – 38 nm (using the Scherrer formula). SEM and TEM analysis verified that the BaTiO{sub 3} nanopowders synthesized by this method were spherical in shape and about 114 - 170 nm in size. The particle distribution in both SEM and TEM shows that as the reaction temperature increases from 100 °C to 250 °C, the particles agglomerate. Selective area electron diffraction (SAED) shows that the particles are crystalline in nature. The study shows that choosing suitable precursor and optimizing pressure and temperature; different meta-stable (ferroelectric) phases of undoped BaTiO{sub 3} nanopowders can be stabilized by the sol-hydrothermal method.« less

  2. A mesostructured Y zeolite as a superior FCC catalyst--lab to refinery.

    PubMed

    García-Martínez, Javier; Li, Kunhao; Krishnaiah, Gautham

    2012-12-18

    A mesostructured Y zeolite was prepared by a surfactant-templated process at the commercial scale and tested in a refinery, showing superior hydrothermal stability and catalytic cracking selectivity, which demonstrates, for the first time, the promising future of mesoporous zeolites in large scale industrial applications.

  3. In situ study of the factors controlling Fe, Cu and Zn scavenging during the early mixing between hydrothermal fluids and seawater

    NASA Astrophysics Data System (ADS)

    Cathalot, C.; Laes-Huon, A.; Pelleter, E.; Maillard, L.; Chéron, S.; Boissier, A.; Waeles, M.; Cotte, L.; Pernet-Coudrier, B.; Gayet, N.; Sarrazin, J.; Sarradin, P. M.

    2016-12-01

    Despite the importance of trace metals for marine ecosystems and in the global carbon cycle, dissolved metal sources in the deep ocean and their export mechanism are, today, still unconstrained. The historical view that dissolved metals are largely removed from hydrothermal plumes through precipitation of a range of iron-bearing minerals is now being challenged. Several potential mechanisms for the delivery of hydrothermally sourced metals to the open ocean have been suggested and require a thorough documentation of the early mixing processes between the hydrothermal fluids and the ambient seawater. The geochemistry of a plume, and specially the rising plume, is dictated by the nature and composition of the host rock, fluid temperature, phase separation at depth and subsurface mixing processes, and thus can vary in temperature, pH, metal and dissolved gases content between spatially close hydrothermal vents. Here, we present in situ chemical conditions during the early mixing gradient between hydrothermal fluids and seawater at the Lucky Strike site (Mid-Atlantic Ridge), using a multi proxy approach targeting both the dissolved and particulate phase and combining in situ measurements and analysis back in the lab. Indeed, in situ O2, H2S and temperature measurements were performed at a 1Hz frequency, coupled to lower frequency analysis of in situ Fe2+. In addition, particulate material filtered in situ was analyzed using Inductive Coupled Plasma - Mass Spectrometry, X-Ray Diffraction, X-Ray Fluorescence and Scanning Electron Microscopy and provided useful insights regarding the reactivity of metals during the mixing processes. Our results show different behavior within the Lucky Strike vent field. Fe and S co-precipitation through chalcopyrite formation at the newly discovered Capelinhos site seem to be the main process. At the White Caste site, on the other hand, wurzite and sphalerite precipitation seems to dominate the dilution processes, H2S being rapidly titrated with the available Zinc early in the mixing. Our results indicate a clear control by subsurface mixing processes, at a very local scale: within a single vent field, temperature outflow of the hydrothermal fluid clearly drives Cu, Fe and Zn scavenging in the particulate phase, and controlling hence the iron stability and export.

  4. The surface stability and morphology of tobermorite 11 Å from first principles

    NASA Astrophysics Data System (ADS)

    Mutisya, Sylvia M.; Miranda, Caetano R.

    2018-06-01

    Tobermorite minerals are important in many industrial processes typically occurring in hydrous environment. Their functionality is therefore governed in various aspects by their morphology and surface stability/reactivity. Here, we present the results of the surface energies and morphology of normal tobermorite 11 Å in a water vapor environment investigated by employing first principles atomistic thermodynamic calculations. For the low index tobermorite surfaces studied, the calculated surface energies fall within a narrow range (0.41-0.97 J/m2) with the (0 0 4) surface being the most stable. The equilibrium morphology is a thin pseudohexagonal plate elongated along the b axis. The hydrated surfaces are more stable at high water vapor chemical potentials with the stability enhanced as the water partial pressures are varied from ambient to supercritical hydrothermal conditions. Increasing the water vapor chemical potential gives rise to a smaller size of the tobermorite crystal, with the equilibrium morphology remaining unaltered.

  5. Methanethiol abundance in high-temperature hydrothermal fluids from the Mid-Atlantic Ridge

    NASA Astrophysics Data System (ADS)

    Reeves, E.; Seewald, J. S.; Saccocia, P.; van der Meer, M.

    2008-12-01

    The formation of aqueous organic sulfur compounds in hydrothermal systems remains poorly constrained, despite their potential significance in 'prebiotic' chemistry and the origin of life. The simplest - methanethiol (CH3SH) - has been implicated as a critical abiogenic precursor to the establishment of primitive microbial metabolism in early Earth hydrothermal settings. It also represents a readily-utilized substrate for microbial sulfate-reducing communities and a potential intermediate species in abiotic CH4 formation. To assess the abundance of CH3SH and factors regulating its stability under hydrothermal conditions we measured CH3SH concentrations in a suite of hydrothermal fluids collected from the Rainbow, Lucky Strike, TAG and Lost City hydrothermal sites located on the Mid-Atlantic Ridge. Fluids were collected using isobaric gas-tight samplers and analyzed for CH3SH by shipboard purge-and-trap gas chromatography. Measured concentrations at Rainbow (1.2 -- 223nM), Lucky Strike (1.1 -- 26nM), TAG (8.5 -- 11nM) and Lost City (1.6 -- 3.0nM) are all substantially lower than predicted for thermodynamic equilibrium with CO2, H2 and H2S at measured vent conditions. The highest concentrations (91 -- 223nM), however, were observed at Rainbow in intermediate temperature (128 -- 175°C) H2-rich fluids that may have undergone conductive cooling. Increased concentrations with decreasing temperature is consistent with the thermodynamic drive for the formation from CO2, suggesting a possible abiotic origin for CH3SH in some fluids. Substantially lower concentrations in the low temperature fluids at Lost City are consistent with the extremely low levels of CO2 and H2S in these fluids. Other possible sources of CH3SH to vent fluids must be considered, however, and include thermal alteration of biomass present in low-temperature environments and microbial consortia that produce CH3SH as a byproduct of anaerobic methane oxidation. Current models for the emergence of primordial metabolism in highly-reducing alkaline hydrothermal environments invoke CH3SH as a key reactant leading to Acetyl CoA-based (Wood-Ljungdahl) carbon fixation pathways. Results of this study challenge the notion that high-pH, reducing fluids emanating from serpentinite-hosted hydrothermal systems like Lost City were favorable for the production of CH3SH, the establishment of a primitive metabolic cycle and the emergence of microbial life on Earth.

  6. Condensation Reactions and Formation of Amides, Esters, and Nitriles Under Hydrothermal Conditions

    NASA Astrophysics Data System (ADS)

    Rushdi, Ahmed I.; Simoneit, Bernd R. T.

    2004-06-01

    Hydrothermal pyrolysis experiments were performed to assess condensation (dehydration) reactions to amide, ester, and nitrile functionalities from lipid precursors. Beside product formation, organic compound alteration and stability were also evaluated. Mixtures of nonadecanoic acid, hexadecanedioic acid, or hexadecanamide with water, ammonium bicarbonate, and oxalic acid were heated at 300°C for 72 h. In addition, mixtures of ammonium bicarbonate and oxalic acid solutions were used to test the abiotic formation of organic nitrogen compounds at the same temperature. The resulting products were condensation compounds such as amides, nitriles, and minor quantities of N-methylalkyl amides, alkanols, and esters. Mixtures of alkyl amide in water or oxalic acid yielded mainly hydrolysis and dehydration products, and with ammonium bicarbonate and oxalic acid the yield of condensation products was enhanced. The synthesis experiments with oxalic acid and ammonium bicarbonate solutions yielded homologous series of alkyl amides, alkyl amines, alkanes, and alkanoic acids, all with no carbon number predominances. These organic nitrogen compounds are stable and survive under the elevated temperatures of hydrothermal fluids.

  7. Enhanced catalytic performance for light-olefins production from chloromethane over hierarchical porous ZSM-5 zeolite synthesized by a growth-inhibition strategy

    NASA Astrophysics Data System (ADS)

    Liu, Qing; Wen, Dafen; Yang, Yanran; Fei, Zhaoyang; Zhang, Zhuxiu; Chen, Xian; Tang, Jihai; Cui, Mifen; Qiao, Xu

    2018-03-01

    Hierarchical porous ZSM-5 (HP-ZSM-5) zeolites were synthesized by hydrothermal crystallization method adding triethoxyvinylsilane as the growth-inhibitor at different hydrothermal crystallized temperatures. The properties of the obtained samples were characterized by XRD, SEM, N2-sorption, uptake of ethylene, 27Al MAS NMR, NH3-TPD, and Py-IR. It was found that the mesopore was introduced and the acidity was adjusted over HP-ZSM-5 samples successfully. The hydrothermal crystallized temperature had an important influence on the porous structure and surface properties. The catalytic performance for chloromethane to light-olefins (CMTO) were also investigated. Compared with ZSM-5 samples, HP-ZSM-5 samples exhibited enhanced stability and increased selectivity of light-olefins for CMTO reaction because of the introduction of the abundant mesopore and appropriate acidity. The lifetime (the duration of chloromethane conversion >98%) and selectivity of light-olefins reached 115 h and 69.3%, respectively.

  8. In Vitro versus In Vivo Phase Instability of Zirconia-Toughened Alumina Femoral Heads: A Critical Comparative Assessment

    PubMed Central

    Pezzotti, Giuseppe; Affatato, Saverio; Rondinella, Alfredo; Yorifuji, Makiko; Marin, Elia; Zhu, Wenliang; McEntire, Bryan; Bal, Sonny B.; Yamamoto, Kengo

    2017-01-01

    A clear discrepancy between predicted in vitro and actual in vivo surface phase stability of BIOLOX®delta zirconia-toughened alumina (ZTA) femoral heads has been demonstrated by several independent research groups. Data from retrievals challenge the validity of the standard method currently utilized in evaluating surface stability and raise a series of important questions: (1) Why do in vitro hydrothermal aging treatments conspicuously fail to model actual results from the in vivo environment? (2) What is the preponderant microscopic phenomenon triggering the accelerated transformation in vivo? (3) Ultimately, what revisions of the current in vitro standard are needed in order to obtain consistent predictions of ZTA transformation kinetics in vivo? Reported in this paper is a new in toto method for visualizing the surface stability of femoral heads. It is based on CAD-assisted Raman spectroscopy to quantitatively assess the phase transformation observed in ZTA retrievals. Using a series of independent analytical probes, an evaluation of the microscopic mechanisms responsible for the polymorphic transformation is also provided. An outline is given of the possible ways in which the current hydrothermal simulation standard for artificial joints can be improved in an attempt to reduce the gap between in vitro simulation and reality. PMID:28772828

  9. Crater Lake Controls on Volcano Stability: Insights From White Island, New Zealand

    NASA Astrophysics Data System (ADS)

    Hamling, Ian J.

    2017-11-01

    Many volcanoes around the world host summit crater lakes but their influence on the overall stability of the edifice remains poorly understood. Here I use satellite radar data acquired by TerraSAR-X from early 2015 to July 2017 over White Island, New Zealand, to investigate the interaction of the crater lake and deformation of the surrounding edifice. An eruption in April 2016 was preceded by a period of uplift within the crater floor and drop in the lake level. Modeling of the uplift indicates a shallow source located at ˜100 m depth in the vicinity of the crater lake, likely coinciding with the shallow hydrothermal system. In addition to the drop in the lake level, stress changes induced by the inflation suggest that the pressurization of the shallow hydrothermal system helped promote failure along the edge of the crater lake which collapsed during the eruption. After the eruption, and almost complete removal of the crater lake, large areas of the crater wall and lake edge began moving downslope at rates approaching 400 mm/yr. The coincidence between the rapid increase in the displacement rates and removal of the crater lake suggests that the lake provides a physical control on the stability of the surrounding edifice.

  10. Hydrothermal synthesis of high surface area ZIF-8 with minimal use of TEA

    NASA Astrophysics Data System (ADS)

    Butova, V. V.; Budnyk, A. P.; Bulanova, E. A.; Lamberti, C.; Soldatov, A. V.

    2017-07-01

    In this paper we present, for the first time, a simple hydrothermal recipe for the synthesis of ZIF-8 Metal-Organic Framework (MOF) with a large specific surface area (1340 m2/g by BET). An important feature of the method is that the product forms in aqueous medium under standard hydrothermal conditions without DMF and great excess of linker with the use of TEA as structure directing agent. The ZIF-8 crystal phase of the product was confirmed by XRD; this technique has been also exploited to check the crystallinity and to follow the changes in the MOF structure induced by heating. TGA and temperature dependent XRD testify the high thermal stability of the material (470 °C in N2 and at 400 °C in air). The IR spectral profile of the material provides a complete picture of vibrations assigned to the linker and the metal center. The systematic investigation of the products obtained by increasing the TEA amount in the reacting medium from 0 to 25.5 mol equivalent Zn2+, allowed us to understand its role and to find 2.6 mol equivalent Zn2+ as the minimum amount needed to obtain a single phase ZIF-8 material with the high standard reported above. The stability of the material under severe basic conditions makes it a promising candidate in heterogeneous catalysis. The material has shown high capacity in I2 uptake, making it interesting also for selective molecular adsorption.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Keqing; Wang, Biao; Liu, Jiajia

    Highlights: • In this paper, α-FeOOH/rGO hybrids had been prepared by a facile hydrothermal method. • The addition of the α-FeOOH/rGO hybrids showed a significant effect on the thermal stability and smoke suppression properties of PS composites. • Graphene can be employed to improve the smoke suppression properties of polymer and further extended the application of graphene. - Abstract: In this work, α-FeOOH/rGO hybrids were firstly prepared by a facile hydrothermal method. X-ray diffraction and transmission electron microscopy results indicated that α-FeOOH nanoparticles were dispersed uniformly on the surface of graphene nanosheets. Subsequently, the α-FeOOH/rGO hybrids were incorporated into polystyrenemore » (PS) matrix for the improvement of the thermal stability and smoke suppression properties. It was found that the thermal stability of PS nanocomposite was obviously enhanced upon the introduction of 2.0 wt% α-FeOOH/rGO hybrids. Furthermore, the addition of α-FeOOH/rGO hybrids could improve the smoke suppression properties of PS nanocomposites, as evidenced by the dramatical reduction of carbon monoxide production rate, total smoke release and total smoke production. The total flammable gaseous products from the PS nanocomposites were decreased which further led to the inhibition of smoke. Such a significant improvement in thermal stability and smoke suppression properties was mainly attributed to the physical barrier effect of graphene nanosheets and the catalytic carbonization function of α-FeOOH nanoparticles.« less

  12. Breaking Structural Energy Constraints: Hydrothermal Crystallization of High-Silica Germanosilicates via Building Units Self-Growing Approach.

    PubMed

    Peng, Mingming; Jiang, Jingang; Liu, Xue; Ma, Yue; Jiao, Meichen; Xu, Hao; Wu, Haihong; He, Mingyuan; Wu, Peng

    2018-06-11

    Zeolites, a class of crystalline microporous materials, have a wide range of practical applications, in particular serving as key catalysts in petrochemical and finechemical processes. Millions of zeolite topologies are theoretically possible. However, to date, only 235 frameworks with various tetrahedral element compositions have been discovered in nature or artificially synthesized, among which approximately 50 topologies are available in pure silica forms. Germanosilicates are becoming an important zeolite family, with a rapidly increasing number of topological structures with unusual double four-membered-ring (D4R) building units and large-pore or extra large-pore systems. The synthesis of their high-silica analogues with higher (hydro)thermal stability remains a great challenge because the formation of siliceous D4R units is kinetically and thermodynamically unfavorable in hydrothermal systems. Herein, we demonstrate that such D4R-containing high-silica zeolites with unexpected crystalline topologies (ECNU-24-RC and IM-20-RC) are readily constructed through a versatile route. This strategy provides new opportunities for the synthesis of high-silica zeolite catalysts that are hardly obtained by conventional hydrothermal synthesis and it would also facilitate a break-through in increasing the number and types of zeolite materials with practical applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Iron persistence in a distal hydrothermal plume supported by dissolved-particulate exchange

    NASA Astrophysics Data System (ADS)

    Fitzsimmons, Jessica N.; John, Seth G.; Marsay, Christopher M.; Hoffman, Colleen L.; Nicholas, Sarah L.; Toner, Brandy M.; German, Christopher R.; Sherrell, Robert M.

    2017-02-01

    Hydrothermally sourced dissolved metals have been recorded in all ocean basins. In the oceans' largest known hydrothermal plume, extending westwards across the Pacific from the Southern East Pacific Rise, dissolved iron and manganese were shown by the GEOTRACES program to be transported halfway across the Pacific. Here, we report that particulate iron and manganese in the same plume also exceed background concentrations, even 4,000 km from the vent source. Both dissolved and particulate iron deepen by more than 350 m relative to 3He--a non-reactive tracer of hydrothermal input--crossing isopycnals. Manganese shows no similar descent. Individual plume particle analyses indicate that particulate iron occurs within low-density organic matrices, consistent with its slow sinking rate of 5-10 m yr-1. Chemical speciation and isotopic composition analyses reveal that particulate iron consists of Fe(III) oxyhydroxides, whereas dissolved iron consists of nanoparticulate Fe(III) oxyhydroxides and an organically complexed iron phase. The descent of plume-dissolved iron is best explained by reversible exchange onto slowly sinking particles, probably mediated by organic compounds binding iron. We suggest that in ocean regimes with high particulate iron loadings, dissolved iron fluxes may depend on the balance between stabilization in the dissolved phase and the reversibility of exchange onto sinking particles.

  14. Monodisperse spindle-like FeWO{sub 4} nanoparticles: Controlled hydrothermal synthesis and enhanced optical properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Jinxue; Zhou, Xiaoyu; Lu, Yibin

    2012-12-15

    Monodisperse FeWO{sub 4} nanoparticles with specific spindle-like morphology have been synthesized in the presence of citric acid through hydrothermal process. In the synthesis route, citric acid played four roles such as the reducing agent, chelating regents, structure-directing agent and stabilizing agents. In addition, the morphology of FeWO{sub 4} was dramatically tuned by the pH value of the precursor medium. The optical properties of FeWO{sub 4} were investigated with UV-Vis spectra and photoluminescence spectroscopy. The photocatalytic experiments demonstrated that the decomposition efficiency of the monodisperse spindle-like FeWO{sub 4} nanoparticles is 74% after 30 min of UV irradiation, which displayed remarkable enhancedmore » photodegradation activity compared with ordinary FeWO{sub 4} sample (57%) and normal TiO{sub 2} photocatalysts P-25 (56%). - Monodisperse spindle-like FeWO{sub 4} nanoparticles with enhanced photocatalytic activities. Highlights: Black-Right-Pointing-Pointer Monodisperse spindle-like FeWO{sub 4} were synthesized with hydrothermal method. Black-Right-Pointing-Pointer Citric acid plays key roles in the hydrothermal synthesis. Black-Right-Pointing-Pointer Their morphology can be tuned with pH value of the precursor medium. Black-Right-Pointing-Pointer They show enhanced photocatalytic activities with irradiation of UV light.« less

  15. Multiphase groundwater flow near cooling plutons

    USGS Publications Warehouse

    Hayba, D.O.; Ingebritsen, S.E.

    1997-01-01

    We investigate groundwater flow near cooling plutons with a computer program that can model multiphase flow, temperatures up to 1200??C, thermal pressurization, and temperature-dependent rock properties. A series of experiments examines the effects of host-rock permeability, size and depth of pluton emplacement, single versus multiple intrusions, the influence of a caprock, and the impact of topographically driven groundwater flow. We also reproduce and evaluate some of the pioneering numerical experiments on flow around plutons. Host-rock permeability is the principal factor influencing fluid circulation and heat transfer in hydrothermal systems. The hottest and most steam-rich systems develop where permeability is of the order of 10-15 m2. Temperatures and life spans of systems decrease with increasing permeability. Conduction-dominated systems, in which permeabilities are ???10-16m2, persist longer but exhibit relatively modest increases in near-surface temperatures relative to ambient conditions. Pluton size, emplacement depth, and initial thermal conditions have less influence on hydrothermal circulation patterns but affect the extent of boiling and duration of hydrothermal systems. Topographically driven groundwater flow can significantly alter hydrothermal circulation; however, a low-permeability caprock effectively decouples the topographically and density-driven systems and stabilizes the mixing interface between them thereby defining a likely ore-forming environment.

  16. Enhanced mechanical properties of hydrothermal carbamated cellulose nanocomposite film reinforced with graphene oxide.

    PubMed

    Gan, Sinyee; Zakaria, Sarani; Syed Jaafar, Sharifah Nabihah

    2017-09-15

    Cellulose carbamate (CC) was synthesized via hydrothermal process and mixed with graphene oxide (GO) to form a homogeneous cellulose matrix nanocomposite films. The properties of CC/GO nanocomposite films fabricated using simple solution-mixing method with different GO loadings were studied. Transmission electron microscope analysis showed the exfoliation of self-synthesized GO nanosheets within the CC matrix. X-ray diffraction results confirmed the crystalline structure of CC/GO films as the CC/GO mass ratio increased from 100/0 to 100/4. The mechanical properties of CC/GO film were significantly improved as compared to neat CC film. From thermogravimetric analysis result, the introduction of GO enhanced the thermal stability and carbon yields. The 3D homogeneous porous structures of the CC/GO films were observed under Field emission scanning electron microscope. These improvements in nanocomposite film properties could be confirmed by Fourier transform infrared spectroscopy due to the strong and good interactions between CC and GO. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Amino Acid Stability in the Early Oceans

    NASA Technical Reports Server (NTRS)

    Parker, E. T.; Brinton, K. L.; Burton, A. S.; Glavin, D. P.; Dworkin, J. P.; Bada, J. L.

    2015-01-01

    It is likely that a variety of amino acids existed in the early oceans of the Earth at the time of the origin and early evolution of life. "Primordial soup", hydrothermal vent, and meteorite based processes could have contributed to such an inventory. Several "protein" amino acids were likely present, however, based on prebiotic synthesis experiments and carbonaceous meteorite studies, non-protein amino acids, which are rare on Earth today, were likely the most abundant. An important uncertainty is the length of time these amino acids could have persisted before their destruction by abiotic and biotic processes. Prior to life, amino acid concentrations in the oceans were likely regulated by circulation through hydro-thermal vents. Today, the entire ocean circulates through vent systems every 10(exp 7) years. On the early Earth, this value was likely smaller due to higher heat flow and thus marine amino acid life-time would have been shorter. After life, amino acids in the oceans could have been assimilated by primitive organisms.

  18. Hollow microspheres with a tungsten carbide kernel for PEMFC application.

    PubMed

    d'Arbigny, Julien Bernard; Taillades, Gilles; Marrony, Mathieu; Jones, Deborah J; Rozière, Jacques

    2011-07-28

    Tungsten carbide microspheres comprising an outer shell and a compact kernel prepared by a simple hydrothermal method exhibit very high surface area promoting a high dispersion of platinum nanoparticles, and an exceptionally high electrochemically active surface area (EAS) stability compared to the usual Pt/C electrocatalysts used for PEMFC application.

  19. Enhancing low-temperature activity and durability of Pd-based diesel oxidation catalysts using ZrO 2 supports

    DOE PAGES

    Kim, Mi -Young; Kyriakidou, Eleni A.; Choi, Jae -Soon; ...

    2016-01-18

    In this study, we investigated the impact of ZrO 2 on the performance of palladium-based oxidation catalysts with respect to low-temperature activity, hydrothermal stability, and sulfur tolerance. Pd supported on ZrO 2 and SiO 2 were synthesized for a comparative study. Additionally, in an attempt to maximize the ZrO 2 surface area and improve sulfur tolerance, a Pd support with ZrO 2-dispersed onto SiO 2 was studied. The physicochemical properties of the catalysts were examined using ICP, N 2 sorption, XRD, SEM, TEM, and NH 3-, CO 2-, and NO x-TPD. The activity of the Pd catalysts were measured frommore » 60 to 600 °C in a flow of 4000 ppm CO, 500 ppm NO, 1000 ppm C 3H 6, 4% O 2, 5% H 2O, and Ar balance. The Pd catalysts were evaluated in fresh, sulfated, and hydrothermally aged states. Overall, the ZrO 2-containing catalysts showed considerably higher CO and C 3H 6 oxidation activity than Pd/SiO 2 under the reaction conditions studied.« less

  20. Hydrothermal synthesis of highly crystalline RuS{sub 2} nanoparticles as cathodic catalysts in the methanol fuel cell and hydrochloric acid electrolysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yanjuan; College of Material Science and Engineering, Key Laboratory of Automobile Materials of Ministry of Education, Jilin University, 2699 Qianjin Street, Changchun 130012; Li, Nan, E-mail: lin@jlu.edu.cn

    2015-05-15

    Highlights: • Highly crystalline RuS{sub 2} nanoparticles have been first synthesized by a “one-step” hydrothermal method. • The product presents a pure cubic phase of stoichiometric ratio RuS{sub 2} with average particle size of 14.8 nm. • RuS{sub 2} nanoparticles were used as cathodic catalysts in methanol fuel cell and hydrochloric acid electrolysis. • The catalyst outperforms commercial Pt/C in methanol tolerance and stability towards Cl{sup −}. - Abstract: Highly crystalline ruthenium sulfide (RuS{sub 2}) nanoparticles have been first synthesized by a “one-step” hydrothermal method at 400 °C, using ruthenium chloride and thiourea as reactants. The products were characterized bymore » powder X-ray diffraction (XRD), scanning electron microscopy/energy disperse spectroscopy (SEM/EDS), thermo gravimetric-differential thermal analyze (TG-DTA), transmission electron microscopy equipped with selected area electron diffraction (TEM/SAED). Fourier transform infrared spectra (IR), and X-ray photoelectron spectroscopy (XPS). XRD result illustrates that the highly crystalline product presents a pure cubic phase of stoichiometric ratio RuS{sub 2} and the average particle size is 14.8 nm. SEM and TEM images display the products have irregular shape of 6–25 nm. XPS analyst indicates that the sulfur exists in the form of S{sub 2}{sup 2−}. Cyclic voltammetry (CV), rotating disk electrode (RDE), chronoamperometry (CA) and electrochemical impedance spectroscopy (EIS) measurements are conducted to evaluate the electrocatalytic activity and stability of the highly crystalline RuS{sub 2} nanoparticles in oxygen reduction reaction (ORR) for methanol fuel cell and hydrochloric acid electrolysis. The results illustrate that RuS{sub 2} is active towards oxygen reduction reaction. Although the activity of RuS{sub 2} is lower than that of Pt/C, the RuS{sub 2} catalyst outperforms commercial Pt/C in methanol tolerance and stability towards Cl{sup −}.« less

  1. CONTRIBUTION TO THE GEOCHEMISTRY OF TANTALUM AND NIOBIUM IN THE HYDROTHERMAL-PNEUMATHOLYTIC PROCESS (in Russian)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beus, A.A.; Sitnin, A.A.

    1961-01-01

    S>Data obtained as a result of geochemical investigations show that tantalum and niobium are typical elements of high-temperature postmagmatic processes (early albitization, greysening) connected with granites. The separation of tantalum and niobium in the hydrothermal-pneumatholytic process (greysening stage), which leads to the concentration of tantalum in albitized and greysenized granites (40 to 100 times compared to the average content in granites) is connected with the different mobility and stability of their acido- complex compounds (in particular fluor- and oxyfluorcomplexes), the existence of which in greysening solutions is suggested. A natural analogy in the behavior of both elements in the processesmore » of postmagmatic metasomatose in granites and granitic pegmatites is suggested. (tr-auth)« less

  2. Hydrothermal synthesis of nickel oxide nanosheets for lithium-ion batteries and supercapacitors with excellent performance.

    PubMed

    Mondal, Anjon Kumar; Su, Dawei; Wang, Ying; Chen, Shuangqiang; Wang, Guoxiu

    2013-11-01

    Nickel oxide nanosheets have been successfully synthesized by a facile ethylene glycol mediated hydrothermal method. The morphology and crystal structure of the nickel oxide nanosheets were characterized by X-ray diffraction, field-emission SEM, and TEM. When applied as electrode materials for lithium-ion batteries and supercapacitors, nickel oxide nanosheets exhibited a high, reversible lithium storage capacity of 1193 mA h g(-1) at a current density of 500 mA g(-1), an enhanced rate capability, and good cycling stability. Nickel oxide nanosheets also demonstrated a superior specific capacitance of 999 F g(-1) at a current density of 20 A g(-1) in supercapacitors. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Sustainable steric stabilization of colloidal titania nanoparticles

    NASA Astrophysics Data System (ADS)

    Elbasuney, Sherif

    2017-07-01

    A route to produce a stable colloidal suspension is essential if mono-dispersed particles are to be successfully synthesized, isolated, and used in subsequent nanocomposite manufacture. Dispersing nanoparticles in fluids was found to be an important approach for avoiding poor dispersion characteristics. However, there is still a great tendency for colloidal nanoparticles to flocculate over time. Steric stabilization can prevent coagulation by introducing a thick adsorbed organic layer which constitutes a significant steric barrier that can prevent the particle surfaces from coming into direct contact. One of the main features of hydrothermal synthesis technique is that it offers novel approaches for sustainable nanoparticle surface modification. This manuscript reports on the sustainable steric stabilization of titanium dioxide nanoparticles. Nanoparticle surface modification was performed via two main approaches including post-synthesis and in situ surface modification. The tuneable hydrothermal conditions (i.e. temperature, pressure, flow rates, and surfactant addition) were optimized to enable controlled steric stabilization in a continuous fashion. Effective post synthesis surface modification with organic ligand (dodecenyl succinic anhydride (DDSA)) was achieved; the optimum surface coating temperature was reported to be 180-240 °C to ensure DDSA ring opening and binding to titania nanoparticles. Organic-modified titania demonstrated complete change in surface properties from hydrophilic to hydrophobic and exhibited phase transfer from the aqueous phase to the organic phase. Exclusive surface modification in the reactor was found to be an effective approach; it demonstrated surfactant loading level 2.2 times that of post synthesis surface modification. Titania was also stabilized in aqueous media using poly acrylic acid (PAA) as polar polymeric dispersant. PAA-titania nanoparticles demonstrated a durable amorphous polymeric layer of 2 nm thickness. This manuscript revealed the state of the art for the real development of stable colloidal mono-dispersed particles with controlled surface properties.

  4. Effects of artificial aging conditions on yttria-stabilized zirconia implant abutments.

    PubMed

    Basílio, Mariana de Almeida; Cardoso, Kátia Vieira; Antonio, Selma Gutierrez; Rizkalla, Amin Sami; Santos Junior, Gildo Coelho; Arioli Filho, João Neudenir

    2016-08-01

    Most ceramic abutments are fabricated from yttria-stabilized tetragonal zirconia (Y-TZP). However, Y-TZP undergoes hydrothermal degradation, a process that is not well understood. The purpose of this in vitro study was to assess the effects of artificial aging conditions on the fracture load, phase stability, and surface microstructure of a Y-TZP abutment. Thirty-two prefabricated Y-TZP abutments were screwed and tightened down to external hexagon implants and divided into 4 groups (n = 8): C, control; MC, mechanical cycling (1×10(6) cycles; 10 Hz); AUT, autoclaving (134°C; 5 hours; 0.2 MPa); and TC, thermal cycling (10(4) cycles; 5°/55°C). A single-load-to-fracture test was performed at a crosshead speed of 0.5 mm/min to assess the assembly's resistance to fracture (ISO Norm 14801). X-ray diffraction (XRD) analysis was applied to observe and quantify the tetragonal-monoclinic (t-m) phase transformation. Representative abutments were examined with high-resolution scanning electron microscopy (SEM) to observe the surface characteristics of the abutments. Load-to-fracture test results (N) were compared by ANOVA and Tukey test (α=.05). XRD measurements revealed the monoclinic phase in some abutments after each aging condition. All the aging conditions reduced the fracture load significantly (P<.001). Mechanical cycling reduced the fracture load more than autoclaving (P=.034). No differences were found in the process of surface degradation among the groups; however, the SEM detected grinding-induced surface flaws and microcracks. The resistance to fracture and the phase stability of Y-TZP implant abutments were susceptible to hydrothermal and mechanical conditions. The surface microstructure of Y-TZP abutments did not change after aging conditions. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  5. Zeolite Y Adsorbents with High Vapor Uptake Capacity and Robust Cycling Stability for Potential Applications in Advanced Adsorption Heat Pumps.

    PubMed

    Li, Xiansen; Narayanan, Shankar; Michaelis, Vladimir K; Ong, Ta-Chung; Keeler, Eric G; Kim, Hyunho; McKay, Ian S; Griffin, Robert G; Wang, Evelyn N

    2015-01-01

    Modular and compact adsorption heat pumps (AHPs) promise an energy-efficient alternative to conventional vapor compression based heating, ventilation and air conditioning systems. A key element in the advancement of AHPs is the development of adsorbents with high uptake capacity, fast intracrystalline diffusivity and durable hydrothermal stability. Herein, the ion exchange of NaY zeolites with ingoing Mg 2+ ions is systematically studied to maximize the ion exchange degree (IED) for improved sorption performance. It is found that beyond an ion exchange threshold of 64.1%, deeper ion exchange does not benefit water uptake capacity or characteristic adsorption energy, but does enhance the vapor diffusivity. In addition to using water as an adsorbate, the uptake properties of Mg,Na-Y zeolites were investigated using 20 wt.% MeOH aqueous solution as a novel anti-freeze adsorbate, revealing that the MeOH additive has an insignificant influence on the overall sorption performance. We also demonstrated that the labscale synthetic scalability is robust, and that the tailored zeolites scarcely suffer from hydrothermal stability even after successive 108-fold adsorption/desorption cycles. The samples were analyzed using N 2 sorption, 27 Al/ 29 Si MAS NMR spectroscopy, ICP-AES, dynamic vapor sorption, SEM, Fick's 2 nd law and D-R equation regressions. Among these, close examination of sorption isotherms for H 2 O and N 2 adsorbates allows us to decouple and extract some insightful information underlying the complex water uptake phenomena. This work shows the promising performance of our modified zeolites that can be integrated into various AHP designs for buildings, electronics, and transportation applications.

  6. Hydrothermal transport and deposition of the rare earth elements by fluorine-bearing aqueous liquids

    NASA Astrophysics Data System (ADS)

    Migdisov, Art A.; Williams-Jones, A. E.

    2014-12-01

    New technologies, particularly those designed to address environmental concerns, have created a great demand for the rare earth elements (REE), and focused considerable attention on the processes by which they are concentrated to economically exploitable levels in the Earth's crust. There is widespread agreement that hydrothermal fluids played an important role in the formation of the world's largest economic REE deposit, i.e. Bayan Obo, China. Until recently, many researchers have assumed that hydrothermal transport of the REE in fluorine-bearing ore-forming systems occurs mainly due to the formation of REE-fluoride complexes. Consequently, hydrothermal models for REE concentration have commonly involved depositional mechanisms based on saturation of the fluid with REE minerals due to destabilization of REE-fluoride complexes. Here, we demonstrate that these complexes are insignificant in REE transport, and that the above models are therefore flawed. The strong association of H+ and F- as HF° and low solubility of REE-F solids greatly limit transport of the REE as fluoride complexes. However, this limitation does not apply to REE-chloride complexes. Because of this, the high concentration of Cl- in the ore fluids, and the relatively high stability of REE-chloride complexes, the latter can transport appreciable concentrations of REE at low pH. The limitation also does not apply to sulphate complexes and in some fluids, the concentration of sulphate may be sufficient to transport significant concentrations of REE as sulphate complexes, particularly at weakly acidic pH. This article proposes new models for hydrothermal REE deposition based on the transport of the REE as chloride and sulphate complexes.

  7. Histidine-functionalized carbon-based dot-Zinc(II) nanoparticles as a novel stabilizer for Pickering emulsion synthesis of polystyrene microspheres.

    PubMed

    Ruiyi, Li; Zaijun, Li; Junkang, Liu

    2017-05-01

    Carbon-based dots (CDs) are nanoparticles with size-dependent optical and electronic properties that have been widely applied in energy-efficient displays and lighting, photovoltaic devices and biological markers. However, conventional CDs are difficult to be used as ideal stabilizer for Pickering emulsion due to its irrational amphiphilic structure. The study designed and synthesized a new histidine-functionalized carbon dot-Zinc(II) nanoparticles, which is termed as His-CD-Zn. The His-CD was made via one-step hydrothermal treatment of histidine and maleic acid. The His-CD reacted with Zn 2+ to form His-CD-Zn. The as-prepared His-CD-Zn was used as a solid particle surfactant for stabilizing styrene-in-water emulsion. The Pickering emulsion exhibits high stability and sensitive pH-switching behaviour. The introduction of S 2 O 8 2- triggers the emulsion polymerization of styrene. The resulted polystyrene microsphere was well coated with His-CDs on the surface. It was successfully used as an ideal adsorbent for removal of heavy metallic ions from water with high adsorption capacity. The study also provides a prominent approach for fabrication of amphiphilic carbon-based nanoparticles for stabilizing Pickering emulsion. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Effect of curcumin caged silver nanoparticle on collagen stabilization for biomedical applications.

    PubMed

    Srivatsan, Kunnavakkam Vinjimur; Duraipandy, N; Begum, Shajitha; Lakra, Rachita; Ramamurthy, Usha; Korrapati, Purna Sai; Kiran, Manikantan Syamala

    2015-04-01

    The current study aims at understanding the influence of curcumin caged silver nanoparticle (CCSNP) on stability of collagen. The results indicated that curcumin caged silver nanoparticles efficiently stabilize collagen, indicated by enhanced tensile strength, fibril formation and viscosity. The tensile strength of curcumin caged silver nanoparticle cross-linked collagen and elongation at break was also found to be higher than glutaraldehyde cross-linked collagen. The physicochemical characteristics of curcumin caged nanoparticle cross-linked collagen exhibited enhanced strength. The thermal properties were also good with both thermal degradation temperature and hydrothermal stability higher than native collagen. CD analysis showed no structural disparity in spite of superior physicochemical properties suggesting the significance of curcumin caged nanoparticle mediated cross-linking. The additional enhancement in the stabilization of collagen could be attributed to multiple sites for interaction with collagen molecule provided by curcumin caged silver nanoparticles. The results of cell proliferation and anti-microbial activity assays indicated that curcumin caged silver nanoparticles promoted cell proliferation and inhibited microbial growth making it an excellent biomaterial for wound dressing application. The study opens scope for nano-biotechnological strategies for the development of alternate non-toxic cross-linking agents facilitating multiple site interaction thereby improving therapeutic values to the collagen for biomedical application. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Hydrothermal activity lowers trophic diversity in Antarctic hydrothermal sediments

    NASA Astrophysics Data System (ADS)

    Bell, James B.; Reid, William D. K.; Pearce, David A.; Glover, Adrian G.; Sweeting, Christopher J.; Newton, Jason; Woulds, Clare

    2017-12-01

    Hydrothermal sediments are those in which hydrothermal fluid is discharged through sediments and are one of the least studied deep-sea ecosystems. We present a combination of microbial and biochemical data to assess trophodynamics between and within hydrothermal and background areas of the Bransfield Strait (1050-1647 m of depth). Microbial composition, biomass, and fatty acid signatures varied widely between and within hydrothermally active and background sites, providing evidence of diverse metabolic activity. Several species had different feeding strategies and trophic positions between hydrothermally active and inactive areas, and the stable isotope values of consumers were not consistent with feeding morphology. Niche area and the diversity of microbial fatty acids was lowest at the most hydrothermally active site, reflecting trends in species diversity. Faunal uptake of chemosynthetically produced organics was relatively limited but was detected at both hydrothermal and non-hydrothermal sites, potentially suggesting that hydrothermal activity can affect trophodynamics over a much wider area than previously thought.

  10. Hydrothermal solid-gas route to TiO2 nanoparticles/nanotube arrays for high-performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Fan, Haowen; Zhang, He; Luo, Xiaolei; Liao, Maoying; Zhu, Xufei; Ma, Jing; Song, Ye

    2017-07-01

    Although TiO2 nanotube arrays (TNTAs) have shown great promise as supercapacitor materials, their specific capacitances are still not comparable with some typical materials. Here, TiO2 nanoparticles (NPs)/TNTAs hybrid structure has been derived from the anodized TNTAs by a facile hydrothermal solid-gas method (HSGM), which can avoid cracking or curling of the TNTAs from Ti substrate. The obtained NPs/TNTAs hybrid structure can exhibit a ∼4.90 times increase in surface area and a ∼5.49 times increase in areal specific capacitance compared to the TNTAs without HSGM treatment. Besides, the argon-atmosphere annealing can offer improved areal capacitance and cycling stability relative to the air-atmosphere annealing. The hydrothermal vapor pressure is a key factor for controlling microscopic morphologies of TNTAs, the morphology transformations of TNTAs during the HSGM treatment can be accelerated under enhanced vapor pressures. The highest areal capacitance of HSGM-treated TNTAs is up to 76.12 mF cm-2 at 0.5 mA cm-2, well above that of any TiO2 materials reported to date.

  11. Preparation high photocatalytic activity of CdS/halloysite nanotubes (HNTs) nanocomposites with hydrothermal method

    NASA Astrophysics Data System (ADS)

    Xing, Weinan; Ni, Liang; Huo, Pengwei; Lu, Ziyang; Liu, Xinlin; Luo, Yingying; Yan, Yongsheng

    2012-10-01

    A novel nanocatalyst CdS/halloysite nanotubes (HNTs) was synthesized by hydrothermal method with direct growth of CdS nanoparticles on the surface of HNTs. The as-prepared photocatalysts had been characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), UV-vis diffuse reflectance spectra (UV-vis DRS), Fourier transform infrared (FT-IR) and the thermo gravimetric analysis (TGA). The photocatalytic activity of the sample was evaluated by the degradation of tetracycline (TC) under visible light irradiation. Benefit from the excellent properties of CdS and HNTs, the photocatalyst exhibited good photocatalytic activity and stability. In order to find out the optimum synthesis condition to obtain the best photocatalytic activity, a series of experiments were performed with different CdS loading capacity, different sources of sulfide and different hydrothermal temperatures, etc. The best photodegradation rate could reach 93% in 60 min under visible light irradiation. Therefore, the combination of CdS nanoparticles with HNTs endowed this material with a potential use in environmental treatments in industries.

  12. Improved ferroelectric and photoluminescence properties in Pr3+ substituted Na0.5Bi0.5TiO3 synthesized using hydrothermal route

    NASA Astrophysics Data System (ADS)

    Goutham, Cilaveni; Kandula, Kumara Raja; Raavi, Sai Santhosh Kumar; Asthana, Saket

    2018-04-01

    Nanocrystalline Pr3+ substituted NBT was synthesized using hydrothermal technique. Pr3+ modifies the ferroelectric NBT optically active and enhances the electrical properties with small structural changes. Aiming to the development of the bottom up optoelectronic devices this optimized nanoscale Na0.5Bi0.5-xPrxTiO3(x = 0.005) compound is synthesized hydrothermally. X-ray diffraction pattern shows that the system is stabilized in the Rhombohedral (space groupR3c) phase indicating the local strain inhomogeneity. PE loop shows that there is a decrement in the Ec value compared with compounds synthesized using conventional methods. The strong red emission assigned to prominent transition of the Pr3+ ions at 610nm was observed along with weak blue-green emission, indicating the potential use of the system. Energy transfer from host system to Pr3+ ions is responsible for red emission while blue green emission is due to quenching of 3P0 induced by intervalence charge transfer state.

  13. The effect of positioning cations on acidity and stability of the framework structure of Y zeolite

    PubMed Central

    Deng, Changshun; Zhang, Junji; Dong, Lihui; Huang, Meina; Bin Li; Jin, Guangzhou; Gao, Junbin; Zhang, Feiyue; Fan, Minguang; Zhang, Luoming; Gong, Yanjun

    2016-01-01

    The investigation on the modification of NaY zeolite on LaHY and AEHY (AE refers Ca and Sr and the molar ratio of Ca and Sr is 1:1) zeolites was proformed by XRD, N2-physisorption (BET), XRF, XPS, NH3-TPD, Py-IR, hydrothermal stability, and catalytic cracking test. These results indicate that HY zeolite with ultra low content Na can be obtained from NaY zeolite through four exchange four calcination method. The positioning capability of La3+ in sodalite cage is much better than that of AE2+ and about 12 La3+ can be well coordinated in sodalite cages of one unit cell of Y zeolite. Appropriate acid amount and strength favor the formation of propylene and La3+ is more suitable for the catalytic cracking of cyclohexane than that of AE2+. Our results not only elaborate the variation of the strong and weak acid sites as well as the Brönsted and Lewis acid sites with the change of exchanged ion content but also explore the influence of hydrothermal aging of LaHY and AEHY zeolites and find the optimum ion exchange content for the most reserved acid sites. At last, the coordination state and stabilization of ion exchanged Y zeolites were discussed in detail. PMID:26987306

  14. Systematic study on the influence of the morphology of α-MoO{sub 3} in the selective oxidation of propylene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schuh, Kirsten; Kleist, Wolfgang; Høj, Martin

    2015-08-15

    A variety of morphologically different α-MoO{sub 3} samples were prepared by hydrothermal synthesis and applied in the selective oxidation of propylene. Their catalytic performance was compared to α-MoO{sub 3} prepared by flame spray pyrolysis (FSP) and a classical synthesis route. Hydrothermal synthesis from ammonium heptamolybdate (AHM) and nitric acid at pH 1–2 led to ammonium containing molybdenum oxide phases that were completely transformed into α-MoO{sub 3} after calcination at 550 °C. A one-step synthesis of α-MoO{sub 3} rods was possible starting from MoO{sub 3}·2H{sub 2}O with acetic acid or nitric acid and from AHM with nitric acid at 180 °C.more » Particularly, if nitric acid was used during synthesis, the rod-like morphology of the samples could be stabilized during calcination at 550 °C and the following catalytic activity tests, which was beneficial for the catalytic performance in propylene oxidation. Characterization studies using X-ray diffraction (XRD), scanning electron microscopy (SEM) and Raman spectroscopy showed that those samples, which retained their rod-like morphology during the activity tests, yielded the highest propylene conversion. - Graphical abstract: Hydrothermal synthesis from MoO{sub 3}·2H{sub 2}O in the presence of HNO{sub 3} led to rod-shaped particles which mainly expose (1 0 0) facets which are the most active surfaces. - Highlights: • Hydrothermal synthesis of MoO3 resulted in either rod or slab shaped particles depending on pH. • At pH<0 rods stable towards calcination and catalytic activity testing were formed. • Rod shaped particles had significantly higher activity than slab shaped ones. • The rod shaped particles mainly expose the (1 0 0) facets which are the most active surfaces. • Total surface area is not main determining factor for catalytic activity.« less

  15. [Anti-radical activity of products of processing of holothurian Cucumaria japonica and their practical application for lipid stabilization].

    PubMed

    Tabakaeva, O V; Kalenik, T K; Tabakaev, A V

    2015-01-01

    Products of technological and biotechnological modification (acid and enzymatic hydrolyzates and hydrothermal extracts) of the holothurian Cucumariajaponica from the Far East region are the complex multicomponent systems containing biologically active agents of a sea origin that has to provide them biological activity. The research objective consisted in quantitative studying of anti-radical properties of acid, enzymatic hydrolyzates and hydrothermal extracts from soft fabrics of a holothurian from the Far East region (Cucumaria japonica) and their influence on oxidation of lipids in fat emulsion products. The reaction with stable free 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical was used as a model system. Radical relating activity of hydrolyzates and extracts from Cucumaria japonica varied over a wide range from 48 to 78%. The maximum radical binding activity was noted for acid hydrolyzates. The activity of the hydrolyzate from a nimbus and feelers of Cucumaria japonica was comparable with activity of ionol. It has been defined that levels of manifestation of anti-radical activity depended on a way of technological and biotechnological processing of raw materials. Studying of fractional composition of melanoidins of hydrolyzates and extracts from Cucumaria japonica established that they can be divided into fractions--with molecular masses about 10,000 and 1000 Da. The maximum content of melanoidins has been defined in fraction weighing about 1000 Da. Introduction of acid, enzymatic hydrolyzates and hydrothermal extracts from Cucumaria japonica in the composition of oil-fat emulsion systems allowed to slow down processes of lipid oxidation and triglyceride hydrolysis in mayonnaise. Introduction of hydrolyzates and hydrothermal extracts from Cucumaria japonica in an oil-fat emulsion product allowed to reduce peroxide value by 22-45%, acid value by 12-35% on the 90th days of storage. Acid hydrolysates of Cucumaria Japonica most significantly reduce the rate of oxidation and hydrolysis.

  16. In situ formation of a ZnO/ZnSe nanonail array as a photoelectrode for enhanced photoelectrochemical water oxidation performance

    NASA Astrophysics Data System (ADS)

    Wang, Liyang; Tian, Guohui; Chen, Yajie; Xiao, Yuting; Fu, Honggang

    2016-04-01

    In this study, a ZnO/ZnSe nanonail array was prepared via a two-step sequential hydrothermal synthetic route. In this synthetic process, the ZnO nanorod array was first grown on a fluorine-doped tin oxide (FTO) substrate using a seed-mediated growth approach via the hydrothermal process. Then, the ZnO nanonail array was obtained via in situ growth of ZnSe nano caps onto the ZnO nanorod array via a hydrothermal process in the presence of a Se source. The surface morphology and amount of ZnSe grown on the surface of the ZnO nanorods can be regulated by varying the reaction time and reactant concentration. Compared with pure ZnO nanorods, this unique nanonail array heterostructure exhibits enhanced visible light absorption. The transient photocurrent condition, in combination with steady-state and time-resolved photoluminescence spectroscopy, reveals that the ZnO/ZnSe nanonail array electrode has the highest charge separation rate, highest electron injection efficiency, and highest chemical stability. The photocurrent density of the ZnO/ZnSe nanonail array heterostructure reaches 1.01 mA cm-2 at an applied potential of 0.1 V (vs. Ag/AgCl), which is much higher than that of the ZnO/ZnSe nanorod array (0.71 mA cm-2), the pristine ZnO nanorod array (0.39 mA cm-2), and the ZnSe electrode (0.21 mA cm-2), indicating its significant visible light driven activities for photoelectrochemical water oxidation. This unique morphology of nail-capped nanorods might be important for providing better insight into the correlation between heterostructure and photoelectrochemical activity.In this study, a ZnO/ZnSe nanonail array was prepared via a two-step sequential hydrothermal synthetic route. In this synthetic process, the ZnO nanorod array was first grown on a fluorine-doped tin oxide (FTO) substrate using a seed-mediated growth approach via the hydrothermal process. Then, the ZnO nanonail array was obtained via in situ growth of ZnSe nano caps onto the ZnO nanorod array via a hydrothermal process in the presence of a Se source. The surface morphology and amount of ZnSe grown on the surface of the ZnO nanorods can be regulated by varying the reaction time and reactant concentration. Compared with pure ZnO nanorods, this unique nanonail array heterostructure exhibits enhanced visible light absorption. The transient photocurrent condition, in combination with steady-state and time-resolved photoluminescence spectroscopy, reveals that the ZnO/ZnSe nanonail array electrode has the highest charge separation rate, highest electron injection efficiency, and highest chemical stability. The photocurrent density of the ZnO/ZnSe nanonail array heterostructure reaches 1.01 mA cm-2 at an applied potential of 0.1 V (vs. Ag/AgCl), which is much higher than that of the ZnO/ZnSe nanorod array (0.71 mA cm-2), the pristine ZnO nanorod array (0.39 mA cm-2), and the ZnSe electrode (0.21 mA cm-2), indicating its significant visible light driven activities for photoelectrochemical water oxidation. This unique morphology of nail-capped nanorods might be important for providing better insight into the correlation between heterostructure and photoelectrochemical activity. Electronic supplementary information (ESI) available: SEM, EDS, XPS and photocurrent test. See DOI: 10.1039/c6nr01969b

  17. Comparative analyses of the bacterial community of hydrothermal deposits and seafloor sediments across Okinawa Trough

    NASA Astrophysics Data System (ADS)

    Wang, Long; Yu, Min; Liu, Yan; Liu, Jiwen; Wu, Yonghua; Li, Li; Liu, Jihua; Wang, Min; Zhang, Xiao-Hua

    2018-04-01

    As an ideal place to study back-arc basins and hydrothermal eco-system, Okinawa Trough has attracted the interests of scientists for decades. However, there are still no in-depth studies targeting the bacterial community of the seafloor sediments and hydrothermal deposits in Okinawa Trough. In the present study, we reported the bacterial community of the surface deposits of a newly found hydrothermal field in the southern Okinawa Trough, and the horizontal and vertical variation of bacterial communities in the sediments of the northern Okinawa Trough. The hydrothermal deposits had a relatively high 16S rRNA gene abundance but low bacterial richness and diversity. Epsilonproteobacteria and Bacteroidetes were predominant in hydrothermal deposits whereas Deltaproteobacteria, Gammaproteobacteria and Chloroflexi were abundant across all samples. The bacterial distribution in the seafloor of Okinawa Trough was significantly correlated to the content of total nitrogen, and had consistent relationship with total carbon. Gradual changes of sulfur-oxidizing bacteria were found with the distance away from hydrothermal fields, while the hydrothermal activity did not influence the distribution of the major clades of sulfate-reducing bacteria. Higher abundance of the sulfur cycle related genes (aprA and dsrB), and lower abundance of the bacterial ammonia-oxidizing related gene (amoA) were quantified in hydrothermal deposits. In addition, the present study also compared the inter-field variation of Epsilonproteobacteria among multi-types of hydrothermal vents, revealing that the proportion and diversity of this clade were quite various.

  18. Robust Mesoporous CoMo/γ-Al2O3 Catalysts from Cyclodextrin-Based Supramolecular Assemblies for Hydrothermal Processing of Microalgae: Effect of the Preparation Method.

    PubMed

    Bleta, Rudina; Schiavo, Benedetto; Corsaro, Natale; Costa, Paula; Giaconia, Alberto; Interrante, Leonardo; Monflier, Eric; Pipitone, Giuseppe; Ponchel, Anne; Sau, Salvatore; Scialdone, Onofrio; Tilloy, Sébastien; Galia, Alessandro

    2018-04-18

    Hydrothermal liquefaction (HTL) is a promising technology for the production of biocrude oil from microalgae. Although this catalyst-free technology is efficient under high-temperature and high-pressure conditions, the biocrude yield and quality can be further improved by using heterogeneous catalysts. The design of robust catalysts that preserve their performance under hydrothermal conditions will be therefore very important in the development of biorefinery technologies. In this work, we describe two different synthetic routes (i.e., impregnation and cyclodextrin-assisted one-pot colloidal approach), for the preparation in aqueous phase of six high surface area CoMo/γ-Al 2 O 3 catalysts. Catalytic tests performed on the HTL of Nannochloropsis gaditana microalga indicate that solids prepared by the one-pot colloidal approach show higher hydrothermal stability and enhanced biocrude yield with respect to the catalyst-free test. The positive effect of the substitution of the block copolymer Tetronic T90R4 for Pluronic F127 in the preparation procedure was evidenced by diffuse reflectance UV-visible spectroscopy, X-ray diffraction, N 2 -adsorption-desorption, and H 2 -temperature-programmed reduction measurements and confirmed by the higher quality of the obtained biocrude, which exhibited lower oxygen content and higher-energy recovery equal to 62.5% of the initial biomass.

  19. Stability of a Benzyl Amine Based CO2 Capture Adsorbent in View of Regeneration Strategies

    PubMed Central

    2017-01-01

    In this work, the chemical and thermal stability of a primary amine-functionalized ion-exchange resin (Lewatit VP OC 1065) is studied in view of the potential options of regenerating this sorbent in a CO2 removal application. The adsorbent was treated continuously in the presence of air, different O2/CO2/N2 mixtures, concentrated CO2, and steam, and then the remaining CO2 adsorption capacity was measured. Elemental analysis, BET/BJH analysis, Fourier transform infrared spectroscopy, and thermogravimetric analysis were applied to characterize adsorbent properties. This material was found to be thermally and hydrothermally stable at high temperatures. However, significant oxidative degradation occurred already at moderate temperatures (above 70 °C). Temperatures above 120 °C lead to degradation in concentrated dry CO2. Adding moisture to the concentrated CO2 stream improves the CO2-induced stability. Adsorbent regeneration with nitrogen stripping is studied with various parameters, focusing on minimizing the moles of purge gas required per mole of CO2 desorbed. PMID:28405055

  20. Study of bactericidal properties of carbohydrate-stabilized platinum oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Rezaei-Zarchi, Saeed; Imani, Saber; mohammad Zand, Ali; Saadati, Mojtaba; Zaghari, Zahra

    2012-09-01

    Platinum oxide nanoparticles were prepared by a simple hydrothermal route and chemical reduction using carbohydrates (fructose and sucrose) as the reducing and stabilizing agents. In comparison with other metals, platinum oxide has less environmental pollution. Therefore, Pt is considered an appropriate candidate to deal with environmental pathogens. The crystallite size of these nanoparticles was evaluated from X-ray diffraction, atomic force microscopy, and transmission electron microscopy (TEM) and was found to be 10 nm, which is the demonstration of EM bright field and transmission electron microscopy. The effect of carbohydrates on the morphology of the nanoparticles was studied using TEM. The nanoparticles were administered to the Pseudomonas stutzeri and Lactobacillus cultures, and the incubation was done at 37°C for 24 h. The nanocomposites exhibited interesting inhibitory as well as bactericidal activity against P. stutzeri and Lactobacillus species. Incorporation of nanoparticles also increased the thermal stability of the carbohydrates. The results of this paper showed that carbohydrates can serve as a carrier for platinum oxide nanoparticles, and nanocomposites can have potential biological applications.

  1. Influence of hydrothermal processing on functional properties and grain morphology of finger millet.

    PubMed

    Dharmaraj, Usha; Meera, M S; Reddy, S Yella; Malleshi, Nagappa G

    2015-03-01

    Finger millet was hydrothermally processed followed by decortication. Changes in color, diameter, density, sphericity, thermal and textural characteristics and also some of the functional properties of the millet along with the grain morphology of the kernels after hydrothermal processing and decortication were studied. It was observed that, the millet turned dark after hydrothermal processing and color improved over native millet after decortication. A slight decrease in grain diameter was observed but sphericity of the grains increased on decortication. The soft and fragile endosperm turned into a hard texture and grain hardness increased by about 6 fold. Hydrothermal processing increased solubility and swelling power of the millet at ambient temperature. Pasting profile indicated that, peak viscosity decreased significantly on hydrothermal processing and both hydrothermally processed and decorticated millet exhibited zero breakdown viscosity. Enthalpy was negative for hydrothermally processed millet and positive for decorticated grains. Microscopic studies revealed that the orderly structure of endosperm changed to a coherent mass after hydrothermal processing and the different layers of seed coat get fused with the endosperm.

  2. Mineral types of hydrothermal alteration zones in the Dukat ore field and their relationships to leucogranite and epithermal gold-silver ore, northeastern Russia

    NASA Astrophysics Data System (ADS)

    Filimonova, L. G.; Trubkin, N. V.; Chugaev, A. V.

    2014-05-01

    The paper considers the localization of potassic and propylitic hydrothermal alteration zones in the domal volcanic-plutonic structure controlling the position of the Dukat ore field with the eponymous unique epithermal Au-Ag deposit. Comprehensive mineralogical and geochemical data on rocks and minerals in hydrothermal alteration zones and associated intrusions have shown that quartz-jarosite-sericite, quartz-pyrite-sericite, and quartz-adularia-chlorite alterations were formed with the participation of fluid flows related to a fingerlike projection of a high-K leucogranite porphyry intrusion with large phenocrysts. These hydrothermal alterations developed in the rifted graben under conditions of divergent plate boundaries, whereas quartz-clinozoisite-calcite, epidote-chlorite, and garnet-calcite-chlorite alterations were linked to K-Na leucogranite intrusive bodies and developed under conditions of convergent plate boundaries reactivated as a result of formation of the marginal Okhotsk-Chukotka volcanic belt. Phase separation and coagulation of specific portions of ascending fluids resulted in the formation and stabilization of small-sized particles of native silver and other ore components, which enabled involvement in flows of secondary geothermal solutions and ore-forming fluids. The Sr, Nd, and Pb isotopic compositions of rocks and minerals from the hydrothermal alteration zones, associated intrusions, and economic orebodies at the Dukat deposit indicate that their components have been derived from the juvenile continental crust, which was altered in pre-Cretaceous periods of endogenic activity. The components of gangue minerals of potassic and propylitic hydrothertmal alterations and associated intrusions have been taken from deep sources differing in 87Sr/86Sr and 143Nd/144Nd at similar U/Pb and Th/Pb ratios. Chalcophile lead in products of hydrothermal activity and melanocratic inclusions in leucogranite has been taken from regions with elevated U/Pb and Th/Pb ratios.

  3. Genome-resolved metagenomics reveals that sulfur metabolism dominates the microbial ecology of rising hydrothermal plumes

    NASA Astrophysics Data System (ADS)

    Anantharaman, K.; Breier, J. A., Jr.; Jain, S.; Reed, D. C.; Dick, G.

    2015-12-01

    Deep-sea hydrothermal plumes occur when hot fluids from hydrothermal vents replete with chemically reduced elements and compounds like sulfide, methane, hydrogen, ammonia, iron and manganese mix with cold, oxic seawater. Chemosynthetic microbes use these reduced chemicals to power primary production and are pervasive throughout the deep sea, even at sites far removed from hydrothermal vents. Although neutrally-buoyant hydrothermal plumes have been well-studied, rising hydrothermal plumes have received little attention even though they represent an important interface in the deep-sea where microbial metabolism and particle formation processes control the transformation of important elements and impact global biogeochemical cycles. In this study, we used genome-resolved metagenomic analyses and thermodynamic-bioenergetic modeling to study the microbial ecology of rising hydrothermal plumes at five different hydrothermal vents spanning a range of geochemical gradients at the Eastern Lau Spreading Center (ELSC) in the Western Pacific Ocean. Our analyses show that differences in the geochemistry of hydrothermal vents do not manifest in microbial diversity and community composition, both of which display only minor variance across ELSC hydrothermal plumes. Microbial metabolism is dominated by oxidation of reduced sulfur species and supports a diversity of bacteria, archaea and viruses that provide intriguing insights into metabolic plasticity and virus-mediated horizontal gene transfer in the microbial community. The manifestation of sulfur oxidation genes in hydrogen and methane oxidizing organisms hints at metabolic opportunism in deep-sea microbes that would enable them to respond to varying redox conditions in hydrothermal plumes. Finally, we infer that the abundance, diversity and metabolic versatility of microbes associated with sulfur oxidation impart functional redundancy that could allow it to persist in the dynamic settings of hydrothermal plumes.

  4. Hydrothermal synthesis and crystal structure of alkaline earth metal (Mg, Ca) based on 2,5-Dimethylbenzene-1,4-diylbis(methylene) diphosphonic acid

    NASA Astrophysics Data System (ADS)

    Xie, Y. C.; Cheng, Q. R.; Pan, Z. Q.

    2018-02-01

    New magnesium phosphonates Mg(H2L)31 (H4L = 2,5-dimethylbenzene-1,4 -diylbis(methylene)diphosphonic acid) and Ca(H2L)·2H2O 2 have been hydrothermally synthesized from H4L and the corresponding metal salts. Complex 1 and 2 have been characterized by IR, powder and single-crystal X-ray diffraction methods. Complex 1 crystallizes in trigonal space group R-3c and complex 2 belongs to the triclinic space group. The complexes both form two-dimensional (2D) network structure and show three-dimensional (3D) network through hydrogen bonds. Thermal stability of complex 1 and 2 have also been investigated. CCDC: 1534599 for 1; 1536423 for 2.

  5. Preparation of thermally stable nanocrystalline hydroxyapatite by hydrothermal method.

    PubMed

    Prakash Parthiban, S; Elayaraja, K; Girija, E K; Yokogawa, Y; Kesavamoorthy, R; Palanichamy, M; Asokan, K; Narayana Kalkura, S

    2009-12-01

    Thermally stable hydroxyapatite (HAp) was synthesized by hydrothermal method in the presence of malic acid. X-ray diffraction (XRD), Fourier transform infra-red spectroscopy (FT-IR), Raman spectroscopy, scanning electron microscopy (SEM), differential thermal analysis (DTA), thermogravimetric analysis (TGA) was done on the synthesized powders. These analyses confirmed the sample to be free from impurities and other phases of calcium phosphates, and were of rhombus morphology along with nanosized particles. IR and Raman analyses indicated the adsorption of malic acid on HAp. Thermal stability of the synthesized HAp was confirmed by DTA and TGA. The synthesized powders were thermally stable upto 1,400 degrees C and showed no phase change. The proposed method might be useful for producing thermally stable HAp which is a necessity for high temperature coating applications.

  6. Facile and Eco-Friendly Synthesis of Finger-Like Co3O4 Nanorods for Electrochemical Energy Storage

    PubMed Central

    Sun, Shijiao; Zhao, Xiangyu; Yang, Meng; Ma, Liqun; Shen, Xiaodong

    2015-01-01

    Co3O4 nanorods were prepared by a facile hydrothermal method. Eco-friendly deionized water rather than organic solvent was used as the hydrothermal media. The as-prepared Co3O4 nanorods are composed of many nanoparticles of 30–50 nm in diameter, forming a finger-like morphology. The Co3O4 electrode shows a specific capacitance of 265 F g−1 at 2 mV s−1 in a supercapacitor and delivers an initial specific discharge capacity as high as 1171 mAh g−1 at a current density of 50 mA g−1 in a lithium ion battery. Excellent cycling stability and electrochemical reversibility of the Co3O4 electrode were also obtained. PMID:28347124

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Ya-Jing; Zheng, Yue-Qing, E-mail: zhengyueqing@nbu.edu.cn; Wang, Jin-Jian

    A new bismuth-based polymer, [Hbpe][Bi(Hpydc){sub 2}(pydc)]·H{sub 2}O (H{sub 2}pydc=pyridine-2,5-dicarboxylic acid, bpe=trans-bis(4-pyridyl) ethylene) has been hydrothermally synthesized. Transient photocurrent response and electrochemical impedance spectroscopy studies indicate that the synthesized polymer with efficient charge separation and transportation can be used as a potential photocatalyst. So we use it for the degradation of rhodamine B (RhB) dye wastewater under visible light. The comparative study on commercial Bi{sub 2}O{sub 3} shows [Hbpe][Bi(Hpydc){sub 2}(pydc)]·H{sub 2}O has the higher photocatalytic performance, with the degradation rate of 97% and 2% within 100 min for [Hbpe][Bi(Hpydc){sub 2}(pydc)]·H{sub 2}O and commercial Bi{sub 2}O{sub 3} respectively. Additionally, the five cyclemore » reproducibility results of [Hbpe][Bi(Hpydc){sub 2}(pydc)]·H{sub 2}O implies that it can be used as a stable photocatalyst. - Graphical abstract: We report a new 1D coordination polymer [Hbpe][Bi(Hpydc){sub 2}(pydc)]·H{sub 2}O by a facile hydrothermal method. The Bi-CP shows good photoelectric property and photocatalytic activity for RhB degradation under visible white LED lamp irradiation. And the stability of the visible-light-responsive bismuth-based coordination polymer has also been examined. - Highlights: • A new Bi(III) coordination polymer is hydrothermally synthesized. • The Bi-CP shows good photoelectric and photocatalytic properties. • Bi-CP shows higher activity than the commercial Bi{sub 2}O{sub 3} for RhB degradation.« less

  8. The fabrication of foam-like 3D mesoporous NiO-Ni as anode for high performance Li-ion batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Peng, E-mail: huangp07@lzu.edu.cn; Department of Physics, Lanzhou University, Lanzhou 730000; Zhang, Xin

    2015-03-15

    Graphical abstract: Foam-like 3 dimensional (3D) mesoporous NiO on 3D micro-porous Ni was fabricated. - Highlights: • We prepare NiO-Ni foam composite via hydrothermal etching and subsequent annealing. • The NiO exhibits novel foam-like 3D mesoporous architecture. • The NiO-Ni anode shows good cycle stability. - Abstract: Foam-like three dimensional mesoporous NiO on Ni foam was fabricated via facile hydrothermal etching and subsequent annealing treatment. The porous NiO consists of a large number of nanosheets with mean thickness about 50 nm, among which a large number of mesoscopic pores with size ranges from 100 nm to 1 μm distribute. Themore » electrochemical performance of the as-prepared NiO-Ni as anode for lithium ion battery was studied by conventional charge/discharge test, which shows excellent cycle stability and rate capability. It exhibits initial discharge and charge capacities of 979 and 707 mA h g{sup −1} at a charge/discharge rate of 0.7 C, which maintain of 747 and 738 mA h g{sup −1} after 100 cycles. Even after 60 cycles at various rates from 0.06 to 14 C, the 10th discharge and charge capacities of the NiO-Ni electrode can revert to 699 and 683 mA h g{sup −1} when lowering the charge/discharge rate to 0.06 C.« less

  9. Ultrafine manganese dioxide nanowire network for high-performance supercapacitors.

    PubMed

    Jiang, Hao; Zhao, Ting; Ma, Jan; Yan, Chaoyi; Li, Chunzhong

    2011-01-28

    Ultrafine MnO(2) nanowires with sub-10 nm diameters have been synthesized by a simple process of hydrothermal treatment with subsequent calcinations to form networks that exhibit an enhanced specific capacitance (279 F g(-1) at 1 A g(-1)), high rate capability (54.5% retention at 20 A g(-1)) and good cycling stability (1.7% loss after 1000 cycles).

  10. Method of producing a carbon coated ceramic membrane and associated product

    DOEpatents

    Liu, Paul K. T.; Gallaher, George R.; Wu, Jeffrey C. S.

    1993-01-01

    A method of producing a carbon coated ceramic membrane including passing a selected hydrocarbon vapor through a ceramic membrane and controlling ceramic membrane exposure temperature and ceramic membrane exposure time. The method produces a carbon coated ceramic membrane of reduced pore size and modified surface properties having increased chemical, thermal and hydrothermal stability over an uncoated ceramic membrane.

  11. Pore Pressure Distribution and Flank Instability in Hydrothermally Altered Stratovolcanoes

    NASA Astrophysics Data System (ADS)

    Ball, J. L.; Taron, J.; Hurwitz, S.; Reid, M. E.

    2015-12-01

    Field and geophysical investigations of stratovolcanoes with long-lived hydrothermal systems commonly reveal that initially permeable regions (such as brecciated layers of pyroclastic material) can become both altered and water-bearing. Hydrothermal alteration in these regions, including clay formation, can turn them into low-permeability barriers to fluid flow, which could increase pore fluid pressures resulting in flank slope instability. We examined elevated pore pressure conditions using numerical models of hydrothermal flow in stratovolcanoes, informed by geophysical data about internal structures and deposits. Idealized radially symmetric meshes were developed based on cross-sectional profiles and alteration/permeability structures of Cascade Range stratovolcanoes. We used the OpenGeoSys model to simulate variably saturated conditions in volcanoes heated only by regional heat fluxes, as well as 650°C intrusions at two km depth below the surface. Meteoric recharge was estimated from precipitation rates in the Cascade Range. Preliminary results indicate zones of elevated pore pressures form: 1) where slopes are underlain by continuous low-permeability altered layers, or 2) when the edifice has an altered core with saturated, less permeable limbs. The first scenario might control shallow collapses on the slopes above the altered layers. The second could promote deeper flank collapses that are initially limited to the summit and upper slopes, but could progress to the core of an edifice. In both scenarios, pore pressures can be further elevated by shallow intrusions, or evolve over longer time scales under forcing from regional heat flux. Geometries without confining low-permeability layers do not show these pressure effects. Our initial scenarios use radially symmetric models, but we are also simulating hydrothermal flow under real 3D geometries with asymmetric subsurface structures (Mount Adams). Simulation results will be used to inform 3D slope-stability models.

  12. Numerical and Permeability Constraints on Simulation of Sill-Driven Hydrothermal Convection

    NASA Astrophysics Data System (ADS)

    Carr, P. M.; Cathles, L. M.; Barrie, C. T.; Manhardt, P.

    2004-05-01

    Volcanic-associated massive sulfide deposits are formed where seawater, heated to ~350oC by subsurface magma intrusions, is quenched by cold water at or near the seafloor. Many VMS districts, like the one at Matagami, Quebec, contain their zinc, lead, and copper in about a dozen discrete ore bodies, with one or two deposits containing more than half of the district's resources. We construct numerical models to investigate the causes of variations in deposit size. These models show that a process which stabilizes the location of hydrothermal venting plumes is required to numerically generate discrete VMS ore bodies by sill-driven hydrothermal convection. This is achieved in our models by increasing rock permeability in a fashion that makes vent plumes more permeable than their surroundings. Maintaining the Courant number ≤1 (so that a thermal anomaly traverses only one grid cell in one timestep of the simulation) is shown to be crucial to numerical convergence. If this rule is violated, visually compelling but incorrect hydrothermal vents result. Small hydrothermal convection cells over the interior of an areally-extensive sill with a tabular edge are smaller than those formed at the sill edge. However, for a sill with the geometry of that at Matagami, numerical simulations indicate that large ore deposits should form near the thickest part of the sill where metals extracted from the underside of the still-hot portions of the sill can optimally contribute. Thus it is essential to construct a model of the entire domain rather than slicing a portion local to the deposition. The numerical models replicate the ten-fold range in deposit size variation, and predict the largest deposits at Matagami will be discovered at 5 to 8 km depth between currently known deposits in the South Flank and Phelps Dodge areas.

  13. 1-Dimensional AgVO3 nanowires hybrid with 2-dimensional graphene nanosheets to create 3-dimensional composite aerogels and their improved electrochemical properties

    NASA Astrophysics Data System (ADS)

    Liang, Liying; Xu, Yimeng; Lei, Yong; Liu, Haimei

    2014-03-01

    Three-dimensional (3D) porous composite aerogels have been synthesized via an innovative in situ hydrothermal method assisted by a freeze-drying process. In this hybrid structure, one-dimensional (1D) AgVO3 nanowires are uniformly dispersed on two-dimensional (2D) graphene nanosheet surfaces and/or are penetrated through the graphene sheets, forming 3D porous composite aerogels. As cathode materials for lithium-ion batteries, the composite aerogels exhibit high discharge capacity, excellent rate capability, and good cycling stability.Three-dimensional (3D) porous composite aerogels have been synthesized via an innovative in situ hydrothermal method assisted by a freeze-drying process. In this hybrid structure, one-dimensional (1D) AgVO3 nanowires are uniformly dispersed on two-dimensional (2D) graphene nanosheet surfaces and/or are penetrated through the graphene sheets, forming 3D porous composite aerogels. As cathode materials for lithium-ion batteries, the composite aerogels exhibit high discharge capacity, excellent rate capability, and good cycling stability. Electronic supplementary information (ESI) available: Preparation, characterization, SEM images, XRD patterns, and XPS of AgVO3/GAs. See DOI: 10.1039/c3nr06899d

  14. Controlled synthesis of MnOOH multilayer nanowires as anode materials for lithium-ion batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Yue; Yue, Kaiqiang; Wang, Yuanxin

    MnOOH multilayer nanowires have been successfully synthesized by a hydrothermal method. It is found that the uniform multilayer structure of nanowires ran through the entire nanowire, which is formed via a layer by layer. The electrochemical properties of MnOOH multilayer nanowires as an anode material for Li-ion batteries (LIB) were investigated, and excellent capacity retention, superior cycling performance, and high rate capability were achieved. Specifically, the reversible capacity of MnOOH multilayer nanowires is 521 mAh/g after 500 cycles at 0.1 C, with excellent electrochemical stability. The multilayer nanowire electrodes exhibit short electron path lengths, high internal dislocation densities and largemore » surface to volume ratio, resulting in increased specific capacity, cycling stability and rate performance in the energy storage devices, which serves as an indication of their potential application in LIBs. - Highlights: •MnOOH multilayer nanowires were synthesized by a hydrothermal method. •The uniform multilayer structure of nanowires was formed via layer by layer. •The reversible capacity of product shows 521 mAh/g after 500 cycles at 0.1 C. •MnOOH multilayer nanowires showed higher property as anode material in LIB.« less

  15. Hydrothermal alteration maps of the central and southern Basin and Range province of the United States compiled from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data

    USGS Publications Warehouse

    Mars, John L.

    2013-01-01

    Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data and Interactive Data Language (IDL) logical operator algorithms were used to map hydrothermally altered rocks in the central and southern parts of the Basin and Range province of the United States. The hydrothermally altered rocks mapped in this study include (1) hydrothermal silica-rich rocks (hydrous quartz, chalcedony, opal, and amorphous silica), (2) propylitic rocks (calcite-dolomite and epidote-chlorite mapped as separate mineral groups), (3) argillic rocks (alunite-pyrophyllite-kaolinite), and (4) phyllic rocks (sericite-muscovite). A series of hydrothermal alteration maps, which identify the potential locations of hydrothermal silica-rich, propylitic, argillic, and phyllic rocks on Landsat Thematic Mapper (TM) band 7 orthorectified images, and geographic information systems shape files of hydrothermal alteration units are provided in this study.

  16. Hydrothermal pretreatment of palm oil empty fruit bunch

    NASA Astrophysics Data System (ADS)

    Simanungkalit, Sabar Pangihutan; Mansur, Dieni; Nurhakim, Boby; Agustin, Astrid; Rinaldi, Nino; Muryanto, Fitriady, Muhammad Ariffudin

    2017-01-01

    Hydrothermal pretreatment methods in 2nd generation bioethanol production more profitable to be developed, since the conventional pretreatment, by using acids or alkalis, is associated with the serious economic and environmental constraints. The current studies investigate hydrothermal pretreatment of palm oil empty fruit bunch (EFB) in a batch tube reactor system with temperature and time range from 160 to 240 C and 15 to 30 min, respectively. The EFB were grinded and separated into 3 different particles sizes i.e. 10 mesh, 18 mesh and 40 mesh, prior to hydrothermal pretreatment. Solid yield and pH of the treated EFB slurries changed over treatment severities. The chemical composition of EFB was greatly affected by the hydrothermal pretreatment especially hemicellulose which decreased at higher severity factor as determined by HPLC. Both partial removal of hemicellulose and migration of lignin during hydrothermal pretreatment caused negatively affect for enzymatic hydrolysis. This studies provided important factors for maximizing hydrothermal pretreatment of EFB.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qi, Yuruo; Mu, Linqin; Zhao, Junmei

    Na-ion batteries are becoming increasingly attractive as a low cost energy storage device. Sodium vanadium fluorophosphates have been studied extensively recently due to their high storage capacity and high discharge voltage. Shape and size often have a crucial influence over the properties. The controlling synthesis of nanoparticles with special microstructures is significant, which becomes a challenging issue and has drawn considerable attention. In this study, Na 3(VPO 4) 2F 3 nanoflowers have been synthesized via a pH-regulative low-temperature (120 °C) hydro-thermal route. In particular, it is a green route without any organic compounds involved. The hydro-thermal reaction time for themore » formation of Na 3(VPO 4) 2F 3 nanoflowers has also been investigated. A weak acid environment (pH = 2.60) with the possible presence of hydrogen fluoride molecules is necessary for the formation of the desired nanoflower microstructures. Moreover, compared to the nanoparticles obtained by Na 2HPO 4·12H 2O, the as-synthesized Na 3(VPO 4) 2F 3 nanoflowers showed an excellent Na-storage performance in terms of superior cycle stability, even without any further carbon coating or high-temperature treatment.« less

  18. Research to Significantly Enhance Composite Survivability at 550 F in Oxidative Environments

    NASA Technical Reports Server (NTRS)

    Byrd, Jim; Guinn, LaToya; Tilley, Kendra; Carson, Laura; Carty, Antoine; Meador, Michael (Technical Monitor)

    2001-01-01

    Prairie View A&M University using the NASA FAR grant has embarked on several paths to accomplish the initial goals of: (1) synthesizing three ring aromatic diamines to be used as monomers in the synthesis of polyamide resins; and (2) study hydrothermal aging behaviors and glass transition changes of composites synthesized at NASA Glenn Research Center. In establishing the synthesis of the three ring aromatic diamine, it has become necessary to conduct preliminary synthesis to include the nitration of diphenylmethane. The concentration and temperature were altered to assess the effect of purity of isomeric product distribution in such electrophilic aromatic substitution reaction. Products were analyzed using H and C-NMR, Thin Layer Chromatography, High Pressure Liquid Chromatography and GC-Mass Spectrometry (in progress). Results indicate that by varying the concentration of the reaction, a mixture of products can be obtained. Other electrophilic aromatic substitution reactions are also in progress such as Friedel-Craft acylation reaction using diphenylmethane with 4-nitrobenzoyl chloride to afford other diamine products. Furthermore, PVAMU has nearly completed the hydrothermal studies to assess the oxidative stability of DSP443B and DSP442A panels formulated at NASA Glenn Research Center.

  19. Chemical reaction path modeling of hydrothermal processes on Mars: Preliminary results

    NASA Technical Reports Server (NTRS)

    Plumlee, Geoffrey S.; Ridley, W. Ian

    1992-01-01

    Hydrothermal processes are thought to have had significant roles in the development of surficial mineralogies and morphological features on Mars. For example, a significant proportion of the Martian soil could consist of the erosional products of hydrothermally altered impact melt sheets. In this model, impact-driven, vapor-dominated hydrothermal systems hydrothermally altered the surrounding rocks and transported volatiles such as S and Cl to the surface. Further support for impact-driven hydrothermal alteration on Mars was provided by studies of the Ries crater, Germany, where suevite deposits were extensively altered to montmorillonite clays by inferred low-temperature (100-130 C) hydrothermal fluids. It was also suggested that surface outflow from both impact-driven and volcano-driven hydrothermal systems could generate the valley networks, thereby eliminating the need for an early warm wet climate. We use computer-driven chemical reaction path calculation to model chemical processes which were likely associated with postulated Martian hydrothermal systems.

  20. Cerium-doped -Ni(OH)2 hexagon nanosheets: an effective photocatalyst for degradation of the emerging water pollutant naproxen.

    PubMed

    Regmi, Chhabilal; Maya-Flores, Etel; Lee, Soo Wohn; Rodríguez-González, Vicente

    2018-06-21

    Nickel hydroxide β-Ni(OH)2 hexagonal nanosheets were synthetized via a hydrothermal exfoliation process. The practical microwave assisted hydrothermal method facilitated obtain layered nickel 3D nanoplates with cerium functionalization in 5h. The as-produced nanostructures were characterized by XRD, XPS, FESEM, FT-IR, PL, UV-vis, and BET techniques. The hydroxilated structures are nano-thick hexagonal plates having sides with 28 nm in length and 5 nm of average thickness. UV and PL irradiation was used to study the photoactive properties in the degradation of a pharmaceutical emerging pollutant, naproxen. UV-vis spectroscopy and high-performance liquid chromatography (HPLC) monitoring indicated that the Ni(OH)2-Ce nanostructures are an effective photocatalyst for naproxen degradation including 40 % of mineralization of this highly recalcitrant drug. The photocatalyst showed stability for two consecutive cycles, preserving its photoactive and structural characteristics. Ce3+ doped nanoplates and surface functionalized Ce4+ act as charge separators and scavenging agents for the enhanced photodegradation of naproxen. © 2018 IOP Publishing Ltd.

  1. Simple hydrothermal synthesis of metal oxides coupled nanocomposites: Structural, optical, magnetic and photocatalytic studies

    NASA Astrophysics Data System (ADS)

    Ganeshraja, Ayyakannu Sundaram; Clara, Antoni Samy; Rajkumar, Kanniah; Wang, Yanjie; Wang, Yu; Wang, Junhu; Anbalagan, Krishnamoorthy

    2015-10-01

    The present article is focused on recent developments toward the preparation of room temperature ferromagnetic nanocomposites using better photocatalytic performance. These nanocomposites were successfully prepared by a simple hydrothermal method and their molecular formulas were confirmed as Ti0.90Sn0.10O2 (S1), 0.2CuO-Ti0.73Sn0.06Cu0.21O2-δ (S2), and Ti0.82Sn0.09Fe0.09O2-δ (S3). The ICP, XRD, DRS, FTIR, Raman, XAFS, XPS, EPR, SEM-EDX, HRSEM, HRTEM, photoluminescence and vibrating sample magnetometric measurements were employed to characterize the phase structures, morphologies, optical and magnetic properties of the photocatalysts. The local structures of Sn4+ and Fe3+ were confirmed by 119Sn and 57Fe Mössbauer analysis. The photocatalytic activities of the samples were evaluated by the degradation of methyl orange in water under visible light irradiation. Among the samples, tin doped TiO2 (S1) showed the best photocatalytic performance and stability.

  2. Template-free synthesis of vanadium oxides nanobelt arrays as high-rate cathode materials for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Qin, Mulan; Liang, Qiang; Pan, Anqiang; Liang, Shuquan; Zhang, Qing; Tang, Yan; Tan, Xiaoping

    2014-12-01

    A facile hydrothermal route has been developed to fabricate the metastable VO2 (B) ultra-thin nanobelt arrays, which can be converted into V2O5 porous nanobelt arrays after calcinating VO2 (B) in air at 400 °C for 1 h. The influence of hydrothermal time to the crystallinity and morphology of the VO2 phase has been studied. A possible mechanism for the formation of VO2 nanobelt arrays has been proposed in this paper. As a cathode material for lithium ion batteries, the V2O5 nanobelt arrays show excellent rate capability and cycling stability. An initial discharge capacity of 142 mA h g-1 can be delivered at a current density of 50 mA g-1 with almost no capacity fading after 100 cycles. Even at a current density of 1000 mA g-1, they still exhibit the capacity of 130 mA h g-1 and superior capacity retention capability. The excellent electrochemical properties are attributed to the ultra-thin thickness and the porous structures of the nanobelts.

  3. Hydrothermal growth of CuO nanoleaf structures, and their mercuric ion detection application.

    PubMed

    Ibupoto, Z H; Khun, K; Willander, M

    2014-09-01

    Mercury is the hazardous heavy metal ion for the environment and the human being therefore its determination is very important and herein we describe the development of mercury ion sensor on the CuO nanoleaf like nanostructures using cetyltrimethylammonium bromide (CTAB) surfactant as template for the growth by hydrothermal growth method. Scanning electron microscopy and X-ray diffraction study has shown high density and good crystal quality of the fabricated CuO nanostructures respectively. The presented mercury ion sensor has detected the wide range of 1.0 x 10(-7) to 1.0 x 10(-1) M mercury ion concentrations with an acceptable Nernstian behaviour and a sensitivity of 30.1 ± 0.6 mV/decade. The proposed mercury ion sensor exhibited low detection limit of 1.0 x 10(-8) M and also a fast response time of less than 5 s. In addition, the presented mercury ion sensor has shown an excellent repeatability, reproducibility, stability and selectivity. Moreover, the mercury ion selective electrode based on CuO nanoleaves was tested as an indicator electrode in the potentiometric titration.

  4. Hydrothermal Synthesis, Crystal Structure and Electrochemical Behavior of 2d Hybrid Coordination Polymer

    NASA Astrophysics Data System (ADS)

    Fan, Weiqiang; Zhu, Lin; Shi, Weidong; Chen, Fuxiao; Bai, Hongye; Song, Shuyan; Yan, Yongsheng

    2013-04-01

    A novel metal-organic coordination polymer [Cu(phen)(L)0.5(H2O)]n (H4L = (N,N‧-5,5‧-bis(isophthalic acid)-p-xylylenediamine, and phen = 1,10-phenanthroline) has been hydrothermally synthesized and characterized by elemental analysis, IR, TGA, and single-crystal X-ray diffraction. The crystallographic data show that the title compound crystallizes in monoclinic space group P21/n with a = 10.682(2), b = 15.682(3), c = 11.909(2) Å, β = 91.39(3)°, V = 1994.3(7) Å3, C24H17CuN3O5, Mr = 490.95, Dc = 1.635 g/cm3, F(000) = 1004, Z = 4, μ(MoKα) = 1.141 mm-1, the final R = 0.0418 and wR = 0.0983 for 3578 observed reflections (I > 2σ(I)). The structural analyses reveal that the title compound exhibits shows a 2D layer structure, which are further linked by hydrogen bonding interactions to form a three-dimensional supramolecular network. In addition, the thermal stability and electrochemical behavior of title compound has been studied. CCDC: 900413.

  5. Abiotic Condensation Synthesis of Glyceride Lipids and Wax Esters Under Simulated Hydrothermal Conditions

    NASA Astrophysics Data System (ADS)

    Rushdi, Ahmed I.; Simoneit, Bernd R. T.

    2006-04-01

    Precursor compounds for abiotic proto cellular membranes are necessary for the origin of life. Amphipathic compounds such as fatty acids and acyl glycerols are important candidates for micelle/bilayer/vesicle formation. Two sets of experiments were conducted to study dehydration reactions of model lipid precursors in aqueous media to form acyl polyols and wax esters, and to evaluate the stability and reactions of the products at elevated temperatures. In the first set, mixtures of n-nonadecanoic acid and ethylene glycol in water, with and without oxalic acid, were heated at discrete temperatures from 150 ∘C to 300 ∘C for 72 h. The products were typically alkyl alkanoates, ethylene glycolyl alkanoates, ethylene glycolyl bis-alkanoates and alkanols. The condensation products had maximum yields between 150 ∘C and 250 ∘C, and were detectable and thus stable under hydrothermal conditions to temperatures < 300 ∘C. In the second set of experiments, mixtures of n-heptanoic acid and glycerol were heated using the same experimental conditions, with and without oxalic acid, between 100 ∘C and 250 ∘C. The main condensation products were two isomers each of monoacylglycerols and diacylglycerols at all temperatures, as well as minor amounts of the fatty acid anhydride and methyl ester. The yield of glyceryl monoheptanoates generally increased with increasing temperature and glyceryl diheptanoates decreased noticeably with increasing temperature. The results indicate that condensation reactions and abiotic synthesis of organic lipid compounds under hydrothermal conditions occur easily, provided precursor concentrations are sufficiently high.

  6. The simple preparation of birnessite-type manganese oxide with flower-like microsphere morphology and its remarkable capacity retention

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Gang; Deng, Lingjuan; Wang, Jianfang

    Graphical abstract: Flower-like birnessite-type manganese oxide microspheres with large specific surface area and excellent electrochemical properties have been prepared by a facile hydrothermal method. Highlights: ► Birnessite-type manganese oxide with flower-like microsphere morphology and large specific surface area. ► A facile low-temperature hydrothermal method. ► Novel flower-like microsphere consists of the thin nano-platelets. ► Birnessite-type manganese oxide exhibits an ideal capacitive behavior and excellent cycling stability. -- Abstract: Birnessite-type manganese oxide with flower-like microsphere morphology and large specific surface area has been prepared by hydrothermal treating a mixture solution of KMnO{sub 4} and (NH{sub 4}){sub 2}SO{sub 4} at 90 °Cmore » for 24 h. The obtained material is characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and N{sub 2} adsorption–desorption. Results indicate that the birnessite-type manganese oxide shows novel flower-like microsphere morphology and a specific surface area of 280 m{sup 2} g{sup −1}, and the flower-like microsphere consists of the thin nano-platelets. Electrochemical characterization indicates that the prepared material exhibits an ideal capacitive behavior with a capacitance value of 278 F g{sup −1} in 1 mol L{sup −1} Na{sub 2}SO{sub 4} aqueous solution at a scan rate of 5 mV s{sup −1}. Moreover, the prepared manganese oxide electrode shows excellent cycle stability, and the specific capacitance can maintain 98.6% of the initial one after 5000 cycles.« less

  7. Time-variation of hydrothermal discharge at selected sites in the Western United States: Implications for monitoring

    USGS Publications Warehouse

    Ingebritsen, S.E.; Galloway, D.L.; Colvard, E.M.; Sorey, M.L.; Mariner, R.H.

    2001-01-01

    We compiled time series of hydrothermal discharge consisting of 3593 chloride- or heat-flux measurements from 24 sites in the Yellowstone region, the northern Oregon Cascades, Lassen Volcanic National Park and vicinity, and Long Valley, California. At all of these sites the hydrothermal phenomena are believed to be as yet unaffected by human activity, though much of the data collection was driven by mandates to collect environmental-baseline data in acticipation of geothermal development. The time series average 19 years in length and some of the Yellowstone sites have been monitored intermittently for over 30 years. Many sites show strong seasonality but few show clear long-term trends, and at most sites statistically significant decadal-scale trends are absent. Thus, the data provide robust estimates of advective heat flow ranging from ~130 MW in the north-central Oregon Cascades to ~6100 MW in the Yellowstone region, and also document Yellowstone hydrothermal chloride and arsenic fluxes of 1740 and 15-20 g/s, respectively. The discharge time series show little sensitivity to regional tectonic events such as earthquakes or inflation/deflation cycles. Most long-term monitoring to date has focused on high-chloride springs and low-temperature fumaroles. The relative stability of these features suggests that discharge measurements done as part of volcano-monitoring programs should focus instead on high-temperature fumaroles, which may be more immediately linked to the magmatic heat source. ?? 2001 Elsevier Science B.V. All rights reserved.

  8. Dissolved gases in hydrothermal (phreatic) and geyser eruptions at Yellowstone National Park, USA

    USGS Publications Warehouse

    Hurwitz, Shaul; Clor, Laura; McCleskey, R. Blaine; Nordstrom, D. Kirk; Hunt, Andrew G.; Evans, William C.

    2016-01-01

    Multiphase and multicomponent fluid flow in the shallow continental crust plays a significant role in a variety of processes over a broad range of temperatures and pressures. The presence of dissolved gases in aqueous fluids reduces the liquid stability field toward lower temperatures and enhances the explosivity potential with respect to pure water. Therefore, in areas where magma is actively degassing into a hydrothermal system, gas-rich aqueous fluids can exert a major control on geothermal energy production, can be propellants in hazardous hydrothermal (phreatic) eruptions, and can modulate the dynamics of geyser eruptions. We collected pressurized samples of thermal water that preserved dissolved gases in conjunction with precise temperature measurements with depth in research well Y-7 (maximum depth of 70.1 m; casing to 31 m) and five thermal pools (maximum depth of 11.3 m) in the Upper Geyser Basin of Yellowstone National Park, USA. Based on the dissolved gas concentrations, we demonstrate that CO2 mainly derived from magma and N2 from air-saturated meteoric water reduce the near-surface saturation temperature, consistent with some previous observations in geyser conduits. Thermodynamic calculations suggest that the dissolved CO2 and N2 modulate the dynamics of geyser eruptions and are likely triggers of hydrothermal eruptions when recharged into shallow reservoirs at high concentrations. Therefore, monitoring changes in gas emission rate and composition in areas with neutral and alkaline chlorine thermal features could provide important information on the natural resources (geysers) and hazards (eruptions) in these areas.

  9. Volcano electrical tomography unveils edifice collapse hazard linked to hydrothermal system structure and dynamics

    NASA Astrophysics Data System (ADS)

    Rosas-Carbajal, Marina; Komorowski, Jean-Christophe; Nicollin, Florence; Gibert, Dominique

    2016-07-01

    Catastrophic collapses of the flanks of stratovolcanoes constitute a major hazard threatening numerous lives in many countries. Although many such collapses occurred following the ascent of magma to the surface, many are not associated with magmatic reawakening but are triggered by a combination of forcing agents such as pore-fluid pressurization and/or mechanical weakening of the volcanic edifice often located above a low-strength detachment plane. The volume of altered rock available for collapse, the dynamics of the hydrothermal fluid reservoir and the geometry of incipient collapse failure planes are key parameters for edifice stability analysis and modelling that remain essentially hidden to current volcano monitoring techniques. Here we derive a high-resolution, three-dimensional electrical conductivity model of the La Soufrière de Guadeloupe volcano from extensive electrical tomography data. We identify several highly conductive regions in the lava dome that are associated to fluid saturated host-rock and preferential flow of highly acid hot fluids within the dome. We interpret this model together with the existing wealth of geological and geochemical data on the volcano to demonstrate the influence of the hydrothermal system dynamics on the hazards associated to collapse-prone altered volcanic edifices.

  10. Volcano electrical tomography unveils edifice collapse hazard linked to hydrothermal system structure and dynamics

    PubMed Central

    Rosas-Carbajal, Marina; Komorowski, Jean-Christophe; Nicollin, Florence; Gibert, Dominique

    2016-01-01

    Catastrophic collapses of the flanks of stratovolcanoes constitute a major hazard threatening numerous lives in many countries. Although many such collapses occurred following the ascent of magma to the surface, many are not associated with magmatic reawakening but are triggered by a combination of forcing agents such as pore-fluid pressurization and/or mechanical weakening of the volcanic edifice often located above a low-strength detachment plane. The volume of altered rock available for collapse, the dynamics of the hydrothermal fluid reservoir and the geometry of incipient collapse failure planes are key parameters for edifice stability analysis and modelling that remain essentially hidden to current volcano monitoring techniques. Here we derive a high-resolution, three-dimensional electrical conductivity model of the La Soufrière de Guadeloupe volcano from extensive electrical tomography data. We identify several highly conductive regions in the lava dome that are associated to fluid saturated host-rock and preferential flow of highly acid hot fluids within the dome. We interpret this model together with the existing wealth of geological and geochemical data on the volcano to demonstrate the influence of the hydrothermal system dynamics on the hazards associated to collapse-prone altered volcanic edifices. PMID:27457494

  11. The effect of precursor on the optical properties of carbon quantum dots synthesized by hydrothermal/solvothermal method

    NASA Astrophysics Data System (ADS)

    Mozdbar, Afsaneh; Nouralishahi, Amideddin; Fatemi, Shohreh; Mirakhori, Ghazaleh

    2018-01-01

    In the recent decade, Carbon Quantum Dots (CQDs) have attracted lots of attention due to their excellent properties such as tunable photoluminescence, high chemical stability, low toxicity, and biocompatibility. Among all synthesis methods, the hydrothermal/solvothermal rout has been considered as one of the most common and simplest method. The type of precursors can affect the size of CQDs and determine their surface functional groups, the essential properties that deeply influence the optical specifications. In this work, the effect of different precursors on the final properties of carbon quantum dots is investigated. The carbon quantum dots were synthesized by hydrothermal/solvothermal rout using citric acid, thiourea, ethylamine and monoethanolamine as precursors in almost the same conditions of time and temperature. Resultant CQDs were characterized by using FTIR, UV-Visible Spectroscopy and Photoluminescence (PL) analysis. The results of UV-Vis spectroscopy showed that quantum dots synthesized from monoethanolamine have wider absorption band rather than the CQDs from other precursors and the absorption edge shifted from about 270 nm for ethylamine to about 470 nm in monoethanolamine. Furthermore, the results demonstrate that using citric acid and monoethanolamine as precursor improved production efficiency and emission quantum yield of the carbon dots.

  12. Volcano electrical tomography unveils edifice collapse hazard linked to hydrothermal system structure and dynamics.

    PubMed

    Rosas-Carbajal, Marina; Komorowski, Jean-Christophe; Nicollin, Florence; Gibert, Dominique

    2016-07-26

    Catastrophic collapses of the flanks of stratovolcanoes constitute a major hazard threatening numerous lives in many countries. Although many such collapses occurred following the ascent of magma to the surface, many are not associated with magmatic reawakening but are triggered by a combination of forcing agents such as pore-fluid pressurization and/or mechanical weakening of the volcanic edifice often located above a low-strength detachment plane. The volume of altered rock available for collapse, the dynamics of the hydrothermal fluid reservoir and the geometry of incipient collapse failure planes are key parameters for edifice stability analysis and modelling that remain essentially hidden to current volcano monitoring techniques. Here we derive a high-resolution, three-dimensional electrical conductivity model of the La Soufrière de Guadeloupe volcano from extensive electrical tomography data. We identify several highly conductive regions in the lava dome that are associated to fluid saturated host-rock and preferential flow of highly acid hot fluids within the dome. We interpret this model together with the existing wealth of geological and geochemical data on the volcano to demonstrate the influence of the hydrothermal system dynamics on the hazards associated to collapse-prone altered volcanic edifices.

  13. Hydrothermal contamination of public supply wells in Napa and Sonoma Valleys, California

    USGS Publications Warehouse

    Forrest, Matthew J.; Kulongoski, Justin T.; Edwards, Matthew S.; Farrar, Christopher D.; Belitz, Kenneth; Norris, Richard D.

    2013-01-01

    Groundwater chemistry and isotope data from 44 public supply wells in the Napa and Sonoma Valleys, California were determined to investigate mixing of relatively shallow groundwater with deeper hydrothermal fluids. Multivariate analyses including Cluster Analyses, Multidimensional Scaling (MDS), Principal Components Analyses (PCA), Analysis of Similarities (ANOSIM), and Similarity Percentage Analyses (SIMPER) were used to elucidate constituent distribution patterns, determine which constituents are significantly associated with these hydrothermal systems, and investigate hydrothermal contamination of local groundwater used for drinking water. Multivariate statistical analyses were essential to this study because traditional methods, such as mixing tests involving single species (e.g. Cl or SiO2) were incapable of quantifying component proportions due to mixing of multiple water types. Based on these analyses, water samples collected from the wells were broadly classified as fresh groundwater, saline waters, hydrothermal fluids, or mixed hydrothermal fluids/meteoric water wells. The Multivariate Mixing and Mass-balance (M3) model was applied in order to determine the proportion of hydrothermal fluids, saline water, and fresh groundwater in each sample. Major ions, isotopes, and physical parameters of the waters were used to characterize the hydrothermal fluids as Na–Cl type, with significant enrichment in the trace elements As, B, F and Li. Five of the wells from this study were classified as hydrothermal, 28 as fresh groundwater, two as saline water, and nine as mixed hydrothermal fluids/meteoric water wells. The M3 mixing-model results indicated that the nine mixed wells contained between 14% and 30% hydrothermal fluids. Further, the chemical analyses show that several of these mixed-water wells have concentrations of As, F and B that exceed drinking-water standards or notification levels due to contamination by hydrothermal fluids.

  14. Geochemistry of fluid phases and sediments: Relevance to hydrothermal circulation in Middle Valley, ODP Legs 139 and 169

    USGS Publications Warehouse

    Gieskes, J.M.; Simoneit, B.R.T.; Shanks, Wayne C.; Goodfellow, W.D.; James, R.H.; Baker, P.A.; Ishibashi, J.-I.

    2002-01-01

    Geochemical and isotopic studies of pore fluids and solid phases recovered from the Dead Dog and Bent Hill hydrothermal sites in Middle Valley (Ocean Drilling Program Leg 169) have been compared with similar data obtained previously from these sites during Ocean Drilling Program Leg 139. Although generally the hydrothermal systems reflect non-steady state conditions, the data allow an assessment of the history of the hydrothermal processes. Sediment K/A1 ratios as well as the distribution of anhydrite in the sediments suggest that the Dead Dog hydrothermal field has been, and still is, active. In contrast, similar data in the Bent Hill hydrothermal field indicate a waning of hydrothermal activity. Pore fluid and hydrothermal vent data in the Dead Dog hydrothermal field are similar in nature to the data collected during ODP Leg 139. In the area of the Bent Hill sulfide deposit, however, the pore water data indicate that recent wholesale flushing of the sediment column with relatively unaltered seawater has obliterated a previous record of hydrothermal activity in the pore fluids. Data from the deepest part of Hole 1035A in the Bent Hill locality show the presence of hydrothermal fluids at greater depths in this area. This suggests the origin of the hydrothermal fluids found to be emanating from Hole 1035F, which constitutes one of the first man made hydrothermal vents in the Middle Valley hydrothermal system. Similarly, CORKed Hole 858G, because of seal failures, has acted as a hydrothermal vent, with sulfide deposits forming inside the CORK. ?? 2002 Elsevier Science Ltd. All rights reserved.

  15. Influence of Zr doping on structure and morphology of TiO2 nanorods prepared using hydrothermal method

    NASA Astrophysics Data System (ADS)

    Muslimin, Masliana; Jumali, Mohammad Hafizuddin; Tee, Tan Sin; Beng, Lee Hock; Hui, Tan Chun; Chin, Yap Chi

    2018-04-01

    The aim of this work is to investigate the effect of Zr doping on TiO2 nanostructure. TiO2 nanorods thin films with different Zr-doping concentrations (6 × 10-3 M, 13 × 10-3 M and 25 × 10-3 M) were successfully prepared using a simple hydrothermal method. The structural and morphological properties of the samples were evaluated using XRD and FESEM respectively. The XRD results revealed that the TiO2 in all samples stabilized as rutile phase. The FESEM micrographs confirmed that TiO2 exist as square like nanorods with blunt tips. Although the crystallographic nature remains unchanged, the introduction of Zr has altered the surface density, structure and morphology of TiO2 which subsequently will have significant effect on its properties.

  16. Miniaturized accelerometer made with ZnO nanowires

    NASA Astrophysics Data System (ADS)

    Song, Sangho; Kim, Jeong Woong; Kim, Hyun Chan; Yun, Youngmin; Kim, Jaehwan

    2017-04-01

    Miniaturized accelerometer is required in many applications, such as, robotics, haptic devices, gyroscopes, simulators and mobile devices. ZnO is an essential semiconductor material with wide direct band gap, thermal stability and piezoelectricity. Especially, well aligned ZnO nanowire is appropriate for piezoelectric applications since it can produce high electrical signal under mechanical load. To miniaturize accelerometer, an aligned ZnO nanowire is adopted to implement active piezoelectric layer of the accelerometer and copper is chosen for the head mass. To grow ZnO nanowire on the copper head mass, hydrothermal synthesis is conducted and the effect of ZnO nanowire length on the accelerometer performance is investigated. Refresh hydrothermal synthesis can increase the length of ZnO nanowire. The performance of the fabricated ZnO accelerometers is compared with a commercial accelerometer. Sensitivity and linearity of the fabricated accelerometers are investigated.

  17. Method of producing a carbon coated ceramic membrane and associated product

    DOEpatents

    Liu, P.K.T.; Gallaher, G.R.; Wu, J.C.S.

    1993-11-16

    A method is described for producing a carbon coated ceramic membrane including passing a selected hydrocarbon vapor through a ceramic membrane and controlling ceramic membrane exposure temperature and ceramic membrane exposure time. The method produces a carbon coated ceramic membrane of reduced pore size and modified surface properties having increased chemical, thermal and hydrothermal stability over an uncoated ceramic membrane. 12 figures.

  18. Ultrastructure Processing and Environmental Stability of Advanced Structural and Electronic Materials.

    DTIC Science & Technology

    1983-03-01

    network dissolution, electron beam simulated desorption, electron signal decay, oxidation, oxide layer , growth kinetics, silicon carbide, assivation...surface layers on silicate glasses are reviewed. A type IIIB glass surface is proposed. The mechanisms of hydrothermal attack of two phase lithia...method to make reliable lifetime predictions. Use of electron beam techniques is essential for understanding surface layers formed on glasses (Section III

  19. Modeling mid-ocean ridge hydrothermal response to earthquakes, tides, and ocean currents: a case study at the Grotto mound, Endeavour Segment, Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Xu, G.; Bemis, K. G.

    2014-12-01

    Seafloor hydrothermal systems feature intricate interconnections among oceanic, geological, hydrothermal, and biological processes. The advent of the NEPTUNE observatory operated by Ocean Networks Canada at the Endeavour Segment, Juan de Fuca Ridge enables scientists to study these interconnections through multidisciplinary, continuous, real-time observations. The multidisciplinary observatory instruments deployed at the Grotto Mound, a major study site of the NEPTUNE observatory, makes it a perfect place to study the response of a seafloor hydrothermal system to geological and oceanic processes. In this study, we use the multidisciplinary datasets recorded by the NEPTUNE Observatory instruments as observational tools to demonstrate two different aspects of the response of hydrothermal activity at the Grotto Mound to geological and oceanic processes. First, we investigate a recent increase in venting temperature and heat flux at Grotto observed by the Benthic and Resistivity Sensors (BARS) and the Cabled Observatory Vent Imaging Sonar (COVIS) respectively. This event started in Mar 2014 and is still evolving by the time of writing this abstract. An initial interpretation in light of the seismic data recorded by a neighboring ocean bottom seismometer on the NEPTUNE observatory suggests the temperature and heat flux increase is probably triggered by local seismic activities. Comparison of the observations with the results of a 1-D mathematical model simulation of hydrothermal sub-seafloor circulation elucidates the potential mechanisms underlying hydrothermal response to local earthquakes. Second, we observe significant tidal oscillations in the venting temperature time series recorded by BARS and the acoustic imaging of hydrothermal plumes by COVIS, which is evidence for hydrothermal response to ocean tides and currents. We interpret the tidal oscillations of venting temperature as a result of tidal loading on a poroelastic medium. We then invoke poroelastic theories to estimate the crustal permeability, a fundamental property of subsurface hydrothermal circulation, from the phase shift of the tidal oscillations of venting temperature relative to ambient ocean tides. These results together shed light on the influences of seismic and oceanic processes on a seafloor hydrothermal system.

  20. Facile Preparation of Carbon Microcapsules Containing Phase-Change Material with Enhanced Thermal Properties

    PubMed Central

    Tahan Latibari, Sara; Mehrali, Mohammad; Mehrali, Mehdi; Mahlia, Teuku Meurah Indra; Metselaar, Hendrik Simon Cornelis

    2014-01-01

    This study describes the hydrothermal synthesis of a novel carbon/palmitic acid (PA) microencapsulated phase change material (MEPCM). The field emission scanning electron microscopy (FESEM) and high resolution transmission electron microscopy (HRTEM) images confirm that spherical capsules of uniform size were formed with a mean diameter of 6.42 μm. The melting and freezing temperature were found to be slightly lower than those of pure PA with little undercooling. The composite retained 75% of the latent heat of pure PA. Thermal stability of the MEPCM was found to be better than that of pure PA. The thermal conductivity of MEPCM was increased by as much as 41% at 30°C. Due to its good thermal properties and chemical and mechanical stability, the carbon/PA MEPCM displays a good potential for thermal energy storage systems. PMID:25054179

  1. Syntheses, structures and luminescent properties of lanthanide coordination polymers assembled from imidazophenanthroline derivative and oxalate ligands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Hui; Sun, Xiao-Xia; Hu, Huai-Ming, E-mail: ChemHu1@NWU.EDU.CN

    2017-01-15

    Nine new lanthanide coordination polymers, namely, [Ln(Hsfpip)(ox){sub 0.5}(H{sub 2}O)]{sub n}·2n(H{sub 2}O) ((Ln=Eu (1), Tb (2), Dy (3), Ho (4), Er (5), Yb (6), Y(7)), [Ln(H{sub 2}sfpip)(ox)(H{sub 2}O){sub 4}]{sub n}·2n(H{sub 2}O) (Ln=Nd (8) Sm (9)), [H{sub 2}ox=oxalic acid, H{sub 3}sfpip=2-(2,4-disulfophenyl)imidazo(4,5-f)(1,10)-phenanthroline] have been synthesized under hydrothermal conditions and characterized by IR spectra, elemental analysis, powder X-ray diffraction and single crystal X-ray diffraction. When sodium oxalate is added, the reactions of lanthanide ions with H{sub 3}sfpip resulted in two types of structures. Compounds 1–7 are obtained at pH 5.0 and exhibit 3D tfz-d networks with ox{sup 2−} anions as linkers to bridge themore » adjacent layers. Compounds 8–9 are obtained at pH 2.0, and display a 1D chain which is further extended to a 3D supramolecular framework through intermolecular hydrogen bonds and π-π interactions. The structural variation from compounds 1–7 to 8–9 can attribute to the pH effect on construction of lanthanide coordination polymers. Moreover, the thermal stabilities and luminescence properties of 1–9 were also investigated. - Graphical abstract: Nine new lanthanide coordination polymers have been synthesized under hydrothermal conditions. Compounds 1–7 exhibit a 3D tfz-d network. Compounds 8–9 display a 1D chain structure. The structural variation from compounds 1–7 to 8–9 can attribute to the pH effect on construction of lanthanide coordination polymers. - Highlights: • Nine lanthanide coordination polymers were prepared under hydrothermal conditions. • Their crystal structures have been determined. • The luminescence and thermal stabilities were studied in the solid state.« less

  2. Lipid biomarker and microbial community of 49.6°E hydrothermal field at Southwest Indian Ocean Ridge

    NASA Astrophysics Data System (ADS)

    Lei, J.; Chu, F.; Yu, X.; Li, X.; Tao, C.

    2012-12-01

    In 2007, Chinese Research Cruises Discovered the First Active Hydrothermal Vent Field at the Ultraslow Spreading Southwest Indian Ridge. This study intent to get composition, evolution and origin information of lipid compounds in SWIR, and recognize the style of lipid biomarkers which have obviously indicative significance for community structure.Soluble organic matter were extracted from geological samples (including chimney sulfide, oxide, around hydrothermal vents) in Southwest Indian Ridge (SWIR), and divided into hydrocarbon, fatty acid component by column chromatography. GC, GC-MS, HPLC-MS were applied for composition and abundance analysis. Lipid in hydrothermal sulfide contains obvious isoprenoidal hydrocarbon biomarkers (Sq, IS40) and GDGTs (m/z=653) that associated with methanogenic archaea which belongs to Euryarchaeota, and iso /anti-iso fatty acid (iC15:0, aiC15:0, iC17:0, aiC17:0)which may originated from sulfate reducing bacteria (SRB).Lipids extracted from hydrothermal oxide lack isoprenoidal hydrocarbon, and Ph/C18 (0.57) is much lower than sulfide (1.22). Fatty acid compound of oxide include abundant saturated fatty (C16:0, C18:0) acid and mono-unsaturated fatty acids (C16:1n7, C18:1n7), but much less iso/anti-iso was detected. Lipid composition of hydrothermal oxide showed that archaea activity was seldom in hydrothermal oxide, and sulfur-oxidizing bacteria was the main microbial community.Study of Jaeschke (2010) showed that high temperature hydrothermal venting encompassed different microbial community from low temperature hydrothermal venting. Our study showed that in different stage of hydrothermal, microbial community structure may be distinct.

  3. The 2012-2016 eruptive cycle at Copahue volcano (Argentina) versus the peripheral gas manifestations: hints from the chemical and isotopic features of fumarolic fluids

    NASA Astrophysics Data System (ADS)

    Tassi, F.; Agusto, M.; Lamberti, C.; Caselli, A. T.; Pecoraino, G.; Caponi, C.; Szentiványi, J.; Venturi, S.; Vaselli, O.

    2017-10-01

    This study presents the chemical and isotopic compositions of hydrothermal gases from fumaroles discharging around Copahue volcano (Argentina). Gas samples, including those from two fumaroles at the active summit crater, were collected during 13 surveys carried out by different research teams from 1976 to February 2016. The time-series of H2, CO and light hydrocarbons showed episodic increases related to the main events of the last eruptive cycle that started on 19 July 2012. Concentration peaks were likely caused by enhanced input of hot magmatic fluids affecting the hydrothermal reservoir. These data contrast with the temporal variations shown by Rc/ Ra and δ13C-CO2 values in 2012-2014, which indicated an increasing input from a crustal fluid source. In 2015-2016, however, these isotopic parameters showed opposite trends; their composition became closer to that of the two summit fumaroles, which possibly corresponds to that of the deep magmatic-related end-member. The delayed and reduced compositional changes in the peripheral hydrothermal fluid discharge in response to the 2012-2016 eruptive events suggest that geochemical surveys of these emissions are unlikely to provide premonitory signals of volcanic unrest if the volcanic activity remains centered in the main crater. Instead, an instrument which is able to provide measurements of volcanic gases in the air (e.g. MultiGAS) may be used to detect changes at the summit crater. Otherwise, monitoring of seismic activity and ground deformation, as well as the periodic measurement of the chemistry of the water in the Rio Agrio, which is fed by thermal discharge from the summit crater, seem to represent the most reliable means of monitoring at Copahue. However, the relative compositional stability of the hydrothermal reservoir is a great advantage in terms of geothermal resource exploitation and could encourage new investments in the Copahue geothermal project which was abandoned in the 1990s.

  4. Urchin-like CdS/ZrO2 nanocomposite prepared by microwave-assisted hydrothermal combined with ion-exchange and its multimode photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Li, Li; Wang, Lili; Zhang, Wenzhi; Zhang, Xiuli; Chen, Xi; Dong, Xue

    2014-12-01

    A series of urchin-like CdS/ZrO2 nanocomposites with different mole ratios of Cd/Zr were prepared by a two-step method combining the microwave-assisted hydrothermal and ion exchange methods. The products were characterized by X-ray diffraction, ultraviolet-visible diffuse reflectance spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, and N2 adsorption-desorption measurements. The results of the study revealed that the CdS/ZrO2 nanocomposites had mixed phases of tetragonal ZrO2 and hexagonal CdS. Moreover, the samples prepared by the microwave-assisted hydrothermal method possessed the urchin-like structure with a surface composed of protrude-like nanoparticles in large quantities. The absorption in the visible region changed slightly with increasing mole ratio of Cd/Zr. Moreover, compared to the nanocomposites prepared by the conventional heating, the nanocomposites prepared by the microwave-assisted hydrothermal synthesis showed significantly different Brunauer-Emmett-Teller values, and the urchin-like CdS/ZrO2 structures were obtained. The photocatalytic degradation of methyl orange under ultraviolet (UV) light irradiation indicated that the photocatalytic activity of the CdS/ZrO2 nanocomposite with CdS/ZrO2 molar ratio of 30 % was higher than those of CdS, ZrO2, and other different ratios of CdS/ZrO2 nanocomposites. Moreover, under UV light, visible light, and microwave-assisted multimode photocatalytic degradation, the urchin-like CdS/ZrO2 nanocomposites significantly affected the photodegradation of various dyes. To understand the possible reaction mechanism of the photocatalysis by the CdS/ZrO2 nanocomposites, a series of controlled experiments were performed, and the stability and reusability of the CdS/ZrO2 nanocomposites were further investigated by the photocatalytic reaction.

  5. Relationship between enhanced dewaterability and structural properties of hydrothermal sludge after hydrothermal treatment of excess sludge.

    PubMed

    Wang, Liping; Li, Aimin; Chang, Yuzhi

    2017-04-01

    Hydrothermal treatment is an effective method to enhance the deep dewaterability of excess sludge with low energy consumption. In this study, an insight into the relationship between enhanced dewaterability and structural properties of the produced hydrothermal sludge was presented, aiming at better understanding the effect of hydrothermal process on excess sludge dewatering performance. The results indicated that hydrothermal effect induced the transformation of surface water to interstitial and free water by lowering the binding strength between adjacent water and solid particles and that free water became the main form for moisture existence in hydrothermal sludge as temperature was higher than 180 °C. Increase in temperature of hydrothermal treatment generated a significant size reduction of sludge flocs but treated sludge with a higher rigidity, which not only strengthened the network of hydrothermal sludge but also destroyed the binding of EPS with water. Hydrothermal process caused crevice and pore structures of excess sludge to disappear gradually, which was a main driving force of water removal as temperature was below 150 °C. With the temperature of hydrothermal treatment exceeding 180 °C, the morphology of hydrothermal sludge became rough which linked closely to the solid precipitation of condensation polymerization, and further became smooth at higher temperature (210 °C) due to the coal-like structures with higher aromaticities, indicating that hydrothermal reaction pathways began to play a main role in enhanced dewaterability. Hydrothermal treatment led to more alkyl and aromatic carbon, but lower O-alkyl, carboxyl and carbonyl carbon. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Synthesis, characterization and sonocatalytic applications of nano-structured carbon based TiO2 catalysts.

    PubMed

    Choi, Jongbok; Cui, Mingcan; Lee, Yonghyeon; Kim, Jeonggwan; Yoon, Yeomin; Jang, Min; Khim, Jeehyeong

    2018-05-01

    In order to enhance sonocatalytic oxidation of a recalcitrant organic pollutant, rhodamine B (RhB), it is necessary to study the fundamental aspects of sonocatalysis. In this study, TiO 2 -incorporated nano-structured carbon (i.e., carbon nanotubes (CNTs) or graphene (GR)) composites were synthesized by coating TiO 2 on CNTs or GR of different mass percentages (0.5, 1, 5, and 10 wt%) by a facile hydrothermal method. The sonocatalytic degradation rates of RhB were examined for the effect of ultrasound (US) frequency and calcination temperature by using the prepared TiO 2 -NSC composites. Since US frequency affected the sonoluminescence (SL) intensities, it was proposed that there exists a correlation between the surface area or band-gap of the sonocatalysts and the degradation kinetic constants of RhB. In addition, the reusability of TiO 2 -GR composites was also investigated. Overall, the performance of TiO 2 -GRs prepared by the hydrothermal method was better than that of calcined TiO 2 -CNTs. Among TiO 2 -GRs, 5% GR incorporated media (TiO 2 -GR-5) showed the best performance. Interestingly, the kinetic constants of sonocatalysts prepared under hydrothermal conditions had a negative linear relationship with the band-gap energy for the corresponding media. Furthermore, the strongest SL intensity and highest degradation rates of RhB for both carbonaceous composites were observed at 500 kHz. The kinetic constants of calcined media decreased linearly as the specific area of the media decreased, while the band-gap energy could not be correlated with the kinetic constants. The GR combined TiO 2 composite might be a good sonocatalyst in wastewater treatment using ultrasound-based oxidation because of its high stability. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Fe-oxidizing microbes are hydrothermal vent ecosystem engineers at the Loihi Seamount (Invited)

    NASA Astrophysics Data System (ADS)

    Chan, C. S.; McAllister, S.; Leavitt, A.; Emerson, D.; Moyer, C. L.; Glazer, B. T.

    2013-12-01

    Microaerophilic Fe-oxidizing microorganisms (FeOM) colonize gradients of Fe(II) and oxygen, taking advantage of the available chemical energy. Vast communities of FeOM proliferate at deep sea hydrothermal vents, forming mineralized mats that range from centimeters to meters thick. Because these mats structure the environment for both FeOM and the entire microbial community, the Fe-oxidizers are acting as ecosystem engineers. What organisms are responsible for initiating these mats, and how does the physical structure and community composition develop as the mats mature? By connecting structure, function, and ecology, we can better interpret modern mat structures, as well as ancient fossilized mats. We have been studying Fe microbial mats at Loihi Seamount in Hawaii, a long-term study site that has become a model for Fe oxidation in marine hydrothermal systems. Recent improvements in ROV imaging systems allow us to see a great range of mat textures and colors, which may represent diverse habitats and/or different stages of mat development. With improved imaging and sampling techniques, we have been able to obtain discrete, intact samples of these delicate microbial mats. Previous bulk sampling methods showed that mats consist of a mixture of Fe-mineralized morphologies. Our analyses of intact mats show that mats are initiated by one type of structure-former (either a stalk-former like Mariprofundus ferrooxydans or a Zetaproteobacterial sheath-former). These microbes may be the vanguard organisms that stabilize chemical gradients in this dynamic environment, allowing colonization by other organisms (evidenced by branching tubes, fibrillar nests, and other morphologies). We will show evidence of the composition and development of these mats, and discuss parallels between these marine Fe mats and their freshwater counterparts, supporting the idea that FeOM engineer environments favorable for growth.

  8. Observations of two-dimensional monolayer zinc oxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sahoo, Trilochan, E-mail: trilochansahoo@gmail.com; Nayak, Sanjeev K.; Chelliah, Pandian

    2016-03-15

    Highlights: • Synthesis of planer ZnO nanostructure. • Observation of multilayered and monolayer ZnO. • DFT calculation of (10-10), (11-20) and (0 0 0 1) planes of ZnO. • Stability of non-polar (10-10) and (11-20) planes of ZnO. - Abstract: This letter reports the observations of planar two-dimensional ZnO synthesized using the hydrothermal growth technique. High-resolution transmission electron microscopy revealed the formation of a two-dimensional honeycomb lattice and aggregated structures of layered ZnO. The nonpolar (10-10) and (11-20) planes were present in the X-ray diffraction patterns, but the characteristic (0 0 0 1) peak of bulk ZnO was absent. Themore » study found that nonpolar freestanding ZnO structures composed of a single or few layers may be more stable and may have a higher probability of formation than their polar counterparts. The stability of the nonpolar two-dimensional hexagonal ZnO slabs is supported by density functional theory studies.« less

  9. A seismological perspective of the shallow magma and hydrothermal systems under Kilauea Caldera

    NASA Astrophysics Data System (ADS)

    Chouet, B. A.; Dawson, P. B.

    2011-12-01

    The past 20 years have seen great strides in our understanding of Kilauea Volcano, in large part due to technological developments and improvements in seismological instrumentation, which now allow the surface effects of subterranean volcanic processes to be imaged in unprecedented detail. High-resolution tomography provided an image of 3D velocity anomalies down to a scale of a few hundred meters, providing indirect evidence for the presence of reservoirs under the summit region of Kilauea. A sharper image of a shallow hydrothermal reservoir under Kilauea Caldera was obtained from frequency-slowness analyses of long-period (LP) seismicity recorded on three small-aperture seismic antennas deployed in the summit caldera. Located within the top 500 m below the caldera floor and extending ~0.6 km and ~1 km in the east-west and north-south directions, this hydrothermal reservoir broadly overlaps the east wall of the Halemaumau pit crater. Further evidence of hydrothermal processes within this zone was obtained from a study of a well-recorded LP event, indicating a source mechanism consistent with the resonance of a horizontal steam-filled crack at a depth of ~150 m near the eastern rim of Halemaumau. Recurring very-long-period (VLP) signals originating in the repeated activation of a compact source region near sea level immediately beneath this hydrothermal reservoir have allowed a gradually emerging view of the shallowest segment of the magma transport pathway under the caldera. Further elaboration of our image of the magma pathway structure, made possible through detailed modeling of VLP signals accompanying degassing activity at a new vent formed in Halemaumau in March 2008, points to a dominant dike segment in the form of a nearly vertical east-trending dike. The inferred dike features a ~20° clockwise rotation in strike under the east edge of Halemaumau, where it intersects a sub-vertical north-striking dike. The triple junction made by the intersection of the west and east branches of the east-trending dike with the north-striking dike provides a natural locus for strong localized elastic coupling of pressure and momentum changes induced by shallow degassing bursts. This juncture offers a ready explanation for the observed temporal stability of the VLP source location. Radial semblance analyses of VLP seismic energy in near real time, supplemented with spectral analyses and Hidden Markov Model (HMM) pattern recognition of degassing bursts provide valuable tools for monitoring the evolution of this active magmatic system and its interaction with the perched hydrothermal system.

  10. Simulating Electrochemistry of Hydrothermal Vents on Enceladus and Other Ocean Worlds

    NASA Astrophysics Data System (ADS)

    Barge, L. M.; Krause, F. C.; Jones, J. P.; Billings, K.; Sobron, P.

    2017-12-01

    Gradients generated in hydrothermal systems provide a significant source of free energy for chemosynthetic life, and may play a role in present-day habitability on ocean worlds such as Enceladus that are thought to host hydrothermal activity. Hydrothermal vents are similar in some ways to typical fuel cell devices: redox/pH gradients between seawater and hydrothermal fluid are analogous to the oxidant and fuel reservoirs; conductive natural mineral deposits are analogous to electrodes; and, in hydrothermal chimneys, the porous chimney wall can function as a separator or ion-exchange membrane. Electrochemistry, founded on quantitative study of redox and other chemical disequilibria as well as the chemistry of interfaces, is uniquely suited to studying these systems. We have performed electrochemical studies to better understand the catalytic potential of seafloor minerals and vent chimneys, using samples from a black smoker vent chimney as an initial demonstration. Fuel cell experiments with electrodes made from black smoker chimney material accurately simulated the redox reactions that occur in a geological setting with this particular catalyst. Similar methods with other geo-catalysts (natural or synthetic) could be utilized to test which redox reactions or metabolisms could be driven in other hydrothermal systems, including putative vent systems on other worlds.

  11. Exploration and discovery in Yellowstone Lake: Results from high-resolution sonar imaging, seismic reflection profiling, and submersible studies

    USGS Publications Warehouse

    Morgan, L.A.; Shanks, Wayne C.; Lovalvo, D.A.; Johnson, S.Y.; Stephenson, W.J.; Pierce, K.L.; Harlan, S.S.; Finn, C.A.; Lee, G.; Webring, M.; Schulze, B.; Duhn, J.; Sweeney, R.; Balistrieri, L.

    2003-01-01

    Discoveries from multi-beam sonar mapping and seismic reflection surveys of the northern, central, and West Thumb basins of Yellowstone Lake provide new insight into the extent of post-collapse volcanism and active hydrothermal processes occurring in a large lake environment above a large magma chamber. Yellowstone Lake has an irregular bottom covered with dozens of features directly related to hydrothermal, tectonic, volcanic, and sedimentary processes. Detailed bathymetric, seismic reflection, and magnetic evidence reveals that rhyolitic lava flows underlie much of Yellowstone Lake and exert fundamental control on lake bathymetry and localization of hydrothermal activity. Many previously unknown features have been identified and include over 250 hydrothermal vents, several very large (>500 m diameter) hydrothermal explosion craters, many small hydrothermal vent craters (???1-200 m diameter), domed lacustrine sediments related to hydrothermal activity, elongate fissures cutting post-glacial sediments, siliceous hydrothermal spire structures, sublacustrine landslide deposits, submerged former shorelines, and a recently active graben. Sampling and observations with a submersible remotely operated vehicle confirm and extend our understanding of the identified features. Faults, fissures, hydrothermally inflated domal structures, hydrothermal explosion craters, and sublacustrine landslides constitute potentially significant geologic hazards. Toxic elements derived from hydrothermal processes also may significantly affect the Yellowstone ecosystem. Published by Elsevier Science B.V.

  12. Does serpentinite carbonation occur during recharge or discharge of hydrothermal fluids? A case of study from the Newfoundland margin

    NASA Astrophysics Data System (ADS)

    Picazo, Suzanne; Malvoisin, Benjamin; Baumgartner, Lukas P.; Bouvier, Anne-Sophie

    2017-04-01

    Hydrothermal fluid circulation in extensional systems occurrs along the spreading axis of passive, hyper-extended margins and mid-ocean ridges. The most studied feature resulting from hydrothermal circulation is the sub-seafloor chimneys because of their accessibility. Here we focus on the less studied carbonation process of the associated serpentinites. Carbonation of partially to totally serpentinized peridotite i.e. peridotite/serpentinite replacement by carbonate is usually described as a process of veining or matrix formation but not direct replacement of serpentinite. Carbonates that crystallize in veins or as a matrix in a sedimentary setting is known in near-surface environments like Oman (Kelemen et al, 2011), however the processes and timing of carbonation are still not well understood. This study is examins in detail the onset of carbonation in the footwall of the detachment faults responsible for mantle exhumation in hyper-extended rifted margins. It is based on drilled samples from ODP Leg 210 Site 1277 in the Newfoundland margin. We observed calcite grains in the mesh core replacing serpentine and we measured δ18O from core to rim of the calcite grain using the Secondary Ion Mass Spectrometer (SIMS, SwissSIMS facility, University of Lausanne). Ultimately δ18O measurements lead us to infer the temperature of calcite growth. We suplement the study with equilibrium thermodynamic modeling in an open system where fluid can be transported either upwards or downwards. The model allows us determining the influence of fluid flow direction, temperature, pressure and fluid/rock ratio on the stability of carbonates and serpentine, and thus to discuss if carbonation occurs during recharge or discharge of the fluids. Kelemen, P. B., Matter, J., Streit, E. E., Rudge, J. F., Curry, W. B., & Blusztajn, J. (2011). Rates and mechanisms of mineral carbonation in peridotite: natural processes and recipes for enhanced, in situ CO2 capture and storage. Annual Review of Earth and Planetary Sciences, 39, 545-576.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, XS; Narayanan, S; Michaelis, VK

    Modular and compact adsorption heat pumps (AHPs) promise an energy-efficient alternative to conventional vapor compression based heating, ventilation and air conditioning systems. A key element in the advancement of AHPs is the development of adsorbents with high uptake capacity, fast intracrystalline diffusivity and durable hydrothermal stability. Herein, the ion exchange of NaY zeolites with ingoing Mg2+ ions is systematically studied to maximize the ion exchange degree (IED) for improved sorption performance. It is found that beyond an ion exchange threshold of 64.1%, deeper ion exchange does not benefit water uptake capacity or characteristic adsorption energy, but does enhance the vapormore » diffusivity. In addition to using water as an adsorbate, the uptake properties of Mg, Na-Y zeolites were investigated using 20 wt.% MeOH aqueous solution as a novel anti-freeze adsorbate, revealing that the MeOH additive has an insignificant influence on the overall sorption performance. We also demonstrated that the lab-scale synthetic scalability is robust, and that the tailored zeolites scarcely suffer from hydrothermal stability even after successive 108-fold adsorption/desorption cycles. The samples were analyzed using N-2 sorption, Al-27/Si-29 MAS NMR spectroscopy, ICP-AES, dynamic vapor sorption, SEM, Fick's 2nd law and D-R equation regressions. Among these, close examination of sorption isotherms for H2O and N-2 adsorbates allows us to decouple and extract some insightful information underlying the complex water uptake phenomena. This work shows the promising performance of our modified zeolites that can be integrated into various AHP designs for buildings, electronics, and transportation applications. (C) 2014 Elsevier Inc. All rights reserved.« less

  14. Synthesis of hydrothermally reduced graphene/MnO2 composites and their electrochemical properties as supercapacitors

    NASA Astrophysics Data System (ADS)

    Li, Zhangpeng; Wang, Jinqing; Liu, Sheng; Liu, Xiaohong; Yang, Shengrong

    2011-10-01

    Hydrothermally reduced graphene/MnO2 (HRG/MnO2) composites were synthesized by dipping HRG into the mixed aqueous solution of 0.1 M KMnO4 and 0.1 M K2SO4 for different periods of time at room temperature. The morphology and microstructure of the as-prepared composites were characterized by field-emission scanning electron microscopy, X-ray diffraction, Raman microscope, and X-ray photoelectron spectroscopy. The characterizations indicate that MnO2 successfully deposited on HRG surfaces and the morphology of the HRG/MnO2 shows a three-dimensional porous structure with MnO2 homogenously distributing on the HRG surfaces. Capacitive properties of the synthesized composite electrodes were studied using cyclic voltammetry and electrochemical impedance spectroscopy in a three-electrode experimental setup using 1 M Na2SO4 aqueous solution as electrolyte. The main results of electrochemical tests are drawn as follows: the specific capacitance value of HRG/MnO2-200 (HRG dipped into the mixed solution of 0.1 M KMnO4 and 0.1 M K2SO4 for 200 min) electrode reached 211.5 F g-1 at a potential scan rate of 2 mV s-1; moreover, this electrode shows a good cyclic stability and capacity retention. It is anticipated that the synthesized HRG/MnO2 composites will find promising applications in supercapacitors and other devices in virtue of their outstanding characters of good cycle stability, low cost and environmentally benign nature.

  15. Phosphorus promotion and poisoning in zeolite-based materials: synthesis, characterisation and catalysis

    PubMed Central

    van der Bij, Hendrik E.

    2015-01-01

    Phosphorus and microporous aluminosilicates, better known as zeolites, have a unique but poorly understood relationship. For example, phosphatation of the industrially important zeolite H-ZSM-5 is a well-known, relatively inexpensive and seemingly straightforward post-synthetic modification applied by the chemical industry not only to alter its hydrothermal stability and acidity, but also to increase its selectivity towards light olefins in hydrocarbon catalysis. On the other hand, phosphorus poisoning of zeolite-based catalysts, which are used for removing nitrogen oxides from exhaust fuels, poses a problem for their use in diesel engine catalysts. Despite the wide impact of phosphorus–zeolite chemistry, the exact physicochemical processes that take place require a more profound understanding. This review article provides the reader with a comprehensive and state-of-the-art overview of the academic literature, from the first reports in the late 1970s until the most recent studies. In the first part an in-depth analysis is undertaken, which will reveal universal physicochemical and structural effects of phosphorus–zeolite chemistry on the framework structure, accessibility, and strength of acid sites. The second part discusses the hydrothermal stability of zeolites and clarifies the promotional role that phosphorus plays. The third part of the review paper links the structural and physicochemical effects of phosphorus on zeolite materials with their catalytic performance in a variety of catalytic processes, including alkylation of aromatics, catalytic cracking, methanol-to-hydrocarbon processing, dehydration of bioalcohol, and ammonia selective catalytic reduction (SCR) of NOx. Based on these insights, we discuss potential applications and important directions for further research. PMID:26051875

  16. Phosphorus promotion and poisoning in zeolite-based materials: synthesis, characterisation and catalysis.

    PubMed

    van der Bij, Hendrik E; Weckhuysen, Bert M

    2015-10-21

    Phosphorus and microporous aluminosilicates, better known as zeolites, have a unique but poorly understood relationship. For example, phosphatation of the industrially important zeolite H-ZSM-5 is a well-known, relatively inexpensive and seemingly straightforward post-synthetic modification applied by the chemical industry not only to alter its hydrothermal stability and acidity, but also to increase its selectivity towards light olefins in hydrocarbon catalysis. On the other hand, phosphorus poisoning of zeolite-based catalysts, which are used for removing nitrogen oxides from exhaust fuels, poses a problem for their use in diesel engine catalysts. Despite the wide impact of phosphorus-zeolite chemistry, the exact physicochemical processes that take place require a more profound understanding. This review article provides the reader with a comprehensive and state-of-the-art overview of the academic literature, from the first reports in the late 1970s until the most recent studies. In the first part an in-depth analysis is undertaken, which will reveal universal physicochemical and structural effects of phosphorus-zeolite chemistry on the framework structure, accessibility, and strength of acid sites. The second part discusses the hydrothermal stability of zeolites and clarifies the promotional role that phosphorus plays. The third part of the review paper links the structural and physicochemical effects of phosphorus on zeolite materials with their catalytic performance in a variety of catalytic processes, including alkylation of aromatics, catalytic cracking, methanol-to-hydrocarbon processing, dehydration of bioalcohol, and ammonia selective catalytic reduction (SCR) of NOx. Based on these insights, we discuss potential applications and important directions for further research.

  17. Hydrothermal activity at slow-spreading ridges: variability and importance of magmatic controls

    NASA Astrophysics Data System (ADS)

    Escartin, Javier

    2016-04-01

    Hydrothermal activity along mid-ocean ridge axes is ubiquitous, associated with mass, chemical, and heat exchanges between the deep lithosphere and the overlying envelopes, and sustaining chemiosynthetic ecosystems at the seafloor. Compared with hydrothermal fields at fast-spreading ridges, those at slow spreading ones show a large variability as their location and nature is controlled or influenced by several parameters that are inter-related: a) tectonic setting, ranging from 'volcanic systems' (along the rift valley floor, volcanic ridges, seamounts), to 'tectonic' ones (rift-bounding faults, oceanic detachment faults); b) the nature of the host rock, owing to compositional heterogeneity of slow-spreading lithosphere (basalt, gabbro, peridotite); c) the type of heat source (magmatic bodies at depth, hot lithosphere, serpentinization reactions); d) and the associated temperature of outflow fluids (high- vs.- low temperature venting and their relative proportion). A systematic review of the distribution and characteristics of hydrothermal fields along the slow-spreading Mid-Atlantic Ridge suggests that long-lived hydrothermal activity is concentrated either at oceanic detachment faults, or along volcanic segments with evidence of robust magma supply to the axis. A detailed study of the magmatically robust Lucky Strike segment suggests that all present and past hydrothermal activity is found at the center of the segment. The association of these fields to central volcanos, and the absence of indicators of hydrothermal activity along the remaining of the ridge segment, suggests that long-lived hydrothermal activity in these volcanic systems is maintained by the enhanced melt supply and the associated magma chamber(s) required to build these volcanic edifices. In this setting, hydrothermal outflow zones at the seafloor are systematically controlled by faults, indicating that hydrothermal fluids in the shallow crust exploit permeable fault zones to circulate. While less studied, similar hydrothermal systems are found elsewhere associated to other central volcanoes along the ridge axis (e.g., Menez Gwenn at the Mid-Atlantic Ridge and Soria Mornia or Troll Wall at the Arctic Ridges). Long-lived hydrothermal activity plays an important role in controlling the thermal structure of the lithosphere and its accretion at and near-axis, and also determining the distribution and biogeography of vent communities. Along slow-spreading segments, long-lived hydrothermal activity can be provided both by volcanic systems (e.g., Lucky Strike) and tectonic systems (oceanic detachment faults). While magmatic and hydrothermal activity is relatively well understood now in volcanic systems (e.g., Lucky Strike), tectonic systems (oceanic detachment faults) require further integrated studies to constrain the links between long-lived localization of deformation along oceanic detachment faults, hydrothermal activity, and origin and nature of off-axis heat sources animating hydrothermal circulation.

  18. Fumarole emissions at Mount St. Helens volcano, June 1980 to October 1981: Degassing of a magma-hydrothermal system

    USGS Publications Warehouse

    Gerlach, T.M.; Casadevall, T.J.

    1986-01-01

    This study is an investigation of the chemical changes in the Mount St. Helens fumarole gases up to October 1981, the sources of the fumarole gases, and the stability of gas species in the shallow magma system. These problems are investigated by calculations of element compositions, thermodynamic equilibria, and magmatic volatile-hydrothermal steam mixing models. The fumarole gases are treated as mixtures of magmatic volatiles and hydrothermal steam formed by magma degassing and boiling of local waters in a dryout zone near conduit and dome magma. The magmatic volatile fraction is significant in fumaroles with temperatures in excess of the magma cracking-temperature (??? 700??C) - i.e., the temperature below which cracking is induced by thermal stresses during cooling and solidification. Linear composition changes of the fumarole gases over time appear to be the result of a steady decline in the magmatic volatile mixing fraction, which may be due to the tapping of progressively volatile-depleted magma. The maximum proportion of hydrothermal steam in the fumaroles rose from about 25-35% in September 1980 to around 50-70% by October 1981. Fractional degassing of magmatic CO2 and sulfur also contributed to the chemical changes in the fumarole gases. The steady chemical changes indicate that replenishment of the magma system with undegassed magma was not significant between September 1980 and September 1981. Extrapolations of chemical trends suggest that fumarole gases emitted at the time of formation of the first dome in mid-June 1980 were more enriched in a magmatic volatile fraction and contained a minimum of 9% CO2. Calculations show H2S is the predominant sulfur species in Mount St. Helens magma below depths of 200 m. Rapid release of gases from magma below this depth is a plausible mechanism for producing the high H2S/SO2 observed in Mount St. Helens plumes during explosive eruptions. This study suggests that dacite-andesite volcanos may emit gases richer in CO2 during the earlier episodes of an eruptive cycle and burden the atmosphere with much more H2S than SO2 during explosive eruptions. ?? 1986.

  19. New insights on the remarkable longevity of hydrothermal plumes over the Cleft segment of the Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Jellinek, M.; Carazzo, G.

    2011-12-01

    Observations of the temporal variability of hydrothermal activity over the Juan de Fuca Ridge provide valuable clues for understanding the dynamics of hydrothermal plumes in the deep ocean. Analyses of hydrothermal temperature and light attenuation anomalies show that the structure of these plumes varies on an interannual rather than weekly or monthly time scale. This surprising stability is in complete disagreement with calculations of the residence time for the suspended particles, which suggest a complete particle sedimentation within a few days or weeks. In order to understand this difference, we performed analog experiments simulating particle-laden hydrothermal plumes. These experiments consist in injecting upwards at a fixed rate a hot mixture of fresh water and solid particles in a tank containing stratified salt water. Measurements of light attenuation, temperature and salinity anomalies are conducted during the experiments in order to decipher the causal links between real-time observations and venting conditions. Our results show that depending on the source conditions and the strength of density stratification in the tank, large-scale instabilities may develop due to the differential diffusion of heat and fine particles. Diffusive particle convection enhances the dispersion of fine particles and increases the longevity of the plume. We show that this process is a common phenomenon in natural submarine plumes, which not only increases the longevity of the plumes up to at least 5 years, but also permits dissolution processes to occur providing large amounts of dissolved chemical species far from the point of emission. A new model for particle sedimentation from hydrothermal plumes is presented and tested against natural data collected over the Cleft segment of the Juan de Fuca Ridge between 1987 and 1991. This model is found to be in good agreement with measurements of the rate of change of light attenuation within the chronic plume overlying the north Cleft vent field. We find that this particular plume remained in suspension for 6.5 years but became undetectable after 5 years in good agreement with observations.

  20. Syntheses, structures, thermal stabilities and luminescence of two new lead sulfonates with phosphonate, carboxylate and pyridine

    NASA Astrophysics Data System (ADS)

    Fu, Ruibiao; Hu, Shengmin; Wu, Xintao

    2014-05-01

    Hydrothermal reactions of Pb2+ ion with disodium 4,4'-bis(2-sulfonatostyryl)biphenyl (Na2L1), 4-pyridyl-CH2N(CH2COOH)(CH2PO3 H2) (H3L2) and 4,4'-bipyridine (4,4'-bipy) afforded two new lead sulfonates, namely, [Pb4(L1)2(HL2)2(H2O)

  1. RGO-coated elastic fibres as wearable strain sensors for full-scale detection of human motions

    NASA Astrophysics Data System (ADS)

    Mi, Qing; Wang, Qi; Zang, Siyao; Mao, Guoming; Zhang, Jinnan; Ren, Xiaomin

    2018-01-01

    In this study, we chose highly-elastic fabric fibres as the functional carrier and then simply coated the fibres with reduced graphene oxide (rGO) using plasma treatment, dip coating and hydrothermal reduction steps, finally making a wearable strain sensor. As a result, the full-scale detection of human motions, ranging from bending joints to the pulse beat, has been achieved by these sensors. Moreover, high sensitivity, good stability and excellent repeatability were realized. The good sensing performances and economical fabrication process of this wearable strain sensor have strengthened our confidence in practical applications in smart clothing, smart fabrics, healthcare, and entertainment fields.

  2. Application of graphite as a geothermometer in hydrothermally altered metamorphic rocks of the Merelani-Lelatema area, Mozambique Belt, northeastern Tanzania

    NASA Astrophysics Data System (ADS)

    Malisa, Elias Pausen

    1998-02-01

    Upper Precambrian pelitic and psammitic gneisses in the Mozambique Belt are usually graphite rich. The determination of crystallisation temperatures around and in the hydrothermally altered rocks of the Merelani-Lelatema mining areas, northeastern Tanzania, were made by studying the lattice parameter C of graphite. In this way, the migration of the chromophore elements giving colour to the gemstones, e.g. tanzanite, green garnet and green tourmaline in the area, can be studied. Within the hydrothermally altered zone graphite gives temperatures that range from 523°C to 880°C. These temperatures are much higher than the 390-440°C obtained through fluid inclusion studies of tanzanite, which indicates that the graphite was not hydrothermally introduced. Furthermore the hydrothermal solutions are post-metamorphic.

  3. A hydrothermally synthesized LiFePO4/C composite with superior low-temperature performance and cycle life

    NASA Astrophysics Data System (ADS)

    Wu, Guan; Liu, Na; Gao, Xuguang; Tian, Xiaohui; Zhu, Yanbin; Zhou, Yingke; Zhu, Qingyou

    2018-03-01

    The LiFePO4/C composites have been successfully synthesized by a hydrothermal process, with the combined carbon sources of fructose and calcium lignosulfonate. The morphology and microstructure of LiFePO4/C were investigated by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and Fourier transform infrared spectroscopy. The electrochemical properties were evaluated by the constant-current charge/discharge tests, cyclic voltammetry and electrochemical impedance spectroscopy. The uniform carbon coating layer derived from calcium lignosulfonate can effectively improve the electronic conductivity, lithium-ion diffusivity and surface stability of the LiFePO4/C composites and prevent the side reactions between the LiFePO4 particles and electrolytes. The LiFePO4/C composites display excellent rate capability, superior cycle life and outstanding low temperature performance, which are promising for lithium-ion battery applications in electrical vehicles and electrical energy storage systems.

  4. Facile hydrothermal preparation of titanium dioxide decorated reduced graphene oxide nanocomposite

    PubMed Central

    Chang, Betty Yea Sze; Huang, Nay Ming; An’amt, Mohd Nor; Marlinda, Abdul Rahman; Norazriena, Yusoff; Muhamad, Muhamad Rasat; Harrison, Ian; Lim, Hong Ngee; Chia, Chin Hua

    2012-01-01

    A simple single-stage approach, based on the hydrothermal technique, has been introduced to synthesize reduced graphene oxide/titanium dioxide nanocomposites. The titanium dioxide nanoparticles are formed at the same time as the graphene oxide is reduced to graphene. The triethanolamine used in the process has two roles. It acts as a reducing agent for the graphene oxide as well as a capping agent, allowing the formation of titanium dioxide nanoparticles with a narrow size distribution (~20 nm). Transmission electron micrographs show that the nanoparticles are uniformly distributed on the reduced graphene oxide nanosheet. Thermogravimetric analysis shows the nanocomposites have an enhanced thermal stability over the original components. The potential applications for this technology were demonstrated by the use of a reduced graphene oxide/titanium dioxide nanocomposite-modified glassy carbon electrode, which enhanced the electrochemical performance compared to a conventional glassy carbon electrode when interacting with mercury(II) ions in potassium chloride electrolyte. PMID:22848166

  5. Graphene/Ruthenium Active Species Aerogel as Electrode for Supercapacitor Applications.

    PubMed

    Gigot, Arnaud; Fontana, Marco; Pirri, Candido Fabrizio; Rivolo, Paola

    2017-12-30

    Ruthenium active species containing Ruthenium Sulphide (RuS₂) is synthesized together with a self-assembled reduced graphene oxide (RGO) aerogel by a one-pot hydrothermal synthesis. Ruthenium Chloride and L-Cysteine are used as reactants. The hydrothermal synthesis of the innovative hybrid material occurs at 180 °C for 12 h, by using water as solvent. The structure and morphology of the hybrid material are fully characterized by Raman, XRD, XPS, FESEM and TEM. The XRD and diffraction pattern obtained by TEM display an amorphous nanostructure of RuS₂ on RGO crystallized flakes. The specific capacitance measured in planar configuration in 1 M NaCl electrolyte at 5 mV s -1 is 238 F g -1 . This supercapacitor electrode also exhibits perfect cyclic stability without loss of the specific capacitance after 15,000 cycles. In summary, the RGO/Ruthenium active species hybrid material demonstrates remarkable properties for use as active material for supercapacitor applications.

  6. One step hydrothermal synthesis of 3D CoS2@MoS2-NG for high performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Meng, Qi; Chen, Yizhi; Zhu, Wenkun; Zhang, Ling; Yang, Xiaoyong; Duan, Tao

    2018-07-01

    A three-dimensional (3D) MoS2 coated CoS2-nitrogen doped graphene (NG) (CoS2@MoS2-NG) hybrid has been synthesized by a one step hydrothermal method as supercapacitor (SC) electrode material for the first time. Such a composite consists of NG embedded with stacked CoS2@MoS2 sheets. With a 3D skeleton, it prevents the agglomeration of CoS2@MoS2 nanoparticles, resulting in sound conductivity, rich porous structures and a large surface area. The results indicate that CoS2@MoS2-NG has higher specific capacitance (198 F g‑1 at 1 A g‑1), better rate performance (with about 56.57% from 1 to 16 A g‑1) and an improved cycle stability (with about 96.97% after 1000 cycles). It is an ideal candidate for SC electrode materials.

  7. Hydrothermal carbon nanosphere-based agglomerated anion exchanger for ion chromatography.

    PubMed

    Zhao, Qiming; Wu, Shuchao; Zhang, Kai; Lou, Chaoyan; Zhang, Peiming; Zhu, Yan

    2016-10-14

    This work reports the application of hydrothermal carbon nanospheres (HCNSs) as stationary phases in ion chromatography. HCNSs were facilely quaternized through polycondensation of methylamine and 1,4-butanediol diglycidyl ether. The quaternization was confirmed by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. Owing to the electrostatic interaction, quaternized HCNSs were equably attached onto the surface of sulfonated polystyrene-divinylbenzene (PS-DVB) beads to construct the anion exchangers. The aggregation was verified by scanning electron microscopy and elemental analysis. Common anions, aliphatic monocarboxylic acids, polarizable anions, and aromatic acids were well separated on the stationary phases with good stability and symmetry. The prepared column was further applied to detect phosphate content in Cola drink samples. The limit of detection (S/N=3) was 0.09mg/L, and the relative standard deviation (n=10) of retention time was 0.31%. The average recovery was 99.58%. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Hydrothermal Synthesis of Nanostructured MnO2 and Gamma Radiation Effects on Rechargeable Lithium Battery Performance.

    PubMed

    Seo, Sang-Ei; Kang, Yun Ok; Jung, Sung-Hee; Choi, Seong-Ho

    2015-09-01

    Nanostructured manganese dioxide (MnO2) was synthesized by the hydrothermal method under various experimental conditions such as reaction time and concentration in order to obtain nanostructure material with different morphologies, and it was found that the morphology of the MnO2 obtained had a nanoparticle-like structure, urchin-like structure, or nanorod-like structure depending on the experimental conditions. Among the as-prepared MnO2 samples, the highest surface area was seen for the urchin-like structure, and this was irradiated by γ-rays with a total radiation dose of 30 kGy at a rate 1.0 x 10(4) Gy/h in order to determine the effect of γ-irradiation on battery performance. There was a decrease in battery performance in terms of capacity and stability for irradiated samples during 100 cycles.

  9. One step hydrothermal synthesis of 3D CoS2@MoS2-NG for high performance supercapacitors.

    PubMed

    Meng, Qi; Chen, Yizhi; Zhu, Wenkun; Zhang, Ling; Yang, Xiaoyong; Duan, Tao

    2018-07-20

    A three-dimensional (3D) MoS 2 coated CoS 2 -nitrogen doped graphene (NG) (CoS 2 @MoS 2 -NG) hybrid has been synthesized by a one step hydrothermal method as supercapacitor (SC) electrode material for the first time. Such a composite consists of NG embedded with stacked CoS 2 @MoS 2 sheets. With a 3D skeleton, it prevents the agglomeration of CoS 2 @MoS 2 nanoparticles, resulting in sound conductivity, rich porous structures and a large surface area. The results indicate that CoS 2 @MoS 2 -NG has higher specific capacitance (198 F g -1 at 1 A g -1 ), better rate performance (with about 56.57% from 1 to 16 A g -1 ) and an improved cycle stability (with about 96.97% after 1000 cycles). It is an ideal candidate for SC electrode materials.

  10. Behavior of a hammerhead ribozyme in aqueous solution at medium to high temperatures

    NASA Astrophysics Data System (ADS)

    El-Murr, Nizar; Maurel, Marie-Christine; Rihova, Martina; Vergne, Jacques; Hervé, Guy; Kato, Mikio; Kawamura, Kunio

    2012-09-01

    The "RNA world" hypothesis proposes that—early in the evolution of life—RNA molecules played important roles both in information storage and in enzymatic functions. However, this hypothesis seems to be inconsistent with the concept that life may have emerged under hydrothermal conditions since RNA molecules are considered to be labile under such extreme conditions. Presently, the possibility that the last common ancestor of the present organisms was a hyperthermophilic organism which is important to support the hypothesis of the hydrothermal origin of life has been subject of strong discussions. Consequently, it is of importance to study the behavior of RNA molecules under hydrothermal conditions from the viewpoints of stability, catalytic functions, and storage of genetic information of RNA molecules and determination of the upper limit of temperature where life could have emerged. In the present work, self-cleavage of a natural hammerhead ribozyme was examined at temperatures 10-200 °C. Self-cleavage was investigated in the presence of Mg2+, which facilitates and accelerates this reaction. Self-cleavage of the hammerhead ribozyme was clearly observed at temperatures up to 60 °C, but at higher temperatures self-cleavage occurs together with hydrolysis and with increasing temperature hydrolysis becomes dominant. The influence of the amount of Mg2+ on the reaction rate was also investigated. In addition, we discovered that the reaction proceeds in the presence of high concentrations of monovalent cations (Na+ or K+), although very slowly. Furthermore, at high temperatures (above 60 °C), monovalent cations protect the ribozyme against degradation.

  11. Modelling of a Convecting, Crystallizing, and Replenished Diopside-Anorthite Axial Magma Chamber beneath Mid Ocean Ridges

    NASA Astrophysics Data System (ADS)

    Lowell, R. P.; Lata, C.

    2016-12-01

    The aim of this work is to model heat output from a cooling, convective, crystallizing, and replenished basaltic magma sill, representing an axial magma lens (AML) at mid oceanic ridges. As a simplified version of basaltic melt, we have assumed the melt to be a two-component eutectic system composed of diopside and anorthite. Convective vigor is expressed through the Rayleigh number and heat flux is scaled through a classical relationship between the Rayleigh number and Nusselt number, where the temperature difference driving the convective heat flux is derived from a "viscous" temperature scale reflecting the strong temperature dependent viscosity of the system. Viscosity is modeled as a function of melt composition and temperature using the Tammann-Vogel-Fulcher equation, with parameters fit to the values of observed viscosities along the diopside-anorthite liquidus. It was observed for the un-replenished case, in which crystals fall rapidly to the floor of the AML, model results show that the higher initial concentration of diopside, the more vigorous the convection and the faster the rate of crystallization and decay of heat output. Replenishment of the AML accompanied by modest thickening of the melt layer stabilizes the heat output at values similar to those observed at ridge-axis hydrothermal systems. This study is an important step forward in quantitative understanding of thermal evolution of the axial magma lens at a mid-ocean ridge and the corresponding effect on high-temperature hydrothermal systems. Future work could involve improved replenishment mechanisms, more complex melts, and direct coupling with hydrothermal circulation models.

  12. Mineralogy of iron sulfides in CM1 and CI1 lithologies of the Kaidun breccia: Records of extreme to intense hydrothermal alteration

    NASA Astrophysics Data System (ADS)

    Harries, Dennis; Zolensky, Michael E.

    2016-06-01

    The polymict Kaidun microbreccia contains lithologies of C-type chondrites with euhedral iron sulfide crystals of hydrothermal origin. Our FIB-TEM study reveals that acicular sulfides in a CM1 lithology are composed of Fe-rich pyrrhotite with nonintegral vacancy superstructures (NC-pyrrhotite), troilite, and pentlandite, all showing distinct exsolution textures. Based on phase relations in the Fe-Ni-S system, we constrain the temperature of formation of the originally homogeneous monosulfide solid solution to the range of 100-300 °C. In some crystals the exsolution of pentlandite and the microtextural equilibration was incomplete, probably due to rapid cooling. We use thermodynamic modeling to constrain the physicochemical conditions of the extreme hydrothermal alteration in this lithology. Unless the CM1 lithology was sourced from a large depth in the parent body (internal pressure >85 bar) or the temperatures were in the lower range of the interval determined, the water was likely present as vapor. Previously described light δ34S compositions of sulfides in Kaidun's CM1 lithology are likely due to the loss of 34S-enriched H2S during boiling. Platy sulfide crystals in an adjacent, intensely altered CI1 lithology are composed of Fe-poor, monoclinic 4C-pyrrhotite and NC-pyrrhotite and probably formed at lower temperatures and higher fS2 relative to the CM1 lithology. However, a better understanding of the stability of Fe-poor pyrrhotites at temperatures below 300 °C is required to better constrain these conditions.

  13. Abiotic condensation synthesis of glyceride lipids and wax esters under simulated hydrothermal conditions.

    PubMed

    Rushdi, Ahmed I; Simoneit, Bernd R T

    2006-04-01

    Precursor compounds for abiotic proto cellular membranes are necessary for the origin of life. Amphipathic compounds such as fatty acids and acyl glycerols are important candidates for micelle/bilayer/vesicle formation. Two sets of experiments were conducted to study dehydration reactions of model lipid precursors in aqueous media to form acyl polyols and wax esters, and to evaluate the stability and reactions of the products at elevated temperatures. In the first set, mixtures of n-nonadecanoic acid and ethylene glycol in water, with and without oxalic acid, were heated at discrete temperatures from 150 ( composite function)C to 300 ( composite function)C for 72 h. The products were typically alkyl alkanoates, ethylene glycolyl alkanoates, ethylene glycolyl bis-alkanoates and alkanols. The condensation products had maximum yields between 150 ( composite function)C and 250 ( composite function)C, and were detectable and thus stable under hydrothermal conditions to temperatures < 300 ( composite function)C. In the second set of experiments, mixtures of n-heptanoic acid and glycerol were heated using the same experimental conditions, with and without oxalic acid, between 100 ( composite function)C and 250 ( composite function)C. The main condensation products were two isomers each of monoacylglycerols and diacylglycerols at all temperatures, as well as minor amounts of the fatty acid anhydride and methyl ester. The yield of glyceryl monoheptanoates generally increased with increasing temperature and glyceryl diheptanoates decreased noticeably with increasing temperature. The results indicate that condensation reactions and abiotic synthesis of organic lipid compounds under hydrothermal conditions occur easily, provided precursor concentrations are sufficiently high.

  14. Influence of Hydrodynamics on the Larval Supply to Hydrothermal Vents on the East Pacific Rise

    DTIC Science & Technology

    2007-06-01

    field studies, this thesis first provides new morphological and genetic identifications for hydrothermal vent gastropod larvae along the northern East Pa...cific Rise. Daily and weekly variability in the supply of hydrothermal vent gastropod larvae to two hydrothermal vents, 1.6 km apart on the East...15 1.1 Thesis Organization ................................... 18 2 Morphological and molecular identification of gastropod larvae 23 2.1 Introduction

  15. Distribution, structure and temporal variability of hydrothermal outflow at a slow-spreading hydrothermal field from seafloor image mosaics.

    NASA Astrophysics Data System (ADS)

    Barreyre, Thibaut; Escartin, Javier; Cannat, Mathilde; Garcia, Rafael; Science Party, Momar'08; Science Party, Bathyluck'09

    2010-05-01

    The Lucky Strike hydrothermal site, located South of the Azores along the Mid-Atlantic Ridge, is one of the largest and best-known active hydrothermal fields along the ridge system. This site within the MoMAR area is also the target for the installation in 2010 of a pilot deep-sea observatory with direct telemetry to land, to be part of the European Seafloor Observatory Network (ESONET). The Lucky Strike hydrothermal site has seen extensive high-resolution, near-bottom geophysical surveys in 1996 (Lustre'96), 2006 (Momareto06), 2008 (MOMAR08) and 2009 (Bathyluck09). Vertically acquired black-and-white electronic still camera images have been projected and georeferenced to obtain 3 image mosaics covering the zone of active venting, extending ~ 700x800 m2, and with full image resolution (~10 mm pixels). These data allow us to study how hydrothermal outflow is structured, including the relationships between the zones of active high-temperature venting, areas of diffuse outflow, and the geological structure (nature of the substrate, faults and fissures, sediments, etc.). Hydrothermal outflow is systematically associated with bacterial mats that are easily identified in the imagery, allowing us to study temporal variability at two different scales. Over the 13-year period we can potentially track changes in both the geometry and intensity of hydrothermal activity throughout the system; our preliminary study of the Eiffel Tower, White Castle and Mt Segur indicate that activity has been sustained in recent times, with small changes in the detailed geometry of the diffuse outflow and its intensity. At longer times scales (hundreds to 1000 years?) imagery also shows evidence of areas of venting that are no longer active, often associated with the active structures. In combination with the high-resolution bathymetry, the imagery data thus allow us to characterize the shallow structure of hydrothermal outflow at depth, the structural and volcanic control, and ultimately quantify the heat flux associates with this hydrothermal outflow. Image mosaics are also key for the installation of instrumentation required by temporal studies, and for the infrastructure of the ESONET pilot seafloor observatory. This type of survey techniques and studies can also be extended to other areas of interest, such as hydrothermal fields, cold seeps, etc.

  16. Exploration and discovery in Yellowstone Lake: results from high-resolution sonar imaging, seismic reflection profiling, and submersible studies

    NASA Astrophysics Data System (ADS)

    Morgan, L. A.; Shanks, W. C.; Lovalvo, D. A.; Johnson, S. Y.; Stephenson, W. J.; Pierce, K. L.; Harlan, S. S.; Finn, C. A.; Lee, G.; Webring, M.; Schulze, B.; Dühn, J.; Sweeney, R.; Balistrieri, L.

    2003-04-01

    'No portion of the American continent is perhaps so rich in wonders as the Yellow Stone' (F.V. Hayden, September 2, 1874) Discoveries from multi-beam sonar mapping and seismic reflection surveys of the northern, central, and West Thumb basins of Yellowstone Lake provide new insight into the extent of post-collapse volcanism and active hydrothermal processes occurring in a large lake environment above a large magma chamber. Yellowstone Lake has an irregular bottom covered with dozens of features directly related to hydrothermal, tectonic, volcanic, and sedimentary processes. Detailed bathymetric, seismic reflection, and magnetic evidence reveals that rhyolitic lava flows underlie much of Yellowstone Lake and exert fundamental control on lake bathymetry and localization of hydrothermal activity. Many previously unknown features have been identified and include over 250 hydrothermal vents, several very large (>500 m diameter) hydrothermal explosion craters, many small hydrothermal vent craters (˜1-200 m diameter), domed lacustrine sediments related to hydrothermal activity, elongate fissures cutting post-glacial sediments, siliceous hydrothermal spire structures, sublacustrine landslide deposits, submerged former shorelines, and a recently active graben. Sampling and observations with a submersible remotely operated vehicle confirm and extend our understanding of the identified features. Faults, fissures, hydrothermally inflated domal structures, hydrothermal explosion craters, and sublacustrine landslides constitute potentially significant geologic hazards. Toxic elements derived from hydrothermal processes also may significantly affect the Yellowstone ecosystem.

  17. Synthesis and hydrophobic adsorption properties of microporous/mesoporous hybrid materials.

    PubMed

    Hu, Qin; Li, Jinjun; Qiao, Shizhang; Hao, Zhengping; Tian, Hua; Ma, Chunyan; He, Chi

    2009-05-30

    Hybrid materials of silicalite-1 (Sil-1)-coated SBA-15 particles (MSs) have been successfully synthesized by crystallization process under hydrothermal conditions. These MSs materials were characterized by X-ray diffraction, nitrogen adsorption/desorption and TEM techniques, which illustrated that the silicalite-1-coated SBA-15 particles were successfully prepared and had large pore volume and hierarchical pore size distribution. Further experimental studies indicated that longer crystallization time under basic condition caused the mesostructure of SBA-15 materials to collapse destructively and higher calcination temperature tended to disrupt the long-range mesoscopic order while they had little influence on the phase of microcrystalline silicalite-1 zeolite. The resultant MSs materials were investigated by estimating dynamic adsorption capacity under dry and wet conditions to evaluate their adsorptive and hydrophobic properties. The hydrophobicity index (HI) value followed the sequence of silicalite-1>MSs>SBA-15, which revealed that the SBA-15 particles coated with the silicalite-1 seeds enhanced the surface hydrophobicity, and also were consistent with FTIR results. Our studies show that MSs materials combined the advantages of the ordered mesoporous material (high adsorptive capacity, large pore volume) and silicalite-1 zeolite (super-hydrophobic property, high hydrothermal stability), and the presence of micropores directly led to an increase in the dynamic adsorption capacity of benzene under dry and wet conditions.

  18. Hydrothermal synthesis of alpha- and beta-HgS nanostructures

    NASA Astrophysics Data System (ADS)

    Galain, Isabel; María, Pérez Barthaburu; Ivana, Aguiar; Laura, Fornaro

    2017-01-01

    We synthesized HgS nanostructures by the hydrothermal method in order to use them as electron acceptors in hybrid organic-inorganic solar cells. We employed different mercury sources (HgO and Hg(CH3COO)2) and polyvinylpyrrolidone (PVP) or hexadecanethiol (HDT) as stabilizing/capping agent for controlling size, crystallinity, morphology and stability of the obtained nanostructures. We also used thiourea as sulfur source, and a temperature of 180 °C during 6 h. Synthesized nanostructures were characterized by powder X-Ray Diffraction, Diffuse Reflectance Infrared Fourier Transform and Transmission Electron Microscopy. When PVP acts as stabilizing agent, the mercury source has influence on the size -but not in morphology- of the beta-HgS obtained nansostructures. HDT has control over nanostructures' size and depending on the relation Hg:HDT, we obtained a mixture of alpha and beta HgS which can be advantageous in the application in solar cells, due their absorption in different spectral regions. The smallest nanostructures obtained have a mean diameter of 20 nm when using HDT as capping agent. Also, we deposited the aforementioned nanostructures onto flat glass substrates by the spin coating technique as a first approach of an active layer of a solar cell. The depositions were characterized by atomic force microscopy. We obtained smaller particle deposition and higher particle density -but a lower area coverage (5%) - in samples with HDT as capping agent. This work presents promising results on nanostructures for future application on hybrid solar cells. Further efforts will be focused on the deposition of organic-inorganic layers.

  19. Pipeline transportation of upgraded Yugoslavian lignite fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ljubicic, B.; Anderson, C.; Bukurov, Z.

    1993-12-31

    Hydraulic transport and handling procedures for coal are not widely used, but when practiced, they result in a technically and economically successful operation. Potentially the most attractive way to utilize lignitic coals for power generation would be to combine hydraulic mining techniques with aqueous ash removal, hydrothermal processing, solids concentration, and coal-water fuel (CWF) combustion. Technical and economic assessment of this operation is being implemented within the Yugoslavian-American Scientific Technical Cooperation Agreement. The Energy and Environmental Research Center (EERC), Grand Forks, North Dakota, with support from the U.S. Department of Energy, has entered into a jointly sponsored research project withmore » Electric Power of Serbia (EPS), Belgrade, Yugoslavia, to investigate the application of the nonevaporative hydrothermal drying procedure, commonly called hot-water drying (HWD), developed at the EERC, to the lignite from the Kovin deposit. Advances in hydrothermal treatment of low-rank coals (LRCs) at the EERC have enabled cheaper, more reactive LRCs to be used in coal-water fuels (CWFs). HWD is a high-temperature, nonevaporative drying technique carried out at high pressure in water that permanently alters the structure of LRC. It solves the stability problems by producing a safe, easily transported, liquid fuel that can be handled and used like oil. For continued or increased success, it is necessary to evaluate carefully all aspects of slurry technology that permit further optimization. This paper discusses some aspects of low-rank coal hydraulic transport combined with hydrothermal treatment as an alternative energy solution toward less oil dependence in Yugoslavia.« less

  20. Hydrothermal treatment followed by enzymatic hydrolysis and hydrothermal carbonization as means to valorise agro- and forest-based biomass residues.

    PubMed

    Wikberg, Hanne; Grönqvist, Stina; Niemi, Piritta; Mikkelson, Atte; Siika-Aho, Matti; Kanerva, Heimo; Käsper, Andres; Tamminen, Tarja

    2017-07-01

    The suitability of several abundant but underutilized agro and forest based biomass residues for hydrothermal treatment followed by enzymatic hydrolysis as well as for hydrothermal carbonization was studied. The selected approaches represent simple biotechnical and thermochemical treatment routes suitable for wet biomass. Based on the results, the hydrothermal pre-treatment followed by enzymatic hydrolysis seemed to be most suitable for processing of carbohydrate rich corn leaves, corn stover, wheat straw and willow. High content of thermally stable components (i.e. lignin) and low content of ash in the biomass were advantageous for hydrothermal carbonization of grape pomace, coffee cake, Scots pine bark and willow. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Enhancement of the electrochemical performance of hydrothermally prepared anatase nanoparticles for optimal use as high capacity anode materials in lithium ion batteries (LIBs)

    NASA Astrophysics Data System (ADS)

    Sanad, M. M. S.; Rashad, M. M.; Powers, K.

    2015-02-01

    Mesoporous TiO2 nanoparticles have been synthesized via facile hydrolytic hydrothermal technique without incorporation any template. The precious metallic nanoparticles; Ag, Pt and Pd have been embedded between the anatase particles using in situ reduction step. The structural properties of the as-synthesized samples were investigated by X-ray diffraction, transmission electron microscopic and N2 adsorption-desorption isotherm ( S BET). The electrochemical studies for the as-prepared anode materials including, cyclic voltammetry and electrochemical impedance spectroscopy indicated a significant improvement in the electronic conductivity of the lithium-TiO2 cells. Therefore, the charge-discharge rates were noticeably promoted as a result of the enhancement of Li-ion diffusion and charge transfer. The cycling results of Pd-TiO2 revealed a marvelous improvement in both charge and discharge capacities by 89.4 and 88 % after 10 cycles at C/5 rate. Generally, all the as-prepared TiO2 nanocomposites showed enhanced specific capacity, cycling stability and rate capability compared to the pure TiO2, providing a promising behavior for use as anodes in lithium ion batteries (LIBs).

  2. One-Step Hydrothermal Synthesis of Zeolite X Powder from Natural Low-Grade Diatomite.

    PubMed

    Yao, Guangyuan; Lei, Jingjing; Zhang, Xiaoyu; Sun, Zhiming; Zheng, Shuilin

    2018-05-28

    Zeolite X powder was synthesized using natural low-grade diatomite as the main source of Si but only as a partial source of Al via a simple and green hydrothermal method. The microstructure and surface properties of the obtained samples were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), wavelength dispersive X-ray fluorescence (XRF), calcium ion exchange capacity (CEC), thermogravimetric-differential thermal (TG-DTA) analysis, and N₂ adsorption-desorption technique. The influence of various synthesis factors, including aging time and temperature, crystallization time and temperature, Na₂O/SiO₂ and H₂O/Na₂O ratio on the CEC of zeolite, were systematically investigated. The as-synthesized zeolite X with binary meso-microporous structure possessed remarkable thermal stability, high calcium ion exchange capacity of 248 mg/g and large surface area of 453 m²/g. In addition, the calcium ion exchange capacity of zeolite X was found to be mainly determined by the crystallization degree. In conclusion, the synthesized zeolite X using diatomite as a cost-effective raw material in this study has great potential for industrial application such as catalyst support and adsorbent.

  3. Facile hydrothermal synthesis of one-dimensional nanostructured α-MnO2 for supercapacitors

    NASA Astrophysics Data System (ADS)

    Wei, Hongmei; Wang, Jinxing; Yang, Shengwei; Zhang, Yangyang; Li, Tengfei; Zhao, Shuoqing

    2016-09-01

    α-MnO2 recently becomes a promising candidate of electrode materials for high effective supercapacitors in which it possesses of unique structure of 2×2 tunnels that can provide more electrons and ions diffusion paths. In this work, different morphologies MnO2 with α-phase crystalline structure have been prepared via a one-step facile hydrothermal method by adding various reagents. Compositions, microstructures and morphologies of these as-synthesized materials were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM) and electrochemical properties of α-MnO2 electrodes were studied by the cyclic voltammetry (CV), galvanostatic charge/discharge and electrochemical impedance spectroscopy (EIS) in 1 M Na2SO4 aqueous solution. The specific capacitance of nanowires were 158 F g-1 while the specific capacitance of nanorods were 106 F g-1 at current density of 4 A g-1, and improved performance of the wire-like electrode material was probably ascribed to the larger specific surface area that can provide relatively more active sites for high capacity. Meanwhile, both the nanowires and nanorods of MnO2 presented fine cycle stability after continuous multiple charge/discharge times.

  4. Microwave-assisted hydrothermal synthesis of biocompatible silver sulfide nanoworms

    NASA Astrophysics Data System (ADS)

    Xing, Ruimin; Liu, Shanhu; Tian, Shufang

    2011-10-01

    In this study, silver sulfide nanoworms were prepared via a rapid microwave-assisted hydrothermal method by reacting silver nitrate and thioacetamide in the aqueous solution of the Bovine Serum Albumin (BSA) protein. The morphology, composition, and crystallinity of the nanoworms were characterized by field emission scanning electron microscopy (FESEM), X-ray powder diffraction (XRD), transmission electron microscopy (TEM), selected area electron diffraction (SAED), X-ray energy dispersive spectroscopy (EDS), and Fourier transform infrared (FTIR) spectroscopy. The results show that the nanoworms were assembled by multiple adjacent Ag2S nanoparticles and stabilized by a layer of BSA attached to their surface. The nanoworms have the sizes of about 50 nm in diameter and hundreds of nanometers in length. The analyses of high-resolution TEM and their correlative Fast Fourier Transform (FFT) indicate that the adjacent Ag2S nanoparticles grow by misoriented attachment at the connective interfaces to form the nanoworm structure. In vitro assays on the human cervical cancer cell line HeLa show that the nanoworms exhibit good biocompatibility due to the presence of BSA coating. This combination of features makes the nanoworms attractive and promising building blocks for advanced materials and devices.

  5. In situ defect annealing of swift heavy ion irradiated CeO 2 and ThO 2 using synchrotron X-ray diffraction and a hydrothermal diamond anvil cell

    DOE PAGES

    Palomares, Raul I.; Tracy, Cameron L.; Zhang, Fuxiang; ...

    2015-04-16

    Hydrothermal diamond anvil cells (HDACs) provide facile means for coupling synchrotron Xray techniques with pressure up to 10 GPa and temperature up to 1300 K. This manuscript reports on an application of the HDAC as an ambient-pressure sample environment for performing in situ defect annealing and thermal expansion studies of swift heavy ion irradiated CeO 2 and ThO 2 using synchrotron X-ray diffraction. The advantages of the in situ HDAC technique over conventional annealing methods include: rapid temperature ramping and quench times, high-resolution measurement capability, simultaneous annealing of multiple samples, and prolonged temperature- and apparatus stability at high temperatures. Isochronalmore » annealing between 300 K and 1100 K revealed 2-stage and 1-stage defect recovery processes for irradiated CeO 2 and ThO 2, respectively; indicating that the morphology of the defects produced by swift heavy ion irradiation of these two materials differs significantly. These results suggest that electronic configuration plays a major role in both the radiation-induced defect production and high temperature defect recovery mechanisms of CeO 2 and ThO 2.« less

  6. Hydrothermal Diamond Anvil Cell (HDAC): From Visual Observation to X-ray Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Bassett, W. A.; Mibe, K.

    2006-05-01

    A fluid sample contained in a Re gasket between two diamond anvils can be subjected to pressures up to 2.5 GPa and temperatures up to 1200°C in a resistively heated hydrothermal diamond anvil cell (HDAC). Thermocouples are used to measure temperature. The constant-volume sample chamber permits isochoric measurements that can be used to determine pressure from the equation of state of H2O and to map phases and properties in P-T space. A movie of reactions between K-feldspar and water up to 2.5 GPa and 880°C illustrates the use of visual observations for mapping coexisting solution, melt, and solid phases. X-ray absorption spectroscopy of ZnBr2 in solution up to 500°C and 500 MPa shows hydrogen bond breaking in the hydration shells of the ZnBr42- and Br- ions with increasing temperature. In other studies the stability field of ikaite (CaCO3·6H2O) has been mapped by visual observation and Raman spectroscopy; the phases of montmorillonite have been mapped by X-ray diffraction; and the leaching of Pb from zircon has been measured by X-ray microprobe.

  7. Ge and Fe Isotope Fractionation in Metabasites during Subduction-Zone Metamorphism

    NASA Astrophysics Data System (ADS)

    Luais, B.; El Korh, A. M. T.; Boiron, M. C.; Deloule, E.; Cividini, D.

    2016-12-01

    Non-traditional stable isotope fractionation during subduction of oceanic crust provides a powerful but challenging tool for understanding geochemical processes in the sub-arc mantle. Iron and germanium are strongly sensitive to low-temperature (T) hydrothermal processes (< 350°C), but can also fractionate at high-T (>700°C) [1-4]. We measured Fe and Ge isotopes in high-pressure metabasites of hydrothermally altered MORB (1.7-2.3 GPa; 550-600°C [5]) from the Ile de Groix (France) to study their behaviour during subduction and fluid-rock interactions. Eclogites and blueschists have δ74GeNIST3120a values (+0.42-0.65‰) similar to those of tholeiitic basalts (+0.55-0.57‰ [2]), indicating a negligible effect of hydrothermal alteration on δ74Ge values. Weak decreases in δ74Ge values occur during dehydration from blueschist to eclogite facies, and in greenschists showing evidence of restricted fluid-rock interaction, but remain close to the HP range (+0.39-0.49‰). This near constancy is attributed to stability of garnet, the main Ge host. By contrast, albite and calcite-bearing greenschists that suffer garnet breakdown show evidence of Ge isotope fractionation (δ74Ge = +0.84-0.98‰) during intensive fluid interaction in a reduced context (Fe2+/Fetot= 0.77-0.80). The metabasites have δ56FeIRMM-014 values (+0.16-0.33‰) heavier than MORBs-OIBs (+0.07-0.18‰ [3]). Unlike Ge isotopes, Fe isotopes correlate with HFSE and mainly reflect protolith heterogeneity. The increase in δ56Fe compared to igneous basic rocks results from open-system hydrothermal alteration prior to subduction. Small correlated variations in Fe elemental (Fe2+/Fetot) and isotopic compositions between blueschists, eclogites and greenschists suggest that Fe isotope fractionation was buffered by the iron of the basic protoliths during subduction and exhumation. Thus metasomatism related to fluids derived from subducted hydrothermally altered metabasites might have little effect on mantle Ge and Fe isotope compositions under subsolidus conditions. [1] Rouxel et al 2003, Chem Geol 202, 155-182. [2] Luais 2012. Chem Geol 334, 295-311. [3] Teng et al, 2013, GCA 107, 12-26. [4] Escoube et al 2015. GCA 167, 93-112. [5] El Korh et al 2009, J Petrol 50, 1107-1148.

  8. Characterized hydrochar of algal biomass for producing solid fuel through hydrothermal carbonization.

    PubMed

    Park, Ki Young; Lee, Kwanyong; Kim, Daegi

    2018-06-01

    The aim of this work was to study the characterized hydrochar of algal biomass to produce solid fuel though hydrothermal carbonization. Hydrothermal carbonization conducted at temperatures ranging from 180 to 270 °C with a 60 min reaction improved the upgrading of the fuel properties and the dewatering of wet-basis biomasses such as algae. The carbon content, carbon recovery, energy recovery, and atomic C/O and C/H ratios in all the hydrochars in this study were improved. These characteristic changes in hydrochar from algal biomass are similar to the coalification reactions due to dehydration and decarboxylation with an increase in the hydrothermal reaction temperature. The results of this study indicate that hydrothermal carbonization can be used as an effective means of generating highly energy-efficient renewable fuel resources using algal biomass. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Organic matter in hydrothermal metal ores and hydrothermal fluids

    USGS Publications Warehouse

    Orem, W.H.; Spiker, E. C.; Kotra, R.K.

    1990-01-01

    Massive polymetallic sulfides are currently being deposited around active submarine hydrothermal vents associated with spreading centers. Chemoautolithotrophic bacteria are responsible for the high production of organic matter also associated with modern submarine hydrothermal activity. Thus, there is a significant potential for organic matter/metal interactions in these systems. We have studied modern and ancient hydrothermal metal ores and modern hydrothermal fluids in order to establish the amounts and origin of the organic matter associated with the metal ores. Twenty-six samples from modern and ancient hydrothermal systems were surveyed for their total organic C contents. Organic C values ranged from 0.01% to nearly 4.0% in these samples. Metal ores from modern and ancient sediment-covered hydrothermal systems had higher organic C values than those from modern and ancient hydrothermal systems lacking appreciable sedimentary cover. One massive pyrite sample from the Galapagos spreading center (3% organic C) had stable isotope values of -27.4% (??13C) and 2.1% (??15N), similar to those in benthic siphonophors from active vents and distinct from seep sea sedimentary organic matter. This result coupled with other analyses (e.g. 13C NMR, pyrolysis/GC, SEM) of this and other samples suggests that much of the organic matter may originate from chemoautolithotrophic bacteria at the vents. However, the organic matter in hydrothermal metal ores from sediment covered vents probably arises from complex sedimentary organic matter by hydrothermal pyrolysis. The dissolved organic C concentrations of hydrothermal fluids from one site (Juan de Fuca Ridge) were found to be the same as that of background seawater. This result may indicate that dissolved organic C is effectively scavenged from hydrothermal fluids by biological activity or by co-precipitation with metal ores. ?? 1990.

  10. Soil-plant-microbial relations in hydrothermally altered soils of Northern California

    USDA-ARS?s Scientific Manuscript database

    Soils developed on relict hydrothermally altered soils throughout the Western United States present unique opportunities to study the role of geology on above and belowground biotic activity and composition. Soil and vegetation samples were taken at three unaltered andesite and three hydrothermally ...

  11. Vapour discharges on Nevado del Ruiz during the recent activity: Clues on the composition of the deep hydrothermal system and its effects on thermal springs

    NASA Astrophysics Data System (ADS)

    Federico, Cinzia; Inguaggiato, Salvatore; Chacón, Zoraida; Londoño, John Makario; Gil, Edwing; Alzate, Diego

    2017-10-01

    The Nevado del Ruiz volcano is considered one of the most active volcanoes in Colombia, which can potentially threaten approximately 600,000 inhabitants. The existence of a glacier and several streams channelling in some main rivers, flowing downslope, increases the risk for the population living on the flank of the volcano in case of unrest, because of the generation of lahars and mudflows. Indeed, during the November 1985 subplinian eruption, a lahar generated by the sudden melting of the glacier killed twenty thousand people in the town of Armero. Moreover, the involvement of the local hydrothermal system has produced in the past phreatic and phreatomagmatic activity, as occurred in 1989. Therefore, the physico-chemical conditions of the hydrothermal system as well as its contribution to the shallow thermal groundwater and freshwater in terms of enthalpy and chemicals require a close monitoring. The phase of unrest occurred since 2010 and culminated with an eruption in 2012, after several years of relative stability, still maintains a moderate alert, as required by the high seismicity and SO2 degassing. In October 2013, a sampling campaign has been performed on thermal springs and stream water, located at 2600-5000 m of elevation on the slope of Nevado del Ruiz, analyzed for water chemistry and stable isotopes. Some of these waters are typically steam-heated (low pH and high sulfate content) by the vapour probably separating from a zoned hydrothermal system. By applying a model of steam-heating, based on mass and enthalpy balances, we have estimated the mass rate of hydrothermal steam discharging in the different springs. The composition of the hottest thermal spring (Botero Londono) is probably representative of a marginal part of the hydrothermal system, having a temperature of 250 °C and low salinity (Cl 1500 mg/l), which suggest, along with the retrieved isotope composition, a chiefly meteoric origin. The vapour discharged at the steam vent "Nereidas" (3600 m asl) is hypothesized to be separated from a high-temperature hydrothermal system. Based on its composition and on literature data on fluid inclusions, we have retrieved the P-T-X conditions of the deep hydrothermal system, as well as its pH and fO2. The vapour feeding Nereidas would separate from a biphasic hydrothermal system characterized by the following parameters: t = 315 °C, P = 15 MPa, NaCl = 10 wt%, CO2 = 5 wt%, and similar proportion between liquid and vapour. Considering also the equilibria involving S-bearing gases and HCl, pH would approach the value of 1.5 while fO2 would correspond to the FeO-Fe2O3 buffer. Chlorine content is estimated at 10,300 mg/l. Changes in the magmatic input into the hydrothermal system could modify its degree of vapourization and/or P-T-X conditions, thus inducing corresponding variations in vapour discharges and thermal waters. These findings, paralleled by contemporary measurements of water flow rates, could give significant clues on risk evaluation.

  12. In situ hydrothermal syntheses, structures and photoluminescent properties of four novel metal-organic frameworks constructed by lanthanide (Ln=Ce(III), Pr(III), Eu(III)) and Cu(I) metals with flexible dicarboxylate acids and piperazine-based ligands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ay, Burak; Karaca, Serkan; Yildiz, Emel, E-mail: eeyildiz@cu.edu.tr

    2016-01-15

    Four novel metal-organic frameworks,[Cu{sub 2}Cl{sub 2}(pyrz)]{sub n} (1) and (H{sub 2}pip){sub n}[Ln{sub 2}(pydc){sub 4}(H{sub 2}O){sub 2}]{sub n} (Ln=Ce (2), Pr (3) and Eu (4), H{sub 2}pzdc=2,3-pyrazinedicarboxylic acid, pyrz=pyrazine, H{sub 2}pydc=2,6-pyridinedicarboxylic acid, H{sub 2}pip=piperazine) have been synthesized under hydrothermal conditions and characterized by the elemental analysis, ICP, Far IR (FIR), FT-IR spectra, TGA, single crystal X-ray diffraction analysis and powder X-ray diffraction (PXRD). Compound 1 is two-dimensional containing Cl-Cu-Cl sites, while the lanthanide complexes contain one-dimensional infinite Ln–O-Ln chains. All the complexes show high thermal stability. The complexes 1–3 exhibit luminescence emission bands at 584, 598 and 614 nm at roommore » temperature when excited at 300 nm. Complex 4 exhibits bright red solid-state phosphorescence upon exposure to UV radiation at room temperature. - Graphical abstract: Four novel metal-organic frameworks have been synthesized under hydrothermal conditions. Thermal and luminescent properties of the compounds have been investigated.« less

  13. Coatings of needle/stripe-like fluoridated hydroxyapatite on H2O2-treated carbon/carbon composites prepared by induction heating and hydrothermal methods

    NASA Astrophysics Data System (ADS)

    Xiong, Xin-Bo; Huang, Jian-Feng; Zeng, Xie-Rong; Liang, Ping; Zou, Ji-Zhao

    2012-06-01

    A hydroxyapatite (HA) coating was achieved on H2O2-treated carbon/carbon (C/C) composite through hydrothermally treating and induction heating deposited CaHPO4 coating in an ammonia solution under ultrasonic water bath. Then, this HA coating was placed in a NH4F solution and hydrothermally treated again to fabricate fluorinated hydroxyapatite (FHA) coatings for 24 h at 353, 373, 393 and 413 K, respectively. The structure, morphology and chemical composition of the HA and FHA coatings were characterized by SEM, XRD, EDS and FTIR, and the adhesiveness and chemical stability of these FHA coatings were examined by a scratch test and an immersion test, respectively. The results showed that the as-prepared FHA coatings contained needle-like or stripe-like crystals, different from those of the HA coating. As the fluoridation temperature rose, the adhesiveness of the FHA coating first increased from 34.8 to 40.9 N at a temperature between 353 and 393 K, and then decreased to 24.2 N at 413 K, while the dissolution rate of the FHA coating decreased steadily. The reasons for the property variation of the FHA coatings were proposed by analyzing the morphology, composition and structure of the coatings.

  14. Ultrasonic-assisted hydrothermal synthesis and catalytic behavior of a novel SAPO-34/Clinoptilolite nanocomposite catalyst for high propylene demand in MTO process

    NASA Astrophysics Data System (ADS)

    Moradiyan, Eshagh; Halladj, Rouein; Askari, Sima; Moghimpour Bijani, Parisa

    2017-08-01

    SAPO-34 as a catalyst has high selectivity and hydrothermal stability, but it is rapidly deactivated by the formation of coke in its micropores. Evaluating the natural Clinoptilolite capability as a binder in nanocomposite catalysts is of interest because of its low cost, and accelerating the reaction. The SAPO-34/Clinoptilolite (S/C) nanocomposite catalysts were synthesized via ultrasonic-assisted hydrothermal method using Clinoptilolite as a binder. Subsequent performance of the catalyst was investigated in the methanol to olefins (MTO) reaction. The structures of synthesized nanocomposite were characterized with several methods such as XRD, XRF, FESEM, TEM, NH3-TPD, FT-IR, and nitrogen adsorption techniques. The modified Clinoptilolite was attained using nitric acid treatment. Although the physicochemical analysis indicated that HNO3-treatment decreases the crystallinity of the Clinoptilolite, the specific surface area of natural zeolite enhances considerably from 20.07 to 187.8 m2/g. The nanocomposite catalysts showed high selectivity toward light olefins with 100% conversion and 90% selectivity to light olefins as desired products at 450 °C. Nanocomposite with the additional diffusion paths for mass transfer provided by binder-filled space ascend to higher catalytic lifetimes in compare with free SAPO-34 catalyst.

  15. Synthesis of zinc aluminate with high surface area by microwave hydrothermal method applied in the transesterification of soybean oil (biodiesel)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quirino, M.R.; Oliveira, M.J.C.; Keyson, D.

    Highlights: • ZnAl{sub 2}O{sub 4} spinel was synthesized by the microwave hydrothermal method in only 15 or 30 min. • The powders show high specific surface area. • ZAT{sub b}15 showed activity of 52.22% for the conversion of soybean oil into biodiesel. - Abstract: Zinc aluminate is a material with high thermal stability and high mechanical strength that, owing to these properties, is used as a catalyst or support. In this work, zinc aluminate spinel was synthesized by the microwave hydrothermal method in only 15 or 30 min at a low temperature (150 °C) without templates, using only Al(NO{sub 3}){submore » 3}·9H{sub 2}O, Zn(NO{sub 3}){sub 2}·6H{sub 2}O, and urea as precursors and applied in the transesterification of soybean oil. X-ray diffraction analysis showed that ZnAl{sub 2}O{sub 4} had a cubic structure without secondary phases. The nitrogen adsorption measurements (BET) revealed a high surface area (266.57 m{sup 2} g{sup −1}) for the nanopowder synthesized in 15 min. This powder showed activity of 52.22% for the catalytic conversion of soybean oil into biodiesel by transesterification.« less

  16. Low Temperature Synthesis of Belite Cement Based on Silica Fume and Lime

    PubMed Central

    Tantawy, M. A.; Shatat, M. R.; El-Roudi, A. M.; Taher, M. A.; Abd-El-Hamed, M.

    2014-01-01

    This paper describes the low temperature synthesis of belite (β-C2S) from silica fume. Mixtures of lime, BaCl2, and silica fume with the ratio of (Ca + Ba)/Si = 2 were hydrothermally treated in stainless steel capsule at 110–150°C for 2–5 hours, calcined at 600–700°C for 3 hours, and analyzed by FTIR, XRD, TGA/DTA, and SEM techniques. Dicalcium silicate hydrate (hillebrandite) was prepared by hydrothermal treatment of lime/silica fume mixtures with (Ca + Ba)/Si = 2 at 110°C for 5 hours. Hillebrandite partially dehydrates in two steps at 422 and 508°C and transforms to γ-C2S at 734°C which in turn transforms to α′-C2S at 955°C which in turn transforms to β-C2S when cooled. In presence of Ba2+ ions, β-C2S could be stabilized with minor transformation to γ-C2S. Mixture of silica fume, lime, and BaCl2 with the ratio of (Ca + Ba)/Si = 2 was successfully utilized for synthesis of β-C2S by hydrothermal treatment at 110°C for 5 hours followed by calcination of the product at 700°C for 3 hours. PMID:27437495

  17. Low Temperature Synthesis of Belite Cement Based on Silica Fume and Lime.

    PubMed

    Tantawy, M A; Shatat, M R; El-Roudi, A M; Taher, M A; Abd-El-Hamed, M

    2014-01-01

    This paper describes the low temperature synthesis of belite (β-C2S) from silica fume. Mixtures of lime, BaCl2, and silica fume with the ratio of (Ca + Ba)/Si = 2 were hydrothermally treated in stainless steel capsule at 110-150°C for 2-5 hours, calcined at 600-700°C for 3 hours, and analyzed by FTIR, XRD, TGA/DTA, and SEM techniques. Dicalcium silicate hydrate (hillebrandite) was prepared by hydrothermal treatment of lime/silica fume mixtures with (Ca + Ba)/Si = 2 at 110°C for 5 hours. Hillebrandite partially dehydrates in two steps at 422 and 508°C and transforms to γ-C2S at 734°C which in turn transforms to α'-C2S at 955°C which in turn transforms to β-C2S when cooled. In presence of Ba(2+) ions, β-C2S could be stabilized with minor transformation to γ-C2S. Mixture of silica fume, lime, and BaCl2 with the ratio of (Ca + Ba)/Si = 2 was successfully utilized for synthesis of β-C2S by hydrothermal treatment at 110°C for 5 hours followed by calcination of the product at 700°C for 3 hours.

  18. Hydrothermal synthesis and characterization of hybrid Al/ZnO-GO composite for significant photodegrdation of dyes

    NASA Astrophysics Data System (ADS)

    Lellala, Kashinath; Namratha, K.; Sudhakar, K.; Byrappa, K.

    2016-05-01

    In the present work, undoped and doped Aluminum/Zinc Oxide - graphene oxide (Al/ZnO-GO) nanocomposite have been successfully synthesized by hydrothermal method from zinc acetate and aluminum nitrate solutions without using of any surfactant/stabilizing agents. The results show that the composites of GO nanosheets are decorated densely by Al/ZnO nanoparticles, which displays a good morphology and blend between GO and Al/ZnO. Hybrid composites exhibit an enhanced photocatalytic performance in reduction of dyes under UV-Vis radiation better than bare ZnO-GO and GO for methylene blue dye. The hydrothermal method leads to particles with a higher crystalline due to ambient temperature of the reaction and autogenously pressure conditions, which alters the phases and crystallizations of the nanocomposite. The optical band gap is narrowed to lower energy values due to controlled addition of aluminum and GO in the composite. The improved optical property in Al-doped ZnO flower decorated on GO can be attributed to the decrease in oxygen deficiency after Al doping. XRD, FTIR, UV-Vis spectroscopy, Raman, and Field Emission Scanning Electron Microscopy characterized the effects of Al doping on the structural characteristics and optical properties on the ZnO-GO.

  19. Hydrothermal synthesis and characterization of hybrid Al/ZnO-GO composite for significant photodegrdation of dyes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lellala, Kashinath; Namratha, K.; Byrappa, K., E-mail: kashinathlellala@gmail.com, E-mail: kbyrappa@gmail.com

    In the present work, undoped and doped Aluminum/Zinc Oxide - graphene oxide (Al/ZnO-GO) nanocomposite have been successfully synthesized by hydrothermal method from zinc acetate and aluminum nitrate solutions without using of any surfactant/stabilizing agents. The results show that the composites of GO nanosheets are decorated densely by Al/ZnO nanoparticles, which displays a good morphology and blend between GO and Al/ZnO. Hybrid composites exhibit an enhanced photocatalytic performance in reduction of dyes under UV-Vis radiation better than bare ZnO-GO and GO for methylene blue dye. The hydrothermal method leads to particles with a higher crystalline due to ambient temperature of themore » reaction and autogenously pressure conditions, which alters the phases and crystallizations of the nanocomposite. The optical band gap is narrowed to lower energy values due to controlled addition of aluminum and GO in the composite. The improved optical property in Al-doped ZnO flower decorated on GO can be attributed to the decrease in oxygen deficiency after Al doping. XRD, FTIR, UV-Vis spectroscopy, Raman, and Field Emission Scanning Electron Microscopy characterized the effects of Al doping on the structural characteristics and optical properties on the ZnO-GO.« less

  20. Chemical environments of submarine hydrothermal systems

    NASA Technical Reports Server (NTRS)

    Shock, Everett L.

    1992-01-01

    Perhaps because black-smoker chimneys make tremendous subjects for magazine covers, the proposal that submarine hydrothermal systems were involved in the origin of life has caused many investigators to focus on the eye-catching hydrothermal vents. In much the same way that tourists rush to watch the spectacular eruptions of Old Faithful geyser with little regard for the hydrology of the Yellowstone basin, attention is focused on the spectacular, high-temperature hydrothermal vents to the near exclusion of the enormous underlying hydrothermal systems. Nevertheless, the magnitude and complexity of geologic structures, heat flow, and hydrologic parameters which characterize the geyser basins at Yellowstone also characterize submarine hydrothermal systems. However, in the submarine systems the scale can be considerably more vast. Like Old Faithful, submarine hydrothermal vents have a spectacular quality, but they are only one fascinating aspect of enormous geologic systems operating at seafloor spreading centers throughout all of the ocean basins. A critical study of the possible role of hydrothermal processes in the origin of life should include the full spectrum of probable environments. The goals of this chapter are to synthesize diverse information about the inorganic geochemistry of submarine hydrothermal systems, assemble a description of the fundamental physical and chemical attributes of these systems, and consider the implications of high-temperature, fluid-driven processes for organic synthesis. Information about submarine hydrothermal systems comes from many directions. Measurements made directly on venting fluids provide useful, but remarkably limited, clues about processes operating at depth. The oceanic crust has been drilled to approximately 2.0 km depth providing many other pieces of information, but drilling technology has not allowed the bore holes and core samples to reach the maximum depths to which aqueous fluids circulate in oceanic crust. Such determinations rely on studies of pieces of deep oceanic crust uplifted by tectonic forces such as along the Southwest Indian Ridge, or more complete sections of oceanic crust called ophiolite sequences which are presently exposed on continents owing to tectonic emplacement. Much of what is thought to happen in submarine hydrothermal systems is inferred from studies of ophiolite sequences, and especially from the better-exposed ophiolites in Oman, Cyprus and North America. The focus of much that follows is on a few general features: pressure, temperature, oxidation states, fluid composition and mineral alteration, because these features will control whether organic synthesis can occur in hydrothermal systems.

  1. Physical inter-relationships between hydrothermal activity, faulting and magmatic processes at the center of a slow-spreading, magma-rich mid-ocean ridge segment: A case study of the Lucky Strike segment (MAR, 37°03'-37‧N)

    NASA Astrophysics Data System (ADS)

    Fontaine, F. J.; Cannat, M.; Escartin, J.; Crawford, W. C.; Singh, S. C.

    2012-12-01

    The modalities and efficiency of hydrothermal heat evacuation at mid-ocean ridges (25% of the global heat loss) are controlled by the lithosphere thermal and permeability structures for which we had robust constraints only for fast/intermediate spreading axis until the last past few years during which integrated geophysical, geological and geochemical studies focused on some hydrothermal sites at slow-spreading ridges. At the Lucky Strike vent field of the mid-atlantic ridge - a hydrothermal complex composed of high-temperature (maximum T=340°C), smoker-like vents and associated diffuse flow and extracting a few hundreds MW from the oceanic lithosphere - a seafloor observatory which installation started in 2005 highlights local interactions between hydrothermal, tectonic and magmatic processes. Detailed geophysical and geological investigations stress the role of the local axial fault system on localizing high- and low-temperature ventings around the faulted rim of a paleo lava lake. Microseismic studies bring constraints on the subseafloor hydrology and suggest an along-axis flow pattern, with a privileged recharge area located about a kilometer north off the active discharges. Seismic reflection studies image a central magma chamber fueling the hydrothermal sites and also reveal its along-axis depth variations likely influencing hydrothermal cell organization and flow focusing. Such linkages among hydrothermal dynamics, heat source and crustal permeability geometries usually lack quantitative constraints at mid-ocean ridges in general, and the Lucky Strike segment settings offers a unique opportunity to couple high-resolution geophysical data to hydrodynamic model. Here we develop a series of original two- and three-dimensional numerical and physical models of hydrothermal activity, tailored to this slow-spreading environment. Our results highlight physical linkages among magmatism, tectonics and crustal hydrology stressing the key role of faulting and magma chamber roof-topology in focusing fluid flow at the center of the Lucky Strike segment. They also help identifying some causes of variations in the modalities of hydrothermal heat extraction along the global ridge network.

  2. Hydrothermal synthesis and shape-reactivity correlation study of automotive three-way nanocatalysts.

    DOT National Transportation Integrated Search

    2014-02-01

    In this project, we have shown that the hydrothermal method can be used to tune : the shape/size of CeO2 nanocrystals. CeO2 nanorods and nanocubes have been successfully : prepared at low and high hydrothermal reaction temperature, respectively. The ...

  3. DIRS1-like retrotransposons are widely distributed among Decapoda and are particularly present in hydrothermal vent organisms

    PubMed Central

    Piednoël, Mathieu; Bonnivard, Eric

    2009-01-01

    Background Transposable elements are major constituents of eukaryote genomes and have a great impact on genome structure and stability. Considering their mutational abilities, TEs can contribute to the genetic diversity and evolution of organisms. Knowledge of their distribution among several genomes is an essential condition to study their dynamics and to better understand their role in species evolution. DIRS1-like retrotransposons are a particular group of retrotransposons according to their mode of transposition that implies a tyrosine recombinase. To date, they have been described in a restricted number of species in comparison with the LTR retrotransposons. In this paper, we determine the distribution of DIRS1-like elements among 25 decapod species, 10 of them living in hydrothermal vents that correspond to particularly unstable environments. Results Using PCR approaches, we have identified 15 new DIRS1-like families in 15 diverse decapod species (shrimps, lobsters, crabs and galatheid crabs). Hydrothermal organisms show a particularly great diversity of DIRS1-like elements with 5 families characterized among Alvinocarididae shrimps and 3 in the galatheid crab Munidopsis recta. Phylogenic analyses show that these elements are divergent toward the DIRS1-like families previously described in other crustaceans and arthropods and form a new clade called AlDIRS1. At larger scale, the distribution of DIRS1-like retrotransposons appears more or less patchy depending on the taxa considered. Indeed, a scattered distribution can be observed in the infraorder Brachyura whereas all the species tested in infraorders Caridea and Astacidea harbor some DIRS1-like elements. Conclusion Our results lead to nearly double both the number of DIRS1-like elements described to date, and the number of species known to harbor these ones. In this study, we provide the first degenerate primers designed to look specifically for DIRS1-like retrotransposons. They allowed for revealing for the first time a widespread distribution of these elements among a large phylum, here the order Decapoda. They also suggest some peculiar features of these retrotransposons in hydrothermal organisms where a great diversity of elements is already observed. Finally, this paper constitutes the first essential step which allows for considering further studies based on the dynamics of the DIRS1-like retrotransposons among several genomes. PMID:19400949

  4. DIRS1-like retrotransposons are widely distributed among Decapoda and are particularly present in hydrothermal vent organisms.

    PubMed

    Piednoël, Mathieu; Bonnivard, Eric

    2009-04-28

    Transposable elements are major constituents of eukaryote genomes and have a great impact on genome structure and stability. Considering their mutational abilities, TEs can contribute to the genetic diversity and evolution of organisms. Knowledge of their distribution among several genomes is an essential condition to study their dynamics and to better understand their role in species evolution. DIRS1-like retrotransposons are a particular group of retrotransposons according to their mode of transposition that implies a tyrosine recombinase. To date, they have been described in a restricted number of species in comparison with the LTR retrotransposons. In this paper, we determine the distribution of DIRS1-like elements among 25 decapod species, 10 of them living in hydrothermal vents that correspond to particularly unstable environments. Using PCR approaches, we have identified 15 new DIRS1-like families in 15 diverse decapod species (shrimps, lobsters, crabs and galatheid crabs). Hydrothermal organisms show a particularly great diversity of DIRS1-like elements with 5 families characterized among Alvinocarididae shrimps and 3 in the galatheid crab Munidopsis recta. Phylogenic analyses show that these elements are divergent toward the DIRS1-like families previously described in other crustaceans and arthropods and form a new clade called AlDIRS1. At larger scale, the distribution of DIRS1-like retrotransposons appears more or less patchy depending on the taxa considered. Indeed, a scattered distribution can be observed in the infraorder Brachyura whereas all the species tested in infraorders Caridea and Astacidea harbor some DIRS1-like elements. Our results lead to nearly double both the number of DIRS1-like elements described to date, and the number of species known to harbor these ones. In this study, we provide the first degenerate primers designed to look specifically for DIRS1-like retrotransposons. They allowed for revealing for the first time a widespread distribution of these elements among a large phylum, here the order Decapoda. They also suggest some peculiar features of these retrotransposons in hydrothermal organisms where a great diversity of elements is already observed. Finally, this paper constitutes the first essential step which allows for considering further studies based on the dynamics of the DIRS1-like retrotransposons among several genomes.

  5. Highly Loaded Fe-MCM-41 Materials: Synthesis and Reducibility Studies

    PubMed Central

    Mokhonoana, Malose P.; Coville, Neil J.

    2009-01-01

    Fe-MCM-41 materials were prepared by different methods. The Fe was both incorporated into the structure and formed crystallites attached to the silica. High Fe content MCM-41 (~16 wt%) with retention of mesoporosity and long-range order was achieved by a range of new synthetic methodologies: (i) by delaying the addition of Fe3+(aq) to the stirred synthesis gel by 2 h, (ii) by addition of Fe3+ precursor as a freshly-precipitated aqueous slurry, (iii) by exploiting a secondary synthesis with Si-MCM-41 as SiO2 source. For comparative purposes the MCM-41 was also prepared by incipient wetness impregnation (IWI). Although all these synthesis methods preserved mesoporosity and long-range order of the SiO2 matrix, the hydrothermally-fabricated Fe materials prepared via the secondary synthesis route has the most useful properties for exploitation as a catalyst, in terms of hydrothermal stability of the resulting support. Temperature-programmed reduction (TPR) studies revealed a three-peak reduction pattern for this material instead of the commonly observed two-peak reduction pattern. The three peaks showed variable intensity that related to the presence of two components: crystalline Fe2O3 and Fe embedded in the SiO2 matrix (on the basis of ESR studies). The role of secondary synthesis of Si-MCM-41 on the iron reducibility was also demonstrated in IWI of sec-Si-MCM-41.

  6. Spatial Distribution of Viruses Associated with Planktonic and Attached Microbial Communities in Hydrothermal Environments

    PubMed Central

    Nunoura, Takuro; Kazama, Hiromi; Noguchi, Takuroh; Inoue, Kazuhiro; Akashi, Hironori; Yamanaka, Toshiro; Toki, Tomohiro; Yamamoto, Masahiro; Furushima, Yasuo; Ueno, Yuichiro; Yamamoto, Hiroyuki; Takai, Ken

    2012-01-01

    Viruses play important roles in marine surface ecosystems, but little is known about viral ecology and virus-mediated processes in deep-sea hydrothermal microbial communities. In this study, we examined virus-like particle (VLP) abundances in planktonic and attached microbial communities, which occur in physical and chemical gradients in both deep and shallow submarine hydrothermal environments (mixing waters between hydrothermal fluids and ambient seawater and dense microbial communities attached to chimney surface areas or macrofaunal bodies and colonies). We found that viruses were widely distributed in a variety of hydrothermal microbial habitats, with the exception of the interior parts of hydrothermal chimney structures. The VLP abundance and VLP-to-prokaryote ratio (VPR) in the planktonic habitats increased as the ratio of hydrothermal fluid to mixing water increased. On the other hand, the VLP abundance in attached microbial communities was significantly and positively correlated with the whole prokaryotic abundance; however, the VPRs were always much lower than those for the surrounding hydrothermal waters. This is the first report to show VLP abundance in the attached microbial communities of submarine hydrothermal environments, which presented VPR values significantly lower than those in planktonic microbial communities reported before. These results suggested that viral lifestyles (e.g., lysogenic prevalence) and virus interactions with prokaryotes are significantly different among the planktonic and attached microbial communities that are developing in the submarine hydrothermal environments. PMID:22210205

  7. Geochemical features of sulfides from the Deyin-1 hydrothermal field at the southern Mid-Atlantic Ridge near 15°S

    NASA Astrophysics Data System (ADS)

    Wang, Shujie; Li, Huaiming; Zhai, Shikui; Yu, Zenghui; Cai, Zongwei

    2017-12-01

    In this study, geochemical compositions of elements in sulfide samples collected from the Deyin-1 hydrothermal field near the 15°S southern Mid-Atlantic Ridge (SMAR) were analyzed by the X-ray fluorescence spectrometry (XRF) and inductively coupled plasma mass spectrometry (ICP-MS) to examine the enrichment regulations of ore-forming elements and hydrothermal mineralization. These sulfide precipitates can be classified macroscopically into three types: Fe-rich sulfide, Fe-Cu-rich sulfide and Fe-Zn-rich sulfide, and are characterized by the enrichment of base metal elements along with a sequence of Fe>Zn>Cu. Compared with sulfides from other hydrothermal fields on MAR, Zn concentrations of sulfides in the research area are significantly high, while Cu concentrations are relatively low. For all major, trace or rare-earth elements (REE), their concentrations and related characteristic parameters exhibit significant variations (up to one or two orders of magnitude), which indicates the sulfides from different hydrothermal vents or even a same station were formed at different stages of hydrothermal mineralization, and suggests the variations of chemical compositions of the hydrothermal fluid with respect to time. The hydrothermal temperatures of sulfides precipitation decreased gradually from station TVG10 (st.TVG10) to st.TVG12, and to st.TVG11, indicating that the precipitation of hydrothermal sulfides is subjected to conditions changed from high temperature to low temperature, and that the hydrothermal activity of study area was at the late stage of a general trend of evolution from strong to weak. The abnormally low concentrations of REE in sulfides and their similar chondrite-normalized REE patterns show that REEs in all sulfides were derived from a same source, but underwent different processes of migration or enrichment, or sulfides were formed at different stages of hydrothermal mineralization. The sulfides collected from the active hydrothermal vent were mainly attributed to precipitating directly from the hydrothermal fluid, while those collected from the extinct hydrothermal chimney might have already been altered by the seawater. Generally, ore-forming elements in the sulfides can be divided into three groups: Fe-based element group, Cu-based element group and Zn-based element group. The first group includes Fe, Mn, Cr, Mo, Sn, Rb and bio-enriching elements, such as P and Si, reflecting the similar characteristics to Fe in the study area. And the second group contains Cu, W, Co, Se, Te and Bi, suggesting the similar behavior with Cu. Moreover, the third group includes Zn, Hf, Hg, Cd, Ta, Ga, Pb, As, Ag, Ni and Sb, which indicates the geochemical characteristics of most dispersed trace elements controlled by Zn-bearing minerals to some extent.

  8. Integrated thermal infrared imaging and Structure-from-Motion photogrametry to map apparent temperature and radiant hydrothermal heat flux at Mammoth Mountain, CA USA

    USGS Publications Warehouse

    Lewis, Aaron; George Hilley,; Lewicki, Jennifer L.

    2015-01-01

    This work presents a method to create high-resolution (cm-scale) orthorectified and georeferenced maps of apparent surface temperature and radiant hydrothermal heat flux and estimate the radiant hydrothermal heat emission rate from a study area. A ground-based thermal infrared (TIR) camera was used to collect (1) a set of overlapping and offset visible imagery around the study area during the daytime and (2) time series of co-located visible and TIR imagery at one or more sites within the study area from pre-dawn to daytime. Daytime visible imagery was processed using the Structure-from-Motion photogrammetric method to create a digital elevation model onto which pre-dawn TIR imagery was orthorectified and georeferenced. Three-dimensional maps of apparent surface temperature and radiant hydrothermal heat flux were then visualized and analyzed from various computer platforms (e.g., Google Earth, ArcGIS). We demonstrate this method at the Mammoth Mountain fumarole area on Mammoth Mountain, CA. Time-averaged apparent surface temperatures and radiant hydrothermal heat fluxes were observed up to 73.7 oC and 450 W m-2, respectively, while the estimated radiant hydrothermal heat emission rate from the area was 1.54 kW. Results should provide a basis for monitoring potential volcanic unrest and mitigating hydrothermal heat-related hazards on the volcano.

  9. Characterizing Microbial Community and Geochemical Dynamics at Hydrothermal Vents Using Osmotically Driven Continuous Fluid Samplers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robidart, Julie C.; Callister, Stephen J.; Song, Peng F.

    2013-05-07

    Microbes play a key role in mediating all aquatic biogeochemical cycles, and ongoing efforts are aimed at better understanding the relationships between microbial phylogenetic and physiological diversity, and habitat physical and chemical characteristics. Establishing such relationships is facilitated by sampling and studying microbiology and geochemistry at the appropriate spatial and temporal scales, to access information on the past and current environmental state that contributes to observed microbial abundances and activities. A modest number of sampling systems exist to date, few of which can be used in remote, harsh environments such as hydrothermal vents, where the ephemeral nature of venting underscoresmore » the necessity for higher resolution sampling. We have developed a robust, continuous fluid sampling system for co-registered microbial and biogeochemical analyses. The osmosis-powered bio-osmosampling system (BOSS) use no electricity, collects fluids with daily resolution or better, can be deployed in harsh, inaccessible environments and can sample fluids continuously for up to five years. Here we present a series of tests to examine DNA, RNA and protein stability over time, as well as material compatability, via lab experiments. We also conducted two field deployments at deep-sea hydrothermal vents to assess changes in microbial diversity and protein expression as a function of the physico-chemical environment. Our data reveal significant changes in microbial community composition co-occurring with relatively modest changes in the geochemistry. These data additionally provide new insights into the distribution of an enigmatic sulfur oxidizing symbiont in its free-living state. Data from the second deployment reveal differences in the representation of peptides over time, underscoring the utility of the BOSS in meta-proteomic studies. In concert, these data demonstrate the efficacy of this approach, and illustrate the value of using this method to study microbial and geochemical phenomena.« less

  10. First hydrothermal active vent discovered on the Galapagos Microplate

    NASA Astrophysics Data System (ADS)

    Tao, C.; Li, H.; Wu, G.; Su, X.; Zhang, G.; Chinese DY115-21 Leg 3 Scientific Party

    2011-12-01

    The Galapagos Microplate (GM) lies on the western Gaplapagos Spreading Center (GSC), representing one of the classic Ridge-Ridge-Ridge (R-R-R) plate boundaries of the Nazca, Cocos, and Pacific plates. The presence of the 'black smoke' and hydrothermal vent community were firstly confirmed on the GSC. Lots of hydrothermal fields were discovered on the center and eastern GSC, while the western GSC has not been well investigated. During 17th Oct. to 9th Nov. 2009, the 3rd leg of Chinese DY115-21 cruise with R/V Dayangyihao has been launched along 2°N-5°S near equatorial East Pacific Rise (EPR). Two new hydrothermal fields were confirmed. One is named 'Precious Stone Mountain', which is the first hydrothermal field on the GM. The other is found at 101.47°W, 0.84°S EPR. The 'Precious Stone Mountain' hydrothermal field (at 101.49°W, 1.22°N) is located at an off-axial seamount on the southern GM boundary, with a depth from 1,450 to 1,700m. Hydrothermal fluids emitting from the fissures and hydrothermal fauna were captured by deep-tow video. Few mineral clasts of pyrite and chalcopyrite were separated from one sediment sample, but no sulfide chimney was found yet. Hydrothermal fauna such as alive mussels, crabs, shrimps, tubeworms, giant clams, as well as rock samples were collected by TV-Grab. The study of the seafloor classification with Simrad EM120 multi-beam echosounder has been conducted on the 'Precious Stone Mountain' hydrothermal field. The result indicates that seafloor materials around the hydrothermal field can be characterized into three types, such as the fresh lava, hydrothermal sediment, and altered rock.

  11. Vapor Discharges On Nevado Del Ruiz During The Recent Activity: Clues On The Composition Of The Deep Hydrothermal System And Its Effects On Thermal Springs

    NASA Astrophysics Data System (ADS)

    Inguaggiato, S.; Federico, C.; Chacon, Z.; Londono, J. M.; Alzate, D. M.; Gil, E.

    2015-12-01

    The Nevado del ruiz volcano (NdR, 5321m asl), one of the most active in Colombia, threatens about 600,000 people. The existence of an ice cap and several streams channeling in some main rivers increase the risk of lahars and mudflows in case of unrest, as occurred during the November 1985 eruption, which caused 20,000 casualties. The involvement of the local hydrothermal system has also produced in the past phreatic and phreatomagmatic activity, as in 1985 and 1989. After more than 7 years of relative stability, since 2010, the still ongoing phase of unrest has produced two small eruption in 2012, and still maintains in high levels of seismicity and SO2 degassing. In October 2013, a sampling campaign has been performed on thermal springs and streamwater, located at 2600-5000 m asl, analyzed for water chemistry and stable isotopes. By applying a model of steam-heating, based on mass and enthalpy balances, we have estimated the mass rate of steam discharging in the different steam-heated springs. The composition of the hottest thermal spring (Botero Londoño) is probably representative of a marginal part of the hydrothermal system, having a temperature of 250°C and low salinity (Cl ~1500 mg/l), which suggest a chiefly meteoric origin, as also confirmed by the isotope composition retrieved for the hydrothermal water. The vapour discharged at the steam vent "Nereidas" (3600 m asl) is hypothesised to be separated from a high-temperature hyrothermal system. Based on its composition and on literature data on fluid inclusions, we have retrieved the P-T-X conditions of the deep hydrothermal system, as well as its pH and fO2. The vapour feeding Nereidas would separate from a byphasic hydrothermal system characterised by the follow parameters: t= 315°C, P=19 MPa, NaCl= 15 %, CO2 = 9%, and similar proportion between liquid and vapour. Considering also the equilibria involving S-bearing gases and HCl, we obtain pH=2, fO2 fixed by FeO-Fe2O3 buffer, and [Cl]=12000 mg/l. Changes in the magmatic input into the hydrothermal system could modify its degree of vaporization and/or P-T-X conditions, thus inducing corresponding variations in vapour discharges and thermal waters. These findings, paralleled by contemporary measurements of water flow rates, could give significant clues on risk evaluation at NdR.

  12. Fabrication Method Study of ZnO Nanocoated Cellulose Film and Its Piezoelectric Property

    PubMed Central

    Ko, Hyun-U; Kim, Hyun Chan; Kim, Jung Woong; Zhai, Lindong; Kim, Jaehwan

    2017-01-01

    Recently, a cellulose-based composite material with a thin ZnO nanolayer—namely, ZnO nanocoated cellulose film (ZONCE)—was fabricated to increase its piezoelectric charge constant. However, the fabrication method has limitations to its application in mass production. In this paper, a hydrothermal synthesis method suitable for the mass production of ZONCE (HZONCE) is proposed. A simple hydrothermal synthesis which includes a hydrothermal reaction is used for the production, and the reaction time is controlled. To improve the piezoelectric charge constant, the hydrothermal reaction is conducted twice. HZONCE fabricated by twice-hydrothermal reaction shows approximately 1.6-times improved piezoelectric charge constant compared to HZONCE fabricated by single hydrothermal reaction. Since the fabricated HZONCE has high transparency, dielectric constant, and piezoelectric constant, the proposed method can be applied for continuous mass production. PMID:28772971

  13. The radiogenic and stable Sr isotope geochemistry of basalt weathering in Iceland: Role of hydrothermal calcite and implications for long-term climate regulation

    NASA Astrophysics Data System (ADS)

    Andrews, M. Grace; Jacobson, Andrew D.

    2017-10-01

    Several studies have examined the geochemistry of Icelandic rivers to quantify the relationship between basalt weathering and long-term climate regulation. Recent research has suggested that the chemical weathering of hydrothermal and metamorphic calcite contributes significant quantities of HCO3- to the Icelandic riverine flux (Jacobson et al., 2015). Because the HCO3- derives from volcanic CO2 that was sequestered in mineral form prior to atmospheric injection, the strength of the basalt weathering feedback occurring in Iceland may be lower than previously realized. To test these hypotheses, we analyzed the radiogenic and stable Sr isotope composition (87Sr/86Sr and δ88/86Sr) of the same suite of water, rock, and mineral samples as examined in Jacobson et al. (2015), and we developed a simple model of the long-term C cycle that considers the transformation of volcanic CO2 to HCO3- during subsurface silicate weathering, which is a precursor to hydrothermal calcite formation. Interpretations based on 87Sr/86Sr and Ca/Sr ratios suggest that conservative, three-component mixing between basalt, calcite, and atmospheric deposition adequately explains river geochemistry. On average, the δ88/86Sr values of glacial and non-glacial rivers (0.414‰ and 0.388‰, respectively) are generally higher than those for basalt (0.276‰); however, calcite δ88/86Sr values (0.347‰) are also higher than those for basalt and span the range of riverine values. Thus, riverine δ88/86Sr values are also consistent three-component mixing between basalt, calcite, and atmospheric deposition. Isotopic fractionation is not required to explain riverine trends. Finally, model equations for the long-term C cycle demonstrate that subsurface silicate weathering reduces the magnitude of the volcanic CO2 degassing flux, which in turn causes the atmosphere to stabilize at lower pCO2 values compared to the case where no subsurface silicate weathering occurs. However, the proportion of the net volcanic C flux introduced to the atmosphere-ocean system as HCO3- after subsurface silicate weathering does not regulate long-term climate. Because hydrothermal calcite simply sequesters some of this HCO3- and delays its transmission to the atmosphere-ocean system until it dissolves at the surface later in time, it can be concluded the weathering of hydrothermal calcite bearing non-atmospheric C also has no effect on long-term climate regulation. Icelandic riverine HCO3- fluxes should be corrected for the hydrothermal calcite weathering contribution prior to quantifying atmospheric CO2 consumption rates by basalt weathering at the Earth's surface.

  14. A mineralogical petrographic and geochemical study of samples from wells in the geothermal field of Milos Island (Greece)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liakopoulos, A.

    1991-01-01

    This paper presents a study of hydrothermal alteration on Milos Island, Greece. Examination of cores and cuttings from the two drill sites, obtained from a depth of about 1100 m in Milos geothermal field, showed that the hydrothermal minerals occurring in the rock include: K-feldspar, albite, chlorite, talc, diopside, epidote, muscovite, tremolite, kaolinite, montmorillonite, alunite, anhydrite, gypsum, calcite, and opaque minerals. The chemical composition of the minerals (104 analyses) was determined with Electron Probe Microanalysis. The composition of the hydrothermal fluid was determined and correlated with the mineralogy. Isotopic ratios of C and O for one calcite sample taken frommore » 341 m depth were determined and used for geochemical calculations. A number of reactions feasible at the P-T conditions of the geothermal field are given to establish the chemical evolution of the hydrothermal fluid. The distribution of the hydrothermal minerals indicates the dilution of the K-, Na- Cl-rich hydrothermal fluid of the deep reservoir by a Ca-, Mg-rich cold water at a shallower level.« less

  15. Stable isotopes in seafloor hydrothermal systems: Vent fluids, hydrothermal deposits, hydrothermal alteration, and microbial processes

    USGS Publications Warehouse

    Shanks, Wayne C.

    2001-01-01

    The recognition of abundant and widespread hydrothermal activity and associated unique life-forms on the ocean floor is one of the great scientific discoveries of the latter half of the twentieth century. Studies of seafloor hydrothermal processes have led to revolutions in understanding fluid convection and the cooling of the ocean crust, the chemical and isotopic mass balance of the oceans, the origin of stratiform and statabound massive-sulfide ore-deposits, the origin of greenstones and serpentinites, and the potential importance of the subseafloor biosphere. Stable isotope geochemistry has been a critical and definitive tool from the very beginning of the modern era of seafloor exploration.

  16. Three-dimensional assembly structure of anatase TiO2 hollow microspheres with enhanced photocatalytic performance

    NASA Astrophysics Data System (ADS)

    Tang, Yihao; Zhan, Shuai; Wang, Li; Zhang, Bin; Ding, Minghui

    The pure anatase TiO2 hollow microspheres are synthesized by a one-step template-free hydrothermal route. By defining temperature and time limits, we produce TiO2 hollow microspheres with a fluoride-mediated self-transformation. The surface morphology of TiO2 hollow microspheres was studied by SEM. The hollow microspheres have diameters of about 800 nm and are remarkably uniform. The UV-light photocatalytic activity and the stability/multifunction of TiO2 hollow microspheres structure were evaluated by photocatalytic degradation of methylene blue and photocatalytic hydrogen evolution. The excellent photocatalytic activity is attributed to large specific surface area, more active sites, unique hollow structures, and improved light scattering.

  17. Facile synthesis of carbon dots with superior sensing ability

    NASA Astrophysics Data System (ADS)

    Jin, Lin; Li, Jingguo; Liu, Liyun; Wang, Zhenling; Zhang, Xingcai

    2018-04-01

    Carbon dots (CDs) have various applications in biomedical and environmental field, such as bio-imaging, bio-sensing and heavy metal detection. In this study, a novel class of CDs were synthesized using a one-step hydrothermal method. The fabricated CDs displayed stable photoluminescence, good water solubility, and photo stability. Moreover, the functional groups (carboxylic acid moieties and hydroxyls) on the surface of the obtained CDs enable it with superior sensing ability (e.g., very low detectable concentration for Pb2+: 5 nmol/L). With superior detection sensitivity, excellent fluorescent properties and facile fabrication method, the as-obtained CDs can find practical applications as cost-effective and sensitive chemo-sensors in water and food safety field.

  18. Molecular ecology of hydrothermal vent microbial communities.

    PubMed

    Jeanthon, C

    2000-02-01

    The study of the structure and diversity of hydrothermal vent microbial communities has long been restricted to the morphological description of microorganisms and the use of enrichment culture-based techniques. Until recently the identification of the culturable fraction required the isolation of pure cultures followed by testing for multiple physiological and biochemical traits. However, peculiar inhabitants of the hydrothermal ecosystem such as the invertebrate endosymbionts and the dense microbial mat filaments have eluded laboratory cultivation. Substantial progress has been achieved in recent years in techniques for the identification of microorganisms in natural environments. Application of molecular approaches has revealed the existence of unique and previously unrecognized microorganisms. These have provided fresh insight into the ecology, diversity and evolution of mesophilic and thermophilic microbial communities from the deep-sea hydrothermal ecosystem. This review reports the main discoveries made through the introduction of these powerful techniques in the study of deep-sea hydrothermal vent microbiology.

  19. Products derived from waste plastics (PC, HIPS, ABS, PP and PA6) via hydrothermal treatment: Characterization and potential applications.

    PubMed

    Zhao, Xuyuan; Zhan, Lu; Xie, Bing; Gao, Bin

    2018-09-01

    In this study, hydrothermal method was applied for the treatment of five typical waste plastics (PC, HIPS, ABS, PP and PA6). The hydrothermal products of oils and solid residues were analyzed for the product slate and combustion behaviors. Some predominant chemical feedstock were detected in the oils, such as phenolic compounds and bisphenol A (BPA) in PC oils, single-ringed aromatic compounds and diphenyl-sketetons compounds in HIPS and ABS oils, alkanes in PP oils, and caprolactam (CPL) in PA6 oils. The hydrothermal solid residues were subjected to DSC analysis. Except the solid residues of PA6, all the solid residues had enormous improvement on the enthalpy of combustion. The solid residues of PC had the maximum promotion up to 576.03% compared to the raw material. The hydrothermal treatment significantly improved the energy density and facilitated effective combustion. Meanwhile, the glass fiber was recovered from the PA6 plastics. In addition, the combustion behaviors of the uplifting residues were investigated to provide the theoretical foundation for further study of combustion optimization. All the results indicated that the oils of waste plastics after hydrothermal treatment could be used as chemical feedstock; the solid residues of waste plastics after hydrothermal treatment could be used as potentially clean and efficient solid fuels. The hydrothermal treatment for various waste plastics was verified as a novel waste-to-energy technique. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Electron microscopy study of microbial mat in the North Fiji basin hydrothermal vent

    NASA Astrophysics Data System (ADS)

    Park, H.; Kim, J. W.; Lee, J. W.

    2017-12-01

    Hydrothermal vent systems consisting of hydrothermal vent, hydrothermal sediment and microbial mat are widely spread around the ocean, particularly spreading axis, continental margin and back-arc basin. Scientists have perceived that the hydrothermal systems, which reflect the primeval earth environment, are one of the best places to reveal the origin of life and extensive biogeochemical process of microbe-mineral interaction. In the present study multiline of analytical methods (X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM)) were utilized to investigate the mineralogy/chemistry of microbe-mineral interaction in hydrothermal microbial mat. Microbial mat samples were recovered by Canadian scientific submersible ROPOS on South Pacific North Fiji basin KIOST hydrothermal vent expedition 1602. XRD analysis showed that red-colored microbial mat contains Fe-oxides and Fe-oxyhydroxides. Various morphologies of minerals in the red-colored microbial mat observed by SEM are mainly showed sheath shaped, resembled with Leptothrix microbial structure, stalks shaped, similar with Marioprofundus microbial structure and globule shaped microbial structures. They are also detected with DNA analysis. The cross sectional observation of microbial structures encrusted with Fe-oxide and Fe-oxyhydroxide at a nano scale by Transmission Electron Microscopy (TEM) and Focused Ion Beam (FIB) technique was developed to verify the structural/biogeochemical properties in the microbe-mineral interaction. Systematic nano-scale measurements on the biomineralization in the microbial mat leads the understandings of biogeochemical environments around the hydrothermal vent.

  1. Response to the comment “Uranyl-chloride speciation and uranium transport in hydrothermal brines: Comment on Migdisov et al. (2018)” by Dargent et al.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Migdisov, A. A.; Runde, W.; Williams-Jones, A. E.

    We welcome the comments provided by Dargent et al. (2018) and appreciate the effort they have made to evaluate our recently reported data on the stability of uranyl(VI) chloride complexes as function of temperature (Migdisov et al., 2018). We also appreciate the opportunity provided by the editor to clarify issues in our paper that were not clearly articulated or in error.

  2. An Ultrastable Heterobimetallic Uranium(IV)/Vanadium(III) Solid Compound Protected by a Redox-Active Phosphite Ligand: Crystal Structure, Oxidative Dissolution, and First-Principles Simulation.

    PubMed

    Gui, Daxiang; Dai, Xing; Zheng, Tao; Wang, Xiangxiang; Silver, Mark A; Chen, Lanhua; Zhang, Chao; Diwu, Juan; Zhou, Ruhong; Chai, Zhifang; Wang, Shuao

    2018-02-05

    The first heterobimetallic uranium(IV)/vanadium(III) phosphite compound, Na 2 UV 2 (HPO 3 ) 6 (denoted as UVP), was synthesized via an in situ redox-active hydrothermal reaction. It exhibits superior hydrolytic and antioxidant stability compared to the majority of structures containing low-valent uranium or vanadium, further elucidated by first-principles simulations, and therefore shows potential applications in nuclear waste management.

  3. Pickering Particles Prepared from Food Waste

    PubMed Central

    Gould, Joanne; Garcia-Garcia, Guillermo; Wolf, Bettina

    2016-01-01

    In this paper, we demonstrate the functionality and functionalisation of waste particles as an emulsifier for oil-in-water (o/w) and water-in-oil (w/o) emulsions. Ground coffee waste was chosen as a candidate waste material due to its naturally high content of lignin, a chemical component imparting emulsifying ability. The waste coffee particles readily stabilised o/w emulsions and following hydrothermal treatment adapted from the bioenergy field they also stabilised w/o emulsions. The hydrothermal treatment relocated the lignin component of the cell walls within the coffee particles onto the particle surface thereby increasing the surface hydrophobicity of the particles as demonstrated by an emulsion assay. Emulsion droplet sizes were comparable to those found in processed foods in the case of hydrophilic waste coffee particles stabilizing o/w emulsions. These emulsions were stable against coalescence for at least 12 weeks, flocculated but stable against coalescence in shear and stable to pasteurisation conditions (10 min at 80 °C). Emulsion droplet size was also insensitive to pH of the aqueous phase during preparation (pH 3–pH 9). Stable against coalescence, the water droplets in w/o emulsions prepared with hydrothermally treated waste coffee particles were considerably larger and microscopic examination showed evidence of arrested coalescence indicative of particle jamming at the surface of the emulsion droplets. Refinement of the hydrothermal treatment and broadening out to other lignin-rich plant or plant based food waste material are promising routes to bring closer the development of commercially relevant lignin based food Pickering particles applicable to emulsion based processed foods ranging from fat continuous spreads and fillings to salad dressings. PMID:28773909

  4. Study of hydrothermal channels based on near-bottom magnetic prospecting: Application to Longqi hydrothermal area

    NASA Astrophysics Data System (ADS)

    Tao, W.; Tao, C.; Li, H.; Zhaocai, W.; Jinhui, Z.; Qinzhu, C.; Shili, L.

    2014-12-01

    Mid-ocean ridges, largely present far from the continental plates, are characterized by complex geological structures and numerous hydrothermal systems with complex controlling factors. Exploring seafloor sulfide resources for industrial and scientific applications is a challenge. With the advent of geophysical surveys for seabed investigation, near-bottom magnetic prospecting, which yields shallow geological structure, is an efficient method for investigating active and inactive hydrothermal fields and for researching the structure of hydrothermal systems (Tivey et al., 1993, 1996;German et al., 2008). We collected near-bottom magnetic data in the Longqi hydrothermal area, located in the southwest Indian ridge (49.6° E; Zhu et al., 2010; Tao et al., 2014), using the autonomous benthic explorer, an autonomous underwater vehicle, during the second leg of the Chinese cruise DY115-19 on board R/V DaYangYiHao. Based on the results of the intensity of the spatial differential vector method (Seaman et al., 1993), we outline the hydrothermal alternation zone. By building models, we subsequently infer a fault along the discovered hydrothermal vents; this fault line may be connected to a detachment fault (Zhao et al., 2013). In addition, we discuss the channels of the hydrothermal circulation system (Figure 1), and presume that heat was conducted to the sea subsurface by the detachment fault; the aqueous fluid that infiltrated the fault is heated and conveyed to the seafloor, promoting the circulation of the hydrothermal system.

  5. Geochemical Evidence for Recent Hydrothermal Alteration of Marine Sediments in Mid-Okinawa Trough, Southwest Japan

    NASA Astrophysics Data System (ADS)

    Tanaka, A.; Abe, G.; Yamaguchi, K. E.

    2014-12-01

    Recent studies have shown that submarine hydrothermal system supports diverse microbial life. Bio-essential metals supporting such microbial communities were released from basalts by high-temperature water-rock interaction in deeper part of the oceanic crust and carried by submarine fluid flow. Its total quantity in global hydrothermal settings has been estimated to be on the order of ~1019 g/yr, which is surprisingly on the same order of the total river flows (Urabe et al., 2011). Therefore, it is important to explore how submarine river system works, i.e., to understand mechanism and extent of elemental transport, which should lead to understanding of the roles of hydrothermal circulation in oceanic crust in controlling elemental budget in the global ocean and geochemical conditions to support deep hot biosphere.  We performed REE analysis of marine sediments influenced by submarine hydrothermal activity in Mid-Okinawa Trough. The sediment samples used in this study are from IODP site at Iheya North region and JADE site at Izena region. The samples show alternation between volcanic and clastic sediments. Hydrothermal fluids of this area contain elevated concentrations of volatile components such as H2, CO2, CH4, NH4+, and H2S, supporting diverse chemoautotrophic microbial community (Nakagawa et al., 2005). The purpose of this study is to examine the effect of hydrothermal activity on the REE signature of the sediments. Chondrite-normalized REE patterns of the samples show relative enrichment of light over heavy REEs, weak positive Ce anomalies, and variable degrees of negative Eu anomalies. The REE patterns suggest the sediments source was mainly basalt, suggesting insignificant input of continental materials. Negative Eu anomalies found in the IODP site become more pronounced with increasing depth, suggesting progressive increase of hydrothermal alteration where Eu was reductively dissolved into fluids by decomposition of feldspars. Contrary, at the JADE site, magnitude of negative Eu anomalies was variable independent of the sediment depth. This suggests changes in the redox conditions, most likely due to occasional invasions of O2-bearing seawater into sediments. Different regimes of hydrothermal fluid flows govern the chemical environments of marine sediments in active hydrothermal areas.

  6. Enhanced mechanical, thermal, and electric properties of graphene aerogels via supercritical ethanol drying and high-temperature thermal reduction.

    PubMed

    Cheng, Yehong; Zhou, Shanbao; Hu, Ping; Zhao, Guangdong; Li, Yongxia; Zhang, Xinghong; Han, Wenbo

    2017-05-03

    Graphene aerogels with high surface areas, ultra-low densities and thermal conductivities have been prepared to exploit their wide applications from pollution adsorption to energy storage, supercapacitor, and thermal insulation. However, the low mechanical properties, poor thermal stability and electric conductivity restrict these aerogels' applications. In this paper, we prepared mechanically strong graphene aerogels with large BET surface areas, low thermal conductivities, high thermal stability and electric conductivities via hydrothermal reduction and supercritical ethanol drying. Annealing at 1500 °C resulted in slightly increased thermal conductivity and further improvement in mechanical properties, oxidation temperature and electric conductivity of the graphene aerogel. The large BET surface areas, together with strong mechanical properties, low thermal conductivities, high thermal stability and electrical conductivities made these graphene aerogels feasible candidates for use in a number of fields covering from batteries to sensors, electrodes, lightweight conductor and insulation materials.

  7. Strength, toughness and aging stability of highly-translucent Y-TZP ceramics for dental restorations.

    PubMed

    Zhang, Fei; Inokoshi, Masanao; Batuk, Maria; Hadermann, Joke; Naert, Ignace; Van Meerbeek, Bart; Vleugels, Jef

    2016-12-01

    The aim was to evaluate the optical properties, mechanical properties and aging stability of yttria-stabilized zirconia with different compositions, highlighting the influence of the alumina addition, Y 2 O 3 content and La 2 O 3 doping on the translucency. Five different Y-TZP zirconia powders (3 commercially available and 2 experimentally modified) were sintered under the same conditions and characterized by X-ray diffraction with Rietveld analysis and scanning electron microscopy (SEM). Translucency (n=6/group) was measured with a color meter, allowing to calculate the translucency parameter (TP) and the contrast ratio (CR). Mechanical properties were appraised with four-point bending strength (n=10), single edge V-notched beam (SEVNB) fracture toughness (n=8) and Vickers hardness (n=10). The aging stability was evaluated by measuring the tetragonal to monoclinic transformation (n=3) after accelerated hydrothermal aging in steam at 134°C, and the transformation curves were fitted by the Mehl-Avrami-Johnson (MAJ) equation. Data were analyzed by one-way ANOVA, followed by Tukey's HSD test (α=0.05). Lowering the alumina content below 0.25wt.% avoided the formation of alumina particles and therefore increased the translucency of 3Y-TZP ceramics, but the hydrothermal aging stability was reduced. A higher yttria content (5mol%) introduced about 50% cubic zirconia phase and gave rise to the most translucent and aging-resistant Y-TZP ceramics, but the fracture toughness and strength were considerably sacrificed. 0.2mol% La 2 O 3 doping of 3Y-TZP tailored the grain boundary chemistry and significantly improved the aging resistance and translucency. Although the translucency improvement by La 2 O 3 doping was less effective than for introducing a substantial amount of cubic zirconia, this strategy was able to maintain the mechanical properties of typical 3Y-TZP ceramics. Three different approaches were compared to improve the translucency of 3Y-TZP ceramics. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  8. Preparation and thermal stability of the spindle α-Fe{sub 2}O{sub 3}@SiO{sub 2} core–shell nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Xin; Niu, Yongan; Li, Yang

    2014-03-15

    The spindle α-Fe{sub 2}O{sub 3}@SiO{sub 2} core–shell nanoparticles (NPs) are prepared via hydrothermal synthesis and modified Stöber method. During these processes, shell thicknesses could be easily adjusted by the amount of tetraethylorthosilicate (TEOS), and the formation of core-free SiO{sub 2} could be effectively avoided. The structures and compositions of α-Fe{sub 2}O{sub 3}@SiO{sub 2} NPs are investigated by transmission electron microscope (TEM), X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and ultraviolet–visible (UV–vis) absorption spectroscopy. These results reveal that the α-Fe{sub 2}O{sub 3}@SiO{sub 2} NPs with certain sizes are monodisperse and homogeneous. To estimate the thermal stability, the α-Fe{sub 2}O{submore » 3}, α-Fe{sub 2}O{sub 3}@SiO{sub 2} and SiO{sub 2} NPs are annealed at 600, 800 and 1000 °C for 1 h under air atmosphere, respectively. Furthermore, the stabilities of these NPs are confirmed by thermal analysis methods. The structure and shape stabilities of these as-prepared α-Fe{sub 2}O{sub 3}@SiO{sub 2} NPs are investigated by XRD and scanning electron microscope (SEM). -- Graphical abstract: Schematic of preparation of the monodisperse spindle α-Fe{sub 2}O{sub 3}@SiO{sub 2} nanoparticles (NPs). Highlights: • The spindle α-Fe{sub 2}O{sub 3}@SiO{sub 2} nanoparticles (NPs) are successfully prepared by hydrothermal synthesis and modified Stöber method. • Optical properties are estimated and calculated by UV vis absorption spectrum. • Thermal stability of the α-Fe{sub 2}O{sub 3}, α-Fe{sub 2}O{sub 3}@SiO{sub 2} and SiO{sub 2} NPs are compared and analyzed by the SEM technique. • The structural changes of α-Fe{sub 2}O{sub 3}@SiO{sub 2} NPs are measured by XRD measurement.« less

  9. Strong hydrothermal eruption 600 BP inside Golovnin caldera, Kunashir Island, Kurile arc

    NASA Astrophysics Data System (ADS)

    Belousov, Alexander; Belousova, Marina; Kozlov, Dmitry

    2017-04-01

    Hydrothermal explosions are difficult to predict and thus they pose serious hazard to visitors of hydrothermal areas. Here we present results of mapping of airfall deposit of strong prehistoric hydrothermal eruption that was the latest eruptive event in the limits of Golovnin caldera in the southern part of Kunashir Island, Kurile arc. This caldera was formed 30 Ka BP (Razhigaeva et al. 1998) that was followed by extrusion of two dacitic lava domes in the central part of the caldera. The studied hydrothermal eruption occurred at active hydrothermal area located at the southern foot of the Vostochny (Eastern) lava dome. This eruption formed a 350-m wide and 40 m deep crater surrounded by low-profile ring of the ejected material. Part of the crater is occupied by 17-m-deep Kipiashee Lake having intensive hydrothermal discharge on its bottom. The ejected material is represented by yellow-white and yellow-brown poorly sorted sandy gravels and sands with admixture of clay. This clastic material was formed by fragmentation of hydrothermally altered pumice tuffs (former sediments of the intracaldera lake). The airfall deposit has nearly circular distribution around the crater. The deposit thickness decreases from 5-7 m at the crater rim to 5 cm on the distances 2-3 km; thickness half-distance (bt) is estimated as 4.1. Volume of the deposit calculated by the method of Fierstein and Nathenson (1992) is 0.007 cub.km. Radiocarbon dating of soil buried directly under the deposit provided calibrated age 1300-1420 AD. This eruption can be considered as a model for future hydrothermal explosions inside the Golovnin caldera. This study was supported by grant of Russian Science Foundation #15-17-20011.

  10. Gas discharges from the Kueishantao hydrothermal vents, offshore northeast Taiwan: Implications for drastic variations of magmatic/hydrothermal activities

    NASA Astrophysics Data System (ADS)

    Chen, Xue-Gang; Lyu, Shuang-Shuang; Zhang, Ping-Ping; Yu, Ming-Zhen; Chen, Chen-Tung Arthur; Chen, Yun-Jie; Li, Xiaohu; Jin, Aimin; Zhang, Hai-Yan; Duan, Wei; Ye, Ying

    2018-03-01

    The chemical compositions of gas discharges from the Kueishantao (KST) hydrothermal field changed dramatically from 2000 to 2014. In this study, we established a gas mixing model for the KST gases. The N2, Ar, and CO2 contents were mixed from a magmatic endmember with CO2 of about 990 mmol/mol, a hydrothermal and an atmospheric endmember enriched in N2 and Ar. More than 71% KST gas components were mantle-derived/magmatic. The calculated endmember N2/Ar ratio and Ar contents of the hydrothermal endmember (percolated fluid) are about 140 and 5.28-5.52 mmol/mol, respectively. This relatively elevated N2/Ar ratio was probably caused by the thermogenic addition of N2. The log(CH4/CO2) values of the KST gas samples correlate well with the mixing temperature that estimated from the mixing ratio between the percolated fluid and the magmatic endmember. It is indicated that the KST CH4 and CO2 may have attained chemical equilibrium. The temporal variations of the KST gas compositions are determined by the mixing ratio, which is dependent on the magmatic activity underneath the KST field. With the decreasing of magmatic activity since 2005, the proportion of the hydrothermal endmember increased, along with the increasing of N2, Ar, and CH4 contents. This study proposed an effective model to quantitatively assess the sources of gas components discharged from submarine hydrothermal vents. In addition, it is suggested that the mixing between a magmatic and a hydrothermal endmember may play an important role in the concentrations of CO2 and CH4 in hydrothermal gas discharges.

  11. Cultivation-Independent and Cultivation-Dependent Analysis of Microbes in the Shallow-Sea Hydrothermal System Off Kueishantao Island, Taiwan: Unmasking Heterotrophic Bacterial Diversity and Functional Capacity.

    PubMed

    Tang, Kai; Zhang, Yao; Lin, Dan; Han, Yu; Chen, Chen-Tung A; Wang, Deli; Lin, Yu-Shih; Sun, Jia; Zheng, Qiang; Jiao, Nianzhi

    2018-01-01

    Shallow-sea hydrothermal systems experience continuous fluctuations of physicochemical conditions due to seawater influx which generates variable habitats, affecting the phylogenetic composition and metabolic potential of microbial communities. Until recently, studies of submarine hydrothermal communities have focused primarily on chemolithoautotrophic organisms, however, there have been limited studies on heterotrophic bacteria. Here, fluorescence in situ hybridization, high throughput 16S rRNA gene amplicon sequencing, and functional metagenomes were used to assess microbial communities from the shallow-sea hydrothermal system off Kueishantao Island, Taiwan. The results showed that the shallow-sea hydrothermal system harbored not only autotrophic bacteria but abundant heterotrophic bacteria. The potential for marker genes sulfur oxidation and carbon fixation were detected in the metagenome datasets, suggesting a role for sulfur and carbon cycling in the shallow-sea hydrothermal system. Furthermore, the presence of diverse genes that encode transporters, glycoside hydrolases, and peptidase indicates the genetic potential for heterotrophic utilization of organic substrates. A total of 408 cultivable heterotrophic bacteria were isolated, in which the taxonomic families typically associated with oligotrophy, copiotrophy, and phototrophy were frequently found. The cultivation-independent and -dependent analyses performed herein show that Alphaproteobacteria and Gammaproteobacteria represent the dominant heterotrophs in the investigated shallow-sea hydrothermal system. Genomic and physiological characterization of a novel strain P5 obtained in this study, belonging to the genus Rhodovulum within Alphaproteobacteria, provides an example of heterotrophic bacteria with major functional capacity presented in the metagenome datasets. Collectively, in addition to autotrophic bacteria, the shallow-sea hydrothermal system also harbors many heterotrophic bacteria with versatile genetic potential to adapt to the unique environmental conditions.

  12. Cultivation-Independent and Cultivation-Dependent Analysis of Microbes in the Shallow-Sea Hydrothermal System Off Kueishantao Island, Taiwan: Unmasking Heterotrophic Bacterial Diversity and Functional Capacity

    PubMed Central

    Tang, Kai; Zhang, Yao; Lin, Dan; Han, Yu; Chen, Chen-Tung A.; Wang, Deli; Lin, Yu-Shih; Sun, Jia; Zheng, Qiang; Jiao, Nianzhi

    2018-01-01

    Shallow-sea hydrothermal systems experience continuous fluctuations of physicochemical conditions due to seawater influx which generates variable habitats, affecting the phylogenetic composition and metabolic potential of microbial communities. Until recently, studies of submarine hydrothermal communities have focused primarily on chemolithoautotrophic organisms, however, there have been limited studies on heterotrophic bacteria. Here, fluorescence in situ hybridization, high throughput 16S rRNA gene amplicon sequencing, and functional metagenomes were used to assess microbial communities from the shallow-sea hydrothermal system off Kueishantao Island, Taiwan. The results showed that the shallow-sea hydrothermal system harbored not only autotrophic bacteria but abundant heterotrophic bacteria. The potential for marker genes sulfur oxidation and carbon fixation were detected in the metagenome datasets, suggesting a role for sulfur and carbon cycling in the shallow-sea hydrothermal system. Furthermore, the presence of diverse genes that encode transporters, glycoside hydrolases, and peptidase indicates the genetic potential for heterotrophic utilization of organic substrates. A total of 408 cultivable heterotrophic bacteria were isolated, in which the taxonomic families typically associated with oligotrophy, copiotrophy, and phototrophy were frequently found. The cultivation-independent and -dependent analyses performed herein show that Alphaproteobacteria and Gammaproteobacteria represent the dominant heterotrophs in the investigated shallow-sea hydrothermal system. Genomic and physiological characterization of a novel strain P5 obtained in this study, belonging to the genus Rhodovulum within Alphaproteobacteria, provides an example of heterotrophic bacteria with major functional capacity presented in the metagenome datasets. Collectively, in addition to autotrophic bacteria, the shallow-sea hydrothermal system also harbors many heterotrophic bacteria with versatile genetic potential to adapt to the unique environmental conditions. PMID:29527196

  13. Heat flux from magmatic hydrothermal systems related to availability of fluid recharge

    USGS Publications Warehouse

    Harvey, M. C.; Rowland, J.V.; Chiodini, G.; Rissmann, C.F.; Bloomberg, S.; Hernandez, P.A.; Mazot, A.; Viveiros, F.; Werner, Cynthia A.

    2015-01-01

    Magmatic hydrothermal systems are of increasing interest as a renewable energy source. Surface heat flux indicates system resource potential, and can be inferred from soil CO2 flux measurements and fumarole gas chemistry. Here we compile and reanalyze results from previous CO2 flux surveys worldwide to compare heat flux from a variety of magma-hydrothermal areas. We infer that availability of water to recharge magmatic hydrothermal systems is correlated with heat flux. Recharge availability is in turn governed by permeability, structure, lithology, rainfall, topography, and perhaps unsurprisingly, proximity to a large supply of water such as the ocean. The relationship between recharge and heat flux interpreted by this study is consistent with recent numerical modeling that relates hydrothermal system heat output to rainfall catchment area. This result highlights the importance of recharge as a consideration when evaluating hydrothermal systems for electricity generation, and the utility of CO2 flux as a resource evaluation tool.

  14. Fluorescence Stability of Mercaptopropionic Acid Capped Cadmium Telluride Quantum Dots in Various Biochemical Buffers.

    PubMed

    Borse, Vivek; Kashikar, Adisha; Srivastava, Rohit

    2018-04-01

    Quantum dots are the semiconductor nanocrystals having unique optical and electronic properties. Quantum dots are category of fluorescent labels utilized for biological tagging, biosensing, bioassays, bioimaging and in vivo imaging as they exhibit very small size, signal brightness, photostability, tuning of light emission range, longer photoluminescence decay time as compared to organic dyes. In this work, we have synthesized and characterized mercaptopropionic acid capped cadmium telluride quantum dots (MPA-CdTe QDs) using hydrothermal method. The study further reports fluorescence intensity stability of quantum dots suspended in different buffers of varying concentration (1-100 mM), stored at various photophysical conditions. Fluorescence intensity values were reduced with increase in buffer concentration. When the samples were stored at room temperature in ambient light condition the quantum dots suspended in different buffers lost the fluorescence intensity after day 15 (except TRIS II). Fluorescence intensity values were found stable for more than 30 days when the samples were stored in dark condition. Samples stored in refrigerator displayed modest fluorescence intensity even after 300 days of storage. Thus, storage of MPA-CdTe QDs in refrigerator may be the suitable choice to maintain its fluorescence stability for longer time for further application.

  15. Binder-free cobalt phosphate one-dimensional nanograsses as ultrahigh-performance cathode material for hybrid supercapacitor applications

    NASA Astrophysics Data System (ADS)

    Sankar, K. Vijaya; Lee, S. C.; Seo, Y.; Ray, C.; Liu, S.; Kundu, A.; Jun, S. C.

    2018-01-01

    One-dimensional (1D) nanostructure exhibits excellent electrochemical performance because of their unique physico-chemical properties like fast electron transfer, good rate capability, and cyclic stability. In the present study, Co3(PO4)2 1D nanograsses are grown on Ni foam using a simple and eco-friendly hydrothermal technique with different reaction times. The open space with uniform nanograsses displays a high areal capacitance, rate capability, energy density, and cyclic stability due to the nanostructure enhancing fast ion and material interactions. Ex-situ microscope images confirm the dependence of structural stability on the reaction time, and the nanograsses promoted ion interaction through material. Further, the reproducibility of the electrochemical performance confirms the binder-free Co3(PO4)2 1D nanograsses to be a suitable high-performance cathode material for application to hybrid supercapacitor. Finally, the assembled hybrid supercapacitor exhibits a high energy density (26.66 Wh kg-1 at 750 W kg-1) and longer lifetimes (80% retained capacitance after 6000 cycles). Our results suggests that the Co3(PO4)2 1D nanograss design have a great promise for application to hybrid supercapacitor.

  16. Hydrothermal syntheses, crystal structures and luminescence properties of zinc(II) and cadmium(II) coordination polymers based on bifunctional 3,2 Prime :6 Prime ,3 Prime Prime -terpyridine-4 Prime -carboxylic acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Na; Guo, Hui-Lin; Hu, Huai-Ming, E-mail: ChemHu1@NWU.EDU.CN

    2013-02-15

    Five new coordination polymers, [Zn{sub 2}(ctpy){sub 2}Cl{sub 2}]{sub n} (1), [Zn{sub 2}(ctpy){sub 2}(ox)(H{sub 2}O){sub 2}]{sub n} (2), [Zn{sub 2}(ctpy)(3-btc)(H{sub 2}O)]{sub n}{center_dot}0.5nH{sub 2}O (3), [Cd(ctpy){sub 2}(H{sub 2}O)]{sub n} (4), [Cd{sub 4}(ctpy){sub 2}(2-btc){sub 2}(H{sub 2}O){sub 2}]{sub n}{center_dot}2nH{sub 2}O (5), (Hctpy=3,2 Prime :6 Prime ,3 Prime Prime -terpyridine-4 Prime -carboxylic acid, H{sub 2}ox=oxalic acid, H{sub 3}(3-btc)=1,3,5-benzenetricarboxylic acid, H{sub 3}(2-btc)=1,2,4-benzenetricarboxylic acid) have been synthesized under hydrothermal conditions and characterized by elemental analysis, IR spectroscopy, and single-crystal X-ray diffraction. Compounds 1-2 are a one-dimensional chain with weak interactions to form 3D supramolecular structures. Compound 3 is a 4-nodal 3D topology framework comprised of binuclear zincmore » units and (ctpy){sup -} anions. Compound 4 shows two dimensional net. Compound 5 is a (4,5,6)-connected framework with {l_brace}4{sup 4}{center_dot}6{sup 2}{r_brace}{l_brace}4{sup 6}{center_dot}6{sup 4}{r_brace}{sub 2}{l_brace}4{sup 9}{center_dot}6{sup 6}{r_brace} topology. In addition, the thermal stabilities and photoluminescence properties of 1-5 were also studied in the solid state. - Graphical abstract: Five new Zn/Cd compounds with 3,2 Prime :6 Prime ,3 Prime Prime -terpyridine-4 Prime -carboxylic acid were prepared. The photoluminescence and thermal stabilities properties of 1-5 were investigated in the solid state. Highlights: Black-Right-Pointing-Pointer Five new zinc/cadmium metal-organic frameworks have been hydrothermal synthesized. Black-Right-Pointing-Pointer The structural variation is attributed to the diverse metal ions and auxiliary ligand. Black-Right-Pointing-Pointer Compounds 1-5 exhibit 1D ring chain, 2D layer and 3D open-framework, respectively. Black-Right-Pointing-Pointer These compounds exhibit strong solid state luminescence emission at room temperature.« less

  17. 230Th/238U dating of hydrothermal sulfides from Duanqiao hydrothermal field, Southwest Indian Ridge

    NASA Astrophysics Data System (ADS)

    Yang, Weifang; Tao, Chunhui; Li, Huaiming; Liang, Jin; Liao, Shili; Long, Jiangping; Ma, Zhibang; Wang, Lisheng

    2017-06-01

    Duanqiao hydrothermal field is located between the Indomed and Gallieni fracture zones at the central volcano, at 50°28'E in the ultraslow-spreading Southwest Indian Ridge (SWIR). Twenty-eight subsamples from a relict chimney and massive sulfides were dated using the 230Th/238U method. Four main episodes of hydrothermal activity were determined according to the restricted results: 68.9-84.3, 43.9-48.4, 25.3-34.8, and 0.7-17.3 kyrs. Hydrothermal activity of Duanqiao probably started about 84.3 (±0.5) kyrs ago and ceased about 0.737 (±0.023) kyrs ago. The periodic character of hydrothermal activity may be related to the heat source provided by the interaction of local magmatism and tectonism. The estimated mean growth rate of the sulfide chimney is <0.02 mm/yr. This study is the first to estimate the growth rate of chimneys in the SWIR. The maximum age of the relict chimney in Duanqiao hydrothermal filed is close to that of the chimneys from Mt. Jourdanne (70 kyrs). The hydrothermal activity in Dragon Flag field is much more recent than that of Duanqiao or Mt. Jourdanne fields. The massive sulfides are younger than the sulfides from other hydrothermal fields such as Rainbow, Sonne and Ashadze-2. The preliminarily estimated reserves of sulfide ores of Duanqiao are approximately 0.5-2.9 million tons.

  18. Influence of Capping Ligand and Synthesis Method on Structure and Morphology of Aqueous Phase Synthesized CuInSe2 Nanoparticles

    NASA Astrophysics Data System (ADS)

    Ram Kumar, J.; Ananthakumar, S.; Moorthy Babu, S.

    2017-01-01

    A facile route to synthesize copper indium diselenide (CuInSe2) nanoparticles in aqueous medium was developed using mercaptoacetic acid (MAA) as capping agent. Two different mole ratios (5 and 10) of MAA were used to synthesize CuInSe2 nanoparticles at room temperature, as well as hydrothermal (high temperature) method. Powder x-ray diffraction analysis reveals that the nanoparticles exhibit chalcopyrite phase and the crystallinity increases with increasing the capping ratio. Raman analysis shows a strong band at 233 cm-1 due to the combination of B2 (E) modes. Broad absorption spectra were observed for the synthesized CuInSe2 nanoparticles. The effective surface capping by MAA on the nanoparticles surface was confirmed through attenuated total reflection-Fourier transform infrared spectral analysis. The thermal stability of the synthesized samples was analyzed through thermogravimetric analysis-differential scanning calorimetry. The change in morphology of the synthesized samples was analyzed through scanning electron microscope and it shows that the samples prepared at room temperature are spherical in shape, whereas hydrothermally synthesized samples were found to have nanorod- and nanoflake-like structures. Transmission electron microscope analysis further indicates larger grains for the hydrothermally prepared samples with 10 mol ratio of MAA. Comparative analyses were made for synthesizing CuInSe2 nanoparticles by two different methods to explore the role of ligand and influence of temperature.

  19. Experimental modeling of Au and Pt coupled transport by chloride hydrothermal fluids at 350-450°C and 500-1000 bar

    NASA Astrophysics Data System (ADS)

    Zotov, A. V.; Tagirov, B. R.; Koroleva, L. A.; Volchenkova, V. A.

    2017-09-01

    The coupled solubility of Au(cr) and Pt(cr) has been measured in acidic chloride solutions at 350-450°C and 0.5 and 1 kb using the autoclave technique with determination of dissolved metal contents after quenching. The constants of the reaction combining the dominant species of Au and Pt in high-temperature hydrothermal fluids ( K (Au-Pt)) have been determined: 2 Au(cr) + PtCl4 2- = Pt(cr) + 2AuCl2 -; log K (Au-Pt) =-1.02 ± 0.25 (450°C, 1 kb), 0.09 ± 0.15 (450°C, 0.5 kb), and -1.31 ± 0.20 (350°C, 1 kb). It has been established that the factors affecting the Au/Pt concentration ratio in hydrothermal fluids and precipitated ores are temperature, pressure, redox potential, and sulfur fugacity. An increase in temperature results in an increase in the Au/Pt concentration ratio (up to 550°C at P = 1 kb). A decrease in pressure and redox potential leads to enrichment of fluid in Au. An increase in sulfur fugacity in the stability field of Pt sulfides results in increase in the Au/Pt concentration ratio. Native platinum is replaced by sulfide mineral in low-temperature systems enriched in Pt (relative to Au).

  20. Synthesis and characterization of a new microporous cesium silicotitanate (SNL-B) molecular sieve

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NYMAN,MAY D.; GU,B.X.; WANG,L.M.

    2000-03-20

    Ongoing hydrothermal Cs-Ti-Si-O-H{sub 2}O phase investigations has produced several new ternary phases including a novel microporous Cs-silicotitanate molecular sieve, SNL-B with the approximate formula of Cs{sub 3}TiSi{sub 3}O{sub 9.5}{center_dot}3H{sub 2}O. SNL-B is only the second molecular sieve Cs-silicotitanate phase reported to have been synthesized by hydrothermal methods. Crystallites are very small (0.1 x 2 microns) with a blade-like morphology. SNL-B is confirmed to be a 3-dimensional molecular sieve by a variety of characterization techniques (N{sub 2} adsorption, ion exchange, water adsorption/desorption, solid state CP-MAS NMR). SNL-B is able to desorb and adsorb water from its pores while retaining its crystalmore » structure and exchanges Cs cations readily. Additional techniques were used to describe fundamental properties (powder X-ray diffraction, FTIR, {sup 29}Si and {sup 133}/Cs MAS NMR, DTA, SEM/EDS, ion selectivity, and radiation stability). The phase relationships of metastable SNL-B to other hydrothermally synthesized Cs-Ti-Si-O-H{sub 2}O phases are discussed, particularly its relationship to a Cs-silicotitanate analogue of pharmacosiderite, and a novel condensed phase, a polymorph of Cs{sub 2}TiSi{sub 6}O{sub 15}(SNL-A).« less

  1. Mn-Ce-Co complex oxide nanoparticles: hydrothermal synthesis and their catalytic subcritical oxidation of 4,4'-Dibromobiphenyl.

    PubMed

    Chen, Jinyang; Xu, Tianjiao; Ding, Junying; Ji, Yimei; Ni, Pei; Li, Zhilian

    2012-10-15

    In situ transformation of 4,4'-Dibromobiphenyl (4,4'-DBB) in water was observed with hydrothermal diamond anvil cell (HDAC) up to 633 K. It shows that 4,4'-DBB dissolves in water to form a homogenous phase at the temperature of 588 K and thus subcritical water oxidation of 4,4'-DBB higher than the temperature can be a homogenous phase. To accelerate the oxidative degradation, some Mn-Ce-Co complex oxide nanoparticles of about 100 nm were prepared by co-precipitation hydrothermal method. The nanoparticles show enough stability and catalytic activity for oxidative degradation of 4,4'-DBB in subcritical water. The catalytic activation increases with some Co doping and as for the complex oxides of Mn(1)Ce(1), Mn(0.9)Ce(1)Co(0.1), Mn(0.5)Ce(1)Co(0.5), Mn(0.1)Ce(1)Co(0.9), and Co(1)Ce(1), the Mn(0.9)Ce(1)Co(0.1) presents the best activation. The main intermediate products of degradation are benzoic acid and phenol. The apparent activation energy (E(a)) is 35.92 with 5% Mn(0.9)Ce(1)Co(0.1) as catalyst and 46.69 kJ/mol with no catalyst about the chemical oxygen demand (COD). Copyright © 2012 Elsevier B.V. All rights reserved.

  2. One-Pot Hydrothermal Synthesis of Magnetite Prussian Blue Nano-Composites and Their Application to Fabricate Glucose Biosensor.

    PubMed

    Jomma, Ezzaldeen Younes; Ding, Shou-Nian

    2016-02-18

    In this work, we presented a simple method to synthesize magnetite Prussian blue nano-composites (Fe₃O₄-PB) through one-pot hydrothermal process. Subsequently, the obtained nano-composites were used to fabricate a facile and effective glucose biosensor. The obtained nanoparticles were characterized using transmission electron microscopy, scanning electron microscopy, Fourier-transform infrared spectroscopy, UV-vis absorbance spectroscopy, cyclic voltammetry and chronoamperometry. The resultant Fe₃O₄-PB nanocomposites have magnetic properties which could easily controlled by an external magnetic field and the electro-catalysis of hydrogen peroxide. Thus, a glucose biosensor based on Fe₃O₄-PB was successfully fabricated. The biosensor showed super-electrochemical properties toward glucose detection exhibiting fast response time within 3 to 4 s, low detection limit of 0.5 µM and wide linear range from 5 µM to 1.2 mM with sensitivity of 32 µA∙mM(-1)∙cm(-2) and good long-term stability.

  3. One-Pot Hydrothermal Synthesis of Magnetite Prussian Blue Nano-Composites and Their Application to Fabricate Glucose Biosensor

    PubMed Central

    Jomma, Ezzaldeen Younes; Ding, Shou-Nian

    2016-01-01

    In this work, we presented a simple method to synthesize magnetite Prussian blue nano-composites (Fe3O4-PB) through one-pot hydrothermal process. Subsequently, the obtained nano-composites were used to fabricate a facile and effective glucose biosensor. The obtained nanoparticles were characterized using transmission electron microscopy, scanning electron microscopy, Fourier-transform infrared spectroscopy, UV-vis absorbance spectroscopy, cyclic voltammetry and chronoamperometry. The resultant Fe3O4-PB nanocomposites have magnetic properties which could easily controlled by an external magnetic field and the electro-catalysis of hydrogen peroxide. Thus, a glucose biosensor based on Fe3O4-PB was successfully fabricated. The biosensor showed super-electrochemical properties toward glucose detection exhibiting fast response time within 3 to 4 s, low detection limit of 0.5 µM and wide linear range from 5 µM to 1.2 mM with sensitivity of 32 µA∙mM−1∙cm−2 and good long-term stability. PMID:26901204

  4. Co-hydrothermal treatment of fallen leaves with iron sludge to prepare magnetic iron product and solid fuel.

    PubMed

    Gu, Lin; Li, Binglian; Wen, Haifeng; Zhang, Xin; Wang, Liang; Ye, Jianfeng

    2018-06-01

    The hydrothermal carbonization (HTC) was performed on Metasequoia Leaves (ML) in the presence of iron sludge, both of which were generated as solid residuals. The relations between sludge, char's properties and operating conditions were systemically investigated. Iron sludge primarily catalyzed the efficient formation of char with higher heating value (HHV) becoming 1.15-1.65 times of ML (18.21 MJ/kg) and was meanwhile reduced to magnetite. The hydrated Fe ions in octahedron crystals acted as nucleophiles facilitating the dehydration and decarboxylation reactions. The increased HHV is found strong temperature dependent while prolonging the residence time is more preferable for low organic acids generation. Thermogravimetric analysis confirmed the iron sludge enhanced conversion of volatile to fixed carbon. The as-prepared solid char showed better stability after catalytic HTC treatment, having ignition temperature increased from 253 to 426 °C as compared to the char prepared without iron sludge addition. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Preparation and tribological properties of MoS2/graphene oxide composites

    NASA Astrophysics Data System (ADS)

    Song, Haojie; Wang, Biao; Zhou, Qiang; Xiao, Jiaxuan; Jia, Xiaohua

    2017-10-01

    A hydrothermal route is developed for the synthesis of MoS2/graphene oxide (GO) composites based on the hydrothermal reduction of Na2MoO4 and GO sheets with L-cysteine. The MoS2/GO composites in improving friction and wear of the sunshine oil on sliding steel surfaces under low or high applied load were demonstrated. In tests with sliding steel surfaces, the sunshine oil that contains small amounts of MoS2/GO composites exhibited the lowest specific friction coefficient and wear rate under all of the sliding conditions. Scanning electron microscopy and energy dispersive spectrometer performed to analyze the wear scar surfaces after friction confirmed that the outstanding lubrication performance of MoS2/GO composites could be attributed to their good dispersion stability and extremely thin laminated structure, which allow the MoS2/GO composites to easily enter the contact area, thereby preventing the rough surfaces from coming into direct contact.

  6. Graphene/Ruthenium Active Species Aerogel as Electrode for Supercapacitor Applications

    PubMed Central

    Gigot, Arnaud; Fontana, Marco; Pirri, Candido Fabrizio; Rivolo, Paola

    2017-01-01

    Ruthenium active species containing Ruthenium Sulphide (RuS2) is synthesized together with a self-assembled reduced graphene oxide (RGO) aerogel by a one-pot hydrothermal synthesis. Ruthenium Chloride and L-Cysteine are used as reactants. The hydrothermal synthesis of the innovative hybrid material occurs at 180 °C for 12 h, by using water as solvent. The structure and morphology of the hybrid material are fully characterized by Raman, XRD, XPS, FESEM and TEM. The XRD and diffraction pattern obtained by TEM display an amorphous nanostructure of RuS2 on RGO crystallized flakes. The specific capacitance measured in planar configuration in 1 M NaCl electrolyte at 5 mV s−1 is 238 F g−1. This supercapacitor electrode also exhibits perfect cyclic stability without loss of the specific capacitance after 15,000 cycles. In summary, the RGO/Ruthenium active species hybrid material demonstrates remarkable properties for use as active material for supercapacitor applications. PMID:29301192

  7. A new hydrothermal refluxing route to strong fluorescent carbon dots and its application as fluorescent imaging agent.

    PubMed

    Zhang, Ye-Yun; Wu, Ming; Wang, Yan-Qin; He, Xi-Wen; Li, Wen-You; Feng, Xi-Zeng

    2013-12-15

    Due to their unique optical and biochemical properties, the water-soluble fluorescent carbon dots (CDs) have attracted a lot of attention recently. Here, strong fluorescent carbon dots with excellent quality have been synthesized by the hydrothermal refluxing method using lactose as carbon source and tris(hydroxymethyl) aminomethane (i.e. Tris) as surface passivation reagent. This facile approach was simple, efficient, economical, green without pollution, and allows large-scale production of CDs without any post-treatment. TEM measurements showed that the resulting particles exhibited an average diameter of 1.5 nm. The obtained CDs possess small particle sizes, good stability in a wide range of pH values (pH 3.5-9.5), high tolerance of salt concentration, strong resistibility to photobleaching, and a fluorescent quantum yield up to 12.5%. The CDs were applied to optical bioimaging of HeLa cells, showing low cytotoxicity and excellent biocompatibility. © 2013 Elsevier B.V. All rights reserved.

  8. One-step hydrothermal synthesis of 3D petal-like Co9S8/RGO/Ni3S2 composite on nickel foam for high-performance supercapacitors.

    PubMed

    Zhang, Zhuomin; Wang, Qian; Zhao, Chongjun; Min, Shudi; Qian, Xiuzhen

    2015-03-04

    Co9S8, Ni3S2, and reduced graphene oxide (RGO) were combined to construct a graphene composite with two mixed metal sulfide components. Co9S8/RGO/Ni3S2 composite films were hydrothermal-assisted synthesized on nickel foam (NF) by using a modified "active metal substrate" route in which nickel foam acted as both a substrate and Ni source for composite films. It is found that the Co9S8/RGO/Ni3S2/NF electrode exhibits superior capacitive performance with high capability (13.53 F cm(-2) at 20 mA cm(-2), i.e., 2611.9 F g(-1) at 3.9 A g(-1)), excellent rate capability, and enhanced electrochemical stability, with 91.7% retention after 1000 continuous charge-discharge cycles even at a high current density of 80 mA cm(-2).

  9. First examples of ternary lanthanide 5-aminoisophthalate complexes: Hydrothermal syntheses and structures of lanthanide coordination polymers with 5-aminoisophthalate and oxalate

    NASA Astrophysics Data System (ADS)

    Liu, Chong-Bo; Wen, Hui-Liang; Tan, Sheng-Shui; Yi, Xiu-Guang

    2008-05-01

    Two new lanthanide coordination polymers with mixed-carboxylates, [Ln(OX)(HAPA)(H 2O)] n[Ln = Eu ( 1), Ho ( 2); H 2APA = 5-aminoisophthalic acid; OX = oxalate] were obtained by hydrothermal reactions, and characterized by single crystal X-ray diffraction, elemental analysis and IR spectra. Complexes 1 and 2 are both 3-D supramolecular structure, in which lanthanide ions are bridged by oxalate and 5-aminoisophthalate ligands forming 2-D metal-organic framework, and 2-D networks are further architectured to form 3-D supramolecular structures by hydrogen bonds. The two carboxylate groups of H 2APA ligand are all deprotonated and exhibit chelating and bridging bidentate coordination modes, respectively, and the amino group in HAPA presents - NH3+ in the titled complexes. The thermogravimetric analysis was carried out to examine the thermal stability of the titled complexes. And the photoluminescence property of 1 was investigated.

  10. Two sodium and lanthanide(III) MOFs based on oxalate and V-shaped 4,4‧-oxybis(benzoate) ligands: Hydrothermal synthesis, crystal structure, and luminescence properties

    NASA Astrophysics Data System (ADS)

    Wang, Chongchen; Guo, Guangliang; Wang, Peng

    2013-01-01

    Two lanthanide based metal-organic frameworks, [NaLn(oba)(ox)(H2O)] (Lndbnd6 Eu(1) and Sm(2)) were obtained from 4,4'-oxybisbenzoic acid, sodium oxalate and corresponding lanthanide salts by hydrothermal synthesis. They were characterized by single-crystal X-ray diffraction, IR spectra, and photoluminescent spectra. The crystallographic data reveals that complexes 1 and 2 are isomorphous and isostructural, composed of three-dimensional framework built up of distorted tricapped trigonal EuO9 units, distorted octahedron NaO6 units, 4,4'-oxybis(benzoate) and oxalate. The carboxylate oxygen atoms of the 4,4'-oxybis(benzoate) and oxalate ligand are coordinated to lanthanide ions and sodium ions, resulting into two-dimensional inorganic sheets, which are further linked into three-dimensional network by organic ligands. Thermogravimetric analyses of 1-2 display a considerable thermal stability. Photoluminescent measurements indicated that europium complex 1 displayed strong red emission.

  11. Full synergistic effect of hydrothermal NiCo2O4 nanosheets/CuCo2O4 nanocones supported on Ni foam for high-performance asymmetric supercapacitors

    NASA Astrophysics Data System (ADS)

    Wen, Shiyang; Liu, Yu; Bai, Hongye; Shao, Rong; Xu, Wei; Shi, Weidong

    2018-06-01

    In this work, a series of NiCo2O4/CuCo2O4 composites were prepared by a two-step hydrothermal method. The optimized NiCo2O4/CuCo2O4 electrode shows more than 5 times area capacitance (4.97 F cm-2) than pure NiCo2O4 at the current density of 1 mA cm-2. The best performance of sample assembled an asymmetric supercapacitor could reach up to 42 F g-1 at the current density of 1 A g-1. In addition, the maximum energy density of 15 W h kg-1 was achieved with the power density of 814 W kg-1. The as-prepared active electrode material also reveals excellent cycling stability with 90.6% capacitance retention after 5000 cycles. These results indicate potential application in developing energy storage devices with high energy density power density.

  12. Salinity of the Archaean oceans from analysis of fluid inclusions in quartz

    NASA Astrophysics Data System (ADS)

    Marty, Bernard; Avice, Guillaume; Bekaert, David V.; Broadley, Michael W.

    2018-05-01

    Fluids trapped in inclusions in well-characterized Archaean hydrothermal quartz crystals were analyzed by the extended argon-argon method, which permits the simultaneous measurement of chlorine and potassium concentrations. Argon and nitrogen isotopic compositions of the trapped fluids were also determined by static mass spectrometry. Fluids were extracted by stepwise crushing of quartz samples from North Pole (NW Australia) and Barberton (South Africa) 3.5-3.0-Ga-old greenstone belts. The data indicate that fluids are a mixture of a low salinity end-member, regarded as the Archaean oceanic water, and several hydrothermal end-members rich in Cl, K, N, and radiogenic parentless 40Ar. The low Cl-K end-member suggests that the salinity of the Archaean oceans was comparable to the modern one, and that the potassium content of the Archaean oceans was lower than at present by about 40%. A constant salinity of the oceans through time has important implications for the stabilization of the continental crust and for the habitability of the ancient Earth.

  13. Hierarchical Na-doped cubic ZrO2 synthesis by a simple hydrothermal route and its application in biodiesel production

    NASA Astrophysics Data System (ADS)

    Lara-García, Hugo A.; Romero-Ibarra, Issis C.; Pfeiffer, Heriberto

    2014-10-01

    Hierarchical growth of cubic ZrO2 phase was successfully synthesized via a simple hydrothermal process in the presence of different surfactants (cationic, non-ionic and anionic) and sodium hydroxide. The structural and microstructural characterizations of different ZrO2 powders were performed using various techniques, such as X-ray diffraction, transmission electron microscopy, N2 adsorption-desorption, scanning electron microscopy and infrared. Results indicated that sodium addition stabilized the cubic ZrO2 phase by a Na-doping process, independently of the surfactant used. In contrast, microstructural characteristics varied as a function of the surfactant and sodium presence. In addition, water vapor (H2O) and carbon dioxide (CO2) sorption properties were evaluated on ZrO2 samples. Results evidenced that sample surface reactivity changed as a function of the sodium content. Finally, this surface reactivity was evaluated on the biodiesel transesterification reaction using the different synthesized samples, obtaining yields of 93%.

  14. Hydrothermal synthesis of In2O3 nanoparticles hybrid twins hexagonal disk ZnO heterostructures for enhanced photocatalytic activities and stability

    NASA Astrophysics Data System (ADS)

    Liu, Hairui; Zhai, Haifa; Hu, Chunjie; Yang, Jien; Liu, Zhiyong

    2017-07-01

    In2O3 nanoparticles hybrid twins hexagonal disk (THD) ZnO with different ratios were fabricated by a hydrothermal method. The as-obtained ZnO/In2O3 composites are constituted by hexagonal disks ZnO with diameters of about 1 μm and In2O3 nanoparticles with sizes of about 20-50 nm. With the increase of In2O3 content in ZnO/In2O3 composites, the absorption band edges of samples shifted from UV to visible light region. Compared with pure ZnO, the ZnO/In2O3 composites show enhanced photocatalytic activities for degradation of methyl orange (MO) and 4-nitrophenol (4-NP) under solar light irradiation. Due to suitable alignment of their energy band-gap structure of the In2O3 and ZnO, the formation of type п heterostructure can enhance efficient separation of photo-generate electro-hole pairs and provides convenient carrier transfer paths.

  15. Effect of hydrothermal carbonization on storage process of woody pellets: Pellets' properties and aldehydes/ketones emission.

    PubMed

    Li, Hui; Wang, Siyuan; Huang, Zhongliang; Yuan, Xingzhong; Wang, Ziliang; He, Rao; Xi, Yanni; Zhang, Xuan; Tan, Mengjiao; Huang, Jing; Mo, Dan; Li, Changzhu

    2018-07-01

    Effect of hydrothermal carbonization (HTC) on the hydrochar pelletization and the aldehydes/ketones emission from pellets during storage was investigated. Pellets made from the hydrochar were stored in sealed apparatuses for sampling. The energy consumption during pelletization and the pellets' properties before/after storage, including dimension, density, moisture content, hardness, aldehyde/ketones emission amount/rate and unsaturated fatty acid amount, were analyzed. Compared with untreated-sawdust-pellets, the hydrochar-pellets required more energy consumption for pelletization, and achieved the improved qualities, resulting in the higher stability degree during storage. The species and amount of unsaturated fatty acids in the hydrochar-pellets were higher than those in the untreated-sawdust-pellets. The unsaturated fatty acids content in the hydrochar-pellets was decreased with increasing HTC temperature. Higher aldehydes/ketones emission amount and rates with a longer emission period were found for the hydrochar-pellets, associated with variations of structure and unsaturated fatty acid composition in pellets. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Environmental controls on biomineralization and Fe-mound formation in a low-temperature hydrothermal system at the Jan Mayen Vent Fields

    NASA Astrophysics Data System (ADS)

    Johannessen, Karen C.; Vander Roost, Jan; Dahle, Håkon; Dundas, Siv H.; Pedersen, Rolf B.; Thorseth, Ingunn H.

    2017-04-01

    Diffuse low-temperature hydrothermal vents on the seafloor host neutrophilic microaerophilic Fe-oxidizing bacteria that utilize the Fe(II) supplied by hydrothermal fluids and produce intricate twisted and branching extracellular stalks. The growth behavior of Fe-oxidizing bacteria in strongly opposing gradients of Fe(II) and O2 have been thoroughly investigated in laboratory settings to assess whether extracellular stalks and aligned biomineralized fabrics may serve as biosignatures of Fe-oxidizing bacteria and indications of palaeo-redox conditions in the rock record. However, the processes controlling the growth of biogenic Fe-oxyhydroxide deposits in natural, modern hydrothermal systems are still not well constrained. In this study, we aimed to establish how variations in the texture of stratified hydrothermal Fe-oxyhydroxide deposits are linked to the physicochemical conditions of the hydrothermal environment. We conducted 16S rRNA gene analyses, microscopy and geochemical analyses of laminated siliceous Fe-mounds from the Jan Mayen Vent Fields at the Arctic Mid-Ocean Ridge. Chemical analyses of low- and high-temperature hydrothermal fluids were performed to characterize the hydrothermal system in which the Fe-deposits form. Our results reveal synchronous inter-laminar variations in texture and major and trace element geochemistry. The Fe-deposits are composed of alternating porous laminae of mineralized twisted stalks and branching tubes, Mn-rich horizons with abundant detrital sediment, domal internal cavities and thin P- and REE-enriched lamina characterized by networks of ≪1 μm wide fibers. Zetaproteobacteria constitute one third of the microbial community in the surface layer of actively forming mounds, indicating that microbial Fe-oxidation is contributing to mound accretion. We suggest that Mn-oxide precipitation and detrital sediment accumulation take place during periodically low hydrothermal fluid discharge conditions. The elevated concentrations of P and REE in distinct laminae suggest Fe-cycling and accumulation of diagenetic species at depth in the deposits during hydrothermal quiescence and co-precipitation of these species with Fe-oxyhydroxides at the mound surface with reinitiated hydrothermal discharge. The origin of the low-temperature hydrothermal source fluid and the Fe-deposits are evident by low LREE/HREE ratios and negative Eu-anomalies, which clearly differ from the LREE and Eu enrichment of nearby high-temperature white smoker venting fluids. Our study demonstrates that hydrothermal fluctuations exert the primary control on the formation of laminae and the activity of Fe-oxidizing bacteria in marine hydrothermal Fe-deposits and indicates that REE-patterns may be used to distinguish high-temperature plume fallout and biomineralized low-temperature Fe-deposits in the rock record.

  17. Bioavailable metals and cellular effects in the digestive gland of marine limpets living close to shallow water hydrothermal vents.

    PubMed

    Cunha, Luís; Amaral, André; Medeiros, Vera; Martins, Gustavo M; Wallenstein, Francisco F M M; Couto, Ruben P; Neto, Ana I; Rodrigues, Armindo

    2008-04-01

    The pressure exerted by shallow water hydrothermal vents on edible gastropods and their cellular responses triggered by these stresses are almost unknown. The aims of this study were to evaluate the bioavailability of metals in the Macaronesian endemic limpet Patella candei gomesii living close to shallow water hydrothermal vents, and the structural differences in their digestive gland as well as the levels of apoptosis in that organ. Limpets were sampled in four sites, two with the presence of hydrothermalism and the other two without it. Whole body concentrations of several metals (Ca, Cd, Cs, Co, Cu, Fe, Hg, Mg, Mn, Pb, Rb, Se, Sr, and Zn) were obtained, morphometry analysis of the digestive gland and TUNEL test for apoptosis were also performed. Results revealed that the presence of shallow water hydrothermal vents is a source of chronic metal stress to limpets, imposing modifications in the morphometry and cell composition of the digestive gland of those limpets that may constitute cell and tissue adaptations to the environment they live in. This study sets up new baseline data for further research on the influence of shallow water hydrothermal vents over communities living in these habitats.

  18. Physical Chemistry of Sol-Gel Materials Symposium Held during the 213th National Meeting of the American Chemical Society Held in Anaheim, California on March 21-25, 1999

    DTIC Science & Technology

    2000-05-01

    conditions allow us to correlate framework structure and synthesis conditions with hydrothermal stability. Temperature-induced changes in surfactant packing...31 228. SPECTROSCOPIC CHARACTERIZATION OF CdS NANOPARTICLES WITH DIFFERENT CAPPING ENVIONMENTS . Bingsuo ZOU, Reginald Little, Jianping Wang and...Mostafa A. El- Sayed, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332 CdS nanoparticles in AOT reverse micelle

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Limiao, E-mail: chenlimiao@csu.edu.cn; College of Chemistry and Chemical Engineering, Central South University, Changsha 410083; Wu, Min

    The semiconductor nanostructures decorated with noble metals have attracted increasing attention due to their interesting physical and chemical properties. In this work, urchin-like monoclinic (m-) LaVO{sub 4} microspheres were prepared by a hydrothermal method and used as a template to fabricate Ag nanoparticle-decorated m-LaVO{sub 4} composites. The morphology and structure were characterized by transmission electron microscope, high-resolution transmission electron microscope, scanning electron microscope, and energy-dispersive X-ray. It was found that Ag nanoparticles with narrow size distribution were uniformly loaded on urchin-like m-LaVO{sub 4} microspheres, and the resulted composite microspheres showed distinct surface plasmon absorption band compared to pure m-LaVO{sub 4}more » microspheres. Photocatalytic activities of as-prepared samples were examined by studying the degradation of methyl orange solutions under visible-light irradiation (> 400 nm). Results clearly showed that urchin-like m-LaVO{sub 4}/Ag microspheres possess much higher photocatalytic activity than pure m-LaVO{sub 4} microspheres and P25. - Highlights: • m-LaVO{sub 4}/Ag composites microspheres were fabricated by a hydrothermal method. • m-LaVO{sub 4} microspheres show higher photocatalytic activity than m-LaVO{sub 4} microspheres. • m-LaVO{sub 4}/Ag microspheres exhibit a good stability.« less

  20. Free-living bacterial communities associated with tubeworm (Ridgeia piscesae) aggregations in contrasting diffuse flow hydrothermal vent habitats at the Main Endeavour Field, Juan de Fuca Ridge

    PubMed Central

    Forget, Nathalie L; Kim Juniper, S

    2013-01-01

    We systematically studied free-living bacterial diversity within aggregations of the vestimentiferan tubeworm Ridgeia piscesae sampled from two contrasting flow regimes (High Flow and Low Flow) in the Endeavour Hydrothermal Vents Marine Protected Area (MPA) on the Juan de Fuca Ridge (Northeast Pacific). Eight samples of particulate detritus were recovered from paired tubeworm grabs from four vent sites. Most sequences (454 tag and Sanger methods) were affiliated to the Epsilonproteobacteria, and the sulfur-oxidizing genus Sulfurovum was dominant in all samples. Gammaproteobacteria were also detected, mainly in Low Flow sequence libraries, and were affiliated with known methanotrophs and decomposers. The cooccurrence of sulfur reducers from the Deltaproteobacteria and the Epsilonproteobacteria suggests internal sulfur cycling within these habitats. Other phyla detected included Bacteroidetes, Actinobacteria, Chloroflexi, Firmicutes, Planctomycetes, Verrucomicrobia, and Deinococcus–Thermus. Statistically significant relationships between sequence library composition and habitat type suggest a predictable pattern for High Flow and Low Flow environments. Most sequences significantly more represented in High Flow libraries were related to sulfur and hydrogen oxidizers, while mainly heterotrophic groups were more represented in Low Flow libraries. Differences in temperature, available energy for metabolism, and stability between High Flow and Low Flow habitats potentially explain their distinct bacterial communities. PMID:23401293

  1. One-pot hydrothermal synthesis of ZnS quantum dots/graphene hybrids as a dual anode for sodium ion and lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Zhang, Rupeng; Wang, Yu; Jia, Mengqiu; Xu, Junjie; Pan, Erzhuang

    2018-04-01

    Committed to research high-performance sodium-ion batteries(SIBs) and lithium-ion batteries(LIBs) anode materials is attractive but challenging. Among the many promising anode materials, sulfides are considered as promising available anode material. In this paper, we successfully synthesized uniformly dispersed ZnS quantum dots (QDs) with sub-10-nm-scale on graphene nanosheets via a facile hydrothermal method. The prepared ZnS/graphene composites was studied as a dual anode for sodium-ion and lithium-ion batteries. Tested against SIBs, the nanocomposites exhibits an impressive specific capacity of 491 mAh/g at 100 mA/g after 100 cycles. Tested against LIBs, the nanocomposites delivers a superior specific capacity of 759 mAh/g at 100 mA/g after 100 cycles. This excellent performance is mainly due to the fact that graphene can improve the conductivity of the composites and effectively prevent the agglomeration and pulverization of ZnS quantum dots during cycling. Meanwhile, ZnS quantum dots with sub-10-nm-scale may also shorten diffuse path and reduce migration barrier, which is in favor of the full utilization of the active material and the improvement of the stability of the structure

  2. Degradation of Tetracycline with BiFeO3 Prepared by a Simple Hydrothermal Method

    PubMed Central

    Xue, Zhehua; Wang, Ting; Chen, Bingdi; Malkoske, Tyler; Yu, Shuili; Tang, Yulin

    2015-01-01

    BiFeO3 particles (BFO) were prepared by a simple hydrothermal method and characterized. BFO was pure, with a wide particle size distribution, and was visible light responsive. Tetracycline was chosen as the model pollutant in this study. The pH value was an important factor influencing the degradation efficiency. The total organic carbon (TOC) measurement was emphasized as a potential standard to evaluate the visible light photocatalytic degradation efficiency. The photo-Fenton process showed much better degradation efficiency and a wider pH adaptive range than photocatalysis or the Fenton process solely. The optimal residual TOC concentrations of the photocatalysis, Fenton and photo-Fenton processes were 81%, 65% and 21%, while the rate constants of the three processes under the same condition where the best residual TOC was acquired were 9.7 × 10−3, 3.2 × 10−2 and 1.5 × 10−1 min−1, respectively. BFO was demonstrated to have excellent stability and reusability. A comparison among different reported advanced oxidation processes removing tetracycline (TC) was also made. Our findings showed that the photo-Fenton process had good potential for antibiotic-containing waste water treatment. It provides a new method to deal with antibiotic pollution. PMID:28793568

  3. Helium and carbon gas geochemistry of pore fluids from the sediment-rich hydrothermal system in Escanaba Trough

    USGS Publications Warehouse

    Ishibashi, J.-I.; Sato, M.; Sano, Y.; Wakita, H.; Gamo, T.; Shanks, Wayne C.

    2002-01-01

    Ocean Drilling Program (ODP) Leg 169, which was conducted in 1996 provided an opportunity to study the gas geochemistry in the deeper part of the sediment-rich hydrothermal system in Escanaba Trough. Gas void samples obtained from the core liner were analyzed and their results were compared with analytical data of vent fluid samples collected by a submersible dive program in 1988. The gas geochemistry of the pore fluids consisted mostly of a hydrothermal component and was basically the same as that of the vent fluids. The He isotope ratios (R/RA = 5.6-6.6) indicated a significant mantle He contribution and the C isotopic compositions of the hydrocarbons [??13C(CH4) = -43???, ??13C(C2H6) = -20???] were characterized as a thermogenic origin caused by hydrothermal activity. On the other hand, the pore fluids in sedimentary layers away from the hydrothermal fields showed profiles which reflected lateral migration of the hydrothermal hydrocarbons and abundant biogenic CH4. Helium and C isotope systematics were shown to represent a hydrothermal component and useful as indicators for their distribution beneath the seafloor. Similarities in He and hydrocarbon signatures to that of the Escanaba Trough hydrothermal system were found in some terrestrial natural gases, which suggested that seafloor hydrothermal activity in sediment-rich environments would be one of the possible petroleum hydrocarbon generation scenarios in unconventional geological settings. ?? 2002 Elsevier Science Ltd. All rights reserved.

  4. The role of magmas in the formation of hydrothermal ore deposits

    USGS Publications Warehouse

    Hedenquist, Jeffrey W.; Lowenstern, Jacob B.

    1994-01-01

    Magmatic fluids, both vapour and hypersaline liquid, are a primary source of many components in hydrothermal ore deposits formed in volcanic arcs. These components, including metals and their ligands, become concentrated in magmas in various ways from various sources, including subducted oceanic crust. Leaching of rocks also contributes components to the hydrothermal fluid—a process enhanced where acid magmatic vapours are absorbed by deeply circulating meteoric waters. Advances in understanding the hydrothermal systems that formed these ore deposits have come from the study of their active equivalents, represented at the surface by hot springs and volcanic fumaroles.

  5. Study on optimizing ultrasonic irradiation period for thick polycrystalline PZT film by hydrothermal method.

    PubMed

    Ohta, Kanako; Isobe, Gaku; Bornmann, Peter; Hemsel, Tobias; Morita, Takeshi

    2013-04-01

    The hydrothermal method utilizes a solution-based chemical reaction to synthesize piezoelectric thin films and powders. This method has a number of advantages, such as low-temperature synthesis, and high purity and high quality of the product. In order to promote hydrothermal reactions, we developed an ultrasonic assisted hydrothermal method and confirmed that it produces dense and thick lead-zirconate-titanate (PZT) films. In the hydrothermal method, a crystal growth process follows the nucleation process. In this study, we verified that ultrasonic irradiation is effective for the nucleation process, and there is an optimum irradiation period to obtain thicker PZT films. With this optimization, a 9.2-μm-thick PZT polycrystalline film was obtained in a single deposition process. For this film, ultrasonic irradiation was carried out from the beginning of the reaction for 18 h, followed by a 6 h deposition without ultrasonic irradiation. These results indicate that the ultrasonic irradiation mainly promotes the nucleation process. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Anatomy of Old Faithful From Subsurface Seismic Imaging of the Yellowstone Upper Geyser Basin

    NASA Astrophysics Data System (ADS)

    Wu, Sin-Mei; Ward, Kevin M.; Farrell, Jamie; Lin, Fan-Chi; Karplus, Marianne; Smith, Robert B.

    2017-10-01

    The Upper Geyser Basin in Yellowstone National Park contains one of the highest concentrations of hydrothermal features on Earth including the iconic Old Faithful geyser. Although this system has been the focus of many geological, geochemical, and geophysical studies for decades, the shallow (<200 m) subsurface structure remains poorly characterized. To investigate the detailed subsurface geologic structure including the hydrothermal plumbing of the Upper Geyser Basin, we deployed an array of densely spaced three-component nodal seismographs in November of 2015. In this study, we extract Rayleigh wave seismic signals between 1 and 10 Hz utilizing nondiffusive seismic waves excited by nearby active hydrothermal features with the following results: (1) imaging the shallow subsurface structure by utilizing stationary hydrothermal activity as a seismic source, (2) characterizing how local geologic conditions control the formation and location of the Old Faithful hydrothermal system, and (3) resolving a relatively shallow (10-60 m) and large reservoir located 100 m southwest of Old Faithful geyser.

  7. The Origin of Carbon-Bearing Volatiles in a Continental Hydrothermal System in the Great Basin: Water Chemistry and Isotope Characterizations

    NASA Technical Reports Server (NTRS)

    Fu, Qi; Socki, Richard A.; Niles, Paul B.; Romanek, Christopher; Datta, Saugata; Darnell, Mike

    2012-01-01

    Hydrothermal systems on Earth are active centers in the crust where organic molecules can be synthesized biotically or abiotically under a wide range of physical and chemical conditions [1-3]. Not only are volatile species (CO, CO2, H2, and hydrocarbons) a reflection of deep-seated hydrothermal alteration processes, but they also form an important component of biological systems. Studying carbon-bearing fluids from hydrothermal systems is of specific importance to understanding (bio-)geochemical processes within these systems. With recent detection of methane in the martian atmosphere [4-7] and the possibility of its hydrothermal origin [8, 9], understanding the formation mechanisms of methane may provide constraints on the history of the martian aqueous environments and climate.

  8. Hydrothermal processes above the Yellowstone magma chamber: Large hydrothermal systems and large hydrothermal explosions

    USGS Publications Warehouse

    Morgan, L.A.; Shanks, W.C. Pat; Pierce, K.L.

    2009-01-01

    Hydrothermal explosions are violent and dramatic events resulting in the rapid ejection of boiling water, steam, mud, and rock fragments from source craters that range from a few meters up to more than 2 km in diameter; associated breccia can be emplaced as much as 3 to 4 km from the largest craters. Hydrothermal explosions occur where shallow interconnected reservoirs of steam- and liquid-saturated fluids with temperatures at or near the boiling curve underlie thermal fields. Sudden reduction in confi ning pressure causes fluids to fl ash to steam, resulting in signifi cant expansion, rock fragmentation, and debris ejection. In Yellowstone, hydrothermal explosions are a potentially signifi cant hazard for visitors and facilities and can damage or even destroy thermal features. The breccia deposits and associated craters formed from hydrothermal explosions are mapped as mostly Holocene (the Mary Bay deposit is older) units throughout Yellowstone National Park (YNP) and are spatially related to within the 0.64-Ma Yellowstone caldera and along the active Norris-Mammoth tectonic corridor. In Yellowstone, at least 20 large (>100 m in diameter) hydrothermal explosion craters have been identifi ed; the scale of the individual associated events dwarfs similar features in geothermal areas elsewhere in the world. Large hydrothermal explosions in Yellowstone have occurred over the past 16 ka averaging ??1 every 700 yr; similar events are likely in the future. Our studies of large hydrothermal explosion events indicate: (1) none are directly associated with eruptive volcanic or shallow intrusive events; (2) several historical explosions have been triggered by seismic events; (3) lithic clasts and comingled matrix material that form hydrothermal explosion deposits are extensively altered, indicating that explosions occur in areas subjected to intense hydrothermal processes; (4) many lithic clasts contained in explosion breccia deposits preserve evidence of repeated fracturing and vein-fi lling; and (5) areal dimensions of many large hydrothermal explosion craters in Yellowstone are similar to those of its active geyser basins and thermal areas. For Yellowstone, our knowledge of hydrothermal craters and ejecta is generally limited to after the Yellowstone Plateau emerged from beneath a late Pleistocene icecap that was roughly a kilometer thick. Large hydrothermal explosions may have occurred earlier as indicated by multiple episodes of cementation and brecciation commonly observed in hydrothermal ejecta clasts. Critical components for large, explosive hydrothermal systems include a watersaturated system at or near boiling temperatures and an interconnected system of well-developed joints and fractures along which hydrothermal fluids flow. Active deformation of the Yellowstone caldera, active faulting and moderate local seismicity, high heat flow, rapid changes in climate, and regional stresses are factors that have strong infl uences on the type of hydrothermal system developed. Ascending hydrothermal fluids flow along fractures that have developed in response to active caldera deformation and along edges of low-permeability rhyolitic lava flows. Alteration of the area affected, self-sealing leading to development of a caprock for the hydrothermal system, and dissolution of silica-rich rocks are additional factors that may constrain the distribution and development of hydrothermal fields. A partial lowpermeability layer that acts as a cap to the hydrothermal system may produce some over-pressurization, thought to be small in most systems. Any abrupt drop in pressure initiates steam fl ashing and is rapidly transmitted through interconnected fractures that result in a series of multiple large-scale explosions contributing to the excavation of a larger explosion crater. Similarities between the size and dimensions of large hydrothermal explosion craters and thermal fields in Yellowstone may indicate that catastrophic events which result in l

  9. A demonstration of an affinity between pyrite and organic matter in a hydrothermal setting

    PubMed Central

    2011-01-01

    One of the key-principles of the iron-sulphur world theory is to bring organic molecules close enough to interact with each other, using the surface of pyrite as a substrate in a hydrothermal setting. The present paper explores the relationship of pyrite and organic matter in a hydrothermal setting from the geological record; in hydrothermal calcite veins from Carboniferous limestones in central Ireland. Here, the organic matter is accumulated as coatings around, and through, pyrite grains. Most of the pyrite grains are euhedral-subhedral crystals, ranging in size from ca 0.1-0.5 mm in diameter, and they are scattered throughout the matrix of the vein calcite. The organic matter was deposited from a hydrothermal fluid at a temperature of at least 200°C, and gives a Raman signature of disordered carbon. This study points to an example from a hydrothermal setting in the geological record, demonstrating that pyrite can have a high potential for the concentration and accumulation of organic materials. PMID:21299877

  10. Ideas and perspectives: hydrothermally driven redistribution and sequestration of early Archaean biomass - the "hydrothermal pump hypothesis"

    NASA Astrophysics Data System (ADS)

    Duda, Jan-Peter; Thiel, Volker; Bauersachs, Thorsten; Mißbach, Helge; Reinhardt, Manuel; Schäfer, Nadine; Van Kranendonk, Martin J.; Reitner, Joachim

    2018-03-01

    Archaean hydrothermal chert veins commonly contain abundant organic carbon of uncertain origin (abiotic vs. biotic). In this study, we analysed kerogen contained in a hydrothermal chert vein from the ca. 3.5 Ga Dresser Formation (Pilbara Craton, Western Australia). Catalytic hydropyrolysis (HyPy) of this kerogen yielded n-alkanes up to n-C22, with a sharp decrease in abundance beyond n-C18. This distribution ( ≤ n-C18) is very similar to that observed in HyPy products of recent bacterial biomass, which was used as reference material, whereas it differs markedly from the unimodal distribution of abiotic compounds experimentally formed via Fischer-Tropsch-type synthesis. We therefore propose that the organic matter in the Archaean chert veins has a primarily microbial origin. The microbially derived organic matter accumulated in anoxic aquatic (surface and/or subsurface) environments and was then assimilated, redistributed and sequestered by the hydrothermal fluids (hydrothermal pump hypothesis).

  11. Immobilization of Cr (VI) in stainless steel slag and Cd, As, and Pb in wastewater using blast furnace slag via a hydrothermal treatment

    NASA Astrophysics Data System (ADS)

    Tae, Soon-Jae; Morita, Kazuki

    2017-05-01

    The immobilization of hexavalent chromium in stainless steel slag using blast furnace slag as the immobilizing agent and by performing a hydrothermal treatment was investigated. The results showed that there was no immobilization in the absence of the blast furnace slag. On the other hand, the hexavalent chromium in stainless steel slag could be immobilized through the hydrothermal reaction when blast furnace slag was used at 250 °C for 24 h. A leaching test was performed to evaluate the degree of immobilization of hexavalent chromium in the products formed by the hydrothermal reaction. It was found that the degree of immobilization was very high. Based on the results obtained, the immobilization mechanism of hexavalent chromium in stainless steel slag, resulting from the hydrothermal treatment of blast furnace slag, could be elucidated. Finally, the immobilization of cadmium, lead, and arsenic using blast furnace slag as the immobilization agent was also studied while focusing on the effects of the hydrothermal treatment.

  12. Marine Subsurface Microbial Communities Across a Hydrothermal Gradient in Okinawa Trough Sediments

    NASA Astrophysics Data System (ADS)

    Brandt, L. D.; Hser Wah Saw, J.; Ettema, T.; House, C. H.

    2015-12-01

    IODP Expedition 331 to the Okinawa backarc basin provided an opportunity to study the microbial stratigraphy within the sediments surrounding a hydrothermal vent. The Okinawa backarc basin is a sedimented region of the seafloor located on a continental margin, and also hosts a hydrothermal network within the subsurface. Site C0014 within the Iheya North hydrothermal field is located 450 m east of the active vent and has a surface temperature of 5°C with no evidence of hydrothermal alteration within the top 10 meters below sea floor (mbsf). Temperature increases with depth at an estimated rate of 3°C/m and transitions from non-hydrothermal margin sediments to a hydrothermally altered regime below 10 mbsf. In this study, we utilized deep 16S rRNA sequencing of DNA from IODP Expedition 331 Site C0014 sediment horizons in order to assess diversity throughout the sediment column as well as determine the potential limits of the biosphere. Analysis of the amplicon data shows a shift over 15 mbsf from a heterogeneous community of cosmopolitan marine subsurface taxa toward an archaeal-dominated community in the deepest horizons of the predicted biosphere. Notably, the phylum Chloroflexi represents a substantial taxon through most horizons, where it appears to be replaced below 10 mbsf by punctuations of thermophilic and methanotrophic Archaea and Miscellaneous Crenarchaeotic Group abundances. DNA from the aforementioned transition horizons was further analyzed using metagenomic sequencing. Preliminary taxonomic analysis of the metagenomic data agrees well with amplicon data in capturing the shift in relative abundance of Archaea increasing with depth. Additionally, reverse gyrase, a gene found exclusively in hyperthermophilic microorganisms, was recovered only in the metagenome of the deepest horizon. A BLAST search of this protein sequence against the GenBank non-redudnant protein database produced top hits with reverse gyrase from Thermococcus and Pyrococcus, which are known thermophiles. Up until now, thermophiles and hyperthermophiles have been studied in cultured hydrothermal vent fluid samples, or have been identified from 16S rRNA taxonomic analyses. These recovered genes provide direct evidence for a pervasive subsurface hyperthermophilic biosphere in off-axis hydrothermal sediments.

  13. Surface mediated assembly of small, metastable gold nanoclusters

    NASA Astrophysics Data System (ADS)

    Pettibone, John M.; Osborn, William A.; Rykaczewski, Konrad; Talin, A. Alec; Bonevich, John E.; Hudgens, Jeffrey W.; Allendorf, Mark D.

    2013-06-01

    The unique properties of metallic nanoclusters are attractive for numerous commercial and industrial applications but are generally less stable than nanocrystals. Thus, developing methodologies for stabilizing nanoclusters and retaining their enhanced functionality is of great interest. We report the assembly of PPh3-protected Au9 clusters from a heterogeneous mixture into films consisting of sub 3 nm nanocluster assemblies. The depositing nanoclusters are metastable in solution, but the resulting nanocluster assemblies are stabilized indefinitely in air or fresh solvent. The films exhibit distinct structure from Au nanoparticles observed by X-ray diffraction, and film dissolution data support the preservation of small nanoclusters. UV-Vis spectroscopy, electrospray ionization mass spectrometry, X-ray photoelectron spectroscopy and electron microscopy are used to elucidate information regarding the nanocluster formation and assembly mechanism. Preferential deposition of nanocluster assemblies can be achieved on multiple substrates, including polymer, Cr, Si, SiO2, SiNx, and metal-organic frameworks (MOFs). Unlike other vapor phase coating processes, nanocluster assembly on the MIL-68(In) MOF crystal is capable of preferentially coating the external surface and stabilizing the crystal structure in hydrothermal conditions, which should enhance their storage, separation and delivery capabilities.The unique properties of metallic nanoclusters are attractive for numerous commercial and industrial applications but are generally less stable than nanocrystals. Thus, developing methodologies for stabilizing nanoclusters and retaining their enhanced functionality is of great interest. We report the assembly of PPh3-protected Au9 clusters from a heterogeneous mixture into films consisting of sub 3 nm nanocluster assemblies. The depositing nanoclusters are metastable in solution, but the resulting nanocluster assemblies are stabilized indefinitely in air or fresh solvent. The films exhibit distinct structure from Au nanoparticles observed by X-ray diffraction, and film dissolution data support the preservation of small nanoclusters. UV-Vis spectroscopy, electrospray ionization mass spectrometry, X-ray photoelectron spectroscopy and electron microscopy are used to elucidate information regarding the nanocluster formation and assembly mechanism. Preferential deposition of nanocluster assemblies can be achieved on multiple substrates, including polymer, Cr, Si, SiO2, SiNx, and metal-organic frameworks (MOFs). Unlike other vapor phase coating processes, nanocluster assembly on the MIL-68(In) MOF crystal is capable of preferentially coating the external surface and stabilizing the crystal structure in hydrothermal conditions, which should enhance their storage, separation and delivery capabilities. Electronic supplementary information (ESI) available: Further details on stored plating solution preparation, film characterization, solution processing, MOF crystal FIB reconstruction and stability are available. See DOI: 10.1039/c3nr01708g

  14. Effect of acid detergent fiber in hydrothermally pretreated sewage sludge on anaerobic digestion process

    NASA Astrophysics Data System (ADS)

    Takasaki, Rikiya; Yuan, Lee Chang; Kamahara, Hirotsugu; Atsuta, Youichi; Daimon, Hiroyuki

    2017-10-01

    Hydrothermal treatment is one of the pre-treatment method for anaerobic digestion. The application of hydrothermal treatment to sewage sludge of wastewater treatment plant has been succeeded to enhance the biogas production. The purpose of this study is to quantitatively clarify the effect of hydrothermal treatment on anaerobic digestion process focusing on acid detergent fiber (ADF) in sewage sludge, which is low biodegradability. The hydrothermal treatment experiment was carried out for 15 minutes between 160 °C and 200 °C respectively. The ADF content was decreased after hydrothermal treatment compared with untreated sludge. However, ADF content was increased when raising the treatment temperature from 160 °C to 200 °C. During batch anaerobic digestion experiment, untreated and treated sludge were examined for 10 days under 38 °C, and all samples were fed once based on volatile solids of samples. From batch anaerobic digestion experiment, as ADF content in sewage sludge increased, the total biogas production decreased. It was found that ADF content in sewage sludge influence on anaerobic digestion. Therefore, ADF could be one of the indicator to evaluate the effect of hydrothermal treatment to sewage sludge on anaerobic digestion.

  15. Environmental effects of hydrothermal alteration and historical mining on water and sediment quality in Central Colorado

    USGS Publications Warehouse

    Church, S.E.; Fey, D. L.; Klein, T.L.; Schmidt, T.S.; Wanty, R.B.; deWitt, E.H.; Rockwell, B.W.; San, Juan C.A.

    2009-01-01

    The U.S. Geological Survey conducted an environmental assessment of 198 catchments in a 54,000-km2 area of central Colorado, much of which is on Federal land. The Colorado Mineral Belt, a northeast-trending zone of historical base- and precious-metal mining, cuts diagonally across the study area. The investigation was intended to test the hypothesis that degraded water and sediment quality are restricted to catchments in which historical mining has occurred. Water, streambed sediment, and aquatic insects were collected from (1) catchments underlain by single lithogeochemical units, some of which were hydrothermally altered, that had not been prospected or mined; (2) catchments that contained evidence of prospecting, most of which contain hydrothermally altered rock, but no historical mining; and (3) catchments, all of which contain hydrothermally altered rock, where historical but now inactive mines occur. Geochemical data determined from catchments that did not contain hydrothermal alteration or historical mines met water quality criteria and sediment quality guidelines. Base-metal concentrations from these types of catchments showed small geochemical variations that reflect host lithology. Hydrothermal alteration and mineralization typically are associated with igneous rocks that have intruded older bedrock in a catchment. This alteration was regionally mapped and characterized primarily through the analysis of remote sensing data acquired by the ASTER satellite sensor. Base-metal concentrations among unaltered rock types showed small geochemical variations that reflect host lithology. Base-metal concentrations were elevated in sediment from catchments underlain by hydrothermally altered rock. Classification of catchments on the basis of mineral deposit types proved to be an efficient and accurate method for discriminating catchments that have degraded water and sediment quality. Only about 4.5 percent of the study area has been affected by historical mining, whereas a larger part of the study area is underlain by hydrothermally altered rock that has weathered to produce water and sediment with naturally elevated geochemical baselines. 

  16. Microwave assisted synthesis of luminescent carbonaceous nanoparticles from silk fibroin for bioimaging.

    PubMed

    Gao, Hongzhi; Teng, Choon Peng; Huang, Donghong; Xu, Wanqing; Zheng, Chaohui; Chen, Yisong; Liu, Minghuan; Yang, Da-Peng; Lin, Ming; Li, Zibiao; Ye, Enyi

    2017-11-01

    Bombyx mori silk as a natural protein based biopolymer with high nitrogen content, is abundant and sustainable because of its mass product all over the world per year. In this study, we developed a facile and fast microwave-assisted synthesis of luminescent carbonaceous nanoparticles using Bombyx mori silk fibroin and silk solution as the precursors. As a result, the obtained carbonaceous nanoparticles exhibit a photoluminescence quantum yield of ~20%, high stability, low cytotoxicity, high biocompatibility. Most importantly, we successfully demonstrated bioimaging using these luminescent carbonaceous nanoparticles with excitation dependent luminescence. In addition, the microwave-assisted hydrothermal method can be extended to convert other biomass into functional nanomaterials. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Zirconia dental implants degradation by confocal Raman microspectroscopy: analytical simulation and experiments

    PubMed Central

    Djaker, Nadia; Wulfman, Claudine; Sadoun, Michaël; Lamy de la Chapelle, Marc

    2013-01-01

    Subsurface hydrothermal degradation of yttria stabilized tetragonal zirconia polycrystals (3Y-TZP) is presented. Evaluation of low temperature degradation (LTD) phase transformation induced by aging in 3Y-TZP is experimentally studied by Raman confocal microspectroscopy. A non-linear distribution of monoclinic volume fraction is determined in depth by using different pinhole sizes. A theoretical simulation is proposed based on the convolution of the excitation intensity profile and the Beer-Lambert law (optical properties of zirconia) to compare between experiment and theory. The calculated theoretical degradation curves matche closely to the experimental ones. Surface transformation (V0) and transformation factor in depth (T) are obtained by comparing simulation and experience for each sample with nondestructive optical sectioning. PMID:23667788

  18. Quantification and kinetics of H2 generation during hydrothermal serpentinisation experiments

    NASA Astrophysics Data System (ADS)

    Castelain, Teddy; Fauguerolles, Colin; Villeneuve, Johan; Pichavant, Michel

    2013-04-01

    H2-rich hydrothermal fluids generated by serpentinisation of mantle rocks at slow-spreading ridges have been revealed by recent studies [1, 2]. Fluxes and the future of the H2 produced by this process are poorly constrained [1, 3]. In this study, we aim to quantitatively evaluate the H2 production fluxes associated with these hydrothermal systems and to document the kinetics of the hydrogen-producing reaction. For this matter, hydrothermal serpentinisation experiments are being undertaken on mixtures composed of a natural peridotite from the Pindus ophiolite and olivine crystals from San Carlos. The experiments are conducted at a temperature of ~ 300° C and a pressure of 450-500 bars in large-volume Dickson-Seyfried bombs for periods of × 1 month. Starting materials are powders between 1 - 100 μm for the peridotites and individual grains ranging from 1 - 2 mm for the San Carlos olivine. They are reacted with a homemade artificial seawater in such proportion that water-rock ratio = 1.8. The reactants are loaded in a modified Ti cell fitted with a semi-permeable Au-Pd membrane simultaneously allowing direct sampling of the hydrothermal fluid and in situ monitoring of the pH2 during the advancement of the reaction. The gas fraction of the fluid sampled is then analyzed by gas chromatography (GC). The pH2 readings show traces of H2 to be present from the second day of experiment. The increase of the pH2 reaches a maximum after ~ 6 days and the pH2 finally stabilizes after ~ 16 days at ~ 12.5 bars, which corresponds to a local fO2 of about NNO-4. The GC measurements, performed after 30, 43, 51 and 65 days, yield respectively, H2 concentrations of 82.4, 89.7, 90.3 and 101 mmol.kg-1 of water, in reasonable agreement with results from previous studies [4-6]. Further experiments are being undertaken in order to: duplicate observations, especially the pH2 readings, more closely link the GC measurements and the in situ pH2 readings, especially during the first 15 days of experiment, and relate H2 production with the mineralogical composition of products of the serpentinisation reaction. The possible influence of the oxidation of the Ti cell on the H2 production will be also checked by using a Au bag instead of a Ti cell. However, from our results, it appears that H2 generation via serpentinisation is surprisingly rapid. [1] ] J.-L. Charlou et al., Chem. Geol., 191, 2002. [2] C. Mével, C.R. Geosc., 335, 2003. [3] M. Cannat et al., Geophys. Mono. Series, 188, 2010. [4] D.G. Allen, and W.E. Jr Seyfried, Geochim. Cosmochim. Acta 67 (8), 2003. [5] M.E. Berndt, et al., Geology 24 (4), 1996. [6] W.E. Seyfried,et al., Geochim. Cosmochim. Acta 71, 2007.

  19. Water column imaging on hydrothermal vent in Central Indian Ridge

    NASA Astrophysics Data System (ADS)

    Koh, J.; Park, Y.

    2017-12-01

    Water column imaging with Multibeam echosounder systems (MBES) is recently becoming of increasing interest for oceanographic studies. Especially gas bubbles and hot water exposed from hydrothermal vents make acoustic impedance anomalies in cold seawater, water column imaging is very useful for the researchers who want to detect some kinds of hydrothermal activity. We conducted a hydrothermal exploration program, called "INVENT17", using the MBES system, KONGBERG EM122 (12kHz, 1°×1°), mounted on R/V ISABU and we deployed other equipments including video guided hydraulic grab, tow-yo CTD and general CTD with MAPR (Miniature Autonomous Plume Recorder) in 2017. First, to evaluate its capabilities of detection of hydrothermal vent, the surveys using the MBES were conducted at the Solitaire Field, previously identified hydrothermal area of the Central Indian Ridge. The bathymetric data obtained from MBES provided information about detailed morphology of seafloor, but we were not able to achieve the information from the water column imaging data. But the clue of existence of active hydrothermal vent was detected through the values of ΔNTU, dEh/dt, and OPR gained from MAPR, the data means that the hydrothermal activity affects 100m from the seafloor. It could be the reason that we can't find the hydrothermal activity because the range resolution of water column imaging is pretty rough so that the size of 100m-scaled activity has low possibility to distinguish from seafloor. The other reason is there are no sufficient objects to cause strong scattering like as CO2 bubbles or droplets unlike in the mid-Okinawa Trough. And this suggests that can be a important standard to identify properties of hydrothermal vent sites depending on the presence of scattering objects in water mass. To justify this, we should perform more chemical analysis of hot water emanating from hydrothermal vent and collected several bottles of water sample to do that.

  20. Hydrothermal systems are a sink for dissolved black carbon in the deep ocean

    NASA Astrophysics Data System (ADS)

    Niggemann, J.; Hawkes, J. A.; Rossel, P. E.; Stubbins, A.; Dittmar, T.

    2016-02-01

    Exposure to heat during fires on land or geothermal processes in Earth's crust induces modifications in the molecular structure of organic matter. The products of this thermogenesis are collectively termed black carbon. Dissolved black carbon (DBC) is a significant component of the oceanic dissolved organic carbon (DOC) pool. In the deep ocean, DBC accounts for 2% of DOC and has an apparent radiocarbon age of 18,000 years. Thus, DBC is much older than the bulk DOC pool, suggesting that DBC is highly refractory. Recently, it has been shown that recalcitrant deep-ocean DOC is efficiently removed during hydrothermal circulation. Here, we hypothesize that hydrothermal circulation is also a net sink for deep ocean DBC. We analyzed DBC in samples collected at different vent sites in the Atlantic, Pacific and Southern oceans. DBC was quantified in solid-phase extracts as benzenepolycarboxylic acids (BPCAs) following nitric acid digestion. Concentrations of DBC were much lower in hydrothermal fluids than in surrounding deep ocean seawater, confirming that hydrothermal circulation acts as a net sink for oceanic DBC. The relative contribution of DBC to bulk DOC did not change during hydrothermal circulation, indicating that DBC is removed at similar rates as bulk DOC. The ratio of the oxidation products benzenehexacarboxylic acid (B6CA) to benzenepentacarboxylic acid (B5CA) was significantly higher in hydrothermally altered samples compared to ratios typically found in the deep ocean, reflecting a higher degree of condensation of DBC molecules after hydrothermal circulation. Our study identified hydrothermal circulation as a quantitatively important sink for refractory DBC in the deep ocean. In contrast to photodegradation of DBC at the sea surface, which is more efficient for more condensed DBC, i.e. decreasing the B6CA/B5CA ratio, hydrothermal processing increases the B6CA/B5CA ratio, introducing a characteristic hydrothermal DBC signature.

  1. Active hydrothermal and non-active massive sulfide mound investigation using a new multiparameter chemical sensor

    NASA Astrophysics Data System (ADS)

    Han, C.; Wu, G.; Qin, H.; Wang, Z.

    2012-12-01

    Investigation of active hydrothermal mound as well as non-active massive sulfide mound are studied recently. However, there is still lack of in-situ detection method for the non-active massive sulfide mound. Even though Transient ElectroMagnetic (TEM) and Electric Self-potential (SP) methods are good, they both are labour, time and money cost work. We proposed a new multiparameter chemical sensor method to study the seafloor active hydrothermal mound as well as non-active massive sulfide mound. This sensor integrates Eh, S2- ions concentration and pH electrochemical electrodes together, and could found chemical change caused by the active hydrothermal vent, even weak chemical abnormalities by non-active massive sulfide hydrothermal mound which MARP and CTD sometimes cannot detect. In 2012, the 1st Leg of the Chinese 26th cruise, the multiparameter chemical sensor was carried out with the deepsea camera system over the Carlsberg Ridge in Indian Ocean by R/V DAYANGYIHAO. It was shown small Eh and S2- ions concentration abnormal around a site at Northwest Indian ridge. This site was also evidenced by the TV grab. In the 2nd Leg of the same cruise in June, this chemical sensor was carried out with TEM and SP survey system. The chemical abnormalities are matched very well with both TEM and SP survey results. The results show that the multiparameter chemical sensor method not only can detect active hydrothermal mound, but also can find the non-active massive sulfide hydrothermal mound.

  2. PROCESS IMPROVEMENT STUDIES ON THE BATTELLE HYDROTHERMAL COAL PROCESS

    EPA Science Inventory

    The report gives results of a study to improve the economic viability of the Battelle Hydrothermal (HT) Coal Process by reducing the costs associated with liquid/solid separation and leachant regeneration. Laboratory experiments were conducted to evaluate process improvements for...

  3. Enhancement of valve metal osteoconductivity by one-step hydrothermal treatment.

    PubMed

    Zuldesmi, Mansjur; Waki, Atsushi; Kuroda, Kensuke; Okido, Masazumi

    2014-09-01

    In this study, we produced super-hydrophilic surfaces of valve metals (Ti, Nb, Ta and Zr) by one-step hydrothermal treatment. Their surface characteristics and osteoconductivity using an in vivo test were then assessed. These data were compared with that of as-polished, as-anodized and both anodized+hydrothermally treated samples. Changes in surface chemistry, surface morphology and structure were investigated by X-ray photoelectron spectroscopy, scanning electron microscopy, and X-ray diffractometry. The results revealed that the water contact angles of valve metals were decreased by hydrothermal treatment and continued to reduce dramatically until lower than 10° after being immersed in phosphate buffered solution. By producing super-hydrophilic surfaces, the osteoconductivity of these hydrothermally treated valve metals was enhanced by up to 55%. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Mechanochemical approach for synthesis of layered double hydroxides

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoqing; Li, Shuping

    2013-06-01

    In this paper, a mechanochemical approach is used to prepare layered double hydroxides (LDHs). This approach involves manually grinding the precursor, nitrates and then the hydrothermal treatment. The study indicates that grinding leads to the incomplete formation of LDHs phase, LDHs-M. The reaction degree of precursor salts to LDHs after grinding depends on the melting points of the precursors. As expected, hydrothermal treatment is beneficial for the good crystallization and regularity of LDHs. Especially, the effect of hydrothermal treatment has been emphatically explored. The hydration of LDHs-M, increment of zeta potentials and the complete exchange of NO3- by CO32- anions occur successively or in parallel during the hydrothermal treatment. It can be found that combination of grinding and hydrothermal treatment gives rise to the formation of uniform and monodispersed particles of LDHs.

  5. Effective reduction of p-nitrophenol by silver nanoparticle loaded on magnetic Fe3O4/ATO nano-composite

    NASA Astrophysics Data System (ADS)

    Karki, Hem Prakash; Ojha, Devi Prashad; Joshi, Mahesh Kumar; Kim, Han Joo

    2018-03-01

    A silver loaded hematite (Fe3O4) and antimony doped tin oxide (ATO) magnetic nano-composite (Ag-Fe3O4/ATO) was successfully synthesized by in situ one pot green and facile hydrothermal process. The formation of nano-composite, its structure, morphology, and stability were characterized by field emission scanning electron microscopy (FE-SEM), high resolution transmission electron microscopy (HRTEM), electron diffraction spectroscopy (EDS), elemental mapping by high resolution scanning transmission electron microscopy (STEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier transform infra-red spectroscopy (FTIR). UV-vis spectroscopy was used to monitor the catalytic reduction of p-nitrophenol (PNP) into p-aminophenol (PAP) in presence of Ag-Fe3O4/ATO nano-composite with excess of sodium borohydride (NaBH4). The pseudo-first order kinetic equation could describe the reduction of p-nitrophenol with excess of NaBH4. For the first time, ATO surface was used for hydrothermal growth of silver and iron oxide magnetic nanoparticles. The in situ growth of these nanoparticles provided an effective bonding of components of the nano-composite over the surface of ATO nanoparticles. This nano-composite exhibited easy synthesis, high stability, cost effective and rapid separation using external magnet. The excellent catalytic and anti-bacterial activity of as-synthesized silver nano-composite makes it potential nano-catalyst for waste water treatment as well as biomedical application.

  6. Synthesis and characterization of reduced graphene oxide decorated with CeO2-doped MnO2 nanorods for supercapacitor applications.

    PubMed

    Ojha, Gunendra Prasad; Pant, Bishweshwar; Park, Soo-Jin; Park, Mira; Kim, Hak-Yong

    2017-05-15

    A novel and efficient CeO 2 -doped MnO 2 nanorods decorated reduced graphene oxide (CeO 2 -MnO 2 /RGO) nanocomposite was successfully synthesized via hydrothermal method. The growth of the CeO 2 doped MnO 2 nanorods over GO sheets and reduction of GO were simultaneously carried out under hydrothermal treatment. The morphology and structure of as-synthesized nanocomposite were characterized by field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and Raman spectroscopy, which revealed the formation of CeO 2 -MnO 2 decorated RGO nanocomposites. The electrochemical performance of as-prepared CeO 2 -MnO 2 /RGO nanocomposites as an active electrode material for supercapacitor was evaluated by cyclic voltammetry, charge-discharge, and electrochemical impedance spectroscopy (EIS) methods in 2M alkaline medium. The obtained results revealed that as-synthesized CeO 2 -MnO 2 /RGO nanocomposite exhibited higher specific capacitance (648F/g) as compared to other formulations (MnO 2 /RGO nanocomposites: 315.13 F/g and MnO 2 nanorods: 228.5 F/g) at the scan rate of 5mV/s. After 1000 cycles, it retained ∼90.4%, exhibiting a good stability. The high surface area, enhanced electrical conductivity, and good stability possess by the nanocomposite make this material a promising candidate to be applied as a supercapacitor electrode. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Microbial Response to High Temperature Hydrothermal Forcing: AISICS Vent (Lucky Strike, 37°N, MAR) and Prokaryote Community as Example.

    NASA Astrophysics Data System (ADS)

    Henri, P. A.; Rommevaux, C.; Chavagnac, V.; Degboe, J.; Destrigneville, C.; Boulart, C.; Lesongeur, F.; Castillo, A.; Goodfroy, A.

    2015-12-01

    To study the hydrothermal forcing on microbial colonization, and impacts on the oceanic crust alteration, an integrated study was led at the Tour Eiffel hydrothermal site (Lucky Strike hydrothermal field, 37°N, MAR). We benefited from an annual survey between 2009 and 2011 of temperatures, along with sampling of focused and diffused fluids for chemical analysis, and chimney sampling and samples from microbial colonization experiments analyzed for prokaryotic composition and rock alteration study. The chemical composition of the fluids show an important increase in the CO2 concentration at the Eiffel Tower site between 2009 and 2010 followed by a decrease between 2010 and 2011. In 2011, several fluid samples show an important depletion in Si, suggesting that some Si was removed by interaction with the stockwork before emission. Our observations, regarding the previous studies of chemical fluid affected by a magmatic event lead us to suppose that a magmatic/tectonic event occurred under the Lucky Strike hydrothermal field between 2009 and 2010. The results of the prokaryotic communities' analysis show that a shift occurred in the dominant microbial metabolisms present in the colonizer retrieved in 2010 and the one retrieved in 2011. Archaeal communities shifted from chemolithoautotropic sulfite/thiosulfate reducers-dominated in 2010 to ammonia oxidizers-dominated in 2011. The bacterial communities also undergo a shift, from a community with diversified metabolisms in 2010 to a community strongly dominated by chemolithoautotrophic sulfide or hydrogen oxidation in 2011. Moreover, in terms of ecological preferendum, the Archaeal communities shifted from thermophilic-dominated to mesophilic-dominated. The present study underline the influence of modifications in gases compositions of hydrothermal fluids subsequently to a degassing of the magma chamber and their impact on the microbial communities living in the vicinity of hydrothermal vents at the Eiffel Tower site.

  8. Quantitative characterization of the aqueous fraction from hydrothermal liquefaction of algae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maddi, Balakrishna; Panisko, Ellen; Wietsma, Thomas

    Aqueous streams generated from hydrothermal liquefaction contain approximately 30% of the total carbon present from the algal feed. Hence, this aqueous carbon must be utilized to produce liquid fuels and/or specialty chemicals for economic sustainability of hydrothermal liquefaction on industrial scale. In this study, aqueous fractions produced from the hydrothermal liquefaction of fresh water and saline water algal cultures were analyzed using a wide variety of analytical instruments to determine their compositional characteristics. This study will also inform researchers designing catalysts for down-stream processing such as high-pressure catalytic conversion of organics in aqueous phase, catalytic hydrothermal gasification, and biological conversions.more » Organic chemical compounds present in all eight aqueous fractions were identified using two-dimensional gas chromatography equipped with time-of-flight mass spectrometry. Identified compounds include organic acids, nitrogen compounds and aldehydes/ketones. Conventional gas chromatography and liquid chromatography methods were utilized to quantify the identified compounds. Inorganic species in the aqueous stream of hydrothermal liquefaction of algae were identified using ion chromatography and inductively coupled plasma optical emission spectrometer. The concentrations of organic chemical compounds and inorganic species are reported. The amount quantified carbon ranged from 45 to 72 % of total carbon in the aqueous fractions.« less

  9. Hydrothermal synthesis of barium strontium titanate and bismuth titanate materials

    NASA Astrophysics Data System (ADS)

    Xu, Huiwen

    Hydrothermal processing facilitates the synthesis of crystalline ceramic materials of varying composition or complex crystal structure. The present work can be divided into two parts. First is to study the low temperature hydrothermal synthesis of bismuth titanate. Second is to study both thermodynamic and kinetic aspects of the hydrothermally synthesized barium strontium titanate. A chelating agent was used to form a Bi-Ti gel precursor. By hydrothermally treating the Bi-Ti gel, crystalline bismuth titanate has been synthesized at 160°C for the first time. Microstructural evolution during the low temperature synthesis of bismuth titanate can be divided into two stages, including condensation of Bi-Ti gel particles and crystallization of bismuth titanate. Crystallization of bismuth titanate occurred by an in situ transformation mechanism at an early stage followed by a dissolution-reprecipitation mechanism. Phase separation was observed in hydrothermally synthesized barium strontium titanate (BST). By hydrothermally treating BST powders between 250°C--300°C, an asymmetrical miscibility gap was found in the BaTiO3-SrTiO 3 system at low temperatures (T ≤ 320°C). A subregular solid solution model was applied to calculate the equilibrium compositions and the Gibbs free energy of formation of BST solid solution at low temperatures (T ≤ 320°C). The Gibbs free energy of formation of Sr-rich BST phase is larger than that of Ba-rich BST phase. Kinetic studies of single phase BST solid solution at 80°C show that, compared to the BaTiO3 or Ba-rich BST, SrTiO3 and Sr-rich BST powders form at lower reaction rates.

  10. Cobalt ferrite nanoparticles with improved aqueous colloidal stability and electrophoretic mobility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Munjal, Sandeep, E-mail: drsandeepmunjal@gmail.com; Khare, Neeraj, E-mail: nkhare@physics.iitd.ernet.in

    We have synthesized CoFe{sub 2}O{sub 4} (CFO) nanoparticles of size ∼ 12.2 nm by hydrothermal synthesis method. To control the size of these CFO nanoparticles, oleic acid was used as a surfactant. The inverse spinel phase of the synthesized nanoparticles was confirmed by X-ray diffraction method. As synthesized oleic acid coated CFO (OA@CFO) nanoparticles has very less electrophoretic mobility in the water and are not water dispersible. These OA@CFO nanoparticles were successfully turned into water soluble phase with a better colloidal aqueous stability, through a chemical treatment using citric acid. The modified citric acid coated CFO (CA@CFO) nanoparticles were dispersible inmore » water and form a stable aqueous solution with high electrophoretic mobility.« less

  11. The distribution and stabilisation of dissolved Fe in deep-sea hydrothermal plumes

    NASA Astrophysics Data System (ADS)

    Bennett, Sarah A.; Achterberg, Eric P.; Connelly, Douglas P.; Statham, Peter J.; Fones, Gary R.; German, Christopher R.

    2008-06-01

    We have conducted a study of hydrothermal plumes overlying the Mid-Atlantic Ridge near 5° S to investigate whether there is a significant export flux of dissolved Fe from hydrothermal venting to the oceans. Our study combined measurements of plume-height Fe concentrations from a series of 6 CTD stations together with studies of dissolved Fe speciation in a subset of those samples. At 2.5 km down plume from the nearest known vent site dissolved Fe concentrations were ˜ 20 nM. This is much higher than would be predicted from a combination of plume dilution and dissolved Fe(II) oxidation rates, but consistent with stabilisation due to the presence of organic Fe complexes and Fe colloids. Using Competitive Ligand Exchange-Cathodic Stripping Voltammetry (CLE-CSV), stabilised dissolved Fe complexes were detected within the dissolved Fe fraction on the edges of one non-buoyant hydrothermal plume with observed ligand concentrations high enough to account for stabilisation of ˜ 4% of the total Fe emitted from the 5° S vent sites. If these results were representative of all hydrothermal systems, submarine venting could provide 12-22% of the global deep-ocean dissolved Fe budget.

  12. Evidence of a modern deep water magmatic hydrothermal system in the Canary Basin (eastern central Atlantic Ocean)

    NASA Astrophysics Data System (ADS)

    Medialdea, T.; Somoza, L.; González, F. J.; Vázquez, J. T.; de Ignacio, C.; Sumino, H.; Sánchez-Guillamón, O.; Orihashi, Y.; León, R.; Palomino, D.

    2017-08-01

    New seismic profiles, bathymetric data, and sediment-rock sampling document for the first time the discovery of hydrothermal vent complexes and volcanic cones at 4800-5200 m depth related to recent volcanic and intrusive activity in an unexplored area of the Canary Basin (Eastern Atlantic Ocean, 500 km west of the Canary Islands). A complex of sill intrusions is imaged on seismic profiles showing saucer-shaped, parallel, or inclined geometries. Three main types of structures are related to these intrusions. Type I consists of cone-shaped depressions developed above inclined sills interpreted as hydrothermal vents. Type II is the most abundant and is represented by isolated or clustered hydrothermal domes bounded by faults rooted at the tips of saucer-shaped sills. Domes are interpreted as seabed expressions of reservoirs of CH4 and CO2-rich fluids formed by degassing and contact metamorphism of organic-rich sediments around sill intrusions. Type III are hydrothermal-volcanic complexes originated above stratified or branched inclined sills connected by a chimney to the seabed volcanic edifice. Parallel sills sourced from the magmatic chimney formed also domes surrounding the volcanic cones. Core and dredges revealed that these volcanoes, which must be among the deepest in the world, are constituted by OIB-type, basanites with an outer ring of blue-green hydrothermal Al-rich smectite muds. Magmatic activity is dated, based on lava samples, at 0.78 ± 0.05 and 1.61 ± 0.09 Ma (K/Ar methods) and on tephra layers within cores at 25-237 ky. The Subvent hydrothermal-volcanic complex constitutes the first modern system reported in deep water oceanic basins related to intraplate hotspot activity.Plain Language SummarySubmarine volcanism and associated hydrothermal systems are relevant processes for the evolution of the ocean basins, due their impact on the geochemistry of the oceans, their potential to form significant ore deposits, and their implications for global climate change, considering the heat transport, maturation of organic matter and the release of carbon-rich fluids associated to these systems. Hydrothermal vent complexes have been found all over the world in the fossil record related to large igneous provinces as those found in the North Atlantic margins. Nevertheless, studies focused on modern deep water magmatic hydrothermal systems are generally confined to ocean spreading centers, while scarce works address their study in deep oceanic intraplate basins. This study reports and documents for the first time the discovery of a recent deep water system of magmatic-induced hydrothermal vents at 4800-5200 m depth in an unexplored area of the Canary Basin (eastern central Atlantic), located about 500 km west of the Canary Islands. The analysis and interpretation of the newly acquired data set has shown that the study area is characterized by the presence of a huge magmatic complex of sills that intrudes the sedimentary sequence and exceptionally deep volcanoes so far unknown.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ApSS..446..145S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ApSS..446..145S"><span>Shape control VO2 nanorods prepared by soft chemistry and electrochemical method</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Simo, A.; Sibanyoni, J.; Fuku, X.; Numan, N.; Omorogbe, S.; Maaza, M.</p> <p>2018-07-01</p> <p>"Bottom up" approach is of primary interest for chemistry and materials science because the fundamental building blocks are atoms. Thus colloidal chemical synthetic methods can be utilized to prepare uniform nanocrystals with controlled particle size. In the following work of study, thermochromic VO2 nanostructures were prepared by hydrothermal technique soft chemistry. We concentrate on solution phase synthetic methods that enable a proper shape and size control of metal oxide nanocrystals. Their structural properties were studied by Scanning Electron Microscopy (SEM), Fourier Transform IR (FTIR) and Differential Scanning Calorimetry (DSC). It is demonstrated that the surfactant assistance (NaOH) has great influence on the morphology-control of the material. Electrochemical properties of the nanospheres show good stability after 20 cycles and the surface diffusion coefficient was calculated to be 5 × 10-6 cm2 s-1.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27305783','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27305783"><span>[Diversity of culturable sulfur-oxidizing bacteria in deep-sea hydrothermal vent environments of the South Atlantic].</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Xu, Hongxiu; Jiang, Lijing; Li, Shaoneng; Zhong, Tianhua; Lai, Qiliang; Shao, Zongze</p> <p>2016-01-04</p> <p>To investigate the diversity of culturable sulfur-oxidizing bacteria in hydrothermal vent environments of the South Atlantic, and analyze their characteristics of sulfur oxidation. We enriched and isolated sulfur-oxidizing bacteria from hydrothermal vent samples collected from the South Atlantic. The microbial diversity in enrichment cultures was analyzed using the Denatural Gradient Gel Electrophoresis method. Sulfur-oxidizing characteristics of the isolates was further studied by using ion chromatography. A total of 48 isolates were obtained from the deep-sea hydrothermal vent samples, which belonged to 23 genera and mainly grouped into alpha-Proteobacteria (58.3%), Actinobacteria (22.9%) and gama-Proteobacteria (18.8%). Among them, the genus Thalassospira, Martelella and Microbacterium were dominant. About 60% of the isolates exibited sulfur-oxidizing ability and strain L6M1-5 had a higher sulfur oxidation rate by comparison analysis. The diversity of sulfur-oxidizing bacteria in hydrothermal environments of the South Atlantic was reported for the first time based on culture-dependent methods. The result will help understand the biogechemical process of sulfur compounds in the deep-sea hydrothermal environments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5394654','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5394654"><span>Astronomical and atmospheric impacts on deep-sea hydrothermal vent invertebrates</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Legendre, Pierre; Matabos, Marjolaine; Mihály, Steve; Lee, Raymond W.; Sarradin, Pierre-Marie; Arango, Claudia P.; Sarrazin, Jozée</p> <p>2017-01-01</p> <p>Ocean tides and winter surface storms are among the main factors driving the dynamics and spatial structure of marine coastal species, but the understanding of their impact on deep-sea and hydrothermal vent communities is still limited. Multidisciplinary deep-sea observatories offer an essential tool to study behavioural rhythms and interactions between hydrothermal community dynamics and environmental fluctuations. Here, we investigated whether species associated with a Ridgeia piscesae tubeworm vent assemblage respond to local ocean dynamics. By tracking variations in vent macrofaunal abundance at different temporal scales, we provide the first evidence that tides and winter surface storms influence the distribution patterns of mobile and non-symbiotic hydrothermal species (i.e. pycnogonids Sericosura sp. and Polynoidae polychaetes) at more than 2 km depth. Local ocean dynamics affected the mixing between hydrothermal fluid inputs and surrounding seawater, modifying the environmental conditions in vent habitats. We suggest that hydrothermal species respond to these habitat modifications by adjusting their behaviour to ensure optimal living conditions. This behaviour may reflect a specific adaptation of vent species to their highly variable habitat. PMID:28381618</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018E%26ES..118a2076L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018E%26ES..118a2076L"><span>Mobility of rare earth element in hydrothermal process and weathering product: a review</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lintjewas, L.; Setiawan, I.</p> <p>2018-02-01</p> <p>The Rare Earth Element (REE), consists of La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Lu, Ho, Er, Tm, Yb, are important elements to be used as raw materials of advanced technology such as semiconductors, magnets, and lasers. The research of REE in Indonesia has not been done. Several researches were conducted on granitic rocks and weathering product such as Bangka, Sibolga, West Kalimantan, West Sulawesi and Papua. REE can be formed by hydrothermal processes such as Bayan Obo, South China. The REE study on active hydrothermal system (geothermal) in this case also has the potential to produce mineral deposits. The purpose of this review paper is to know the mobility of REE on hydrothermal process and weathering products. Mobility of REE in the hydrothermal process can change the distribution patterns and REE content such as Ce, Eu, La, Lu, Nd, Sm, and Y. Another process besides the hydrothermal is weathering process. REE mobility is influenced by weathering products, where the REE will experience residual and secondary enrichment processes in heavier minerals.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004AGUFM.V41B1394K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004AGUFM.V41B1394K"><span>Microbial Community in the Hydrothermal System at Southern Mariana Trough</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kato, S.; Itahashi, S.; Kakegawa, T.; Utsumi, M.; Maruyama, A.; Ishibashi, J.; Marumo, K.; Urabe, T.; Yamagishi, A.</p> <p>2004-12-01</p> <p>There is unique ecosystem around deep-sea hydrothermal area. Living organisms are supported by chemical free energy provided by the hydrothermal water. The ecosystem is expected to be similar to those in early stage of life history on the earth, when photosynthetic organisms have not emerged. In this study, we have analyzed the microbial diversity in the hydrothermal area at southern Mariana trough. In the "Archaean Park Project" supported by special Coordination Fund, four holes were bored and cased by titanium pipes near hydrothermal vents in the southern Mariana trough in 2004. Hydrothermal fluids were collected from these cased holes and natural vents in this area. Microbial cells were collected by filtering the hydrothermal fluid in situ or in the mother sip. Filters were stored at -80C and used for DNA extraction. Chimneys at this area was also collected and stored at -80C. The filters and chimney samples were crushed and DNA was extracted. DNA samples were used for amplification of 16S rDNA fragments by PCR using archaea specific primers and universal primers. The PCR fragments were cloned and sequenced. These PCR clones of different samples will be compared. We will extend our knowledge about microbiological diversity at Southern Mariana trough to compare the results obtained at other area.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5627100','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5627100"><span>Performance improvement of miniaturized ZnO nanowire accelerometer fabricated by refresh hydrothermal synthesis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Song, Sangho; Kim, Hyun Chan; Kim, Jung Woong; Kim, Debora</p> <p>2017-01-01</p> <p>Miniaturized accelerometers are necessary for evaluating the performance of small devices, such as haptics, robotics and simulators. In this study, we fabricated miniaturized accelerometers using well-aligned ZnO nanowires. The layer of ZnO nanowires is used for active piezoelectric layer of the accelerometer, and copper was chosen as a head mass. Seedless and refresh hydrothermal synthesis methods were conducted to grow ZnO nanowires on the copper substrate and the effect of ZnO nanowire length on the accelerometer performance was investigated. The refresh hydrothermal synthesis exhibits longer ZnO nanowires, 12 µm, than the seedless hydrothermal synthesis, 6 µm. Performance of the fabricated accelerometers was verified by comparing with a commercial accelerometer. The sensitivity of the fabricated accelerometer by the refresh hydrothermal synthesis is shown to be 37.7 pA g−1, which is about 30 times larger than the previous result. PMID:28989760</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017DokES.477.1301R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017DokES.477.1301R"><span>Specific mineral associations of hydrothermal shale (South Kamchatka)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rychagov, S. N.; Sergeeva, A. V.; Chernov, M. S.</p> <p>2017-11-01</p> <p>The sequence of hydrothermal shale from the East Pauzhet thermal field within the Pauzhet hydrothermal system (South Kamchatka) was studied in detail. It was established that the formation of shale resulted from argillization of an andesitic lava flow under the influence of an acidic sulfate vapor condensate. The horizons with radically different compositions and physical properties compared to those of the overlying homogeneous plastic shale were distinguished at the base of the sequence. These horizons are characterized by high (up to two orders of magnitude in comparison with average values in hydrothermal shale) concentrations of F, P, Na, Mg, K, Ca, Sc, Ti, V, Cr, Cu, and Zn. We suggested a geological-geochemical model, according to which a deep metal-bearing chloride-hydrocarbonate solution infiltrated into the permeable zone formed at the root of the andesitic lava flow beneath plastic shale at a certain stage of evolution of the hydrothermal system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JNuM..502..236R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JNuM..502..236R"><span>Immobilization of LiCl-Li2O pyroprocessing salt wastes in chlorosodalite using glass-bonded hydrothermal and salt-occlusion methods</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Riley, Brian J.; Peterson, Jacob A.; Kroll, Jared O.; Frank, Steven M.</p> <p>2018-04-01</p> <p>In this study, hydrothermal and salt-occlusion processes were used to make chlorosodalite through reactions with a high-LiCl salt simulating a waste stream generated from pyrochemical treatment of oxide-based used nuclear fuel. Some products were reacted with glass binders to increase chlorosodalite yield through alkali ion exchange and to aid in densification. Hydrothermal processes included reaction of the salt simulant in an autoclave with either zeolite 4A or sodium aluminate and colloidal silica. Chlorosodalite yields in the crystalline products were nearly complete in the glass-bonded materials at values of 100 mass% for the salt-occlusion method, up to 99.0 mass% for the hydrothermal synthesis with zeolite 4A, and up to 96 mass% for the hydrothermal synthesis with sodium aluminate and colloidal silica. These results show promise for using chemically stable chlorosodalite to immobilize oxide reduction salt wastes.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_19 --> <div id="page_20" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="381"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015JVGR..304..324D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015JVGR..304..324D"><span>A study of the hydrothermal alteration in Paleoproterozoic volcanic centers, São Félix do Xingu region, Amazonian Craton, Brazil, using short-wave infrared spectroscopy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>da Cruz, Raquel Souza; Fernandes, Carlos Marcello Dias; Villas, Raimundo Netuno Nobre; Juliani, Caetano; Monteiro, Lena Virgínia Soares; de Almeida, Teodoro Isnard Ribeiro; Lagler, Bruno; de Carvalho Carneiro, Cleyton; Misas, Carlos Mario Echeverri</p> <p>2015-10-01</p> <p>Hypogene hydrothermal minerals have been identified by short-wave infrared spectroscopy in hydrothermally altered rocks from the Sobreiro and Santa Rosa formations, which belong to a Paleoproterozoic volcano-plutonic system in Amazonian craton. Three clay minerals are spectrally recognized: montmorillonite, kaolinite, and illite. The integration of these data with those available in the literature, including gold occurrences, suggests that those rocks are hydrothermal products of both volcanic thermal sources and later crustal intrusions, as evidenced by variable styles of propylitic, sericitic, potassic, and intermediate argillic alteration. The influence of meteoric fluids is emphasized. This low cost exploratory technique, which can be applied to hand samples, seems to be promising in the separation of hydrothermally altered volcano-plutonic centers in regions submitted to severe weathering conditions, in addition to aid elaborating models for prospecting mineral deposits.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.B53A1943K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.B53A1943K"><span>Experiments of the Essential Amino Acids at high temperature and high pressure using DAC</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kubo, K.; Okamoto, K.</p> <p>2017-12-01</p> <p>Amino acids are organic compounds that form the fundamental part of life. Proteins are formed by peptide binding and polymerization of amino acids. Amino acids are polymerized in the ridge hydrothermal field, formed proteins, and might be evolved into life. Experimental studies on the polymerization of amino acids in hydrothermal environments have been conducted. However, they were hydrothermal experiments and after the experiments. All run products (amid-acids) were observed at ambient condition. Few in-situ observations of amino acids were done in experiments in hydrothermal condition. In order to perform in-situ observation of the polymerization of amino acids, we have conducted the DAC experiments. Amino acids were filled in the DAC, pressures were applied, then heated to high temperature with Raman analysis. In preliminary experiment using glycine, polymerization forming diglycine, were completed. Investigation amino acids polymerization under hydrothermal condition would shed light for new view of early life science.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29243400','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29243400"><span>Highly Efficient Gas-Phase Oxidation of Renewable Furfural to Maleic Anhydride over Plate Vanadium Phosphorus Oxide Catalyst.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Li, Xiukai; Ko, Jogie; Zhang, Yugen</p> <p>2018-02-09</p> <p>Maleic anhydride (MAnh) and its acids are critical intermediates in chemical industry. The synthesis of maleic anhydride from renewable furfural is one of the most sought after processes in the field of sustainable chemistry. In this study, a plate vanadium phosphorus oxide (VPO) catalyst synthesized by a hydrothermal method with glucose as a green reducing agent catalyzes furfural oxidation to MAnh in the gas phase. The plate catalyst-denoted as VPO HT -has a preferentially exposed (200) crystal plane and exhibited dramatically enhanced activity, selectivity and stability as compared to conventional VPO catalysts and other state-of-the-art catalytic systems. At 360 °C reaction temperature with air as an oxidant, about 90 % yield of MAnh was obtained at 10 vol % of furfural in the feed, a furfural concentration value that is much higher than those (<2 vol %) reported for other catalytic systems. The catalyst showed good long-term stability and there was no decrease in activity or selectivity for MAnh during the time-on-stream of 25 h. The high efficiency and catalyst stability indicate the great potential of this system for the synthesis of maleic anhydride from renewable furfural. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=30109','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=30109"><span>A novel microbial habitat in the mid-ocean ridge subseafloor</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Summit, Melanie; Baross, John A.</p> <p>2001-01-01</p> <p>The subseafloor at the mid-ocean ridge is predicted to be an excellent microbial habitat, because there is abundant space, fluid flow, and geochemical energy in the porous, hydrothermally influenced oceanic crust. These characteristics also make it a good analog for potential subsurface extraterrestrial habitats. Subseafloor environments created by the mixing of hot hydrothermal fluids and seawater are predicted to be particularly energy-rich, and hyperthermophilic microorganisms that broadly reflect such predictions are ejected from these systems in low-temperature (≈15°C), basalt-hosted diffuse effluents. Seven hyperthermophilic heterotrophs isolated from low-temperature diffuse fluids exiting the basaltic crust in and near two hydrothermal vent fields on the Endeavour Segment, Juan de Fuca Ridge, were compared phylogenetically and physiologically to six similarly enriched hyperthermophiles from samples associated with seafloor metal sulfide structures. The 13 organisms fell into four distinct groups: one group of two organisms corresponding to the genus Pyrococcus and three groups corresponding to the genus Thermococcus. Of these three groups, one was composed solely of sulfide-derived organisms, and the other two related groups were composed of subseafloor organisms. There was no evidence of restricted exchange of organisms between sulfide and subseafloor habitats, and therefore this phylogenetic distinction indicates a selective force operating between the two habitats. Hypotheses regarding the habitat differences were generated through comparison of the physiology of the two groups of hyperthermophiles; some potential differences between these habitats include fluid flow stability, metal ion concentrations, and sources of complex organic matter. PMID:11226209</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18613718','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18613718"><span>Highly hydrothermally stable microporous silica membranes for hydrogen separation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wei, Qi; Wang, Fei; Nie, Zuo-Ren; Song, Chun-Lin; Wang, Yan-Li; Li, Qun-Yan</p> <p>2008-08-07</p> <p>Fluorocarbon-modified silica membranes were deposited on gamma-Al2O3/alpha-Al2O3 supports by the sol-gel technique for hydrogen separation. The hydrophobic property, pore structure, gas transport and separation performance, and hydrothermal stability of the modified membranes were investigated. It is observed that the water contact angle increases from 27.2+/-1.5 degrees for the pure silica membranes to 115.0+/-1.2 degrees for the modified ones with a (trifluoropropyl)triethoxysilane (TFPTES)/tetraethyl orthosilicate (TEOS) molar ratio of 0.6. The modified membranes preserve a microporous structure with a micropore volume of 0.14 cm3/g and a pore size of approximately 0.5 nm. A single gas permeation of H2 and CO2 through the modified membranes presents small positive apparent thermal activation energies, indicating a dominant microporous membrane transport. At 200 degrees C, a single H2 permeance of 3.1x10(-6) mol m(-2) s(-1) Pa(-1) and a H2/CO2 permselectivity of 15.2 were obtained after proper correction for the support resistance and the contribution from the defects. In the gas mixture measurement, the H2 permeance and the H2/CO2 separation factor almost remain constant at 200 degrees C with a water vapor pressure of 1.2x10(4) Pa for at least 220 h, indicating that the modified membranes are hydrothermally stable, benefiting from the integrity of the microporous structure due to the fluorocarbon modification.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JPS...341..318W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JPS...341..318W"><span>Highly catalytic and stabilized titanium nitride nanowire array-decorated graphite felt electrodes for all vanadium redox flow batteries</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wei, L.; Zhao, T. S.; Zeng, L.; Zeng, Y. K.; Jiang, H. R.</p> <p>2017-02-01</p> <p>In this work, we prepare a highly catalytic and stabilized titanium nitride (TiN) nanowire array-decorated graphite felt electrode for all vanadium redox flow batteries (VRFBs). Free-standing TiN nanowires are synthesized by a two-step process, in which TiO2 nanowires are first grown onto the surface of graphite felt via a seed-assisted hydrothermal method and then converted to TiN through nitridation reaction. When applied to VRFBs, the prepared electrode enables the electrolyte utilization and energy efficiency to be 73.9% and 77.4% at a high current density of 300 mA cm-2, which are correspondingly 43.3% and 15.4% higher than that of battery assembled with a pristine electrode. More impressively, the present battery exhibits good stability and high capacity retention during the cycle test. The superior performance is ascribed to the significant improvement in the electrochemical kinetics and enlarged active sites toward V3+/V2+ redox reaction.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29557649','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29557649"><span>Heterostructured TiO2/NiTiO3 Nanorod Arrays for Inorganic Sensitized Solar Cells with Significantly Enhanced Photovoltaic Performance and Stability.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Li, Yue-Ying; Wang, Jian-Gan; Sun, Huan-Huan; Wei, Bingqing</p> <p>2018-04-11</p> <p>Organic dyes used in the conventional dye-sensitized solar cells (DSSCs) suffer from poor light stability and high cost. In this work, we demonstrate a new inorganic sensitized solar cell based on ordered one-dimensional semiconductor nanorod arrays of TiO 2 /NiTiO 3 (NTO) heterostructures prepared via a facile two-step hydrothermal approach. The semiconductor heterostructure arrays are highly desirable and promising for DSSCs because of their direct charge transport capability and slow charge recombination rate. The low-cost NTO inorganic semiconductor possesses an appropriate band gap that matches well with TiO 2 , which behaves like a "dye" to enable efficient light harvesting and fast electron-hole separation. The solar cells constructed by the ordered TiO 2 /NTO heterostructure photoanodes show a significantly improved power conversion efficiency, high fill factor, and more promising, outstanding life stability. The present work will open up an avenue to design heterostructured inorganics for high-performance solar cells.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GGG....18.4000G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GGG....18.4000G"><span>Understanding Copper Isotope Behavior in the High Temperature Magmatic-Hydrothermal Porphyry Environment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gregory, Melissa J.; Mathur, Ryan</p> <p>2017-11-01</p> <p>Copper stable isotope geochemistry has the potential to constrain aspects of ore deposit formation once variations in the isotopic data can be related to the physiochemical conditions during metal deposition. This study presents Cu isotope ratios for samples from the Pebble porphyry Cu-Au-Mo deposit in Alaska. The δ65Cu values for hypogene copper sulfides range from -2.09‰ to 1.11‰ and show linear correlations with the δ18O isotope ratios calculated for the fluid in equilibrium with the hydrothermal alteration minerals in each sample. Samples with sodic-potassic, potassic, and illite alteration display a negative linear correlation between the Cu and O isotope results. This suggests that fractionation of Cu isotopes between the fluid and precipitating chalcopyrite is positive as the hydrothermal fluid is evolving from magmatic to mixed magmatic-meteoric compositions. Samples with advanced argillic alteration display a weak positive linear correlation between Cu and O isotope results consistent with small negative fluid-chalcopyrite Cu isotope fractionation during fluid evolution. The hydrothermal fluids that formed sodic-potassic, potassic, and illite alteration likely transported Cu as CuHS0. Hydrothermal fluids that resulted in advanced argillic alteration likely transport Cu as CuCl2-. The pH conditions also control Cu isotope fractionation, consistent with previous experimental work. Larger fractionation factors were found between fluids and chalcopyrite precipitating under neutral conditions contrasting with small fractionation factors calculated between fluids and chalcopyrite precipitating under acidic conditions. Therefore, this study proposes that hydrothermal fluid compositions and pH conditions are related to Cu isotope variations in high temperature magmatic-hydrothermal deposits.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28267660','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28267660"><span>Coupling hydrothermal liquefaction and anaerobic digestion for energy valorization from model biomass feedstocks.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Posmanik, Roy; Labatut, Rodrigo A; Kim, Andrew H; Usack, Joseph G; Tester, Jefferson W; Angenent, Largus T</p> <p>2017-06-01</p> <p>Hydrothermal liquefaction converts food waste into oil and a carbon-rich hydrothermal aqueous phase. The hydrothermal aqueous phase may be converted to biomethane via anaerobic digestion. Here, the feasibility of coupling hydrothermal liquefaction and anaerobic digestion for the conversion of food waste into energy products was examined. A mixture of polysaccharides, proteins, and lipids, representing food waste, underwent hydrothermal processing at temperatures ranging from 200 to 350°C. The anaerobic biodegradability of the hydrothermal aqueous phase was examined through conducting biochemical methane potential assays. The results demonstrate that the anaerobic biodegradability of the hydrothermal aqueous phase was lower when the temperature of hydrothermal processing increased. The chemical composition of the hydrothermal aqueous phase affected the anaerobic biodegradability. However, no inhibition of biodegradation was observed for most samples. Combining hydrothermal and anaerobic digestion may, therefore, yield a higher energetic return by converting the feedstock into oil and biomethane. Copyright © 2017 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27854253','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27854253"><span>A Robust, Enzyme-Free Glucose Sensor Based on Lysine-Assisted CuO Nanostructures.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Baloach, Qurrat-Ul-Ain; Tahira, Aneela; Mallah, Arfana Begum; Abro, Muhammad Ishaq; Uddin, Siraj; Willander, Magnus; Ibupoto, Zafar Hussain</p> <p>2016-11-14</p> <p>The production of a nanomaterial with enhanced and desirable electrocatalytic properties is of prime importance, and the commercialization of devices containing these materials is a challenging task. In this study, unique cupric oxide (CuO) nanostructures were synthesized using lysine as a soft template for the evolution of morphology via a rapid and boiled hydrothermal method. The morphology and structure of the synthesized CuO nanomaterial were characterized using scanning electron microscopy (SEM) and X-ray diffraction (XRD), respectively. The prepared CuO nanostructures showed high potential for use in the electrocatalytic oxidation of glucose in an alkaline medium. The proposed enzyme-free glucose sensor demonstrated a robust response to glucose with a wide linear range and high sensitivity, selectivity, stability, and reproducibility. To explore its practical feasibility, the glucose content of serum samples was successfully determined using the enzyme-free sensor. An analytical recovery method was used to measure the actual glucose from the serum samples, and the results were satisfactory. Moreover, the presented glucose sensor has high chemical stability and can be reused for repetitive measurements. This study introduces an enzyme-free glucose sensor as an alternative tool for clinical glucose quantification.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5134537','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5134537"><span>A Robust, Enzyme-Free Glucose Sensor Based on Lysine-Assisted CuO Nanostructures</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Baloach, Qurrat-ul-Ain; Tahira, Aneela; Mallah, Arfana Begum; Abro, Muhammad Ishaq; Uddin, Siraj; Willander, Magnus; Ibupoto, Zafar Hussain</p> <p>2016-01-01</p> <p>The production of a nanomaterial with enhanced and desirable electrocatalytic properties is of prime importance, and the commercialization of devices containing these materials is a challenging task. In this study, unique cupric oxide (CuO) nanostructures were synthesized using lysine as a soft template for the evolution of morphology via a rapid and boiled hydrothermal method. The morphology and structure of the synthesized CuO nanomaterial were characterized using scanning electron microscopy (SEM) and X-ray diffraction (XRD), respectively. The prepared CuO nanostructures showed high potential for use in the electrocatalytic oxidation of glucose in an alkaline medium. The proposed enzyme-free glucose sensor demonstrated a robust response to glucose with a wide linear range and high sensitivity, selectivity, stability, and reproducibility. To explore its practical feasibility, the glucose content of serum samples was successfully determined using the enzyme-free sensor. An analytical recovery method was used to measure the actual glucose from the serum samples, and the results were satisfactory. Moreover, the presented glucose sensor has high chemical stability and can be reused for repetitive measurements. This study introduces an enzyme-free glucose sensor as an alternative tool for clinical glucose quantification. PMID:27854253</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016GGG....17.3835A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016GGG....17.3835A"><span>Lithium isotopic systematics of submarine vent fluids from arc and back-arc hydrothermal systems in the western Pacific</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Araoka, Daisuke; Nishio, Yoshiro; Gamo, Toshitaka; Yamaoka, Kyoko; Kawahata, Hodaka</p> <p>2016-10-01</p> <p>The Li concentration and isotopic composition (δ7Li) in submarine vent fluids are important for oceanic Li budget and potentially useful for investigating hydrothermal systems deep under the seafloor because hydrothermal vent fluids are highly enriched in Li relative to seawater. Although Li isotopic geochemistry has been studied at mid-ocean-ridge (MOR) hydrothermal sites, in arc and back-arc settings Li isotopic composition has not been systematically investigated. Here we determined the δ7Li and 87Sr/86Sr values of 11 end-member fluids from 5 arc and back-arc hydrothermal systems in the western Pacific and examined Li behavior during high-temperature water-rock interactions in different geological settings. In sediment-starved hydrothermal systems (Manus Basin, Izu-Bonin Arc, Mariana Trough, and North Fiji Basin), the Li concentrations (0.23-1.30 mmol/kg) and δ7Li values (+4.3‰ to +7.2‰) of the end-member fluids are explained mainly by dissolution-precipitation model during high-temperature seawater-rock interactions at steady state. Low Li concentrations are attributable to temperature-related apportioning of Li in rock into the fluid phase and phase separation process. Small variation in Li among MOR sites is probably caused by low-temperature alteration process by diffusive hydrothermal fluids under the seafloor. In contrast, the highest Li concentrations (3.40-5.98 mmol/kg) and lowest δ7Li values (+1.6‰ to +2.4‰) of end-member fluids from the Okinawa Trough demonstrate that the Li is predominantly derived from marine sediments. The variation of Li in sediment-hosted sites can be explained by the differences in degree of hydrothermal fluid-sediment interactions associated with the thickness of the marine sediment overlying these hydrothermal sites.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4250120','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4250120"><span>Distal transport of dissolved hydrothermal iron in the deep South Pacific Ocean</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Fitzsimmons, Jessica N.; Boyle, Edward A.; Jenkins, William J.</p> <p>2014-01-01</p> <p>Until recently, hydrothermal vents were not considered to be an important source to the marine dissolved Fe (dFe) inventory because hydrothermal Fe was believed to precipitate quantitatively near the vent site. Based on recent abyssal dFe enrichments near hydrothermal vents, however, the leaky vent hypothesis [Toner BM, et al. (2012) Oceanography 25(1):209–212] argues that some hydrothermal Fe persists in the dissolved phase and contributes a significant flux of dFe to the global ocean. We show here the first, to our knowledge, dFe (<0.4 µm) measurements from the abyssal southeast and southwest Pacific Ocean, where dFe of 1.0–1.5 nmol/kg near 2,000 m depth (0.4–0.9 nmol/kg above typical deep-sea dFe concentrations) was determined to be hydrothermally derived based on its correlation with primordial 3He and dissolved Mn (dFe:3He of 0.9–2.7 × 106). Given the known sites of hydrothermal venting in these regions, this dFe must have been transported thousands of kilometers away from its vent site to reach our sampling stations. Additionally, changes in the size partitioning of the hydrothermal dFe between soluble (<0.02 µm) and colloidal (0.02–0.4 µm) phases with increasing distance from the vents indicate that dFe transformations continue to occur far from the vent source. This study confirms that although the southern East Pacific Rise only leaks 0.02–1% of total Fe vented into the abyssal Pacific, this dFe persists thousands of kilometers away from the vent source with sufficient magnitude that hydrothermal vents can have far-field effects on global dFe distributions and inventories (≥3% of global aerosol dFe input). PMID:25349389</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018GeCoA.223..107Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018GeCoA.223..107Y"><span>Effects of iron-containing minerals on hydrothermal reactions of ketones</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yang, Ziming; Gould, Ian R.; Williams, Lynda B.; Hartnett, Hilairy E.; Shock, Everett L.</p> <p>2018-02-01</p> <p>Hydrothermal organic transformations occurring in geochemical processes are influenced by the surrounding environments including rocks and minerals. This work is focused on the effects of five common minerals on reactions of a model ketone substrate, dibenzylketone (DBK), in an experimental hydrothermal system. Ketones play a central role in many hydrothermal organic functional group transformations, such as those converting hydrocarbons to oxygenated compounds; however, how these minerals control the hydrothermal chemistry of ketones is poorly understood. Under the hydrothermal conditions of 300 °C and 70 MPa for up to 168 h, we observed that, while quartz (SiO2) and corundum (Al2O3) had no detectable effect on the hydrothermal reactions of DBK, iron-containing minerals, such as hematite (Fe2O3), magnetite (Fe3O4), and troilite (synthetic FeS), accelerated the reaction of DBK by up to an order of magnitude. We observed that fragmentation products, such as toluene and bibenzyl, dominated in the presence of hematite or magnetite, while use of troilite gave primarily the reduction products, e.g., 1, 3-diphenyl-propane and 1, 3-diphenyl-2-propanol. The roles of the three iron minerals in these transformations were further explored by (1) control experiments with various mineral surface areas, (2) measuring H2 in hydrothermal solutions, and (3) determining hydrogen balance among the organic products. These results suggest the reactions catalyzed by iron oxides (hematite and magnetite) are promoted mainly by the mineral surfaces, whereas the sulfide mineral (troilite) facilitated the reduction of ketone in the reaction solution. Therefore, this work not only provides a useful chemical approach to study and uncover complicated hydrothermal organic-mineral interactions, but also fosters a mechanistic understanding of ketone reactions in the deep carbon cycle.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JVGR..353..114M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JVGR..353..114M"><span>The hydrothermal evolution of the Kawerau geothermal system, New Zealand</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Milicich, S. D.; Chambefort, I.; Wilson, C. J. N.; Charlier, B. L. A.; Tepley, F. J.</p> <p>2018-03-01</p> <p>Hydrothermal alteration zoning and processes provide insights into the evolution of heat source(s) and fluid compositions associated with geothermal systems. Traditional petrological techniques, combined with hydrothermal alteration studies, stable isotope analyses and geochronology can resolve the nature of the fluids involved in hydrothermal processes and their changes through time. We report here new findings along with previous unpublished works on alteration patterns, fluid inclusion measurements and stable isotope data to provide insights into the thermal and chemical evolution of the Kawerau geothermal system, New Zealand. These data indicate the presence of two hydrothermal events that can be coupled with chronological data. The earlier period of hydrothermal activity was initiated at 400 ka, with the heat driving the hydrothermal system inferred to be from the magmatic system that gave rise to rhyolite lavas and sills of the Caxton Formation. Isotopic data fingerprint fluids attributed to this event as meteoric, indicating that the magma primarily served as a heat source driving fluid circulation, and was not releasing magmatic fluids in sufficient quantity to affect the rock mineralogy and thus inferred fluid compositions. The modern Kawerau system was initiated at 16 ka with hydrothermal eruptions linked to shallow intrusion of magma at the onset of activity that gave rise to the Putauaki andesite cone. Likely associated with this later event was a pulse of magmatic CO2, resulting in large-scale deposition of hydrothermal calcite enriched in 18O. Meteoric water-dominated fluids subsequently overwhelmed the magmatic fluids associated with this 18O-rich signature, and both the fluid inclusion microthermometry and stable isotope data reflect a change to the present-day fluid chemistry of low salinity, meteoric-dominated waters.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/tm/2005/05D01/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/tm/2005/05D01/"><span>Methods for synthesis of some jarosites</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Driscoll, Rhonda; Leinz, Reinhard</p> <p>2005-01-01</p> <p>Experimental procedures in this report summarize attempts to synthesize potassium-, hydronium-, sodium-, and mixed-composition (hydronium-bearing) jarosites. After experimentation, some acceptable combinations of chemical and physical factors were found to routinely synthesize chemically different jarosites, which were used as part of a characterization study of some natural and synthetic jarosites. Jarosite is a sulfate mineral that is common in geologic settings where iron sulfide minerals such as pyrite or marcasite are subject to oxidative weathering. The presence of jarosite is a hallmark of acidic conditions. Jarosite forms as a secondary mineral in weathered sulfidic ores, coal mine wastes, on oxidizing mine wastes, and in streams affected by acid mine drainage. Jarosite also forms in acid-sulfate soils, as an alteration product of sulfidic shales, and in hydrothermal environments. Because of its important role in earth surface processes, the USGS is conducting mineralogical, geochemical, and remote sensing studies to characterize natural jarosites and to elucidate its stability range and conditions of formation. The presence of jarosite is not limited to the Earth. The recent identification of jarosite in the rocks at the Meridiani Planum on Mars has given planetary geologists reason to think that jarosite may be evidence of relict lacustrine (lake systems) or hydrothermal (water enriched magma emanations) systems on the Martian surface. USGS scientists are currently developing jarosite detection systems that can be placed on orbiting spectrometers. One day these systems may guide Mars landers to sites abundant in jarosite, sites most likely to have sheltered ancient Martian life.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016APS..MARH54004K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016APS..MARH54004K"><span>Electrochemical properties of Li2 FeSiO4 /C nanocomposites prepared by sol-gel and hydrothermal methods</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kumar, Ajay; Jayakumar, O. D.; Naik, Vaman M.; Nazri, Gholam A.; Naik, Ratna</p> <p></p> <p>Li2FeSiO4 is considered as potential cathode material for next generation lithium ion batteries because of its high specific theoretical capacity, low cost, and safety. However, it suffers from poor electronic conductivity and slow lithium ion diffusion in the solid phase. To address these issues, we have studied mesoporous Li2FeSiO4/C composites synthesized by sol-gel (SG) and hydrothermal (HT) methods using tri-block copolymer (P123) as carbon source and structure directing agent. The structure and morphology of the composites were characterized by XRD, SEM and TEM and the surface area and pore size distribution were measured by using N2 adsorption/desorption. Galvanostatic cycling, electrochemical impedance spectroscopy, and cyclic voltammetry were used to evaluate the electrochemical performance of the Li2FeSiO4/C composites. The Li2FeSiO4/C (HT) composites show a superior electrochemical performance compared to Li2FeSiO4/C (SG). At C/30 rate, the discharge capacity of Li2FeSiO4/C (HT) reached ~276 mAh/g in the 1.5-4.6 V window and shows better rate capability and stability at high rates. We attribute the improved electrochemical performance of Li2FeSiO4/C (HT) to its large surface area and reduced particle size. The details of the study will be presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MRE.....5b4008R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MRE.....5b4008R"><span>Bluish green emitting carbon quantum dots synthesized from jackfruit (Artocarpus heterophyllus) and its sensing applications of Hg (II) and Cr (VI) ions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rajendran, Kalimuthu; Rajendiran, Nagappan</p> <p>2018-02-01</p> <p>A simple, economical, and green method for the preparation of water soluble, high fluorescent carbon quantum dots (CQDs) has been prepared via hydrothermal process using jackfruit (Artocarpus heterophyllus) as a carbon source. The optical properties of synthesized CQDs were characterized by UV- visible and fluorescence spectroscopy. Fourier transform infrared spectroscopy (FT-IR), x-ray Diffraction (XRD) and high resolution transmission electron microscopy (HR-TEM) techniques were used to study the composition and size of the CQDs. The prepared CQDs were spherical in shape with an average size of 2.5 nm along with uniform distribution and showed bright bluish green emission properties, without any further surface modification. The prepared CQDs were exhibit high stability at neutral pH and showed high photo-stability under UV light irradiation at 365 nm. The obtained CQDs were effectively utilized as fluorescent probe for highly selective and sensitive detection of Hg2+ and Cr6+ ions in environmental samples with a limit of detection of about 8 and 10 nM respectively.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ApSS..396.1466W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ApSS..396.1466W"><span>Titanium plate supported MoS2 nanosheet arrays for supercapacitor application</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Lina; Ma, Ying; Yang, Min; Qi, Yanxing</p> <p>2017-02-01</p> <p>A promising new concept is to apply binder-free supercapacitor electrode by directly growing active materials on current collectors. However, there are many challenges to be solved, such as fabrication of well quality electronic contact and good mechanical stability films through a simple and feasible method. In this study, MoS2 nanosheet arrays supported on titanium plate has been synthesized by a hydrothermal method without other additives, surface active agents and toxic reagents. As the supercapacitor electrode, a good capacitance of 133 F g-1 is attained at a discharge current density of 1 A g-1. The specific energy density is 11.11 Wh kg-1 at a power density of 0.53 kW kg-1. Moreover, the electrode shows an excellent cyclic stability. The loss of capacity is only 7% even after 1000 cycles. In addition, the formation mechanism is proposed. The facile method of fabricating MoS2 nanosheet arrays on titanium plate affords an green and effective way to prepare other metal sulfides for the application in electrochemical capacitors.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5791108','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5791108"><span>DeNOx Abatement over Sonically Prepared Iron-Substituted Y, USY and MFI Zeolite Catalysts in Lean Exhaust Gas Conditions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Stachurska, Patrycja; Kuterasiński, Łukasz; Dziedzicka, Anna; Górecka, Sylwia; Chmielarz, Lucjan; Łojewska, Joanna; Sitarz, Maciej</p> <p>2018-01-01</p> <p>Iron-substituted MFI, Y and USY zeolites prepared by two preparation routes—classical ion exchange and the ultrasound modified ion-exchange method—were characterised by micro-Raman spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), and ultraviolet (UV)/visible diffuse reflectance spectroscopy (UV/Vis DRS). Ultrasound irradiation, a new technique for the preparation of the metal salt suspension before incorporation to the zeolite structure, was employed. An experimental study of selective catalytic reduction (SCR) of NO with NH3 on both iron-substituted reference zeolite catalysts and those prepared through the application of ultrasound conducted during an ion-exchange process is presented. The prepared zeolite catalysts show high activity and selectivity in SCR deNOx abatement. The MFI-based iron catalysts, especially those prepared via the sonochemical method, revealed superior activity in the deNOx process, with almost 100% selectivity towards N2. The hydrothermal stability test confirmed high stability and activity of MFI-based catalysts in water-rich conditions during the deNOx reaction at 450 °C. PMID:29301370</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_20 --> <div id="page_21" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="401"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26254867','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26254867"><span>Crosslinking to enhance colloidal stability and redispersity of layered double hydroxide nanoparticles.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zuo, Huali; Gu, Zi; Cooper, Helen; Xu, Zhi Ping</p> <p>2015-12-01</p> <p>This article introduces a strategy for stabilizing and redispersing layered double hydroxide (LDH) nanoparticles by crosslinking bovine serum albumin (BSA) coated onto the surface. The strategy involves optimization of the amount of the crosslinking agent glutaraldehyde (GTA) to achieve minimal aggregation and ready redispersion. LDH nanoparticles were prepared by co-precipitation and hydrothermal treatment, with subsequent BSA coating at the BSA/LDH mass ratio of 5:2. BSA coated onto LDH nanoparticles was crosslinked with different amounts of GTA. Aggregation studies using dilution assays, dynamic light scattering, and zeta potential analysis indicated that severe aggregation at lower LDH nanoparticle concentrations can be prevented by proper crosslinking of BSA with GTA. The GTA-crosslinked BSA-coated nanoparticles showed excellent redispersity compared to the non-crosslinked nanoparticles. In vitro cytotoxicity and cell uptake were found to be minimally affected by GTA-crosslinking. The new strategy therefore provides a much more effective method for the prevention of LDH nanoparticle aggregation and improved LDH nanoparticle redispersion for use in a wide variety of bio-applications in vitro and in vivo. Copyright © 2015 Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017DSRII.137..335P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017DSRII.137..335P"><span>Copepod colonization of organic and inorganic substrata at a deep-sea hydrothermal vent site on the Mid-Atlantic Ridge</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Plum, Christoph; Pradillon, Florence; Fujiwara, Yoshihiro; Sarrazin, Jozée</p> <p>2017-03-01</p> <p>The few existing studies on deep-sea hydrothermal vent copepods indicate low connectivity with surrounding environments and reveal high endemism among vents. However, the finding of non-endemic copepod species in association with engineer species at different reduced ecosystems poses questions about the dispersal of copepods and the colonization of hydrothermal vents as well as their ecological connectivity. The objective of this study is to understand copepod colonization patterns at a hydrothermal vent site in response to environmental factors such as temperature and fluid flow as well as the presence of different types of substrata. To address this objective, an in situ experiment was deployed using both organic (woods, pig bones) and inorganic (slates) substrata along a gradient of hydrothermal activity at the Lucky Strike vent field (Eiffel Tower, Mid-Atlantic Ridge). The substrata were deployed in 2011 during the MoMARSAT cruise and were recovered after two years in 2013. Overall, copepod density showed significant differences between substrata types, but was similar among different hydrothermal activity regimes. Highest densities were observed on woods at sites with moderate or low fluid input, whereas bones were the most densely colonized substrata at the 2 sites with higher hydrothermal influence. Although differences in copepod diversity were not significant, the observed trends revealed overall increasing diversity with decreasing temperature and fluid input. Slates showed highest diversity compared to the organic substrata. Temperature and fluid input had a significant influence on copepod community composition, resulting in higher similarity among stations with relatively high and low fluid inputs, respectively. While vent-specialists such as dirivultids and the tegastid Smacigastes micheli dominated substrata at high vent activity, the experiment demonstrated increasing abundance and dominance of non-vent taxa with decreasing temperature and fluid input. Effects of the substratum type on community composition were not significant, although at sites with moderate or low fluid input, woods exhibited distinctive communities with high densities and relative abundance of the taxon Nitocrella sp. In conclusion, copepod colonization and species composition were mainly influenced by hydrothermal fluid input and temperature rather than the type of substratum. The outcome of this study provides fundamental knowledge to better understand copepod colonization at hydrothermal vents.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMOS41C1962L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMOS41C1962L"><span>High-resolution Topography of PACMANUS and DESMOS Hydrothermal Fields in the Manus Basin through ROV "FAXIAN"</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Luan, Z.; Ma, X.; Yan, J.; Zhang, X.; Zheng, C.; Sun, D.</p> <p>2016-12-01</p> <p>High-resolution topography can help us deeply understand the seabed and related geological processes (e.g. hydrothermal/cold spring systems) in the deep sea areas. However, such studies are rare in China due to the limit of deep-sea detection technology. Here, we report the advances of the application of ROV in China and the newly measured high-resolution topographical data in PACMANUS and DESMOS hydrothermal fields. In June 2015, the ROV "FAXIAN" with a multibeam system (Kongsberg EM2040) was deployed to measure the topography of PACMANUS and DESMOS hydrothermal fields in the Manus basin. A composite positioning system on the ROV provided long baseline (LBL) navigation and positioning during measurements, giving a high positioning accuracy (better than 0.5m). The raw bathymetric data obtained were processed using CARIS HIPS (version 8.1). Based on the high-resolution data, we can describe the topographical details of the PACMANUS and DESMOS hydrothermal fields. High-resolution terrain clearly shows the detailed characters of the topography in the PACMANUS hydrothermal field, and some cones are corresponding to the pre discovered hydrothermal points and volcanic area. Most hydrothermal points in the PACMANUS hydrothermal field mainly developed on the steep slopes with a gradient exceeding 30 °. In contrast, the DESMOS field is a caldera that is approximately 250 m deep in the center with an E-W diameter of approximately1 km and a N-S diameter of approximately 2 km. The seafloor is much steeper on the inner side of the circular fracture. Two highlands occur in the northern and the southern flanks of the caldera. Video record indicated that pillow lava, sulfide talus, breccia, anhydrite, outcrops, and sediment all appeared in the DESMOS field. This is the first time for the ROV "FAXIAN" to be used in near-bottom topography measurements in the hydrothermal fields, opening a window of deep-sea researches in China.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFM.B21B0318B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFM.B21B0318B"><span>Abundance and Distribution of Diagnostic Carbon Fixation Genes in a Deep-Sea Hydrothermal Gradient Ecosystem</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Blumenfeld, H. N.; Kelley, D. S.; Girguis, P. R.; Schrenk, M. O.</p> <p>2010-12-01</p> <p>The walls of deep-sea hydrothermal vent chimneys sustain steep thermal and chemical gradients resulting from the mixing of hot (350°C+) hydrothermal fluids with cold, oxygenated seawater. The chemical disequilibrium generated from this process has the potential to drive numerous chemolithoautotrophic metabolisms, many of which have been demonstrated to be operative in microbial pure cultures. In addition to the well-known Calvin Cycle, at least five additional pathways have been discovered including the Reverse Tricarboxylic Acid Cycle (rTCA), the Reductive Acetyl-CoA pathway, and the 3-hydroxyproprionate pathway. Most of the newly discovered pathways have been found in thermophilic and hyperthermophilic Bacteria and Archaea, which are the well represented in microbial diversity studies of hydrothermal chimney walls. However, to date, little is known about the environmental controls that impact various carbon fixation pathways. The overlap of limited microbial diversity with distinct habitat conditions in hydrothermal chimney walls provides an ideal setting to explore these relationships. Hydrothermal chimney walls from multiple structures recovered from the Juan de Fuca Ridge in the northeastern Pacific were sub-sampled and analyzed using PCR-based assays. Earlier work showed elevated microbial abundances in the outer portions of mature chimney walls, with varying ratios of Archaea to Bacteria from the outer to inner portions of the chimneys. Common phylotypes identified in these regions included Epsilonproteobacteria, Gammaproteobacteria, and Desulfurococcales. Total genomic DNA was extracted from mineralogically distinct niches within these structures and queried for genes coding key regulatory enzymes for each of the well studied carbon fixation pathways. Preliminary results show the occurrence of genes representing rTCA cycle (aclB) and methyl coenzyme A reductase (mcrA) - a proxy for the Reductive Acetyl-CoA Pathway within interior portion of mature hydrothermal chimneys. Ongoing analyses are aimed at quantifying the abundances of these diagnostic carbon fixation genes within the hydrothermal chimney gradients. These data are being compared to a broad array of contextual data to provide insight into the environmental and biological controls that may impact the distribution of the various carbon fixation pathways. Application of genomic approaches to the hydrothermal chimney ecosystem will provide insight into the microbial ecology of such structures and refine our ability to measure autotrophy in hydrothermal habitats sustained by chemical energy.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24267333','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24267333"><span>Novel sodium intercalated (NH4)2V6O16 platelets: High performance cathode materials for lithium-ion battery.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Fei, Hailong; Wu, Xiaomin; Li, Huan; Wei, Mingdeng</p> <p>2014-02-01</p> <p>A simple and versatile method for preparation of novel sodium intercalated (NH4)2V6O16 is developed via a simple hydrothermal route. It is found that ammonium sodium vanadium bronze displays higher discharge capacity and better rate cyclic stability than ammonium vanadium bronze as lithium-ion battery cathode material because of smaller charge transfer resistance, which would favor superior discharge capacity and rate performance. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.V31F..02F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.V31F..02F"><span>Identifying Water on Mt. Baker and Mt. St. Helens, WA with Geophysics: Implications for Volcanic Landslide Hazards</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Finn, C.; Bedrosian, P.; Wisniewski, M.; Deszcz-Pan, M.</p> <p>2015-12-01</p> <p>Groundwater position, abundance, and flow rates within a volcano affect the transmission of fluid pressure, transport of mass and heat and formation of mechanically weak hydrothermal alteration influencing the stability of volcanoes. In addition, eruptions can shatter volcanic rocks, weakening the edifice. Helicopter magnetic and electromagnetic (HEM) data collected over Mt. Baker and Mt. St. Helens volcanoes reveal the distribution of water, shattered volcanic rocks and hydrothermal alteration essential to evaluating volcanic landslide hazards. These data, combined with geological mapping and rock property measurements, indicate the presence of localized <100 m thick zones of water-saturated hydrothermally altered rock beneath Sherman Crater and the Dorr Fumarole Fields at Mt. Baker. Nuclear magnetic resonance data indicate that the hydrothermal clays contain ~50% bound water with no evidence for free water ponded beneath the ice. The HEM data suggest water-saturated fresh volcanic rocks from the surface to the detection limit (~100 m) over the entire summit of Mt. Baker (below the ice). A 50-100 m thick high resistivity layer (>1500 ohm-m) corresponding to domes, debris avalanche, volcanic rocks and glaciers mantles the crater at Mt. St. Helens. Shallow low resistivity layers corresponding to fresh, cold water and hot brines are observed below the high resistivity surface in EM data. Shallow ground water mainly concentrates in shattered dome material in the crater of Mt. St. Helens. Aeromagnetic data indicate the location of basalts sandwiched between debris avalanche deposits and shattered dome material. The combination of the EM and magnetic data help map the location of the shattered dome material that is considered to be the failure surface for the 1980 debris avalanche. The EM data image the regional groundwater table near the base of the volcano. The geophysical identification of groundwater and weak layers constrain landslide hazards assessments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009MinDe..44..849R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009MinDe..44..849R"><span>The El Teniente porphyry Cu-Mo deposit from a hydrothermal rutile perspective</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rabbia, Osvaldo M.; Hernández, Laura B.; French, David H.; King, Robert W.; Ayers, John C.</p> <p>2009-11-01</p> <p>Mineralogical, textural, and chemical analyses (EPMA and PIXE) of hydrothermal rutile in the El Teniente porphyry Cu-Mo deposit help to better constrain ore formation processes. Rutile formed from igneous Ti-rich phases (sphene, biotite, Ti-magnetite, and ilmenite) by re-equilibration and/or breakdown under hydrothermal conditions at temperatures ranging between 400°C and 700°C. Most rutile nucleate and grow at the original textural position of its Ti-rich igneous parent mineral phase. The distribution of Mo content in rutile indicates that low-temperature (˜400-550°C), Mo-poor rutile (5.4 ± 1.1 ppm) is dominantly in the Mo-rich mafic wallrocks (high-grade ore), while high-temperature (˜550-700°C), Mo-rich rutile (186 ± 20 ppm) is found in the Mo-poor felsic porphyries (low-grade ore). Rutile from late dacite ring dikes is a notable exception to this distribution pattern. The Sb content in rutile from the high-temperature potassic core of the deposit to its low-temperature propylitic fringe remains relatively constant (35 ± 3 ppm). Temperature and Mo content of the hydrothermal fluids in addition to Mo/Ti ratio, modal abundance and stability of Ti-rich parental phases are key factors constraining Mo content and provenance in high-temperature (≥550°C) rutile. The initial Mo content of parent mineral phases is controlled by melt composition and oxygen fugacity as well as timing and efficiency of fluid-melt separation. Enhanced reduction of SO2-rich fluids and sulfide deposition in the Fe-rich mafic wallrocks influences the low-temperature (≤550°C) rutile chemistry. The data are consistent with a model of fluid circulation of hot (>550°C), oxidized (ƒO2 ≥ NNO + 1.3), SO2-rich and Mo-bearing fluids, likely exsolved from deeper crystallizing parts of the porphyry system and fluxed through the upper dacite porphyries and related structures, with metal deposition dominantly in the Fe-rich mafic wallrocks.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMPP23C2337L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMPP23C2337L"><span>Buffering of potassium in seawater by alteration of basalt in low-temperature, off-axis, hydrothermal systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Laureijs, C. T.; Coogan, L. A.</p> <p>2016-12-01</p> <p>It is generally accepted that the composition of seawater has varied through the Phanerzoic and that the variation is linked to changes in the same global fluxes that control the long-term carbon cycle. However, K is observed to be stable at a value of 10 mmol/L despite variable river and hydrothermal fluxes [1]. Secondary K-bearing phases are widely observed in altered upper oceanic crust, suggesting that reactions between seawater and basalt in low-temperature, off-axis, oceanic hydrothermal systems could buffer the K concentration of seawater [2]. As K-feldspar is a common secondary K-bearing mineral in Cretaceous and rare in Cenozoic oceanic crust, the formation of K-feldspar by breakdown of plagioclase reacting with a model Cretaceous seawater was modeled at 15 ºC using the PhreeqC code (version 3.2) and the associated llnl.dat database. A fluid with a K-content of 11 mmol/L in equilibrium with K-feldspar and calcite was generated, consistent with K-feldspar acting as a buffer for the K-content in Cretaceous seawater and the production of alkalinity stabilizing atmospheric CO2 levels on the long-term timescales. A compilation of the K2O content of lavas from DSDP and ODP drill cores (from: http://www.earthchem.org/petdb) shows that the average K-content of altered crust was higher in the Cretaceous than the Cenozoic. This data is inconsistent with the model for the composition of seawater presented in [2], but is consistent with an updated and modified version of this model, that uses more realistic fluxes [3]. We conclude that oceanic off-axis hydrothermal systems probably do buffer the K-content of seawater. [1] Timofeeff et al. (2006), Geochim. Cosmochim. Acta. 70, 1977-1994; [2] Demicco et al. (2005), Geology 33, 877-880. [3] Coogan & Dosso (2012), Earth Planet. Sci. Lett. 323-324, 92-101.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JMS...180..152Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JMS...180..152Y"><span>The Mesozoic-Cenozoic igneous intrusions and related sediment-dominated hydrothermal activities in the South Yellow Sea Basin, the Western Pacific continental margin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yumao, Pang; Xunhua, Zhang; Guolin, Xiao; Luning, Shang; Xingwei, Guo; Zhenhe, Wen</p> <p>2018-04-01</p> <p>Various igneous complexes were identified in multi-channel seismic reflection profiles from the South Yellow Sea Basin. It is not rare that magmatic intrusions in sedimentary basins cause strong thermal perturbations and hydrothermal activities. Some intrusion-related hydrothermal vent complexes have been identified and they are considered to originate from the deep sedimentary contact aureole around igneous intrusions and terminate in upper vents structures, and are linked by a vertical conduit system. The upper vent complexes are usually eye-shaped, dome-shaped, fault-related, crater-shaped or pock-shaped in seismic profiles. A schematic model was proposed to illustrate the structures of different types of hydrothermal vent complexes. A conceptual conduit model composed of an upper pipe-like part and a lower branching part was also derived. Hydrothermal vent complexes mainly developed during the Middle-Late Cretaceous, which is coeval with, or shortly after the intrusion. The back-arc basin evolution of the area which is related to the subduction of the Paleo-Pacific plate during the Mesozoic-Cenozoic may be the principal factor for voluminous igneous complexes and vent complexes in this area. It is significant to study the characteristics of igneous complexes and related hydrothermal vent complexes, which will have implications for the future study of this area.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/bul/2217/pdf/b2217.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/bul/2217/pdf/b2217.pdf"><span>Field guide to hydrothermal alteration in the White River altered area and in the Osceola Mudflow, Washington</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>John, David A.; Rytuba, James J.; Ashley, Roger P.; Blakely, Richard J.; Vallance, James W.; Newport, Grant R.; Heinemeyer, Gary R.</p> <p>2003-01-01</p> <p>The Cenozoic Cascades arcs of southwestern Washington are the product of long-lived, but discontinuous, magmatism beginning in the Eocene and continuing to the present (for example, Christiansen and Yeats, 1992). This magmatism is the result of subduction of oceanic crust beneath the North American continent. The magmatic rocks are divided into two subparallel, north-trending continental-margin arcs, the Eocene to Pliocene Western Cascades, and the Quaternary High Cascades, which overlies, and is east of, the Western Cascades. Both arcs are calc-alkaline and are characterized by voluminous mafic lava flows (mostly basalt to basaltic andesite compositions) and scattered large stratovolcanoes of mafic andesite to dacite compositions. Silicic volcanism is relatively uncommon. Quartz diorite to granite plutons are exposed in more deeply eroded parts of the Western Cascades Arc (for example, Mount Rainier area and just north of Mt. St. Helens). Hydrothermal alteration is widespread in both Tertiary and Quaternary igneous rocks of the Cascades arcs. Most alteration in the Tertiary Western Cascades Arc resulted from hydrothermal systems associated with small plutons, some of which formed porphyry copper and related deposits, including copper-rich breccia pipes, polymetallic veins, and epithermal gold-silver deposits. Hydrothermal alteration also is present on many Quaternary stratovolcanoes of the High Cascades Arc. On some High Cascades volcanoes, this alteration resulted in severely weakened volcanic edifices that were susceptible to failure and catastrophic landslides. Most notable is the sector collapse of the northeast side of Mount Rainier that occurred about 5,600 yr. B.P. This collapse resulted in formation of the clay-rich Osceola Mudflow that traveled 120 km down valley from Mount Rainier to Puget Sound covering more than 200 km2. This field trip examines several styles and features of hydrothermal alteration related to Cenozoic magmatism in the Cascades arcs. The morning of the trip will examine the White River altered area, which includes high-level alteration related to a large, early Miocene magmatic-hydrothermal system exposed about 10 km east of Enumclaw, Washington. Here, vuggy silica alteration is being quarried for silica and advanced argillic alteration has been prospected for alunite. Clay-filled fractures and sulfide-rich, fine-grained sedimentary rocks of hydrothermal origin locally are enriched in precious metals. Many hydrothermal features common in high-sulfidation gold-silver deposits and in advanced argillic alteration zones overlying porphyry copper deposits (for example, Gustafson and Hunt, 1975; Hedenquist and others, 2000; Sillitoe, 2000) are exposed, although no economic base or precious metal mineralized rock has been discovered to date. The afternoon will be spent examining two exposures of the Osceola Mudflow along the White River. The Osceola Mudflow contains abundant clasts of altered Quaternary rocks from Mount Rainier that show various types of hydrothermal alteration and hydrothermal features. The mudflow matrix contains abundant hydrothermal clay minerals that added cohesiveness to the debris flow and helped allow it to travel much farther down valley than other, noncohesive debris flows from Mount Rainier (Crandell, 1971; Vallance and Scott, 1997). The White River altered area is the subject of ongoing studies by geoscientists from Weyerhaeuser Company and the U.S. Geological Survey (USGS). The generalized descriptions of the geology, geophysics, alteration, and mineralization presented here represent the preliminary results of this study (Ashley and others, 2003). Additional field, geochemical, geochronologic, and geophysical studies are underway. The Osceola Mudflow and other Holocene debris flows from Mount Rainier also are the subject of ongoing studies by the USGS (for example, Breit and others, 2003; John and others, 2003; Plumlee and others, 2003, Sisson and others, 2003; Vallance and others, 2003). Studies of hydrothermal alteration in the Osceola Mudflow are being used to better understand fossil hydrothermal systems on Mount Rainier and potential hazards associated with this alteration.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28484442','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28484442"><span>Relative Importance of Chemoautotrophy for Primary Production in a Light Exposed Marine Shallow Hydrothermal System.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Gomez-Saez, Gonzalo V; Pop Ristova, Petra; Sievert, Stefan M; Elvert, Marcus; Hinrichs, Kai-Uwe; Bühring, Solveig I</p> <p>2017-01-01</p> <p>The unique geochemistry of marine shallow-water hydrothermal systems promotes the establishment of diverse microbial communities with a range of metabolic pathways. In contrast to deep-sea vents, shallow-water vents not only support chemosynthesis, but also phototrophic primary production due to the availability of light. However, comprehensive studies targeting the predominant biogeochemical processes are rare, and consequently a holistic understanding of the functioning of these ecosystems is currently lacking. To this end, we combined stable isotope probing of lipid biomarkers with an analysis of the bacterial communities to investigate if chemoautotrophy, in parallel to photoautotrophy, plays an important role in autotrophic carbon fixation and to identify the key players. The study was carried out at a marine shallow-water hydrothermal system located at 5 m water depth off Dominica Island (Lesser Antilles), characterized by up to 55°C warm hydrothermal fluids that contain high amounts of dissolved Fe 2+ . Analysis of the bacterial diversity revealed Anaerolineae of the Chloroflexi as the most abundant bacterial class. Furthermore, the presence of key players involved in iron cycling generally known from deep-sea hydrothermal vents (e.g., Zetaproteobacteria and Geothermobacter ), supported the importance of iron-driven redox processes in this hydrothermal system. Uptake of 13 C-bicarbonate into bacterial fatty acids under light and dark conditions revealed active photo- and chemoautotrophic communities, with chemoautotrophy accounting for up to 65% of the observed autotrophic carbon fixation. Relatively increased 13 C-incorporation in the dark allowed the classification of ai C 15:0 , C 15:0 , and i C 16:0 as potential lipid biomarkers for bacterial chemoautotrophy in this ecosystem. Highest total 13 C-incorporation into fatty acids took place at the sediment surface, but chemosynthesis was found to be active down to 8 cm sediment depth. In conclusion, this study highlights the relative importance of chemoautotrophy compared to photoautotrophy in a shallow-water hydrothermal system, emphasizing chemosynthesis as a prominent process for biomass production in marine coastal environments influenced by hydrothermalism.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2001AGUFM.V12D1017L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2001AGUFM.V12D1017L"><span>Mineralogy and Geochemistry of Vanadium-Bearing Black Shales at Zhangcun and Zhengfang, Eastern Jiangxi Province, China</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Long, H.; Long, H.; Nekvasil, H.; Liu, Y.</p> <p>2001-12-01</p> <p>As a member of Hetang Formation, lower Cambrian, the Zhangcun-Zhengfang vanadium-bearing black shales are spread in the sea basin outside of the Ancient Jiangnan Island Arc. The composition of black shales is silicalite + siltstone + detrital carbonate. A large amount of hyalophane has been discovered in the shales and the hyalophane-rich rock is the major type of vanadium-host rock. The barium content in the hyalophane is up to 18.91%. The vanadium mainly exists in vanadiferous illite and several Ti-V oxides, possibly including a new mineral. The chemical formula of this kind of Ti-V oxide is V2O3¡nTiO2, n=4¡ª9, according to the electronic microprobe studies. The micro X-ray diffraction studies show the new mineral may be triclinic. The shales are rich in Ba, K, V and contain only trace Na and Mn while all the compositions of the shales except carbonate have a low content of Mg and Ca. According to the authors¡_ study, V obviously has a relationship with Ba and Se, which are from the volcano or hydrothermal activities, and the basic elements Cr, Co, Ni, Ti and Fe. It may present that they are from the same source. Thus, it seems that they are not from the ¡rnormal¡_ sedimentary environment and may be from the hydrothermal deposition. The REE models show that silicalite may be the hydrothermal deposit that does not mix with seawater while the REE models of hyalopahne-rich rock is similar to some modern hydrothermal deposits in the seafloor. The subtle negative anomaly of Yb may reflect the REE model of basalt in the seafloor. The geology and geochemistry of the shales indicate that the shales may be of hydrothermal genesis. Silicalite may be the typical ¡r pure¡_ hydrothermal sediment and hyalophane-rich rock may be the product of hydrothermal activity while the hydrothermal fluid passes the continent source material in the sedimentary process. V, Ti, Ba and Si may be from the volcanic rock in the seafloor and the Al and K may be from the continent.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.V51C0362B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.V51C0362B"><span>Insights on the Origin of Volatiles from the Geochemical Investigation of Hydrothermal Gas Discharges from Dominica, Lesser Antilles.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Buskop, J.; Joseph, E. P.; Inguaggiato, S.; Varekamp, J. C.; Ku, T.</p> <p>2017-12-01</p> <p>The major goals of volcano hydrothermal monitoring are to obtain information on temperature, origin, and changes in chemical composition of volcanic fluids. This data contributes to the baseline geochemical monitoring of volcanic activity and informs on potential volcanic hazards to which the public may be exposed. The origins of hydrothermal fluids are diverse and can be magmatic, crustal and atmospheric. Studies of isotopes, inert gases, and thermodynamic calculations help elucidate the origin in each case and determine provenance of volatiles and a re-evaluation of reservoir temperatures. Sulphur isotope ratio (δ34S) for H2S leached from rock is <0 ‰, of magmatic origin = 0‰ and of marine origin >0 ‰. Low δ15N (-7.3 ‰) is indicative of low sediment addition to source magmas, while high δ15N (+2.1 ‰) indicates greater sediment contribution in magma formation. Baseline monitoring of hydrothermal gases of Dominica for the period 2000 - 2006 show compositions typical of those found in arc-type settings, with N2 excess and low amounts of He and Ar. The dry gas is dominated by CO2 (ranging from 492 to 993 mmol/mol), and has a hydrothermal signature with hydrogen sulphide as the main sulphurous gas. Over the past decade, Dominica has experienced volcanic and tectonic seismicity and a sudden draining episode at the Boiling Lake in November 2016. This study evaluates data obtained in 2017 on gas composition from five (5) hydrothermal areas across the island (Valley of Desolation, Sulphur Spring, Watten Waven, Galion and Penville cold Soufriere) to determine temporal and spatial deviations from baseline geochemical conditions. This study also presents new data, obtained in 2017, on sulphur and nitrogen isotopes to evaluate contributions from various source components. Preliminary results show high CH4/CO2 ratios for gases from Sulphur Springs and Galion, indicative of a significant hydrothermal contribution to these fluids. However, high helium isotope compositions of 7.02 R/Ra signify a clear magmatic origin. This is consistent with the previously established baseline chemistry of the hydrothermal systems on Dominica.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5399606','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5399606"><span>Relative Importance of Chemoautotrophy for Primary Production in a Light Exposed Marine Shallow Hydrothermal System</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Gomez-Saez, Gonzalo V.; Pop Ristova, Petra; Sievert, Stefan M.; Elvert, Marcus; Hinrichs, Kai-Uwe; Bühring, Solveig I.</p> <p>2017-01-01</p> <p>The unique geochemistry of marine shallow-water hydrothermal systems promotes the establishment of diverse microbial communities with a range of metabolic pathways. In contrast to deep-sea vents, shallow-water vents not only support chemosynthesis, but also phototrophic primary production due to the availability of light. However, comprehensive studies targeting the predominant biogeochemical processes are rare, and consequently a holistic understanding of the functioning of these ecosystems is currently lacking. To this end, we combined stable isotope probing of lipid biomarkers with an analysis of the bacterial communities to investigate if chemoautotrophy, in parallel to photoautotrophy, plays an important role in autotrophic carbon fixation and to identify the key players. The study was carried out at a marine shallow-water hydrothermal system located at 5 m water depth off Dominica Island (Lesser Antilles), characterized by up to 55°C warm hydrothermal fluids that contain high amounts of dissolved Fe2+. Analysis of the bacterial diversity revealed Anaerolineae of the Chloroflexi as the most abundant bacterial class. Furthermore, the presence of key players involved in iron cycling generally known from deep-sea hydrothermal vents (e.g., Zetaproteobacteria and Geothermobacter), supported the importance of iron-driven redox processes in this hydrothermal system. Uptake of 13C-bicarbonate into bacterial fatty acids under light and dark conditions revealed active photo- and chemoautotrophic communities, with chemoautotrophy accounting for up to 65% of the observed autotrophic carbon fixation. Relatively increased 13C-incorporation in the dark allowed the classification of aiC15:0, C15:0, and iC16:0 as potential lipid biomarkers for bacterial chemoautotrophy in this ecosystem. Highest total 13C-incorporation into fatty acids took place at the sediment surface, but chemosynthesis was found to be active down to 8 cm sediment depth. In conclusion, this study highlights the relative importance of chemoautotrophy compared to photoautotrophy in a shallow-water hydrothermal system, emphasizing chemosynthesis as a prominent process for biomass production in marine coastal environments influenced by hydrothermalism. PMID:28484442</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28772969','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28772969"><span>The Preparation of Porous Sol-Gel Silica with Metal Organic Framework MIL-101(Cr) by Microwave-Assisted Hydrothermal Method for Adsorption Chillers.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Uma, Kasimayan; Pan, Guan-Ting; Yang, Thomas C-K</p> <p>2017-06-02</p> <p>Abst r act: Metal organic framework (MOF) of MIL-101(Cr)-Silica (SiO₂) composites with highly mesoporous and uniform dispersions were synthesized by a microwave-assisted hydrothermal method followed by the sol-gel technique. Water vapor adsorption experiments were conducted on the MIL-101(Cr)-SiO₂ composites for industrial adsorption chiller applications. The effects of MIL-101(Cr)-SiO₂ mixing ratios (ranging from 0% to 52%), the surface area and amount of Lewis and Brønsted sites were comprehensively determined through water vapor adsorption experiments and the adsorption mechanism is also explained. The BET and Langmuir results indicate that the adsorption isotherms associated with the various MIL-101(Cr)-SiO₂ ratios demonstrated Type I and IV adsorption behavior, due to the mesoporous structure of the MIL-101(Cr)-SiO₂. It was observed that the increase in the amount of Lewis and Brønsted sites on the MIL-101(Cr)-SiO₂ composites significantly improves the water vapor adsorption efficiency, for greater stability during the water vapor adsorption experiments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ApSS..440..217C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ApSS..440..217C"><span>Design and construction of hierarchical TiO2 nanorod arrays by combining layer-by-layer and hydrothermal crystallization techniques for electrochromic application</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chen, Yongbo; Li, Xiaomin; Bi, Zhijie; He, Xiaoli; Li, Guanjie; Xu, Xiaoke; Gao, Xiangdong</p> <p>2018-05-01</p> <p>The hierarchical TiO2 (H-TiO2) nanorod arrays (NRAs) composed of single-crystalline nanorods and nanocrystals were finely designed and successfully constructed for electrochromic (EC) application. By combining layer-by-layer (LBL) method and hydrothermal crystallization technique, the superfine nanocrystals (5-7 nm), which can provide abundant active sites and facilitate ion insertion/extraction during EC reactions, were uniformly and conformally assembled on the surface of single-crystalline TiO2 (SC-TiO2) NRAs. The as-formed H-TiO2 NRAs integrate the advantages of one-dimensional NRAs with fast kinetics and superfine nanocrystals with high ion capacity, showing highly enhanced EC performance. Large optical contrast (40.3%), shorter coloring/bleaching time (22/4 s), high coloration efficiency (11.2 cm2 C-1), and excellent cycling stability can be achieved in H-TiO2 NRAs, superior to the pristine SC-TiO2 NRAs and nanocrystalline TiO2 films. This work provides a feasible and well-designed strategy to explore high-performance materials for EC application.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ApSS..423....1G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ApSS..423....1G"><span>Photocatalytic growth of Ag nanocrystals on hydrothermally synthesized multiphasic TiO2/reduced graphene oxide (rGO) nanocomposites and their SERS performance</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Guo, Tian-Long; Li, Ji-Guang; Sun, Xudong; Sakka, Yoshio</p> <p>2017-11-01</p> <p>TiO2/reduced graphene oxide (rGO) nanocomposites were prepared via a facile one-step hydrothermal method using TiCl3 as the TiO2 precursor. Cetyltrimethyl ammonium bromide (CTAB) was introduced as a stabilizer for GO in solution. The effects of GO content, Ti3+ concentration and urea additive on phase constituent and morphology of the TiO2 crystallites in the nanocomposites were systematically investigated. UV-vis absorption ability of the as-made composites was further tested and discussed. Ag nanocrystals (NCs) were photocatalytically grown on the surfaces of biphasic (anatase + brookite) and triphasic (anatase + brookite + rutile) TiO2/rGO nanocomposites to evaluate their surface-enhanced Raman scattering (SERS) performances. Morphology evolution of the Ag NCs in response to different photocatalytic ability of the TiO2/rGO nanocomposite was also investigated in detail. The nanocomposite with triphasic TiO2 of proper phase constituents was confirmed to favor the growth of Ag particles of two distinctly different sizes and to produce SERS substrates of substantially better performance.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JSSCh.233..415A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JSSCh.233..415A"><span>In situ hydrothermal syntheses, structures and photoluminescent properties of four novel metal-organic frameworks constructed by lanthanide (Ln=Ce(III), Pr(III), Eu(III)) and Cu(I) metals with flexible dicarboxylate acids and piperazine-based ligands</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ay, Burak; Karaca, Serkan; Yildiz, Emel; Lopez, Valerie; Nanao, Max H.; Zubieta, Jon</p> <p>2016-01-01</p> <p>Four novel metal-organic frameworks,[Cu2Cl2(pyrz)]n (1) and (H2pip)n[Ln2(pydc)4(H2O)2]n (Ln=Ce (2), Pr (3) and Eu (4), H2pzdc=2,3-pyrazinedicarboxylic acid, pyrz=pyrazine, H2pydc=2,6-pyridinedicarboxylic acid, H2pip=piperazine) have been synthesized under hydrothermal conditions and characterized by the elemental analysis, ICP, Far IR (FIR), FT-IR spectra, TGA, single crystal X-ray diffraction analysis and powder X-ray diffraction (PXRD). Compound 1 is two-dimensional containing Cl-Cu-Cl sites, while the lanthanide complexes contain one-dimensional infinite Ln-O-Ln chains. All the complexes show high thermal stability. The complexes 1-3 exhibit luminescence emission bands at 584, 598 and 614 nm at room temperature when excited at 300 nm. Complex 4 exhibits bright red solid-state phosphorescence upon exposure to UV radiation at room temperature.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ApSS..423..743R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ApSS..423..743R"><span>rGO-ZnO nanocomposites for high electrocatalytic effect on water oxidation obtained by microwave-hydrothermal method</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Romeiro, Fernanda C.; Rodrigues, Mônica A.; Silva, Luiz A. J.; Catto, Ariadne C.; da Silva, Luis F.; Longo, Elson; Nossol, Edson; Lima, Renata C.</p> <p>2017-11-01</p> <p>Reduced graphene oxide-zinc oxide (rGO-ZnO) nanocomposites were successfully synthesized using a facile microwave-hydrothermal method under mild conditions, and their electrocatalytic properties towards O2 evolution were investigated. The microwave radiation played an important role in obtainment of well dispersed ZnO nanoparticles directly on reduced graphene oxide sheets without any additional reducing reagents or passivation agent. X-ray diffraction (XRD), Raman and infrared spectroscopies indicated the reduction of GO as well as the successful synthesis of rGO-ZnO nanocomposites. The chemical states of the samples were shown by XPS analyses. Due to the synergic effect, the resulting nanocomposites exhibited high electronic interaction between ZnO and rGO sheets, which improved the electrocatalytic oxidation of water with low onset potential of 0.48 V (vs. Ag/AgCl) in neutral pH and long-term stability, with high current density during electrolysis. The overpotential for water oxidation decreased in alkaline pH, suggesting useful insight on the catalytic mechanism for O2 evolution.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22486802-carbon-based-strong-solid-acid-cornstarch-hydrolysis','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22486802-carbon-based-strong-solid-acid-cornstarch-hydrolysis"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Nata, Iryanti Fatyasari, E-mail: yanti_tkunlam@yahoo.com; Irawan, Chairul; Mardina, Primata</p> <p></p> <p>Highly sulfonated carbonaceous spheres with diameter of 100–500 nm can be generated by hydrothermal carbonization of glucose in the presence of hydroxyethylsulfonic acid and acrylic acid at 180 °C for 4 h. The acidity of the prepared carbonaceous sphere C4-SO{sub 3}H can reach 2.10 mmol/g. It was used as a solid acid catalyst for the hydrolysis of cornstarch. Total reducing sugar (TRS) concentration of 19.91 mg/mL could be obtained by hydrolyzing 20 mg/mL cornstarch at 150 °C for 6 h using C4-SO{sub 3}H as solid acid catalyst. The solid acid catalyst demonstrated good stability that only 9% decrease in TRSmore » concentration was observed after five repeat uses. The as-prepared carbon-based solid acid catalyst can be an environmentally benign replacement for homogeneous catalyst. - Highlights: • Carbon solid acid was successfully prepared by one-step hydrothermal carbonization. • The acrylic acid as monomer was effectively reduce the diameter size of particle. • The solid acid catalyst show good catalytic performance of starch hydrolysis. • The solid acid catalyst is not significantly deteriorated after repeated use.« less</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_21 --> <div id="page_22" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="421"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22795044','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22795044"><span>Synthesis of LaVO4/TiO2 heterojunction nanotubes by sol-gel coupled with hydrothermal method for photocatalytic air purification.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zou, Xuejun; Li, Xinyong; Zhao, Qidong; Liu, Shaomin</p> <p>2012-10-01</p> <p>With the aim of improving the effective utilization of visible light, the LaVO(4)/TiO(2) heterojunction nanotubes were fabricated by sol-gel coupled with hydrothermal method. The photocatalytic ability was demonstrated through catalytic removal of gaseous toluene species. The nanotube samples were characterized by scanning electron microscope (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), surface photovoltage (SPV), Raman spectra and N(2) adsorption-desorption measurements. The characterization results showed that the samples with high specific surface areas were of typical nanotubular morphology, which would lead to the high separation and transfer efficiency of photo induced electron-hole pairs. The as-prepared nanotubes exhibited high photocatalytic activity in decomposing toluene species under visible light irradiation with fine photochemical stability. The enhanced photocatalytic performance of LaVO(4)/TiO(2) nanotubes might be attributed to the matching band potentials, the interconnected heterojunction of LaVO(4) versus TiO(2), and the large specific surface areas of nanotubes. Copyright © 2012 Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AIPC.1942e0023R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AIPC.1942e0023R"><span>Tetramethylene glycol mediated hydrothermal synthesis of defect-rich SnO2 nanoparticles for fast adsorption and degradation of MB dye</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rani, Barkha; Jadhao, Charushila Vasant; Sahu, Niroj Kumar</p> <p>2018-04-01</p> <p>Defect-rich pristine tin oxide nanoparticles (SnO2 NPs) with high colloidal stability have been synthesized by tetramethylene glycol (TMG) mediated hydrothermal process and characterized by XRD, TEM, Zeta Potential, PL spectroscopy and porosity measurement techniques. XRD result suggests the formation of rutile phase of SnO2 with average crystallite size of 2.65 nm. TMG act as a structure directing agent assist in the formation of network like structure of SnO2 NPs as confirmed from TEM. Significant blue shifts in the UV absorption spectrum as that of the bulk and defect bands in the PL spectrum are observed. The nanomaterial possesses very high surface area of 263.102 m2/g and large pore volume. The above properties strongly influence the photocatalytic degradation of methylene blue dye. Very fast adsorption and 96% degradation (under UV irradiation) has been achieved when 10 ppm methylene blue solutions is catalysed by 20 mg SnO2 NPs which pave the way for potential environmental application.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/869277','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/869277"><span>Organic or organometallic template mediated clay synthesis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Gregar, Kathleen C.; Winans, Randall E.; Botto, Robert E.</p> <p>1994-01-01</p> <p>A method for incorporating diverse Varieties of intercalants or templates directly during hydrothermal synthesis of clays such as hectorite or montmorillonite-type layer-silicate clays. For a hectorite layer-silicate clay, refluxing a gel of silica sol, magnesium hydroxide sol and lithium fluoride for two days in the presence of an organic or organometallic intercalant or template results in crystalline products containing either (a) organic dye molecules such as ethyl violet and methyl green, (b) dye molecules such as alcian blue that are based on a Cu(II)-phthalocyannine complex, or (c) transition metal complexes such as Ru(II)phenanthroline and Co(III)sepulchrate or (d) water-soluble porphyrins and metalloporphyrins. Montmorillonite-type clays are made by the method taught by U.S. Pat. No. 3,887,454 issued to Hickson, Jun. 13, 1975; however, a variety of intercalants or templates may be introduced. The intercalants or templates should have (i) water-solubility, (ii) positive charge, and (iii) thermal stability under moderately basic (pH 9-10) aqueous reflux conditions or hydrothermal pressurized conditions for the montmorillonite-type clays.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24429419','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24429419"><span>Mesoporous CNT@TiO2-C nanocable with extremely durable high rate capability for lithium-ion battery anodes.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wang, Bin; Xin, Huolin; Li, Xiaodong; Cheng, Jianli; Yang, Guangcheng; Nie, Fude</p> <p>2014-01-16</p> <p>A well-designed nanostructure CNT@TiO2-C with fine anatase TiO2 particle (< 8 nm), good electronic conducting network (inner CNT core and outer carbon layer), and mesoporous structure was prepared by a simple and green one-pot hydrothermal reaction. The utilization of glucose in the hydrothermal process not only solves the interfacial incompatibility between CNTs and titanate sol and controls the nucleation and growth of TiO2 particles, but also introduces a uniform, glucose-derived, carbon-layer on the TiO2 particles. The nanosized TiO2 particle, high conducting network, and interconnected nanopores of the CNT@TiO2-C nanocable greatly improve its electrochemical performances, especially rate capability. The CNT@TiO2-C nanocables show remarkable rate capability with reversible charge capacity of 297, 240, 210,178 and 127 mAh g(-1) at 1C, 5C, 10C, 20C and 50C, respectively, as well as excellent high rate cycling stability with capacity retention of 87% after 2000 cycles at 50C.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014NatSR...4E3729W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014NatSR...4E3729W"><span>Mesoporous CNT@TiO2-C Nanocable with Extremely Durable High Rate Capability for Lithium-Ion Battery Anodes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Bin; Xin, Huolin; Li, Xiaodong; Cheng, Jianli; Yang, Guangcheng; Nie, Fude</p> <p>2014-01-01</p> <p>A well-designed nanostructure CNT@TiO2-C with fine anatase TiO2 particle (< 8 nm), good electronic conducting network (inner CNT core and outer carbon layer), and mesoporous structure was prepared by a simple and green one-pot hydrothermal reaction. The utilization of glucose in the hydrothermal process not only solves the interfacial incompatibility between CNTs and titanate sol and controls the nucleation and growth of TiO2 particles, but also introduces a uniform, glucose-derived, carbon-layer on the TiO2 particles. The nanosized TiO2 particle, high conducting network, and interconnected nanopores of the CNT@TiO2-C nanocable greatly improve its electrochemical performances, especially rate capability. The CNT@TiO2-C nanocables show remarkable rate capability with reversible charge capacity of 297, 240, 210,178 and 127 mAh g-1 at 1C, 5C, 10C, 20C and 50C, respectively, as well as excellent high rate cycling stability with capacity retention of 87% after 2000 cycles at 50C.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JPS...387...16C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JPS...387...16C"><span>Facile synthesis and electrochemical properties of continuous porous spheres assembled from defect-rich, interlayer-expanded, and few-layered MoS2/C nanosheets for reversible lithium storage</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chen, Biao; Lu, Huihui; Zhao, Naiqin; Shi, Chunsheng; Liu, Enzuo; He, Chunnian; Ma, Liying</p> <p>2018-05-01</p> <p>Hollow or continuous porous hierarchical MoS2/C structures with large Li-ion and electron transport kinetics, and high structural stability are urgent needs for their application in lithium ion batteries. In this regard, a novel continuous porous micro-sphere constructed from defect-rich, interlayer-expanded, and few-layered MoS2/C nanosheets is successfully synthesized through a facile one-pot hydrothermal method. The polyvinyl pyrrolidone surfactant serves as carbon source and supporter, while the CS2 works as soft template and sulfur source during hydrothermal process. The morphologies, structures, and electrochemical properties are systematically characterized. Importantly, it should be noted that the unique porous micro-spheres with merits of rich-defect, expanded-interlayer, few-layer (<5 layers), abundant pores and integrating carbon are favorable for lithium ion batteries application. When the uniform composites are used as lithium ion batteries anode materials, they deliver a high reversible capacity, excellent cycling performance (average capacity fading of 0.037% per cycle at 0.2 A g-1), and good rate capability.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/7198233','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/biblio/7198233"><span>Organic or organometallic template mediated clay synthesis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Gregar, K.C.; Winans, R.E.; Botto, R.E.</p> <p>1994-05-03</p> <p>A method is described for incorporating diverse varieties of intercalates or templates directly during hydrothermal synthesis of clays such as hectorite or montmorillonite-type layer-silicate clays. For a hectorite layer-silicate clay, refluxing a gel of silica sol, magnesium hydroxide sol and lithium fluoride for two days in the presence of an organic or organometallic intercalate or template results in crystalline products containing either (a) organic dye molecules such as ethyl violet and methyl green, (b) dye molecules such as alcian blue that are based on a Cu(II)-phthalocyannine complex, or (c) transition metal complexes such as Ru(II)phenanthroline and Co(III)sepulchrate or (d) water-soluble porphyrins and metalloporphyrins. Montmorillonite-type clays are made by the method taught by U.S. Pat. No. 3,887,454 issued to Hickson, Jun. 13, 1975; however, a variety of intercalates or templates may be introduced. The intercalates or templates should have (i) water-solubility, (ii) positive charge, and (iii) thermal stability under moderately basic (pH 9-10) aqueous reflux conditions or hydrothermal pressurized conditions for the montmorillonite-type clays. 22 figures.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ApSS..435..398C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ApSS..435..398C"><span>Ant-cave structured MnCO3/Mn3O4 microcubes by biopolymer-assisted facile synthesis for high-performance pseudocapacitors</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chandra Sekhar, S.; Nagaraju, Goli; Yu, Jae Su</p> <p>2018-03-01</p> <p>Porous and ant-cave structured MnCO3/Mn3O4 microcubes (MCs) were facilely synthesized via a biopolymer-assisted hydrothermal approach. Herein, chitosan was used as a natural biopolymer, which greatly controls the surface morphology and size of the prepared composite. The amino and hydroxyl group-functionalized chitosan engraves the outer surface of MCs during the hydrothermal process, which designs the interesting morphology of nanopath ways on the surface of MCs. When used as an electrode material for pseudocapacitors, the ant-cave structured MnCO3/Mn3O4 MCs showed superior energy storage values compared to the material prepared without chitosan in aqueous electrolyte solution. Precisely, the prepared ant-cave structured MnCO3/Mn3O4 MCs exhibited a maximum specific capacitance of 116.2 F/g at a current density of 0.7 A/g with an excellent cycling stability of 73.86% after 2000 cycles. Such facile and low-cost synthesis of pseudocapacitive materials with porous nanopaths is favorable for the fabrication of high-performance energy storage devices.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014JSSCh.212..185S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014JSSCh.212..185S"><span>Syntheses, structures and properties of four 3D microporous lanthanide coordination polymers based on 3,5-pyrazoledicarboxylate and oxalate ligands</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Song, Juan; Wang, Ji-Jiang; Hu, Huai-Ming; Wu, Qing-Ran; Xie, Juan; Dong, Fa-Xin; Yang, Meng-Lin; Xue, Gang-Lin</p> <p>2014-04-01</p> <p>Four three-dimensional lanthanide coordination polymers with reversible structural interconversions, [Ln2(Hpdc)2(C2O4)(H2O)4]n·2nH2O [Ln=Sm (1), Eu (2), Tb (3) and Dy (4)], have been synthesized by hydrothermal reactions of lanthanide nitrates with 3,5-pyrazoledicarboxylic (H3pdc) and oxalic acids. It is noteworthy that there is an in situ reaction in 1, in which H3pdc was decomposed into (ox)2- with Cu(II)-Sm(III) synergistic effect under hydrothermal conditions. These compounds are isostructural and crystallized in the monoclinic P21/c space group. The Ln(III) ions are eight-coordinated with dodecahedron coordination geometry. These polyhedra are linked by oxalate groups to form 1D zigzag chain, which are further connected by 3,5-pyrazoledicarboxylate to extend similar 3D frameworks with channels along c-axis in 1-4. These coordination polymers display the characteristic emission bands of the Ln(III) ions in the solid state and possess good thermal stabilities.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/891301','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/891301"><span>Hydrothermal alteration of sediments associated with surface emissions from the Cerro Prieto geothermal field</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Valette-Silver, J.N.; Esquer P., I.; Elders, W.A.</p> <p>1981-01-01</p> <p>A study of the mineralogical changes associated with these hydrothermal vents was initiated with the aim of developing possible exploration tools for geothermal resources. The Cerro Prieto reservoir has already been explored by extensive deep drilling so that relationships between surface manifestations and deeper hydrothermal processes could be established directly. Approximately 120 samples of surface sediments were collected both inside and outside of the vents. The mineralogy of the altered sediments studied appears to be controlled by the type of emission. A comparison between the changes in mineralogy due to low temperature hydrothermal activity in the reservoir, seen in samplesmore » from boreholes, and mineralogical changes in the surface emission samples shows similar general trends below 180 C: increase of quartz, feldspar and illite, with subsequent disappearance of kaolinite, montmorillonite, calcite and dolomite. These mineral assemblages seem to be characteristic products of the discharge from high intensity geothermal fields.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20056415','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20056415"><span>Characterization of lignin during oxidative and hydrothermal pre-treatment processes of wheat straw and corn stover.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kaparaju, Prasad; Felby, Claus</p> <p>2010-05-01</p> <p>The objective of the study was to characterize and map changes in lignin during hydrothermal and wet explosion pre-treatments of wheat straw and corn stover. Chemical composition, microscopic (atomic force microscopy and scanning electron microscopy) and spectroscopic (attenuated total reflectance Fourier transform infrared spectroscopy, ATR-FTIR) analyses were performed. Results showed that both pre-treatments improved the cellulose and lignin content with substantial removal of hemicellulose in the pre-treated biomasses. These values were slightly higher for hydrothermal compared to wet explosion pre-treatment. ATR-FTIR analyses also confirmed these results. Microscopic analysis showed that pre-treatments affected the biomass by partial difibration. Lignin deposition on the surface of the hydrothermally pre-treated fibre was very distinct while severe loss of fibril integrity was noticed with wet exploded fibre. The present study thus revealed that the lignin cannot be removed by the studied pre-treatments. However, both pre-treatments improved the accessibility of the biomass towards enzymatic hydrolysis. Copyright 2009 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013GeCoA.106..501P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013GeCoA.106..501P"><span>Silver in geological fluids from in situ X-ray absorption spectroscopy and first-principles molecular dynamics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pokrovski, Gleb S.; Roux, Jacques; Ferlat, Guillaume; Jonchiere, Romain; Seitsonen, Ari P.; Vuilleumier, Rodolphe; Hazemann, Jean-Louis</p> <p>2013-04-01</p> <p>The molecular structure and stability of species formed by silver in aqueous saline solutions typical of hydrothermal settings were quantified using in situ X-ray absorption spectroscopy (XAS) measurements, quantum-chemical modeling of near-edge absorption spectra (XANES) and extended fine structure spectra (EXAFS), and first-principles molecular dynamics (FPMD). Results show that in nitrate-bearing acidic solutions to at least 200 °C, silver speciation is dominated by the hydrated Ag+ cation surrounded by 4-6 water molecules in its nearest coordination shell with mean Ag-O distances of 2.32 ± 0.02 Å. In NaCl-bearing acidic aqueous solutions of total Cl concentration from 0.7 to 5.9 mol/kg H2O (m) at temperatures from 200 to 450 °C and pressures to 750 bar, the dominant species are the di-chloride complex AgCl2- with Ag-Cl distances of 2.40 ± 0.02 Å and Cl-Ag-Cl angle of 160 ± 10°, and the tri-chloride complex AgCl32- of a triangular structure and mean Ag-Cl distances of 2.60 ± 0.05 Å. With increasing temperature, the contribution of the tri-chloride species decreases from ˜50% of total dissolved Ag in the most concentrated solution (5.9m Cl) at 200 °C to less than 10-20% at supercritical temperatures for all investigated solutions, so that AgCl2- becomes by far the dominant Ag-bearing species at conditions typical of hydrothermal-magmatic fluids. Both di- and tri-chloride species exhibit outer-sphere interactions with the solvent as shown by the detection, using FPMD modeling, of H2O, Cl-, and Na+ at distances of 3-4 Å from the silver atom. The species fractions derived from XAS and FPMD analyses, and total AgCl(s) solubilities, measured in situ in this work from the absorption edge height of XAS spectra, are in accord with thermodynamic predictions using the stability constants of AgCl2- and AgCl32- from Akinfiev and Zotov (2001) and Zotov et al. (1995), respectively, which are based on extensive previous AgCl(s) solubility measurements. These data are thus recommended for chemical equilibrium calculations in mineral-fluid systems above 200 °C. In contrast, our data disagree with SUPCRT-based datasets for Ag-Cl species, which predict large fractions of high-order chloride species, AgCl32- and AgCl43- in high-temperature saline fluids. Comparisons of the structural and stability data of Ag-Cl species derived in this study with those of their Au and Cu analogs suggest that molecular-level differences amongst the chloride complexes such as geometry, dipole moment, distances, and resulting outer-sphere interactions with the solvent may account, at least partly, for the observed partitioning of Au, Ag and Cu in vapor-brine and fluid-melt systems. In hydrothermal environments dominated by fluid-rock interactions, the contrasting affinity of these metals for sulfur ligands and the differences both in chemistry and stability of their main solid phases (Ag sulfides, Cu-Fe sulfides, and native Au) largely control the concentration and distribution of these metals in their economic deposits.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005PhDT........88Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005PhDT........88Y"><span>Synthesis and colloidal properties of anisotropic hydrothermal barium titanate</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yosenick, Timothy James</p> <p>2005-11-01</p> <p>Nanoparticles of high dielectric constant materials, especially BaTiO3, are required to achieve decreased layer thickness in multilayer ceramic capacitors (MLCCs). Tabular metal nanoparticles can produce thin metal layers with low surface roughness via electrophoretic deposition (EPD). To achieve similar results with dielectric layers requires the synthesis and dispersion of tabular BaTiO3 nanoparticles. The goal of this study was to investigate the deposition of thin BaTiO3 layers using a colloidal process. The synthesis, interfacial chemistry and colloidal properties of hydrothermal BaTiO3 a model particle system, was investigated. After characterization of the material system particulates were deposited to form thin layers using EPD. In the current study, the synthesis of BaTiO3 has been investigated using a hydrothermal route. TEM and AFM analyses show that the synthesized particles are single crystal with a majority of the particle having a <111> zone axis and {111} large face. The particles have a median thickness of 5.8 +/- 3.1 nm and face diameter of 27.1 +/- 12.3 nm. Particle growth was likely controlled by the formation of {111} twins and the synthesis pH which stabilizes the {111} face during growth. With limited growth in the <111> direction, the particles developed a plate-like morphology. Physical property characterization shows the powder was suitable for further processing with high purity, low hydrothermal defect concentration, and controlled stoichiometry. TEM observations of thermally treated powders indicate that the particles begin to loose the plate-like morphology by 900 °C. The aqueous passivation, dispersion, and doping of nanoscale BaTiO 3 powders was investigated. Passivation BaTiO3 was achieved through the addition of oxalic acid. The oxalic acid selectively adsorbs onto the particle surface and forms a chemically stable 2-3 nm layer of barium oxalate. The negative surface charge of the oxalate effectively passivated the BaTiO3 providing a surface suitable for the use of a cationic dispersant, polyethylenimine (PEI). Rheological properties indicate the presence of an oxalate-PEI interaction which can be detrimental to dispersion. With a better understanding of the aqueous surface chemistry of BaTiO3 the surface chemistry was manipulated to control the adsorption of aqueous soluble complexes of Co, Nb, and Bi, three common dopants in the processing of BaTiO3 Surface charge, TEM, and EDS analysis showed that while in suspension the dopants selectively absorbed onto the particle surface forming an engineered coating. (Abstract shortened by UMI.)</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018CPL...699..241Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018CPL...699..241Z"><span>Enhancement of acid treated g-C3N4sbnd Cu2O photocatalytic activity by PEG under visible light irradiation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zuo, Shiyu; Xu, Haiming; Liao, Wei; Sun, Lei; Li, Qiang; Zan, Jie; Zhang, Binyang; Li, Dongya; Xia, Dongsheng</p> <p>2018-05-01</p> <p>In this study, g-C3N4sbnd Cu2O was successfully synthesized in the presence of PEG-400 surfactant via an acid treatment hydrothermal method and a high-temperature calcination method. The structures and properties of as-synthesized samples were characterized using a range of techniques, such as XPS, TEM, PL and BET. The g-C3N4sbnd Cu2O heterojunction exhibits the enhanced photocatalytic performance and high stability. It is revealed that the addition of PEG can promote the heterojunction effect of g-C3N4sbnd Cu2O, effectively improving the crystallinity and specific surface area of the photocatalyst, separation efficiency of photocarriers, and light absorption, thus enhancing the photocatalytic performance.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016Nanot..27y5501W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016Nanot..27y5501W"><span>Muti-component nanocomposite of nickel and manganese oxides with enhanced stability and catalytic performance for non-enzymatic glucose sensors</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Dandan; Cai, Daoping; Wang, Chenxia; Liu, Bin; Wang, Lingling; Liu, Yuan; Li, Han; Wang, Yanrong; Li, Qiuhong; Wang, Taihong</p> <p>2016-06-01</p> <p>A muti-component nanocomposite of nickel and manganese oxides with a uniformly dispersed microspherical structure has been fabricated by a hydrothermal synthesis method. The as-prepared nanocomposite has been employed as a sensing material for non-enzymatic glucose detection and shown excellent electrocatalytic activity, such as high sensitivities of 82.44 μA mM-1 cm-2 and 27.92 μA mM-1 cm-2 over the linear range of 0.1-1 mM and 1-4.5 mM, respectively, a low detection limit of 0.2 μM and a fast response time of <3 s. Moreover, satisfactory specificity and excellent stability have also been achieved. The results demonstrate that a muti-component nanocomposite of nickel and manganese oxides has great potential applications as glucose sensors.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29255454','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29255454"><span>Bacterial Diversity and Biogeochemistry of Two Marine Shallow-Water Hydrothermal Systems off Dominica (Lesser Antilles).</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Pop Ristova, Petra; Pichler, Thomas; Friedrich, Michael W; Bühring, Solveig I</p> <p>2017-01-01</p> <p>Shallow-water hydrothermal systems represent extreme environments with unique biogeochemistry and high biological productivity, at which autotrophic microorganisms use both light and chemical energy for the production of biomass. Microbial communities of these ecosystems are metabolically diverse and possess the capacity to transform a large range of chemical compounds. Yet, little is known about their diversity or factors shaping their structure or how they compare to coastal sediments not impacted by hydrothermalism. To this end, we have used automated ribosomal intergenic spacer analysis (ARISA) and high-throughput Illumina sequencing combined with porewater geochemical analysis to investigate microbial communities along geochemical gradients in two shallow-water hydrothermal systems off the island of Dominica (Lesser Antilles). At both sites, venting of hydrothermal fluids substantially altered the porewater geochemistry by enriching it with silica, iron and dissolved inorganic carbon, resulting in island-like habitats with distinct biogeochemistry. The magnitude of fluid flow and difference in sediment grain size, which impedes mixing of the fluids with seawater, were correlated with the observed differences in the porewater geochemistry between the two sites. Concomitantly, individual sites harbored microbial communities with a significantly different community structure. These differences could be statistically linked to variations in the porewater geochemistry and the hydrothermal fluids. The two shallow-water hydrothermal systems of Dominica harbored bacterial communities with high taxonomical and metabolic diversity, predominated by heterotrophic microorganisms associated with the Gammaproteobacterial genera Pseudomonas and Pseudoalteromonas , indicating the importance of heterotrophic processes. Overall, this study shows that shallow-water hydrothermal systems contribute substantially to the biogeochemical heterogeneity and bacterial diversity of coastal sediments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70003905','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70003905"><span>The physical hydrogeology of ore deposits</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Ingebritsen, Steven E.; Appold, M.S.</p> <p>2012-01-01</p> <p>Hydrothermal ore deposits represent a convergence of fluid flow, thermal energy, and solute flux that is hydrogeologically unusual. From the hydrogeologic perspective, hydrothermal ore deposition represents a complex coupled-flow problem—sufficiently complex that physically rigorous description of the coupled thermal (T), hydraulic (H), mechanical (M), and chemical (C) processes (THMC modeling) continues to challenge our computational ability. Though research into these coupled behaviors has found only a limited subset to be quantitatively tractable, it has yielded valuable insights into the workings of hydrothermal systems in a wide range of geologic environments including sedimentary, metamorphic, and magmatic. Examples of these insights include the quantification of likely driving mechanisms, rates and paths of fluid flow, ore-mineral precipitation mechanisms, longevity of hydrothermal systems, mechanisms by which hydrothermal fluids acquire their temperature and composition, and the controlling influence of permeability and other rock properties on hydrothermal fluid behavior. In this communication we review some of the fundamental theory needed to characterize the physical hydrogeology of hydrothermal systems and discuss how this theory has been applied in studies of Mississippi Valley-type, tabular uranium, porphyry, epithermal, and mid-ocean ridge ore-forming systems. A key limitation in the computational state-of-the-art is the inability to describe fluid flow and transport fully in the many ore systems that show evidence of repeated shear or tensional failure with associated dynamic variations in permeability. However, we discuss global-scale compilations that suggest some numerical constraints on both mean and dynamically enhanced crustal permeability. Principles of physical hydrogeology can be powerful tools for investigating hydrothermal ore formation and are becoming increasingly accessible with ongoing advances in modeling software.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5722836','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5722836"><span>Bacterial Diversity and Biogeochemistry of Two Marine Shallow-Water Hydrothermal Systems off Dominica (Lesser Antilles)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Pop Ristova, Petra; Pichler, Thomas; Friedrich, Michael W.; Bühring, Solveig I.</p> <p>2017-01-01</p> <p>Shallow-water hydrothermal systems represent extreme environments with unique biogeochemistry and high biological productivity, at which autotrophic microorganisms use both light and chemical energy for the production of biomass. Microbial communities of these ecosystems are metabolically diverse and possess the capacity to transform a large range of chemical compounds. Yet, little is known about their diversity or factors shaping their structure or how they compare to coastal sediments not impacted by hydrothermalism. To this end, we have used automated ribosomal intergenic spacer analysis (ARISA) and high-throughput Illumina sequencing combined with porewater geochemical analysis to investigate microbial communities along geochemical gradients in two shallow-water hydrothermal systems off the island of Dominica (Lesser Antilles). At both sites, venting of hydrothermal fluids substantially altered the porewater geochemistry by enriching it with silica, iron and dissolved inorganic carbon, resulting in island-like habitats with distinct biogeochemistry. The magnitude of fluid flow and difference in sediment grain size, which impedes mixing of the fluids with seawater, were correlated with the observed differences in the porewater geochemistry between the two sites. Concomitantly, individual sites harbored microbial communities with a significantly different community structure. These differences could be statistically linked to variations in the porewater geochemistry and the hydrothermal fluids. The two shallow-water hydrothermal systems of Dominica harbored bacterial communities with high taxonomical and metabolic diversity, predominated by heterotrophic microorganisms associated with the Gammaproteobacterial genera Pseudomonas and Pseudoalteromonas, indicating the importance of heterotrophic processes. Overall, this study shows that shallow-water hydrothermal systems contribute substantially to the biogeochemical heterogeneity and bacterial diversity of coastal sediments. PMID:29255454</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2820965','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2820965"><span>Archaeal Diversity and Distribution along Thermal and Geochemical Gradients in Hydrothermal Sediments at the Yonaguni Knoll IV Hydrothermal Field in the Southern Okinawa Trough▿ †</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Nunoura, Takuro; Oida, Hanako; Nakaseama, Miwako; Kosaka, Ayako; Ohkubo, Satoru B.; Kikuchi, Toru; Kazama, Hiromi; Hosoi-Tanabe, Shoko; Nakamura, Ko-ichi; Kinoshita, Masataka; Hirayama, Hisako; Inagaki, Fumio; Tsunogai, Urumu; Ishibashi, Jun-ichiro; Takai, Ken</p> <p>2010-01-01</p> <p>A variety of archaeal lineages have been identified using culture-independent molecular phylogenetic surveys of microbial habitats occurring in deep-sea hydrothermal environments such as chimney structures, sediments, vent emissions, and chemosynthetic macrofauna. With the exception of a few taxa, most of these archaea have not yet been cultivated, and their physiological and metabolic traits remain unclear. In this study, phylogenetic diversity and distribution profiles of the archaeal genes encoding small subunit (SSU) rRNA, methyl coenzyme A (CoA) reductase subunit A, and the ammonia monooxygenase large subunit were characterized in hydrothermally influenced sediments at the Yonaguni Knoll IV hydrothermal field in the Southern Okinawa Trough. Sediment cores were collected at distances of 0.5, 2, or 5 m from a vent emission (90°C). A moderate temperature gradient extends both horizontally and vertically (5 to 69°C), indicating the existence of moderate mixing between the hydrothermal fluid and the ambient sediment pore water. The mixing of reductive hot hydrothermal fluid and cold ambient sediment pore water establishes a wide spectrum of physical and chemical conditions in the microbial habitats that were investigated. Under these different physico-chemical conditions, variability in archaeal phylotype composition was observed. The relationship between the physical and chemical parameters and the archaeal phylotype composition provides important insight into the ecophysiological requirements of uncultivated archaeal lineages in deep-sea hydrothermal vent environments, giving clues for approximating culture conditions to be used in future culturing efforts. PMID:20023079</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA475564','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA475564"><span>Laboratory Evaluation of Laser-Induced Breakdown Spectroscopy (LIBS) as a New in situ Chemical Sensing Technique for the Deep Ocean</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2007-09-01</p> <p>1.1.2 Advantages and Disadvantages of the LIBS Technique ..... .. 21 1.1.3 LIBS in Liquids ................................ 23 1.2 Scientific ...1.2 Scientific Application: Hydrothermal Vent Chemistry Study of in situ hydrothermal vent chemistry could benefit greatly from the develop- ment of a...4935, 1994. [50] K. L. Von Danim . Chemistry of hydrothermal vent fluids froin 90 - 100 N, East Pacific Rise: ’Time zero,’ The inmnediate posteruptive</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_22 --> <div id="page_23" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="441"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27512389','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27512389"><span>Genomic and Transcriptomic Resolution of Organic Matter Utilization Among Deep-Sea Bacteria in Guaymas Basin Hydrothermal Plumes.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Li, Meng; Jain, Sunit; Dick, Gregory J</p> <p>2016-01-01</p> <p>Microbial chemosynthesis within deep-sea hydrothermal vent plumes is a regionally important source of organic carbon to the deep ocean. Although chemolithoautotrophs within hydrothermal plumes have attracted much attention, a gap remains in understanding the fate of organic carbon produced via chemosynthesis. In the present study, we conducted shotgun metagenomic and metatranscriptomic sequencing on samples from deep-sea hydrothermal vent plumes and surrounding background seawaters at Guaymas Basin (GB) in the Gulf of California. De novo assembly of metagenomic reads and binning by tetranucleotide signatures using emergent self-organizing maps (ESOM) revealed 66 partial and nearly complete bacterial genomes. These bacterial genomes belong to 10 different phyla: Actinobacteria, Bacteroidetes, Chloroflexi, Deferribacteres, Firmicutes, Gemmatimonadetes, Nitrospirae, Planctomycetes, Proteobacteria, Verrucomicrobia. Although several major transcriptionally active bacterial groups (Methylococcaceae, Methylomicrobium, SUP05, and SAR324) displayed methanotrophic and chemolithoautotrophic metabolisms, most other bacterial groups contain genes encoding extracellular peptidases and carbohydrate metabolizing enzymes with significantly higher transcripts in the plume than in background, indicating they are involved in degrading organic carbon derived from hydrothermal chemosynthesis. Among the most abundant and active heterotrophic bacteria in deep-sea hydrothermal plumes are Planctomycetes, which accounted for seven genomes with distinct functional and transcriptional activities. The Gemmatimonadetes and Verrucomicrobia also had abundant transcripts involved in organic carbon utilization. These results extend our knowledge of heterotrophic metabolism of bacterial communities in deep-sea hydrothermal plumes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4962555','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4962555"><span>Genomic and Transcriptomic Resolution of Organic Matter Utilization Among Deep-Sea Bacteria in Guaymas Basin Hydrothermal Plumes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Li, Meng; Jain, Sunit; Dick, Gregory J.</p> <p>2016-01-01</p> <p>Microbial chemosynthesis within deep-sea hydrothermal vent plumes is a regionally important source of organic carbon to the deep ocean. Although chemolithoautotrophs within hydrothermal plumes have attracted much attention, a gap remains in understanding the fate of organic carbon produced via chemosynthesis. In the present study, we conducted shotgun metagenomic and metatranscriptomic sequencing on samples from deep-sea hydrothermal vent plumes and surrounding background seawaters at Guaymas Basin (GB) in the Gulf of California. De novo assembly of metagenomic reads and binning by tetranucleotide signatures using emergent self-organizing maps (ESOM) revealed 66 partial and nearly complete bacterial genomes. These bacterial genomes belong to 10 different phyla: Actinobacteria, Bacteroidetes, Chloroflexi, Deferribacteres, Firmicutes, Gemmatimonadetes, Nitrospirae, Planctomycetes, Proteobacteria, Verrucomicrobia. Although several major transcriptionally active bacterial groups (Methylococcaceae, Methylomicrobium, SUP05, and SAR324) displayed methanotrophic and chemolithoautotrophic metabolisms, most other bacterial groups contain genes encoding extracellular peptidases and carbohydrate metabolizing enzymes with significantly higher transcripts in the plume than in background, indicating they are involved in degrading organic carbon derived from hydrothermal chemosynthesis. Among the most abundant and active heterotrophic bacteria in deep-sea hydrothermal plumes are Planctomycetes, which accounted for seven genomes with distinct functional and transcriptional activities. The Gemmatimonadetes and Verrucomicrobia also had abundant transcripts involved in organic carbon utilization. These results extend our knowledge of heterotrophic metabolism of bacterial communities in deep-sea hydrothermal plumes. PMID:27512389</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017E%26PSL.461...40S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017E%26PSL.461...40S"><span>Magnetic exploration of a low-temperature ultramafic-hosted hydrothermal site (Lost City, 30°N, MAR)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Szitkar, Florent; Tivey, Maurice A.; Kelley, Deborah S.; Karson, Jeffrey A.; Früh-Green, Gretchen L.; Denny, Alden R.</p> <p>2017-03-01</p> <p>A 2003 high-resolution magnetic survey conducted by the Autonomous Underwater Vehicle ABE over the low-temperature, ultramafic-hosted hydrothermal field Lost City reveals a weak positive magnetic anomaly. This observation is in direct contrast to recent observations of strong positive magnetic anomalies documented over the high-temperature ultramafic-hosted hydrothermal vents fields Rainbow and Ashadze, which indicates that temperature may control the production of magnetization at these sites. The Lost City survey provides a unique opportunity to study a field that is, to date, one of a kind, and is an end member of ultramafic-hosted hydrothermal systems. Our results highlight the key contribution of temperature on magnetite production resulting from serpentinization reactions. Whereas high temperature promotes significant production and partitioning of iron into magnetite, low temperature favors iron partitioning into various alteration phases, resulting in a magnetite-poor rock. Moreover, the distribution of magnetic anomalies confirms results of a previous geological survey indicating the progressive migration of hydrothermal activity upslope. These discoveries contribute to the results of 25 yrs of magnetic exploration of a wide range of hydrothermal sites, from low- to high-temperature and from basalt- to ultramafic-hosted, and thereby validate using high-resolution magnetics as a crucial parameter for locating and characterizing hydrothermal sites hosting unique chemosynthetic-based ecosystems and potentially mineral-rich deposits.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFMOS13D1763T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFMOS13D1763T"><span>Transient ElectroMagnetic and Electric Self-Potential survey in the TAG hydrothermal field in MAR</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tao, C.; Deng, X.; Wu, G.; Xi, Z.; Zhou, D.; Zuo, L.</p> <p>2012-12-01</p> <p>The TAG hydrothermal field is one of the most studied hydrothermal fields. This field covers an area of 5km×5km, which includes low-temperature Mn- and Fe-oxides and nontronites zone, relict massive sulfide mounds as well as active hydrothermal mound(TAG mound) [Thompson, 1985, Rona, 1993]. Drilling program was performed in the ODP (Ocean Drilling Program) Leg 158 in the TAG mound [Humphris, 1996]. In 1996, electrical resistivity survey in the TAG mound was conducted using innovative transient electric dipole-dipole instruments which was carried by DSV 'Alvin' [Cairns et al., 1996, Von Herzen et al., 1996]. In June 2012, the 2nd Leg of the Chinese 26th cruise was carried out in the TAG hydrothermal field at Mid Atlantic Ridge by R/V DAYANGYIHAO. Six TEM (Transient ElectroMagnetic) survey lines were deployed, with four of which across the ODP Leg 158 drilling area. Besides, two SP (Electric Self-Potential) survey lines were across the ODP drilling area. The survey results of TEM preliminary revealed the vertical structure of the TAG hydrothermal field. The survey results of both TEM and SP are consistent with the ODP drilling result, and also agree well with the temperature and water-column anomalies obtained in this leg. Preliminary results show that the TEM and SP methods are capable of revealing the horizontal and vertical distribution of the hydrothermal sulfide fields.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23898323','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23898323"><span>Diffuse flow environments within basalt- and sediment-based hydrothermal vent ecosystems harbor specialized microbial communities.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Campbell, Barbara J; Polson, Shawn W; Zeigler Allen, Lisa; Williamson, Shannon J; Lee, Charles K; Wommack, K Eric; Cary, S Craig</p> <p>2013-01-01</p> <p>Hydrothermal vents differ both in surface input and subsurface geochemistry. The effects of these differences on their microbial communities are not clear. Here, we investigated both alpha and beta diversity of diffuse flow-associated microbial communities emanating from vents at a basalt-based hydrothermal system along the East Pacific Rise (EPR) and a sediment-based hydrothermal system, Guaymas Basin. Both Bacteria and Archaea were targeted using high throughput 16S rRNA gene pyrosequencing analyses. A unique aspect of this study was the use of a universal set of 16S rRNA gene primers to characterize total and diffuse flow-specific microbial communities from varied deep-sea hydrothermal environments. Both surrounding seawater and diffuse flow water samples contained large numbers of Marine Group I (MGI) Thaumarchaea and Gammaproteobacteria taxa previously observed in deep-sea systems. However, these taxa were geographically distinct and segregated according to type of spreading center. Diffuse flow microbial community profiles were highly differentiated. In particular, EPR dominant diffuse flow taxa were most closely associated with chemolithoautotrophs, and off axis water was dominated by heterotrophic-related taxa, whereas the opposite was true for Guaymas Basin. The diversity and richness of diffuse flow-specific microbial communities were strongly correlated to the relative abundance of Epsilonproteobacteria, proximity to macrofauna, and hydrothermal system type. Archaeal diversity was higher than or equivalent to bacterial diversity in about one third of the samples. Most diffuse flow-specific communities were dominated by OTUs associated with Epsilonproteobacteria, but many of the Guaymas Basin diffuse flow samples were dominated by either OTUs within the Planctomycetes or hyperthermophilic Archaea. This study emphasizes the unique microbial communities associated with geochemically and geographically distinct hydrothermal diffuse flow environments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3721025','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3721025"><span>Diffuse flow environments within basalt- and sediment-based hydrothermal vent ecosystems harbor specialized microbial communities</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Campbell, Barbara J.; Polson, Shawn W.; Zeigler Allen, Lisa; Williamson, Shannon J.; Lee, Charles K.; Wommack, K. Eric; Cary, S. Craig</p> <p>2013-01-01</p> <p>Hydrothermal vents differ both in surface input and subsurface geochemistry. The effects of these differences on their microbial communities are not clear. Here, we investigated both alpha and beta diversity of diffuse flow-associated microbial communities emanating from vents at a basalt-based hydrothermal system along the East Pacific Rise (EPR) and a sediment-based hydrothermal system, Guaymas Basin. Both Bacteria and Archaea were targeted using high throughput 16S rRNA gene pyrosequencing analyses. A unique aspect of this study was the use of a universal set of 16S rRNA gene primers to characterize total and diffuse flow-specific microbial communities from varied deep-sea hydrothermal environments. Both surrounding seawater and diffuse flow water samples contained large numbers of Marine Group I (MGI) Thaumarchaea and Gammaproteobacteria taxa previously observed in deep-sea systems. However, these taxa were geographically distinct and segregated according to type of spreading center. Diffuse flow microbial community profiles were highly differentiated. In particular, EPR dominant diffuse flow taxa were most closely associated with chemolithoautotrophs, and off axis water was dominated by heterotrophic-related taxa, whereas the opposite was true for Guaymas Basin. The diversity and richness of diffuse flow-specific microbial communities were strongly correlated to the relative abundance of Epsilonproteobacteria, proximity to macrofauna, and hydrothermal system type. Archaeal diversity was higher than or equivalent to bacterial diversity in about one third of the samples. Most diffuse flow-specific communities were dominated by OTUs associated with Epsilonproteobacteria, but many of the Guaymas Basin diffuse flow samples were dominated by either OTUs within the Planctomycetes or hyperthermophilic Archaea. This study emphasizes the unique microbial communities associated with geochemically and geographically distinct hydrothermal diffuse flow environments. PMID:23898323</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70033591','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70033591"><span>Textural, mineralogical and stable isotope studies of hydrothermal alteration in the main sulfide zone of the Great Dyke, Zimbabwe and the precious metals zone of the Sonju Lake Intrusion, Minnesota, USA</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Li, C.; Ripley, E.M.; Oberthur, T.; Miller, J.D.; Joslin, G.D.</p> <p>2008-01-01</p> <p>Stratigraphic offsets in the peak concentrations of platinum-group elements (PGE) and base-metal sulfides in the main sulfide zone of the Great Dyke and the precious metals zone of the Sonju Lake Intrusion have, in part, been attributed to the interaction between magmatic PGE-bearing base-metal sulfide assemblages and hydrothermal fluids. In this paper, we provide mineralogical and textural evidence that indicates alteration of base-metal sulfides and mobilization of metals and S during hydrothermal alteration in both mineralized intrusions. Stable isotopic data suggest that the fluids involved in the alteration were of magmatic origin in the Great Dyke but that a meteoric water component was involved in the alteration of the Sonju Lake Intrusion. The strong spatial association of platinum-group minerals, principally Pt and Pd sulfides, arsenides, and tellurides, with base-metal sulfide assemblages in the main sulfide zone of the Great Dyke is consistent with residual enrichment of Pt and Pd during hydrothermal alteration. However, such an interpretation is more tenuous for the precious metals zone of the Sonju Lake Intrusion where important Pt and Pd arsenides and antimonides occur as inclusions within individual plagioclase crystals and within alteration assemblages that are free of base-metal sulfides. Our observations suggest that Pt and Pd tellurides, antimonides, and arsenides may form during both magmatic crystallization and subsolidus hydrothermal alteration. Experimental studies of magmatic crystallization and hydrothermal transport/deposition in systems involving arsenides, tellurides, antimonides, and base metal sulfides are needed to better understand the relative importance of magmatic and hydrothermal processes in controlling the distribution of PGE in mineralized layered intrusions of this type. ?? Springer-Verlag 2007.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70029909','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70029909"><span>Fluid chemistry and evolution of hydrothermal fluids in an Archaean transcrustal fault zone network: The case of the Cadillac Tectonic Zone, Abitibi greenstone belt, Canada</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Neumayr, P.; Hagemann, S.G.; Banks, D.A.; Yardley, B.W.D.; Couture, J.-F.; Landis, G.P.; Rye, R.</p> <p>2007-01-01</p> <p>Detailed fluid geochemistry studies on hydrothermal quartz veins from the Rouyn-Noranda and Val-d'Or areas along the transcrustal Cadillac Tectonic Zone (CTZ) indicate that unmineralized (with respect to gold) sections of the CTZ contained a distinct CO2-dominated, H2S-poor hydrothermal fluid. In contrast, both gold mineralized sections of the CTZ (e.g., at Orenada #2) and associated higher order shear zones have a H2O-CO2 ?? CH4-NaCl hydrothermal fluid. Their CO2/H2S ratios indicate H2S-rich compositions. The Br/Cl compositions in fluid inclusions trapped in these veins indicate that hydrothermal fluids have been equilibrated with the crust. Oxygen isotope ratios from hydrothermal quartz veins in the CTZ are consistently 2??? more enriched than those of associated higher order shear zones, which are interpreted to be a function of greater fluid/rock ratios in the CTZ and lower fluid/rock ratios, and more efficient equilibration of the hydrothermal fluid with the wall rock, in higher order shear zones. An implication from this study is that the lower metal endowment of the transcrustal CTZ, when compared with the higher metal endowment in higher order shear zones (ratio of about 1 : 1000), may be the result of the lack of significant amounts of H2O-H2S rich fluids in most of the CTZ. In contrast, gold mineralization in the higher order shear zones appear to be controlled by the high H2S activity of the aqueous fluids, because gold was likely transported in a bisulfide complex and was deposited during sulfidation reactions in the wall rock and phase separation in the quartz veins. ?? 2007 NRC Canada.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.V14A..02L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.V14A..02L"><span>Geochemical Sources of Energy for Chemolithoautotrophic Metabolisms in Global Hydrothermal Ecosystems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lu, G. S.; Amend, J.; LaRowe, D.</p> <p>2017-12-01</p> <p>Chemolithoautotrophic microorganisms are important primary producers in hydrothermal environments. The potential catabolic energy sources that thermophilic chemolithoautotrophs can take advantage of can be quantified by combining analytical geochemical data and thermodynamic calculations. This approach explicitly considers how microbial communities are shaped by environmental conditions such as temperature, pressure, pH and the concentrations of electron donors and acceptors. In this study, we have calculated the Gibbs free energy available from 730 redox reactions in 30 terrestrial, shallow-sea, and deep-sea hydrothermal venting systems around the world (326 geochemical data sets) to better determine the relationship between microbial physiology and environment. The reactions with NO2-, O2, MnO2 and NO3- as terminal electron acceptors yield 5-20 kJ/mol e- more energy in terrestrial and shallow-sea hydrothermal systems than in deep-sea hydrothermal settings. However, reactions in which As5+, S0, FeS2 and SO42- as electron acceptors are more favorable by 5-30 kJ/mol e- in deep-sea hydrothermal systems than in the other two types of hydrothermal systems. The most exergonic reactions were predominantly NO2-, O2, MnO2 and NO3- reduction or Fe2+, pyrite, CO and CH4 oxidation. In contrast, reduction of N2, CO, and CO2 or oxidation of N2, Mn2+, and NO2-, though still often exergonic, yielded significantly less energy. Our results provide a comprehensive view of the distribution of energy supplies from redox reactions in high-temperature ecosystems on a global scale. Furthermore, the bioenergetic modeling carried out in this study can be used to test physiological predictions made from metagenomic and proteomic data sets, explore in situ biogeochemical interactions, predict possible but yet-to-be observed metabolisms and guide cultivation efforts.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25505488','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25505488"><span>Sensing deep extreme environments: the receptor cell types, brain centers, and multi-layer neural packaging of hydrothermal vent endemic worms.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Shigeno, Shuichi; Ogura, Atsushi; Mori, Tsukasa; Toyohara, Haruhiko; Yoshida, Takao; Tsuchida, Shinji; Fujikura, Katsunori</p> <p>2014-01-01</p> <p>Deep-sea alvinellid worm species endemic to hydrothermal vents, such as Alvinella and Paralvinella, are considered to be among the most thermotolerant animals known with their adaptability to toxic heavy metals, and tolerance of highly reductive and oxidative stressful environments. Despite the number of recent studies focused on their overall transcriptomic, proteomic, and metabolic stabilities, little is known regarding their sensory receptor cells and electrically active neuro-processing centers, and how these can tolerate and function in such harsh conditions. We examined the extra- and intracellular organizations of the epidermal ciliated sensory cells and their higher centers in the central nervous system through immunocytochemical, ultrastructural, and neurotracing analyses. We observed that these cells were rich in mitochondria and possessed many electron-dense granules, and identified specialized glial cells and serial myelin-like repeats in the head sensory systems of Paralvinella hessleri. Additionally, we identified the major epidermal sensory pathways, in which a pair of distinct mushroom bodies-like or small interneuron clusters was observed. These sensory learning and memory systems are commonly found in insects and annelids, but the alvinellid inputs are unlikely derived from the sensory ciliary cells of the dorsal head regions. Our evidence provides insight into the cellular and system-wide adaptive structure used to sense, process, and combat the deep-sea hydrothermal vent environment. The alvinellid sensory cells exhibit characteristics of annelid ciliary types, and among the most unique features were the head sensory inputs and structure of the neural cell bodies of the brain, which were surrounded by multiple membranes. We speculated that such enhanced protection is required for the production of normal electrical signals, and to avoid the breakdown of the membrane surrounding metabolically fragile neurons from oxidative stress. Such pivotal acquisition is not broadly found in the all body parts, suggesting the head sensory inputs are specific, and these heterogenetic protection mechanisms may be present in alvinellid worms.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29245398','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29245398"><span>First columbellid species (Gastropoda: Buccinoidea) from deep-sea hydrothermal vents, discovered in Okinawa Trough, Japan.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Chen, Chong; Watanabe, Hiromi Kayama; Araya, Juan Francisco</p> <p>2017-12-12</p> <p>The molluscan diversity of deep-sea chemosynthetic ecosystems in Japan has been in general well documented with about 80 described species, of which over half are gastropods (Sasaki et al. 2005; Fujikura et al. 2012; Sasaki et al. 2016). Recently, however, a number of novel hydrothermal vent sites were discovered in the area using multibeam echo-sounding (Nakamura et al. 2015), providing opportunities for new discoveries. As a part of ongoing studies documenting the biodiversity of such sites, we present the first record of Columbellidae from hydrothermal vents, with a new species recovered from Natsu and Aki sites, in the Iheya North hydrothermal field (for map and background on the vent field see Nakamura et al. 2015).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/12529639','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/12529639"><span>Discovery of abundant hydrothermal venting on the ultraslow-spreading Gakkel ridge in the Arctic Ocean.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Edmonds, H N; Michael, P J; Baker, E T; Connelly, D P; Snow, J E; Langmuir, C H; Dick, H J B; Mühe, R; German, C R; Graham, D W</p> <p>2003-01-16</p> <p>Submarine hydrothermal venting along mid-ocean ridges is an important contributor to ridge thermal structure, and the global distribution of such vents has implications for heat and mass fluxes from the Earth's crust and mantle and for the biogeography of vent-endemic organisms. Previous studies have predicted that the incidence of hydrothermal venting would be extremely low on ultraslow-spreading ridges (ridges with full spreading rates <2 cm x yr(-1)-which make up 25 per cent of the global ridge length), and that such vent systems would be hosted in ultramafic in addition to volcanic rocks. Here we present evidence for active hydrothermal venting on the Gakkel ridge, which is the slowest spreading (0.6-1.3 cm x yr(-1)) and least explored mid-ocean ridge. On the basis of water column profiles of light scattering, temperature and manganese concentration along 1,100 km of the rift valley, we identify hydrothermal plumes dispersing from at least nine to twelve discrete vent sites. Our discovery of such abundant venting, and its apparent localization near volcanic centres, requires a reassessment of the geologic conditions that control hydrothermal circulation on ultraslow-spreading ridges.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JAESc.156...11J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JAESc.156...11J"><span>A magmatic-hydrothermal lacustrine exhalite from the Permian Lucaogou Formation, Santanghu Basin, NW China - The volcanogenic origin of fine-grained clastic sedimentary rocks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jiao, Xin; Liu, Yiqun; Yang, Wan; Zhou, Dingwu; Li, Hong; Nan, Yun; Jin, Mengqi</p> <p>2018-05-01</p> <p>Shales in the middle Permian Lucaogou Formation in the intracontinental Santanghu rift basin have been considered as "typical" organic-rich profundal shales for decades. Our study of well cores using petrographic microscope and scanning electron microscopy suggests an otherwise complex hydrovolcanic and hydrothermal origin. This paper describes characteristics of a particular type of the shales, composed of fine-grained detrital minerals and lithic grains. Some of them are orthopyroxene, calcite, peralkaline feldspars, and analcime that are interpreted as derived from peralkaline-alkaline carbonatite, pyroxenite, analcime phonolite, and andesite, whereas others are quartz, dolomite, ankerite, serpentine, and calcite that were precipitated from syndepositional or penecontemporary hydrothermal fluids. Grain size ranges from 0.001 to 2 mm, mostly 0.01-0.1 mm. Well-developed laminae are mostly 0.5-3 mm thick and alternate with tuffaceous dolomicrite. The rocks are interpreted as sublacustrine hydrovolcanic deposits, which had been altered by syndepositional hydrothermal fluids. The interpretation is substantiated by abundant cone-shaped stratigraphic buildups on seismic sections in the basin. This study shows an ancient example of volcanic-hydrothermal deposits in a rift basin.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003E%26PSL.206..555S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003E%26PSL.206..555S"><span>Magnetic fabrics and fluid flow directions in hydrothermal systems. A case study in the Chaillac Ba-F-Fe deposits (France)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sizaret, Stanislas; Chen, Yan; Chauvet, Alain; Marcoux, Eric; Touray, Jean Claude</p> <p>2003-02-01</p> <p>This study presents a possible use of anisotropy of magnetic susceptibility (AMS) to describe the mineralizing process in hydrothermal systems. Ba-F-Fe-rich deposits within the Chaillac Basin are on the southern border of the Paris Basin. In these deposits hydrothermal textures and tectonic structures have been described in veins, sinters, and sandstone cemented by hydrothermal goethite. 278 oriented cores from 24 sites have been collected in these formations. In addition, a lateritic duricrust superimposed on the hydrothermal formation has been sampled. Rock magnetic investigations show that the principal magnetic carrier is goethite for the hydrothermal mineralization and for the laterite level. The AMS measurements show distinguishable behaviors in the different mineralogical and geological contexts. The K1 magnetic lineation (maximum axis) is strongly inclined for the vertical veins. For the horizontally mineralized sinters, the magnetic lineation is almost horizontal with an azimuth similar to the sedimentary flow direction. The AMS of goethite-rich sandstone close to the veins shows strongly inclined K1 as they are probably influenced by the vertical veins; however, when the distance from the vein is larger than 1 m, the AMS presents rather horizontal K1 directions, parallel to the sedimentary flow. The laterite has a foliation dominance of AMS with vertically well-grouped K3 axes and scattered K1 and K2 axes. Field structural observations suggest that the ore deposit is mainly controlled by EW extension tectonics associated with NS trending normal faults. Combining the AMS results on the deposit with vein textures and field data a model is proposed in which AMS results are interpreted in terms of hydrothermal fluid flow. This work opens a new investigation field to constrain hydrodynamic models using the AMS method. Textural study combined with efficient AMS fabric measurements should be used for systematic investigation to trace flow direction in fissures and in sand porosity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25924319','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25924319"><span>Development of a pH sensor using nanoporous nanostructures of NiO.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ibupoto, Z H; Khun, K; Willander, M</p> <p>2014-09-01</p> <p>Glass is the conventional material used in pH electrodes to monitor pH in various applications. However, the glass-based pH electrode has some limitations for particular applications. The glass sensor is limited in the use of in vivo biomedical, clinical or food applications because of the brittleness of glass, its large size, the difficulty in measuring small volumes and the absence of deformation (inflexibility). Nanostructure-based pH sensors are very sensitive, reliable, fast and applicable towards in vivo measurements. In this study, nanoporous NiO nanostructures are synthesized on a gold-coated glass substrate by a hydrothermal route using poly(vinyl alcohol) (PVA) as a stabilizer. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) techniques were used for the morphological and crystalline studies. The grown NiO nanostructures are uniform and dense, and they possess good crystallinity. A pH sensor based on these NiO nanostructures was developed by testing the different pH values from 2-12 of phosphate buffered saline solution. The proposed pH sensor showed robust sensitivity of -43.74 ± 0.80 mV/pH and a quick response time of less than 10 s. Moreover, the repeatability, reproducibility and stability of the presented pH sensor were also studied.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/11173247','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/11173247"><span>Microbiology of ancient and modern hydrothermal systems.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Reysenbach, A L; Cady, S L</p> <p>2001-02-01</p> <p>Hydrothermal systems have prevailed throughout geological history on earth, and ancient ARCHAEAN hydrothermal deposits could provide clues to understanding earth's earliest biosphere. Modern hydrothermal systems support a plethora of microorganisms and macroorganisms, and provide good comparisons for paleontological interpretation of ancient hydrothermal systems. However, all of the microfossils associated with ancient hydrothermal deposits reported to date are filamentous, and limited STABLE ISOTOPE analysis suggests that these microfossils were probably autotrophs. Therefore, the morphology and mode of carbon metabolism are attributes of microorganisms from modern hydrothermal systems that provide valuable information for interpreting the geological record using morphological and isotopic signatures.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015Nanos...7.6247W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015Nanos...7.6247W"><span>Controllable synthesis of mesoporous carbon nanospheres and Fe-N/carbon nanospheres as efficient oxygen reduction electrocatalysts</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wei, Jing; Liang, Yan; Zhang, Xinyi; Simon, George P.; Zhao, Dongyuan; Zhang, Jin; Jiang, Sanping; Wang, Huanting</p> <p>2015-03-01</p> <p>The synthesis of mesoporous carbon nanospheres (MCNs), especially with diameters below 200 nm remains a great challenge due to weak interactions between the carbon precursors and soft templates, as well as the uncontrollable cross-linking rate of carbon precursors. Herein, we demonstrate a simple acid-assisted, hydrothermal synthesis approach to synthesizing such uniform MCNs with well controlled diameters ranging from 20 to 150 nm under highly acidic conditions (2 M HCl). Both the carbon precursor and the template are partly protonated under such conditions and show additional Coulombic interactions with chloride ions (acts as mediators). This kind of enhanced interaction is similar to that of the ``I+X-S+'' mechanism in the synthesis of mesoporous metal oxide, which can effectively retard the cross-linking rate of resol molecules and avoid macroscopic phase separation during the hydrothermal synthesis. Due to their uniform spherical morphology, small diameter, and high surface areas, MCNs can be modified with Fe and N species via impregnation of cheap precursors (ferric nitrate and dicyandiamide), which are further converted into nonprecious electrocatalysts for oxygen reduction reactions. The resulting Fe-N/MCNs exhibit high catalytic activities, long-term stability and improved methanol tolerance under alkaline conditions, which can be potentially used in direct methanol fuel cells and metal-air batteries.The synthesis of mesoporous carbon nanospheres (MCNs), especially with diameters below 200 nm remains a great challenge due to weak interactions between the carbon precursors and soft templates, as well as the uncontrollable cross-linking rate of carbon precursors. Herein, we demonstrate a simple acid-assisted, hydrothermal synthesis approach to synthesizing such uniform MCNs with well controlled diameters ranging from 20 to 150 nm under highly acidic conditions (2 M HCl). Both the carbon precursor and the template are partly protonated under such conditions and show additional Coulombic interactions with chloride ions (acts as mediators). This kind of enhanced interaction is similar to that of the ``I+X-S+'' mechanism in the synthesis of mesoporous metal oxide, which can effectively retard the cross-linking rate of resol molecules and avoid macroscopic phase separation during the hydrothermal synthesis. Due to their uniform spherical morphology, small diameter, and high surface areas, MCNs can be modified with Fe and N species via impregnation of cheap precursors (ferric nitrate and dicyandiamide), which are further converted into nonprecious electrocatalysts for oxygen reduction reactions. The resulting Fe-N/MCNs exhibit high catalytic activities, long-term stability and improved methanol tolerance under alkaline conditions, which can be potentially used in direct methanol fuel cells and metal-air batteries. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr00331h</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JEMat..46.5064H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JEMat..46.5064H"><span>Hydrothermal Synthesis of Hydroxyapatite Nanorods for Rapid Formation of Bone-Like Mineralization</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hoai, Tran Thanh; Nga, Nguyen Kim; Giang, Luu Truong; Huy, Tran Quang; Tuan, Phan Nguyen Minh; Binh, Bui Thi Thanh</p> <p>2017-08-01</p> <p>Hydroxyapatite (HAp) is an excellent biomaterial for bone repair and regeneration. The biological functions of HAp particles, such as biomineralization, cell adhesion, and cell proliferation, can be enhanced when their size is reduced to the nanoscale. In this work, HAp nanoparticles were synthesized by the hydrothermal technique with addition of cetyltrimethylammonium bromide (CTAB). These particles were also characterized, and their size controlled by modifying the CTAB concentration and hydrothermal duration. The results show that most HAp nanoparticles were rod-like in shape, exhibiting the most uniform and smallest size (mean diameter and length of 39 nm and 125 nm, respectively) at optimal conditions of 0.64 g CTAB and hydrothermal duration of 12 h. Moreover, good biomineralization capability of the HAp nanorods was confirmed through in vitro tests in simulated body fluid. A bone-like mineral layer of synthesized HAp nanorods formed rapidly after 7 days. This study shows that highly bioactive HAp nanorods can be easily prepared by the hydrothermal method, being a potential nanomaterial for bone regeneration.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1423410-immobilization-licl-li-pyroprocessing-salt-wastes-chlorosodalite-using-glass-bonded-hydrothermal-salt-occlusion-methods','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1423410-immobilization-licl-li-pyroprocessing-salt-wastes-chlorosodalite-using-glass-bonded-hydrothermal-salt-occlusion-methods"><span>Immobilization of LiCl-Li 2 O pyroprocessing salt wastes in chlorosodalite using glass-bonded hydrothermal and salt-occlusion methods</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Riley, Brian J.; Peterson, Jacob A.; Kroll, Jared O.</p> <p></p> <p>In this study, salt occlusion and hydrothermal processes were used to make chlorosodalite through reaction with a high-LiCl salt simulating a waste stream following pyrochemical treatment of oxide-based used nuclear fuel. Some products were reacted with glass binders to increase chlorosodalite yield through alkali ion exchange and aide in densification. Hydrothermal processes included reaction of the salt simulant in an acid digestion vessel with either zeolite 4A or sodium aluminate and colloidal silica. Chlorosodalite yields in the crystalline products were nearly complete in the glass-bonded materials at values of 100 mass% for the salt-occlusion method, up to 99.0 mass% formore » the hydrothermal synthesis with zeolite 4A, and up to 96 mass% for the hydrothermal synthesis with sodium aluminate and colloidal silica. These results show promise for using chemically stable chlorosodalite to immobilize oxide reduction salt wastes.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JVGR..346D...5T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JVGR..346D...5T"><span>Preface</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Taran, Yuri; Tassi, Franco; Varekamp, Johan; Inguaggiato, Salvatore; Kalacheva, Elena</p> <p>2017-10-01</p> <p>Many volcanoes at any tectonic settings host hydrothermal systems. Volcano-hydrothermal systems (VHS) are result of interaction of the upper part of plumbing systems of active volcanoes with crust, hydrosphere and atmosphere. They are heated by magma, fed by magmatic fluids and meteoric (sea) water, transport and re-distribute magmatic and crustal material. VHS are sensitive to the activity of a host volcano. VHS may have specific features depending on the regional and local tectonic, geologic and geographic settings. The studies reported in this volume help to illustrate the diversity of the approaches and investigations that are being conducting at different volcano-hydrothermal systems over the world and the results of which will be of important value in furthering our understanding of the complex array of the processes accompanying hydrothermal activity of volcanoes. About 60 papers were submitted to a special session of "Volcano-Hydrothermal Systems" at the 2015 fall meeting of the American Geophysical Union. The papers in this special issue of the Journal of Volcanology and Geothermal Research were originally presented at that session.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24170239','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24170239"><span>Sol-hydrothermal synthesis and optical properties of Eu3+, Tb(3+)-codoped one-dimensional strontium germanate full color nano-phosphors.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lin, Liangwu; Sun, Xinyuan; Jiang, Yao; He, Yuehui</p> <p>2013-12-21</p> <p>Novel near-UV and blue excited Eu(3+), Tb(3+)-codoped one dimensional strontium germanate full-color nano-phosphors have been successfully synthesized by a simple sol-hydrothermal method. The morphologies, internal structures, chemical constitution and optical properties of the resulting samples were characterized using FE-SEM, TEM, HRTEM, EDS, XRD, FTIR, XPS, PL and PLE spectroscopy and luminescence decay curves. The results suggested that the obtained Eu(3+), Tb(3+)-codoped strontium germanate nanowires are single crystal nanowires with a diameter ranging from 10 to 80 nm, average diameter of around 30 nm and the length ranging from tens to hundreds micrometers. The results of PL and PLE spectra indicated that the Eu(3+), Tb(3+)-codoped single crystal strontium germanate nanowires showed an intensive blue, blue-green, green, orange and red or green, orange and red light emission under excitation at 350-380 nm and 485 nm, respectively, which may attributed to the coexistent Eu(3+), Eu(2+) and Tb(3+) ions, and the defects located in the strontium germanate nanowires. A possible mechanism of energy transfer among the host, Eu(3+) and Tb(3+) ions was proposed. White-emission can be realized in a single-phase strontium germanate nanowire host by codoping with Tb(3+) and Eu(3+) ions. The Eu(3+), Tb(3+)-codoped one-dimensional strontium germanate full-color nano-phosphors have superior stability under electron bombardment. Because of their strong PL intensity, good CIE chromaticity and stability, the novel 1D strontium germanate full-color nano-phosphors have potential applications in W-LEDs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70033459','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70033459"><span>Deposition of talc - kerolite-smectite - smectite at seafloor hydrothermal vent fields: Evidence from mineralogical, geochemical and oxygen isotope studies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Dekov, V.M.; Cuadros, J.; Shanks, Wayne C.; Koski, R.A.</p> <p>2008-01-01</p> <p>Talc, kerolite-smectite, smectite, chlorite-smectite and chlorite samples from sediments, chimneys and massive sulfides from six seafloor hydrothermal areas have been analyzed for mineralogy, chemistry and oxygen isotopes. Samples are from both peridotite- and basalt-hosted hydrothermal systems, and basaltic systems include sediment-free and sediment-covered sites. Mg-phyllosilicates at seafloor hydrothermal sites have previously been described as talc, stevensite or saponite. In contrast, new data show tri-octahedral Mg-phyllosilicates ranging from pure talc and Fe-rich talc, through kerolite-rich kerolite-smectite to smectite-rich kerolite-smectite and tri-octahedral smectite. The most common occurrence is mixed-layer kerolite-smectite, which shows an almost complete interstratification series with 5 to 85% smectitic layers. The smectite interstratified with kerolite is mostly tri-octahedral. The degree of crystal perfection of the clay sequence decreases generally from talc to kerolite-smectite with lower crystalline perfection as the proportion of smectite layers in kerolite-smectite increases. Our studies do not support any dependence of the precipitated minerals on the type/subtype of hydrothermal system. Oxygen isotope geothermometry demonstrates that talc and kerolite-smectite precipitated in chimneys, massive sulfide mounds, at the sediment surface and in open cracks in the sediment near seafloor are high-temperature (> 250????C) phases that are most probably the result of focused fluid discharge. The other end-member of this tri-octahedral Mg-phyllosilicate sequence, smectite, is a moderate-temperature (200-250????C) phase forming deep within the sediment (??? 0.8??m). Chlorite and chlorite-smectite, which constitute the alteration sediment matrix around the hydrothermal mounds, are lower-temperature (150-200????C) phases produced by diffuse fluid discharge through the sediment around the hydrothermal conduits. In addition to temperature, other two controls on the precipitation of this sequence are the silica activity and Mg/Al ratio (i.e. the degree of mixing of seawater with hydrothermal fluid). Higher silica activity favors the formation of talc relative to tri-octahedral smectite. Vent structures and sedimentary cover preclude complete mixing of hydrothermal fluid and ambient seawater, resulting in lower Mg/Al ratios in the interior parts of the chimneys and deeper in the sediment which leads to the precipitation of phyllosilicates with lower Mg contents. Talc and kerolite-smectite have very low trace- and rare earth element contents. Some exhibit a negative or flat Eu anomaly, which suggests Eu depletion in the original hydrothermal fluid. Such Eu depletion could be caused by precipitation of anhydrite or barite (sinks for Eu2+) deeper in the system. REE abundances and distribution patterns indicate that chlorite and chlorite-smectite are hydrothermal alteration products of the background turbiditic sediment. ?? 2007 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1378832-sulfur-tolerant-molybdenum-carbide-catalysts-enabling-low-temperature-stabilization-fast-pyrolysis-bio-oil','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1378832-sulfur-tolerant-molybdenum-carbide-catalysts-enabling-low-temperature-stabilization-fast-pyrolysis-bio-oil"><span>Sulfur-Tolerant Molybdenum Carbide Catalysts Enabling Low-Temperature Stabilization of Fast Pyrolysis Bio-oil</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Li, Zhenglong; Choi, Jae-Soon; Wang, Huamin; ...</p> <p>2017-08-18</p> <p>Low-temperature hydrogenation of carbonyl fractions can greatly improve the thermal stability of fast pyrolysis bio-oil which is crucial to achieve long-term operation of high-temperature upgrading reactors. The current state of the art, precious metals such as ruthenium, although highly effective in carbonyl hydrogenation, rapidly loses performance due to sulfur sensitivity. The present work showed that molybdenum carbides were active and sulfur-tolerant in low-temperature conversion carbonyl compounds. Furthermore, due to surface bifunctionality (presence of both metallic and acid sites), carbides catalyzed both C=O bond hydrogenation and C-C coupling reactions retaining most of carbon atoms in liquid products as more stable andmore » higher molecular weight oligomeric compounds while consuming less hydrogen than ruthenium. The carbides proved to be resistant to other deactivation mechanisms including hydrothermal aging, oxidation, coking and leaching. These properties enabled carbides to achieve and maintain good catalytic performance in both aqueous-phase furfural conversion and real bio-oil stabilization with sulfur present. This finding strongly suggests that molybdenum carbides can provide a catalyst solution necessary for the development of commercially viable bio-oil stabilization technology.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1378832-sulfur-tolerant-molybdenum-carbide-catalysts-enabling-low-temperature-stabilization-fast-pyrolysis-bio-oil','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1378832-sulfur-tolerant-molybdenum-carbide-catalysts-enabling-low-temperature-stabilization-fast-pyrolysis-bio-oil"><span>Sulfur-Tolerant Molybdenum Carbide Catalysts Enabling Low-Temperature Stabilization of Fast Pyrolysis Bio-oil</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Li, Zhenglong; Choi, Jae-Soon; Wang, Huamin</p> <p></p> <p>Low-temperature hydrogenation of carbonyl fractions can greatly improve the thermal stability of fast pyrolysis bio-oil which is crucial to achieve long-term operation of high-temperature upgrading reactors. The current state of the art, precious metals such as ruthenium, although highly effective in carbonyl hydrogenation, rapidly loses performance due to sulfur sensitivity. The present work showed that molybdenum carbides were active and sulfur-tolerant in low-temperature conversion carbonyl compounds. Furthermore, due to surface bifunctionality (presence of both metallic and acid sites), carbides catalyzed both C=O bond hydrogenation and C-C coupling reactions retaining most of carbon atoms in liquid products as more stable andmore » higher molecular weight oligomeric compounds while consuming less hydrogen than ruthenium. The carbides proved to be resistant to other deactivation mechanisms including hydrothermal aging, oxidation, coking and leaching. These properties enabled carbides to achieve and maintain good catalytic performance in both aqueous-phase furfural conversion and real bio-oil stabilization with sulfur present. This finding strongly suggests that molybdenum carbides can provide a catalyst solution necessary for the development of commercially viable bio-oil stabilization technology.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ApSS..422...94K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ApSS..422...94K"><span>Magnetite nanoparticles conjugated with lignin: A physicochemical and magnetic study</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Klapiszewski, Łukasz; Zdarta, Jakub; Antecka, Katarzyna; Synoradzki, Karol; Siwińska-Stefańska, Katarzyna; Moszyński, Dariusz; Jesionowski, Teofil</p> <p>2017-11-01</p> <p>Using the by-product biopolymer lignin and nanoparticles of magnetite, well-known for its nontoxicity and magnetic properties, novel nanomagnetite-lignin hybrid materials were synthesized. In the first step, magnetite was produced via a co-precipitation method with hydrothermal treatment, and was found to have a particle size of around 20 nm. Nano-Fe3O4 was then combined with pre-activated lignin to obtain hybrids with various magnetite-lignin ratios, whose physicochemical and magnetic properties were thoroughly analyzed. Thermal analysis showed the hybrids to have higher thermal stability than pure lignin. Based on Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy it was demonstrated that the Fe3O4 and lignin are connected via Fesbnd Osbnd C bonds. Further measurements showed the nanomagnetite-lignin hybrid materials to have good magnetic properties. The results of this study suggest that the synthesized hybrids may find practical applications in many fields of science and industry.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1816742H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1816742H"><span>The influence of isotropic and anisotropic crustal permeability on hydrothermal flow at fast spreading ridges</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hasenclever, Jörg; Rüpke, Lars; Theissen-Krah, Sonja; Morgan, Jason</p> <p>2016-04-01</p> <p>We use 3-D numerical models of hydrothermal fluid flow to assess the magnitude and spatial distribution of hydrothermal mass and energy fluxes within the upper and lower oceanic crust. A better understanding of the hydrothermal flow pattern (e.g. predominantly on-axis above the axial melt lens vs. predominantly off-axis and ridge-perpendicular over the entire crustal thickness) is essential for quantifying the volume of oceanic crust exposed to high-temperature fluid flow and the associated leaching and redistribution of economically interesting metals. The initial setup of all 3-D models is based on our previous 2-D studies (Theissen-Krah et al., 2011), in which we have coupled numerical models for crustal accretion and hydrothermal fluid flow. One result of these 2-D calculations is a crustal permeability field that leads to a thermal structure in the crust that matches seismic tomography data at the East Pacific Rise. Our reference 3-D model for hydrothermal flow at fast-spreading ridges predicts the existence of a hybrid hydrothermal system (Hasenclever et al., 2014) with two interacting flow components that are controlled by different physical mechanisms. Shallow on-axis flow structures develop owing to the thermodynamic properties of water, whereas deeper off-axis flow is strongly shaped by crustal permeability, particularly the brittle-ductile transition. About ˜60% of the discharging fluid mass is replenished on-axis by warm (up to 300oC) recharge flow surrounding the hot thermal plumes. The remaining ˜40%, however, occurs as colder and broader recharge up to several kilometres away from the ridge axis that feeds hot (500-700oC) deep off-axis flow in the lower crust towards the ridge. Both flow components merge above the melt lens to feed ridge-centred vent sites. In a suite of 3-D model calculations we vary the isotropic crustal permeability to quantify its influence on on-axis vs. off-axis hydrothermal fluxes as well as on along-axis hydrothermal activity. We also explore the effect of anisotropic permeability that is likely to be a feature of the diking region above the melt lens where the repeated emplacement of meter-size dikes should lead to higher permeability in vertical and along-ridge direction and to lower permeability across the ridge. We further study the effect of along-ridge depth-variations of the axial melt lens on the distribution of hydrothermal vent sites.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1994E%26PSL.128....1B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1994E%26PSL.128....1B"><span>Hydrothermal plumes along the East Pacific Rise, 8 deg 40 min to 11 deg 50 min N: Plume distribution and relationship to the apparent magmatic budget</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Baker, E. T.; Feely, R. A.; Mottl, M. J.; Sansone, F. T.; Wheat, C. G.; Resing, J. A.; Lupton, J. E.</p> <p>1994-11-01</p> <p>The interactions between hydrothermal circulation and large-scale geological and geophysical characteristics of the mid-ocean ridge cannot be ascertained without large-scale views of the pattern of hydrothermal venting. Such multi-ridge-segment surveys of venting are accomplished most efficiently by mapping the distribution and intensity of hydrothermal plumes. In November 1991, we mapped hydrothermal temperature (Delta(theta)) and light attenuation (Delta(c)) anomalies above the East Pacific Rise (EPR) continuously from 8 deg 40 min to 11 deg 50 min N, a fast spreading ridge crest portion bisected by the Clipperton Transform Fault. Plume distributions show a precise correlation with the distribution of active vents where video coverage of the axial caldera is exhaustive. Elsewhere in the study area the sketchy knowledge of vent locations gleaned from scattered camera tows predicts only poorly the large-scale hydrothermal pattern revealed by our plume studies. Plumes were most intense between 9 deg 42 min and 9 deg 54 min N, directly over a March/April, 1991, seafloor eruption. These plumes had exceptionally high Delta(c)/Delta(theta) ratios compared to the rest of the study area; we suggest that the phase-separated gas-rich vent fluids discharging here fertilize an abundant population of bacteria. Hydrothermal plume distributions define three categories: intense and continuous, weak and discontinuous and negligible. The location of each category is virtually congruent with areas that are, respectively, magmatically robust, magmatically weak and magmatically starved, as inferred from previous measurements of axial bathymetric undulations, cross-axis inflation and magma chamber depth and continuity. This congruency implies a fine-scale spatial and temporal connection between magmatic fluctuations and hydrothermal venting. We thus speculate that, at least along this fast spreading section of the EPR, cyclic replenishment, eruption and freezing of the thin axial melt lens exerts greater control over hydrothermal venting than the more enduring zones of crystal mush and hot rock. We found intense, and continuous, plumes along 33% of the surveyed ridge crest, an observation implying that any point on the ridge is, on average, hyrothermally active one-third of the time. Combining this result with the 20% plume coverage found along the medium-rate Juan de Fuca Ridge suggests that superfast (approximately 150 mm/yr) spreading rates should support vigorous venting along approximately 50% of their length, if spreading rate and along-axis plume coverage are linearly related.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20010020499&hterms=anticipation&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Danticipation','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20010020499&hterms=anticipation&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Danticipation"><span>Impact Crater Hydrothermal Niches for Life on Mars: Question of Scale</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Pope, K. O.; Ames, D. E.; Kieffer, S. W.; Ocampo, A. C.</p> <p>2000-01-01</p> <p>A major focus in the search for fossil life on Mars is on ancient hydrothermal deposits. Nevertheless, remote sensing efforts have not found mineral assemblages characteristic of hydrothermal activity. Future remote sensing work, including missions with higher spatial resolution, may detect localized hydrothermal deposits, but it is possible that dust mantles will prohibit detection from orbit and lander missions will be required. In anticipation of such missions, it is critical to develop a strategy for selecting potential hydrothermal sites on Mars. Such a strategy is being developed for volcanogenic hydrothermal systems, and a similar strategy is needed for impact hydrothermal systems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25184000','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25184000"><span>Improving the enzymatic hydrolysis of thermo-mechanical fiber from Eucalyptus urophylla by a combination of hydrothermal pretreatment and alkali fractionation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sun, Shaoni; Cao, Xuefei; Sun, Shaolong; Xu, Feng; Song, Xianliang; Sun, Run-Cang; Jones, Gwynn Lloyd</p> <p>2014-01-01</p> <p>The recalcitrance of lignocellulosic biomass is a major limitation for its conversion into biofuels by enzymatic hydrolysis. The use of a pretreatment technology is an essential step to diminish biomass recalcitrance for bioethanol production. In this study, a two-step pretreatment using hydrothermal pretreatment at various temperatures and alkali fractionation was performed on eucalyptus fiber. The detailed chemical composition, physicochemical characteristics, and morphology of the pretreated fibers in each of the fractions were evaluated to advance the performance of eucalyptus fiber in enzymatic digestibility. The hydrothermal pretreatment (100 to 220°C) significantly degraded hemicelluloses, resulting in an increased crystallinity of the pretreated fibers. However, as the pretreatment temperature reached 240°C, partial cellulose was degraded, resulting in a reduced crystallinity of cellulose. As compared to the hydrothermal pretreatment alone, a combination of hydrothermal and alkali treatments significantly removed hemicelluloses and lignin, resulting in an improved enzymatic hydrolysis of the cellulose-rich fractions. As compared with the raw fiber, the enzymatic hydrolysis rate increased 1.1 to 8.5 times as the hydrothermal pretreatment temperature increased from 100 to 240°C. Interestingly, after a combination of hydrothermal pretreatment and alkali fractionation, the enzymatic hydrolysis rate increased 3.7 to 9.2 times. Taking into consideration the consumption of energy and the production of xylo-oligosaccharides and lignin, an optimum pretreatment condition was found to be hydrothermal pretreatment at 180°C for 30 min and alkali fractionation with 2% NaOH at 90°C for 2.5 h, in which 66.3% cellulose was converted into glucose by enzymatic hydrolysis. The combination of hydrothermal pretreatment and alkali fractionation was a promising method to remove hemicelluloses and lignin as well as overcome the biomass recalcitrance for enzymatic hydrolysis from eucalyptus fiber. In addition, the various techniques applied in this work constituted an efficient approach to understand the underlying chemical and morphological changes of the cellulose-rich fractions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMOS43A2004B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMOS43A2004B"><span>Newly Discovered Hydrothermal Plumes Along the Furious Fifties, South East Indian Ridge (SEIR; 128°E-140°E)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Boulart, C.; Chavagnac, V.; Briais, A.; Revillon, S.; Donval, J. P.; Guyader, V.</p> <p>2015-12-01</p> <p>We report on the first evidence for hydrothermal activity along the intermediate-spreading South-East Indian Ridge (SEIR) between Australia and Antarctica (128°E-140°E), discovered during the STORM cruise of R/V L'Atalante. This section of the SEIR is located east of the low-magma Australian-Antarctic Discordance (AAD), where the ridge has the morphology of a slow-spreading mid-ocean ridge despite its intermediate spreading rate of 75 mm/yr. The axial depth decreases eastward, reflecting an eastward increase in magma budget.Using in-situ geochemical tracers based on optical backscatter, temperature, redox potential sensor and in situ mass spectrometer (ISMS) anomalies, we establish the existence of several distinct hydrothermal plumes within the water column along the 500 nautical miles ridge section. At one site, the combination of near-bottom temperature anomalies of 0.1°C together with strong dissolved methane and dissolved carbon dioxide anomalies revealed by the ISMS provides the precise location of an active vent in the Deep Southern Indian Ocean off Tasmania. Hydrothermal venting along the 128°E-140°E section of the SEIR appears to be significant, an observation consistent with the global link between spreading rate and plume occurrence (Baker and German, 2004). Moreover, the plume incidence increases westward and, in the eastern part, hydrothermal venting seems to be less significant, suggesting a possible influence of the high magma budget, as observed in mid-ocean ridge sections affected by hotspots. Future investigation will focus on the direct identification of venting sources and the study of hydrothermal circulation within the specific settings of the AAD. The observation of new venting sites at the frontier between Pacific and Indian Oceans may also provide new insights on the biogeography (diversity and distribution) of hydrothermal fauna. Baker, E. T., and C. R. German (2004), On the global distribution of hydrothermal vent fields, in Mid-Ocean Ridges: Hydrothermal Interactions</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1229925-recent-advances-automotive-catalysis-nox-emission-control-small-pore-microporous-materials','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1229925-recent-advances-automotive-catalysis-nox-emission-control-small-pore-microporous-materials"><span>Recent advances in automotive catalysis for NOx emission control by small-pore microporous materials</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Beale, Andrew M.; Gao, Feng; Lezcano-Gonzalez, Ines</p> <p></p> <p>The ever increasing demand to develop highly fuel efficient engines coincides with the need to minimize air pollution originating from the exhaust gases of internal combustion engines. Dramatically improved fuel efficiency can be achieved at air-to-fuel ratios much higher than stoichiometric. In the presence of oxygen in large excess, however, traditional three-way catalysts are unable to reduce NOx. Among the number of lean-NOx reduction technologies, selective catalytic reduction (SCR) of NOx by NH3 over Cu- and Fe-ion exchanged zeolite catalysts has been extensively studied over the past 30+ years. Despite the significant advances in developing a viable practical zeolite-based catalystmore » for lean NOx reduction, the insufficient hydrothermal stabilities of the zeolite structures considered cast doubts about their real-world applicability. During the past decade a renewed interest in zeolite-based lean NOx reduction was spurred by the discovery of the very high activity of Cu-SSZ-13 (and the isostructural Cu-SAPO-34) in the NH3 SCR of NOx. These new, small-pore zeolite-based catalysts not only exhibited very high NOx conversion and N2 selectivity, but also exhibited exceptional high hydrothermal stability at high temperatures. In this review we summarize the key discoveries of the past ~5 years that lead to the introduction of these catalysts into practical application. The review first briefly discusses the structure and preparation of the CHA structure-based zeolite catalysts, and then summarizes the key learnings of the rather extensive (but not complete) characterisation work. Then we summarize the key findings of reaction kinetics studies, and provide some mechanistic details emerging from these investigations. At the end of the review we highlight some of the issues that are still need to be addressed in automotive exhaust control catalysis. Funding A.M.B. and I.L.G. would like to thank EPSRC for funding. F.G., C.H.F.P. and J.Sz. gratefully acknowledge financial support from the US Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Program.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/pp/pp1578/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/pp/pp1578/"><span>Hydrothermal mineralogy of core from geothermal drill holes at Newberry Volcano, Oregon</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Bargar, Keith E.; Keith, Terry E.</p> <p>1999-01-01</p> <p>Hydrothermal mineralogy studies of specimens collected from nine geothermal drill holes suggest that, at the locations and depths drilled, past temperatures have been hottest (exceeding 300?C) near ring fractures on the south and west sides of Newberry Volcano.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JVGR..320...29W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JVGR..320...29W"><span>Geochemical features of the geothermal fluids from the Mapamyum non-volcanic geothermal system (Western Tibet, China)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Peng; Chen, Xiaohong; Shen, Licheng; Wu, Kunyu; Huang, Mingzhi; Xiao, Qiong</p> <p>2016-06-01</p> <p>Mapamyum geothermal field (MGF) in western Tibet is one of largest geothermal areas characterized by the occurrence of hydrothermal explosions on the Tibetan Plateau. The geochemical properties of hydrothermal water in the MGF system were investigated to trace the origin of the solutes and to determine the equilibrium temperatures of the feeding reservoir. The study results show that the geochemistry of hydrothermal waters in the MGF system is mainly of the Na-HCO3 type. The chemical components of hydrothermal waters are mainly derived from the minerals in the host rocks (e.g., K-feldspar, albite, Ca-montmorillonite, and Mg-montmorillonite). The hydrothermal waters are slightly supersaturated or undersaturated with respect to aragonite, calcite, dolomite, chalcedony and quartz (saturation indices close to 0), but are highly undersaturated with respect to gypsum and anhydrite (saturation indices < 0). Mixing models and Na-K-Mg ternary diagrams show that strong mixing between cold meteoric water and deeply-seated thermal fluids occurred during the upward flowing process. δD and δ18O data confirm that the meteoric water acts as the water source of the geothermal waters. An 220 °C equilibrated reservoir temperature of hydrothermal spring waters was calculated via both the Na-K-Mg ternary diagrams and the cationic chemical geothermometers. The logpCO2 of hydrothermal waters in the MGF system ranges from - 2.59 to - 0.57 and δ13C of the total dissolved inorganic carbon ranges from - 5.53‰ to - 0.94‰, suggesting that the carrier CO2 in hydrothermal water are mainly of a magmatic or metamorphic CO2 origin.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18..632P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18..632P"><span>Biochemical stability of sewage sludge chars and their impact on soil organic matter of a Mediterranean Cambisol</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Paneque, Marina; María De la Rosa, José; Aragón, Carlos; Kern, Jürgen; Knicker, Heike</p> <p>2016-04-01</p> <p>Transformation of sewage sludge (SS) into char achieves sludge hygienisation, which is necessary prior its application into agricultural soils. The pyrolysis of SS increases its stability in a degree which depends on the thermal treatment used. Thus, chars produced by using hydrothermal carbonization are typically more stable than normal soil organic matter (SOM), but less stable than chars from dry pyrolysis (Libra et al., 2011). Addition of highly-recalcitrant SS-chars to soil will likely increase its carbon sequestration potential; however the fertilizing properties of SS may be compromised due to its alteration during the pyrolysis. The main goal of this work was to investigate the biochemical recalcitrance of two 13C-enriched SS-chars once applied in a Mediterranean Cambisol as well as to evaluate their impact on the SOM quality and carbon stability. Thus, we studied the distribution of 13C between plants and soil after the addition of the 13C-enriched chars (2 atm%) to the soil. Therefore, we performed a greenhouse incubation experiment, using a Mediterranean Cambisol as matrix and tested the following treatments: control (soil alone), raw SS, SS-hydrochar, SS-pyrochar. The SS was produced in a pilot-scale waste-water plant and enriched with 13C by the addition of 13C-glucose during the treatment. The amendment was only applied to the upper 2 cm of the soil matrix where it accounted for 5% of its dry weight. Per pot, 25 seeds of Lolium perenne were sowed and incubated under controlled conditions. The biomass production as well as the concentration of 13C in leaves and roots was determined after 1, 2 and 5 months. The partitioning of the 13C between soil and plant and its transformation into bioavailable forms were monitored by stable isotopic mass spectrometry. The 13C-enrichment of the chars allowed the use of solid-state 13C NMR spectroscopy as a means for the detection of chemical alterations of the chars during their aging. Libra J., Ro K., Kammann C., Funke A., Berge N., Neubauer Y., Titirici M., Fuhner C., Bens O., Kern J., Emmerich K. (2011) Hydrothermal carbonization of biomass residuals: a comparative review of the chemistry, processes and applications of wet and dry pyrolysis. Biofuels, 2 (1), 89-124.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22475744-non-enzymatic-hydrogen-peroxide-biosensor-based-rose-shaped-femoo-sub-nanostructures-produced-convenient-microwave-hydrothermal-method','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22475744-non-enzymatic-hydrogen-peroxide-biosensor-based-rose-shaped-femoo-sub-nanostructures-produced-convenient-microwave-hydrothermal-method"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Liu, Hongying, E-mail: liuhongying@hdu.edu.cn; Gu, Chunchuan; Li, Dujuan</p> <p></p> <p>Graphical abstract: A non-enzymatic H{sub 2}O{sub 2} sensor with high selectivity and sensitivity based on rose-shaped FeMoO{sub 4} synthesized by the convenient microwave-assisted hydrothermal method, was fabricated. - Highlights: • Rose-shaped FeMoO{sub 4} is synthesized within 10 min via microwave-assisted hydrothermal approach. • Non-enzymatic hydrogen peroxide biosensor based on FeMoO{sub 4} nanomaterials is fabricated. • The biosensor exhibits good performance. - Abstract: In this work, we demonstrated a simple, rapid and reliable microwave-assisted hydrothermal approach to synthesize the uniform rose-shaped FeMoO{sub 4} within 10 min. The morphologies of the synthesized materials were characterized by X-ray powder diffraction and scanning electronmore » microscopy. Moreover, a non-enzymatic amperometric sensor for the detection of hydrogen peroxide (H{sub 2}O{sub 2}) was fabricated on the basis of the FeMoO{sub 4} as electrocatalysis. The resulting FeMoO{sub 4} exhibited high sensitivity and good stability for the detection of H{sub 2}O{sub 2}, which may be attributed to the rose-shaped structure of the material and the catalytic property of FeMoO{sub 4}. Amperometric response showed that the modified electrode had a good response for H{sub 2}O{sub 2} with a linear range from 1 μM to 1.6 mM, a detection limit of 0.5 μM (S/N = 3), high selectivity and short response time. Additionally, good recoveries of analytes in real milk samples confirm the reliability of the prepared sensor in practical applications.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70099756','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70099756"><span>The chemistry of hydrothermal magnetite: a review</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Nadoll, Patrick; Angerer, Thomas; Mauk, Jeffrey L.; French, David; Walshe, John</p> <p>2014-01-01</p> <p>Magnetite (Fe3O4) is a well-recognized petrogenetic indicator and is a common accessory mineral in many ore deposits and their host rocks. Recent years have seen an increased interest in the use of hydrothermal magnetite for provenance studies and as a pathfinder for mineral exploration. A number of studies have investigated how specific formation conditions are reflected in the composition of the respective magnetite. Two fundamental questions underlie these efforts — (i) How can the composition of igneous and, more importantly, hydrothermal magnetite be used to discriminate mineralized areas from barren host rocks, and (ii) how can this assist exploration geologists to target ore deposits at greater and greater distances from the main mineralization? Similar to igneous magnetite, the most important factors that govern compositional variations in hydrothermal magnetite are (A) temperature, (B) fluid composition — element availability, (C) oxygen and sulfur fugacity, (D) silicate and sulfide activity, (E) host rock buffering, (F) re-equilibration processes, and (G) intrinsic crystallographic controls such as ionic radius and charge balance. We discuss how specific formation conditions are reflected in the composition of magnetite and review studies that investigate the chemistry of hydrothermal and igneous magnetite from various mineral deposits and their host rocks. Furthermore, we discuss the redox-related alteration of magnetite (martitization and mushketovitization) and mineral inclusions in magnetite and their effect on chemical analyses. Our database includes published and previously unpublished magnetite minor and trace element data for magnetite from (1) banded iron formations (BIF) and related high-grade iron ore deposits in Western Australia, India, and Brazil, (2) Ag–Pb–Zn veins of the Coeur d'Alene district, United States, (3) porphyry Cu–(Au)–(Mo) deposits and associated (4) calcic and magnesian skarn deposits in the southwestern United States and Indonesia, and (5) plutonic igneous rocks from the Henderson Climax-type Mo deposit, United States, and the un-mineralized Inner Zone Batholith granodiorite, Japan. These five settings represent a diverse suite of geological settings and cover a wide range of formation conditions. The main discriminator elements for magnetite are Mg, Al, Ti, V, Cr, Mn, Co, Ni, Zn, and Ga. These elements are commonly present at detectable levels (10 to > 1000 ppm) and display systematic variations. We propose a combination of Ni/(Cr + Mn) vs. Ti + V, Al + Mn vs. Ti + V, Ti/V and Sn/Ga discriminant plots and upper threshold concentrations to discriminate hydrothermal from igneous magnetite and to fingerprint different hydrothermal ore deposits. The overall trends in upper threshold values for the different settings can be summarized as follows: (I) BIF (hydrothermal) — low Al, Ti, V, Cr, Mn, Co, Ni, Zn, Ga and Sn; (II) Ag–Pb–Zn veins (hydrothermal) — high Mn and low Ga and Sn; (III) Mg-skarn (hydrothermal) — high Mg and Mn and low Al, Ti, Cr, Co, Ni and Ga; (IV) skarn (hydrothermal) — high Mg, Al, Cr, Mn, Co, Ni and Zn and low Sn; (V) porphyry (hydrothermal) — high Ti and V and low Sn; (VI) porphyry (igneous) — high Ti, V and Cr and low Mg; and (VII) Climax-Mo (igneous) — high Al, Ga and Sn and low Mg and Cr.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018E%26PSL.486..108N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018E%26PSL.486..108N"><span>Molybdenum isotope behaviour in groundwaters and terrestrial hydrothermal systems, Iceland</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Neely, Rebecca A.; Gislason, Sigurdur R.; Ólafsson, Magnus; McCoy-West, Alex J.; Pearce, Christopher R.; Burton, Kevin W.</p> <p>2018-03-01</p> <p>Molybdenum (Mo) isotopes have proved useful in the reconstruction of paleoredox conditions. Their application generally relies upon a simplified model of ocean inputs in which rivers dominate Mo fluxes to the oceans and hydrothermal fluids are considered to be a minor contribution. To date, however, little attention has been paid to the extent of Mo isotope variation of hydrothermal waters, or to the potential effect of direct groundwater discharge to the oceans. Here we present Mo isotope data for two Icelandic groundwater systems (Mývatn and Þeistareykir) that are both influenced by hydrothermal processes. Relative to NIST 3134 = +0.25‰, the cold (<10 °C) groundwaters (δ98/95MoGROUNDWATER = -0.15‰ to +0.47‰; n = 13) show little, if any, fractionation from the host basalt (δ 98 / 95MoBASALT = +0.16‰ to -0.12‰) and are, on average, lighter than both global and Icelandic rivers. In contrast, waters that are hydrothermally influenced (>10 °C) possess isotopically heavy δ98/95MoHYDROTHERMAL values of +0.25‰ to +2.06‰ (n = 18) with the possibility that the high temperature endmembers are even heavier. Although the mechanisms driving this fractionation remain unresolved, the incongruent dissolution of the host basalt and both the dissolution and precipitation of sulfides are considered. Regardless of the processes driving these variations, the δ98Mo data presented in this study indicate that groundwater and hydrothermal waters have the potential to modify ocean budget calculations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25244359','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25244359"><span>Identification and activity of acetate-assimilating bacteria in diffuse fluids venting from two deep-sea hydrothermal systems.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Winkel, Matthias; Pjevac, Petra; Kleiner, Manuel; Littmann, Sten; Meyerdierks, Anke; Amann, Rudolf; Mußmann, Marc</p> <p>2014-12-01</p> <p>Diffuse hydrothermal fluids often contain organic compounds such as hydrocarbons, lipids, and organic acids. Microorganisms consuming these compounds at hydrothermal sites are so far only known from cultivation-dependent studies. To identify potential heterotrophs without prior cultivation, we combined microbial community analysis with short-term incubations using (13)C-labeled acetate at two distinct hydrothermal systems. We followed cell growth and assimilation of (13)C into single cells by nanoSIMS combined with fluorescence in situ hybridization (FISH). In 55 °C-fluids from the Menez Gwen hydrothermal system/Mid-Atlantic Ridge, a novel epsilonproteobacterial group accounted for nearly all assimilation of acetate, representing the first aerobic acetate-consuming member of the Nautiliales. In contrast, Gammaproteobacteria dominated the (13) C-acetate assimilation in incubations of 37 °C-fluids from the back-arc hydrothermal system in the Manus Basin/Papua New Guinea. Here, 16S rRNA gene sequences were mostly related to mesophilic Marinobacter, reflecting the high content of seawater in these fluids. The rapid growth of microorganisms upon acetate addition suggests that acetate consumers in diffuse fluids are copiotrophic opportunists, which quickly exploit their energy sources, whenever available under the spatially and temporally highly fluctuating conditions. Our data provide first insights into the heterotrophic microbial community, catalyzing an under-investigated part of microbial carbon cycling at hydrothermal vents. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25115704','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25115704"><span>Effect of different surface treatments on the hydrothermal degradation of a 3Y-TZP ceramic for dental implants.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Cattani-Lorente, M; Scherrer, S S; Durual, S; Sanon, C; Douillard, T; Gremillard, L; Chevalier, J; Wiskott, A</p> <p>2014-10-01</p> <p>Implant surface modifications are intended to enhance bone integration. The objective of this study was to assess the effect of different surface treatments on the resistance to hydrothermal degradation, hardness and elastic modulus of a 3Y-TZP ceramic used for dental implants. Samples grouped according to their surface morphologies (AS, as-sintered; C, coated; P, dry-polished; R, roughened; PA, polished and annealed; RA, roughened and annealed) were subjected to accelerated hydrothermal degradation (LTD) by exposure to water steam (134°C, 2bars) for 100h. The t-m phase transformation was quantified by grazing incidence X-ray diffraction (GIXDR) and by combined focused ion beam and scanning electron microscopy (FIB-SEM). Elastic modulus and hardness before- and after prolonged aging (100h) were assessed by nanoindentation. AS and C specimens presented a better resistance to hydrothermal degradation than P and R samples. After prolonged aging, the depth of the monoclinic transformed layer ranged from 11μm to 14μm. Hydrothermal degradation led to a significant decrease of elastic modulus and hardness. Surface treatments affected the resistance to hydrothermal degradation of the 3Y-TZP ceramic. Dry mechanical surface modifications should be avoided since a high t-m transformation rate associated to the initial monoclinic content was observed. Annealing was useful to reverse the initial t-m transformation, but did not improve the resistance to hydrothermal degradation. Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23002089','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23002089"><span>When did decapods invade hydrothermal vents? Clues from the Western Pacific and Indian Oceans.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Yang, Jin-Shu; Lu, Bo; Chen, Dian-Fu; Yu, Yan-Qin; Yang, Fan; Nagasawa, Hiromichi; Tsuchida, Shinji; Fujiwara, Yoshihiro; Yang, Wei-Jun</p> <p>2013-02-01</p> <p>Hydrothermal vents are typically located in midocean ridges and back-arc basins and are usually generated by the movement of tectonic plates. Life thrives in these environments despite the extreme conditions. In addition to chemoautotrophic bacteria, decapod crustaceans are dominant in many of the hydrothermal vents discovered to date. Contrary to the hypothesis that these species are remnants of relic fauna, increasing evidence supports the notion that hydrothermal vent decapods have diversified in more recent times with previous research attributing the origin of alvinocarid shrimps to the Miocene. This study investigated seven representative decapod species from four hydrothermal vents throughout the Western Pacific and Indian Oceans. A partitioned mix-model phylogenomic analysis of mitochondrial DNA produced a consistent phylogenetic topology of these vent-endemic species. Additionally, molecular dating analysis calibrated using multiple fossils suggested that both bythograeid crabs and alvinocarid shrimps originated in the late Mesozoic and early Cenozoic. Although of limited sampling, our estimates support the extinction/repopulation hypothesis, which postulates recent diversification times for most hydrothermal vent species due to their mass extinction by global deep-water anoxic/dysoxic events during the Late Cretaceous and Early Tertiary. The continental-derived property of the West Pacific province is compatible with the possibility that vent decapods diversified from ancestors from shallow-water regions such as cold seeps. Our results move us a step closer toward understanding the evolutionary origin of hydrothermal vent species and their distribution in the Western Pacific-Indian Ocean Region.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/5698251-geology-kilauea-volcano','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/5698251-geology-kilauea-volcano"><span>Geology of Kilauea volcano</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Moore, R.B.; Trusdell, F.A.</p> <p>1993-08-01</p> <p>This paper summarizes studies of the structure, stratigraphy, petrology, drill holes, eruption frequency, and volcanic and seismic hazards of Kilauea volcano. All the volcano is discussed, but the focus is on its lower east rift zone (LERZ) because active exploration for geothermal energy is concentrated in that area. Kilauea probably has several separate hydrothermal-convection systems that develop in response to the dynamic behavior of the volcano and the influx of abundant meteoric water. Important features of some of these hydrothermal-convection systems are known through studies of surface geology and drill holes. Observations of eruptions during the past two centuries, detailedmore » geologic mapping, radiocarbon dating, and paleomagnetic secular-variation studies indicate that Kilauea has erupted frequently from its summit and two radial rift zones during Quaternary time. Petrologic studies have established that Kilauea erupts only tholeiitic basalt. Extensive ash deposits at Kilauea's summit and on its LERZ record locally violent, but temporary, disruptions of local hydrothermal-convection systems during the interaction of water or steam with magma. Recent drill holes on the LERZ provide data on the temperatures of the hydrothermal-convection systems, intensity of dike intrusion, porosity and permeability, and an increasing amount of hydrothermal alteration with depth. The prehistoric and historic record of volcanic and seismic activity indicates that magma will continue to be supplied to deep and shallow reservoirs beneath Kilauea's summit and rift zones and that the volcano will be affected by eruptions and earthquakes for many thousands of years. 71 refs., 2 figs.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70017417','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70017417"><span>Geology of kilauea volcano</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Moore, R.B.; Trusdell, F.A.</p> <p>1993-01-01</p> <p>This paper summarizes studies of the structure, stratigraphy, petrology, drill holes, eruption frequency, and volcanic and seismic hazards of Kilauea volcano. All the volcano is discussed, but the focus is on its lower cast rift zone (LERZ) because active exploration for geothermal energy is concentrated in that area. Kilauea probably has several separate hydrothermal-convection systems that develop in response to the dynamic behavior of the volcano and the influx of abundant meteoric water. Important features of some of these hydrothermal-convection systems are known through studies of surface geology and drill holes. Observations of eruptions during the past two centuries, detailed geologic mapping, radiocarbon dating, and paleomagnetic secular-variation studies indicate that Kilauea has erupted frequently from its summit and two radial rift zones during Quaternary time. Petrologic studies have established that Kilauea erupts only tholeiitic basalt. Extensive ash deposits at Kilauea's summit and on its LERZ record locally violent, but temporary, disruptions of local hydrothermal-convection systems during the interaction of water or steam with magma. Recent drill holes on the LERZ provide data on the temperatures of the hydrothermal-convection systems, intensity of dike intrusion, porosity and permeability, and an increasing amount of hydrothermal alteration with depth. The prehistoric and historic record of volcanic and seismic activity indicates that magma will continue to be supplied to deep and shallow reservoirs beneath Kilauea's summit and rift zones and that the volcano will be affected by eruptions and earthquakes for many thousands of years. ?? 1993.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70027132','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70027132"><span>Stratovolcano stability assessment methods and results from Citlaltepetl, Mexico</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Zimbelman, D.R.; Watters, R.J.; Firth, I.R.; Breit, G.N.; Carrasco-Nunez, Gerardo</p> <p>2004-01-01</p> <p>Citlaltépetl volcano is the easternmost stratovolcano in the Trans-Mexican Volcanic Belt. Situated within 110 km of Veracruz, it has experienced two major collapse events and, subsequent to its last collapse, rebuilt a massive, symmetrical summit cone. To enhance hazard mitigation efforts we assess the stability of Citlaltépetl's summit cone, the area thought most likely to fail during a potential massive collapse event. Through geologic mapping, alteration mineralogy, geotechnical studies, and stability modeling we provide important constraints on the likelihood, location, and size of a potential collapse event. The volcano's summit cone is young, highly fractured, and hydrothermally altered. Fractures are most abundant within 5–20-m wide zones defined by multiple parallel to subparallel fractures. Alteration is most pervasive within the fracture systems and includes acid sulfate, advanced argillic, argillic, and silicification ranks. Fractured and altered rocks both have significantly reduced rock strengths, representing likely bounding surfaces for future collapse events. The fracture systems and altered rock masses occur non-uniformly, as an orthogonal set with N–S and E–W trends. Because these surfaces occur non-uniformly, hazards associated with collapse are unevenly distributed about the volcano. Depending on uncertainties in bounding surfaces, but constrained by detailed field studies, potential failure volumes are estimated to range between 0.04–0.5 km3. Stability modeling was used to assess potential edifice failure events. Modeled failure of the outer portion of the cone initially occurs as an "intact block" bounded by steeply dipping joints and outwardly dipping flow contacts. As collapse progresses, more of the inner cone fails and the outer "intact" block transforms into a collection of smaller blocks. Eventually, a steep face develops in the uppermost and central portion of the cone. This modeled failure morphology mimics collapse amphitheaters</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3685458','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3685458"><span>The energetics of organic synthesis inside and outside the cell</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Amend, Jan P.; LaRowe, Douglas E.; McCollom, Thomas M.; Shock, Everett L.</p> <p>2013-01-01</p> <p>Thermodynamic modelling of organic synthesis has largely been focused on deep-sea hydrothermal systems. When seawater mixes with hydrothermal fluids, redox gradients are established that serve as potential energy sources for the formation of organic compounds and biomolecules from inorganic starting materials. This energetic drive, which varies substantially depending on the type of host rock, is present and available both for abiotic (outside the cell) and biotic (inside the cell) processes. Here, we review and interpret a library of theoretical studies that target organic synthesis energetics. The biogeochemical scenarios evaluated include those in present-day hydrothermal systems and in putative early Earth environments. It is consistently and repeatedly shown in these studies that the formation of relatively simple organic compounds and biomolecules can be energy-yielding (exergonic) at conditions that occur in hydrothermal systems. Expanding on our ability to calculate biomass synthesis energetics, we also present here a new approach for estimating the energetics of polymerization reactions, specifically those associated with polypeptide formation from the requisite amino acids. PMID:23754809</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMOS41C1963T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMOS41C1963T"><span>The hydrothermal exploration system on the 'Qianlong2' AUV</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tao, W.; Tao, C.; Jinhui, Z.; Cai, L.; Guoyin, Z.</p> <p>2016-12-01</p> <p>ABSTRACT: Qianlong2, is a fully Autonomous Underwater Vehicle (AUV) designed for submarine resources research, especially for polymetallic sulphides, and the survey depths of is up to 4500 m. Qianlong2 had successfully explored hydrothermal vent field on the Southwest Indian Ridge (SWIR), and collected conductance, temperature and depth (CTD), turbidity, and Oxidation-Reduction Potential (ORP) data. It also had mapped precise topography by high resolution side scan sonar (HRBSSS) during every dive; and obtained photographs of sulfide deposits during some dives. Here, we detailedly described the implementation of investigation, data administration, and fast mapping of hydrothermal exploration system by Qianlong2. Giving a description of how to remove the platform magnetic interference by using magnetic data during Qianlong2 spin. Based on comprehensive hydrochemical anomalies, we get a rapid method for finding the localization of hydrothermal vents. Taking one dive as an example, we systemically showed the process about how to analyse hydrothermal survey data and acquire the location results of hydrothermal vents. Considering that this method is effective and can be used in other deep-submergence assets such as human occupied vehicles (HOVs) and remotely operated vehicles (ROVs) during further studies. Finally, we discussed how to promote and optimize the installation and application of those sensors and how to improve Qianlong2's autonomy of investigation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMGP14A..06R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMGP14A..06R"><span>A Paleomagnetic and Diagenetic Study of the Woodford Shale, Oklahoma, U.S.A.: The Timing of Hydrothermal Alteration</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Roberts, J.; Elmore, R. D.</p> <p>2017-12-01</p> <p>An oriented Woodford Shale core from the Ardmore Basin near the Ouachita thrust zone (Core B) was sampled to identify diagenetic events and interpret their origin, and to test if a magnetization was present that can be used to date the altering event(s). The shale is extensively altered, exhibiting a complex paragenesis with multiple fractures and brecciated intervals. Multiple hydrothermal minerals, including biotite, magnesite, norsethite, witherite, gorceixite, potassium feldspar, sphalerite, chalcopyrite, and saddle dolomite, are present in and around fractures and in the matrix. Vitrinite and bitumen reflectance measurements indicate VRo values of 1.82% ( 230°C). Two other Woodford Shale cores (A and C) from the Anadarko Basin also contain hydrothermal minerals. Vitrinite and bitumen reflectance data reveal trends between thermal maturity and the level of hydrothermal alteration, with Core A (0.80% VRo ( 125°C) displaying the lowest alteration, and Core C ( 1.5% VRo ( 210°C) displaying intermediate alteration compared to core B. Paleomagnetic analysis of Core B reveals the presence of a characteristic remanent magnetization (ChRM) with south-southeasterly declinations and shallow inclinations that is unblocked by 450°C and is interpreted to reside in magnetite. This ChRM is interpreted to be either a chemical remanent magnetization (CRM) or a thermochemical remanent magnetization (TCRM) acquired during the Late Permian based on the pole position. The presence of specimens with the CRM/TCRM in altered rock and high thermal maturities suggests that this CRM/TCRM originated from alteration by hydrothermal fluids. These results suggest that the Woodford Shale evolved into an open diagenetic system. In addition to causing heightened thermal maturities, these hydrothermal fluids both increased porosity through dissolution and decreased porosity through precipitation of minerals. The Late Permian timing agrees with the dating of hydrothermal alteration found within the Ouachita and Arbuckle Mountains in other studies. The timing for these events is postcollisional, and the most consistent model for the origin of the hydrothermal minerals is fluid flow as a result of faulting that accessed reservoir(s) of warm fluids.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70033086','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70033086"><span>Integrated Fe- and S-isotope study of seafloor hydrothermal vents at East Pacific Rise 9-10°N</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Rouxel, O.; Shanks, Wayne C.; Bach, W.; Edwards, K.J.</p> <p>2008-01-01</p> <p>In this study, we report on coupled Fe- and S-isotope systematics of hydrothermal fluids and sulfide deposits from the East Pacific Rise at 9–10°N to better constrain processes affecting Fe-isotope fractionation in hydrothermal environments. We aim to address three fundamental questions: (1) Is there significant Fe-isotope fractionation during sulfide precipitation? (2) Is there significant variability of Fe-isotope composition of the hydrothermal fluids reflecting sulfide precipitation in subsurface environments? (3) Are there any systematics between Fe- and S-isotopes in sulfide minerals? The results show that chalcopyrite, precipitating in the interior wall of a hydrothermal chimney displays a limited range of δ56Fe values and δ34S values, between − 0.11 to − 0.33‰ and 2.2 to 2.6‰ respectively. The δ56Fe values are, on average, slightly higher by 0.14‰ relative to coeval vent fluid composition while δ34S values suggest significant S-isotope fractionation (− 0.6 ± 0.2‰) during chalcopyrite precipitation. In contrast, systematically lower δ56Fe and δ34S values relative to hydrothermal fluids, by up to 0.91‰ and 2.0‰ respectively, are observed in pyrite and marcasite precipitating in the interior of active chimneys. These results suggest isotope disequilibrium in both Fe- and S-isotopes due to S-isotopic exchange between hydrothermal H2S and seawater SO42− followed by rapid formation of pyrite from FeS precursors, thus preserving the effects of a strong kinetic Fe-isotope fractionation during FeS precipitation. In contrast, δ56Fe and δ34S values of pyrite from inactive massive sulfides, which show evidence of extensive late-stage reworking, are essentially similar to the hydrothermal fluids. Multiple stages of remineralization of ancient chimney deposits at the seafloor appear to produce minimal Fe-isotope fractionation. Similar affects are indicated during subsurface sulfide precipitation as demonstrated by the lack of systematic differences between δ56Fe values in both high-temperature, Fe-rich black smokers and lower-temperature, Fe-depleted vents.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..16.7012L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..16.7012L"><span>Lithium isotope as a proxy for water/rock interaction between hydrothermal fluids and oceanic crust at Milos, Greece</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lou, U.-Lat; You, Chen-Feng; Wu, Shein-Fu; Chung, Chuan-Hsiung</p> <p>2014-05-01</p> <p>Hydrothermal activity at Milos in the Aegean island (Greece) is mainly located at rather shallow depth (about 5 m). It is interesting to compare these chemical compositions and the evolution processes of the hydrothermal fluids at deep sea hydrothermal vents in Mid-ocean Ridge (MOR). Lithium (Li) is a highly mobile element and its isotopic composition varies at different geological settings. Therefore, Li and its isotope could be used as an indicator for many geochemical processes. Since 6Li preferential retained in the mineral phase where 7Li is leached into fluid phase during basalt alteration, the Li isotopic fractionation between the rocks and the fluids reflect sensitively the degree of water-rock interaction. In this study, Bio-Rad AG-50W X8 cation exchange resin was used for purifying the hydrothermal fluids to separate Li from other matrix elements. The Li isotopic composition (δ7Li) was determined by Multi-collector Inductively Coupled Plasma Mass Spectrometry (MC-ICP-MS) with precision better than 0.2‰ (2σ, n=20). The Li concentration in the hydrothermal fluids falls between 0.02 to 10.31 mM. The δ7Li values vary from +1.9 to +29.7‰, indicating significant seawater contamination have occurred. These hydrothermal fluids fit well with seawater and brine two end-member binary mixing model. During phase separation, lithium, boron, chlorine, iodine, bromine, sodium and potassium were enriched in the brine phase. On the other hand, aluminum, sulphur and iron were enriched in the vapor phase. There is no significant isotope fractionation between the two phases. The water/rock ratio (W/R) calculated is low (about 1.5 to 1.8) for the Milos fluids, restricted seawater recharge into the oceanic crust. Moreover, the oceanic crust in the region becomes less altered since the W/R is low. The δ7Li value of the hydrothermal fluids can be used as a sensitive tool for studying water-rock interaction.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..1712395H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..1712395H"><span>Hydrothermal Synthesis of Analcime from Kutingkeng Formation Mudstone</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hsiao, Yin-Hsiu; Chen, Kuan-Ting; Ray, Dah-Tong</p> <p>2015-04-01</p> <p>In southwest of Taiwan, the foothill located in Tainan-Kaohsiung city is the exposed area of Pliocene strata to early Pleistocene strata. The strata are about a depth of five thousand, named as Kutigkeng Formation. The outcrop of Kutigkeng Formation is typical badlands, specifically called 'Moon World.' It is commonly known as no important economic applications of agricultural land. The mineral compositions of Kutingkeng Formation are quartz, clay minerals and feldspar. The clay minerals consist of illite, clinochlore and swelling clays. To study how the phase and morphology of analcime formed by hydrothermal synthesis were affected, analcime was synthesized from the mudstone of Kutinkeng Formation with microwave hydrothermal reaction was investigated. The parameters of the experiment were the reaction temperature, the concentration of mineralizer, solids/liquid ratio and time. The sodium silicate (Na2SiO3) were used as mineralizer. The results showed that the analcime could be synthesized by hydrothermal reaction above 180° from Kutinkeng Formation mudstone samples. At the highest temperature (240°) of this study, the high purity analcime could be produced. When the concentration of Na2SiO3=3~6M, analcime could be synthesized at 240°. The best solids/liquid ratio was approximate 1 to 5. The hydrothermal reaction almost was completed after 4 hours.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AIPC.1953c0124M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AIPC.1953c0124M"><span>Effect of growth time on the structure, morphology and optical properties of hydrothermally synthesized TiO2 nanorod thin films</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mohapatra, A. K.; Nayak, J.</p> <p>2018-05-01</p> <p>Titanium dioxide (TiO2) nanorod thin films were deposited on fluorine doped tin oxide coated glass substrates by a single step rapid hydrothermal process. The concentration of the precursor, the temperature of the reaction mixture were optimized in order to enhance the rate of deposition. Unlike the previously reported hydrothermal treatment for 24 - 48 h, the deposition of well aligned titanium dioxide nanorods was achieved in a short time such as 3 - 8 h. The crystal structure of the films were investigated by X-rays diffraction. The morphology of the nanorod films were studied with scanning electron microscopy. The optical properties were studied by photoluminescence spectroscopy.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26193082','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26193082"><span>Green Synthesis of Bifunctional Fluorescent Carbon Dots from Garlic for Cellular Imaging and Free Radical Scavenging.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zhao, Shaojing; Lan, Minhuan; Zhu, Xiaoyue; Xue, Hongtao; Ng, Tsz-Wai; Meng, Xiangmin; Lee, Chun-Sing; Wang, Pengfei; Zhang, Wenjun</p> <p>2015-08-12</p> <p>Nitrogen and sulfur codoped carbon dots (CDs) were prepared from garlic by a hydrothermal method. The as-prepared CDs possess good water dispersibility, strong blue fluorescence emission with a fluorescent quantum yield of 17.5%, and excellent photo and pH stabilities. It is also demonstrated that the fluorescence of CDs are resistant to the interference of metal ions, biomolecules, and high ionic strength environments. Combining with low cytotoxicity properties, CDs could be used as an excellent fluorescent probe for cellular multicolor imaging. Moreover, the CDs were also demonstrated to exhibit favorable radical scavenging activity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22207360-strontium-vanadate-nanoribbons-synthesis-characterization-detection-dopamine','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22207360-strontium-vanadate-nanoribbons-synthesis-characterization-detection-dopamine"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Zhou, Qing; Shao, Mingwang, E-mail: mwshao@suda.edu.cn; Chen, Tao</p> <p></p> <p>Large-scale, high-purity and uniform strontium vanadate (Sr{sub 2}V{sub 2}O{sub 7}) nanoribbons were easily synthesized via a hydrothermal process without any surfactants. The as-prepared products were up to hundreds of micrometers in length, 200-600 nm in width, and 20 nm in thickness. These nanomaterials were employed to modify glassy carbon electrode, which displayed excellent electrochemical sensitivity in detecting dopamine in the presence of ascorbic acid. A linear relationship between the concentrations of dopamine and its oxidation peak currents was obtained. The modified electrode exhibited high reproducibility and stability, which might be found potential application in the biosensors.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20050172173','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20050172173"><span>Modeling Chemical and Isotopic Variations in Lab Formed Hydrothermal Carbonates</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Niles, P. B.; Leshin, L. A.; Golden, D. C.; Socki, R. A.; Guan, Y.; Ming, D. W.</p> <p>2005-01-01</p> <p>Chemical and mineralogical data (e.g. [1]) from Mars suggest that the history of liquid water on the planet was more sporadic in nature than long-lived. The non-equilibrium chemical and isotopic compositions of the carbonates preserved in the martian meteorite ALH84001 are direct evidence of ancient secondary minerals that have not undergone significant diagenesis or stabilization processes typical of long-lived aqueous systems on Earth. Thus secondary minerals and sediments on Mars may primarily record the characteristics of the aqueous environment in which they formed without being significantly overprinted by subsequent diagenetic processes during burial.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22443365-synthesis-crystal-structures-luminescent-properties-zinc-ii-metalorganic-frameworks-constructed-from-terpyridyl-derivative-ligand','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22443365-synthesis-crystal-structures-luminescent-properties-zinc-ii-metalorganic-frameworks-constructed-from-terpyridyl-derivative-ligand"><span>Synthesis, crystal structures and luminescent properties of zinc(II) metal–organic frameworks constructed from terpyridyl derivative ligand</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Yang, Xiao-Le; Shangguan, Yi-Qing; Hu, Huai-Ming, E-mail: ChemHu1@NWU.EDU.CN</p> <p>2014-08-15</p> <p>Five zinc(II) metal–organic frameworks, [Zn{sub 3}(344-pytpy){sub 2}Cl{sub 6}]{sub n}·n(H{sub 2}O) (1), [Zn(344-pytpy)(ox)]{sub n} (2), [Zn{sub 2}(344-pytpy)(bdc){sub 2}]{sub n}·1.5n(H{sub 2}O) (3), [Zn{sub 2}(344-pytpy){sub 2} (sfdb){sub 2}]{sub n}·1.5n(H{sub 2}O) (4) and [Zn{sub 3}(344-pytpy){sub 2}(btc){sub 2}]{sub n}·2n(H{sub 2}O) (5), (344-pytpy=4′-(3-pyridyl)-4,2′:6′,4″-terpyridine, H{sub 2}ox=oxalic acid, H{sub 2}bdc=1,4-benzenedi-carboxylic acid, H{sub 2}sfdb=4,4′-sulfonyldibenzoic acid and H{sub 3}btc=1,3,5-benzene-tricarboxylic acid) have been prepared by hydrothermal reactions. Compound 1 is a 1D chain structure, in which 344-pytpy ligand links three Zn{sup II} centers through three of terminal N-donors. Compound 2 is a 4-connected 3D framework with the dia topological net and the Schläfli symbol of 6{sup 6}. Compound 3 displays amore » unusual 3-fold interpenetrating 3D coordination network which exhibits a new intriguing (3,3,4)-connected topological net with the Schläfli symbol of (4.8{sup 2})(4.8{sup 5})(8{sup 3}). Compound 4 features a two-fold interpenetrating 4-connected 2D framework with the sql topological net and the Schläfli symbol of (4{sup 4}.6{sup 2}). Compound 5 is a new self-interpenetrating (3,3,4,4)-connected topological net with the Schläfli symbol of (6.8{sup 2}){sub 2}(6{sup 2}.8{sup 2}.10.12)(6{sup 2}.8{sup 3}.10){sub 2}(6{sup 2}.8){sub 2}. The luminescence properties of 1–5 have been investigated by emission spectra and they possess great thermal stabilities which can be stable up to around 400 °C. - Graphical abstract: Five new Zn(II) metal–organic frameworks based on dicarboxylate and terpyridyl derivative ligands have been synthesized by hydrothermal reactions, giving networks from 1D to 3D structures. The thermal stability and luminescent property have been investigated. - Highlights: • Five zinc(II) metal–organic frameworks have been prepared under hydrothermal conditions. • Their crystal and topological structures have been investigated. • The luminescent properties have been investigated. • They possess great thermal stabilities which can be stable up to around 400 °C.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29381857','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29381857"><span>Improved Ionic Diffusion through the Mesoporous Carbon Skin on Silicon Nanoparticles Embedded in Carbon for Ultrafast Lithium Storage.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>An, Geon-Hyoung; Kim, Hyeonjin; Ahn, Hyo-Jin</p> <p>2018-02-21</p> <p>Because of their combined effects of outstanding mechanical stability, high electrical conductivity, and high theoretical capacity, silicon (Si) nanoparticles embedded in carbon are a promising candidate as electrode material for practical utilization in Li-ion batteries (LIBs) to replace the conventional graphite. However, because of the poor ionic diffusion of electrode materials, the low-grade ultrafast cycling performance at high current densities remains a considerable challenge. In the present study, seeking to improve the ionic diffusion, we propose a novel design of mesoporous carbon skin on the Si nanoparticles embedded in carbon by hydrothermal reaction, poly(methyl methacrylate) coating process, and carbonization. The resultant electrode offers a high specific discharge capacity with excellent cycling stability (1140 mA h g -1 at 100 mA g -1 after 100 cycles), superb high-rate performance (969 mA h g -1 at 2000 mA g -1 ), and outstanding ultrafast cycling stability (532 mA h g -1 at 2000 mA g -1 after 500 cycles). The battery performances are surpassing the previously reported results for carbon and Si composite-based electrodes on LIBs. Therefore, this novel approach provides multiple benefits in terms of the effective accommodation of large volume expansions of the Si nanoparticles, a shorter Li-ion diffusion pathway, and stable electrochemical conditions from a faster ionic diffusion during cycling.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5745564','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5745564"><span>Formation and Stability of Prebiotically Relevant Vesicular Systems in Terrestrial Geothermal Environments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Joshi, Manesh Prakash; Samanta, Anupam; Tripathy, Gyana Ranjan; Rajamani, Sudha</p> <p>2017-01-01</p> <p>Terrestrial geothermal fields and oceanic hydrothermal vents are considered as candidate environments for the emergence of life on Earth. Nevertheless, the ionic strength and salinity of oceans present serious limitations for the self-assembly of amphiphiles, a process that is fundamental for the formation of first protocells. Consequently, we systematically characterized the efficiency of amphiphile assembly, and vesicular stability, in terrestrial geothermal environments, both, under simulated laboratory conditions and in hot spring water samples (collected from Ladakh, India, an Astrobiologically relevant site). Combinations of prebiotically pertinent fatty acids and their derivatives were evaluated for the formation of vesicles in aforesaid scenarios. Additionally, the stability of these vesicles was characterized over multiple dehydration-rehydration cycles, at elevated temperatures. Among the combinations that were tested, mixtures of fatty acid and its glycerol derivatives were found to be the most robust, also resulting in vesicles in all of the hot spring waters that were tested. Importantly, these vesicles were stable at high temperatures, and this fatty acid system retained its vesicle forming propensity, even after multiple cycles of dehydration-rehydration. The remaining systems, however, formed vesicles only in bicine buffer. Our results suggest that certain prebiotic compartments would have had a selective advantage in terrestrial geothermal niches. Significantly, our study highlights the importance of validating results that are obtained under ‘buffered’ laboratory conditions, by verifying their plausibility in prebiotically analogous environments. PMID:29189763</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29189763','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29189763"><span>Formation and Stability of Prebiotically Relevant Vesicular Systems in Terrestrial Geothermal Environments.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Joshi, Manesh Prakash; Samanta, Anupam; Tripathy, Gyana Ranjan; Rajamani, Sudha</p> <p>2017-11-30</p> <p>Terrestrial geothermal fields and oceanic hydrothermal vents are considered as candidate environments for the emergence of life on Earth. Nevertheless, the ionic strength and salinity of oceans present serious limitations for the self-assembly of amphiphiles, a process that is fundamental for the formation of first protocells. Consequently, we systematically characterized the efficiency of amphiphile assembly, and vesicular stability, in terrestrial geothermal environments, both, under simulated laboratory conditions and in hot spring water samples (collected from Ladakh, India, an Astrobiologically relevant site). Combinations of prebiotically pertinent fatty acids and their derivatives were evaluated for the formation of vesicles in aforesaid scenarios. Additionally, the stability of these vesicles was characterized over multiple dehydration-rehydration cycles, at elevated temperatures. Among the combinations that were tested, mixtures of fatty acid and its glycerol derivatives were found to be the most robust, also resulting in vesicles in all of the hot spring waters that were tested. Importantly, these vesicles were stable at high temperatures, and this fatty acid system retained its vesicle forming propensity, even after multiple cycles of dehydration-rehydration. The remaining systems, however, formed vesicles only in bicine buffer. Our results suggest that certain prebiotic compartments would have had a selective advantage in terrestrial geothermal niches. Significantly, our study highlights the importance of validating results that are obtained under 'buffered' laboratory conditions, by verifying their plausibility in prebiotically analogous environments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70027150','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70027150"><span>Tracing the history of submarine hydrothermal inputs and the significance of hydrothermal hafnium for the seawater budget - A combined Pb-Hf-Nd isotope approach</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>van de Flierdt, T.; Frank, M.; Halliday, A.N.; Hein, J.R.; Hattendorf, B.; Gunther, D.; Kubik, P.W.</p> <p>2004-01-01</p> <p>Secular variations in the Pb isotopic composition of a mixed hydrogenous-hydrothermal ferromanganese crust from the Bauer Basin in the eastern Equatorial Pacific provide clear evidence for changes in hydrothermal contributions during the past 7 Myr. The nearby Galapagos Rise spreading center provided a strong hydrothermal flux prior to 6.5 Ma. After 6.5 Ma, the Pb became stepwise more radiogenic and more similar to Equatorial Pacific seawater, reflecting the westward shift of spreading to the presently active East Pacific Rise (EPR). A second, previously unrecognized enhanced hydrothermal period occurred between 4.4 and 2.9 Ma, which reflects either off-axis hydrothermal activity in the Bauer Basin or a late-stage pulse of hydrothermal Pb from the then active, but waning Galapagos Rise spreading center. Hafnium isotope time-series of the same mixed hydrogenous-hydrothermal crust show invariant values over the past 7 Myr. Hafnium isotope ratios, as well as Nd isotope ratios obtained for this crust, are identical to that of hydrogenous Equatorial Pacific deep water crusts and clearly indicate that hydrothermal Hf, similar to Nd, does not travel far from submarine vents. Therefore, we suggest that hydrothermal Hf fluxes do not contribute significantly to the global marine Hf budget. ?? 2004 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3864048','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3864048"><span>Fungal colonization of an Ordovician impact-induced hydrothermal system</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Ivarsson, Magnus; Broman, Curt; Sturkell, Erik; Ormö, Jens; Siljeström, Sandra; van Zuilen, Mark; Bengtson, Stefan</p> <p>2013-01-01</p> <p>Impacts are common geologic features on the terrestrial planets throughout the solar system, and on at least Earth and Mars impacts have induced hydrothermal convection. Impact-generated hydrothermal systems have been suggested to possess the same life supporting capability as hydrothermal systems associated with volcanic activity. However, evidence of fossil microbial colonization in impact-generated hydrothermal systems is scarce in the literature. Here we report of fossilized microorganisms in association with cavity-grown hydrothermal minerals from the 458 Ma Lockne impact structure, Sweden. Based on morphological characteristics the fossilized microorganisms are interpreted as fungi. We further infer the kerogenization of the microfossils, and thus the life span of the fungi, to be contemporaneous with the hydrothermal activity and migration of hydrocarbons in the system. Our results from the Lockne impact structure show that hydrothermal systems associated with impact structures can support colonization by microbial life. PMID:24336641</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013NatSR...3E3487I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013NatSR...3E3487I"><span>Fungal colonization of an Ordovician impact-induced hydrothermal system</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ivarsson, Magnus; Broman, Curt; Sturkell, Erik; Ormö, Jens; Siljeström, Sandra; van Zuilen, Mark; Bengtson, Stefan</p> <p>2013-12-01</p> <p>Impacts are common geologic features on the terrestrial planets throughout the solar system, and on at least Earth and Mars impacts have induced hydrothermal convection. Impact-generated hydrothermal systems have been suggested to possess the same life supporting capability as hydrothermal systems associated with volcanic activity. However, evidence of fossil microbial colonization in impact-generated hydrothermal systems is scarce in the literature. Here we report of fossilized microorganisms in association with cavity-grown hydrothermal minerals from the 458 Ma Lockne impact structure, Sweden. Based on morphological characteristics the fossilized microorganisms are interpreted as fungi. We further infer the kerogenization of the microfossils, and thus the life span of the fungi, to be contemporaneous with the hydrothermal activity and migration of hydrocarbons in the system. Our results from the Lockne impact structure show that hydrothermal systems associated with impact structures can support colonization by microbial life.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <a id="backToTop" href="#top"> Top </a> <footer> <nav> <ul class="links"> <li><a href="/sitemap.html">Site Map</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://www.energy.gov/vulnerability-disclosure-policy" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>