Sample records for study identified numerous

  1. The Transition from Informal to Formal Mathematical Knowledge: Mediation by Numeral Knowledge

    ERIC Educational Resources Information Center

    Purpura, David J.; Baroody, Arthur J.; Lonigan, Christopher J.

    2013-01-01

    The purpose of the present study was to determine if numeral knowledge--the ability to identify Arabic numerals and connect Arabic numerals to their respective quantities--mediates the relation between informal and formal mathematical knowledge. A total of 206 3- to 5-year-old preschool children were assessed on 6 informal mathematics tasks and 2…

  2. 75 FR 27708 - Takes of Marine Mammals Incidental to Specified Activities; Taking Marine Mammals Incidental to...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-18

    ... Survey As part of the feasibility study for Shell's Alaskan prospects a survey is required to identify...): (1) Tolerance Numerous studies have shown that pulsed sounds from airguns are often readily detectable in the water at distances of many kilometers. Numerous studies have also shown that marine mammals...

  3. Genome-Wide Interaction Study of Omega-3 PUFAs and Other Fatty Acids on Inflammatory Biomarkers of Cardiovascular Health in the Framingham Heart Study.

    PubMed

    Veenstra, Jenna; Kalsbeek, Anya; Westra, Jason; Disselkoen, Craig; Smith, Caren; Tintle, Nathan

    2017-08-18

    Numerous genetic loci have been identified as being associated with circulating fatty acid (FA) levels and/or inflammatory biomarkers of cardiovascular health (e.g., C-reactive protein). Recently, using red blood cell (RBC) FA data from the Framingham Offspring Study, we conducted a genome-wide association study of over 2.5 million single nucleotide polymorphisms (SNPs) and 22 RBC FAs (and associated ratios), including the four Omega-3 FAs (ALA, DHA, DPA, and EPA). Our analyses identified numerous causal loci. In this manuscript, we investigate the extent to which polyunsaturated fatty acid (PUFA) levels moderate the relationship of genetics to cardiovascular health biomarkers using a genome-wide interaction study approach. In particular, we test for possible gene-FA interactions on 9 inflammatory biomarkers, with 2.5 million SNPs and 12 FAs, including all Omega-3 PUFAs. We identified eighteen novel loci, including loci which demonstrate strong evidence of modifying the impact of heritable genetics on biomarker levels, and subsequently cardiovascular health. The identified genes provide increased clarity on the biological functioning and role of Omega-3 PUFAs, as well as other common fatty acids, in cardiovascular health, and suggest numerous candidate loci for future replication and biological characterization.

  4. Incidence of numerical variants and transitional lumbosacral vertebrae on whole-spine MRI.

    PubMed

    Tins, Bernhard J; Balain, Birender

    2016-04-01

    This study sets out to prospectively investigate the incidence of transitional vertebrae and numerical variants of the spine. Over a period of 28 months, MRIs of the whole spine were prospectively evaluated for the presence of transitional lumbosacral vertebrae and numerical variants of the spine. MRI of the whole spine was evaluated in 420 patients, comprising 211 female and 209 male subjects. Two patients had more complex anomalies. Lumbosacral transitional vertebrae were seen in 12 patients: eight sacralised L5 (3 male, 5 female) and four lumbarised S1 (3 male, 1 female). The incidence of transitional vertebrae was approximately 3.3. % (14/418). Thirty-two (7.7 %) of 418 patients had numerical variants of mobile vertebrae of the spine without transitional vertebrae. The number of mobile vertebrae was increased by one in 18 patients (12 male, 6 female), and the number was decreased by one in 14 patients (4 male, 10 female). Numerical variants of the spine are common, and were found to be almost 2.5 times as frequent as transitional lumbosacral vertebrae in the study population. Only whole-spine imaging can identify numerical variants and the anatomical nature of transitional vertebrae. The tendency is toward an increased number of mobile vertebrae in men and a decreased number in women. Main messages • Numerical variants of the spine are more common than transitional vertebrae. • Spinal numerical variants can be reliably identified only with whole-spine imaging. • Increased numbers of vertebrae are more common in men than women. • Transitional lumbosacral vertebrae occurred in about 3.3 % of the study population. • The incidence of numerical variants of the spine was about 7.7 %.

  5. 28 CFR 25.7 - Querying records in the system.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) Name; (2) Sex; (3) Race; (4) Complete date of birth; and (5) State of residence. (b) A unique numeric identifier may also be provided to search for additional records based on exact matches by the numeric identifier. Examples of unique numeric identifiers for purposes of this system are: Social Security number...

  6. 28 CFR 25.7 - Querying records in the system.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) Name; (2) Sex; (3) Race; (4) Complete date of birth; and (5) State of residence. (b) A unique numeric identifier may also be provided to search for additional records based on exact matches by the numeric identifier. Examples of unique numeric identifiers for purposes of this system are: Social Security number...

  7. 28 CFR 25.7 - Querying records in the system.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) Name; (2) Sex; (3) Race; (4) Complete date of birth; and (5) State of residence. (b) A unique numeric identifier may also be provided to search for additional records based on exact matches by the numeric identifier. Examples of unique numeric identifiers for purposes of this system are: Social Security number...

  8. 28 CFR 25.7 - Querying records in the system.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) Name; (2) Sex; (3) Race; (4) Complete date of birth; and (5) State of residence. (b) A unique numeric identifier may also be provided to search for additional records based on exact matches by the numeric identifier. Examples of unique numeric identifiers for purposes of this system are: Social Security number...

  9. Enunciative categories in the description of language functioning of mothers and infants aged 1-4 months.

    PubMed

    Kruel, Cristina Saling; Rechia, Inaê Costa; Oliveira, Luciéle Dias; Souza, Ana Paula Ramos de

    2016-01-01

    To present categories which explain the language functioning between infants and their mothers from Benveniste's concept of semiotic system, and verify whether such categories can be described numerically. Four mother-infant dyads were monitored in three stages. The first study consisted of a qualitative analysis of the transcribed video recordings conducted in each stage. We intended to identify the enunciative principles associated with the relationship between the semiotic system of the infant's body and their mother's language, namely, the principles of interpretancy and homology. The other study was conducted by means of a descriptive numerical analysis of the enunciative categories and the infant caregiver scale of behavior, using the ELAN software (EUDICO Linguistic Anotador). Mutuality in mother-infant interactions was observed in most of the scenes analyzed. Productive enunciative categories demonstrated in the infant's demand/mother's interpretation relation was identified in homology and interpretancy. It was also possible to use these categories to describe the mother-infant interactions numerically. In addition, other categories emerged because there are other subtypes of maternal productions not directly related to infant demand. This shows that infants are exposed to language of heterogeneous characteristics. The concept of semiotic system allowed the proposition of language functioning categories identifiable in the mother-infant relationship. Such categories were described numerically.

  10. Identification of delamination interface in composite laminates using scattering characteristics of lamb wave: numerical and experimental studies

    NASA Astrophysics Data System (ADS)

    Singh, Rakesh Kumar; Ramadas, C.; Balachandra Shetty, P.; Satyanarayana, K. G.

    2017-04-01

    Considering the superior strength properties of polymer based composites over metallic materials, they are being used in primary structures of aircrafts. However, these polymeric materials are much more complex in behaviour due to their structural anisotropy along with existence of different materials unlike in metallic alloys. These pose challenge in flaw detection, residual strength determination and life of a structure with their high susceptibility to impact damage in the form of delaminations/disbonds or cracks. This reduces load-bearing capability and potentially leads to structural failure. With this background, this study presents a method to identify location of delamination interface along thickness of a laminate. Both numerical and experimental studies have been carried out with a view to identify the defect, on propagation, mode conversion and scattering characteristics of fundamental anti-symmetric Lamb mode (Ao) when it passed through a semi-infinite delamination. Further, the reflection and transmission scattering coefficients based on power and amplitude ratios of the scattered waves have been computed. The methodology was applied on numerically simulated delaminations to illustrate the efficacy of the method. Results showed that it could successfully identify delamination interface.

  11. A Spreadsheet-Based Visualized Mindtool for Improving Students' Learning Performance in Identifying Relationships between Numerical Variables

    ERIC Educational Resources Information Center

    Lai, Chiu-Lin; Hwang, Gwo-Jen

    2015-01-01

    In this study, a spreadsheet-based visualized Mindtool was developed for improving students' learning performance when finding relationships between numerical variables by engaging them in reasoning and decision-making activities. To evaluate the effectiveness of the proposed approach, an experiment was conducted on the "phenomena of climate…

  12. Typical and Atypical Development of Basic Numerical Skills in Elementary School

    ERIC Educational Resources Information Center

    Landerl, Karin; Kolle, Christina

    2009-01-01

    Deficits in basic numerical processing have been identified as a central and potentially causal problem in developmental dyscalculia; however, so far not much is known about the typical and atypical development of such skills. This study assessed basic number skills cross-sectionally in 262 typically developing and 51 dyscalculic children in…

  13. Numerical Activities of Daily Living in Adults with Neurofibromatosis Type 1

    ERIC Educational Resources Information Center

    Burgio, F.; Benavides-Varela, S.; Arcara, G.; Trevisson, E.; Frizziero, D.; Clementi, M.; Semenza, C.

    2017-01-01

    Background: This study aimed to identify the mathematical domains affected in adults with neurofibromatosis 1 (NF1) and the impact of the numerical difficulties on the patients' activities of daily living. Methods: We assessed 28 adult patients with NF1 and 28 healthy control participants. All participants completed the standardised battery of…

  14. Numerical study of fractional nonlinear Schrödinger equations.

    PubMed

    Klein, Christian; Sparber, Christof; Markowich, Peter

    2014-12-08

    Using a Fourier spectral method, we provide a detailed numerical investigation of dispersive Schrödinger-type equations involving a fractional Laplacian in an one-dimensional case. By an appropriate choice of the dispersive exponent, both mass and energy sub- and supercritical regimes can be identified. This allows us to study the possibility of finite time blow-up versus global existence, the nature of the blow-up, the stability and instability of nonlinear ground states and the long-time dynamics of solutions. The latter is also studied in a semiclassical setting. Moreover, we numerically construct ground state solutions of the fractional nonlinear Schrödinger equation.

  15. Numerical study of fractional nonlinear Schrödinger equations

    PubMed Central

    Klein, Christian; Sparber, Christof; Markowich, Peter

    2014-01-01

    Using a Fourier spectral method, we provide a detailed numerical investigation of dispersive Schrödinger-type equations involving a fractional Laplacian in an one-dimensional case. By an appropriate choice of the dispersive exponent, both mass and energy sub- and supercritical regimes can be identified. This allows us to study the possibility of finite time blow-up versus global existence, the nature of the blow-up, the stability and instability of nonlinear ground states and the long-time dynamics of solutions. The latter is also studied in a semiclassical setting. Moreover, we numerically construct ground state solutions of the fractional nonlinear Schrödinger equation. PMID:25484604

  16. SAMPLING OF AUTOMOBILE INTERIORS FOR VINYL CHLORIDE MONOMER

    EPA Science Inventory

    The report gives results of a study to qualitatively identify organic pollutants in the air inside new automobiles. In recent years, concern has developed over the concentration of organic vapors inside new automobiles. A literature search first identified numerous volatilization...

  17. Seismic behavior of an Italian Renaissance Sanctuary: Damage assessment by numerical modelling

    NASA Astrophysics Data System (ADS)

    Clementi, Francesco; Nespeca, Andrea; Lenci, Stefano

    2016-12-01

    The paper deals with modelling and analysis of architectural heritage through the discussion of an illustrative case study: the Medieval Sanctuary of Sant'Agostino (Offida, Italy). Using the finite element technique, a 3D numerical model of the sanctuary is built, and then used to identify the main sources of the damages. The work shows that advanced numerical analyses could offer significant information for the understanding of the causes of existing damage and, more generally, on the seismic vulnerability.

  18. Quantitative risk management in gas injection project: a case study from Oman oil and gas industry

    NASA Astrophysics Data System (ADS)

    Khadem, Mohammad Miftaur Rahman Khan; Piya, Sujan; Shamsuzzoha, Ahm

    2017-09-01

    The purpose of this research was to study the recognition, application and quantification of the risks associated in managing projects. In this research, the management of risks in an oil and gas project is studied and implemented within a case company in Oman. In this study, at first, the qualitative data related to risks in the project were identified through field visits and extensive interviews. These data were then translated into numerical values based on the expert's opinion. Further, the numerical data were used as an input to Monte Carlo simulation. RiskyProject Professional™ software was used to simulate the system based on the identified risks. The simulation result predicted a delay of about 2 years as a worse case with no chance of meeting the project's on stream date. Also, it has predicted 8% chance of exceeding the total estimated budget. The result of numerical analysis from the proposed model is validated by comparing it with the result of qualitative analysis, which was obtained through discussion with various project managers of company.

  19. Simplex-based optimization of numerical and categorical inputs in early bioprocess development: Case studies in HT chromatography.

    PubMed

    Konstantinidis, Spyridon; Titchener-Hooker, Nigel; Velayudhan, Ajoy

    2017-08-01

    Bioprocess development studies often involve the investigation of numerical and categorical inputs via the adoption of Design of Experiments (DoE) techniques. An attractive alternative is the deployment of a grid compatible Simplex variant which has been shown to yield optima rapidly and consistently. In this work, the method is combined with dummy variables and it is deployed in three case studies wherein spaces are comprised of both categorical and numerical inputs, a situation intractable by traditional Simplex methods. The first study employs in silico data and lays out the dummy variable methodology. The latter two employ experimental data from chromatography based studies performed with the filter-plate and miniature column High Throughput (HT) techniques. The solute of interest in the former case study was a monoclonal antibody whereas the latter dealt with the separation of a binary system of model proteins. The implemented approach prevented the stranding of the Simplex method at local optima, due to the arbitrary handling of the categorical inputs, and allowed for the concurrent optimization of numerical and categorical, multilevel and/or dichotomous, inputs. The deployment of the Simplex method, combined with dummy variables, was therefore entirely successful in identifying and characterizing global optima in all three case studies. The Simplex-based method was further shown to be of equivalent efficiency to a DoE-based approach, represented here by D-Optimal designs. Such an approach failed, however, to both capture trends and identify optima, and led to poor operating conditions. It is suggested that the Simplex-variant is suited to development activities involving numerical and categorical inputs in early bioprocess development. © 2017 The Authors. Biotechnology Journal published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Lagrangian motion, coherent structures, and lines of persistent material strain.

    PubMed

    Samelson, R M

    2013-01-01

    Lagrangian motion in geophysical fluids may be strongly influenced by coherent structures that support distinct regimes in a given flow. The problems of identifying and demarcating Lagrangian regime boundaries associated with dynamical coherent structures in a given velocity field can be studied using approaches originally developed in the context of the abstract geometric theory of ordinary differential equations. An essential insight is that when coherent structures exist in a flow, Lagrangian regime boundaries may often be indicated as material curves on which the Lagrangian-mean principal-axis strain is large. This insight is the foundation of many numerical techniques for identifying such features in complex observed or numerically simulated ocean flows. The basic theoretical ideas are illustrated with a simple, kinematic traveling-wave model. The corresponding numerical algorithms for identifying candidate Lagrangian regime boundaries and lines of principal Lagrangian strain (also called Lagrangian coherent structures) are divided into parcel and bundle schemes; the latter include the finite-time and finite-size Lyapunov exponent/Lagrangian strain (FTLE/FTLS and FSLE/FSLS) metrics. Some aspects and results of oceanographic studies based on these approaches are reviewed, and the results are discussed in the context of oceanographic observations of dynamical coherent structures.

  1. Effects of numerical dissipation and unphysical excursions on scalar-mixing estimates in large-eddy simulations

    NASA Astrophysics Data System (ADS)

    Sharan, Nek; Matheou, Georgios; Dimotakis, Paul

    2017-11-01

    Artificial numerical dissipation decreases dispersive oscillations and can play a key role in mitigating unphysical scalar excursions in large eddy simulations (LES). Its influence on scalar mixing can be assessed through the resolved-scale scalar, Z , its probability density function (PDF), variance, spectra, and the budget of the horizontally averaged equation for Z2. LES of incompressible temporally evolving shear flow enabled us to study the influence of numerical dissipation on unphysical scalar excursions and mixing estimates. Flows with different mixing behavior, with both marching and non-marching scalar PDFs, are studied. Scalar fields for each flow are compared for different grid resolutions and numerical scalar-convection term schemes. As expected, increasing numerical dissipation enhances scalar mixing in the development stage of shear flow characterized by organized large-scale pairings with a non-marching PDF, but has little influence in the self-similar stage of flows with marching PDFs. Flow parameters and regimes sensitive to numerical dissipation help identify approaches to mitigate unphysical excursions while minimizing dissipation.

  2. The Search for Autism Disease Genes

    ERIC Educational Resources Information Center

    Wassink, Thomas H.; Brzustowicz, Linda M.; Bartlett, Christopher W.; Szatmari, Peter

    2004-01-01

    Autism is a heritable disorder characterized by phenotypic and genetic complexity. This review begins by surveying current linkage, gene association, and cytogenetic studies performed with the goal of identifying autism disease susceptibility variants. Though numerous linkages and associations have been identified, they tend to diminish upon…

  3. Investigating Trigonometric Representations in the Transition to College Mathematics

    ERIC Educational Resources Information Center

    Byers, Patricia

    2010-01-01

    This Ontario-based qualitative study examined secondary school and college textbooks' treatment of trigonometric representations in order to identify potential sources of student difficulties in the transition from secondary school to college mathematics. Analysis of networks, comprised of trigonometric representations, identified numerous issues…

  4. Numerical and Experimental Study of Ti6Al4V Components Manufactured Using Powder Bed Fusion Additive Manufacturing

    NASA Astrophysics Data System (ADS)

    Zielinski, Jonas; Mindt, Hans-Wilfried; Düchting, Jan; Schleifenbaum, Johannes Henrich; Megahed, Mustafa

    2017-12-01

    Powder bed fusion additive manufacturing of titanium alloys is an interesting manufacturing route for many applications requiring high material strength combined with geometric complexity. Managing powder bed fusion challenges, including porosity, surface finish, distortions and residual stresses of as-built material, is the key to bringing the advantages of this process to production main stream. This paper discusses the application of experimental and numerical analysis towards optimizing the manufacturing process of a demonstration component. Powder characterization including assessment of the reusability, assessment of material consolidation and process window optimization is pursued prior to applying the identified optima to study the distortion and residual stresses of the demonstrator. Comparisons of numerical predictions with measurements show good correlations along the complete numerical chain.

  5. Development of numerical processing in children with typical and dyscalculic arithmetic skills—a longitudinal study

    PubMed Central

    Landerl, Karin

    2013-01-01

    Numerical processing has been demonstrated to be closely associated with arithmetic skills, however, our knowledge on the development of the relevant cognitive mechanisms is limited. The present longitudinal study investigated the developmental trajectories of numerical processing in 42 children with age-adequate arithmetic development and 41 children with dyscalculia over a 2-year period from beginning of Grade 2, when children were 7; 6 years old, to beginning of Grade 4. A battery of numerical processing tasks (dot enumeration, non-symbolic and symbolic comparison of one- and two-digit numbers, physical comparison, number line estimation) was given five times during the study (beginning and middle of each school year). Efficiency of numerical processing was a very good indicator of development in numerical processing while within-task effects remained largely constant and showed low long-term stability before middle of Grade 3. Children with dyscalculia showed less efficient numerical processing reflected in specifically prolonged response times. Importantly, they showed consistently larger slopes for dot enumeration in the subitizing range, an untypically large compatibility effect when processing two-digit numbers, and they were consistently less accurate in placing numbers on a number line. Thus, we were able to identify parameters that can be used in future research to characterize numerical processing in typical and dyscalculic development. These parameters can also be helpful for identification of children who struggle in their numerical development. PMID:23898310

  6. 18 CFR 390.3 - Waiver applications.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... register pursuant to paragraph (a) of this section will receive a unique numeric identifier that must... for filing. If the waiver is granted, the Secretary will add the assigned numeric identifier to the...

  7. 18 CFR 390.3 - Waiver applications.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... register pursuant to paragraph (a) of this section will receive a unique numeric identifier that must... for filing. If the waiver is granted, the Secretary will add the assigned numeric identifier to the...

  8. 18 CFR 390.3 - Waiver applications.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... register pursuant to paragraph (a) of this section will receive a unique numeric identifier that must... for filing. If the waiver is granted, the Secretary will add the assigned numeric identifier to the...

  9. 18 CFR 390.3 - Waiver applications.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... register pursuant to paragraph (a) of this section will receive a unique numeric identifier that must... for filing. If the waiver is granted, the Secretary will add the assigned numeric identifier to the...

  10. 18 CFR 390.3 - Waiver applications.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... register pursuant to paragraph (a) of this section will receive a unique numeric identifier that must... for filing. If the waiver is granted, the Secretary will add the assigned numeric identifier to the...

  11. The Impact of Numerical Control Technology and Computer Aided Manufacturing on Curriculum Development in Industrial Education and Technology. A Final Report.

    ERIC Educational Resources Information Center

    Bauch, Klaus Dieter

    The study was designed to investigate the effects of Numerical Control Technology and Computer-Aided Manufacturing (NC/CAM) in American industry on industrial education and engineering technology education. The specific purpose was to identify a data base and rationale for curriculum development in NC/CAM through a comparison of views by…

  12. Effects of Leadership on Student Success through the Balanced Leadership Framework

    ERIC Educational Resources Information Center

    Cetin, Munevver; Kinik, F. Sehkar F.

    2016-01-01

    Attempts have been made to identify behavior patterns peculiar to leadership by many institutions and organizations; also numerous studies have been conducted in this area. Of all these organizations, The Interstate School Leaders Licensure Consortium (ISLLC) identifies the definitive standards of school leadership. Examining these standards in…

  13. MODELING MICROBUBBLE DYNAMICS IN BIOMEDICAL APPLICATIONS*

    PubMed Central

    CHAHINE, Georges L.; HSIAO, Chao-Tsung

    2012-01-01

    Controlling microbubble dynamics to produce desirable biomedical outcomes when and where necessary and avoid deleterious effects requires advanced knowledge, which can be achieved only through a combination of experimental and numerical/analytical techniques. The present communication presents a multi-physics approach to study the dynamics combining viscous- in-viscid effects, liquid and structure dynamics, and multi bubble interaction. While complex numerical tools are developed and used, the study aims at identifying the key parameters influencing the dynamics, which need to be included in simpler models. PMID:22833696

  14. A stability analysis on forced convection boundary layer stagnation-point slip flow in Darcy-Forchheimer porous medium towards a shrinking sheet

    NASA Astrophysics Data System (ADS)

    Bakar, Shahirah Abu; Arifin, Norihan Md; Ali, Fadzilah Md; Bachok, Norfifah; Nazar, Roslinda

    2017-08-01

    The stagnation-point flow over a shrinking sheet in Darcy-Forchheimer porous medium is numerically studied. The governing partial differential equations are transformed into ordinary differential equations using a similarity transformation, and then solved numerically by using shooting technique method with Maple implementation. Dual solutions are observed in a certain range of the shrinking parameter. Regarding on numerical solutions, we prepared stability analysis to identify which solution is stable between non-unique solutions by bvp4c solver in Matlab. Further we obtain numerical results or each solution, which enable us to discuss the features of the respective solutions.

  15. An Experimental and Numerical Comparison of the Rupture Locations of an Abdominal Aortic Aneurysm

    PubMed Central

    Doyle, Barry J.; Corbett, Timothy J.; Callanan, Anthony; Walsh, Michael T.; Vorp, David A.; McGloughlin, Timothy M.

    2009-01-01

    Purpose: To identify the rupture locations of idealized physical models of abdominal aortic aneurysm (AAA) using an in-vitro setup and to compare the findings to those predicted numerically. Methods: Five idealized AAAs were manufactured using Sylgard 184 silicone rubber, which had been mechanically characterized from tensile tests, tear tests, and finite element analysis. The models were then inflated to the point of rupture and recorded using a high-speed camera. Numerical modeling attempted to confirm these rupture locations. Regional variations in wall thickness of the silicone models was also quantified and applied to numerical models. Results: Four of the 5 models tested ruptured at inflection points in the proximal and distal regions of the aneurysm sac and not at regions of maximum diameter. These findings agree with high stress regions computed numerically. Wall stress appears to be independent of wall thickness, with high stress occurring at regions of inflection regardless of wall thickness variations. Conclusion: According to these experimental and numerical findings, AAAs experience higher stresses at regions of inflection compared to regions of maximum diameter. Ruptures of the idealized silicone models occurred predominantly at the inflection points, as numerically predicted. Regions of inflection can be easily identified from basic 3-dimensional reconstruction; as ruptures appear to occur at inflection points, these findings may provide a useful insight into the clinical significance of inflection regions. This approach will be applied to patient-specific models in a future study. PMID:19642790

  16. Predicting multi-level drug response with gene expression profile in multiple myeloma using hierarchical ordinal regression.

    PubMed

    Zhang, Xinyan; Li, Bingzong; Han, Huiying; Song, Sha; Xu, Hongxia; Hong, Yating; Yi, Nengjun; Zhuang, Wenzhuo

    2018-05-10

    Multiple myeloma (MM), like other cancers, is caused by the accumulation of genetic abnormalities. Heterogeneity exists in the patients' response to treatments, for example, bortezomib. This urges efforts to identify biomarkers from numerous molecular features and build predictive models for identifying patients that can benefit from a certain treatment scheme. However, previous studies treated the multi-level ordinal drug response as a binary response where only responsive and non-responsive groups are considered. It is desirable to directly analyze the multi-level drug response, rather than combining the response to two groups. In this study, we present a novel method to identify significantly associated biomarkers and then develop ordinal genomic classifier using the hierarchical ordinal logistic model. The proposed hierarchical ordinal logistic model employs the heavy-tailed Cauchy prior on the coefficients and is fitted by an efficient quasi-Newton algorithm. We apply our hierarchical ordinal regression approach to analyze two publicly available datasets for MM with five-level drug response and numerous gene expression measures. Our results show that our method is able to identify genes associated with the multi-level drug response and to generate powerful predictive models for predicting the multi-level response. The proposed method allows us to jointly fit numerous correlated predictors and thus build efficient models for predicting the multi-level drug response. The predictive model for the multi-level drug response can be more informative than the previous approaches. Thus, the proposed approach provides a powerful tool for predicting multi-level drug response and has important impact on cancer studies.

  17. The Moneron Tsunami of September 5, 1971, and Its Manifestation on the Sakhalin Island Coast: Numerical Simulation Results

    NASA Astrophysics Data System (ADS)

    Kostenko, I. S.; Zaytsev, A. I.; Minaev, D. D.; Kurkin, A. A.; Pelinovsky, E. N.; Oshmarina, O. E.

    2018-01-01

    Observation data on the September 5, 1971, earthquake that occurred near the Moneron Island (Sakhalin) have been analyzed and a numerical simulation of the tsunami induced by this earthquake is conducted. The tsunami source identified in this study indicates that the observational data are in good agreement with the results of calculations performed on the basis of shallow-water equations.

  18. Study of application of ERTS-1 imagery to fracture-related mine safety hazards in the coal mining industry

    NASA Technical Reports Server (NTRS)

    Wier, C. E. (Principal Investigator); Wobber, F. J. (Principal Investigator); Russell, O. R.; Amato, R. V.

    1972-01-01

    The author has identified the following significant results. Numerous fractures are identifiable on the 1:120,000 color infrared photography. Some of these fractures are in the proximity of operating open pit mines and should provide opportunities for field checking and confirmation.

  19. Activity in the fronto-parietal network indicates numerical inductive reasoning beyond calculation: An fMRI study combined with a cognitive model

    PubMed Central

    Liang, Peipeng; Jia, Xiuqin; Taatgen, Niels A.; Borst, Jelmer P.; Li, Kuncheng

    2016-01-01

    Numerical inductive reasoning refers to the process of identifying and extrapolating the rule involved in numeric materials. It is associated with calculation, and shares the common activation of the fronto-parietal regions with calculation, which suggests that numerical inductive reasoning may correspond to a general calculation process. However, compared with calculation, rule identification is critical and unique to reasoning. Previous studies have established the central role of the fronto-parietal network for relational integration during rule identification in numerical inductive reasoning. The current question of interest is whether numerical inductive reasoning exclusively corresponds to calculation or operates beyond calculation, and whether it is possible to distinguish between them based on the activity pattern in the fronto-parietal network. To directly address this issue, three types of problems were created: numerical inductive reasoning, calculation, and perceptual judgment. Our results showed that the fronto-parietal network was more active in numerical inductive reasoning which requires more exchanges between intermediate representations and long-term declarative knowledge during rule identification. These results survived even after controlling for the covariates of response time and error rate. A computational cognitive model was developed using the cognitive architecture ACT-R to account for the behavioral results and brain activity in the fronto-parietal network. PMID:27193284

  20. Activity in the fronto-parietal network indicates numerical inductive reasoning beyond calculation: An fMRI study combined with a cognitive model.

    PubMed

    Liang, Peipeng; Jia, Xiuqin; Taatgen, Niels A; Borst, Jelmer P; Li, Kuncheng

    2016-05-19

    Numerical inductive reasoning refers to the process of identifying and extrapolating the rule involved in numeric materials. It is associated with calculation, and shares the common activation of the fronto-parietal regions with calculation, which suggests that numerical inductive reasoning may correspond to a general calculation process. However, compared with calculation, rule identification is critical and unique to reasoning. Previous studies have established the central role of the fronto-parietal network for relational integration during rule identification in numerical inductive reasoning. The current question of interest is whether numerical inductive reasoning exclusively corresponds to calculation or operates beyond calculation, and whether it is possible to distinguish between them based on the activity pattern in the fronto-parietal network. To directly address this issue, three types of problems were created: numerical inductive reasoning, calculation, and perceptual judgment. Our results showed that the fronto-parietal network was more active in numerical inductive reasoning which requires more exchanges between intermediate representations and long-term declarative knowledge during rule identification. These results survived even after controlling for the covariates of response time and error rate. A computational cognitive model was developed using the cognitive architecture ACT-R to account for the behavioral results and brain activity in the fronto-parietal network.

  1. The Carbon Aerosol / Particles Nucleation with a Lidar: Numerical Simulations and Field Studies

    NASA Astrophysics Data System (ADS)

    Miffre, Alain; Anselmo, Christophe; Francis, Mirvatte; David, Gregory; Rairoux, Patrick

    2016-06-01

    In this contribution, we present the results of two recent papers [1,2] published in Optics Express, dedicated to the development of two new lidar methodologies. In [1], while the carbon aerosol (for example, soot particles) is recognized as a major uncertainty on climate and public health, we couple lidar remote sensing with Laser-Induced-Incandescence (LII) to allow retrieving the vertical profile of very low thermal radiation emitted by the carbon aerosol, in agreement with Planck's law, in an urban atmosphere over several hundred meters altitude. In paper [2], awarded as June 2014 OSA Spotlight, we identify the optical requirements ensuring an elastic lidar to be sensitive to new particles formation events (NPF-events) in the atmosphere, while, in the literature, all the ingredients initiating nucleation are still being unrevealed [3]. Both papers proceed with the same methodology by identifying the optical requirements from numerical simulation (Planck and Kirchhoff's laws in [1], Mie and T-matrix numerical codes in [2]), then presenting lidar field application case studies. We believe these new lidar methodologies may be useful for climate, geophysical, as well as fundamental purposes.

  2. The numerical simulation of heat transfer during a hybrid laser-MIG welding using equivalent heat source approach

    NASA Astrophysics Data System (ADS)

    Bendaoud, Issam; Matteï, Simone; Cicala, Eugen; Tomashchuk, Iryna; Andrzejewski, Henri; Sallamand, Pierre; Mathieu, Alexandre; Bouchaud, Fréderic

    2014-03-01

    The present study is dedicated to the numerical simulation of an industrial case of hybrid laser-MIG welding of high thickness duplex steel UR2507Cu with Y-shaped chamfer geometry. It consists in simulation of heat transfer phenomena using heat equivalent source approach and implementing in finite element software COMSOL Multiphysics. A numerical exploratory designs method is used to identify the heat sources parameters in order to obtain a minimal required difference between the numerical results and the experiment which are the shape of the welded zone and the temperature evolution in different locations. The obtained results were found in good correspondence with experiment, both for melted zone shape and thermal history.

  3. Mutations of RNA splicing factors in hematological malignancies.

    PubMed

    Shukla, Girish C; Singh, Jagjit

    2017-11-28

    Systematic large-scale cancer genomic studies have produced numerous significant findings. These studies have not only revealed new cancer-promoting genes, but they also have identified cancer-promoting functions of previously known "housekeeping" genes. These studies have identified numerous mutations in genes which play a fundamental role in nuclear precursor mRNA splicing. Somatic mutations and copy number variation in many of the splicing factors which participate in the formation of multiple spliceosomal complexes appear to play a role in many cancers and in particular in myelodysplastic syndromes (MDS). Mutated proteins seem to interfere with the recognition of the authentic splice sites (SS) leading to utilization of suboptimal alternative splicing sites generating aberrantly spliced mRNA isoforms. This short review is focusing on the function of the splice factors involved in the formation of splicing complexes and potential mechanisms which affect usage of the authentic splice site recognition. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Buckling Behavior of Compression-Loaded Quasi-Isotropic Curved Panels with a Circular Cutout

    NASA Technical Reports Server (NTRS)

    Hilburger, Mark W.; Britt, Vicki O.; Nemeth, Michael P.

    1999-01-01

    Results from a numerical and experimental study of the response of compression-loaded quasi-isotropic curved panels with a centrally located circular cutout are presented. The numerical results were obtained by using a geometrically nonlinear finite element analysis code. The effects of cutout size, panel curvature and initial geo- metric imperfections on the overall response of compression-loaded panels are described. In addition, results are presented from a numerical parametric study that indicate the effects of elastic circumferential edge restraints on the prebuckling and buckling response of a selected panel and these numerical results are compared to experimentally measured results. These restraints are used to identify the effects of circumferential edge restraints that are introduced by the test fixture that was used in the present study. It is shown that circumferential edge restraints can introduce substantial nonlinear prebuckling deformations into shallow compression-loaded curved panels that can results in a significant increase in buckling load.

  5. Gram-positive bacteria of marine origin: a numerical taxonomic study on Mediterranean isolates.

    PubMed

    Ortigosa, M; Garay, E; Pujalte, M J

    1997-12-01

    A numerical taxonomic study was performed on 65 Gram-positive wild strains of heterotrophic, aerobic, marine bacteria, and 9 reference strains. The isolates were obtained from oysters and seawater sampled monthly over one year, by direct plating on Marine Agar. The strains were characterized by 96 morphological, biochemical, physiological and nutritional tests. Clustering yielded 13 phena at 0.62 similarity level (Sl coefficient). Only one of the seven phena containing wild isolates could be identified (Bacillus marinus). A pronounced salt requirement was found in most isolates.

  6. Molecules and mechanisms involved in the generation and migration of cortical interneurons

    PubMed Central

    Hernández-Miranda, Luis R; Parnavelas, John G; Chiara, Francesca

    2010-01-01

    The GABA (γ-aminobutyric acid)-containing interneurons of the neocortex are largely derived from the ganglionic eminences in the subpallium. Numerous studies have previously defined the migratory paths travelled by these neurons from their origins to their destinations in the cortex. We review here results of studies that have identified many of the genes expressed in the subpallium that are involved in the specification of the subtypes of cortical interneurons, and the numerous transcription factors, motogenic factors and guidance molecules that are involved in their migration. PMID:20360946

  7. Numerical Modeling of River Ice Processes on the Lower Nelson River

    NASA Astrophysics Data System (ADS)

    Malenchak, Jarrod Joseph

    Water resource infrastructure in cold regions of the world can be significantly impacted by the existence of river ice. Major engineering concerns related to river ice include ice jam flooding, the design and operation of hydropower facilities and other hydraulic structures, water supplies, as well as ecological, environmental, and morphological effects. The use of numerical simulation models has been identified as one of the most efficient means by which river ice processes can be studied and the effects of river ice be evaluated. The continued advancement of these simulation models will help to develop new theories and evaluate potential mitigation alternatives for these ice issues. In this thesis, a literature review of existing river ice numerical models, of anchor ice formation and modeling studies, and of aufeis formation and modeling studies is conducted. A high level summary of the two-dimensional CRISSP numerical model is presented as well as the developed freeze-up model with a focus specifically on the anchor ice and aufeis growth processes. This model includes development in the detailed heat transfer calculations, an improved surface ice mass exchange model which includes the rapids entrainment process, and an improved dry bed treatment model along with the expanded anchor ice and aufeis growth model. The developed sub-models are tested in an ideal channel setting as somewhat of a model confirmation. A case study of significant anchor ice and aufeis growth on the Nelson River in northern Manitoba, Canada, will be the primary field test case for the anchor ice and aufeis model. A second case study on the same river will be used to evaluate the surface ice components of the model in a field setting. The results from these cases studies will be used to highlight the capabilities and deficiencies in the numerical model and to identify areas of further research and model development.

  8. Brain Structural Integrity and Intrinsic Functional Connectivity Forecast 6 Year Longitudinal Growth in Children's Numerical Abilities.

    PubMed

    Evans, Tanya M; Kochalka, John; Ngoon, Tricia J; Wu, Sarah S; Qin, Shaozheng; Battista, Christian; Menon, Vinod

    2015-08-19

    Early numerical proficiency lays the foundation for acquiring quantitative skills essential in today's technological society. Identification of cognitive and brain markers associated with long-term growth of children's basic numerical computation abilities is therefore of utmost importance. Previous attempts to relate brain structure and function to numerical competency have focused on behavioral measures from a single time point. Thus, little is known about the brain predictors of individual differences in growth trajectories of numerical abilities. Using a longitudinal design, with multimodal imaging and machine-learning algorithms, we investigated whether brain structure and intrinsic connectivity in early childhood are predictive of 6 year outcomes in numerical abilities spanning childhood and adolescence. Gray matter volume at age 8 in distributed brain regions, including the ventrotemporal occipital cortex (VTOC), the posterior parietal cortex, and the prefrontal cortex, predicted longitudinal gains in numerical, but not reading, abilities. Remarkably, intrinsic connectivity analysis revealed that the strength of functional coupling among these regions also predicted gains in numerical abilities, providing novel evidence for a network of brain regions that works in concert to promote numerical skill acquisition. VTOC connectivity with posterior parietal, anterior temporal, and dorsolateral prefrontal cortices emerged as the most extensive network predicting individual gains in numerical abilities. Crucially, behavioral measures of mathematics, IQ, working memory, and reading did not predict children's gains in numerical abilities. Our study identifies, for the first time, functional circuits in the human brain that scaffold the development of numerical skills, and highlights potential biomarkers for identifying children at risk for learning difficulties. Children show substantial individual differences in math abilities and ease of math learning. Early numerical abilities provide the foundation for future academic and professional success in an increasingly technological society. Understanding the early identification of poor math skills has therefore taken on great significance. This work provides important new insights into brain structure and connectivity measures that can predict longitudinal growth of children's math skills over a 6 year period, and may eventually aid in the early identification of children who might benefit from targeted interventions. Copyright © 2015 the authors 0270-6474/15/3511743-08$15.00/0.

  9. Numerical Simulation and Experimental Study of a Dental Handpiece Air Turbine

    NASA Astrophysics Data System (ADS)

    Hsu, Chih-Neng; Chiang, Hsiao-Wei D.; Chang, Ya-Yi

    2011-06-01

    Dental air turbine handpieces have been widely used in clinical dentistry for over 30 years, however, little work has been reported on their performance. In dental air turbine handpieces, the types of flow channel and turbine blade shape can have very different designs. These different designs can have major influence on the torque, rotating speed, and power performance. This research is focused on the turbine blade and the flow channel designs. Using numerical simulation and experiments, the key design parameters which influence the performance of dental hand pieces can be studied. Three types of dental air turbine designs with different turbine blades, nozzle angles, nozzle flow channels, and shroud clearances were tested and analyzed. Very good agreement was demonstrated between the numerical simulation analyses and the experiments. Using the analytical model, parametric studies were performed to identify key design parameters.

  10. Numerical Transcoding Proficiency in 10-Year-Old Schoolchildren is Associated with Gray Matter Inter-Individual Differences: A Voxel-Based Morphometry Study.

    PubMed

    Lubin, Amélie; Rossi, Sandrine; Simon, Grégory; Lanoë, Céline; Leroux, Gaëlle; Poirel, Nicolas; Pineau, Arlette; Houdé, Olivier

    2013-01-01

    Are individual differences in numerical performance sustained by variations in gray matter volume in schoolchildren? To our knowledge, this challenging question for neuroeducation has not yet been investigated in typical development. We used the Voxel-Based Morphometry method to search for possible structural brain differences between two groups of 10-year-old schoolchildren (N = 22) whose performance differed only in numerical transcoding between analog and symbolic systems. The results indicated that children with low numerical proficiency have less gray matter volume in the parietal (particularly in the left intraparietal sulcus and the bilateral angular gyri) and occipito-temporal areas. All the identified regions have previously been shown to be functionally involved in transcoding between analog and symbolic numerical systems. Our data contribute to a better understanding of the intertwined relationships between mathematics learning and brain structure in healthy schoolchildren.

  11. Developmental Dyscalculia in Adults: Beyond Numerical Magnitude Impairment.

    PubMed

    De Visscher, Alice; Noël, Marie-Pascale; Pesenti, Mauro; Dormal, Valérie

    2017-09-01

    Numerous studies have tried to identify the core deficit of developmental dyscalculia (DD), mainly by assessing a possible deficit of the mental representation of numerical magnitude. Research in healthy adults has shown that numerosity, duration, and space share a partly common system of magnitude processing and representation. However, in DD, numerosity processing has until now received much more attention than the processing of other non-numerical magnitudes. To assess whether or not the processing of non-numerical magnitudes is impaired in DD, the performance of 15 adults with DD and 15 control participants was compared in four categorization tasks using numerosities, lengths, durations, and faces (as non-magnitude-based control stimuli). Results showed that adults with DD were impaired in processing numerosity and duration, while their performance in length and face categorization did not differ from controls' performance. Our findings support the idea of a nonsymbolic magnitude deficit in DD, affecting numerosity and duration processing but not length processing.

  12. Maternal Support of Children's Early Numerical Concept Learning Predicts Preschool and First-Grade Math Achievement.

    PubMed

    Casey, Beth M; Lombardi, Caitlin M; Thomson, Dana; Nguyen, Hoa Nha; Paz, Melissa; Theriault, Cote A; Dearing, Eric

    2018-01-01

    The primary goal in this study was to examine maternal support of numerical concepts at 36 months as predictors of math achievement at 4½ and 6-7 years. Observational measures of mother-child interactions (n = 140) were used to examine type of support for numerical concepts. Maternal support that involved labeling the quantities of sets of objects was predictive of later child math achievement. This association was significant for preschool (d = .45) and first-grade math (d = .49), controlling for other forms of numerical support (identifying numerals, one-to-one counting) as well as potential confounding factors. The importance of maternal support of labeling set sizes at 36 months is discussed as a precursor to children's eventual understanding of the cardinal principle. © 2016 The Authors. Child Development © 2016 Society for Research in Child Development, Inc.

  13. Numerical Transcoding Proficiency in 10-Year-Old Schoolchildren is Associated with Gray Matter Inter-Individual Differences: A Voxel-Based Morphometry Study

    PubMed Central

    Lubin, Amélie; Rossi, Sandrine; Simon, Grégory; Lanoë, Céline; Leroux, Gaëlle; Poirel, Nicolas; Pineau, Arlette; Houdé, Olivier

    2013-01-01

    Are individual differences in numerical performance sustained by variations in gray matter volume in schoolchildren? To our knowledge, this challenging question for neuroeducation has not yet been investigated in typical development. We used the Voxel-Based Morphometry method to search for possible structural brain differences between two groups of 10-year-old schoolchildren (N = 22) whose performance differed only in numerical transcoding between analog and symbolic systems. The results indicated that children with low numerical proficiency have less gray matter volume in the parietal (particularly in the left intraparietal sulcus and the bilateral angular gyri) and occipito-temporal areas. All the identified regions have previously been shown to be functionally involved in transcoding between analog and symbolic numerical systems. Our data contribute to a better understanding of the intertwined relationships between mathematics learning and brain structure in healthy schoolchildren. PMID:23630510

  14. Improved numerical methods for turbulent viscous recirculating flows

    NASA Technical Reports Server (NTRS)

    Turan, A.

    1985-01-01

    The hybrid-upwind finite difference schemes employed in generally available combustor codes possess excessive numerical diffusion errors which preclude accurate quantative calculations. The present study has as its primary objective the identification and assessment of an improved solution algorithm as well as discretization schemes applicable to analysis of turbulent viscous recirculating flows. The assessment is carried out primarily in two dimensional/axisymetric geometries with a view to identifying an appropriate technique to be incorporated in a three-dimensional code.

  15. The Root Cause of the Overheating Problem

    NASA Technical Reports Server (NTRS)

    Liou, Meng-Sing

    2017-01-01

    Previously we identified the receding flow, where two fluid streams recede from each other, as an open numerical problem, because all well-known numerical fluxes give an anomalous temperature rise, thus called the overheating problem. This phenomenon, although presented in several textbooks, and many previous publications, has scarcely been satisfactorily addressed and the root cause of the overheating problem not well understood. We found that this temperature rise was solely connected to entropy rise and proposed to use the method of characteristics to eradicate the problem. However, the root cause of the entropy production was still unclear. In the present study, we identify the cause of this problem: the entropy rise is rooted in the pressure flux in a finite volume formulation and is implanted at the first time step. It is found theoretically inevitable for all existing numerical flux schemes used in the finite volume setting, as confirmed by numerical tests. This difficulty cannot be eliminated by manipulating time step, grid size, spatial accuracy, etc, although the rate of overheating depends on the flux scheme used. Finally, we incorporate the entropy transport equation, in place of the energy equation, to ensure preservation of entropy, thus correcting this temperature anomaly. Its applicability is demonstrated for some relevant 1D and 2D problems. Thus, the present study validates that the entropy generated ab initio is the genesis of the overheating problem.

  16. A Systematic Review of the Research on Vocabulary Instruction That Impacts Text Comprehension

    ERIC Educational Resources Information Center

    Wright, Tanya S.; Cervetti, Gina N.

    2017-01-01

    Although numerous studies have identified a correlational relationship between vocabulary and comprehension, we know less about vocabulary interventions that impact reading comprehension. Therefore, this study is a systematic review of vocabulary interventions with comprehension outcomes. Analyses of 36 studies that met criteria are organized…

  17. Backward-in-time methods to simulate large-scale transport and mixing in the ocean

    NASA Astrophysics Data System (ADS)

    Prants, S. V.

    2015-06-01

    In oceanography and meteorology, it is important to know not only where water or air masses are headed for, but also where they came from as well. For example, it is important to find unknown sources of oil spills in the ocean and of dangerous substance plumes in the atmosphere. It is impossible with the help of conventional ocean and atmospheric numerical circulation models to extrapolate backward from the observed plumes to find the source because those models cannot be reversed in time. We review here recently elaborated backward-in-time numerical methods to identify and study mesoscale eddies in the ocean and to compute where those waters came from to a given area. The area under study is populated with a large number of artificial tracers that are advected backward in time in a given velocity field that is supposed to be known analytically or numerically, or from satellite and radar measurements. After integrating advection equations, one gets positions of each tracer on a fixed day in the past and can identify from known destinations a particle positions at earlier times. The results provided show that the method is efficient, for example, in estimating probabilities to find increased concentrations of radionuclides and other pollutants in oceanic mesoscale eddies. The backward-in-time methods are illustrated in this paper with a few examples. Backward-in-time Lagrangian maps are applied to identify eddies in satellite-derived and numerically generated velocity fields and to document the pathways by which they exchange water with their surroundings. Backward-in-time trapping maps are used to identify mesoscale eddies in the altimetric velocity field with a risk to be contaminated by Fukushima-derived radionuclides. The results of simulations are compared with in situ mesurement of caesium concentration in sea water samples collected in a recent research vessel cruise in the area to the east of Japan. Backward-in-time latitudinal maps and the corresponding material-line techniques are applied to document transport of water masses across strong currents. Backward-in-time drift maps are shown to be useful in identifying the Lagrangian fronts favorable for fishery.

  18. Simulation of forced convection in non-Newtonian fluid through sandstones

    NASA Astrophysics Data System (ADS)

    Gokhale, M. Y.; Fernandes, Ignatius

    2017-11-01

    Numerical simulation is carried out to study forced convection in non-Newtonian fluids flowing through sandstones. Simulation is carried out using lattice Boltzmann method (LBM) for both shear-thinning and shear-thickening, by varying the power law index from 0.5 to 1.5 in Carreau-Yasuda model. Parameters involved in LBM and Carreau model are identified to achieve numerical convergence. Permeability and porosity are varied in the range of 10-10-10-6 and 0.1-0.7, respectively, to match actual geometrical properties of sandstone. Numerical technology is validated by establishing Darcy's law by plotting the graph between velocity and pressure gradient. Consequently, investigation is carried out to study the influence of material properties of porous media on flow properties such as velocity profiles, temperature profiles, and Nusselt number.

  19. Flow optimization study of a batch microfluidics PET tracer synthesizing device

    PubMed Central

    Elizarov, Arkadij M.; Meinhart, Carl; van Dam, R. Michael; Huang, Jiang; Daridon, Antoine; Heath, James R.; Kolb, Hartmuth C.

    2010-01-01

    We present numerical modeling and experimental studies of flow optimization inside a batch microfluidic micro-reactor used for synthesis of human-scale doses of Positron Emission Tomography (PET) tracers. Novel techniques are used for mixing within, and eluting liquid out of, the coin-shaped reaction chamber. Numerical solutions of the general incompressible Navier Stokes equations along with time-dependent elution scalar field equation for the three dimensional coin-shaped geometry were obtained and validated using fluorescence imaging analysis techniques. Utilizing the approach presented in this work, we were able to identify optimized geometrical and operational conditions for the micro-reactor in the absence of radioactive material commonly used in PET related tracer production platforms as well as evaluate the designed and fabricated micro-reactor using numerical and experimental validations. PMID:21072595

  20. Literacy Skills among Academically Underprepared Students

    ERIC Educational Resources Information Center

    Perin, Dolores

    2013-01-01

    A review of studies published from 2000 to 2012 was conducted to describe the literacy skills of underprepared postsecondary students, identify teaching approaches designed to bring their skills to the college level, and determine methods of embedding developmental instruction in college-level course work. The studies pinpointed numerous weak…

  1. Academic Success Factors: An IT Student Perspective

    ERIC Educational Resources Information Center

    Zhang, Aimao; Aasheim, Cheryl L.

    2011-01-01

    Numerous studies have identified causal factors for academic success. Factors vary from personal factors, such as cognitive style (McKenzie & Schweitzer, 2001), to social factors, such as culture differences (Aysan, Tanriogen, & Tanriogen, 1996). However, in these studies it is re-searchers who theorized the causal dimensions and…

  2. A numerical study of attraction/repulsion collective behavior models: 3D particle analyses and 1D kinetic simulations

    NASA Astrophysics Data System (ADS)

    Vecil, Francesco; Lafitte, Pauline; Rosado Linares, Jesús

    2013-10-01

    We study at particle and kinetic level a collective behavior model based on three phenomena: self-propulsion, friction (Rayleigh effect) and an attractive/repulsive (Morse) potential rescaled so that the total mass of the system remains constant independently of the number of particles N. In the first part of the paper, we introduce the particle model: the agents are numbered and described by their position and velocity. We identify five parameters that govern the possible asymptotic states for this system (clumps, spheres, dispersion, mills, rigid-body rotation, flocks) and perform a numerical analysis on the 3D setting. Then, in the second part of the paper, we describe the kinetic system derived as the limit from the particle model as N tends to infinity; we propose, in 1D, a numerical scheme for the simulations, and perform a numerical analysis devoted to trying to recover asymptotically patterns similar to those emerging for the equivalent particle systems, when particles originally evolved on a circle.

  3. Carbon nanotube thin film strain sensors: comparison between experimental tests and numerical simulations

    NASA Astrophysics Data System (ADS)

    Lee, Bo Mi; Loh, Kenneth J.

    2017-04-01

    Carbon nanotubes can be randomly deposited in polymer thin film matrices to form nanocomposite strain sensors. However, a computational framework that enables the direct design of these nanocomposite thin films is still lacking. The objective of this study is to derive an experimentally validated and two-dimensional numerical model of carbon nanotube-based thin film strain sensors. This study consisted of two parts. First, multi-walled carbon nanotube (MWCNT)-Pluronic strain sensors were fabricated using vacuum filtration, and their physical, electrical, and electromechanical properties were evaluated. Second, scanning electron microscope images of the films were used for identifying topological features of the percolated MWCNT network, where the information obtained was then utilized for developing the numerical model. Validation of the numerical model was achieved by ensuring that the area ratios (of MWCNTs relative to the polymer matrix) were equivalent for both the experimental and modeled cases. Strain sensing behavior of the percolation-based model was simulated and then compared to experimental test results.

  4. Insights into numerical cognition: considering eye-fixations in number processing and arithmetic.

    PubMed

    Mock, J; Huber, S; Klein, E; Moeller, K

    2016-05-01

    Considering eye-fixation behavior is standard in reading research to investigate underlying cognitive processes. However, in numerical cognition research eye-tracking is used less often and less systematically. Nevertheless, we identified over 40 studies on this topic from the last 40 years with an increase of eye-tracking studies on numerical cognition during the last decade. Here, we review and discuss these empirical studies to evaluate the added value of eye-tracking for the investigation of number processing. Our literature review revealed that the way eye-fixation behavior is considered in numerical cognition research ranges from investigating basic perceptual aspects of processing non-symbolic and symbolic numbers, over assessing the common representational space of numbers and space, to evaluating the influence of characteristics of the base-10 place-value structure of Arabic numbers and executive control on number processing. Apart from basic results such as reading times of numbers increasing with their magnitude, studies revealed that number processing can influence domain-general processes such as attention shifting-but also the other way round. Domain-general processes such as cognitive control were found to affect number processing. In summary, eye-fixation behavior allows for new insights into both domain-specific and domain-general processes involved in number processing. Based thereon, a processing model of the temporal dynamics of numerical cognition is postulated, which distinguishes an early stage of stimulus-driven bottom-up processing from later more top-down controlled stages. Furthermore, perspectives for eye-tracking research in numerical cognition are discussed to emphasize the potential of this methodology for advancing our understanding of numerical cognition.

  5. 32 CFR 701.106 - Collecting information about individuals.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... their SSN. E.O. 9397 requires Federal Agencies to use SSNs as numerical identifiers for individuals in... provide their SSNs. In many instances, this becomes the individual's numerical identifier and is used to... in a system of records, a PAS must be provided to the individual, regardless of the method used to...

  6. The strength study of the rotating device driver indexing spatial mechanism

    NASA Astrophysics Data System (ADS)

    Zakharenkov, N. V.; Kvasov, I. N.

    2018-04-01

    The indexing spatial mechanisms are widely used in automatic machines. The mechanisms maximum load-bearing capacity measurement is possible based on both the physical and numerical models tests results. The paper deals with the driven disk indexing spatial cam mechanism numerical model at the constant angular cam velocity. The presented mechanism kinematics and geometry parameters and finite element model are analyzed in the SolidWorks design environment. The calculation initial data and missing parameters having been found from the structure analysis were identified. The structure and kinematics analysis revealed the mechanism failures possible reasons. The numerical calculations results showing the structure performance at the contact and bending stresses are represented.

  7. Application of Energy Function as a Measure of Error in the Numerical Solution for Online Transient Stability Assessment

    NASA Astrophysics Data System (ADS)

    Sarojkumar, K.; Krishna, S.

    2016-08-01

    Online dynamic security assessment (DSA) is a computationally intensive task. In order to reduce the amount of computation, screening of contingencies is performed. Screening involves analyzing the contingencies with the system described by a simpler model so that computation requirement is reduced. Screening identifies those contingencies which are sure to not cause instability and hence can be eliminated from further scrutiny. The numerical method and the step size used for screening should be chosen with a compromise between speed and accuracy. This paper proposes use of energy function as a measure of error in the numerical solution used for screening contingencies. The proposed measure of error can be used to determine the most accurate numerical method satisfying the time constraint of online DSA. Case studies on 17 generator system are reported.

  8. A dynamic load estimation method for nonlinear structures with unscented Kalman filter

    NASA Astrophysics Data System (ADS)

    Guo, L. N.; Ding, Y.; Wang, Z.; Xu, G. S.; Wu, B.

    2018-02-01

    A force estimation method is proposed for hysteretic nonlinear structures. The equation of motion for the nonlinear structure is represented in state space and the state variable is augmented by the unknown the time history of external force. Unscented Kalman filter (UKF) is improved for the force identification in state space considering the ill-condition characteristic in the computation of square roots for the covariance matrix. The proposed method is firstly validated by a numerical simulation study of a 3-storey nonlinear hysteretic frame excited by periodic force. Each storey is supposed to follow a nonlinear hysteretic model. The external force is identified and the measurement noise is considered in this case. Then a case of a seismically isolated building subjected to earthquake excitation and impact force is studied. The isolation layer performs nonlinearly during the earthquake excitation. Impact force between the seismically isolated structure and the retaining wall is estimated with the proposed method. Uncertainties such as measurement noise, model error in storey stiffness and unexpected environmental disturbances are considered. A real-time substructure testing of an isolated structure is conducted to verify the proposed method. In the experimental study, the linear main structure is taken as numerical substructure while the one of the isolations with additional mass is taken as the nonlinear physical substructure. The force applied by the actuator on the physical substructure is identified and compared with the measured value from the force transducer. The method proposed in this paper is also validated by shaking table test of a seismically isolated steel frame. The acceleration of the ground motion as the unknowns is identified by the proposed method. Results from both numerical simulation and experimental studies indicate that the UKF based force identification method can be used to identify external excitations effectively for the nonlinear structure with accurate results even with measurement noise, model error and environmental disturbances.

  9. Research Review for the Study of Pacific At-Risk Factors.

    ERIC Educational Resources Information Center

    Kawakami, Alice

    This report provides a brief review of literature on at-risk students and implications for a study being conducted by the Pacific Region Educational Laboratory (PREL). The study aims to identify factors that put students at-risk of failure within the present system of public high schools in the Pacific region. Although numerous studies present a…

  10. Of Organic Farmers and "Good Farmers": Changing Habitus in Rural England

    ERIC Educational Resources Information Center

    Sutherland, Lee-Ann; Darnhofer, Ika

    2012-01-01

    In recent years, numerous studies have identified the importance of cultural constructions of "good farming" to farming practice. In this paper, we develop the "good farming" construct through an empirical study of organic and conventional farmers, focussing on how change occurs. Drawing on Bourdieu's concepts of cultural…

  11. An Exploratory Comparative Case Study of Employee Engagement in Christian Higher Education

    ERIC Educational Resources Information Center

    Daniels, Jessica R.

    2016-01-01

    Numerous studies have identified a positive correlation between employee engagement and overall organizational performance. However, research on employee engagement specifically within higher education is limited, and even less attention has been focused on engagement within the context of Christian higher education. An exploratory comparative…

  12. Deformation and Failure of Protein Materials in Physiologically Extreme Conditions and Disease

    DTIC Science & Technology

    2009-03-01

    resonance (NMR) spectroscopy and X- ray crystallography have advanced our ability to identify 3D protein structures57. Site-specific studies using NMR, a... ray crystallography, providing structural and temporal information about mechanisms of deformation and assembly (for example in intermediate...tens of thousands of 3D atomistic protein structures, identifying the structure of numerous proteins from varying species sources60. X- ray

  13. A review on functional and structural brain connectivity in numerical cognition

    PubMed Central

    Moeller, Korbinian; Willmes, Klaus; Klein, Elise

    2015-01-01

    Only recently has the complex anatomo-functional system underlying numerical cognition become accessible to evaluation in the living brain. We identified 27 studies investigating brain connectivity in numerical cognition. Despite considerable heterogeneity regarding methodological approaches, populations investigated, and assessment procedures implemented, the results provided largely converging evidence regarding the underlying brain connectivity involved in numerical cognition. Analyses of both functional/effective as well as structural connectivity have consistently corroborated the assumption that numerical cognition is subserved by a fronto-parietal network including (intra)parietal as well as (pre)frontal cortex sites. Evaluation of structural connectivity has indicated the involvement of fronto-parietal association fibers encompassing the superior longitudinal fasciculus dorsally and the external capsule/extreme capsule system ventrally. Additionally, commissural fibers seem to connect the bilateral intraparietal sulci when number magnitude information is processed. Finally, the identification of projection fibers such as the superior corona radiata indicates connections between cortex and basal ganglia as well as the thalamus in numerical cognition. Studies on functional/effective connectivity further indicated a specific role of the hippocampus. These specifications of brain connectivity augment the triple-code model of number processing and calculation with respect to how gray matter areas associated with specific number-related representations may work together. PMID:26029075

  14. 47 CFR 2.926 - FCC identifier.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Arabic numerals, capital letters, or combination thereof. A prospective grantee or his authorized... shall consist of a series of Arabic numerals, capital letters or a combination thereof, and may include the dash or hyphen (-). The total of Arabic numerals, capital letters and dashes or hyphens shall not...

  15. 47 CFR 2.926 - FCC identifier.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Arabic numerals, capital letters, or combination thereof. A prospective grantee or his authorized... shall consist of a series of Arabic numerals, capital letters or a combination thereof, and may include the dash or hyphen (-). The total of Arabic numerals, capital letters and dashes or hyphens shall not...

  16. A numerical performance assessment of a commercial cardiopulmonary by-pass blood heat exchanger.

    PubMed

    Consolo, Filippo; Fiore, Gianfranco B; Pelosi, Alessandra; Reggiani, Stefano; Redaelli, Alberto

    2015-06-01

    We developed a numerical model, based on multi-physics computational fluid dynamics (CFD) simulations, to assist the design process of a plastic hollow-fiber bundle blood heat exchanger (BHE) integrated within the INSPIRE(TM), a blood oxygenator (OXY) for cardiopulmonary by-pass procedures, recently released by Sorin Group Italia. In a comparative study, we analyzed five different geometrical design solutions of the BHE module. Quantitative geometrical-dependent parameters providing a comprehensive evaluation of both the hemo- and thermo-dynamics performance of the device were extracted to identify the best-performing prototypical solution. A convenient design configuration was identified, characterized by (i) a uniform blood flow pattern within the fiber bundle, preventing blood flow shunting and the onset of stagnation/recirculation areas and/or high velocity pathways, (ii) an enhanced blood heating efficiency, and (iii) a reduced blood pressure drop. The selected design configuration was then prototyped and tested to experimentally characterize the device performance. Experimental results confirmed numerical predictions, proving the effectiveness of CFD modeling as a reliable tool for in silico identification of suitable working conditions of blood handling medical devices. Notably, the numerical approach limited the need for extensive prototyping, thus reducing the corresponding machinery costs and time-to-market. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.

  17. Resilience in Inner City Youth: Childhood Predictors of Occupational Status across the Lifespan

    ERIC Educational Resources Information Center

    DiRago, Ana C.; Vaillant, George E.

    2007-01-01

    The present prospective study has followed a cohort of inner city men from adolescence (14 plus or minus 2) until age 65. While previous studies of shorter duration have identified numerous childhood factors that powerfully influence outcomes in young adulthood, this study examined the effect of these well-documented prognostic factors on…

  18. Outcome Studies on the Efficacy of Art Therapy: A Review of Findings

    ERIC Educational Resources Information Center

    Slayton, Sarah; D'Archer, Jeanne; Kaplan, Frances

    2010-01-01

    In response to a review by Reynolds, Nabors, and Quinlan (2000) of the art therapy literature prior to 1999, this review article identifies studies from 1999-2007 that measured outcomes of art therapy effectiveness with all ages of clinical and nonclinical populations. Although numerous studies blend art therapy with other modalities, this review…

  19. Storybook Read-Alouds to Enhance Students' Comprehension Skills in ESL Classrooms: A Case Study

    ERIC Educational Resources Information Center

    Omar, Ainon; Saufi, Maizatulliza Mohd.

    2015-01-01

    The effectiveness of using storybooks during read-alouds to develop children's comprehension skills as well as in understanding the story has been widely studied. The reading aloud strategy has also been proven through numerous researches to be the most highly recommended activity for encouraging language and literacy. The study identified the…

  20. The South Carolina Coastal Erosion Study: Numerical modeling of circulation and sediment transport in Long Bay, SC

    NASA Astrophysics Data System (ADS)

    Warner, J. C.; Sullivan, C.; Voulgaris, G.; Work, P.; Haas, K.; Hanes, D. M.

    2004-12-01

    Long Bay, South Carolina, is a heavily populated coastal region that supports a large tourism industry. Sand resources are important for both recreation and coastal habitat. Earlier geological framework studies have identified a large sand deposit oblique to the shoreline, oriented clockwise in the offshore direction. This sand feature is ~ 10 km long, 2 km wide, and in excess of 3m thick, possibly providing a source for beach nourishment material. Objectives of this study are to describe the physical processes that control the transport of sediment in Long Bay, specifically off the coast of Myrtle Beach, South Carolina. Specifically we seek to 1) measure and model the oceanographic circulation in the region, 2) identify the processes that maintain the presence of the offshore sand feature, 3) quantify the control that the shoal exerts on the nearshore through changes in wave energy propagation, and 4) identify consequences of removal of the offshore sand feature. Both observational and numerical experiments are used to study the oceanographic circulation and transport of sediment. The observational study is described in an accompanying poster and consists of eight sites that measured tides, surface waves, currents, salinity, temperature, suspended sediment concentrations, and bed forms from October 2003 to April 2004. Numerical modeling for circulation and sediment transport in the study region uses a new version of ROMS (v2.1) that now includes transport of multiple grain sizes, coupling of sediment transport to wave bottom boundary layer models, and evolution of the bottom morphology. The SWAN model is used to compute wave propagation. Results indicate that currents in the study area are strongly influenced by both tidal motion and wind driven setup / setdown. The presence of the offshore sand feature alters the residual flows in the region. Sediment transport is more significant during periods of sustained strong winds that generate local waves. Wind direction plays a key role in determining the direction and magnitude of sediment transport.

  1. Identifying Success Factors in Community College Grants Awarded under the U.S. Department of Labor's Community-Based Job Training Grants Program, 2005-2008

    ERIC Educational Resources Information Center

    Garrison, Debra Linley

    2010-01-01

    This study provides an in-depth analysis of the Community-Based Job Training Grants awarded by the U.S. Department of Labor from 2005 to 2008. The primary research question is designed to identify the most important factors in meeting grant-training outcomes; however, numerous secondary questions were addressed to provide the reader with in-depth…

  2. Biodiversity of Bacterial Ecosystems in Traditional Egyptian Domiati Cheese▿

    PubMed Central

    El-Baradei, Gaber; Delacroix-Buchet, Agnès; Ogier, Jean-Claude

    2007-01-01

    Bacterial biodiversity occurring in traditional Egyptian soft Domiati cheese was studied by PCR-temporal temperature gel electrophoresis (TTGE) and PCR-denaturing gradient gel electrophoresis (DGGE). Bands were identified using a reference species database (J.-C. Ogier et al., Appl. Environ. Microbiol. 70:5628-5643, 2004); de novo bands having nonidentified migration patterns were identified by DNA sequencing. Results reveal a novel bacterial profile and extensive bacterial biodiversity in Domiati cheeses, as reflected by the numerous bands present in TTGE and DGGE patterns. The dominant lactic acid bacteria (LAB) identified were as follows: Leuconostoc mesenteroides, Lactococcus garvieae, Aerococcus viridans, Lactobacillus versmoldensis, Pediococcus inopinatus, and Lactococcus lactis. Frequent non-LAB species included numerous coagulase-negative staphylococci, Vibrio spp., Kocuria rhizophila, Kocuria kristinae, Kocuria halotolerans, Arthrobacter spp./Brachybacterium tyrofermentans. This is the first time that the majority of these species has been identified in Domiati cheese. Nearly all the dominant and frequent bacterial species are salt tolerant, and several correspond to known marine bacteria. As Domiati cheese contains 5.4 to 9.5% NaCl, we suggest that these bacteria are likely to have an important role in the ripening process. This first systematic study of the microbial composition of Domiati cheeses reveals great biodiversity and evokes a role for marine bacteria in determining cheese type. PMID:17189434

  3. Biodiversity of bacterial ecosystems in traditional Egyptian Domiati cheese.

    PubMed

    El-Baradei, Gaber; Delacroix-Buchet, Agnès; Ogier, Jean-Claude

    2007-02-01

    Bacterial biodiversity occurring in traditional Egyptian soft Domiati cheese was studied by PCR-temporal temperature gel electrophoresis (TTGE) and PCR-denaturing gradient gel electrophoresis (DGGE). Bands were identified using a reference species database (J.-C. Ogier et al., Appl. Environ. Microbiol. 70:5628-5643, 2004); de novo bands having nonidentified migration patterns were identified by DNA sequencing. Results reveal a novel bacterial profile and extensive bacterial biodiversity in Domiati cheeses, as reflected by the numerous bands present in TTGE and DGGE patterns. The dominant lactic acid bacteria (LAB) identified were as follows: Leuconostoc mesenteroides, Lactococcus garvieae, Aerococcus viridans, Lactobacillus versmoldensis, Pediococcus inopinatus, and Lactococcus lactis. Frequent non-LAB species included numerous coagulase-negative staphylococci, Vibrio spp., Kocuria rhizophila, Kocuria kristinae, Kocuria halotolerans, Arthrobacter spp./Brachybacterium tyrofermentans. This is the first time that the majority of these species has been identified in Domiati cheese. Nearly all the dominant and frequent bacterial species are salt tolerant, and several correspond to known marine bacteria. As Domiati cheese contains 5.4 to 9.5% NaCl, we suggest that these bacteria are likely to have an important role in the ripening process. This first systematic study of the microbial composition of Domiati cheeses reveals great biodiversity and evokes a role for marine bacteria in determining cheese type.

  4. Male Batterer Profiles: Support for an Empirically Generated Typology

    ERIC Educational Resources Information Center

    Chiffriller, Sheila H.; Hennessy, James J.

    2006-01-01

    Domestic violence is an issue that affects different sides of society; numerous studies have shown that it is a problem that is increasing. This study used a discriminant analysis to identify those scales that might be more effective at predicting group membership among batterer types: pathological batterers, sexually violent batterers, generally…

  5. Market projections of cellulose nanomaterial-enabled products-- Part 2: Volume estimates

    Treesearch

    John Cowie; E.M. (Ted) Bilek; Theodore H. Wegner; Jo Anne Shatkin

    2014-01-01

    Nanocellulose has enormous potential to provide an important materials platform in numerous product sectors. This study builds on previous work by the same authors in which likely high-volume, low-volume, and novel applications for cellulosic nanomaterials were identified. In particular, this study creates a transparent methodology and estimates the potential annual...

  6. Why College Students Cheat: A Conceptual Model of Five Factors

    ERIC Educational Resources Information Center

    Yu, Hongwei; Glanzer, Perry L.; Johnson, Byron R.; Sriram, Rishi; Moore, Brandon

    2018-01-01

    Though numerous studies have identified factors associated with academic misconduct, few have proposed conceptual models that could make sense of multiple factors. In this study, we used structural equation modeling (SEM) to test a conceptual model of five factors using data from a relatively large sample of 2,503 college students. The results…

  7. Let the Data Speak: Gender Differences in Math Curriculum-Based Measurement

    ERIC Educational Resources Information Center

    Yarbrough, Jamie L.; Cannon, Laura; Bergman, Shawn; Kidder-Ashley, Pamela; McCane-Bowling, Sara

    2017-01-01

    Numerous studies have identified differences between males and females in academic performance across the areas of reading, writing, and mathematics. The current study examined whether or not gender differences exist when math curriculum-based measures (M-CBMs) are used to assess basic math computation skills in a sample of third- through…

  8. Redesigning the Role of Deputy Heads in Norwegian Schools--Tensions between Control and Autonomy?

    ERIC Educational Resources Information Center

    Abrahamsen, Hedvig

    2018-01-01

    A substantial body of research emphasises school leadership as a major influence on quality improvement in schools. Although numerous studies have identified the importance of the principal, fewer studies have examined the middle management level within schools, the deputy heads and assistant principals. Influenced by international trends, local…

  9. 47 CFR 2.926 - FCC identifier.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... applicant/grantee in the code assignment(s). (c) A grantee code may consist of Arabic numerals, capital... product code assigned by the grantee shall consist of a series of Arabic numerals, capital letters or a combination thereof, and may include the dash or hyphen (-). The total of Arabic numerals, capital letters and...

  10. 47 CFR 2.926 - FCC identifier.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... applicant/grantee in the code assignment(s). (c) A grantee code may consist of Arabic numerals, capital... product code assigned by the grantee shall consist of a series of Arabic numerals, capital letters or a combination thereof, and may include the dash or hyphen (-). The total of Arabic numerals, capital letters and...

  11. 47 CFR 2.926 - FCC identifier.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... applicant/grantee in the code assignment(s). (c) A grantee code may consist of Arabic numerals, capital... product code assigned by the grantee shall consist of a series of Arabic numerals, capital letters or a combination thereof, and may include the dash or hyphen (-). The total of Arabic numerals, capital letters and...

  12. Stability of the mode-locking regime in tapered quantum-dot lasers

    NASA Astrophysics Data System (ADS)

    Bardella, P.; Drzewietzki, L.; Rossetti, M.; Weber, C.; Breuer, S.

    2018-02-01

    We study numerically and experimentally the role of the injection current and reverse bias voltage on the pulse stability of tapered, passively mode-locked, Quantum Dot (QD) lasers. By using a multi-section delayed differential equation and introducing in the model the QD inhomogenous broadening, we are able to predict the onset of leading and trailing edge instabilities in the emitted pulse trains and to identify specific trends of stability in dependence on the laser biasing conditions. The numerical results are confirmed experimentally trough amplitude and timing stability analysis of the pulses.

  13. Numerical aerodynamic simulation facility preliminary study, volume 1

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A technology forecast was established for the 1980-1985 time frame and the appropriateness of various logic and memory technologies for the design of the numerical aerodynamic simulation facility was assessed. Flow models and their characteristics were analyzed and matched against candidate processor architecture. Metrics were established for the total facility, and housing and support requirements of the facility were identified. An overview of the system is presented, with emphasis on the hardware of the Navier-Stokes solver, which is the key element of the system. Software elements of the system are also discussed.

  14. The Role of Slope in the Fill and Spill Process of Linked Submarine Minibasins. Model Validation and Numerical Runs at Laboratory Scale.

    NASA Astrophysics Data System (ADS)

    Bastianon, E.; Viparelli, E.; Cantelli, A.; Imran, J.

    2015-12-01

    Primarily motivated by applications to hydrocarbon exploration, submarine minibasins have been widely studied during recent decades to understand the physical phenomenon that characterizes their fill process. Minibasins were identified in seismic records in the Gulf of Mexico, Angola, Trinidad and Tobago, Ireland, Nigeria and also in outcrops (e.g., Tres Pasos Formation, southern Chile). The filling of minibasis is generally described as the 'fill-and-spill' process, i.e. turbidity currents enter, are reflected on the minibasin flanks, pond and deposit suspended sediment. As the minibasin fills the turbidity current spills on the lowermost zone of the basin flank -spill point - and start filling the next basin downdip. Different versions of this simplified model were used to interpret field and laboratory data but it is still unclear how the minibasin size compared to the magnitude of the turbidity currents, the position of each basin in the system, and the slope of the minibasin system affects the characteristics of the deposit (e.g., geometry, grain size). Here, we conduct a numerical study to investigate how the 'fill-and-spill' model changes with increase in slopes of the minibasin system. First, we validate our numerical results against laboratory experiment performed on two linked minibasins located on a horizontal platform by comparing measured and simulated deposit geometries, suspended sediment concentration profiles and grain sizes. We then perform numerical simulations by increasing the minibasin system slope: deposit and flow characteristics are compared with the case of horizontal platform to identify how the depositional processes change. For the numerical study we used a three-dimensional numerical model of turbidity currents that solves the Reynolds-averaged Navier-Stokes equations for dilute suspensions. Turbulence is modeled by a buoyancy-modified k-ɛ closure. The numerical model has a deforming bottom boundary, to model the changes in the bed deposit due to erosion and deposition. Preliminary two dimensional simulations show that in the early stages of the fill process the suspended sediment concentration is higher in the first basin than in the second one, the coarse grain sizes are preferentially trapped in the updip basins and the fine sediment fractions spill into downdip basins.

  15. USEPA RESEARCH ON FISH - HABITAT RELATIONSHIPS IN GREAT LAKES COASTAL MARSHES

    EPA Science Inventory

    Despite numerous studies documenting fish use of particular habitat elements, the role of habitat mosaics in supporting wetland fishes is poorly understood. USEPA's Mid-Continent Ecology Division has initiated research to identify relationships of fish and habitat in coastal mars...

  16. CHARACTERIZATION OF PARTICULATE MATTER FROM PHOENIX, ARIZONA, USING RAY FLUORESCENCE AND COMPUTER-CONTROLLED SCANNING ELECTRON MICROSCOPY

    EPA Science Inventory

    Numerous epidemiological studies have found associations between airborne particulate matter measured at community monitors and increased mortality and morbidity. Chemical and physical characteristics of particulate matter (e.g., elemental composition, size) and source identifi...

  17. FORT HALL SOURCE APPORTIONMENT STUDY (FINAL REPORT)

    EPA Science Inventory

    Air quality monitoring on the Fort Hall Indian Reservation has revealed numerous exceedances of the National Ambient Air Quality Standard (NAAQS) for 24-h averaged PM10 mass. Wind-directional analysis coupled with PM10 measurements have identified the FMC elemental phosphorus p...

  18. Numerical studies of nonlinear ultrasonic guided waves in uniform waveguides with arbitrary cross sections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zuo, Peng; Fan, Zheng, E-mail: ZFAN@ntu.edu.sg; Zhou, Yu

    2016-07-15

    Nonlinear guided waves have been investigated widely in simple geometries, such as plates, pipe and shells, where analytical solutions have been developed. This paper extends the application of nonlinear guided waves to waveguides with arbitrary cross sections. The criteria for the existence of nonlinear guided waves were summarized based on the finite deformation theory and nonlinear material properties. Numerical models were developed for the analysis of nonlinear guided waves in complex geometries, including nonlinear Semi-Analytical Finite Element (SAFE) method to identify internal resonant modes in complex waveguides, and Finite Element (FE) models to simulate the nonlinear wave propagation at resonantmore » frequencies. Two examples, an aluminum plate and a steel rectangular bar, were studied using the proposed numerical model, demonstrating the existence of nonlinear guided waves in such structures and the energy transfer from primary to secondary modes.« less

  19. Value-Engineering Review for Numerical Control

    NASA Technical Reports Server (NTRS)

    Warner, J. L.

    1984-01-01

    Selecting parts for conversion from conventional machining to numerical control, value-engineering review performed for every part to identify potential changes to part design that result in increased production efficiency.

  20. Modelling polymeric deformable granular materials - from experimental data to numerical models at the grain scale

    NASA Astrophysics Data System (ADS)

    Teil, Maxime; Harthong, Barthélémy; Imbault, Didier; Peyroux, Robert

    2017-06-01

    Polymeric deformable granular materials are widely used in industry and the understanding and the modelling of their shaping process is a point of interest. This kind of materials often presents a viscoelasticplastic behaviour and the present study promotes a joint approach between numerical simulations and experiments in order to derive the behaviour law of such granular material. The experiment is conducted on a polystyrene powder on which a confining pressure of 7MPa and an axial pressure reaching 30MPa are applied. Between different steps of the in-situ test, the sample is scanned in an X-rays microtomograph in order to know the structure of the material depending on the density. From the tomographic images and by using specific algorithms to improve the images quality, grains are automatically identified, separated and a finite element mesh is generated. The long-term objective of this study is to derive a representative sample directly from the experiments in order to run numerical simulations using a viscoelactic or viscoelastic-plastic constitutive law and compare numerical and experimental results at the particle scale.

  1. FAST Model Calibration and Validation of the OC5-DeepCwind Floating Offshore Wind System Against Wave Tank Test Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wendt, Fabian F; Robertson, Amy N; Jonkman, Jason

    During the course of the Offshore Code Comparison Collaboration, Continued, with Correlation (OC5) project, which focused on the validation of numerical methods through comparison against tank test data, the authors created a numerical FAST model of the 1:50-scale DeepCwind semisubmersible system that was tested at the Maritime Research Institute Netherlands ocean basin in 2013. This paper discusses several model calibration studies that were conducted to identify model adjustments that improve the agreement between the numerical simulations and the experimental test data. These calibration studies cover wind-field-specific parameters (coherence, turbulence), hydrodynamic and aerodynamic modeling approaches, as well as rotor model (blade-pitchmore » and blade-mass imbalances) and tower model (structural tower damping coefficient) adjustments. These calibration studies were conducted based on relatively simple calibration load cases (wave only/wind only). The agreement between the final FAST model and experimental measurements is then assessed based on more-complex combined wind and wave validation cases.« less

  2. Exploring Organizational Evaluation Capacity and Evaluation Capacity Building: A Delphi Study of Taiwanese Elementary and Junior High Schools

    ERIC Educational Resources Information Center

    Cheng, Shu-Huei; King, Jean A.

    2017-01-01

    Researchers have conducted numerous empirical studies on evaluation capacity (EC) and evaluation capacity building (ECB) in Western cultural settings. However, little is known about these practices in non-Western contexts. To that end, this study identified the major dimensions of EC and feasible ECB approaches in Taiwanese elementary and junior…

  3. Of monkeys and men: immunomic profiling of sera from humans and non-human primates resistant to schistosomiasis reveals novel potential vaccine candidates.

    PubMed

    Pearson, Mark S; Becker, Luke; Driguez, Patrick; Young, Neil D; Gaze, Soraya; Mendes, Tiago; Li, Xiao-Hong; Doolan, Denise L; Midzi, Nicholas; Mduluza, Takafira; McManus, Donald P; Wilson, R Alan; Bethony, Jeffrey M; Nausch, Norman; Mutapi, Francisca; Felgner, Philip L; Loukas, Alex

    2015-01-01

    Schistosoma haematobium affects more than 100 million people throughout Africa and is the causative agent of urogenital schistosomiasis. The parasite is strongly associated with urothelial cancer in infected individuals and as such is designated a group I carcinogen by the International Agency for Research on Cancer. Using a protein microarray containing schistosome proteins, we sought to identify antigens that were the targets of protective IgG1 immune responses in S. haematobium-exposed individuals that acquire drug-induced resistance (DIR) to schistosomiasis after praziquantel treatment. Numerous antigens with known vaccine potential were identified, including calpain (Smp80), tetraspanins, glutathione-S-transferases, and glucose transporters (SGTP1), as well as previously uncharacterized proteins. Reactive IgG1 responses were not elevated in exposed individuals who did not acquire DIR. To complement our human subjects study, we screened for antigen targets of rhesus macaques rendered resistant to S. japonicum by experimental infection followed by self-cure, and discovered a number of new and known vaccine targets, including major targets recognized by our human subjects. This study has further validated the immunomics-based approach to schistosomiasis vaccine antigen discovery and identified numerous novel potential vaccine antigens.

  4. Healthcare Information Technology Backsourcing, Problematic Outsourcing Manipulations, and Multisupplier Backsourcing Methodologies

    ERIC Educational Resources Information Center

    Garske, Steven Ray

    2010-01-01

    Backsourcing is the act of an organization changing an outsourcing relationship through insourcing, vendor change, or elimination of the outsourced service. This study discovered numerous problematic outsourcing manipulations conducted by suppliers, and identified backsourcing methodologies to correct these manipulations across multiple supplier…

  5. Characterizing Exposures of Fish to Wastewater Treatment Plant Effluent: An Integrated Metabolite and Lipid Profiling Approach

    EPA Science Inventory

    Metabolite and lipid profiling are well established techniques for studying chemical-induced alterations to normal biological function in numerous organisms. These techniques have been used successfully to identify biomarkers of chemical exposure, screen for chemical potency, or ...

  6. Data-Driven Approaches to Empirical Discovery

    DTIC Science & Technology

    1988-10-31

    if nece ry and identify by block number) empirical discovery history of science data-driven heuristics numeric laws theoretical terms scope of laws...to the normative side. Machine Discovery and the History of Science The history of science studies the actual path followed by scientists over the

  7. Measurement and Modeling of Near Road & Near-Port Air Quality

    EPA Science Inventory

    Air pollution from mobile sources has been identified by numerous organizations as a potential public health concern. Based upon multiple near-road and near-source monitoring studies, both busy roadways and large emission sources at ports can significantly impact local air qualit...

  8. Numerical taxonomy of Vibrio cholerae and related species isolated from areas that are endemic and nonendemic for cholera.

    PubMed Central

    McNicol, L A; De, S P; Kaper, J B; West, P A; Colwell, R R

    1983-01-01

    A total of 165 strains of vibrios isolated from clinical and environmental sources in the United States, India, and Bangladesh, 11 reference cultures, and 4 duplicated cultures were compared in a numerical taxonomic study using 83 unit characters. Similarity between strains was computed by using the simple matching coefficient and the Jaccard coefficient. Strains were clustered by unweighted average linkage and single linkage algorithms. All methods gave similar cluster compositions. The estimated probability of error in the study was obtained from a comparison of the results of duplicated strains and was within acceptable limits. A total of 174 of the 180 organisms studied were divided into eight major clusters. Two clusters were identified as Vibrio cholerae, one as Vibrio mimicus, one as Vibrio parahaemolyticus, three as Vibrio species, and one as Aeromonas hydrophila. The V. mimicus cluster could be further divided into two subclusters, and the major V. cholerae group could be split into seven minor subclusters. Phenotypic traits routinely used to identify clinical isolates of V. cholerae can be used to identify environmental V. cholerae isolates. No distinction was found between strains of V. cholerae isolated from regions endemic for cholera and strains from nonendemic regions. PMID:6874901

  9. Locating damage using integrated global-local approach with wireless sensing system and single-chip impedance measurement device.

    PubMed

    Lin, Tzu-Hsuan; Lu, Yung-Chi; Hung, Shih-Lin

    2014-01-01

    This study developed an integrated global-local approach for locating damage on building structures. A damage detection approach with a novel embedded frequency response function damage index (NEFDI) was proposed and embedded in the Imote2.NET-based wireless structural health monitoring (SHM) system to locate global damage. Local damage is then identified using an electromechanical impedance- (EMI-) based damage detection method. The electromechanical impedance was measured using a single-chip impedance measurement device which has the advantages of small size, low cost, and portability. The feasibility of the proposed damage detection scheme was studied with reference to a numerical example of a six-storey shear plane frame structure and a small-scale experimental steel frame. Numerical and experimental analysis using the integrated global-local SHM approach reveals that, after NEFDI indicates the approximate location of a damaged area, the EMI-based damage detection approach can then identify the detailed damage location in the structure of the building.

  10. An integrated map of structural variation in 2,504 human genomes.

    PubMed

    Sudmant, Peter H; Rausch, Tobias; Gardner, Eugene J; Handsaker, Robert E; Abyzov, Alexej; Huddleston, John; Zhang, Yan; Ye, Kai; Jun, Goo; Fritz, Markus Hsi-Yang; Konkel, Miriam K; Malhotra, Ankit; Stütz, Adrian M; Shi, Xinghua; Casale, Francesco Paolo; Chen, Jieming; Hormozdiari, Fereydoun; Dayama, Gargi; Chen, Ken; Malig, Maika; Chaisson, Mark J P; Walter, Klaudia; Meiers, Sascha; Kashin, Seva; Garrison, Erik; Auton, Adam; Lam, Hugo Y K; Mu, Xinmeng Jasmine; Alkan, Can; Antaki, Danny; Bae, Taejeong; Cerveira, Eliza; Chines, Peter; Chong, Zechen; Clarke, Laura; Dal, Elif; Ding, Li; Emery, Sarah; Fan, Xian; Gujral, Madhusudan; Kahveci, Fatma; Kidd, Jeffrey M; Kong, Yu; Lameijer, Eric-Wubbo; McCarthy, Shane; Flicek, Paul; Gibbs, Richard A; Marth, Gabor; Mason, Christopher E; Menelaou, Androniki; Muzny, Donna M; Nelson, Bradley J; Noor, Amina; Parrish, Nicholas F; Pendleton, Matthew; Quitadamo, Andrew; Raeder, Benjamin; Schadt, Eric E; Romanovitch, Mallory; Schlattl, Andreas; Sebra, Robert; Shabalin, Andrey A; Untergasser, Andreas; Walker, Jerilyn A; Wang, Min; Yu, Fuli; Zhang, Chengsheng; Zhang, Jing; Zheng-Bradley, Xiangqun; Zhou, Wanding; Zichner, Thomas; Sebat, Jonathan; Batzer, Mark A; McCarroll, Steven A; Mills, Ryan E; Gerstein, Mark B; Bashir, Ali; Stegle, Oliver; Devine, Scott E; Lee, Charles; Eichler, Evan E; Korbel, Jan O

    2015-10-01

    Structural variants are implicated in numerous diseases and make up the majority of varying nucleotides among human genomes. Here we describe an integrated set of eight structural variant classes comprising both balanced and unbalanced variants, which we constructed using short-read DNA sequencing data and statistically phased onto haplotype blocks in 26 human populations. Analysing this set, we identify numerous gene-intersecting structural variants exhibiting population stratification and describe naturally occurring homozygous gene knockouts that suggest the dispensability of a variety of human genes. We demonstrate that structural variants are enriched on haplotypes identified by genome-wide association studies and exhibit enrichment for expression quantitative trait loci. Additionally, we uncover appreciable levels of structural variant complexity at different scales, including genic loci subject to clusters of repeated rearrangement and complex structural variants with multiple breakpoints likely to have formed through individual mutational events. Our catalogue will enhance future studies into structural variant demography, functional impact and disease association.

  11. Cognitive Predictors of Achievement Growth in Mathematics: A Five Year Longitudinal Study

    PubMed Central

    Geary, David C.

    2011-01-01

    The study's goal was to identify the beginning of first grade quantitative competencies that predict mathematics achievement start point and growth through fifth grade. Measures of number, counting, and arithmetic competencies were administered in early first grade and used to predict mathematics achievement through fifth (n = 177), while controlling for intelligence, working memory, and processing speed. Multilevel models revealed intelligence, processing speed, and the central executive component of working memory predicted achievement or achievement growth in mathematics and, as a contrast domain, word reading. The phonological loop was uniquely predictive of word reading and the visuospatial sketch pad of mathematics. Early fluency in processing and manipulating numerical set size and Arabic numerals, accurate use of sophisticated counting procedures for solving addition problems, and accuracy in making placements on a mathematical number line were uniquely predictive of mathematics achievement. Use of memory-based processes to solve addition problems predicted mathematics and reading achievement but in different ways. The results identify the early quantitative competencies that uniquely contribute to mathematics learning. PMID:21942667

  12. Deliberating Immigration Policy: Locating Instructional Materials within Global and Multicultural Perspectives

    ERIC Educational Resources Information Center

    Camicia, Steven P.

    2007-01-01

    Numerous theorists have identified a need for students to learn to solve global concerns in an increasingly interconnected world. The issue of immigration policy is one such concern. This study analyzed the texts of two programs teaching deliberation and U.S. immigration policy. The purpose of the study was to analyze instructional materials that…

  13. Identifying areas of relative change in forest fragmentation in New Hampshire between 1990 and 2000

    Treesearch

    Tonya Lister; Andrew Lister; William McWilliams; Rachel Riemann

    2007-01-01

    Forest fragmentation potentially can impact many facets of natural ecosystems. Numerous methods have been employed to assess static forest fragmentation. Few studies, however, have analyzed changes in forest fragmentation over time. In this study, we developed new classifications from Landsat imagery data acquired in 1990 and 2000 for New Hampshire, assessed...

  14. A Comparison of the Intellectual Abilities of Good and Poor Problem Solvers: An Exploratory Study.

    ERIC Educational Resources Information Center

    Meyer, Ruth Ann

    This study examined a selected sample of fourth-grade students who had been previously identified as good or poor problem solvers. The pupils were compared on variables considered as "reference tests" for Verbal, Induction, Numerical, Word Fluency, Memory, Spatial Visualization, and Perceptual Speed abilities. The data were compiled to…

  15. Exploring the Experiences of Test-Anxious Ethnic Minority Students: A Narrative Study

    ERIC Educational Resources Information Center

    Adegbola, David O.

    2012-01-01

    Test anxiety (TA) has been recognized as a significant and challenging problem in all cultures and at all academic levels. Numerous empirical studies have been conducted to investigate the problem in order to identify the causes, conduct assessments, and develop intervention strategies, but little research has been done to investigate how family…

  16. Policies Related to Active Transport to and from School: A Multisite Case Study

    ERIC Educational Resources Information Center

    Eyler, Amy A.; Brownson, Ross C.; Doescher, Mark P.; Evenson, Kelly R.; Fesperman, Carrie E.; Litt, Jill S.; Pluto, Delores; Steinman, Lesley E.; Terpstra, Jennifer L.; Troped, Philip J.; Schmid, Thomas L.

    2008-01-01

    Active transportation to and from school (ATS) is a viable strategy to help increase physical activity among youth. ATS can be challenging because initiatives require transdisciplinary collaboration, are influenced by the built environment and are affected by numerous policies. The purpose of this study is to identify policies and factors that…

  17. Application of Universal Design for Learning in Corporate Technical Training Design: A Quantitative Study

    ERIC Educational Resources Information Center

    Irbe, Aina G.

    2016-01-01

    With the rise of a globalized economy and an overall increase in online learning, corporate organizations have increased training through the online environment at a rapid pace. Providing effective training the employee can immediately apply to the job has driven a need to improve online training programs. Numerous studies have identified that the…

  18. Theoretical and numerical studies of chaotic mixing

    NASA Astrophysics Data System (ADS)

    Kim, Ho Jun

    Theoretical and numerical studies of chaotic mixing are performed to circumvent the difficulties of efficient mixing, which come from the lack of turbulence in microfluidic devices. In order to carry out efficient and accurate parametric studies and to identify a fully chaotic state, a spectral element algorithm for solution of the incompressible Navier-Stokes and species transport equations is developed. Using Taylor series expansions in time marching, the new algorithm employs an algebraic factorization scheme on multi-dimensional staggered spectral element grids, and extends classical conforming Galerkin formulations to nonconforming spectral elements. Lagrangian particle tracking methods are utilized to study particle dispersion in the mixing device using spectral element and fourth order Runge-Kutta discretizations in space and time, respectively. Comparative studies of five different techniques commonly employed to identify the chaotic strength and mixing efficiency in microfluidic systems are presented to demonstrate the competitive advantages and shortcomings of each method. These are the stirring index based on the box counting method, Poincare sections, finite time Lyapunov exponents, the probability density function of the stretching field, and mixing index inverse, based on the standard deviation of scalar species distribution. Series of numerical simulations are performed by varying the Peclet number (Pe) at fixed kinematic conditions. The mixing length (lm) is characterized as function of the Pe number, and lm ∝ ln(Pe) scaling is demonstrated for fully chaotic cases. Employing the aforementioned techniques, optimum kinematic conditions and the actuation frequency of the stirrer that result in the highest mixing/stirring efficiency are identified in a zeta potential patterned straight micro channel, where a continuous flow is generated by superposition of a steady pressure driven flow and time periodic electroosmotic flow induced by a stream-wise AC electric field. Finally, it is shown that the invariant manifold of hyperbolic periodic point determines the geometry of fast mixing zones in oscillatory flows in two-dimensional cavity.

  19. Numerical study of droplet impact and rebound on superhydrophobic surface

    NASA Astrophysics Data System (ADS)

    Cai, Xuan; Wu, Yanchen; Woerner, Martin; Frohnapfel, Bettina

    2017-11-01

    Droplet impact and rebound on superhydrophobic surface is an important process in many applications; among them are developing self-cleaning or anti-icing materials and limiting liquid film formation of Diesel Exhaust Fluid (DEF) in exhaust gas pipe. In the latter field, rebound of DEF droplet from wall is desired as an effective mean for avoiding or reducing unwanted solid deposition. Our goal is to numerically study influence of surface wettability on DEF droplet impact and rebound behavior. A phase-field method is chosen, which was implemented in OpenFOAM by us and validated for wetting-related interfacial flow problems. In the present contribution we first numerically reproduce relevant experimental studies in literature, to validate the code for droplet impact and rebound problem. There we study droplet-surface contact time, maximum/instantaneous spreading factor and droplet shape evolution. Our numerical results show good agreement with experimental data. Next we investigate for DEF droplets the effects of diameter, impact velocity and surface wettability on rebound behavior and jumping height. Based on Weber number and equilibrium contact angle, two regimes are identified. We show that surface wettability is a deciding factor for achieving rebound event. This work is supported by Foundation ``Friedrich-und-Elisabeth Boysen Stiftung fuer Forschung und Innovation'' (BOY-127-TP1).

  20. Identification of Genetic Loci Jointly Influencing Schizophrenia Risk and the Cognitive Traits of Verbal-Numerical Reasoning, Reaction Time, and General Cognitive Function.

    PubMed

    Smeland, Olav B; Frei, Oleksandr; Kauppi, Karolina; Hill, W David; Li, Wen; Wang, Yunpeng; Krull, Florian; Bettella, Francesco; Eriksen, Jon A; Witoelar, Aree; Davies, Gail; Fan, Chun C; Thompson, Wesley K; Lam, Max; Lencz, Todd; Chen, Chi-Hua; Ueland, Torill; Jönsson, Erik G; Djurovic, Srdjan; Deary, Ian J; Dale, Anders M; Andreassen, Ole A

    2017-10-01

    Schizophrenia is associated with widespread cognitive impairments. Although cognitive deficits are one of the factors most strongly associated with functional outcome in schizophrenia, current treatment strategies largely fail to ameliorate these impairments. To develop more efficient treatment strategies in patients with schizophrenia, a better understanding of the pathogenesis of these cognitive deficits is needed. Accumulating evidence indicates that genetic risk of schizophrenia may contribute to cognitive dysfunction. To identify genomic regions jointly influencing schizophrenia and the cognitive domains of reaction time and verbal-numerical reasoning, as well as general cognitive function, a phenotype that captures the shared variation in performance across cognitive domains. Combining data from genome-wide association studies from multiple phenotypes using conditional false discovery rate analysis provides increased power to discover genetic variants and could elucidate shared molecular genetic mechanisms. Data from the following genome-wide association studies, published from July 24, 2014, to January 17, 2017, were combined: schizophrenia in the Psychiatric Genomics Consortium cohort (n = 79 757 [cases, 34 486; controls, 45 271]); verbal-numerical reasoning (n = 36 035) and reaction time (n = 111 483) in the UK Biobank cohort; and general cognitive function in CHARGE (Cohorts for Heart and Aging Research in Genomic Epidemiology) (n = 53 949) and COGENT (Cognitive Genomics Consortium) (n = 27 888). Genetic loci identified by conditional false discovery rate analysis. Brain messenger RNA expression and brain expression quantitative trait locus functionality were determined. Among the participants in the genome-wide association studies, 21 loci jointly influencing schizophrenia and cognitive traits were identified: 2 loci shared between schizophrenia and verbal-numerical reasoning, 6 loci shared between schizophrenia and reaction time, and 14 loci shared between schizophrenia and general cognitive function. One locus was shared between schizophrenia and 2 cognitive traits and represented the strongest shared signal detected (nearest gene TCF20; chromosome 22q13.2), and was shared between schizophrenia (z score, 5.01; P = 5.53 × 10-7), general cognitive function (z score, -4.43; P = 9.42 × 10-6), and verbal-numerical reasoning (z score, -5.43; P = 5.64 × 10-8). For 18 loci, schizophrenia risk alleles were associated with poorer cognitive performance. The implicated genes are expressed in the developmental and adult human brain. Replicable expression quantitative trait locus functionality was identified for 4 loci in the adult human brain. The discovered loci improve the understanding of the common genetic basis underlying schizophrenia and cognitive function, suggesting novel molecular genetic mechanisms.

  1. Boiling process modelling peculiarities analysis of the vacuum boiler

    NASA Astrophysics Data System (ADS)

    Slobodina, E. N.; Mikhailov, A. G.

    2017-06-01

    The analysis of the low and medium powered boiler equipment development was carried out, boiler units possible development directions with the purpose of energy efficiency improvement were identified. Engineering studies for the vacuum boilers applying are represented. Vacuum boiler heat-exchange processes where boiling water is the working body are considered. Heat-exchange intensification method under boiling at the maximum heat- transfer coefficient is examined. As a result of the conducted calculation studies, heat-transfer coefficients variation curves depending on the pressure, calculated through the analytical and numerical methodologies were obtained. The conclusion about the possibility of numerical computing method application through RPI ANSYS CFX for the boiling process description in boiler vacuum volume was given.

  2. Parameter assessment for virtual Stackelberg game in aerodynamic shape optimization

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Xie, Fangfang; Zheng, Yao; Zhang, Jifa

    2018-05-01

    In this paper, parametric studies of virtual Stackelberg game (VSG) are conducted to assess the impact of critical parameters on aerodynamic shape optimization, including design cycle, split of design variables and role assignment. Typical numerical cases, including the inverse design and drag reduction design of airfoil, have been carried out. The numerical results confirm the effectiveness and efficiency of VSG. Furthermore, the most significant parameters are identified, e.g. the increase of design cycle can improve the optimization results but it will also add computational burden. These studies will maximize the productivity of the effort in aerodynamic optimization for more complicated engineering problems, such as the multi-element airfoil and wing-body configurations.

  3. Numerical implementation of non-local polycrystal plasticity using fast Fourier transforms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lebensohn, Ricardo A.; Needleman, Alan

    Here, we present the numerical implementation of a non-local polycrystal plasticity theory using the FFT-based formulation of Suquet and co-workers. Gurtin (2002) non-local formulation, with geometry changes neglected, has been incorporated in the EVP-FFT algorithm of Lebensohn et al. (2012). Numerical procedures for the accurate estimation of higher order derivatives of micromechanical fields, required for feedback into single crystal constitutive relations, are identified and applied. A simple case of a periodic laminate made of two fcc crystals with different plastic properties is first used to assess the soundness and numerical stability of the proposed algorithm and to study the influencemore » of different model parameters on the predictions of the non-local model. Different behaviors at grain boundaries are explored, and the one consistent with the micro-clamped condition gives the most pronounced size effect. The formulation is applied next to 3-D fcc polycrystals, illustrating the possibilities offered by the proposed numerical scheme to analyze the mechanical response of polycrystalline aggregates in three dimensions accounting for size dependence arising from plastic strain gradients with reasonable computing times.« less

  4. A new clinical tool for assessing numerical abilities in neurological diseases: numerical activities of daily living

    PubMed Central

    Semenza, Carlo; Meneghello, Francesca; Arcara, Giorgio; Burgio, Francesca; Gnoato, Francesca; Facchini, Silvia; Benavides-Varela, Silvia; Clementi, Maurizio; Butterworth, Brian

    2014-01-01

    The aim of this study was to build an instrument, the numerical activities of daily living (NADL), designed to identify the specific impairments in numerical functions that may cause problems in everyday life. These impairments go beyond what can be inferred from the available scales evaluating activities of daily living in general, and are not adequately captured by measures of the general deterioration of cognitive functions as assessed by standard clinical instruments like the MMSE and MoCA. We assessed a control group (n = 148) and a patient group affected by a wide variety of neurological conditions (n = 175), with NADL along with IADL, MMSE, and MoCA. The NADL battery was found to have satisfactory construct validity and reliability, across a wide age range. This enabled us to calculate appropriate criteria for impairment that took into account age and education. It was found that neurological patients tended to overestimate their abilities as compared to the judgment made by their caregivers, assessed with objective tests of numerical abilities. PMID:25126077

  5. Numerical implementation of non-local polycrystal plasticity using fast Fourier transforms

    DOE PAGES

    Lebensohn, Ricardo A.; Needleman, Alan

    2016-03-28

    Here, we present the numerical implementation of a non-local polycrystal plasticity theory using the FFT-based formulation of Suquet and co-workers. Gurtin (2002) non-local formulation, with geometry changes neglected, has been incorporated in the EVP-FFT algorithm of Lebensohn et al. (2012). Numerical procedures for the accurate estimation of higher order derivatives of micromechanical fields, required for feedback into single crystal constitutive relations, are identified and applied. A simple case of a periodic laminate made of two fcc crystals with different plastic properties is first used to assess the soundness and numerical stability of the proposed algorithm and to study the influencemore » of different model parameters on the predictions of the non-local model. Different behaviors at grain boundaries are explored, and the one consistent with the micro-clamped condition gives the most pronounced size effect. The formulation is applied next to 3-D fcc polycrystals, illustrating the possibilities offered by the proposed numerical scheme to analyze the mechanical response of polycrystalline aggregates in three dimensions accounting for size dependence arising from plastic strain gradients with reasonable computing times.« less

  6. Dietary vitamin K guidance: an effective strategy for stable control of oral anticoagulation?

    USDA-ARS?s Scientific Manuscript database

    Numerous factors have been identified as risk factors for instability of oral anticoagulation, including variability in vitamin K intake. However few studies have directly tested the feasibility of manipulating dietary vitamin K to achieve stable oral anticoagulation. Recent findings from a rando...

  7. Identifying Program Characteristics for Preparing Pre-Service Teachers for Diversity

    ERIC Educational Resources Information Center

    Akiba, Motoko

    2011-01-01

    Background/Context: Educating pre-service teachers to develop multicultural awareness, knowledge, and skills for teaching diverse students is a major responsibility of teacher education program coordinators and teacher educators. Numerous studies have discussed and explored the characteristics of teacher preparation that improve pre-service…

  8. Substance Use and Academic Performance among African American High School Students

    ERIC Educational Resources Information Center

    Williams, James Herbert; Davis, Larry E.; Johnson, Sharon D.; Williams, Trina R.; Saunders, Jeanne A.; Nebbitt, Von E.

    2007-01-01

    Academic performance among African American students continues to be a concern. Adolescent developmental research has identified numerous factors that affect academic performance. School-based intervention programs have focused on substance use prevention to improve academic performance. This study investigated to what extent family financial…

  9. OXPHOS-Dependent Cells Identify Environmental Disruptors of Mitochondrial Function

    EPA Science Inventory

    Mitochondrial dysfunction is associated with numerous chronic diseases including metabolic syndrome. Environmental chemicals can impair mitochondrial function through numerous mechanisms such as membrane disruption, complex inhibition and electron transport chain uncoupling. Curr...

  10. Numerical and Experimental Investigation of the Turbulent Flow in a Ribbed Serpentine Passage

    NASA Technical Reports Server (NTRS)

    Iaccarino, Gianluca; Kalitzin, Georgi; Elkins, Christopher J.

    2003-01-01

    In this paper, the turbulent flow in a serpentine with oblique ribs is investigated experimentally and by numerical simulations. The measurements are carried out by using Magnetic Resonance Velocimetry (MRV) and the simulations using the Immersed Boundary (IB) technique. A brief description of these two approaches is reported in following sections. The results are reported in terms of velocity distributions in various planes in the serpentine; differences between measurements and simulations are presented qualitatively and quantitatively. The study of the discrepancy allows us to identify areas of needed improvements in the turbulence modeling.

  11. p21 stability: linking chaperones to a cell cycle checkpoint.

    PubMed

    Liu, Geng; Lozano, Guillermina

    2005-02-01

    Progression through the cell cycle is regulated by numerous proteins, one of which is the cyclin-dependent kinase inhibitor, p21. A new study identifies a novel protein complex that stabilizes p21. The stability of this complex is critical in effecting the p53-mediated cell cycle checkpoint.

  12. School Climate Assessment Programs. Technical Assistance Bulletin 38.

    ERIC Educational Resources Information Center

    National School Resource Network, Washington, DC.

    Numerous studies indicate that climate, the prevailing "feeling" of the environment, not only contributes to behavioral and situational outcomes, but that climate can be changed to help bring about the behaviors and outcomes desired. Researchers have identified characteristics of positive school climates and ways of determining the presence or…

  13. Silviculture research: The intersection of science and art across generations

    Treesearch

    Theresa B. Jain

    2013-01-01

    A research silviculturist's work is firmly grounded in the scientific method to acquire knowledge on forest dynamics. They also integrate information from numerous sources to produce new knowledge not readily identified by single studies. Results and interpretation subsequently provide the scientific foundation for developing management decisions and strategies....

  14. Examining Subtypes of Behavioral/Emotional Risk Using Cluster Analysis

    ERIC Educational Resources Information Center

    Dever, Bridget V.; Gallagher, Emily K.; Hochbein, Craig D.; Loukas, Austin; Dai, Chenchen

    2017-01-01

    Behavioral and emotional problems among children and adolescents can lead to numerous negative outcomes without intervention. From a prevention standpoint, screening for behavioral and emotional risk is an important step toward identifying such problems before the point of diagnosis or referral. The present study conducted a k-means cluster…

  15. Suppression of Pulmonary Host Defenses and Enhanced Susceptibility to Respiratory bacterial Infection in mice Following Inhalation Exposure to Trichloroethylene and Chloroform

    EPA Science Inventory

    Numerous epidemiologic studies have associated episodes of increased air pollution with increased incidence of respiratory disease, including pneumonia, croup, and bronchitis. Trichloroethylene (TCE) and chloroform are among 33 hazardous air pollutants identified by the U.S. Env...

  16. Recruiting and integrating stakeholders and sustaining participation in environmental management: A conceptual framework and case study from the Great Lakes Area of Concern

    EPA Science Inventory

    Stakeholder participation is now widely viewed as an essential component of environmental management projects. Although scholarship has identified and conceptualized numerous elements and components of high-quality participation, we argue that the processes of recruiting stakehol...

  17. Rural Canadian Youth Exposed to Physical Violence

    ERIC Educational Resources Information Center

    Laye, Adele M.; Mykota, David B.

    2014-01-01

    Exposure to physical violence is an unfortunate reality for many Canadian youth as it is associated with numerous negative psychosocial effects. The study aims to assist in understanding resilience in rural Canadian youth exposed to physical violence. This is accomplished by identifying the importance of protective factors, as measured by the…

  18. STABLE VARIANTS OF SPERM ANEUPLOIDY AMONG HEALTHY MEN SHOW ASSOCIATIONS BETWEEN GERMINAL AND SOMATIC ANEUPLOIDY

    EPA Science Inventory

    Stable variants of sperm aneuploidy among healthy men show associations between germinal and somatic aneuploidy

    The purpose of this study was to identify healthy men who reproducibly produced increased frequencies of sperm with numerical chromosomal abnormalities and to d...

  19. Bee visitation rates to cultivated sunflowers increase with the amount and accessibility of nectar sugars

    USDA-ARS?s Scientific Manuscript database

    Pollinators make foraging decisions based on numerous floral traits, including nectar and pollen rewards, and associated visual and olfactory cues. For insect-pollinated crops, identifying and breeding for attractive floral traits may increase yields. In this study, we examined floral trait variatio...

  20. Partner Selection for People with Intellectual Disabilities

    ERIC Educational Resources Information Center

    Bates, Claire; Terry, Louise; Popple, Keith

    2017-01-01

    Background: The aim of this research was to understand the characteristics that adults with intellectual disabilities look for in a partner. There have been numerous studies that have explored partner selection for people without intellectual disabilities, but no research that specifically identified the traits valued in a partner by people with…

  1. Proposed Interventions to Decrease the Frequency of Missed Test Results

    ERIC Educational Resources Information Center

    Wahls, Terry L.; Cram, Peter

    2009-01-01

    Numerous studies have identified that delays in diagnosis related to the mishandling of abnormal test results are an import contributor to diagnostic errors. Factors contributing to missed results included organizational factors, provider factors and patient-related factors. At the diagnosis error conference continuing medical education conference…

  2. Characteristics Associated with Sleep Duration, Chronotype, and Social Jet Lag in Adolescents

    ERIC Educational Resources Information Center

    Malone, Susan Kohl; Zemel, Babette; Compher, Charlene; Souders, Margaret; Chittams, Jesse; Thompson, Aleda Leis; Lipman, Terri H.

    2016-01-01

    Sleep is a complex behavior with numerous health implications. Identifying sociodemographic and behavioral characteristics of sleep is important for determining those at greatest risk for sleep-related health disparities. In this cross-sectional study, general linear models were used to examine sociodemographic and behavioral characteristics…

  3. Discrepancies between Community Violence Exposure and Perceived Neighborhood Violence

    ERIC Educational Resources Information Center

    Cammack, Nicole L.; Lambert, Sharon F.; Ialongo, Nicholas S.

    2011-01-01

    Community violence exposure (CVE) has been identified as a significant public health concern given its association with numerous mental health problems. Perceptions of neighborhood violence (PNV) also may adversely affect youth adjustment. In recognition that PNV may differ from individuals own experience of CVE, the current study utilized latent…

  4. Comparison of Gene Expressions of Maize Kernel Pathogenesis-Related Proteins in Different Maize Genotypes

    USDA-ARS?s Scientific Manuscript database

    Aflatoxins are carcinogenic mycotoxins produced by the fungus Aspergillus flavus during infection of various grain crops including maize (Zea mays). Contamination of maize with aflatoxins has been shown to be exasperated by late season drought stress. Previous studies have identified numerous resist...

  5. A Community-Scale Modeling System to Assess Port-Related Air Quality Impacts

    EPA Science Inventory

    Near-port air pollution has been identified by numerous organizations as a potential public health concern. Based upon multiple near-road and near-source monitoring studies, both busy roadways and large emission sources at the ports may impact local air quality within several hun...

  6. Genomic regions associated with freezing tolerance and snow mold tolerance in winter wheat

    USDA-ARS?s Scientific Manuscript database

    Crops grown through the winter are subject to selective pressures that vary with each year’s unique conditions, necessitating tolerance of numerous stress factors. The objective of this study was to identify molecular markers in winter wheat (Triticum aestivum L. em Thell) associated with tolerance...

  7. Chronicles of Fibroporia radiculosa (= Antrodia radiculosa) TFFH 294

    Treesearch

    Carol A. Clausen; Katie M. Jenkins

    2011-01-01

    The brown-rot fungus, Fibroporia radiculosa, has been included in numerous research studies because many isolates of this fungus demonstrate an unusually high tolerance to copper. This fungus has undergone several recognized changes in taxonomic nomenclature, and through DNA technology, scientists have correctly identified isolates that had been misidentified...

  8. A Computational Procedure for Identifying Bilinear Representations of Nonlinear Systems Using Volterra Kernels

    NASA Technical Reports Server (NTRS)

    Kvaternik, Raymond G.; Silva, Walter A.

    2008-01-01

    A computational procedure for identifying the state-space matrices corresponding to discrete bilinear representations of nonlinear systems is presented. A key feature of the method is the use of first- and second-order Volterra kernels (first- and second-order pulse responses) to characterize the system. The present method is based on an extension of a continuous-time bilinear system identification procedure given in a 1971 paper by Bruni, di Pillo, and Koch. The analytical and computational considerations that underlie the original procedure and its extension to the title problem are presented and described, pertinent numerical considerations associated with the process are discussed, and results obtained from the application of the method to a variety of nonlinear problems from the literature are presented. The results of these exploratory numerical studies are decidedly promising and provide sufficient credibility for further examination of the applicability of the method.

  9. On the identifiability of inertia parameters of planar Multi-Body Space Systems

    NASA Astrophysics Data System (ADS)

    Nabavi-Chashmi, Seyed Yaser; Malaek, Seyed Mohammad-Bagher

    2018-04-01

    This work describes a new formulation to study the identifiability characteristics of Serially Linked Multi-body Space Systems (SLMBSS). The process exploits the so called "Lagrange Formulation" to develop a linear form of Equations of Motion w.r.t the system Inertia Parameters (IPs). Having developed a specific form of regressor matrix, we aim to expedite the identification process. The new approach allows analytical as well as numerical identification and identifiability analysis for different SLMBSSs' configurations. Moreover, the explicit forms of SLMBSSs identifiable parameters are derived by analyzing the identifiability characteristics of the robot. We further show that any SLMBSS designed with Variable Configurations Joint allows all IPs to be identifiable through comparing two successive identification outcomes. This feature paves the way to design new class of SLMBSS for which accurate identification of all IPs is at hand. Different case studies reveal that proposed formulation provides fast and accurate results, as required by the space applications. Further studies might be necessary for cases where planar-body assumption becomes inaccurate.

  10. Peer Feedback in Anonymous Peer Review in an EFL Writing Class in Spain

    ERIC Educational Resources Information Center

    Coté, Robert A.

    2014-01-01

    The present study reports the results of a process of peer feedback through anonymous peer review in an EFL writing class. Numerous studies have reported on the benefits of peer review (PR) in the ESL/EFL writing classroom. However, the literature also identifies social issues that can negatively affect the outcome of face-to-face PR. In this…

  11. Prospective Teachers' Misconceptions about the Atomic Structure in the Context of Electrification by Friction and an Activity in Order to Remedy Them

    ERIC Educational Resources Information Center

    Sarikaya, Mustafa

    2007-01-01

    Science educators have generally agreed that understanding the atom concept is the basis of science education. However, the numerous research studies have shown that many students at all educational levels have difficulties understanding this concept. This study was developed under three headings. The first was to identify misconceptions that…

  12. An Information Structure Approach to Passives: With Special Focus on Mandarin Chinese and Taiwanese Southern Min

    ERIC Educational Resources Information Center

    Yang, Yuan-Chen Jenny

    2012-01-01

    The study of passives has been instrumental to the development of modern linguistics, and passives are central non-canonical word order constructions (in the sense of Birner and Ward 1998) in most languages. However, while numerous cross-linguistic studies (e.g. Siewierska 1984, Shibatani 1985, Keenan 1985, Abraham 2006) have identified the core…

  13. Identification and Evolutionary Analysis of Potential Candidate Genes in a Human Eating Disorder.

    PubMed

    Sabbagh, Ubadah; Mullegama, Saman; Wyckoff, Gerald J

    2016-01-01

    The purpose of this study was to find genes linked with eating disorders and associated with both metabolic and neural systems. Our operating hypothesis was that there are genetic factors underlying some eating disorders resting in both those pathways. Specifically, we are interested in disorders that may rest in both sleep and metabolic function, generally called Night Eating Syndrome (NES). A meta-analysis of the Gene Expression Omnibus targeting the mammalian nervous system, sleep, and obesity studies was performed, yielding numerous genes of interest. Through a text-based analysis of the results, a number of potential candidate genes were identified. VGF, in particular, appeared to be relevant both to obesity and, broadly, to brain or neural development. VGF is a highly connected protein that interacts with numerous targets via proteolytically digested peptides. We examined VGF from an evolutionary perspective to determine whether other available evidence supported a role for the gene in human disease. We conclude that some of the already identified variants in VGF from human polymorphism studies may contribute to eating disorders and obesity. Our data suggest that there is enough evidence to warrant eGWAS and GWAS analysis of these genes in NES patients in a case-control study.

  14. The open cluster IC 4665

    NASA Technical Reports Server (NTRS)

    Prosser, Charles F.

    1993-01-01

    The results of a combined astrometric, photometric, and spectroscopic program to identify members of the open cluster IC 4665 are presented. Numerous new proper motion/photometric candidate members and at least 23 M dwarfs with H-alpha emission have been identified. A reanalysis of IC 4665 age using different methods yields conflicting results ranging from about 3 X 10 exp 7 yr to the age of the Pleiades. This study provides a list of candidate cluster members in the intermediate and low-mass regime of this cluster. Future spectroscopic observations of these candidates should eventually identify true cluster members.

  15. Preface of "The Second Symposium on Border Zones Between Experimental and Numerical Application Including Solution Approaches By Extensions of Standard Numerical Methods"

    NASA Astrophysics Data System (ADS)

    Ortleb, Sigrun; Seidel, Christian

    2017-07-01

    In this second symposium at the limits of experimental and numerical methods, recent research is presented on practically relevant problems. Presentations discuss experimental investigation as well as numerical methods with a strong focus on application. In addition, problems are identified which require a hybrid experimental-numerical approach. Topics include fast explicit diffusion applied to a geothermal energy storage tank, noise in experimental measurements of electrical quantities, thermal fluid structure interaction, tensegrity structures, experimental and numerical methods for Chladni figures, optimized construction of hydroelectric power stations, experimental and numerical limits in the investigation of rain-wind induced vibrations as well as the application of exponential integrators in a domain-based IMEX setting.

  16. Dark-bright solitons in coupled nonlinear Schrödinger equations with unequal dispersion coefficients.

    PubMed

    Charalampidis, E G; Kevrekidis, P G; Frantzeskakis, D J; Malomed, B A

    2015-01-01

    We study a two-component nonlinear Schrödinger system with equal, repulsive cubic interactions and different dispersion coefficients in the two components. We consider states that have a dark solitary wave in one component. Treating it as a frozen one, we explore the possibility of the formation of bright-solitonic structures in the other component. We identify bifurcation points at which such states emerge in the bright component in the linear limit and explore their continuation into the nonlinear regime. An additional analytically tractable limit is found to be that of vanishing dispersion of the bright component. We numerically identify regimes of potential stability, not only of the single-peak ground state (the dark-bright soliton), but also of excited states with one or more zero crossings in the bright component. When the states are identified as unstable, direct numerical simulations are used to investigate the outcome of the instability development. Although our principal focus is on the homogeneous setting, we also briefly touch upon the counterintuitive impact of the potential presence of a parabolic trap on the states of interest.

  17. A Longitudinal Study on Predictors of Early Calculation Development among Young Children At-Risk for Learning Difficulties

    PubMed Central

    Peng, Peng; Namkung, Jessica M.; Fuchs, Douglas; Fuchs, Lynn S.; Patton, Samuel; Yen, Loulee; Compton, Donald L.; Zhang, Wenjuan; Miller, Amanda; Hamlett, Carol

    2016-01-01

    The purpose of this study was to explore domain-general cognitive skills, domain-specific academic skills, and demographic characteristics that are associated with calculation development from first through third grade among young children with learning difficulties. Participants were 176 children identified with reading and mathematics difficulties at the beginning of first grade. Data were collected on working memory, language, nonverbal reasoning, processing speed, decoding, numerical competence, incoming calculations, socioeconomic status, and gender at the beginning of first grade and on calculation performance at 4 time points: the beginning of first grade, the end of first grade, the end of second grade, and the end of third grade. Latent growth modelling analysis showed that numerical competence, incoming calculation, processing speed, and decoding skills significantly explained the variance of calculation performance at the beginning of first grade. Numerical competence and processing speed significantly explained the variance of calculation performance at the end of third grade. However, numerical competence was the only significant predictor of calculation development from the beginning of first grade to the end of third grade. Implications of these findings for early calculation instructions among young at-risk children are discussed. PMID:27572520

  18. When and how do GPs record vital signs in children with acute infections? A cross-sectional study

    PubMed Central

    Blacklock, Claire; Haj-Hassan, Tanya Ali; Thompson, Matthew J

    2012-01-01

    Background NICE recommendations and evidence from ambulatory settings promotes the use of vital signs in identifying serious infections in children. This appears to differ from usual clinical practice where GPs report measuring vital signs infrequently. Aim To identify frequency of vital sign documentation by GPs, in the assessment of children with acute infections in primary care. Design and setting Observational study in 15 general practice surgeries in Oxfordshire and Somerset, UK. Method A standardised proforma was used to extract consultation details including documentation of numerical vital signs, and words or phrases used by the GP in assessing vital signs, for 850 children aged 1 month to 16 years presenting with acute infection. Results Of the children presenting with acute infections 31.6% had one or more numerical vital signs recorded (269, 31.6%), however GP recording rate improved if free text proxies were also considered: at least one vital sign was then recorded in over half (54.1%) of children. In those with recorded numerical values for vital signs, the most frequent was temperature (210, 24.7%), followed by heart rate (62, 7.3%), respiratory rate (58, 6.8%), and capillary refill time (36, 4.2%). Words or phrases for vital signs were documented infrequently (temperature 17.6%, respiratory rate 14.6%, capillary refill time 12.5%, and heart rate 0.5%), Text relating to global assessment was documented in 313/850 (36.8%) of consultations. Conclusion GPs record vital signs using words and phrases as well as numerical methods, although overall documentation of vital signs is infrequent in children presenting with acute infections. PMID:23265227

  19. Identifiability of Additive Actuator and Sensor Faults by State Augmentation

    NASA Technical Reports Server (NTRS)

    Joshi, Suresh; Gonzalez, Oscar R.; Upchurch, Jason M.

    2014-01-01

    A class of fault detection and identification (FDI) methods for bias-type actuator and sensor faults is explored in detail from the point of view of fault identifiability. The methods use state augmentation along with banks of Kalman-Bucy filters for fault detection, fault pattern determination, and fault value estimation. A complete characterization of conditions for identifiability of bias-type actuator faults, sensor faults, and simultaneous actuator and sensor faults is presented. It is shown that FDI of simultaneous actuator and sensor faults is not possible using these methods when all sensors have unknown biases. The fault identifiability conditions are demonstrated via numerical examples. The analytical and numerical results indicate that caution must be exercised to ensure fault identifiability for different fault patterns when using such methods.

  20. Experimental-Numerical Comparison of the Cantilever MEMS Frequency Shift in presence of a Residual Stress Gradient.

    PubMed

    Ballestra, Alberto; Somà, Aurelio; Pavanello, Renato

    2008-02-06

    The dynamic characterization of a set of gold micro beams by electrostatic excitation in presence of residual stress gradient has been studied experimentally. A method to determine the micro-cantilever residual stress gradient by measuring the deflection and curvature and then identifying the residual stress model by means of frequency shift behaviour is presented. A comparison with different numerical FEM models and experimental results has been carried out, introducing in the model the residual stress of the structures, responsible for an initial upward curvature. Dynamic spectrum data are measured via optical interferometry and experimental frequency shift curves are obtained by increasing the dc voltage applied to the specimens. A good correspondence is pointed out between measures and numerical models so that the residual stress effect can be evaluated for different configurations.

  1. Experimental-Numerical Comparison of the Cantilever MEMS Frequency Shift in presence of a Residual Stress Gradient

    PubMed Central

    Ballestra, Alberto; Somà, Aurelio; Pavanello, Renato

    2008-01-01

    The dynamic characterization of a set of gold micro beams by electrostatic excitation in presence of residual stress gradient has been studied experimentally. A method to determine the micro-cantilever residual stress gradient by measuring the deflection and curvature and then identifying the residual stress model by means of frequency shift behaviour is presented. A comparison with different numerical FEM models and experimental results has been carried out, introducing in the model the residual stress of the structures, responsible for an initial upward curvature. Dynamic spectrum data are measured via optical interferometry and experimental frequency shift curves are obtained by increasing the dc voltage applied to the specimens. A good correspondence is pointed out between measures and numerical models so that the residual stress effect can be evaluated for different configurations. PMID:27879733

  2. Interaction between an elastic structure and free-surface flows: experimental versus numerical comparisons using the PFEM

    NASA Astrophysics Data System (ADS)

    Idelsohn, S. R.; Marti, J.; Souto-Iglesias, A.; Oñate, E.

    2008-12-01

    The paper aims to introduce new fluid structure interaction (FSI) tests to compare experimental results with numerical ones. The examples have been chosen for a particular case for which experimental results are not much reported. This is the case of FSI including free surface flows. The possibilities of the Particle Finite Element Method (PFEM) [1] for the simulation of free surface flows is also tested. The simulations are run using the same scale as the experiment in order to minimize errors due to scale effects. Different scenarios are simulated by changing the boundary conditions for reproducing flows with the desired characteristics. Details of the input data for all the examples studied are given. The aim is to identifying benchmark problems for FSI including free surface flows for future comparisons between different numerical approaches.

  3. Gearbox damage identification and quantification using stochastic resonance

    NASA Astrophysics Data System (ADS)

    Mba, Clement U.; Marchesiello, Stefano; Fasana, Alessandro; Garibaldi, Luigi

    2018-03-01

    Amongst the many new tools used for vibration based mechanical fault diagnosis in rotating machineries, stochastic resonance (SR) has been shown to be able to identify as well as quantify gearbox damage via numerical simulations. To validate the numerical simulation results that were obtained in a previous work by the authors, SR is applied in the present study to data from an experimental gearbox that is representative of an industrial gearbox. Both spur and helical gears are used in the gearbox setup. While the results of the direct application of SR to experimental data do not exactly corroborate the numerical simulation results, applying SR to experimental data in pre-processed form is shown to be quite effective. In addition, it is demonstrated that traditional statistical techniques used for gearbox diagnosis can be used as a reference to check how well SR performs.

  4. Genes contributing to the development of alcoholism: an overview.

    PubMed

    Edenberg, Howard J

    2012-01-01

    Genetic factors (i.e., variations in specific genes) account for a substantial portion of the risk for alcoholism. However, identifying those genes and the specific variations involved is challenging. Researchers have used both case-control and family studies to identify genes related to alcoholism risk. In addition, different strategies such as candidate gene analyses and genome-wide association studies have been used. The strongest effects have been found for specific variants of genes that encode two enzymes involved in alcohol metabolism-alcohol dehydrogenase and aldehyde dehydrogenase. Accumulating evidence indicates that variations in numerous other genes have smaller but measurable effects.

  5. A review of mobile applications to help adolescent and young adult cancer patients

    PubMed Central

    Wesley, Kimberly M; Fizur, Philip J

    2015-01-01

    Objective To review research articles utilizing mobile applications with adolescent and young adult (AYA) cancer patients. Materials and methods We identified articles via online searches and reference lists (eg, PsycInfo, PubMed). Articles were reviewed by two study team members for target population, stated purpose, technological utilization, sample size, demographic characteristics, and outcome data. Strengths and weaknesses of each study were described. Results Of 19 identified manuscripts, six met full inclusion criteria for this review (four smartphone applications and two tablet applications). One additional article that included an application not specific to oncology but included AYA patients with cancer within the target sample was also reviewed. Uses of these applications included symptom tracking, pain management, monitoring of eating habits following bone marrow transplant, monitoring of mucositis, and improving medication management. Utility results from pilot studies are presented. Conclusion Mobile applications are growing in number and increasingly available to AYAs with and without chronic illness. These applications may prove useful in helping to support AYAs throughout their cancer treatment and beyond. However, few applications provide empirical data supporting their utility. Numerous strengths and benefits of these applications include increased accessibility to educational resources and self-management strategies, more frequent physical and emotional symptom tracking, and increased access to peer support. Despite these strengths, numerous limitations are identified, highlighting the need for future research in this area. PMID:26316835

  6. Numerical Investigation of Dual-Mode Scramjet Combustor with Large Upstream Interaction

    NASA Technical Reports Server (NTRS)

    Mohieldin, T. O.; Tiwari, S. N.; Reubush, David E. (Technical Monitor)

    2004-01-01

    Dual-mode scramjet combustor configuration with significant upstream interaction is investigated numerically, The possibility of scaling the domain to accelerate the convergence and reduce the computational time is explored. The supersonic combustor configuration was selected to provide an understanding of key features of upstream interaction and to identify physical and numerical issues relating to modeling of dual-mode configurations. The numerical analysis was performed with vitiated air at freestream Math number of 2.5 using hydrogen as the sonic injectant. Results are presented for two-dimensional models and a three-dimensional jet-to-jet symmetric geometry. Comparisons are made with experimental results. Two-dimensional and three-dimensional results show substantial oblique shock train reaching upstream of the fuel injectors. Flow characteristics slow numerical convergence, while the upstream interaction slowly increases with further iterations. As the flow field develops, the symmetric assumption breaks down. A large separation zone develops and extends further upstream of the step. This asymmetric flow structure is not seen in the experimental data. Results obtained using a sub-scale domain (both two-dimensional and three-dimensional) qualitatively recover the flow physics obtained from full-scale simulations. All results show that numerical modeling using a scaled geometry provides good agreement with full-scale numerical results and experimental results for this configuration. This study supports the argument that numerical scaling is useful in simulating dual-mode scramjet combustor flowfields and could provide an excellent convergence acceleration technique for dual-mode simulations.

  7. Development of a Model Based Technique for Gear Diagnostics using the Wigner-Ville method

    NASA Technical Reports Server (NTRS)

    Choy, F.; Xu, A.; Polyshchuk, V.

    1997-01-01

    Imperfections in gear tooth geometry often result from errors in the manufacturing process or excessive material wear during operation. Such faults in the gear tooth geometry can result in large vibrations in the transmission system, and, in some cases, may lead to early failure of the gear transmission system. This report presents the study of the effects of imperfection in gear tooth geometry on the dynamic characteristics of a gear transmission system. The faults in the gear tooth geometry are modeled numerically as the deviation of the tooth profile from its original involute geometry. The changes in gear mesh stiffness due to various profile and pattern variations are evaluated numerically. The resulting changes in the mesh stiffness are incorporated into a computer code to simulate the dynamics of the gear transmission system. A parametric study is performed to examine the sensitivity of gear tooth geometry imperfections on the vibration of a gear transmission system. The parameters variations in this study consist of the magnitude of the imperfection, the pattern of the profile variation, and the total number of teeth affected. Numerical results from the dynamic simulations are examined in both the time and the frequency domains. A joint time-frequency analysis procedure using the Wigner-Ville Distribution is also introduced to identify the location of the damaged tooth from the vibration signature. Numerical simulations of the system dynamics with gear faults were compared to experimental results. An optimal tracker was introduced to quantify the level of damage in the gear mesh system. Conclusions are drawn from the results of this numerical study.

  8. Of Monkeys and Men: Immunomic Profiling of Sera from Humans and Non-Human Primates Resistant to Schistosomiasis Reveals Novel Potential Vaccine Candidates

    PubMed Central

    Pearson, Mark S.; Becker, Luke; Driguez, Patrick; Young, Neil D.; Gaze, Soraya; Mendes, Tiago; Li, Xiao-Hong; Doolan, Denise L.; Midzi, Nicholas; Mduluza, Takafira; McManus, Donald P.; Wilson, R. Alan; Bethony, Jeffrey M.; Nausch, Norman; Mutapi, Francisca; Felgner, Philip L.; Loukas, Alex

    2015-01-01

    Schistosoma haematobium affects more than 100 million people throughout Africa and is the causative agent of urogenital schistosomiasis. The parasite is strongly associated with urothelial cancer in infected individuals and as such is designated a group I carcinogen by the International Agency for Research on Cancer. Using a protein microarray containing schistosome proteins, we sought to identify antigens that were the targets of protective IgG1 immune responses in S. haematobium-exposed individuals that acquire drug-induced resistance (DIR) to schistosomiasis after praziquantel treatment. Numerous antigens with known vaccine potential were identified, including calpain (Smp80), tetraspanins, glutathione-S-transferases, and glucose transporters (SGTP1), as well as previously uncharacterized proteins. Reactive IgG1 responses were not elevated in exposed individuals who did not acquire DIR. To complement our human subjects study, we screened for antigen targets of rhesus macaques rendered resistant to S. japonicum by experimental infection followed by self-cure, and discovered a number of new and known vaccine targets, including major targets recognized by our human subjects. This study has further validated the immunomics-based approach to schistosomiasis vaccine antigen discovery and identified numerous novel potential vaccine antigens. PMID:25999951

  9. Mechanical stability of propped hydraulic fractures: A numerical study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asgian, M.I.; Cundall, P.A.; Brady, B.H.

    1995-03-01

    Proppant is sometimes produced along with hydrocarbons in hydraulically fractured petroleum wells. Sometimes 10% to 20% of the proppant is backproduced, which can lead to damaged equipment and downtime. Furthermore, proppant flowback can lead to a substantial loss of fracture conductivity. A numerical study was conducted to help understand what conditions are likely to lead to proppant flowback. In the simulations, the mechanical interaction of a larger number (several thousand) individual proppant grains was modeled with a distinct-element-type code. The numerical simulations show that hydraulic fractures propped with cohesionless, unbonded proppant fail under closure stress at a critical ratio ofmore » mean grain diameter to fracture width. This is consistent with published laboratory studies. The simulations identify the mechanism (arch failure) that triggers the mechanical instability and also show that the primary way that drawdowns (less than {approx} 75 psi/ft) affect proppant flowback is to transport loose proppant grains in front of the stable arch to the wellbore. Drawdowns > 75 psi/ft are sufficient to destabilize the arch and to cause progressive failure of the propped fractures.« less

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ingmann, P.; Readings, C. J.; Knott, K.

    For the post-2000 time-frame two general classes of Earth Observation missions have been identified to address user requirements (see e.g. ESA, 1995), namely Earth Watch and Earth Explorer missions. One of the candidate Earth Explorer Missions selected for Phase A study is the Atmospheric Dynamics Mission which is intended to exploit a Doppler wind lidar, ALADIN, to measure winds in clear air (ESA, 1995 and ESA, 1996). It is being studied as a candidate for flight on the International Space Station (ISS) as an externally attached payload. The primary, long-term objective of the Atmospheric Dynamics Mission is to provide observationsmore » of wind profiles (e.g. radial wind component). Such data would be assimilated into numerical forecasting models leading to an improvement in objective analyses and hence in Numerical Weather Prediction. The mission would also provide data needed to address some of the key concerns of the World Climate Research Programme (WCRP) i.e. quantification of climate variability, validation and improvement of numerical models and process studies relevant to climate change. The newly acquired data would also help realize some of the objectives of the Global Climate Observing System (GCOS)« less

  11. FAST Model Calibration and Validation of the OC5- DeepCwind Floating Offshore Wind System Against Wave Tank Test Data: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wendt, Fabian F; Robertson, Amy N; Jonkman, Jason

    During the course of the Offshore Code Comparison Collaboration, Continued, with Correlation (OC5) project, which focused on the validation of numerical methods through comparison against tank test data, the authors created a numerical FAST model of the 1:50-scale DeepCwind semisubmersible system that was tested at the Maritime Research Institute Netherlands ocean basin in 2013. This paper discusses several model calibration studies that were conducted to identify model adjustments that improve the agreement between the numerical simulations and the experimental test data. These calibration studies cover wind-field-specific parameters (coherence, turbulence), hydrodynamic and aerodynamic modeling approaches, as well as rotor model (blade-pitchmore » and blade-mass imbalances) and tower model (structural tower damping coefficient) adjustments. These calibration studies were conducted based on relatively simple calibration load cases (wave only/wind only). The agreement between the final FAST model and experimental measurements is then assessed based on more-complex combined wind and wave validation cases.« less

  12. Structural and Practical Identifiability Issues of Immuno-Epidemiological Vector-Host Models with Application to Rift Valley Fever.

    PubMed

    Tuncer, Necibe; Gulbudak, Hayriye; Cannataro, Vincent L; Martcheva, Maia

    2016-09-01

    In this article, we discuss the structural and practical identifiability of a nested immuno-epidemiological model of arbovirus diseases, where host-vector transmission rate, host recovery, and disease-induced death rates are governed by the within-host immune system. We incorporate the newest ideas and the most up-to-date features of numerical methods to fit multi-scale models to multi-scale data. For an immunological model, we use Rift Valley Fever Virus (RVFV) time-series data obtained from livestock under laboratory experiments, and for an epidemiological model we incorporate a human compartment to the nested model and use the number of human RVFV cases reported by the CDC during the 2006-2007 Kenya outbreak. We show that the immunological model is not structurally identifiable for the measurements of time-series viremia concentrations in the host. Thus, we study the non-dimensionalized and scaled versions of the immunological model and prove that both are structurally globally identifiable. After fixing estimated parameter values for the immunological model derived from the scaled model, we develop a numerical method to fit observable RVFV epidemiological data to the nested model for the remaining parameter values of the multi-scale system. For the given (CDC) data set, Monte Carlo simulations indicate that only three parameters of the epidemiological model are practically identifiable when the immune model parameters are fixed. Alternatively, we fit the multi-scale data to the multi-scale model simultaneously. Monte Carlo simulations for the simultaneous fitting suggest that the parameters of the immunological model and the parameters of the immuno-epidemiological model are practically identifiable. We suggest that analytic approaches for studying the structural identifiability of nested models are a necessity, so that identifiable parameter combinations can be derived to reparameterize the nested model to obtain an identifiable one. This is a crucial step in developing multi-scale models which explain multi-scale data.

  13. Theoretical Basis for Dynamic Label Propagation in Stationary Metabolic Networks under Step and Periodic Inputs

    PubMed Central

    Sokol, Serguei; Portais, Jean-Charles

    2015-01-01

    The dynamics of label propagation in a stationary metabolic network during an isotope labeling experiment can provide highly valuable information on the network topology, metabolic fluxes, and on the size of metabolite pools. However, major issues, both in the experimental set-up and in the accompanying numerical methods currently limit the application of this approach. Here, we propose a method to apply novel types of label inputs, sinusoidal or more generally periodic label inputs, to address both the practical and numerical challenges of dynamic labeling experiments. By considering a simple metabolic system, i.e. a linear, non-reversible pathway of arbitrary length, we develop mathematical descriptions of label propagation for both classical and novel label inputs. Theoretical developments and computer simulations show that the application of rectangular periodic pulses has both numerical and practical advantages over other approaches. We applied the strategy to estimate fluxes in a simulated experiment performed on a complex metabolic network (the central carbon metabolism of Escherichia coli), to further demonstrate its value in conditions which are close to those in real experiments. This study provides a theoretical basis for the rational interpretation of label propagation curves in real experiments, and will help identify the strengths, pitfalls and limitations of such experiments. The cases described here can also be used as test cases for more general numerical methods aimed at identifying network topology, analyzing metabolic fluxes or measuring concentrations of metabolites. PMID:26641860

  14. Motivation for Weight-Loss Diets: A Clustering, Longitudinal Field Study Using Self-Esteem and Self-Determination Theory Perspectives

    ERIC Educational Resources Information Center

    Georgiadis, Manolis M.; Biddle, Stuart J. H.; Stavrou, Nektarios A.

    2006-01-01

    Background: Gradual elevation of body weight leads numerous individuals to dieting and weight loss behaviours. Nevertheless, the prevalence of obesity continues to rise in industrialised countries. The examination of the motivational determinants of dietary modification ("dieting") in order to identify clusters of individuals in the…

  15. Mathematical and Numerical Studies of Nonstandard Difference Equation Models of Differential Equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mickens, Ronald E.

    2008-12-22

    This research examined the following items/issues: the NSFD methodology, technical achievements and applications, dissemination efforts and research related professional activities. Also a list of unresolved issues were identified that could form the basis for future research in the area of constructing and analyzing NSFD schemes for both ODE's and PDE's.

  16. Attributes of Exemplary Community College Teachers: A Review of the Literature.

    ERIC Educational Resources Information Center

    Horan, Michael

    The findings of numerous empirically based research studies reflecting the views of teachers, students, and administrators can be used to identify a "core of techniques" associated with effective community college teachers. Community college teaching is generally more student-centered than four-year college instruction, with the choice of teaching…

  17. Increasing In-Service Teacher Implementation of Classroom Management Practices through Consultation, Implementation Planning, and Participant Modeling

    ERIC Educational Resources Information Center

    Hagermoser Sanetti, Lisa M.; Williamson, Kathleen M.; Long, Anna C. J.; Kratochwill, Thomas R.

    2018-01-01

    Numerous evidence-based classroom management strategies to prevent and respond to problem behavior have been identified, but research consistently indicates teachers rarely implement them with sufficient implementation fidelity. The purpose of this study was to evaluate the effectiveness of implementation planning, a strategy involving logistical…

  18. Unintended Revelations in History Textbooks: The Precarious Authenticity and Historical Continuity of the Slovak Nation

    ERIC Educational Resources Information Center

    Šulíková, Jana

    2016-01-01

    Purpose: This article proposes an analytical framework that helps to identify and challenge misconceptions of ethnocentrism found in pre-tertiary teaching resources for history and the social sciences in numerous countries. Design: Drawing on nationalism studies, the analytical framework employs ideas known under the umbrella terms of…

  19. Evaluation of Point of Use Water Treatment Devices for Removal of Mine Wastes from Well Water

    EPA Science Inventory

    U.S. EPA Region VII and the Office of Research and Development (ORD) are conducting a large-scale study to identify the prevalence of lead (Pb) and other contaminants in drinking water at four mine waste areas in Washington County, Missouri. Numerous households in Potosi, Richwoo...

  20. Tailoring Interventions: Examining the Evidence and Identifying Gaps

    ERIC Educational Resources Information Center

    Gagliardi, Anna R.

    2011-01-01

    Introduction: Numerous population-based studies highlight the need to improve health care delivery and outcomes. Many single and combined interventions are available but their impact is limited and inconsistent. Tailoring may enhance their impact, but the best way to do so remains unclear. The purpose of this exploratory analysis was to identify…

  1. Analyzing Algebraic Thinking Using "Guess My Number" Problems

    ERIC Educational Resources Information Center

    Patton, Barba; De Los Santos, Estella

    2012-01-01

    The purpose of this study was to assess student knowledge of numeric, visual and algebraic representations. A definite gap between arithmetic and algebra has been documented in the research. The researchers' goal was to identify a link between the two. Using four "Guess My Number" problems, seventh and tenth grade students were asked to write…

  2. Personal Commitment: A Prerequisite for Women Aspiring to Educational Administration.

    ERIC Educational Resources Information Center

    Moore, Colleen A.

    The decline in the number and status of women in educational administration and the magnitude of their lack of representation in administrative positions is evidenced by numerous studies. To achieve the goal of identifying the components of the problem, solutions suggested by the research, and implications for women who aspire to administrative…

  3. Perceived Personal and Social Competence: Development of Valid and Reliable Measures

    ERIC Educational Resources Information Center

    Fetro, Joyce V.; Rhodes, Darson L.; Hey, David W.

    2010-01-01

    During the last 20 years, youth programming has shifted from risk reduction to youth development. While numerous instruments exist to measure selected individual characteristics/competencies among youth, a comprehensive instrument to measure four constructs of personal and social skills could not be identified. The purpose of this study was to…

  4. Spatial and functional characterization, identification and assessment of isolated wetlands in Alachua County, Florida, USA - GIS and remote sensing techniques

    EPA Science Inventory

    In this study, Geographic Information Systems (GIS) and remote sensing mapping techniques were developed to identify the locations of isolated wetlands in Alachua County, FL, a 2510 sq km area in north-central Florida with diverse geology and numerous isolated wetlands. The resul...

  5. Exploring Inner Speech as a Psycho-Educational Resource for Language Learning Advisors

    ERIC Educational Resources Information Center

    McCarthy, Tanya M.

    2018-01-01

    The analysis of advising sessions has recognized common standards of the profession in areas such as advising skills employed and non-verbal communicative practices. There are however numerous variations in advisor behavior due to differences in cognitive processes. This study used a stimulated recall approach to identify the content of inner…

  6. A Blueprint for a Strengths-Based Level System in Schools

    ERIC Educational Resources Information Center

    Rubin, Ron

    2005-01-01

    In spite of the proven research studies that cite the beneficial effects of a positive, assets-based approach to child development and discipline (Scales, 2000; Jones & Jones, 1998; Benson, Galbraith, & Espeland, 1994), numerous school systems adhere to the articulation of tiered levels of misconduct, which identify minor to severe types of…

  7. A Multi-State Factor-Analytic and Psychometric Meta-Analysis of Agricultural Mechanics Laboratory Management Competencies

    ERIC Educational Resources Information Center

    McKim, Billy R.; Saucier, P. Ryan

    2012-01-01

    For more than 20 years, the 50 agricultural mechanics laboratory management competencies identified by Johnson and Schumacher in 1989 have served as the basis for numerous needs assessments of secondary agriculture teachers. This study reevaluated Johnson and Schumacher's instrument, as modified by Saucier, Schumacher, Funkenbusch, Terry, and…

  8. Professionals' Perception of Quality Physical Education Learning in Selected Asian Cities

    ERIC Educational Resources Information Center

    Ho, Walter King Yan; Ahmed, Md. Dilsad; Keh, Nyit Chin; Khoo, Selina; Tan, Cheehian; Dehkordi, Mitra Rouhi; Gallardo, Mila; Lee, Kicheon; Yamaguchi, Yasuo; Wang, Jian; Liu, Min; Huang, Fan

    2017-01-01

    Numerous studies have been published heralding the benefits of physical education in school education. Sport and physical activities form the major content in learning and the arrangement serves as the major source of development in students. This paper identifies "quality" as an internationally concerned issue and within the concept,…

  9. Experimental and Numerical Investigations on Colloid-facilitated Plutonium Reactive Transport in Fractured Tuffaceous Rocks

    NASA Astrophysics Data System (ADS)

    Dai, Z.; Wolfsberg, A. V.; Zhu, L.; Reimus, P. W.

    2017-12-01

    Colloids have the potential to enhance mobility of strongly sorbing radionuclide contaminants in fractured rocks at underground nuclear test sites. This study presents an experimental and numerical investigation of colloid-facilitated plutonium reactive transport in fractured porous media for identifying plutonium sorption/filtration processes. The transport parameters for dispersion, diffusion, sorption, and filtration are estimated with inverse modeling for minimizing the least squares objective function of multicomponent concentration data from multiple transport experiments with the Shuffled Complex Evolution Metropolis (SCEM). Capitalizing on an unplanned experimental artifact that led to colloid formation and migration, we adopt a stepwise strategy to first interpret the data from each experiment separately and then to incorporate multiple experiments simultaneously to identify a suite of plutonium-colloid transport processes. Nonequilibrium or kinetic attachment and detachment of plutonium-colloid in fractures was clearly demonstrated and captured in the inverted modeling parameters along with estimates of the source plutonium fraction that formed plutonium-colloids. The results from this study provide valuable insights for understanding the transport mechanisms and environmental impacts of plutonium in fractured formations and groundwater aquifers.

  10. A genome-wide map of hyper-edited RNA reveals numerous new sites.

    PubMed

    Porath, Hagit T; Carmi, Shai; Levanon, Erez Y

    2014-08-27

    Adenosine-to-inosine editing is one of the most frequent post-transcriptional modifications, manifested as A-to-G mismatches when comparing RNA sequences with their source DNA. Recently, a number of RNA-seq data sets have been screened for the presence of A-to-G editing, and hundreds of thousands of editing sites identified. Here we show that existing screens missed the majority of sites by ignoring reads with excessive ('hyper') editing that do not easily align to the genome. We show that careful alignment and examination of the unmapped reads in RNA-seq studies reveal numerous new sites, usually many more than originally discovered, and in precisely those regions that are most heavily edited. Specifically, we discover 327,096 new editing sites in the heavily studied Illumina Human BodyMap data and more than double the number of detected sites in several published screens. We also identify thousands of new sites in mouse, rat, opossum and fly. Our results establish that hyper-editing events account for the majority of editing sites.

  11. Identification of individual foothill yellow-legged frogs (Rana boylii) using chin pattern photographs: a non-invasive and effective method for small population studies

    Treesearch

    K.R. Marlow; K.D. Wiseman; Clara Wheeler; J.E.  Drennan; R.E.  Jackman

    2016-01-01

    The ability to identify individual animals is a valuable tool in the study of amphibian population dynamics, movement ecology, social behavior, and habitat use. Numerous methods of marking amphibians have been employed including the use of passive integrated transponder (PIT) tags, radio-transmitters, elastomers, branding, and mutilation techniques such as toe...

  12. Predicting Engineering Student Attrition Risk Using a Probabilistic Neural Network and Comparing Results with a Backpropagation Neural Network and Logistic Regression

    ERIC Educational Resources Information Center

    Mason, Cindi; Twomey, Janet; Wright, David; Whitman, Lawrence

    2018-01-01

    As the need for engineers continues to increase, a growing focus has been placed on recruiting students into the field of engineering and retaining the students who select engineering as their field of study. As a result of this concentration on student retention, numerous studies have been conducted to identify, understand, and confirm…

  13. Constructing Departmental Culture to Support Student Development: Evidence from a Case Study in Rwanda

    ERIC Educational Resources Information Center

    Schendel, Rebecca

    2016-01-01

    In recent years, there have been numerous attempts to improve the quality of higher education in Africa, but there is limited knowledge about the impact of these initiatives on student learning. The results of a study published in 2015 offered some initial data in this regard by identifying a lack of improvement in the critical thinking ability of…

  14. Assessing mental stress from the photoplethysmogram: a numerical study

    PubMed Central

    Charlton, Peter H; Celka, Patrick; Farukh, Bushra; Chowienczyk, Phil; Alastruey, Jordi

    2018-01-01

    Abstract Objective: Mental stress is detrimental to cardiovascular health, being a risk factor for coronary heart disease and a trigger for cardiac events. However, it is not currently routinely assessed. The aim of this study was to identify features of the photoplethysmogram (PPG) pulse wave which are indicative of mental stress. Approach: A numerical model of pulse wave propagation was used to simulate blood pressure signals, from which simulated PPG pulse waves were estimated using a transfer function. Pulse waves were simulated at six levels of stress by changing the model input parameters both simultaneously and individually, in accordance with haemodynamic changes associated with stress. Thirty-two feature measurements were extracted from pulse waves at three measurement sites: the brachial, radial and temporal arteries. Features which changed significantly with stress were identified using the Mann–Kendall monotonic trend test. Main results: Seventeen features exhibited significant trends with stress in measurements from at least one site. Three features showed significant trends at all three sites: the time from pulse onset to peak, the time from the dicrotic notch to pulse end, and the pulse rate. More features showed significant trends at the radial artery (15) than the brachial (8) or temporal (7) arteries. Most features were influenced by multiple input parameters. Significance: The features identified in this study could be used to monitor stress in healthcare and consumer devices. Measurements at the radial artery may provide superior performance than the brachial or temporal arteries. In vivo studies are required to confirm these observations. PMID:29658894

  15. Comparison of two methods for detection of strain localization in sheet forming

    NASA Astrophysics Data System (ADS)

    Lumelskyj, Dmytro; Lazarescu, Lucian; Banabic, Dorel; Rojek, Jerzy

    2018-05-01

    This paper presents a comparison of two criteria of strain localization in experimental research and numerical simulation of sheet metal forming. The first criterion is based on the analysis of the through-thickness thinning (through-thickness strain) and its first time derivative in the most strained zone. The limit strain in the second method is determined by the maximum of the strain acceleration. Experimental and numerical investigation have been carried out for the Nakajima test performed for different specimens of the DC04 grade steel sheet. The strain localization has been identified by analysis of experimental and numerical curves showing the evolution of strains and their derivatives in failure zones. The numerical and experimental limit strains calculated from both criteria have been compared with the experimental FLC evaluated according to the ISO 12004-2 norm. It has been shown that the first method predicts formability limits closer to the experimental FLC. The second criterion predicts values of strains higher than FLC determined according to ISO norm. These values are closer to the strains corresponding to the fracture limit. The results show that analysis of strain evolution allows us to determine strain localization in numerical simulation and experimental studies.

  16. Acoustic wave propagation in continuous functionally graded plates: an extension of the Legendre polynomial approach.

    PubMed

    Lefebvre, J E; Zhang, V; Gazalet, J; Gryba, T; Sadaune, V

    2001-09-01

    The propagation of guided waves in continuous functionally graded plates is studied by using Legendre polynomials. Dispersion curves, and power and field profiles are easily obtained. Our computer program is validated by comparing our results against other calculations from the literature. Numerical results are also given for a graded semiconductor plate. It is felt that the present method could be of quite practical interest in waveguiding engineering, non-destructive testing of functionally graded materials (FGMs) to identify the best inspection strategies, or by means of a numerical inversion algorithm to determine through-thickness gradients in material parameters.

  17. Stripes and honeycomb lattice of quantized vortices in rotating two-component Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Kasamatsu, Kenichi; Sakashita, Kouhei

    2018-05-01

    We study numerically the structure of a vortex lattice in rotating two-component Bose-Einstein condensates with equal atomic masses and equal intra- and intercomponent coupling strengths. The numerical simulations of the Gross-Pitaevskii equation show that the quantized vortices in this situation form lattice configuration accompanying vortex stripes, honeycomb lattices, and their complexes. This is a result of the degeneracy of the system for the SU(2) symmetric operation, which causes a continuous transformation between the above structures. In terms of the pseudospin representation, the complex lattice structures are identified as a hexagonal lattice of doubly winding half skyrmions.

  18. Celastrol Analogs as Inducers of the Heat Shock Response. Design and Synthesis of Affinity Probes for the Identification of Protein Targets

    PubMed Central

    Klaić, Lada; Morimoto, Richard I.; Silverman, Richard B.

    2012-01-01

    The natural product celastrol (1) possesses numerous beneficial therapeutic properties and affects numerous cellular pathways. The mechanism of action and cellular target(s) of celastrol, however, remain unresolved. While a number of studies have proposed that the activity of celastrol is mediated through reaction with cysteine residues, these observations have been based on studies with specific proteins or by in vitro analysis of a small fraction of the proteome. In this study, we have investigated the spatial and structural requirements of celastrol for the design of suitable affinity probes to identify cellular binding partners of celastrol. Although celastrol has several potential sites for modification, some of these were not synthetically amenable or yielded unstable analogs. Conversion of the carboxylic acid functionality to amides and long-chain analogs, however, yielded bioactive compounds that induced the heat shock response (HSR) and antioxidant response and inhibited Hsp90 activity. This led to the synthesis of biotinylated celastrols (23 and 24) that were used as affinity reagents in extracts of human Panc-1 cells to identify Annexin II, eEF1A, and β-tubulin as potential targets of celastrol. PMID:22380712

  19. Factors that affect coseismic folds in an overburden layer

    NASA Astrophysics Data System (ADS)

    Zeng, Shaogang; Cai, Yongen

    2018-03-01

    Coseismic folds induced by blind thrust faults have been observed in many earthquake zones, and they have received widespread attention from geologists and geophysicists. Numerous studies have been conducted regarding fold kinematics; however, few have studied fold dynamics quantitatively. In this paper, we establish a conceptual model with a thrust fault zone and tectonic stress load to study the factors that affect coseismic folds and their formation mechanisms using the finite element method. The numerical results show that the fault dip angle is a key factor that controls folding. The greater the dip angle is, the steeper the fold slope. The second most important factor is the overburden thickness. The thicker the overburden is, the more gradual the fold. In this case, folds are difficult to identify in field surveys. Therefore, if a fold can be easily identified with the naked eye, the overburden is likely shallow. The least important factors are the mechanical parameters of the overburden. The larger the Young's modulus of the overburden is, the smaller the displacement of the fold and the fold slope. Strong horizontal compression and vertical extension in the overburden near the fault zone are the main mechanisms that form coseismic folds.

  20. Exploring the world of human development and reproduction.

    PubMed

    Red-Horse, Kristy; Drake, Penelope M; Fisher, Susan

    2014-01-01

    Susan Fisher has spent her career studying human development, proteomics, and the intersection between the two. When she began studying human placentation, there had been extensive descriptive studies of this fascinating organ that intertwines with the mother's vasculature during pregnancy. Susan can be credited with numerous major findings on the mechanisms that regulate placental cytotrophoblast invasion. These include the discovery that cytotrophoblasts undergo vascular mimicry to insert themselves into uterine arteries, the finding that oxygen tension greatly effects placentation, and identifying how these responses go awry in pregnancy complications such as preeclamsia. Other important work has focused on the effect of post-translational modifications such as glycosylation on bacterial adhesion and reproduction. Susan has also forayed into the world of proteomics to identify cancer biomarkers. Because her work is truly groundbreaking, many of these findings inspire research in other laboratories around the world resulting in numerous follow up papers. Likewise, her mentoring and support inspires young scientists to go on and make their own important discoveries. In this interview, Susan shares what drove her science, how she continued to do important research while balancing other aspects of life, and provides insights for the next generation.

  1. A Vibration-Based Strategy for Health Monitoring of Offshore Pipelines' Girth-Welds

    PubMed Central

    Razi, Pejman; Taheri, Farid

    2014-01-01

    This study presents numerical simulations and experimental verification of a vibration-based damage detection technique. Health monitoring of a submerged pipe's girth-weld against an advancing notch is attempted. Piezoelectric transducers are bonded on the pipe for sensing or actuation purposes. Vibration of the pipe is excited by two means: (i) an impulsive force; (ii) using one of the piezoelectric transducers as an actuator to propagate chirp waves into the pipe. The methodology adopts the empirical mode decomposition (EMD), which processes vibration data to establish energy-based damage indices. The results obtained from both the numerical and experimental studies confirm the integrity of the approach in identifying the existence, and progression of the advancing notch. The study also discusses and compares the performance of the two vibration excitation means in damage detection. PMID:25225877

  2. A matched case-control study of convenience store robbery risk factors.

    PubMed

    Hendricks, S A; Landsittel, D P; Amandus, H E; Malcan, J; Bell, J

    1999-11-01

    Convenience store clerks have been shown to be at high risk for assault and homicide, mostly owing to robbery or robbery attempts. Although the literature consistently indicates that at least some environmental designs are effective deterrents of robbery, the significance of individual interventions and policies has differed across past studies. To address these issues, a matched case-control study of 400 convenience store robberies in three metropolitan areas of Virginia was conducted. Conditional logistic regression was implemented to evaluate the significance of various environmental designs and other factors possibly related to convenience store robbery. Findings indicate that numerous characteristics of the surrounding environment and population were significantly associated with convenience store robbery. Results also showed that, on a univariate level, most crime prevention factors were significantly associated with a lower risk for robbery. Using a forward selection process, a multivariate model, which included cash handling policy, bullet-resistant shielding, and numerous characteristics of the surrounding area and population, was identified. This study addressed numerous limitations of the previous literature by prospectively collecting extensive data on a large sample of diverse convenience stores and directly addressing the current theory on the robbers' selection of a target store through a matched case-control design.

  3. A study of unstable rock failures using finite difference and discrete element methods

    NASA Astrophysics Data System (ADS)

    Garvey, Ryan J.

    Case histories in mining have long described pillars or faces of rock failing violently with an accompanying rapid ejection of debris and broken material into the working areas of the mine. These unstable failures have resulted in large losses of life and collapses of entire mine panels. Modern mining operations take significant steps to reduce the likelihood of unstable failure, however eliminating their occurrence is difficult in practice. Researchers over several decades have supplemented studies of unstable failures through the application of various numerical methods. The direction of the current research is to extend these methods and to develop improved numerical tools with which to study unstable failures in underground mining layouts. An extensive study is first conducted on the expression of unstable failure in discrete element and finite difference methods. Simulated uniaxial compressive strength tests are run on brittle rock specimens. Stable or unstable loading conditions are applied onto the brittle specimens by a pair of elastic platens with ranging stiffnesses. Determinations of instability are established through stress and strain histories taken for the specimen and the system. Additional numerical tools are then developed for the finite difference method to analyze unstable failure in larger mine models. Instability identifiers are established for assessing the locations and relative magnitudes of unstable failure through measures of rapid dynamic motion. An energy balance is developed which calculates the excess energy released as a result of unstable equilibria in rock systems. These tools are validated through uniaxial and triaxial compressive strength tests and are extended to models of coal pillars and a simplified mining layout. The results of the finite difference simulations reveal that the instability identifiers and excess energy calculations provide a generalized methodology for assessing unstable failures within potentially complex mine models. These combined numerical tools may be applied in future studies to design primary and secondary supports in bump-prone conditions, evaluate retreat mining cut sequences, asses pillar de-stressing techniques, or perform backanalyses on unstable failures in select mining layouts.

  4. Mapping of non-numerical domains on space: a systematic review and meta-analysis.

    PubMed

    Macnamara, Anne; Keage, Hannah A D; Loetscher, Tobias

    2018-02-01

    The spatial numerical association of response code (SNARC) effect is characterized by low numbers mapped to the left side of space and high numbers mapped to the right side of space. In addition to numbers, SNARC-like effects have been found in non-numerical magnitude domains such as time, size, letters, luminance, and more, whereby the smaller/earlier and larger/later magnitudes are typically mapped to the left and right of space, respectively. The purpose of this systematic and meta-analytic review was to identify and summarise all empirical papers that have investigated horizontal (left-right) SNARC-like mappings using non-numerical stimuli. A systematic search was conducted using EMBASE, Medline, and PsycINFO, where 2216 publications were identified, with 57 papers meeting the inclusion criteria (representing 112 experiments). Ninety-five of these experiments were included in a meta-analysis, resulting in an overall effect size of d = .488 for a SNARC-like effect. Additional analyses revealed a significant effect size advantage for explicit instruction tasks compared with implicit instructions, yet yielded no difference for the role of expertise on SNARC-like effects. There was clear evidence for a publication bias in the field, but the impact of this bias is likely to be modest, and it is unlikely that the SNARC-like effect is a pure artefact of this bias. The similarities in the response properties for the spatial mappings of numerical and non-numerical domains support the concept of a general higher order magnitude system. Yet, further research will need to be conducted to identify all the factors modulating the strength of the spatial associations.

  5. Mechanical testing of bones: the positive synergy of finite-element models and in vitro experiments.

    PubMed

    Cristofolini, Luca; Schileo, Enrico; Juszczyk, Mateusz; Taddei, Fulvia; Martelli, Saulo; Viceconti, Marco

    2010-06-13

    Bone biomechanics have been extensively investigated in the past both with in vitro experiments and numerical models. In most cases either approach is chosen, without exploiting synergies. Both experiments and numerical models suffer from limitations relative to their accuracy and their respective fields of application. In vitro experiments can improve numerical models by: (i) preliminarily identifying the most relevant failure scenarios; (ii) improving the model identification with experimentally measured material properties; (iii) improving the model identification with accurately measured actual boundary conditions; and (iv) providing quantitative validation based on mechanical properties (strain, displacements) directly measured from physical specimens being tested in parallel with the modelling activity. Likewise, numerical models can improve in vitro experiments by: (i) identifying the most relevant loading configurations among a number of motor tasks that cannot be replicated in vitro; (ii) identifying acceptable simplifications for the in vitro simulation; (iii) optimizing the use of transducers to minimize errors and provide measurements at the most relevant locations; and (iv) exploring a variety of different conditions (material properties, interface, etc.) that would require enormous experimental effort. By reporting an example of successful investigation of the femur, we show how a combination of numerical modelling and controlled experiments within the same research team can be designed to create a virtuous circle where models are used to improve experiments, experiments are used to improve models and their combination synergistically provides more detailed and more reliable results than can be achieved with either approach singularly.

  6. A scoping review of rapid review methods.

    PubMed

    Tricco, Andrea C; Antony, Jesmin; Zarin, Wasifa; Strifler, Lisa; Ghassemi, Marco; Ivory, John; Perrier, Laure; Hutton, Brian; Moher, David; Straus, Sharon E

    2015-09-16

    Rapid reviews are a form of knowledge synthesis in which components of the systematic review process are simplified or omitted to produce information in a timely manner. Although numerous centers are conducting rapid reviews internationally, few studies have examined the methodological characteristics of rapid reviews. We aimed to examine articles, books, and reports that evaluated, compared, used or described rapid reviews or methods through a scoping review. MEDLINE, EMBASE, the Cochrane Library, internet websites of rapid review producers, and reference lists were searched to identify articles for inclusion. Two reviewers independently screened literature search results and abstracted data from included studies. Descriptive analysis was conducted. We included 100 articles plus one companion report that were published between 1997 and 2013. The studies were categorized as 84 application papers, seven development papers, six impact papers, and four comparison papers (one was included in two categories). The rapid reviews were conducted between 1 and 12 months, predominantly in Europe (58 %) and North America (20 %). The included studies failed to report 6 % to 73 % of the specific systematic review steps examined. Fifty unique rapid review methods were identified; 16 methods occurred more than once. Streamlined methods that were used in the 82 rapid reviews included limiting the literature search to published literature (24 %) or one database (2 %), limiting inclusion criteria by date (68 %) or language (49 %), having one person screen and another verify or screen excluded studies (6 %), having one person abstract data and another verify (23 %), not conducting risk of bias/quality appraisal (7 %) or having only one reviewer conduct the quality appraisal (7 %), and presenting results as a narrative summary (78 %). Four case studies were identified that compared the results of rapid reviews to systematic reviews. Three studies found that the conclusions between rapid reviews and systematic reviews were congruent. Numerous rapid review approaches were identified and few were used consistently in the literature. Poor quality of reporting was observed. A prospective study comparing the results from rapid reviews to those obtained through systematic reviews is warranted.

  7. Numerical analysis of natural convection in liquid droplets by phase change

    NASA Astrophysics Data System (ADS)

    Duh, J. C.; Yang, Wen-Jei

    1989-09-01

    A numerical analysis is performed on thermocapillary buoyancy convection induced by phase change in a liquid droplet. A finite-difference code is developed using an alternating-direction implicit (ADI) scheme. The intercoupling relation between thermocapillary force, buoyancy force, fluid property, heat transfer, and phase change, along with their effects on the induced flow patterns, are disclosed. The flow is classified into three types: thermocapillary, buoyancy, and combined convection. Among the three mechanisms, the combined convection simulates the experimental observations quite well, and the basic mechanism of the observed convection inside evaporating sessile drops is thus identified. It is disclosed that evaporation initiates unstable convection, while condensation always brings about a stable density distribution which eventually damps out all fluid disturbances. Another numerical model is presented to study the effect of boundary recession due to evaporation, and the 'peeling-off' effect (the removal of the surface layer of fluid by evaporation) is shown to be relevant.

  8. Influence of the thrust bearing on the natural frequencies of a 72-MW hydropower rotor

    NASA Astrophysics Data System (ADS)

    Cupillard, S.; Aidanpää, J.-O.

    2016-11-01

    The thrust bearing is an essential element of a hydropower machine. Not only does it carry the total axial load but it also introduces stiffness and damping properties in the system. The focus of this study is on the influence of the thrust bearing on the lateral vibrations of the shaft of a 72-MW propeller turbine. The thrust bearing has a non-conventional design with a large radius and two rows of thrust pads. A numerical model is developed to estimate natural frequencies. Numerical results are analyzed and related to experimental measurements of a runaway test. The results show the need to include the thrust bearing in the model. In fact, the vibration modes are substantially increased towards higher frequencies with the added properties from the thrust bearing. The second mode of vibration has been identified in the experimental measurements. Its frequency and mode shape compare well with numerical results.

  9. Flow in curved ducts of varying cross-section

    NASA Astrophysics Data System (ADS)

    Sotiropoulos, F.; Patel, V. C.

    1992-07-01

    Two numerical methods for solving the incompressible Navier-Stokes equations are compared with each other by applying them to calculate laminar and turbulent flows through curved ducts of regular cross-section. Detailed comparisons, between the computed solutions and experimental data, are carried out in order to validate the two methods and to identify their relative merits and disadvantages. Based on the conclusions of this comparative study a numerical method is developed for simulating viscous flows through curved ducts of varying cross-sections. The proposed method is capable of simulating the near-wall turbulence using fine computational meshes across the sublayer in conjunction with a two-layer k-epsilon model. Numerical solutions are obtained for: (1) a straight transition duct geometry, and (2) a hydroturbine draft-tube configuration at model scale Reynolds number for various inlet swirl intensities. The report also provides a detailed literature survey that summarizes all the experimental and computational work in the area of duct flows.

  10. Numerical analysis of natural convection in liquid droplets by phase change

    NASA Technical Reports Server (NTRS)

    Duh, J. C.; Yang, Wen-Jei

    1989-01-01

    A numerical analysis is performed on thermocapillary buoyancy convection induced by phase change in a liquid droplet. A finite-difference code is developed using an alternating-direction implicit (ADI) scheme. The intercoupling relation between thermocapillary force, buoyancy force, fluid property, heat transfer, and phase change, along with their effects on the induced flow patterns, are disclosed. The flow is classified into three types: thermocapillary, buoyancy, and combined convection. Among the three mechanisms, the combined convection simulates the experimental observations quite well, and the basic mechanism of the observed convection inside evaporating sessile drops is thus identified. It is disclosed that evaporation initiates unstable convection, while condensation always brings about a stable density distribution which eventually damps out all fluid disturbances. Another numerical model is presented to study the effect of boundary recession due to evaporation, and the 'peeling-off' effect (the removal of the surface layer of fluid by evaporation) is shown to be relevant.

  11. A multi-domain spectral method for time-fractional differential equations

    NASA Astrophysics Data System (ADS)

    Chen, Feng; Xu, Qinwu; Hesthaven, Jan S.

    2015-07-01

    This paper proposes an approach for high-order time integration within a multi-domain setting for time-fractional differential equations. Since the kernel is singular or nearly singular, two main difficulties arise after the domain decomposition: how to properly account for the history/memory part and how to perform the integration accurately. To address these issues, we propose a novel hybrid approach for the numerical integration based on the combination of three-term-recurrence relations of Jacobi polynomials and high-order Gauss quadrature. The different approximations used in the hybrid approach are justified theoretically and through numerical examples. Based on this, we propose a new multi-domain spectral method for high-order accurate time integrations and study its stability properties by identifying the method as a generalized linear method. Numerical experiments confirm hp-convergence for both time-fractional differential equations and time-fractional partial differential equations.

  12. Numerous eosinophilic globules (skeinoid fibers) in a duodenal stromal tumor: an exceptional case showing smooth muscle differentiation.

    PubMed

    Matsukuma, S; Doi, M; Suzuki, M; Ikegawa, K; Sato, K; Kuwabara, N

    1997-11-01

    A unique case of duodenal stromal tumor in a 51-year-old man is reported. The tumor histologically showed spindle cell proliferation and numerous eosinophilic globules. Most globules were composed of tangled 45 nm thick fibrils, which were ultrastructurally identical to 'skeinoid fibers'. The presence of glycogen granules in the tumor cells and the immunoreactivity for alpha-smooth muscle actin suggested smooth muscle differentiation. Focal ultrastructural findings also supported the smooth muscle nature of this tumor. There were no immunohistochemical and ultrastructural features indicating neural differentiation. In previous studies, the presence of such 'skeinoid fibers' was suggested to be a histological marker for neural differentiation in gastrointestinal stromal tumor. However, the findings in the present case suggest that numerous 'skeinoid fibers' can be identified in duodenal stromal tumor with smooth muscle differentiation, although this condition may be rare.

  13. Chemical Biology Probes from Advanced DNA-encoded Libraries.

    PubMed

    Salamon, Hazem; Klika Škopić, Mateja; Jung, Kathrin; Bugain, Olivia; Brunschweiger, Andreas

    2016-02-19

    The identification of bioactive compounds is a crucial step toward development of probes for chemical biology studies. Screening of DNA-encoded small molecule libraries (DELs) has emerged as a validated technology to interrogate vast chemical space. DELs consist of chimeric molecules composed of a low-molecular weight compound that is conjugated to a DNA identifier tag. They are screened as pooled libraries using selection to identify "hits." Screening of DELs has identified numerous bioactive compounds. Some of these molecules were instrumental in gaining a deeper understanding of biological systems. One of the main challenges in the field is the development of synthesis methodology for DELs.

  14. Rubble masonry response under cyclic actions: The experience of L’Aquila city (Italy)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fonti, Roberta, E-mail: roberta.fonti@tum.de; Barthel, Rainer, E-mail: r.barthel@lrz.tu-muenchen.de; Formisano, Antonio, E-mail: antoform@unina.it

    2015-12-31

    Several methods of analysis are available in engineering practice to study old masonry constructions. Two commonly used approaches in the field of seismic engineering are global and local analyses. Despite several years of research in this field, the various methodologies suffer from a lack of comprehensive experimental validation. This is mainly due to the difficulty in simulating the many different kinds of masonry and, accordingly, the non-linear response under horizontal actions. This issue can be addressed by examining the local response of isolated panels under monotonic and/or alternate actions. Different testing methodologies are commonly used to identify the local responsemore » of old masonry. These range from simplified pull-out tests to sophisticated in-plane monotonic tests. However, there is a lack of both knowledge and critical comparison between experimental validations and numerical simulations. This is mainly due to the difficulties in implementing irregular settings within both simplified and advanced numerical analyses. Similarly, the simulation of degradation effects within laboratory tests is difficult with respect to old masonry in-situ boundary conditions. Numerical models, particularly on rubble masonry, are commonly simplified. They are mainly based on a kinematic chain of rigid blocks able to perform different “modes of damage” of structures subjected to horizontal actions. This paper presents an innovative methodology for testing; its aim is to identify a simplified model for out-of-plane response of rubbleworks with respect to the experimental evidence. The case study of L’Aquila district is discussed.« less

  15. Robust and Accurate Shock Capturing Method for High-Order Discontinuous Galerkin Methods

    NASA Technical Reports Server (NTRS)

    Atkins, Harold L.; Pampell, Alyssa

    2011-01-01

    A simple yet robust and accurate approach for capturing shock waves using a high-order discontinuous Galerkin (DG) method is presented. The method uses the physical viscous terms of the Navier-Stokes equations as suggested by others; however, the proposed formulation of the numerical viscosity is continuous and compact by construction, and does not require the solution of an auxiliary diffusion equation. This work also presents two analyses that guided the formulation of the numerical viscosity and certain aspects of the DG implementation. A local eigenvalue analysis of the DG discretization applied to a shock containing element is used to evaluate the robustness of several Riemann flux functions, and to evaluate algorithm choices that exist within the underlying DG discretization. A second analysis examines exact solutions to the DG discretization in a shock containing element, and identifies a "model" instability that will inevitably arise when solving the Euler equations using the DG method. This analysis identifies the minimum viscosity required for stability. The shock capturing method is demonstrated for high-speed flow over an inviscid cylinder and for an unsteady disturbance in a hypersonic boundary layer. Numerical tests are presented that evaluate several aspects of the shock detection terms. The sensitivity of the results to model parameters is examined with grid and order refinement studies.

  16. Toward uniform implementation of parametric map Digital Imaging and Communication in Medicine standard in multisite quantitative diffusion imaging studies.

    PubMed

    Malyarenko, Dariya; Fedorov, Andriy; Bell, Laura; Prah, Melissa; Hectors, Stefanie; Arlinghaus, Lori; Muzi, Mark; Solaiyappan, Meiyappan; Jacobs, Michael; Fung, Maggie; Shukla-Dave, Amita; McManus, Kevin; Boss, Michael; Taouli, Bachir; Yankeelov, Thomas E; Quarles, Christopher Chad; Schmainda, Kathleen; Chenevert, Thomas L; Newitt, David C

    2018-01-01

    This paper reports on results of a multisite collaborative project launched by the MRI subgroup of Quantitative Imaging Network to assess current capability and provide future guidelines for generating a standard parametric diffusion map Digital Imaging and Communication in Medicine (DICOM) in clinical trials that utilize quantitative diffusion-weighted imaging (DWI). Participating sites used a multivendor DWI DICOM dataset of a single phantom to generate parametric maps (PMs) of the apparent diffusion coefficient (ADC) based on two models. The results were evaluated for numerical consistency among models and true phantom ADC values, as well as for consistency of metadata with attributes required by the DICOM standards. This analysis identified missing metadata descriptive of the sources for detected numerical discrepancies among ADC models. Instead of the DICOM PM object, all sites stored ADC maps as DICOM MR objects, generally lacking designated attributes and coded terms for quantitative DWI modeling. Source-image reference, model parameters, ADC units and scale, deemed important for numerical consistency, were either missing or stored using nonstandard conventions. Guided by the identified limitations, the DICOM PM standard has been amended to include coded terms for the relevant diffusion models. Open-source software has been developed to support conversion of site-specific formats into the standard representation.

  17. Undergraduate African American females in the sciences: A qualitative study of student experiences affecting academic success and persistence

    NASA Astrophysics Data System (ADS)

    Essien-Wood, Idara R.

    Given the lack of literature on Undergraduate African American females in the sciences (UAAFS), this study sought to explicate their experiences at one large, predominantly White, Research I institution in the southwestern United States. In particular, the purpose of this study was to identify factors that affect the academic success and persistence of Black females in the natural and physical sciences. Data was collected via in-depth, semi-structured interviews with 15 Black female science majors. Findings from this study identified several supportive mechanisms for academic success: family, religion, teaching assistants and friends. Also identified were seven barriers to academic success: employment, lack of diversity, cultural dissonance, unwelcoming Research I environment, faculty, advisors, classmates, and lab groups. Further, an analysis of students' responses revealed numerous instances of racial and gender micro-aggressions. Recommendations are provided to address factors identified as affecting student academic success and persistence as well as a culture of micro-aggressive behavior.

  18. Complexity-Entropy Causality Plane as a Complexity Measure for Two-Dimensional Patterns

    PubMed Central

    Ribeiro, Haroldo V.; Zunino, Luciano; Lenzi, Ervin K.; Santoro, Perseu A.; Mendes, Renio S.

    2012-01-01

    Complexity measures are essential to understand complex systems and there are numerous definitions to analyze one-dimensional data. However, extensions of these approaches to two or higher-dimensional data, such as images, are much less common. Here, we reduce this gap by applying the ideas of the permutation entropy combined with a relative entropic index. We build up a numerical procedure that can be easily implemented to evaluate the complexity of two or higher-dimensional patterns. We work out this method in different scenarios where numerical experiments and empirical data were taken into account. Specifically, we have applied the method to fractal landscapes generated numerically where we compare our measures with the Hurst exponent; liquid crystal textures where nematic-isotropic-nematic phase transitions were properly identified; 12 characteristic textures of liquid crystals where the different values show that the method can distinguish different phases; and Ising surfaces where our method identified the critical temperature and also proved to be stable. PMID:22916097

  19. Discrete distributed strain sensing of intelligent structures

    NASA Technical Reports Server (NTRS)

    Anderson, Mark S.; Crawley, Edward F.

    1992-01-01

    Techniques are developed for the design of discrete highly distributed sensor systems for use in intelligent structures. First the functional requirements for such a system are presented. Discrete spatially averaging strain sensors are then identified as satisfying the functional requirements. A variety of spatial weightings for spatially averaging sensors are examined, and their wave number characteristics are determined. Preferable spatial weightings are identified. Several numerical integration rules used to integrate such sensors in order to determine the global deflection of the structure are discussed. A numerical simulation is conducted using point and rectangular sensors mounted on a cantilevered beam under static loading. Gage factor and sensor position uncertainties are incorporated to assess the absolute error and standard deviation of the error in the estimated tip displacement found by numerically integrating the sensor outputs. An experiment is carried out using a statically loaded cantilevered beam with five point sensors. It is found that in most cases the actual experimental error is within one standard deviation of the absolute error as found in the numerical simulation.

  20. Analysis of stability and bifurcations of fixed points and periodic solutions of a lumped model of neocortex with two delays

    PubMed Central

    2012-01-01

    A lumped model of neural activity in neocortex is studied to identify regions of multi-stability of both steady states and periodic solutions. Presence of both steady states and periodic solutions is considered to correspond with epileptogenesis. The model, which consists of two delay differential equations with two fixed time lags is mainly studied for its dependency on varying connection strength between populations. Equilibria are identified, and using linear stability analysis, all transitions are determined under which both trivial and non-trivial fixed points lose stability. Periodic solutions arising at some of these bifurcations are numerically studied with a two-parameter bifurcation analysis. PMID:22655859

  1. Numerical Speed of Sound and its Application to Schemes for all Speeds

    NASA Technical Reports Server (NTRS)

    Liou, Meng-Sing; Edwards, Jack R.

    1999-01-01

    The concept of "numerical speed of sound" is proposed in the construction of numerical flux. It is shown that this variable is responsible for the accurate resolution of' discontinuities, such as contacts and shocks. Moreover, this concept can he readily extended to deal with low speed and multiphase flows. As a results, the numerical dissipation for low speed flows is scaled with the local fluid speed, rather than the sound speed. Hence, the accuracy is enhanced the correct solution recovered, and the convergence rate improved. We also emphasize the role of mass flux and analyze the behavior of this flux. Study of mass flux is important because the numerical diffusivity introduced in it can be identified. In addition, it is the term common to all conservation equations. We show calculated results for a wide variety of flows to validate the effectiveness of using the numerical speed of sound concept in constructing the numerical flux. We especially aim at achieving these two goals: (1) improving accuracy and (2) gaining convergence rates for all speed ranges. We find that while the performance at high speed range is maintained, the flux now has the capability of performing well even with the low: speed flows. Thanks to the new numerical speed of sound, the convergence is even enhanced for the flows outside of the low speed range. To realize the usefulness of the proposed method in engineering problems, we have also performed calculations for complex 3D turbulent flows and the results are in excellent agreement with data.

  2. Numerical study of cold filling and tube deformation in the molten salt receiver

    NASA Astrophysics Data System (ADS)

    Xu, Tingting; Zhang, Gongchen; Peniguel, Christophe; Liao, Zhirong; Li, Xin; Lu, Jiahui; Wang, Zhifeng

    2017-06-01

    Molten salt tube cold filling is one way to accelerate the startup of molten salt Concentrated Solar Power (CSP) plant. This practical operation may induce salt solidification and large thermal stress due to tube's large temperature difference. This paper presents the cold filling study and the induced thermal stress quantitatively through simulation approaches. Physical mechanisms and safe working criteria are identified under certain conditions.

  3. The Neurocognitive Architecture of Individual Differences in Math Anxiety in Typical Children.

    PubMed

    Hartwright, Charlotte E; Looi, Chung Yen; Sella, Francesco; Inuggi, Alberto; Santos, Flávia Heloísa; González-Salinas, Carmen; Santos, Jose M García; Kadosh, Roi Cohen; Fuentes, Luis J

    2018-05-31

    Math Anxiety (MA) is characterized by a negative emotional response when facing math-related situations. MA is distinct from general anxiety and can emerge during primary education. Prior studies typically comprise adults and comparisons between high- versus low-MA, where neuroimaging work has focused on differences in network activation between groups when completing numerical tasks. The present study used voxel-based morphometry (VBM) to identify the structural brain correlates of MA in a sample of 79 healthy children aged 7-12 years. Given that MA is thought to develop in later primary education, the study focused on the level of MA, rather than categorically defining its presence. Using a battery of cognitive- and numerical-function tasks, we identified that increased MA was associated with reduced attention, working memory and math achievement. VBM highlighted that increased MA was associated with reduced grey matter in the left anterior intraparietal sulcus. This region was also associated with attention, suggesting that baseline differences in morphology may underpin attentional differences. Future studies should clarify whether poorer attentional capacity due to reduced grey matter density results in the later emergence of MA. Further, our data highlight the role of working memory in propagating reduced math achievement in children with higher MA.

  4. Meeting Tomorrow's Expectations: In Search of Core Competencies and Ways of Assessing Them

    ERIC Educational Resources Information Center

    Podolskiy, O. A.; Pogozhina, V. A.

    2016-01-01

    Today, experts agree that the level of cognitive development of modern young people affects the long-term life goals and outcomes that they set for themselves. During the course of numerous studies experts have identified such key competencies as problem solving, information literacy, and critical thinking. However, there are still many unanswered…

  5. Preliminary study for a numerical aerodynamic simulation facility. Phase 1: Extension

    NASA Technical Reports Server (NTRS)

    Lincoln, N. R.

    1978-01-01

    Functional requirements and preliminary design data were identified for use in the design of all system components and in the construction of a facility to perform aerodynamic simulation for airframe design. A skeleton structure of specifications for the flow model processor and monitor, the operating system, and the language and its compiler is presented.

  6. The Effects of Positive Behavior Interventions and Support on Changing the Behavior of Red Zone Students

    ERIC Educational Resources Information Center

    Robinson, Fredrick

    2012-01-01

    In order to improve culture, safety, and climate, numerous schools nationwide are implementing Positive Behavior Interventions and Support (PBIS). The purpose of this study was to examine the effectiveness of the Positive Behavior Interventions and Support (PBIS) model for reducing high-risk behaviors of students identified as red zone. The…

  7. When Mergers Fail: A Case Study on the Critical Role of External Stakeholders in Merger Initiatives

    ERIC Educational Resources Information Center

    Stensaker, Bjørn; Persson, Mats; Pinheiro, Rómulo

    2016-01-01

    One can, in principle, identify numerous arguments for mergers in higher education (HE), including efficiency, diversity, quality, and regional needs. This diversity can be explained by the growing societal interest in the sector, not least concerning the contributions from HE to society at large. However, research on merger processes has tended…

  8. Exploring the Convergence of Sequences in the Embodied World Using GeoGebra

    ERIC Educational Resources Information Center

    de Moura Fonseca, Daila Silva Seabra; de Oliveira Lino Franchi, Regina Helena

    2016-01-01

    This study addresses the embodied approach of convergence of numerical sequences using the GeoGebra software. We discuss activities that were applied in regular calculus classes, as a part of a research which used a qualitative methodology and aimed to identify contributions of the development of activities based on the embodiment of concepts,…

  9. Textbook Characteristics That Support or Thwart Comprehension: The Current State of Social Studies Texts

    ERIC Educational Resources Information Center

    Berkeley, Sheri; King-Sears, Margaret E.; Vilbas, Jessica; Conklin, Sarah

    2016-01-01

    Textbooks are heavily used in secondary-level content area classes, but previous research has identified numerous challenges for students associated with reading and understanding these texts. While students can learn reading strategies that help them better understand text, it is unclear the extent to which textbooks are written to promote or…

  10. Social Capital and Low-Income, First-Generation Latino Male College Students

    ERIC Educational Resources Information Center

    Valle, Daniel M.

    2017-01-01

    Low-income, first-generation students face numerous barriers to earn a college degree. Of these students, Latino male students have some of the lowest levels of college enrollment and persistence. This study used a phenomenological design to identify the perspectives of low-income, first-generation (LIFG) Latino male college students on how social…

  11. The Concept of the "Imploded Boolean Search": A Case Study with Undergraduate Chemistry Students

    ERIC Educational Resources Information Center

    Tomaszewski, Robert

    2016-01-01

    Critical thinking and analytical problem-solving skills in research involves using different search strategies. A proposed concept for an "Imploded Boolean Search" combines three unique identifiable field types to perform a search: keyword(s), numerical value(s), and a chemical structure or reaction. The object of this type of search is…

  12. Part-Time Community College Instructors Teaching in Learning Communities: An Exploratory Multiple Case Study

    ERIC Educational Resources Information Center

    Paterson, John W.

    2017-01-01

    Community colleges have a greater portion of students at-risk for college completion than four-year schools and faculty at these institutions are overwhelmingly and increasingly part-time. Learning communities have been identified as a high-impact practice with numerous benefits documented for community college instructors and students: a primary…

  13. Evaluation of Test Methods for Triaxially Braided Composites using a Meso-Scale Finite Element Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Chao

    The characterization of triaxially braided composite is complicate due to the nonuniformity of deformation within the unit cell as well as the possibility of the freeedge effect related to the large size of the unit cell. Extensive experimental investigation has been conducted to develop more accurate test approaches in characterizing the actual mechanical properties of the material we are studying. In this work, a meso-scale finite element model is utilized to simulate two complex specimens: notched tensile specimen and tube tensile specimen, which are designed to avoid the free-edge effect and free-edge effect induced premature edge damage. The full fieldmore » strain data is predicted numerically and compared with experimental data obtained by Digit Image Correlation. The numerically predicted tensile strength values are compared with experimentally measured results. The discrepancy between numerically predicted and experimentally measured data, the capability of different test approaches are analyzed and discussed. The presented numerical model could serve as assistance to the evaluation of different test methods, and is especially useful in identifying potential local damage events.« less

  14. A longitudinal study on predictors of early calculation development among young children at risk for learning difficulties.

    PubMed

    Peng, Peng; Namkung, Jessica M; Fuchs, Douglas; Fuchs, Lynn S; Patton, Samuel; Yen, Loulee; Compton, Donald L; Zhang, Wenjuan; Miller, Amanda; Hamlett, Carol

    2016-12-01

    The purpose of this study was to explore domain-general cognitive skills, domain-specific academic skills, and demographic characteristics that are associated with calculation development from first grade to third grade among young children with learning difficulties. Participants were 176 children identified with reading and mathematics difficulties at the beginning of first grade. Data were collected on working memory, language, nonverbal reasoning, processing speed, decoding, numerical competence, incoming calculations, socioeconomic status, and gender at the beginning of first grade and on calculation performance at four time points: the beginning of first grade, the end of first grade, the end of second grade, and the end of third grade. Latent growth modeling analysis showed that numerical competence, incoming calculation, processing speed, and decoding skills significantly explained the variance in calculation performance at the beginning of first grade. Numerical competence and processing speed significantly explained the variance in calculation performance at the end of third grade. However, numerical competence was the only significant predictor of calculation development from the beginning of first grade to the end of third grade. Implications of these findings for early calculation instructions among young at-risk children are discussed. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. A suite of benchmark and challenge problems for enhanced geothermal systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, Mark; Fu, Pengcheng; McClure, Mark

    A diverse suite of numerical simulators is currently being applied to predict or understand the performance of enhanced geothermal systems (EGS). To build confidence and identify critical development needs for these analytical tools, the United States Department of Energy, Geothermal Technologies Office sponsored a Code Comparison Study (GTO-CCS), with participants from universities, industry, and national laboratories. A principal objective for the study was to create a community forum for improvement and verification of numerical simulators for EGS modeling. Teams participating in the study were those representing U.S. national laboratories, universities, and industries, and each team brought unique numerical simulation capabilitiesmore » to bear on the problems. Two classes of problems were developed during the study, benchmark problems and challenge problems. The benchmark problems were structured to test the ability of the collection of numerical simulators to solve various combinations of coupled thermal, hydrologic, geomechanical, and geochemical processes. This class of problems was strictly defined in terms of properties, driving forces, initial conditions, and boundary conditions. The challenge problems were based on the enhanced geothermal systems research conducted at Fenton Hill, near Los Alamos, New Mexico, between 1974 and 1995. The problems involved two phases of research, stimulation, development, and circulation in two separate reservoirs. The challenge problems had specific questions to be answered via numerical simulation in three topical areas: 1) reservoir creation/stimulation, 2) reactive and passive transport, and 3) thermal recovery. Whereas the benchmark class of problems were designed to test capabilities for modeling coupled processes under strictly specified conditions, the stated objective for the challenge class of problems was to demonstrate what new understanding of the Fenton Hill experiments could be realized via the application of modern numerical simulation tools by recognized expert practitioners. We present the suite of benchmark and challenge problems developed for the GTO-CCS, providing problem descriptions and sample solutions.« less

  16. The Relationship of Bacterial Biofilms and Capsular Contracture in Breast Implants

    PubMed Central

    Ajdic, Dragana; Zoghbi, Yasmina; Gerth, David; Panthaki, Zubin J.; Thaller, Seth

    2016-01-01

    Capsular contracture is a common sequelae of implant-based breast augmentation. Despite its prevalence, the etiology of capsular contracture remains controversial. Numerous studies have identified microbial biofilms on various implantable materials, including breast implants. Furthermore, biofilms have been implicated in subclinical infections associated with other surgical implants. In this review, we discuss microbial biofilms as a potential etiology of capsular contracture. The review also outlines the key diagnostic modalities available to identify the possible infectious agents found in biofilm, as well as available preventative and treatment measures. PMID:26843099

  17. Developmental Foundations of Children's Fraction Magnitude Knowledge.

    PubMed

    Mou, Yi; Li, Yaoran; Hoard, Mary K; Nugent, Lara D; Chu, Felicia W; Rouder, Jeffrey N; Geary, David C

    2016-01-01

    The conceptual insight that fractions represent magnitudes is a critical yet daunting step in children's mathematical development, and the knowledge of fraction magnitudes influences children's later mathematics learning including algebra. In this study, longitudinal data were analyzed to identify the mathematical knowledge and domain-general competencies that predicted 8 th and 9 th graders' (n=122) knowledge of fraction magnitudes and its cross-grade gains. Performance on the fraction magnitude measures predicted 9 th grade algebra achievement. Understanding and fluently identifying the numerator-denominator relation in 7 th grade emerged as the key predictor of later fraction magnitudes knowledge in both 8 th and 9 th grades. Competence at using fraction procedures, knowledge of whole number magnitudes, and the central executive contributed to 9 th but not 8 th graders' fraction magnitude knowledge, and knowledge of whole number magnitude contributed to cross-grade gains. The key results suggest fluent processing of numerator-denominator relations presages students' understanding of fractions as magnitudes and that the integration of whole number and fraction magnitudes occurs gradually.

  18. Zeldovich pancakes in observational data are cold

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brinckmann, Thejs; Lindholmer, Mikkel; Hansen, Steen

    The present day universe consists of galaxies, galaxy clusters, one-dimensional filaments and two-dimensional sheets or pancakes, all of which combine to form the cosmic web. The so called ''Zeldovich pancakes' are very difficult to observe, because their overdensity is only slightly greater than the average density of the universe. Falco et al. [1] presented a method to identify Zeldovich pancakes in observational data, and these were used as a tool for estimating the mass of galaxy clusters. Here we expand and refine that observational detection method. We study two pancakes on scales of 10 Mpc, identified from spectroscopically observed galaxiesmore » near the Coma cluster, and compare with twenty numerical pancakes.We find that the observed structures have velocity dispersions of about 100 km/sec, which is relatively low compared to typical groups and filaments. These velocity dispersions are consistent with those found for the numerical pancakes. We also confirm that the identified structures are in fact two-dimensional structures. Finally, we estimate the stellar to total mass of the observational pancakes to be 2 · 10{sup −4}, within one order of magnitude, which is smaller than that of clusters of galaxies.« less

  19. Results of a feasibility study: barriers and facilitators in implementing the Sherbrooke model in France.

    PubMed

    Fassier, Jean-Baptiste; Durand, Marie-José; Caillard, Jean-François; Roquelaure, Yves; Loisel, Patrick

    2015-05-01

    Return-to-work interventions associated with the workplace environment are often more effective than conventional care. The Sherbrooke model is an integrated intervention that has proved successful in preventing work disability due to low-back pain. Implementation, however, runs up against many obstacles, and failure has been reported in many countries. The present study sought to identify barriers to and facilitators of the implementation of the Sherbrooke model within the French health system. A multiple case study with nested levels of analysis was performed in two regions of France. A conceptual framework was designed and refined to identify barriers and facilitators at the individual, organizational and contextual levels. Qualitative data were collected via semi-structured interview (N=22), focus groups (N=7), and observation and from the gray literature. Participants (N=61) belonged to three fields: healthcare, social insurance, and the workplace. Numerous barriers and facilitators were identified in each field and at each level, some specific and others common to workers in all fields. Individual and organizational barriers comprised lack of time and resources, discordant professional values, and perceived risk. Legal barriers comprised medical confidentiality, legal complexity, and priority given to primary prevention. Individual-level facilitators comprised needs and perceived benefits. Some organizations had concordant values and practices. Legal facilitators comprised possibilities of collaboration and gradual return to work. The present feasibility analysis of implementing the Sherbrooke model revealed numerous barriers and facilitators suggesting a new implementation strategy be drawn up if failure is to be avoided.

  20. Identifying the nonlinear mechanical behaviour of micro-speakers from their quasi-linear electrical response

    NASA Astrophysics Data System (ADS)

    Zilletti, Michele; Marker, Arthur; Elliott, Stephen John; Holland, Keith

    2017-05-01

    In this study model identification of the nonlinear dynamics of a micro-speaker is carried out by purely electrical measurements, avoiding any explicit vibration measurements. It is shown that a dynamic model of the micro-speaker, which takes into account the nonlinear damping characteristic of the device, can be identified by measuring the response between the voltage input and the current flowing into the coil. An analytical formulation of the quasi-linear model of the micro-speaker is first derived and an optimisation method is then used to identify a polynomial function which describes the mechanical damping behaviour of the micro-speaker. The analytical results of the quasi-linear model are compared with numerical results. This study potentially opens up the possibility of efficiently implementing nonlinear echo cancellers.

  1. Genetic Factors in Systemic Lupus Erythematosus: Contribution to Disease Phenotype

    PubMed Central

    Ceccarelli, Fulvia; Perricone, Carlo; Borgiani, Paola; Ciccacci, Cinzia; Rufini, Sara; Cipriano, Enrica; Alessandri, Cristiano; Spinelli, Francesca Romana; Sili Scavalli, Antonio; Novelli, Giuseppe; Valesini, Guido; Conti, Fabrizio

    2015-01-01

    Genetic factors exert an important role in determining Systemic Lupus Erythematosus (SLE) susceptibility, interplaying with environmental factors. Several genetic studies in various SLE populations have identified numerous susceptibility loci. From a clinical point of view, SLE is characterized by a great heterogeneity in terms of clinical and laboratory manifestations. As widely demonstrated, specific laboratory features are associated with clinical disease subset, with different severity degree. Similarly, in the last years, an association between specific phenotypes and genetic variants has been identified, allowing the possibility to elucidate different mechanisms and pathways accountable for disease manifestations. However, except for Lupus Nephritis (LN), no studies have been designed to identify the genetic variants associated with the development of different phenotypes. In this review, we will report data currently known about this specific association. PMID:26798662

  2. Prediction of the Aerothermodynamic Environment of the Huygens Probe

    NASA Technical Reports Server (NTRS)

    Hollis, Brian R.; Striepe, Scott A.; Wright, Michael J.; Bose, Deepak; Sutton, Kenneth; Takashima, Naruhisa

    2005-01-01

    An investigation of the aerothermodynamic environment of the Huygens entry probe has been conducted. A Monte Carlo simulation of the trajectory of the probe during entry into Titan's atmosphere was performed to identify a worst-case heating rate trajectory. Flowfield and radiation transport computations were performed at points along this trajectory to obtain convective and radiative heat-transfer distributions on the probe's heat shield. This investigation identified important physical and numerical factors, including atmospheric CH4 concentration, transition to turbulence, numerical diffusion modeling, and radiation modeling, which strongly influenced the aerothermodynamic environment.

  3. Cutaneous exposure scenarios for engineered nanoparticles used in semiconductor fabrication: a preliminary investigation of workplace surface contamination.

    PubMed

    Shepard, Michele; Brenner, Sara

    2014-01-01

    Numerous studies are ongoing in the fields of nanotoxicology and exposure science; however, gaps remain in identifying and evaluating potential exposures from skin contact with engineered nanoparticles in occupational settings. The aim of this study was to identify potential cutaneous exposure scenarios at a workplace using engineered nanoparticles (alumina, ceria, amorphous silica) and evaluate the presence of these materials on workplace surfaces. Process review, workplace observations, and preliminary surface sampling were conducted using microvacuum and wipe sample collection methods and transmission electron microscopy with elemental analysis. Exposure scenarios were identified with potential for incidental contact. Nanoparticles of silica or silica and/or alumina agglomerates (or aggregates) were identified in surface samples from work areas where engineered nanoparticles were used or handled. Additional data are needed to evaluate occupational exposures from skin contact with engineered nanoparticles; precautionary measures should be used to minimize potential cutaneous exposures in the workplace.

  4. Impact of genomics on the understanding of microbial evolution and classification: the importance of Darwin's views on classification.

    PubMed

    Gupta, Radhey S

    2016-07-01

    Analyses of genome sequences, by some approaches, suggest that the widespread occurrence of horizontal gene transfers (HGTs) in prokaryotes disguises their evolutionary relationships and have led to questioning of the Darwinian model of evolution for prokaryotes. These inferences are critically examined in the light of comparative genome analysis, characteristic synapomorphies, phylogenetic trees and Darwin's views on examining evolutionary relationships. Genome sequences are enabling discovery of numerous molecular markers (synapomorphies) such as conserved signature indels (CSIs) and conserved signature proteins (CSPs), which are distinctive characteristics of different prokaryotic taxa. Based on these molecular markers, exhibiting high degree of specificity and predictive ability, numerous prokaryotic taxa of different ranks, currently identified based on the 16S rRNA gene trees, can now be reliably demarcated in molecular terms. Within all studied groups, multiple CSIs and CSPs have been identified for successive nested clades providing reliable information regarding their hierarchical relationships and these inferences are not affected by HGTs. These results strongly support Darwin's views on evolution and classification and supplement the current phylogenetic framework based on 16S rRNA in important respects. The identified molecular markers provide important means for developing novel diagnostics, therapeutics and for functional studies providing important insights regarding prokaryotic taxa. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Numerical Study of Buoyancy and Different Diffusion Effects on the Structure and Dynamics of Triple Flames

    NASA Technical Reports Server (NTRS)

    Chen, Jyh-Yuan; Echekki, Tarek

    2001-01-01

    Numerical simulations of 2-D triple flames under gravity force have been implemented to identify the effects of gravity on triple flame structure and propagation properties and to understand the mechanisms of instabilities resulting from both heat release and buoyancy effects. A wide range of gravity conditions, heat release, and mixing widths for a scalar mixing layer are computed for downward-propagating (in the same direction with the gravity vector) and upward-propagating (in the opposite direction of the gravity vector) triple flames. Results of numerical simulations show that gravity strongly affects the triple flame speed through its contribution to the overall flow field. A simple analytical model for the triple flame speed, which accounts for both buoyancy and heat release, is developed. Comparisons of the proposed model with the numerical results for a wide range of gravity, heat release and mixing width conditions, yield very good agreement. The analysis shows that under neutral diffusion, downward propagation reduces the triple flame speed, while upward propagation enhances it. For the former condition, a critical Froude number may be evaluated, which corresponds to a vanishing triple flame speed. Downward-propagating triple flames at relatively strong gravity effects have exhibited instabilities. These instabilities are generated without any artificial forcing of the flow. Instead disturbances are initiated by minute round-off errors in the numerical simulations, and subsequently amplified by instabilities. A linear stability analysis on mean profiles of stable triple flame configurations have been performed to identify the most amplified frequency in spatially developed flows. The eigenfunction equations obtained from the linearized disturbance equations are solved using the shooting method. The linear stability analysis yields reasonably good agreements with the observed frequencies of the unstable triple flames. The frequencies and amplitudes of disturbances increase with the magnitude of the gravity vector. Moreover, disturbances appear to be most amplified just downstream of the premixed branches. The effects of mixing width and differential diffusion are investigated and their roles on the flame stability are studied.

  6. Ignition of expandable polystyrene foam by a hot particle: an experimental and numerical study.

    PubMed

    Wang, Supan; Chen, Haixiang; Liu, Naian

    2015-01-01

    Many serious fires have occurred in recent years due to the ignition of external building insulation materials by hot metallic particles. This work studied the ignition of expandable polystyrene foam by hot metallic particles experimentally and numerically. In each experiment, a spherical steel particle was heated to a high temperature (within 1173-1373K) and then dropped to the surface of an expandable polystyrene foam block. The particles used in experiments ranged from 3mm to 7 mm in radius. The observed results for ignition were categorized into two types: "flaming ignition" and "no ignition", and the flaming ignition limit was determined by statistical analysis. According to the experimental observations, a numerical model was proposed, taking into account the reactant consumption and volatiles convection of expandable polystyrene decomposition in air. Three regimes, no ignition, unstable ignition and stable ignition, were identified, and two critical particle temperatures for separating the three regimes were determined. Comparison with the experimental data shows that the model can predict the range of critical ignition temperatures reasonably well. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Numerical modeling of the load effect on PZT-induced guided wave for load compensation of damage detection

    NASA Astrophysics Data System (ADS)

    Sun, Hu; Zhang, Aijia; Wang, Yishou; Qing, Xinlin P.

    2017-04-01

    Guided wave-based structural health monitoring (SHM) has been given considerable attention and widely studied for large-scale aircraft structures. Nevertheless, it is difficult to apply SHM systems on board or online, for which one of the most serious reasons is the environmental influence. Load is one fact that affects not only the host structure, in which guided wave propagates, but also the PZT, by which guided wave is transmitted and received. In this paper, numerical analysis using finite element method is used to study the load effect on guided wave acquired by PZT. The static loads with different grades are considered to analyze its effect on guided wave signals that PZT transmits and receives. Based on the variation trend of guided waves versus load, a load compensation method is developed to eliminate effects of load in the process of damage detection. The probabilistic reconstruction algorithm based on the signal variation of transmitter-receiver path is employed to identify the damage. Numerical tests is conducted to verify the feasibility and effectiveness of the given method.

  8. Drowning in Data: Sorting through CD ROM and Computer Databases.

    ERIC Educational Resources Information Center

    Cates, Carl M.; Kaye, Barbara K.

    This paper identifies the bibliographic and numeric databases on CD-ROM and computer diskette that should be most useful for investigators in communication, marketing, and communication education. Bibliographic databases are usually found in three formats: citations only, citations and abstracts, and full-text articles. Numeric databases are…

  9. The filamentous fungus Sordaria macrospora as a genetic model to study fruiting body development.

    PubMed

    Teichert, Ines; Nowrousian, Minou; Pöggeler, Stefanie; Kück, Ulrich

    2014-01-01

    Filamentous fungi are excellent experimental systems due to their short life cycles as well as easy and safe manipulation in the laboratory. They form three-dimensional structures with numerous different cell types and have a long tradition as genetic model organisms used to unravel basic mechanisms underlying eukaryotic cell differentiation. The filamentous ascomycete Sordaria macrospora is a model system for sexual fruiting body (perithecia) formation. S. macrospora is homothallic, i.e., self-fertile, easily genetically tractable, and well suited for large-scale genomics, transcriptomics, and proteomics studies. Specific features of its life cycle and the availability of a developmental mutant library make it an excellent system for studying cellular differentiation at the molecular level. In this review, we focus on recent developments in identifying gene and protein regulatory networks governing perithecia formation. A number of tools have been developed to genetically analyze developmental mutants and dissect transcriptional profiles at different developmental stages. Protein interaction studies allowed us to identify a highly conserved eukaryotic multisubunit protein complex, the striatin-interacting phosphatase and kinase complex and its role in sexual development. We have further identified a number of proteins involved in chromatin remodeling and transcriptional regulation of fruiting body development. Furthermore, we review the involvement of metabolic processes from both primary and secondary metabolism, and the role of nutrient recycling by autophagy in perithecia formation. Our research has uncovered numerous players regulating multicellular development in S. macrospora. Future research will focus on mechanistically understanding how these players are orchestrated in this fungal model system. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Studies of the limit order book around large price changes

    NASA Astrophysics Data System (ADS)

    Tóth, B.; Kertész, J.; Farmer, J. D.

    2009-10-01

    We study the dynamics of the limit order book of liquid stocks after experiencing large intra-day price changes. In the data we find large variations in several microscopical measures, e.g., the volatility the bid-ask spread, the bid-ask imbalance, the number of queuing limit orders, the activity (number and volume) of limit orders placed and canceled, etc. The relaxation of the quantities is generally very slow that can be described by a power law of exponent ≈ 0.4. We introduce a numerical model in order to understand the empirical results better. We find that with a zero intelligence deposition model of the order flow the empirical results can be reproduced qualitatively. This suggests that the slow relaxations might not be results of agents' strategic behaviour. Studying the difference between the exponents found empirically and numerically helps us to better identify the role of strategic behaviour in the phenomena. in here

  11. Benchmark Problems of the Geothermal Technologies Office Code Comparison Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, Mark D.; Podgorney, Robert; Kelkar, Sharad M.

    A diverse suite of numerical simulators is currently being applied to predict or understand the performance of enhanced geothermal systems (EGS). To build confidence and identify critical development needs for these analytical tools, the United States Department of Energy, Geothermal Technologies Office has sponsored a Code Comparison Study (GTO-CCS), with participants from universities, industry, and national laboratories. A principal objective for the study was to create a community forum for improvement and verification of numerical simulators for EGS modeling. Teams participating in the study were those representing U.S. national laboratories, universities, and industries, and each team brought unique numerical simulationmore » capabilities to bear on the problems. Two classes of problems were developed during the study, benchmark problems and challenge problems. The benchmark problems were structured to test the ability of the collection of numerical simulators to solve various combinations of coupled thermal, hydrologic, geomechanical, and geochemical processes. This class of problems was strictly defined in terms of properties, driving forces, initial conditions, and boundary conditions. Study participants submitted solutions to problems for which their simulation tools were deemed capable or nearly capable. Some participating codes were originally developed for EGS applications whereas some others were designed for different applications but can simulate processes similar to those in EGS. Solution submissions from both were encouraged. In some cases, participants made small incremental changes to their numerical simulation codes to address specific elements of the problem, and in other cases participants submitted solutions with existing simulation tools, acknowledging the limitations of the code. The challenge problems were based on the enhanced geothermal systems research conducted at Fenton Hill, near Los Alamos, New Mexico, between 1974 and 1995. The problems involved two phases of research, stimulation, development, and circulation in two separate reservoirs. The challenge problems had specific questions to be answered via numerical simulation in three topical areas: 1) reservoir creation/stimulation, 2) reactive and passive transport, and 3) thermal recovery. Whereas the benchmark class of problems were designed to test capabilities for modeling coupled processes under strictly specified conditions, the stated objective for the challenge class of problems was to demonstrate what new understanding of the Fenton Hill experiments could be realized via the application of modern numerical simulation tools by recognized expert practitioners.« less

  12. Building Blocks for Reliable Complex Nonlinear Numerical Simulations

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Mansour, Nagi N. (Technical Monitor)

    2002-01-01

    This talk describes some of the building blocks to ensure a higher level of confidence in the predictability and reliability (PAR) of numerical simulation of multiscale complex nonlinear problems. The focus is on relating PAR of numerical simulations with complex nonlinear phenomena of numerics. To isolate sources of numerical uncertainties, the possible discrepancy between the chosen partial differential equation (PDE) model and the real physics and/or experimental data is set aside. The discussion is restricted to how well numerical schemes can mimic the solution behavior of the underlying PDE model for finite time steps and grid spacings. The situation is complicated by the fact that the available theory for the understanding of nonlinear behavior of numerics is not at a stage to fully analyze the nonlinear Euler and Navier-Stokes equations. The discussion is based on the knowledge gained for nonlinear model problems with known analytical solutions to identify and explain the possible sources and remedies of numerical uncertainties in practical computations. Examples relevant to turbulent flow computations are included.

  13. Building Blocks for Reliable Complex Nonlinear Numerical Simulations

    NASA Technical Reports Server (NTRS)

    Yee, H. C.

    2005-01-01

    This chapter describes some of the building blocks to ensure a higher level of confidence in the predictability and reliability (PAR) of numerical simulation of multiscale complex nonlinear problems. The focus is on relating PAR of numerical simulations with complex nonlinear phenomena of numerics. To isolate sources of numerical uncertainties, the possible discrepancy between the chosen partial differential equation (PDE) model and the real physics and/or experimental data is set aside. The discussion is restricted to how well numerical schemes can mimic the solution behavior of the underlying PDE model for finite time steps and grid spacings. The situation is complicated by the fact that the available theory for the understanding of nonlinear behavior of numerics is not at a stage to fully analyze the nonlinear Euler and Navier-Stokes equations. The discussion is based on the knowledge gained for nonlinear model problems with known analytical solutions to identify and explain the possible sources and remedies of numerical uncertainties in practical computations.

  14. Building Blocks for Reliable Complex Nonlinear Numerical Simulations. Chapter 2

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Mansour, Nagi N. (Technical Monitor)

    2001-01-01

    This chapter describes some of the building blocks to ensure a higher level of confidence in the predictability and reliability (PAR) of numerical simulation of multiscale complex nonlinear problems. The focus is on relating PAR of numerical simulations with complex nonlinear phenomena of numerics. To isolate sources of numerical uncertainties, the possible discrepancy between the chosen partial differential equation (PDE) model and the real physics and/or experimental data is set aside. The discussion is restricted to how well numerical schemes can mimic the solution behavior of the underlying PDE model for finite time steps and grid spacings. The situation is complicated by the fact that the available theory for the understanding of nonlinear behavior of numerics is not at a stage to fully analyze the nonlinear Euler and Navier-Stokes equations. The discussion is based on the knowledge gained for nonlinear model problems with known analytical solutions to identify and explain the possible sources and remedies of numerical uncertainties in practical computations. Examples relevant to turbulent flow computations are included.

  15. Structural and numerical chromosome aberration inducers in liver micronucleus test in rats with partial hepatectomy.

    PubMed

    Itoh, Satoru; Hattori, Chiharu; Nagata, Mayumi; Sanbuissho, Atsushi

    2012-08-30

    The liver micronucleus test is an important method to detect pro-mutagens such as active metabolites not reaching bone marrow due to their short lifespan. We have already reported that dosing of the test compound after partial hepatectomy (PH) is essential to detect genotoxicity of numerical chromosome aberration inducers in mice [Mutat. Res. 632 (2007) 89-98]. In naive animals, the proportion of binucleated cells in rats is less than half of that in mice, which suggests a species difference in the response to chromosome aberration inducers. In the present study, we investigated the responses to structural and numerical chromosome aberration inducers in the rat liver micronucleus test. Two structural chromosome aberretion inducers (diethylnitrosamine and 1,2-dimethylhydrazine) and two numerical chromosome aberration inducers (colchicine and carbendazim) were used in the present study. PH was performed a day before or after the dosing of the test compound in 8-week old male F344 rats and hepatocytes were isolated 4 days after the PH. As a result, diethylnitrosamine and 1,2-dimethylhydrazine, structural chromosome aberration inducers, exhibited significant increase in the incidence of micronucleated hepatocyte (MNH) when given either before and after PH. Colchicine and carbendazim, numerical chromosome aberration inducers, did not result in any toxicologically significant increase in MNH frequency when given before PH, while they exhibited MNH induction when given after PH. It is confirmed that dosing after PH is essential in order to detect genotoxicity of numerical chromosome aberration inducers in rats as well as in mice. Regarding the species difference, a different temporal response to colchicine was identified. Colchicine increased the incidence of MNH 4 days after PH in rats, although such induction in mice was observed 8-10 days after PH. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Leachate breakthrough mechanism and key pollutant indicator of municipal solid waste landfill barrier systems: Centrifuge and numerical modeling approach.

    PubMed

    Shu, Shi; Zhu, Wei; Wang, Shengwei; Ng, Charles Wang Wai; Chen, Yunmin; Chiu, Abraham Chung Fai

    2018-01-15

    Groundwater pollution by leachate leakage is one of the most common environmental hazards associated with municipal solid waste (MSW) landfill sites. However, landfill leachate contains a large variety of pollutants with widely different concentrations and biotoxicity. Thus, selecting leachate pollutant indicators and levels for identifying breakthrough of barrier systems are key factors in assessing their breakthrough times. This study investigated the transport behavior of leachate pollutants through landfill barrier systems using centrifuge tests and numerical modeling. The overall objective of this study is to investigate breakthrough mechanism to facilitate the establishment of a consistent pollutant threshold concentration for use as a groundwater pollution alert. The specific objective of the study is to identify which pollutant and breakthrough threshold concentration should be used as an indicator in the transport of multiple pollutants through a landfill barrier system. The threshold concentration from the Chinese groundwater quality standards was used in the analysis of the properties of leachates from many landfill sites in China. The time for the chemical oxygen demand (COD) to reach the breakthrough threshold concentration at the bottom of a 2m compacted clay liner was 1.51years according to centrifuge tests, and 1.81years according to numerical modeling. The COD breakthrough times for single and double composite liners were within the range of 16 and 36.58years. Of all the pollutants, COD was found to consistently reach the breakthrough threshold first. Therefore, COD can be selected as the key indicator for pollution alerts and used to assess the environmental risk posed by MSW landfill sites. Copyright © 2017. Published by Elsevier B.V.

  17. The Role of Physical Representations in Solving Number Problems: A Comparison of Young Children's Use of Physical and Virtual Materials

    ERIC Educational Resources Information Center

    Manches, Andrew; O'Malley, Claire; Benford, Steve

    2010-01-01

    This research aims to explore the role of physical representations in young children's numerical learning then identify the benefits of using a graphical interface in order to understand the potential for developing interactive technologies in this domain. Three studies are reported that examined the effect of using physical representations…

  18. The Role of Young Adolescents' Perception in Understanding the Severity of Exposure to Community Violence and PTSD

    ERIC Educational Resources Information Center

    Aisenberg, Eugene; Ayon, Cecilia; Orozco-Figueroa, Araceli

    2008-01-01

    This study seeks to (a) identify and measure the lifetime exposure to community violence of 137 African American and Latino middle school students from a low income neighborhood and apply numerical weights to each violent event; (b) examine the relationship between the objective severity of child self reported violence exposure and the child's…

  19. Hit parade for adoptive cell transfer therapy: the best T cells for superior clinical responses.

    PubMed

    Speiser, Daniel E

    2013-04-01

    Adoptive cell transfer (ACT) of T cells has great clinical potential, but the numerous variables of this therapy make choices difficult. A new study takes advantage of a novel technology for characterizing the T-cell responses of patients. If applied systematically, this approach may identify biomedical correlates of protection, thereby supporting treatment optimization. ©2013 AACR.

  20. Identifying Tensions around Gender-Responsive Curriculum Practices in Science Teacher Education in Zimbabwe: An Activity Theory Analysis

    ERIC Educational Resources Information Center

    Chikunda, Charles

    2014-01-01

    The physical sciences, mathematics and technology subjects in Zimbabwe, like in most other African countries, are still male dominated. This is despite numerous efforts over the years directed towards gender equality in these disciplines. Many studies point at teacher education as not doing enough to assist future teachers in these disciplines…

  1. Determinants of project success

    NASA Technical Reports Server (NTRS)

    Murphy, D. C.; Baker, B. N.; Fisher, D.

    1974-01-01

    The interactions of numerous project characteristics, with particular reference to project performance, were studied. Determinants of success are identified along with the accompanying implications for client organization, parent organization, project organization, and future research. Variables are selected which are found to have the greatest impact on project outcome, and the methodology and analytic techniques to be employed in identification of those variables are discussed.

  2. People and Decisions: Meeting the Information Needs of Managers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blake, J.I.; LeMaster, E.

    2000-10-01

    The information needs of managers with respect to avian species at the SRS are identified. The process by which information is integrated into decision making are discussed. Numerous studies of upland bird species at SRS were conducted as part of the DOE Biodiversity Program. This information is being incorporated into biological assessments and plan through modeling and geographic information systems.

  3. Gene space and transcriptome assemblies of leafy spurge (Euphorbia esula) identify promoter sequences, repetitive elements, high-quality markers, and a full-length chloroplast genome

    USDA-ARS?s Scientific Manuscript database

    Leafy spurge is an invasive perennial weed infesting range and recreational lands of North America. Previous research and omics projects with leafy spurge have helped develop it as a model for studying numerous aspects of perennial plant development and response to abiotic stress. However, the lack ...

  4. Effective Propulsion in Swimming: Grasping the Hydrodynamics of Hand and Arm Movements.

    PubMed

    van Houwelingen, Josje; Schreven, Sander; Smeets, Jeroen B J; Clercx, Herman J H; Beek, Peter J

    2017-02-01

    In this paper, a literature review is presented regarding the hydrodynamic effects of different hand and arm movements during swimming with the aim to identify lacunae in current methods and knowledge, and to distil practical guidelines for coaches and swimmers seeking to increase swimming speed. Experimental and numerical studies are discussed, examining the effects of hand orientation, thumb position, finger spread, sculling movements, and hand accelerations during swimming, as well as unsteady properties of vortices due to changes in hand orientation. Collectively, the findings indicate that swimming speed may be increased by avoiding excessive sculling movements and by spreading the fingers slightly. In addition, it appears that accelerating the hands rather than moving them at constant speed may be beneficial, and that (in front crawl swimming) the thumb should be abducted during entry, catch, and upsweep, and adducted during the pull phase. Further experimental and numerical research is required to confirm these suggestions and to elucidate their hydrodynamic underpinnings and identify optimal propulsion techniques. To this end, it is necessary that the dynamical motion and resulting unsteady effects are accounted for, and that flow visualization techniques, force measurements, and simulations are combined in studying those effects.

  5. Early Numeracy Assessment: The Development of the Preschool Numeracy Scales

    PubMed Central

    Purpura, David J.; Lonigan, Christopher J.

    2015-01-01

    Research Findings The focus of this study was to construct and validate twelve brief early numeracy assessment tasks that measure the skills and concepts identified as key to early mathematics development by the National Council of Teachers of Mathematics (2006) and the National Mathematics Advisory Panel (2008)—as well as critical developmental precursors to later mathematics skill by the Common Core State Standards (CCSS; 2010). Participants were 393 preschool children ages 3 to 5 years old. Measure development and validation occurred through three analytic phases designed to ensure that the measures were brief, reliable, and valid. These measures included: one-to-one counting, cardinality, counting subsets, subitizing, number comparison, set comparison, number order, numeral identification, set-to-numerals, story problems, number combinations, and verbal counting. Practice or Policy Teachers have extensive demands on their time, yet, they are tasked with ensuring that all students’ academic needs are met. To identify individual instructional needs and measure progress, they need to be able to efficiently assess children’s numeracy skills. The measures developed in this study are not only reliable and valid, but also easy to use and can be utilized for measuring the effects of targeted instruction on individual numeracy skills. PMID:25709375

  6. Representational change and strategy use in children's number line estimation during the first years of primary school.

    PubMed

    White, Sonia L J; Szűcs, Dénes

    2012-01-04

    The objective of this study was to scrutinize number line estimation behaviors displayed by children in mathematics classrooms during the first three years of schooling. We extend existing research by not only mapping potential logarithmic-linear shifts but also provide a new perspective by studying in detail the estimation strategies of individual target digits within a number range familiar to children. Typically developing children (n = 67) from Years 1-3 completed a number-to-position numerical estimation task (0-20 number line). Estimation behaviors were first analyzed via logarithmic and linear regression modeling. Subsequently, using an analysis of variance we compared the estimation accuracy of each digit, thus identifying target digits that were estimated with the assistance of arithmetic strategy. Our results further confirm a developmental logarithmic-linear shift when utilizing regression modeling; however, uniquely we have identified that children employ variable strategies when completing numerical estimation, with levels of strategy advancing with development. In terms of the existing cognitive research, this strategy factor highlights the limitations of any regression modeling approach, or alternatively, it could underpin the developmental time course of the logarithmic-linear shift. Future studies need to systematically investigate this relationship and also consider the implications for educational practice.

  7. Representational change and strategy use in children's number line estimation during the first years of primary school

    PubMed Central

    2012-01-01

    Background The objective of this study was to scrutinize number line estimation behaviors displayed by children in mathematics classrooms during the first three years of schooling. We extend existing research by not only mapping potential logarithmic-linear shifts but also provide a new perspective by studying in detail the estimation strategies of individual target digits within a number range familiar to children. Methods Typically developing children (n = 67) from Years 1-3 completed a number-to-position numerical estimation task (0-20 number line). Estimation behaviors were first analyzed via logarithmic and linear regression modeling. Subsequently, using an analysis of variance we compared the estimation accuracy of each digit, thus identifying target digits that were estimated with the assistance of arithmetic strategy. Results Our results further confirm a developmental logarithmic-linear shift when utilizing regression modeling; however, uniquely we have identified that children employ variable strategies when completing numerical estimation, with levels of strategy advancing with development. Conclusion In terms of the existing cognitive research, this strategy factor highlights the limitations of any regression modeling approach, or alternatively, it could underpin the developmental time course of the logarithmic-linear shift. Future studies need to systematically investigate this relationship and also consider the implications for educational practice. PMID:22217191

  8. Numerical Study of Quantum Hall Bilayers at Total Filling νT=1 : A New Phase at Intermediate Layer Distances

    NASA Astrophysics Data System (ADS)

    Zhu, Zheng; Fu, Liang; Sheng, D. N.

    2017-10-01

    We study the phase diagram of quantum Hall bilayer systems with total filing νT=1 /2 +1 /2 of the lowest Landau level as a function of layer distances d . Based on numerical exact diagonalization calculations, we obtain three distinct phases, including an exciton superfluid phase with spontaneous interlayer coherence at small d , a composite Fermi liquid at large d , and an intermediate phase for 1.1

  9. Participatory action research methodology in disaster research: results from the World Trade Center evacuation study.

    PubMed

    Gershon, Robyn R M; Rubin, Marcie S; Qureshi, Kristine A; Canton, Allison N; Matzner, Frederick J

    2008-10-01

    Participatory action research (PAR) methodology is an effective tool in identifying and implementing risk-reduction interventions. It has been used extensively in occupational health research, but not, to our knowledge, in disaster research. A PAR framework was incorporated into the World Trade Center evacuation study, which was designed to identify the individual, organizational, and structural (environmental) factors that affected evacuation from the World Trade Center Towers 1 and 2 on September 11, 2001. PAR teams-comprising World Trade Center evacuees, study investigators, and expert consultants-worked collaboratively to develop a set of recommendations designed to facilitate evacuation from high-rise office buildings and reduce risk of injury among evacuees. Two PAR teams worked first separately and then collectively to identify data-driven strategies for improvement of high-rise building evacuation. The teams identified interventions targeting individual, organizational, and structural (environmental) barriers to safe and rapid evacuation. PAR teams were effective in identifying numerous feasible and cost-effective strategies for improvement of high-rise emergency preparedness and evacuation. This approach may have utility in other workplace disaster prevention planning and response programs.

  10. Top 100 Cited Articles on Back Pain Research: A Citation Analysis.

    PubMed

    Huang, Weimin; Wang, Lei; Wang, Bing; Yu, Lili; Yu, Xiuchun

    2016-11-01

    A bibliometric review of the literature. Back pain is a global burden that leads people to seek medical service and results in work disability. Numerous studies are published annually to give new insights into back pain. However, characteristics of the high-impact articles on back pain have not been explored. The current study aimed to identify the 100 most cited articles on back pain and determine their characteristics. Back pain is a globally leading cause of work disability. Numerous studies have been published annually to give new insight to back pain. However, comprehensive analysis to identify the most influential articles is not available until now. The Web of Science core database was searched using the subject terms "back NEAR pain," "dorsalgia," "backache," "lumbar NEAR pain," "lumbago," "back NEAR disorder*," "discitis." The searching results were listed by citation times and the top 100 cited articles on back pain were identified. Important information such as author, journal, publishing year, country, institution, and study type were elicited. A total of 44,460 articles on back pain were displayed. Citation times of the enrolled 100 articles ranged from 249 to 1638 with a mean value of 418. The most productive periods were 1991 to 1995 and 1996 to 2000. The journal Spine holds the largest number of 45 articles, followed by Pain with seven articles. A total of 11 countries contribute to the 100 articles and the United States topped the list. None of the high-impact articles were produced in Asian and African. The current citation analysis demonstrated the essential advances in the history of back pain research and determined the influential authors, institutions, countries, and journals that had outstanding contributions to the studies of back pain. 3.

  11. Identifying Creatively Gifted Students: Necessity of a Multi-Method Approach

    ERIC Educational Resources Information Center

    Ambrose, Laura; Machek, Greg R.

    2015-01-01

    The process of identifying students as creatively gifted provides numerous challenges for educators. Although many schools assess for creativity in identifying students for gifted and talented services, the relationship between creativity and giftedness is often not fully understood. This article reviews commonly used methods of creativity…

  12. The Managerial Activities and Leadership Roles of Five Achieving the Dream Leader College Presidents

    ERIC Educational Resources Information Center

    Mace, Teresa Marie Taylor

    2013-01-01

    A significant increase in community colleges' (CC) presidential retirements is resulting in a huge loss of critical knowledge and experience. Recognition of this has led to numerous efforts and initiatives to prepare future community college leaders. These efforts have included numerous attempts to identify the competencies, skills, and leadership…

  13. 49 CFR 571.106 - Standard No. 106; Brake hoses.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... capital letters and numerals at least one-eighth of an inch high, with the information listed in... stamped in block capital letters, numerals or symbols at least one-eighth of an inch high, with the... designation at least one-sixteenth of an inch high that identifies the manufacturer of the hose assembly and...

  14. 48 CFR 204.7004 - Supplementary PII numbers.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... agreements using a six position alpha-numeric added to the basic PII number. (2) Position 1. Identify the...) Positions 2 through 3. These are the first two digits in a serial number. They may be either alpha or... orders issued by the office issuing the contract or agreement. Use a four position alpha-numeric call or...

  15. 48 CFR 204.7004 - Supplementary PII numbers.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... agreements using a six position alpha-numeric added to the basic PII number. (2) Position 1. Identify the...) Positions 2 through 3. These are the first two digits in a serial number. They may be either alpha or... orders issued by the office issuing the contract or agreement. Use a four position alpha-numeric call or...

  16. 48 CFR 204.7004 - Supplementary PII numbers.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... agreements using a six position alpha-numeric added to the basic PII number. (2) Position 1. Identify the...) Positions 2 through 3. These are the first two digits in a serial number. They may be either alpha or... orders issued by the office issuing the contract or agreement. Use a four position alpha-numeric call or...

  17. Faster and more accurate transport procedures for HZETRN

    NASA Astrophysics Data System (ADS)

    Slaba, T. C.; Blattnig, S. R.; Badavi, F. F.

    2010-12-01

    The deterministic transport code HZETRN was developed for research scientists and design engineers studying the effects of space radiation on astronauts and instrumentation protected by various shielding materials and structures. In this work, several aspects of code verification are examined. First, a detailed derivation of the light particle ( A ⩽ 4) and heavy ion ( A > 4) numerical marching algorithms used in HZETRN is given. References are given for components of the derivation that already exist in the literature, and discussions are given for details that may have been absent in the past. The present paper provides a complete description of the numerical methods currently used in the code and is identified as a key component of the verification process. Next, a new numerical method for light particle transport is presented, and improvements to the heavy ion transport algorithm are discussed. A summary of round-off error is also given, and the impact of this error on previously predicted exposure quantities is shown. Finally, a coupled convergence study is conducted by refining the discretization parameters (step-size and energy grid-size). From this study, it is shown that past efforts in quantifying the numerical error in HZETRN were hindered by single precision calculations and computational resources. It is determined that almost all of the discretization error in HZETRN is caused by the use of discretization parameters that violate a numerical convergence criterion related to charged target fragments below 50 AMeV. Total discretization errors are given for the old and new algorithms to 100 g/cm 2 in aluminum and water, and the improved accuracy of the new numerical methods is demonstrated. Run time comparisons between the old and new algorithms are given for one, two, and three layer slabs of 100 g/cm 2 of aluminum, polyethylene, and water. The new algorithms are found to be almost 100 times faster for solar particle event simulations and almost 10 times faster for galactic cosmic ray simulations.

  18. Faster and more accurate transport procedures for HZETRN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slaba, T.C., E-mail: Tony.C.Slaba@nasa.go; Blattnig, S.R., E-mail: Steve.R.Blattnig@nasa.go; Badavi, F.F., E-mail: Francis.F.Badavi@nasa.go

    The deterministic transport code HZETRN was developed for research scientists and design engineers studying the effects of space radiation on astronauts and instrumentation protected by various shielding materials and structures. In this work, several aspects of code verification are examined. First, a detailed derivation of the light particle (A {<=} 4) and heavy ion (A > 4) numerical marching algorithms used in HZETRN is given. References are given for components of the derivation that already exist in the literature, and discussions are given for details that may have been absent in the past. The present paper provides a complete descriptionmore » of the numerical methods currently used in the code and is identified as a key component of the verification process. Next, a new numerical method for light particle transport is presented, and improvements to the heavy ion transport algorithm are discussed. A summary of round-off error is also given, and the impact of this error on previously predicted exposure quantities is shown. Finally, a coupled convergence study is conducted by refining the discretization parameters (step-size and energy grid-size). From this study, it is shown that past efforts in quantifying the numerical error in HZETRN were hindered by single precision calculations and computational resources. It is determined that almost all of the discretization error in HZETRN is caused by the use of discretization parameters that violate a numerical convergence criterion related to charged target fragments below 50 AMeV. Total discretization errors are given for the old and new algorithms to 100 g/cm{sup 2} in aluminum and water, and the improved accuracy of the new numerical methods is demonstrated. Run time comparisons between the old and new algorithms are given for one, two, and three layer slabs of 100 g/cm{sup 2} of aluminum, polyethylene, and water. The new algorithms are found to be almost 100 times faster for solar particle event simulations and almost 10 times faster for galactic cosmic ray simulations.« less

  19. Ribosomal DNA intergenic spacer sequence in foxtail millet, Setaria italica (L.) P. Beauv. and its characterization and application to typing of foxtail millet landraces.

    PubMed

    Fukunaga, Kenji; Ichitani, Katsuyuki; Taura, Satoru; Sato, Muneharu; Kawase, Makoto

    2005-02-01

    We determined the sequence of ribosomal DNA (rDNA) intergenic spacer (IGS) of foxtail millet isolated in our previous study, and identified subrepeats in the polymorphic region. We also developed a PCR-based method for identifying rDNA types based on sequence information and assessed 153 accessions of foxtail millet. Results were congruent with our previous works. This study provides new findings regarding the geographical distribution of rDNA variants. This new method facilitates analyses of numerous foxtail millet accessions. It is helpful for typing of foxtail millet germplasms and elucidating the evolution of this millet.

  20. Assessment of semi-active friction dampers

    NASA Astrophysics Data System (ADS)

    dos Santos, Marcelo Braga; Coelho, Humberto Tronconi; Lepore Neto, Francisco Paulo; Mafhoud, Jarir

    2017-09-01

    The use of friction dampers has been widely proposed for a variety of mechanical systems for which applying viscoelastic materials, fluid based dampers or other viscous dampers is impossible. An important example is the application of friction dampers in aircraft engines to reduce the blades' vibration amplitudes. In most cases, friction dampers have been studied in a passive manner, but significant improvements can be achieved by controlling the normal force in the contact region. The aim of this paper is to present and study five control strategies for friction dampers based on three different hysteresis cycles by using the Harmonic Balance Method (HBM), a numerical and experimental analysis. The first control strategy uses the friction force as a resistance when the system is deviating from its equilibrium position. The second control strategy maximizes the energy removal in each harmonic oscillation cycle by calculating the optimal normal force based on the last displacement peak. The third control strategy combines the first strategy with the homogenous modulation of the friction force. Finally, the last two strategies attempt to predict the system's movement based on its velocity and acceleration and our knowledge of its physical properties. Numerical and experimental studies are performed with these five strategies, which define the performance metrics. The experimental testing rig is fully identified and its parameters are used for numerical simulations. The obtained results show the satisfactory performance of the friction damper and selected strategy and the suitable agreement between the numerical and experimental results.

  1. The elastic and inelastic behavior of woven graphite fabric reinforced polyimide composites

    NASA Astrophysics Data System (ADS)

    Searles, Kevin H.

    In many aerospace and conventional engineering applications, load-bearing composite structures are designed with the intent of being subjected to uniaxial stresses that are predominantly tensile or compressive. However, it is likely that biaxial and possibly triaxial states of stress will exist throughout the in-service life of the structure or component. The existing paradigm suggests that unidirectional tape materials are superior under uniaxial conditions since the vast majority of fibers lie in-plane and can be aligned to the loading axis. This may be true, but not without detriment to impact performance, interlaminar strength, strain to failure and complexity of part geometry. In circumstances where a sufficient balance of these properties is required, composites based on woven fabric reinforcements become attractive choices. In this thesis, the micro- and mesoscale elastic behavior of composites based on 8HS woven graphite fabric architectures and polyimide matrices is studied analytically and numerically. An analytical model is proposed to predict the composite elastic constants and is verified using numerical strain energy methods of equivalence. The model shows good agreement with the experiments and numerical strain energy equivalence. Lamina stresses generated numerically from in-plane shear loading show substantial shear and transverse normal stress concentrations in the transverse undulated tow which potentially leads to intralaminar damage. The macroscale inelastic behavior of the same composites is also studied experimentally and numerically. On an experimental basis, the biaxial and modified biaxial Iosipescu test methods are employed to study the weaker-mode shear and biaxial failure properties at room and elevated temperatures. On a numerical basis, the macroscale inelastic shear behavior of the composites is studied. Structural nonlinearities and material nonlinearities are identified and resolved. In terms of specimen-to-fixture interactions, load eccentricities, geometric (large strains and rotations) nonlinearities and boundary contact (friction) nonlinearities are explored. In terms of material nonlinearities, anisotropic plasticity and progressive damage are explored. A progressive damage criterion is proposed which accounts for the elastic strain energy densities in three directions. Of the types of nonlinearities studied, the nonlinear shear stress-strain behavior of the composites is principally from progressive intralaminar damage. Structural nonlinearities and elastoplastic deformation appear to be inconsequential.

  2. Personality in 100,000 Words: A large-scale analysis of personality and word use among bloggers

    PubMed Central

    Yarkoni, Tal

    2010-01-01

    Previous studies have found systematic associations between personality and individual differences in word use. Such studies have typically focused on broad associations between major personality domains and aggregate word categories, potentially masking more specific associations. Here I report the results of a large-scale analysis of personality and word use in a large sample of blogs (N=694). The size of the dataset enabled pervasive correlations with personality to be identified for a broad range of lexical variables, including both aggregate word categories and individual English words. The results replicated category-level findings from previous offline studies, identified numerous novel associations at both a categorical and single-word level, and underscored the value of complementary approaches to the study of personality and word use. PMID:20563301

  3. The development of efficient numerical time-domain modeling methods for geophysical wave propagation

    NASA Astrophysics Data System (ADS)

    Zhu, Lieyuan

    This Ph.D. dissertation focuses on the numerical simulation of geophysical wave propagation in the time domain including elastic waves in solid media, the acoustic waves in fluid media, and the electromagnetic waves in dielectric media. This thesis shows that a linear system model can describe accurately the physical processes of those geophysical waves' propagation and can be used as a sound basis for modeling geophysical wave propagation phenomena. The generalized stability condition for numerical modeling of wave propagation is therefore discussed in the context of linear system theory. The efficiency of a series of different numerical algorithms in the time-domain for modeling geophysical wave propagation are discussed and compared. These algorithms include the finite-difference time-domain method, pseudospectral time domain method, alternating directional implicit (ADI) finite-difference time domain method. The advantages and disadvantages of these numerical methods are discussed and the specific stability condition for each modeling scheme is carefully derived in the context of the linear system theory. Based on the review and discussion of these existing approaches, the split step, ADI pseudospectral time domain (SS-ADI-PSTD) method is developed and tested for several cases. Moreover, the state-of-the-art stretched-coordinate perfect matched layer (SCPML) has also been implemented in SS-ADI-PSTD algorithm as the absorbing boundary condition for truncating the computational domain and absorbing the artificial reflection from the domain boundaries. After algorithmic development, a few case studies serve as the real-world examples to verify the capacities of the numerical algorithms and understand the capabilities and limitations of geophysical methods for detection of subsurface contamination. The first case is a study using ground penetrating radar (GPR) amplitude variation with offset (AVO) for subsurface non-aqueous-liquid (NAPL) contamination. The numerical AVO study reveals that the normalized residual polarization (NRP) variation with offset does not respond to subsurface NAPL existence when the offset is close to or larger than its critical value (which corresponds to critical incident angle) because the air and head waves dominate the recorded wave field and severely interfere with reflected waves in the TEz wave field. Thus it can be concluded that the NRP AVO/GPR method is invalid when source-receiver angle offset is close to or greater than its critical value due to incomplete and severely distorted reflection information. In other words, AVO is not a promising technique for detection of the subsurface NAPL, as claimed by some researchers. In addition, the robustness of the newly developed numerical algorithms is also verified by the AVO study for randomly-arranged layered media. Meanwhile, this case study also demonstrates again that the full-wave numerical modeling algorithms are superior to ray tracing method. The second case study focuses on the effect of the existence of a near-surface fault on the vertically incident P- and S- plane waves. The modeling results show that both P-wave vertical incidence and S-wave vertical incidence cases are qualified fault indicators. For the plane S-wave vertical incidence case, the horizontal location of the upper tip of the fault (the footwall side) can be identified without much effort, because all the recorded parameters on the surface including the maximum velocities and the maximum accelerations, and even their ratios H/V, have shown dramatic changes when crossing the upper tip of the fault. The centers of the transition zone of the all the curves of parameters are almost directly above the fault tip (roughly the horizontal center of the model). Compared with the case of the vertically incident P-wave source, it has been found that the S-wave vertical source is a better indicator for fault location, because the horizontal location of the tip of that fault cannot be clearly identified with the ratio of the horizontal to vertical velocity for the P-wave incident case.

  4. Experimental and theoretical modelling of sand-water-object interaction under nonlinear progressive waves

    NASA Astrophysics Data System (ADS)

    Testik, Firat Yener

    An experimental and theoretical study has been conducted to obtain a fundamental understanding of the dynamics of the sand, water and a solid object interaction as progressive gravity waves impinge on a sloping beach. Aside from obvious scientific interest, this exceedingly complex physical problem is important for naval applications, related to the behavior of disk/cylindrical shaped objects (mines) in the coastal waters. To address this problem, it was divided into a set of simpler basic problems. To begin, nonlinear progressive waves were investigated experimentally in a wave tank for the case of a rigid (impermeable) sloping bottom. Parameterizations for wave characteristics were proposed and compared with the experiments. In parallel, a numerical wave tank model (NWT) was calibrated using experimental data from a single run, and wave field in the wave tank was simulated numerically for the selected experiments. Subsequently, a layer of sand was placed on the slope and bottom topography evolution processes (ripple and sandbar dynamics, bottom topography relaxation under variable wave forcing, etc.) were investigated experimentally. Models for those processes were developed and verified by experimental measurements. Flow over a circular cylinder placed horizontally on a plane wall was also studied. The far-flow field of the cylinder placed in the wave tank was investigated experimentally and numerical results from the NWT simulations were compared with the experimental data. In the mean time, the near-flow velocity/vorticity field around a short cylinder under steady and oscillatory flow was studied in a towing tank. Horseshoe vortex formation and periodic shedding were documented and explained. With the understanding gained through the aforementioned studies, dynamics and burial/scour around the bottom objects in the wave tank were studied. Possible scenarios on the behavior of the disk-shaped objects were identified and explained. Scour around 3D cylindrical objects was investigated. Different scour regimes were identified experimentally and explained theoretically. Proper physical parameterizations on the time evolution and equilibrium scour characteristics were proposed and verified experimentally.

  5. Probabilistic numerics and uncertainty in computations

    PubMed Central

    Hennig, Philipp; Osborne, Michael A.; Girolami, Mark

    2015-01-01

    We deliver a call to arms for probabilistic numerical methods: algorithms for numerical tasks, including linear algebra, integration, optimization and solving differential equations, that return uncertainties in their calculations. Such uncertainties, arising from the loss of precision induced by numerical calculation with limited time or hardware, are important for much contemporary science and industry. Within applications such as climate science and astrophysics, the need to make decisions on the basis of computations with large and complex data have led to a renewed focus on the management of numerical uncertainty. We describe how several seminal classic numerical methods can be interpreted naturally as probabilistic inference. We then show that the probabilistic view suggests new algorithms that can flexibly be adapted to suit application specifics, while delivering improved empirical performance. We provide concrete illustrations of the benefits of probabilistic numeric algorithms on real scientific problems from astrometry and astronomical imaging, while highlighting open problems with these new algorithms. Finally, we describe how probabilistic numerical methods provide a coherent framework for identifying the uncertainty in calculations performed with a combination of numerical algorithms (e.g. both numerical optimizers and differential equation solvers), potentially allowing the diagnosis (and control) of error sources in computations. PMID:26346321

  6. Probabilistic numerics and uncertainty in computations.

    PubMed

    Hennig, Philipp; Osborne, Michael A; Girolami, Mark

    2015-07-08

    We deliver a call to arms for probabilistic numerical methods : algorithms for numerical tasks, including linear algebra, integration, optimization and solving differential equations, that return uncertainties in their calculations. Such uncertainties, arising from the loss of precision induced by numerical calculation with limited time or hardware, are important for much contemporary science and industry. Within applications such as climate science and astrophysics, the need to make decisions on the basis of computations with large and complex data have led to a renewed focus on the management of numerical uncertainty. We describe how several seminal classic numerical methods can be interpreted naturally as probabilistic inference. We then show that the probabilistic view suggests new algorithms that can flexibly be adapted to suit application specifics, while delivering improved empirical performance. We provide concrete illustrations of the benefits of probabilistic numeric algorithms on real scientific problems from astrometry and astronomical imaging, while highlighting open problems with these new algorithms. Finally, we describe how probabilistic numerical methods provide a coherent framework for identifying the uncertainty in calculations performed with a combination of numerical algorithms (e.g. both numerical optimizers and differential equation solvers), potentially allowing the diagnosis (and control) of error sources in computations.

  7. A method adapting microarray technology for signature tagged mutagenesis of Dusulfovibrio dusulfuricans G20 and Shewanella oneidensis MR-1 in anaerobic sediment survival experiments

    USGS Publications Warehouse

    Groh, Jennifer L.; Luo, Qingwei; Ballard , Jimmy D.; Krumholz, Lee R.

    2005-01-01

    Signature-tagged mutagenesis (STM) is a powerful technique that can be used to identify genes expressed by bacteria during exposure to conditions in their natural environments. To date, there have been no reports of studies in which this approach was used to study organisms of environmental, rather than pathogenic, significance. We used a mini-Tn10 transposon-bearing plasmid, pBSL180, that efficiently and randomly mutagenized Desulfovibrio desulfuricans G20 in addition to Shewanella oneidensis MR-1. Using these organisms as model sediment-dwelling anaerobic bacteria, we developed a new screening system, modified from former STM procedures, to identify genes that are critical for sediment survival. The screening system uses microarray technology to visualize tags from input and output pools, allowing us to identify those lost during sediment incubations. While the majority of data on survival genes identified will be presented in future papers, we report here on chemotaxis-related genes identified by our STM method in both bacteria in order to validate our method. This system may be applicable to the study of numerous environmental bacteria, allowing us to identify functions and roles of survival genes in various habitats.

  8. SALT Spectroscopy of Evolved Massive Stars

    NASA Astrophysics Data System (ADS)

    Kniazev, A. Y.; Gvaramadze, V. V.; Berdnikov, L. N.

    2017-06-01

    Long-slit spectroscopy with the Southern African Large Telescope (SALT) of central stars of mid-infrared nebulae detected with the Spitzer Space Telescope and Wide-Field Infrared Survey Explorer (WISE) led to the discovery of numerous candidate luminous blue variables (cLBVs) and other rare evolved massive stars. With the recent advent of the SALT fiber-fed high-resolution echelle spectrograph (HRS), a new perspective for the study of these interesting objects is appeared. Using the HRS we obtained spectra of a dozen newly identified massive stars. Some results on the recently identified cLBV Hen 3-729 are presented.

  9. Characterization of the dynamic behaviour of flax fibre reinforced composites using vibration measurements

    NASA Astrophysics Data System (ADS)

    El-Hafidi, Ali; Birame Gning, Papa; Piezel, Benoit; Fontaine, Stéphane

    2017-10-01

    Experimental and numerical methods to identify the linear viscoelastic properties of flax fibre reinforced epoxy (FFRE) composite are presented in this study. The method relies on the evolution of storage modulus and loss factor as observed through the frequency response. Free-free symmetrically guided beams were excited on the dynamic range of 10 Hz to 4 kHz with a swept sine excitation focused around their first modes. A fractional derivative Zener model has been identified to predict the complex moduli. A modified ply constitutive law has been then implemented in a classical laminates theory calculation (CLT) routine.

  10. Correlation study between sperm concentration, hyaluronic acid-binding capacity and sperm aneuploidy in Hungarian patients.

    PubMed

    Mokánszki, Attila; Molnár, Zsuzsanna; Ujfalusi, Anikó; Balogh, Erzsébet; Bazsáné, Zsuzsa Kassai; Varga, Attila; Jakab, Attila; Oláh, Éva

    2012-12-01

    Infertile men with low sperm concentration and/or less motile spermatozoa have an increased risk of producing aneuploid spermatozoa. Selecting spermatozoa by hyaluronic acid (HA) binding may reduce genetic risks such as chromosomal rearrangements and numerical aberrations. Fluorescence in-situ hybridization (FISH) has been used to evaluate the presence of aneuploidies. This study examined spermatozoa of 10 oligozoospermic, 9 asthenozoospermic, 9 oligoasthenozoospermic and 17 normozoospermic men by HA binding and FISH. Mean percentage of HA-bound spermatozoa in the normozoospermic group was 81%, which was significantly higher than in the oligozoospermic (P<0.001), asthenozoospermic (P<0.001) and oligoasthenozoospermic (P<0.001) groups. Disomy of sex chromosomes (P=0.014) and chromosome 17 (P=0.0019), diploidy (P=0.03) and estimated numerical chromosome aberrations (P=0.004) were significantly higher in the oligoasthenozoospermic group compared with the other groups. There were statistically significant relationships (P<0.001) between sperm concentration and HA binding (r=0.658), between sperm concentration and estimated numerical chromosome aberrations (r=-0.668) and between HA binding and estimated numerical chromosome aberrations (r=-0.682). HA binding and aneuploidy studies of spermatozoa in individual cases allow prediction of reproductive prognosis and provision of appropriate genetic counselling. Infertile men with normal karyotypes and low sperm concentrations and/or less motile spermatozoa have significantly increased risks of producing aneuploid (diminished mature) spermatozoa. Selecting spermatozoa by hyaluronic acid (HA) binding, based on a binding between sperm receptors for zona pellucida and HA, may reduce the potential genetic risks such as chromosomal rearrangements and numerical aberrations. In the present study we examined sperm samples of 45 men with different sperm parameters by HA-binding assay and fluorescence in-situ hybridization (FISH). Mean percentage of HA-bound spermatozoa in the normozoospermic group was significantly higher than the oligozoospermic, the asthenozoospermic and the oligoasthenozoospermic groups. Using FISH, disomy of sex chromosomes and chromosome 17, diploidy and estimated numerical chromosome aberration frequencies were significantly higher in the oligoasthenozoospermic group compared with the three other groups. A significant positive correlation was found between the sperm concentration and the HA-binding capacity, and significant negative correlations between the sperm concentration and the estimated numerical chromosomes aberrations as well as between the HA-binding ability and the estimated numerical chromosome aberrations were identified. We conclude that HA-binding assay and sperm aneuploidy study using FISH may help to predict the reproductive ability of selected infertile male patients and to provide appropriate genetic counselling. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  11. Simulating the universe(s) II: phenomenology of cosmic bubble collisions in full general relativity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wainwright, Carroll L.; Aguirre, Anthony; Johnson, Matthew C.

    2014-10-01

    Observing the relics of collisions between bubble universes would provide direct evidence for the existence of an eternally inflating Multiverse; the non-observation of such events can also provide important constraints on inflationary physics. Realizing these prospects requires quantitative predictions for observables from the properties of the possible scalar field Lagrangians underlying eternal inflation. Building on previous work, we establish this connection in detail. We perform a fully relativistic numerical study of the phenomenology of bubble collisions in models with a single scalar field, computing the comoving curvature perturbation produced in a wide variety of models. We also construct a setmore » of analytic predictions, allowing us to identify the phenomenologically relevant properties of the scalar field Lagrangian. The agreement between the analytic predictions and numerics in the relevant regions is excellent, and allows us to generalize our results beyond the models we adopt for the numerical studies. Specifically, the signature is completely determined by the spatial profile of the colliding bubble just before the collision, and the de Sitter invariant distance between the bubble centers. The analytic and numerical results support a power-law fit with an index 1< κ ∼< 2. For collisions between identical bubbles, we establish a lower-bound on the observed amplitude of collisions that is set by the present energy density in curvature.« less

  12. A new approach to identify the sensitivity and importance of physical parameters combination within numerical models using the Lund-Potsdam-Jena (LPJ) model as an example

    NASA Astrophysics Data System (ADS)

    Sun, Guodong; Mu, Mu

    2017-05-01

    An important source of uncertainty, which causes further uncertainty in numerical simulations, is that residing in the parameters describing physical processes in numerical models. Therefore, finding a subset among numerous physical parameters in numerical models in the atmospheric and oceanic sciences, which are relatively more sensitive and important parameters, and reducing the errors in the physical parameters in this subset would be a far more efficient way to reduce the uncertainties involved in simulations. In this context, we present a new approach based on the conditional nonlinear optimal perturbation related to parameter (CNOP-P) method. The approach provides a framework to ascertain the subset of those relatively more sensitive and important parameters among the physical parameters. The Lund-Potsdam-Jena (LPJ) dynamical global vegetation model was utilized to test the validity of the new approach in China. The results imply that nonlinear interactions among parameters play a key role in the identification of sensitive parameters in arid and semi-arid regions of China compared to those in northern, northeastern, and southern China. The uncertainties in the numerical simulations were reduced considerably by reducing the errors of the subset of relatively more sensitive and important parameters. The results demonstrate that our approach not only offers a new route to identify relatively more sensitive and important physical parameters but also that it is viable to then apply "target observations" to reduce the uncertainties in model parameters.

  13. Do numerical rating scales and the Roland-Morris Disability Questionnaire capture changes that are meaningful to patients with persistent back pain?

    PubMed

    Hush, Julia M; Refshauge, Kathryn M; Sullivan, Gerard; De Souza, Lorraine; McAuley, James H

    2010-07-01

    To investigate patients' views about two common outcome measures used for back pain: Numerical Rating Scales for pain and the Roland-Morris Disability Questionnaire. Thirty-six working adults who had previously sought primary care for back pain and who could speak and read English. Eight focus groups were conducted to explore participants' views about the 11-point Numerical Rating Scales and the 24-item Roland-Morris Disability Questionnaire. Each group was led by a facilitator and an interview topic guide was used. Audio recordings of focus groups were transcribed verbatim. Framework analysis was used to chart participants' views and an interpretive analysis performed to explain the findings. Participants reported that neither the Roland-Morris nor the Numerical Rating Scales captured the complex personal experience of pain or relevant changes in their condition. The time-frame of assessment was identified as particularly problematic and the Roland-Morris did not capture relevant functional domains. This study provides empirical data that working adults with persistent back pain consider these clinical outcome measures largely inadequate. These measures currently used for back pain may contribute to misleading conclusions about treatment efficacy and patient recovery.

  14. Color congruity effect: where do colors and numbers interact in synesthesia?

    PubMed

    Cohen Kadosh, Roi; Henik, Avishai

    2006-02-01

    The traditional size congruity paradigm is a Stroop-like situation where participants are asked to compare the values of two digits and ignore the irrelevant physical sizes of the digits (e.g., 3 5). Here a color congruity paradigm was employed and the irrelevant physical sizes were replaced by irrelevant colors. MM, a digit-color synesthete, yielded the classical congruity effect. Namely, she was slower to identify numerically larger numbers when they deviated from her synesthetic experience than when they matched it. In addition, the effect of color on her comparative judgments was modulated by numerical distance. In contrast, performance of non-synesthetes was not affected by the colors. On the basis of neurophysiological studies of magnitude comparison and interference between numerical and physical information, it is proposed that the interaction between colors and digits in MM occurs at the conceptual level. Moreover, by using the current paradigm it is possible to determine the stage at which color-digit binding in synesthesia occurs.

  15. Experimental and Numerical Investigation on Micro-Bending of AISI 304 Sheet Metal Using a Low Power Nanosecond Laser

    NASA Astrophysics Data System (ADS)

    Paramasivan, K.; Das, Sandip; Marimuthu, Sundar; Misra, Dipten

    2018-06-01

    The aim of this experimental study is to identify and characterize the response related to the effects of process parameters in terms of bending angle for micro-bending of AISI 304 sheet using a low power Nd:YVO4 laser source. Numerical simulation is also carried out through a coupled thermo-mechanical formulation with finite element method using COMSOL MULTIPHYSICS. The developed numerical simulation indicates that bending is caused by temperature gradient mechanism in the present investigation involving laser micro-bending. The results of experiment indicate that bending angle increases with laser power, number of irradiations, and decreases with increase in scanning speed. Moreover, average bending angle increases with number of laser passes and edge effect, defined in terms of relative variation of bending angle (RBAV), decreases monotonically with the number of laser scans. The substrate is damaged over a width of about 80 μm due to the high temperatures experienced during laser forming at a low scanning speed.

  16. Diverse structures, functions and uses of FK506 binding proteins.

    PubMed

    Bonner, Julia Maeve; Boulianne, Gabrielle L

    2017-10-01

    FK506 (Tacrolimus), isolated from Streptomyces tsukubaenis is a powerful immunosuppressant shown to inhibit T cell activation. FK506 mediated immunosuppression requires the formation of a complex between FK506, a FK506 binding protein (FKBP) and calcineurin. Numerous FKBPs have been identified in a wide range of species, from single celled organisms to humans. FKBPs show peptidylprolyl cis/trans isomerase (PPIase) activity and have been shown to affect a wide range of cellular processes including protein folding, receptor signaling and apoptosis. FKBPs also affect numerous biological functions in addition to immunosuppression including regulation of cardiac function, neuronal function and development and have been implicated in several diseases including cardiac disease, cancer and neurodegenerative diseases such as Alzheimer's disease. More recently, FKBPs have proven useful as molecular tools for studying protein interactions, localization and functions. This review provides an overview of the current state of knowledge of FKBPs and their numerous biological functions and uses. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Microfluidic step-emulsification in a cylindrical geometry

    NASA Astrophysics Data System (ADS)

    Chakraborty, Indrajit; Leshansky, Alexander M.

    2016-11-01

    The model microfluidic device for high-throughput droplet generation in a confined cylindrical geometry is investigated numerically. The device comprises of core-annular pressure-driven flow of two immiscible viscous liquids through a cylindrical capillary connected co-axially to a tube of a larger diameter through a sudden expansion, mimicking the microfluidic step-emulsifier (1). To study this problem, the numerical simulations of axisymmetric Navier-Stokes equations have been carried out using an interface capturing procedure based on coupled level set and volume-of-fluid (CLSVOF) methods. The accuracy of the numerical method was favorably tested vs. the predictions of the linear stability analysis of core-annular two-phase flow in a cylindrical capillary. Three distinct flow regimes can be identified: the dripping (D) instability near the entrance to the capillary, the step- (S) and the balloon- (B) emulsification at the step-like expansion. Based on the simulation results we present the phase diagram quantifying transitions between various regimes in plane of the capillary number and the flow-rate ratio. MICROFLUSA EU H2020 project.

  18. Broadband frequency and angular response of a sinusoidal bull’s eye antenna

    NASA Astrophysics Data System (ADS)

    Beaskoetxea, U.; Navarro-Cía, M.; Beruete, M.

    2016-07-01

    A thorough experimental study of the frequency and beaming angle response of a metallic leaky-wave bull’s eye antenna working at 77 GHz with a sinusoidally corrugated profile is presented. The beam scanning property of these antennas as frequency is varied is experimentally demonstrated and corroborated through theoretical and numerical results. From the experimental results the dispersion diagram of the n  =  -1 and n  =  -2 space harmonics is extracted, and the operation at different frequency regimes is identified and discussed. In order to show the contribution of each half of the antenna, numerical examples of the near-field behavior are also displayed. Overall, experimental results are in good qualitative and quantitative agreement with theoretical and numerical calculations. Finally, an analysis of the beamwidth as a function of frequency is performed, showing that it can achieve values below 1.5° in a fractional bandwidth of 4% around the operation frequency, which is an interesting frequency-stable broadside radiation.

  19. How number-space relationships are assessed before formal schooling: A taxonomy proposal

    PubMed Central

    Patro, Katarzyna; Nuerk, Hans-Christoph; Cress, Ulrike; Haman, Maciej

    2014-01-01

    The last years of research on numerical development have provided evidence that spatial-numerical associations (SNA) can be formed independent of formal school training. However, most of these studies used various experimental paradigms that referred to slightly different aspects of number and space processing. This poses a question of whether all SNAs described in the developmental literature can be interpreted as a unitary construct, or whether they are rather examples of different, but related phenomena. Our review aims to provide a starting point for a systematic classification of SNA measures used from infancy to late preschool years, and their underlying representations. We propose to distinguish among four basic SNA categories: (i) cross-dimensional magnitude processing, (ii) associations between spatial and numerical intervals, (iii) associations between cardinalities and spatial directions, (iv) associations between ordinalities and spatial directions. Such systematization allows for identifying similarities and differences between processes and representations that underlie the described measures, and also for assessing the adequacy of using different SNA tasks at different developmental stages. PMID:24860532

  20. Low percolation transitions in carbon nanotube networks dispersed in a polymer matrix: dielectric properties, simulations and experiments.

    PubMed

    Simoes, Ricardo; Silva, Jaime; Vaia, Richard; Sencadas, Vítor; Costa, Pedro; Gomes, João; Lanceros-Méndez, Senentxu

    2009-01-21

    The low concentration behaviour and the increase of the dielectric constant in carbon nanotubes/polymer nanocomposites near the percolation threshold are still not well understood. In this work, a numerical model has been developed which focuses on the effect of the inclusion of conductive fillers in a dielectric polymer matrix on the dielectric constant and the dielectric strength. Experiments have been carried out in carbon nanotubes/poly(vinylidene fluoride) nanocomposites in order to compare to the simulation results. This work shows how the critical concentration is related to the formation of capacitor networks and that these networks give rise to high variations in the electrical properties of the composites. Based on numerical studies, the dependence of the percolation transition on the preparation of the nanocomposite is discussed. Finally, based on numerical and experimental results, both ours and from other authors, the causes of anomalous percolation behaviour of the dielectric constant are identified.

  1. Coupled Neutron Transport for HZETRN

    NASA Technical Reports Server (NTRS)

    Slaba, Tony C.; Blattnig, Steve R.

    2009-01-01

    Exposure estimates inside space vehicles, surface habitats, and high altitude aircrafts exposed to space radiation are highly influenced by secondary neutron production. The deterministic transport code HZETRN has been identified as a reliable and efficient tool for such studies, but improvements to the underlying transport models and numerical methods are still necessary. In this paper, the forward-backward (FB) and directionally coupled forward-backward (DC) neutron transport models are derived, numerical methods for the FB model are reviewed, and a computationally efficient numerical solution is presented for the DC model. Both models are compared to the Monte Carlo codes HETC-HEDS, FLUKA, and MCNPX, and the DC model is shown to agree closely with the Monte Carlo results. Finally, it is found in the development of either model that the decoupling of low energy neutrons from the light particle transport procedure adversely affects low energy light ion fluence spectra and exposure quantities. A first order correction is presented to resolve the problem, and it is shown to be both accurate and efficient.

  2. Shear test on viscoelastic granular material using Contact Dynamics simulations

    NASA Astrophysics Data System (ADS)

    Quezada, Juan Carlos; Sagnol, Loba; Chazallon, Cyrille

    2017-06-01

    By means of 3D contact dynamic simulations, the behavior of a viscoelastic granular material under shear loading is investigated. A viscoelastic fluid phase surrounding the solid particles is simulated by a contact model acting between them. This contact law was implemented in the LMGC90 software, based on the Burgers model. This model is able to simulate also the effect of creep relaxation. To validate the proposed contact model, several direct shear tests were performed, experimentally and numerically using the Leutner device. The numerical samples were created using spheres with two particle size distribution, each one identified for two layers from a road structure. Our results show a reasonable agreement between experimental and numerical data regarding the strain-stress evolution curves and the stress levels measured at failure. The proposed model can be used to simulate the mechanical behavior of multi-layer road structure and to study the influence of traffic on road deformation, cracking and particles pull-out induced by traffic loading.

  3. Abstract numerical discrimination learning in rats.

    PubMed

    Taniuchi, Tohru; Sugihara, Junko; Wakashima, Mariko; Kamijo, Makiko

    2016-06-01

    In this study, we examined rats' discrimination learning of the numerical ordering positions of objects. In Experiments 1 and 2, five out of seven rats successfully learned to respond to the third of six identical objects in a row and showed reliable transfer of this discrimination to novel stimuli after being trained with three different training stimuli. In Experiment 3, the three rats from Experiment 2 continued to be trained to respond to the third object in an object array, which included an odd object that needed to be excluded when identifying the target third object. All three rats acquired this selective-counting task of specific stimuli, and two rats showed reliable transfer of this selective-counting performance to test sets of novel stimuli. In Experiment 4, the three rats from Experiment 3 quickly learned to respond to the third stimulus in object rows consisting of either six identical or six different objects. These results offer strong evidence for abstract numerical discrimination learning in rats.

  4. 3D fluid-structure modelling and vibration analysis for fault diagnosis of Francis turbine using multiple ANN and multiple ANFIS

    NASA Astrophysics Data System (ADS)

    Saeed, R. A.; Galybin, A. N.; Popov, V.

    2013-01-01

    This paper discusses condition monitoring and fault diagnosis in Francis turbine based on integration of numerical modelling with several different artificial intelligence (AI) techniques. In this study, a numerical approach for fluid-structure (turbine runner) analysis is presented. The results of numerical analysis provide frequency response functions (FRFs) data sets along x-, y- and z-directions under different operating load and different position and size of faults in the structure. To extract features and reduce the dimensionality of the obtained FRF data, the principal component analysis (PCA) has been applied. Subsequently, the extracted features are formulated and fed into multiple artificial neural networks (ANN) and multiple adaptive neuro-fuzzy inference systems (ANFIS) in order to identify the size and position of the damage in the runner and estimate the turbine operating conditions. The results demonstrated the effectiveness of this approach and provide satisfactory accuracy even when the input data are corrupted with certain level of noise.

  5. Common and dissociable neural correlates associated with component processes of inductive reasoning.

    PubMed

    Jia, Xiuqin; Liang, Peipeng; Lu, Jie; Yang, Yanhui; Zhong, Ning; Li, Kuncheng

    2011-06-15

    The ability to draw numerical inductive reasoning requires two key cognitive processes, identification and extrapolation. This study aimed to identify the neural correlates of both component processes of numerical inductive reasoning using event-related fMRI. Three kinds of tasks: rule induction (RI), rule induction and application (RIA), and perceptual judgment (Jud) were solved by twenty right-handed adults. Our results found that the left superior parietal lobule (SPL) extending into the precuneus and left dorsolateral prefrontal cortex (DLPFC) were commonly recruited in the two components. It was also observed that the fronto-parietal network was more specific to identification, whereas the striatal-thalamic network was more specific to extrapolation. The findings suggest that numerical inductive reasoning is mediated by the coordination of multiple brain areas including the prefrontal, parietal, and subcortical regions, of which some are more specific to demands on only one of these two component processes, whereas others are sensitive to both. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Buckling and Damage Resistance of Transversely-Loaded Composite Shells

    NASA Technical Reports Server (NTRS)

    Wardle, Brian L.

    1998-01-01

    Experimental and numerical work was conducted to better understand composite shell response to transverse loadings which simulate damage-causing impact events. The quasi-static, centered, transverse loading response of laminated graphite/epoxy shells in a [+/-45(sub n)/O(sub n)](sub s) layup having geometric characteristics of a commercial fuselage are studied. The singly-curved composite shell structures are hinged along the straight circumferential edges and are either free or simply supported along the curved axial edges. Key components of the shell response are response instabilities due to limit-point and/or bifurcation buckling. Experimentally, deflection-controlled shell response is characterized via load-deflection data, deformation-shape evolutions, and the resulting damage state. Finite element models are used to study the kinematically nonlinear shell response, including bifurcation, limit-points, and postbuckling. A novel technique is developed for evaluating bifurcation from nonlinear prebuckling states utilizing asymmetric spatial discretization to introduce numerical perturbations. Advantages of the asymmetric meshing technique (AMT) over traditional techniques include efficiency, robustness, ease of application, and solution of the actual (not modified) problems. The AMT is validated by comparison to traditional numerical analysis of a benchmark problem and verified by comparison to experimental data. Applying the technique, bifurcation in a benchmark shell-buckling problem is correctly identified. Excellent agreement between the numerical and experimental results are obtained for a number of composite shells although predictive capability decreases for stiffer (thicker) specimens which is attributed to compliance of the test fixture. Restraining the axial edge (simple support) has the effect of creating a more complex response which involves unstable bifurcation, limit-point buckling, and dynamic collapse. Such shells were noted to bifurcate into asymmetric deformation modes but were undamaged during testing. Shells in this study which were damaged were not observed to bifurcate. Thus, a direct link between bifurcation and atypical damage could not be established although the mechanism (bifurcation) was identified. Recommendations for further work in these related areas are provided and include extensions of the AMT to other shell geometries and structural problems.

  7. Generation Mechanism of Nonlinear Rayleigh Surface Waves for Randomly Distributed Surface Micro-Cracks.

    PubMed

    Ding, Xiangyan; Li, Feilong; Zhao, Youxuan; Xu, Yongmei; Hu, Ning; Cao, Peng; Deng, Mingxi

    2018-04-23

    This paper investigates the propagation of Rayleigh surface waves in structures with randomly distributed surface micro-cracks using numerical simulations. The results revealed a significant ultrasonic nonlinear effect caused by the surface micro-cracks, which is mainly represented by a second harmonic with even more distinct third/quadruple harmonics. Based on statistical analysis from the numerous results of random micro-crack models, it is clearly found that the acoustic nonlinear parameter increases linearly with micro-crack density, the proportion of surface cracks, the size of micro-crack zone, and the excitation frequency. This study theoretically reveals that nonlinear Rayleigh surface waves are feasible for use in quantitatively identifying the physical characteristics of surface micro-cracks in structures.

  8. Modes of self-organization of diluted bubbly liquids in acoustic fields: One-dimensional theory.

    PubMed

    Gumerov, Nail A; Akhatov, Iskander S

    2017-02-01

    The paper is dedicated to mathematical modeling of self-organization of bubbly liquids in acoustic fields. A continuum model describing the two-way interaction of diluted polydisperse bubbly liquids and acoustic fields in weakly-nonlinear approximation is studied analytically and numerically in the one-dimensional case. It is shown that the regimes of self-organization of monodisperse bubbly liquids can be controlled by only a few dimensionless parameters. Two basic modes, clustering and propagating shock waves of void fraction (acoustically induced transparency), are identified and criteria for their realization in the space of parameters are proposed. A numerical method for solving of one-dimensional self-organization problems is developed. Computational results for mono- and polydisperse systems are discussed.

  9. Generation Mechanism of Nonlinear Rayleigh Surface Waves for Randomly Distributed Surface Micro-Cracks

    PubMed Central

    Ding, Xiangyan; Li, Feilong; Xu, Yongmei; Cao, Peng; Deng, Mingxi

    2018-01-01

    This paper investigates the propagation of Rayleigh surface waves in structures with randomly distributed surface micro-cracks using numerical simulations. The results revealed a significant ultrasonic nonlinear effect caused by the surface micro-cracks, which is mainly represented by a second harmonic with even more distinct third/quadruple harmonics. Based on statistical analysis from the numerous results of random micro-crack models, it is clearly found that the acoustic nonlinear parameter increases linearly with micro-crack density, the proportion of surface cracks, the size of micro-crack zone, and the excitation frequency. This study theoretically reveals that nonlinear Rayleigh surface waves are feasible for use in quantitatively identifying the physical characteristics of surface micro-cracks in structures. PMID:29690580

  10. Numerical simulation of particle jet formation induced by shock wave acceleration in a Hele-Shaw cell

    NASA Astrophysics Data System (ADS)

    Osnes, A. N.; Vartdal, M.; Pettersson Reif, B. A.

    2018-05-01

    The formation of jets from a shock-accelerated cylindrical shell of particles, confined in a Hele-Shaw cell, is studied by means of numerical simulation. A number of simulations have been performed, systematically varying the coupling between the gas and solid phases in an effort to identify the primary mechanism(s) responsible for jet formation. We find that coupling through drag is sufficient for the formation of jets. Including the effect of particle volume fraction and particle collisions did not alter the general behaviour, but had some influence on the length, spacing and number of jets. Furthermore, we find that the jet selection process starts early in the dispersal process, during the initial expansion of the particle layer.

  11. Development of a Video Coding Scheme for Analyzing the Usability and Usefulness of Health Information Systems.

    PubMed

    Kushniruk, Andre W; Borycki, Elizabeth M

    2015-01-01

    Usability has been identified as a key issue in health informatics. Worldwide numerous projects have been carried out in an attempt to increase and optimize health system usability. Usability testing, involving observing end users interacting with systems, has been widely applied and numerous publications have appeared describing such studies. However, to date, fewer works have been published describing methodological approaches to analyzing the rich data stream that results from usability testing. This includes analysis of video, audio and screen recordings. In this paper we describe our work in the development and application of a coding scheme for analyzing the usability of health information systems. The phases involved in such analyses are described.

  12. Vasohibin-1 is identified as a master-regulator of endothelial cell apoptosis using gene network analysis

    PubMed Central

    2013-01-01

    Background Apoptosis is a critical process in endothelial cell (EC) biology and pathology, which has been extensively studied at protein level. Numerous gene expression studies of EC apoptosis have also been performed, however few attempts have been made to use gene expression data to identify the molecular relationships and master regulators that underlie EC apoptosis. Therefore, we sought to understand these relationships by generating a Bayesian gene regulatory network (GRN) model. Results ECs were induced to undergo apoptosis using serum withdrawal and followed over a time course in triplicate, using microarrays. When generating the GRN, this EC time course data was supplemented by a library of microarray data from EC treated with siRNAs targeting over 350 signalling molecules. The GRN model proposed Vasohibin-1 (VASH1) as one of the candidate master-regulators of EC apoptosis with numerous downstream mRNAs. To evaluate the role played by VASH1 in EC, we used siRNA to reduce the expression of VASH1. Of 10 mRNAs downstream of VASH1 in the GRN that were examined, 7 were significantly up- or down-regulated in the direction predicted by the GRN.Further supporting an important biological role of VASH1 in EC, targeted reduction of VASH1 mRNA abundance conferred resistance to serum withdrawal-induced EC death. Conclusion We have utilised Bayesian GRN modelling to identify a novel candidate master regulator of EC apoptosis. This study demonstrates how GRN technology can complement traditional methods to hypothesise the regulatory relationships that underlie important biological processes. PMID:23324451

  13. Reforestation can sequester two petagrams of carbon in US topsoils in a century

    Treesearch

    Lucas E. Nave; Grant M. Domke; Kathryn L. Hofmeister; Umakant Mishra; Charles H. Perry; Brian F. Walters; Christopher W. Swanston

    2018-01-01

    Soils are Earth’s largest terrestrial carbon (C) pool, and their responsiveness to land use and management make them appealing targets for strategies to enhance C sequestration. Numerous studies have identified practices that increase soil C, but their inferences are often based on limited data extrapolated over large areas. Here, we combine 15,000 observations from...

  14. Determining How Tertiary Education and Human Capital Formation Influenced Economic Expansion in Israel, Japan, and Norway from 2000-2010

    ERIC Educational Resources Information Center

    Kalkbrenner, Erin Lee

    2014-01-01

    Researchers have calculated the relationship between human capital development and economic output by various means of econometric modeling and by use of numerous indicators under the context of an assortment of human capital theory. This study was conducted to identify new interpretations of the expansion of human capital in the form of tertiary…

  15. Gene Deletions in Mycobacterium bovis BCG Stimulate Increased CD8+ T Cell Responses

    PubMed Central

    Panas, Michael W.; Sixsmith, Jaimie D.; White, KeriAnn; Korioth-Schmitz, Birgit; Shields, Shana T.; Moy, Brian T.; Lee, Sunhee; Schmitz, Joern E.; Jacobs, William R.; Porcelli, Steven A.; Haynes, Barton F.; Letvin, Norman L.

    2014-01-01

    Mycobacteria, the etiological agents of tuberculosis and leprosy, have coevolved with mammals for millions of years and have numerous ways of suppressing their host's immune response. It has been suggested that mycobacteria may contain genes that reduce the host's ability to elicit CD8+ T cell responses. We screened 3,290 mutant Mycobacterium bovis bacillus Calmette Guerin (BCG) strains to identify genes that decrease major histocompatibility complex (MHC) class I presentation of mycobacterium-encoded epitope peptides. Through our analysis, we identified 16 mutant BCG strains that generated increased transgene product-specific CD8+ T cell responses. The genes disrupted in these mutant strains had disparate predicted functions. Reconstruction of strains via targeted deletion of genes identified in the screen recapitulated the enhanced immunogenicity phenotype of the original mutant strains. When we introduced the simian immunodeficiency virus (SIV) gag gene into several of these novel BCG strains, we observed enhanced SIV Gag-specific CD8+ T cell responses in vivo. This study demonstrates that mycobacteria carry numerous genes that act to dampen CD8+ T cell responses and suggests that genetic modification of these genes may generate a novel group of recombinant BCG strains capable of serving as more effective and immunogenic vaccine vectors. PMID:25287928

  16. Gene deletions in Mycobacterium bovis BCG stimulate increased CD8+ T cell responses.

    PubMed

    Panas, Michael W; Sixsmith, Jaimie D; White, KeriAnn; Korioth-Schmitz, Birgit; Shields, Shana T; Moy, Brian T; Lee, Sunhee; Schmitz, Joern E; Jacobs, William R; Porcelli, Steven A; Haynes, Barton F; Letvin, Norman L; Gillard, Geoffrey O

    2014-12-01

    Mycobacteria, the etiological agents of tuberculosis and leprosy, have coevolved with mammals for millions of years and have numerous ways of suppressing their host's immune response. It has been suggested that mycobacteria may contain genes that reduce the host's ability to elicit CD8(+) T cell responses. We screened 3,290 mutant Mycobacterium bovis bacillus Calmette Guerin (BCG) strains to identify genes that decrease major histocompatibility complex (MHC) class I presentation of mycobacterium-encoded epitope peptides. Through our analysis, we identified 16 mutant BCG strains that generated increased transgene product-specific CD8(+) T cell responses. The genes disrupted in these mutant strains had disparate predicted functions. Reconstruction of strains via targeted deletion of genes identified in the screen recapitulated the enhanced immunogenicity phenotype of the original mutant strains. When we introduced the simian immunodeficiency virus (SIV) gag gene into several of these novel BCG strains, we observed enhanced SIV Gag-specific CD8(+) T cell responses in vivo. This study demonstrates that mycobacteria carry numerous genes that act to dampen CD8(+) T cell responses and suggests that genetic modification of these genes may generate a novel group of recombinant BCG strains capable of serving as more effective and immunogenic vaccine vectors. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  17. Assessing Probabilistic Reasoning in Verbal-Numerical and Graphical-Pictorial Formats: An Evaluation of the Psychometric Properties of an Instrument

    ERIC Educational Resources Information Center

    Agus, Mirian; Penna, Maria Pietronilla; Peró-Cebollero, Maribel; Guàrdia-Olmos, Joan

    2016-01-01

    Research on the graphical facilitation of probabilistic reasoning has been characterised by the effort expended to identify valid assessment tools. The authors developed an assessment instrument to compare reasoning performances when problems were presented in verbal-numerical and graphical-pictorial formats. A sample of undergraduate psychology…

  18. Magnitude knowledge: the common core of numerical development.

    PubMed

    Siegler, Robert S

    2016-05-01

    The integrated theory of numerical development posits that a central theme of numerical development from infancy to adulthood is progressive broadening of the types and ranges of numbers whose magnitudes are accurately represented. The process includes four overlapping trends: (1) representing increasingly precisely the magnitudes of non-symbolic numbers, (2) connecting small symbolic numbers to their non-symbolic referents, (3) extending understanding from smaller to larger whole numbers, and (4) accurately representing the magnitudes of rational numbers. The present review identifies substantial commonalities, as well as differences, in these four aspects of numerical development. With both whole and rational numbers, numerical magnitude knowledge is concurrently correlated with, longitudinally predictive of, and causally related to multiple aspects of mathematical understanding, including arithmetic and overall math achievement. Moreover, interventions focused on increasing numerical magnitude knowledge often generalize to other aspects of mathematics. The cognitive processes of association and analogy seem to play especially large roles in this development. Thus, acquisition of numerical magnitude knowledge can be seen as the common core of numerical development. © 2016 John Wiley & Sons Ltd.

  19. Experimental and numerical study of a 10MW TLP wind turbine in waves and wind

    NASA Astrophysics Data System (ADS)

    Pegalajar-Jurado, Antonio; Hansen, Anders M.; Laugesen, Robert; Mikkelsen, Robert F.; Borg, Michael; Kim, Taeseong; Heilskov, Nicolai F.; Bredmose, Henrik

    2016-09-01

    This paper presents tests on a 1:60 version of the DTU 10MW wind turbine mounted on a tension leg platform and their numerical reproduction. Both the experimental setup and the numerical model are Froude-scaled, and the dynamic response of the floating wind turbine to wind and waves is compared in terms of motion in the six degrees of freedom, nacelle acceleration and mooring line tension. The numerical model is implemented in the aero-elastic code Flex5, featuring the unsteady BEM method and the Morison equation for the modelling of aerodynamics and hydrodynamics, respectively. It was calibrated with the tests by matching key system features, namely the steady thrust curve and the decay tests in water. The calibrated model is used to reproduce the wind-wave climates in the laboratory, including regular and irregular waves, with and without wind. The model predictions are compared to the measured data, and a good agreement is found for surge and heave, while some discrepancies are observed for pitch, nacelle acceleration and line tension. The addition of wind generally improves the agreement with test results. The aerodynamic damping is identified in both tests and simulations. Finally, the sources of the discrepancies are discussed and some improvements in the numerical model are suggested in order to obtain a better agreement with the experiments.

  20. Numerical prediction of algae cell mixing feature in raceway ponds using particle tracing methods.

    PubMed

    Ali, Haider; Cheema, Taqi A; Yoon, Ho-Sung; Do, Younghae; Park, Cheol W

    2015-02-01

    In the present study, a novel technique, which involves numerical computation of the mixing length of algae particles in raceway ponds, was used to evaluate the mixing process. A value of mixing length that is higher than the maximum streamwise distance (MSD) of algae cells indicates that the cells experienced an adequate turbulent mixing in the pond. A coupling methodology was adapted to map the pulsating effects of a 2D paddle wheel on a 3D raceway pond in this study. The turbulent mixing was examined based on the computations of mixing length, residence time, and algae cell distribution in the pond. The results revealed that the use of particle tracing methodology is an improved approach to define the mixing phenomenon more effectively. Moreover, the algae cell distribution aided in identifying the degree of mixing in terms of mixing length and residence time. © 2014 Wiley Periodicals, Inc.

  1. Quantification of topological changes of vorticity contours in two-dimensional Navier-Stokes flow.

    PubMed

    Ohkitani, Koji; Al Sulti, Fayeza

    2010-06-01

    A characterization of reconnection of vorticity contours is made by direct numerical simulations of the two-dimensional Navier-Stokes flow at a relatively low Reynolds number. We identify all the critical points of the vorticity field and classify them by solving an eigenvalue problem of its Hessian matrix on the basis of critical-point theory. The numbers of hyperbolic (saddles) and elliptic (minima and maxima) points are confirmed to satisfy Euler's index theorem numerically. Time evolution of these indices is studied for a simple initial condition. Generally speaking, we have found that the indices are found to decrease in number with time. This result is discussed in connection with related works on streamline topology, in particular, the relationship between stagnation points and the dissipation. Associated elementary procedures in physical space, the merging of vortices, are studied in detail for a number of snapshots. A similar analysis is also done using the stream function.

  2. Buoyant miscible displacement flow of shear-thinning fluids: Experiments and Simulations

    NASA Astrophysics Data System (ADS)

    Ale Etrati Khosroshahi, Seyed Ali; Frigaard, Ian

    2017-11-01

    We study displacement flow of two miscible fluids with density and viscosity contrast in an inclined pipe. Our focus is mainly on displacements where transverse mixing is not significant and thus a two-layer, stratified flow develops. Our experiments are carried out in a long pipe, covering a wide range of flow-rates, inclination angles and viscosity ratios. Density and viscosity contrasts are achieved by adding Glycerol and Xanthan gum to water, respectively. At each angle, flow rate and viscosity ratio are varied and density contrast is fixed. We identify and map different flow regimes, instabilities and front dynamics based on Fr , Re / Frcosβ and viscosity ratio m. The problem is also studied numerically to get a better insight into the flow structure and shear-thinning effects. Numerical simulations are completed using OpenFOAM in both pipe and channel geometries and are compared against the experiments. Schlumberger, NSERC.

  3. Heat and Mass Transfer with Condensation in Capillary Porous Bodies

    PubMed Central

    2014-01-01

    The purpose of this present work is related to wetting process analysis caused by condensation phenomena in capillary porous material by using a numerical simulation. Special emphasis is given to the study of the mechanism involved and the evaluation of classical theoretical models used as a predictive tool. A further discussion will be given for the distribution of the liquid phase for both its pendular and its funicular state and its consequence on diffusion coefficients of the mathematical model used. Beyond the complexity of the interaction effects between vaporisation-condensation processes on the gas-liquid interfaces, the comparison between experimental and numerical simulations permits to identify the specific contribution and the relative part of mass and energy transport parameters. This analysis allows us to understand the contribution of each part of the mathematical model used and to simplify the study. PMID:24688366

  4. Evaluation of Fracture Initiation in the Mannesmann Piercing Process

    NASA Astrophysics Data System (ADS)

    Fanini, S.; Ghiotti, A.; Bruschi, S.

    2007-04-01

    One of the challenging objectives in studying the Mannesmann piercing process is to predict the fracture initiation, known as "Mannesmann effect", in order to design and optimize the working parameters of the piercing process. The objective of the paper is to investigate the workability of a tube steel tested in the same conditions of the Mannesman piercing process. The stress and strain states as well as temperature fields arising during the process are identified through numerical simulations. The hot tensile test is chosen for fundamental studies on fracture initiation, as a tensile state of stress in the centre of the billet in the first stages of the piercing process before the plug arrival seems to be one of the main causes of the crack initiation. The material constants of energy-based models implemented in FEM codes are calculated and numerical results are compared with non-plug piercing tests carried out on the industrial plant.

  5. Study on the impulsive pressure of tank oscillating by force towards multiple degrees of freedom

    NASA Astrophysics Data System (ADS)

    Hibi, Shigeyuki

    2018-06-01

    Impulsive loads should be excited under nonlinear phenomena with free surface fluctuating severely such as sloshing and slamming. Estimating impulsive loads properly are important to recent numerical simulations. But it is still difficult to rely on the results of simulations perfectly because of the nonlinearity of the phenomena. In order to develop the algorithm of numerical simulations experimental results of nonlinear phenomena are needed. In this study an apparatus which can oscillate a tank by force was introduced in order to investigate impulsive pressure on the wall of the tank. This apparatus can oscillate it simultaneously towards 3 degrees of freedom with each phase differences. The impulsive pressure under the various combinations of oscillation direction was examined and the specific phase differences to appear the largest peak values of pressure were identified. Experimental results were verified through FFT analysis and statistical methods.

  6. Developmental Foundations of Children’s Fraction Magnitude Knowledge

    PubMed Central

    Mou, Yi; Li, Yaoran; Hoard, Mary K.; Nugent, Lara D.; Chu, Felicia W.; Rouder, Jeffrey N.; Geary, David C.

    2016-01-01

    The conceptual insight that fractions represent magnitudes is a critical yet daunting step in children’s mathematical development, and the knowledge of fraction magnitudes influences children’s later mathematics learning including algebra. In this study, longitudinal data were analyzed to identify the mathematical knowledge and domain-general competencies that predicted 8th and 9th graders’ (n=122) knowledge of fraction magnitudes and its cross-grade gains. Performance on the fraction magnitude measures predicted 9th grade algebra achievement. Understanding and fluently identifying the numerator-denominator relation in 7th grade emerged as the key predictor of later fraction magnitudes knowledge in both 8th and 9th grades. Competence at using fraction procedures, knowledge of whole number magnitudes, and the central executive contributed to 9th but not 8th graders’ fraction magnitude knowledge, and knowledge of whole number magnitude contributed to cross-grade gains. The key results suggest fluent processing of numerator-denominator relations presages students’ understanding of fractions as magnitudes and that the integration of whole number and fraction magnitudes occurs gradually. PMID:27773965

  7. Flow rate of transport network controls uniform metabolite supply to tissue

    PubMed Central

    Meigel, Felix J.

    2018-01-01

    Life and functioning of higher organisms depends on the continuous supply of metabolites to tissues and organs. What are the requirements on the transport network pervading a tissue to provide a uniform supply of nutrients, minerals or hormones? To theoretically answer this question, we present an analytical scaling argument and numerical simulations on how flow dynamics and network architecture control active spread and uniform supply of metabolites by studying the example of xylem vessels in plants. We identify the fluid inflow rate as the key factor for uniform supply. While at low inflow rates metabolites are already exhausted close to flow inlets, too high inflow flushes metabolites through the network and deprives tissue close to inlets of supply. In between these two regimes, there exists an optimal inflow rate that yields a uniform supply of metabolites. We determine this optimal inflow analytically in quantitative agreement with numerical results. Optimizing network architecture by reducing the supply variance over all network tubes, we identify patterns of tube dilation or contraction that compensate sub-optimal supply for the case of too low or too high inflow rate. PMID:29720455

  8. Towards an Enhanced Aspect-based Contradiction Detection Approach for Online Review Content

    NASA Astrophysics Data System (ADS)

    Nuradilah Azman, Siti; Ishak, Iskandar; Sharef, Nurfadhlina Mohd; Sidi, Fatimah

    2017-09-01

    User generated content as such online reviews plays an important role in customer’s purchase decisions. Many works have focused on identifying satisfaction of the reviewer in social media through the study of sentiment analysis (SA) and opinion mining. The large amount of potential application and the increasing number of opinions expresses on the web results in researchers interest on sentiment analysis and opinion mining. However, due to the reviewer’s idiosyncrasy, reviewer may have different preferences and point of view for a particular subject which in this case hotel reviews. There is still limited research that focuses on this contradiction detection in the perspective of tourism online review especially in numerical contradiction. Therefore, the aim of this paper to investigate the type of contradiction in online review which mainly focusing on hotel online review, to provide useful material on process or methods for identifying contradiction which mainly on the review itself and to determine opportunities for relevant future research for online review contradiction detection. We also proposed a model to detect numerical contradiction in user generated content for tourism industry.

  9. Identifying partial topology of complex dynamical networks via a pinning mechanism

    NASA Astrophysics Data System (ADS)

    Zhu, Shuaibing; Zhou, Jin; Lu, Jun-an

    2018-04-01

    In this paper, we study the problem of identifying the partial topology of complex dynamical networks via a pinning mechanism. By using the network synchronization theory and the adaptive feedback controlling method, we propose a method which can greatly reduce the number of nodes and observers in the response network. Particularly, this method can also identify the whole topology of complex networks. A theorem is established rigorously, from which some corollaries are also derived in order to make our method more cost-effective. Several numerical examples are provided to verify the effectiveness of the proposed method. In the simulation, an approach is also given to avoid possible identification failure caused by inner synchronization of the drive network.

  10. First Annual Report: NASA-ONERA Collaboration on Human Factors in Aviation Accidents and Incidents

    NASA Technical Reports Server (NTRS)

    Srivastava, Ashok; Fabiani, Patrick

    2012-01-01

    This is the first annual report jointly prepared by NASA and ONERA on the work performed under the agreement to collaborate on a study of the human factors entailed in aviation accidents and incidents particularly focused on consequences of decreases in human performance associated with fatigue. The objective of this Agreement is to generate reliable, automated procedures that improve understanding of the levels and characteristics of flight-crew fatigue factors whose confluence will likely result in unacceptable crew performance. This study entails the analyses of numerical and textual data collected during operational flights. NASA and ONERA are collaborating on the development and assessment of automated capabilities for extracting operationally significant information from very large, diverse (textual and numerical) databases much larger than can be handled practically by human experts. This report presents the approach that is currently expected to be used in processing and analyzing the data for identifying decrements in aircraft performance and examining their relationships to decrements in crewmember performance due to fatigue. The decisions on the approach were based on samples of both the numerical and textual data that will be collected during the four studies planned under the Human Factors Monitoring Program (HFMP). Results of preliminary analyses of these sample data are presented in this report.

  11. Effects of symbol type and numerical distance on the human event-related potential.

    PubMed

    Jiang, Ting; Qiao, Sibing; Li, Jin; Cao, Zhongyu; Gao, Xuefei; Song, Yan; Xue, Gui; Dong, Qi; Chen, Chuansheng

    2010-01-01

    This study investigated the influence of the symbol type and numerical distance of numbers on the amplitudes and peak latencies of event-related potentials (ERPs). Our aim was to (1) determine the point in time of magnitude information access in visual number processing; and (2) identify at what stage the advantage of Arabic digits over Chinese verbal numbers occur. ERPs were recorded from 64 scalp sites while subjects (n=26) performed a classification task. Results showed that larger ERP amplitudes were elicited by numbers with distance-close condition in comparison to distance-far condition in the VPP component over centro-frontal sites. Furthermore, the VPP latency varied as a function of the symbol type, but the N170 did not. Such results demonstrate that magnitude information access takes place as early as 150 ms after onset of visual number stimuli and the advantage of Arabic digits over verbal numbers should be localized to the VPP component. We establish the VPP component as a critical ERP component to report in studies of numerical cognition and our results call into question the N170/VPP association hypothesis and the serial-stage model of visual number comparison processing.

  12. CFD-DEM based numerical simulation of liquid-gas-particle mixture flow in dam break

    NASA Astrophysics Data System (ADS)

    Park, Kyung Min; Yoon, Hyun Sik; Kim, Min Il

    2018-06-01

    This study investigates the multiphase flow of a liquid-gas-particle mixture in dam break. The open source codes, OpenFOAM and CFDEMproject, were used to reproduce the multiphase flow. The results of the present study are compared with those of previous results obtained by numerical and experimental methods, which guarantees validity of present numerical method to handle the multiphase flow. The particle density ranging from 1100 to 2500 kg/m3 is considered to investigate the effect of the particle density on the behavior of the free-surface and the particles. The particle density has no effect on the liquid front, but it makes the particle front move with different velocity. The time when the liquid front reach at the opposite wall is independent of particle density. However, such time for particle front decrease as particle density increases, which turned out to be proportional to particle density. Based on these results, we classified characteristics of the movement by the front positions of the liquid and the particles. Eventually, the response of the free-surface and particles to particle density is identified by three motion regimes of the advancing, overlapping and delaying motions.

  13. Cutaneous exposure scenarios for engineered nanoparticles used in semiconductor fabrication: a preliminary investigation of workplace surface contamination

    PubMed Central

    Shepard, Michele; Brenner, Sara

    2014-01-01

    Background: Numerous studies are ongoing in the fields of nanotoxicology and exposure science; however, gaps remain in identifying and evaluating potential exposures from skin contact with engineered nanoparticles in occupational settings. Objectives: The aim of this study was to identify potential cutaneous exposure scenarios at a workplace using engineered nanoparticles (alumina, ceria, amorphous silica) and evaluate the presence of these materials on workplace surfaces. Methods: Process review, workplace observations, and preliminary surface sampling were conducted using microvacuum and wipe sample collection methods and transmission electron microscopy with elemental analysis. Results: Exposure scenarios were identified with potential for incidental contact. Nanoparticles of silica or silica and/or alumina agglomerates (or aggregates) were identified in surface samples from work areas where engineered nanoparticles were used or handled. Conclusions: Additional data are needed to evaluate occupational exposures from skin contact with engineered nanoparticles; precautionary measures should be used to minimize potential cutaneous exposures in the workplace. PMID:25000112

  14. Strategic planning and marketing research for older, inner-city health care facilities: a case study.

    PubMed

    Wood, V R; Robertson, K R

    1992-01-01

    Numerous health care facilities, located in downtown metropolitan areas, now find themselves surrounded by a decaying inner-city environment. Consumers may perceive these facilities as "old," and catering to an "urban poor" consumer. These same consumers may, therefore, prefer to patronize more modern facilities located in suburban areas. This paper presents a case study of such a health care facility and how strategic planning and marketing research were conducted in order to identify market opportunities and new strategic directions.

  15. Measuring Borrelia burgdorferi Motility and Chemotaxis.

    PubMed

    Zhang, Kai; Li, Chunhao

    2018-01-01

    Swimming plate, cell motion tracking, and capillary tube assays are very useful tools to quantitatively measure bacterial motility and chemotaxis. These methods were modified and applied to study Borrelia burgdorferi motility and chemotaxis. By using these methods, numerous motility and chemotaxis mutants have been characterized and several chemoattractants were identified. With the assistance of these tools, the role of motility and chemotaxis in the pathogenicity of B. burgdorferi has been established. In addition, these tools also facilitate the study of motility and chemotaxis in other spirochetes.

  16. Studying the compactibility of the VT22 high-strength alloy powder obtained by the PREP method

    NASA Astrophysics Data System (ADS)

    Kryuchkov, D. I.; Berezin, I. M.; Nesterenko, A. V.; Zalazinsky, A. G.; Vichuzhanin, D. I.

    2017-12-01

    Compression curves are plotted for VT22 high-strength alloy powder under conditions of uniaxial compression at room temperature. The density of the compacted briquette at the loading and unloading stages is determined. It is demonstrated that strong interparticle bonds are formed in the area of the action of shear deformation. The results are supposed to be used to identify the flow model of the material studied and to perform the subsequent numerical modeling of the compaction process.

  17. Rationale and methods for an epidemiologic study of cancer among Seventh-Day Adventists.

    PubMed

    Phillips, R L; Kuzma, J W

    1977-12-01

    Considerable evidence was found that Adventists are a low-risk population to develop cancer of many sites. Adventists have numerous unique life-style and dietary habits with great variability within the population in adherence to these practices as well as considerable variation in duration of exposure to these characteristics. Thus this study population will likely be extremely productive in identifying dietary habits or other life-style characteristics that are etiologically related to various cancer sites.

  18. Squeaking friction phenomena in ceramic hip endoprosthesis: Modeling and experimental validation

    NASA Astrophysics Data System (ADS)

    Ouenzerfi, G.; Massi, F.; Renault, E.; Berthier, Y.

    2015-06-01

    The modern evolution of ceramic bearing surfaces for total hip arthroplasty has allowed longer implant longevity with lower amounts of osteolysis. It has been applied to younger patient expecting improved survivorship compared with traditional bearing surfaces. However, the phenomenon of an audible squeaking produced by implants during daily activities is reported as an annoying complication for patients. Although recent studies have been carried out on this topic, the origin of squeaking and the analysis of factors leading to this phenomenon are not completely identified. Numerical analyses are still not able to reproduce precisely the in vitro and in vivo observations. The lack of understanding on the physics of this issue is still an obstacle to find appropriate solutions to prevent it. In this paper, numerical and experimental approaches to reproduce squeaking are presented. A pre-stressed modal analysis is performed to identify the unstable eigenfrequencies that cause the vibrations and the perceived acoustic emission. The numerical results are validated by experiments on a laboratory test bench and the predicted frequencies are compared to the squeaking frequencies that can be found both in vitro and in vivo. The natural frequencies related to the femoral components are closer to the observed squeaking frequency. Simulations results confirmed that these vibrations are related to the stem dynamic response, which has a strong influence on the squeaking characteristic. In the other hand, the cup and the ceramic components play a main indirect role providing the frictional pair between the head and the liner. The analysis suggests that one of the possible mechanisms at the origin of squeaking is the modal coupling of two modes of vibration of the stem under frictional contact. The numerical model will allow for identifying the dominant factors and parameters affecting squeaking in order to avoid the unstable mode coupling. Squeaking can be reduced clinically by minimizing friction rising factors (such edge loading and situations promoting metal transfer or stripe wear) or by developing endoprosthesis design to avoid the unstable vibrations, regressing the squeaking emission to a negligible phenomenon.

  19. Novel molecular markers differentiate Oncorhynchus mykiss (rainbow trout and steelhead) and the O. clarki (cutthroat trout) subspecies

    USGS Publications Warehouse

    Ostberg, C.O.; Rodriguez, R.J.

    2002-01-01

    A suite of 26 PCR-based markers was developed that differentiates rainbow (Oncorhynchus mykiss) and coastal cutthroat trout (O. clarki clarki). The markers also differentiated rainbow from other cutthroat trout subspecies (O. clarki), and several of the markers differentiated between cutthroat trout subspecies. This system has numerous positive attributes, including: nonlethal sampling, high species-specificity and products that are easily identified and scored using agarose gel electrophoresis. The methodology described for developing the markers can be applied to virtually any system in which numerous markers are desired for identifying or differentiating species or subspecies.

  20. Development of a hybrid pollution index for heavy metals in marine and estuarine sediments.

    PubMed

    Brady, James P; Ayoko, Godwin A; Martens, Wayde N; Goonetilleke, Ashantha

    2015-05-01

    Heavy metal pollution of sediments is a growing concern in most parts of the world, and numerous studies focussed on identifying contaminated sediments by using a range of digestion methods and pollution indices to estimate sediment contamination have been described in the literature. The current work provides a critical review of the more commonly used sediment digestion methods and identifies that weak acid digestion is more likely to provide guidance on elements that are likely to be bioavailable than other traditional methods of digestion. This work also reviews common pollution indices and identifies the Nemerow Pollution Index as the most appropriate method for establishing overall sediment quality. Consequently, a modified Pollution Index that can lead to a more reliable understanding of whole sediment quality is proposed. This modified pollution index is then tested against a number of existing studies and demonstrated to give a reliable and rapid estimate of sediment contamination and quality.

  1. Quantifying spatial distribution of spurious mixing in ocean models.

    PubMed

    Ilıcak, Mehmet

    2016-12-01

    Numerical mixing is inevitable for ocean models due to tracer advection schemes. Until now, there is no robust way to identify the regions of spurious mixing in ocean models. We propose a new method to compute the spatial distribution of the spurious diapycnic mixing in an ocean model. This new method is an extension of available potential energy density method proposed by Winters and Barkan (2013). We test the new method in lock-exchange and baroclinic eddies test cases. We can quantify the amount and the location of numerical mixing. We find high-shear areas are the main regions which are susceptible to numerical truncation errors. We also test the new method to quantify the numerical mixing in different horizontal momentum closures. We conclude that Smagorinsky viscosity has less numerical mixing than the Leith viscosity using the same non-dimensional constant.

  2. Touch communicates distinct emotions.

    PubMed

    Hertenstein, Matthew J; Keltner, Dacher; App, Betsy; Bulleit, Brittany A; Jaskolka, Ariane R

    2006-08-01

    The study of emotional signaling has focused almost exclusively on the face and voice. In 2 studies, the authors investigated whether people can identify emotions from the experience of being touched by a stranger on the arm (without seeing the touch). In the 3rd study, they investigated whether observers can identify emotions from watching someone being touched on the arm. Two kinds of evidence suggest that humans can communicate numerous emotions with touch. First, participants in the United States (Study 1) and Spain (Study 2) could decode anger, fear, disgust, love, gratitude, and sympathy via touch at much-better-than-chance levels. Second, fine-grained coding documented specific touch behaviors associated with different emotions. In Study 3, the authors provide evidence that participants can accurately decode distinct emotions by merely watching others communicate via touch. The findings are discussed in terms of their contributions to affective science and the evolution of altruism and cooperation. (c) 2006 APA, all rights reserved

  3. Seminar on Factual and Numerical Data Banks. Final Report (Rabat, Morocco, February 21-24, 1984).

    ERIC Educational Resources Information Center

    United Nations Educational, Scientific and Cultural Organization, Paris (France). General Information Programme.

    The proceedings of a seminar on factual and numerical data banks are described. Seminar objectives were to: (1) make potential users aware of the value of data banks in their respective disciplines and inform them of the tools available; (2) identify national and regional data bank requirements; and (3) define a strategy for development in this…

  4. Temporal evolutions and stationary waves for dissipative Benjamin-Ono equation

    NASA Astrophysics Data System (ADS)

    Feng, Bao-Feng; Kawahara, Takuji

    2000-05-01

    Initial value problems as well as stationary solitary and periodic waves are investigated for dissipative Benjamin-Ono (DBO) equation. Multi-hump stationary waves and their structures are identified numerically and the stability regions of stationary periodic waves are also examined numerically. These results elucidate a close relation between irregular behaviours in the initial value problem and the multiplicity of stationary waves.

  5. No common denominator: a review of outcome measures in IVF RCTs.

    PubMed

    Wilkinson, Jack; Roberts, Stephen A; Showell, Marian; Brison, Daniel R; Vail, Andy

    2016-12-01

    Which outcome measures are reported in RCTs for IVF? Many combinations of numerator and denominator are in use, and are often employed in a manner that compromises the validity of the study. The choice of numerator and denominator governs the meaning, relevance and statistical integrity of a study's results. RCTs only provide reliable evidence when outcomes are assessed in the cohort of randomised participants, rather than in the subgroup of patients who completed treatment. Review of outcome measures reported in 142 IVF RCTs published in 2013 or 2014. Trials were identified by searching the Cochrane Gynaecology and Fertility Specialised Register. English-language publications of RCTs reporting clinical or preclinical outcomes in peer-reviewed journals in the period 1 January 2013 to 31 December 2014 were eligible. Reported numerators and denominators were extracted. Where they were reported, we checked to see if live birth rates were calculated correctly using the entire randomised cohort or a later denominator. Over 800 combinations of numerator and denominator were identified (613 in no more than one study). No single outcome measure appeared in the majority of trials. Only 22 (43%) studies reporting live birth presented a calculation including all randomised participants or only excluding protocol violators. A variety of definitions were used for key clinical numerators: for example, a consensus regarding what should constitute an ongoing pregnancy does not appear to exist at present. Several of the included articles may have been secondary publications. Our categorisation scheme was essentially arbitrary, so the frequencies we present should be interpreted with this in mind. The analysis of live birth denominators was post hoc. There is massive diversity in numerator and denominator selection in IVF trials due to its multistage nature, and this causes methodological frailty in the evidence base. The twin spectres of outcome reporting bias and analysis of non-randomised comparisons do not appear to be widely recognised. Initiatives to standardise outcome reporting, such as requiring all effectiveness studies to report live birth or cumulative live birth, are welcome. However, there is a need to recognise that early outcomes of treatment, such as stimulation response or embryo quality, may be appropriate choices of primary outcome for early phase studies. J.W. is funded by a Doctoral Research Fellowship from the National Institute for Health Research. The views expressed in this publication are those of the authors and not necessarily those of the NHS, the National Institute for Health Research or the Department of Health. J.W. also declares that publishing research is beneficial to his career. J.W. and A.V. are statistical editors, and M.S. is Information Specialist, for the Cochrane Gynaecology and Fertility Group, although the views expressed here are not necessarily those of the group. D.R.B. is funded by the NHS as Scientific Director of a clinical IVF service. The authors declare no other conflicts of interest. © The Author 2016. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology.

  6. Treatment of Navy Landfill Leachate Contaminated with Low Levels of Priority Pollutants

    DTIC Science & Technology

    1991-10-01

    nitrogen, and in another study lignins and tannins . Sulfate to chloride ratio, oxidation reduction pctential (ORP), and pH reflect the degree of...from the treatment system. The contaminants are identified in the groundwater through laboratory analysis . The design goal is to use the properties of...materials management 1 H Structural analysis and design (including numerical and 4C Waterwaste management and sanitary engineering computer techniques

  7. Installation Restoration Program (IRP). Operable Unit B1 Remedial Investigation/Feasibility Study

    DTIC Science & Technology

    1993-07-01

    Alternative Evaluation Criteria ......................... 8-2 8-2 Remedial Alternative Evaluation Criteria Rating System ................ 8-3 8-3...ies, various technologies and process options relative numerical rating system was developed were identified and screened on the basis of (see Table 8-2...extensive paving and PCBs were found (north/central ditch). This storm drainage system , and because of the ditch was paved with asphalt in 1981; before

  8. Study of compressible turbulent flows in supersonic environment by large-eddy simulation

    NASA Astrophysics Data System (ADS)

    Genin, Franklin

    The numerical resolution of turbulent flows in high-speed environment is of fundamental importance but remains a very challenging problem. First, the capture of strong discontinuities, typical of high-speed flows, requires the use of shock-capturing schemes, which are not adapted to the resolution of turbulent structures due to their intrinsic dissipation. On the other hand, low-dissipation schemes are unable to resolve shock fronts and other sharp gradients without creating high amplitude numerical oscillations. Second, the nature of turbulence in high-speed flows differs from its incompressible behavior, and, in the context of Large-Eddy Simulation, the subgrid closure must be adapted to the modeling of compressibility effects and shock waves on turbulent flows. The developments described in this thesis are two-fold. First, a state of the art closure approach for LES is extended to model subgrid turbulence in compressible flows. The energy transfers due to compressible turbulence and the diffusion of turbulent kinetic energy by pressure fluctuations are assessed and integrated in the Localized Dynamic ksgs model. Second, a hybrid numerical scheme is developed for the resolution of the LES equations and of the model transport equation, which combines a central scheme for turbulent resolutions to a shock-capturing method. A smoothness parameter is defined and used to switch from the base smooth solver to the upwind scheme in regions of discontinuities. It is shown that the developed hybrid methodology permits a capture of shock/turbulence interactions in direct simulations that agrees well with other reference simulations, and that the LES methodology effectively reproduces the turbulence evolution and physical phenomena involved in the interaction. This numerical approach is then employed to study a problem of practical importance in high-speed mixing. The interaction of two shock waves with a high-speed turbulent shear layer as a mixing augmentation technique is considered. It is shown that the levels of turbulence are increased through the interaction, and that the mixing is significantly improved in this flow configuration. However, the region of increased mixing is found to be localized to a region close to the impact of the shocks, and that the statistical levels of turbulence relax to their undisturbed levels some short distance downstream of the interaction. The present developments are finally applied to a practical configuration relevant to scramjet injection. The normal injection of a sonic jet into a supersonic crossflow is considered numerically, and compared to the results of an experimental study. A fair agreement in the statistics of mean and fluctuating velocity fields is obtained. Furthermore, some of the instantaneous flow structures observed in experimental visualizations are identified in the present simulation. The dynamics of the interaction for the reference case, based on the experimental study, as well as for a case of higher freestream Mach number and a case of higher momentum ratio, are examined. The classical instantaneous vortical structures are identified, and their generation mechanisms, specific to supersonic flow, are highlighted. Furthermore, two vortical structures, recently revealed in low-speed jets in crossflow but never documented for high-speed flows, are identified during the flow evolution.

  9. Numerical and flight simulator test of the flight deterioration concept

    NASA Technical Reports Server (NTRS)

    Mccarthy, J.; Norviel, V.

    1982-01-01

    Manned flight simulator response to theoretical wind shear profiles was studied in an effort to calibrate fixed-stick and pilot-in-the-loop numerical models of jet transport aircraft on approach to landing. Results of the study indicate that both fixed-stick and pilot-in-the-loop models overpredict the deleterious effects of aircraft approaches when compared to pilot performance in the manned simulator. Although the pilot-in-the-loop model does a better job than does the fixed-stick model, the study suggests that the pilot-in-the-loop model is suitable for use in meteorological predictions of adverse low-level wind shear along approach and departure courses to identify situations in which pilots may find difficulty. The model should not be used to predict the success or failure of a specific aircraft. It is suggested that the pilot model be used as part of a ground-based Doppler radar low-level wind shear detection and warning system.

  10. Clinical Impact of Time-of-Flight and Point Response Modeling in PET Reconstructions: A Lesion Detection Study

    PubMed Central

    Schaefferkoetter, Joshua; Casey, Michael; Townsend, David; Fakhri, Georges El

    2013-01-01

    Time-of-flight (TOF) and point spread function (PSF) modeling have been shown to improve PET reconstructions, but the impact on physicians in the clinical setting has not been thoroughly investigated. A lesion detection and localization study was performed using simulated lesions in real patient images. Four reconstruction schemes were considered: ordinary Poisson OSEM (OP) alone and combined with TOF, PSF, and TOF+PSF. The images were presented to physicians experienced in reading PET images, and the performance of each was quantified using localization receiver operating characteristic (LROC). Numerical observers (non-prewhitening and Hotelling) were used to identify optimal reconstruction parameters, and observer SNR was compared to the performance of the physicians. The numerical models showed good agreement with human performance, and best performance was achieved by both when using TOF+PSF. These findings suggest a large potential benefit of TOF+PSF for oncology PET studies, especially in the detection of small, low-intensity, focal disease in larger patients. PMID:23403399

  11. Shock wave-free interface interaction

    NASA Astrophysics Data System (ADS)

    Frolov, Roman; Minev, Peter; Krechetnikov, Rouslan

    2016-11-01

    The problem of shock wave-free interface interaction has been widely studied in the context of compressible two-fluid flows using analytical, experimental, and numerical techniques. While various physical effects and possible interaction patterns for various geometries have been identified in the literature, the effects of viscosity and surface tension are usually neglected in such models. In our study, we apply a novel numerical algorithm for simulation of viscous compressible two-fluid flows with surface tension to investigate the influence of these effects on the shock-interface interaction. The method combines together the ideas from Finite Volume adaptation of invariant domains preserving algorithm for systems of hyperbolic conservation laws by Guermond and Popov and ADI parallel solver for viscous incompressible NSEs by Guermond and Minev. This combination has been further extended to a two-fluid flow case, including surface tension effects. Here we report on a quantitative study of how surface tension and viscosity affect the structure of the shock wave-free interface interaction region.

  12. Clinical impact of time-of-flight and point response modeling in PET reconstructions: a lesion detection study

    NASA Astrophysics Data System (ADS)

    Schaefferkoetter, Joshua; Casey, Michael; Townsend, David; El Fakhri, Georges

    2013-03-01

    Time-of-flight (TOF) and point spread function (PSF) modeling have been shown to improve PET reconstructions, but the impact on physicians in the clinical setting has not been thoroughly investigated. A lesion detection and localization study was performed using simulated lesions in real patient images. Four reconstruction schemes were considered: ordinary Poisson OSEM (OP) alone and combined with TOF, PSF, and TOF + PSF. The images were presented to physicians experienced in reading PET images, and the performance of each was quantified using localization receiver operating characteristic. Numerical observers (non-prewhitening and Hotelling) were used to identify optimal reconstruction parameters, and observer SNR was compared to the performance of the physicians. The numerical models showed good agreement with human performance, and best performance was achieved by both when using TOF + PSF. These findings suggest a large potential benefit of TOF + PSF for oncology PET studies, especially in the detection of small, low-intensity, focal disease in larger patients.

  13. Update on Leukodystrophies: A Historical Perspective and Adapted Definition.

    PubMed

    Kevelam, Sietske H; Steenweg, Marjan E; Srivastava, Siddharth; Helman, Guy; Naidu, Sakkubai; Schiffmann, Raphael; Blaser, Susan; Vanderver, Adeline; Wolf, Nicole I; van der Knaap, Marjo S

    2016-12-01

    Leukodystrophies were defined in the 1980s as progressive genetic disorders primarily affecting myelin of the central nervous system. At that time, a limited number of such disorders and no associated gene defects were known. The majority of the leukodystrophy patients remained without a specific diagnosis. In the following two decades, magnetic resonance imaging pattern recognition revolutionized the field, allowing the definition of numerous novel leukodystrophies. Their genetic defects were usually identified through genetic linkage studies. This process required substantial numbers of cases and many rare disorders remained unclarified. As recently as 2010, 50% of the leukodystrophy patients remained unclassified. Since 2011, whole-exome sequencing has resulted in an exponential increase in numbers of known, distinct, genetically determined, ultrarare leukodystrophies. We performed a retrospective study concerning three historical cohorts of unclassified leukodystrophy patients and found that currently at least 80% of the patients can be molecularly classified. Based on the original definition of the leukodystrophies, numerous defects in proteins important in myelin structure, maintenance, and function were expected. By contrast, a high percentage of the newly identified gene defects affect the housekeeping process of mRNA translation, shedding new light on white matter pathobiology and requiring adaptation of the leukodystrophy definition. Georg Thieme Verlag KG Stuttgart · New York.

  14. Sediments as tracers for transport and deposition processes in peri-alpine lakes: A case study

    NASA Astrophysics Data System (ADS)

    Righetti, Maurizio; Toffolon, Marco; Lucarelli, Corrado; Serafini, Michele

    2011-12-01

    SummaryThe benthic sediment fingerprint is analysed in the small peri-alpine lake Levico (Trentino, Italy) to identify the causes of recurrent phenomena of turbidity peaks, particularly evident in a littoral region of the water body. In order to study the sediment transport processes, we exploit the fact that the sediment supply from the major tributary has a specific chemical composition, which differs from that of the nearby lake basin. Three elements (Fe, Al, K) have been used as tracers to identify the source and the deposition patterns of tributary sediments, and another typical element, Si, has been critically analysed because of its dual (allochthonous and autochthonous) origin. Several samples of the benthic material have been analysed using SEM-EDS, and the results of the sedimentological characterisation have been compared with the patterns of sediment accumulation at the bed of the lake obtained using a three-dimensional numerical model, in response to the tributary supply under different external forcing and stratification conditions. The coupled use of field measurements and numerical results suggests that the turbidity phenomena are strongly related to the deposition of the sediments supplied by the tributary stream, and shows that it is possible to reconstruct the process of local transport when the tributary inflow is chemically specific.

  15. Time-dependent changes in protein expression in rainbow trout muscle following hypoxia.

    PubMed

    Wulff, Tune; Jokumsen, Alfred; Højrup, Peter; Jessen, Flemming

    2012-04-18

    Adaptation to hypoxia is a complex process, and individual proteins will be up- or down-regulated in order to address the main challenges at any given time. To investigate the dynamics of the adaptation, rainbow trout (Oncorhynchus mykiss) was exposed to 30% of normal oxygen tension for 1, 2, 5 and 24 h respectively, after which muscle samples were taken. The successful investigation of numerous proteins in a single study was achieved by selectively separating the sarcoplasmic proteins using 2-DE. In total 46 protein spots were identified as changing in abundance in response to hypoxia using one-way ANOVA and multivariate data analysis. Proteins of interest were subsequently identified by MS/MS following tryptic digestion. The observed regulation following hypoxia in skeletal muscle was determined to be time specific, as only a limited number of proteins were regulated in response to more than one time point. The cellular response to hypoxia included regulation of proteins involved in maintaining iron homeostasis, energy levels and muscle structure. In conclusion, this proteome-based study presents a comprehensive investigation of the expression profiles of numerous proteins at four different time points. This increases our understanding of timed changes in protein expression in rainbow trout muscle following hypoxia. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. What can a numerical landscape evolution model tell us about the evolution of a real landscape? Two examples of modeling a real landscape without recreating it

    NASA Astrophysics Data System (ADS)

    Gasparini, N. M.; Whipple, K. X.; Willenbring, J.; Crosby, B. T.; Brocard, G. Y.

    2013-12-01

    Numerical landscape evolution models (LEMs) offer us the unique opportunity to watch a landscape evolve under any set of environmental forcings that we can quantify. The possibilities for using LEMs are infinite, but complications arise when trying to model a real landscape. Specifically, numerical models cannot recreate every aspect of a real landscape because exact initial conditions are unknown, there will always be gaps in the known tectonic and climatic history, and the geomorphic transport laws that govern redistribution of mass due to surface processes will always be a simplified representation of the actual process. Yet, even with these constraints, numerical models remain the only tool that offers us the potential to explore a limitless range of evolutionary scenarios, allowing us to, at the very least, identify possible drivers responsible for the morphology of the current landscape, and just as importantly, rule out others. Here we highlight two examples in which we use a numerical model to explore the signature of different forcings on landscape morphology and erosion patterns. In the first landscape, the Northern Bolivian Andes, the relative imprint of rock uplift and precipitation patterns on landscape morphology is widely contested. We use the CHILD LEM to systematically vary climate and tectonics and quantify their fingerprints on channel profiles across a steep mountain front. We find that rock uplift and precipitation patterns in this landscape and others can be teased out by examining channel profiles of variably sized catchments that drain different parts of the topography. In the second landscape, the South Fork Eel River (SFER), northern California, USA, the tectonic history is relatively well known; a wave of rock uplift swept through the watershed from headwaters to outlet, perturbing the landscape and sending a wave of bedrock incision upstream. Nine millennial-scale erosion rates from along the mainstem of the river illustrate a pattern of downstream increasing erosion rate. Similarly, the proportion of the landscape that has adjusted to the tectonic perturbation increases from upstream to downstream. We use the CHILD LEM to explore whether the relationship between erosion rates and proportion of adjusted landscape is unique to the tectonic history of the SFER and if this relationship can be used as a fingerprint to identify the nature of tectonic perturbations in other locations. In both study sites, we do not try to recreate the exact morphology of the real landscape. Rather, we identify patterns in erosion rates and the morphology of the numerical landscape that can be used to interpret the tectonic history, climatic history, or both in these and other real landscapes.

  17. Application of identified sensitive physical parameters in reducing the uncertainty of numerical simulation

    NASA Astrophysics Data System (ADS)

    Sun, Guodong; Mu, Mu

    2016-04-01

    An important source of uncertainty, which then causes further uncertainty in numerical simulations, is that residing in the parameters describing physical processes in numerical models. There are many physical parameters in numerical models in the atmospheric and oceanic sciences, and it would cost a great deal to reduce uncertainties in all physical parameters. Therefore, finding a subset of these parameters, which are relatively more sensitive and important parameters, and reducing the errors in the physical parameters in this subset would be a far more efficient way to reduce the uncertainties involved in simulations. In this context, we present a new approach based on the conditional nonlinear optimal perturbation related to parameter (CNOP-P) method. The approach provides a framework to ascertain the subset of those relatively more sensitive and important parameters among the physical parameters. The Lund-Potsdam-Jena (LPJ) dynamical global vegetation model was utilized to test the validity of the new approach. The results imply that nonlinear interactions among parameters play a key role in the uncertainty of numerical simulations in arid and semi-arid regions of China compared to those in northern, northeastern and southern China. The uncertainties in the numerical simulations were reduced considerably by reducing the errors of the subset of relatively more sensitive and important parameters. The results demonstrate that our approach not only offers a new route to identify relatively more sensitive and important physical parameters but also that it is viable to then apply "target observations" to reduce the uncertainties in model parameters.

  18. A semantic framework to protect the privacy of electronic health records with non-numerical attributes.

    PubMed

    Martínez, Sergio; Sánchez, David; Valls, Aida

    2013-04-01

    Structured patient data like Electronic Health Records (EHRs) are a valuable source for clinical research. However, the sensitive nature of such information requires some anonymisation procedure to be applied before releasing the data to third parties. Several studies have shown that the removal of identifying attributes, like the Social Security Number, is not enough to obtain an anonymous data file, since unique combinations of other attributes as for example, rare diagnoses and personalised treatments, may lead to patient's identity disclosure. To tackle this problem, Statistical Disclosure Control (SDC) methods have been proposed to mask sensitive attributes while preserving, up to a certain degree, the utility of anonymised data. Most of these methods focus on continuous-scale numerical data. Considering that part of the clinical data found in EHRs is expressed with non-numerical attributes as for example, diagnoses, symptoms, procedures, etc., their application to EHRs produces far from optimal results. In this paper, we propose a general framework to enable the accurate application of SDC methods to non-numerical clinical data, with a focus on the preservation of semantics. To do so, we exploit structured medical knowledge bases like SNOMED CT to propose semantically-grounded operators to compare, aggregate and sort non-numerical terms. Our framework has been applied to several well-known SDC methods and evaluated using a real clinical dataset with non-numerical attributes. Results show that the exploitation of medical semantics produces anonymised datasets that better preserve the utility of EHRs. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Numerical Simulations of Acoustically Driven, Burning Droplets

    NASA Technical Reports Server (NTRS)

    Kim, H.-C.; Karagozian, A. R.; Smith, O. I.; Urban, Dave (Technical Monitor)

    1999-01-01

    This computational study focuses on understanding and quantifying the effects of external acoustical perturbations on droplet combustion. A one-dimensional, axisymmetric representation of the essential diffusion and reaction processes occurring in the vicinity of the droplet stagnation point is used here in order to isolate the effects of the imposed acoustic disturbance. The simulation is performed using a third order accurate, essentially non-oscillatory (ENO) numerical scheme with a full methanol-air reaction mechanism. Consistent with recent microgravity and normal gravity combustion experiments, focus is placed on conditions where the droplet is situated at a velocity antinode in order for the droplet to experience the greatest effects of fluid mechanical straining of flame structures. The effects of imposed sound pressure level and frequency are explored here, and conditions leading to maximum burning rates are identified.

  20. Mining meiosis and gametogenesis with DNA microarrays.

    PubMed

    Schlecht, Ulrich; Primig, Michael

    2003-04-01

    Gametogenesis is a key developmental process that involves complex transcriptional regulation of numerous genes including many that are conserved between unicellular eukaryotes and mammals. Recent expression-profiling experiments using microarrays have provided insight into the co-ordinated transcription of several hundred genes during mitotic growth and meiotic development in budding and fission yeast. Furthermore, microarray-based studies have identified numerous loci that are regulated during the cell cycle or expressed in a germ-cell specific manner in eukaryotic model systems like Caenorhabditis elegans, Mus musculus as well as Homo sapiens. The unprecedented amount of information produced by post-genome biology has spawned novel approaches to organizing biological knowledge using currently available information technology. This review outlines experiments that contribute to an emerging comprehensive picture of the molecular machinery governing sexual reproduction in eukaryotes.

  1. Phase transition kinetics for a Bose Einstein condensate in a periodically driven band system

    NASA Astrophysics Data System (ADS)

    Michon, E.; Cabrera-Gutiérrez, C.; Fortun, A.; Berger, M.; Arnal, M.; Brunaud, V.; Billy, J.; Petitjean, C.; Schlagheck, P.; Guéry-Odelin, D.

    2018-05-01

    The dynamical transition of an atomic Bose–Einstein condensate from a spatially periodic state to a staggered state with alternating sign in its wavefunction is experimentally studied using a one-dimensional phase modulated optical lattice. We observe the crossover from quantum to thermal fluctuations as the triggering mechanism for the nucleation of staggered states. In good quantitative agreement with numerical simulations based on the truncated Wigner method, we experimentally investigate how the nucleation time varies with the renormalized tunneling rate, the atomic density, and the driving frequency. The effective inverted energy band in the driven lattice is identified as the key ingredient which explains the emergence of gap solitons as observed in numerics and the possibility to nucleate staggered states from interband excitations as reported experimentally.

  2. Analyzing Global Components in Developmental Dyscalculia and Dyslexia.

    PubMed

    Filippo, Gloria Di; Zoccolotti, Pierluigi

    2018-01-01

    The study examined whether developmental deficits in reading and numerical skills could be expressed in terms of global factors by reference to the rate and amount (RAM) and difference engine (DEM) models. From a sample of 325 fifth grade children, we identified 5 children with dyslexia, 16 with dyscalculia, 7 with a "mixed pattern," and 49 control children. Children were asked to read aloud words presented individually that varied for frequency and length and to respond (either vocally or manually) to a series of simple number tasks (addition, subtraction, number reading, and number comparisons). Reaction times were measured. Results indicated that the deficit of children with dyscalculia and children with a mixed pattern on numerical tasks could be explained by a single global factor, similarly to the reading deficit shown by children with dyslexia. As predicted by the DEM, increases in task difficulty were accompanied by a corresponding increase in inter-individual variability for both the reading and numerical tasks. These relationships were constant across the four groups of children but differed in terms of slope and intercept on the x -axis, indicating that two different general rules underlie performance in reading and numerical skills. The study shows for the first time that, as previously shown for reading, also numerical performance can be explained with reference to a global factor. The advantage of this approach is that it takes into account the over-additivity effect, i.e., the presence of larger group differences in the case of more difficult conditions over and above the characteristics of the experimental conditions. It is concluded that reference to models such as the RAM and DEM can be useful in delineating the characteristics of the dyscalculic deficit as well as in the description of co-morbid disturbances, as in the case of dyslexia and dyscalculia.

  3. Distribution of nonprincipal neurons in the rat hippocampus, with special reference to their dorsoventral difference.

    PubMed

    Nomura, T; Fukuda, T; Aika, Y; Heizmann, C W; Emson, P C; Kobayashi, T; Kosaka, T

    1997-03-14

    In the present study we examined the distribution of chemically identified subpopulations of nonprincipal neurons in the rat hippocampus, focusing on the dorsoventral differences in their distributions. The subpopulations analyzed were those immunoreactive for parvalbumin, calretinin, nitric oxide synthase, somatostatin, calbindin D28K, vasoactive intestinal polypeptide and cholecystokinin. Using a confocal laser scanning light microscope, we could confirm that the penetration of each immunostaining, except that of calbindin D28K, was complete throughout 50 microns thick sections under our immunostaining conditions. We counted numbers of immunoreactive somata according to the 'dissector' principle, measured areas of hippocampal subdivisions and the thickness of sections, and estimated the approximate numerical densities of these subpopulations, especially for those neurons immunoreactive for nitric oxide synthase, calretinin, somatostatin and parvalbumin. Generally speaking, neurons immunoreactive for parvalbumin showed no significant dorsoventral differences in the numerical densities in any of the subdivisions of the hippocampus, whereas the numerical densities of somata immunoreactive for calretinin, nitric oxide synthase and somatostatin were significantly larger in ventral levels than at dorsal levels of the hippocampus. The numerical density of somatostatin neurons was significantly larger in ventral levels than in dorsal levels of the denate gyrus, and, although not prominent, of the CA1 region. That of nitric oxide synthase positive neurons was significantly larger in ventral levels than in dorsal levels of the CA3 region as well as of the DG but not of the CA1 region. The numerical density of calretinin positive neurons was larger in ventral levels than in dorsal levels of all hippocampal subdivisions. The present study also revealed that dorsal and ventral levels of the hippocampus differ from each other in the composition of their nonprincipal neurons.

  4. Approaches for Defining the Hsp90-dependent Proteome

    PubMed Central

    Hartson, Steven D.; Matts, Robert L.

    2011-01-01

    Hsp90 is the target of ongoing drug discovery studies seeking new compounds to treat cancer, neurodegenerative diseases, and protein folding disorders. To better understand Hsp90’s roles in cellular pathologies and in normal cells, numerous studies have utilized proteomics assays and related high-throughput tools to characterize its physical and functional protein partnerships. This review surveys these studies, and summarizes the strengths and limitations of the individual attacks. We also include downloadable spreadsheets compiling all of the Hsp90-interacting proteins identified in more than 23 studies. These tools include cross-references among gene aliases, human homologues of yeast Hsp90-interacting proteins, hyperlinks to database entries, summaries of canonical pathways that are enriched in the Hsp90 interactome, and additional bioinformatic annotations. In addition to summarizing Hsp90 proteomics studies performed to date and the insights they have provided, we identify gaps in our current understanding of Hsp90-mediated proteostasis. PMID:21906632

  5. Discovery of a novel rumen methanogen in the anaerobic fungal culture and its distribution in the rumen as revealed by real-time PCR

    PubMed Central

    2014-01-01

    Background The novel archaea belonging to Rumen Cluster C (RCC), which may play an important role in methane production in the rumen have received increased attention. However, the present information on RCC in the rumen is limited by the unsuccessful isolation of axenic pure RCC from the rumen. In the present study, RCC grown in anaerobic fungal subcultures was identified by the molecular and culture methods. Results A novel RCC species existing in the fungal subcultures was identified and demonstrated by the 16S rRNA gene clone library. Interestingly, the novel RCC species survived in the fungal cultures over all the subculture transferring, even in the 62nd subculture, in contrast to the other methanogens, which disappeared during subcultures. Further work showed that subculture transfer frequency significantly affected the relative abundance of the novel RCC species in the fungal subcultures. The five-day and seven-day transfer frequencies increased the relative abundance of the RCC species (P<0.05). In addition, quantitative real-time PCR revealed that high concentrate diets did not affect the abundance of archaea, but numerically reduced the abundance of the novel RCC species in the rumen. In addition, the relative abundance of the RCC species was numerically higher in the rumen liquid fraction than in the rumen epithelium and solid fractions. Finally, a purified fungal culture containing the RCC species was successfully obtained. PCR and sequencing analysis showed that the novel RCC species contained a mcrA gene, which is known to play a crucial role in methanogenesis, and thus could be identified as a methanogen. Conclusion In this study, a novel RCC species was identified as a methanogen and closely associated with anaerobic fungi. This novel approach by using co-culture with anaerobic fungi may provide a feasible way to culture and investigate not yet identified methanogens. PMID:24758319

  6. Discovery of a novel rumen methanogen in the anaerobic fungal culture and its distribution in the rumen as revealed by real-time PCR.

    PubMed

    Jin, Wei; Cheng, Yan Fen; Mao, Sheng Yong; Zhu, Wei Yun

    2014-04-23

    The novel archaea belonging to Rumen Cluster C (RCC), which may play an important role in methane production in the rumen have received increased attention. However, the present information on RCC in the rumen is limited by the unsuccessful isolation of axenic pure RCC from the rumen. In the present study, RCC grown in anaerobic fungal subcultures was identified by the molecular and culture methods. A novel RCC species existing in the fungal subcultures was identified and demonstrated by the 16S rRNA gene clone library. Interestingly, the novel RCC species survived in the fungal cultures over all the subculture transferring, even in the 62nd subculture, in contrast to the other methanogens, which disappeared during subcultures. Further work showed that subculture transfer frequency significantly affected the relative abundance of the novel RCC species in the fungal subcultures. The five-day and seven-day transfer frequencies increased the relative abundance of the RCC species (P<0.05). In addition, quantitative real-time PCR revealed that high concentrate diets did not affect the abundance of archaea, but numerically reduced the abundance of the novel RCC species in the rumen. In addition, the relative abundance of the RCC species was numerically higher in the rumen liquid fraction than in the rumen epithelium and solid fractions. Finally, a purified fungal culture containing the RCC species was successfully obtained. PCR and sequencing analysis showed that the novel RCC species contained a mcrA gene, which is known to play a crucial role in methanogenesis, and thus could be identified as a methanogen. In this study, a novel RCC species was identified as a methanogen and closely associated with anaerobic fungi. This novel approach by using co-culture with anaerobic fungi may provide a feasible way to culture and investigate not yet identified methanogens.

  7. Genetic signatures of adaptation revealed from transcriptome sequencing of Arctic and red foxes.

    PubMed

    Kumar, Vikas; Kutschera, Verena E; Nilsson, Maria A; Janke, Axel

    2015-08-07

    The genus Vulpes (true foxes) comprises numerous species that inhabit a wide range of habitats and climatic conditions, including one species, the Arctic fox (Vulpes lagopus) which is adapted to the arctic region. A close relative to the Arctic fox, the red fox (Vulpes vulpes), occurs in subarctic to subtropical habitats. To study the genetic basis of their adaptations to different environments, transcriptome sequences from two Arctic foxes and one red fox individual were generated and analyzed for signatures of positive selection. In addition, the data allowed for a phylogenetic analysis and divergence time estimate between the two fox species. The de novo assembly of reads resulted in more than 160,000 contigs/transcripts per individual. Approximately 17,000 homologous genes were identified using human and the non-redundant databases. Positive selection analyses revealed several genes involved in various metabolic and molecular processes such as energy metabolism, cardiac gene regulation, apoptosis and blood coagulation to be under positive selection in foxes. Branch site tests identified four genes to be under positive selection in the Arctic fox transcriptome, two of which are fat metabolism genes. In the red fox transcriptome eight genes are under positive selection, including molecular process genes, notably genes involved in ATP metabolism. Analysis of the three transcriptomes and five Sanger re-sequenced genes in additional individuals identified a lower genetic variability within Arctic foxes compared to red foxes, which is consistent with distribution range differences and demographic responses to past climatic fluctuations. A phylogenomic analysis estimated that the Arctic and red fox lineages diverged about three million years ago. Transcriptome data are an economic way to generate genomic resources for evolutionary studies. Despite not representing an entire genome, this transcriptome analysis identified numerous genes that are relevant to arctic adaptation in foxes. Similar to polar bears, fat metabolism seems to play a central role in adaptation of Arctic foxes to the cold climate, as has been identified in the polar bear, another arctic specialist.

  8. Quantifying errors in trace species transport modeling.

    PubMed

    Prather, Michael J; Zhu, Xin; Strahan, Susan E; Steenrod, Stephen D; Rodriguez, Jose M

    2008-12-16

    One expectation when computationally solving an Earth system model is that a correct answer exists, that with adequate physical approximations and numerical methods our solutions will converge to that single answer. With such hubris, we performed a controlled numerical test of the atmospheric transport of CO(2) using 2 models known for accurate transport of trace species. Resulting differences were unexpectedly large, indicating that in some cases, scientific conclusions may err because of lack of knowledge of the numerical errors in tracer transport models. By doubling the resolution, thereby reducing numerical error, both models show some convergence to the same answer. Now, under realistic conditions, we identify a practical approach for finding the correct answer and thus quantifying the advection error.

  9. Reduction of numerical diffusion in three-dimensional vortical flows using a coupled Eulerian/Lagrangian solution procedure

    NASA Technical Reports Server (NTRS)

    Felici, Helene M.; Drela, Mark

    1993-01-01

    A new approach based on the coupling of an Eulerian and a Lagrangian solver, aimed at reducing the numerical diffusion errors of standard Eulerian time-marching finite-volume solvers, is presented. The approach is applied to the computation of the secondary flow in two bent pipes and the flow around a 3D wing. Using convective point markers the Lagrangian approach provides a correction of the basic Eulerian solution. The Eulerian flow in turn integrates in time the Lagrangian state-vector. A comparison of coarse and fine grid Eulerian solutions makes it possible to identify numerical diffusion. It is shown that the Eulerian/Lagrangian approach is an effective method for reducing numerical diffusion errors.

  10. Numerical predictors of arithmetic success in grades 1-6.

    PubMed

    Lyons, Ian M; Price, Gavin R; Vaessen, Anniek; Blomert, Leo; Ansari, Daniel

    2014-09-01

    Math relies on mastery and integration of a wide range of simpler numerical processes and concepts. Recent work has identified several numerical competencies that predict variation in math ability. We examined the unique relations between eight basic numerical skills and early arithmetic ability in a large sample (N = 1391) of children across grades 1-6. In grades 1-2, children's ability to judge the relative magnitude of numerical symbols was most predictive of early arithmetic skills. The unique contribution of children's ability to assess ordinality in numerical symbols steadily increased across grades, overtaking all other predictors by grade 6. We found no evidence that children's ability to judge the relative magnitude of approximate, nonsymbolic numbers was uniquely predictive of arithmetic ability at any grade. Overall, symbolic number processing was more predictive of arithmetic ability than nonsymbolic number processing, though the relative importance of symbolic number ability appears to shift from cardinal to ordinal processing. © 2014 John Wiley & Sons Ltd.

  11. Grading of direct laryngoscopy. A survey of current practice.

    PubMed

    Cohen, A M; Fleming, B G; Wace, J R

    1994-06-01

    One hundred and twenty anaesthetists (30 of each grade), from three separate regions, were interviewed as to how they recorded the appearance of laryngeal structures at direct laryngoscopy and about their knowledge of the commonly used numerical grading system. About two-thirds of anaesthetists surveyed (69.2%) used the numerical grading system, but of these, over half could not identify a 'grade 2' laryngoscopic appearance correctly. Of anaesthetists who did not use the numerical method, over half could not correctly state the difference between a 'grade 2' and a 'grade 3' laryngoscopic appearance. Over 40% of anaesthetists stated incorrectly that the grading should be made on the initial view, even when laryngeal pressure had been needed. Junior anaesthetists were more likely to use the numerical method of recording. The results show that there is unacceptable uncertainty and inaccuracy in the use of the numerical grading system by users as well as non-users, which makes the current routine clinical use of the numerical grading system unsatisfactory.

  12. [Numeric alterations in the dys gene and their association with clinical features].

    PubMed

    Mampel, Alejandra; Echeverría, María Inés; Vargas, Ana Lía; Roque, María

    2011-01-01

    The Duchenne/Becker muscular dystrophy is a hereditary miopathy with a recessive sex-linked pattern. The related gene is called DYS and the coded protein plays a crucial role in the anchorage between the cytoskeleton and the cellular membrane in muscle cells. Different clinical manifestations are observed depending on the impact of the genetic alteration on the protein. The global register of mutations reveals an enhanced frequency for deletions/duplications of one or more exons affecting the DYS gene. In the present work, numeric alterations have been studied in the 79 exons of the DYS gene. The study has been performed on 59 individuals, including 31 independent cases and 28 cases with a familial link. The applied methodology was Multiplex Ligation Dependent Probe Amplification (MLPA). In the 31 independent cases clinical data were established: i.e. the clinical score, the Raven test percentiles, and the creatininphosphokinase (CPK) blood values. Our results reveal a 61.3% frequency of numeric alterations affecting the DYS gene in our population, provoking all of them a reading frame shift. The rate for de novo mutations was identified as 35.2%. Alterations involving a specific region of one exon were observed with high frequency, affecting a specific region. A significant association was found between numeric alterations and a low percentile for the Raven test. These data contribute to the local knowledge of genetic alterations and their phenotypic impact for the Duchenne/Becker disease.

  13. Genetic Susceptibility to Lymphoma

    PubMed Central

    Skibola, Christine F.; Curry, John D.; Nieters, Alexandra

    2010-01-01

    BACKGROUND Genetic susceptibility studies of lymphoma may serve to identify at risk populations and to elucidate important disease mechanisms. METHODS This review considered all studies published through October 2006 on the contribution of genetic polymorphisms in the risk of lymphoma. RESULTS Numerous studies implicate the role of genetic variants that promote B-cell survival and growth with increased risk of lymphoma. Several reports including a large pooled study by InterLymph, an international consortium of non-Hodgkin lymphoma (NHL) case-control studies, found positive associations between variant alleles in TNF -308G>A and IL10 -3575T>A genes and risk of diffuse large B-cell lymphoma. Four studies reported positive associations between a GSTT1 deletion and risk of Hodgkin and non-Hodgkin lymphoma. Genetic studies of folate-metabolizing genes implicate folate in NHL risk, but further studies that include folate and alcohol assessments are needed. Links between NHL and genes involved in energy regulation and hormone production and metabolism may provide insights into novel mechanisms implicating neuro- and endocrine-immune cross-talk with lymphomagenesis, but will need replication in larger populations. CONCLUSIONS Numerous studies suggest that common genetic variants with low penetrance influence lymphoma risk, though replication studies will be needed to eliminate false positive associations. PMID:17606447

  14. Microstructure Optimization of Dual-Phase Steels Using a Representative Volume Element and a Response Surface Method: Parametric Study

    NASA Astrophysics Data System (ADS)

    Belgasam, Tarek M.; Zbib, Hussein M.

    2017-12-01

    Dual-phase (DP) steels have received widespread attention for their low density and high strength. This low density is of value to the automotive industry for the weight reduction it offers and the attendant fuel savings and emission reductions. Recent studies on developing DP steels showed that the combination of strength/ductility could be significantly improved when changing the volume fraction and grain size of phases in the microstructure depending on microstructure properties. Consequently, DP steel manufacturers are interested in predicting microstructure properties and in optimizing microstructure design. In this work, a microstructure-based approach using representative volume elements (RVEs) was developed. The approach examined the flow behavior of DP steels using virtual tension tests with an RVE to identify specific mechanical properties. Microstructures with varied martensite and ferrite grain sizes, martensite volume fractions, carbon content, and morphologies were studied in 3D RVE approaches. The effect of these microstructure parameters on a combination of strength/ductility of DP steels was examined numerically using the finite element method by implementing a dislocation density-based elastic-plastic constitutive model, and a Response surface methodology to determine the optimum conditions for a required combination of strength/ductility. The results from the numerical simulations are compared with experimental results found in the literature. The developed methodology proves to be a powerful tool for studying the effect and interaction of key microstructural parameters on strength and ductility and thus can be used to identify optimum microstructural conditions.

  15. Targeting treatment technologies to address specific stormwater pollutants and numeric discharge limits.

    PubMed

    Clark, Shirley E; Pitt, Robert

    2012-12-15

    Stormwater treatment is entering a new phase with stormwater management systems being required to meet specific numeric objectives, as opposed to the historic approach of meeting guidance-document-provided percent removal rates. Meeting numeric discharge requirements will require designers to better understand and apply the physical, chemical, and biological processes underpinning these treatment technologies. This critical review paper focuses on the potential unit treatment operations available for stormwater treatment and outlines how to identify the most applicable treatment options based on the needed pollutant removal goals. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. A numerical model to reproduce squeaking of ceramic-on-ceramic total hip arthroplasty. Influence of design and material.

    PubMed

    Piriou, P; Ouenzerfi, G; Migaud, H; Renault, E; Massi, F; Serrault, M

    2016-06-01

    Modern ceramic (CoC) bearings for hip arthroplasty (THA) have been used in younger patients who expect improved survivorship. However, audible squeaking produced by the implant is an annoying complication. Previous numerical simulations were not able to accurately reproduce in vitro and in vivo observations. Therefore, we developed a finite element model to: (1) reproduce in vitro squeaking and validate the model by comparing it with in vivo recordings, (2) determine why there are differences between in vivo and in vitro squeaking frequencies, (3) identify the stem's role in this squeaking, (4) predict which designs and materials are more likely to produce squeaking. A CoC THA numerical model can be developed that reproduces the squeaking frequencies observed in vivo. Numerical methods (finite element analysis [ANSYS]) and experimental methods (using a non-lubricated simulated hip with a cementless 32mm CoC THA) were developed to reproduce squeaking. Numerical analysis was performed to identify the frequencies that cause vibrations perceived as an acoustic emission. The finite element analysis (FEA) model was enhanced by adjusting periprosthetic bone and soft tissue elements in order to reproduce the squeaking frequencies recorded in vivo. A numerical method (complex eigenvalue analysis) was used to find the acoustic frequencies of the squeaking noise. The frequencies obtained from the model and the hip simulator were compared to those recorded in vivo. The numerical results were validated by experiments with the laboratory hip simulator. The frequencies obtained (mean 2790Hz with FEA, 2755Hz with simulator, decreasing to 1759Hz when bone and soft tissue were included in the FEA) were consistent with those of squeaking hips recorded in vivo (1521Hz). The cup and ceramic insert were the source of the vibration, but had little influence on the diffusion of the noise required to make the squeaking audible to the human ear. The FEA showed that diffusion of squeaking was due to an unstable vibration of the stem during frictional contact. The FEA predicted a higher rate of squeaking (at a lower coefficient of friction) when TZMF™ alloy is used instead of Ti6Al4V and when an anatomic press-fit stem is used instead of straight self-locking designs. The current FEA model is reliable; it can be used to assess various stem designs and alloys to predict the different rates of squeaking that certain stems will likely produce. Level IV in vitro study. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  17. A Systems Toxicology Approach Reveals Biological Pathways Dysregulated by Prenatal Arsenic Exposure

    PubMed Central

    Laine, Jessica E.; Fry, Rebecca C.

    2016-01-01

    BACKGROUND Prenatal exposure to inorganic arsenic (iAs) is associated with dysregulated gene and protein expression in the fetus, both evident at birth. Potential epigenetic mechanisms that underlie these changes include but are not limited to the methylation of cytosines (CpG). OBJECTIVE The aim of the present study was to compile datasets from studies on prenatal arsenic exposure to identify whether key genes, proteins, or both and their associated biological pathways are perturbed. METHODS We compiled datasets from 12 studies that analyzed the relationship between prenatal iAs exposure and fetal changes to the epigenome (5-methyl cytosine), transcriptome (mRNA expression), and/or proteome (protein expression changes). FINDINGS Across the 12 studies, a set of 845 unique genes was identified and found to enrich for their role in biological pathways, including those signaled by peroxisome proliferator-activated receptor, nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, and the glucocorticoid receptor. Tumor necrosis factor was identified as a putative cellular regulator underlying most (n = 277) of the identified iAs-associated genes or proteins. CONCLUSIONS Given their common identification across numerous human cohorts and their known toxicologic role in disease, the identified genes and pathways may underlie altered disease susceptibility associated with prenatal exposure to iAs. PMID:27325076

  18. Comprehension and computation in Bayesian problem solving

    PubMed Central

    Johnson, Eric D.; Tubau, Elisabet

    2015-01-01

    Humans have long been characterized as poor probabilistic reasoners when presented with explicit numerical information. Bayesian word problems provide a well-known example of this, where even highly educated and cognitively skilled individuals fail to adhere to mathematical norms. It is widely agreed that natural frequencies can facilitate Bayesian inferences relative to normalized formats (e.g., probabilities, percentages), both by clarifying logical set-subset relations and by simplifying numerical calculations. Nevertheless, between-study performance on “transparent” Bayesian problems varies widely, and generally remains rather unimpressive. We suggest there has been an over-focus on this representational facilitator (i.e., transparent problem structures) at the expense of the specific logical and numerical processing requirements and the corresponding individual abilities and skills necessary for providing Bayesian-like output given specific verbal and numerical input. We further suggest that understanding this task-individual pair could benefit from considerations from the literature on mathematical cognition, which emphasizes text comprehension and problem solving, along with contributions of online executive working memory, metacognitive regulation, and relevant stored knowledge and skills. We conclude by offering avenues for future research aimed at identifying the stages in problem solving at which correct vs. incorrect reasoners depart, and how individual differences might influence this time point. PMID:26283976

  19. A PLUG-AND-PLAY ARCHITECTURE FOR PROBABILISTIC PROGRAMMING

    DTIC Science & Technology

    2017-04-01

    programs that use discrete numerical distributions, but even then, the space of possible outcomes may be uncountable (as a solution can be infinite...also identify conditions guaranteeing that all possible outcomes are finite (and then the probability space is discrete ). 2.2.2 The PlogiQL...and not determined at runtime. Nevertheless, the PRAiSE team plans to extend their solution to support numerical (continuous or discrete

  20. Stress in Female-Identified Transgender Youth: A Review of the Literature on Effects and Interventions

    ERIC Educational Resources Information Center

    Ignatavicius, Stephanie

    2013-01-01

    Female-identified transgender youth (FIT youth) have a male birth sex but identify as female, placing them outside of socially acceptable standards and increasing the challenges of adolescence. They face numerous potential sources of stress and have a higher likelihood of experiencing negative mental health outcomes due to lack of support, lack of…

  1. Runge-Kutta methods combined with compact difference schemes for the unsteady Euler equations

    NASA Technical Reports Server (NTRS)

    Yu, Sheng-Tao

    1992-01-01

    Recent development using compact difference schemes to solve the Navier-Stokes equations show spectral-like accuracy. A study was made of the numerical characteristics of various combinations of the Runge-Kutta (RK) methods and compact difference schemes to calculate the unsteady Euler equations. The accuracy of finite difference schemes is assessed based on the evaluations of dissipative error. The objectives are reducing the numerical damping and, at the same time, preserving numerical stability. While this approach has tremendous success solving steady flows, numerical characteristics of unsteady calculations remain largely unclear. For unsteady flows, in addition to the dissipative errors, phase velocity and harmonic content of the numerical results are of concern. As a result of the discretization procedure, the simulated unsteady flow motions actually propagate in a dispersive numerical medium. Consequently, the dispersion characteristics of the numerical schemes which relate the phase velocity and wave number may greatly impact the numerical accuracy. The aim is to assess the numerical accuracy of the simulated results. To this end, the Fourier analysis is to provide the dispersive correlations of various numerical schemes. First, a detailed investigation of the existing RK methods is carried out. A generalized form of an N-step RK method is derived. With this generalized form, the criteria are derived for the three and four-step RK methods to be third and fourth-order time accurate for the non-linear equations, e.g., flow equations. These criteria are then applied to commonly used RK methods such as Jameson's 3-step and 4-step schemes and Wray's algorithm to identify the accuracy of the methods. For the spatial discretization, compact difference schemes are presented. The schemes are formulated in the operator-type to render themselves suitable for the Fourier analyses. The performance of the numerical methods is shown by numerical examples. These examples are detailed. described. The third case is a two-dimensional simulation of a Lamb vortex in an uniform flow. This calculation provides a realistic assessment of various finite difference schemes in terms of the conservation of the vortex strength and the harmonic content after travelling a substantial distance. The numerical implementation of Giles' non-refelctive equations coupled with the characteristic equations as the boundary condition is discussed in detail. Finally, the single vortex calculation is extended to simulate vortex pairing. For the distance between two vortices less than a threshold value, numerical results show crisp resolution of the vortex merging.

  2. Critical Issues in Evaluating National-Level Health Data Warehouses in LMICs: Kenya Case Study.

    PubMed

    Gesicho, Milka B; Babic, Ankica; Were, Martin C

    2017-01-01

    Low-Middle-Income-Countries (LMICs) are beginning to adopt national health data warehousing (NHDWs) for making strategic decisions and for improving health outcomes. Given the numerous challenges likely to be faced in establishment of NHDWs by LMICs, it is prudent that evaluations are done in relation to the data warehouses (DWs), in order to identify and mitigate critical issues that arise. When critic issues are not identified, DWs are prone to suboptimal implementation with compromised outcomes. Despite the fact that several publications exist on evaluating DWs, evaluations specific to health data warehouses are scanty, with almost none evaluating NHDWs more so in LMICs. This paper uses a systematic approach guided by an evaluation framework to identify critical issues to be considered in evaluating Kenya's NHDW.

  3. Optimal designs for prediction studies of whiplash.

    PubMed

    Kamper, Steven J; Hancock, Mark J; Maher, Christopher G

    2011-12-01

    Commentary. To provide guidance for the design and interpretation of predictive studies of whiplash associated disorders (WAD). Numerous studies have sought to define and explain the clinical course and response to treatment of people with WAD. Design of these studies is often suboptimal, which can lead to biased findings and issues with interpreting the results. Literature review and commentary. Predictive studies can be grouped into four broad categories; studies of symptomatic course, studies that aim to identify factors that predict outcome, studies that aim to isolate variables that are causally responsible for outcome, and studies that aim to identify patients who respond best to particular treatments. Although the specific research question will determine the optimal methods, there are a number of generic features that should be incorporated into design of such studies. The aim of these features is to minimize bias, generate adequately precise prognostic estimates, and ensure generalizability of the findings. This paper provides a summary of important considerations in the design, conduct, and reporting of prediction studies in the field of whiplash.

  4. Localization of Asymmetric Brain Function in Emotion and Depression

    PubMed Central

    Herrington, John D.; Heller, Wendy; Mohanty, Aprajita; Engels, Anna S.; Banich, Marie T.; Webb, Andrew G.; Miller, Gregory A.

    2011-01-01

    Although numerous EEG studies have shown that depression is associated with abnormal functional asymmetries in frontal cortex, fMRI and PET studies have largely failed to identify specific brain areas showing this effect. The present study tested the hypothesis that emotion processes are related to asymmetric patterns of fMRI activity, particularly within dorsolateral prefrontal cortex (DLPFC). Eleven depressed and 18 control participants identified the color in which pleasant, neutral, and unpleasant words were printed. Both groups showed a leftward lateralization for pleasant words in DLPFC. In a neighboring DLPFC area, the depression group showed more right-lateralized activation than controls, replicating EEG findings. These data confirm that emotional stimulus processing and trait depression are associated with asymmetric brain functions in distinct subregions of the DLPFC that may go undetected unless appropriate analytic procedures are used. PMID:20070577

  5. Localization of asymmetric brain function in emotion and depression.

    PubMed

    Herrington, John D; Heller, Wendy; Mohanty, Aprajita; Engels, Anna S; Banich, Marie T; Webb, Andrew G; Miller, Gregory A

    2010-05-01

    Although numerous EEG studies have shown that depression is associated with abnormal functional asymmetries in frontal cortex, fMRI and PET studies have largely failed to identify specific brain areas showing this effect. The present study tested the hypothesis that emotion processes are related to asymmetric patterns of fMRI activity, particularly within dorsolateral prefrontal cortex (DLPFC). Eleven depressed and 18 control participants identified the color in which pleasant, neutral, and unpleasant words were printed. Both groups showed a leftward lateralization for pleasant words in DLPFC. In a neighboring DLPFC area, the depression group showed more right-lateralized activation than controls, replicating EEG findings. These data confirm that emotional stimulus processing and trait depression are associated with asymmetric brain functions in distinct subregions of the DLPFC that may go undetected unless appropriate analytic procedures are used.

  6. Parameter sensitivity and identifiability for a biogeochemical model of hypoxia in the northern Gulf of Mexico

    EPA Science Inventory

    Local sensitivity analyses and identifiable parameter subsets were used to describe numerical constraints of a hypoxia model for bottom waters of the northern Gulf of Mexico. The sensitivity of state variables differed considerably with parameter changes, although most variables ...

  7. Identification of candidate periodontal pathogens and beneficial species by quantitative 16S clonal analysis.

    PubMed

    Kumar, Purnima S; Griffen, Ann L; Moeschberger, Melvin L; Leys, Eugene J

    2005-08-01

    Most studies of the bacterial etiology of periodontitis have used either culture-based or targeted DNA approaches, and so it is likely that pathogens remain undiscovered. The purpose of this study was to use culture-independent, quantitative analysis of biofilms associated with chronic periodontitis and periodontal health to identify pathogens and beneficial species. Samples from subjects with periodontitis and controls were analyzed using ribosomal 16S cloning and sequencing. Several genera, many of them uncultivated, were associated with periodontitis, the most numerous of which were gram positive, including Peptostreptococcus and Filifactor. The genera Megasphaera and Desulfobulbus were elevated in periodontitis, and the levels of several species or phylotypes of Campylobacter, Selenomonas, Deferribacteres, Dialister, Catonella, Tannerella, Streptococcus, Atopobium, Eubacterium, and Treponema were elevated in disease. Streptococcus and Veillonella spp. were found in high numbers in all samples and accounted for a significantly greater fraction of the microbial community in healthy subjects than in those with periodontitis. The microbial profile of periodontal health also included the less-abundant genera Campylobacter, Abiotrophia, Gemella, Capnocytophaga, and Neisseria. These newly identified candidates outnumbered Porphyromonas gingivalis and other species previously implicated as periodontopathogens, and it is not clear if newly identified and more numerous species may play a more important role in pathogenesis. Finally, more differences were found in the bacterial profile between subjects with periodontitis and healthy subjects than between deep and shallow sites within the same subject. This suggests that chronic periodontitis is the result of a global perturbation of the oral bacterial ecology rather than a disease-site specific microbial shift.

  8. Seismic response of a full-scale wind turbine tower using experimental and numerical modal analysis

    NASA Astrophysics Data System (ADS)

    Kandil, Kamel Sayed Ahmad; Saudi, Ghada N.; Eltaly, Boshra Aboul-Anen; El-khier, Mostafa Mahmoud Abo

    2016-12-01

    Wind turbine technology has developed tremendously over the past years. In Egypt, the Zafarana wind farm is currently generating at a capacity of 517 MW, making it one of the largest onshore wind farms in the world. It is located in an active seismic zone along the west side of the Gulf of Suez. Accordingly, seismic risk assessment is demanded for studying the structural integrity of wind towers under expected seismic hazard events. In the context of ongoing joint Egypt-US research project "Seismic Risk Assessment of Wind Turbine Towers in Zafarana wind Farm Egypt" (Project ID: 4588), this paper describes the dynamic performance investigation of an existing Nordex N43 wind turbine tower. Both experimental and numerical work are illustrated explaining the methodology adopted to investigate the dynamic behavior of the tower under seismic load. Field dynamic testing of the full-scale tower was performed using ambient vibration techniques (AVT). Both frequency domain and time domain methods were utilized to identify the actual dynamic properties of the tower as built in the site. Mainly, the natural frequencies, their corresponding mode shapes and damping ratios of the tower were successfully identified using AVT. A vibration-based finite element model (FEM) was constructed using ANSYS V.12 software. The numerical and experimental results of modal analysis were both compared for matching purpose. Using different simulation considerations, the initial FEM was updated to finally match the experimental results with good agreement. Using the final updated FEM, the response of the tower under the AQABA earthquake excitation was investigated. Time history analysis was conducted to define the seismic response of the tower in terms of the structural stresses and displacements. This work is considered as one of the pioneer structural studies of the wind turbine towers in Egypt. Identification of the actual dynamic properties of the existing tower was successfully performed based on AVT. Using advanced techniques in both the field testing and the numerical investigations produced reliable FEM specific for the tested tower, which can be further used in more advanced structural investigations for improving the design of such special structures.

  9. Risk Factor or Social Vaccine? The Historical Progression of the Role of Education in HIV and AIDS Infection in Sub-Saharan Africa

    ERIC Educational Resources Information Center

    Baker, David P.; Collins, John M.; Leon, Juan

    2008-01-01

    Numerous epidemiological studies from the early years of the tragic HIV and AIDS pandemic in sub-Saharan Africa identified formal education as a risk factor increasing the chance of infection. Instead of playing its usual role as a preventative factor, as has been noted in many other public health cases, until the mid-1990s educated African men…

  10. Alternative System Designs for Navy Undergraduate Pilot Training, Post 1975.

    DTIC Science & Technology

    1975-06-01

    Experimental Center (NAFEC), Atlantic City, New Jersey and for the val Training Equipment Center at Marine Corps Air Station, El Toro , lifornia. The...appendix A and to the individuals too numerous to identify who provided data and ad- vice during the course of this study. Particular appreciation is...section, but no attempt has been made to compare their relative merits. Navy UPT, current and planned, was critically examined to assess strong and weak

  11. Modeling of turbulence and transition

    NASA Technical Reports Server (NTRS)

    Shih, Tsan-Hsing

    1992-01-01

    The first objective is to evaluate current two-equation and second order closure turbulence models using available direct numerical simulations and experiments, and to identify the models which represent the state of the art in turbulence modeling. The second objective is to study the near-wall behavior of turbulence, and to develop reliable models for an engineering calculation of turbulence and transition. The third objective is to develop a two-scale model for compressible turbulence.

  12. Mechanisms and function of autophagy in intestinal disease.

    PubMed

    Lassen, Kara G; Xavier, Ramnik J

    2018-01-01

    The discovery of numerous genetic variants in the human genome that are associated with inflammatory bowel disease (IBD) has revealed critical pathways that play important roles in intestinal homeostasis. These genetic studies have identified a critical role for macroautophagy/autophagy and more recently, lysosomal function, in maintaining the intestinal barrier and mucosal homeostasis. This review highlights recent work on the functional characterization of IBD-associated human genetic variants in cell type-specific functions for autophagy.

  13. CFD-Based Design of Turbopump Inlet Duct for Reduced Dynamic Loads

    NASA Technical Reports Server (NTRS)

    Rothermel, Jeffry; Dorney, Suzanne M.; Dorney, Daniel J.

    2003-01-01

    Numerical simulations have been completed for a variety of designs for a 90 deg elbow duct. The objective is to identify a design that minimizes the dynamic load entering a LOX turbopump located at the elbow exit. Designs simulated to date indicate that simpler duct geometries result in lower losses. Benchmark simulations have verified that the compressible flow codes used in this study are applicable to these incompressible flow simulations.

  14. CFD-based Design of LOX Pump Inlet Duct for Reduced Dynamic Loads

    NASA Technical Reports Server (NTRS)

    Rothermel, Jeffry; Dorney, Daniel J.; Dorney, Suzanne M.

    2003-01-01

    Numerical simulations have been completed for a variety of designs for a 90 deg elbow duct. The objective is to identify a design that minimizes the dynamic load entering a LOX turbopump located at the elbow exit. Designs simulated to date indicate that simpler duct geometries result in lower losses. Benchmark simulations have verified that the compressible flow code used in this study is applicable to these incompressible flow simulations.

  15. A computational study of the taxonomy of vortex breakdown

    NASA Technical Reports Server (NTRS)

    Spall, Robert E.; Gatski, Thomas B.

    1990-01-01

    The results of a fully three-dimensional numerical simulation of vortex breakdown using the unsteady, incompressible Navier-Stokes equations are presented. The solutions show that the freestream axial velocity distribution has a significant effect on the position and type of vortex breakdown. Common features between bubble-type and spiral-type breakdown are identified and the role of flow stagnation and the critical state are discussed as complimentary ideas describing the initiation of breakdown.

  16. The Epidemiology of Guillain-Barre Syndrome in U.S. Military Personnel: A Case-Control Study

    DTIC Science & Technology

    2009-08-26

    CMV), and Epstein - Barr virus (EBV) commonly identified and C. jejuni being by far the most frequent [6-11]. Interestingly, C. jejuni-associated GBS... Barre syndrome and preceding infection with campylobacter, influenza and Epstein - Barr virus in the gen- eral practice research database. PLoS ONE...tionally, military personnel are exposed to numerous deployment-related vaccinations [17], which have also been linked to several autoimmune diseases

  17. Recent advances in understanding and managing cystic fibrosis transmembrane conductance regulator dysfunction

    PubMed Central

    Alton, Eric W.F.W.

    2015-01-01

    Cystic fibrosis is the most common autosomal recessive genetic disease in Caucasians and has been extensively studied for many decades. The cystic fibrosis transmembrane conductance regulator gene was identified in 1989. It encodes a complex protein which has numerous cellular functions. Our understanding of cystic fibrosis pathophysiology and genetics is constantly expanding and being refined, leading to improved management of the disease and increased life expectancy in affected individuals. PMID:26097737

  18. Neutron Transport Models and Methods for HZETRN and Coupling to Low Energy Light Ion Transport

    NASA Technical Reports Server (NTRS)

    Blattnig, S.R.; Slaba, T.C.; Heinbockel, J.H.

    2008-01-01

    Exposure estimates inside space vehicles, surface habitats, and high altitude aircraft exposed to space radiation are highly influenced by secondary neutron production. The deterministic transport code HZETRN has been identified as a reliable and efficient tool for such studies, but improvements to the underlying transport models and numerical methods are still necessary. In this paper, the forward-backward (FB) and directionally coupled forward-backward (DC) neutron transport models are derived, numerical methods for the FB model are reviewed, and a computationally efficient numerical solution is presented for the DC model. Both models are compared to the Monte Carlo codes HETCHEDS and FLUKA, and the DC model is shown to agree closely with the Monte Carlo results. Finally, it is found in the development of either model that the decoupling of low energy neutrons from the light ion (A<4) transport procedure adversely affects low energy light ion fluence spectra and exposure quantities. A first order correction is presented to resolve the problem, and it is shown to be both accurate and efficient.

  19. Probabilistic approach of resource assessment in Kerinci geothermal field using numerical simulation coupling with monte carlo simulation

    NASA Astrophysics Data System (ADS)

    Hidayat, Iki; Sutopo; Pratama, Heru Berian

    2017-12-01

    The Kerinci geothermal field is one phase liquid reservoir system in the Kerinci District, western part of Jambi Province. In this field, there are geothermal prospects that identified by the heat source up flow inside a National Park area. Kerinci field was planned to develop 1×55 MWe by Pertamina Geothermal Energy. To define reservoir characterization, the numerical simulation of Kerinci field is developed by using TOUGH2 software with information from conceptual model. The pressure and temperature profile well data of KRC-B1 are validated with simulation data to reach natural state condition. The result of the validation is suitable matching. Based on natural state simulation, the resource assessment of Kerinci geothermal field is estimated by using Monte Carlo simulation with the result P10-P50-P90 are 49.4 MW, 64.3 MW and 82.4 MW respectively. This paper is the first study of resource assessment that has been estimated successfully in Kerinci Geothermal Field using numerical simulation coupling with Monte carlo simulation.

  20. A numerical study on high-pressure water-spray cleaning for CSP reflectors

    NASA Astrophysics Data System (ADS)

    Anglani, Francesco; Barry, John; Dekkers, Willem

    2016-05-01

    Mirror cleaning for concentrated solar thermal (CST) systems is an important aspect of operation and maintenance (O&M), which affects solar field efficiency. The cleaning process involves soil removal by erosion, resulting from droplet impingement on the surface. Several studies have been conducted on dust accumulation and CSP plant reflectivity restoration, demonstrating that parameters such as nozzle diameter, jet impingement angle, interaxial distance between nozzles, standoff distance, water velocity, nozzle pressure and others factors influence the extent of reflectance restoration. In this paper we aim at identifying optimized cleaning strategies suitable for CST plants, able to restore mirror reflectance by high-pressure water-spray systems through the enhancement of shear stress over reflectors' surface. In order to evaluate the forces generated by water-spray jet impingement during the cleaning process, fluid dynamics simulations have been undertaken with ANSYS CFX software. In this analysis, shear forces represent the "critical phenomena" within the soil removal process. Enhancing shear forces on a particular area of the target surface, varying the angle of impingement in combination with the variation of standoff distances, and managing the interaxial distance of nozzles can increase cleaning efficiency. This procedure intends to improve the cleaning operation for CST mirrors reducing spotted surface and increasing particles removal efficiency. However, turbulence developed by adjacent flows decrease the shear stress generated on the reflectors surface. The presence of turbulence is identified by the formation of "fountain regions" which are mostly responsible of cleaning inefficiency. By numerical analysis using ANSYS CFX, we have modelled a stationary water-spray system with an array of three nozzles in line, with two angles of impingement: θ = 90° and θ = 75°. Several numerical tests have been carried out, varying the interaxial distance of nozzles, standoff distance, jet pressure and jet impingement angle in order to identify effective and efficient cleaning procedures to restore collectors' reflectance, decrease turbulence and improve CST plant efficiency. Results show that the forces generated over the flat target surface are proportional to the inlet pressure and to the water velocity over the surface, and that the shear stresses decrease as the standoff distance increases.

  1. A numerical study of three-dimensional vortex breakdown

    NASA Technical Reports Server (NTRS)

    Spall, Robert E.; Ash, Robert L.

    1987-01-01

    A numerical simulation of bubble-type vortex breakdown using a unique discrete form of the full 3-D, unsteady incompressible Navier-Stokes equations was performed. The Navier-Stokes equations were written in a vorticity-velocity form and the physical problem was not restricted to axisymmetric flow. The problem was parametized on a Rossby- Reynolds-number basis. Utilization of this parameter duo was shown to dictate the form of the free-field boundary condition specification and allowed control of axial breakdown location within the computational domain. The structure of the breakdown bubble was studied through time evolution plots of planar projected velocity vectors as well as through plots of particle traces and vortex lines. These results compared favorably with previous experimental studies. In addition, profiles of all three velocity components are presented at various axial stations and a Fourier analysis was performed to identify the dominant circumferential modes. The dynamics of the breakdown process were studied through plots of axial variation of rate of change of integrated total energy and rate of change of integrated enstrophy, as well as through contour plots of velocity, vorticity and pressure.

  2. Theoretical and Numerical Modeling of Transport of Land Use-Specific Fecal Source Identifiers

    NASA Astrophysics Data System (ADS)

    Bombardelli, F. A.; Sirikanchana, K. J.; Bae, S.; Wuertz, S.

    2008-12-01

    Microbial contamination in coastal and estuarine waters is of particular concern to public health officials. In this work, we advocate that well-formulated and developed mathematical and numerical transport models can be combined with modern molecular techniques in order to predict continuous concentrations of microbial indicators under diverse scenarios of interest, and that they can help in source identification of fecal pollution. As a proof of concept, we present initially the theory, numerical implementation and validation of one- and two-dimensional numerical models aimed at computing the distribution of fecal source identifiers in water bodies (based on Bacteroidales marker DNA sequences) coming from different land uses such as wildlife, livestock, humans, dogs or cats. These models have been developed to allow for source identification of fecal contamination in large bodies of water. We test the model predictions using diverse velocity fields and boundary conditions. Then, we present some preliminary results of an application of a three-dimensional water quality model to address the source of fecal contamination in the San Pablo Bay (SPB), United States, which constitutes an important sub-embayment of the San Francisco Bay. The transport equations for Bacteroidales include the processes of advection, diffusion, and decay of Bacteroidales. We discuss the validation of the developed models through comparisons of numerical results with field campaigns developed in the SPB. We determine the extent and importance of the contamination in the bay for two decay rates obtained from field observations, corresponding to total host-specific Bacteroidales DNA and host-specific viable Bacteroidales cells, respectively. Finally, we infer transport conditions in the SPB based on the numerical results, characterizing the fate of outflows coming from the Napa, Petaluma and Sonoma rivers.

  3. Community Health Workers in the United States: Challenges in Identifying, Surveying, and Supporting the Workforce.

    PubMed

    Sabo, Samantha; Allen, Caitlin G; Sutkowi, Katherine; Wennerstrom, Ashley

    2017-12-01

    Community health workers (CHWs) are members of a growing profession in the United States. Studying this dynamic labor force is challenging, in part because its members have more than 100 different job titles. The demand for timely, accurate information about CHWs is increasing as the profession gains recognition for its ability to improve health outcomes and reduce costs. Although numerous surveys of CHWs have been conducted, the field lacks well-delineated methods for gaining access to this hard-to-identify workforce. We outline methods for surveying CHWs and promising approaches to engage the workforce and other stakeholders in conducting local, state, and national studies. We also highlight successful strategies to overcome challenges in CHW surveys and future directions for surveying the field.

  4. Enhancement of critical heat flux in nucleate boiling of nanofluids: a state-of-art review

    PubMed Central

    2011-01-01

    Nanofluids (suspensions of nanometer-sized particles in base fluids) have recently been shown to have nucleate boiling critical heat flux (CHF) far superior to that of the pure base fluid. Over the past decade, numerous experimental and analytical studies on the nucleate boiling CHF of nanofluids have been conducted. The purpose of this article is to provide an exhaustive review of these studies. The characteristics of CHF enhancement in nanofluids are systemically presented according to the effects of the primary boiling parameters. Research efforts to identify the effects of nanoparticles underlying irregular enhancement phenomena of CHF in nanofluids are then presented. Also, attempts to explain the physical mechanism based on available CHF theories are described. Finally, future research needs are identified. PMID:21711949

  5. Curcumin-free turmeric exhibits anti-inflammatory and anticancer activities: Identification of novel components of turmeric.

    PubMed

    Aggarwal, Bharat B; Yuan, Wei; Li, Shiyou; Gupta, Subash C

    2013-09-01

    Turmeric, a dried powder derived from the rhizome of Curcuma longa, has been used for centuries in certain parts of the world and has been linked to numerous biological activities including antioxidant, anti-inflammatory, anticancer, antigrowth, anti-arthritic, anti-atherosclerotic, antidepressant, anti-aging, antidiabetic, antimicrobial, wound healing, and memory-enhancing activities. One component of turmeric is curcumin, which has been extensively studied, as indicated by more than 5600 citations, most of which have appeared within the past decade. Recent research has identified numerous chemical entities from turmeric other than curcumin. It is unclear whether all of the activities ascribed to turmeric are due to curcumin or whether other compounds in turmeric can manifest these activities uniquely, additively, or synergistically with curcumin. However, studies have indicated that turmeric oil, present in turmeric, can enhance the bioavailability of curcumin. Studies over the past decade have indicated that curcumin-free turmeric (CFT) components possess numerous biological activities including anti-inflammatory, anticancer, and antidiabetic activities. Elemene derived from turmeric is approved in China for the treatment of cancer. The current review focuses on the anticancer and anti-inflammatory activities exhibited by CFT and by some individual components of turmeric, including turmerin, turmerone, elemene, furanodiene, curdione, bisacurone, cyclocurcumin, calebin A, and germacrone. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Comparative divertor-transport study for helical devices

    NASA Astrophysics Data System (ADS)

    Feng, Y.; Kobayashi, M.; Sardei, F.; Masuzaki, S.; Kisslinger, J.; Morisaki, T.; Grigull, P.; Yamada, H.; McCormick, K.; Ohyabu, N.; König, R.; Yamada, I.; Giannone, L.; Narihara, K.; Wenzel, U.; Morita, S.; Thomsen, H.; Miyazawa, J.; Hildebrandt, D.; Watanabe, T.; Wagner, F.; Ashikawa, N.; Ida, K.; Komori, A.; Motojima, O.; Nakamura, Y.; Peterson, B. J.; Sato, K.; Shoji, M.; Tamura, N.; Tokitani, M.; LHD experimental Group

    2009-09-01

    Using the island divertors (IDs) of W7-AS and W7-X and the helical divertor (HD) of LHD as examples, the paper presents a comparative divertor transport study for three typical helical devices of different machine sizes following two distinct divertor concepts, aiming at identifying common physics issues/effects for mutual validation and combined studies. Based on EMC3/EIRENE simulations supported by experimental results, the paper first reviews and compares the essential transport features of the W7-AS ID and the LHD HD in order to build a base and framework for a predictive study of W7-X. The fundamental role of low-order magnetic islands in both divertor concepts is emphasized. Preliminary EMC3/EIRENE simulation results for W7-X are presented and discussed with respect to W7-AS and LHD in order to show how the individual field and divertor topologies affect the divertor transport and performance. For instance, a high recycling regime, which is absent from W7-AS and LHD, is predicted to exist for W7-X. The paper focuses on identifying and understanding the role of divertors for high density plasma operations in helical devices. In this regard, special attention is paid to investigating the divertor function for controlling intrinsic impurities. Impurity transport behaviour and wall-sputtering processes of CX-neutrals are studied under different divertor plasma conditions. A divertor retention effect on intrinsic impurities at high SOL collisonalities is predicted for all the three devices. The required SOL plasma conditions and the underlying mechanisms are analysed in detail. Numerical results are discussed in conjunction with the experimental observations for high density divertor plasmas in W7-AS and LHD. Different SOL transport regimes are numerically identified for the standard divertor configuration of W7-X and the possible consequences on high density plasmas are assessed. All the EMC3-EIRENE simulations presented in this paper are based on vacuum fields and comparisons with local diagnostics are made for low-ß plasmas.

  7. Novel numerical and graphical representation of DNA sequences and proteins.

    PubMed

    Randić, M; Novic, M; Vikić-Topić, D; Plavsić, D

    2006-12-01

    We have introduced novel numerical and graphical representations of DNA, which offer a simple and unique characterization of DNA sequences. The numerical representation of a DNA sequence is given as a sequence of real numbers derived from a unique graphical representation of the standard genetic code. There is no loss of information on the primary structure of a DNA sequence associated with this numerical representation. The novel representations are illustrated with the coding sequences of the first exon of beta-globin gene of half a dozen species in addition to human. The method can be extended to proteins as is exemplified by humanin, a 24-aa peptide that has recently been identified as a specific inhibitor of neuronal cell death induced by familial Alzheimer's disease mutant genes.

  8. Bidirectional reaction steps in metabolic networks: I. Modeling and simulation of carbon isotope labeling experiments.

    PubMed

    Wiechert, W; de Graaf, A A

    1997-07-05

    The extension of metabolite balancing with carbon labeling experiments, as described by Marx et al. (Biotechnol. Bioeng. 49: 11-29), results in a much more detailed stationary metabolic flux analysis. As opposed to basic metabolite flux balancing alone, this method enables both flux directions of bidirectional reaction steps to be quantitated. However, the mathematical treatment of carbon labeling systems is much more complicated, because it requires the solution of numerous balance equations that are bilinear with respect to fluxes and fractional labeling. In this study, a universal modeling framework is presented for describing the metabolite and carbon atom flux in a metabolic network. Bidirectional reaction steps are extensively treated and their impact on the system's labeling state is investigated. Various kinds of modeling assumptions, as usually made for metabolic fluxes, are expressed by linear constraint equations. A numerical algorithm for the solution of the resulting linear constrained set of nonlinear equations is developed. The numerical stability problems caused by large bidirectional fluxes are solved by a specially developed transformation method. Finally, the simulation of carbon labeling experiments is facilitated by a flexible software tool for network synthesis. An illustrative simulation study on flux identifiability from available flux and labeling measurements in the cyclic pentose phosphate pathway of a recombinant strain of Zymomonas mobilis concludes this contribution.

  9. Numerical Simulation of Combustion and Extinction of a Solid Cylinder in Low-Speed Cross Flow

    NASA Technical Reports Server (NTRS)

    Tien, J. S.; Yang, Chin Tien

    1998-01-01

    The combustion and extinction behavior of a diffusion flame around a solid fuel cylinder (PMMA) in low-speed forced flow in zero gravity was studied numerically using a quasi-steady gas phase model. This model includes two-dimensional continuity, full Navier Stokes' momentum, energy, and species equations with a one-step overall chemical reaction and second-order finite-rate Arrhenius kinetics. Surface radiation and Arrhenius pyrolysis kinetics are included on the solid fuel surface description and a parameter Phi, representing the percentage of gas-phase conductive heat flux going into the solid, is introduced into the interfacial energy balance boundary condition to complete the description for the quasi-steady gas-phase system. The model was solved numerically using a body-fitted coordinate transformation and the SIMPLE algorithm. The effects of varying freestream velocity and Phi were studied. These parameters have a significant effect on the flame structure and extinction limits. Two flame modes were identified: envelope flame and wake flame. Two kinds of flammability limits were found: quenching at low-flow speeds due to radiative loss and blow-off at high flow speeds due to insufficient gas residence time. A flammability map was constructed showing the existence of maximum Phi above which the solid is not flammable at any freestream velocity.

  10. Using Technology to Deliver Mental Health Services to Children and Youth: A Scoping Review

    PubMed Central

    Boydell, Katherine M.; Hodgins, Michael; Pignatiello, Antonio; Teshima, John; Edwards, Helen; Willis, David

    2014-01-01

    Objective: To conduct a scoping review on the use of technology to deliver mental health services to children and youth in order to identify the breadth of peer-reviewed literature, summarize findings and identify gaps. Method: A literature database search identified 126 original studies meeting criteria for review. Descriptive numerical summary and thematic analyses were conducted. Two reviewers independently extracted data. Results: Studies were characterized by diverse technologies including videoconferencing, telephone and mobile phone applications and Internet-based applications such as email, web sites and CD-ROMs. Conclusion: The use of technologies plays a major role in the delivery of mental health services and supports to children and youth in providing prevention, assessment, diagnosis, counseling and treatment programs. Strategies are growing exponentially on a global basis, thus it is critical to study the impact of these technologies on child and youth mental health service delivery. An in-depth review and synthesis of the quality of findings of studies on effectiveness of the use of technologies in service delivery are also warranted. A full systematic review would provide that opportunity. PMID:24872824

  11. Using technology to deliver mental health services to children and youth: a scoping review.

    PubMed

    Boydell, Katherine M; Hodgins, Michael; Pignatiello, Antonio; Teshima, John; Edwards, Helen; Willis, David

    2014-05-01

    To conduct a scoping review on the use of technology to deliver mental health services to children and youth in order to identify the breadth of peer-reviewed literature, summarize findings and identify gaps. A literature database search identified 126 original studies meeting criteria for review. Descriptive numerical summary and thematic analyses were conducted. Two reviewers independently extracted data. Studies were characterized by diverse technologies including videoconferencing, telephone and mobile phone applications and Internet-based applications such as email, web sites and CD-ROMs. The use of technologies plays a major role in the delivery of mental health services and supports to children and youth in providing prevention, assessment, diagnosis, counseling and treatment programs. Strategies are growing exponentially on a global basis, thus it is critical to study the impact of these technologies on child and youth mental health service delivery. An in-depth review and synthesis of the quality of findings of studies on effectiveness of the use of technologies in service delivery are also warranted. A full systematic review would provide that opportunity.

  12. Integrating enhanced hepatitis C testing and counselling in research.

    PubMed

    Winter, Rebecca; Nguyen, Oanh; Higgs, Peter; Armstrong, Stuart; Duong, Duyen; Thach, My Li; Aitken, Campbell; Hellard, Margaret

    2008-02-01

    The hepatitis C virus (HCV) affects over 170 million people worldwide. In Australia, over 225,000 people have been diagnosed with HCV infection with 13,000 infections reported annually; 90% are attributed to injecting drug use. Burnet Institute (BI) researchers have been studying the HCV epidemic since the virus was identified in 1989 including community based cohort studies (1990-1995), numerous studies involving Vietnamese-Australian people who inject drugs (PWID) (1996-2004) and social network studies (2000-2002, 2005-2007). Through this work the BI has developed a model of research practice for HCV and PWID, developed in recognition that much research relating to BBV infections - and HCV in particular - could be improved in terms of provision of test results to study participants. Our model endeavours to provide all participants with the highest quality HCV test results, delivered in accordance with best practice for pre- and post-test counselling by engaging participants in environments in which they are comfortable, building trust and rapport and being available throughout and beyond the research study. This paper will discuss the benefits and lessons learned over numerous studies in providing pre- and post-test counselling to PWID in an outreach capacity.

  13. Male contraception: what is on the horizon?

    PubMed

    Blithe, Diana

    2008-10-01

    Male contraception remains an important area of research. Methods can inhibit sperm production or can be targeted to inhibit sperm functions such as motility, orientation or interaction with the egg. Hormonal methods appear to be safe and effective in proof of concept studies but efforts are underway to improve delivery options or lead time until full efficacy is achieved. Nonhormonal methods are based on numerous targets that impact sperm production or function. Several agents that inhibit the sperm-specific or testis-specific targets have been identified and studies in animals have shown promising results.

  14. [Evidence of dermatological effects of chamomile].

    PubMed

    Rügge, Simone Danty; Nielsen, Maiken; Jacobsen, Andreas Skovgård; Vang, Ole; Jemec, Gregor B E

    2010-12-13

    Recent years have seen a rise in the demand for dermatological herbal and plant products as well as products containing chamomile. Extracts and decoctions made from this plant are often recommended by laymen for treatment of a number of skin diseases e.g. inflammation, wounds and itching. This systematic review explores the evidence base of the dermatological effects of chamomile. While numerous beneficial effects of chamomile have been suggested no studies have so far been able to substantiate these claims significantly. The absence of evidence is primarily caused by the design and quality of the studies identified.

  15. Advanced cargo aircraft may offer a potential renaissance in freight transportation

    NASA Technical Reports Server (NTRS)

    Morris, Shelby J.; Sawyer, Wallace C.

    1993-01-01

    The increasing demand for air freight transportation has prompted studies of large, aerodynamically efficient cargo-optimized aircraft capable of carrying intermodal containers, which are typically 8 x 8 x 20 ft. Studies have accordingly been conducted within NASA to ascertain the specifications and projected operating costs of such a vehicle, as well as to identify critical, development-pacing technologies. Attention is here given not only to the rather conventional, 10-turbofan engined configuration thus arrived at, but numerous innovative configurations featuring such concepts as spanloading, removable cargo pods, and ground effect.

  16. Correlative CT and anatomic study of the sciatic nerve

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pech, P.; Haughton, V.

    1985-05-01

    Sciatica can be caused by numerous processes affecting the sciatic nerve or its components within the pelvis including tumors, infectious diseases, aneurysms, fractures, and endometriosis. The CT diagnosis of these causes of sciatica has not been emphasized. This study identified the course and appearance of the normal sciatic nerve in the pelvis by correlating CT and anatomic slices in cadavers. For purposes of discussion, the sciatic nerve complex is conveniently divided into three parts: presacral, muscular, and ischial. Each part is illustrated here by two cryosections with corresponding CT images.

  17. Fault Tree Analysis.

    PubMed

    McElroy, Lisa M; Khorzad, Rebeca; Rowe, Theresa A; Abecassis, Zachary A; Apley, Daniel W; Barnard, Cynthia; Holl, Jane L

    The purpose of this study was to use fault tree analysis to evaluate the adequacy of quality reporting programs in identifying root causes of postoperative bloodstream infection (BSI). A systematic review of the literature was used to construct a fault tree to evaluate 3 postoperative BSI reporting programs: National Surgical Quality Improvement Program (NSQIP), Centers for Medicare and Medicaid Services (CMS), and The Joint Commission (JC). The literature review revealed 699 eligible publications, 90 of which were used to create the fault tree containing 105 faults. A total of 14 identified faults are currently mandated for reporting to NSQIP, 5 to CMS, and 3 to JC; 2 or more programs require 4 identified faults. The fault tree identifies numerous contributing faults to postoperative BSI and reveals substantial variation in the requirements and ability of national quality data reporting programs to capture these potential faults. Efforts to prevent postoperative BSI require more comprehensive data collection to identify the root causes and develop high-reliability improvement strategies.

  18. Field investigation of the drift shadow

    USGS Publications Warehouse

    Su, G.W.; Kneafsey, T.J.; Ghezzehei, T.A.; Cook, P.J.; Marshall, B.D.

    2006-01-01

    The "Drift Shadow" is defined as the relatively drier region that forms below subsurface cavities or drifts in unsaturated rock. Its existence has been predicted through analytical and numerical models of unsaturated flow. However, these theoretical predictions have not been demonstrated empirically to date. In this project we plan to test the drift shadow concept through field investigations and compare our observations to simulations. Based on modeling studies we have an identified a suitable site to perform the study at an inactive mine in a sandstone formation. Pretest modeling studies and preliminary characterization of the site are being used to develop the field scale tests.

  19. Possible role of the W-Z-top-quark bags in baryogenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flambaum, Victor V.; Shuryak, Edward; Department of Physics, State University of New York, Stony Brook, New York 11794

    2010-10-01

    The heaviest members of the standard model--the gauge bosons W, Z and the top quarks and antiquarks--may form collective baglike excitations of the Higgs vacuum provided their number is large enough, at both zero and finite temperatures. Since the Higgs vacuum expectation value is significantly modified inside them, they are called 'bags'. In this work we argue that creation of such objects can explain certain numerical studies of cosmological baryogenesis. Using as an example a hybrid model combining inflationary preheating with cold electroweak transition, we identify 'spots of unbroken phase' found in numerical studies of this scenario with such W-Zmore » bags. We argue that the baryon number violation should happen predominantly inside these objects, and we show that the rates calculated in numerical simulations can be analytically explained using finite-size, pure gauge sphaleron solutions, developed previously in the QCD context by Carter, Ostrovsky, and Shuryak. Furthermore, we point out significant presence of the top quarks/antiquarks in these bags (which were not included in those numerical studies). Although the basic sphaleron exponent remains unchanged by the tops' presence, we find that tops help to stabilize them for a longer time. Another enhancement of the transition rate comes from the 'recycling'' of the tops in the topological transition. Inclusion of the fermions (tops) enhances the sphaleron rate by up to 2 orders of magnitude. Finally, we discuss the magnitude of the CP violation needed to explain the observed baryonic asymmetry of the Universe and give arguments that the difference in the top-antitop population in the bag of the right magnitude can arise both from CP asymmetries in the top decays and in top propagation into the bags, due to the Farrar-Shaposhnikov effect.« less

  20. Charging of the Van Allen Probes: Theory and Simulations

    NASA Astrophysics Data System (ADS)

    Delzanno, G. L.; Meierbachtol, C.; Svyatskiy, D.; Denton, M.

    2017-12-01

    The electrical charging of spacecraft has been a known problem since the beginning of the space age. Its consequences can vary from moderate (single event upsets) to catastrophic (total loss of the spacecraft) depending on a variety of causes, some of which could be related to the surrounding plasma environment, including emission processes from the spacecraft surface. Because of its complexity and cost, this problem is typically studied using numerical simulations. However, inherent unknowns in both plasma parameters and spacecraft material properties can lead to inaccurate predictions of overall spacecraft charging levels. The goal of this work is to identify and study the driving causes and necessary parameters for particular spacecraft charging events on the Van Allen Probes (VAP) spacecraft. This is achieved by making use of plasma theory, numerical simulations, and on-board data. First, we present a simple theoretical spacecraft charging model, which assumes a spherical spacecraft geometry and is based upon the classical orbital-motion-limited approximation. Some input parameters to the model (such as the warm plasma distribution function) are taken directly from on-board VAP data, while other parameters are either varied parametrically to assess their impact on the spacecraft potential, or constrained through spacecraft charging data and statistical techniques. Second, a fully self-consistent numerical simulation is performed by supplying these parameters to CPIC, a particle-in-cell code specifically designed for studying plasma-material interactions. CPIC simulations remove some of the assumptions of the theoretical model and also capture the influence of the full geometry of the spacecraft. The CPIC numerical simulation results will be presented and compared with on-board VAP data. This work will set the foundation for our eventual goal of importing the full plasma environment from the LANL-developed SHIELDS framework into CPIC, in order to more accurately predict spacecraft charging.

  1. Operational modal analysis using SVD of power spectral density transmissibility matrices

    NASA Astrophysics Data System (ADS)

    Araújo, Iván Gómez; Laier, Jose Elias

    2014-05-01

    This paper proposes the singular value decomposition of power spectrum density transmissibility matrices with different references, (PSDTM-SVD), as an identification method of natural frequencies and mode shapes of a dynamic system subjected to excitations under operational conditions. At the system poles, the rows of the proposed transmissibility matrix converge to the same ratio of amplitudes of vibration modes. As a result, the matrices are linearly dependent on the columns, and their singular values converge to zero. Singular values are used to determine the natural frequencies, and the first left singular vectors are used to estimate mode shapes. A numerical example of the finite element model of a beam subjected to colored noise excitation is analyzed to illustrate the accuracy of the proposed method. Results of the PSDTM-SVD method in the numerical example are compared with obtained using frequency domain decomposition (FDD) and power spectrum density transmissibility (PSDT). It is demonstrated that the proposed method does not depend on the excitation characteristics contrary to the FDD method that assumes white noise excitation, and further reduces the risk to identify extra non-physical poles in comparison to the PSDT method. Furthermore, a case study is performed using data from an operational vibration test of a bridge with a simply supported beam system. The real application of a full-sized bridge has shown that the proposed PSDTM-SVD method is able to identify the operational modal parameter. Operational modal parameters identified by the PSDTM-SVD in the real application agree well those identified by the FDD and PSDT methods.

  2. Causality Analysis: Identifying the Leading Element in a Coupled Dynamical System

    PubMed Central

    BozorgMagham, Amir E.; Motesharrei, Safa; Penny, Stephen G.; Kalnay, Eugenia

    2015-01-01

    Physical systems with time-varying internal couplings are abundant in nature. While the full governing equations of these systems are typically unknown due to insufficient understanding of their internal mechanisms, there is often interest in determining the leading element. Here, the leading element is defined as the sub-system with the largest coupling coefficient averaged over a selected time span. Previously, the Convergent Cross Mapping (CCM) method has been employed to determine causality and dominant component in weakly coupled systems with constant coupling coefficients. In this study, CCM is applied to a pair of coupled Lorenz systems with time-varying coupling coefficients, exhibiting switching between dominant sub-systems in different periods. Four sets of numerical experiments are carried out. The first three cases consist of different coupling coefficient schemes: I) Periodic–constant, II) Normal, and III) Mixed Normal/Non-normal. In case IV, numerical experiment of cases II and III are repeated with imposed temporal uncertainties as well as additive normal noise. Our results show that, through detecting directional interactions, CCM identifies the leading sub-system in all cases except when the average coupling coefficients are approximately equal, i.e., when the dominant sub-system is not well defined. PMID:26125157

  3. Improving the physiological realism of experimental models.

    PubMed

    Vinnakota, Kalyan C; Cha, Chae Y; Rorsman, Patrik; Balaban, Robert S; La Gerche, Andre; Wade-Martins, Richard; Beard, Daniel A; Jeneson, Jeroen A L

    2016-04-06

    The Virtual Physiological Human (VPH) project aims to develop integrative, explanatory and predictive computational models (C-Models) as numerical investigational tools to study disease, identify and design effective therapies and provide an in silico platform for drug screening. Ultimately, these models rely on the analysis and integration of experimental data. As such, the success of VPH depends on the availability of physiologically realistic experimental models (E-Models) of human organ function that can be parametrized to test the numerical models. Here, the current state of suitable E-models, ranging from in vitro non-human cell organelles to in vivo human organ systems, is discussed. Specifically, challenges and recent progress in improving the physiological realism of E-models that may benefit the VPH project are highlighted and discussed using examples from the field of research on cardiovascular disease, musculoskeletal disorders, diabetes and Parkinson's disease.

  4. Secular resonances with Ceres and Vesta

    NASA Astrophysics Data System (ADS)

    Tsirvoulis, Georgios; Novaković, Bojan

    2016-12-01

    In this work we explore dynamical perturbations induced by the massive asteroids Ceres and Vesta on main-belt asteroids through secular resonances. First we determine the location of the linear secular resonances with Ceres and Vesta in the main belt, using a purely numerical technique. Then we use a set of numerical simulations of fictitious asteroids to investigate the importance of these secular resonances in the orbital evolution of main-belt asteroids. We found, evaluating the magnitude of the perturbations in the proper elements of the test particles, that in some cases the strength of these secular resonances is comparable to that of known non-linear secular resonances with the giant planets. Finally we explore the asteroid families that are crossed by the secular resonances we studied, and identified several cases where the latter seem to play an important role in their post-impact evolution.

  5. Pretest Predictions for Ventilation Tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Y. Sun; H. Yang; H.N. Kalia

    The objective of this calculation is to predict the temperatures of the ventilating air, waste package surface, concrete pipe walls, and insulation that will be developed during the ventilation tests involving various test conditions. The results will be used as input to the following three areas: (1) Decisions regarding testing set-up and performance. (2) Assessing how best to scale the test phenomena measured. (3) Validating numerical approach for modeling continuous ventilation. The scope of the calculation is to identify the physical mechanisms and parameters related to thermal response in the ventilation tests, and develop and describe numerical methods that canmore » be used to calculate the effects of continuous ventilation. Sensitivity studies to assess the impact of variation of linear power densities (linear heat loads) and ventilation air flow rates are included. The calculation is limited to thermal effect only.« less

  6. Influence of environmental tobacco smoke on morphology and functions of cardiovascular system assessed using diagnostic imaging.

    PubMed

    Gać, Paweł; Poręba, Małgorzata; Pawlas, Krystyna; Sobieszczańska, Małgorzata; Poręba, Rafał

    Exposure to tobacco smoke is a significant problem of environmental medicine. Tobacco smoke contains over one thousand identified chemicals including numerous toxicants. Cardiovascular system diseases are the major cause of general mortality. The recent development of diagnostic imaging provided methods which enable faster and more precise diagnosis of numerous diseases, also those of cardiovascular system. This paper reviews the most significant scientific research concerning relationship between environmental exposure to tobacco smoke and the morphology and function of cardiovascular system carried out using diagnostic imaging methods, i.e. ultrasonography, angiography, computed tomography and magnetic resonance imaging. In the forthcoming future, the studies using current diagnostic imaging methods should contribute to the reliable documentation, followed by the wide-spreading knowledge of the harmful impact of the environmental tobacco smoke exposure on the cardiovascular system.

  7. Dynamic Visual Acuity While Walking in Normals and Labyrinthine-Deficient Patients

    NASA Technical Reports Server (NTRS)

    Hillman, Edward J.; Bloomberg, Jacob J.; McDonald, P. Vernon; Cohen, Helen S.

    1996-01-01

    We describe a new, objective, easily administered test of dynamic visual acuity (DVA) while walking. Ten normal subjects and five patients with histories of severe bilateral vestibular dysfunctions participated in this study. Subjects viewed a visual display of numerals of different font sizes presented on a laptop computer while they stood still and while they walked on a motorized treadmill. Treadmill speed was adapted for 4 of 5 patients. Subjects were asked to identify the numerals as they appeared on the computer screen. Test results were reasonably repeatable in normals. The percent correct responses at each font size dropped slightly while walking in normals and dropped significantly more in patients. Patients performed significantly worse than normals while standing still and while walking. This task may be useful for evaluating post-flight astronauts and vestibularly impaired patients.

  8. A numerical study of the stability of radiative shocks. [in accretion flows onto white dwarf stars

    NASA Technical Reports Server (NTRS)

    Imamura, J. N.; Wolff, M. T.; Durisen, R. H.

    1984-01-01

    Attention is given to the oscillatory instability of optically thin radiative shocks in time-dependent numerical calculations of accretion flows onto degenerate dwarfs. The present nonlinear calculations yield good quantitative agreement with the linear results obtained for oscillation frequencies, damping rates, and critical alpha-values. The fundamental mode and the first overtone in the shock radius and luminosity variations can be clearly identified, and evidence is sometimes seen for the second overtone. Time-dependent calculations are also performed which include additional physics relevant to degenerate dwarf accretion, such as electron thermal conduction, unequal electron and ion temperatures, Compton cooling, and relativistic corrections to the bremsstrahlung cooling law. All oscillatory modes are found to be damped, and hence stable, in the case of a 1-solar mass white dwarf accreting in spherical symmetry.

  9. Metagenomic characterization of viral communities in Goseong Bay, Korea

    NASA Astrophysics Data System (ADS)

    Hwang, Jinik; Park, So Yun; Park, Mirye; Lee, Sukchan; Jo, Yeonhwa; Cho, Won Kyong; Lee, Taek-Kyun

    2016-12-01

    In this study, seawater samples were collected from Goseong Bay, Korea in March 2014 and viral populations were examined by metagenomics assembly. Enrichment of marine viral particles using FeCl3 followed by next-generation sequencing produced numerous sequences. De novo assembly and BLAST search showed that most of the obtained contigs were unknown sequences and only 0.74% of sequences were associated with known viruses. As a result, 138 viruses, including bacteriophages (87%), viruses infecting algae and others (13%) were identified. The identified 138 viruses were divided into 11 orders, 14 families, 34 genera, and 133 species. The dominant viruses were Pelagibacter phage HTVC010P and Roseobacter phage SIO1. The viruses infecting algae, including the Ostreococcus species, accounted for 9.4% of total identified viruses. In addition, we identified pathogenic herpes viruses infecting fishes and giant viruses infecting parasitic acanthamoeba species. This is a comprehensive study to reveal the viral populations in the Goseong Bay using metagenomics. The information associated with the marine viral community in Goseong Bay, Korea will be useful for comparative analysis in other marine viral communities.

  10. Monitoring Object Library Usage and Changes

    NASA Technical Reports Server (NTRS)

    Owen, R. K.; Craw, James M. (Technical Monitor)

    1995-01-01

    The NASA Ames Numerical Aerodynamic Simulation program Aeronautics Consolidated Supercomputing Facility (NAS/ACSF) supercomputing center services over 1600 users, and has numerous analysts with root access. Several tools have been developed to monitor object library usage and changes. Some of the tools do "noninvasive" monitoring and other tools implement run-time logging even for object-only libraries. The run-time logging identifies who, when, and what is being used. The benefits are that real usage can be measured, unused libraries can be discontinued, training and optimization efforts can be focused at those numerical methods that are actually used. An overview of the tools will be given and the results will be discussed.

  11. A Matter of Timing: Identifying Significant Multi-Dose Radiotherapy Improvements by Numerical Simulation and Genetic Algorithm Search

    PubMed Central

    Angus, Simon D.; Piotrowska, Monika Joanna

    2014-01-01

    Multi-dose radiotherapy protocols (fraction dose and timing) currently used in the clinic are the product of human selection based on habit, received wisdom, physician experience and intra-day patient timetabling. However, due to combinatorial considerations, the potential treatment protocol space for a given total dose or treatment length is enormous, even for relatively coarse search; well beyond the capacity of traditional in-vitro methods. In constrast, high fidelity numerical simulation of tumor development is well suited to the challenge. Building on our previous single-dose numerical simulation model of EMT6/Ro spheroids, a multi-dose irradiation response module is added and calibrated to the effective dose arising from 18 independent multi-dose treatment programs available in the experimental literature. With the developed model a constrained, non-linear, search for better performing cadidate protocols is conducted within the vicinity of two benchmarks by genetic algorithm (GA) techniques. After evaluating less than 0.01% of the potential benchmark protocol space, candidate protocols were identified by the GA which conferred an average of 9.4% (max benefit 16.5%) and 7.1% (13.3%) improvement (reduction) on tumour cell count compared to the two benchmarks, respectively. Noticing that a convergent phenomenon of the top performing protocols was their temporal synchronicity, a further series of numerical experiments was conducted with periodic time-gap protocols (10 h to 23 h), leading to the discovery that the performance of the GA search candidates could be replicated by 17–18 h periodic candidates. Further dynamic irradiation-response cell-phase analysis revealed that such periodicity cohered with latent EMT6/Ro cell-phase temporal patterning. Taken together, this study provides powerful evidence towards the hypothesis that even simple inter-fraction timing variations for a given fractional dose program may present a facile, and highly cost-effecitive means of significantly improving clinical efficacy. PMID:25460164

  12. A matter of timing: identifying significant multi-dose radiotherapy improvements by numerical simulation and genetic algorithm search.

    PubMed

    Angus, Simon D; Piotrowska, Monika Joanna

    2014-01-01

    Multi-dose radiotherapy protocols (fraction dose and timing) currently used in the clinic are the product of human selection based on habit, received wisdom, physician experience and intra-day patient timetabling. However, due to combinatorial considerations, the potential treatment protocol space for a given total dose or treatment length is enormous, even for relatively coarse search; well beyond the capacity of traditional in-vitro methods. In constrast, high fidelity numerical simulation of tumor development is well suited to the challenge. Building on our previous single-dose numerical simulation model of EMT6/Ro spheroids, a multi-dose irradiation response module is added and calibrated to the effective dose arising from 18 independent multi-dose treatment programs available in the experimental literature. With the developed model a constrained, non-linear, search for better performing cadidate protocols is conducted within the vicinity of two benchmarks by genetic algorithm (GA) techniques. After evaluating less than 0.01% of the potential benchmark protocol space, candidate protocols were identified by the GA which conferred an average of 9.4% (max benefit 16.5%) and 7.1% (13.3%) improvement (reduction) on tumour cell count compared to the two benchmarks, respectively. Noticing that a convergent phenomenon of the top performing protocols was their temporal synchronicity, a further series of numerical experiments was conducted with periodic time-gap protocols (10 h to 23 h), leading to the discovery that the performance of the GA search candidates could be replicated by 17-18 h periodic candidates. Further dynamic irradiation-response cell-phase analysis revealed that such periodicity cohered with latent EMT6/Ro cell-phase temporal patterning. Taken together, this study provides powerful evidence towards the hypothesis that even simple inter-fraction timing variations for a given fractional dose program may present a facile, and highly cost-effecitive means of significantly improving clinical efficacy.

  13. Collisionless Boltzmann equation approach for the study of stellar discs within barred galaxies

    NASA Astrophysics Data System (ADS)

    Bienaymé, Olivier

    2018-04-01

    We have studied the kinematics of stellar disc populations within the solar neighbourhood in order to find the imprints of the Galactic bar. We carried out the analysis by developing a numerical resolution of the 2D2V (two-dimensional in the physical space, 2D, and two-dimensional in the velocity motion, 2V) collisionless Boltzmann equation and modelling the stellar motions within the plane of the Galaxy within the solar neighbourhood. We recover similar results to those obtained by other authors using N-body simulations, but we are also able to numerically identify faint structures thanks to the cancelling of the Poisson noise. We find that the ratio of the bar pattern speed to the local circular frequency is in the range ΩB/Ω = 1.77 to 1.91. If the Galactic bar angle orientation is within the range from 24 to 45 degrees, the bar pattern speed is between 46 and 49 km s-1 kpc-1.

  14. Occupational exposure of personnel operating military radio equipment: measurements and simulation.

    PubMed

    Paljanos, Annamaria; Miclaus, Simona; Munteanu, Calin

    2015-09-01

    Technical literature provides numerous studies concerning radiofrequency exposure measurements for various radio communication devices, but there are few studies related to exposure of personnel operating military radio equipment. In order to evaluate exposure and identify cases when safety requirements are not entirely met, both measurements and simulations are needed for accurate results. Moreover, given the technical characteristics of the radio devices used in the military, personnel mainly operate in the near-field region so both measurements and simulation becomes more complex. Measurements were made in situ using a broadband personal exposimeter equipped with two isotropic probes for both electric and magnetic components of the field. The experiment was designed for three different operating frequencies of the same radio equipment, while simulations were made in FEKO software using hybrid numerical methods to solve complex electromagnetic field problems. The paper aims to discuss the comparative results of the measurements and simulation, as well as comparing them to reference levels specified in military or civilian radiofrequency exposure standards.

  15. Multiple Phosphatases Regulate Carbon Source-Dependent Germination and Primary Metabolism in Aspergillus nidulans

    PubMed Central

    de Assis, Leandro José; Ries, Laure Nicolas Annick; Savoldi, Marcela; Dinamarco, Taisa Magnani; Goldman, Gustavo Henrique; Brown, Neil Andrew

    2015-01-01

    Aspergillus nidulans is an important mold and a model system for the study of fungal cell biology. In addition, invasive A. nidulans pulmonary infections are common in humans with chronic granulomatous disease. The morphological and biochemical transition from dormant conidia into active, growing, filamentous hyphae requires the coordination of numerous biosynthetic, developmental, and metabolic processes. The present study exhibited the diversity of roles performed by seven phosphatases in regulating cell cycle, development, and metabolism in response to glucose and alternative carbon sources. The identified phosphatases highlighted the importance of several signaling pathways regulating filamentous growth, the action of the pyruvate dehydrogenase complex as a metabolic switch controlling carbon usage, and the identification of the key function performed by the α-ketoglutarate dehydrogenase during germination. These novel insights into the fundamental roles of numerous phosphatases in germination and carbon sensing have provided new avenues of research into the identification of inhibitors of fungal germination, with implications for the food, feed, and pharmaceutical industries. PMID:25762568

  16. Numerical study of the ignition behavior of a post-discharge kernel injected into a turbulent stratified cross-flow

    NASA Astrophysics Data System (ADS)

    Jaravel, Thomas; Labahn, Jeffrey; Ihme, Matthias

    2017-11-01

    The reliable initiation of flame ignition by high-energy spark kernels is critical for the operability of aviation gas turbines. The evolution of a spark kernel ejected by an igniter into a turbulent stratified environment is investigated using detailed numerical simulations with complex chemistry. At early times post ejection, comparisons of simulation results with high-speed Schlieren data show that the initial trajectory of the kernel is well reproduced, with a significant amount of air entrainment from the surrounding flow that is induced by the kernel ejection. After transiting in a non-flammable mixture, the kernel reaches a second stream of flammable methane-air mixture, where the successful of the kernel ignition was found to depend on the local flow state and operating conditions. By performing parametric studies, the probability of kernel ignition was identified, and compared with experimental observations. The ignition behavior is characterized by analyzing the local chemical structure, and its stochastic variability is also investigated.

  17. Recent Developments on Airborne Forward Looking Interferometer for the Detection of Wake Vortices

    NASA Technical Reports Server (NTRS)

    Daniels, Taumi S.; Smith, William L.; Kirev, Stanislav

    2012-01-01

    A goal of these studies was development of the measurement methods and algorithms necessary to detect wake vortex hazards in real time from either an aircraft or ground-based hyperspectral Fourier Transform Spectrometer (FTS). This paper provides an update on research to model FTS detection of wake vortices. The Terminal Area Simulation System (TASS) was used to generate wake vortex fields of 3-D winds, temperature, and absolute humidity. These fields were input to the Line by Line Radiative Transfer Model (LBLRTM), a hyperspectral radiance model in the infrared, employed for the FTS numerical modeling. An initial set of cases has been analyzed to identify a wake vortex IR signature and signature sensitivities to various state variables. Results from the numerical modeling case studies will be presented. Preliminary results indicated that an imaging IR instrument sensitive to six narrow bands within the 670 to 3150 per centimeter spectral region would be sufficient for wake vortex detection. Noise floor estimates for a recommended instrument are a current research topic.

  18. On the fragmentation of filaments in a molecular cloud simulation

    NASA Astrophysics Data System (ADS)

    Chira, R.-A.; Kainulainen, J.; Ibáñez-Mejía, J. C.; Henning, Th.; Mac Low, M.-M.

    2018-03-01

    Context. The fragmentation of filaments in molecular clouds has attracted a lot of attention recently as there seems to be a close relation between the evolution of filaments and star formation. The study of the fragmentation process has been motivated by simple analytical models. However, only a few comprehensive studies have analysed the evolution of filaments using numerical simulations where the filaments form self-consistently as part of large-scale molecular cloud evolution. Aim. We address the early evolution of parsec-scale filaments that form within individual clouds. In particular, we focus on three questions: How do the line masses of filaments evolve? How and when do the filaments fragment? How does the fragmentation relate to the line masses of the filaments? Methods: We examine three simulated molecular clouds formed in kiloparsec-scale numerical simulations performed with the FLASH adaptive mesh refinement magnetohydrodynamic code. The simulations model a self-gravitating, magnetised, stratified, supernova-driven interstellar medium, including photoelectric heating and radiative cooling. We follow the evolution of the clouds for 6 Myr from the time self-gravity starts to act. We identify filaments using the DisPerSe algorithm, and compare the results to other filament-finding algorithms. We determine the properties of the identified filaments and compare them with the predictions of analytic filament stability models. Results: The average line masses of the identified filaments, as well as the fraction of mass in filamentary structures, increases fairly continuously after the onset of self-gravity. The filaments show fragmentation starting relatively early: the first fragments appear when the line masses lie well below the critical line mass of Ostriker's isolated hydrostatic equilibrium solution ( 16 M⊙ pc-1), commonly used as a fragmentation criterion. The average line masses of filaments identified in three-dimensional volume density cubes increases far more quickly than those identified in two-dimensional column density maps. Conclusions: Our results suggest that hydrostatic or dynamic compression from the surrounding cloud has a significant impact on the early dynamical evolution of filaments. A simple model of an isolated, isothermal cylinder may not provide a good approach for fragmentation analysis. Caution must be exercised in interpreting distributions of properties of filaments identified in column density maps, especially in the case of low-mass filaments. Comparing or combining results from studies that use different filament finding techniques is strongly discouraged.

  19. Viral pathogen discovery

    PubMed Central

    Chiu, Charles Y

    2015-01-01

    Viral pathogen discovery is of critical importance to clinical microbiology, infectious diseases, and public health. Genomic approaches for pathogen discovery, including consensus polymerase chain reaction (PCR), microarrays, and unbiased next-generation sequencing (NGS), have the capacity to comprehensively identify novel microbes present in clinical samples. Although numerous challenges remain to be addressed, including the bioinformatics analysis and interpretation of large datasets, these technologies have been successful in rapidly identifying emerging outbreak threats, screening vaccines and other biological products for microbial contamination, and discovering novel viruses associated with both acute and chronic illnesses. Downstream studies such as genome assembly, epidemiologic screening, and a culture system or animal model of infection are necessary to establish an association of a candidate pathogen with disease. PMID:23725672

  20. Geological study of the southern part of the Malagasy republic using ERTS orbital images

    NASA Technical Reports Server (NTRS)

    Weecksteen, G. (Principal Investigator); Scanvic, J. Y.; Koch, B.

    1974-01-01

    The author has identified the following significant results. The Malagasy stratigraphy and tectonic are very complex, but the results obtained using ERTS-1 images interpretation make credible some hypothesis recently proposed by geologists. Most of known fractures are identified and numerous new observations are made on these images in the field of linear fractures. Some of them extend or relay known fractures and many others are totally new even if scattered field observations make it possible to assume that they correspond to reality. In the domain of lithology different types of rocks are distinguished, but the results are better in sedimentary formations than in the basement.

  1. Identification of cisplatin-binding sites on the large cytoplasmic loop of the Na+/K+-ATPase.

    PubMed

    Šeflová, Jaroslava; Čechová, Petra; Štenclová, Tereza; Šebela, Marek; Kubala, Martin

    2018-12-01

    Cisplatin is the most widely used chemotherapeutic drug for the treatment of various types of cancer; however, its administration brings also numerous side effects. It was demonstrated that cisplatin can inhibit the Na + /K + -ATPase (NKA), which can explain a large part of the adverse effects. In this study, we have identified five cysteinyl residues (C452, C456, C457, C577, and C656) as the cisplatin binding sites on the cytoplasmic loop connecting transmembrane helices 4 and 5 (C45), using site-directed mutagenesis and mass spectrometry experiments. The identified residues are known to be susceptible to glutathionylation indicating their involvement in a common regulatory mechanism.

  2. Key health themes and reporting of numerical cigarette-waterpipe equivalence in online news articles reporting on waterpipe tobacco smoking: a content analysis.

    PubMed

    Jawad, Mohammed; Bakir, Ali M; Ali, Mohammed; Jawad, Sena; Akl, Elie A

    2015-01-01

    There is anecdotal evidence that health messages interpreted from waterpipe tobacco smoking (WTS) research are inconsistent, such as comparing the health effects of one WTS session with that of 100 cigarettes. This study aimed to identify key health themes about WTS discussed by online news media, and how numerical cigarette-waterpipe equivalence (CWE) was being interpreted. We identified 1065 online news articles published between March 2011 and September 2012 using the 'Google Alerts' service. We screened for health themes, assessed statements mentioning CWE and reported differences between countries. We used logistic regression to identify factors associated with articles incorrectly reporting a CWE equal to or greater than 100 cigarettes, in the absence of any comparative parameter ('CWE ≥100 cigarettes'). Commonly mentioned health themes were the presence of tobacco (67%) and being as bad as cigarettes (49%), and we report on differences between countries. While 10.8% of all news articles contained at least one positive health theme, 22.9% contained a statement about a CWE. Most of these (18.6% total) were incorrectly a CWE ≥100 cigarettes, a quarter of which were made by healthcare professionals/organisations. Compared with the Middle East, articles from the USA and the UK were the most significant predictors to contain a CWE ≥100 cigarettes statement. Those wishing to write or publish information related to WTS may wish to avoid comparing WTS to cigarettes using numerical values as this is a major source of confusion. Future research is needed to address the impact of the media on the attitudes, initiation and cessation rates of waterpipe smokers. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  3. Identification of dynamic load for prosthetic structures.

    PubMed

    Zhang, Dequan; Han, Xu; Zhang, Zhongpu; Liu, Jie; Jiang, Chao; Yoda, Nobuhiro; Meng, Xianghua; Li, Qing

    2017-12-01

    Dynamic load exists in numerous biomechanical systems, and its identification signifies a critical issue for characterizing dynamic behaviors and studying biomechanical consequence of the systems. This study aims to identify dynamic load in the dental prosthetic structures, namely, 3-unit implant-supported fixed partial denture (I-FPD) and teeth-supported fixed partial denture. The 3-dimensional finite element models were constructed through specific patient's computerized tomography images. A forward algorithm and regularization technique were developed for identifying dynamic load. To verify the effectiveness of the identification method proposed, the I-FPD and teeth-supported fixed partial denture structures were investigated to determine the dynamic loads. For validating the results of inverse identification, an experimental force-measuring system was developed by using a 3-dimensional piezoelectric transducer to measure the dynamic load in the I-FPD structure in vivo. The computationally identified loads were presented with different noise levels to determine their influence on the identification accuracy. The errors between the measured load and identified counterpart were calculated for evaluating the practical applicability of the proposed procedure in biomechanical engineering. This study is expected to serve as a demonstrative role in identifying dynamic loading in biomedical systems, where a direct in vivo measurement may be rather demanding in some areas of interest clinically. Copyright © 2017 John Wiley & Sons, Ltd.

  4. Clients' interpretation of risks provided in genetic counseling.

    PubMed Central

    Wertz, D C; Sorenson, J R; Heeren, T C

    1986-01-01

    Clients in 544 genetic counseling sessions who were given numeric risks of having a child with a birth defect between 0% and 50% were asked to interpret these numeric risks on a five-point scale, ranging from very low to very high. Whereas clients' modal interpretation varied directly with numeric risks between 0% and 15%, the modal category of client risk interpretation remained "moderate" at risks between 15% and 50%. Uncertainty about normalcy of the next child increased as numeric risk increased, and few clients were willing to indicate that the child would probably or definitely be affected regardless of the numeric risk. Characteristics associated with clients' "pessimistic" interpretations of risk, identified by stepwise linear regression, included increased numeric risk, discussion in depth during the counseling session of whether they would have a child, have a living affected child, discussion of the effects of an affected child on relationships with client's other children, and seriousness of the disorder in question (causes intellectual impairment). Client interpretations are discussed in terms of recent developments in cognitive theory, including heuristics that influence judgments about risks, and implications for genetic counseling. PMID:3752089

  5. Informal interprofessional learning: an untapped opportunity for learning and change within the workplace.

    PubMed

    Nisbet, Gillian; Lincoln, Michelle; Dunn, Stewart

    2013-11-01

    In this paper, we explore the educational and workplace learning literature to identify the potential and significance for informal interprofessional learning within the workplace. We also examine theoretical perspectives informing informal workplace interprofessional learning. Despite numerous studies focusing on formal interprofessional education programs, we suggest that informal interprofessional learning opportunities are currently unrealized. We highlight reasons for a focus on learning within the workplace and the potential benefits within an interprofessional context.

  6. Assessment of reduced-order unscented Kalman filter for parameter identification in 1-dimensional blood flow models using experimental data.

    PubMed

    Caiazzo, A; Caforio, Federica; Montecinos, Gino; Muller, Lucas O; Blanco, Pablo J; Toro, Eluterio F

    2016-10-25

    This work presents a detailed investigation of a parameter estimation approach on the basis of the reduced-order unscented Kalman filter (ROUKF) in the context of 1-dimensional blood flow models. In particular, the main aims of this study are (1) to investigate the effects of using real measurements versus synthetic data for the estimation procedure (i.e., numerical results of the same in silico model, perturbed with noise) and (2) to identify potential difficulties and limitations of the approach in clinically realistic applications to assess the applicability of the filter to such setups. For these purposes, the present numerical study is based on a recently published in vitro model of the arterial network, for which experimental flow and pressure measurements are available at few selected locations. To mimic clinically relevant situations, we focus on the estimation of terminal resistances and arterial wall parameters related to vessel mechanics (Young's modulus and wall thickness) using few experimental observations (at most a single pressure or flow measurement per vessel). In all cases, we first perform a theoretical identifiability analysis on the basis of the generalized sensitivity function, comparing then the results owith the ROUKF, using either synthetic or experimental data, to results obtained using reference parameters and to available measurements. Copyright © 2016 John Wiley & Sons, Ltd.

  7. Co-occurrence of anaerobic bacteria in colorectal carcinomas.

    PubMed

    Warren, René L; Freeman, Douglas J; Pleasance, Stephen; Watson, Peter; Moore, Richard A; Cochrane, Kyla; Allen-Vercoe, Emma; Holt, Robert A

    2013-05-15

    Numerous cancers have been linked to microorganisms. Given that colorectal cancer is a leading cause of cancer deaths and the colon is continuously exposed to a high diversity of microbes, the relationship between gut mucosal microbiome and colorectal cancer needs to be explored. Metagenomic studies have shown an association between Fusobacterium species and colorectal carcinoma. Here, we have extended these studies with deeper sequencing of a much larger number (n = 130) of colorectal carcinoma and matched normal control tissues. We analyzed these data using co-occurrence networks in order to identify microbe-microbe and host-microbe associations specific to tumors. We confirmed tumor over-representation of Fusobacterium species and observed significant co-occurrence within individual tumors of Fusobacterium, Leptotrichia and Campylobacter species. This polymicrobial signature was associated with over-expression of numerous host genes, including the gene encoding the pro-inflammatory chemokine Interleukin-8. The tumor-associated bacteria we have identified are all Gram-negative anaerobes, recognized previously as constituents of the oral microbiome, which are capable of causing infection. We isolated a novel strain of Campylobacter showae from a colorectal tumor specimen. This strain is substantially diverged from a previously sequenced oral Campylobacter showae isolate, carries potential virulence genes, and aggregates with a previously isolated tumor strain of Fusobacterium nucleatum. A polymicrobial signature of Gram-negative anaerobic bacteria is associated with colorectal carcinoma tissue.

  8. Digital Dermatitis in Cattle: Current Bacterial and Immunological Findings

    PubMed Central

    Wilson-Welder, Jennifer H.; Alt, David P.; Nally, Jarlath E.

    2015-01-01

    Simple Summary Digital dermatitis causes lameness in cattle. Numerous studies have identified multiple bacteria associated with these painful lesions. Several types of a spiral shaped bacteria, Treponema species, are thought to play a role in disease development. Little is known about the immune response to bacteria involved in digital dermatitis. Local inflammatory cells can contribute to the non-healing nature of the disease. Animal models of infection are required to develop effective vaccines and treatments. Abstract Globally; digital dermatitis is a leading form of lameness observed in production dairy cattle. While the precise etiology remains to be determined; the disease is clearly associated with infection by numerous species of treponemes; in addition to other anaerobic bacteria. The goal of this review article is to provide an overview of the current literature; focusing on discussion of the polybacterial nature of the digital dermatitis disease complex and host immune response. Several phylotypes of treponemes have been identified; some of which correlate with location in the lesion and some with stages of lesion development. Local innate immune responses may contribute to the proliferative, inflammatory conditions that perpetuate digital dermatitis lesions. While serum antibody is produced to bacterial antigens in the lesions, little is known about cellular-based immunity. Studies are still required to delineate the pathogenic traits of treponemes associated with digital dermatitis; and other host factors that mediate pathology and protection of digital dermatitis lesions. PMID:26569318

  9. Thermal - Hydraulic Behavior of Unsaturated Bentonite and Sand-Bentonite Material as Seal for Nuclear Waste Repository: Numerical Simulation of Column Experiments

    NASA Astrophysics Data System (ADS)

    Ballarini, E.; Graupner, B.; Bauer, S.

    2015-12-01

    For deep geological repositories of high-level radioactive waste (HLRW), bentonite and sand bentonite mixtures are investigated as buffer materials to form a a sealing layer. This sealing layer surrounds the canisters and experiences an initial drying due to the heat produced by HLRW and a successive re-saturation with fluid from the host rock. These complex thermal, hydraulic and mechanical processes interact and were investigated in laboratory column experiments using MX-80 clay pellets as well as a mixture of 35% sand and 65% bentonite. The aim of this study is to both understand the individual processes taking place in the buffer materials and to identify the key physical parameters that determine the material behavior under heating and hydrating conditions. For this end, detailed and process-oriented numerical modelling was applied to the experiments, simulating heat transport, multiphase flow and mechanical effects from swelling. For both columns, the same set of parameters was assigned to the experimental set-up (i.e. insulation, heater and hydration system), while the parameters of the buffer material were adapted during model calibration. A good fit between model results and data was achieved for temperature, relative humidity, water intake and swelling pressure, thus explaining the material behavior. The key variables identified by the model are the permeability and relative permeability, the water retention curve and the thermal conductivity of the buffer material. The different hydraulic and thermal behavior of the two buffer materials observed in the laboratory observations was well reproduced by the numerical model.

  10. Numerical and analytical investigation towards performance enhancement of a newly developed rockfall protective cable-net structure

    NASA Astrophysics Data System (ADS)

    Dhakal, S.; Bhandary, N. P.; Yatabe, R.; Kinoshita, N.

    2012-04-01

    In a previous companion paper, we presented a three-tier modelling of a particular type of rockfall protective cable-net structure (barrier), developed newly in Japan. Therein, we developed a three-dimensional, Finite Element based, nonlinear numerical model having been calibrated/back-calculated and verified with the element- and structure-level physical tests. Moreover, using a very simple, lumped-mass, single-degree-of-freedom, equivalently linear analytical model, a global-displacement-predictive correlation was devised by modifying the basic equation - obtained by combining the principles of conservation of linear momentum and energy - based on the back-analysis of the tests on the numerical model. In this paper, we use the developed models to explore the performance enhancement potential of the structure in terms of (a) the control of global displacement - possibly the major performance criterion for the proposed structure owing to a narrow space available in the targeted site, and (b) the increase in energy dissipation by the existing U-bolt-type Friction-brake Devices - which are identified to have performed weakly when integrated into the structure. A set of parametric investigations have revealed correlations to achieve the first objective in terms of the structure's mass, particularly by manipulating the wire-net's characteristics, and has additionally disclosed the effects of the impacting-block's parameters. Towards achieving the second objective, another set of parametric investigations have led to a proposal of a few innovative improvements in the constitutive behaviour (model) of the studied brake device (dissipator), in addition to an important recommendation of careful handling of the device based on the identified potential flaw.

  11. The geomorphology of Ceres

    USGS Publications Warehouse

    Buczkowski, D.L.; Schmidt, B.E.; Williams, D.A.; Mest, S.C.; Scully, J.E.C.; Ermakov, A.; Preusker, F.; Schenk, P.; Otto, K. A.; Hiesinger, H.; O'Brien, D.; Marchi, S.; Sizemore, H.G.; Hughson, K.; Chilton, H.; Bland, M.; Byrne, S.; Schorghofer, N.; Platz, T.; Jaumann, R.; Roatsch, T.; Sykes, M. V.; Nathues, A.; De Sanctis, M.C.; Raymond, C.A.; Russell, C.T.

    2016-01-01

    Analysis of Dawn spacecraft Framing Camera image data allows evaluation of the topography and geomorphology of features on the surface of Ceres. The dwarf planet is dominated by numerous craters, but other features are also common. Linear structures include both those associated with impact craters and those that do not appear to have any correlation to an impact event. Abundant lobate flows are identified, and numerous domical features are found at a range of scales. Features suggestive of near-surface ice, cryomagmatism, and cryovolcanism have been identified. Although spectroscopic analysis has currently detected surface water ice at only one location on Ceres, the identification of these potentially ice-related features suggests that there may be at least some ice in localized regions in the crust.

  12. Functional Imaging and Migraine: New Connections?

    PubMed Central

    Schwedt, Todd J.; Chong, Catherine D.

    2015-01-01

    Purpose of Review Over the last several years, a growing number of brain functional imaging studies have provided insights into mechanisms underlying migraine. This manuscript reviews the recent migraine functional neuroimaging literature and provides recommendations for future studies that will help fill knowledge gaps. Recent Findings Positron emission tomography (PET) and functional magnetic resonance imaging (fMRI) studies have identified brain regions that might be responsible for mediating the onset of a migraine attack and those associated with migraine symptoms. Enhanced activation of brain regions that facilitate processing of sensory stimuli suggests a mechanism by which migraineurs are hypersensitive to visual, olfactory, and cutaneous stimuli. Resting state functional connectivity MRI studies have identified numerous brain regions and functional networks with atypical functional connectivity in migraineurs, suggesting that migraine is associated with aberrant brain functional organization. Summary fMRI and PET studies that have identified brain regions and brain networks that are atypical in migraine have helped to describe the neurofunctional basis for migraine symptoms. Future studies should compare functional imaging findings in migraine to other headache and pain disorders and should explore the utility of functional imaging data as biomarkers for diagnostic and treatment purposes. PMID:25887764

  13. Adiabatic partition effect on natural convection heat transfer inside a square cavity: experimental and numerical studies

    NASA Astrophysics Data System (ADS)

    Mahmoudinezhad, S.; Rezania, A.; Yousefi, T.; Shadloo, M. S.; Rosendahl, L. A.

    2018-02-01

    A steady state and two-dimensional laminar free convection heat transfer in a partitioned cavity with horizontal adiabatic and isothermal side walls is investigated using both experimental and numerical approaches. The experiments and numerical simulations are carried out using a Mach-Zehnder interferometer and a finite volume code, respectively. A horizontal and adiabatic partition, with angle of θ is adjusted such that it separates the cavity into two identical parts. Effects of this angel as well as Rayleigh number on the heat transfer from the side-heated walls are investigated in this study. The results are performed for the various Rayleigh numbers over the cavity side length, and partition angles ranging from 1.5 × 105 to 4.5 × 105, and 0° to 90°, respectively. The experimental verification of natural convective flow physics has been done by using FLUENT software. For a given adiabatic partition angle, the results show that the average Nusselt number and consequently the heat transfer enhance as the Rayleigh number increases. However, for a given Rayleigh number the maximum and the minimum heat transfer occurs at θ = 45°and θ = 90°, respectively. Two responsible mechanisms for this behavior, namely blockage ratio and partition orientation, are identified. These effects are explained by numerical velocity vectors and experimental temperatures contours. Based on the experimental data, a new correlation that fairly represents the average Nusselt number of the heated walls as functions of Rayleigh number and the angel of θ for the aforementioned ranges of data is proposed.

  14. Assessing the home fire safety of urban older adults: a case study.

    PubMed

    Twyman, Stephanie; Fahey, Erin; Lehna, Carlee

    2014-01-01

    Older adults are at a higher risk for fatal house fire injury due to decreased mobility, chronic illness, and lack of smoke alarms. The purpose of this illustrative case study is to describe the home fire safety (HFS) status of an urban older adult who participated in a large study funded by the Federal Emergency Management Agency (FEMA). During a home visit with the participant, HFS data were collected from documents, observation, physical artifacts, reflective logs, and interviews. Numerous HFS hazards were identified including non-working smoke alarms, inadequate number and inappropriate placement of smoke alarms, lack of carbon monoxide (CO) alarms, inability to identify a home fire escape plan, hot water heater temperature set too high, and cooking hazards. Identification of HFS risk factors will assist in the development of educational materials that can be tailored to the older adult population to decrease their risk of fire-related injuries and death.

  15. An assessment of America's tobacco-free colleges and universities.

    PubMed

    Plaspohl, Sara S; Parrillo, Anthony V; Vogel, Robert; Tedders, Stuart; Epstein, Andrew

    2012-01-01

    This study examined the extent to which US campuses identified as "100% tobacco-free" by the American Lung Association of Oregon adhered to the American College Health Association's the most recent guidelines and recommendations promoting tobacco-free environments in colleges and universities. A key informant from 162 of 175 institutions (92.6% response rate) completed an online survey between January 2010 and February 2010. The variables under study were assessed via a cross-sectional research design. Participants completed a 35-item survey regarding their school's tobacco policies, procedures, and enforcement practices. Although the vast majority of schools had written policies and procedures in place, schools with current policies were the most compliant. Numerous opportunities for improved adherence were identified in the results. Findings from this study may help institutions in the development and implementation of a new tobacco policy, as well as strengthen policies among existing tobacco-free schools.

  16. Injury Patterns and Sources of Non-Ejected Occupants in Trip-Over Crashes: A Survey of NASS-CDS Database from 1997 to 2002

    PubMed Central

    Hu, Jingwen; Lee, Jong B.; Yang, King H.; King, Albert I.

    2005-01-01

    The objective of this study was to investigate the main injury patterns and sources of non-ejected occupants (i.e. no full/partial ejection) during trip-over crashes, using the NASS-CDS database. Specific injury types and sources of the head, chest, and neck were identified. Results from this study suggest that cerebrum injuries, especially subarachnoid hemorrhage, rib fractures, lung injuries, and cervical spine fractures need to be emphasized if cadaveric tests or numerical simulations are designed to study rollover injury mechanisms. The roof has been identified as the major source for head and neck injuries. However, changing the roof design alone is not likely to improve rollover safety. Instead, the belt restraint systems, passive airbags, roof structure, and new innovations need to be considered in a systematic manner to provide enhanced rollover occupant protection. PMID:16179144

  17. Preliminary Numerical Simulation of IR Structure Development in a Hypothetical Uranium Release.

    DTIC Science & Technology

    1981-11-16

    art Identify by block nAsb.’) IR Structure Power spectrum Uranium release Parallax effects Numerical simulation PHARO code Isophots LWIR 20. _PSTRACT...release at 200 km altitude. Of interest is the LWIR emission from uranium oxide ions, induced by sunlight and earthshine. Assuming a one-level fluid...defense systems of long wave infrared ( LWIR ) emissions from metallic oxides in the debris from a high altitude nuclear explosion (HANE) is an

  18. Development and Analysis of Desiccant Enhanced Evaporative Air Conditioner Prototype

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kozubal, E.; Woods, J.; Judkoff, R.

    2012-04-01

    This report documents the design of a desiccant enhanced evaporative air conditioner (DEVAP AC) prototype and the testing to prove its performance. Previous numerical modeling and building energy simulations indicate a DEVAP AC can save significant energy compared to a conventional vapor compression AC (Kozubal et al. 2011). The purposes of this research were to build DEVAP prototypes, test them to validate the numerical model, and identify potential commercialization barriers.

  19. Parameter Estimation of Computationally Expensive Watershed Models Through Efficient Multi-objective Optimization and Interactive Decision Analytics

    NASA Astrophysics Data System (ADS)

    Akhtar, Taimoor; Shoemaker, Christine

    2016-04-01

    Watershed model calibration is inherently a multi-criteria problem. Conflicting trade-offs exist between different quantifiable calibration criterions indicating the non-existence of a single optimal parameterization. Hence, many experts prefer a manual approach to calibration where the inherent multi-objective nature of the calibration problem is addressed through an interactive, subjective, time-intensive and complex decision making process. Multi-objective optimization can be used to efficiently identify multiple plausible calibration alternatives and assist calibration experts during the parameter estimation process. However, there are key challenges to the use of multi objective optimization in the parameter estimation process which include: 1) multi-objective optimization usually requires many model simulations, which is difficult for complex simulation models that are computationally expensive; and 2) selection of one from numerous calibration alternatives provided by multi-objective optimization is non-trivial. This study proposes a "Hybrid Automatic Manual Strategy" (HAMS) for watershed model calibration to specifically address the above-mentioned challenges. HAMS employs a 3-stage framework for parameter estimation. Stage 1 incorporates the use of an efficient surrogate multi-objective algorithm, GOMORS, for identification of numerous calibration alternatives within a limited simulation evaluation budget. The novelty of HAMS is embedded in Stages 2 and 3 where an interactive visual and metric based analytics framework is available as a decision support tool to choose a single calibration from the numerous alternatives identified in Stage 1. Stage 2 of HAMS provides a goodness-of-fit measure / metric based interactive framework for identification of a small subset (typically less than 10) of meaningful and diverse set of calibration alternatives from the numerous alternatives obtained in Stage 1. Stage 3 incorporates the use of an interactive visual analytics framework for decision support in selection of one parameter combination from the alternatives identified in Stage 2. HAMS is applied for calibration of flow parameters of a SWAT model, (Soil and Water Assessment Tool) designed to simulate flow in the Cannonsville watershed in upstate New York. Results from the application of HAMS to Cannonsville indicate that efficient multi-objective optimization and interactive visual and metric based analytics can bridge the gap between the effective use of both automatic and manual strategies for parameter estimation of computationally expensive watershed models.

  20. Risk assessment of oil and gas well drilling activities in Iran - a case study: human factors.

    PubMed

    Amir-Heidari, Payam; Farahani, Hadi; Ebrahemzadih, Mehrzad

    2015-01-01

    Oil and gas well drilling activities are associated with numerous hazards which have the potential to cause injury or harm for people, property and the environment. These hazards are also a threat for the reputation of drilling companies. To prevent accidents and undesired events in drilling operations it is essential to identify, evaluate, assess and control the attendant risks. In this work, a structured methodology is proposed for risk assessment of drilling activities. A case study is performed to identify, analyze and assess the risks arising from human factors in one of the on shore drilling sites in southern Iran. A total of 17 major hazards were identified and analyzed using the proposed methodology. The results showed that the residual risks of 100% of these hazards were in the acceptable or transitional zone, and their levels were expected to be lowered further by proper controls. This structured methodology may also be used in other drilling sites and companies for assessing the risks.

  1. A functional cancer genomics screen identifies a druggable synthetic lethal interaction between MSH3 and PRKDC.

    PubMed

    Dietlein, Felix; Thelen, Lisa; Jokic, Mladen; Jachimowicz, Ron D; Ivan, Laura; Knittel, Gero; Leeser, Uschi; van Oers, Johanna; Edelmann, Winfried; Heukamp, Lukas C; Reinhardt, H Christian

    2014-05-01

    Here, we use a large-scale cell line-based approach to identify cancer cell-specific mutations that are associated with DNA-dependent protein kinase catalytic subunit (DNA-PKcs) dependence. For this purpose, we profiled the mutational landscape across 1,319 cancer-associated genes of 67 distinct cell lines and identified numerous genes involved in homologous recombination-mediated DNA repair, including BRCA1, BRCA2, ATM, PAXIP, and RAD50, as being associated with non-oncogene addiction to DNA-PKcs. Mutations in the mismatch repair gene MSH3, which have been reported to occur recurrently in numerous human cancer entities, emerged as the most significant predictors of DNA-PKcs addiction. Concordantly, DNA-PKcs inhibition robustly induced apoptosis in MSH3-mutant cell lines in vitro and displayed remarkable single-agent efficacy against MSH3-mutant tumors in vivo. Thus, we here identify a therapeutically actionable synthetic lethal interaction between MSH3 and the non-homologous end joining kinase DNA-PKcs. Our observations recommend DNA-PKcs inhibition as a therapeutic concept for the treatment of human cancers displaying homologous recombination defects.

  2. Microstructured optical fibers for terahertz waveguiding regime by using an analytical field model

    NASA Astrophysics Data System (ADS)

    Sharma, Dinesh Kumar; Sharma, Anurag; Tripathi, Saurabh Mani

    2017-12-01

    Microstructured optical fibres (MOFs) are seen as novel optical waveguide for the potential applications in the terahertz (THz) band as they provide a flexible route towards THz waveguiding. Using the analytical field model (Sharma et al., 2014) developed for index-guiding MOFs with hexagonal lattice of circular air-holes in the photonic crystal cladding; we aim to study the propagation characteristics such as effective index, near and the far-field radiation patterns and its evolution from near-to-far-field domain, spot size, effective mode area, and the numerical aperture at the THz regime. Further, we present an analytical field expression for the next higher-order mode of the MOF for studying the modal properties at terahertz frequencies. Also, we investigate the mode cut-off conditions for identifying the single-mode operation range at THz frequencies. Emphasis is put on studying the coupling characteristics of MOF geometries for efficient mode coupling. Comparisons with available experimental and numerical simulation results, e.g., those based on the full-vector finite element method (FEM) and the finite-difference frequency-domain (FDFD) method have been included.

  3. Effect of Aromatherapy Massage on Chemotherapy-Induced Peripheral Neuropathic Pain and Fatigue in Patients Receiving Oxaliplatin: An Open Label Quasi-Randomized Controlled Pilot Study.

    PubMed

    Izgu, Nur; Ozdemir, Leyla; Bugdayci Basal, Fatma

    2017-12-02

    Patients receiving oxaliplatin may experience peripheral neuropathic pain and fatigue. Aromatherapy massage, a nonpharmacological method, may help to control these symptoms. The aim of this open-label, parallel-group, quasi-randomized controlled pilot study was to investigate the effect of aromatherapy massage on chemotherapy-induced peripheral neuropathic pain and fatigue in patients receiving oxaliplatin. Stratified randomization was used to allocate 46 patients to 2 groups: intervention (n = 22) and control (n = 24). Between week 1 and week 6, participants in the intervention group (IG) received aromatherapy massage 3 times a week. There was no intervention in weeks 7 and 8. The control group (CG) received routine care. Neuropathic pain was identified using the Douleur Neuropathique 4 Questions; severity of painful paresthesia was assessed with the numerical rating scale; fatigue severity was identified with the Piper Fatigue Scale. At week 6, the rate of neuropathic pain was significantly lower in the IG, when compared with the CG. The severity of painful paresthesia based on numerical rating scale in the IG was significantly lower than that in the CG at weeks 2, 4, and 6. At week 8, fatigue severity in the IG was significantly lower when compared with CG (P < .05). Aromatherapy massage may be useful in the management of chemotherapy-induced peripheral neuropathic pain and fatigue. This pilot study suggests that aromatherapy massage may be useful to relieve neuropathic pain and fatigue. However, there is a need for further clinical trials to validate the results of this study.

  4. A review on the solution of Grad-Shafranov equation in the cylindrical coordinates based on the Chebyshev collocation technique

    NASA Astrophysics Data System (ADS)

    Amerian, Z.; Salem, M. K.; Salar Elahi, A.; Ghoranneviss, M.

    2017-03-01

    Equilibrium reconstruction consists of identifying, from experimental measurements, a distribution of the plasma current density that satisfies the pressure balance constraint. Numerous methods exist to solve the Grad-Shafranov equation, describing the equilibrium of plasma confined by an axisymmetric magnetic field. In this paper, we have proposed a new numerical solution to the Grad-Shafranov equation (an axisymmetric, magnetic field transformed in cylindrical coordinates solved with the Chebyshev collocation method) when the source term (current density function) on the right-hand side is linear. The Chebyshev collocation method is a method for computing highly accurate numerical solutions of differential equations. We describe a circular cross-section of the tokamak and present numerical result of magnetic surfaces on the IR-T1 tokamak and then compare the results with an analytical solution.

  5. Difficulties in applying numerical simulations to an evaluation of occupational hazards caused by electromagnetic fields

    PubMed Central

    Zradziński, Patryk

    2015-01-01

    Due to the various physical mechanisms of interaction between a worker's body and the electromagnetic field at various frequencies, the principles of numerical simulations have been discussed for three areas of worker exposure: to low frequency magnetic field, to low and intermediate frequency electric field and to radiofrequency electromagnetic field. This paper presents the identified difficulties in applying numerical simulations to evaluate physical estimators of direct and indirect effects of exposure to electromagnetic fields at various frequencies. Exposure of workers operating a plastic sealer have been taken as an example scenario of electromagnetic field exposure at the workplace for discussion of those difficulties in applying numerical simulations. The following difficulties in reliable numerical simulations of workers’ exposure to the electromagnetic field have been considered: workers’ body models (posture, dimensions, shape and grounding conditions), working environment models (objects most influencing electromagnetic field distribution) and an analysis of parameters for which exposure limitations are specified in international guidelines and standards. PMID:26323781

  6. Modelling Sawing of Metal Tubes Through FEM Simulation

    NASA Astrophysics Data System (ADS)

    Bort, C. M. Giorgio; Bosetti, P.; Bruschi, S.

    2011-05-01

    The paper presents the development of a numerical model of the sawing process of AISI 304 thin tubes, which is cut through a circular blade with alternating roughing and finishing teeth. The numerical simulation environment is the three-dimensional FEM software Deform™ v.10.1. The teeth actual trajectories were determined by a blade kinematics analysis developed in Matlab™. Due to the manufacturing rolling steps and subsequent welding stage, the tube material is characterized by a gradient of properties along its thickness. Consequently, a simplified cutting test was set up and carried out in order to identify the values of relevant material parameters to be used in the numerical model. The dedicated test was the Orthogonal Tube Cutting test (OTC), which was performed on an instrumented lathe. The proposed numerical model was validated by comparing numerical results and experimental data obtained from sawing tests carried out on an industrial machine. The following outputs were compared: the cutting force, the chip thickness, and the chip contact area.

  7. Symbolic, Nonsymbolic and Conceptual: An Across-Notation Study on the Space Mapping of Numerals.

    PubMed

    Zhang, Yu; You, Xuqun; Zhu, Rongjuan

    2016-07-01

    Previous studies suggested that there are interconnections between two numeral modalities of symbolic notation and nonsymbolic notation (array of dots), differences and similarities of the processing, and representation of the two modalities have both been found in previous research. However, whether there are differences between the spatial representation and numeral-space mapping of the two numeral modalities of symbolic notation and nonsymbolic notation is still uninvestigated. The present study aims to examine whether there are differences between the spatial representation and numeral-space mapping of the two numeral modalities of symbolic notation and nonsymbolic notation; especially how zero, as both a symbolic magnitude numeral and a nonsymbolic conceptual numeral, mapping onto space; and if the mapping happens automatically at an early stage of the numeral information processing. Results of the two experiments demonstrate that the low-level processing of symbolic numerals including zero and nonsymbolic numerals except zero can mapping onto space, whereas the low-level processing of nonsymbolic zero as a semantic conceptual numeral cannot mapping onto space, which indicating the specialty of zero in the numeral domain. The present study indicates that the processing of non-semantic numerals can mapping onto space, whereas semantic conceptual numerals cannot mapping onto space. © The Author(s) 2016.

  8. A numerical and theoretical study on the aerodynamics of a rhinoceros beetle (Trypoxlyus dichotomus) and optimization of its wing kinematics in hover

    NASA Astrophysics Data System (ADS)

    Oh, Sehyeong; Lee, Boogeon; Park, Hyungmin; Choi, Haecheon

    2017-11-01

    We investigate a hovering rhinoceros beetle using numerical simulation and blade element theory. Numerical simulations are performed using an immersed boundary method. In the simulation, the hindwings are modeled as a rigid flat plate, and three-dimensionally scanned elytra and body are used. The results of simulation indicate that the lift force generated by the hindwings alone is sufficient to support the weight, and the elytra generate negligible lift force. Considering the hindwings only, we present a blade element model based on quasi-steady assumptions to identify the mechanisms of aerodynamic force generation and power expenditure in the hovering flight of a rhinoceros beetle. We show that the results from the present blade element model are in excellent agreement with numerical ones. Based on the current blade element model, we find the optimal wing kinematics minimizing the aerodynamic power requirement using a hybrid optimization algorithm combining a clustering genetic algorithm with a gradient-based optimizer. We show that the optimal wing kinematics reduce the aerodynamic power consumption, generating enough lift force to support the weight. This research was supported by a Grant to Bio-Mimetic Robot Research Center Funded by Defense Acquisition Program Administration, and by Agency for Defense Development (UD130070ID) and NRF-2016R1E1A1A02921549 of the MSIP of Korea.

  9. Multifractal Characteristics of Axisymmetric Jet Turbulence Intensity from Rans Numerical Simulation

    NASA Astrophysics Data System (ADS)

    Seo, Yongwon; Ko, Haeng Sik; Son, Sangyoung

    A turbulent jet bears diverse physical characteristics that have been unveiled yet. Of particular interest is to analyze the turbulent intensity, which has been a key factor to assess and determine turbulent jet performance since diffusive and mixing conditions are largely dependent on it. Multifractal measures are useful in terms of identifying characteristics of a physical quantity distributed over a spatial domain. This study examines the multifractal exponents of jet turbulence intensities obtained through numerical simulation. We acquired the turbulence intensities from numerical jet discharge experiments, where two types of nozzle geometry were tested based on a Reynolds-Averaged Navier-Stokes (RANS) equations. The k-𝜀 model and k-ω model were used for turbulence closure models. The results showed that the RANS model successfully regenerates transversal velocity profile, which is almost identical to an analytical solution. The RANS model also shows the decay of turbulence intensity in the longitudinal direction but it depends on the outfall nozzle lengths. The result indicates the existence of a common multifractal spectrum for turbulence intensity obtained from numerical simulation. Although the transverse velocity profiles are similar for two different turbulence models, the minimum Lipschitz-Hölder exponent (αmin) and entropy dimension (α1) are different. These results suggest that the multifractal exponents capture the difference in turbulence structures of hierarchical turbulence intensities produced by different turbulence models.

  10. Valx: A system for extracting and structuring numeric lab test comparison statements from text

    PubMed Central

    Hao, Tianyong; Liu, Hongfang; Weng, Chunhua

    2017-01-01

    Objectives To develop an automated method for extracting and structuring numeric lab test comparison statements from text and evaluate the method using clinical trial eligibility criteria text. Methods Leveraging semantic knowledge from the Unified Medical Language System (UMLS) and domain knowledge acquired from the Internet, Valx takes 7 steps to extract and normalize numeric lab test expressions: 1) text preprocessing, 2) numeric, unit, and comparison operator extraction, 3) variable identification using hybrid knowledge, 4) variable - numeric association, 5) context-based association filtering, 6) measurement unit normalization, and 7) heuristic rule-based comparison statements verification. Our reference standard was the consensus-based annotation among three raters for all comparison statements for two variables, i.e., HbA1c and glucose, identified from all of Type 1 and Type 2 diabetes trials in ClinicalTrials.gov. Results The precision, recall, and F-measure for structuring HbA1c comparison statements were 99.6%, 98.1%, 98.8% for Type 1 diabetes trials, and 98.8%, 96.9%, 97.8% for Type 2 Diabetes trials, respectively. The precision, recall, and F-measure for structuring glucose comparison statements were 97.3%, 94.8%, 96.1% for Type 1 diabetes trials, and 92.3%, 92.3%, 92.3% for Type 2 diabetes trials, respectively. Conclusions Valx is effective at extracting and structuring free-text lab test comparison statements in clinical trial summaries. Future studies are warranted to test its generalizability beyond eligibility criteria text. The open-source Valx enables its further evaluation and continued improvement among the collaborative scientific community. PMID:26940748

  11. Valx: A System for Extracting and Structuring Numeric Lab Test Comparison Statements from Text.

    PubMed

    Hao, Tianyong; Liu, Hongfang; Weng, Chunhua

    2016-05-17

    To develop an automated method for extracting and structuring numeric lab test comparison statements from text and evaluate the method using clinical trial eligibility criteria text. Leveraging semantic knowledge from the Unified Medical Language System (UMLS) and domain knowledge acquired from the Internet, Valx takes seven steps to extract and normalize numeric lab test expressions: 1) text preprocessing, 2) numeric, unit, and comparison operator extraction, 3) variable identification using hybrid knowledge, 4) variable - numeric association, 5) context-based association filtering, 6) measurement unit normalization, and 7) heuristic rule-based comparison statements verification. Our reference standard was the consensus-based annotation among three raters for all comparison statements for two variables, i.e., HbA1c and glucose, identified from all of Type 1 and Type 2 diabetes trials in ClinicalTrials.gov. The precision, recall, and F-measure for structuring HbA1c comparison statements were 99.6%, 98.1%, 98.8% for Type 1 diabetes trials, and 98.8%, 96.9%, 97.8% for Type 2 diabetes trials, respectively. The precision, recall, and F-measure for structuring glucose comparison statements were 97.3%, 94.8%, 96.1% for Type 1 diabetes trials, and 92.3%, 92.3%, 92.3% for Type 2 diabetes trials, respectively. Valx is effective at extracting and structuring free-text lab test comparison statements in clinical trial summaries. Future studies are warranted to test its generalizability beyond eligibility criteria text. The open-source Valx enables its further evaluation and continued improvement among the collaborative scientific community.

  12. Spectral element modelling of seismic wave propagation in visco-elastoplastic media including excess-pore pressure development

    NASA Astrophysics Data System (ADS)

    Oral, Elif; Gélis, Céline; Bonilla, Luis Fabián; Delavaud, Elise

    2017-12-01

    Numerical modelling of seismic wave propagation, considering soil nonlinearity, has become a major topic in seismic hazard studies when strong shaking is involved under particular soil conditions. Indeed, when strong ground motion propagates in saturated soils, pore pressure is another important parameter to take into account when successive phases of contractive and dilatant soil behaviour are expected. Here, we model 1-D seismic wave propagation in linear and nonlinear media using the spectral element numerical method. The study uses a three-component (3C) nonlinear rheology and includes pore-pressure excess. The 1-D-3C model is used to study the 1987 Superstition Hills earthquake (ML 6.6), which was recorded at the Wildlife Refuge Liquefaction Array, USA. The data of this event present strong soil nonlinearity involving pore-pressure effects. The ground motion is numerically modelled for different assumptions on soil rheology and input motion (1C versus 3C), using the recorded borehole signals as input motion. The computed acceleration-time histories show low-frequency amplification and strong high-frequency damping due to the development of pore pressure in one of the soil layers. Furthermore, the soil is found to be more nonlinear and more dilatant under triaxial loading compared to the classical 1C analysis, and significant differences in surface displacements are observed between the 1C and 3C approaches. This study contributes to identify and understand the dominant phenomena occurring in superficial layers, depending on local soil properties and input motions, conditions relevant for site-specific studies.

  13. The Relationship between Study Habits, Attitudes and Orientation among Developmental Freshmen of Kean College.

    ERIC Educational Resources Information Center

    Gersten, Susan G. Liss

    A study was conducted to determine if visual linguistic numeric, auditory linguistic numeric, and tactile concrete learners have statistically significant different study habits, study attitudes, and study orientation than their low visual linguistic numeric, low auditory linguistic numeric, and low tactile concrete counterparts. Data were…

  14. Use of enzymatic cleaners on US Navy ships. Research report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Venkatachalam, R.S.

    1996-03-01

    The Naval Surface Warfare Center, Carderock Division, conducted a study to determine the feasibility of using enzymatic and bacterial products in cleaning applications aboard U.S. Navy ships. A review of the most recent technical literature and a survey of potential suppliers were conducted. In addition, shipboard systems, subsystems and housekeeping processes were evaluated to identify suitable applications for enzymatic and bacterial cleaners. The study identified numerous commercial products that, based on manufacturers` claims, would be effective and safe for use aboard ship to clean walls, floors, galley work surfaces, engine and machine parts, drains, pipes, grease traps, collection, holding andmore » transfer (CHT) tanks, ballast tanks and bilge areas. However, the study also revealed the absence of standardized test protocols essential for validation of manufacturers` claims, and recommended the cooperative development of such protocols by representatives from the commercial sector, Government and academia. The need to obtain meaningful cost information based on actual use scenarios and to investigate any permitting issues associated with the discharge of related wastes to pierside facilities was also identified.« less

  15. Genetic and Environmental Factors Associated with Cannabis Involvement

    PubMed Central

    Bogdan, Ryan; Winstone, Jonathan MA; Agrawal, Arpana

    2016-01-01

    Approximately 50-70% of the variation in cannabis use and use disorders can be attributed to heritable factors. For cannabis use, the remaining variance can be parsed in to familial and person-specific environmental factors while for use disorders, only the latter contribute. While numerous candidate gene studies have identified the role of common variation influencing liability to cannabis involvement, replication has been elusive. To date, no genomewide association study has been sufficiently powered to identify significant loci. Despite this, studies adopting polygenic techniques and integrating genetic variation with neural phenotypes and measures of environmental risk, such as childhood adversity, are providing promising new leads. It is likely that the small effect sizes associated with variants related to cannabis involvement will only be robustly identified in substantially larger samples. Results of such large-scale efforts will provide valuable single variant targets for translational research in neurogenetic, pharmacogenetic and non-human animal models as well as polygenic risk indices that can be used to explore a host of other genetic hypotheses related to cannabis use and misuse. PMID:27642547

  16. A bifurcation study to guide the design of a landing gear with a combined uplock/downlock mechanism.

    PubMed

    Knowles, James A C; Lowenberg, Mark H; Neild, Simon A; Krauskopf, Bernd

    2014-12-08

    This paper discusses the insights that a bifurcation analysis can provide when designing mechanisms. A model, in the form of a set of coupled steady-state equations, can be derived to describe the mechanism. Solutions to this model can be traced through the mechanism's state versus parameter space via numerical continuation, under the simultaneous variation of one or more parameters. With this approach, crucial features in the response surface, such as bifurcation points, can be identified. By numerically continuing these points in the appropriate parameter space, the resulting bifurcation diagram can be used to guide parameter selection and optimization. In this paper, we demonstrate the potential of this technique by considering an aircraft nose landing gear, with a novel locking strategy that uses a combined uplock/downlock mechanism. The landing gear is locked when in the retracted or deployed states. Transitions between these locked states and the unlocked state (where the landing gear is a mechanism) are shown to depend upon the positions of two fold point bifurcations. By performing a two-parameter continuation, the critical points are traced to identify operational boundaries. Following the variation of the fold points through parameter space, a minimum spring stiffness is identified that enables the landing gear to be locked in the retracted state. The bifurcation analysis also shows that the unlocking of a retracted landing gear should use an unlock force measure, rather than a position indicator, to de-couple the effects of the retraction and locking actuators. Overall, the study demonstrates that bifurcation analysis can enhance the understanding of the influence of design choices over a wide operating range where nonlinearity is significant.

  17. Complex Routes of Nosocomial Vancomycin-Resistant Enterococcus faecium Transmission Revealed by Genome Sequencing.

    PubMed

    Raven, Kathy E; Gouliouris, Theodore; Brodrick, Hayley; Coll, Francesc; Brown, Nicholas M; Reynolds, Rosy; Reuter, Sandra; Török, M Estée; Parkhill, Julian; Peacock, Sharon J

    2017-04-01

    Vancomycin-resistant Enterococcus faecium (VREfm) is a leading cause of nosocomial infection. Here, we describe the utility of whole-genome sequencing in defining nosocomial VREfm transmission. A retrospective study at a single hospital in the United Kingdom identified 342 patients with E. faecium bloodstream infection over 7 years. Of these, 293 patients had a stored isolate and formed the basis for the study. The first stored isolate from each case was sequenced (200 VREfm [197 vanA, 2 vanB, and 1 isolate containing both vanA and vanB], 93 vancomycin-susceptible E. faecium) and epidemiological data were collected. Genomes were also available for E. faecium associated with bloodstream infections in 15 patients in neighboring hospitals, and 456 patients across the United Kingdom and Ireland. The majority of infections in the 293 patients were hospital-acquired (n = 249) or healthcare-associated (n = 42). Phylogenetic analysis showed that 291 of 293 isolates resided in a hospital-associated clade that contained numerous discrete clusters of closely related isolates, indicative of multiple introductions into the hospital followed by clonal expansion associated with transmission. Fine-scale analysis of 6 exemplar phylogenetic clusters containing isolates from 93 patients (32%) identified complex transmission routes that spanned numerous wards and years, extending beyond the detection of conventional infection control. These contained both vancomycin-resistant and -susceptible isolates. We also identified closely related isolates from patients at Cambridge University Hospitals NHS Foundation Trust and regional and national hospitals, suggesting interhospital transmission. These findings provide important insights for infection control practice and signpost areas for interventions. We conclude that sequencing represents a powerful tool for the enhanced surveillance and control of nosocomial E. faecium transmission and infection. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America.

  18. A bifurcation study to guide the design of a landing gear with a combined uplock/downlock mechanism

    PubMed Central

    Knowles, James A. C.; Lowenberg, Mark H.; Neild, Simon A.; Krauskopf, Bernd

    2014-01-01

    This paper discusses the insights that a bifurcation analysis can provide when designing mechanisms. A model, in the form of a set of coupled steady-state equations, can be derived to describe the mechanism. Solutions to this model can be traced through the mechanism's state versus parameter space via numerical continuation, under the simultaneous variation of one or more parameters. With this approach, crucial features in the response surface, such as bifurcation points, can be identified. By numerically continuing these points in the appropriate parameter space, the resulting bifurcation diagram can be used to guide parameter selection and optimization. In this paper, we demonstrate the potential of this technique by considering an aircraft nose landing gear, with a novel locking strategy that uses a combined uplock/downlock mechanism. The landing gear is locked when in the retracted or deployed states. Transitions between these locked states and the unlocked state (where the landing gear is a mechanism) are shown to depend upon the positions of two fold point bifurcations. By performing a two-parameter continuation, the critical points are traced to identify operational boundaries. Following the variation of the fold points through parameter space, a minimum spring stiffness is identified that enables the landing gear to be locked in the retracted state. The bifurcation analysis also shows that the unlocking of a retracted landing gear should use an unlock force measure, rather than a position indicator, to de-couple the effects of the retraction and locking actuators. Overall, the study demonstrates that bifurcation analysis can enhance the understanding of the influence of design choices over a wide operating range where nonlinearity is significant. PMID:25484601

  19. Stressors of newly graduated nurses in Shanghai paediatric hospital: a qualitative study.

    PubMed

    Hu, Yun; Zhang, Yaqing; Shen, Nanping; Wu, Juemin; Wu, Jia; Malmedal, Wenche K

    2017-04-01

    To identify stressors of newly graduated paediatric nurses at a children's hospital in Shanghai, China. Stress is an international phenomenon in nursing generally, but little is known about its effect on new paediatric nurses at the Shanghai paediatric hospital. Participants in this research were 25 newly graduated paediatric nurses. Their behaviours and perceptions were explored by field observations and interviews. Findings indicated that participants experienced numerous stressors: low work status, insufficient professional competence, heavy workload, inadequate supportive systems and uncertainty of career development. The results of the present study provide useful information for administrators to develop and improve postgraduate programmes to support novice paediatric nurses. Our research highlights the importance of identifying the stressors of new paediatric nurses in the light of a serious nurse shortage and an increasing birth rate. © 2016 John Wiley & Sons Ltd.

  20. Mapping of Mcs30, a new mammary carcinoma susceptibility quantitative trait locus (QTL30) on rat chromosome 12: identification of fry as a candidate Mcs gene.

    PubMed

    Ren, Xuefeng; Graham, Jessica C; Jing, Lichen; Mikheev, Andrei M; Gao, Yuan; Lew, Jenny Pan; Xie, Hong; Kim, Andrea S; Shang, Xiuling; Friedman, Cynthia; Vail, Graham; Fang, Ming Zhu; Bromberg, Yana; Zarbl, Helmut

    2013-01-01

    Rat strains differ dramatically in their susceptibility to mammary carcinogenesis. On the assumption that susceptibility genes are conserved across mammalian species and hence inform human carcinogenesis, numerous investigators have used genetic linkage studies in rats to identify genes responsible for differential susceptibility to carcinogenesis. Using a genetic backcross between the resistant Copenhagen (Cop) and susceptible Fischer 344 (F344) strains, we mapped a novel mammary carcinoma susceptibility (Mcs30) locus to the centromeric region on chromosome 12 (LOD score of ∼8.6 at the D12Rat59 marker). The Mcs30 locus comprises approximately 12 Mbp on the long arm of rat RNO12 whose synteny is conserved on human chromosome 13q12 to 13q13. After analyzing numerous genes comprising this locus, we identified Fry, the rat ortholog of the furry gene of Drosophila melanogaster, as a candidate Mcs gene. We cloned and determined the complete nucleotide sequence of the 13 kbp Fry mRNA. Sequence analysis indicated that the Fry gene was highly conserved across evolution, with 90% similarity of the predicted amino acid sequence among eutherian mammals. Comparison of the Fry sequence in the Cop and F344 strains identified two non-synonymous single nucleotide polymorphisms (SNPs), one of which creates a putative, de novo phosphorylation site. Further analysis showed that the expression of the Fry gene is reduced in a majority of rat mammary tumors. Our results also suggested that FRY activity was reduced in human breast carcinoma cell lines as a result of reduced levels or mutation. This study is the first to identify the Fry gene as a candidate Mcs gene. Our data suggest that the SNPs within the Fry gene contribute to the genetic susceptibility of the F344 rat strain to mammary carcinogenesis. These results provide the foundation for analyzing the role of the human FRY gene in cancer susceptibility and progression.

  1. Cross-disciplinary links in environmental systems science: Current state and claimed needs identified in a meta-review of process models.

    PubMed

    Ayllón, Daniel; Grimm, Volker; Attinger, Sabine; Hauhs, Michael; Simmer, Clemens; Vereecken, Harry; Lischeid, Gunnar

    2018-05-01

    Terrestrial environmental systems are characterised by numerous feedback links between their different compartments. However, scientific research is organized into disciplines that focus on processes within the respective compartments rather than on interdisciplinary links. Major feedback mechanisms between compartments might therefore have been systematically overlooked so far. Without identifying these gaps, initiatives on future comprehensive environmental monitoring schemes and experimental platforms might fail. We performed a comprehensive overview of feedbacks between compartments currently represented in environmental sciences and explores to what degree missing links have already been acknowledged in the literature. We focused on process models as they can be regarded as repositories of scientific knowledge that compile findings of numerous single studies. In total, 118 simulation models from 23 model types were analysed. Missing processes linking different environmental compartments were identified based on a meta-review of 346 published reviews, model intercomparison studies, and model descriptions. Eight disciplines of environmental sciences were considered and 396 linking processes were identified and ascribed to the physical, chemical or biological domain. There were significant differences between model types and scientific disciplines regarding implemented interdisciplinary links. The most wide-spread interdisciplinary links were between physical processes in meteorology, hydrology and soil science that drive or set the boundary conditions for other processes (e.g., ecological processes). In contrast, most chemical and biological processes were restricted to links within the same compartment. Integration of multiple environmental compartments and interdisciplinary knowledge was scarce in most model types. There was a strong bias of suggested future research foci and model extensions towards reinforcing existing interdisciplinary knowledge rather than to open up new interdisciplinary pathways. No clear pattern across disciplines exists with respect to suggested future research efforts. There is no evidence that environmental research would clearly converge towards more integrated approaches or towards an overarching environmental systems theory. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. The role of standardized data and terminological systems in computerized clinical decision support systems: literature review and survey.

    PubMed

    Ahmadian, Leila; van Engen-Verheul, Mariette; Bakhshi-Raiez, Ferishta; Peek, Niels; Cornet, Ronald; de Keizer, Nicolette F

    2011-02-01

    Clinical decision support systems (CDSSs) should be seamlessly integrated with existing clinical information systems to enable automatic provision of advice at the time and place where decisions are made. It has been suggested that a lack of agreed data standards frequently hampers this integration. We performed a literature review to investigate whether CDSSs used standardized (i.e. coded or numerical) data and which terminological systems have been used to code data. We also investigated whether a lack of standardized data was considered an impediment for CDSS implementation. Articles reporting an evaluation of a CDSS that provided a computerized advice based on patient-specific data items were identified based on a former literature review on CDSS and on CDSS studies identified in AMIA's 'Year in Review'. Authors of these articles were contacted to check and complete the extracted data. A questionnaire among the authors of included studies was used to determine the obstacles in CDSS implementation. We identified 77 articles published between 1995 and 2008. Twenty-two percent of the evaluated CDSSs used only numerical data. Fifty one percent of the CDSSs that used coded data applied an international terminology. The most frequently used international terminology were the ICD (International Classification of Diseases), used in 68% of the cases and LOINC (Logical Observation Identifiers Names and Codes) in 12% of the cases. More than half of the authors experienced barriers in CDSS implementation. In most cases these barriers were related to the lack of electronically available standardized data required to invoke or activate the CDSS. Many CDSSs applied different terminological systems to code data. This diversity hampers the possibility of sharing and reasoning with data within different systems. The results of the survey confirm the hypothesis that data standardization is a critical success factor for CDSS development. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  3. Functional Linear Model with Zero-value Coefficient Function at Sub-regions.

    PubMed

    Zhou, Jianhui; Wang, Nae-Yuh; Wang, Naisyin

    2013-01-01

    We propose a shrinkage method to estimate the coefficient function in a functional linear regression model when the value of the coefficient function is zero within certain sub-regions. Besides identifying the null region in which the coefficient function is zero, we also aim to perform estimation and inferences for the nonparametrically estimated coefficient function without over-shrinking the values. Our proposal consists of two stages. In stage one, the Dantzig selector is employed to provide initial location of the null region. In stage two, we propose a group SCAD approach to refine the estimated location of the null region and to provide the estimation and inference procedures for the coefficient function. Our considerations have certain advantages in this functional setup. One goal is to reduce the number of parameters employed in the model. With a one-stage procedure, it is needed to use a large number of knots in order to precisely identify the zero-coefficient region; however, the variation and estimation difficulties increase with the number of parameters. Owing to the additional refinement stage, we avoid this necessity and our estimator achieves superior numerical performance in practice. We show that our estimator enjoys the Oracle property; it identifies the null region with probability tending to 1, and it achieves the same asymptotic normality for the estimated coefficient function on the non-null region as the functional linear model estimator when the non-null region is known. Numerically, our refined estimator overcomes the shortcomings of the initial Dantzig estimator which tends to under-estimate the absolute scale of non-zero coefficients. The performance of the proposed method is illustrated in simulation studies. We apply the method in an analysis of data collected by the Johns Hopkins Precursors Study, where the primary interests are in estimating the strength of association between body mass index in midlife and the quality of life in physical functioning at old age, and in identifying the effective age ranges where such associations exist.

  4. Pathogenic and multidrug-resistant Escherichia fergusonii from broiler chicken.

    PubMed

    Forgetta, V; Rempel, H; Malouin, F; Vaillancourt, R; Topp, E; Dewar, K; Diarra, M S

    2012-02-01

    An Escherichia spp. isolate, ECD-227, was previously identified from the broiler chicken as a phylogenetically divergent and multidrug-resistant Escherichia coli possessing numerous virulence genes. In this study, whole genome sequencing and comparative genome analysis was used to further characterize this isolate. The presence of known and putative antibiotic resistance and virulence open reading frames were determined by comparison to pathogenic (E. coli O157:H7 TW14359, APEC O1:K1:H7, and UPEC UTI89) and nonpathogenic species (E. coli K-12 MG1655 and Escherichia fergusonii ATCC 35469). The assembled genome size of 4.87 Mb was sequenced to 18-fold depth of coverage and predicted to contain 4,376 open reading frames. Phylogenetic analysis of 537 open reading frames present across 110 enteric bacterial species identifies ECD-227 to be E. fergusonii. The genome of ECD-227 contains 5 plasmids showing similarity to known E. coli and Salmonella enterica plasmids. The presence of virulence and antibiotic resistance genes were identified and localized to the chromosome and plasmids. The mutation in gyrA (S83L) involved in fluoroquinolone resistance was identified. The Salmonella-like plasmids harbor antibiotic resistance genes on a class I integron (aadA, qacEΔ-sul1, aac3-VI, and sulI) as well as numerous virulence genes (iucABCD, sitABCD, cib, traT). In addition to the genome analysis, the virulence of ECD-227 was evaluated in a 1-d-old chick model. In the virulence assay, ECD-227 was found to induce 18 to 30% mortality in 1-d-old chicks after 24 h and 48 h of infection, respectively. This study documents an avian multidrug-resistant and virulent E. fergusonii. The existence of several resistance genes to multiple classes of antibiotics indicates that infection caused by ECD-227 would be difficult to treat using antimicrobials currently available for poultry.

  5. The Morphological Characteristics and Mechanical Formation of Giant Radial Dike Swarms on Venus: An Overview Emphasizing Recent Numerical Modeling Insights

    NASA Astrophysics Data System (ADS)

    McGovern, P. J., Jr.; Grosfils, E. B.; Le Corvec, N.; Ernst, R. E.; Galgana, G. A.

    2017-12-01

    Over 200 giant radial dike swarms have been identified on Venus using Magellan data, yielding insight into morphological characteristics long since erased by erosion and other processes on Earth. Since such radial dike systems are typically associated with magma reservoirs, large volcanoes and/or larger-scale plume activity—and because dike geometry reflects stress conditions at the time of intrusion—assessing giant radial dike formation in the context of swarm morphology can place important constraints upon this fundamental volcanotectonic process. Recent numerical models reveal that, contrary to what is reported in much of the published literature, it is not easy, mechanically, to produce either large or small radial dike systems. After extensive numerical examination of reservoir inflation, however, under conditions ranging from a simple halfspace to complex flexural loading, we have thus far identified four scenarios that produce radial dike systems. Two of these scenarios yield dike systems akin to those often associated with shield and stratocone volcanoes on Earth, while the other two, our focus here, are more consistent with the giant radial dike system geometries catalogued on Venus. In this presentation we will (a) review key morphological characteristics of the giant radial systems identified on Venus, (b) briefly illustrate why it is not easy, mechanically, to produce a radial dike system, (c) present the two volcanological circumstances we have identified that do allow a giant radial dike system to form, and (d) discuss current model limitations and potentially fruitful directions for future research.

  6. Identifying the association between interleukin-6 and lichen planus: A meta-analysis.

    PubMed

    Yin, Meng; Li, Guifeng; Song, Hui; Lin, Song

    2017-05-01

    Numerous studies have examined the association between interleukin-6 and the pathogenesis of lichen planus (LP)/oral LP (OLP) in various populations; however, there is a lack of systematic analysis. The aim of the present study was to assess this association more precisely, thus a meta-analysis was performed. Case-control studies, which were published up to December 2015, were obtained from PubMed, Embase and the China National Knowledge Infrastructure databases. Data were extracted and pooled mean differences (MDs) with 95% confidence intervals (CIs) were calculated. Ultimately, eight studies were included, comprising 299 LP/OLP cases and 231 control subjects. Overall, the pooled MD for IL-6 was 16.24 (95% CI, 9.84-22.64; I 2 =99% for heterogeneity). In the subgroup analysis by ethnicity, a significant increase of the IL-6 expression level was identified among Asian individuals, but not in Caucasian individuals. Thus, IL-6 may be significant in the pathogenesis of LP. However, further studies are required to validate these associations.

  7. Identifying the association between interleukin-6 and lichen planus: A meta-analysis

    PubMed Central

    Yin, Meng; Li, Guifeng; Song, Hui; Lin, Song

    2017-01-01

    Numerous studies have examined the association between interleukin-6 and the pathogenesis of lichen planus (LP)/oral LP (OLP) in various populations; however, there is a lack of systematic analysis. The aim of the present study was to assess this association more precisely, thus a meta-analysis was performed. Case-control studies, which were published up to December 2015, were obtained from PubMed, Embase and the China National Knowledge Infrastructure databases. Data were extracted and pooled mean differences (MDs) with 95% confidence intervals (CIs) were calculated. Ultimately, eight studies were included, comprising 299 LP/OLP cases and 231 control subjects. Overall, the pooled MD for IL-6 was 16.24 (95% CI, 9.84–22.64; I2=99% for heterogeneity). In the subgroup analysis by ethnicity, a significant increase of the IL-6 expression level was identified among Asian individuals, but not in Caucasian individuals. Thus, IL-6 may be significant in the pathogenesis of LP. However, further studies are required to validate these associations. PMID:28529737

  8. Factors affecting ethical behavior in pediatric occupational therapy: A qualitative study

    PubMed Central

    Kalantari, Minoo; Kamali, Mohammad; Joolaee, Soodabeh; Shafarodi, Narges; Rassafiani, Mehdi

    2015-01-01

    Background: It is the responsibility of each occupational therapist to always act ethically and professionally in a clinical setting. However, there is little information available concerning the factors influencing ethical behavior of occupational therapists at work. Since no study has been conducted in Iran on this topic, this qualitative study aimed to identify the factors influencing ethical behavior of pediatric occupational therapists. Methods: Twelve pediatric occupational therapists participated in this study. The sampling was purposeful, and the interviews continued until reaching data saturation. All interviews were recorded and transcribed. The data were analyzed by qualitative content analysis, and the ethics of qualitative research was considered. Results: The factors influencing ethical behavior were classified into four main categories including organizational factors, therapist related factors, client’s family issues, and social factors. Conclusion: This study identified numerous factors influencing the ethical behavior of pediatric occupational therapists that could be used to train occupational therapists, human resources managers, professional policy makers, and could also be used to conduct future researches, and produce tools. PMID:26913245

  9. Dynamic transcriptome profiling of Bean Common Mosaic Virus (BCMV) infection in Common Bean (Phaseolus vulgaris L.).

    PubMed

    Martin, Kathleen; Singh, Jugpreet; Hill, John H; Whitham, Steven A; Cannon, Steven B

    2016-08-11

    Bean common mosaic virus (BCMV) is widespread, with Phaseolus species as the primary host plants. Numerous BCMV strains have been identified on the basis of a panel of bean varieties that distinguish the pathogenicity types with respect to the viral strains. The molecular responses in Phaseolus to BCMV infection have not yet been well characterized. We report the transcriptional responses of a widely susceptible variety of common bean (Phaseolus vulgaris L., cultivar 'Stringless green refugee') to two BCMV strains, in a time-course experiment. We also report the genome sequence of a previously unreported BCMV strain. The interaction with the known strain NL1-Iowa causes moderate symptoms and large transcriptional responses, and the newly identified strain (Strain 2 or S2) causes severe symptoms and moderate transcriptional responses. The transcriptional profiles of host plants infected with the two isolates are distinct, and involve numerous differences in splice forms in particular genes, and pathway specific expression patterns. We identified differential host transcriptome response after infection of two different strains of Bean common mosaic virus (BCMV) in common bean (Phaseolus vulgaris L.). Virus infection initiated a suite of changes in gene expression level and patterns in the host plants. Pathways related to defense, gene regulation, metabolic processes, photosynthesis were specifically altered after virus infection. Results presented in this study can increase the understanding of host-pathogen interactions and provide resources for further investigations of the biological mechanisms in BCMV infection and defense.

  10. Computer Modeling and Simulation of Bullet Impact to the Human Thorax

    DTIC Science & Technology

    2000-06-01

    manufacturers into the design and assessment stag~e of their body armor systems. V50 36 testing as used by body armor manufacturers experimentally identifies a...was due to the use of numerical integration by the experimenters at AFIP to obtain the velocities and displacements. In order to set a standard for... numerical integration. As such, in the sternum velocity graph, the initial downward motion of the experimental results, dependent upon the initial negative

  11. Asymptotic-induced numerical methods for conservation laws

    NASA Technical Reports Server (NTRS)

    Garbey, Marc; Scroggs, Jeffrey S.

    1990-01-01

    Asymptotic-induced methods are presented for the numerical solution of hyperbolic conservation laws with or without viscosity. The methods consist of multiple stages. The first stage is to obtain a first approximation by using a first-order method, such as the Godunov scheme. Subsequent stages of the method involve solving internal-layer problems identified by using techniques derived via asymptotics. Finally, a residual correction increases the accuracy of the scheme. The method is derived and justified with singular perturbation techniques.

  12. The Seasat SAR Wind and Ocean Wave Monitoring Capabilities: A case study for pass 1339m

    NASA Technical Reports Server (NTRS)

    Beal, R. C.

    1980-01-01

    A well organized low energy 11 sec. swell system off the East Coast of the U.S. was detected with the Seasat Synthetic Aperture Radar and successfully tracked from deep water, across the continental shelf, and into shallow water. In addition, a less organized 7 sec. system was tentatively identified in the imagery. Both systems were independently confirmed with simultaneous wave spectral measurements from a research pier, aircraft laser profilometer data, and Fleet Numerical Spectral Ocean Wave Models.

  13. kMucormicosys due to Saksenaea vasiformis in a dog.

    PubMed

    Reynaldi, Francisco J; Giacoboni, Gabriela; Córdoba, Susana B; Romero, Julián; Reinoso, Enso H; Abrantes, Ruben

    2017-06-01

    A 2-year-old female Border collie was examined for dermatitis with a partial alopecic zone around her left front member. Six months later the lesion became swollen, alopecic with ulcerated areas. Microscopy analysis of samples showed numerous non-septate, branching, thin-walled and irregular shaped hyphal elements. Fungal cultures and molecular studies identified Saksenaea vasiformis. Treatments with griseofulvin, itraconazole and surgical debridement were used, however, fourteen months later the dog was euthanatized because of the unfavorable clinical outcome.

  14. Dark soliton fiber lasers.

    PubMed

    Tang, Dingyuan; Guo, Jun; Song, Yufeng; Zhang, Han; Zhao, Luming; Shen, Deyuan

    2014-08-11

    Dark soliton formation and soliton dynamics in all-normal dispersion cavity fiber ring lasers without an anti-saturable absorber in cavity is studied both theoretically and numerically. It is shown that under suitable conditions the dark solitons formed could be described by the nonlinear Schrödinger equation. The dark soliton formation in an all-normal-dispersion cavity erbium-doped fiber ring laser without an anti-saturable absorber in cavity is first experimentally demonstrated. Individual dark solitons are experimentally identified. Excellent agreement between theory and experiment is observed.

  15. Theory and modeling group

    NASA Technical Reports Server (NTRS)

    Holman, Gordon D.

    1989-01-01

    The primary purpose of the Theory and Modeling Group meeting was to identify scientists engaged or interested in theoretical work pertinent to the Max '91 program, and to encourage theorists to pursue modeling which is directly relevant to data which can be expected to result from the program. A list of participants and their institutions is presented. Two solar flare paradigms were discussed during the meeting -- the importance of magnetic reconnection in flares and the applicability of numerical simulation results to solar flare studies.

  16. Blog Fingerprinting: Identifying Anonymous Posts Written by an Author of Interest Using Word and Character Frequency Analysis

    DTIC Science & Technology

    2009-09-01

    Elizabeth, my bright, beautiful girl. Your smiles and laughter warm my heart, and your excitement to see me after a long day of study always helped to...in August 2004. Each blog is stored as a separate file, the name of which indicates the user’s numeric blogger ID, self reported gender, age...January 30, 2009). [36] Blogger . (2009). Blogger . [Online]. Available: http://www.blogger.com (accessed August 21, 2009). [37] Google Research Blog

  17. Localized traveling pulses in natural doubly diffusive convection

    NASA Astrophysics Data System (ADS)

    Lo Jacono, D.; Bergeon, A.; Knobloch, E.

    2017-09-01

    Two-dimensional natural doubly diffusive convection in a vertical slot driven by an imposed temperature difference in the horizontal is studied using numerical continuation and direct numerical simulation. Two cases are considered and compared. In the first a concentration difference that balances thermal buoyancy is imposed in the horizontal and stationary localized structures are found to be organized in a standard snakes-and-ladders bifurcation diagram. Disconnected branches of traveling pulses TPn consisting of n ,n =1 ,2 ,⋯ , corotating cells are identified and shown to accumulate on a tertiary branch of traveling waves. With Robin or mixed concentration boundary conditions on one wall all localized states travel and the hitherto stationary localized states may connect up with the traveling pulses. The stability of the TPn states is determined and unstable TPn shown to evolve into spatio-temporal chaos. The calculations are done with no-slip boundary conditions in the horizontal and periodic boundary conditions in the vertical.

  18. Impacts of the horizontal and vertical grids on the numerical solutions of the dynamical equations – Part 2: Quasi-geostrophic Rossby modes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Konor, Celal S.; Randall, David A.

    We use a normal-mode analysis to investigate the impacts of the horizontal and vertical discretizations on the numerical solutions of the quasi-geostrophic anelastic baroclinic and barotropic Rossby modes on a midlatitude β plane. The dispersion equations are derived for the linearized anelastic system, discretized on the Z, C, D, CD, (DC), A, E and B horizontal grids, and on the L and CP vertical grids. The effects of various horizontal grid spacings and vertical wavenumbers are discussed. A companion paper, Part 1, discusses the impacts of the discretization on the inertia–gravity modes on a midlatitude f plane.The results of our normal-modemore » analyses for the Rossby waves overall support the conclusions of the previous studies obtained with the shallow-water equations. We identify an area of disagreement with the E-grid solution.« less

  19. Implication of Two-Coupled Differential Van der Pol Duffing Oscillator in Weak Signal Detection

    NASA Astrophysics Data System (ADS)

    Peng, Hang-hang; Xu, Xue-mei; Yang, Bing-chu; Yin, Lin-zi

    2016-04-01

    The principle of the Van der Pol Duffing oscillator for state transition and for determining critical value is described, which has been studied to indicate that the application of the Van der Pol Duffing oscillator in weak signal detection is feasible. On the basis of this principle, an improved two-coupled differential Van der Pol Duffing oscillator is proposed which can identify signals under any frequency and ameliorate signal-to-noise ratio (SNR). The analytical methods of the proposed model and the construction of the proposed oscillator are introduced in detail. Numerical experiments on the properties of the proposed oscillator compared with those of the Van der Pol Duffing oscillator are carried out. Our numerical simulations have confirmed the analytical treatment. The results demonstrate that this novel oscillator has better detection performance than the Van der Pol Duffing oscillator.

  20. Sensitivity of geomagnetic reversal rate on core evolution from numerical dynamos

    NASA Astrophysics Data System (ADS)

    Driscoll, P. E.; Davies, C. J.

    2017-12-01

    The paleomagnetic record indicates the geodynamo has evolved from frequently reversing to non-reversing (superchron) magnetic states several times over the Phanerozoic. Previous theoretical studies demonstrated a positive correlation between magnetic reversal rate and core-mantle boundary heat flux. However, attempts to identify such a correlation between reversal rates and proxies for internal cooling rate, such as plume events, superchron cycles, and subduction rates, have been inconclusive. Here we revisit the magnetic reversal occurrence rate in numerical dynamos at low Ekman numbers (faster rotation) and high magnetic Prandtl numbers (ratio of viscous and magnetic diffusivities). We focus on how the correlation between reversal rate and convective power depends on the core evolution rate and on other factors, such as Ek, Pm, and thermal boundary conditions. We apply our results to the seafloor reversal record in an attempt to infer the energetic evolution of the lower mantle and core over that period.

Top