Synthesis, characterization and antimicrobial studies of Schiff base complexes
NASA Astrophysics Data System (ADS)
Zafar, Hina; Ahmad, Anis; Khan, Asad U.; Khan, Tahir Ali
2015-10-01
The Schiff base complexes, MLCl2 [M = Fe(II), Co(II), Ni(II), Cu(II) and Zn(II)] have been synthesized by the template reaction of respective metal ions with 2-acetylpyrrole and 1,3-diaminopropane in 1:2:1 M ratio. The complexes have been characterized by elemental analyses, ESI - mass, NMR (1H and 13C), IR, XRD, electronic and EPR spectral studies, magnetic susceptibility and molar conductance measurements. These studies show that all the complexes have octahedral arrangement around the metal ions. The molar conductance measurements of all the complexes in DMSO indicate their non-electrolytic nature. The complexes were screened for their antibacterial activity in vitro against Gram-positive (Streptococcus pyogenes) and Gram-negative (Klebsiella pneumoniae) bacteria. Among the metal complexes studied the copper complex [CuLCl2], showed highest antibacterial activity nearly equal to standard drug ciprofloxacin. Other complexes also showed considerable antibacterial activity. The relative order of activity against S. Pyogenes is as Cu(II) > Zn(II) > Co(II) = Fe(II) > Ni(II) and with K. Pneumonia is as Cu(II) > Co(II) > Zn(II) > Fe(II) > Ni(II).
Praveen, Marapaka; Sherazi, Syed K. A.
1998-01-01
Biologically active complexes of Co(II), Ni(II), Cu(II) and Zn(II) with novel ONO, NNO and SNO donor pyrazinoylhydrazine-derived compounds have been prepared and characterized on the basis of analytical data and various physicochemical studies. Distorted octahedral structures for all the complexes have been proposed. The synthesized ligands and their complexes have been screened for their antibacterial activity against bacterial species Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Klebsiella pneumonae. The activity data show the metal complexes to be more active than the parent free ligands against one or more bacterial species. PMID:18475857
Celedón, Gloria; González, Gustavo; Lissi, Eduardo; Cerda, Tania; Martinez, Diana; Soto, Carmen; Pupo, Mario; Pazos, Fabiola; Lanio, Maria E; Alvarez, Carlos
2009-11-01
Sticholysin II (St II) is a toxin from the sea anemona Stichodactyla helianthus that produces erythrocytes lysis at low concentration and its activity depends on the presence of calcium. Calcium may act modifying toxin interaction with erythrocyte membranes or activating cellular processes which may result in a modified St II lytic action. In this study we are reporting that, in the presence of external K(+), extracellular calcium decreased St II activity on erythrocytes. On the other hand an increase of intracellular calcium promotes Sty II lytic activity. The effect of intracellular calcium was specifically studied in relation to membrane lipid translocation elicited by scramblases and how this action influence St II lytic activity on erythrocytes. We used 0.5 mmol/L calcium and 10 mmol/L A23187, as calcium ionophore, for scramblases activation and found increased St II activity associated to increase of intracellular calcium. N-ethyl maleimide (activator) and 4,4'-diisothiocyanatostilbene-2,2'-disulfonate (inhibitor) were used as scramblases modulators in the assays which produced an increase and a decrease of the calcium effect, respectively. Results reported suggest an improved St II membrane pore-forming capacity promoted by intracellular calcium associated to membrane phospholipids translocation.
NASA Astrophysics Data System (ADS)
Al-Resayes, Saud I.; Shakir, Mohammad; Abbasi, Ambreen; Amin, Kr. Mohammad Yusuf; Lateef, Abdul
The Schiff base ligand, bis(indoline-2-one)triethylenetetramine (L) obtained from condensation of triethylenetetramine and isatin was used to synthesize the complexes of type, [ML]Cl2 [M = Co(II), Ni(II), Cu(II) and Zn(II)]. L was characterized on the basis of the results of elemental analysis, FT-IR, 1H and 13C NMR, mass spectroscopic studies. The stoichiometry, bonding and stereochemistries of complexes were ascertained on the basis of results of elemental analysis, magnetic susceptibility values, molar conductance and various spectroscopic studies. EPR, UV-vis and magnetic moments revealed an octahedral geometry for complexes. L and its Cu(II) and Zn(II) complexes were screened for their antibacterial activity. Analgesic activity of Cu(II) and Zn(II) complexes was also tested in rats by tail flick method. Both complexes were found to possess good antibacterial and moderate analgesic activity.
Removal of Heavy Metal Ions with Acid Activated Carbons Derived from Oil Palm and Coconut Shells
Rahman, Mokhlesur M.; Adil, Mohd; Yusof, Alias M.; Kamaruzzaman, Yunus B.; Ansary, Rezaul H.
2014-01-01
In this work, batch adsorption experiments were carried out to investigate the suitability of prepared acid activated carbons in removing heavy metal ions such as nickel(II), lead(II) and chromium(VI). Acid activated carbons were obtained from oil palm and coconut shells using phosphoric acid under similar activation process while the differences lie either in impregnation condition or in both pretreatment and impregnation conditions. Prepared activated carbons were modified by dispersing hydrated iron oxide. The adsorption equilibrium data for nickel(II) and lead(II) were obtained from adsorption by the prepared and commercial activated carbons. Langmuir and Freundlich models fit the data well. Prepared activated carbons showed higher adsorption capacity for nickel(II) and lead(II). The removal of chromium(VI) was studied by the prepared acid activated, modified and commercial activated carbons at different pH. The isotherms studies reveal that the prepared activated carbon performs better in low concentration region while the commercial ones in the high concentration region. Thus, a complete adsorption is expected in low concentration by the prepared activated carbon. The kinetics data for Ni(II), Pb(II) and Cr(VI) by the best selected activated carbon fitted very well to the pseudo-second-order kinetic model. PMID:28788640
Removal of mercury (II) from aqueous solution by activated carbon obtained from furfural.
Yardim, M F; Budinova, T; Ekinci, E; Petrov, N; Razvigorova, M; Minkova, V
2003-08-01
The adsorption of Hg(II) from aqueous solution at 293 K by activated carbon obtained from furfural is studied. The carbon is prepared by polymerization of furfural following carbonization and activation of the obtained polymer material with water vapor at 800 degrees C. Adsorption studies of Hg(II) are carried out varying some conditions: treatment time, metal ion concentration, adsorbent amount and pH. It is determined that Hg(II) adsorption follows both Langmuir and Freundlich isotherms. The adsorption capacity of the carbon is 174 mg/g. It is determined that Hg(II) uptake increases with increasing pH. Desorption studies are performed with hot water. The percent recovery of Hg(II) is 6%.
NASA Astrophysics Data System (ADS)
Ong, Soon-An; Toorisaka, Eiichi; Hirata, Makoto; Hano, Tadashi
2013-03-01
The adsorption of Cu(II), Cd(II) and Ni(II) ions from aqueous solutions by activated sludge and dried sludge was investigated under laboratory conditions to assess its potential in removing metal ions. The adsorption behavior of metal ions onto activated sludge and dried sludge was analyzed with Weber-Morris intra-particle diffusion model, Lagergren first-order model and pseudo second-order model. The rate constant of intra-particle diffusion on activated sludge and dried sludge increased in the sequence of Cu(II) > Ni(II) > Cd(II). According to the regression coefficients, it was observed that the kinetic adsorption data can fit better by the pseudo second-order model compared to the first-order Lagergren model with R 2 > 0.997. The adsorption capacities of metal ions onto activated sludge and dried sludge followed the sequence Ni(II) ≈ Cu(II) > Cd(II) and Cu(II) > Ni(II) > Cd(II).
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Rui-Qing; Tang, Xiao-Feng; Zhang, Bao-Li
Adventitial fibroblasts (AFs) can be activated by angiotensin II (Ang II) and exert pro-fibrotic and pro-inflammatory effects in vascular remodeling. Protease-activated receptor (PAR) 1 and 2 play a significant role in fibrogenic and inflammatory diseases. The present study hypothesized that PAR1 and PAR2 are involved in Ang II-induced AF activation and contribute to adventitial remodeling. We found that direct activation of PAR1 and PAR2 with PAR1-AP and PAR2-AP led to AF activation, including proliferation and differentiation of AFs, extracellular matrix synthesis, as well as production of pro-fibrotic cytokine TGF-β and pro-inflammatory cytokines IL-6 and MCP-1. Furthermore, PAR1 and PAR2 mediatedmore » Ang II-induced AF activation, since both PAR1 and PAR2 antagonists inhibited Ang II-induced proliferation, migration, differentiation, extracellular matrix synthesis and production of pro-fibrotic and pro-inflammatory cytokines in AFs. Finally, mechanistic study showed that Ang II, via Ang II type I receptor (AT1R), upregulated both PAR1 and PAR2 expression, and transactivated PAR1 and PAR2, as denoted by internalization of both proteins. In conclusion, our results suggest that PAR1 and PAR2 play a critical role in Ang II-induced AF activation, and this may contribute to adventitia-related pathological changes. - Highlights: • Direct activation of PAR1 and PAR2 led to adventitial fibroblast (AF) activation. • PAR1 and PAR2 antagonists attenuated Ang II-induced AF activation. • Ang II induced the upregulation and transactivation of PAR1/PAR2 in AFs.« less
Singleton, Michael W; Holbert, William H; Lee, Anh Tuyet; Bracey, James M; Churn, Severn B
2005-09-01
This study was conducted to characterize the early cellular changes in CaM kinase II activity that occur during the induction of status epilepticus (SE). The pilocarpine model of SE was characterized both behaviorally and electrographically. At specific time points after the first discrete seizure, specific brain regions were isolated for biochemical study. Phosphate incorporation into a CaM kinase II-specific substrate, autocamtide III, was used to determine kinase activity. After the development of SE, the data show an immediate inhibition of both cortical and hippocampal CaM kinase II activity in homogenate, but a delayed inhibition in synaptic kinase activity. The maintenance of synaptic kinase activity was due to a translocation of CaM kinase II protein to the synapse. However, despite the translocation of functional kinase, CaM kinase II activity was not maintained, membrane potential was not restored, and the newly translocated CaM kinase II did not terminate the SE event. Unlike the homogenate samples, in the crude synaptoplasmic membrane (SPM) subcellular fractions, a positive correlation is found between the duration of SE and the inhibition of CaM kinase II activity in both the cortex and hippocampus. The data support the hypothesis that alterations of CaM kinase II activity are involved in the early events of SE pathology.
Li, Juan; Xing, Xing; Li, Jiao; Shi, Mei; Lin, Aijun; Xu, Congbin; Zheng, Jianzhong; Li, Ronghua
2018-03-01
Sewage sludge produced from wastewater treatment is a pressing environmental issue. Mismanagement of the massive amount of sewage sludge would threat our valuble surface and shallow ground water resources. Use of activated carbon prepared from carbonization of these sludges for heavy metal removal can not only minimize and stabilize these hazardous materials but also realize resources reuse. In this study, thiol-functionalized activated carbon was synthesized from coal-blended sewage sludge, and its capacity was examined for removing Cu(II), Pb(II), Cd(II) and Ni(II) from water. Pyrolysis conditions to prepare activated carbons from the sludge and coal mixture were examined, and the synthesized material was found to achieve the highest BET surface area of 1094 m 2 /g under 500 °C and 30 min. Batch equilibrium tests indicated that the thiol-functionalized activated carbon had a maximum sorption capacity of 238.1, 96.2, 87.7 and 52.4 mg/g for Pb(II), Cd(II), Cu(II) and Ni(II) removal from water, respectively. Findings of this study suggest that thiol-functionalized activated carbon prepared from coal-blended sewage sludge would be a promising sorbent material for heavy metal removal from waters contaminated with Cu(II), Pb(II), Cd(II) and Ni(II). Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kumar, Anuj; Vashistha, Vinod Kumar; Tevatia, Prashant; Singh, Randhir
2017-04-01
Tetraazamacrocyclic complexes of MnII, FeIII, CoII and NiII have been synthesized by template method. These tetraazamacrocycles have been analyzed with various techniques like molar conductance, IR, UV-vis, mass spectral and cyclic voltammetric studies. On the basis of all these studies, octahedral geometry has been assigned to these tetraazamacrocyclic complexes. The DNA binding properties of these macrocyclic complexes have been investigated by electronic absorption spectra, fluorescence spectra, cyclic voltammetric and differential pulse voltammetric studies. The cyclic voltammetric data showed that ipc and ipa were effectively decreased in the presence of calf thymus DNA, which is a strong evidence for the interaction of these macrocyclic complexes with the calf thymus DNA (ct-DNA). The heterogeneous electron transfer rate constant found in the order: KCoII > KNiII > KMnII which indicates that CoII macrocyclic complex has formed a strong intercalated intermediate. The Stern-Volmer quenching constant (KSV) and voltammetric binding constant were found in the order KSV(CoII) > KSV(NiII) > KSV(MnII) and K+(CoII) > K+(NiII) > K+(MnII) which shows that CoII macrocyclic complex exhibits the high interaction affinity towards ct-DNA by the intercalation binding. Biological studies of the macrocyclic complexes compared with the standard drug like Gentamycin, have shown antibacterial activities against E. coli, P. aeruginosa, B. cereus, S. aureus and antifungal activity against C. albicans.
El-wakiel, Nadia; El-keiy, Mai; Gaber, Mohamed
2015-08-05
A new Schiff base of 2-aminobenzimidazole with 2,4-dihydroybezaldehyde (H₃L), and its Cu(II), Ni(II) and Co(II) complexes have been synthesized and characterized by elemental analyses, molar conductance, thermal analysis (TGA), inductive coupled plasma (ICP), magnetic moment measurements, IR, EI-mass, UV-Vis. and ESR spectral studies. On the basis of spectral studies and analytical data, it is evident that the Schiff base acts as dibasic tridentate ligand coordinating via deprotonated OH, NH and azomethine nitrogen atom. The results showed that Co(II) and Ni(II) complexes have tetrahedral structure while Cu(II) complexes has octahedral geometry. The kinetic and thermodynamic parameters of the thermal decomposition stages have been evaluated. The studied complexes were tested for their in vitro antimicrobial activities against some bacterial strains. The anticancer activity of the ligand and its metal complexes is evaluated against human liver Carcinoma (HEPG2) cell. These compounds exhibited a moderate and weak activity against the tested HEPG2 cell lines with IC₅₀ of 9.08, 18.2 and 19.7 μg/ml for ligand, Cu(II) and Ni(II) complexes, respectively. In vitro antioxidant activity of the newly synthesized compounds has also been evaluated. Copyright © 2015 Elsevier B.V. All rights reserved.
Han, Xinya; Zhu, Xiuyun; Zhu, Shuaihua; Wei, Lin; Hong, Zongqin; Guo, Li; Chen, Haifeng; Chi, Bo; Liu, Yan; Feng, Lingling; Ren, Yanliang; Wan, Jian
2016-01-25
In the present study, a series of novel maleimide derivatives were rationally designed and optimized, and their inhibitory activities against cyanobacteria class-II fructose-1,6-bisphosphate aldolase (Cy-FBA-II) and Synechocystis sp. PCC 6803 were further evaluated. The experimental results showed that the introduction of a bigger group (Br, Cl, CH3, or C6H3-o-F) on the pyrrole-2',5'-dione ring resulted in a decrease in the Cy-FBA-II inhibitory activity of the hit compounds. Generally, most of the hit compounds with high Cy-FBA-II inhibitory activities could also exhibit high in vivo activities against Synechocystis sp. PCC 6803. Especially, compound 10 not only shows a high Cy-FBA-II activity (IC50 = 1.7 μM) but also has the highest in vivo activity against Synechocystis sp. PCC 6803 (EC50 = 0.6 ppm). Thus, compound 10 was selected as a representative molecule, and its probable interactions with the surrounding important residues in the active site of Cy-FBA-II were elucidated by the joint use of molecular docking, molecular dynamics simulations, ONIOM calculations, and enzymatic assays to provide new insight into the binding mode of the inhibitors and Cy-FBA-II. The positive results indicate that the design strategy used in the present study is very likely to be a promising way to find novel lead compounds with high inhibitory activities against Cy-FBA-II in the future. The enzymatic and algal inhibition assays suggest that Cy-FBA-II is very likely to be a promising target for the design, synthesis, and development of novel specific algicides to solve cyanobacterial harmful algal blooms.
NASA Astrophysics Data System (ADS)
Shobana, Sutha; Subramaniam, Perumal; Mitu, Liviu; Dharmaraja, Jeyaprakash; Arvind Narayan, Sundaram
2015-01-01
Some biologically active mixed ligand complexes (1-9) have been synthesized from 5-Fluorouracil (5-FU; A) and amino acids (B) such as glycine (gly), L-alanine (ala) and L-valine (val) with Ni(II), Cu(II) and Zn(II) ions. The synthesized mixed ligand complexes (1-9) were characterized by various physico-chemical, spectral, thermal and morphological studies. 5-Fluorouracil and its mixed ligand complexes have been tested for their in vitro biological activities against some pathogenic bacterial and fungal species by the agar well diffusion method. The in vitro antioxidant activities of 5-Fluorouracil and its complexes have also been investigated by using the DPPH assay method. The results demonstrate that Cu(II) mixed ligand complexes (4-6) exhibit potent biological as well as antioxidant activities compared to 5-Fluorouracil and Ni(II) (1-3) and Zn(II) (7-9) mixed ligand complexes. Further, the cleaving activities of CT DNA under aerobic conditions show moderate activity with the synthesized Cu(II) and Ni(II) mixed ligand complexes (1-6) while no activity is seen with Zn(II) complexes (7-9). Binding studies of CT DNA with these complexes show a decrease in intensity of the charge transfer band to the extent of 5-15% along with a minor red shift. The free energy change values (Δ‡G) calculated from intrinsic binding constants indicate that the interaction between mixed ligand complex and DNA is spontaneous.
NASA Astrophysics Data System (ADS)
Ekmekcioglu, Pinar; Karabocek, Nevin; Karabocek, Serdar; Emirik, Mustafa
2015-11-01
A new Schiff base ligand (H2L) and its metal complexes have been prepared and characterized by elemental analysis, magnetic moment and spectral studies. The comparative in-vitro antimicrobial activities against various pathogens with reference to known antibiotics activity under the standard control of different concentrations revealed that the metal complexes (6-8) showed enhanced antimicrobial activities in general as compared to free ligand. As an exception, the free ligand showed better activity against Trichoderma. The antifungal activity experiments were performed in triplicate. The order of biochemical activity for metal complexes were observed as in the following. CuL > CoL > NiL, which is exactly same as the order of stability constants of these complexes. Additionally, we performed DFT and TD-DFT calculation for free ligand and Cu(II) complex to support the experimental data. The geometries of the Cu(II) complex have been optimized using the B3LYP level of theory. The theoretical calculations confirm that the copper (II) center exhibits a distorted square pyramidal geometry which is favored by experimental results.
Siddappa, Kuruba; Mane, Sunilkumar B.
2014-01-01
A simple condensation of 3-amino-2-methylquinazoline-4-one with 2-hydroxy-1-naphthaldehyde produced new tridentate ONO donor Schiff base ligand with efficient yield. The structural characterization of ligand and its Cu(II), Ni(II), Co(II), Mn(II), Zn(II), and Cd(II) complexes were achieved by the aid of elemental analysis, spectral characterization such as (UV-visible, IR, NMR, mass, and ESR), and magnetic data. The analytical and spectroscopic studies suggest the octahedral geometries of Cu(II), Co(II), Ni(II) and Mn(II) complexes and tetrahedral geometry of Zn(II) and Cd(II) complexes with the tridentate ONO Schiff base ligand. Furthermore, the conclusions drawn from these studies afford further support to the mode of bonding discussed on the basis of their 3D molecular modeling studies by considering different bond lengths, bond angles, and bond distance. The ligand and its metal complexes evaluated for their antimicrobial activity against Staphylococcus aureus (MTCC number 7443), Bacillus subtilis (MTCC number 9878), Escherichia coli (MTCC number 1698), Aspergillus niger (MTCC number 281), and Aspergillus flavus (MTCC number 277). The MIC of these compounds was found to be most active at 10 μg/mL concentration in inhibiting the growth of the tested organisms. The DNA cleavage activity of all the complexes was studied by gel electrophoresis method. PMID:24678278
NASA Astrophysics Data System (ADS)
Özbek, Neslihan; Alyar, Saliha; Alyar, Hamit; Şahin, Ertan; Karacan, Nurcan
2013-05-01
Copper(II), nickel(II), platinum(II) and palladium(II) complexes with 2-hydroxy-1-naphthaldehyde-N-methylpropanesulfonylhydrazone (nafpsmh) derived from propanesulfonic acid-1-methylhydrazide (psmh) were synthesized, their structure were identified, and antimicrobial activity of the compounds was screened against three Gram-positive and three Gram-negative bacteria. The results of antimicrobial studies indicate that Pt(II) and Pd(II) complexes showed the most activity against all bacteria. The crystal structure of 2-hydroxy-1-naphthaldehyde-N-methylpropanesulfonylhydrazone (nafpsmh) was also investigated by X-ray analysis. A series of Ni(II) sulfonyl hydrazone complexes (1-33) was synthesized and tested in vitro against Escherichia coli and Staphylococcus aureus. Their antimicrobial activities were used in the QSAR analysis. Four-parameter QSAR models revealed that nucleophilic reaction index for Ni and O atoms, and HOMO-LUMO energy gap play key roles in the antimicrobial activity.
Lu, D; Yang, H; Raizada, M K
1996-12-01
Angiotensin II (Ang II) stimulates expression of tyrosine hydroxylase and norepinephrine transporter genes in brain neurons; however, the signal-transduction mechanism is not clearly defined. This study was conducted to determine the involvement of the mitogen-activated protein (MAP) kinase signaling pathway in Ang II stimulation of these genes. MAP kinase was localized in the perinuclear region of the neuronal soma. Ang II caused activation of MAP kinase and its subsequent translocation from the cytoplasmic to nuclear compartment, both effects being mediated by AT1 receptor subtype. Ang II also stimulated SRE- and AP1-binding activities and fos gene expression and its translocation in a MAP kinase-dependent process. These observations are the first demonstration of a downstream signaling pathway involving MAP kinase in Ang II-mediated neuromodulation in noradrenergic neurons.
NASA Astrophysics Data System (ADS)
Özdemir, Ümmühan Özmen; Arslan, Fatma; Hamurcu, Fatma
2010-01-01
Ethane sulfonic acide hydrazide ( esh: CH 3CH 2SO 2NHNH 2) derivatives as 5-methylsalicyl-aldehydeethanesulfonylhydrazone ( 5msalesh), 5-methyl-2-hydroxyacetophenoneethane sulfonylhydrazone ( 5mafesh) and their Ni(II), Co(II) complexes have been synthesized for the first time. The structure of these compounds has been investigated by elemental analysis, FT-IR, 1H NMR, 13C NMR, LC/MS, UV-vis spectrophotometric method, magnetic susceptibility, thermal studies and conductivity measurements. The antibacterial activities of synthesized compounds were studied against Gram positive bacteria; Staphylococcus aureus, Bacillus subtilis, Bacillus magaterium and Gram negative bacteria; Salmonella enteritidis, Escherichia coli by using the microdilution broth method. The biological activity screening showed that ligands have more activity than complexes against the tested bacteria. The inhibition activities of these compounds on carbonic anhydrase II (CA II) have been investigated by comparing IC 50 and Ki values and it has been found that 5msalesh and its complexes have more enzyme inhibition efficiency than other compounds.
NASA Astrophysics Data System (ADS)
Sultan, J. S.; Fezea, S. M.; Mousa, F. H.
2018-05-01
A binucleating tetradentate Schiff base ligand, 1,4- di[amino methylene carboxylic] phenylene (H2L) and its forth new binuclear complexes [Co(II), Cu(II), Zn(II) and Cd(II)] were prepared via reaction metal (II) chloride with ligand (H2L) using 2:1 (M:L) in ethanol solvent. The new ligand (H2L) and its complexes were characterized by elemental microanalysis (C.H.N), atomic absorption, chloride content, molar conductance’s magnetic susceptibility, FTIR UV- Vis spectral and, 1H, 13 C- NMR (for H2L). The antibacterial activity with bacteria activity with bacteria, Staphylococcus aureus, Bacillus and Esccherichia Coli were studied.
NASA Astrophysics Data System (ADS)
Özbek, Neslihan; Alyar, Saliha; Memmi, Burcu Koçak; Gündüzalp, Ayla Balaban; Bahçeci, Zafer; Alyar, Hamit
2017-01-01
2-Hydroxyacetophenone-N-methyl p-toluenesulfonylhydrazone (afptsmh) derived from p-toluenesulfonicacid-1-methylhydrazide (ptsmh) and its Co(II), Pd(II), Pt(II) complexes were synthesized for the first time. Synthesized compounds were characterized by spectroscopic methods (FT-IR, 1Hsbnd 13C NMR, LC-MS, UV-vis), magnetic susceptibility and conductivity measurements. 1H and 13C shielding tensors for crystal structure of ligand were calculated with GIAO/DFT/B3LYP/6-311++G(d,p) methods in CDCl3. The vibrational band assignments were performed at B3LYP/6-311++G(d,p) theory level combined with scaled quantum mechanics force field (SQMFF) methodology. The antibacterial activities of synthesized compounds were studied against some Gram positive and Gram negative bacteria by using microdilution and disc diffusion methods. In vitro enzyme inhibitory effects of the compounds were measured by UV-vis spectrophotometer. The enzyme activities against human carbonic anhydrase II (hCA II) were evaluated as IC50 (the half maximal inhibitory concentration) values. It was found that afptsmh and its metal complexes have inhibitory effects on hCA II isoenzyme. General esterase activities were determined using alpha and beta naphtyl acetate substrates (α- and β-NAs) of Drosophila melanogaster (D. melanogaster). Activity results show that afptsmh does not strongly affect the bacteria strains and also shows poor inhibitory activity against hCAII isoenzyme whereas all complexes posses higher biological activities.
Lively, T N; Ferguson, H A; Galasinski, S K; Seto, A G; Goodrich, J A
2001-07-06
c-Jun is an oncoprotein that activates transcription of many genes involved in cell growth and proliferation. We studied the mechanism of transcriptional activation by human c-Jun in a human RNA polymerase II transcription system composed of highly purified recombinant and native transcription factors. Transcriptional activation by c-Jun depends on the TATA-binding protein (TBP)-associated factor (TAF) subunits of transcription factor IID (TFIID). Protein-protein interaction assays revealed that c-Jun binds with high specificity to the largest subunit of human TFIID, TAF(II)250. The region of TAF(II)250 bound by c-Jun lies in the N-terminal 163 amino acids. This same region of TAF(II)250 binds to TBP and represses its interaction with TATA boxes, thereby decreasing DNA binding by TFIID. We hypothesized that c-Jun is capable of derepressing the effect of the TAF(II)250 N terminus on TFIID-driven transcription. In support of this hypothesis, we found that c-Jun increased levels of TFIID-driven transcription in vitro when added at high concentrations to a DNA template lacking activator protein 1 (AP-1) sites. Moreover, c-Jun blocked the repression of TBP DNA binding caused by the N terminus of TAF(II)250. In addition to revealing a mechanism by which c-Jun activates transcription, our studies provide the first evidence that an activator can bind directly to the N terminus of TAF(II)250 to derepress RNA polymerase II transcription in vitro.
Cambados, Nadia; Walther, Thomas; Nahmod, Karen; Tocci, Johanna M; Rubinstein, Natalia; Böhme, Ilka; Simian, Marina; Sampayo, Rocío; Del Valle Suberbordes, Melisa; Kordon, Edith C; Schere-Levy, Carolina
2017-10-24
Angiotensin (Ang) II, the main effector peptide of the renin-angiotensin system, has been implicated in multiple aspects of cancer progression such as proliferation, migration, invasion, angiogenesis and metastasis. Ang-(1-7), is a biologically active heptapeptide, generated predominantly from AngII by the enzymatic activity of angiotensin converting enzyme 2. Previous studies have shown that Ang-(1-7) counterbalances AngII actions in different pathophysiological settings. In this study, we have analysed the impact of Ang-(1-7) on AngII-induced pro-tumorigenic features on normal murine mammary epithelial cells NMuMG and breast cancer cells MDA-MB-231. AngII stimulated the activation of the survival factor AKT in NMuMG cells mainly through the AT1 receptor. This PI3K/AKT pathway activation also promoted epithelial-mesenchymal transition (EMT). Concomitant treatment of NMuMG cells with AngII and Ang-(1-7) completely abolished EMT features induced by AngII. Furthermore, Ang-(1-7) abrogated AngII induced migration and invasion of the MDA-MB-231 cells as well as pro-angiogenic events such as the stimulation of MMP-9 activity and VEGF expression. Together, these results demonstrate for the first time that Ang-(1-7) counteracts tumor aggressive signals stimulated by AngII in breast cancer cells emerging the peptide as a potential therapy to prevent breast cancer progression.
Du, Junhui; Zhou, Shengtai; Carlton, Susan M.
2008-01-01
Several lines of evidence indicate that Group II metabotropic glutamate receptor (mGluR) activation can depress sensory transmission. We have reported the expression of Group II mGluRs on unmyelinated axons, many of which were presumed to be nociceptors, in the rat digital nerve (Carlton et al., 2001b). The goals of the present study are to further our understanding of Group II modulation of nociceptor processing in the periphery, documenting behavioral changes using inflammatory models and documenting, for the first time, cutaneous single fiber activity following exposure to a Group II agonist (2R,4R)-4-aminopyrrolidine-2,4-dicarboxylate (APDC) and antagonist LY341495 (LY). The data indicate that peripheral Group II mGluR activation does not depress nociceptive behaviors or nociceptor fiber responses in the non-sensitized state (i.e. following brief nociceptive mechanical or thermal stimulation) but can depress these responses when nociceptors are sensitized by exposure to formalin or inflammatory soup. Group II mGluR agonist-induced inhibition can be blocked by a selective Group II antagonist. Peripheral Group II mGluR-induced inhibition evoked in these studies occurs through activation of local receptors and not through spinal or supraspinal mechanisms. The data indicate that administration of selective Group II agonists may be potent therapeutic agents for prevention of peripheral sensitization and for treatment of inflammatory pain. PMID:18487022
Renal expression of aminopeptidase A in rats with two-kidney, one-clip hypertension.
Wolf, G; Wenzel, U; Assmann, K J; Stahl, R A
2000-12-01
Angiotensin II (ANG II) is a major factor involved in the progression of chronic renal disease. Although the generation of this vasoactive peptide has been investigated in great detail, only a few studies have hitherto addressed the metabolism of ANG II into fragments such as angiotensin III and IV (ANG III, IV) which may exert physiological effects independent of ANG II. Aminopeptidase A (APA) is the major enzyme degrading ANG II. The aim of the current study was to evaluate glomerular APA expression in rats with two-kidney, one-clip hypertension. The left renal artery was restricted with a 0.2-mm silver clip. Kidneys were harvested 1 and 4 weeks after surgery. APA enzyme and protein expression was evaluated in kidney sections. Total APA enzyme activity and mRNA expression was assessed in isolated glomeruli. Degradation of exogenous ANG II by isolated glomeruli was measured with reverse-phase high-performance liquid chromatography. APA enzyme activity, protein, and mRNA expression were stimulated in the clipped kidney 1 week after surgery compared with the contralateral kidney or normal controls. In contrast, 4 weeks after clipping APA activity and expression was higher in the contralateral kidney. In parallel to these findings, degradation of ANG II was greatest in isolated glomeruli obtained from the clipped kidney after 1 week. However, preparations from the contralateral kidney 4 weeks after surgery were more active in the metabolism of exogenous ANG II. The present study provides evidence that APA is complexly regulated in in vivo situations with an activated local renin-ANG II system. ANG II appears to play a direct role in this regulation. However, since conversion of ANG II to ANG III by APA is the initial step leading to the formation of ANG IV which may exert detrimental effects not mediated through classical ANG II receptors, a local increase in APA activity may contribute to the progression of chronic renal disease even during complete AT(1)-receptor blockade.
Liu, Jing; Meier, Katlyn K; Tian, Shiliang; Zhang, Jun-Long; Guo, Hongchao; Schulz, Charles E; Robinson, Howard; Nilges, Mark J; Münck, Eckard; Lu, Yi
2014-09-03
Much progress has been made in designing heme and dinuclear nonheme iron enzymes. In contrast, engineering mononuclear nonheme iron enzymes is lagging, even though these enzymes belong to a large class that catalyzes quite diverse reactions. Herein we report spectroscopic and X-ray crystallographic studies of Fe(II)-M121E azurin (Az), by replacing the axial Met121 and Cu(II) in wild-type azurin (wtAz) with Glu and Fe(II), respectively. In contrast to the redox inactive Fe(II)-wtAz, the Fe(II)-M121EAz mutant can be readily oxidized by Na2IrCl6, and interestingly, the protein exhibits superoxide scavenging activity. Mössbauer and EPR spectroscopies, along with X-ray structural comparisons, revealed similarities and differences between Fe(II)-M121EAz, Fe(II)-wtAz, and superoxide reductase (SOR) and allowed design of the second generation mutant, Fe(II)-M121EM44KAz, that exhibits increased superoxide scavenging activity by 2 orders of magnitude. This finding demonstrates the importance of noncovalent secondary coordination sphere interactions in fine-tuning enzymatic activity.
Pinho, Antonio Ivanildo; Oliveira, Cláudia Sirlene; Lovato, Fabricio Luís; Waczuk, Emily Pansera; Piccoli, Bruna Candia; Boligon, Aline Augusti; Leite, Nadghia Figueredo; Coutinho, Henrique Douglas Melo; Posser, Thais; Da Rocha, João Batista Teixeira; Franco, Jeferson Luis
2017-01-01
Mercury (Hg) is widely distributed in the environment and is known to produce several adverse effects in organisms. The aim of the present study was to examine the in vitro antioxidant activity and Hg chelating ability of the hydroalcoholic extract of Psidium guajava leaves (HEPG). In addition, the potential protective effects of HEPG against Hg(II) were evaluated using a yeast model (Saccharomyces cerevisiae). HEPG was found to exert significant antioxidant activity in 2,2-diphenyl-1-picrylhydrazyl scavenger and inhibition of lipid peroxidation induced by Fe(II) assays in a concentration-dependent manner. The extract also exhibited significant Hg(II) chelating activity. In yeast, Hg(II) induced a significant decrease in cell viability. In contrast, HEPG partially prevented the fall in cell viability induced by Hg(II). In conclusion, HEPG exhibited protective effects against Hg(II)-mediated toxicity, which may be related to both antioxidant and Hg(II)-chelating activities.
Moghadam, Mahboube Eslami; Divsalar, Adeleh; Zare, Marziye Shahraki; Gholizadeh, Roghayeh; Mahalleh, Doran; Saghatforosh, Lotfali; Sanati, Soheila
2017-11-02
Two new nickel(II) and copper(II) complexes of 2-(Furan-2-yl)-1H-Imidazo[4,5-f][1,10]Phenanthroline (FIP) and 2-(thiophen-2-yl)-1H-imidazo[4,5-f][1,10]phenanthroline (TIP), imidazophen derivatives were synthesized. The structures of the compounds were determined by UV-visible and FT-IR spectroscopic methods and elemental analysis. The biological activities of Ni and Cu complexes, as anticancer agents, were tested against chronic myelogenous leukemia cell line, K562, at micromolar concentration. The MTT studies showed Cc 50 values are 21 and 160 µM for Cu and Ni(II) complexes, respectively; suggesting that Ni (II) complex has Cc 50 almost seven times of that obtained for cisplatin. Biological activity of the Ni(II) and Cu(II) complexes were also assayed against selective microorganisms by disc diffusion method. These results showed that the Cu(II) complex is antifungal agent but Ni(II) complex has antibacterial activity.
Sulforaphane Prevents Angiotensin II-Induced Testicular Cell Death via Activation of NRF2.
Wang, Yonggang; Wu, Hao; Xin, Ying; Bai, Yang; Kong, Lili; Tan, Yi; Liu, Feng; Cai, Lu
2017-01-01
Although angiotensin II (Ang II) was reported to facilitate sperm motility and intratesticular sperm transport, recent findings shed light on the efficacy of Ang II in stimulating inflammatory events in testicular peritubular cells, effect of which may play a role in male infertility. It is still unknown whether Ang II can induce testicular apoptotic cell death, which may be a more direct action of Ang II in male infertility. Therefore, the present study aims to determine whether Ang II can induce testicular apoptotic cell death and whether this action can be prevented by sulforaphane (SFN) via activating nuclear factor (erythroid-derived 2)-like 2 (NRF2), the governor of antioxidant-redox signalling. Eight-week-old male C57BL/6J wild type (WT) and Nrf2 gene knockout mice were treated with Ang II, in the presence or absence of SFN. In WT mice, SFN activated testicular NRF2 expression and function, along with a marked attenuation in Ang II-induced testicular oxidative stress, inflammation, endoplasmic reticulum stress, and apoptotic cell death. Deletion of the Nrf2 gene led to a complete abolishment of these efficacies of SFN. The present study indicated that Ang II may result in testicular apoptotic cell death, which can be prevented by SFN via the activation of NRF2.
Catalase-like activity studies of the manganese(II) adsorbed zeolites
NASA Astrophysics Data System (ADS)
ćiçek, Ekrem; Dede, Bülent
2013-12-01
Preparation of manganese(II) adsorbed on zeolite 3A, 4A, 5A. AW-300, ammonium Y zeolite, organophilic, molecular sieve and catalase-like enzyme activity of manganese(II) adsorbed zeolites are reported herein. Firstly zeolites are activated at 873 K for two hours before contact manganese(II) ions. In order to observe amount of adsorption, filtration process applied for the solution. The pure zeolites and manganese(II) adsorbed zeolites were analysed by FT-IR. As a result according to the FT-IR spectra, the incorporation of manganese(II) cation into the zeolite structure causes changes in the spectra. These changes are expected particularly in the pseudolattice bands connected with the presence of alumino and silicooxygen tetrahedral rings in the zeolite structure. Furthermore, the catalytic activities of the Mn(II) adsorbed zeolites for the disproportionation of hydrogen peroxide were investigated in the presence of imidazole. The Mn(II) adsorbed zeolites display efficiency in the disproportion reactions of hydrogen peroxide, producing water and dioxygen in catalase-like activity.
Icariside II activates EGFR-Akt-Nrf2 signaling and protects osteoblasts from dexamethasone.
Liu, Weidong; Mao, Li; Ji, Feng; Chen, Fengli; Wang, Shouguo; Xie, Yue
2017-01-10
The potential effect of icariside II on dexamethasone-induced osteoblast cell damages was evaluated here. In MC3T3-E1 osteoblastic cells and the primary murine osteoblasts, co-treatment with icariside II dramatically attenuated dexamethasone- induced cell death and apoptosis. Icariside II activated Akt signaling, which is required for its actions in osteoblasts. Akt inhibitors (LY294002, perifosine and MK-2206) almost abolished icariside II-induced osteoblast cytoprotection against dexamethasone. Further studies showed that icariside II activated Nrf2 signaling, downstream of Akt, to inhibit dexamethasone-induced reactive oxygen species (ROS) production in MC3T3-E1 cells and primary osteoblasts. On the other hand, Nrf2 shRNA knockdown inhibited icariside II-induced anti-dexamethasone cytoprotection in MC3T3-E1 cells. Finally, we showed that icariside II induced heparin-binding EGF (HB-EGF) production and EGFR trans-activation in MC3T3-E1 cells. EGFR inhibition, via anti-HB-EGF antibody, EGFR inhibitor AG1478 or EGFR shRNA knockdown, almost blocked icariside II-induced Akt-Nrf2 activation in MC3T3-E1 cells. Collectively, we conclude that icariside II activates EGFR-Akt-Nrf2 signaling and protects osteoblasts from dexamethasone. Icariside II might have translational value for the treatment of dexamethasone-associated osteoporosis/osteonecrosis.
Chronic inhibition of Ca(2+)/calmodulin kinase II activity in the pilocarpine model of epilepsy.
Churn, S B; Kochan, L D; DeLorenzo, R J
2000-09-01
The development of symptomatic epilepsy is a model of long-term plasticity changes in the central nervous system. The rat pilocarpine model of epilepsy was utilized to study persistent alterations in calcium/calmodulin-dependent kinase II (CaM kinase II) activity associated with epileptogenesis. CaM kinase II-dependent substrate phosphorylation and autophosphorylation were significantly inhibited for up to 6 weeks following epileptogenesis in both the cortex and hippocampus, but not in the cerebellum. The net decrease in CaM kinase II autophosphorylation and substrate phosphorylation was shown to be due to decreased kinase activity and not due to increased phosphatase activity. The inhibition in CaM kinase II activity and the development of epilepsy were blocked by pretreating seizure rats with MK-801 indicating that the long-lasting decrease in CaM kinase II activity was dependent on N-methyl-D-aspartate receptor activation. In addition, the inhibition of CaM kinase II activity was associated in time and regional localization with the development of spontaneous recurrent seizure activity. The decrease in enzyme activity was not attributed to a decrease in the alpha or beta kinase subunit protein expression level. Thus, the significant inhibition of the enzyme occurred without changes in kinase protein expression, suggesting a long-lasting, post-translational modification of the enzyme. This is the first published report of a persistent, post-translational alteration of CaM kinase II activity in a model of epilepsy characterized by spontaneous recurrent seizure activity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taha, Mohd F., E-mail: faisalt@petronas.com.my; Shaharun, Maizatul S.; Shuib, Anis Suhaila, E-mail: anisuha@petronas.com.my
An attempt was made to investigate the potential of rice husk-based activated carbon as an alternative low-cost adsorbent for the removal of Ni(II), Zn(II) and Pb(II) ions from single aqueous solution. Rice husk-based activated carbon was prepared via treatment of rice husk with NaOH followed by the carbonization process at 400°C for 2 hours. Three samples, i.e. raw rice husk, rice husk treated with NaOH and rice husk-based activated carbon, were analyzed for their morphological characteristics using field-emission scanning electron microscope/energy dispersive X-ray (FESEM/EDX). These samples were also analyzed for their carbon, hydrogen, nitrogen, oxygen and silica contents using CHNmore » elemental analyzer and FESEM/EDX. The porous properties of rice husk-based activated carbon were determined by Brunauer-Emmett-Teller (BET) surface area analyzer, and its surface area and pore volume were 255 m{sup 2}/g and 0.17 cm{sup 2}/g, respectively. The adsorption studies for the removal of Ni(II), Zn(II) and Pb(II) ions from single metal aqueous solution were carried out at a fixed initial concentration of metal ion (150 ppm) with variation amount of adsorbent (rice husk-based activated carbon) as a function of varied contact time at room temperature. The concentration of each metal ion was analyzed using atomic absorption spectrophotometer (AAS). The results obtained from adsorption studies indicate the potential of rice husk as an economically promising precursor for the preparation of activated carbon for removal of Ni(II), Zn(II) and Pb(II) ions from single aqueous solution. Isotherm and kinetic model analyses suggested that the experimental data of adsorption studies fitted well with Langmuir, Freundlich and second-order kinetic models.« less
NASA Astrophysics Data System (ADS)
Shakir, M.; Hanif, Summaiya; Sherwani, Mohd. Asif; Mohammad, Owais; Al-Resayes, Saud I.
2015-07-01
A novel series of metal complexes of the types, [ML2(H2O)2]Cl2 and [ML2]Cl2 [M = Mn(II), 1; Co(II), 2; Ni(II), 3; Cu(II), 4; and Zn(II), 5] were synthesized by the interaction of ligand, L (E)-N-(furan-2-yl methylene) quinolin-8-amine, derived from the condensation of 2-furaldehyde and 8-aminoquinoline. The synthesized ligand and its metal complexes were characterized on the basis of results obtained from elemental analysis, ESI-MS, XRD, SEM, TGA/DTA, FT-IR, UV-Vis, magnetic moment and 1H and 13C NMR spectroscopic studies. EPR parameters were recorded in case of complex 4. The comparative in-vitro antimicrobial activities against various pathogens with reference to known antibiotics and antioxidant activity against standard control at variable concentrations revealed that the metal complexes show enhanced antimicrobial and free radical scavenging activities in general as compared to free ligand. However, the complexes 1 and 5 have shown best antioxidant activity among all the metal complexes. Furthermore, comparative in-vitro antiproliferative activity on ligand and its metal chelates performed on MDA-MB-231 (breast carcinoma), KCL22 (blood lymphoid carcinoma), HeLa (cervical carcinoma) cell lines and normal cells (PBMC) revealed that metal chelates show moderate to good activity as compared to ligand where as complex 1 seems to be the most promising one possessing a broad spectrum of activity against all the selected cancer cell lines with IC50 < 2.10 μM.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Yi xi; Zhang, Man; Cai, Yuehua
Activation of the silent mating type information regulation 2 homolog 1 (SIRT1) has been shown consistent antiinflammatory function. However, little information is available on the function of SIRT1 during Angiotensin II (AngII)-induced atherosclerosis. Here we report atheroprotective effects of sirt1 activation in a model of AngII-accelerated atherosclerosis, characterized by suppression pro-inflammatory transcription factors Nuclear transcription factor (NF)-κB and Signal Transducers and Activators of Transcription. (STAT) signaling pathway, and atherosclerotic lesion macrophage content. In this model, administration of the SIRT1 agonist SRT1720 substantially attenuated AngII-accelerated atherosclerosis with decreasing blood pressure and inhibited NF-κB and STAT3 activation, which was associated with suppressionmore » of inflammatory factor and atherogenic gene expression in the artery. In vitro studies demonstrated similar changes in AngII-treated VSMCs and macrophages: SIRT1 activation inhibited the expression levels of proinflammatory factor. These studies uncover crucial proinflammatory mechanisms of AngII and highlight actions of SIRT1 activation to inhibit AngII signaling, which is atheroprotective. - Highlights: • SRT1720 reduced atherosclerotic lesion size in aortic arches and atherosclerotic lesion macrophage content. • SRT1720 could inhibit the phosphorylation of STAT3 and p65 phosphorylation and translocation. • SRT1720 could inhibit the expression of proinflammatory factor.« less
Active-site solvent replenishment observed during human carbonic anhydrase II catalysis.
Kim, Jin Kyun; Lomelino, Carrie L; Avvaru, Balendu Sankara; Mahon, Brian P; McKenna, Robert; Park, SangYoun; Kim, Chae Un
2018-01-01
Human carbonic anhydrase II (hCA II) is a zinc metalloenzyme that catalyzes the reversible hydration/dehydration of CO 2 /HCO 3 - . Although hCA II has been extensively studied to investigate the proton-transfer process that occurs in the active site, its underlying mechanism is still not fully understood. Here, ultrahigh-resolution crystallographic structures of hCA II cryocooled under CO 2 pressures of 7.0 and 2.5 atm are presented. The structures reveal new intermediate solvent states of hCA II that provide crystallographic snapshots during the restoration of the proton-transfer water network in the active site. Specifically, a new intermediate water (W I ') is observed next to the previously observed intermediate water W I , and they are both stabilized by the five water molecules at the entrance to the active site (the entrance conduit). Based on these structures, a water network-restructuring mechanism is proposed, which takes place at the active site after the nucleophilic attack of OH - on CO 2 . This mechanism explains how the zinc-bound water (W Zn ) and W1 are replenished, which are directly responsible for the reconnection of the His64-mediated proton-transfer water network. This study provides the first 'physical' glimpse of how a water reservoir flows into the hCA II active site during its catalytic activity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hama, Kouji; Ohnishi, Hirohide; Aoki, Hiroyoshi
2006-02-17
Activated pancreatic stellate cells (PSCs) play major roles in promoting pancreatic fibrosis. We previously reported that angiotensin II (Ang II) enhances activated PSC proliferation through EGF receptor transactivation. In the present study, we elucidated a novel intracellular mechanism by which Ang II stimulates cellular proliferation. TGF-{beta}{sub 1} inhibits activated PSC proliferation via a Smad3 and Smad4-dependent pathway in an autocrine manner. We demonstrated that Ang II inhibited TGF-{beta}{sub 1}-induced nuclear accumulation of Smad3 and Smad4. Furthermore, Ang II rapidly induced inhibitory Smad7 mRNA expression. Adenovirus-mediated Smad7 overexpression inhibited TGF-{beta}{sub 1}-induced nuclear accumulation of Smad3 and Smad4, and potentiated activated PSCmore » proliferation. PKC inhibitor Go6983 blocked the induction of Smad7 mRNA expression by Ang II. In addition, 12-O-tetradecanoyl-phorbol 13-acetate, a PKC activator, increased Smad7 mRNA expression. These results suggest that Ang II enhances activated PSC proliferation by blocking autocrine TGF-{beta}{sub 1}-mediated growth inhibition by inducing Smad7 expression via a PKC-dependent pathway.« less
NASA Astrophysics Data System (ADS)
Neelakantan, M. A.; Rusalraj, F.; Dharmaraja, J.; Johnsonraja, S.; Jeyakumar, T.; Sankaranarayana Pillai, M.
2008-12-01
Metal complexes are synthesized with Schiff bases derived from o-phthalaldehyde (opa) and amino acids viz., glycine (gly) L-alanine (ala), L-phenylalanine (pal). Metal ions coordinate in a tetradentate or hexadentate manner with these N 2O 2 donor ligands, which are characterized by elemental analysis, molar conductance, magnetic moments, IR, electronic, 1H NMR and EPR spectral studies. The elemental analysis suggests the stoichiometry to be 1:1 (metal:ligand). Based on EPR studies, spin-Hamiltonian and bonding parameters have been calculated. The g-values calculated for copper complexes at 300 K and in frozen DMSO (77 K) indicate the presence of the unpaired electron in the d orbital. The evaluated metal-ligand bonding parameters showed strong in-plane σ- and π-bonding. X-ray diffraction (XRD) and scanning electron micrography (SEM) analysis provide the crystalline nature and the morphology of the metal complexes. The cyclic voltammograms of the Cu(II)/Mn(II)/VO(II) complexes investigated in DMSO solution exhibit metal centered electroactivity in the potential range -1.5 to +1.5 V. The electrochemical data obtained for Cu(II) complexes explains the change of structural arrangement of the ligand around Cu(II) ions. The biological activity of the complexes has been tested on eight bacteria and three fungi. Cu(II) and Ni(II) complexes show an increased activity in comparison to the controls. The metal complexes of opapal Schiff base were evaluated for their DNA cleaving activities with calf-thymus DNA (CT DNA) under aerobic conditions. Cu(II) and VO(II) complexes show more pronounced activity in presence of the oxidant.
NASA Astrophysics Data System (ADS)
Kertmen, Seda Nur; Gonul, Ilyas; Kose, Muhammet
2018-01-01
New Cu(II) and Ni(II) complexes derived from dicyandiamide were synthesized and characterised by spectroscopic and analytical methods. Molecular structures of the complexes were determined by single crystal X-ray diffraction studies. In the complexes, the Cu(II) or Ni(II) ions are four-coordinate with a slight distorted square planar geometry. The ligands (L-nPen and L-iPen) derived from dicyandiamide formed via nucleophilic addition of alcohol solvent molecule in the presence Cu(II) or Ni(II) ions. Complexes were stabilised by intricate array of hydrogen bonding interactions. Antioxidant activity of the complexes was evaluated by DPPH radical scavenging and CUPRAC methods. The complexes exhibit antioxidant activity, however, their activities were much lower than standard antioxidants (Vitamin C and trolox).
Morinelli, Thomas A; Walker, Linda P; Velez, Juan Carlos Q; Ullian, Michael E
2015-02-05
The major effects of Angiotensin II (AngII) in vascular tissue are mediated by AngII AT1A receptor activation. Certain effects initiated by AT1A receptor activation require receptor internalization. In rat aortic vascular smooth muscle cells (RASMC), AngII stimulates cyclooxygenase 2 protein expression. We have previously shown this is mediated by β-arrestin-dependent receptor internalization and NF-κB activation. In this study, a specific inhibitor of clathrin-mediated endocytosis (CME), pitstop-2, was used to test the hypothesis that clathrin-dependent internalization of activated AT1A receptor mediates NF-κB activation and subsequent cyclooxygenase 2 expression. Radioligand binding assays, real time qt-PCR and immunoblotting were used to document the effects of pitstop-2 on AngII binding and signaling in RASMC. Laser scanning confocal microscopy (LSCM) was used to image pitstop-2׳s effects on AT1 receptor/GFP internalization in HEK-293 cells and p65 NF-κB nuclear localization in RASMC. Pitstop-2 significantly inhibited internalization of AT1A receptor (44.7% ± 3.1% Control vs. 13.2% ± 8.3% Pitstop-2; n=3) as determined by radioligand binding studies in RASMC. Studies utilizing AT1A receptor/GFP expressed in HEK 293 cells and LSCM confirmed these findings. Pitstop-2 significantly inhibited AngII-induced p65 NF-κB phosphorylation and nuclear localization, COX-2 message and protein expression in RASMC without altering activation of p42/44 ERK or TNFα signaling. Pitstop-2, a specific inhibitor of clathrin-mediated endocytosis, confirms that internalization of activated AT1A receptor mediates AngII activation of cyclooxygenase 2 expression in RASMC. These data provide support for additional intracellular signaling pathways activated through β-arrestin mediated internalization of G protein-coupled receptors, such as AT1A receptors. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Dhahagani, K.; Mathan Kumar, S.; Chakkaravarthi, G.; Anitha, K.; Rajesh, J.; Ramu, A.; Rajagopal, G.
2014-01-01
Metal(II) chelates of Schiff bases derived from the condensation of 4-morpholinoaniline with substituted salicylaldehyde have been prepared and characterized by 1H NMR, IR, electronic, EPR, and magnetic measurement studies. The complexes are of the type M(X-MPMP)2 [where M = Cu(II), Co(II)), Zn(II), or VO(IV); MPMP = 2-[(4 morpholinophenyl imino) methyl] 4-X-phenol, X = Cl, (L1H), X = Br (L2H)]. Single crystal X-ray crystallography studies confirm the structure of newly synthesized Schiff bases. The Schiff bases act as bidentate monobasic ligands, coordinating through deprotonated phenolic oxygen and azomethine nitrogen atoms. The free ligands and metal complexes are screened for their biopotency. Metal complexes exhibit better activity than ligands. Anticancer activity of ligands and their metal complexes are evaluated in human heptocarcinoma(HepG2) cells. The preliminary bioassay indicates that the Schiff base and its zinc complex exhibit inhibitory activity against the human gastric cancer cell lines.
NASA Astrophysics Data System (ADS)
El-Boraey, Hanaa A.
2012-11-01
Novel eight Co(II), Ni(II), Cu(II), Cu(I) and Pd(II) complexes with [N4] ligand (L) i.e. 2-amino-N-{2-[(2-aminobenzoyl)amino]ethyl}benzamide have been synthesized and structurally characterized by elemental analysis, spectral, thermal (TG/DTG), magnetic, and molar conductivity measurements. On the basis of IR, mass, electronic and EPR spectral studies an octahedral geometry has been proposed for Co(II), Ni(II) complexes and Cu(II) chloride complex, square-pyramidal for Cu(I) bromide complex. For Cu(II) nitrate complex (6), Pd(II) complex (8) square planar geometry was proposed. The EPR data of Cu(II) complexes in powdered form indicate dx2-y2 ground state of Cu(II) ion. The antitumor activity of the synthesized ligand and some selected metal complexes has been studied. The palladium(II) complex (8) was found to display cytotoxicity (IC50 = 25.6 and 41 μM) against human breast cancer cell line MCF-7 and human hepatocarcinoma HEPG2 cell line.
Murasawa, S; Matsubara, H; Mori, Y; Masaki, H; Tsutsumi, Y; Shibasaki, Y; Kitabayashi, I; Tanaka, Y; Fujiyama, S; Koyama, Y; Fujiyama, A; Iba, S; Iwasaka, T
2000-09-01
Ca(2+)-sensitive tyrosine kinase Pyk2 was shown to be involved in angiotensin (Ang) II-mediated activation of extracellular signal-regulated kinase (ERK) via transactivation of epidermal growth factor receptor (EGF-R). In this study, we tested the involvement of Pyk2 and EGF-R in Ang II-induced activation of JNK and c-Jun in cardiac fibroblasts. Ang II markedly stimulated JNK activities, which were abolished by genistein and intracellular Ca(2+) chelators but partially by protein kinase C depletion. Inhibition of EGF-R did not affect Pyk2 and JNK activation by Ang II. Stable transfection with a dominant negative (DN) mutant for Pyk2 (PKM) completely blocked JNK activation by Ang II. DN mutants of Rac1 (DN-Rac1) and MEK kinase (DN-MEKK1) also abolished it, whereas those of Cdc42, RhoA, and Ha-Ras had no effect. Induction of c-Jun gene transcription by Ang II was abolished in PKM, DN-Rac1, and DN-MEKK1, in which Ang II-induced binding of ATF2/c-Jun heterodimer to the activator protein-1 sequence at -190 played a key role. These results suggest that 1) in cardiac fibroblasts activation of JNK and c-Jun by Ang II is initiated by Pyk2-dependent signalings but not by downstream signals of EGF-R or Ras, 2) Rac1 but not Cdc42 is required for JNK activation by Ang II upstream of MEKK1, and 3) ATF-2/c-Jun binding to the activator protein-1 sequence at -190 plays a key role for induction of c-Jun gene by Ang II.
Churn, S B; Sombati, S; Jakoi, E R; Severt, L; DeLorenzo, R J; Sievert, L
2000-05-09
Several models that develop epileptiform discharges and epilepsy have been associated with a decrease in the activity of calmodulin-dependent kinase II. However, none of these studies has demonstrated a causal relationship between a decrease in calcium/calmodulin kinase II activity and the development of seizure activity. The present study was conducted to determine the effect of directly reducing calcium/calmodulin-dependent kinase activity on the development of epileptiform discharges in hippocampal neurons in culture. Complimentary oligonucleotides specific for the alpha subunit of the calcium/calmodulin kinase were used to decrease the expression of the enzyme. Reduction in kinase expression was confirmed by Western analysis, immunocytochemistry, and exogenous substrate phosphorylation. Increased neuronal excitability and frank epileptiform discharges were observed after a significant reduction in calmodulin kinase II expression. The epileptiform activity was a synchronous event and was not caused by random neuronal firing. Furthermore, the magnitude of decreased kinase expression correlated with the increased neuronal excitability. The data suggest that decreased calmodulin kinase II activity may play a role in epileptogenesis and the long-term plasticity changes associated with the development of pathological seizure activity and epilepsy.
Churn, Severn B.; Sombati, Sompong; Jakoi, Emma R.; Sievert, Lawrence; DeLorenzo, Robert J.
2000-01-01
Several models that develop epileptiform discharges and epilepsy have been associated with a decrease in the activity of calmodulin-dependent kinase II. However, none of these studies has demonstrated a causal relationship between a decrease in calcium/calmodulin kinase II activity and the development of seizure activity. The present study was conducted to determine the effect of directly reducing calcium/calmodulin-dependent kinase activity on the development of epileptiform discharges in hippocampal neurons in culture. Complimentary oligonucleotides specific for the α subunit of the calcium/calmodulin kinase were used to decrease the expression of the enzyme. Reduction in kinase expression was confirmed by Western analysis, immunocytochemistry, and exogenous substrate phosphorylation. Increased neuronal excitability and frank epileptiform discharges were observed after a significant reduction in calmodulin kinase II expression. The epileptiform activity was a synchronous event and was not caused by random neuronal firing. Furthermore, the magnitude of decreased kinase expression correlated with the increased neuronal excitability. The data suggest that decreased calmodulin kinase II activity may play a role in epileptogenesis and the long-term plasticity changes associated with the development of pathological seizure activity and epilepsy. PMID:10779547
Yan, Fa-Shun; Sun, Jian-Long; Xie, Wen-Hai; Shen, Liang; Ji, Hong-Fang
2017-12-28
Alzheimer's disease (AD) is the main form of dementia and has a steadily increasing prevalence. As both oxidative stress and metal homeostasis are involved in the pathogenesis of AD, it would be interesting to develop a dual function agent, targeting the two factors. Curcumin, a natural compound isolated from the rhizome of Curcuma longa , is an antioxidant and can also chelate metal ions. Whether the complexes of curcumin with metal ions possess neuroprotective effects has not been evaluated. Therefore, the present study was designed to investigate the protective effects of the complexes of curcumin with Cu(II) or Zn(II) on hydrogen peroxide (H₂O₂)-induced injury and the underlying molecular mechanisms. The use of rat pheochromocytoma (PC12) cells, a widely used neuronal cell model system, was adopted. It was revealed that curcumin-Cu(II) complexes systems possessed enhanced O₂ ·- -scavenging activities compared to unchelated curcumin. In comparison with unchelated curcumin, the protective effects of curcumin-Cu(II) complexes systems were stronger than curcumin-Zn(II) system. Curcumin-Cu(II) or -Zn(II) complexes systems significantly enhanced the superoxide dismutase, catalase, and glutathione peroxidase activities and attenuated the increase of malondialdehyde levels and caspase-3 and caspase-9 activities, in a dose-dependent manner. The curcumin-Cu(II) complex system with a 2:1 ratio exhibited the most significant effect. Further mechanistic study demonstrated that curcumin-Cu(II) or -Zn(II) complexes systems inhibited cell apoptosis via downregulating the nuclear factor κB (NF-κB) pathway and upregulating Bcl-2/Bax pathway. In summary, the present study found that curcumin-Cu(II) or -Zn(II) complexes systems, especially the former, possess significant neuroprotective effects, which indicates the potential advantage of curcumin as a promising agent against AD and deserves further study.
NASA Astrophysics Data System (ADS)
Bakale, Raghavendra P.; Naik, Ganesh N.; Machakanur, Shrinath S.; Mangannavar, Chandrashekhar V.; Muchchandi, Iranna S.; Gudasi, Kalagouda B.
2018-02-01
A hydrazone ligand has been synthesized by the condensation of 2-nitrobenzaldehyde and hydralazine, and its Co(II), Ni(II), Cu(II) and Zn(II) complexes have been reported. Structural characterization of the ligand and its metal complexes has been performed by various spectroscopic [IR, NMR, UV-Vis, Mass], thermal and other physicochemical methods. The structure of the ligand and its Ni(II) complex has been characterized by single crystal X-ray diffraction studies. All the synthesized compounds have been screened for in vitro antimicrobial activity. The antibacterial activity is tested against Gram-positive strains Enterococcus faecalis, Streptococcus mutans and Staphylococcus aureus and Gram-negative strains Escherichia coli, Pseudomonas aeruginosa and Klebsiella pneumoniae using ciprofloxacin as the reference standard. Antifungal activity is tested against Candida albicans, Aspergillus fumigatus and Aspergillus niger using ketoconazole as the reference standard. The minimum inhibitory concentration (MIC) was determined for test compounds as well as for reference standard. Ligand, Cu(II) and Zn(II) complexes have shown excellent activity against Candida albicans.
NASA Astrophysics Data System (ADS)
Anitha, C.; Sheela, C. D.; Tharmaraj, P.; Sumathi, S.
2012-10-01
A series of metal(II) complexes of VO(II), Co(II), Ni(II), Cu(II) and Zn(II) have been synthesized from the azo Schiff base ligand 4-((E)-4-((E)-(4-chlorophenyl)diazenyl)-2-hydroxybenzylideneamino)-1,5-dimethyl-2-phenyl-1H-pyrazol-3(2H)-one (CDHBAP) and characterized by elemental analysis, spectral (IR, UV-Vis, 1H NMR, ESR and EI-mass), magnetic moment measurements, molar conductance, DNA, SEM, X-ray crystallography and fluorescence studies. The electronic absorption spectra and magnetic susceptibility measurements of the complexes indicate square pyramidal geometry for VO(II) and octahedral geometry for all the other complexes. The important infrared (IR) spectral bands corresponding to the active groups in the ligand and the solid complexes under investigation were studied and implies that CDHBAP is coordinated to the metal ions in a neutral tridentate manner. The redox behavior of copper(II) and vanadyl(II) complexes have been studied by cyclic voltammetry. The nuclease activity of the above metal(II) complexes shows that the complexes cleave DNA. All the synthesized complexes can serve as potential photoactive materials as indicated from their characteristic fluorescence properties. The antibacterial and antifungal activities of the synthesized ligand and its metal complexes were screened against bacterial species (Staphylococcus aureus, Salmonella typhi, Escherichia coli, Bacillus subtilis, Shigella sonnie) and fungi (Candida albicans, Aspergillus niger, Rhizoctonia bataicola). Amikacin and Ketoconozole were used as references for antibacterial and antifungal studies. The activity data show that the metal complexes have a promising biological activity comparable with the parent Schiff base ligand against bacterial and fungal species. The second harmonic generation (SHG) efficiency of the ligand was measured and the NLO (non-linear optical) properties of the ligand are expected to result in the realization of advanced optical devices in optical fiber communication (OFC) and optical computing. The SEM image of the copper(II) complex implies that the size of the particles is 1 μm.
NASA Astrophysics Data System (ADS)
Abdel-Rahman, Laila H.; Ismail, Nabawia M.; Ismael, Mohamed; Abu-Dief, Ahmed M.; Ahmed, Ebtehal Abdel-Hameed
2017-04-01
This study highlights synthesis and characterization of a tetradentate ONNO Schiff base ligand namely (1, 1‧- (pyridine-2, 3-dimethyliminomethyl) naphthalene-2, 2‧-diol) and hereafter denotes as "HNDAP″ and selected metal complexes including Mn(II), Fe(II), Co(II) and Cd(II) as a central metal. HNDAP was synthesized from 1:2 M ratio condensation of 2, 3-diaminopyridine and 2- hydroxy-1-naphthaldhyde, respectively. The stoichiometric ratios of the prepared complexes were estimated using complementary techniques such as; elemental analyses (-C, H, N), FT-IR, magnetic measurements and molar conductivity. Furthermore, their physicochemical studies were carried out using thermal TGA, DTA and kinetic-thermodynamic studies along with DFT calculations. The results of elemental analyses showed that these complexes are present in a 1:1 metal-to- ligand molar ratio. Moreover, the magnetic susceptibilities values at room temperature revealed that Mn(II), Fe(II) and Co(II) complexes are paramagnetic in nature and have an octahedral (Oh) geometry. In contrast, Cd(II) is diamagnetic and stabilizes in square planar sites. The molar conductivity measurements indicated that all complexes are nonelectrolytes in dimethyl formamide. Spectral data suggested that the ligand is as tetradentate and coordinated with Co(II) ion through two phenolic OH and two azomethine nitrogen. However, for Mn(II), Fe(II) and Cd(II) complexes, the coordination occurred through two phenolic oxygen and two azomethine nitrogen with deprotonation of OH groups. The proposed chemical structures have been validated by quantum mechanics calculations. Antimicrobial activities of both the HNDAP Schiff base ligand and its metal complexes were tested against strains of Gram (-ve) E. coli and Gram (+ve) B. subtilis and S. aureus bacteria and C. albicans, A. flavus and T. rubrum fungi. All the prepared compounds showed good results of inhibition against the selected pathogenic microorganisms. The investigated HNDAP Schiff base complexes showed higher activity and stability than their corresponding HNDAP Schiff base ligand and the highest activity observed for Cd(II) complex. Moreover, the prepared Schiff base ligand and its Mn(II) and Co(II) complexes have been evaluated for their anticancer activities against two cancer cell lines namely; colon carcinoma cells (HCT-116 cell line) and hepatocellular carcinoma (Hep-G2) cell lines The interaction of Mn(II) and Co(II) complexes with calf thymus DNA (CT-DNA) was studied by absorption spectroscopic technique and viscosity measurements. Both complexes showed a successful interaction with CT-DNA via intercalation mode.
1993-05-01
urease which contains two nickel ions in the active site. Catalytic hydrolysis studies are in progress. 20 DISTRIBUTION /AVAILABILITY OF ABSTRACT 21...for hydrolytic metalloenzymes. In contrast, the enzyme urease has becti show’n tU coftifl two nickel(II) ions in the active site," but as yet the
Estrogen Modulation of MgATPase Activity of Nonmuscle Myosin-II-B Filaments
Gorodeski, George I.
2008-01-01
The study tested the hypothesis that estrogen controls epithelial paracellular resistance through modulation of myosin. The objective was to understand how estrogen modulates non-muscle myosin-II-B (NMM-II-B), the main component of the cortical actomyosin in human epithelial cervical cells. Experiments used human cervical epithelial cells CaSki as a model, and end points were NMM-II-B phosphorylation, filamentation, and MgATPase activity. The results were as follows: 1) treatment with estrogen increased phosphorylation and MgATPase activity and decreased NMM-II-B filamentation; 2) estrogen effects could be blocked by antisense nucleotides for the estrogen receptor-α and by ICI-182,780, tamoxifen, and the casein kinase-II (CK2) inhibitor, 5,6-dichloro-1-β-(D)-ribofuranosylbenzimidazole and attenuated by AG1478 and PD98059 (inhibitors of epithelial growth factor receptor and ERK/MAPK) but not staurosporine [blocker of protein kinase C (PKC)]; 3) treatments with the PKC activator sn-1,2-di-octanoyl diglyceride induced biphasic effect on NMM-II-B MgATPase activity: an increase at 1 nM to 1 μM and a decrease in activity at more than 1 μM; 4) sn-1,2-dioctanoyl diglyceride also decreased NMM-II-B filamentation in a monophasic and saturable dose dependence (EC50 1–10 μM); 5) when coincubated directly with purified NMM-II-B filaments, both CK2 and PKC decreased filamentation and increased MgATPase activity; 6) assays done on disassembled NMM-II-B filaments showed MgATPase activity in filaments obtained from estrogen-treated cells but not estrogen-depleted cells; and 7) incubations in vitro with CK2, but not PKC, facilitated MgATPase activity, even in disassembled NMM-II-B filaments. The results suggest that estrogen, in an effect mediated by estrogen receptor-α and CK2 and involving the epithelial growth factor receptor and ERK/MAPK cascades, increases NMM-II-B MgATPase activity independent of NMM-II-B filamentation status. PMID:17023528
Predictors of activity limitation in people with gout: a prospective study.
Stewart, Sarah; Rome, Keith; Eason, Alastair; House, Meaghan E; Horne, Anne; Doyle, Anthony J; Knight, Julie; Taylor, William J; Dalbeth, Nicola
2018-04-21
The objective of the study was to determine clinical factors associated with activity limitation and predictors of a change in activity limitation after 1 year in people with gout. Two hundred ninety-five participants with gout (disease duration < 10 years) attended a baseline assessment which included medical and disease-specific history, pain visual analog score and plain radiographs scored for erosion and narrowing. Activity limitation was assessed using the Health Assessment Questionnaire-II (HAQ-II). After 1 year, participants were invited to complete a further HAQ-II; follow-up questionnaires were available for 182 participants. Fully saturated and stepwise regression analyses were used to determine associations between baseline characteristics and HAQ-II at baseline and 1 year, and to determine predictors of worsening HAQ-II in those with normal baseline scores. Median (range) baseline HAQ-II was 0.20 (0-2.50) and 0.20 (0-2.80) after 1 year of follow-up. Pain score was the strongest independent predictor of baseline HAQ-II, followed by radiographic narrowing score, type 2 diabetes, swollen joint count, BMI, age and urate (model R 2 = 0.51, P < 0.001). Baseline HAQ-II was the strongest predictor of change in HAQ-II at 1 year, followed by tender joint count (model R 2 = 0.19, P < 0.001). Of those with HAQ-II scores of 0 at baseline (n = 59, 32% of those with follow-up data), most did not progress (n = 52, 88%); however, baseline pain score, type 2 diabetes and flare frequency were significant predictors of worsening HAQ-II in this group (R 2 = 0.34, P < 0.001). People with gout experience a wide range of activity limitation, and levels of activity limitation are, on average, stable over a 1-year period. Baseline pain scores are strongly associated with activity limitation and predict development of activity limitation in those with normal HAQ-II scores at baseline.
Li, Yuwei; Ahrens, Molly J; Wu, Amy; Liu, Jennifer; Dudley, Andrew T
2011-01-01
For tissues that develop throughout embryogenesis and into postnatal life, the generation of differentiated cells to promote tissue growth is at odds with the requirement to maintain the stem cell/progenitor cell population to preserve future growth potential. In the growth plate cartilage, this balance is achieved in part by establishing a proliferative phase that amplifies the number of progenitor cells prior to terminal differentiation into hypertrophic chondrocytes. Here, we show that endogenous calcium/calmodulin-dependent protein kinase II (CamkII, also known as Camk2) activity is upregulated prior to hypertrophy and that loss of CamkII function substantially blocks the transition from proliferation to hypertrophy. Wnt signaling and Pthrp-induced phosphatase activity negatively regulate CamkII activity. Release of this repression results in activation of multiple effector pathways, including Runx2- and β-catenin-dependent pathways. We present an integrated model for the regulation of proliferation potential by CamkII activity that has important implications for studies of growth control and adult progenitor/stem cell populations.
NASA Astrophysics Data System (ADS)
Machida, Motoi; Fotoohi, Babak; Amamo, Yoshimasa; Mercier, Louis
2012-07-01
Adsorption of cadmium(II) and lead(II) on amino-, mercapto-functionalized mesoporous silica (HMS) and carboxylic-functionalized activated carbon (AC) were examined. The resultant isotherms fitted the Langmuir model and amino-functionalized HMS exhibited the highest adsorption capacity for both cadmium(II) and lead(II). Adsorption affinities for cadmium(II) were always greater than those for lead(II) in all three adsorbent types, while the difference between the two values was the largest for mercapto-functionalized HMS indicating a selective adsorption of cadmium(II). Influence of equilibrium solution pH on adsorption of cadmium(II), lead(II) and their binary mixtures was also studied. Carboxylic-functionalized AC adsorbed cadmium(II) and lead(II) in a wide pH range than conditions for the mercapto-functionalized HMS. It was concluded that each functional group had its own characteristics and advantages for adsorption of heavy metal ions; amino-groups showed high adsorption capacity, while mercapto-groups had good selectivity toward cadmium(II) adsorption and a wide solution pH in adsorption by carboxylic-groups were established in this study.
Singleton, Michael W; Holbert, William H; Ryan, Matthew L; Lee, Anh Tuyet; Kurz, Jonathan E; Churn, Severn B
2005-04-21
This study was conducted to characterize the post-pubertal developmental aspects on seizure susceptibility and severity as well as calcium/calmodulin protein kinase type II (CaM kinase II) activity in status epilepticus (SE). Thirty- to ninety-day-old rats, in 10-day increments, were studied. This corresponds to a developmental age group that has not received thorough attention. The pilocarpine model of SE was characterized both behaviorally and electrographically. Seven criteria were analyzed for electrographical characterization: seizure severity, SE susceptibility, the average number of discrete seizures, average time until first seizure, average time to SE, average time from first discrete seizure to SE, and death. After 1 h of SE, specific brain regions were isolated for biochemical study. Phosphate incorporation into a CaM kinase II-specific substrate, autocamtide III, was used to determine kinase activity. There was no developmental effect on the average number of discrete seizures, average time until first seizure, average time to SE, average time from first discrete seizure to SE, and death; however, there was a significant effect on SE probability and seizure severity. Once SE was expressed, all animals showed a decrease in both cortical and hippocampal CaM kinase II activities. Conversely, seizure activity in the absence of SE did not result in a decrease in CaM kinase II activity. The data suggest that there is a gradual age-dependent modulation of SE susceptibility and seizure severity within the developmental stages studied. Additionally, once status epilepticus is observed at any age, there is a corresponding SE-induced inhibition of CaM kinase II.
Sobotta, Lukasz; Wierzchowski, Marcin; Mierzwicki, Michal; Gdaniec, Zofia; Mielcarek, Jadwiga; Persoons, Leentje; Goslinski, Tomasz; Balzarini, Jan
2016-02-01
Manganese(III), cobalt(II), copper(II), magnesium(II), zinc(II) and metal-free phthalocyanines, possessing 1,4,7-trioxanonyl substituents, at their non-peripheral positions, were subjected to photochemical, photodynamic and biological activity studies. Demetallated phthalocyanine and its metallated d-block analogues, with copper(II), cobalt(II), manganese(III) chloride, were found to be less efficient singlet oxygen generators in comparison to the zinc(II) analogue and zinc(II) phthalocyanine reference. Irradiation of several phthalocyanines for short time periods resulted in a substantially increased cytostatic activity against both suspension (leukemic/lymphoma at 85nM) and solid (cervix carcinoma at 72nM and melanoma at 81nM) tumour cell lines (up to 200-fold). Noteworthy is that enveloped viruses, such as for herpesvirus and influenza A virus, but not, non-enveloped virus strains, such as Coxsackie B4 virus and reovirus-1, exposed to irradiation in the presence of the phthalocyanines, markedly lost their infectivity potential. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
El-Sawaf, Ayman K.; El-Essawy, Farag; Nassar, Amal A.; El-Samanody, El-Sayed A.
2018-04-01
The coordination characteristic of new N4-morpholinyl isatin-3-thiosemicarbazone (HL) towards Co(II), Ni(II), Cu(II), Zn(II) and Pd(II) has been studies. The structures of the complexes were described by elemental analyses, molar conductivity, magnetic, thermal and spectral (IR, UV-Vis, 1H and 13C NMR and ESR) studies. On the basis of analytical and spectral studies the ligand behaves as monobasic tridentate ONS donor forming two five membered rings towards cobalt, copper and palladium and afforded complexes of the kind [M(L)X], (Mdbnd Co, Cu or Pd; Xdbnd Cl, Br or OAc). Whereas the ligand bound to NiCl2 as neutral tridentate ONS donor and with ZnCl2 as neutral bidentate NS donor. The newly synthesized thiosemicarbazone ligand and some of its complexes were examined for antimicrobial activity against 2 gram negative bacterial strains (Escherichia coli Pseudomonas and aeruginosa), 2 gram positive bacterial strains (Streptococcus pneumoniae and Staphylococcus aureus)} and two Pathogenic fungi (Aspergillus fumigatus and Candida albicans). All metal complexes possess higher antimicrobial activity comparing with the free thiosemicarbazone ligand. The high potent activities of the complexes may arise from the coordination and chelation, which tends to make metal complexes act as more controlling and potent antimicrobial agents, thus hindering the growing of the microorganisms. The antimicrobial results also show that copper bromide complex is better antimicrobial agent as compared to the Schiff base and its metal complexes.
Lee, Hanna; Ham, Sun Ah; Kim, Min Young; Kim, Jae-Hwan; Paek, Kyung Shin; Kang, Eun Sil; Kim, Hyo Jung; Hwang, Jung Seok; Yoo, Taesik; Park, Chankyu; Kim, Jin-Hoi; Lim, Dae-Seog; Han, Chang Woo; Seo, Han Geuk
2012-07-01
Angiotensin II (Ang II)-mediated modification of the redox milieu of vascular smooth muscle cells (VSMCs) has been implicated in several pathophysiological processes, including cell proliferation, migration and differentiation. In this study, we demonstrate that the peroxisome proliferator-activated receptor (PPAR) δ counteracts Ang II-induced production of reactive oxygen species (ROS) in VSMCs. Activation of PPARδ by GW501516, a specific ligand for PPARδ, significantly reduced Ang II-induced ROS generation in VSMCs. This effect was, however, reversed in the presence of small interfering (si)RNA against PPARδ. The marked increase in ROS levels induced by Ang II was also eliminated by the inhibition of phosphatidylinositol 3-kinase (PI3K) but not of protein kinase C, suggesting the involvement of the PI3K/Akt signalling pathway in this process. Accordingly, ablation of Akt with siRNA further enhanced the inhibitory effects of GW501516 in Ang II-induced superoxide production. Ligand-activated PPARδ also blocked Ang II-induced translocation of Rac1 to the cell membrane, inhibiting the activation of NADPH oxidases and consequently ROS generation. These results indicate that ligand-activated PPARδ plays an important role in the cellular response to oxidative stress by decreasing ROS generated by Ang II in vascular cells.
The Role of Angiotensin II/AT1 Receptor Signaling in Regulating Retinal Microglial Activation.
Phipps, Joanna A; Vessey, Kirstan A; Brandli, Alice; Nag, Nupur; Tran, Mai X; Jobling, Andrew I; Fletcher, Erica L
2018-01-01
This study explored whether the proangiogenic factor Angiotensin II (AngII) had a direct effect on the activation state of microglia via the Angiotensin type 1 receptor (AT1-R). Microglial dynamic activity was investigated in live retinal flatmounts from adult Cx3Cr1+/GFP mice under control, AngII (5 μM) or AngII (5 μM) + candesartan (0.227 μM) conditions. The effects of intravitreal administration of AngII (10 mM) were also investigated at 24 hours, with retinae processed for immunocytochemistry, flow cytometry, or inflammatory quantitative PCR arrays. We found FACS isolated retinal microglia expressed AT1-R. In retinal flatmounts, microglia showed characteristic movement of processes under control conditions. Perfusion of AngII induced an immediate change in process length (-42%, P < 0.05) and activation state of microglia that was ameliorated by AT1-R blockade, suggesting a direct effect of AngII on microglia via the AT1-R. Intravitreal injection of AngII induced microglial activation after 24 hours, which was characterized by increased soma size (23%, P < 0.001) and decreased process length (20%, P < 0.05). Further analysis indicated a significant decrease in the number of microglial contacts with retinal neurons (saline 15.6 ± 2.31 versus AngII 7.8 ± 1.06, P < 0.05). Retinal cytokine and chemokine expression was modulated, indicative of an inflammatory retinal phenotype. We show that retinal microglia express AT1-R and their activation state is significantly altered by the angiogenic factor, AngII. Specifically, AngII may directly activate AT1-Rs on microglia and contribute to retinal inflammation. This may have implications for diseases like diabetic retinopathy where increases in AngII and inflammation have been shown to play an important role.
Huang, Chun-Yung; Wu, Chien-Hui; Yang, Jing-Iong; Li, Ying-Han; Kuo, Jen-Min
2015-12-01
Iron deficiency is one of the most concerning deficiency problems in the world. It may generate several adverse effects such as iron deficiency anemia (IDA) and reduced physical and intellectual working capacity. The aim of this study is to evaluate the Fe(II)-binding activity of collagen peptides from fishery by-products. Lates calcarifer, Mugil cephalus, Chanos chanos, and Oreochromis spp are four major cultivated fishes in Taiwan; thousands of scales of these fish are wasted without valuable utilization. In this study, scales of these fish were hydrolyzed by papain plus flavourzyme. Collagen peptides were obtained and compared for their Fe(II)-binding activity. Collagen peptides from Chanos chanos showed the highest Fe(II)-binding activity, followed by those from Lates calcarifer and Mugil cephalus; that from Oreochromis spp exhibited the lowest one. Fe(II)-binding activity of collagen peptides from fish scales was also confirmed with a dialysis method. Molecular weight (MW) distributions of the collagen peptides from scales of four fish are all < 10 kDa, and averaged 1.3 kDa. Hydrolysates of fish scales were further partially purified with ion exchange chromatography. Fractions having Fe(II)-binding activity were obtained and their activity compared. Data obtained showed that collagen peptides from fish scales did have Fe(II)-binding activity. This is the first observation elucidating fish scale collagen possessing this functionality. The results from this study also indicated that collagen peptides from fish scales could be applied in industry as a bioresource. Copyright © 2014. Published by Elsevier B.V.
Osowole, Aderoju Amoke
2012-01-01
The Schiff base, 3-hydroxy-4-{[4-(methylsulfanyl)phenyl]imino}-3,4-dihydronaphthalen-1(2H)-one, and its Mn(II), Co(II), Ni(II), Cu(II), Zn(II) and Pd(II) complexes have been synthesized and characterized by microanalysis, conductance, 1H NMR, infrared and electronic spectral measurements. The ligand exists in the ketoimine form in chloroform, and in the enolimine form in the solid state, as shown by 1H NMR and IR spectroscopies. The ligand coordinates to the metal ions in the ratio 1:1, using NO chromophores forming complexes of the type [MLNO3]H2O, with the exception of the Zn(II) and Pd(II) complexes. Electronic measurements are indicative of a four coordinate square-planar geometry for all the complexes, except for the Cu(II) and Zn(II) complexes which assume a tetrahedral geometry. None is an electrolyte in nitromethane. The ligand and the metal complexes are air-stable, but decomposed on heating at 120 °C and in the range 150-156 °C respectively. The antibacterial studies reveal that the Co(II) and the Cu(II) complexes exhibit broad-spectrum activity against Proteus mirabilis, Escherichia coli and Staphylococcus aureus with inhibitory zones range of 14.0-22.0 and 13.0-25.0 mm respectively. The antiproliferative studies show that the Zn(II) complex has the best in-vitro anticancer activity against both HT-29 (colon) carcinoma and MCF-7 (human breast) adenocarcinoma with IC50 values of 6.46 µm and 3.19 µm, which exceeds the activity of Cis-platin by 8 % and 63 % respectively. PMID:27350773
Yuan, Xiang-Yang; Zhang, Li-Guang; Huang, Lei; Yang, Hui-Jie; Zhong, Yan-Ting; Ning, Na; Wen, Yin-Yuan; Dong, Shu-Qi; Song, Xi-E; Wang, Hong-Fu; Guo, Ping-Yi
2017-09-11
To explore the role of Brassinolide (BR) in improving the tolerance of Sigma Broad in foxtail millet (Setaria italica L.), effects of 0.1 mg/L of BR foliar application 24 h before 3.37 g/ha of Sigma Broad treatment at five-leaf stage of foxtail millet on growth parameters, antioxidant enzymes, malondialdehyde (MDA), chlorophyll, net photosynthetic rate (P N ), chlorophyll fluorescence and P 700 parameters were studied 7 and 15 d after herbicide treatment, respectively. Results showed that Sigma Broad significantly decreased plant height, activities of superoxide dismutase (SOD), chlorophyll content, P N , PS II effective quantum yield (Y (II)), PS II electron transport rate (ETR (II)), photochemical quantum yield of PSI(Y (I)) and PS I electron transport rate ETR (I), but significantly increased MDA. Compared to herbicide treatment, BR dramatically increased plant height, activities of SOD, Y (II), ETR (II), Y (I) and ETR (I). This study showed BR pretreatment could improve the tolerance of Sigma Broad in foxtail millet through improving the activity of antioxidant enzymes, keeping electron transport smooth, and enhancing actual photochemical efficiency of PS II and PSI.
Shivalingu, B R; Vivek, H K; Priya, B S; Soujanya, K N; Swamy, S Nanjunda
2016-12-01
The proteases from turmeric species have procoagulant and fibrinogenolytic activity. This provides a scientific basis for traditional use of turmeric to stop bleeding and promote wound healing processes. Our previous studies revealed that fibrinogenolytic action of crude enzyme fraction of Curcuma aromatica Salisb., was found to be more influential than those of Curcuma longa L., Curcuma caesia Roxb., Curcuma amada Roxb. and Curcuma zedoria (Christm.) Roscoe. Hence, the purpose of this study is to purify and characterize protease from C. aromatica and to explore its role in wound healing process. The protease was purified by Sephadex G-50 gel permeation chromatography. Peak with potent proteolytic activity was subjected to rechromatography and then checked for homogeneity by SDS-PAGE and native PAGE. Furthermore purity of the peak was assessed by RP-HPLC and MALDI-TOF. The biochemical properties, type of protease, kinetic studies, fibrinogenolytic, coagulant and fibrinolytic activities were carried out. The two proteolytic peaks were fractionated in gel permeation chromatography. Among these, the peak-II showed potent proteolytic activity with specific activity of 10units/mg/min and named as C. aromatica protease-II (CAP-II). This protein resolved into a single sharp band both in SDS-PAGE (reducing and non-reducing) as well as in native (acidic) PAGE. It is a monomeric protein, showing sharp peak in RP-HPLC and its relative molecular mass was found to be 12.378kDa. The caseinolytic and fibrinolytic activity of CAP-II was completely inhibited by phenylmethylsulfonylfluoride (PMSF). The CAP-II exhibited optimum temperature of 45°C and optimum pH of 7.5. The Km and Vmax of CAP-II was found to be 1.616µg and 1.62units/mg/min respectively. The CAP-II showed hydrolysis of all three subunits of fibrinogen in the order Aα>Bß>γ. The CAP-II exhibited strong procoagulant activity by reducing the human plasma clotting time. It also showed fibrinolytic activity by complete hydrolysis of α-polymer and γ-γ dimer present in fibrin. The CAP-II is a novel serine protease from C. aromatica, which has been demonstrated to stop bleeding and initiate wound healing through its procoagulant and fibrin(ogen)olytic activities. Our study demonstrates the possible role of CAP-II, as therapeutic enzyme to stop bleeding at the time of wounding. Copyright © 2016 Elsevier GmbH. All rights reserved.
Hou, Ming-Hon; Lu, Wen-Je; Huang, Chun-Yu; Fan, Ruey-Jane; Yuann, Jeu-Ming P
2009-06-09
Few studies have examined the effects of polyamines on the action of DNA-binding anticancer drugs. Here, a Co(II)-mediated dimeric mithramycin (Mith) complex, (Mith)(2)-Co(II), was shown to be resistant to polyamine competition toward the divalent metal ion when compared to the Fe(II)-mediated drug complexes. Surface plasmon resonance experiments demonstrated that polyamines interfered with the binding capacity and association rates of (Mith)(2)-Co(II) binding to DNA duplexes, while the dissociation rates were not affected. Although (Mith)(2)-Co(II) exhibited the highest oxidative activity under physiological conditions (pH 7.3 and 37 degrees C), polyamines (spermine in particular) inhibited the DNA cleavage activity of the (Mith)(2)-Co(II) in a concentration-dependent manner. Depletion of intracellular polyamines by methylglyoxal bis(guanylhydrazone) (MGBG) enhanced the sensitivity of A549 lung cancer cells to (Mith)(2)-Co(II), most likely due to the decreased intracellular effect of polyamines on the action of (Mith)(2)-Co(II). Our study suggests a novel method for enhancing the anticancer activity of DNA-binding metalloantibiotics through polyamine depletion.
Vento, Peter J.; Daniels, Derek
2013-01-01
Angiotensin II (AngII) acts on central angiotensin type 1 (AT1) receptors to increase water and saline intake. Prolonged exposure to AngII in cell culture models results in a desensitization of the AT1 receptor that is thought to involve receptor internalization, and a behavioral correlate of this desensitization has been shown in rats after repeated central injections of AngII. Specifically, rats given repeated injections of AngII drink less water than controls after a subsequent test injection of AngII. Under the same conditions, however, repeated injections of AngII have no effect on AngII-induced saline intake. Given earlier studies indicating that separate intracellular signaling pathways mediate AngII-induced water and saline intake, we hypothesized that the desensitization observed in rats may be incomplete, leaving the receptor able to activate mitogen-activated protein (MAP) kinases (ERK1/2), which play a role in AngII-induced saline intake without affecting water intake. In support of this hypothesis, we found no difference in MAP kinase phosphorylation after an AngII test injection in rats given prior treatment with repeated injections of vehicle, AngII, or Sar1,Ile4,Ile8-AngII (SII), an AngII analog that activates MAP kinase without G protein coupling. In addition, we found that pretreatment with the MAP kinase inhibitor U0126 completely blocked the desensitizing effect of repeated AngII injections on water intake. Furthermore, AngII-induced water intake was reduced similarly by repeated injections of AngII or SII. The results suggest that G protein-independent signaling is sufficient to produce behavioral desensitization of the angiotensin system and that the desensitization requires MAP kinase activation. PMID:22581747
Vento, Peter J; Daniels, Derek
2012-12-01
Angiotensin II (Ang II) acts on central angiotensin type 1 (AT(1)) receptors to increase water and saline intake. Prolonged exposure to Ang II in cell culture models results in a desensitization of the AT(1) receptor that is thought to involve receptor internalization, and a behavioural correlate of this desensitization has been shown in rats after repeated central injections of Ang II. Specifically, rats given repeated injections of Ang II drink less water than control animals after a subsequent test injection of Ang II. In the same conditions, however, repeated injections of Ang II have no effect on Ang II-induced saline intake. Given earlier studies indicating that separate intracellular signalling pathways mediate Ang II-induced water and saline intake, we hypothesized that the desensitization observed in rats may be incomplete, leaving the receptor able to activate mitogen-activated protein (MAP) kinases (ERK1/2), which play a role in Ang II-induced saline intake without affecting water intake. In support of this hypothesis, we found no difference in MAP kinase phosphorylation after an Ang II test injection in rats given prior treatment with repeated injections of vehicle, Ang II or Sar(1),Ile(4),Ile(8)-Ang II (SII), an Ang II analogue that activates MAP kinase without G protein coupling. In addition, we found that pretreatment with the MAP kinase inhibitor U0126 completely blocked the desensitizing effect of repeated Ang II injections on water intake. Furthermore, Ang II-induced water intake was reduced to a similar extent by repeated injections of Ang II or SII. The results suggest that G protein-independent signalling is sufficient to produce behavioural desensitization of the angiotensin system and that the desensitization requires MAP kinase activation.
Kılıcaslan, Soner; Arslan, Mustafa; Ruya, Zeynep; Bilen, Çigdem; Ergün, Adem; Gençer, Nahit; Arslan, Oktay
2016-12-01
Sulfonamide-bearing thiazole compounds were synthesized and their inhibitory effects on the activity of purified human carbonic anhydrase I and II were evaluated. Human carbonic anhydrase isoenzymes (hCA-I and hCA-II) were purified from erythrocyte cells by affinity chromatography. The inhibitory effects of the 12 synthesized sulfonamide (5a-l) on the hydratase and esterase activities of these isoenzymes (hCA-I and hCA-II) were studied in vitro. In relation to these activities, the inhibition equilibrium constants (Ki) were determined. The results showed that all the synthesized compounds inhibited the CA isoenzyme activity. Among them 5b was found to be the most active (IC50 = 0.35 μM; Ki: 0.33 μM) for hCA I and hCA II.
Nickel(II) biosorption by Rhodotorula glutinis.
Suazo-Madrid, Alicia; Morales-Barrera, Liliana; Aranda-García, Erick; Cristiani-Urbina, Eliseo
2011-01-01
The present study reports the feasibility of using Rhodotorula glutinis biomass as an alternative low-cost biosorbent to remove Ni(II) ions from aqueous solutions. Acetone-pretreated R. glutinis cells showed higher Ni(II) biosorption capacity than untreated cells at pH values ranging from 3 to 7.5, with an optimum pH of 7.5. The effects of other relevant environmental parameters, such as initial Ni(II) concentration, shaking contact time and temperature, on Ni(II) biosorption onto acetone-pretreated R. glutinis were evaluated. Significant enhancement of Ni(II) biosorption capacity was observed by increasing initial metal concentration and temperature. Kinetic studies showed that the kinetic data were best described by a pseudo-second-order kinetic model. Among the two-, three-, and four-parameter isotherm models tested, the Fritz-Schluender model exhibited the best fit to experimental data. Thermodynamic parameters (activation energy, and changes in activation enthalpy, activation entropy, and free energy of activation) revealed that the biosorption of Ni(II) ions onto acetone-pretreated R. glutinis biomass is an endothermic and non-spontaneous process, involving chemical sorption with weak interactions between the biosorbent and Ni(II) ions. The high sorption capacity (44.45 mg g(-1) at 25°C, and 63.53 mg g(-1) at 70°C) exhibited by acetone-pretreated R. glutinis biomass places this biosorbent among the best adsorbents currently available for removal of Ni(II) ions from aqueous effluents.
CotA, a Multicopper Oxidase from Bacillus pumilus WH4, Exhibits Manganese-Oxidase Activity
Su, Jianmei; Bao, Peng; Bai, Tenglong; Deng, Lin; Wu, Hui; Liu, Fan; He, Jin
2013-01-01
Multicopper oxidases (MCOs) are a family of enzymes that use copper ions as cofactors to oxidize various substrates. Previous research has demonstrated that several MCOs such as MnxG, MofA and MoxA can act as putative Mn(II) oxidases. Meanwhile, the endospore coat protein CotA from Bacillus species has been confirmed as a typical MCO. To study the relationship between CotA and the Mn(II) oxidation, the cotA gene from a highly active Mn(II)-oxidizing strain Bacillus pumilus WH4 was cloned and overexpressed in Escherichia coli strain M15. The purified CotA contained approximately four copper atoms per molecule and showed spectroscopic properties typical of blue copper oxidases. Importantly, apart from the laccase activities, the CotA also displayed substantial Mn(II)-oxidase activities both in liquid culture system and native polyacrylamide gel electrophoresis. The optimum Mn(II) oxidase activity was obtained at 53°C in HEPES buffer (pH 8.0) supplemented with 0.8 mM CuCl2. Besides, the addition of o-phenanthroline and EDTA both led to a complete suppression of Mn(II)-oxidizing activity. The specific activity of purified CotA towards Mn(II) was 0.27 U/mg. The Km, Vmax and kcat values towards Mn(II) were 14.85±1.17 mM, 3.01×10−6±0.21 M·min−1 and 0.32±0.02 s−1, respectively. Moreover, the Mn(II)-oxidizing activity of the recombinant E. coli strain M15-pQE-cotA was significantly increased when cultured both in Mn-containing K liquid medium and on agar plates. After 7-day liquid cultivation, M15-pQE-cotA resulted in 18.2% removal of Mn(II) from the medium. Furthermore, the biogenic Mn oxides were clearly observed on the cell surfaces of M15-pQE-cotA by scanning electron microscopy. To our knowledge, this is the first report that provides the direct observation of Mn(II) oxidation with the heterologously expressed protein CotA, Therefore, this novel finding not only establishes the foundation for in-depth study of Mn(II) oxidation mechanisms, but also offers a potential biocatalyst for Mn(II) removal. PMID:23577125
Basavaraju, B; Naik, Halehatty S Bhojya; Prabhakara, Mustur C
2007-01-01
The synthesis and characterization of title complexes of the ligand Quinolino[3,2-b]benzodiazepine (QBD) and Quinolino[3,2-b]benzoxazepine (QBO) are reported. The complexes have been characterized by elemental analysis, molar conductance, magnetic studies, IR, H1 NMR, and UV-visible studies. They have the stoichiometry [ML2C12], where M=Co(II)/Ni(II), L=QBD/QBO, and [MLC12], where M=Zn(II)/Cd(II), L=QBD/QBO. The antibacterial and antifungal activity of the metal complexes has been investigated. The complexes were found to have higher antimicrobial activity than the parent ligand.
Mahmoud, W H; Mahmoud, N F; Mohamed, G G; El-Sonbati, A Z; El-Bindary, A A
2015-01-01
The coordination behavior of a series of transition metal ions named Cr(III), Fe(III), Mn(II), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) with a mono negative tridentate guaifenesin ligand (GFS) (OOO donation sites) and 1,10-phenanthroline (Phen) is reported. The metal complexes are characterized based on elemental analyses, IR, (1)H NMR, solid reflectance, magnetic moment, molar conductance, UV-vis spectral studies, mass spectroscopy, ESR, XRD and thermal analysis (TG and DTG). The ternary metal complexes were found to have the formulae of [M(GFS)(Phen)Cl]Cl·nH2O (M=Cr(III) (n=1) and Fe(III) (n=0)), [M(GFS)(Phen)Cl]·nH2O (M=Mn(II) (n=0), Zn(II) (n=0) and Cu(II) (n=3)) and [M(GFS)(Phen)(H2O)]Cl·nH2O (M=Co(II) (n=0), Ni(II) (n=0) and Cd(II) (n=4)). All the chelates are found to have octahedral geometrical structures. The ligand and its ternary chelates are subjected to thermal analyses (TG and DTG). The GFS ligand, in comparison to its ternary metal complexes also was screened for their antibacterial activity on gram positive bacteria (Bacillus subtilis and Staphylococcus aureus), gram negative bacteria (Escherichia coli and Neisseria gonorrhoeae) and for in vitro antifungal activity against (Candida albicans). The activity data show that the metal complexes have antibacterial and antifungal activity more than the parent GFS ligand. The complexes were also screened for its in vitro anticancer activity against the Breast cell line (MFC7) and the results obtained show that they exhibit a considerable anticancer activity. Copyright © 2015 Elsevier B.V. All rights reserved.
Subramanian, Venkateswaran; Uchida, Haruhito Adam; Ijaz, Talha; Moorleghen, Jessica J.; Howatt, Deborah A.; Balakrishnan, Anju
2011-01-01
Chronic infusion of angiotensin II (AngII) augments atherosclerosis and abdominal aortic aneurysm (AAAs) formation in hypercholesterolemic mice. AngII-induced AAAs are associated with medial macrophage accumulation and matrix metalloproteinase (MMP) activation. Inhibition of calpain, a calcium-activated neutral cysteine protease, by overexpression of its endogenous inhibitor, calpastatin, attenuates AngII-induced leukocyte infiltration, perivascular inflammation, and MMP activation in mice. The purpose of this study was to define whether pharmacological inhibition of calpain influences AngII-induced AAAs in hypercholesterolemic mice. Male LDL receptor −/− mice were fed a fat-enriched diet and administered with either vehicle or a calpain-specific inhibitor, BDA-410 (30 mg/kg/day) for 5 weeks. After 1 week of feeding, mice were infused with AngII (1,000 ng/kg/min) for 4 weeks. AngII-infusion profoundly increased aortic calpain protein and activity. BDA-410 administration had no effect on plasma cholesterol concentrations or AngII-increased systolic blood pressure. Calpain inhibition significantly attenuated AngII-induced AAA formation and atherosclerosis development. BDA-410 administration attenuated activation of MMP12, pro-inflammatory cytokines (IL-6, MCP-1) and macrophage infiltration into the aorta. BDA-410 administration significantly attenuated thioglycollate-elicited macrophage accumulation in the peritoneal cavity. We conclude that calpain inhibition using BDA-410 attenuated AngII-induced AAA formation and atherosclerosis development in LDL receptor −/− mice. PMID:21964156
Genotype-dependent activation or repression of HBV enhancer II by transcription factor COUP-TF1
Fischer, Silke F; Schmidt, Katja; Fiedler, Nicola; Glebe, Dieter; Schüttler, Christian; Sun, Jianguang; Gerlich, Wolfram H; Repp, Reinald; Schaefer, Stephan
2006-01-01
AIM: To study the expression of HBV enhancer II by transcription factor COUP-TF1. METHODS: In order to study the regulation of HBV variants in the vicinity of the NRRE we cloned luciferase constructs containing the HBV enhancer II from variants and from HBV genotypes A and D and cotransfected them together with expression vectors for COUP-TF1 into HepG2 cells. RESULTS: Our findings show that enhancer II of HBV genotype A is also repressed by COUP-TF1. In contrast, two different enhancer II constructs of HBV genotype D were activated by COUP-TF1. The activation was independent of the NRRE because a natural variant with a deletion of nt 1763-1770 was still activated by COUP-TF1. CONCLUSION: Regulation of transcription of the HBV genome seems to differ among HBV genomes derived from different genotypes. These differences in transcriptional control among HBV genotypes may be the molecular basis for differences in the clinical course among HBV genotypes. PMID:17009409
Genotype-dependent activation or repression of HBV enhancer II by transcription factor COUP-TF1.
Fischer, Silke F; Schmidt, Katja; Fiedler, Nicola; Glebe, Dieter; Schüttler, Christian; Sun, Jianguang; Gerlich, Wolfram H; Repp, Reinald; Schaefer, Stephan
2006-10-07
To study the expression of HBV enhancer II by transcription factor COUP-TF1. In order to study the regulation of HBV variants in the vicinity of the NRRE we cloned luciferase constructs containing the HBV enhancer II from variants and from HBV genotypes A and D and cotransfected them together with expression vectors for COUP-TF1 into HepG2 cells. Our findings show that enhancer II of HBV genotype A is also repressed by COUP-TF1. In contrast, two different enhancer II constructs of HBV genotype D were activated by COUP-TF1. The activation was independent of the NRRE because a natural variant with a deletion of nt 1763-1770 was still activated by COUP-TF1. Regulation of transcription of the HBV genome seems to differ among HBV genomes derived from different genotypes. These differences in transcriptional control among HBV genotypes may be the molecular basis for differences in the clinical course among HBV genotypes.
Chen, Wei; Qu, Mingbo; Zhou, Yong; Yang, Qing
2018-02-23
Chitin is a linear homopolymer of N -acetyl-β-d-glucosamines and a major structural component of insect cuticles. Chitin hydrolysis involves glycoside hydrolase family 18 (GH18) chitinases. In insects, chitin hydrolysis is essential for periodic shedding of the old cuticle ecdysis and proceeds via a pathway different from that in the well studied bacterial chitinolytic system. Group II chitinase (ChtII) is a widespread chitinolytic enzyme in insects and contains the greatest number of catalytic domains and chitin-binding domains among chitinases. In Lepidopterans, ChtII and two other chitinases, ChtI and Chi-h, are essential for chitin hydrolysis. Although ChtI and Chi-h have been well studied, the role of ChtII remains elusive. Here, we investigated the structure and enzymology of Of ChtII, a ChtII derived from the insect pest Ostrinia furnacalis We present the crystal structures of two catalytically active domains of Of ChtII, Of ChtII-C1 and Of ChtII-C2, both in unliganded form and complexed with chitooligosaccharide substrates. We found that Of ChtII-C1 and Of ChtII-C2 both possess long, deep substrate-binding clefts with endochitinase activities. Of ChtII exhibited structural characteristics within the substrate-binding cleft similar to those in Of Chi-h and Of ChtI. However, Of ChtII lacked structural elements favoring substrate binding beyond the active sites, including an extra wall structure present in Of Chi-h. Nevertheless, the numerous domains in Of ChtII may compensate for this difference; a truncation containing one catalytic domain and three chitin-binding modules ( Of ChtII-B4C1) displayed activity toward insoluble polymeric substrates that was higher than those of Of Chi-h and Of ChtI. Our observations provide the last piece of the puzzle of chitin hydrolysis in insects. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.
Valvassori, Samira S; Bavaresco, Daniela V; Feier, Gustavo; Cechinel-Recco, Kelen; Steckert, Amanda V; Varela, Roger B; Borges, Cenita; Carvalho-Silva, Milena; Gomes, Lara M; Streck, Emílio L; Quevedo, João
2018-06-01
The present study aims to investigate the oxidative stress parameters in isolated mitochondria, as well as looking at mitochondrial complex activity in patients with Bipolar Disorder (BD) during depressive or euthymic episodes. This study evaluated the levels of mitochondrial complex (I, II, II-III and IV) activity in lymphocytes from BD patients. We evaluated the following oxidative stress parameters: superoxide, thiobarbituric acid reactive species (TBARS) and carbonyl levels in submitochondrial particles of lymphocytes from bipolar patients. 51 bipolar patients were recruited into this study: 34 in the euthymic phase, and 17 in the depressive phase. Our results indicated that the depressive phase could increase the levels of mitochondrial superoxide, carbonyl and TBARS, and superoxide dismutase, and could decrease the levels of mitochondrial complex II activity in the lymphocytes of bipolar patients. It was also observed that there was a negative correlation between the Hamilton Depression Rating Scale (HDRS) and complex II activity in the lymphocytes of depressive bipolar patients. In addition, there was a positive correlation between HDRS and superoxide, superoxide dismutase, TBARS and carbonyl. Additionally, there was a negative correlation between complex II activity and oxidative stress parameters. In conclusion, our results suggest that mitochondrial oxidative stress and mitochondrial complex II dysfunction play important roles in the depressive phase of BD. Copyright © 2018. Published by Elsevier B.V.
China's Propaganda in the United States during World War II.
ERIC Educational Resources Information Center
Tsang, Kuo-jen
Drawing data from a variety of sources, a study was undertaken to place China's propaganda activities in the United States during World War II into a historical perspective. Results showed that China's propaganda efforts consisted of official and unofficial activities and activities directed toward overseas Chinese. The official activities were…
Churn, Severn B; Rana, Aniruddha; Lee, Kangmin; Parsons, J Travis; De Blas, Angel; Delorenzo, Robert J
2002-09-01
gamma-Aminobutyric acid (GABA) is the primary neurotransmitter that is responsible for the fast inhibitory synaptic transmission in the central nervous system. A major post-translational mechanism that can rapidly regulate GABAAR function is receptor phosphorylation. This study was designed to test the effect of endogenous calcium and calmodulin-dependent kinase II (CaM kinase II) activation on both allosteric modulator binding and GABAA receptor subunit phosphorylation. Endogenous CaM kinase II activity was stimulated, and GABAA receptors were subsequently analyzed for bothallosteric modulator binding properties and immunoprecipitated and analyzed for subunit phosphorylation levels. A significant increase in allosteric-modulator binding of the GABAAR was observed under conditions maximal for CaM kinase II activation. In addition, CaM kinase II activation resulted in a direct increase in phosphorylation of the GABAA receptor alpha1 subunit. The data suggest that the CaM kinase II-dependent phosphorylation of the GABAA receptor alpha1 subunit modulated allosteric modulator binding to the GABAA receptor.
Synthesis, characterization and anticancer activity of new Schiff bases bearing neocryptolepine
NASA Astrophysics Data System (ADS)
Emam, Sanaa M.; El Sayed, Ibrahim E. T.; Ayad, Mohamed I.; Hathout, Heba M. R.
2017-10-01
The synthesis of new Shiff base ligands denoted L1, HL2 and HL3 starting from the appropriate aminoneocryptolepine and salicaldehyde were described. The chelation abilities of L1, HL2 and HL3 ligands towards Co(II), Ni(II), Cu(II) and Pd(II) salts have been studied. A series of square planar complexes containing Cu(II) salts, PdCl2 and octahedral chelates containing NiCl2, CoCl2 salts (2 and 7) have been isolated. Also, the pentacoordinated Co(II) complex [Co(L1)2Cl]·Cl.0.5H2O·1.25EtOH (1) has been prepared. The mode of bonding and geometrical structure of complexes has been confirmed by elemental analyses and different spectroscopic methods together with thermal, magnetic moment studies, molecular modeling and X-ray diffraction. Furthermore, the synthesized ligands, in comparison to some of their metal complexes were screened for their anticancer activity against colorectal adenocarcinoma (HT-29) cells. The results showed that Co(II) complexes (1 and 7) exhibited higher anticancer activity when compared to the corresponding ligands.
Ibrahim, M K; Taghour, M S; Metwaly, A M; Belal, A; Mehany, A B M; Elhendawy, M A; Radwan, M M; Yassin, A M; El-Deeb, N M; Hafez, E E; ElSohly, M A; Eissa, I H
2018-06-04
New series of [1,2,4]triazolo [4,3-a]quinoxaline and bis([1,2,4]triazolo)[4,3-a:3',4'-c]quinoxaline derivatives have been designed, synthesized and biologically evaluated for their cytotoxic activities against three tumor cell lines (HePG-2, Hep-2 and Caco-2). Compounds 16 e , 21, 25 a and 25 b exhibited the highest activities against the examined cell lines with IC 50 values ranging from 0.29 to 0.90 μM comparable to that of doxorubicin (IC 50 ranging from 0.51 to 0.73 μM). The most active members were further evaluated for their topoisomerase II (Topo II) inhibitory activities and DNA intercalating affinities as potential mechanisms for their anti-proliferative activities. Interestingly, the results of Topo II inhibition and DNA binding assays were consistent with that of the cytotoxicity data, where the most potent anti-proliferative derivatives exhibited good Topo II inhibitory activities and DNA binding affinities, comparable to that of doxorubicin. Moreover, the most active compound 25 a caused cell cycle arrest at G2/M phase and induced apoptosis in Caco-2 cells. In addition, Furthermore, molecular docking studies were performed for the novel compounds against DNA-Topo II complex to investigate their binding patterns. Based on these studies, it was concluded that DNA binding and/or Topo II inhibition may contribute to the observed cytotoxicity of the synthesized compounds. Copyright © 2018. Published by Elsevier Masson SAS.
Chowdhury, Animesh; Sarkar, Jaganmay; Pramanik, Pijush Kanti; Chakraborti, Tapati; Chakraborti, Sajal
2016-08-01
The aim of the present study is to establish the mechanism associated with the proliferation of PASMCs under ANG II stimulation. The results showed that treatment of PASMCs with ANG II induces an increase in cell proliferation and 100 nM was the optimum concentration for maximum increase in proliferation of the cells. Pretreatment of the cells with AT1, but not AT2, receptor antagonist inhibited ANG II induced cell proliferation. Pretreatment with pharmacological and genetic inhibitors of sphingomyelinase (SMase) and sphingosine kinase (SPHK) prevented ANG II-induced cell proliferation. ANG II has also been shown to induce SMase activity, SPHK phosphorylation and S1P production. In addition, ANG II caused an increase in proMMP-2 expression and activation, ERK1/2 phosphorylation and NADPH oxidase activation. Upon inhibition of MMP-2, SMase activity and S1P level were curbed leading to inhibition of cell proliferation. SPHK was phosphorylated by ERK1/2 during ET-1 stimulation of the cells. ANG II-induced ERK1/2 phosphorylation and proMMP-2 expression and activation in the cells were abrogated upon inhibition of NADPH oxidase activity. Overall, NADPH oxidase plays an important role in proMMP-2 expression and activation and that MMP-2 mediated SMC proliferation occurs through the involvement of Spm-Cer-S1P signaling axis under ANG II stimulation of PASMCs. Copyright © 2016 Elsevier Inc. All rights reserved.
Performance of Spent Mushroom Farming Waste (SMFW) Activated Carbon for Ni (II) Removal
NASA Astrophysics Data System (ADS)
Desa, N. S. Md; Ghani, Z. Ab; Talib, S. Abdul; Tay, C. C.
2016-07-01
The feasibility of a low cost agricultural waste of spent mushroom farming waste (SMFW) activated carbon for Ni(II) removal was investigated. The batch adsorption experiments of adsorbent dosage, pH, contact time, metal concentration, and temperature were determined. The samples were shaken at 125 rpm, filtered and analyzed using ICP-OES. The fifty percent of Ni(II) removal was obtained at 0.63 g of adsorbent dosage, pH 5-6 (unadjusted), 60 min contact time, 50 mg/L Ni(II) concentration and 25 °C temperature. The evaluated SMFW activated carbon showed the highest performance on Ni(II) removal compared to commercial Amberlite IRC86 resin and zeolite NK3. The result indicated that SMFW activated carbon is a high potential cation exchange adsorbent and suitable for adsorption process for metal removal. The obtained results contribute toward application of developed SMFW activated carbon in industrial pilot study.
Rauf, Abdur
1996-01-01
Mixed ligands biologically active complexes of cobalt(II), copper(II) and nickel(II) with nicotinoylhydrazine-derived ONO, NNO and SNO donor schiff-base ligands having the same metal ion but different anions such as sulphate, nitrate, oxalate and acetate have been synthesised and characterised on the basis of their physical, analytical and spectral data. In order to evaluate the role of anions on their bioability, these ligands and their synthesised metal complexes with various anions have been screened against bacterial species such as Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus and the title studies have proved a definative role of anions in increasing the biological activity PMID:18472896
Kalra, Dinesh; Sivasubramanian, Natarajan; Mann, Douglas L
2002-05-07
Previous studies suggest that angiotensin II (Ang II) upregulates the expression of tumor necrosis factor (TNF) in nonmyocyte cell types; however, the effect of Ang II on TNF expression in the adult mammalian heart is not known. To determine whether Ang II was sufficient to provoke TNF biosynthesis in the adult heart, we examined the effects of Ang II in isolated buffer-perfused Langendorff feline hearts. Ang II (10(-7) mol/L) treatment resulted in a time- and dose-dependent increase in myocardial TNF mRNA and protein biosynthesis in the heart as well as in cultured adult cardiac myocytes. The effects of Ang II on myocardial TNF mRNA and protein synthesis were mediated through the angiotensin type 1 receptor (AT1R), insofar as an AT1R antagonist (AT1a) blocked the effects of Ang II, whereas an angiotensin type 2 receptor (AT2R) antagonist (AT2a) had no effect. Stimulation with Ang II led to the activation of nuclear factor-kappaB and activator protein-1 (AP-1), two transcription factors that are important for TNF gene expression. Nuclear factor-kappaB activation was accompanied by phosphorylation of IkappaBalpha on serine 32 as well as degradation of IkappaBalpha, suggesting that the effects of Ang II were mediated through an IkappaBalpha-dependent pathway. The important role of protein kinase C (PKC) was suggested by studies in which a phorbol ester triggered TNF biosynthesis, and a PKC inhibitor abrogated Ang II-induced TNF biosynthesis. These studies suggest that Ang II provokes TNF biosynthesis in the adult mammalian heart through a PKC-dependent pathway.
Takayanagi, Takehiko; Kawai, Tatsuo; Forrester, Steven J; Obama, Takashi; Tsuji, Toshiyuki; Fukuda, Yamato; Elliott, Katherine J; Tilley, Douglas G; Davisson, Robin L; Park, Joon-Young; Eguchi, Satoru
2015-06-01
The mechanisms by which angiotensin II (AngII) elevates blood pressure and enhances end-organ damage seem to be distinct. However, the signal transduction cascade by which AngII specifically mediates vascular remodeling such as medial hypertrophy and perivascular fibrosis remains incomplete. We have previously shown that AngII-induced epidermal growth factor receptor (EGFR) transactivation is mediated by disintegrin and metalloproteinase domain 17 (ADAM17), and that this signaling is required for vascular smooth muscle cell hypertrophy but not for contractile signaling in response to AngII. Recent studies have implicated endoplasmic reticulum (ER) stress in hypertension. Interestingly, EGFR is capable of inducing ER stress. The aim of this study was to test the hypothesis that activation of EGFR and ER stress are critical components required for vascular remodeling but not hypertension induced by AngII. Mice were infused with AngII for 2 weeks with or without treatment of EGFR inhibitor, erlotinib, or ER chaperone, 4-phenylbutyrate. AngII infusion induced vascular medial hypertrophy in the heart, kidney and aorta, and perivascular fibrosis in heart and kidney, cardiac hypertrophy, and hypertension. Treatment with erlotinib as well as 4-phenylbutyrate attenuated vascular remodeling and cardiac hypertrophy but not hypertension. In addition, AngII infusion enhanced ADAM17 expression, EGFR activation, and ER/oxidative stress in the vasculature, which were diminished in both erlotinib-treated and 4-phenylbutyrate-treated mice. ADAM17 induction and EGFR activation by AngII in vascular cells were also prevented by inhibition of EGFR or ER stress. In conclusion, AngII induces vascular remodeling by EGFR activation and ER stress via a signaling mechanism involving ADAM17 induction independent of hypertension. © 2015 American Heart Association, Inc.
NASA Astrophysics Data System (ADS)
Chandra, Sulekh; Vandana; Kumar, Suresh
2015-01-01
Schiff's base ligand(L) hydrazine carboxamide, 2-[3-methyl-2-thienyl methylene] and its metal complexes have been synthesized and characterized by elemental analysis, molar conductance, various spectroscopic techniques such as electronic, IR, 1H NMR, mass, EPR. Molar conductance of complexes in DMF solution corresponds to non-electrolyte. Complexes have general composition [M(L)2X2], where M = Ni(II) and Cu(II), X = Cl-, NO3-, CH3COO- and ½SO42-. On the basis of above spectral studies, an octahedral geometry has been assigned for Ni(II) complexes and tetragonal geometry for Cu(II) complexes except [Cu(L)2SO4] which possesses five coordinated trigonal bipyramidal geometry. These metal complexes were also tested for their anticancer, antibacterial and antifungal activities to assess their inhibition potential. Anticancer activity of ligand and its metal complexes were evaluated using SRB fluorometric assay and Adriamycin (ADR) was applied as positive control. Schiff's base ligand and its metal complexes were screened for their antibacterial and antifungal activity against Escherichia coli, Bacillus cereus and Aspergillus niger, Aspergillus flavus, respectively. Kirby-Bauer single disk susceptibility test was used for antibacterial activity and well diffusion method for antifungal activity of the compounds on the used fungi.
Promoter Melting Plays Critical Role in Lymphocyte Activation | Center for Cancer Research
Transcription in eukaryotic cells is a precisely timed ballet that consists of RNA polymerase II (pol II) recruitment to gene promoters, assembly of the multiprotein preinitiation complex, opening of the DNA, escape of pol II from the promoter, pol II pausing downstream, mRNA elongation, and, eventually, termination. The two main points of regulation are thought to be polymerase recruitment and pause release, but most studies investigating these regulatory processes involved actively cycling cells.
Paiva, L; Sabatier, N; Leng, G; Ludwig, M
2017-02-01
Melanocortins stimulate the central oxytocin systems that are involved in regulating social behaviours. Alterations in central oxytocin have been linked to neurological disorders such as autism, and melanocortins have been proposed for therapeutic treatment. In the present study, we investigated how systemic administration of melanotan-II (MT-II), a melanocortin agonist, affects oxytocin neuronal activity and secretion in rats. The results obtained show that i.v., but not intranasal, administration of MT-II markedly induced Fos expression in magnocellular neurones of the supraoptic (SON) and paraventricular nuclei (PVN) of the hypothalamus, and this response was attenuated by prior i.c.v. administration of the melanocortin antagonist, SHU-9119. Electrophysiological recordings from identified magnocellular neurones of the SON showed that i.v. administration of MT-II increased the firing rate in oxytocin neurones but did not trigger somatodendritic oxytocin release within the SON as measured by microdialysis. Our data suggest that, after i.v., but not intranasal, administration of MT-II, the activity of magnocellular neurones of the SON is increased. Because previous studies showed that SON oxytocin neurones are inhibited in response to direct application of melanocortin agonists, the actions of i.v. MT-II are likely to be mediated at least partly indirectly, possibly by activation of inputs from the caudal brainstem, where MT-II also increased Fos expression. © 2016 British Society for Neuroendocrinology.
Liu, Mengyang; Chen, Yuanli; Zhang, Ling; Wang, Qixue; Ma, Xingzhe; Li, Xiaoju; Xiang, Rong; Zhu, Yan; Qin, Shucun; Yu, Yang; Jiang, Xian-cheng; Duan, Yajun; Han, Jihong
2015-06-05
Cholesteryl ester transfer protein (CETP) transfers cholesteryl esters from high density lipoprotein to triglyceride-rich lipoproteins. CETP expression can be transcriptionally activated by liver X receptor (LXR). Etoposide and teniposide are DNA topoisomerase II (Topo II) inhibitors. Etoposide has been reported to inhibit atherosclerosis in rabbits with un-fully elucidated mechanisms. In this study we determined if Topo II activity can influence cholesterol metabolism by regulating hepatic CETP expression. Inhibition of Topo II by etoposide, teniposide, or Topo II siRNA increased CETP expression in human hepatic cell line, HepG2 cells, which was associated with increased CETP secretion and mRNA expression. Meanwhile, inhibition of LXR expression by LXR siRNA attenuated induction of CETP expression by etoposide and teniposide. Etoposide and teniposide induced LXRα expression and LXRα/β nuclear translocation while inhibiting expression of receptor interacting protein 140 (RIP140), an LXR co-repressor. In vivo, administration of teniposide moderately reduced serum lipid profiles, induced CETP expression in the liver, and activated reverse cholesterol transport in CETP transgenic mice. Our study demonstrates a novel function of Topo II inhibitors in cholesterol metabolism by activating hepatic CETP expression and reverse cholesterol transport. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Zhu, Bao Ting
2010-01-01
Background Recent studies showed that some of the dietary bioflavonoids can strongly stimulate the catalytic activity of cyclooxygenase (COX) I and II in vitro and in vivo, presumably by facilitating enzyme re-activation. In this study, we sought to understand the structural basis of COX activation by these dietary compounds. Methodology/Principal Findings A combination of molecular modeling studies, biochemical analysis and site-directed mutagenesis assay was used as research tools. Three-dimensional quantitative structure-activity relationship analysis (QSAR/CoMFA) predicted that the ability of bioflavonoids to activate COX I and II depends heavily on their B-ring structure, a moiety known to be associated with strong antioxidant ability. Using the homology modeling and docking approaches, we identified the peroxidase active site of COX I and II as the binding site for bioflavonoids. Upon binding to this site, bioflavonoid can directly interact with hematin of the COX enzyme and facilitate the electron transfer from bioflavonoid to hematin. The docking results were verified by biochemical analysis, which reveals that when the cyclooxygenase activity of COXs is inhibited by covalent modification, myricetin can still stimulate the conversion of PGG2 to PGE2, a reaction selectively catalyzed by the peroxidase activity. Using the site-directed mutagenesis analysis, we confirmed that Q189 at the peroxidase site of COX II is essential for bioflavonoids to bind and re-activate its catalytic activity. Conclusions/Significance These findings provide the structural basis for bioflavonoids to function as high-affinity reducing co-substrates of COXs through binding to the peroxidase active site, facilitating electron transfer and enzyme re-activation. PMID:20808785
Basavaraju, B.; Bhojya Naik, Halehatty S.; Prabhakara, Mustur C.
2007-01-01
The synthesis and characterization of title complexes of the ligand Quinolino[3,2-b]benzodiazepine (QBD) and Quinolino[3,2-b]benzoxazepine (QBO) are reported. The complexes have been characterized by elemental analysis, molar conductance, magnetic studies, IR, H1 NMR, and UV-visible studies. They have the stoichiometry [ML2C12], where M=Co(II)/Ni(II), L=QBD/QBO, and [MLC12], where M=Zn(II)/Cd(II), L=QBD/QBO. The antibacterial and antifungal activity of the metal complexes has been investigated. The complexes were found to have higher antimicrobial activity than the parent ligand. PMID:18273383
NASA Astrophysics Data System (ADS)
Bouchoucha, Afaf; Zaater, Sihem; Bouacida, Sofiane; Merazig, Hocine; Djabbar, Safia
2018-06-01
The synthesis, characterization and biological study of new nickel (II), palladium (II), and platinum (II) complexes with sulfamethoxazole ligand used in pharmaceutical field, were reported. [MLCl2].nH2O is the general formula obtained for Pd(II) and Pt(II) complexes. These complexes have been prepared and characterized by elemental analysis, FTIR, 1HNMR spectral, magnetic measurements, UV-Visible spectra, and conductivity. The DFT calculation was applied to optimize the geometric structure of the Pd(II) and Pt(II) complexes. A new single-crystal X-ray structure of the Ni(II) complex has been determined. It crystallized in monoclinic system with P 21/c space group and Z = 8. The invitro antibacterial activity of ligand and complexes against Escherichia coli, P. aeruginosa, Klebsiella pneumoniae, S. aureus, Bacillus subtilis species has been carried out and compared using agar-diffusion method. The Pd(II) and Pt(II) complexes showed a remarkable inhibition against bacteria tested. The invitro cytotoxicity assay of the complexes against three cell lines chronic myelogenous leukaemia (K562), human colon adenocarcinoma (HT-29) and breast cancer (MCF-7) was also reported.
Daniel, Varughese P; Murukan, B; Kumari, B Sindhu; Mohanan, K
2008-07-01
Mn(II), Fe(II), Co(II), Ni(II), Cu(II) and Zn(II) complexes with a potentially tridentate Schiff base, formed by condensation of 2-amino-3-carboxyethyl-4,5-dimethylthiophene with salicylaldehyde were synthesized and characterized on the basis of elemental analyses, molar conductance values, magnetic susceptibility measurements, UV-vis, IR, EPR and NMR spectral data, wherever possible and applicable. Spectral studies reveal that the free ligand exists in a bifunctionally hydrogen bonded manner and coordinates to the metal ion in a tridentate fashion through the deprotonated phenolate oxygen, azomethine nitrogen and ester carbonyl group. On the basis of electronic spectral data and magnetic susceptibility measurements, suitable geometry has been proposed for each complex. The EPR spectral data of the Cu(II) complex showed that the metal-ligand bonds have considerable covalent character. The Ni(II) complex has undergone facile transesterification reaction when refluxed in methanol for a lengthy period. X-ray diffraction studies of Cu(II) complex showed that the complex has an orthorhombic crystal lattice. In view of the biological activity of thiophene derivatives, the ligand and the complexes were subjected to antibacterial screening. It has been observed that the antibacterial activity of the ligand increased on chelation with metal ion.
Vijayakumar, Balakrishnan; Velmurugan, Devadasan
2012-01-01
Protein Kinase C β-II (PKC β-II) is an important enzyme in the development of diabetic complications like cardiomyopathy, retinopathy, neuropathy, nephropathy and angiopathy. PKC β-II is activated in vascular tissues during diabetic vascular abnormalities. Thus, PKC β-II is considered as a potent drug target and the crystal structure of the kinase domain of PKC β-II (PDB id: 2I0E) was used to design inhibitors using Structure-Based Drug Design (SBDD) approach. Sixty inhibitors structurally similar to Staurosporine were retrieved from PubChem Compound database and High Throughput Virtual screening (HTVs) was carried out with PKC β-II. Based on the HTVs results and the nature of active site residues of PKC β-II, Staurosporine inhibitors were designed using SBDD. Induced Fit Docking (IFD) studies were carried out between kinase domain of PKC β-II and the designed inhibitors. These IFD complexes showed favorable docking score, glide energy, glide emodel and hydrogen bond and hydrophobic interactions with the active site of PKC β-II. Binding free energy was calculated for IFD complexes using Prime MM-GBSA method. The conformational changes induced by the inhibitor at the active site of PKC β-II were observed for the back bone Cα atoms and side-chain chi angles. PASS prediction tool was used to analyze the biological activities for the designed inhibitors. The various physicochemical properties were calculated for the compounds. One of the designed inhibitors successively satisfied all the in silico parameters among the others and seems to be a potent inhibitor against PKC β-II. PMID:22829732
Warner, Genoa R; Mills, Matthew R; Enslin, Clarissa; Pattanayak, Shantanu; Panda, Chakadola; Panda, Tamas Kumar; Gupta, Sayam Sen; Ryabov, Alexander D; Collins, Terrence J
2015-04-13
The catalytic activity of the N-tailed ("biuret") TAML (tetraamido macrocyclic ligand) activators [Fe{4-XC6 H3 -1,2-(NCOCMe2 NCO)2 NR}Cl](2-) (3; N atoms in boldface are coordinated to the central iron atom; the same nomenclature is used in for compounds 1 and 2 below), [X, R=H, Me (a); NO2 , Me (b); H, Ph (c)] in the oxidative bleaching of Orange II dye by H2 O2 in aqueous solution is mechanistically compared with the previously investigated activator [Fe{4-XC6 H3 -1,2-(NCOCMe2 NCO)2 CMe2 }OH2 ](-) (1) and the more aggressive analogue [Fe(Me2 C{CON(1,2-C6 H3 -4-X)NCO}2 )OH2 ](-) (2). Catalysis by 3 of the reaction between H2 O2 and Orange II (S) occurs according to the rate law found generally for TAML activators (v=kI kII [Fe(III) ][S][H2 O2 ]/(kI [H2 O2 ]+kII [S]) and the rate constants kI and kII at pH 7 both decrease within the series 3 b>3 a>3 c. The pH dependency of kI and kII was investigated for 3 a. As with all TAML activators studied to-date, bell-shaped profiles were found for both rate constants. For kI , the maximal activity was found at pH 10.7 marking it as having similar reactivity to 1 a. For kII , the broad bell pH profile exhibits a maximum at pH about 10.5. The condition kI ≪kII holds across the entire pH range studied. Activator 3 b exhibits pronounced activity in neutral to slightly basic aqueous solutions making it worthy of consideration on a technical performance basis for water treatment. The rate constants ki for suicidal inactivation of the active forms of complexes 3 a-c were calculated using the general formula ln([S0 ]/[S∞ ])=(kII /ki )[Fe(III) ]; here [Fe(III) ], [S0 ], and [S∞ ] are the total catalyst concentration and substrate concentration at time zero and infinity, respectively. The synthesis and X-ray characterization of 3 c are also described. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Lim, Khai Lone; Amir, Amirah; Lau, Yee Ling; Fong, Mun Yik
2017-08-11
The zoonotic Plasmodium knowlesi is a major cause of human malaria in Malaysia. This parasite uses the Duffy binding protein (PkDBPαII) to interact with the Duffy antigen receptor for chemokines (DARC) receptor on human and macaque erythrocytes to initiate invasion. Previous studies on P. knowlesi have reported distinct Peninsular Malaysia and Malaysian Borneo PkDBPαII haplotypes. In the present study, the differential binding activity of these haplotypes with human and macaque (Macaca fascicularis) erythrocytes was investigated. The PkDBPαII of Peninsular Malaysia and Malaysian Borneo were expressed on the surface of COS-7 cells and tested with human and monkey erythrocytes, with and without anti-Fy6 (anti-Duffy) monoclonal antibody treatment. Binding activity level was determined by counting the number of rosettes formed between the transfected COS-7 cells and the erythrocytes. Anti-Fy6 treatment was shown to completely block the binding of human erythrocytes with the transfected COS-7 cells, thus verifying the specific binding of human DARC with PkDBPαII. Interestingly, the PkDBPαII of Peninsular Malaysia displayed a higher binding activity with human erythrocytes when compared with the Malaysian Borneo PkDBPαII haplotype (mean number of rosettes formed = 156.89 ± 6.62 and 46.00 ± 3.57, respectively; P < 0.0001). However, no difference in binding activity level was seen in the binding assay using M. fascicularis erythrocytes. This study is the first report of phenotypic difference between PkDBPαII haplotypes. The biological implication of this finding is yet to be determined. Therefore, further studies need to be carried out to determine whether this differential binding level can be associated with severity of knowlesi malaria in human.
Prieto, Minolfa C; Reverte, Virginia; Mamenko, Mykola; Kuczeriszka, Marta; Veiras, Luciana C; Rosales, Carla B; McLellan, Matthew; Gentile, Oliver; Jensen, V Behrana; Ichihara, Atsuhiro; McDonough, Alicia A; Pochynyuk, Oleh M; Gonzalez, Alexis A
2017-12-01
Augmented intratubular angiotensin (ANG) II is a key determinant of enhanced distal Na + reabsorption via activation of epithelial Na + channels (ENaC) and other transporters, which leads to the development of high blood pressure (BP). In ANG II-induced hypertension, there is increased expression of the prorenin receptor (PRR) in the collecting duct (CD), which has been implicated in the stimulation of the sodium transporters and resultant hypertension. The impact of PRR deletion along the nephron on BP regulation and Na + handling remains controversial. In the present study, we investigate the role of PRR in the regulation of renal function and BP by using a mouse model with specific deletion of PRR in the CD ( CD PRR-KO). At basal conditions, CD PRR-KO mice had decreased renal function and lower systolic BP associated with higher fractional Na + excretion and lower ANG II levels in urine. After 14 days of ANG II infusion (400 ng·kg -1 ·min -1 ), the increases in systolic BP and diastolic BP were mitigated in CD PRR-KO mice. CD PRR-KO mice had lower abundance of cleaved αENaC and γENaC, as well as lower ANG II and renin content in urine compared with wild-type mice. In isolated CD from CD PRR-KO mice, patch-clamp studies demonstrated that ANG II-dependent stimulation of ENaC activity was reduced because of fewer active channels and lower open probability. These data indicate that CD PRR contributes to renal function and BP responses during chronic ANG II infusion by enhancing renin activity, increasing ANG II, and activating ENaC in the distal nephron segments. Copyright © 2017 the American Physiological Society.
Han, Xinya; Zhu, Xiuyun; Hong, Zongqin; Wei, Lin; Ren, Yanliang; Wan, Fen; Zhu, Shuaihua; Peng, Hao; Guo, Li; Rao, Li; Feng, Lingling; Wan, Jian
2017-06-26
Class II fructose-1,6-bisphosphate aldolases (FBA-II) are attractive new targets for the discovery of drugs to combat invasive fungal infection, because they are absent in animals and higher plants. Although several FBA-II inhibitors have been reported, none of these inhibitors exhibit antifungal effect so far. In this study, several novel inhibitors of FBA-II from C. albicans (Ca-FBA-II) with potent antifungal effects were rationally designed by jointly using a specific protocols of molecular docking-based virtual screening, accurate binding-conformation evaluation strategy, synthesis and enzymatic assays. The enzymatic assays reveal that the compounds 3c, 3e-g, 3j and 3k exhibit high inhibitory activity against Ca-FBA-II (IC 50 < 10 μM), and the most potential inhibitor is 3g, with IC 50 value of 2.7 μM. Importantly, the compounds 3f, 3g, and 3l possess not only high inhibitions against Ca-FBA-II, but also moderate antifungal activities against C. glabrata (MIC 80 = 4-64 μg/mL). The compounds 3g, 3l, and 3k in combination with fluconazole (8 μg/mL) displayed significantly synergistic antifungal activities (MIC 80 < 0.0625 μg/mL) against resistant Candida strains, which are resistant to azoles drugs. The probable binding modes between 3g and the active site of Ca-FBA-II have been proposed by using the DOX (docking, ONIOM, and XO) strategy. To our knowledge, no FBA-II inhibitors with antifungal activities against wild type and resistant strains from Candida were reported previously. The positive results suggest that the strategy adopted in this study are a promising method for the discovery of novel drugs against azole-resistant fungal pathogens in the future.
NASA Astrophysics Data System (ADS)
Mahendra Raj, K.; Vivekanand, B.; Nagesh, G. Y.; Mruthyunjayaswamy, B. H. M.
2014-02-01
A series of new binucleating Cu(II), Co(II), Ni(II) and Zn(II) complexes of bicompartmental ligands with ONO donor were synthesized. The ligands were obtained by the condensation of 3-chloro-6-substituted benzo[b]thiophene-2-carbohydrazides and 4,6-diacetylresorcinol. The synthesized ligands and their complexes were characterized by elemental analysis and various spectroscopic techniques. Elemental analysis, IR, 1H NMR, ESI-mass, UV-Visible, TG-DTA, magnetic measurements, molar conductance and powder-XRD data has been used to elucidate their structures. The bonding sites are the oxygen atom of amide carbonyl, azomethine nitrogen and phenolic oxygen for ligands 1 and 2. The binuclear nature of the complexes was confirmed by ESR spectral data. TG-DTA studies for some complexes showed the presence of coordinated water molecules and the final product is the metal oxide. All the complexes were investigated for their electrochemical activity, only the Cu(II) complexes showed the redox property. Cu(II) complexes were square planar, whereas Co(II), Ni(II) and Zn(II) complexes were octahedral. Powder-XRD pattern have been studied in order to test the degree of crystallinity of the complexes and unit cell calculations were made. In order to evaluate the effect of antimicrobial activity of metal ions upon chelation, both the ligands and their metal complexes were screened for their antibacterial and antifungal activities by minimum inhibitory concentration (MIC) method. The results showed that the metal complexes were found to be more active than free ligands. The DNA cleaving capacities of all the complexes were analyzed by agarose gel electrophoresis method against supercoiled plasmid DNA. Among the compounds tested for antioxidant capacity, ligand 1 displayed excellent activity than its metal complexes.
NASA Astrophysics Data System (ADS)
El-Boraey, Hanaa A.; Serag El-Din, Azza A.
2014-11-01
Novel penta-azamacrocyclic 15-membered [N5] ligand [L] i.e. 1,5,8,12-tetetraaza-3,4: 9,10-dibenzo-6-ethyl-7-methyl-1,12-(2,6-pyrido)cyclopentadecan-5,7 diene-2,11-dione and its transition metal complexes with Co(II), Ni(II), Cu(II), Ru(III) and Pd(II) have been synthesized and structurally characterized by elemental analysis, spectral, thermal as well as magnetic and molar conductivity measurements. On basis of IR, MS, UV-Vis 1H NMR and EPR spectral studies an octahedral geometry has been proposed for all complexes except Co(II), Cu(II) nitrate complexes and Pd(II) chloride complex that adopt tetrahedral, square pyramidal and square planar geometries, respectively. The antitumor activity of the synthesized ligand and some complexes against human breast cancer cell lines (MCF-7) and human hepatocarcinoma cell lines (HepG2) has been studied. The complexes (IC50 = 2.04-9.7, 2.5-3.7 μg/mL) showed potent antitumor activity comparable with their ligand (IC50 = 11.7, 3.45 μg/mL) against the above mentioned cell lines, respectively. The results evidently show that the activity of the ligand becomes more pronounced and significant when coordinated to the metal ion.
Sharma, Meena; Blackman, Marc R; Sharma, Mahesh C
2012-02-01
Activation of the fibrinolytic pathway has long been associated with human breast cancer. Plasmin is the major end product of the fibrinolytic pathway and is critical for normal physiological functions. The mechanism by which plasmin is generated in breast cancer is not yet fully described. We previously identified annexin II (ANX II), a fibrinolytic receptor, in human breast tumor tissue samples and observed a strong positive correlation with advanced stage cancer (Sharma et al., 2006a). We further demonstrated that tissue plasminogen activator (tPA) binds to ANX II in invasive breast cancer MDA-MB231cells, which leads to plasmin generation (Sharma et al., 2010). We hypothesize that ANX II-dependent plasmin generation in breast tumor is necessary to trigger the switch to neoangiogenesis, thereby stimulating a more aggressive cancer phenotype. Our immunohistochemical studies of human breast tumor tissues provide compelling evidence of a strong positive correlation between ANX II expression and neoangiogenesis, and suggest that ANX II is a potential target to slow or inhibit breast tumor growth by inhibiting neoangiogenesis. We now report that administration of anti-ANX II antibody potently inhibits the growth of human breast tumor in a xenograft model. Inhibition of tumor growth is at least partly due to attenuation of neoangiogenic activity within the tumor. In vitro studies demonstrate that anti-ANX II antibody inhibits angiogenesis on three dimensional matrigel cultures by eliciting endothelial cell (EC) death likely due to apoptosis. Taken together, these data suggest that selective disruption of the fibrinolytic activity of ANX II may provide a novel strategy for specific inhibition of neoangiogenesis in human breast cancer. Published by Elsevier Inc.
Angiotensin peptides attenuate platelet-activating factor-induced inflammatory activity in rats.
Sato, Akira; Yokoyama, Izumi; Ebina, Keiichi
2015-11-01
Angiotensin (Ang)--a peptide that is part of the renin-angiotensin system-induces vasoconstriction and a subsequent increase in blood pressure; Ang peptides, especially AngII, can also act as potent pro-inflammatory mediators. Platelet-activating factor (PAF) is a potent phospholipid mediator that is implicated in many inflammatory diseases. In this study, we investigated the effects of Ang peptides (AngII, AngIII, and AngIV) on PAF-induced inflammatory activity. In experiments using a rat hind-paw oedema model, AngII markedly and dose-dependently attenuated the paw oedema induced by PAF. The inhibitory effects of AngIII and AngIV on PAF-induced paw oedema were lower than that of AngII. Two Ang receptors, the AT1 and AT2 receptors, did not affect the AngII-mediated attenuation of PAF-induced paw oedema. Moreover, intrinsic tyrosine fluorescence studies demonstrated that AngII, AngIII, and AngIV interact with PAF, and that their affinities were closely correlated with their inhibitory effects on PAF-induced rat paw oedema. Also, AngII interacted with metabolite/precursor of PAF (lyso-PAF), and an oxidized phospholipid, 1-palmitoyl-2-(5'-oxo-valeroyl)-sn-glycero-3-phosphocholine (POVPC), which bears a marked structural resemblance to PAF. Furthermore, POVPC dose-dependently inhibited AngII-mediated attenuation of PAF-induced paw oedema. These results suggest that Ang peptides can attenuate PAF-induced inflammatory activity through binding to PAF and lyso-PAF in rats. Therefore, Ang peptides may be closely involved in the regulation of many inflammatory diseases caused by PAF. Copyright © 2015 Elsevier Inc. All rights reserved.
Removal of some metal ions by activated carbon prepared from Phaseolus aureus hulls.
Rao, M Madhava; Ramana, D K; Seshaiah, K; Wang, M C; Chien, S W Chang
2009-07-30
Removal of lead [Pb(II)], zinc [Zn(II)], copper [Cu(II)], and cadmium [Cd(II)] from aqueous solutions using activated carbon prepared from Phaseolus aureus hulls (ACPAH), an agricultural waste was studied. The influence of various parameters such as effect of pH, contact time, adsorbent dose, and initial concentration of metal ions on the removal was evaluated by batch method. The removal of metal ions by ACPAH was pH dependent and the optimum pH values were 7.0, 8.0, 7.0 and 6.0 for Cu(II), Cd(II), Zn(II), and Pb(II), respectively. The sorption isotherms were studied using Langmuir, Freundlich, Dubinin-Radushkevich (D-R), and Temkin isotherm models. The maximum adsorption capacity values of ACPAH for metal ions were 21.8 mg g(-1) for Pb(II), 21.2 mg g(-1) for Zn(II), 19.5 mg g(-1) for Cu(II), and 15.7 mg g(-1) for Cd(II). The experiments demonstrated that the removal of metal ions followed the pseudo-second-order kinetic model. Desorption experiments were carried out using HCl solution with a view to regenerate the spent adsorbent and to recover the adsorbed metal ions.
Hua, Ping; Feng, Wenguang; Rezonzew, Gabriel; Chumley, Phillip; Jaimes, Edgar A
2012-06-01
Angiotensin II (ANG II) produced as result of activation of the renin-angiotensin system (RAS) plays a critical role in the pathogenesis of chronic kidney disease via its hemodynamic effects on the renal microcirculation as well as by its nonhemodynamic actions including the production of extracellular matrix proteins such as fibronectin, a multifunctional extracellular matrix protein that plays a major role in cell adhesion and migration as well as in the development of glomerulosclerosis. ETS-1 is an important transcription factor essential for normal kidney development and glomerular integrity. We previously showed that ANG II increases ETS-1 expression and is required for fibronectin production in mesangial cells. In these studies, we determined that ANG II induces phosphorylation of ETS-1 via activation of the type 1 ANG II receptor and that Erk1/2 and Akt/PKB phosphorylation are required for these effects. In addition, we characterized the role of ETS-1 on the transcriptional activation of fibronectin production in mesangial cells. We determined that ETS-1 directly activates the fibronectin promoter and by utilizing gel shift assays and chromatin immunoprecipitation assays identified two different ETS-1 binding sites that promote the transcriptional activation of fibronectin in response to ANG II. In addition, we identified the essential role of CREB and its coactivator p300 on the transcriptional activation of fibronectin by ETS-1. These studies unveil novel mechanisms involved in RAS-induced production of the extracellular matrix protein fibronectin in mesangial cells and establish the role of the transcription factor ETS-1 as a direct mediator of these effects.
Wei, Yuan; Zavilowitz, Beth; Satlin, Lisa M.; Wang, Wen-Hui
2010-01-01
Base-line urinary potassium secretion in the distal nephron is mediated by small conductance rat outer medullary K (ROMK)-like channels. We used the patch clamp technique applied to split-open cortical collecting ducts (CCDs) isolated from rats fed a normal potassium (NK) or low potassium (LK) diet to test the hypothesis that AngII directly inhibits ROMK channel activity. We found that AngII inhibited ROMK channel activity in LK but not NK rats in a dose-dependent manner. The AngII-induced reduction in channel activity was mediated by AT1 receptor (AT1R) binding, because pretreatment of CCDs with losartan but not PD123319 AT1 and AT2 receptor antagonists, respectively, blocked the response. Pretreatment of CCDs with U73122 and calphostin C, inhibitors of phospholipase C (PLC) and protein kinase C (PKC), respectively, abolished the AngII-induced decrease in ROMK channel activity, confirming a role of the PLC-PKC pathway in this response. Studies by others suggest that AngII stimulates an Src family protein-tyrosine kinase (PTK) via PKC-NADPH oxidase. PTK has been shown to regulate the ROMK channel. Inhibition of NADPH oxidase with diphenyliodonium abolished the inhibitory effect of AngII or the PKC activator phorbol 12-myristate 13-acetate on ROMK channels. Suppression of PTK by herbimycin A significantly attenuated the inhibitory effect of AngII on ROMK channel activity. We conclude that AngII inhibits ROMK channel activity through PKC-, NADPH oxidase-, and PTK-dependent pathways under conditions of dietary potassium restriction. PMID:17194699
Wei, Yuan; Zavilowitz, Beth; Satlin, Lisa M; Wang, Wen-Hui
2007-03-02
Base-line urinary potassium secretion in the distal nephron is mediated by small conductance rat outer medullary K (ROMK)-like channels. We used the patch clamp technique applied to split-open cortical collecting ducts (CCDs) isolated from rats fed a normal potassium (NK) or low potassium (LK) diet to test the hypothesis that AngII directly inhibits ROMK channel activity. We found that AngII inhibited ROMK channel activity in LK but not NK rats in a dose-dependent manner. The AngII-induced reduction in channel activity was mediated by AT1 receptor (AT1R) binding, because pretreatment of CCDs with losartan but not PD123319 AT1 and AT2 receptor antagonists, respectively, blocked the response. Pretreatment of CCDs with U73122 and calphostin C, inhibitors of phospholipase C (PLC) and protein kinase C (PKC), respectively, abolished the AngII-induced decrease in ROMK channel activity, confirming a role of the PLC-PKC pathway in this response. Studies by others suggest that AngII stimulates an Src family protein-tyrosine kinase (PTK) via PKC-NADPH oxidase. PTK has been shown to regulate the ROMK channel. Inhibition of NADPH oxidase with diphenyliodonium abolished the inhibitory effect of AngII or the PKC activator phorbol 12-myristate 13-acetate on ROMK channels. Suppression of PTK by herbimycin A significantly attenuated the inhibitory effect of AngII on ROMK channel activity. We conclude that AngII inhibits ROMK channel activity through PKC-, NADPH oxidase-, and PTK-dependent pathways under conditions of dietary potassium restriction.
ACE2-Independent Action Of Presumed ACE2 Activators: Studies In Vivo, Ex Vivo and In Vitro
Haber, Philipp K.; Ye, Minghao; Wysocki, Jan; Maier, Christoph; Haque, Syed K.; Batlle, Daniel
2014-01-01
Angiotensin converting enzyme 2, (ACE2), is a key enzyme in the metabolism of angiotensin II. 1-[[2-(dimetilamino)ethyl]amino]-4-(hidroximetil)-7-[[(4-metilfenil)sulfonil]oxi]-9H-xantona-9 (XNT)and Diminazene (DIZE)have been reported to exert various organ-protective effects that have been attributed to activation of ACE2. To test the effect of these compounds we studied Ang II degradation in vivo and in vitro as well as their effect on ACE2 activity in vivo and in vitro. In a model of Ang II induced acute hypertension, blood pressure recovery was markedly enhanced by XNT (slope with XNT -3.26±0.2 vs.-1.6±0.2 mmHg/min without XNT, p<0.01). After Ang II infusion, neither plasma nor kidney ACE2 activity was affected by XNT. Plasma Ang II and Ang (1-7) levels also were not significantly affected by XNT. The blood pressure lowering effect of XNT seen in WT animals was also observed in ACE2 KO mice (slope with XNT -3.09±0.30 mmHg/min vs. -1.28±0.22 mmHg/min without XNT, p<0.001). These findings show that the blood pressure lowering effect of XNT in Ang II induced hypertension cannot be due to activation of ACE2. In vitro and ex vivo experiments in both mice and rat kidney confirmed a lack of enhancement of ACE2 enzymatic activity by XNT and DIZE. Moreover, Ang II degradation in vitro and ex vivo was unaffected by XNT and DIZE. We conclude that the biologic effects of these compounds are ACE2 independent and should not be attributed to activation of this enzyme. PMID:24446061
Castaneda, Carol Ann; Lopez, Jeffrey E; Joseph, Caleb G; Scholle, Michael D; Mrksich, Milan; Fierke, Carol A
2017-10-24
Histone deacetylase 8 (HDAC8) is a well-characterized member of the class I acetyl-lysine deacetylase (HDAC) family. Previous work has shown that the efficiency of HDAC8-catalyzed deacetylation of a methylcoumarin peptide varies depending on the identity of the divalent metal ion in the HDAC8 active site. Here we demonstrate that both HDAC8 activity and substrate selectivity for a diverse range of peptide substrates depend on the identity of the active site metal ion. Varied deacetylase activities of Fe(II)- and Zn(II)-HDAC8 toward an array of peptide substrates were identified using self-assembled monolayers for matrix-assisted laser desorption ionization (SAMDI) mass spectrometry. Subsequently, the metal dependence of deacetylation of peptides of biological interest was measured using an in vitro peptide assay. While Fe(II)-HDAC8 is generally more active than Zn(II)-HDAC8, the Fe(II)/Zn(II) HDAC8 activity ratio varies widely (from 2 to 150) among the peptides tested. These data provide support for the hypothesis that HDAC8 may undergo metal switching in vivo that, in turn, may regulate its activity. However, future studies are needed to explore the identity of the metal ion bound to HDAC8 in cells under varied conditions.
NASA Astrophysics Data System (ADS)
El-Boraey, Hanaa A.; EL-Gammal, Ohyla A.
2015-03-01
Novel tetraamidemacrocyclic 15-membered ligand [L] i.e. naphthyl-dibenzo[1,5,9,12]tetraazacyclopentadecine-6,10,11,15-tetraoneand its transition metal complexes with Fe(II), Co(II), Ni(II), Cu(II), Ru(III) and Pd(II) have been synthesized and characterized by elemental analysis, spectral, thermal as well as magnetic and molar conductivity measurements. On the basis of analytical, spectral (IR, MS, UV-Vis, 1H NMR and EPR) and thermal studies distorted octahedral or square planar geometry has been proposed for the complexes. The antitumor activity of the synthesized ligand and some complexes against human breast cancer cell lines (MCF-7) and human hepatocarcinoma cell lines (HepG2) has been studied. The complexes (IC50 = 2.27-2.7, 8.33-31.1 μg/mL, respectively) showed potent antitumor activity, towards the former cell lines comparable with their ligand (IC50 = 13, 26 μg/mL, respectively). The results show that the activity of the ligand towards breast cancer cell line becomes more pronounced and significant when coordinated to the metal ion.
Chatterjee, Debabrata; Banerjee, Priyabrata; Bose, Jagadeesh C K; Mukhopadhyay, Sudit
2012-03-07
The oxidation of [Ru(II)(tpy)(pic)H(2)O](+) (tpy = 2,2',6',2''-terpyridine; pic(-) = picolinate) by peroxidisulfate (S(2)O(8)(2-)) as precursor oxidant has been investigated kinetically by UV-VIS, IR and EPR spectroscopy. The overall oxidation of Ru(II)- to Ru(IV)-species takes place in a consecutive manner involving oxidation of [Ru(II)(tpy)(pic)H(2)O](+) to [Ru(III)(tpy)(pic)(OH)](+), and its further oxidation of to the ultimate product [Ru(IV)(tpy)(pic)(O)](+) complex. The time course of the reaction was followed as a function of [S(2)O(8)(2-)], ionic strength (I) and temperature. Kinetic data and activation parameters are interpreted in terms of an outer-sphere electron transfer mechanism. Anti-microbial activity of Ru(II)(tpy)(pic)H(2)O](+) complex by inhibiting the growth of Escherichia coli DH5α in presence of peroxydisulfate has been explored, and the results of the biological studies have been discussed in terms of the [Ru(IV)(tpy)(pic)(O)](+) mediated cleavage of chromosomal DNA of the bacteria.
Learning Activity Packets for Auto Mechanics II. Section A--Engine Rebuilding.
ERIC Educational Resources Information Center
Oklahoma State Board of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.
Eight learning activity packets (LAPs) are provided for the instructional area of engine rebuilding in the auto mechanics II program. They accompany an instructor's guide available separately. The LAPs outline the study activities and performance tasks for these eight units: (1) engine condition evaluation; (2) engine removal; (3) engine…
Learning Activity Packets for Auto Mechanics II. Section B--Electrical Systems.
ERIC Educational Resources Information Center
Oklahoma State Board of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.
Six learning activity packets (LAPs) are provided for the instructional area of electrical systems in the auto mechanics II program. They accompany an instructor's guide available separately. The LAPs outline the study activities and performance tasks for these six units: (1) basic electrical theory, (2) battery service, (3) starting system, (4)…
Chen, Zhimin; Wu, Yiqun; Gu, Donghong; Gan, Fuxi
2007-11-01
A new chelating ligand, 2-(2-(5-tert-butylisoxazol-3-yl)hydrazono)-N-(2,4-dimethylphenyl)-3-oxobutanamide (HL), and its four binuclear transition metal complexes, M(2)(L)(2) (micro-OCH(3))(2) [M=Ni(II), Co(II), Cu(II), Zn(II)], were synthesized using the procedure of diazotization, coupling and metallization. Their structures were postulated based on elemental analysis, (1)H NMR, MALDI-MS, FT-IR spectra and UV-vis electronic absorption spectra. Smooth films of these complexes on K9 glass substrates were prepared using the spin-coating method and their absorption properties were evaluated. The thermal properties of the metal(II) complexes were investigated by thermogravimetry (TG) and differential scanning calorimetry (DSC). Different thermodynamic and kinetic parameters namely activation energy (E*), enthalpy of activation (DeltaH*), entropy of activation (DeltaS*) and free energy change of activation (DeltaG*) are calculated using Coats-Redfern (CR) equation.
Liang, Kaiwei; Woodfin, Ashley R; Slaughter, Brian D; Unruh, Jay R; Box, Andrew C; Rickels, Ryan A; Gao, Xin; Haug, Jeffrey S; Jaspersen, Sue L; Shilatifard, Ali
2015-11-05
Although it is established that some general transcription factors are inactivated at mitosis, many details of mitotic transcription inhibition (MTI) and its underlying mechanisms are largely unknown. We have identified mitotic transcriptional activation (MTA) as a key regulatory step to control transcription in mitosis for genes with transcriptionally engaged RNA polymerase II (Pol II) to activate and transcribe until the end of the gene to clear Pol II from mitotic chromatin, followed by global impairment of transcription reinitiation through MTI. Global nascent RNA sequencing and RNA fluorescence in situ hybridization demonstrate the existence of transcriptionally engaged Pol II in early mitosis. Both genetic and chemical inhibition of P-TEFb in mitosis lead to delays in the progression of cell division. Together, our study reveals a mechanism for MTA and MTI whereby transcriptionally engaged Pol II can progress into productive elongation and finish transcription to allow proper cellular division. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Mekahlia, S.; Bouzid, B.
2009-11-01
The antimicrobial activity of chitosan is unstable and sensitive to many factors such as molecular weight. Recent investigations showed that low molecular weight chitosan exhibited strong bactericidal activities compared to chitosan with high molecular weight. Since chitosan degradation can be caused by the coordinating bond, we attempt to synthesize and characterize the chitosan-Cu (II) complex, and thereafter study the coordinating bond effect on its antibacterial activity against Salmonella enteritidis. Seven chitosan-copper complexes with different copper contents were prepared and characterized by FT-IR, UV-vis, XRD and atomic absorption spectrophotometry (AAS). Results indicated that for chitosan-Cu (II) complexes with molar ratio close to 1:1, the inhibition rate reached 100%.
Oliveira, Alexandre A; Oliveira, Ana P A; Franco, Lucas L; Ferencs, Micael O; Ferreira, João F G; Bachi, Sofia M P S; Speziali, Nivaldo L; Farias, Luiz M; Magalhães, Paula P; Beraldo, Heloisa
2018-05-07
In the present work a family of novel secnidazole-derived Schiff base compounds and their copper(II) complexes were synthesized. The antimicrobial activities of the compounds were evaluated against clinically important anaerobic bacterial strains. The compounds exhibited in vitro antibacterial activity against Bacteroides fragilis, Bacteroides thetaiotaomicron, Bacteroides vulgatus, Bacteroides ovatus, Parabacteroides distasonis and Fusubacterium nucleatum pathogenic anaerobic bacteria. Upon coordination to copper(II) the antibacterial activity significantly increased in several cases. Some derivatives were even more active than the antimicrobial drugs secnidazole and metronidazole. Therefore, the compounds under study are suitable for in vivo evaluation and the microorganisms should be classified as susceptible to them. Electrochemical studies on the reduction of the nitro group revealed that the compounds show comparable reduction potentials, which are in the same range of the bio-reducible drugs secnidazole and benznidazole. The nitro group reduction potential is more favorable for the copper(II) complexes than for the starting ligands. Hence, the antimicrobial activities of the compounds under study might in part be related to intracellular bio-reduction activation. Considering the increasing resistance rates of anaerobic bacteria against a wide range of antimicrobial drugs, the present work constitutes an important contribution to the development of new antibacterial drug candidates.
Najafpour, Mohammad Mahdi
2011-01-01
The oxygen evolving complex in photosystem II which induces the oxidation of water to dioxygen in plants, algae and certain bacteria contains a cluster of one calcium and four manganese ions. It serves as a model to split water by sunlight. Reports on the mechanism and structure of photosystem II provide a more detailed architecture of the oxygen evolving complex and the surrounding amino acids. One challenge in this field is the development of artificial model compounds to study oxygen evolution reaction outside the complicated environment of the enzyme. Calcium-manganese oxides as structural and functional models for the active site of photosystem II are explained and reviewed in this paper. Because of related structures of these calcium-manganese oxides and the catalytic centers of active site of the oxygen evolving complex of photosystem II, the study may help to understand more about mechanism of oxygen evolution by the oxygen evolving complex of photosystem II. Copyright © 2010 Elsevier B.V. All rights reserved.
Boudrahem, F; Aissani-Benissad, F; Aït-Amar, H
2009-07-01
Lignocellulosic materials are good precursors for the production of activated carbon. In this work, coffee residue has been used as raw material in the preparation of powder activated carbon by the method of chemical activation with zinc chloride for the sorption of Pb(II) from dilute aqueous solutions. The influence of impregnation ratio (ZnCl2/coffee residue) on the physical and chemical properties of the prepared carbons was studied in order to optimize this parameter. The optimum experimental condition for preparing predominantly microporous activated carbons with high pore surface area (890 m2/g) and micropore volume (0.772 cm3/g) is an impregnation ratio of 100%. The developed activated carbon shows substantial capability to sorb lead(II) ions from aqueous solutions and for relative impregnation ratios of 75 and 100%, the maximum uptake is practically the same. Thus, 75% represents the optimal impregnation ratio. Batch experiments were conducted to study the effects of the main parameters such as contact time, initial concentration of Pb(II), solution pH, ionic strength and temperature. The maximum uptake of lead(II) at 25 degrees C was about 63 mg/g of adsorbent at pH 5.8, initial Pb(II) concentration of 10 mg/L, agitation speed of 200 rpm and ionic strength of 0.005 M. The kinetic data were fitted to the models of pseudo-first order and pseudo-second order, and follow closely the pseudo-second order model. Equilibrium sorption isotherms of Pb(II) were analyzed by the Langmuir, Freundlich and Temkin isotherm models. The Freundlich model gives a better fit than the others. Results from this study suggest that activated carbon produced from coffee residue is an effective adsorbent for the removal of lead from aqueous solutions and that ZnCl2 is a suitable activating agent for the preparation of high-porosity carbons.
Zn(II)-Coordinated Quantum Dot-FRET Nanosensors for the Detection of Protein Kinase Activity
Lim, Butaek; Park, Ji-In; Lee, Kyung Jin; Lee, Jin-Won; Kim, Tae-Wuk; Kim, Young-Pil
2015-01-01
We report a simple detection of protein kinase activity using Zn(II)-mediated fluorescent resonance energy transfer (FRET) between quantum dots (QDs) and dye-tethered peptides. With neither complex chemical ligands nor surface modification of QDs, Zn(II) was the only metal ion that enabled the phosphorylated peptides to be strongly attached on the carboxyl groups of the QD surface via metal coordination, thus leading to a significant FRET efficiency. As a result, protein kinase activity in intermixed solution was efficiently detected by QD-FRET via Zn(II) coordination, especially when the peptide substrate was combined with affinity-based purification. We also found that mono- and di-phosphorylation in the peptide substrate could be discriminated by the Zn(II)-mediated QD-FRET. Our approach is expected to find applications for studying physiological function and signal transduction with respect to protein kinase activity. PMID:26213934
Zn(II)-Coordinated Quantum Dot-FRET Nanosensors for the Detection of Protein Kinase Activity.
Lim, Butaek; Park, Ji-In; Lee, Kyung Jin; Lee, Jin-Won; Kim, Tae-Wuk; Kim, Young-Pil
2015-07-23
We report a simple detection of protein kinase activity using Zn(II)-mediated fluorescent resonance energy transfer (FRET) between quantum dots (QDs) and dye-tethered peptides. With neither complex chemical ligands nor surface modification of QDs, Zn(II) was the only metal ion that enabled the phosphorylated peptides to be strongly attached on the carboxyl groups of the QD surface via metal coordination, thus leading to a significant FRET efficiency. As a result, protein kinase activity in intermixed solution was efficiently detected by QD-FRET via Zn(II) coordination, especially when the peptide substrate was combined with affinity-based purification. We also found that mono- and di-phosphorylation in the peptide substrate could be discriminated by the Zn(II)-mediated QD-FRET. Our approach is expected to find applications for studying physiological function and signal transduction with respect to protein kinase activity.
McClure, Deimante; Greenman, Samantha C.; Koppolu, Siva Sundeep; Varvara, Maria; Yaseen, Zimri S.; Galynker, Igor I.
2015-01-01
Abstract This double-blind, sham-controlled study sought to investigate the effectiveness of cranial electrotherapy stimulation (CES) for the treatment of bipolar II depression (BD II). After randomization, the active group participants (n = 7) received 2 mA CES treatment for 20 minutes five days a week for 2 weeks, whereas the sham group (n = 9) had the CES device turned on and off. Symptom non-remitters from both groups received an additional 2 weeks of open-label active treatment. Active CES treatment but not sham treatment was associated with a significant decrease in the Beck Depression Inventory (BDI) scores from baseline to the second week (p = 0.003) maintaining significance until week 4 (p = 0.002). There was no difference between the groups in side effects frequency. The results of this small study indicate that CES may be a safe and effective treatment for BD II suggesting that further studies on safety and efficacy of CES may be warranted. PMID:26414234
McClure, Deimante; Greenman, Samantha C; Koppolu, Siva Sundeep; Varvara, Maria; Yaseen, Zimri S; Galynker, Igor I
2015-11-01
This double-blind, sham-controlled study sought to investigate the effectiveness of cranial electrotherapy stimulation (CES) for the treatment of bipolar II depression (BD II). After randomization, the active group participants (n = 7) received 2 mA CES treatment for 20 minutes five days a week for 2 weeks, whereas the sham group (n = 9) had the CES device turned on and off. Symptom non-remitters from both groups received an additional 2 weeks of open-label active treatment. Active CES treatment but not sham treatment was associated with a significant decrease in the Beck Depression Inventory (BDI) scores from baseline to the second week (p = 0.003) maintaining significance until week 4 (p = 0.002). There was no difference between the groups in side effects frequency. The results of this small study indicate that CES may be a safe and effective treatment for BD II suggesting that further studies on safety and efficacy of CES may be warranted.
Abd el-Halim, Hanan F; Mohamed, Gehad G; el-Dessouky, Maher M I; Mahmoud, Walaa H
2011-11-01
Nine new mononuclear Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Th(IV) and UO(2)(VI) complexes of lomefloxacin drug were synthesized. The structures of these complexes were elucidated by elemental analyses, IR, XRD, UV-vis, (1)H NMR as well as conductivity and magnetic susceptibility measurements and thermal analyses. The dissociation constants of lomefloxacin and stability constants of its binary complexes have been determined spectrophotometrically in aqueous solution at 25±1°C and at 0.1 M KNO(3) ionic strength. The discussion of the outcome data of the prepared complexes indicate that the lomefloxacin ligand behaves as a neutral bidentate ligand through OO coordination sites and coordinated to the metal ions via the carbonyl oxygen and protonated carboxylic oxygen with 1:1 (metal:ligand) stoichiometry for all complexes. The molar conductance measurements proved that the complexes are electrolytes. The powder XRD study reflects the crystalline nature for the investigated ligand and its complexes except Mn(II), Zn(II) and UO(2)(II). The geometrical structures of these complexes are found to be octahedral. The thermal behaviour of these chelates is studied where the hydrated complexes lose water molecules of hydration in the first steps followed by decomposition of the anions, coordinated water and ligand molecules in the subsequent steps. The activation thermodynamic parameters are calculated using Coats-Redfern and Horowitz-Metzger methods. A comparative study of the inhibition zones of the ligand and its metal complexes indicates that metal complexes exhibit higher antibacterial effect against one or more bacterial species than the free LFX ligand. The antifungal and anticancer activities were also tested. The antifungal effect of almost metal complexes is higher than the free ligand. LFX, [Co(LFX)(H(2)O)(4)]·Cl(2) and [Zn(LFX)(H(2)O)(4)]·Cl(2) were found to be very active with IC50 values 14, 11.2 and 43.1, respectively. While, other complexes had been found to be inactive at lower concentration than 100 μg/ml. Copyright © 2011 Elsevier B.V. All rights reserved.
Ji, Li; Franke, Alicja; Brindell, Małgorzata; Oszajca, Maria; Zahl, Achim; van Eldik, Rudi
2014-10-27
For the exploration of the intrinsic reactivity of two key active species in the catalytic cycle of horseradish peroxidase (HRP), Compound I (HRP-I) and Compound II (HRP-II), we generated in situ [Fe(IV) O(TMP(+.) )(2-MeIm)](+) and [Fe(IV) O(TMP)(2-MeIm)](0) (TMP=5,10,15,20-tetramesitylporphyrin; 2-MeIm=2-methylimidazole) as biomimetics for HRP-I and HRP-II, respectively. Their catalytic activities in epoxidation, hydrogen abstraction, and heteroatom oxidation reactions were studied in acetonitrile at -15 °C by utilizing rapid-scan UV/Vis spectroscopy. Comparison of the second-order rate constants measured for the direct reactions of the HRP-I and HRP-II mimics with the selected substrates clearly confirmed the outstanding oxidizing capability of the HRP-I mimic, which is significantly higher than that of HRP-II. The experimental study was supported by computational modeling (DFT calculations) of the oxidation mechanism of the selected substrates with the involvement of quartet and doublet HRP-I mimics ((2,4) Cpd I) and the closed-shell triplet spin HRP-II model ((3) Cpd II) as oxidizing species. The significantly lower activation barriers calculated for the oxidation systems involving (2,4) Cpd I than those found for (3) Cpd II are in line with the much higher oxidizing efficiency of the HRP-I mimic proven in the experimental part of the study. In addition, the DFT calculations show that all three reaction types catalyzed by HRP-I occur on the doublet spin surface in an effectively concerted manner, whereas these reactions may proceed in a stepwise mechanism with the HRP-II mimic as oxidant. However, the high desaturation or oxygen rebound barriers during CH bond activation processes by the HRP-II mimic predict a sufficient lifetime for the substrate radical formed through hydrogen abstraction. Thus, the theoretical calculations suggest that the dissociation of the substrate radical may be a more favorable pathway than desaturation or oxygen rebound processes. Importantly, depending on the electronic nature of the oxidizing species, that is, (2,4) Cpd I or (3) Cpd II, an interesting region-selective conversion phenomenon between sulfoxidation and H-atom abstraction was revealed in the course of the oxidation reaction of dimethylsulfide. The combined experimental and theoretical study on the elucidation of the intrinsic reactivity patterns of the HRP-I and HRP-II mimics provides a valuable tool for evaluating the particular role of the HRP active species in biological systems. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zhang, Haopeng; Cilz, Nicholas I; Yang, Chuanxiu; Hu, Binqi; Dong, Hailong; Lei, Saobo
2015-11-01
Whereas the ionotropic glutamate receptors are the major mediator in glutamatergic transmission, the metabotropic glutamate receptors (mGluRs) usually play a modulatory role. Whereas the entorhinal cortex (EC) is an essential structure involved in the generation and propagation of epilepsy, the roles and mechanisms of mGluRs in epilepsy in the EC have not been determined. Here, we studied the effects of activation of group II metabotropic glutamate receptors (mGluRs II) on epileptiform activity induced by picrotoxin or deprivation of extracellular Mg2+ and neuronal excitability in the medial EC. We found that activation of mGluRs II by application of the selective agonist, LY354740, exerted robust inhibition on epileptiform activity. LY354740 hyperpolarized entorhinal neurons via activation of a K+ conductance and inhibition of a Na+ -permeable channel. LY354740-induced hyperpolarization was G protein-dependent, but independent of adenylyl cyclase and protein kinase A. However, the function of Gβγ was involved in mGluRs II-mediated depression of both neuronal excitability and epileptiform activity. Our results provide a novel cellular mechanism to explain the antiepileptic effects of mGluRs II in the treatment of epilepsy. © 2015 Wiley Periodicals, Inc.
Bilgiç, Fundagül; Başaran, Güvenç; Hamamci, Orhan
2015-03-01
Purpose of this study is to evaluate the effects of Forsus Fatigue-Resistant Device (FRD) EZ and Andresen activator in terms of skeletal, dental, and soft tissue changes in actively growing patients presenting with class II, division 1 malocclusion. Study sample included 60 subjects. Inclusion criteria were as follows: class II division 1 malocclusion, retrognathic mandible, normal or low-angle growth pattern, and peak growth period. The first study group consisted of 20 patients who were treated with Forsus appliance, and the second group of 20 patients received treatment with Andresen activator. Control group received no treatment. Our results revealed that both appliances enhanced mandibular growth, helped increase the length of the mandible, and had a restraining growth effect on the maxilla. Anterior face height increased in both of treatment groups, whereas posterior face height had a significant increase in the activator group only. More mandibular incisors protrusion and intrusion were seen with the Forsus appliance. Moreover, occlusal plane and palatal plane rotated significantly in clockwise direction as a result of dentoalveolar changes only in the Forsus group. As well as the Forsus appliances corrected class II discrepancies mostly through dentoalveolar changes as compared to the activator group, both appliances proved effective in the treatment of growing individuals having class II malocclusions with mandibular retrognathia. By this investigation, two treatment methods, which are currently used in clinical practice, will be evaluated, and the results will be useful for clinicians.
NASA Astrophysics Data System (ADS)
Tümer, Mehmet; Ekinci, Duygu; Tümer, Ferhan; Bulut, Akif
2007-07-01
In this study, we synthesized the amine compound 2-(2-aminoethyliminomethyl)phenol (H 3A) as the starting material, and then we prepared the polydentate Schiff base ligands from the reactions of the amine compound (H 3A) with phtaldialdehyde (H 2L), 4-methyl-2,6-di-formlyphenol (H 3L 1) and 4- t-butyl-2,6-di-formylphenol (H 3L 2) in the ethanol solution. Moreover, the complexes Cd(II), Cu(II), Co(II), Ni(II), Zn(II) and Sn(II) of the ligands H 2L, H 3L 1 and H 3L 2 have been prepared. All compounds have been characterized by the analytical and spectroscopic methods. In addition, the magnetic susceptibility and molar conductance measurements have been made. The catalytic properties of the mono- and binuclear Co(II) and Cu(II) complexes have been studied on the 3,5-di- tert-butylcatechol (3,5-DTBC) and ascorbic acid (aa) as a substrate. The oxidative C-C coupling properties of the Co(II) and Cu(II) complexes have been investigated on the sterically hindered 2,6-di- tert-butylphenol (dtbp). The antimicrobial activity properties of the ligands and their mono- and binuclear complexes have been studied against the bacteria and fungi. The results have been compared to the antibacterial and fungi drugs. The TGA curves show that the decomposition takes place in three steps for all complexes. Electrochemical properties of the complexes Cu(II) and Ni(II) have been investigated for the first time in acetonitrile by cyclic voltammetry.
NASA Astrophysics Data System (ADS)
Al-Harbi, Sami A.; Bashandy, Mahmoud S.; Al-Saidi, Hammed M.; Emara, Adel A. A.; Mousa, Tarek A. A.
2015-06-01
This article describes the synthesis of novel bidentate Schiff base (H2L) from condensation of 2-amino-4-phenylthiazole (APT) with 4,6-diacetylresorcinol (DAR) in the molar ratio 2:1. We studied interaction of ligand (H2L) with transition metal ions such as Cr(III), Fe(III), Cu(II), Zn(II) and Cd(II). The ligand (H2L) has two bidentate sets of (N-O) units which can coordinate with two metal ions to afford novel binuclear metal complexes. The directions of coordinate bonds are from nitrogen atoms of azomethine groups and oxygen atoms of the phenolic groups. Structures of the newly synthesized complexes were confirmed by elemental analysis, IR, UV, 1H NMR, ESR, TGA and mass spectral data. All of the newly synthesized complexes were evaluated for their antibacterial and anti-fungal activities. They were also evaluated for their in vitro anticancer activity against human colon carcinoma cells (HCT-116) and mammalian cells of African green monkey kidney (VERO). The Cu(II) complex with selectivity index (S.I.) = 21.26 exhibited better activity than methotrexate (MTX) as a reference drug with S.I. value = 13.30, while Zn(II) complex with S.I. value = 10.24 was found to be nearly as active as MTX. Molecular docking studies further helped in understanding the mode of action of the compounds through their various interactions with active sites of dihydrofolate reductase (DHFR) enzyme. The observed activity of Fe(III) and Cu(II) complexes gave rise to the conclusion that they might exert their action through inhibition of the DHFR enzyme.
Al-Harbi, Sami A; Bashandy, Mahmoud S; Al-Saidi, Hammed M; Emara, Adel A A; Mousa, Tarek A A
2015-06-15
This article describes the synthesis of novel bidentate Schiff base (H2L) from condensation of 2-amino-4-phenylthiazole (APT) with 4,6-diacetylresorcinol (DAR) in the molar ratio 2:1. We studied interaction of ligand (H2L) with transition metal ions such as Cr(III), Fe(III), Cu(II), Zn(II) and Cd(II). The ligand (H2L) has two bidentate sets of (N-O) units which can coordinate with two metal ions to afford novel binuclear metal complexes. The directions of coordinate bonds are from nitrogen atoms of azomethine groups and oxygen atoms of the phenolic groups. Structures of the newly synthesized complexes were confirmed by elemental analysis, IR, UV, (1)H NMR, ESR, TGA and mass spectral data. All of the newly synthesized complexes were evaluated for their antibacterial and anti-fungal activities. They were also evaluated for their in vitro anticancer activity against human colon carcinoma cells (HCT-116) and mammalian cells of African green monkey kidney (VERO). The Cu(II) complex with selectivity index (S.I.)=21.26 exhibited better activity than methotrexate (MTX) as a reference drug with S.I. value=13.30, while Zn(II) complex with S.I. value=10.24 was found to be nearly as active as MTX. Molecular docking studies further helped in understanding the mode of action of the compounds through their various interactions with active sites of dihydrofolate reductase (DHFR) enzyme. The observed activity of Fe(III) and Cu(II) complexes gave rise to the conclusion that they might exert their action through inhibition of the DHFR enzyme. Copyright © 2015 Elsevier B.V. All rights reserved.
Synthesis, characterization, and anti-cancer activity of emodin-Mn(II) metal complex.
Yang, Li; Tan, Jun; Wang, Bo-Chu; Zhu, Lian-Cai
2014-12-01
To synthesize and characterize a novel metal complex of Mn (II) with emodin, and evaluate its anti-cancer activity. The elemental analyses, IR, UV-vis, atomic absorption spectroscopy, TG-DSC, (1)H NMR, and (13)C NMR data were used to characterize the structure of the complex. The cytotoxicity of the complex against the human cancer cell lines HepG2, HeLa, MCF-7, B16, and MDA-MB-231 was tested by the MTT assay and flow cytometry. Emodin was coordinated with Mn(II) through the 9-C=O and 1-OH, and the general formula of the complex was Mn(II) (emodin)2·2H2O. In studies of the cytotoxicity, the complex exhibited significant activity, and the IC50 values of the complex against five cancer cell lines improved approximately three-fold compared with those of emodin. The complex could induce cell morphological changes, decrease the percentage of viability, and induce G0/G1 phase arrest and apoptosis in cancer cells. The coordination of emodin with Mn(II) can improve its anticancer activity, and the complex Mn(II) (emodin)2·2H2O could be studied further as a promising anticancer drug. Copyright © 2014 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.
Papaioannou, Anastasios; Kuyucak, Serdar; Kuncic, Zdenka
2016-01-01
The insulin-family proteins bind to their own receptors, but insulin-like growth factor II (IGF-II) can also bind to the A isoform of the insulin receptor (IR-A), activating unique and alternative signaling pathways from those of insulin. Although extensive studies of insulin have revealed that its activation is associated with the opening of the B chain-C terminal (BC-CT), the activation mechanism of the insulin-like growth factors (IGFs) still remains unknown. Here, we present the first comprehensive study of the insulin-family proteins comparing their activation process and mechanism using molecular dynamics simulations to reveal new insights into their specificity to the insulin receptor. We have found that all the proteins appear to exhibit similar stochastic dynamics in their conformational change to an active state. For the IGFs, our simulations show that activation involves two opening locations: the opening of the BC-CT section away from the core, similar to insulin; and the additional opening of the BC-CT section away from the C domain. Furthermore, we have found that these two openings occur simultaneously in IGF-I, but not in IGF-II, where they can occur independently. This suggests that the BC-CT section and the C domain behave as a unified domain in IGF-I, but as two independent domains in IGF-II during the activation process, implying that the IGFs undergo different activation mechanisms for receptor binding. The probabilities of the active and inactive states of the proteins suggest that IGF-II is hyperactive compared to IGF-I. The hinge residue and the hydrophobic interactions in the core are found to play a critical role in the stability and activity of IGFs. Overall, our simulations have elucidated the crucial differences and similarities in the activation mechanisms of the insulin-family proteins, providing new insights into the molecular mechanisms responsible for the observed differences between IGF-I and IGF-II in receptor binding.
Ramesh, Rajendran; Aarthy, Mayilvahanan; Gowthaman, Marichetti Kuppuswami; Gabrovska, Katya; Godjevargova, Tzonka; Kamini, Numbi Ramudu
2014-04-01
This paper describes the isolation of a potent extracellular urease producing microorganism, identified by 16S rRNA as Arthrobacter creatinolyticus MTCC 5604 and its medium optimization by classical one-factor-at-a-time method and central composite rotatable design (CCRD), a tool of response surface methodology (RSM). An optimal activity of 9.0 U ml(-1) was obtained by classical method and statistical optimization of the medium resulted in an activity of 17.35 U ml(-1) at 48 h and 30 °C. This activity was 4.91 times greater than the initial activity (3.53 U ml(-1) ) from the basal medium and the enzyme showed maximum activity at pH 8.0 and 60 °C and was stable at pH 7.0-9.0 and temperatures up to 50 °C. Furthermore, the enzyme was assessed for its activity reduction by determining the inhibitory concentration (IC50 ) of heavy metal ions and the inhibition of urease was in the order of Cu(II) > Cd(II) > Zn(II) > Ni(II). Urease was highly sensitive to Cu(II) and its inhibition was 94% and 100% in model solutions containing a mixture of Cu(II) with heavy metal ions Cd(II) and Zn(II), respectively. The results of these studies suggested that the enzyme could be utilized as sensors to determine the levels of Cu(II) ions in industrial effluents, contaminated soil and ground water. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hueso-Ureña, Francisco; Illán-Cabeza, Nuria A; Moreno-Carretero, Miguel N; Martínez-Martos, José M; Ramírez-Expósito, María J
2003-04-01
The synthesis, spectroscopic (IR, 1H and 13C NMR, UV-Vis-NIR, EPR), magnetic measurements and biological studies of a number of complexes of Co(II), Ni(II), Cu(II), Zn(II), Cd(II), Au(III) and Hg(II) of the Schiff base derived from the 1:2 condensation of 2,6-diformyl-4-methylphenol and 5-aminouracil, ((5-[[(3-[[(2,4-dioxopyrimidin-5(1H,3H)-yl)imino]methyl]-2-hydroxy-5-methylphenyl)methylene]amino]pyrimidine-2,4(1H,3H)-dione, hereafter denoted as BDF5AU) are reported. In all cases, the complexes appear to be monomeric. The deprotonated ligand in the phenolic oxygen atom shows a tridentate coordination mode through the two azomethine nitrogen atoms and the phenolic oxygen atom. The coordination of the neutral ligand takes place through the phenolic oxygen atom and one azomethine nitrogen atom and the carbonylic oxygen atom in fourth position of one uracil ring. The biological properties of some perchlorate complexes on the activity of some neutral, acid, basic and omega aminopeptidases (AP) are assayed, demonstrating a general inhibitory effect. Neutral and basic AP are mainly inhibited by Cu(II), Ni(II) and Cd(II) complexes, although tyrosyl-AP is activated by Zn(II) complex. Glutamyl-AP but not aspartyl-AP is inhibited by all the complexes assayed excepting Zn(II) complex. Finally, omega AP is inhibited by Ni(II) and Cd(II) complexes. Copyright 2003 Elsevier Science Inc.
Liu, Chang; Rajapakse, Angana G; Riedo, Erwin; Fellay, Benoit; Bernhard, Marie-Claire; Montani, Jean-Pierre; Yang, Zhihong; Ming, Xiu-Fen
2016-02-05
Nonalcoholic fatty liver disease (NAFLD) associates with obesity and type 2 diabetes. Hypoactive AMP-activated protein kinase (AMPK), hyperactive mammalian target of rapamycin (mTOR) signaling, and macrophage-mediated inflammation are mechanistically linked to NAFLD. Studies investigating roles of arginase particularly the extrahepatic isoform arginase-II (Arg-II) in obesity-associated NAFLD showed contradictory results. Here we demonstrate that Arg-II(-/-) mice reveal decreased hepatic steatosis, macrophage infiltration, TNF-α and IL-6 as compared to the wild type (WT) littermates fed high fat diet (HFD). A higher AMPK activation (no difference in mTOR signaling), lower levels of lipogenic transcription factor SREBP-1c and activity/expression of lipogenic enzymes were observed in the Arg-II(-/-) mice liver. Moreover, release of TNF-α and IL-6 from bone marrow-derived macrophages (BMM) of Arg-II(-/-) mice is decreased as compared to WT-BMM. Conditioned medium from Arg-II(-/-)-BMM exhibits weaker activity to facilitate triglyceride synthesis paralleled with lower expression of SREBP-1c and SCD-1 and higher AMPK activation in hepatocytes as compared to that from WT-BMM. These effects of BMM conditioned medium can be neutralized by neutralizing antibodies against TNF-α and IL-6. Thus, Arg-II-expressing macrophages facilitate diet-induced NAFLD through TNF-α and IL-6 in obesity.
TAF(II)250: a transcription toolbox.
Wassarman, D A; Sauer, F
2001-08-01
Activation of RNA-polymerase-II-dependent transcription involves conversion of signals provided by gene-specific activator proteins into the synthesis of messenger RNA. This conversion requires dynamic structural changes in chromatin and assembly of general transcription factors (GTFs) and RNA polymerase II at core promoter sequence elements surrounding the transcription start site of genes. One hallmark of transcriptional activation is the interaction of DNA-bound activators with coactivators such as the TATA-box binding protein (TBP)-associated factors (TAF(II)s) within the GTF TFIID. TAF(II)250 possesses a variety of activities that are likely to contribute to the initial steps of RNA polymerase II transcription. TAF(II)250 is a scaffold for assembly of other TAF(II)s and TBP into TFIID, TAF(II)250 binds activators to recruit TFIID to particular promoters, TAF(II)250 regulates binding of TBP to DNA, TAF(II)250 binds core promoter initiator elements, TAF(II)250 binds acetylated lysine residues in core histones, and TAF(II)250 possesses protein kinase, ubiquitin-activating/conjugating and acetylase activities that modify histones and GTFs. We speculate that these activities achieve two goals--(1) they aid in positioning and stabilizing TFIID at particular promoters, and (2) they alter chromatin structure at the promoter to allow assembly of GTFs--and we propose a model for how TAF(II)250 converts activation signals into active transcription.
Churn, S B; DeLorenzo, R J
1998-10-26
gamma-Aminobutyric acid (GABA) is the primary inhibitory neurotransmitter in the central nervous system (CNS). Because of the important role that GABA plays in the CNS, alteration of GABAA receptor function would significantly affect neuronal excitability. Protein phosphorylation is a major mechanism for regulating receptor function in the brain and has been implicated in modulating GABAA receptor function. Therefore, this study was initiated to determine the role of calmodulin-dependent kinase II (CaM kinase II) membrane phosphorylation on GABAA receptor binding. Synaptosomal membrane fractions were tested for CaM kinase II activity towards endogenous substrates. In addition, muscimol binding was evaluated under equilibrium conditions in synaptosomal membrane fractions subjected to either basal (Mg2+ alone) or maximal CaM kinase II-dependent phosphorylation. Activation of endogenous CaM kinase II-dependent phosphorylation resulted in a significant enhancement of the apparent Bmax for muscimol binding without significantly altering the apparent binding affinity. The enhanced muscimol binding could be increased further by the addition of exogenous CaM kinase II to synaptosomal membrane fractions. Co-incubation with inhibitors of kinase activity during the phosphorylation reactions blocked the CaM kinase II-dependent increase in muscimol binding. The data support the hypothesis that activation of CaM kinase II-dependent phosphorylation caused an increased GABAA receptor binding and may play an important role in modulating the function of this inhibitory receptor/chloride ion channel complex. Copyright 1998 Elsevier Science B.V.
SphK1 inhibitor II (SKI-II) inhibits acute myelogenous leukemia cell growth in vitro and in vivo
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Li; Weng, Wei; Sun, Zhi-Xin
Previous studies have identified sphingosine kinase 1 (SphK1) as a potential drug target for treatment of acute myeloid leukemia (AML). In the current study, we investigated the potential anti-leukemic activity of a novel and specific SphK1 inhibitor, SKI-II. We demonstrated that SKI-II inhibited growth and survival of human AML cell lines (HL-60 and U937 cells). SKI-II was more efficient than two known SphK1 inhibitors SK1-I and FTY720 in inhibiting AML cells. Meanwhile, it induced dramatic apoptosis in above AML cells, and the cytotoxicity by SKI-II was almost reversed by the general caspase inhibitor z-VAD-fmk. SKI-II treatment inhibited SphK1 activation, andmore » concomitantly increased level of sphingosine-1-phosphate (S1P) precursor ceramide in AML cells. Conversely, exogenously-added S1P protected against SKI-II-induced cytotoxicity, while cell permeable short-chain ceramide (C6) aggravated SKI-II's lethality against AML cells. Notably, SKI-II induced potent apoptotic death in primary human AML cells, but was generally safe to the human peripheral blood mononuclear cells (PBMCs) isolated from healthy donors. In vivo, SKI-II administration suppressed growth of U937 leukemic xenograft tumors in severe combined immunodeficient (SCID) mice. These results suggest that SKI-II might be further investigated as a promising anti-AML agent. - Highlights: • SKI-II inhibits proliferation and survival of primary and transformed AML cells. • SKI-II induces apoptotic death of AML cells, but is safe to normal PBMCs. • SKI-II is more efficient than two known SphK1 inhibitors in inhibiting AML cells. • SKI-II inhibits SphK1 activity, while increasing ceramide production in AML cells. • SKI-II dose-dependently inhibits U937 xenograft growth in SCID mice.« less
Bell, C A; Dykstra, C C; Naiman, N A; Cory, M; Fairley, T A; Tidwell, R R
1993-01-01
Nine dicationically substituted bis-benzimidazoles were examined for their in vitro activities against Giardia lamblia WB (ATCC 30957). The potential mechanisms of action of these compounds were evaluated by investigating the relationship among in vitro antigiardial activity and the affinity of the molecules for DNA and their ability to inhibit the activity of giardial topoisomerase II. Each compound demonstrated antigiardial activity, as measured by assessing the incorporation of [methyl-3H]thymidine by giardial trophozoites exposed to the test agents. Three compounds exhibited excellent in vitro antigiardial activities, with 50% inhibitory concentrations which compared very favorably with those of two currently used drugs, quinacrine HCl and metronidazole. Putative mechanisms of action for these compounds were suggested by the strong correlation observed among in vitro antigiardial activity and the affinity of the molecules for natural and synthetic DNA and their ability to inhibit the relaxation activity of giardial topoisomerase II. A strong correlation between the DNA binding affinity of these compounds and their inhibition of giardial topoisomerase II activity was also observed. Images PMID:8109934
Aldawsari, Abdullah; Hameed, B. H.; Alqadami, Ayoub Abdullah; Siddiqui, Masoom Raza; Alothman, Zeid Abdullah; Ahmed, A. Yacine Badjah Hadj
2017-01-01
A substantive approach converting waste date pits to mercerized mesoporous date pit activated carbon (DPAC) and utilizing it in the removal of Cd(II), Cu(II), Pb(II), and Zn(II) was reported. In general, rapid heavy metals adsorption kinetics for Co range: 25–100 mg/L was observed, accomplishing 77–97% adsorption within 15 min, finally, attaining equilibrium in 360 min. Linear and non-linear isotherm studies revealed Langmuir model applicability for Cd(II) and Pb(II) adsorption, while Freundlich model was fitted to Zn(II) and Cu(II) adsorption. Maximum monolayer adsorption capacities (qm) for Cd(II), Pb(II), Cu(II), and Zn(II) obtained by non-linear isotherm model at 298 K were 212.1, 133.5, 194.4, and 111 mg/g, respectively. Kinetics modeling parameters showed the applicability of pseudo-second-order model. The activation energy (Ea) magnitude revealed physical nature of adsorption. Maximum elution of Cu(II) (81.6%), Zn(II) (70.1%), Pb(II) (96%), and Cd(II) (78.2%) were observed with 0.1 M HCl. Thermogravimetric analysis of DPAC showed a total weight loss (in two-stages) of 28.3%. Infra-red spectral analysis showed the presence of carboxyl and hydroxyl groups over DPAC surface. The peaks at 820, 825, 845 and 885 cm-1 attributed to Zn–O, Pb–O, Cd–O, and Cu–O appeared on heavy metals saturated DPAC, confirmed their binding on DPAC during the adsorption. PMID:28910368
Aldawsari, Abdullah; Khan, Moonis Ali; Hameed, B H; Alqadami, Ayoub Abdullah; Siddiqui, Masoom Raza; Alothman, Zeid Abdullah; Ahmed, A Yacine Badjah Hadj
2017-01-01
A substantive approach converting waste date pits to mercerized mesoporous date pit activated carbon (DPAC) and utilizing it in the removal of Cd(II), Cu(II), Pb(II), and Zn(II) was reported. In general, rapid heavy metals adsorption kinetics for Co range: 25-100 mg/L was observed, accomplishing 77-97% adsorption within 15 min, finally, attaining equilibrium in 360 min. Linear and non-linear isotherm studies revealed Langmuir model applicability for Cd(II) and Pb(II) adsorption, while Freundlich model was fitted to Zn(II) and Cu(II) adsorption. Maximum monolayer adsorption capacities (qm) for Cd(II), Pb(II), Cu(II), and Zn(II) obtained by non-linear isotherm model at 298 K were 212.1, 133.5, 194.4, and 111 mg/g, respectively. Kinetics modeling parameters showed the applicability of pseudo-second-order model. The activation energy (Ea) magnitude revealed physical nature of adsorption. Maximum elution of Cu(II) (81.6%), Zn(II) (70.1%), Pb(II) (96%), and Cd(II) (78.2%) were observed with 0.1 M HCl. Thermogravimetric analysis of DPAC showed a total weight loss (in two-stages) of 28.3%. Infra-red spectral analysis showed the presence of carboxyl and hydroxyl groups over DPAC surface. The peaks at 820, 825, 845 and 885 cm-1 attributed to Zn-O, Pb-O, Cd-O, and Cu-O appeared on heavy metals saturated DPAC, confirmed their binding on DPAC during the adsorption.
Identification of a Third Mn(II) Oxidase Enzyme in Pseudomonas putida GB-1
Smesrud, Logan; Tebo, Bradley M.
2016-01-01
ABSTRACT The oxidation of soluble Mn(II) to insoluble Mn(IV) is a widespread bacterial activity found in a diverse array of microbes. In the Mn(II)-oxidizing bacterium Pseudomonas putida GB-1, two Mn(II) oxidase genes, named mnxG and mcoA, were previously identified; each encodes a multicopper oxidase (MCO)-type enzyme. Expression of these two genes is positively regulated by the response regulator MnxR. Preliminary investigation into putative additional regulatory pathways suggested that the flagellar regulators FleN and FleQ also regulate Mn(II) oxidase activity; however, it also revealed the presence of a third, previously uncharacterized Mn(II) oxidase activity in P. putida GB-1. A strain from which both of the Mn(II) oxidase genes and fleQ were deleted exhibited low levels of Mn(II) oxidase activity. The enzyme responsible was genetically and biochemically identified as an animal heme peroxidase (AHP) with domain and sequence similarity to the previously identified Mn(II) oxidase MopA. In the ΔfleQ strain, P. putida GB-1 MopA is overexpressed and secreted from the cell, where it actively oxidizes Mn. Thus, deletion of fleQ unmasked a third Mn(II) oxidase activity in this strain. These results provide an example of an Mn(II)-oxidizing bacterium utilizing both MCO and AHP enzymes. IMPORTANCE The identity of the Mn(II) oxidase enzyme in Pseudomonas putida GB-1 has been a long-standing question in the field of bacterial Mn(II) oxidation. In the current work, we demonstrate that P. putida GB-1 employs both the multicopper oxidase- and animal heme peroxidase-mediated pathways for the oxidation of Mn(II), rendering this model organism relevant to the study of both types of Mn(II) oxidase enzymes. The presence of three oxidase enzymes in P. putida GB-1 deepens the mystery of why microorganisms oxidize Mn(II) while providing the field with the tools necessary to address this question. The initial identification of MopA as a Mn(II) oxidase in this strain required the deletion of FleQ, a regulator involved in both flagellum synthesis and biofilm synthesis in Pseudomonas aeruginosa. Therefore, these results are also an important step toward understanding the regulation of Mn(II) oxidation. PMID:27084014
Synthesis and studies on Cu(II), Co(II), Ni(II) complexes of Knoevenagel β-diketone ligands.
Sumathi, S; Tharmaraj, P; Sheela, C D; Anitha, C
2012-11-01
Transition metal complexes of various acetylacetone based ligands of the type ML [where M=Cu(II), Ni(II), Co(II); L=3-(aryl)-pentane-2,4-dione] have been synthesized. The structural features have been derived from their elemental analysis, magnetic susceptibility, molar conductance, IR, UV-Vis, (1)H NMR, Mass and ESR spectral studies. Conductivity measurements reveal that all the complexes are non-electrolytic in nature. Spectroscopic and other analytical data of the complexes suggest octahedral geometry for other metal(II) complexes. The redox behavior of the copper(II) complexes have been studied by cyclic voltammetry. The free ligands and their metal complexes have been screened for their in vitro biological activities against the bacteria Pseudomonas aeruginosa, Escherichia coli and Staphylococcus aureus as well as the fungus Candida albicans by well diffusion method. The zone of inhibition value indicates that the most of the metal(II) complexes are found to possess increased activities compared to those of the free ligands. All synthesized compounds may serve as potential photoactive materials as indicated from their characteristic fluorescence properties. The second harmonic generation (SHG) efficiency of the ligands (L1-L3) was found to be considerable effect than that of urea and KDP (potassium dihydrogen phosphate). Copyright © 2012 Elsevier B.V. All rights reserved.
Synthesis and studies on Cu(II), Co(II), Ni(II) complexes of Knoevenagel β-diketone ligands
NASA Astrophysics Data System (ADS)
Sumathi, S.; Tharmaraj, P.; Sheela, C. D.; Anitha, C.
2012-11-01
Transition metal complexes of various acetylacetone based ligands of the type ML [where M = Cu(II), Ni(II), Co(II); L = 3-(aryl)-pentane-2,4-dione] have been synthesized. The structural features have been derived from their elemental analysis, magnetic susceptibility, molar conductance, IR, UV-Vis, 1H NMR, Mass and ESR spectral studies. Conductivity measurements reveal that all the complexes are non-electrolytic in nature. Spectroscopic and other analytical data of the complexes suggest octahedral geometry for other metal(II) complexes. The redox behavior of the copper(II) complexes have been studied by cyclic voltammetry. The free ligands and their metal complexes have been screened for their in vitro biological activities against the bacteria Pseudomonas aeruginosa, Escherichia coli and Staphylococcus aureus as well as the fungus Candida albicans by well diffusion method. The zone of inhibition value indicates that the most of the metal(II) complexes are found to possess increased activities compared to those of the free ligands. All synthesized compounds may serve as potential photoactive materials as indicated from their characteristic fluorescence properties. The second harmonic generation (SHG) efficiency of the ligands (L1-L3) was found to be considerable effect than that of urea and KDP (potassium dihydrogen phosphate).
Identifying Novel Transcriptional and Epigenetic Features of Nuclear Lamina-associated Genes.
Wu, Feinan; Yao, Jie
2017-03-07
Because a large portion of the mammalian genome is associated with the nuclear lamina (NL), it is interesting to study how native genes resided there are transcribed and regulated. In this study, we report unique transcriptional and epigenetic features of nearly 3,500 NL-associated genes (NL genes). Promoter regions of active NL genes are often excluded from NL-association, suggesting that NL-promoter interactions may repress transcription. Active NL genes with higher RNA polymerase II (Pol II) recruitment levels tend to display Pol II promoter-proximal pausing, while Pol II recruitment and Pol II pausing are not correlated among non-NL genes. At the genome-wide scale, NL-association and H3K27me3 distinguishes two large gene classes with low transcriptional activities. Notably, NL-association is anti-correlated with both transcription and active histone mark levels among genes not significantly enriched with H3K9me3 or H3K27me3, suggesting that NL-association may represent a novel gene repression pathway. Interestingly, an NL gene subgroup is not significantly enriched with H3K9me3 or H3K27me3 and is transcribed at higher levels than the rest of NL genes. Furthermore, we identified distal enhancers associated with active NL genes and reported their epigenetic features.
Laufer, Katja; Røy, Hans; Jørgensen, Bo Barker
2016-01-01
ABSTRACT Nitrate-reducing Fe(II)-oxidizing microorganisms were described for the first time ca. 20 years ago. Most pure cultures of nitrate-reducing Fe(II) oxidizers can oxidize Fe(II) only under mixotrophic conditions, i.e., when an organic cosubstrate is provided. A small number of nitrate-reducing Fe(II)-oxidizing cultures have been proposed to grow autotrophically, but unambiguous evidence for autotrophy has not always been provided. Thus, it is still unclear whether or to what extent Fe(II) oxidation coupled to nitrate reduction is an enzymatically catalyzed and energy-yielding autotrophic process or whether Fe(II) is abiotically oxidized by nitrite from heterotrophic nitrate reduction. The aim of the present study was to find evidence for the existence of autotrophic nitrate-reducing Fe(II) oxidizers in coastal marine sediments. Microcosm incubations showed that with increasing incubation times, the stoichiometric ratio of reduced nitrate/oxidized Fe(II) [NO3−reduced/Fe(II)oxidized] decreased, indicating a decreasing contribution of heterotrophic denitrification and/or an increasing contribution of autotrophic nitrate-reducing Fe(II) oxidation over time. After incubations of sediment slurries for >10 weeks, nitrate-reducing activity ceased, although nitrate was still present. This suggests that heterotrophic nitrate reduction had ceased due to the depletion of readily available organic carbon. However, after the addition of Fe(II) to these batch incubation mixtures, the nitrate-reducing activity resumed, and Fe(II) was oxidized, indicating the activity of autotrophic nitrate-reducing Fe(II) oxidizers. The concurrent reduction of 14C-labeled bicarbonate concentrations unambiguously proved that autotrophic C fixation occurred during Fe(II) oxidation and nitrate reduction. Our results clearly demonstrated that autotrophic nitrate-reducing Fe(II)-oxidizing bacteria were present in the investigated coastal marine sediments. IMPORTANCE Twenty years after the discovery of nitrate-reducing Fe(II) oxidizers, it is still controversially discussed whether autotrophic nitrate-reducing Fe(II)-oxidizing microorganisms exist and to what extent Fe(II) oxidation in this reduction/oxidation process is enzymatically catalyzed or which role abiotic side reactions of Fe(II) with reactive N species play. Most pure cultures of nitrate-reducing Fe(II) oxidizers are mixotrophic; i.e., they need an organic cosubstrate to maintain their activity over several cultural transfers. For the few existing autotrophic isolates and enrichment cultures, either the mechanism of nitrate-reducing Fe(II) oxidation is not known or evidence for their autotrophic lifestyle is controversial. In the present study, we provide evidence for the existence of autotrophic nitrate-reducing Fe(II) oxidizers in coastal marine sediments. The evidence is based on stoichiometries of nitrate reduction and Fe(II) oxidation determined in microcosm incubations and the incorporation of carbon from CO2 under conditions that favor the activity of nitrate-reducing Fe(II) oxidizers. PMID:27496777
Shrestha, Sohan; Son, Guntae; Lee, Seung Hwan; Lee, Tae Gwan
2013-08-01
The Zn (II) adsorption capacity of lignite and coconut shell-based activated carbon fiber (ACF) was evaluated as a function of initial Zn (II) concentration, temperature and contact time in batch adsorption process in this study. Adsorption uptake increased with initial Zn (II) concentration and temperature. Optimal contact time for the adsorption of Zn (II) ions onto lignite and coconut shell-based ACF was found to be 50 min. Removal percentage decreased from 88.0% to 78.54% with the increment in initial Zn (II) concentration from 5 to 50 mg L(-1). Equilibrium data fit well with Langmuir-I isotherm indicating homogeneous monolayer coverage of Zn (II) ions on the adsorbent surface. Maximum monolayer adsorption capacity of Zn (II) ions on ACF was found to be 9.43 mg g(-1). Surface morphology and functionality of ACF prior to and after adsorption were characterized by electron microscopy and infrared spectroscopy. Various thermodynamic parameters such as standard Gibbs free energy (ΔG°), standard enthalpy (ΔH°), and standard entropy (ΔS°) were evaluated. Copyright © 2013 Elsevier Ltd. All rights reserved.
Oligomeric state regulated trafficking of human platelet-activating factor acetylhydrolase type-II.
Monillas, Elizabeth S; Caplan, Jeffrey L; Thévenin, Anastasia F; Bahnson, Brian J
2015-05-01
The intracellular enzyme platelet-activating factor acetylhydrolase type-II (PAFAH-II) hydrolyzes platelet-activating factor and oxidatively fragmented phospholipids. PAFAH-II in its resting state is mainly cytoplasmic, and it responds to oxidative stress by becoming increasingly bound to endoplasmic reticulum and Golgi membranes. Numerous studies have indicated that this enzyme is essential for protecting cells from oxidative stress induced apoptosis. However, the regulatory mechanism of the oxidative stress response by PAFAH-II has not been fully resolved. Here, changes to the oligomeric state of human PAFAH-II were investigated as a potential regulatory mechanism toward enzyme trafficking. Native PAGE analysis in vitro and photon counting histogram within live cells showed that PAFAH-II is both monomeric and dimeric. A Gly-2-Ala site-directed mutation of PAFAH-II demonstrated that the N-terminal myristoyl group is required for homodimerization. Additionally, the distribution of oligomeric PAFAH-II is distinct within the cell; homodimers of PAFAH-II were localized to the cytoplasm while monomers were associated to the membranes of the endoplasmic reticulum and Golgi. We propose that the oligomeric state of PAFAH-II drives functional protein trafficking. PAFAH-II localization to the membrane is critical for substrate acquisition and effective oxidative stress protection. It is hypothesized that the balance between monomer and dimer serves as a regulatory mechanism of a PAFAH-II oxidative stress response. Copyright © 2015 Elsevier B.V. All rights reserved.
Rodríguez-Peña, Ana B.; Fuentes-Calvo, Isabel; Docherty, Neil G.; Arévalo, Miguel; Grande, María T.; Eleno, Nélida; Pérez-Barriocanal, Fernando; López-Novoa, José M.
2014-01-01
Tubulointerstitial fibrosis is a major feature of chronic kidney disease. Unilateral ureteral obstruction (UUO) in rodents leads to the development of renal tubulointerstitial fibrosis consistent with histopathological changes observed in advanced chronic kidney disease in humans. The purpose of this study was to assess the effect of inhibiting angiotensin II receptors or Ras activation on early renal fibrotic changes induced by UUO. Animals either received angiotensin II or underwent UUO. UUO animals received either losartan, atorvastatin, and farnesyl transferase inhibitor (FTI) L-744,832, or chaetomellic acid A (ChA). Levels of activated Ras, phospho-ERK1/2, phospho-Akt, fibronectin, and α-smooth muscle actin were subsequently quantified in renal tissue by ELISA, Western blot, and/or immunohistochemistry. Our results demonstrate that administration of angiotensin II induces activation of the small GTPase Ras/Erk/Akt signaling system, suggesting an involvement of angiotensin II in the early obstruction-induced activation of renal Ras. Furthermore, upstream inhibition of Ras signalling by blocking either angiotensin AT1 type receptor or by inhibiting Ras prenylation (atorvastatin, FTI o ChA) reduced the activation of the Ras/Erk/Akt signaling system and decreased the early fibrotic response in the obstructed kidney. This study points out that pharmacological inhibition of Ras activation may hold promise as a future strategy in the prevention of renal fibrosis. PMID:25101263
Rodríguez-Peña, Ana B; Fuentes-Calvo, Isabel; Docherty, Neil G; Arévalo, Miguel; Grande, María T; Eleno, Nélida; Pérez-Barriocanal, Fernando; López-Novoa, José M
2014-01-01
Tubulointerstitial fibrosis is a major feature of chronic kidney disease. Unilateral ureteral obstruction (UUO) in rodents leads to the development of renal tubulointerstitial fibrosis consistent with histopathological changes observed in advanced chronic kidney disease in humans. The purpose of this study was to assess the effect of inhibiting angiotensin II receptors or Ras activation on early renal fibrotic changes induced by UUO. Animals either received angiotensin II or underwent UUO. UUO animals received either losartan, atorvastatin, and farnesyl transferase inhibitor (FTI) L-744,832, or chaetomellic acid A (ChA). Levels of activated Ras, phospho-ERK1/2, phospho-Akt, fibronectin, and α-smooth muscle actin were subsequently quantified in renal tissue by ELISA, Western blot, and/or immunohistochemistry. Our results demonstrate that administration of angiotensin II induces activation of the small GTPase Ras/Erk/Akt signaling system, suggesting an involvement of angiotensin II in the early obstruction-induced activation of renal Ras. Furthermore, upstream inhibition of Ras signalling by blocking either angiotensin AT1 type receptor or by inhibiting Ras prenylation (atorvastatin, FTI o ChA) reduced the activation of the Ras/Erk/Akt signaling system and decreased the early fibrotic response in the obstructed kidney. This study points out that pharmacological inhibition of Ras activation may hold promise as a future strategy in the prevention of renal fibrosis.
Functional condition of masseters muscles of patients with class ?? subdivision.
Kuroyedova, Vera D; Makarova, Alexandra N; Chicor, Tatyana A
Main functional characteristics of masticator muscles in patients with class ?? malocclusions is activity dominance of m. temporalis in comparison with m. ?asseter. We have not found datum about functional status of the masticators in patients with class II subdivision. The purpose of our study was to investigate the functional characteristics of m. ?asseter, m. temporalis in adult patients with class II subdivision malocclusion. There have been carried out the surface electromyographic study of m. masseter, m. temporalis in 17 adult patients with class II subdivision. It was realized quantitative analysis of 271 electromyogram, it was determined the average bioelectric activity, index activity, symmetry and torsion index. It was observed predominance of the bioelectrical activity of m. temporales on m. masseter for all persons with class II subdivision. Bioelectrical activity for m. masseter was bigger on side of distal ratio and for m. temporales on side of neutral ratio. In class ?? subdivision right, the mandible was deviated to the left side and in class ?? subdivision left is deviated to the right side. Thus, rotational moment generated during compression of the jaws, causes deviation of the lower jaw to the side, with a neutral molar ratio. During voluntary chewing bioelectrical activity of m. masseter and m. temporalis was higher in the right side. In accordance with the functional condition of the masticatory muscles of class II subdivision is characterized with functional features of distal occlusion.
NASA Astrophysics Data System (ADS)
Şahin, Mustafa; Koçak, Nuriye; Erdenay, Damla; Arslan, Uğur
2013-02-01
New asymmetrical tridentate Schiff base ligands were synthesized using 1,2-phenylenediamine, 4-methyl-1,2-phenylenediamine, 2-hydroxy-1-napthaldehyde, 9-anthracenecarboxaldehyde. Schiff base ligands and their metal complexes were synthesised and characterized by using FT-IR, 1H NMR, 13C NMR, UV-Vis, XRD, ESR, elemental analysis and fluorescence studies. The antimicrobial activity of the ligands and their metal complexes were studied against Staphylococcus aureus ATCC 29213, S. aureus ATCC 25923, Streptococcus mutans RSHM 676, Enterococcus faecalis ATCC 29212, Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853. The determination of the antibacterial activity was done using the broth microdilution methods. In general, it has been determined that the studied compounds have MIC values similar to Gram-positive and Gram-negative bacteria. It has been found that Ni, Pb, Zn derivatives of HL1A and ZnL2A has lower MIC values than ampicillin for P. aeruginosa ATCC 27853 strain.
The radical mechanism of biological methane synthesis by methyl-coenzyme M reductase
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wongnate, T.; Sliwa, D.; Ginovska, B.
2016-05-19
Methyl-coenzyme M reductase (MCR), the rate-limiting enzyme in methanogenesis and anaerobic methane oxidation, is responsible for the production of over one billion tons of methane per year. The mechanism of methane synthesis is unknown, with the two leading proposals involving either a methyl-nickel(III) (Mechanism I) or methyl radical/Ni(II)-thiolate (Mechanism II) intermediate(s). When the reaction between the active Ni(I) enzyme with substrates was studied by transient kinetic, spectroscopic and computational methods, formation of an EPR-silent Ni(II)-thiolate intermediate was positively identified by magnetic circular dichroism spectroscopy. There was no evidence for an EPR-active methyl-Ni(III) species. Temperature-dependent transient kinetic studies revealed that themore » activation energy for the initial catalytic step closely matched the value computed by density functional theory for Mechanism II. Thus, our results demonstrate that biological methane synthesis occurs by generation of a methyl radical.« less
NASA Astrophysics Data System (ADS)
Mahendra Raj, K.; Mruthyunjayaswamy, B. H. M.
2014-09-01
Schiff base ligand 3-chloro-N‧-((7-hydroxy-4-methyl-2-oxo-2H-chromen-8-yl)methylene)benzo[b]thiophene-2-carbohydrazide and its Cu(II), Co(II), Ni(II) and Zn(II) complexes were synthesized, characterized by elemental analysis and various physico-chemical techniques like, IR, 1H NMR, ESI-mass, UV-Visible, thermogravimetry - differential thermal analysis, magnetic measurements and molar conductance. Spectral analysis indicates octahedral geometry for all the complexes. Cu(II) complex have 1:1 stoichiometry of the type [M(L)(Cl)(H2O)2], whereas Co(II), Ni(II) and Zn(II) complexes have 1:2 stoichiometric ratio of the type [M(L)2]. The bonding sites are the oxygen atom of amide carbonyl, nitrogen of azomethine function and phenolic oxygen of the Schiff base ligand via deprotonation. The thermogravimetry - differential thermal analysis studies gave evidence for the presence of coordinated water molecules in the composition of Cu(II) complex which was further supported by IR measurements. All the complexes were investigated for their electrochemical activity, but only the Cu(II) complex showed the redox property. In order to evaluate the effect of antimicrobial potency of metal ions upon chelation, ligand and its metal complexes along with their respective metal chlorides were screened for their antibacterial and antifungal activities by minimum inhibitory concentration (MIC) method. The results showed that the metal complexes were found to be more active than free ligand. Ligand and its complexes were screened for free radical scavenging activity by DPPH method and DNA cleavage activity using Calf-thymus DNA (Cat. No-105850).
Synthetic bioactive novel ether based Schiff bases and their copper(II) complexes
NASA Astrophysics Data System (ADS)
Shabbir, Muhammad; Akhter, Zareen; Ismail, Hammad; Mirza, Bushra
2017-10-01
Novel ether based Schiff bases (HL1- HL4) were synthesized from 5-chloro-2-hydroxy benzaldehyde and primary amines (1-amino-4-phenoxybenzene, 4-(4-aminophenyloxy) biphenyl, 1-(4-aminophenoxy) naphthalene and 2-(4-aminophenoxy) naphthalene). From these Schiff bases copper(II) complexes (Cu(L1)2-Cu(L4)2)) were synthesized and characterized by elemental analysis and spectroscopic (FTIR, NMR) techniques. The synthesized Schiff bases and copper(II) complexes were further assessed for various biological studies. In brine shrimp assay the copper(II) complexes revealed 4-fold higher activity (LD50 3.8 μg/ml) as compared with simple ligands (LD50 12.4 μg/ml). Similar findings were observed in potato disc antitumor assay with higher activities for copper(II) complexes (IC50 range 20.4-24.1 μg/ml) than ligands (IC50 range 40.5-48.3 μg/ml). DPPH assay was performed to determine the antioxidant potential of the compounds. Significant antioxidant activity was shown by the copper(II) complexes whereas simple ligands have shown no activity. In DNA protection assay significant protection behavior was exhibited by simple ligand molecules while copper(II) complexes showed neutral behavior (neither protective nor damaging).
Fadda, Angela; Barberis, Antonio; Sanna, Daniele
2018-02-01
The Fenton reaction is used to produce hydroxyl radicals for the evaluation of the antioxidant activity of plant extracts. In this paper the parameters affecting the production of hydroxyl radicals and their spin trapping with DMPO were studied. The use of quinolinic acid (Quin) as an Fe(II) ligand was proposed for antioxidant activity determination of Green tea, orange juice and asparagus extracts. Quin, buffers and pH affect the DMPO-OH signal intensity of the EPR spectra. Quin/Fe(II) and low pH enhance the OH generation. Phosphate and Tris-HCl buffers decrease the signal intensity measured in Fe(II)-sulfate and Fe(II)-Quin systems. The extracts were analyzed with Fenton systems containing Fe(II)-sulfate and Fe(II)-Quin with and without buffer. The highest activity was shown with Fe(II)-Quin without buffer, this system being less influenced by pH and chelating agents present in the extracts. This paper will help researchers to better design spin trapping experiments for food matrices. Copyright © 2017 Elsevier Ltd. All rights reserved.
The absence of intrarenal ACE protects against hypertension
Gonzalez-Villalobos, Romer A.; Janjoulia, Tea; Fletcher, Nicholas K.; Giani, Jorge F.; Nguyen, Mien T.X.; Riquier-Brison, Anne D.; Seth, Dale M.; Fuchs, Sebastien; Eladari, Dominique; Picard, Nicolas; Bachmann, Sebastian; Delpire, Eric; Peti-Peterdi, Janos; Navar, L. Gabriel; Bernstein, Kenneth E.; McDonough, Alicia A.
2013-01-01
Activation of the intrarenal renin-angiotensin system (RAS) can elicit hypertension independently from the systemic RAS. However, the precise mechanisms by which intrarenal Ang II increases blood pressure have never been identified. To this end, we studied the responses of mice specifically lacking kidney angiotensin-converting enzyme (ACE) to experimental hypertension. Here, we show that the absence of kidney ACE substantially blunts the hypertension induced by Ang II infusion (a model of high serum Ang II) or by nitric oxide synthesis inhibition (a model of low serum Ang II). Moreover, the renal responses to high serum Ang II observed in wild-type mice, including intrarenal Ang II accumulation, sodium and water retention, and activation of ion transporters in the loop of Henle (NKCC2) and distal nephron (NCC, ENaC, and pendrin) as well as the transporter activating kinases SPAK and OSR1, were effectively prevented in mice that lack kidney ACE. These findings demonstrate that ACE metabolism plays a fundamental role in the responses of the kidney to hypertensive stimuli. In particular, renal ACE activity is required to increase local Ang II, to stimulate sodium transport in loop of Henle and the distal nephron, and to induce hypertension. PMID:23619363
Tracking solvent and protein movement during CO2 release in carbonic anhydrase II crystals
Kim, Chae Un; Song, HyoJin; Avvaru, Balendu Sankara; Gruner, Sol M.; Park, SangYoun; McKenna, Robert
2016-01-01
Carbonic anhydrases are mostly zinc metalloenzymes that catalyze the reversible hydration/dehydration of CO2/HCO3−. Previously, the X-ray crystal structures of CO2-bound holo (zinc-bound) and apo (zinc-free) human carbonic anhydrase IIs (hCA IIs) were captured at high resolution. Here, we present sequential timeframe structures of holo- [T = 0 s (CO2-bound), 50 s, 3 min, 10 min, 25 min, and 1 h] and apo-hCA IIs [T = 0 s, 50 s, 3 min, and 10 min] during the “slow” release of CO2. Two active site waters, WDW (deep water) and WDW′ (this study), replace the vacated space created on CO2 release, and another water, WI (intermediate water), is seen to translocate to the proton wire position W1. In addition, on the rim of the active site pocket, a water W2′ (this study), in close proximity to residue His64 and W2, gradually exits the active site, whereas His64 concurrently rotates from pointing away (“out”) to pointing toward (“in”) active site rotameric conformation. This study provides for the first time, to our knowledge, structural “snapshots” of hCA II intermediate states during the formation of the His64-mediated proton wire that is induced as CO2 is released. Comparison of the holo- and apo-hCA II structures shows that the solvent network rearrangements require the presence of the zinc ion. PMID:27114542
Blair, Robert E; Sombati, Sompong; Churn, Severn B; Delorenzo, Robert J
2008-06-24
Alterations in the function of Ca2+/calmodulin-dependent protein kinase II (CaM kinase II) have been observed in both in vivo and in vitro models of epileptogenesis; however the molecular mechanism mediating the effects of epileptogenesis on CaM kinase II has not been elucidated. This study was initiated to evaluate the molecular pathways involved in causing the long-lasting decrease in CaM kinase II activity in the hippocampal neuronal culture model of low Mg2+-induced spontaneous recurrent epileptiform discharges (SREDs). We show here that the decrease in CaM kinase II activity associated with SREDs in hippocampal cultures involves a Ca2+/N-methyl-d-aspartate (NMDA) receptor-dependent mechanism. Low Mg2+-induced SREDs result in a significant decrease in Ca2+/calmodulin-dependent substrate phosphorylation of the synthetic peptide autocamtide-2. Reduction of extracellular Ca2+ levels (0.2 mM in treatment solution) or the addition of dl-2-amino-5-phosphonovaleric acid (APV) 25 microM blocked the low Mg2+-induced decrease in CaM kinase II-dependent substrate phosphorylation. Antagonists of the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)/kainic acid receptor or L-type voltage sensitive Ca2+ channel had no effect on the low Mg2+-induced decrease in CaM kinase II-dependent substrate phosphorylation. The results of this study demonstrate that the decrease in CaM kinase II activity associated with this model of epileptogenesis involves a selective Ca2+/NMDA receptor-dependent mechanism and may contribute to the production and maintenance of SREDs in this model.
Blair, Robert E.; Sombati, Sompong; Churn, Severn B.; DeLorenzo, Robert J.
2008-01-01
Alterations in the function of Ca2+/calmodulin-dependent protein kinase II (CaM Kinase II) have been observed in both in vivo and in vitro models of epileptogenesis; however the molecular mechanism mediating the effects of epileptogenesis on CaM Kinase II have not been elucidated. This study was initiated to evaluate the molecular pathways involved in causing the long lasting decrease in CaM Kinase II activity in the hippocampal neuronal culture model of low Mg2+ induced spontaneous recurrent epileptiform discharges (SREDs). We show here that the decrease in CaM kinase II activity associated with SREDs in hippocampal cultures involves a Ca2+/N-methyl-d-aspartate (NMDA) receptor-dependent mechanism. Low Mg2+ induced SREDs results in a significant decrease in Ca2+/calmodulin-dependent substrate phosphorylation of the synthetic peptide autocamtide-2. Reduction of extracellular Ca2+ levels (0.2 mM in treatment solution) or the addition of DL-2-amino-5-phosphonovaleric acid (APV) 25 µM blocked the low Mg2+ induced decrease in CaM kinase II-dependent substrate phosphorylation. Antagonists of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)/kainic acid receptor or L-type voltage sensitive Ca2+ channel had no effect on the low Mg2+ induced decrease in CaM kinase II-dependent substrate phosphorylation. The results of this study demonstrate that the decrease in CaM kinase II activity associated with this model of epileptogenesis involves a selective Ca2+/NMDA receptor-dependent mechanism and may contribute to the production and maintenance of SREDs in this model. PMID:18495112
Determination of Key Residues for Catalysis and RNA Cleavage Specificity
Barbas, Ana; Matos, Rute G.; Amblar, Mónica; López-Viñas, Eduardo; Gomez-Puertas, Paulino; Arraiano, Cecília M.
2009-01-01
RNase II is the prototype of a ubiquitous family of enzymes that are crucial for RNA metabolism. In Escherichia coli this protein is a single-stranded-specific 3′-exoribonuclease with a modular organization of four functional domains. In eukaryotes, the RNase II homologue Rrp44 (also known as Dis3) is the catalytic subunit of the exosome, an exoribonuclease complex essential for RNA processing and decay. In this work we have performed a functional characterization of several highly conserved residues located in the RNase II catalytic domain to address their precise role in the RNase II activity. We have constructed a number of RNase II mutants and compared their activity and RNA binding to the wild type using different single- or double-stranded substrates. The results presented in this study substantially improve the RNase II model for RNA degradation. We have identified the residues that are responsible for the discrimination of cleavage of RNA versus DNA. We also show that the Arg-500 residue present in the RNase II active site is crucial for activity but not for RNA binding. The most prominent finding presented is the extraordinary catalysis observed in the E542A mutant that turns RNase II into a “super-enzyme.” PMID:19458082
Gandhi, Dimpi; Chanalia, Preeti; Attri, Pooja; Dhanda, Suman
2016-12-01
Dipeptidylpeptidase-II (DPP-II, E.C. 3.4.14.2), an exopeptidase was purified 15.4 fold with specific activity and yield of 15.4U/mg/mL and 14.68% respectively by a simple two step procedure from a probiotic Pediococcus acidilactici. DPP-II is 38.7KDa homodimeric serine peptidase with involvement of His and subunit mass of 18.9KDa. The enzyme exhibited optimal activity at pH 7.0 and 37°C with activation energy of 24.97kJ/mol. The enzyme retained more than 90% activity upto 50°C thus adding industrial importance. DPP-II hydrolysed Lys-Ala-4mβNA with K M of 50μM and V max of 30.8nmol/mL/min. In-silico characterization studies of DPP-II on the basis of peptide fragments obtained by MALDI-TOF revealed an evolutionary relationship between DPP-II of prokaryotes and phosphate binding proteins. Secondary and three-dimensional structure of enzyme was also deduced by in-silico approach. Functional studies of DPP-II by TLC and HPLC-analysis of collagen degraded products revealed that enzyme action released free amino acids and other metabolites. Microscopic and SDS-PAGE analysis of enzyme treated analysis of chicken's chest muscle (meat) hydrolysis revealed change and hydrolysis of myofibrils. This may affect the flavor and texture of meat thereby suggesting its role in meat tenderization. Being a protein of LAB (Lactic acid bacteria), it is also expected to be safe. Copyright © 2016 Elsevier B.V. All rights reserved.
Celedón, Gloria; González, Gustavo; Lissi, Eduardo; Cerda, Tania; Bascuñant, Denisse; Lepeley, Marcia; Pazos, Fabiola; Lanio, Maria E; Alvarez, Carlos
2011-04-01
Stichodactyla heliantus II (St II) is a haemolytic toxin whose activity depends of the characteristics of red blood cells (RBC). Among the factors that may tune the response of the RBC to the toxin activity stand the oxidative status of the cell. This study investigates how pre-oxidation of RBC modifies St II activity employing two oxidants, peroxynitrite and hypochlorous acid. Results show that peroxynitrite-treated RBC are more resistant to St II activity. On the other hand, hypochlorous acid-treated RBC become more susceptible to St II. This contrasting behaviour of both oxidants is related to the modifications elicited in RBC by both oxidant agents. Peroxynitrite does not modify RBC osmotic fragility but reduces anion transport through band 3 protein. This effect, together with an increase in K+ efflux, can explain the increased resistance to the toxin activity. On the other hand, results obtained with hypochlorous acid can be explained in terms of a disruption of the membrane organization without the compensating effect of a reduction in band 3-mediated anion transport. The present results, obtained employing the effect of a model haemolytic toxin on RBC, emphasize the specificity of the RBC response to different endogenous oxidative agents.
Huang, He; Ye, Jing; Pan, Wei; Zhong, Yun; Cheng, Chuanfang; You, Xiangyu; Liu, Benrong; Xiong, Longgen; Liu, Shiming
2014-01-01
Cardiac hypertrophy is characterized by thickening myocardium and decreasing in heart chamber volume in response to mechanical or pathological stress, but the underlying molecular mechanisms remain to be defined. This study investigated altered miRNA expression and autophagic activity in pathogenesis of cardiac hypertrophy. A rat model of myocardial hypertrophy was used and confirmed by heart morphology, induction of cardiomyocyte autophagy, altered expression of autophagy-related ATG9A, LC3 II/I and p62 proteins, and decrease in miR-34a expression. The in vitro data showed that in hypertrophic cardiomyocytes induced by Ang II, miR-34a expression was downregulated, whereas ATG9A expression was up-regulated. Moreover, miR-34a was able to bind to ATG9A 3′-UTR, but not to the mutated 3′-UTR and inhibited ATG9A protein expression and autophagic activity. The latter was evaluated by autophagy-related LC3 II/I and p62 levels, TEM, and flow cytometry in rat cardiomyocytes. In addition, ATG9A expression induced either by treatment of rat cardiomyocytes with Ang II or ATG9A cDNA transfection upregulated autophagic activity and cardiomyocyte hypertrophy in both morphology and expression of hypertrophy-related genes (i.e., ANP and β-MHC), whereas knockdown of ATG9A expression downregulated autophagic activity and cardiomyocyte hypertrophy. However, miR-34a antagonized Ang II-stimulated myocardial hypertrophy, whereas inhibition of miR-34a expression aggravated Ang II-stimulated myocardial hypertrophy (such as cardiomyocyte hypertrophy-related ANP and β-MHC expression and cardiomyocyte morphology). This study indicates that miR-34a plays a role in regulation of Ang II-induced cardiomyocyte hypertrophy by inhibition of ATG9A expression and autophagic activity. PMID:24728149
NASA Astrophysics Data System (ADS)
Jagadeesh, M.; Lavanya, M.; Kalangi, Suresh K.; Sarala, Y.; Ramachandraiah, C.; Varada Reddy, A.
2015-01-01
A new, slightly distorted octahedral complex of copper(II), square planar complexes of nickel(II) and palladium(II) with 2,4‧-dibromoacetophenone thiosemicarbazone (DBAPTSC) are synthesized. The ligand and the complexes are characterized by FT-IR, FT-Raman, powder X-ray diffraction studies. The IR and Raman data are correlated for the presence of the functional groups which specifically helped in the confirmation of the compounds. In addition, the free ligand is unambiguously characterized by 1H and 13C NMR spectroscopy while the copper(II) complex is characterized by electron paramagnetic resonance spectroscopy (EPR). The g values for the same are found to be 2.246 (g1), 2.012 (g2) and 2.005 (g3) which suggested rhombic distortions. The HOMO-LUMO band gap calculations for these compounds are found to be in between 0.5 and 4.0 eV and these compounds are identified as semiconducting materials. The synthesized ligand and its copper(II), nickel(II) and palladium(II) complexes are subjected to antitumour activity against the HepG2 human hepatoblastoma cell lines. Among all the compounds, nickel(II) complex is found to exert better antitumour activity with 57.6% of cytotoxicity.
Tyagi, Prateek; Chandra, Sulekh; Saraswat, B S; Yadav, Deepak
2015-06-15
A series of two biologically active Schiff base ligands L(1), L(2) have been synthesized in equimolar reaction of 4-amino-5-(pyridin-4-yl)-4H-1,2,4-triazole-3-thiol with thiophene-2-carbaldehyde and furan-2-carbaldehyde. The synthesized Schiff bases were used for complexation with different metal ions like Co(II), Ni(II) and Cu(II) by using a molar ratio of ligand: metal as 1:1 and 2:1. The characterization of Schiff bases and metal complexes was done by (1)H NMR, UV-Vis, TGA, IR, mass spectrometry and molar conductivity studies. The in DFT studies the geometries of Schiff bases and metal complexes were fully optimized with respect to the energy using the 6-31+g(d,p) basis set. On the basis of the spectral studies an octahedral geometry has been assigned for Co(II), Ni(II) and Cu(II) complexes. The effect of these complexes on proliferation of human breast cancer cell line (MCF-7) and human hepatocellular liver carcinoma cell line (Hep-G2) were studied and compared with those of free ligand. The anticancer cell line results reveal that all metal complexes show moderate to significant % cytotoxicity on cell line HepG2 and MCF-7. Copyright © 2015 Elsevier B.V. All rights reserved.
Takahashi, Kikuyo; Matsumoto, Yasuharu; Do.e, Zhulanqiqige; Kanazawa, Masanori; Satoh, Kimio; Shimizu, Takuya; Sato, Akira; Fukumoto, Yoshihiro; Shimokawa, Hiroaki
2013-01-01
Background Abdominal aortic aneurysm (AAA) is a life-threatening vascular disease. It is controversial whether statin and calcium channel blockers (CCBs) has an inhibitory effect on the expansion of AAA. Some studies reported that CCBs have an inhibitory effect on Rho-kinase activity. Rho-kinase plays an important role in the pathogenesis of various cardiovascular diseases. However, there is no study reporting of the association between Rho-kinase and human AAAs. Methods and Results Experimental AAA was induced in Apolipoprotein E-deficient (ApoE-/-) mice infused with angiotensin II (AngII) for 28 days. They were randomly divided into the following 5 groups; saline infusion alone (sham), AngII infusion alone, AngII infusion plus atorvastatin (10 mg/kg/day), AngII infusion plus amlodipine (1 mg/kg/day), and AngII infusion plus combination therapy with atorvastatin (10 mg/kg/day) and amlodipine (1 mg/kg/day). The combination therapy significantly suppressed AngII-induced increase in maximal aortic diameter as compared with sham, whereas each monotherapy had no inhibitory effects. The combination therapy significantly reduced AngII-induced apoptosis and elastin degradation at the AAA lesion, whereas each monotherapy did not. Moreover, Rho-kinase activity, as evaluated by the extent of phosphorylation of myosin-binding subunit (a substrate of Rho-kinase) and matrix metalloproteinase activity were significantly increased in the AngII-induced AAA lesion as compared with sham, both of which were again significantly suppressed by the combination therapy. In human aortic samples, immunohistochemistory revealed that the activity and expression of Rho-kinase was up-regulated in AAA lesion as compared with abdominal aorta from control subjects. Conclusions Rho-kinase is up-regulated in the aortic wall of human AAA. The combination therapy with amlodipine and Atorvastatin, but not each monotherapy, suppresses AngII-induced AAA formation in mice in vivo, for which Rho-kinase inhibition may be involved. PMID:23967318
Bai, Feng; Pang, Xue-Fen; Zhang, Li-Hui; Wang, Ning-Ping; McKallip, Robert J; Garner, Ronald E; Zhao, Zhi-Qing
2016-05-15
This study tested the hypothesis that angiotensin II (Ang II) AT1 receptor is involved in development of hypertension and cardiac fibrosis via modifying ACE2 activity, eNOS expression and CD44-hyaluronan interaction. Male Sprague-Dawley rats were subjected to Ang II infusion (500ng/kg/min) using osmotic minipumps up to 4weeks and the AT1 receptor blocker, telmisartan was administered by gastric gavage (10mg/kg/day) during Ang II infusion. Our results indicated that Ang II enhances AT1 receptor, downregulates AT2 receptor, ACE2 activity and eNOS expression, and increases CD44 expression and hyaluronidase activity, an enzyme for hyaluronan degradation. Further analyses revealed that Ang II increases blood pressure and augments vascular/interstitial fibrosis. Comparison of the Ang II group, treatment with telmisartan significantly increased ACE2 activity and eNOS expression in the intracardiac vessels and intermyocardium. These changes occurred in coincidence with decreased blood pressure. Furthermore, the locally-expressed AT1 receptor was downregulated, as evidenced by an increased ratio of the AT2 over AT1 receptor (1.4±0.4% vs. 0.4±0.1% in Ang II group, P<0.05). Along with these modulations, telmisartan inhibited membrane CD44 expression and hyaluronidase activity, decreased populations of macrophages and myofibroblasts, and reduced expression of TGFβ1 and Smads. Collagen I synthesis and tissue fibrosis were attenuated as demonstrated by the less extensive collagen-rich area. These results suggest that the AT1 receptor is involved in development of hypertension and cardiac fibrosis. Selective activating ACE2/eNOS and inhibiting CD44/HA interaction might be considered as the therapeutic targets for attenuating Ang II induced deleterious cardiovascular effects. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Hanif, Muhammad; Chohan, Zahid H.
2013-03-01
A new series of three biologically active triazole derived Schiff base ligands L1-L3 have been synthesized in equimolar reaction of 3-amino-1H-1,2,4-triazole with pyrrol-2-carboxaldehyde, 4-bromo-thiophene-2-carboxaldehyde, and 5-iodo-2-hydroxy benzaldehyde. The prepared Schiff bases were used for further complex formation reaction with different metal elements like Co(II), Ni(II), Cu(II) and Zn(II) as chlorides by using a molar ratio of ligand:metal as 2:1. The structure and bonding nature of all the compounds were identified by their physical, spectral and analytical data. All the metal(II) complexes possessed an octahedral geometry except the Cu(II) complexes which showed a distorted octahedral geometry. All the synthesized compounds, were studied for their in vitro antibacterial, and antifungal activities, against four Gram-negative (Escherichia coli, Shigella sonnei, Pseudomonas aeruginosa and Salmonella typhi) and two Gram-positive (Bacillus subtilis and Staphylococcus aureus) bacterial strains and against six fungal strains (Trichophyton longifusus, Candida albicans, Aspergillus flavus, Microsporum canis, Fusarium solani and Candida glabrata) by using agar-well diffusion method. It has been shown that all the synthesized compounds showed moderate to significant antibacterial activity against one or more bacterial strains. In vitro Brine Shrimp bioassay was also carried out to investigate the cytotoxic properties of these compounds. The data also revealed that the metal complexes showed better activity than the ligands due to chelation/coordination.
Antiarrhythmic effect of IKr activation in a cellular model of LQT3.
Diness, Jonas Goldin; Hansen, Rie Schultz; Nissen, Jakob Dahl; Jespersen, Thomas; Grunnet, Morten
2009-01-01
Long QT syndrome type 3 (LQT3) is an inherited cardiac disorder caused by gain-of-function mutations in the cardiac voltage-gated sodium channel, Na(v)1.5. LQT3 is associated with the polymorphic ventricular tachycardia torsades de pointes (TdP), which can lead to syncope and sudden cardiac death. The sea anemone toxin ATX-II has been shown to inhibit the inactivation of Na(v)1.5, thereby closely mimicking the underlying cause of LQT3 in patients. The hypothesis for this study was that activation of the I(Kr) current could counteract the proarrhythmic effects of ATX-II. Two different activators of I(Kr), NS3623 and mallotoxin (MTX), were used in patch clamp studies of ventricular cardiac myocytes acutely isolated from guinea pig to test the effects of selective I(Kr) activation alone and in the presence of ATX-II. Action potentials were elicited at 1 Hz by current injection and the cells were kept at 32 degrees C to 35 degrees C. NS3623 significantly shortened action potential duration at 90% repolarization (APD(90)) compared with controls in a dose-dependent manner. Furthermore, it reduced triangulation, which is potentially antiarrhythmic. Application of ATX-II (10 nM) was proarrhythmic, causing a profound increase of APD(90) as well as early afterdepolarizations and increased beat-to-beat variability. Two independent I(Kr) activators attenuated the proarrhythmic effects of ATX-II. NS3623 did not affect the late sodium current (I(NaL)) in the presence of ATX-II. Thus, the antiarrhythmic effect of NS3623 is likely to be caused by selective I(Kr) activation. The present data show the antiarrhythmic potential of selective I(Kr) activation in a cellular model of the LQT3 syndrome.
NASA Astrophysics Data System (ADS)
Gopal Reddy, N. B.; Krishna, P. Murali; Shantha Kumar, S. S.; Patil, Yogesh P.; Nethaji, Munirathinam
2017-06-01
The present paper describes the synthesis of novel ligand, N‧-[(4-ethylphenyl)methylidene]-4-hydroxy benzohydrazide (HL) and its Co(II), Ni(II), Cu(II) and Cd(II) complexes. The ligand (HL) crystallizes in orthorhombic lattice in P212121 space group with a = 7.9941 (7) Å, b = 11.6154 (10) Å, c = 15.2278 (13) Å, α = β = γ = 90°. Spectroscopic data gives the strong evidence that ligand is coordinated through azomethine nitrogen and enolic oxygen with metal ion. The DNA binding studies revealed that the complexes bind to CT-DNA via intercalation/electrostatic interaction. All the targeted compounds showed more pronounced DNA cleavage activity in the presence of H2O2 and also inhibit the growth of in vitro antibacterial activity against Gram-positive and Gram-negative bacteria.
p38 mitogen-activated protein kinase is involved in arginase-II-mediated eNOS-Uncoupling in Obesity
2014-01-01
Background Endothelial nitric oxide synthase (eNOS)-uncoupling links obesity-associated insulin resistance and type-II diabetes to the increased incidence of cardiovascular disease. Studies have indicated that increased arginase is involved in eNOS-uncoupling through competing with the substrate L-arginine. Given that arginase-II (Arg-II) exerts some of its biological functions through crosstalk with signal transduction pathways, and that p38 mitogen-activated protein kinase (p38mapk) is involved in eNOS-uncoupling, we investigated here whether p38mapk is involved in Arg-II-mediated eNOS-uncoupling in a high fat diet (HFD)-induced obesity mouse model. Methods Obesity was induced in wild type (WT) and Arg-II-deficient (Arg-II-/-) mice on C57BL/6 J background by high-fat diet (HFD, 55% fat) for 14 weeks starting from age of 7 weeks. The entire aortas were isolated and subjected to 1) immunoblotting analysis of the protein level of eNOS, Arg-II and p38mapk activation; 2) arginase activity assay; 3) endothelium-dependent and independent vasomotor responses; 4) en face staining of superoxide anion and NO production with Dihydroethidium and 4,5-Diaminofluorescein Diacetate, respectively, to assess eNOS-uncoupling. To evaluate the role of p38mapk, isolated aortas were treated with p38mapk inhibitor SB203580 (10 μmol/L, 1 h) prior to the analysis. In addition, the role of p38mapk in Arg-II-induced eNOS-uncoupling was investigated in cultured human endothelial cells overexpressing Arg-II in the absence or presence of shRNA against p38mapk. Results HFD enhanced Arg-II expression/activity and p38mapk activity, which was associated with eNOS-uncoupling as revealed by decreased NO and enhanced L-NAME-inhibitable superoxide in aortas of WT obese mice. In accordance, WT obese mice revealed decreased endothelium-dependent relaxations to acetylcholine despite of higher eNOS protein level, whereas Arg-II-/- obese mice were protected from HFD-induced eNOS-uncoupling and endothelial dysfunction, which was associated with reduced p38mapk activation in aortas of the Arg-II-/- obese mice. Moreover, overexpression of Arg-II in human endothelial cells caused eNOS-uncoupling and augmented p38mapk activation. The Arg-II-induced eNOS-uncoupling was prevented by silencing p38mapk. Furthermore, pharmacological inhibition of p38mapk recouples eNOS in isolated aortas from WT obese mice. Conclusions Taking together, we demonstrate here for the first time that Arg-II causes eNOS-uncoupling through activation of p38 mapk in HFD-induced obesity. PMID:25034973
How Metal Substitution Affects the Enzymatic Activity of Catechol-O-Methyltransferase
Sparta, Manuel; Alexandrova, Anastassia N.
2012-01-01
Catechol-O-methyltransferase (COMT) degrades catecholamines, such as dopamine and epinephrine, by methylating them in the presence of a divalent metal cation (usually Mg(II)), and S-adenosyl-L-methionine. The enzymatic activity of COMT is known to be vitally dependent on the nature of the bound metal: replacement of Mg(II) with Ca(II) leads to a complete deactivation of COMT; Fe(II) is slightly less than potent Mg(II), and Fe(III) is again an inhibitor. Considering the fairly modest role that the metal plays in the catalyzed reaction, this dependence is puzzling, and to date remains an enigma. Using a quantum mechanical / molecular mechanical dynamics method for extensive sampling of protein structure, and first principle quantum mechanical calculations for the subsequent mechanistic study, we explicate the effect of metal substitution on the rate determining step in the catalytic cycle of COMT, the methyl transfer. In full accord with experimental data, Mg(II) bound to COMT is the most potent of the studied cations and it is closely followed by Fe(II), whereas Fe(III) is unable to promote catalysis. In the case of Ca(II), a repacking of the protein binding site is observed, leading to a significant increase in the activation barrier and higher energy of reaction. Importantly, the origin of the effect of metal substitution is different for different metals: for Fe(III) it is the electronic effect, whereas in the case of Ca(II) it is instead the effect of suboptimal protein structure. PMID:23056605
Biosorption is potentially attractive technology for treament of acid mine drainage for separation/recovery of metal ions and mitigation of their toxicity to sulfate reducing bacteria. This study describes the equilibrium biosorptio of Zn(II) and CU(II) by nonviable activated slu...
Nagula, Narsimha; Kunche, Sudeepa; Jaheer, Mohmed; Mudavath, Ravi; Sivan, Sreekanth; Ch, Sarala Devi
2018-01-01
Some novel transition metal [Cu (II), Ni (II) and Co (II)] complexes of nalidixic acid hydrazone have been prepared and characterized by employing spectro-analytical techniques viz: elemental analysis, 1 H-NMR, Mass, UV-Vis, IR, TGA-DTA, SEM-EDX, ESR and Spectrophotometry studies. The HyperChem 7.5 software was used for geometry optimization of title compound in its molecular and ionic forms. Quantum mechanical parameters, contour maps of highest occupied molecular orbitals (HOMO) and lowest unoccupied molecular orbitals (LUMO) and corresponding binding energy values were computed using semi empirical single point PM3 method. The stoichiometric equilibrium studies of metal complexes carried out spectrophotometrically using Job's continuous variation and mole ratio methods inferred formation of 1:2 (ML 2 ) metal complexes in respective systems. The title compound and its metal complexes screened for antibacterial and antifungal properties, exemplified improved activity in metal complexes. The studies of nuclease activity for the cleavage of CT- DNA and MTT assay for in vitro cytotoxic properties involving metal complexes exhibited high activity. In addition, the DNA binding properties of Cu (II), Ni (II) and Co (II) complexes investigated by electronic absorption and fluorescence measurements revealed their good binding ability and commended agreement of K b values obtained from both the techniques. Molecular docking studies were also performed to find the binding affinity of synthesized compounds with DNA (PDB ID: 1N37) and "Thymidine phosphorylase from E.coli" (PDB ID: 4EAF) protein targets.
Sousa, T; Oliveira, S; Afonso, J; Morato, M; Patinha, D; Fraga, S; Carvalho, F; Albino-Teixeira, A
2012-01-01
BACKGROUND AND PURPOSE Activation of the intrarenal renin-angiotensin system (RAS) and increased renal medullary hydrogen peroxide (H2O2) contribute to hypertension. We examined whether H2O2 mediated hypertension and intrarenal RAS activation induced by angiotensin II (Ang II). EXPERIMENTAL APPROACH Ang II (200 ng·kg−1·min−1) or saline were infused in Sprague Dawley rats from day 0 to day 14. Polyethylene glycol (PEG)-catalase (10 000 U·kg−1·day−1) was given to Ang II-treated rats, from day 7 to day 14. Systolic blood pressure was measured throughout the study. H2O2, angiotensin AT1 receptor and Nox4 expression and nuclear factor-κB (NF-κB) activation were evaluated in the kidney. Plasma and urinary H2O2 and angiotensinogen were also measured. KEY RESULTS Ang II increased H2O2, AT1 receptor and Nox4 expression and NF-κB activation in the renal medulla, but not in the cortex. Ang II raised plasma and urinary H2O2 levels, increased urinary angiotensinogen but reduced plasma angiotensinogen. PEG-catalase had a short-term antihypertensive effect and transiently suppressed urinary angiotensinogen. PEG-catalase decreased renal medullary expression of AT1 receptors and Nox4 in Ang II-infused rats. Renal medullary NF-κB activation was correlated with local H2O2 levels and urinary angiotensinogen excretion. Loss of antihypertensive efficacy was associated with an eightfold increase of plasma angiotensinogen. CONCLUSIONS AND IMPLICATIONS The renal medulla is a major target for Ang II-induced redox dysfunction. H2O2 appears to be the key mediator enhancing intrarenal RAS activation and decreasing systemic RAS activity. The specific control of renal medullary H2O2 levels may provide future grounds for the treatment of hypertension. PMID:22452317
NASA Astrophysics Data System (ADS)
El-Samanody, El-Sayed A.; Polis, Magdy W.; Emara, Esam M.
2017-09-01
A new series of biologically active Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) complexes derived from the novel thiosemicarbazone ligand; (E)-N‧-(1-(4-aminophenyl)ethylidene)morpholine-4-carbothiohydrazide (HL) were synthesized. The mode of bonding of the ligand and the geometrical structures of its metal complexes were achieved by different analytical and spectral methods. The ligand coordinated with metal ions in a neutral bidentate fashion through the thione sulfur and azomethine nitrogen atoms. All metal complexes adopted octahedral geometry, except Cu(II) complexes (3, 6, 7) which have a square planar structure. The general thermal decomposition pathways of the ligand along with its metal complexes were explained. The thermal stability of the complexes is controlled by the number of outer and inner sphere water molecules, ionic radii and the steric hindrance. The activation thermodynamic parameters; (activation energy (E*), enthalpy of activation (ΔH*), entropy of activation (ΔS*) and Gibbs free energy (ΔG*)) along with order of reaction (n) were estimated from DTG curves. The ESR spectra of Cu(II) complexes indicated that (dx2-y2)1 is the ground state with covalence character of metal-ligand bonds. The molluscicidal and biochemical effects of the ligand and its Ni(II); Cu(II) complexes (2; 3, 5, 7) along with their combinations with metaldehyde were screened in vitro on the mucous gland of Eobania vermiculata. The tested compounds exhibited a significant toxicity against the tested animals and have almost the same toxic effect of metaldehyde which increases the mucous secretion of the snails and leads to death.
Trimethoprim degradation by Fenton and Fe(II)-activated persulfate processes.
Wang, Shizong; Wang, Jianlong
2018-01-01
Trimethoprim is a pollutant ubiquitous in the environment due to its extensive application, and it cannot be effectively removed by conventional wastewater treatment processes. In this study, the Fenton and the Fe(II)-activated persulfate processes were employed to degrade trimethoprim in an aqueous solution. The results showed that the concentration of persulfate, H 2 O 2 and Fe(II) a had significant influence on the degradation of trimethoprim in both processes. De-ionized water spiked with trimethoprim resulted in the complete degradation of trimethoprim (0.05 mM) by the mineralization of 54.9% of Fenton's reagent when the concentrations of H 2 O 2 and Fe(II) were 1 mM and 0.05 mM, respectively. In contrast, 73.4% of trimethoprim was degraded by the mineralization of 40.5% of the Fe(II)-activated persulfate process when the concentration of persulfate and Fe(II) were each 4 mM. Intermediate compounds with different m/z were detected for the Fenton and the Fe(II)-activated persulfate processes, indicating alternative degradation pathways. In the actual wastewater spiked with trimethoprim, the removal efficiency of trimethoprim decreased to 35.8% and 43.6%, respectively, for the Fenton and the Fe(II)-activated persulfate processes. In addition, the decomposition efficiencies for hydrogen peroxide and persulfate were 43.8% and 92.5%, respectively, which was lower than those in the de-ionized water system. These results demonstrated that wastewater components had a negative influence on trimethoprim degradation and the decomposition of the oxidants (persulfate and H 2 O 2 ). In summary, the Fe(II)-activated persulfate process could be used as an alternative technology for treating trimethoprim-containing wastewater. Copyright © 2017 Elsevier Ltd. All rights reserved.
Enhanced Removal of Lead by Chemically and Biologically Treated Carbonaceous Materials
Mahmoud, Mohamed E.; Osman, Maher M.; Ahmed, Somia B.; Abdel-Fattah, Tarek M.
2012-01-01
Hybrid sorbents and biosorbents were synthesized via chemical and biological treatment of active carbon by simple and direct redox reaction followed by surface loading of baker's yeast. Surface functionality and morphology of chemically and biologically modified sorbents and biosorbents were studied by Fourier Transform Infrared analysis and scanning electron microscope imaging. Hybrid carbonaceous sorbents and biosorbents were characterized by excellent efficiency and superiority toward lead(II) sorption compared to blank active carbon providing a maximum sorption capacity of lead(II) ion as 500 μmol g−1. Sorption processes of lead(II) by these hybrid materials were investigated under the influence of several controlling parameters such as pH, contact time, mass of sorbent and biosorbent, lead(II) concentration, and foreign ions. Lead(II) sorption mechanisms were found to obey the Langmuir and BET isotherm models. The potential applications of chemically and biologically modified-active carbonaceous materials for removal and extraction of lead from real water matrices were also studied via a double-stage microcolumn technique. The results of this study were found to denote to superior recovery values of lead (95.0–99.0 ± 3.0–5.0%) by various carbonaceous-modified-bakers yeast biosorbents. PMID:22629157
Equilibrium and kinetics of adsorption of phosphate onto iron-doped activated carbon.
Wang, Zhengfang; Nie, Er; Li, Jihua; Yang, Mo; Zhao, Yongjun; Luo, Xingzhang; Zheng, Zheng
2011-08-01
Two series of activated carbons modified by Fe (II) and Fe (III) (denoted as AC/N-Fe(II) and AC/N-Fe(III)), respectively, were used as adsorbents for the removal of phosphate in aqueous solutions. The synthesized adsorbent materials were investigated by different experimental analysis means. The adsorption of phosphate on activated carbons has been studied in kinetic and equilibrium conditions taking into account the adsorbate concentration, temperature, and solution pH as major influential factors. Maximum removals of phosphate are obtained in the pH range of 3.78-6.84 for both adsorbents. Langmuir isotherm adsorption equation well describes the experimental adsorption isotherms. Kinetic studies revealed that the adsorption process followed a pseudo-second order kinetic model. Results suggest that the main phase formed in AC/N-Fe(II) and AC/N-Fe(III) is goethite and akaganeite, respectively; the presence of iron oxides significantly affected the surface area and the pore structure of the activated carbon. Studies revealed that iron-doped activated carbons were effective in removing phosphate. AC/N-Fe(II) has a higher phosphate removal capacity than AC/N-Fe(III), which could be attributed to its better intra-particle diffusion and higher binding energy. The activation energy for adsorption was calculated to be 22.23 and 10.89 kJ mol(-1) for AC/N-Fe(II) and AC/N-Fe(III), respectively. The adsorption process was complex; both surface adsorption and intra-particle diffusion were simultaneously occurring during the process and contribute to the adsorption mechanism.
Synthesis, spectral studies and biological evaluation of 2-aminonicotinic acid metal complexes
NASA Astrophysics Data System (ADS)
Nawaz, Muhammad; Abbasi, Muhammad Waseem; Hisaindee, Soleiman; Zaki, Muhammad Javed; Abbas, Hira Fatima; Mengting, Hu; Ahmed, M. Arif
2016-05-01
We synthesized 2-aminonicotinic acid (2-ANA) complexes with metals such as Co(II), Fe(III), Ni(II), Mn(II), Zn(II), Ag(I),Cr(III), Cd(II) and Cu(II) in aqueous media. The complexes were characterized and elucidated using FT-IR, UV-Vis, a fluorescence spectrophotometer and thermo gravimetric analysis (TGA). TGA data showed that the stoichiometry of complexes was 1:2 metal/ligand except for Ag(I) and Mn(II) where the ratio was 1:1. The metal complexes showed varied antibacterial, fungicidal and nematicidal activities. The silver and zinc complexes showed highest activity against Bacillus subtilis and Bacillus licheniformis respectively. Fusarium oxysporum was highly susceptible to nickel and copper complexes whereas Macrophomina phaseolina was completely inert to the complexes. The silver and cadmium complexes were effective against the root-knot nematode Meloidogyne javanica.
Novelmetal-organic photocatalysts: Synthesis, characterization and decomposition of organic dyes
NASA Astrophysics Data System (ADS)
Gopal Reddy, N. B.; Murali Krishna, P.; Kottam, Nagaraju
2015-02-01
An efficient method for the photocatalytic degradation of methylene blue in an aqueous medium was developed using metal-organic complexes. Two novel complexes were synthesized using, Schiff base ligand, N‧-[(E)-(4-ethylphenyl)methylidene]-4-hydroxybenzohydrazide (HL) and Ni(II) (Complex 1)/Co(II) (Complex 2) chloride respectively. These complexes were characterized using microanalysis, various spectral techniques. Spectral studies reveal that the complexes exhibit square planar geometry with ligand coordination through azomethine nitrogen and enolic oxygen. The effects of catalyst dosage, irradiation time and aqueous pH on the photocatalytic activity were studied systematically. The photocatalytic activity was found to be more efficient in the presence of Ni(II) complexes than the Co(II) complex. Possible mechanistic aspects were discussed.
Sherif, Omaima E; Abdel-Kader, Nora S
2014-01-03
Many tools of analysis such as elemental analyses, infrared, ultraviolet-visible, electron spin resonance (ESR) and thermal analysis, as well as conductivity and magnetic susceptibility measurements were used to elucidate the structures of the newly prepared Co(II), Ni(II) and Cu(II) complexes with Schiff bases derived from the condensation of 1,4-phenylenediamine with 6-formyl-7-hydroxy-5-methoxy-2-methylbenzo-pyran-4-one (H2L) or 5,7-dihydroxy-6-formyl-2-methylbenzopyran-4-one (H4L). The data showed that all formed complexes are 1:1 or 2:2 (M:L) and non-electrolyte chelates. The Co(II) and Cu(II) complexes of the two Schiff bases were screened for antibacterial activities by the disk diffusion method. The antibacterial activity was screened using Escherichia coli and Staphylococcus capitis but the antifungal activity was examined by using Aspergillus flavus and Candida albicans. The Results showed that the tested complexes have antibacterial, except CuH4L, but not antifungal activities. Copyright © 2013 Elsevier B.V. All rights reserved.
Ye, Tingting; Li, Xiang; Zhang, Ting; Su, Yinglong; Zhang, Wenjuan; Li, Jun; Gan, Yanfei; Zhang, Ai; Liu, Yanan; Xue, Gang
2018-06-01
Bio-refinery of food waste and waste activated sludge to high value-added chemicals, such as lactic acid, has attracted particular interest in recent years. In this paper, the effect of copper (II) dosing to the organic waste fermentation system on lactic acid production was evaluated, which proved to be a promising method to stimulate high yield of lactic acid (77.0% higher than blank) at dosage of 15 μM-Cu 2+ /g VSS. As mechanism study suggested, copper addition enhanced the activity of α-glycosidase and glycolysis, which increased the substrate for subsequent acidification; whereas, the high dosage (70 μM-Cu 2+ /g VSS) inhibited the conversion of lactic acid to VFA, thus stabilized lactic acid concentration. Microbial community study revealed that small amount of copper (II) at 15 μM/g VSS resulted in the proliferation of Lactobacillus to 82.6%, which mainly produced lactic acid. Finally, the variation of functional capabilities implied that the proposed homeostatic system II was activated at relatively low concentration of copper. Meanwhile, membrane transport function and carbohydrate metabolism were also strengthened. This study provides insights into the effect of copper (II) on the enhancement of lactic acid production from co-fermentation of food waste and waste activated sludge. Copyright © 2018 Elsevier Ltd. All rights reserved.
Angiotensin Converting Enzyme Regulates Cell Proliferation and Migration
Carvalho, Clarissa Coelho; Florentino, Rodrigo Machado; França, Andressa; Matias, Eveline; Guimarães, Paola Bianchi; Batista, Carolina; Freire, Valder; Carmona, Adriana Karaoglanovic; Pesquero, João Bosco; de Paula, Ana Maria; Foureaux, Giselle; Leite, Maria de Fatima
2016-01-01
Background The angiotensin-I converting enzyme (ACE) plays a central role in the renin-angiotensin system, acting by converting the hormone angiotensin-I to the active peptide angiotensin-II (Ang-II). More recently, ACE was shown to act as a receptor for Ang-II, and its expression level was demonstrated to be higher in melanoma cells compared to their normal counterparts. However, the function that ACE plays as an Ang-II receptor in melanoma cells has not been defined yet. Aim Therefore, our aim was to examine the role of ACE in tumor cell proliferation and migration. Results We found that upon binding to ACE, Ang-II internalizes with a faster onset compared to the binding of Ang-II to its classical AT1 receptor. We also found that the complex Ang-II/ACE translocates to the nucleus, through a clathrin-mediated process, triggering a transient nuclear Ca2+ signal. In silico studies revealed a possible interaction site between ACE and phospholipase C (PLC), and experimental results in CHO cells, demonstrated that the β3 isoform of PLC is the one involved in the Ca2+ signals induced by Ang-II/ACE interaction. Further studies in melanoma cells (TM-5) showed that Ang-II induced cell proliferation through ACE activation, an event that could be inhibited either by ACE inhibitor (Lisinopril) or by the silencing of ACE. In addition, we found that stimulation of ACE by Ang-II caused the melanoma cells to migrate, at least in part due to decreased vinculin expression, a focal adhesion structural protein. Conclusion ACE activation regulates melanoma cell proliferation and migration. PMID:27992423
Park, Young Jun; Ziller, Joseph W.; Borovik, A. S.
2011-01-01
Rate enhancements for the reduction of dioxygen by a MnII complex were observed in the presence of redox inactive Group 2 metal ions. The rate changes correlated with an increase in the Lewis acidity of the Group 2 metal ions. These studies led to the isolation of heterobimetallic complexes that contain MnIII-(μ-OH)-MII cores (MII = CaII, BaII), in which the hydroxo oxygen atom is derived from O2. This type of core structure has relevance to the oxygen evolving complexes within photosystem II. PMID:21595481
Kanzawa, F; Maeda, M; Sasaki, T; Hoshi, A; Kuretani, K
1982-02-01
To determine whether the antitumor activities of thioguanine-platinum(II) [TG-Pt(II)] and selenoguanine-platinum(II) [SeG-Pt(II)] are due to direct actions of these compounds or to the actions of their hydrolysis products, studies were made on a purine antagonist-resistant, murine lymphoma L5178Y/MP subline that lacked the anabolic enzyme hypoxanthine-guanine phosphoribosyltransferase necessary for tumor inhibition. The L5178Y/MP subline proved to be highly resistant to both TG-Pt(II) and thioguanine; the resistance ratios to the two compounds were almost identical. The subline showed high resistance to selenoguanine, but the cross-resistance to SeG-Pt(II) was negligible. Whether the compounds exhibit the delayed cytotoxicity characteristic of purine antagonists was also investigated. Delayed cytotoxicity was demonstrated for TG-Pt(II) as well as for thioguanine and other purine antagonists but not for SeG-Pt(II) or cis-dichlorodiammineplatinum(II). Experiments on cross-resistance and delayed cytotoxicity showed differences in the cytotoxicities of TG-Pt(II) and SeG-Pt(II): TG-Pt(II) exerted its activity through its hydrolysis product thioguanine, whereas SeG-Pt(II) compound was cytotoxic itself.
Metal complexes of diisopropylthiourea: synthesis, characterization and antibacterial studies.
Ajibade, Peter A; Zulu, Nonkululeko H
2011-01-01
Co(II), Cu(II), Zn(II) and Fe(III) complexes of diisopropylthiourea have been synthesized and characterized by elemental analyses, molar conductivity, magnetic susceptibility, FTIR and electronic spectroscopy. The compounds are non-electrolytes in solution and spectroscopic data of the complexes are consistent with 4-coordinate geometry for the metal(II) complexes and six coordinate octahedral for Fe(III) complex. The complexes were screened for their antibacterial activities against six bacteria: Escherichia coli, Pseudomonas auriginosa, Klebsiella pneumoniae, Bacillus cereus, Staphylococcus aureus and Bacillus pumilus. The complexes showed varied antibacterial activities and their minimum inhibitory concentrations (MICs) were determined.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simms, H.H.; D'Amico, R.; Monfils, P.
We investigated the effects of untreated intraabdominal sepsis on polymorphonuclear leukocyte (PMN) candicidal activity. Two groups of swine were studied. Group I (n=6) underwent sham laparotomy, group II (n=7) underwent cecal ligation and incision. Untreated intraabdominal sepsis resulted in a progressive decrease in PMN candicidal activity. Concomitant rosetting and phagocytosis assays demonstrated a decrease in both the attachment and phagocytosis of Candida albicans opsonized with both normal and septic swine serum by PMNs in group II. Iodine 125-labeled swine immunoglobulin G (IgG) and fluorescein isothioalanate (FITC)-labeled swine IgG were used to investigate Fc gamma receptor ligand interactions. Scatchard analyses demonstratedmore » a progressive decline in both the binding affinity constant and number of IgG molecules bound per PMN. Stimulation of the oxidative burst markedly reduced 125I-labeled IgG binding in both group I and group II, with a greater decrement being seen in animals with intraabdominal sepsis. Further, in group II, PMN recycling of the Fc gamma receptor to the cell surface after generation of the oxidative burst was reduced by postoperative day 4. Binding of monoclonal antibodies to Fc gamma receptor II, but not Fc gamma receptor I/III markedly reduced intracellular candicidal activity. Immunofluorescence studies revealed a homogeneous pattern of FITC-IgG uptake by nearly all group I PMNs, whereas by postoperative day 8 a substantial number of PMNs from group II failed to internalize the FITC-IgG. These studies suggest that untreated intraabdominal sepsis reduces PMN candicidal activity and that this is due, in part, to altered PMN Fc gamma receptor ligand interactions.« less
Gaya, Umar Ibrahim; Otene, Emmanuel; Abdullah, Abdul Halim
2015-01-01
Non-uniformly sized activated carbons were derived from doum palm shell, a new precursor, by carbonization in air and activation using KOH, NaOH and ZnCl2. The activated carbon fibres were characterised by X-ray diffraction, N2 adsorption-desorption, scanning electron microscopy, particle size analysis and evaluated for Cd(II) and Pb(II) removal. The 40-50 nm size, less graphitic, mesoporous NaOH activated carbon yielded high adsorption efficiency, pointing largely to the influence surface area. The performance of the KOH based activated carbon was arguably explained for the first time in terms of crystallinity. The efficiencies of the mesoporous ZnCl2-formulated activated carbon diminished due to the presence of larger particles. Batch adsorption of divalent metals revealed dependence on adsorbent dose, agitation time, pH and adsorbate concentrations with high adsorption efficiencies at optimum operating parameters. The equilibrium profiles fitted Langmuir and Freundlich isotherms, and kinetics favoured pseudo-second order model. The study demonstrated the practicability of the removal of alarming levels of cadmium and lead ions from industrial effluents.
Horta-Baas, Gabriel; Pérez Bolde-Hernández, Arturo; Hernández-Cabrera, María Fernanda; Vergara-Sánchez, Imelda; Romero-Figueroa, María Del Socorro
2017-10-11
To achieve control of rheumatoid arthritis (RA) it is necessary to be able to evaluate its activity. The American College of Rheumatology (ACR) recommends for this purpose indexes of activity that can be performed by the patient (PAS-II and RAPID-3) and IA including medical evaluation with laboratory studies (DAS28 and SDAI) or without them (CDAI). The objective was to analyze the concordance between self-rated clinimetric evaluation and clinimetric evaluation performed by the physician. Analytical cross-sectional study in 126 patients with RA. The agreement was evaluated through the weighted κ coefficient and the Krippendorff's α coefficient. The PAS-II and RAPID-3 significantly correlated with all variables included in the core set of measures recommended by the ACR/EULAR. The agreement between PAS-II and CDAI-SDAI was good (κ: 0.6, α: 0.61-0.62), and moderate with DAS28-ESR (κ: 0.53, α: 0.56). The concordance between RAPID-3 and CDAI-SDAI was moderate (κ: 0.55-0.57, α: 0.50-0.51), and moderate with DAS28-ESR (κ: 0.55, α: 0.53). When categorizing the activity in remission/low activity vs. moderate/severe activity, the agreement was greater with the PAS-II (0.59 vs. 0.34; P=.012). The good concordance between PAS-II and SDAI supports their use in clinical practice, especially if biomarkers of inflammation or the possibility of joint count are not available. However, in order to recommend its routine application in clinical practice, it is necessary to perform longitudinal studies that assess its responsiveness. Copyright © 2017 Elsevier España, S.L.U. All rights reserved.
NASA Astrophysics Data System (ADS)
Azam, Mohammad; Dwivedi, Sourabh; Al-Resayes, Saud I.; Adil, S. F.; Islam, Mohammad Shahidul; Trzesowska-Kruszynska, Agata; Kruszynski, Rafal; Lee, Dong-Ung
2017-02-01
The catalytic property of a mononuclear Cu(II) salen complex in Chan-Lam coupling reaction with phenyl boronic acid at room temperature is reported. The studied complex is found to be potential catalyst in the preparation of carbon-heteroatom bonds with excellent yields. The studied Cu(II) salen complex is monoclinic with cell parameters, a = 9.6807(5) (α 90°), (b = 17.2504(8) (β 112.429 (2), c = 11.1403 (6) (γ = 90°), and has distorted square planar environment around Cu(II) ion. Furthermore, there is no π⋯π interactions in the reported complex due to large distance between the centroid of aromatic rings. In addition, DNA binding study of Cu(II) salen complex by fluorescence and absorption spectroscopy is also reported. Moreover, the reported Cu(II) salen complex exhibits significant anticancer activity against MCF-7 cancer cell lines, and displays potential antimicrobial biofilm activity against P. aeruginosa, suggesting antimicrobial biofilm an important tool for suppression of resistant infections caused by P. aeruginosa.
Guo, Zizhang; Zhang, Jian; Kang, Yan; Liu, Hai
2017-11-01
This study developed an humic acid (HA) in-situ modified activated carbon adsorbent (AC-HA) for the rapid and efficient removal of Pb(II) from aqueous media, and adsorption mechanisms are discussed. The physicochemical characteristics of activated carbons (AC) were investigated via N 2 adsorption/desorption, scanning electron microscopy (SEM), Boehm's titration method and Fourier transform infrared spectroscopy (FTIR). AC-HA exhibited richer oxygen-containing functional groups than the original AC. In addition, the removal performance of AC-HA (250.0mg/g) toward Pb(II) was greatly improved compared with the original AC (166.7mg/g). The batch adsorption study results revealed that the Pb(II) adsorption data were best fit by the pseudo-second-order model of kinetics and Langmuir isotherm of isothermals, and therefore, the effect of the solution pH was studied. The superior performance of AC-HA was attributed to the HA modification, which contains numbers of groups and has a strong π-π interaction binding energy with AC and Pb(II) species. The adsorption mechanisms were confirmed via the XPS study. More importantly, the modified method is simple and has a low cost of production. Copyright © 2017 Elsevier Inc. All rights reserved.
Palanisamy, Nallasamy; Viswanathan, Periyasamy; Ravichandran, Mambakkam Katchapeswaran; Anuradha, Carani Venkataraman
2010-01-01
We studied whether substitution of soy protein for casein can improve insulin sensitivity, lower blood pressure (BP), and inhibit protein kinase C betaII (PKCbetaII) activation in kidney in an acquired model of metabolic syndrome. Adult male rats were fed 4 different diets: (i) starch (60%) and casein (20%) (CCD), (ii) fructose (60%) and casein (20%) (FCD), (iii) fructose (60%) and soy protein (20%) (FSD), and (iv) starch (60%) and soy protein (20%) (CSD). Renal function parameters, BP, pressor mechanisms, PKCbetaII expression, oxidative stress, and renal histology were evaluated after 60 days. FCD rats displayed insulin resistance and significant changes in body weight, kidney weight, urine volume, plasma and urine electrolytes accompanied by significant changes in renal function parameters compared with CCD rats. Elevated BP, plasma angiotensin-converting enzyme (ACE) activity, renal oxidative stress, and reduced nitrite (NO) and kallikrein activity were observed. Western blot analysis revealed enhanced renal expression of membrane-associated PKCbetaII in the FCD group. Histology showed fatty infiltration and thickening of glomeruli while urinary protein profile revealed a 5-fold increase in albumin. Substitution of soy protein for casein improved insulin sensitivity, lowered BP and PKCbetaII activation and restored renal function. Antioxidant action, inhibitory effect on ACE and PKCbetaII activation, and increased availability of kinins and NO could be contributing mechanisms for the benefits of dietary soy protein.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Hyo Jung; Ham, Sun Ah; Paek, Kyung Shin
2011-03-25
Research highlights: {yields} Activation of PPAR{delta} by GW501516 significantly inhibited Ang II-induced premature senescence in hVSMCs. {yields} Agonist-activated PPAR{delta} suppressed generation of Ang II-triggered ROS with a concomitant reduction in DNA damage. {yields} GW501516 up-regulated expression of antioxidant genes, such as GPx1, Trx1, Mn-SOD and HO-1. {yields} Knock-down of these antioxidant genes abolished the effects of GW501516 on ROS production and premature senescence. -- Abstract: This study evaluated peroxisome proliferator-activated receptor (PPAR) {delta} as a potential target for therapeutic intervention in Ang II-induced senescence in human vascular smooth muscle cells (hVSMCs). Activation of PPAR{delta} by GW501516, a specific agonist ofmore » PPAR{delta}, significantly inhibited the Ang II-induced premature senescence of hVSMCs. Agonist-activated PPAR{delta} suppressed the generation of Ang II-triggered reactive oxygen species (ROS) with a concomitant reduction in DNA damage. Notably, GW501516 up-regulated the expression of antioxidant genes, such as glutathione peroxidase 1, thioredoxin 1, manganese superoxide dismutase and heme oxygenase 1. siRNA-mediated down-regulation of these antioxidant genes almost completely abolished the effects of GW501516 on ROS production and premature senescence in hVSMCs treated with Ang II. Taken together, the enhanced transcription of antioxidant genes is responsible for the PPAR{delta}-mediated inhibition of premature senescence through sequestration of ROS in hVSMCs treated with Ang II.« less
Enzymatic Manganese(II) Oxidation by Metabolically Dormant Spores of Diverse Bacillus Species
Francis, Chris A.; Tebo, Bradley M.
2002-01-01
Bacterial spores are renowned for their longevity, ubiquity, and resistance to environmental insults, but virtually nothing is known regarding whether these metabolically dormant structures impact their surrounding chemical environments. In the present study, a number of spore-forming bacteria that produce dormant spores which enzymatically oxidize soluble Mn(II) to insoluble Mn(IV) oxides were isolated from coastal marine sediments. The highly charged and reactive surfaces of biogenic metal oxides dramatically influence the oxidation and sorption of both trace metals and organics in the environment. Prior to this study, the only known Mn(II)-oxidizing sporeformer was the marine Bacillus sp. strain SG-1, an extensively studied bacterium in which Mn(II) oxidation is believed to be catalyzed by a multicopper oxidase, MnxG. Phylogenetic analysis based on 16S rRNA and mnxG sequences obtained from 15 different Mn(II)-oxidizing sporeformers (including SG-1) revealed extensive diversity within the genus Bacillus, with organisms falling into several distinct clusters and lineages. In addition, active Mn(II)-oxidizing proteins of various sizes, as observed in sodium dodecyl sulfate-polyacrylamide electrophoresis gels, were recovered from the outer layers of purified dormant spores of the isolates. These are the first active Mn(II)-oxidizing enzymes identified in spores or gram-positive bacteria. Although extremely resistant to denaturation, the activities of these enzymes were inhibited by azide and o-phenanthroline, consistent with the involvement of multicopper oxidases. Overall, these studies suggest that the commonly held view that bacterial spores are merely inactive structures in the environment should be revised. PMID:11823231
Seremwe, Mutsa; Schnellmann, Rick G.
2015-01-01
Aldosterone is a steroid hormone important in the regulation of blood pressure. Aberrant production of aldosterone results in the development and progression of diseases including hypertension and congestive heart failure; therefore, a complete understanding of aldosterone production is important for developing more effective treatments. Angiotensin II (AngII) regulates steroidogenesis, in part through its ability to increase intracellular calcium levels. Calcium can activate calpains, proteases classified as typical or atypical based on the presence or absence of penta-EF-hands, which are involved in various cellular responses. We hypothesized that calpain, in particular calpain-10, is activated by AngII in adrenal glomerulosa cells and underlies aldosterone production. Our studies showed that pan-calpain inhibitors reduced AngII-induced aldosterone production in 2 adrenal glomerulosa cell models, primary bovine zona glomerulosa and human adrenocortical carcinoma (HAC15) cells, as well as CYP11B2 expression in the HAC15 cells. Although AngII induced calpain activation in these cells, typical calpain inhibitors had no effect on AngII-elicited aldosterone production, suggesting a lack of involvement of classical calpains in this process. However, an inhibitor of the atypical calpain, calpain-10, decreased AngII-induced aldosterone production. Consistent with this result, small interfering RNA (siRNA)-mediated knockdown of calpain-10 inhibited aldosterone production and CYP11B2 expression, whereas adenovirus-mediated overexpression of calpain-10 resulted in increased AngII-induced aldosterone production. Our results indicate that AngII-induced activation of calpain-10 in glomerulosa cells underlies aldosterone production and identify calpain-10 or its downstream pathways as potential targets for the development of drug therapies for the treatment of hypertension. PMID:25836666
Kim, Hyo Jung; Ham, Sun Ah; Paek, Kyung Shin; Hwang, Jung Seok; Jung, Si Young; Kim, Min Young; Jin, Hanna; Kang, Eun Sil; Woo, Im Sun; Kim, Hye Jung; Lee, Jae Heun; Chang, Ki Churl; Han, Chang Woo; Seo, Han Geuk
2011-03-25
This study evaluated peroxisome proliferator-activated receptor (PPAR) δ as a potential target for therapeutic intervention in Ang II-induced senescence in human vascular smooth muscle cells (hVSMCs). Activation of PPARδ by GW501516, a specific agonist of PPARδ, significantly inhibited the Ang II-induced premature senescence of hVSMCs. Agonist-activated PPARδ suppressed the generation of Ang II-triggered reactive oxygen species (ROS) with a concomitant reduction in DNA damage. Notably, GW501516 up-regulated the expression of antioxidant genes, such as glutathione peroxidase 1, thioredoxin 1, manganese superoxide dismutase and heme oxygenase 1. siRNA-mediated down-regulation of these antioxidant genes almost completely abolished the effects of GW501516 on ROS production and premature senescence in hVSMCs treated with Ang II. Taken together, the enhanced transcription of antioxidant genes is responsible for the PPARδ-mediated inhibition of premature senescence through sequestration of ROS in hVSMCs treated with Ang II. Copyright © 2011 Elsevier Inc. All rights reserved.
Angiotensin II mediated signal transduction. Important role of tyrosine kinases.
Haendeler, J; Berk, B C
2000-11-24
It has been 100 years since the discovery of renin by Bergman and Tigerstedt. Since then, numerous studies have advanced our understanding of the renin-angiotensin system. A remarkable aspect was the discovery that angiotensin II (AngII) is the central product of the renin-angiotensin system and that this octapeptide induces multiple physiological responses in different cell types. In addition to its well known vasoconstrictive effects, growing evidence supports the notion that AngII may play a central role not only in hypertension, but also in cardiovascular and renal diseases. Binding of AngII to the seven-transmembrane angiotensin II type 1 receptor is responsible for nearly all of the physiological actions of AngII. Recent studies underscore the new concept that activation of intracellular second messengers by AngII requires tyrosine phosphorylation. An increasing number of tyrosine kinases have been shown to be activated by AngII, including the Src kinase family, the focal adhesion kinase family, the Janus kinases and receptor tyrosine kinases. These actions of AngII contribute to the pathophysiology of cardiac hypertrophy and remodeling, vascular thickening, heart failure and atherosclerosis. In this review, we discuss the important role of tyrosine kinases in AngII-mediated signal transduction. Understanding the importance of tyrosine phosphorylation in AngII-stimulated signaling events may contribute to new therapies for cardiovascular and renal diseases.
Specific Dioscorea Phytoextracts Enhance Potency of TCL-Loaded DC-Based Cancer Vaccines
Chang, Wei-Ting; Chen, Hui-Ming; Yin, Shu-Yi; Chen, Yung-Hsiang; Wen, Chih-Chun; Wei, Wen-Chi; Lai, Phoency; Wang, Cheng-Hsin; Yang, Ning-Sun
2013-01-01
Dioscorea tuber phytoextracts can confer immunomodulatory activities ex vivo and improve regeneration of bone marrow cells in vivo. In present study, we evaluated specific Dioscorea phytoextracts for use ex vivo as a bone-marrow-derived dendritic cell- (DC-) based vaccine adjuvant for cancer immunotherapy. Fractionated Dioscorea extracts (DsII) were assayed for their effect on maturation and functions of DC ex vivo and antimelanoma activity of DC-based vaccine in vivo. The phytoextract from 50–75% ethanol-precipitated fraction of Dioscorea alata var. purpurea Tainung no. 5 tuber, designated as DsII-TN5, showed a strong augmentation of tumor cell lysate- (TCL-) loaded DC-mediated activation of T-cell proliferation. DsII-TN5 stimulated the expression of CD40, CD80, CD86, and IL-1β in TCL-loaded DCs and downregulated the expression of TGF-β1. DC vaccines prepared by a specific schema (TCL (2 h) + LPS (22 h)) showed the strongest antitumor activity. DsII-TN5 as a DC vaccine adjuvant showed strong antimelanoma activity and reduced myeloid-derived suppressor cell (MDSC) population in tested mice. DsII-TN5 can also activate DCs to enhance Th1- and Th17-related cytokine expressions. Biochemical analysis showed that DsII-TN5 consists mainly of polysaccharides containing a high level (53%) of mannose residues. We suggest that DsII-TN5 may have potential for future application as a potent, cost-effective adjuvant for DC-based cancer vaccines. PMID:23935688
Jayakumar, S; Mahendiran, D; Srinivasan, T; Mohanraj, G; Kalilur Rahiman, A
2016-02-01
The reaction of soft tripodal scorpionate ligand, sodium hydrotris(methimazolyl)borate with M(ClO4)2·6H2O [MMn(II), Ni(II), Cu(II) or Zn(II)] in methanol leads to the cleavage of B-N bond followed by the formation of complexes of the type [M(MeimzH)4](ClO4)2·H2O (1-4), where MeimzH=methimazole. All the complexes were fully characterized by spectro-analytical techniques. The molecular structure of the zinc(II) complex (4) was determined by X-ray crystallography, which supports the observed deboronation reaction in the scorpionate ligand with tetrahedral geometry around zinc(II) ion. The electronic spectra of complexes suggested tetrahedral geometry for manganese(II) and nickel(II) complexes, and square-planar geometry for copper(II) complex. Frontier molecular orbital analysis (HOMO-LUMO) was carried out by B3LYP/6-31G(d) to understand the charge transfer occurring in the molecules. All the complexes exhibit significant antimicrobial activity against Gram (-ve) and Gram (+ve) bacterial as well as fungal strains, which are quite comparable to standard drugs streptomycin and clotrimazole. The copper(II) complex (3) showed excellent free radical scavenging activity against DPPH in all concentration with IC50 value of 30μg/mL, when compared to the other complexes. In the molecular docking studies, all the complexes showed hydrophobic, π-π and hydrogen bonding interactions with BSA. The cytotoxic activity of the complexes against human hepatocellular liver carcinoma (HepG2) cells was assessed by MTT assay, which showed exponential responses toward increasing concentration of complexes. Copyright © 2015 Elsevier B.V. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-18
...; Followup Study for Infant Feeding Practices Study II AGENCY: Food and Drug Administration, HHS. ACTION... entitled ``Followup Study for Infant Feeding Practices Study II'' has been approved by the Office of... Agency submitted a proposed collection of information entitled ``Followup Study for Infant Feeding...
Fate of angiotensin I in the toad Bufo melanostictus
Ng, K. K. F.
1973-01-01
1. The effects of angiotensin I and II on the blood pressure of pithed toads and the disappearance of angiotensin I and II in the perfused organs of the toad were studied. 2. Angiotensin I was relatively inactive on the blood pressure of pithed toads; it exhibited less than 3% of the pressor activity of angiotensin II. 3. Angiotensin I was not converted to angiotensin II during passage through the lungs. There was also no evidence of net conversion during passage through the kidney and hind quarters. 4. During passage through the lungs, 33-50% of angiotensin I was removed and 25-50% was removed during passage through the hind quarters. No loss of activity was detected when angiotensin II passed through the kidneys. 5. Angiotensin II passed through the lungs and kidneys without loss but 25-50% disappeared during passage through the hind quarters. 6. The relatively low pressor activity of angiotensin I together with its lack of conversion to angiotensin II in isolated perfused organs suggest that the converting enzyme is absent in the toad, Bufo melanostictus. PMID:4357961
Application of calcium peroxide activated with Fe(II)-EDDS complex in trichloroethylene degradation.
Zhang, Xiang; Gu, Xiaogang; Lu, Shuguang; Miao, Zhouwei; Xu, Minhui; Fu, Xiaori; Qiu, Zhaofu; Sui, Qian
2016-10-01
This study was conducted to assess the application of calcium peroxide (CP) activated with Fe(II) chelated by (S,S)-ethylenediamine-N,N'-disuccinic acid (EDDS) to enhance trichloroethylene (TCE) degradation in aqueous solution. It was indicated that EDDS prevented soluble iron from precipitation, and the optimum molar ratio of Fe(II)/EDDS to accelerate TCE degradation was 1/1. The influences of initial TCE, CP and Fe(II)-EDDS concentration were also investigated. The combination of CP and Fe(II)-EDDS complex rendered the efficient degradation of TCE at near neutral pH range. Chemical probe and scavenger tests identified that TCE degradation mainly owed to the oxidation of HO while O2(-) promoted HO generation. Cl(-), HCO3(-) and humic acid were found to inhibit CP/Fe(II)-EDDS performance on different levels. In conclusion, the application of CP activated with Fe(II)-EDDS complex is a promising technology in chemical remediation of groundwater, while further research in practical implementation is needed. Copyright © 2016 Elsevier Ltd. All rights reserved.
Characteristics of polyaniline cobalt supported catalysts for epoxidation reactions.
Kowalski, Grzegorz; Pielichowski, Jan; Grzesik, Mirosław
2014-01-01
A study of polyaniline (PANI) doping with various cobalt compounds, that is, cobalt(II) chloride, cobalt(II) acetate, and cobalt(II) salen, is presented. The catalysts were prepared by depositing cobalt compounds onto the polymer surface. PANI powders containing cobalt ions were obtained by one- or two-step method suspending PANI in the following acetonitrile/acetic acid solution or acetonitrile and then acetic acid solution. Moreover different ratios of Co(II) : PANI were studied. Catalysts obtained with both methods and at all ratios were investigated using various techniques including AAS and XPS spectroscopy. The optimum conditions for preparation of PANI/Co catalysts were established. Catalytic activity of polyaniline cobalt(II) supported catalysts was tested in dec-1-ene epoxidation with molecular oxygen at room temperature. The relationship between the amount of cobalt species, measured with both AAS and XPS techniques, and the activity of PANI-Co catalysts has been established.
Characteristics of Polyaniline Cobalt Supported Catalysts for Epoxidation Reactions
Kowalski, Grzegorz; Pielichowski, Jan; Grzesik, Mirosław
2014-01-01
A study of polyaniline (PANI) doping with various cobalt compounds, that is, cobalt(II) chloride, cobalt(II) acetate, and cobalt(II) salen, is presented. The catalysts were prepared by depositing cobalt compounds onto the polymer surface. PANI powders containing cobalt ions were obtained by one- or two-step method suspending PANI in the following acetonitrile/acetic acid solution or acetonitrile and then acetic acid solution. Moreover different ratios of Co(II) : PANI were studied. Catalysts obtained with both methods and at all ratios were investigated using various techniques including AAS and XPS spectroscopy. The optimum conditions for preparation of PANI/Co catalysts were established. Catalytic activity of polyaniline cobalt(II) supported catalysts was tested in dec-1-ene epoxidation with molecular oxygen at room temperature. The relationship between the amount of cobalt species, measured with both AAS and XPS techniques, and the activity of PANI-Co catalysts has been established. PMID:24701183
Temperini, Claudia; Scozzafava, Andrea; Vullo, Daniela; Supuran, Claudiu T
2006-05-18
Activation of six human brain carbonic anhydrases (hCAs, EC 4.2.1.1), hCA I, II, IV, VA, VII, and XIV, with l-/d-phenylalanine was investigated kinetically and by X-ray crystallography. l-Phe was a potent activator of isozymes I, II, and XIV (K(A)s of 13-240 nM), a weaker activator of hCA VA and VII (K(A)s of 9.8-10.9 microM), and a quite inefficient hCA IV activator (K(A) of 52 microM). d-Phe showed good hCA II activatory properties (K(A) of 35 nM), being a moderate hCA VA, VII, and XIV (K(A)s of 4.6-9.7 microM) and a weak hCA I and IV activator (K(A)s of 63-86 microM). X-ray crystallography of the hCA II-l-Phe/d-Phe adducts showed the activators to be anchored at the entrance of the active site, participating in numerous bonds and hydrophobic interactions with amino acid residues His64, Thr200, Trp5, and Pro201. This is the first study showing different binding modes of stereoisomeric activators within the hCA II active site, with consequences for overall proton transfer processes (rate-determining for the catalytic cycle). It also points out differences of activation efficiency between various isozymes with structurally related activators, exploitable for designing alternative proton transfer pathways. CA activators may lead to the design of pharmacologically useful derivatives for the enhancement of synaptic efficacy, which may represent a conceptually new approach for the treatment of Alzheimer's disease, aging, and other conditions in which spatial learning and memory therapy must be enhanced. As the blood and brain concentrations of l-Phe are quite variable (30-73 microM), activity of some brain CAs may strongly be influenced by the level of activator(s) present in such tissues.
Chityala, Vijay Kumar; Sathish Kumar, K.; Macha, Ramesh; Tigulla, Parthasarathy; Shivaraj
2014-01-01
Novel mixed ligand bivalent copper complexes [Cu. L. A. ClO 4] and [Cu. L. A] where “L” is Schiff bases, namely 2-((3,4-dimethylisoxazol-5-ylimino)methyl)-4-bromophenol (DMIIMBP)/2-((3,4-dimethylisoxazol-5-ylimino)methyl)-4-chlorophenol (DMIIMCP), and “A” is heterocyclic compound, such as 1,10-phenanthroline (phen)/2,21-bipyridyl (bipy)/8-hydroxyquinoline (oxine)/5-chloro-8-hydroxyquinoline (5-Cl-oxine), have been synthesized. These complexes have been characterized by IR, UV-Vis, ESR, elemental analysis, magnetic moments, TG, and DTA. On the basis of spectral studies and analytical data, five-coordinated square pyramidal/four-coordinated square planar geometry is assigned to all complexes. The ligands and their ternary complexes with Cu(II) have been screened for antimicrobial activity against bacteria and fungi by paper disc method. The antimicrobial studies of Schiff bases and their metal complexes showed significant activity and further it is observed that the metal complexes showed more activity than corresponding Schiff bases. In vitro antitumor activity of Cu(II) complexes was assayed against human cervical carcinoma (HeLa) cancer cells and it was observed that few complexes exhibit good antitumor activity on HeLa cell lines. The DNA cleavage studies have also been carried out on pBR 322 and it is observed that these Cu(II) complexes are capable of cleaving supercoiled plasmid DNA in the presence of H2O2 and UV light. PMID:24895493
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Chaoyun; He, Yanhao; Department of Pharmacology, Xi'an Jiaotong University School of Medicine, Key Laboratory of Environment and Genes Related to Disease, Ministry of Education, Xi'an, Shaanxi 710061
Intracellular reactive oxygen species (ROS) are derived from nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. Angiotensin II (Ang II) can cause endothelial dysfunction by promoting intracellular ROS generation. Safflor yellow B (SYB) effectively inhibits ROS generation by upregulating Bcl-2 expression. In this study, we examined the effects of SYB on Ang II-induced injury to human umbilical vein endothelial cells (HUVECs), and elucidated the roles of NADPH oxidase and Bcl-2. We treated cultured HUVECs with Ang II, SYB, and Bcl-2 siRNA, and determined NADPH oxidase activity and ROS levels. Furthermore, cellular and mitochondrial physiological states were evaluated, and the expression levels ofmore » target proteins were analyzed. Ang II significantly enhanced intracellular ROS levels, caused mitochondrial membrane dysfunction, and decreased cell viability, leading to apoptosis. This was associated with increased expression of AT1R and p22{sup phox}, increased NADPH oxidase activity, and an increased ratio of Bax/Bcl-2, leading to decreases in antioxidant enzyme activities, which were further strengthened after blocking Bcl-2. Compared to Ang II treatment alone, co-treatment with SYB significantly reversed HUVEC injury. Taken together, these results demonstrate that SYB could significantly protect endothelial cells from Ang II-induced cell damage, and that it does so by upregulating Bcl-2 expression and inhibiting ROS generation. - Highlights: • Angiotensin II depresses mitochondria physiological function. • Angiotensin II activates NADPH oxidase via up-regulating expresion of p22{sup phox}. • Bcl-2 plays a pivotal role in improving mitochondria function and regulates ROS level. • Inhibitor of Bcl-2 promotes angiotensin II mediated HUVEC injury. • SYB attenuates angiotensin II mediated HUVEC injury via up regulating Bcl-2 expression.« less
Tobin, W O; Kinsella, J A; Kavanagh, G F; O'Donnell, J S; McGrath, R T; Tierney, S; Egan, B; Feeley, T M; Coughlan, T; Collins, D R; O'Neill, D; Murphy, Sjx; Lim, S J; Murphy, R P; McCabe, Djh
2017-04-15
Von Willebrand factor propeptide (VWF:Ag II) is proposed to be a more sensitive marker of acute endothelial activation than von Willebrand factor antigen (VWF:Ag). Simultaneous data on VWF:Ag and VWF:Ag II profiles are very limited following TIA and ischaemic stroke. In this prospective, observational, case-control study, plasma VWF:Ag and VWF:Ag II levels were quantified in 164 patients≤4weeks of TIA or ischaemic stroke (baseline), and then ≥14days (14d) and ≥90days (90d) later, and compared with those from 27 healthy controls. TIA and stroke subtyping was performed according to the TOAST classification. The relationship between VWF:Ag and VWF:Ag II levels and platelet activation status was assessed. 'Unadjusted' VWF:Ag and VWF:Ag II levels were higher in patients at baseline, 14d and 90d than in controls (p≤0.03). VWF:Ag levels remained higher in patients than controls at baseline (p≤0.03), but not at 14d or 90d after controlling for differences in age or hypertension, and were higher in patients at baseline and 90d after controlling for smoking status (p≤0.04). 'Adjusted' VWF:Ag II levels were not higher in patients than controls after controlling for age, hypertension or smoking (p≥0.1). Patients with symptomatic carotid stenosis (N=46) had higher VWF:Ag and VWF:Ag II levels than controls at all time-points (p≤0.002). There was no significant correlation between platelet activation status and VWF:Ag or VWF:Ag II levels. VWF:Ag and VWF:Ag II levels are increased in an overall TIA and ischaemic stroke population, especially in patients with recently symptomatic carotid stenosis. VWF:Ag II was not superior to VWF:Ag at detecting acute endothelial activation in this cohort and might reflect timing of blood sampling in our study. Copyright © 2017 Elsevier B.V. All rights reserved.
Yang, H; Raizada, M K
1999-04-01
Chronic stimulation of norepinephrine (NE) neuromodulation by angiotensin II (Ang II) involves activation of the Ras-Raf-MAP kinase signal transduction pathway in Wistar Kyoto (WKY) rat brain neurons. This pathway is only partially responsible for this heightened action of Ang II in the spontaneously hypertensive rat (SHR) brain neurons. In this study, we demonstrate that the MAP kinase-independent signaling pathway in the SHR neuron involves activation of PI3-kinase and protein kinase B (PKB/Akt). Ang II stimulated PI3-kinase activity in both WKY and SHR brain neurons and was accompanied by its translocation from the cytoplasmic to the nuclear compartment. Although the magnitude of stimulation by Ang II was comparable, the stimulation was more persistent in the SHR neuron compared with the WKY rat neuron. Inhibition of PI3-kinase had no significant effect in the WKY rat neuron. However, it caused a 40-50% attenuation of the Ang II-induced increase in norepinephrine transporter (NET) and tyrosine hydroxylase (TH) mRNAs and [3H]-NE uptake in the SHR neuron. In contrast, inhibition of MAP kinase completely attenuated Ang II stimulation of NET and TH mRNA levels in the WKY rat neuron, whereas it caused only a 45% decrease in the SHR neuron. However, an additive attenuation was observed when both kinases of the SHR neurons were inhibited. Ang II also stimulated PKB/Akt activity in both WKY and SHR neurons. This stimulation was 30% higher and lasted longer in the SHR neuron compared with the WKY rat neuron. In conclusion, these observations demonstrate an exclusive involvement of PI3-kinase-PKB-dependent signaling pathway in a heightened NE neuromodulatory action of Ang II in the SHR neuron. Thus, this study offers an excellent potential for the development of new therapies for the treatment of centrally mediated hypertension.
Blood Program in World War II. Medical Department, United States Army
1964-01-01
Branch Lieutenant Colonel JEROME RUDBERG, MSC, USA, Chief, Information Activities Branch RODERICK M. ENGERT, Chief, General Reference and Research... Activities of Medical Consultants Vol. II. Infectious Diseases Preventive Medicine in World War II: Vol. II. Environmental Hygiene Vol. III. Personal...Other Than Malaria Vr VIII Surgery in World War II: Activities of Surgical Consultants, vol. I Activities of Surgical Consultants, vol. II General
Takahashi, Takehiro; Yamamoto, Masashi; Amikura, Kazutoshi; Kato, Kozue; Serizawa, Takashi; Serizawa, Kanako; Akazawa, Daisuke; Aoki, Takumi; Kawai, Koji; Ogasawara, Emi; Hayashi, Jun-Ichi; Nakada, Kazuto; Kainoh, Mie
2015-02-01
The mitochondrial outer membrane protein mitoNEET is a binding protein of the insulin sensitizer pioglitazone (5-[[4-[2-(5-ethylpyridin-2-yl)ethoxy]phenyl]methyl]-1,3-thiazolidine-2,4-dione) and is considered a novel target for the treatment of type II diabetes. Several small-molecule compounds have been identified as mitoNEET ligands using structure-based design or virtual docking studies. However, there are no reports about their therapeutic potential in animal models. Recently, we synthesized a novel small molecule, TT01001 [ethyl-4-(3-(3,5-dichlorophenyl)thioureido)piperidine-1-carboxylate], designed on the basis of pioglitazone structure. In this study, we assessed the pharmacological properties of TT01001 in both in vitro and in vivo studies. We found that TT01001 bound to mitoNEET without peroxisome proliferator-activated receptor-γ activation effect. In type II diabetes model db/db mice, TT01001 improved hyperglycemia, hyperlipidemia, and glucose intolerance, and its efficacy was equivalent to that of pioglitazone, without the pioglitazone-associated weight gain. Mitochondrial complex II + III activity of the skeletal muscle was significantly increased in db/db mice. We found that TT01001 significantly suppressed the elevated activity of the complex II + III. These results suggest that TT01001 improved type II diabetes without causing weight gain and ameliorated mitochondrial function of db/db mice. This is the first study that demonstrates the effects of a mitoNEET ligand on glucose metabolism and mitochondrial function in an animal disease model. These findings support targeting mitoNEET as a potential therapeutic approach for the treatment of type II diabetes. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.
Findeisen, Hannes M; Gizard, Florence; Zhao, Yue; Cohn, Dianne; Heywood, Elizabeth B; Jones, Karrie L; Lovett, David H; Howatt, Deborah A; Daugherty, Alan; Bruemmer, Dennis
2011-02-01
Abdominal aortic aneurysms (AAA) are an age-related vascular disease and an important cause of morbidity and mortality. In this study, we sought to determine whether the catalytic component of telomerase, telomerase reverse transcriptase (TERT), modulates angiotensin (Ang) II-induced AAA formation. Low-density lipoprotein receptor-deficient (LDLr-/-) mice were lethally irradiated and reconstituted with bone marrow-derived cells from TERT-deficient (TERT-/-) mice or littermate wild-type mice. Mice were placed on a diet enriched in cholesterol, and AAA formation was quantified after 4 weeks of Ang II infusion. Repopulation of LDLr-/- mice with TERT-/- bone marrow-derived cells attenuated Ang II-induced AAA formation. TERT-deficient recipient mice revealed modest telomere attrition in circulating leukocytes at the study end point without any overt effect of the donor genotype on white blood cell counts. In mice repopulated with TERT-/- bone marrow, aortic matrix metalloproteinase-2 (MMP-2) activity was reduced, and TERT-/- macrophages exhibited decreased expression and activity of MMP-2 in response to stimulation with Ang II. Finally, we demonstrated in transient transfection studies that TERT overexpression activates the MMP-2 promoter in macrophages. TERT deficiency in bone marrow-derived macrophages attenuates Ang II-induced AAA formation in LDLr-/- mice and decreases MMP-2 expression. These results point to a previously unrecognized role of TERT in the pathogenesis of AAA.
Zhang, Yue Hui; Hao, Qing Qing; Wang, Xiao Yu; Chen, Xu; Wang, Nan; Zhu, Li; Li, Shu Ying; Yu, Qing Tao; Dong, Bo
2015-06-01
Angiotensin-converting enzyme 2 (ACE2) is a new member of the renin-angiotensin system (RAS) and it has been proposed that ACE2 is a potential therapeutic target for the control of cardiovascular disease. The effect of losartan on the ACE2 activity in atherosclerosis was studied. Atherosclerosis was induced in New Zealand white rabbits by high-cholesterol diet for 3 months. An Angiotensin II (Ang II) receptor blocker (losartan, 25 mg/kg/d) was given for 3 months. ACE2 activity was measured by fluorescence assay and the extent of atherosclerosis was evaluated by H&E and Oil Red O staining. In addition, the effect of losartan on ACE2 activity in smooth muscle cells (SMCs) in vitro was also evaluated. Losartan increased ACE2 activity in atherosclerosis in vivo and SMCs in vitro. Losartan inhibited atherosclerotic evolution. Addition of losartan blocked Ang II-induced down-regulation of ACE2 activity, and blockade of extracellular signal-regulated kinase (ERK1/2) with PD98059 prevented Ang II-induced down-regulation of ACE2 activity. The results showed that ACE2 activity was regulated in atherosclerotic plaque by losartan, which may play an important role in treatment of atherosclerosis. The mechanism involves Ang II-AT1R-mediated mitogen-activated protein kinases, MAPKs (MAPKs) signaling pathway. © The Author(s) 2014.
Ensafi, Ali A; Shiraz, A Zendegi
2008-02-11
Activated carbon loaded with xylenol orange in a mini-column was used for the highly selective separation and preconcentration of Pb(II) ions. An on-line system for enrichment and the determination of Pb(II) was carried out on flame atomic absorption spectrometry. The conditions of preconcentration and quantitative recovery of Pb(II) from diluted solution, such as pH of aqueous phase, amount of the sorbent, volume of the solutions and flow variables were studied as well as effect of potential interfering ions. Under the optimum conditions, Pb(II) in an aqueous sample was concentrated about 200-fold and the detection limit was 0.4 ng mL(-1) Pb(II). The adsorption capacity of the solid phase was 0.20mg of lead per one gram of the modified activated carbon. The modified activated carbon is stable for several treatments of sample solutions without the need for using any chemical reagent. The recovery of lead(II) from river water, waste water, tap water, and in the following reference materials: SRM 2711 Montana soil and GBW-07605 tea were obtained in the range of 97-104% by the proposed method.
Soto, Carmen; Bergado, Gretchen; Blanco, Rancés; Griñán, Tania; Rodríguez, Hermis; Ros, Uris; Pazos, Fabiola; Lanio, María Eliana; Hernández, Ana María; Álvarez, Carlos
2018-05-01
Sticholysin II (StII) is a pore-forming toxin of biomedical interest that belongs to the actinoporin protein family. Sticholysins are currently under examination as an active immunomodulating component of a vaccinal platform against tumoral cells and as a key element of a nucleic acids delivery system to cell cytosol. These proteins form pores in the plasma membrane leading to ion imbalance and cell lysis. However, the intracellular mechanisms triggered by actinoporins upon binding to membranes and its consequences for cell death are barely understood. Here, we have examined the cytotoxicity and intracellular responses induced by StII upon binding to human B-cell lymphoma Raji in vitro. StII cytotoxicity involves a functional actin cytoskeleton, induces cellular swelling, lysis and the concomitant release of cytosol content. In addition, StII induces calcium release mainly from the Endoplasmic Reticulum, activates Mitogen-Activated Protein Kinase ERK and impairs mitochondrial membrane potential. Furthermore, StII stimulates the expression of receptor interacting protein kinase 1 (RIP1), normally related to different forms of regulated cell death such as apoptosis and necroptosis. In correspondence, necrostatin-1, an inhibitor of this kinase, reduces StII cytotoxicity. However, the mechanism of cell death activated by StII does not involve caspases activation, typical molecular features of apoptosis and pyroptosis. Our results suggest that, beyond pore-formation and cell lysis, StII-induced cytotoxicity could involve other regulated intracellular mechanisms connected to RIP1-MEK1/2 -ERK1/2- pathways. This opens new perspectives and challenges the general point of view that these toxins induce a completely unregulated mechanism of necrotic cell death. This study contributes to a better understanding of the molecular mechanisms involved in toxin-cell interaction and the implications for cell functioning, with connotation for the exploitations of these toxins in clinical settings. Copyright © 2018 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.
Xu, Xiu-Ping; He, Hong-Li; Hu, Shu-Ling; Han, Ji-Bin; Huang, Li-Li; Xu, Jing-Yuan; Xie, Jian-Feng; Liu, Ai-Ran; Yang, Yi; Qiu, Hai-Bo
2017-07-12
Mesenchymal stem cells (MSCs) migrate via the bloodstream to sites of injury and are possibly attracted by inflammatory factors. As a proinflammatory mediator, angiotensin II (Ang II) reportedly enhances the migration of various cell types by signaling via the Ang II receptor in vitro. However, few studies have focused on the effects of Ang II on MSC migration and the underlying mechanisms. Human bone marrow MSCs migration was measured using wound healing and Boyden chamber migration assays after treatments with different concentrations of Ang II, an AT1R antagonist (Losartan), and/or an AT2R antagonist (PD-123319). To exclude the effect of proliferation on MSC migration, we measured MSC proliferation after stimulation with the same concentration of Ang II. Additionally, we employed the focal adhesion kinase (FAK) inhibitor PF-573228, RhoA inhibitor C3 transferase, Rac1 inhibitor NSC23766, or Cdc42 inhibitor ML141 to investigate the role of cell adhesion proteins and the Rho-GTPase protein family (RhoA, Rac1, and Cdc42) in Ang II-mediated MSC migration. Cell adhesion proteins (FAK, Talin, and Vinculin) were detected by western blot analysis. The Rho-GTPase family protein activities were assessed by G-LISA and F-actin levels, which reflect actin cytoskeletal organization, were detected by using immunofluorescence. Human bone marrow MSCs constitutively expressed AT1R and AT2R. Additionally, Ang II increased MSC migration in an AT2R-dependent manner. Notably, Ang II-enhanced migration was not mediated by Ang II-mediated cell proliferation. Interestingly, Ang II-enhanced migration was mediated by FAK activation, which was critical for the formation of focal contacts, as evidenced by increased Talin and Vinculin expression. Moreover, RhoA and Cdc42 were activated by FAK to increase cytoskeletal organization, thus promoting cell contraction. Furthermore, FAK, Talin, and Vinculin activation and F-actin reorganization in response to Ang II were prevented by PD-123319 but not Losartan, indicating that FAK activation and F-actin reorganization were downstream of AT2R. These data indicate that Ang II-AT2R regulates human bone marrow MSC migration by signaling through the FAK and RhoA/Cdc42 pathways. This study provides insights into the mechanisms by which MSCs home to injury sites and will enable the rational design of targeted therapies to improve MSC engraftment.
Synthesis, spectral studies and biological evaluation of 2-aminonicotinic acid metal complexes.
Nawaz, Muhammad; Abbasi, Muhammad Waseem; Hisaindee, Soleiman; Zaki, Muhammad Javed; Abbas, Hira Fatima; Mengting, Hu; Ahmed, M Arif
2016-05-15
We synthesized 2-aminonicotinic acid (2-ANA) complexes with metals such as Co(II), Fe(III), Ni(II), Mn(II), Zn(II), Ag(I),Cr(III), Cd(II) and Cu(II) in aqueous media. The complexes were characterized and elucidated using FT-IR, UV-Vis, a fluorescence spectrophotometer and thermo gravimetric analysis (TGA). TGA data showed that the stoichiometry of complexes was 1:2 metal/ligand except for Ag(I) and Mn(II) where the ratio was 1:1. The metal complexes showed varied antibacterial, fungicidal and nematicidal activities. The silver and zinc complexes showed highest activity against Bacillus subtilis and Bacillus licheniformis respectively. Fusarium oxysporum was highly susceptible to nickel and copper complexes whereas Macrophomina phaseolina was completely inert to the complexes. The silver and cadmium complexes were effective against the root-knot nematode Meloidogyne javanica. Copyright © 2016 Elsevier B.V. All rights reserved.
Xie, Yong; Chi, Hui-Wei; Guan, Ai-Ying; Liu, Chang-Ling; Ma, Hong-Juan; Cui, Dong-Liang
2014-12-31
A series of novel substituted 3-(pyridin-2-yl)benzenesulfonamide derivatives were designed and synthesized using 2-phenylpridines as the lead compound by intermediate derivatization methods in an attempt to obtain novel compound candidates for weed control. The herbicidal activity assay in glasshouse tests showed several compounds (II6, II7, II8, II9, II10, II11, III2, III3, III4, and III5) could efficiently control velvet leaf, youth-and-old age, barnyard grass, and foxtail at the 37.5 g/ha active substance. Especially, the activities of II6, II7, III2, and III4 were proved roughly equivalent to the saflufenacil and better than 95% sulcotrione at the same concentration. The result of the herbicidal activity assay in field tests demonstrated that II7 at 60 g/ha active substance could give the same effect as bentazon at 1440 g/ha active substance to control dayflower and nightshade, meanwhile II7 showed better activity than oxyfluorfen to control arrowhead and security to rice. The present work indicates that II7 may be a novel compound candidate for potential herbicide.
NASA Astrophysics Data System (ADS)
Numan, Ahmed T.; Atiyah, Eman M.; Al-Shemary, Rehab K.; Ulrazzaq, Sahira S. Abd
2018-05-01
New Schiff base ligand 2-((4-amino-5-(3, 4, 5-trimethoxybenzyl) pyrimidin-2-ylimino) (phenyl)methyl)benzoic acid] = [HL] was synthesized using microwave irradiation trimethoprim and 2-benzoyl benzoic acid. Mixed ligand complexes of Mn((II), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) are reacted in ethanol with Schiff base ligand [HL] and 8-hydroxyquinoline [HQ] then reacted with metal salts in ethanol as a solvent in (1:1:1) ratio. The ligand [HL] is characterized by FTIR, UV-Vis, melting point, elemental microanalysis (C.H.N), 1H-NMR, 13C-NMR, and mass spectra. The mixed ligand complexes are characterized by infrared spectra, electronic spectra, (C.H.N), melting point, atomic absorption, molar conductance and magnetic moment measurements. These measurements indicate that the ligand [HL] coordinates with metal (II) ion in a tridentate manner through the oxygen and nitrogen atoms of the ligand, octahedral structures are suggested for these complexes. Antibacterial activity of the ligands [HL], [HQ] and their complexes are studied against (gram positive) and (gram negative) bacteria.
Li, Mei-Hui
2016-08-01
The development of a high-throughput tool is required for screening of environmental pollutants and assessing their impacts on aquatic animals. Freshwater planarians can be used in rapid and sensitive toxicity bioassays. Planarians are known for their remarkable regeneration ability but much less known for their metabolic and xenobiotic biotransformation abilities. In this study, the activities of different phase I and II enzymes were determined in vivo by directly measuring fluorescent enzyme substrate disappearance or fluorescent enzyme metabolite production in planarian culture media. For phase I enzyme activity, O-deethylation activities with alkoxyresorufin could not be detected in planarian culture media. By contrast, O-deethylation activities with alkoxycoumarin were detected in planarian culture media. Increases in 7-ethoxycoumarin O-deethylase (ECOD) activities was only observed in planarians exposed to 1μM, but not 10μM, β-naphthoflavone for 24h. ECOD activity was inhibited in planarians exposed to 10 and 100μM rifampicin or carbamazepine for 24h. For phase II enzyme activity, DT-diaphorase, arylsulfatases, uridine 5'-diphospho (UDP)-glucuronosyltransferase or catechol-O-methyltransferase activity was determined in culture media containing planarians. The results of this study indicate that freshwater planarians are a promising model organism to monitor exposure to environmental pollutants or assess their impacts through the in vivo measurement of phase I and II enzyme activities. Copyright © 2016. Published by Elsevier Inc.
Christensen, Gitte L.; Kelstrup, Christian D.; Lyngsø, Christina; Sarwar, Uzma; Bøgebo, Rikke; Sheikh, Søren P.; Gammeltoft, Steen; Olsen, Jesper V.; Hansen, Jakob L.
2010-01-01
Seven-transmembrane receptors (7TMRs) signal through the well described heterotrimeric G proteins but can also activate G protein-independent signaling pathways of which the impact and complexity are less understood. The angiotensin II type 1 receptor (AT1R) is a prototypical 7TMR and an important drug target in cardiovascular diseases. “Biased agonists” with intrinsic “functional selectivity” that simultaneously blocks Gαq protein activity and activates G protein-independent pathways of the AT1R confer important perspectives in treatment of cardiovascular diseases. In this study, we performed a global quantitative phosphoproteomics analysis of the AT1R signaling network. We analyzed ligand-stimulated SILAC (stable isotope labeling by amino acids in cell culture) cells by high resolution (LTQ-Orbitrap) MS and compared the phosphoproteomes of the AT1R agonist angiotensin II and the biased agonist [Sar1,Ile4,Ile8]angiotensin II (SII angiotensin II), which only activates the Gαq protein-independent signaling. We quantified more than 10,000 phosphorylation sites of which 1183 were regulated by angiotensin II or its analogue SII angiotensin II. 36% of the AT1R-regulated phosphorylations were regulated by SII angiotensin II. Analysis of phosphorylation site patterns showed a striking distinction between protein kinases activated by Gαq protein-dependent and -independent mechanisms, and we now place protein kinase D as a key protein involved in both Gαq-dependent and -independent AT1R signaling. This study provides substantial novel insight into angiotensin II signal transduction and is the first study dissecting the differences between a full agonist and a biased agonist from a 7TMR on a systems-wide scale. Importantly, it reveals a previously unappreciated diversity and quantity of Gαq protein-independent signaling and uncovers novel signaling pathways. We foresee that the amount and diversity of G protein-independent signaling may be more pronounced than previously recognized for other 7TMRs as well. Quantitative mass spectrometry is a promising tool for evaluation of the signaling properties of biased agonists to other receptors in the future. PMID:20363803
Effect of oxidative stress on Rho kinase II and smooth muscle contraction in rat stomach.
Al-Shboul, Othman; Mustafa, Ayman
2015-06-01
Recent studies have shown that both Rho kinase signaling and oxidative stress are involved in the pathogenesis of a number of human diseases, such as diabetes mellitus, hypertension, and atherosclerosis. However, very little is known about the effect of oxidative stress on the gastrointestinal (GI) smooth muscle Rho kinase pathway. The aim of the current study was to investigate the effect of oxidative stress on Rho kinase II and muscle contraction in rat stomach. The peroxynitrite donor 3-morpholinosydnonimine (SIN-1), hydrogen peroxide (H2O2), and peroxynitrite were used to induce oxidative stress. Rho kinase II expression and ACh-induced activity were measured in control and oxidant-treated cells via specifically designed enzyme-linked immunosorbent assay (ELISA) and activity assay kits, respectively. Single smooth muscle cell contraction was measured via scanning micrometry in the presence or absence of the Rho kinase blocker, Y-27632 dihydrochloride. All oxidant agents significantly increased ACh-induced Rho kinase II activity without affecting its expression level. Most important, oxidative stress induced by all three agents augmented ACh-stimulated muscle cell contraction, which was significantly inhibited by Y-27632. In conclusion, oxidative stress activates Rho kinase II and enhances contraction in rat gastric muscle, suggesting an important role in GI motility disorders associated with oxidative stress.
Arnold, Amy C.; Okamoto, Luis E.; Gamboa, Alfredo; Shibao, Cyndya; Raj, Satish R.; Robertson, David; Biaggioni, Italo
2013-01-01
At least half of primary autonomic failure patients exhibit supine hypertension, despite profound impairments in sympathetic activity. While the mechanisms underlying this hypertension are unknown, plasma renin activity is often undetectable suggesting renin-angiotensin pathways are not involved. However, because aldosterone levels are preserved, we tested the hypothesis that angiotensin II is intact and contributes to the hypertension of autonomic failure. Indeed, circulating angiotensin II was paradoxically increased in hypertensive autonomic failure patients (52±5 pg/ml, n=11) compared to matched healthy controls (27±4 pg/ml, n=10; p=0.002), despite similarly low renin activity (0.19±0.06 versus 0.34±0.13 ng/ml/hr, respectively; p=0.449). To determine the contribution of angiotensin II to supine hypertension in these patients, we administered the AT1 receptor blocker losartan (50 mg) at bedtime in a randomized, double-blind, placebo-controlled study (n=11). Losartan maximally reduced systolic blood pressure by 32±11 mmHg at 6 hours after administration (p<0.05), decreased nocturnal urinary sodium excretion (p=0.0461), and did not worsen morning orthostatic tolerance. In contrast, there was no effect of the captopril on supine blood pressure in a subset of these patients. These findings suggest that angiotensin II formation in autonomic failure is independent of plasma renin activity, and perhaps angiotensin converting enzyme. Furthermore, these studies suggest that elevations in angiotensin II contribute to the hypertension of autonomic failure, and provide rationale for the use of AT1 receptor blockers for treatment of these patients. PMID:23266540
Wang, Tao; Han, Su-Xia; Zhang, Shang-Fu; Ning, Yun-Ye; Chen, Lei; Chen, Ya-Juan; He, Guang-Ming; Xu, Dan; An, Jin; Yang, Ting; Zhang, Xiao-Hong; Wen, Fu-Qiang
2010-03-31
Cigarette smoking is an important risk factor for pulmonary arterial hypertension (PAH) in chronic obstructive pulmonary disease (COPD). Chymase has been shown to function in the enzymatic production of angiotensin II (AngII) and the activation of transforming growth factor (TGF)-beta1 in the cardiovascular system. The aim of this study was to determine the potential role of chymase in cigarette smoke-induced pulmonary artery remodeling and PAH. Hamsters were exposed to cigarette smoke; after 4 months, lung morphology and tissue biochemical changes were examined using immunohistochemistry, Western blotting, radioimmunoassay and reverse-transcription polymerase chain reaction. Our results show that chronic cigarette smoke exposure significantly induced elevation of right ventricular systolic pressures (RVSP) and medial hypertrophy of pulmonary arterioles in hamsters, concurrent with an increase of chymase activity and synthesis in the lung. Elevated Ang II levels and enhanced TGF-beta1/Smad signaling activation were also observed in smoke-exposed lungs. Chymase inhibition with chymostatin reduced the cigarette smoke-induced increase in chymase activity and Ang II concentration in the lung, and attenuated the RVSP elevation and the remodeling of pulmonary arterioles. Chymostatin did not affect angiotensin converting enzyme (ACE) activity in hamster lungs. These results suggest that chronic cigarette smoke exposure can increase chymase activity and expression in hamster lungs. The capability of activated chymase to induce Ang II formation and TGF-beta1 signaling may be part of the mechanism for smoking-induced pulmonary vascular remodeling. Thus, our study implies that blockade of chymase might provide benefits to PAH smokers.
Hanif, Muhammad; Chohan, Zahid H
2013-03-01
A new series of three biologically active triazole derived Schiff base ligands L(1)-L(3) have been synthesized in equimolar reaction of 3-amino-1H-1,2,4-triazole with pyrrol-2-carboxaldehyde, 4-bromo-thiophene-2-carboxaldehyde, and 5-iodo-2-hydroxy benzaldehyde. The prepared Schiff bases were used for further complex formation reaction with different metal elements like Co(II), Ni(II), Cu(II) and Zn(II) as chlorides by using a molar ratio of ligand:metal as 2:1. The structure and bonding nature of all the compounds were identified by their physical, spectral and analytical data. All the metal(II) complexes possessed an octahedral geometry except the Cu(II) complexes which showed a distorted octahedral geometry. All the synthesized compounds, were studied for their in vitro antibacterial, and antifungal activities, against four Gram-negative (Escherichia coli, Shigella sonnei, Pseudomonas aeruginosa and Salmonella typhi) and two Gram-positive (Bacillus subtilis and Staphylococcus aureus) bacterial strains and against six fungal strains (Trichophyton longifusus, Candida albicans, Aspergillus flavus, Microsporum canis, Fusarium solani and Candida glabrata) by using agar-well diffusion method. It has been shown that all the synthesized compounds showed moderate to significant antibacterial activity against one or more bacterial strains. In vitro Brine Shrimp bioassay was also carried out to investigate the cytotoxic properties of these compounds. The data also revealed that the metal complexes showed better activity than the ligands due to chelation/coordination. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
O. Ozdemir, Ummuhan; İlbiz, Firdevs; Balaban Gunduzalp, Ayla; Ozbek, Neslihan; Karagoz Genç, Zuhal; Hamurcu, Fatma; Tekin, Suat
2015-11-01
Methane sulfonic acide hydrazide, CH3SO2NHNH2 (1), ethane sulfonic acide hydrazide, CH3CH2SO2NHNH2 (2), propane sulfonic acide hydrazide, CH3CH2CH2SO2NHNH2 (3) and butane sulfonic acide hydrazide, CH3CH2CH2CH2SO2NHNH2 (4) have been synthesized as homologous series and characterized by using elemental analysis, spectrophotometric methods (1H-13C NMR, FT-IR, LC-MS). In order to gain insight into the structure of the compounds, we have performed computational studies by using 6-311G(d, p) functional in which B3LYP functional were implemented. The geometry of the sulfonic acide hydrazides were optimized at the DFT method with Gaussian 09 program package. A conformational analysis of compounds were performed by using NMR theoretical calculations with DFT/B3LYP/6-311++G(2d, 2p) level of theory by applying the (GIAO) approach. The anticancer activities of these compounds on MCF-7 human breast cancer cell line investigated by comparing IC50 values. The antibacterial activities of synthesized compounds were studied against Gram positive bacteria; Staphylococcus aureus ATCC 6538, Bacillus subtilis ATCC 6633, Bacillus cereus NRRL-B-3711, Enterococcus faecalis ATCC 29212 and Gram negative bacteria; Escherichia coli ATCC 11230, Pseudomonas aeruginosa ATCC 15442, Klebsiella pneumonia ATCC 70063 by using the disc diffusion method. The inhibition activities of these compounds on carbonic anhydrase II enzyme (hCA II) have been investigated by comparing IC50 and Ki values. The biological activity screening shows that butane sulfonic acide hydrazide (4) has more activity than the others against tested breast cancer cell lines MCF-7, Gram negative/Gram positive bacteria and carbonic anhydrase II (hCA II) isoenzyme.
Snyder, Rae Ana; Bell, Caleb B.; Diao, Yinghui; Krebs, Carsten; Bollinger, J. Martin; Solomon, Edward I.
2013-01-01
Myo-inositol oxygenase (MIOX) catalyzes the 4e− oxidation of myo-inositol (MI) to D-glucuronate using a substrate activated Fe(II)Fe(III) site. The biferrous and Fe(II)Fe(III) forms of MIOX were studied with circular dichroism (CD), magnetic circular dichroism (MCD), and variable temperature variable field (VTVH) MCD spectroscopies. The MCD spectrum of biferrous MIOX shows two ligand field (LF) transitions near 10,000 cm−1, split by ~2,000 cm−1, characteristic of 6 coordinate (6C) Fe(II) sites, indicating that the modest reactivity of the biferrous form toward O2 can be attributed to the saturated coordination of both irons. Upon oxidation to the Fe(II)Fe(III) state, MIOX shows two LF transitions in the ~10,000 cm−1 region, again implying a coordinatively saturated Fe(II) site. Upon MI binding, these split in energy to 5,200 cm−1 and 11,200 cm−1, showing that MI binding causes the Fe(II) to become coordinately unsaturated. VTVH MCD magnetization curves of unbound and MI-bound Fe(II)Fe(III) forms show that upon substrate binding, the isotherms become more nested, requiring that the exchange coupling and ferrous zero field splitting (ZFS) both decrease in magnitude. These results imply that MI binds to the ferric site, weakening the Fe(III)-μ-OH bond and strengthening the Fe(II)-μ-OH bond. This perturbation results in the release of a coordinated water from the Fe(II) that enables its O2 activation. PMID:24066857
Tektas, Osman; Akkemik, Ebru; Baykara, Haci
2016-06-01
Inhibitors of carbonic anhydrase (hCA; EC 4.2.1.1) are used as medicines for many diseases. Therefore, they are very important. In this study, a known series of Schiff bases were synthesized and their effects on the activities of hCA-I and hCA-II, which are cytosolic isoenzymes of carbonic anhydrase, were investigated under in vitro conditions. The synthesized compounds (H1, H2, H3, and H4) were found to cause inhibition on enzyme activities of hCA-1 and hCA-II. IC50 values of H1, H2, H3, and H4 compounds were 140, 88, 201, and 271 μM for hCA-I enzyme activity and 134, 251, 79, and 604 μM for hCA-II enzyme activity, respectively. The synthesized Schiff bases were characterized by several methods, including (1) H NMR, FT-IR, elemental analysis, and polarimetric measurements. Correlation coefficient square values (R(2) ) of comparison of the theoretical and experimental (1) H NMR shifts for H1, H2, H3, and H4 compounds were found as 0.9781, 0.9814, 0.9758, and 0.8635, respectively. © 2016 Wiley Periodicals, Inc.
Effect of endogenous angiotensin II on renal nerve activity and its cardiac baroreflex regulation.
Dibona, G F; Jones, S Y; Sawin, L L
1998-11-01
The effects of physiologic alterations in endogenous angiotensin II activity on basal renal sympathetic nerve activity and its cardiac baroreflex regulation were studied. The effect of angiotensin II type 1 receptor blockade with intracerebroventricular losartan was examined in conscious rats consuming a low, normal, or high sodium diet that were instrumented for the simultaneous measurement of right atrial pressure and renal sympathetic nerve activity. The gain of cardiac baroreflex regulation of renal sympathetic nerve activity (% delta renal sympathetic nerve activity/mmHg mean right atrial pressure) was measured during isotonic saline volume loading. Intracerebroventricular losartan did not decrease arterial pressure but significantly decreased renal sympathetic nerve activity in low (-36+/-6%) and normal (-24+/-5%), but not in high (-2+/-3%) sodium diet rats. Compared with vehicle treatment, losartan treatment significantly increased cardiac baroreflex gain in low (-3.45+/-0.20 versus -2.89+/-0.17) and normal (-2.89+/-0.18 versus -2.54+/-0.14), but not in high (-2.27+/-0.15 versus -2.22+/-0.14) sodium diet rats. These results indicate that physiologic alterations in endogenous angiotensin II activity tonically influence basal levels of renal sympathetic nerve activity and its cardiac baroreflex regulation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tandle, Anita T.; Calvani, Maura; Uranchimeg, Badarch
The majority of human tumors are angiogenesis dependent. Understanding the specific mechanisms that contribute to angiogenesis may offer the best approach to develop therapies to inhibit angiogenesis in cancer. Endothelial monocyte activating polypeptide-II (EMAP-II) is an anti-angiogenic cytokine with potent effects on endothelial cells (ECs). It inhibits EC proliferation and cord formation, and it suppresses primary and metastatic tumor growth in-vivo. However, very little is known about the molecular mechanisms behind the anti-angiogenic activity of EMAP-II. In the present study, we explored the molecular mechanism behind the anti-angiogenic activity exerted by this protein on ECs. Our results demonstrate that EMAP-IImore » binds to the cell surface {alpha}5{beta}1 integrin receptor. The cell surface binding of EMAP-II results in its internalization into the cytoplasmic compartment where it interacts with its cytoplasmic partner PSMA7, a component of the proteasome degradation pathway. This interaction increases hypoxia-inducible factor 1-alpha (HIF-1{alpha}) degradation under hypoxic conditions. The degradation results in the inhibition of HIF-1{alpha} mediated transcriptional activity as well as HIF-1{alpha} mediated angiogenic sprouting of ECs. HIF-1{alpha} plays a critical role in angiogenesis by activating a variety of angiogenic growth factors. Our results suggest that one of the major anti-angiogenic functions of EMAP-II is exerted through its inhibition of the HIF-1{alpha} activities.« less
NASA Astrophysics Data System (ADS)
Singh, D. P.; Kumar, Krishan; Chopra, Rimpi Mehani ne'e.
2011-02-01
A series of macrocyclic complexes of the type [M(C 12H 20N 8S 2)X 2]; where M = Co(II), Ni(II), Cu(II), Zn(II); X = Cl -, NO 3-, CH 3COO - has been synthesized by template condensation of thiocarbohydrazide and pentane-2,4-dione in the presence of divalent metal salts in methanolic medium. The complexes have been characterized with the help of elemental analyses, conductance measurements, magnetic measurements, electronic, NMR, IR, EPR and MS spectral studies. The low value of molar conductance indicates them to be non-electrolytes. On the basis of various studies a distorted octahedral geometry may be proposed for all of these complexes. These metal complexes were also tested for their in vitro antibacterial activities against some Gram-positive bacterial strains, i.e., Bacillus subtilis, Bacillus stearothermophilus and two Gram-negative bacterial strains, i.e., Escherichia coli, Pseudomonas putida. The results obtained were compared with standard antibiotics, Chloramphenicol and Streptomycin and found that some of the synthesized complexes show good antibacterial activities as compared to the standard antibiotics.
NASA Astrophysics Data System (ADS)
Mohamed, Gehad G.; Zayed, Ehab M.; Hindy, Ahmed M. M.
2015-06-01
Novel bis Schiff base ligand, [N1,N3-bis(furan-2-ylmethylene)propane-1,3-diamine], was prepared by the condensation of furan-2-carboxaldehyde with propane-1,3-diamine. Its conformational changes on complexation with transition metal ions [Co(II), Ni(II), Cu(II), Mn(II), Cd(II), Zn(II) and Fe(III)] have been studied on the basis of elemental analysis, conductivity measurements, spectral (infrared, 1H NMR, electronic), magnetic and thermogravimetric studies. The conductance data of the complexes revealed their electrolytic nature suggesting them as 1:2 (for bivalent metal ions) and 1:3 (for Fe(III) ion) electrolytes. The complexes were found to have octahedral geometry based on magnetic moment and solid reflectance measurements. Thermal analysis data revealed the decomposition of the complexes in successive steps with the removal of anions, coordinated water and bis Schiff base ligand. The thermodynamic parameters were calculated using Coats-Redfern equation. The Anticancer screening studies were performed on human colorectal cancer (HCT), hepatic cancer (HepG2) and breast cancer (MCF-7) cell lines. The antimicrobial activity of all the compounds was studied against Gram negative (Escherichia coli and Proteus vulgaris) and Gram positive (Bacillus vulgaris and Staphylococcus pyogones) bacteria. It was observed that the coordination of metal ion has a pronounced effect on the microbial activities of the bis Schiff base ligand. All the metal complexes have shown higher antimicrobial effect than the free bis Schiff base ligand.
Stellar rotation periods determined from simultaneously measured Ca II H&K and Ca II IRT lines
NASA Astrophysics Data System (ADS)
Mittag, M.; Hempelmann, A.; Schmitt, J. H. M. M.; Fuhrmeister, B.; González-Pérez, J. N.; Schröder, K.-P.
2017-11-01
Aims: Previous studies have shown that, for late-type stars, activity indicators derived from the Ca II infrared-triplet (IRT) lines are correlated with the indicators derived from the Ca II H&K lines. Therefore, the Ca II IRT lines are in principle usable for activity studies, but they may be less sensitive when measuring the rotation period. Our goal is to determine whether the Ca II IRT lines are sufficiently sensitive to measure rotation periods and how any Ca II IRT derived rotation periods compare with periods derived from the "classical" Mount Wilson S-index. Methods: To analyse the Ca II IRT lines' sensitivity and to measure rotation periods, we define an activity index for each of the Ca II IRT lines similar to the Mount Wilson S-index and perform a period analysis for the lines separately and jointly. Results: For eleven late-type stars we can measure the rotation periods using the Ca II IRT indices similar to those found in the Mount Wilson S-index time series and find that a period derived from all four indices gives the most probable rotation period; we find good agreement for stars with already existing literature values. In a few cases the computed periodograms show a complicated structure with multiple peaks, meaning that formally different periods are derived in different indices. We show that in one case, this is due to data sampling effects and argue that denser cadence sampling is necessary to provide credible evidence for differential rotation. However, our TIGRE data for HD 101501 shows good evidence for the presence of differential rotation.
NASA Astrophysics Data System (ADS)
Yamamoto, Tetsunori; Nishikawa, Keigo; Sugiyama, Ayumu; Purqon, Acep; Mizukami, Taku; Shimahara, Hideto; Nagao, Hidemi; Nishikawa, Kiyoshi
2008-02-01
The docking structure of the Azurin-Cytochrome C551 is presented. We investigate a complex system of Azurin(II)-Cytochrome C551(II) by using molecular dynamics simulation. We estimate some physical properties, such as root-mean-square deviation (RMSD), binding energy between Azurin and Cytochrome C551, distance between Azurin(II) and Cytochrome C551(II) through center of mass and each active site. We also discuss docking stability in relation to the configuration by free energy between Azurin(II)-Cytochrome C551(II) and Azurin(I)-Cytochrome C551(III).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tai, Xi-Shi, E-mail: taixs@wfu.edu.cn; Wang, Xin
2017-03-15
A new Ca(II) coordination polymer, ([CaL(H{sub 2}O){sub 4}] · (H{sub 2}O){sub 4}){sub n} (L = 4-formyl-1,3-benzenedisulfonate-2-furoic acid hydrazide) has been prepared by one-pot synthesis method. And it was characterized by elemental analysis, IR and thermal analysis. The result of X-ray single-crystal diffraction analysis shows that the Ca(II) complex molecules form one-dimensional chain structure by the bridging oxygen atoms. The anti-tumor activity of L ligand and the Ca(II) coordination polymer has also been studied.
NASA Astrophysics Data System (ADS)
Shankarwar, Sunil G.; Nagolkar, Bhagwat B.; Shelke, Vinod A.; Chondhekar, Trimbak K.
2015-06-01
A series of metal complexes of Mn(II), Co(II), Ni(II), Cu(II), have been synthesized with newly synthesized biologically active macrocyclic ligand. The ligand was synthesized by condensation of β-diketone 1-(4-chlorophenyl)-3-(2-hydroxyphenyl)propane-1,3-dione and o-phenylene diamine. All the complexes were characterized by elemental analysis, molar conductivity, magnetic susceptibility, thermal analysis, X-ray diffraction, IR, 1H-NMR, UV-Vis spectroscopy and mass spectroscopy. From the analytical data, stoichiometry of the complexes was found to be 1:2 (metal:ligand). Thermal behavior (TG/DTA) and kinetic parameters suggest more ordered activated state in complex formation. All the complexes are of high spin type and six coordinated. On the basis of IR, electronic spectral studies and magnetic behavior, an octahedral geometry has been assigned to these complexes. The antibacterial and antifungal activities of the ligand and its metal complexes, has been screened in vitro against Staphylococcus aureus, Escherichia coli and Aspergillus niger, Trichoderma respectively.
Function and regulation of the Mediator complex.
Conaway, Ronald C; Conaway, Joan Weliky
2011-04-01
Over the past few years, advances in biochemical and genetic studies of the structure and function of the Mediator complex have shed new light on its subunit architecture and its mechanism of action in transcription by RNA polymerase II (pol II). The development of improved methods for reconstitution of recombinant Mediator subassemblies is enabling more in-depth analyses of basic features of the mechanisms by which Mediator interacts with and controls the activity of pol II and the general initiation factors. The discovery and characterization of multiple, functionally distinct forms of Mediator characterized by the presence or absence of the Cdk8 kinase module have led to new insights into how Mediator functions in both Pol II transcription activation and repression. Finally, progress in studies of the mechanisms by which the transcriptional activation domains (ADs) of DNA binding transcription factors target Mediator have brought to light unexpected complexities in the way Mediator participates in signal transduction. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Ceyhan, Gökhan; Çelik, Cumali; Uruş, Serhan; Demirtaş, İbrahim; Elmastaş, Mahfuz; Tümer, Mehmet
2011-10-01
In this study, two Schiff base ligands (HL 1 and HL 2) and their Cu(II), Co(II), Ni(II), Pd(II) and Ru(III) metal complexes were synthesized and characterized by the analytical and spectroscopic methods. Alkane oxidation activities of the metal complexes were studied on cyclohexane as substrate. The ligands and their metal complexes were evaluated for their antimicrobial activity against Corynebacterium xerosis, Bacillus brevis, Bacillus megaterium, Bacillus cereus, Mycobacterium smegmatis, Staphylococcus aureus, Micrococcus luteus and Enterococcus faecalis (as Gram-positive bacteria) and Pseudomonas aeruginosa, Klebsiella pneumoniae, Escherichia coli, Yersinia enterocolitica, Klebsiella fragilis, Saccharomyces cerevisiae, and Candida albicans (as Gram-negative bacteria). The antioxidant properties of the Schiff base ligands were evaluated in a series of in vitro tests: 1,1-diphenyl-2-picrylhydrazyl (DPPH rad ) free radical scavenging and reducing power activity of superoxide anion radical generated non-enzymatic systems. Electrochemical and thermal properties of the compounds were investigated.
De Simone, Giuseppina; Langella, Emma; Esposito, Davide; Supuran, Claudiu T; Monti, Simona Maria; Winum, Jean-Yves; Alterio, Vincenzo
2017-12-01
Sulphamate and sulphamide derivatives have been largely investigated as carbonic anhydrase inhibitors (CAIs) by means of different experimental techniques. However, the structural determinants responsible for their different binding mode to the enzyme active site were not clearly defined so far. In this paper, we report the X-ray crystal structure of hCA II in complex with a sulphamate inhibitor incorporating a nitroimidazole moiety. The comparison with the structure of hCA II in complex with its sulphamide analogue revealed that the two inhibitors adopt a completely different binding mode within the hCA II active site. Starting from these results, we performed a theoretical study on sulphamate and sulphamide derivatives, demonstrating that electrostatic interactions with residues within the enzyme active site play a key role in determining their binding conformation. These findings open new perspectives in the design of effective CAIs using the sulphamate and sulphamide zinc binding groups as lead compounds.
Lonigan, Christopher J.; Phillips, Beth M.
2015-01-01
Although response-to-instruction (RTI) approaches have received increased attention, few studies have evaluated the potential impacts of RTI approaches with preschool populations. This manuscript presents results of two studies examining impacts of Tier II instruction with preschool children. Participating children were identified as substantially delayed in the acquisition of early literacy skills despite exposure to high-quality, evidence-based classroom instruction. Study 1 included 93 children (M age = 58.2 months; SD = 3.62) attending 12 Title I preschools. Study 2 included 184 children (M age = 58.2 months; SD = 3.38) attending 19 Title I preschools. The majority of children were Black/African American, and about 60% were male. In both studies, eligible children were randomized to receive either 11 weeks of need-aligned, small-group instruction or just Tier I. Tier II instruction in Study 1 included variations of activities for code- and language-focused domains with prior evidence of efficacy in non-RTI contexts. Tier II instruction in Study 2 included instructional activities narrower in scope, more intensive, and delivered to smaller groups of children. Impacts of Tier II instruction in Study 1 were minimal; however, there were significant and moderate-to-large impacts in Study 2. These results identify effective Tier II instruction but indicate that the context in which children are identified may alter the nature of Tier II instruction that is required. Children identified as eligible for Tier II in an RTI framework likely require more intensive and more narrowly focused instruction than do children at general risk of later academic difficulties. PMID:26869730
Maeda, M; Abiko, N; Sasaki, T
1982-02-01
cis-Diamminoplatinum (II) complexes with selenoguanine, thioguanine, 6-thioxanthine, or 6-mercaptopurine were synthesized by the reaction of stoichiometric amounts of selenopurine or thiopurine with aquated cis-dichlorodimmineplatinum (II) in slightly acidic medium, and their antitumor activity was studied against L1210 cells in mice. These compounds exhibited a medium antitumor activity with very low toxicity. The antitumor activity was dependent on the nature of the purine ligand. These complexes were very stable in various aqueous solvents at 37 degrees C for 10 d but not in the presence of mouse serum. The mechanism of the action effected by the complex is not clear. However, the slow release of an antitumor active purine from the complex, SeG-Pt (NH3)2, was observed.
Angiotensin II type 1 and type 2 receptor-induced cell signaling.
Akazawa, Hiroshi; Yano, Masamichi; Yabumoto, Chizuru; Kudo-Sakamoto, Yoko; Komuro, Issei
2013-01-01
The octapeptide angiotensin II (Ang II) plays a homeostatic role in the regulation of blood pressure and water and electrolyte balance, and also contributes to the progression of cardiovascular remodeling. Ang II activates Ang II type 1 (AT1) receptor and type 2 (AT2) receptor, both of which belong to the seven-transmembrane, G protein-coupled receptor family. Most of the actions of Ang II such as promotion of cellular prolifaration, hypertrophy, and fibrosis are mediated by AT1 receptor. However, in some pathological situations, AT2 receptor shows an increase in tissue expression and functions to antagonize the actions induced by AT1 receptor. Recent studies have advanced our understanding of the molecular mechanisms underlying receptor activation and signal transduction of AT1 and AT2 receptor in the cardiovascular system.
NASA Astrophysics Data System (ADS)
Gull, Parveez; Malik, Manzoor Ahmad; Dar, Ovas Ahmad; Hashmi, Athar Adil
2017-04-01
Three new complexes Ni(II), Cu(II) and Co(II) were synthesized of macrocyclic ligand derived from 1, 4-dicarbonyl-phenyl-dihydrazide and O-phthalaldehyde in the ratio of 2:2. The synthesized compounds were characterized by elemental analyses, molar conductance, magnetic susceptibility measurements, FTIR, UV-Vis., Mass and 1H NMR spectral studies. The electronic spectra of the metal complexes indicate a six coordinate octahedral geometry of the central metal ion. These metal complexes and the ligand were evaluated for antimicrobial activity against bacteria (E. coli, B. subtilis, S. aureus) and fungi (A. niger, A. flavus, C. albicans) and compared against standard drugs chloramphenicol and nystatin respectively. In addition, the antioxidant activity of the compounds was also investigated through scavenging effect on DPPH radicals.
Teruya, M; Soundar, E; Hui, S R; Eldin, K; Adcock, D; Teruya, J
2016-05-18
Protein induced by vitamin K absence (PIVKA)-II, inactive precursor of prothrombin, is elevated in vitamin K (VK) deficiency. Our aims were to find the prevalence of VK deficiency in neonates, assess the utility of international normalized ratio (INR) as a screening tool, and explore the relationship between PIVKA-II, activated partial thromboplastin time (aPTT) and VK dependent anticoagulants. INR, aPTT, PIVKA-II, and proteins C and S activities were measured in neonatal cord blood prior to VK administration. We found 45% of neonates had subclinical VK deficiency based on PIVKA-II levels and 7% based on INR. Receiver operating characteristic (ROC) analysis assessed the utility of INR in detecting >4 ng/mL of PIVKA-II and ROC of the area under the curve was 0.70 (95% CI 0.46-0.92, p = 0.07). Proteins C and S activities were normal for age and did not correlate with PIVKA-II [(r = 0.40, p = 0.14) and (r = 0.29, p = 0.29), respectively]. There was no association between aPTT and PIVKA-II (p = 0.83). PIVKA-II seems to be a sensitive indicator of mild VK deficiency. Further studies are needed to investigate the lack of relationship between PIVKA-II and functional protein C or S levels.
Effects of Olive Metabolites on DNA Cleavage Mediated by Human Type II Topoisomerases
2016-01-01
Several naturally occurring dietary polyphenols with chemopreventive or anticancer properties are topoisomerase II poisons. To identify additional phytochemicals that enhance topoisomerase II-mediated DNA cleavage, a library of 341 Mediterranean plant extracts was screened for activity against human topoisomerase IIα. An extract from Phillyrea latifolia L., a member of the olive tree family, displayed high activity against the human enzyme. On the basis of previous metabolomics studies, we identified several polyphenols (hydroxytyrosol, oleuropein, verbascoside, tyrosol, and caffeic acid) as potential candidates for topoisomerase II poisons. Of these, hydroxytyrosol, oleuropein, and verbascoside enhanced topoisomerase II-mediated DNA cleavage. The potency of these olive metabolites increased 10–100-fold in the presence of an oxidant. Hydroxytyrosol, oleuropein, and verbascoside displayed hallmark characteristics of covalent topoisomerase II poisons. (1) The activity of the metabolites was abrogated by a reducing agent. (2) Compounds inhibited topoisomerase II activity when they were incubated with the enzyme prior to the addition of DNA. (3) Compounds were unable to poison a topoisomerase IIα construct that lacked the N-terminal domain. Because hydroxytyrosol, oleuropein, and verbascoside are broadly distributed across the olive family, extracts from the leaves, bark, and fruit of 11 olive tree species were tested for activity against human topoisomerase IIα. Several of the extracts enhanced enzyme-mediated DNA cleavage. Finally, a commercial olive leaf supplement and extra virgin olive oils pressed from a variety of Olea europea subspecies enhanced DNA cleavage mediated by topoisomerase IIα. Thus, olive metabolites appear to act as topoisomerase II poisons in complex formulations intended for human dietary consumption. PMID:26132160
Thieme, Michael; Lanciano, Sophie; Balzergue, Sandrine; Daccord, Nicolas; Mirouze, Marie; Bucher, Etienne
2017-07-07
Retrotransposons play a central role in plant evolution and could be a powerful endogenous source of genetic and epigenetic variability for crop breeding. To ensure genome integrity several silencing mechanisms have evolved to repress retrotransposon mobility. Even though retrotransposons fully depend on transcriptional activity of the host RNA polymerase II (Pol II) for their mobility, it was so far unclear whether Pol II is directly involved in repressing their activity. Here we show that plants defective in Pol II activity lose DNA methylation at repeat sequences and produce more extrachromosomal retrotransposon DNA upon stress in Arabidopsis and rice. We demonstrate that combined inhibition of both DNA methylation and Pol II activity leads to a strong stress-dependent mobilization of the heat responsive ONSEN retrotransposon in Arabidopsis seedlings. The progenies of these treated plants contain up to 75 new ONSEN insertions in their genome which are stably inherited over three generations of selfing. Repeated application of heat stress in progeny plants containing increased numbers of ONSEN copies does not result in increased activation of this transposon compared to control lines. Progenies with additional ONSEN copies show a broad panel of environment-dependent phenotypic diversity. We demonstrate that Pol II acts at the root of transposon silencing. This is important because it suggests that Pol II can regulate the speed of plant evolution by fine-tuning the amplitude of transposon mobility. Our findings show that it is now possible to study induced transposon bursts in plants and unlock their use to induce epigenetic and genetic diversity for crop breeding.
Holloway, Andrew C; Mueller-Harvey, Irene; Gould, Simon W J; Fielder, Mark D; Naughton, Declan P; Kelly, Alison F
2012-12-01
Few attempts have been made to improve the activity of plant compounds with low antimicrobial efficacy. (+)-Catechin, a weak antimicrobial tea flavanol, was combined with putative adjuncts and tested against different species of bacteria. Copper(II) sulphate enhanced (+)-catechin activity against Pseudomonas aeruginosa but not Staphylococcus aureus, Proteus mirabilis or Escherichia coli. Attempts to raise the activity of (+)-catechin against two unresponsive species, S. aureus and E. coli, with iron(II) sulphate, iron(III) chloride, and vitamin C, showed that iron(II) enhanced (+)-catechin against S. aureus, but not E. coli; neither iron(III) nor combined iron(II) and copper(II), enhanced (+)-catechin activity against either species. Vitamin C enhanced copper(II) containing combinations against both species in the absence of iron(II). Catalase or EDTA added to active samples removed viability effects suggesting that active mixtures had produced H(2)O(2)via the action of added metal(II) ions. H(2)O(2) generation by (+)-catechin plus copper(II) mixtures and copper(II) alone could account for the principal effect of bacterial growth inhibition following 30 minute exposures as well as the antimicrobial effect of (+)-catechin-iron(II) against S. aureus. These novel findings about a weak antimicrobial flavanol contrast with previous knowledge of more active flavanols with transition metal combinations. Weak antimicrobial compounds like (+)-catechin within enhancement mixtures may therefore be used as efficacious agents. (+)-Catechin may provide a means of lowering copper(II) or iron(II) contents in certain crop protection and other products.
Paul, Hena; Sen, Buddhadeb; Mondal, Tapan Kumar; Chattopadhyay, Pabitra
2017-08-03
Two new ruthenium(II) complexes of Schiff base ligands (L) derived from cinnamaldehyde and ethylenediamine formulated as [Ru(L)(bpy) 2 ](ClO 4 ) 2 , where L 1 = N,N'-bis(4-nitrocinnamald-ehyde)ethylenediamine and L 2 = N,N'-bis(2-nitrocinnamaldehyde)-ethylenediamine for complex 1 and 2, respectively, were isolated in pure form. The complexes were characterized by physicochemical and spectroscopic methods. The electrochemical behavior of the complexes showed the Ru(III)/Ru(II) couple at different potentials with quasi-reversible voltammograms. The interaction of the complexes with calf thymus DNA (CT-DNA) using absorption, emission spectral studies and electrochemical techniques have been used to determine the binding constant, K b and the linear Stern-Volmer quenching constant, K SV . The results indicate that the ruthenium(II) complexes interact with CT-DNA strongly in a groove binding mode. The interactions of bovine serum albumin (BSA) with the complexes were also investigated with the help of absorption and fluorescence spectroscopy tools. Absorption spectroscopy proved the formation of a ground state BSA-[Ru(L)(bpy) 2 ](ClO 4 ) 2 complex. The antibacterial study showed that the Ru(II) complexes (1 and 2) have better activity than the standard antibiotics but weak activity than the ligands.
Aldosterone does not require angiotensin II to activate NCC through a WNK4-SPAK-dependent pathway.
van der Lubbe, Nils; Lim, Christina H; Meima, Marcel E; van Veghel, Richard; Rosenbaek, Lena Lindtoft; Mutig, Kerim; Danser, Alexander H J; Fenton, Robert A; Zietse, Robert; Hoorn, Ewout J
2012-06-01
We and others have recently shown that angiotensin II can activate the sodium chloride cotransporter (NCC) through a WNK4-SPAK-dependent pathway. Because WNK4 was previously shown to be a negative regulator of NCC, it has been postulated that angiotensin II converts WNK4 to a positive regulator. Here, we ask whether aldosterone requires angiotensin II to activate NCC and if their effects are additive. To do so, we infused vehicle or aldosterone in adrenalectomized rats that also received the angiotensin receptor blocker losartan. In the presence of losartan, aldosterone was still capable of increasing total and phosphorylated NCC twofold to threefold. The kinases WNK4 and SPAK also increased with aldosterone and losartan. A dose-dependent relationship between aldosterone and NCC, SPAK, and WNK4 was identified, suggesting that these are aldosterone-sensitive proteins. As more functional evidence of increased NCC activity, we showed that rats receiving aldosterone and losartan had a significantly greater natriuretic response to hydrochlorothiazide than rats receiving losartan only. To study whether angiotensin II could have an additive effect, rats receiving aldosterone with losartan were compared with rats receiving aldosterone only. Rats receiving aldosterone only retained more sodium and had twofold to fourfold increase in phosphorylated NCC. Together, our results demonstrate that aldosterone does not require angiotensin II to activate NCC and that WNK4 appears to act as a positive regulator in this pathway. The additive effect of angiotensin II may favor electroneutral sodium reabsorption during hypovolemia and may contribute to hypertension in diseases with an activated renin-angiotensin-aldosterone system.
Mishra, Lallan; Yadaw, Ajay K; Bhattacharya, Subrato; Dubey, Santosh K
2005-05-01
The complexes of Ru(II)-2,2'-bipyridyl with substituted diazopentane-2,4-diones (L1H-L5H) were synthesized and characterized by elemental analyses, conductance, FAB (fast atom bombardment) mass and spectral (IR, UV/Vis (UV/visible), NMR) studies. Molecular geometry optimization of the complexes was also made. None of the complexes luminesce. However, facilitated oxidation of Ru(II) to Ru(III) was evidenced from their lower reduction potential data. The ligands and their complexes were tested for their antitumour activity against a variety of tumour cell lines. Though activity is found to vary with the type of tumour cell lines used, yet complex 5 with naphtyldiazopentane-2,4-dione as co-ligand was found to be a potential compound as it showed in general significant activity against all cell lines studied.
Nazipi, Seven; Stødkilde, Kristian; Scavenius, Carsten
2017-01-01
Hyaluronic acid (HA) and other glycosaminoglycans are extracellular matrix components in the human epidermis and dermis. One of the most prevalent skin microorganisms, Propionibacterium acnes, possesses HA-degrading activity, possibly conferred by the enzyme hyaluronate lyase (HYL). In this study, we identified the HYL of P. acnes and investigated the genotypic and phenotypic characteristics. Investigations include the generation of a P. acnes hyl knockout mutant and HYL activity assays to determine the substrate range and formed products. We found that P. acnes employs two distinct variants of HYL. One variant, HYL-IB/II, is highly active, resulting in complete HA degradation; it is present in strains of the phylotypes IB and II. The other variant, HYL-IA, has low activity, resulting in incomplete HA degradation; it is present in type IA strains. Our findings could explain some of the observed differences between P. acnes phylotype IA and IB/II strains. Whereas type IA strains are primarily found on the skin surface and associated with acne vulgaris, type IB/II strains are more often associated with soft and deep tissue infections, which would require elaborate tissue invasion strategies, possibly accomplished by a highly active HYL-IB/II. PMID:28895889
Chen, S; Bacon, K B; Li, L; Garcia, G E; Xia, Y; Lo, D; Thompson, D A; Siani, M A; Yamamoto, T; Harrison, J K; Feng, L
1998-07-06
Chemokines play a central role in immune and inflammatory responses. It has been observed recently that certain viruses have evolved molecular piracy and mimicry mechanisms by encoding and synthesizing proteins that interfere with the normal host defense response. One such viral protein, vMIP-II, encoded by human herpesvirus 8, has been identified with in vitro antagonistic activities against CC and CXC chemokine receptors. We report here that vMIP-II has additional antagonistic activity against CX3CR1, the receptor for fractalkine. To investigate the potential therapeutic effect of this broad-spectrum chemokine antagonist, we studied the antiinflammatory activity of vMIP-II in a rat model of experimental glomerulonephritis induced by an antiglomerular basement membrane antibody. vMIP-II potently inhibited monocyte chemoattractant protein 1-, macrophage inflammatory protein 1beta-, RANTES (regulated on activation, normal T cell expressed and secreted)-, and fractalkine-induced chemotaxis of activated leukocytes isolated from nephritic glomeruli, significantly reduced leukocyte infiltration to the glomeruli, and markedly attenuated proteinuria. These results suggest that molecules encoded by some viruses may serve as useful templates for the development of antiinflammatory compounds.
Kumar, Surendra; Singh, Vineet; Tiwari, Meena
2007-07-01
Selective inhibition of ciliary process enzyme i.e. Carbonic Anhydrase-II is an excellent approach in reducing elevated intraocular pressure, thus treating glaucoma. Due to characteristic physicochemical properties of sulphonamide (Inhibition of Carbonic Anhydrase), they are clinically effective against glaucoma. But the non-specificity of sulphonamide derivatives to isozyme, leads to a range of side effects. Presently, the absence of comparative studies related to the binding of the sulphonamides as inhibitors to CA isozymes limits their use. In this paper we have represented "Three Dimensional Quantitative Structure Activity Relationship" study to characterize structural features of Sulfamide derivative [RR'NSO(2)NH(2)] as inhibitors, that are required for selective binding of carbonic anhydrase isozymes (CAI and CAII). In the analysis, stepwise multiple linear regression was performed using physiochemical parameters as independent variable and CA-I and CA-II inhibitory activity as dependent variable, respectively. The best multiparametric QSAR model obtained for CA-I inhibitory activity shows good statistical significance (r= 0.9714) and predictability (Q(2)=0.8921), involving the Electronic descriptors viz. Highest Occupied Molecular Orbital, Lowest Unoccupied Molecular Orbital and Steric descriptors viz. Principal moment of Inertia at X axis. Similarly, CA-II inhibitory activity also shows good statistical significance (r=0.9644) and predictability (Q(2)=0.8699) involving aforementioned descriptors. The predictive power of the model was successfully tested externally using a set of six compounds as test set for CA-I inhibitory activity and a set of seven compounds in case of CA-II inhibitory activity with good predictive squared correlation coefficient, r(2)(pred)=0.6016 and 0.7662, respectively. Overview of analysis favours substituents with high electronegativity and less bulk at R and R' positions of the parent nucleus, provides a basis to design new Sulfamide derivatives possessing potent and selective carbonic anhydrase-II inhibitory activity.
NASA Astrophysics Data System (ADS)
Fossati, L.; Marcelja, S. E.; Staab, D.; Cubillos, P. E.; France, K.; Haswell, C. A.; Ingrassia, S.; Jenkins, J. S.; Koskinen, T.; Lanza, A. F.; Redfield, S.; Youngblood, A.; Pelzmann, G.
2017-05-01
Past ultraviolet and optical observations of stars hosting close-in Jupiter-mass planets have shown that some of these stars present an anomalously low chromospheric activity, significantly below the basal level. For the hot Jupiter planet host WASP-13, observations have shown that the apparent lack of activity is possibly caused by absorption from the intervening interstellar medium (ISM). Inspired by this result, we study the effect of ISM absorption on activity measurements (S and log R 'HK indices) for main-sequence late-type stars. To this end, we employ synthetic stellar photospheric spectra combined with varying amounts of chromospheric emission and ISM absorption. We present the effect of ISM absorption on activity measurements by varying several instrumental (spectral resolution), stellar (projected rotational velocity, effective temperature, and chromospheric emission flux), and ISM parameters (relative velocity between stellar and ISM Ca II lines, broadening b-parameter, and Ca II column density). We find that for relative velocities between the stellar and ISM lines smaller than 30-40 km s-1 and for ISM Ca II column densities log NCaII ⪆ 12, the ISM absorption has a significant influence on activity measurements. Direct measurements and three dimensional maps of the Galactic ISM absorption indicate that an ISM Ca II column density of log NCaII = 12 is typically reached by a distance of about 100 pc along most sight lines. In particular, for a Sun-like star lying at a distance greater than 100 pc, we expect a depression (bias) in the log R'HK value larger than 0.05-0.1 dex, about the same size as the typical measurement and calibration uncertainties on this parameter. This work shows that the bias introduced by ISM absorption must always be considered when measuring activity for stars lying beyond 100 pc. We also consider the effect of multiple ISM absorption components. We discuss the relevance of this result for exoplanet studies and revise the latest results on stellar activity versus planet surface gravity correlation. We finally describe methods with which it would be possible to account for ISM absorption in activity measurements and provide a code to roughly estimate the magnitude of the bias. Correcting for the ISM absorption bias may allow one to identify the origin of the anomaly in the activity measured for some planet-hosting stars.
A Curriculum Activities Guide to Water Pollution and Environmental Studies, Volume II - Appendices.
ERIC Educational Resources Information Center
Hershey, John T., Ed.; And Others
This publication, Volume II of a two volume set of water pollution studies, contains seven appendices which support the studies. Appendix 1, Water Quality Parameters, consolidates the technical aspects of water quality including chemical, biological, computer program, and equipment information. Appendix 2, Implementation, outlines techniques…
Liu, Jiahui; Liu, Libo; Chao, Shuo; Liu, Yunhui; Liu, Xiaobai; Zheng, Jian; Chen, Jiajia; Gong, Wei; Teng, Hao; Li, Zhen; Wang, Ping; Xue, Yixue
2017-01-01
This study was performed to determine whether EMAP II increases the permeability of the blood-tumor barrier (BTB) by affecting the expression of miR-330-3p as well as its possible mechanisms. We determined the over-expression of miR-330-3p in glioma microvascular endothelial cells (GECs) by Real-time PCR. Endothelial monocyte-activating polypeptide-II (EMAP-II) significantly decreased the expression of miR-330-3p in GECs. Pre-miR-330-3p markedly decreased the permeability of BTB and increased the expression of tight junction (TJ) related proteins ZO-1, occludin and claudin-5, however, anti-miR-330-3p had the opposite effects. Anti-miR-330-3p could enhance the effect of EMAP-II on increasing the permeability of BTB, however, pre-miR-330-3p partly reversed the effect of EMAP-II on that. Similarly, anti-miR-330-3p improved the effects of EMAP-II on increasing the expression levels of PKC-α and p-PKC-α in GECs and pre-miR-330-3p partly reversed the effects. MiR-330-3p could target bind to the 3′UTR of PKC-α. The results of in vivo experiments were similar to those of in vitro experiments. These suggested that EMAP-II could increase the permeability of BTB through inhibiting miR-330-3p which target negative regulation of PKC-α. Pre-miR-330-3p and PKC-α inhibitor decreased the BTB permeability and up-regulated the expression levels of ZO-1, occludin and claudin-5 while anti-miR-330-3p and PKC-α activator brought the reverse effects. Compared with EMAP-II, anti-miR-330-3p and PKC-α activator alone, the combination of the three combinations significantly increased the BTB permeability. EMAP-II combined with anti-miR-330-3p and PKCα activator could enhance the DOX’s effects on inhibiting the cell viabilities and increasing the apoptosis of U87 glioma cells. Our studies suggest that low-dose EMAP-II up-regulates the expression of PKC-α and increases the activity of PKC-α by inhibiting the expression of miR-330-3p, reduces the expression of ZO-1, occludin and claudin-5, and thereby increasing the permeability of BTB. The results can provide a new strategy for the comprehensive treatment of glioma. PMID:29311822
Tasdemir, Deniz; Sanabria, David; Lauinger, Ina L; Tarun, Alice; Herman, Rob; Perozzo, Remo; Zloh, Mire; Kappe, Stefan H; Brun, Reto; Carballeira, Néstor M
2010-11-01
Acetylenic fatty acids are known to display several biological activities, but their antimalarial activity has remained unexplored. In this study, we synthesized the 2-, 5-, 6-, and 9-hexadecynoic acids (HDAs) and evaluated their in vitro activity against erythrocytic (blood) stages of Plasmodium falciparum and liver stages of Plasmodium yoelii infections. Since the type II fatty acid biosynthesis pathway (PfFAS-II) has recently been shown to be indispensable for liver stage malaria parasites, the inhibitory potential of the HDAs against multiple P. falciparum FAS-II (PfFAS-II) elongation enzymes was also evaluated. The highest antiplasmodial activity against blood stages of P. falciparum was displayed by 5-HDA (IC(50) value 6.6 μg/ml), whereas the 2-HDA was the only acid arresting the growth of liver stage P. yoelii infection, in both flow cytometric assay (IC(50) value 2-HDA 15.3 μg/ml, control drug atovaquone 2.5 ng/ml) and immunofluorescence analysis (IC(50) 2-HDA 4.88 μg/ml, control drug atovaquone 0.37 ng/ml). 2-HDA showed the best inhibitory activity against the PfFAS-II enzymes PfFabI and PfFabZ with IC(50) values of 0.38 and 0.58 μg/ml (IC(50) control drugs 14 and 30 ng/ml), respectively. Enzyme kinetics and molecular modeling studies revealed valuable insights into the binding mechanism of 2-HDA on the target enzymes. All HDAs showed in vitro activity against Trypanosoma brucei rhodesiense (IC(50) values 3.7-31.7 μg/ml), Trypanosoma cruzi (only 2-HDA, IC(50) 20.2 μg/ml), and Leishmania donovani (IC(50) values 4.1-13.4 μg/ml) with generally low or no significant toxicity on mammalian cells. This is the first study to indicate therapeutic potential of HDAs against various parasitic protozoa. It also points out that the malarial liver stage growth inhibitory effect of the 2-HDA may be promoted via PfFAS-II enzymes. The lack of cytotoxicity, lipophilic nature, and calculated pharmacokinetic properties suggests that 2-HDA could be a useful compound to study the interaction of fatty acids with these key P. falciparum enzymes. Copyright © 2010 Elsevier Ltd. All rights reserved.
Evaluation of biomarkers for osteoarthritis caused by fragmented medial coronoid process in dogs.
Hurlbeck, C; Einspanier, R; Pfeil, I; Bondzio, A
2014-06-01
The aim of the present work was to evaluate whether concentrations of the carboxy-terminal cross-linked fragment of type II collagen (CTX-II), the activities of matrix metalloproteinase-2 and -9 (MMP-2/-9) and Myeloperoxidase (MPO) in canine synovial fluids (SF) can reflect structural alterations of articular cartilage in dogs with fragmented medial coronoid process (FMCP). Elbow joints with FMCP underwent radiographic and arthroscopic examination. Commercially available assays were used to analyze SF for CTX-II concentration and MMP-2/-9 activity. MPO activity was measured by o-dianisidine-assay. The MMPs were further evaluated by zymography. CTX-II concentration and MMP-2 activity showed age-dependent trends in controls. Increased enzyme activities of MPO and MMP-2/-9 were found in diseased dogs. MMP-9activity seems suitable to underline the subjective assessment of the degree of cartilage damage. These initial data of the study suggest that MPO and MMP-2/9 may be used as objective biomarkers in the diagnosis of canine osteoarthritis due to FMCP. Copyright © 2014. Published by Elsevier Ltd.
Therien, Jesse B; Artz, Jacob H; Poudel, Saroj; Hamilton, Trinity L; Liu, Zhenfeng; Noone, Seth M; Adams, Michael W W; King, Paul W; Bryant, Donald A; Boyd, Eric S; Peters, John W
2017-01-01
The first generation of biochemical studies of complex, iron-sulfur-cluster-containing [FeFe]-hydrogenases and Mo-nitrogenase were carried out on enzymes purified from Clostridium pasteurianum (strain W5). Previous studies suggested that two distinct [FeFe]-hydrogenases are expressed differentially under nitrogen-fixing and non-nitrogen-fixing conditions. As a result, the first characterized [FeFe]-hydrogenase (CpI) is presumed to have a primary role in central metabolism, recycling reduced electron carriers that accumulate during fermentation via proton reduction. A role for capturing reducing equivalents released as hydrogen during nitrogen fixation has been proposed for the second hydrogenase, CpII. Biochemical characterization of CpI and CpII indicated CpI has extremely high hydrogen production activity in comparison to CpII, while CpII has elevated hydrogen oxidation activity in comparison to CpI when assayed under the same conditions. This suggests that these enzymes have evolved a catalytic bias to support their respective physiological functions. Using the published genome of C. pasteurianum (strain W5) hydrogenase sequences were identified, including the already known [NiFe]-hydrogenase, CpI, and CpII sequences, and a third hydrogenase, CpIII was identified in the genome as well. Quantitative real-time PCR experiments were performed in order to analyze transcript abundance of the hydrogenases under diazotrophic and non-diazotrophic growth conditions. There is a markedly reduced level of CpI gene expression together with concomitant increases in CpII gene expression under nitrogen-fixing conditions. Structure-based analyses of the CpI and CpII sequences reveal variations in their catalytic sites that may contribute to their alternative physiological roles. This work demonstrates that the physiological roles of CpI and CpII are to evolve and to consume hydrogen, respectively, in concurrence with their catalytic activities in vitro , with CpII capturing excess reducing equivalents under nitrogen fixation conditions. Comparison of the primary sequences of CpI and CpII and their homologs provides an initial basis for identifying key structural determinants that modulate hydrogen production and hydrogen oxidation activities.
Therien, Jesse B.; Artz, Jacob H.; Poudel, Saroj; ...
2017-07-12
Here, the first generation of biochemical studies of complex, iron-sulfur-cluster-containing [FeFe]-hydrogenases and Mo-nitrogenase were carried out on enzymes purified from Clostridium pasteurianum (strain W5). Previous studies suggested that two distinct [FeFe]-hydrogenases are expressed differentially under nitrogen-fixing and non-nitrogen-fixing conditions. As a result, the first characterized [FeFe]-hydrogenase (CpI) is presumed to have a primary role in central metabolism, recycling reduced electron carriers that accumulate during fermentation via proton reduction. A role for capturing reducing equivalents released as hydrogen during nitrogen fixation has been proposed for the second hydrogenase, CpII. Biochemical characterization of CpI and CpII indicated CpI has extremely high hydrogenmore » production activity in comparison to CpII, while CpII has elevated hydrogen oxidation activity in comparison to CpI when assayed under the same conditions. This suggests that these enzymes have evolved a catalytic bias to support their respective physiological functions. Using the published genome of C. pasteurianum (strain W5) hydrogenase sequences were identified, including the already known [NiFe]-hydrogenase, CpI, and CpII sequences, and a third hydrogenase, CpIII was identified in the genome as well. Quantitative real-time PCR experiments were performed in order to analyze transcript abundance of the hydrogenases under diazotrophic and non-diazotrophic growth conditions. There is a markedly reduced level of CpI gene expression together with concomitant increases in CpII gene expression under nitrogen-fixing conditions. Structure-based analyses of the CpI and CpII sequences reveal variations in their catalytic sites that may contribute to their alternative physiological roles. This work demonstrates that the physiological roles of CpI and CpII are to evolve and to consume hydrogen, respectively, in concurrence with their catalytic activities in vitro, with CpII capturing excess reducing equivalents under nitrogen fixation conditions. Comparison of the primary sequences of CpI and CpII and their homologs provides an initial basis for identifying key structural determinants that modulate hydrogen production and hydrogen oxidation activities.« less
Wu, Min; Wu, Yan; Qian, Hai; Tao, Yan; Pang, Ji; Wang, Ying; Chen, Yongchang
2017-10-01
Previous studies have indicated that type II cyclic guanosine monophosphate (cGMP)‑dependent protein kinase (PKG II) could inhibit the proliferation and migration of gastric cancer cells. However, the effects of PKG II on the biological functions of other types of cancer cells remain to be elucidated. Therefore, the aim of the present study was to investigate the effects of PKG II on cancer cells derived from various types of human tissues, including A549 lung, HepG2 hepatic, OS‑RC‑2 renal, SW480 colon cancer cells and U251 glioma cells. Cancer cells were infected with adenoviral constructs coding PKG II (Ad‑PKG II) to up‑regulate PKG II expression, and treated with 8‑(4‑chlorophenylthio) (8‑pCPT)‑cGMP to activate the kinase. A Cell Counting kit 8 assay was used to detect cell proliferation. Cell migration was measured using a Transwell assay, whereas a terminal deoxynucleotidyl transferase 2'‑deoxyuridine, 5'‑triphosphate nick‑end labeling assay was used to detect cell apoptosis. A pull‑down assay was used to investigate the activation of Ras‑related C3 botulinum toxin substrate (Rac) 1 and western blotting was used to detect the expression of proteins of interest. The present results demonstrated that EGF (100 ng/ml, 24 h) promoted the proliferation and migration of cancer cells, and it suppressed their apoptosis. In addition, treatment with EGF enhanced the activation of Rac1, and up‑regulated the protein expression of proliferating cell nuclear antigen, matrix metalloproteinase (MMP)2, MMP7 and B‑cell lymphoma (Bcl)‑2, whereas it down‑regulated the expression of Bcl‑2‑associated X protein. Transfection of cancer cells with Ad‑PKG II, and PKG II activation with 8‑pCPT‑cGMP, was identified to counteract the effects triggered by EGF. The present results suggested that PKG II may exert inhibitory effects on the proliferation and migration of various types of cancer cells.
Therien, Jesse B.; Artz, Jacob H.; Poudel, Saroj; Hamilton, Trinity L.; Liu, Zhenfeng; Noone, Seth M.; Adams, Michael W. W.; King, Paul W.; Bryant, Donald A.; Boyd, Eric S.; Peters, John W.
2017-01-01
The first generation of biochemical studies of complex, iron-sulfur-cluster-containing [FeFe]-hydrogenases and Mo-nitrogenase were carried out on enzymes purified from Clostridium pasteurianum (strain W5). Previous studies suggested that two distinct [FeFe]-hydrogenases are expressed differentially under nitrogen-fixing and non-nitrogen-fixing conditions. As a result, the first characterized [FeFe]-hydrogenase (CpI) is presumed to have a primary role in central metabolism, recycling reduced electron carriers that accumulate during fermentation via proton reduction. A role for capturing reducing equivalents released as hydrogen during nitrogen fixation has been proposed for the second hydrogenase, CpII. Biochemical characterization of CpI and CpII indicated CpI has extremely high hydrogen production activity in comparison to CpII, while CpII has elevated hydrogen oxidation activity in comparison to CpI when assayed under the same conditions. This suggests that these enzymes have evolved a catalytic bias to support their respective physiological functions. Using the published genome of C. pasteurianum (strain W5) hydrogenase sequences were identified, including the already known [NiFe]-hydrogenase, CpI, and CpII sequences, and a third hydrogenase, CpIII was identified in the genome as well. Quantitative real-time PCR experiments were performed in order to analyze transcript abundance of the hydrogenases under diazotrophic and non-diazotrophic growth conditions. There is a markedly reduced level of CpI gene expression together with concomitant increases in CpII gene expression under nitrogen-fixing conditions. Structure-based analyses of the CpI and CpII sequences reveal variations in their catalytic sites that may contribute to their alternative physiological roles. This work demonstrates that the physiological roles of CpI and CpII are to evolve and to consume hydrogen, respectively, in concurrence with their catalytic activities in vitro, with CpII capturing excess reducing equivalents under nitrogen fixation conditions. Comparison of the primary sequences of CpI and CpII and their homologs provides an initial basis for identifying key structural determinants that modulate hydrogen production and hydrogen oxidation activities. PMID:28747909
NASA Astrophysics Data System (ADS)
El-Gammal, O. A.; Bekheit, M. M.; El-Brashy, S. A.
2015-02-01
New Co(II), Ni(II) and Cu(II) complexes derived from tetradentate macrocyclic nitrogen ligand, (1E,4E,8E,12E)-5,8,13,16-tetramethyl-1,4,9,12-tetrazacyclohexadeca-4,8,12,16-tetraene (EDHDH) have been synthesized. The complexes have been characterized by elemental analysis, spectral (IR, UV-Vis, 1H NMR and ESR (for Cu(II) complex)) mass, and magnetic as well as thermal analysis measurements. The complexes afforded the formulae: [Cu(EDHDH)Cl2]·2EtOH and [M(EDHDH)X2]·nH2O where M = Co(II) and Ni(II), X = Cl- or OH-, n = 1,0, respectively. The data revealed an octahedral arrangement with N4 tetradentate donor sites in addition to two Cl atoms occupying the other two sites. ESR spectrum of Cu2+ complex confirmed the suggested geometry with values of a α2and β2 indicating that the in-plane σ-bonding and in-plane π-bonding are appreciably covalent, and are consistent with very strong σ-in-plane bonding in the complexes. The molecular modeling is drawn and showed the bond length, bond angle, chemical reactivity, energy components (kcal/mol) and binding energy (kcal/mol) for all the title compounds using DFT method. Also, the thermal behavior and the kinetic parameters of degradation were determined using Coats-Redfern and Horowitz-Metzger methods. Moreover, the in vitro antibacterial studies of all compounds screened against pathogenic bacteria (two Gram +ve and two Gram -ve) to assess their inhibiting potential. The assay indicated that the inhibition potential is metal ion dependent. The ligand, EDHDH, Co(II) and Cu(II) complexes exhibited a remarkable antibacterial activity against Streptococcus Pyogenes as Gram +ve and Proteus vulgaris as Gram -ve bacterial strains. On the other hand, Ni(II) complex revealed a moderate antibacterial activity against both Gram +ve organisms and no activity against Gram -ve bacterial strain.
Guo, Anque; Kontoudakis, Nikolaos; Scollary, Geoffrey R; Clark, Andrew C
2017-03-22
This study establishes the influence of Cu(II), Fe(II), Fe(III), Zn(II), Al(III), and Mn(II) on the oxidative production of xanthylium cations from (+)-catechin and either tartaric acid or glyoxylic acid in model wine systems. The reaction was studied at 25 °C using UHPLC and LC-HRMS for the analysis of phenolic products and their isomeric distribution. In addition to the expected products, a colorless product, tentatively assigned as a lactone, was detected for the first time. The results show the importance of Fe ions and a synergistic influence of Mn(II) in degrading tartaric acid to glyoxylic acid, whereas the other metal ions had minimal activity in this mechanistic step. Fe(II) and Fe(III) were shown to mediate the (+)-catechin-glyoxylic acid addition reaction, a role previously attributed to only Cu(II). Importantly, the study demonstrates that C-8 addition products of (+)-catechin are promoted by Cu(II), whereas C-6 addition products are promoted by Fe ions.
Dougherty, Thomas J; Sumlin, Adam B; Greco, William R; Weishaupt, Kenneth R; Vaughan, Lurine A; Pandey, Ravindra K
2002-07-01
A study has been carried out to define the importance of the peripheral benzodiazepine receptor (PBR) as a binding site for a series of chlorin-type photosensitizers, pyropheophorbide-a ethers, the subject of a previous quantitative structure-activity relationship study by us. The effects of the PBR ligand PK11195 on the photodynamic activity have been determined in vivo for certain members of this series of alkyl-substituted ethers: two of the most active derivatives (hexyl and heptyl), the least active derivative (dodecyl [C12]) and one of intermediate activity (octyl [C8]). The photodynamic therapy (PDT) effect was inhibited by PK11195 for both of the most active derivatives, but no effect on PDT activity was found for the less active C12 or C8 ethers. The inhibitory effects of PK11195 were predicted by the binding of only the active derivatives to the benzodiazepine site on albumin, ie. human serum albumin (HSA)-Site II. Thus, as with certain other types of photosensitizers, it has been demonstrated with this series of pyropheophorbide ethers that in vitro binding to HSA-Site II is a predictor of both optimal in vivo activity and binding to the PBR in vivo.
Bhore, Subhash J.; Cha, Thye S.; Amelia, Kassim; Shah, Farida H.
2014-01-01
Background: Palm oil derived from fruits (mesocarp) of African oil palm (Elaeis guineensis Jacq. Tenera) and American oil palm (E. oleifera) is important for food industry. Due to high yield, Elaeis guineensis (Tenera) is cultivated on commercial scale, though its oil contains high (~54%) level of saturated fatty acids. The rate-limiting activity of beta-ketoacyl-[ACP] synthase-II (KAS-II) is considered mainly responsible for the high (44%) level of palmitic acid (C16:0) in the oil obtained from E. guineensis. Objective: The objective of this study was to annotate KAS-II cDNA isolated from American and African oil palms. Materials and Methods: The full-length E. oleifera KAS-II (EoKAS-II) cDNA clone was isolated using random method of gene isolation. Whereas, the E. guineensis KAS-II (EgTKAS-II) cDNA was isolated using reverse transcriptase polymerase chain reaction (RT-PCR) technique; and missing ends were obtained by employing 5’and 3’ RACE technique. Results: The results show that EoKAS-II and EgTKAS-II open reading frames (ORFs) are of 1689 and 1721 bp in length, respectively. Further analysis of the both EoKAS-II and EgTKAS-II predicted protein illustrates that they contains conserved domains for ‘KAS-I and II’, ‘elongating’ condensing enzymes, ‘condensing enzymes super-family’, and ‘3-oxoacyl-[ACP] synthase II’. The predicted protein sequences shows 95% similarity with each other. Consecutively, the three active sites (Cys, His, and His) were identified in both proteins. However, difference in positions of two active Histidine (His) residues was noticed. Conclusion: These insights may serve as the foundation in understanding the variable activity of KAS-II in American and African oil palms; and cDNA clones could be useful in the genetic engineering of oil palms. PMID:24678202
Hargreaves, P; Rahman, S; Guthrie, P; Taanman, J W; Leonard, J V; Land, J M; Heales, S J R
2002-02-01
Mitochondrial DNA (mtDNA) depletion syndrome (McKusick 251880) is characterized by a progressive quantitative loss of mtDNA resulting in severe mitochondrial dysfunction. A diagnosis of mtDNA depletion can only be confirmed after Southern blot analysis of affected tissue. Only a limited number of centres have the facilities to offer this service, and this is frequently on an irregular basis. There is therefore a need for a test that can refine sample selection as well as complementing the molecular analysis. In this study we compared the activities of the nuclear-encoded succinate ubiquinone reductase (complex II) to the activities of the combined mitochondrial and nuclear-encoded mitochondrial electron transport chain (ETC) complexes; NADH:ubiquinone reductase (complex I), ubiquinol-cytochrome-c reductase (complex III), and cytochrome-c oxidase (complex IV), in skeletal muscle biopsies from 7 patients with confirmed mtDNA depletion. In one patient there was no evidence of an ETC defect. However, the remaining 6 patients exhibited reduced complex I and IV activities. Five of these patients also displayed reduced complex II-III (succinate:cytochrome-c reductase) activity. Individual measurement of complex II and complex III activities demonstrated normal levels of complex II activity compared to complex III, which was reduced in the 5 biopsies assayed. These findings suggest a possible diagnostic value for the detection of normal levels of complex II activity in conjunction with reduced complex I, III and IV activity in the identification of likely candidates for mtDNA depletion syndrome
Detecting Changes Following the Provision of Assistive Devices: Utility of the WHO-DAS II
ERIC Educational Resources Information Center
Raggi, Alberto
2010-01-01
The World Health Organization Disability Assessment Schedule II (WHO-DAS II) is a non-disease-specific International Classification of Functioning, Disability, and Health-based disability assessment instrument developed to measure activity limitations and restrictions to participation. The aim of this pilot study is to evaluate WHO-DAS II…
Inhibitor-based validation of a homology model of the active-site of tripeptidyl peptidase II.
De Winter, Hans; Breslin, Henry; Miskowski, Tamara; Kavash, Robert; Somers, Marijke
2005-04-01
A homology model of the active site region of tripeptidyl peptidase II (TPP II) was constructed based on the crystal structures of four subtilisin-like templates. The resulting model was subsequently validated by judging expectations of the model versus observed activities for a broad set of prepared TPP II inhibitors. The structure-activity relationships observed for the prepared TPP II inhibitors correlated nicely with the structural details of the TPP II active site model, supporting the validity of this model and its usefulness for structure-based drug design and pharmacophore searching experiments.
Respiratory chain complex II as general sensor for apoptosis.
Grimm, Stefan
2013-05-01
I review here the evidence that complex II of the respiratory chain (RC) constitutes a general sensor for apoptosis induction. This concept emerged from work on neurodegenerative diseases and from recent data on metabolic alterations in cancer cells affecting the RC and in particular on mutations of complex II subunits. It is also supported by experiments with many anticancer compounds that compared the apoptosis sensitivities of complex II-deficient versus WT cells. These results are explained by the mechanistic understanding of how complex II mediates the diverse range of apoptosis signals. This protein aggregate is specifically activated for apoptosis by pH change as a common and early feature of dying cells. This leads to the dissociation of its SDHA and SDHB subunits from the remaining membrane-anchored subunits and the consequent block of it enzymatic SQR activity, while its SDH activity, which is contained in the SDHA/SDHB subcomplex, remains intact. The uncontrolled SDH activity then generates excessive amounts of reactive oxygen species for the demise of the cell. Future studies on these mitochondrial processes will help refine this model, unravel the contribution of mutations in complex II subunits as the cause of degenerative neurological diseases and tumorigenesis, and aid in discovering novel interference options. This article is part of a Special Issue entitled: Respiratory complex II: Role in cellular physiology and disease. Copyright © 2012 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marinello, M.; Rodríguez-Ardila, A.; Garcia-Rissmann, A.
2016-04-01
We present a study of Fe ii emission in the near-infrared region (NIR) for 25 active galactic nuclei (AGNs) to obtain information about the excitation mechanisms that power it and the location where it is formed. We employ an NIR Fe ii template derived in the literature and find that it successfully reproduces the observed Fe ii spectrum. The Fe ii bump at 9200 Å detected in all objects studied confirms that Lyα fluorescence is always present in AGNs. The correlation found between the flux of the 9200 Å bump, the 1 μm lines, and the optical Fe ii implies that Lyα fluorescencemore » plays an important role in Fe ii production. We determined that at least 18% of the optical Fe ii is due to this process, while collisional excitation dominates the production of the observed Fe ii. The line profiles of Fe ii λ10502, O i λ11287, Ca ii λ8664, and Paβ were compared to gather information about the most likely location where they are emitted. We found that Fe ii, O i and Ca ii have similar widths and are, on average, 30% narrower than Paβ. Assuming that the clouds emitting the lines are virialized, we show that the Fe ii is emitted in a region twice as far from the central source than Paβ. The distance, though, strongly varies: from 8.5 light-days for NGC 4051 to 198.2 light-days for Mrk 509. Our results reinforce the importance of the Fe ii in the NIR to constrain critical parameters that drive its physics and the underlying AGN kinematics, as well as more accurate models aimed at reproducing this complex emission.« less
Kim, Kye-Young; Kawamoto, Sachiyo; Bao, Jianjun; Sellers, James R.; Adelstein, Robert S.
2008-01-01
We report the initial biochemical characterization of an alternatively spliced isoform of nonmuscle heavy meromyosin (HMM) II-B2 and compare it with HMM II-B0, the non-spliced isoform. HMM II-B2 is the HMM derivative of an alternatively spliced isoform of endogenous nonmuscle myosin (NM) II-B, which has 21-amino acids inserted into loop 2, near the actin-binding region. NM II-B2 is expressed in the Purkinje cells of the cerebellum as well as in other neuronal cells (Ma et al., Mol. Biol. Cell 15 (2006) 2138-2149). In contrast to any of the previously described isoforms of NM II (II-A, II-B0, II-B1, II-C0 and II-C1) or to smooth muscle myosin, the actin-activated MgATPase activity of HMM II-B2 is not significantly increased from a low, basal level by phosphorylation of the 20 kDa myosin light chain (MLC-20). Moreover, although HMM II-B2 can bind to actin in the absence of ATP and is released in its presence, it cannot propel actin in the sliding actin filament assay following MLC-20 phosphorylation. Unlike HMM II-B2, the actin-activated MgATPase activity of a chimeric HMM with the 21-amino acids II-B2 sequence inserted into the homologous location in the heavy chain of HMM II-C is increased following MLC-20 phosphorylation. This indicates that the effect of the II-B2 insert is myosin heavy chain specific. PMID:18060863
Active site loop dynamics of a class IIa fructose 1,6-bisphosphate aldolase from M. tuberculosis
Pegan, Scott D.; Rukseree, Kamolchanok; Capodagli, Glenn C.; Baker, Erica A; Krasnykh, Olga; Franzblau, Scott G; Mesecar, Andrew D
2014-01-01
Class II fructose 1,6-bisphosphate aldolases (FBA; E.C. 4.1.2.13) comprise one of two families of aldolases. Instead of forming a Schiff-base intermediate using an ε-amino group of a lysine side chain, class II FBAs utilize Zn(II) to stabilize a proposed hydroxyenolate intermediate (HEI) in the reversible cleavage of fructose 1,6-bisphosphate forming glyceraldehyde 3-phosphate and dihydroxyacetone phosphate (DHAP). As class II FBAs has been shown to be essential in pathogenic bacteria, focus has been placed on these enzymes as potential antibacterial targets. Although structural studies on class II FBAs from Mycobacterium tuberculosis (MtFBA), other bacteria and protozoa have been reported, the structure of the active site loop responsible for catalyzing the protonation/deprotonation steps of the reaction for class II FBAs has not yet been observed. We therefore utilized the potent class II FBA inhibitor phosphoglycolohydroxamate (PGH) as a mimic of the HEI/DHAP bound form of the enzyme and determined the X-ray structure of MtFBA-PGH complex to 1.58 Å. Remarkably, we are able to observe well-defined electron density for the previously elusive active site loop of MtFBA trapped in a catalytically competent orientation. Utilization of this structural information plus site-directed mutagenesis and kinetic studies conducted on a series of residues within the active-site loop revealed that E169 facilitates a water mediated deprotonation/protonation step of the MtFBA reaction mechanism. Also, secondary isotope effects on MtFBA and catalytically relevant mutants were used to probe the effect of loop flexibility on catalytic efficiency. Additionally, we also reveal the structure of MtFBA in its holoenzyme form. PMID:23298222
Pegan, Scott D; Rukseree, Kamolchanok; Capodagli, Glenn C; Baker, Erica A; Krasnykh, Olga; Franzblau, Scott G; Mesecar, Andrew D
2013-02-05
Class II fructose 1,6-bisphosphate aldolases (FBAs, EC 4.1.2.13) comprise one of two families of aldolases. Instead of forming a Schiff base intermediate using an ε-amino group of a lysine side chain, class II FBAs utilize Zn(II) to stabilize a proposed hydroxyenolate intermediate (HEI) in the reversible cleavage of fructose 1,6-bisphosphate, forming glyceraldehyde 3-phosphate and dihydroxyacetone phosphate (DHAP). As class II FBAs have been shown to be essential in pathogenic bacteria, focus has been placed on these enzymes as potential antibacterial targets. Although structural studies of class II FBAs from Mycobacterium tuberculosis (MtFBA), other bacteria, and protozoa have been reported, the structure of the active site loop responsible for catalyzing the protonation-deprotonation steps of the reaction for class II FBAs has not yet been observed. We therefore utilized the potent class II FBA inhibitor phosphoglycolohydroxamate (PGH) as a mimic of the HEI- and DHAP-bound form of the enzyme and determined the X-ray structure of the MtFBA-PGH complex to 1.58 Å. Remarkably, we are able to observe well-defined electron density for the previously elusive active site loop of MtFBA trapped in a catalytically competent orientation. Utilization of this structural information and site-directed mutagenesis and kinetic studies conducted on a series of residues within the active site loop revealed that E169 facilitates a water-mediated deprotonation-protonation step of the MtFBA reaction mechanism. Also, solvent isotope effects on MtFBA and catalytically relevant mutants were used to probe the effect of loop flexibility on catalytic efficiency. Additionally, we also reveal the structure of MtFBA in its holoenzyme form.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pegan, Scott D.; Rukseree, Kamolchanok; Capodagli, Glenn C.
The class II fructose 1,6-bisphosphate aldolases (FBAs, EC 4.1.2.13) comprises one of two families of aldolases. Instead of forming a Schiff base intermediate using an ε-amino group of a lysine side chain, class II FBAs utilize Zn(II) to stabilize a proposed hydroxyenolate intermediate (HEI) in the reversible cleavage of fructose 1,6-bisphosphate, forming glyceraldehyde 3-phosphate and dihydroxyacetone phosphate (DHAP). As class II FBAs have been shown to be essential in pathogenic bacteria, focus has been placed on these enzymes as potential antibacterial targets. Although structural studies of class II FBAs from Mycobacterium tuberculosis (MtFBA), other bacteria, and protozoa have been reported,more » the structure of the active site loop responsible for catalyzing the protonation–deprotonation steps of the reaction for class II FBAs has not yet been observed. We therefore utilized the potent class II FBA inhibitor phosphoglycolohydroxamate (PGH) as a mimic of the HEI- and DHAP-bound form of the enzyme and determined the X-ray structure of the MtFBA–PGH complex to 1.58 Å. Remarkably, we are able to observe well-defined electron density for the previously elusive active site loop of MtFBA trapped in a catalytically competent orientation. Utilization of this structural information and site-directed mutagenesis and kinetic studies conducted on a series of residues within the active site loop revealed that E169 facilitates a water-mediated deprotonation–protonation step of the MtFBA reaction mechanism. Furthermore, solvent isotope effects on MtFBA and catalytically relevant mutants were used to probe the effect of loop flexibility on catalytic efficiency. Additionally, we also reveal the structure of MtFBA in its holoenzyme form.« less
Mehta, Jawahar L; Hu, Bo; Chen, Jiawei; Li, Dayuan
2003-12-01
LOX-1, a novel lectin-like receptor for oxidized LDL (ox-LDL), is expressed in response to ox-LDL, angiotensin II (Ang II), tumor necrosis factor (TNF)-alpha, and other stress stimuli. It is highly expressed in atherosclerotic tissues. Peroxisome proliferator-activated receptor (PPAR)-gamma ligands, such as pioglitazone, exert antiatherosclerotic effects. This study examined the regulation of LOX-1 expression in human coronary artery endothelial cells (HCAECs) by pioglitazone. Fourth generation HCAECs were treated with ox-LDL, Ang II, or TNF-alpha with or without pioglitazone pretreatment. All 3 stimuli upregulated LOX-1 expression (mRNA and protein). Pioglitazone, in a concentration-dependent manner, reduced LOX-1 expression (P<0.01 versus ox-LDL, Ang II, or TNF-alpha alone). Ox-LDL, Ang II, and TNF-alpha each enhanced intracellular superoxide radical generation, and pioglitazone pretreatment reduced superoxide generation (P<0.01 versus ox-LDL, Ang II, or TNF-alpha). Furthermore, all 3 stimuli upregulated the expression of the transcription factors nuclear factor-kappaB and activator protein-1 (determined by electrophoretic mobility shift assay), and pioglitazone pretreatment reduced this expression (P<0.01 versus ox-LDL, Ang II, or TNF-alpha). To determine the biological significance of pioglitazone-mediated downregulation of LOX-1, we studied monocyte adhesion to ox-LDL-treated HCAECs. Pioglitazone reduced the adhesion of monocytes to activated HCAECs in a fashion similar to that produced by antisense to LOX-1 mRNA. These observations suggest that the PPAR-gamma ligand pioglitazone reduces intracellular superoxide radical generation and subsequently reduces the expression of transcription factors, expression of the LOX-1 gene, and monocyte adhesion to activated endothelium. The salutary effect of PPAR-gamma ligands in atherogenesis may involve the inhibition of LOX-1 and the adhesion of monocytes to endothelium.
Angiotensin II stimulates calcium-dependent activation of c-Jun N-terminal kinase.
Zohn, I E; Yu, H; Li, X; Cox, A D; Earp, H S
1995-01-01
In GN4 rat liver epithelial cells, angiotensin II (Ang II) and other agonists which activate phospholipase C stimulate tyrosine kinase activity in a calcium-dependent, protein kinase C (PKC)-independent manner. Since Ang II also produces a proliferative response in these cells, we investigated downstream signaling elements traditionally linked to growth control by tyrosine kinases. First, Ang II, like epidermal growth factor (EGF), stimulated AP-1 binding activity in a PKC-independent manner. Because increases in AP-1 can reflect induction of c-Jun and c-Fos, we examined the activity of the mitogen-activated protein (MAP) kinase family members Erk-1 and -2 and the c-Jun N-terminal kinase (JNK), which are known to influence c-Jun and c-Fos transcription. Ang II stimulated MAP kinase (MAPK) activity but only approximately 50% as effectively as EGF; again, these effects were independent of PKC. Ang II also produced a 50- to 200-fold activation of JNK in a PKC-independent manner. Unlike its smaller effect on MAPK, Ang II was approximately four- to sixfold more potent in activating JNK than EGF was. Although others had reported a lack of calcium ionophore-stimulated JNK activity in lymphocytes and several other cell lines, we examined the role of calcium in GN4 cells. The following results suggest that JNK activation in rat liver epithelial cells is at least partially Ca(2+) dependent: (i) norepinephrine and vasopressin hormones that increase inositol 1,4,5-triphosphate stimulated JNK; (ii) both thapsigargin, a compound that produces an intracellular Ca(2+) signal, and Ca(2+) ionophores stimulated a dramatic increase in JNK activity (up to 200-fold); (iii) extracellular Ca(2+) chelation with ethylene glycol tetraacetic acid (EGTA) inhibited JNK activation by ionophore and intracellular chelation with 1,2-bis-(o-aminophenoxy)-ethane-N,N,N',N'-tetraacetic acid tetraacetoxymethyl-ester (BAPTA-AM) partially inhibited JNK activation by Ang II or thapsigargin; and (iv) JNK activation by Ang II was inhibited by pretreatment of cells with thapsigargin and EGTA, a procedure which depletes intracellular Ca(2+) stores. JNK activation following Ang II stimulation did not involve calmodulin; either W-7 nor calmidizolium, in concentrations sufficient to inhibit Ca(2+)/calmodulin-dependent kinase II, blocked JNK activation by Ang II. In contrast, genistein, in concentrations sufficient to inhibit Ca(2+)-dependent tyrosine phosphorylation, prevented Ang II and thapsigargin-induced JNK activation. In summary, in GN4 rat liver epithelial cells, Ang II stimulates JNK via a novel Ca(2+)-dependent pathway. The inhibition by genistein suggest that Ca(2+)-dependent tyrosine phosphorylation may modulate the JNK pathway in a cell type-specific manner, particularly in cells with a readily detectable Ca(2+)-regulated tyrosine kinase. PMID:7565768
Yoshida, Tadashi; Tabony, A. Michael; Galvez, Sarah; Mitch, William E.; Higashi, Yusuke; Sukhanov, Sergiy; Delafontaine, Patrice
2013-01-01
Cachexia is a serious complication of many chronic diseases, such as congestive heart failure (CHF) and chronic kidney disease (CKD). Many factors are involved in the development of cachexia, and there is increasing evidence that angiotensin II (Ang II), the main effector molecule of the renin-angiotensin system (RAS), plays an important role in this process. Patients with advanced CHF or CKD often have increased Ang II levels and cachexia, and angiotensin-converting enzyme (ACE) inhibitor treatment improves weight loss. In rodent models, an increase in systemic Ang II leads to weight loss through increased protein breakdown, reduced protein synthesis in skeletal muscle and decreased appetite. Ang II activates the ubiquitin-proteasome system via generation of reactive oxygen species and via inhibition of the insulin-like growth factor-1 signaling pathway. Furthermore, Ang II inhibits 5′ AMP-activated protein kinase (AMPK) activity and disrupts normal energy balance. Ang II also increases cytokines and circulating hormones such as tumor necrosis factor-α, interleukin-6, serum amyloid-A, glucocorticoids and myostatin, which regulate muscle protein synthesis and degradation. Ang II acts on hypothalamic neurons to regulate orexigenic/anorexigenic neuropeptides, such as neuropeptide-Y, orexin and corticotropin-releasing hormone, leading to reduced appetite. Also, Ang II may regulate skeletal muscle regenerative processes. Several clinical studies have indicated that blockade of Ang II signaling via ACE inhibitors or Ang II type 1 receptor blockers prevents weight loss and improves muscle strength. Thus the RAS is a promising target for the treatment of muscle atrophy in patients with CHF and CKD. PMID:23769949
Suzuki, Kazuyuki; Endo, Ryujin; Takikawa, Yasuhiro; Moriyasu, Fuminori; Aoyagi, Yutaka; Moriwaki, Hisataka; Terai, Shuji; Sakaida, Isao; Sakai, Yoshiyuki; Nishiguchi, Shuhei; Ishikawa, Toru; Takagi, Hitoshi; Naganuma, Atsushi; Genda, Takuya; Ichida, Takafumi; Takaguchi, Koichi; Miyazawa, Katsuhiko; Okita, Kiwamu
2018-05-01
The efficacy and safety of rifaximin in the treatment of hepatic encephalopathy (HE) are widely known, but they have not been confirmed in Japanese patients with HE. Thus, two prospective, randomized studies (a phase II/III study and a phase III study) were carried out. Subjects with grade I or II HE and hyperammonemia were enrolled. The phase II/III study, which was a randomized, evaluator-blinded, active-comparator, parallel-group study, was undertaken at 37 institutions in Japan. Treatment periods were 14 days. Eligible patients were randomized to the rifaximin group (1200 mg/day) or the lactitol group (18-36 g/day). The phase III study was carried out in the same patients previously enrolled in the phase II/III study, and they were all treated with rifaximin (1200 mg/day) for 10 weeks. In the phase II/III study, 172 patients were enrolled. Blood ammonia (B-NH 3 ) concentration was significantly improved in the rifaximin group, but the difference between the two groups was not significant. The portal systemic encephalopathy index (PSE index), including HE grade, was significantly improved in both groups. In the phase III study, 87.3% of enrolled patients completed the treatment. The improved B-NH 3 concentration and PSE index were well maintained from the phase II/III study during the treatment period of the phase III study. Adverse drug reactions (ADRs) were seen in 13.4% of patients who received rifaximin, but there were no severe ADRs leading to death. The efficacy of rifaximin is sufficient and treatment is well tolerated in Japanese patients with HE and hyperammonemia. © 2017 The Japan Society of Hepatology.
Chen, Yi-Jen; Chen, Yao-Chang; Tai, Ching-Tai; Yeh, Hung-I; Lin, Cheng-I; Chen, Shih-Ann
2006-01-01
Angiotensin II receptor blockers (AIIRBs) have been shown to prevent atrial fibrillation. The pulmonary veins (PVs) are the most important focus for the generation of atrial fibrillation. The aim of this study was to evaluate whether angiotensin II or AIIRB may change the arrhythmogenic activity of the PVs. Conventional microelectrodes and whole-cell patch clamps were used to investigate the action potentials (APs) and ionic currents in isolated rabbit PV tissue and single cardiomyocytes before and after administering angiotensin II or losartan (AIIRB). In the tissue preparations, angiotensin II induced delayed after-depolarizations (1, 10, and 100 nM) and accelerated the automatic rhythm (10 and 100 nM). Angiotensin II (100 nM) prolonged the AP duration and increased the contractile force (10 and 100 nM). Losartan (1 and 10 microM) inhibited the automatic rhythm. Losartan (10 microM) prolonged the AP duration and reduced the contractile force (1 and 10 microM). Angiotensin II reduced the transient outward potassium current (I(to)) but increased the L-type calcium, delayed rectifier potassium (I(K)), transient inward (I(ti)), pacemaker, and Na(+)-Ca(2+) exchanger (NCX) currents in the PV cardiomyocytes. Losartan decreased the I(to), I(K), I(ti), and NCX currents. In conclusion, angiotensin II and AIIRB modulate the PV electrical activity, which may play a role in the pathophysiology of atrial fibrillation.
Nearly simultaneous observations of chromospheric and coronal radiative losses of cool stars
NASA Technical Reports Server (NTRS)
Schrijver, C. J.; Dobson, A. K.; Radick, R. R.
1992-01-01
The flux-flux relationships of cool stars are studied on the basis of nearly simultaneous measurements of Ca II H+K, Mg II h+k, and soft X-ray fluxes. A linear relationship is derived between IUE Mg II h+k fluxes and Mount Wilson Ca II H+K fluxes which were obtained within 36 hr of each other for a sample of 26 F5-K3 main-sequence stars. Nearly simultaneous EXOSAT soft X-ray fluxes are compared with Ca II H+K fluxes for a sample of 20 dwarfs and gaints with spectral types ranging from F6 to K2, and 72 additional cool stars for which noncontemporaneous Ca II H+K and EINSTEIN soft X-ray fluxes are available are compared. It is confirmed that a nonradiatively heated chromosphere exists on even the least active main-sequence stars. This basal chromosphere is probably independent of stellar magnetic activity.
Alves, Cléber Rene; Fernandes, Tiago; Lemos, José Ribeiro; Magalhães, Flávio de Castro; Trombetta, Ivani Credidio; Alves, Guilherme Barreto; da Mota, Glória de Fátima Alves; Dias, Rodrigo Gonçalves; Pereira, Alexandre Costa; Krieger, José Eduardo; Negrão, Carlos Eduardo; Oliveira, Edilamar Menezes
2018-01-01
Introduction: Previous studies have linked angiotensin-converting enzyme (ACE) insertion (I)/deletion (D) polymorphism (II, ID and DD) to physical performance. Moreover, ACE has two catalytic domains: NH2 (N) and COOH (C) with distinct functions, and their activity has been found to be modulated by ACE polymorphism. The aim of the present study is to investigate the effects of the interaction between aerobic exercise training (AET) and ACE I/D polymorphism on ACE N- and C-domain activities and vascular reactivity in humans. Materials and methods: A total of 315 pre-selected healthy males were genotyped for II, ID and DD genotypes. Fifty completed the full AET (II, n = 12; ID, n = 25; and DD, n = 13), performed in three 90-minute sessions weekly, in the four-month exercise protocol. Pre- and post-training resting heart rate (HR), peak O2 consumption (VO2 peak), mean blood pressure (MBP), forearm vascular conduction (FVC), total circulating ACE and C- and N-domain activities were assessed. One-way ANOVA and two-way repeated-measures ANOVA were used. Results: In pre-training, all variables were similar among the three genotypes. In post-training, a similar increase in FVC (35%) was observed in the three genotypes. AET increased VO2 peak similarly in II, ID and DD (49±2 vs. 57±1; 48±1 vs. 56±3; and 48±5 vs. 58±2 ml/kg/min, respectively). Moreover, there were no changes in HR and MBP. The DD genotype was also associated with greater ACE and C-domain activities at pre- and post-training when compared to II. AET decreased similarly the total ACE and C-domain activities in all genotypes, while increasing the N-domain activity in the II and DD genotypes. However, interestingly, the measurements of N-domain activity after training indicate a greater activity than the other genotypes. These results suggest that the vasodilation in response to AET may be associated with the decrease in total ACE and C-domain activities, regardless of genotype, and that the increase in N-domain activity is dependent on the DD genotype. Conclusions: AET differentially affects the ACE C- and N-domain activities, and the N-domain activity is dependent on ACE polymorphism. PMID:29629833
Alves, Cléber Rene; Fernandes, Tiago; Lemos, José Ribeiro; Magalhães, Flávio de Castro; Trombetta, Ivani Credidio; Alves, Guilherme Barreto; Mota, Glória de Fátima Alves da; Dias, Rodrigo Gonçalves; Pereira, Alexandre Costa; Krieger, José Eduardo; Negrão, Carlos Eduardo; Oliveira, Edilamar Menezes
2018-01-01
Previous studies have linked angiotensin-converting enzyme ( ACE) insertion (I)/deletion (D) polymorphism (II, ID and DD) to physical performance. Moreover, ACE has two catalytic domains: NH2 (N) and COOH (C) with distinct functions, and their activity has been found to be modulated by ACE polymorphism. The aim of the present study is to investigate the effects of the interaction between aerobic exercise training (AET) and ACE I/D polymorphism on ACE N- and C-domain activities and vascular reactivity in humans. A total of 315 pre-selected healthy males were genotyped for II, ID and DD genotypes. Fifty completed the full AET (II, n = 12; ID, n = 25; and DD, n = 13), performed in three 90-minute sessions weekly, in the four-month exercise protocol. Pre- and post-training resting heart rate (HR), peak O 2 consumption (VO 2 peak), mean blood pressure (MBP), forearm vascular conduction (FVC), total circulating ACE and C- and N-domain activities were assessed. One-way ANOVA and two -way repeated-measures ANOVA were used. In pre-training, all variables were similar among the three genotypes. In post-training, a similar increase in FVC (35%) was observed in the three genotypes. AET increased VO 2 peak similarly in II, ID and DD (49±2 vs. 57±1; 48±1 vs. 56±3; and 48±5 vs. 58±2 ml/kg/min, respectively). Moreover, there were no changes in HR and MBP. The DD genotype was also associated with greater ACE and C-domain activities at pre- and post-training when compared to II. AET decreased similarly the total ACE and C-domain activities in all genotypes, while increasing the N-domain activity in the II and DD genotypes. However, interestingly, the measurements of N-domain activity after training indicate a greater activity than the other genotypes. These results suggest that the vasodilation in response to AET may be associated with the decrease in total ACE and C-domain activities, regardless of genotype, and that the increase in N-domain activity is dependent on the DD genotype. AET differentially affects the ACE C- and N-domain activities, and the N-domain activity is dependent on ACE polymorphism.
Than, Aung; Leow, Melvin Khee-Shing; Chen, Peng
2013-05-31
Angiotensin II (AngII), a peptide hormone released by adipocytes, can be catabolized by adipose angiotensin-converting enzyme 2 (ACE2) to form Ang(1-7). Co-expression of AngII receptors (AT1 and AT2) and Ang(1-7) receptors (Mas) in adipocytes implies the autocrine regulation of the local angiotensin system upon adipocyte functions, through yet unknown interactive mechanisms. In the present study, we reveal the adipogenic effects of Ang(1-7) through activation of Mas receptor and its subtle interplays with the antiadipogenic AngII-AT1 signaling pathways. Specifically, in human and 3T3-L1 preadipocytes, Ang(1-7)-Mas signaling promotes adipogenesis via activation of PI3K/Akt and inhibition of MAPK kinase/ERK pathways, and Ang(1-7)-Mas antagonizes the antiadipogenic effect of AngII-AT1 by inhibiting the AngII-AT1-triggered MAPK kinase/ERK pathway. The autocrine regulation of the AngII/AT1-ACE2-Ang(1-7)/Mas axis upon adipogenesis has also been revealed. This study suggests the importance of the local regulation of the delicately balanced angiotensin system upon adipogenesis and its potential as a novel therapeutic target for obesity and related metabolic disorders.
Madiraju, Padma; Hossain, Ekhtear; Anand-Srivastava, Madhu B
2018-02-07
We showed previously that natriuretic peptide receptor-C (NPR-C) agonist, C-ANP 4-23 , attenuated the enhanced expression of Giα proteins in vascular smooth muscle cells (VSMC) from spontaneously hypertensive rats (SHR) through the inhibition of enhanced oxidative stress. Since the enhanced levels of endogenous angiotensin II (Ang II) contribute to the overexpression of Giα proteins and augmented oxidative stress in VSMC from SHR, the present study was undertaken to investigate if C-ANP 4-23 could also attenuate angiotensin II (Ang II)-induced oxidative stress and associated signaling. Ang II treatment of aortic VSMC augmented the levels of superoxide anion (O 2 - ), NADPH oxidase activity, and the expression of NADPH oxidase subunits and C-ANP 4-23 treatment attenuated all these to control levels. In addition, Ang II-induced enhanced levels of thiobarbituric acid-reactive substances (TBARS) and protein carbonyl content were also attenuated toward control levels by C-ANP 4-23 treatment. On the other hand, Ang II inhibited the levels of nitric oxide (NO) and augmented the levels of peroxynitrite (OONO - ) in VSMC which were restored to control levels by C-ANP 4-23 treatment. Furthermore, C-ANP 4-23 treatment attenuated Ang II-induced enhanced expression of Giα proteins, phosphorylation of p38, JNK, and ERK 1,2 as well as hyperproliferation of VSMC as determined by DNA synthesis, and metabolic activity. These results indicate that C-ANP 4-23 , via the activation of NPR-C, attenuates Ang II-induced enhanced nitroxidative stress, overexpression of Giα proteins, increased activation of the p38/JNK/ERK 1,2 signaling pathways, and hyperproliferation of VSMC. It may be suggested that C-ANP 4-23 could be used as a therapeutic agent in the treatment of vascular remodeling associated with hypertension and atherosclerosis.
Ge, Huacai; Wang, Jincui
2017-02-01
Poly (acrylic acid) modified activated carbon nanocomposite (PAA-AC) was synthesized. The structure and morphology of this nanocomposite were characterized by FTIR, SEM, TEM, XRD and Zeta potential. The adsorption of some heavy metal ions on PAA-AC was studied. The characterization results indicated that PAA-AC was a novel and ear-like nanosheet material with the thickness of about 40 nm and the diameter of about 300 nm. The adsorption results exhibited that the introduction of carboxyl groups into activated carbon evidently increased the uptake for heavy metal ions and the nanocomposite had maximum uptake for Cd(II). Various variables affecting adsorption of PAA-AC for Cd(II) were systematically explored. The maximum capacity and equilibrium time for adsorption of Cd(II) by PAA-AC were 473.2 mg g -1 and 15 min. Moreover, the removal of Cd(II) for real electroplating wastewater by PAA-AC could reach 98.5%. These meant that the removal of Cd(II) by PAA-AC was highly efficient and fast. The sorption kinetics and isotherm fitted well with the pseudo-second-order model and Langmuir model, respectively. The adsorption mainly was a chemical process by chelation. Thermodynamic studies revealed that the adsorption was a spontaneous and endothermic process. The results revealed that PAA-AC could be considered as a potential candidate for Cd(II) removal. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Yeşilkaynak, Tuncay; Özpınar, Celal; Emen, Fatih Mehmet; Ateş, Burhan; Kaya, Kerem
2017-02-01
N-((5-chloropyridin-2-yl)carbamothioyl)furan-2-carboxamide (HL: C11H8ClN3O2S) and its Co(II), Ni(II) and Cu(II) complexes have been synthesized and characterized by elemental analysis, FT-IR,1H NMR and HR-MS methods. The HL was characterized by single crystal X-ray diffraction technique. It crystallizes in the monoclinic system. The HL has the space group P 1 21/c 1, Z = 4, and its unit cell parameters are a = 4.5437(5) Å, b = 22.4550(3) Å, c = 11.8947(14) Å. The ligand coordinates the metal ions as bidentate and thus essentially yields neutral complexes of the [ML2] type. ML2 complex structures were optimized using B97D/TZVP level. Molecular orbitals of both HL ligand were calculated at the same level. Thermal decomposition of the complexes has been investigated by thermogravimetry. The complexes were screened for their anticancer and antioxidant activities. Antioxidant activity of the complexes was determined by using the DPPH and ABTS assays. The anticancer activity of the complexes was studied by using MTT assay in MCF-7 breast cancer cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Xianwei, E-mail: XWang2@UAMS.edu; Lu, Jingjun; Khaidakov, Magomed
Aspirin (acetyl salicylic acid, ASA) is a common drug used for its analgesic and antipyretic effects. Recent studies show that ASA not only blocks cyclooxygenase, but also inhibits NADPH oxidase and resultant reactive oxygen species (ROS) generation, a pathway that underlies pathogenesis of several ailments, including hypertension and tissue remodeling after injury. In these disease states, angiotensin II (Ang II) activates NADPH oxidase via its type 1 receptor (AT1R) and leads to fibroblast growth and collagen synthesis. In this study, we examined if ASA would inhibit NADPH oxidase activation, upregulation of AT1R transcription, and subsequent collagen generation in mouse cardiacmore » fibroblasts challenged with Ang II. Mouse heart fibroblasts were isolated and treated with Ang II with or without ASA. As expected, Ang II induced AT1R expression, and stimulated cardiac fibroblast growth and collagen synthesis. The AT1R blocker losartan attenuated these effects of Ang II. Similarly to losartan, ASA, and its SA moiety suppressed Ang II-mediated AT1R transcription and fibroblast proliferation as well as expression of collagens and MMPs. ASA also suppressed the expression of NADPH oxidase subunits (p22{sup phox}, p47{sup phox}, p67{sup phox}, NOX2 and NOX4) and ROS generation. ASA did not affect total NF-κB p65, but inhibited its phosphorylation and activation. These observations suggest that ASA inhibits Ang II-induced NADPH oxidase expression, NF-κB activation and AT1R transcription in cardiac fibroblasts, and fibroblast proliferation and collagen expression. The critical role of NADPH oxidase activity in stimulation of AT1R transcription became apparent in experiments where ASA also inhibited AT1R transcription in cardiac fibroblasts challenged with H{sub 2}O{sub 2}. Since SA had similar effect as ASA on AT1R expression, we suggest that ASA's effect is mediated by its SA moiety. -- Highlights: ► Aspirin in therapeutic concentrations decreases mouse cardiac fibroblast growth and collagen formation. ► Aspirin decreases the transcription of angiotensin II type 1 receptor by inhibiting NADPH oxidase–NF-κB pathway. ► The inhibition of angiotensin II type 1 receptor expression may be the basis for reduction in fibroblast growth and collagen formation. ► The effects of aspirin appear to be mediated via its salicylate moiety.« less
The effect of sodium pertechnetate human carbonic anhydrase I and II
NASA Astrophysics Data System (ADS)
Sahin, Ali; Senturk, Murat
2017-04-01
The inhibitory effects of Na99mTcO4 (Sodium pertechnetate) on human erythrocyte carbonic anhydrase I and II activity were investigated. For this purpose, hCA I was initially purified 114,29-fold at a yield of 69,19 % and hCA II was initially purified 710,82-fold at a yield of 71,72 % using sepharose 4B-tyrosine-sulfanilamide affinity gel chromatography. The in vitro effect of this compound on hCA I and II isoenzyme were studied. It was detected in in vitro studies that the hCA I and II enzymes are inhibited due to Na99mTcO4.
Rapid X-ray Photoreduction of Dimetal-Oxygen Cofactors in Ribonucleotide Reductase
Sigfridsson, Kajsa G. V.; Chernev, Petko; Leidel, Nils; Popović-Bijelić, Ana; Gräslund, Astrid; Haumann, Michael
2013-01-01
Prototypic dinuclear metal cofactors with varying metallation constitute a class of O2-activating catalysts in numerous enzymes such as ribonucleotide reductase. Reliable structures are required to unravel the reaction mechanisms. However, protein crystallography data may be compromised by x-ray photoreduction (XRP). We studied XPR of Fe(III)Fe(III) and Mn(III)Fe(III) sites in the R2 subunit of Chlamydia trachomatis ribonucleotide reductase using x-ray absorption spectroscopy. Rapid and biphasic x-ray photoreduction kinetics at 20 and 80 K for both cofactor types suggested sequential formation of (III,II) and (II,II) species and similar redox potentials of iron and manganese sites. Comparing with typical x-ray doses in crystallography implies that (II,II) states are reached in <1 s in such studies. First-sphere metal coordination and metal-metal distances differed after chemical reduction at room temperature and after XPR at cryogenic temperatures, as corroborated by model structures from density functional theory calculations. The inter-metal distances in the XPR-induced (II,II) states, however, are similar to R2 crystal structures. Therefore, crystal data of initially oxidized R2-type proteins mostly contain photoreduced (II,II) cofactors, which deviate from the native structures functional in O2 activation, explaining observed variable metal ligation motifs. This situation may be remedied by novel femtosecond free electron-laser protein crystallography techniques. PMID:23400774
Rapid X-ray photoreduction of dimetal-oxygen cofactors in ribonucleotide reductase.
Sigfridsson, Kajsa G V; Chernev, Petko; Leidel, Nils; Popovic-Bijelic, Ana; Gräslund, Astrid; Haumann, Michael
2013-04-05
Prototypic dinuclear metal cofactors with varying metallation constitute a class of O2-activating catalysts in numerous enzymes such as ribonucleotide reductase. Reliable structures are required to unravel the reaction mechanisms. However, protein crystallography data may be compromised by x-ray photoreduction (XRP). We studied XPR of Fe(III)Fe(III) and Mn(III)Fe(III) sites in the R2 subunit of Chlamydia trachomatis ribonucleotide reductase using x-ray absorption spectroscopy. Rapid and biphasic x-ray photoreduction kinetics at 20 and 80 K for both cofactor types suggested sequential formation of (III,II) and (II,II) species and similar redox potentials of iron and manganese sites. Comparing with typical x-ray doses in crystallography implies that (II,II) states are reached in <1 s in such studies. First-sphere metal coordination and metal-metal distances differed after chemical reduction at room temperature and after XPR at cryogenic temperatures, as corroborated by model structures from density functional theory calculations. The inter-metal distances in the XPR-induced (II,II) states, however, are similar to R2 crystal structures. Therefore, crystal data of initially oxidized R2-type proteins mostly contain photoreduced (II,II) cofactors, which deviate from the native structures functional in O2 activation, explaining observed variable metal ligation motifs. This situation may be remedied by novel femtosecond free electron-laser protein crystallography techniques.
Ozdes, Duygu; Gundogdu, Ali; Kemer, Baris; Duran, Celal; Senturk, Hasan Basri; Soylak, Mustafa
2009-07-30
The objective of this study was to assess the adsorption potential of a waste mud (WM) for the removal of lead (Pb(II)) ions from aqueous solutions. The WM was activated with NaOH in order to increase its adsorption capacity. Adsorption studies were conducted in a batch system as a function of solution pH, contact time, initial Pb(II) concentration, activated-waste mud (a-WM) concentration, temperature, etc. Optimum pH was specified as 4.0. The adsorption kinetic studies indicated that the overall adsorption process was best described by pseudo-second-order kinetics. The equilibrium adsorption capacity of a-WM was obtained by using Langmuir and Freundlich isotherm models and both models fitted well. Adsorption capacity for Pb(II) was found to be 24.4 mg g(-1) for 10 g L(-1) of a-WM concentration. Thermodynamic parameters including the Gibbs free energy (Delta G degrees), enthalpy (Delta H degrees), and entropy (DeltaS degrees) indicated that the adsorption of Pb(II) ions on the a-WM was feasible, spontaneous and endothermic, at temperature range of 0-40 degrees C. Desorption studies were carried out successfully with diluted HCl solutions. The results indicate that a-WM can be used as an effective and no-cost adsorbent for the treatment of industrial wastewaters contaminated with Pb(II) ions.
NASA Astrophysics Data System (ADS)
Patil, Sangamesh A.; Prabhakara, Chetan T.; Halasangi, Bhimashankar M.; Toragalmath, Shivakumar S.; Badami, Prema S.
2015-02-01
The metal complexes of Co(II), Ni(II) and Cu(II) have been synthesized from 6-formyl-7,8-dihydroxy-4-methylcoumarin with o-toluidine/3-aminobenzotrifluoride. The synthesized Schiff bases and their metal complexes were structurally characterized based on IR, 1H NMR, 13C NMR, UV-visible, ESR, magnetic, thermal, fluorescence, mass and ESI-MS studies. The molar conductance values indicate that complexes are non-electrolytic in nature. Elemental analysis reveals ML2·2H2O [M = Co(II), Ni(II) and Cu(II)] stoichiometry, where 'L' stands for a singly deprotonated ligand. The presence of co-ordinated water molecules were confirmed by thermal studies. The spectroscopic studies suggest the octahedral geometry. Redox behavior of the complexes were confirmed by cyclic voltammetry. All the synthesized compounds were screened for their antibacterial (Escherichia coli, Pseudomonas auregenosa, klebsiella, Proteus, Staphylococcus aureus and salmonella) antifungal (Candida, Aspergillus niger and Rhizopus), anthelmintic (Pheretima posthuma) and DNA cleavage (Calf Thymus DNA) activity.
Patil, Sangamesh A; Prabhakara, Chetan T; Halasangi, Bhimashankar M; Toragalmath, Shivakumar S; Badami, Prema S
2015-02-25
The metal complexes of Co(II), Ni(II) and Cu(II) have been synthesized from 6-formyl-7,8-dihydroxy-4-methylcoumarin with o-toluidine/3-aminobenzotrifluoride. The synthesized Schiff bases and their metal complexes were structurally characterized based on IR, (1)H NMR, (13)C NMR, UV-visible, ESR, magnetic, thermal, fluorescence, mass and ESI-MS studies. The molar conductance values indicate that complexes are non-electrolytic in nature. Elemental analysis reveals ML2·2H2O [M = Co(II), Ni(II) and Cu(II)] stoichiometry, where 'L' stands for a singly deprotonated ligand. The presence of co-ordinated water molecules were confirmed by thermal studies. The spectroscopic studies suggest the octahedral geometry. Redox behavior of the complexes were confirmed by cyclic voltammetry. All the synthesized compounds were screened for their antibacterial (Escherichia coli, Pseudomonas auregenosa, klebsiella, Proteus, Staphylococcus aureus and salmonella) antifungal (Candida, Aspergillus niger and Rhizopus), anthelmintic (Pheretima posthuma) and DNA cleavage (Calf Thymus DNA) activity. Copyright © 2014 Elsevier B.V. All rights reserved.
Ali, Omyma A M
2014-11-11
Metal complexes of Schiff bases derived from furfuraldehyde and 4,5-dimethyl-1,2-phenylendiamine (L1) or 4,5-dichloro-1,2-phenylendiamine (L2) have been reported and characterized based on elemental analyses, IR, 1H NMR, UV-Vis, magnetic moment, molar conductance and thermal analysis. The complexes are found to have the formulae [PdL1-2]Cl2 and [ZnL1-2](AcO)2·H2O. The molar conductance data reveal that Pd(II) and Zn(II) chelates are ionic in nature and are of the type 2:1 electrolytes. The spectral data are consistent with a square planar and tetrahedral geometry around Pd(II) and Zn(II), respectively, in which the ligands act as tetradentate ligands. The thermal behavior of some chelates is studied and the activation thermodynamic parameters are calculated using Coats-Redfern method. The corrosion inhibition of stainless steel types 410 and 304 in 1 M HCl using the synthesized Schiff bases as inhibitors have been studied by weight loss method. The obtained data considered these ligands as efficient corrosion inhibitors. The ligands and their metal complexes exhibited considerable antibacterial activity against Staphylococcusaureus, and Escherichiacoli and antifungal activity against Candida albicans. Copyright © 2014 Elsevier B.V. All rights reserved.
20 CFR 404.1321 - Ninety-day active service requirement for post-World War II veterans.
Code of Federal Regulations, 2012 CFR
2012-04-01
... post-World War II veterans. 404.1321 Section 404.1321 Employees' Benefits SOCIAL SECURITY... of the Uniformed Services Post-World War II Veterans § 404.1321 Ninety-day active service requirement for post-World War II veterans. (a) The 90 days of active service required for post-World War II...
20 CFR 404.1321 - Ninety-day active service requirement for post-World War II veterans.
Code of Federal Regulations, 2013 CFR
2013-04-01
... post-World War II veterans. 404.1321 Section 404.1321 Employees' Benefits SOCIAL SECURITY... of the Uniformed Services Post-World War II Veterans § 404.1321 Ninety-day active service requirement for post-World War II veterans. (a) The 90 days of active service required for post-World War II...
20 CFR 404.1321 - Ninety-day active service requirement for post-World War II veterans.
Code of Federal Regulations, 2014 CFR
2014-04-01
... post-World War II veterans. 404.1321 Section 404.1321 Employees' Benefits SOCIAL SECURITY... of the Uniformed Services Post-World War II Veterans § 404.1321 Ninety-day active service requirement for post-World War II veterans. (a) The 90 days of active service required for post-World War II...
20 CFR 404.1311 - Ninety-day active service requirement for World War II veterans.
Code of Federal Regulations, 2011 CFR
2011-04-01
... World War II veterans. 404.1311 Section 404.1311 Employees' Benefits SOCIAL SECURITY ADMINISTRATION... Uniformed Services World War II Veterans § 404.1311 Ninety-day active service requirement for World War II veterans. (a) The 90 days of active service required for World War II veterans do not have to be...
20 CFR 404.1321 - Ninety-day active service requirement for post-World War II veterans.
Code of Federal Regulations, 2011 CFR
2011-04-01
... post-World War II veterans. 404.1321 Section 404.1321 Employees' Benefits SOCIAL SECURITY... of the Uniformed Services Post-World War II Veterans § 404.1321 Ninety-day active service requirement for post-World War II veterans. (a) The 90 days of active service required for post-World War II...
ERIC Educational Resources Information Center
Frame, Stanley M.
In the Spring of 1969, Bethany Nazarene College started an intensive self evaluation effort, called the Ten-Year Advance Study. Part I of the report, the Study Design, was published in October 1969. This study, Part II, relates the study activities, the methodology, and sources consulted. The effort involved over 120 administrators, faculty,…
Sampling for Air Chemical Emissions from the Life Sciences Laboratory II
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ballinger, Marcel Y.; Lindberg, Michael J.
Sampling for air chemical emissions from the Life Science Laboratory II (LSL-II) ventilation stack was performed in an effort to determine potential exposure of maintenance staff to laboratory exhaust on the building roof. The concern about worker exposure was raised in December 2015 and several activities were performed to assist in estimating exposure concentrations. Data quality objectives were developed to determine the need for and scope and parameters of a sampling campaign to measure chemical emissions from research and development activities to the outside air. The activities provided data on temporal variation of air chemical concentrations and a basis formore » evaluating calculated emissions. Sampling for air chemical emissions was performed in the LSL-II ventilation stack over the 6-week period from July 26 to September 1, 2016. A total of 12 sampling events were carried out using 16 sample media. Resulting analysis provided concentration data on 49 analytes. All results were below occupational exposure limits and most results were below detection limits. When compared to calculated emissions, only 5 of the 49 chemicals had measured concentrations greater than predicted. This sampling effort will inform other study components to develop a more complete picture of a worker’s potential exposure from LSL-II rooftop activities. Mixing studies were conducted to inform spatial variation in concentrations at other rooftop locations and can be used in conjunction with these results to provide temporal variations in concentrations for estimating the potential exposure to workers working in and around the LSL-II stack.« less
NASA Astrophysics Data System (ADS)
Keypour, Hassan; Shayesteh, Maryam; Rezaeivala, Majid; Chalabian, Firoozeh; Elerman, Yalcin; Buyukgungor, Orhan
2013-01-01
A new potentially hexadentate N2O4 Schiff base ligand, H2L derived from condensation reaction of an aromatic diamine and salicylaldehyde, and its metal complexes were characterized by elemental analyses, IR, UV-Vis, EI-MS, 1H and 13C NMR spectra, as well as conductance measurements. It has been originated that the Schiff base ligand with Cu(II), Ni(II), Co(II), Cd(II) and Zn(II) ions form mononuclear complexes on 1:1 (metal:ligand) stoichiometry. The conductivity data confirm the non-electrolytic nature of the complexes. Also the crystal structures of the complexes [ZnL] and [CoL] have also been determined by using X-ray crystallographic technique. The Zn(II) and Co(II) complexes show a tetrahedral configuration. Electronic absorption spectra of the Cu(II) and Ni(II) complexes suggest a square-planar geometry around the central metal ion. The synthesized compounds have antibacterial activity against the three Gram-positive bacteria: Bacillus cereus, Enterococcus faecalis and Listeria monocytogenes and also against the three Gram-negative bacteria: Salmonella paraB, Citrobacter freundii and Enterobacter aerogenes. The results showed that in some cases the antibacterial activity of complexes were more than nalidixic acid and amoxicillin as standards.
Soldatova, Alexandra V; Romano, Christine A; Tao, Lizhi; Stich, Troy A; Casey, William H; Britt, R David; Tebo, Bradley M; Spiro, Thomas G
2017-08-23
The bacterial manganese oxidase MnxG of the Mnx protein complex is unique among multicopper oxidases (MCOs) in carrying out a two-electron metal oxidation, converting Mn(II) to MnO 2 nanoparticles. The reaction occurs in two stages: Mn(II) → Mn(III) and Mn(III) → MnO 2 . In a companion study , we show that the electron transfer from Mn(II) to the low-potential type 1 Cu of MnxG requires an activation step, likely forming a hydroxide bridge at a dinuclear Mn(II) site. Here we study the second oxidation step, using pyrophosphate (PP) as a Mn(III) trap. PP chelates Mn(III) produced by the enzyme and subsequently allows it to become a substrate for the second stage of the reaction. EPR spectroscopy confirms the presence of Mn(III) bound to the enzyme. The Mn(III) oxidation step does not involve direct electron transfer to the enzyme from Mn(III), which is shown by kinetic measurements to be excluded from the Mn(II) binding site. Instead, Mn(III) is proposed to disproportionate at an adjacent polynuclear site, thereby allowing indirect oxidation to Mn(IV) and recycling of Mn(II). PP plays a multifaceted role, slowing the reaction by complexing both Mn(II) and Mn(III) in solution, and also inhibiting catalysis, likely through binding at or near the active site. An overall mechanism for Mnx-catalyzed MnO 2 production from Mn(II) is presented.
NASA Astrophysics Data System (ADS)
Refat, Moamen S.; Sharshar, T.; Elsabawy, Khaled M.; Heiba, Zein K.
2013-09-01
Metal aspirinate complexes, M2(Asp)4, where M is Mg(II), Ca(II), Sr(II) or Ba(II) are formed by refluxed of aspirin (Asp) with divalent non-transition metal ions of group (II) and characterized by elemental analysis and spectroscopic measurements (infrared, electronic, 1H NMR, Raman, X-ray powder diffraction and scanning electron microscopy). Elemental analysis of the chelates suggests the stoichiometry is 1:2 (metal:ligand). Infrared spectra of the complexes agree with the coordination to the central metal atom through three donation sites of two oxygen atoms of bridge bidentate carboxylate group and oxygen atom of sbnd Cdbnd O of acetyl group. Infrared spectra coupled with the results of elemental analyzes suggested a distorted octahedral structure for the M(II) aspirinate complexes. Gamma irradiation was tested as a method for stabilization of aspirin as well as their complexes. The effect of gamma irradiation, with dose of 80 Gy, on the properties of aspirinate complexes was studied. The aspirinate chelates have been screened for their in vitro antibacterial activity against four bacteria, gram-positive (Bacillus subtilis and Staphylococcus aureus) and gram-negative (Escherichia coli and Pseudomonas aeruginosa) and two strains of fungus (Aspergillus flavus and Candida albicans). The metal chelates were shown to possess more antibacterial activity than the free aspirin chelate.
Lyu, Cong; Yang, Xuejiao; Zhang, Shengyu; Zhang, Qihui; Su, Xiaosi
2017-12-29
A promising and easily prepared catalytic filler media, manganese-oxide-coated zeolite (MOCZ), for the removal of Mn (II) contamination in groundwater was studied. The optimal condition for MOCZ preparation was given as follows: acid activation of zeolite with 5% HCl mass percent for 12 h, then soaking of acid-activated zeolite with 7% KMnO 4 mass percent for 8 h, and finally calcination at 300°C for 5 h. Acid activation significantly enlarged the specific surface area of the zeolite (>79 m 2 g -1 ), subsequently enhancing the coating of manganese oxides onto the surface of the zeolite. This was further supported by the manganese-to-zeolite ratio (γ Mn ) and Energy dispersive analysis-mapping. The γ Mn was over 12.26 mg Mn g -1 zeolite, representing more active sites for the adsorption and catalytic-oxidation of Mn (II). As such, great performance of Mn (II) removal by MOCZ was obtained in the filter experiment. An estimated 98-100% removal efficiency of Mn (II) was achieved in a greatly short startup time (only 2 h). During the filtration process, newborn flocculent manganese oxides with a mixed-valence of manganese (Mn (II) and Mn (IV)) were generated on the MOCZ surface, further facilitating the adsorption and catalytic-oxidation of Mn (II). The filter with MOCZ as adsorbent had a great performance on the Mn (II) removal in a wide range of hydraulic retention time (HRT) (4-40 min), particularly in a short HRT. Besides, the filter prolonged the filtration period (60 days), which would significantly reduce the frequency of backwash. Thus, it could be concluded that MOCZ prepared in this study showed a good performance in terms of Mn (II) removal in waterworks, especially small waterworks in the villages/towns.
Ali, Mohsin; Ahmed, Mansoor; Ahmed, Shakil; Ali, Syed Imran; Perveen, Samina; Mumtaz, Majid; Haider, Syed Moazzam; Nazim, Urooj
2017-01-01
The human digestive tract contains some 100 trillion cells and thousands of species of micro-organisms may be present as normal flora of this tract as well as other mucocutaneous junctions of the body. Candida specie is the most common organism residing in these areas and can easily invade the internal tissues in cases of loss of host defenses. Modifications of previously existing antifungal agents may provide new options to fight against these species. Inorganic compounds of different antifungals are under investigations. Present study report six complexes of fluconazole with Cu (II)), Fe(II), Cd(II), Co(II), Ni(II) and Mn(II) have been synthesized and characterized by elemental analysis, IR, UV and H-NMR. The elemental analysis and spectroscopic data were found in agreement with the expected values as the metal to ligand value was 1:2 ratios with two chlorides in coordination sphere. The morphology of each complex was studied using scanning electron microscope and compared with fluconazole molecule the flaky-slab rock like particles of pure fluconazole was also observed as reported earlier. However, the complexes of fluconazole were showed different morphology in their micrograph. Fluconazole and its complex derivatives have also been screened in vitro for their antifungal activity against Candida albican and Aspergillus niger by MIC method. The complexes showed varied activity ranging from 2-20%.
Pereira, Regina M S; Andrades, Norma E D; Paulino, Niraldo; Sawaya, Alexandra C H F; Eberlin, Marcos N; Marcucci, Maria C; Favero, Giovani Marino; Novak, Estela Maria; Bydlowski, Sérgio Paulo
2007-07-09
The antioxidant activity of flavonoids is believed to increase when they are coordinated with transition metal ions. However, the literature on this subject is contradictory and the outcome seems to largely depend on the experimental conditions. In order to understand the contribution of the metal coordination and the type of interaction between a flavonoid and the metal ion, in this study a new metal complex of Cu (II) with naringin was synthesized and characterized by FT-IR, UV-VIS, mass spectrometry (ESI-MS/MS), elemental analysis and 1H-NMR. The results of these analyses indicate that the complex has a Cu (II) ion coordinated via positions 4 and 5 of the flavonoid. The antioxidant, anti-inflammatory and antimicrobial activities of this complex were studied and compared with the activity of free naringin. The Naringin-Cu (II) complex 1 showed higher antioxidant, anti-inflammatory and tumor cell cytotoxicity activities than free naringin without reducing cell viability.
Lea, Janice P; Jin, Shao G; Roberts, Brian R; Shuler, Michael S; Marrero, Mario B; Tumlin, James A
2002-07-01
Angiotensin II (AngII) contributes to the maintenance of extracellular fluid volume by regulating sodium transport in the nephron. In nonepithelial cells, activation of phospholipase C (PLC) by AT-1 receptors stimulates the generation of 1,4,5-trisphosphate (IP(3)) and the release of intracellular calcium. Calcineurin, a serine-threonine phosphatase, is activated by calcium and calmodulin, and both PLC and calcineurin have been linked to sodium transport in the proximal tubule. An examination of whether AngII activates calcineurin in a model of proximal tubule epithelia (LLC-PK1 cells) was performed; AngII increased calcineurin activity within 30 s. An examination of whether AngII activates PLC in proximal tubule epithelia was also performed after first showing that all three families of PLC isoforms are present in LLC-PK1 cells. Application of AngII increased IP(3) generation by 60% within 15 s, which coincided with AngII-induced tyrosine phosphorylation of the PLC-gamma1 isoform also observed at 15 s. AngII-induced tyrosine phosphorylation was blocked by the AT-1 receptor antagonist, Losartan. Subsequently, an inhibitor of tyrosine phosphorylation blocked the AngII-induced activation of calcineurin, as did coincubation with an inhibitor of PLC activity and with an antagonist of the AT-1 receptor. It is therefore concluded that AngII stimulates calcineurin phosphatase activity in proximal tubule epithelial cells through a mechanism involving AT-1 receptor-mediated tyrosine phosphorylation of the PLC isoform.
Non-enzymatic glycation reduces heparin cofactor II anti-thrombin activity.
Ceriello, A; Marchi, E; Barbanti, M; Milani, M R; Giugliano, D; Quatraro, A; Lefebvre, P
1990-04-01
The effects of non-enzymatic glycation on heparin cofactor II activity, at glucose concentrations which might be expected in physiological or diabetic conditions have been evaluated in this study. Radiolabelled glucose incorporation was associated with a loss of heparin cofactor anti-thrombin activity. The heparin cofactor heparin and dermatan sulfate-dependent inhibition of thrombin was significantly reduced, showing a remarkable decrease of the maximum second order rate constant. This study shows that heparin cofactor can be glycated at glucose concentrations found in the blood, and that this phenomenon produces a loss of heparin cofactor-antithrombin activity. These data suggest, furthermore, a possible link between heparin cofactor glycation and the pathogenesis of thrombosis in diabetes mellitus.
Samarakkody, Ann; Abbas, Ata; Scheidegger, Adam; Warns, Jessica; Nnoli, Oscar; Jokinen, Bradley; Zarns, Kris; Kubat, Brooke; Dhasarathy, Archana; Nechaev, Sergei
2015-01-01
Promoter-proximal RNA polymerase II (Pol II) pausing is implicated in the regulation of gene transcription. However, the mechanisms of pausing including its dynamics during transcriptional responses remain to be fully understood. We performed global analysis of short capped RNAs and Pol II Chromatin Immunoprecipitation sequencing in MCF-7 breast cancer cells to map Pol II pausing across the genome, and used permanganate footprinting to specifically follow pausing during transcriptional activation of several genes involved in the epithelial to mesenchymal transition (EMT). We find that the gene for EMT master regulator Snail (SNAI1), but not Slug (SNAI2), shows evidence of Pol II pausing before activation. Transcriptional activation of the paused SNAI1 gene is accompanied by a further increase in Pol II pausing signal, whereas activation of non-paused SNAI2 gene results in the acquisition of a typical pausing signature. The increase in pausing signal reflects increased transcription initiation without changes in Pol II pausing. Activation of the heat shock HSP70 gene involves pausing release that speeds up Pol II turnover, but does not change pausing location. We suggest that Pol II pausing is retained during transcriptional activation and can further undergo regulated release in a signal-specific manner. PMID:25820424
Screening antimicrobial activity of various extracts of Urtica dioica.
Modarresi-Chahardehi, Amir; Ibrahim, Darah; Fariza-Sulaiman, Shaida; Mousavi, Leila
2012-12-01
Urtica dioica or stinging nettle is traditionally used as an herbal medicine in Western Asia. The current study represents the investigation of antimicrobial activity of U. dioica from nine crude extracts that were prepared using different organic solvents, obtained from two extraction methods: the Soxhlet extractor (Method I), which included the use of four solvents with ethyl acetate and hexane, or the sequential partitions (Method II) with a five solvent system (butanol). The antibacterial and antifungal activities of crude extracts were tested against 28 bacteria, three yeast strains and seven fungal isolates by the disc diffusion and broth dilution methods. Amoxicillin was used as positive control for bacteria strains, vancomycin for Streptococcus sp., miconazole nitrate (30 microg/mL) as positive control for fungi and yeast, and pure methanol (v/v) as negative control. The disc diffusion assay was used to determine the sensitivity of the samples, whilst the broth dilution method was used for the determination of the minimal inhibition concentration (MIC). The ethyl acetate and hexane extract from extraction method I (EA I and HE I) exhibited highest inhibition against some pathogenic bacteria such as Bacillus cereus, MRSA and Vibrio parahaemolyticus. A selection of extracts that showed some activity was further tested for the MIC and minimal bactericidal concentrations (MBC). MIC values of Bacillus subtilis and Methicillin-resistant Staphylococcus aureus (MRSA) using butanol extract of extraction method II (BE II) were 8.33 and 16.33mg/mL, respectively; while the MIC value using ethyl acetate extract of extraction method II (EAE II) for Vibrio parahaemolyticus was 0.13mg/mL. Our study showed that 47.06% of extracts inhibited Gram-negative (8 out of 17), and 63.63% of extracts also inhibited Gram-positive bacteria (7 out of 11); besides, statistically the frequency of antimicrobial activity was 13.45% (35 out of 342) which in this among 21.71% belongs to antimicrobial activity extracts from extraction method I (33 out of 152 of crude extracts) and 6.82% from extraction method II (13 out of 190 of crude extracts). However, crude extracts from method I exhibited better antimicrobial activity against the Gram-positive bacteria than the Gram-negative bacteria. The positive results on medicinal plants screening for antibacterial activity constitutes primary information for further phytochemical and pharmacological studies. Therefore, the extracts could be suitable as antimicrobial agents in pharmaceutical and food industry.
NASA Astrophysics Data System (ADS)
Luo, Hong-Wei; Chen, Jie-Jie; Sheng, Guo-Ping; Su, Ji-Hu; Wei, Shi-Qiang; Yu, Han-Qing
2014-11-01
Interactions between metals and activated sludge microorganisms substantially affect the speciation, immobilization, transport, and bioavailability of trace heavy metals in biological wastewater treatment plants. In this study, the interaction of Cu(II), a typical heavy metal, onto activated sludge microorganisms was studied in-depth using a multi-technique approach. The complexing structure of Cu(II) on microbial surface was revealed by X-ray absorption fine structure (XAFS) and electron paramagnetic resonance (EPR) analysis. EPR spectra indicated that Cu(II) was held in inner-sphere surface complexes of octahedral coordination with tetragonal distortion of axial elongation. XAFS analysis further suggested that the surface complexation between Cu(II) and microbial cells was the distorted inner-sphere coordinated octahedra containing four short equatorial bonds and two elongated axial bonds. To further validate the results obtained from the XAFS and EPR analysis, density functional theory calculations were carried out to explore the structural geometry of the Cu complexes. These results are useful to better understand the speciation, immobilization, transport, and bioavailability of metals in biological wastewater treatment plants.
Mansouri-Torshizi, Hassan; Saeidifar, Maryam; Khosravi, Fatemeh; Divsalar, Adeleh; Saboury, Ali Akbar; Hassani, Fatemeh
2011-01-01
The two water-soluble designed platinum(II) complex, [Pt(Oct-dtc)(bpy)]NO3 (Oct-dtc = Octyldithiocarbamate and bpy = 2,2′ -bipyridine) and palladium(II) complex, [Pd(Oct-dtc)(bpy)]NO3, have been synthesized and characterized by elemental analyses, molar conductivity measurements, IR, 1H NMR, and electronic spectra studies. Studies of antitumor activity of these complexes against human cell tumor lines (K562) have been carried out. They show Ic50 values lower than that of cisplatin. The complexes have been investigated for their interaction with calf thymus DNA (CT-DNA) by utilizing the electronic absorption spectroscopy, fluorescence spectra, and ethidium bromide displacement and gel filtration techniques. Both of these water-soluble complexes bound cooperatively and intercalatively to the CT-DNA at very low concentrations. Several binding and thermodynamic parameters are also described. PMID:22110410
NASA Astrophysics Data System (ADS)
Refat, Moamen S.
2010-04-01
The oxovanadium(II) complexes of the different vitamins like ascorbic acid (vitamin C; Vit. C), riboflavin (vitamin B2; Vit. B2) and nicotinamide (vitamin B3; Vit. B3) were synthesized and characterized by elemental analysis, molar conductance, IR, electronic, magnetic measurements, thermal studies, XRD and SEM. Conductance measurements indicated that the vanadyl(II) complexes of Vit. B2 and Vit. B3 are 1:2 electrolytes except for [VO(Vit. C) 2(H 2O) 2] complex is non-electrolyte. IR data show that Vit. B2 is bidentate ligand against azomethine nitrogen of pyrazine ring and C dbnd O of pyrimidine-2,4-dione but Vit. B3 and Vit. C acts as a monodentate ligand through pyridine nitrogen and hydroxo oxygen of furan ring, respectively. Electronic spectral measurements indicated that all VO(II) complexes have a square-pyramidal geometry. Magnetic measurements for the new vanadyl(II) complexes are in a good agreement with the proposed formula. Thermal analyses (TG/DSC) of the studied complexes show that the decomposition process takes place in more than two steps. XRD refer that VO(II) complexes have an amorphous behavior. The surface morphology of the complexes was studied by SEM. The antimicrobial activities of the ligands and its complexes indicate that the vanadyl(II) complexes possess high antibacterial and antifungal activities towards the bacterial species and the fungal species than start ligands.
Angiotensin II increases CTGF expression via MAPKs/TGF-{beta}1/TRAF6 pathway in atrial fibroblasts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gu, Jun; Liu, Xu, E-mail: xkliuxu@yahoo.cn; Wang, Quan-xing, E-mail: shmywqx@126.com
2012-10-01
The activation of transforming growth factor-{beta}1(TGF-{beta}1)/Smad signaling pathway and increased expression of connective tissue growth factor (CTGF) induced by angiotensin II (AngII) have been proposed as a mechanism for atrial fibrosis. However, whether TGF{beta}1/non-Smad signaling pathways involved in AngII-induced fibrogenetic factor expression remained unknown. Recently tumor necrosis factor receptor associated factor 6 (TRAF6)/TGF{beta}-associated kinase 1 (TAK1) has been shown to be crucial for the activation of TGF-{beta}1/non-Smad signaling pathways. In the present study, we explored the role of TGF-{beta}1/TRAF6 pathway in AngII-induced CTGF expression in cultured adult atrial fibroblasts. AngII (1 {mu}M) provoked the activation of P38 mitogen activated proteinmore » kinase (P38 MAPK), extracellular signal-regulated kinase 1/2(ERK1/2) and c-Jun NH(2)-terminal kinase (JNK). AngII (1 {mu}M) also promoted TGF{beta}1, TRAF6, CTGF expression and TAK1 phosphorylation, which were suppressed by angiotensin type I receptor antagonist (Losartan) as well as p38 MAPK inhibitor (SB202190), ERK1/2 inhibitor (PD98059) and JNK inhibitor (SP600125). Meanwhile, both TGF{beta}1 antibody and TRAF6 siRNA decreased the stimulatory effect of AngII on TRAF6, CTGF expression and TAK1 phosphorylation, which also attenuated AngII-induced atrial fibroblasts proliferation. In summary, the MAPKs/TGF{beta}1/TRAF6 pathway is an important signaling pathway in AngII-induced CTGF expression, and inhibition of TRAF6 may therefore represent a new target for reversing Ang II-induced atrial fibrosis. -- Highlights: Black-Right-Pointing-Pointer MAPKs/TGF{beta}1/TRAF6 participates in AngII-induced CTGF expression in atrial fibroblasts. Black-Right-Pointing-Pointer TGF{beta}1/TRAF6 participates in AngII-induced atrial fibroblasts proliferation. Black-Right-Pointing-Pointer TRAF6 may represent a new target for reversing Ang II-induced atrial fibrosis.« less
Tasdemir, Deniz; Sanabria, David; Lauinger, Ina L.; Tarun, Alice; Herman, Rob; Perozzo, Remo; Zloh, Mire; Kappe, Stefan H.; Brun, Reto; Carballeira, Néstor M.
2010-01-01
Acetylenic fatty acids are known to display several biological activities, but their antimalarial activity has remained unexplored. In this study, we synthesized the 2-, 5-, 6-, and 9-hexadecynoic acids (HDAs) and evaluated their in vitro activity against erythrocytic (blood) stages of Plasmodium falciparum and liver stages of P. yoelii infections. Since the type II fatty acid biosynthesis pathway (PfFAS-II) has recently been shown to be indispensable for liver stage malaria parasites, the inhibitory potential of the HDAs against multiple P. falciparum FAS-II (PfFAS-II) elongation enzymes was also evaluated. The highest antiplasmodial activity against blood stages of P. falciparum was displayed by 5-HDA (IC50 value 6.6. μg/ml), whereas the 2-HDA was the only acid arresting the growth of liver stage P. yoelii infection, in both flow cytometric assay (IC50 value 2-HDA 15.3 μg/ml, control drug atovaquone 2.5 ng/ml) and immunofluorescense analysis (IC50 2-HDA 4.88 μg/ml, control drug atovaquone 0.37 ng/ml). 2-HDA showed the best inhibitory against the PfFAS-II enzymes PfFabI and PfFabZ with IC50 values of 0.38 and 0.58 μg/ml (IC50 control drugs 14 and 30 ng/ml) respectively. Enzyme kinetics and molecular modeling studies revealed valuable insights into the binding mechanism of 2-HDA on the target enzymes. All HDAs showed in vitro activity against Trypanosoma brucei rhodesiense (IC50 values 3.7–31.7 μg/ml), Trypanosoma cruzi (only 2-HDA, IC50 20.2 μg/ml), and Leishmania donovani (IC50 values 4.1–13.4 μg/ml) with generally low or no significant toxicity on mammalian cells. This is the first study to indicate therapeutic potential of HDAs against various parasitic protozoa. It also points out that the malarial liver stage growth inhibitory effect of the 2-HDA may be promoted via PfFAS-II enzymes. The lack of cytotoxicity, lipophilic nature and calculated pharmacokinetic properties suggest that 2-HDA could be a useful compound to study the interaction of fatty acids with these key P. falciparum enzymes. PMID:20855214
A search for activation of C-nociceptors by sympathetic fibers in complex regional pain syndrome
Campero, Mario; Bostock, Hugh; Baumann, Thomas K.; Ochoa, José L.
2010-01-01
Objective Although the term ‘reflex sympathetic dystrophy’ has been replaced by ‘complex regional pain syndrome’ (CRPS) type I, there remains a widespread presumption that the sympathetic nervous system is actively involved in mediating chronic neuropathic pain [“sympathetically maintained pain” (SMP)], even in the absence of detectable neuropathophysiology. Methods We have used microneurography to evaluate possible electrophysiological interactions in 24 patients diagnosed with CRPS I (n=13), or CRPS II (n=11) by simultaneously recording from single identified sympathetic efferent fibers and C nociceptors, while provoking sympathetic neural discharges in cutaneous nerves. Results We assessed potential effects of sympathetic activity upon 35 polymodal nociceptors and 19 mechano-insensitive nociceptors, recorded in CRPS I (26 nociceptors) and CRPS II patients (28 nociceptors). No evidence of activation of nociceptors related to sympathetic discharge was found, although nociceptors in 6 CRPS II patients exhibited unrelated spontaneous pathological nerve impulse activity. Conclusion We conclude that activation of nociceptors by sympathetic efferent discharges is not a cardinal pathogenic event in either CRPS I or CRPS II patients. Significance This study shows that sympathetic-nociceptor interactions, if they exist in patients communicating chronic neuropathic pain, must be the exception. PMID:20359942
Cellular degradation activity is maintained during aging in long-living queen bees.
Hsu, Chin-Yuan; Qiu, Jiantai Timothy; Chan, Yu-Pei
2016-11-01
Queen honeybees (Apis mellifera) have a much longer lifespan than worker bees. Whether cellular degradation activity is involved in the longevity of queen bees is unknown. In the present study, cellular degradation activity was evaluated in the trophocytes and oenocytes of young and old queen bees. The results indicated that (i) 20S proteasome activity and the size of autophagic vacuoles decreased with aging, and (ii) there were no significant differences between young and old queen bees with regard to 20S proteasome expression or efficiency, polyubiquitin aggregate expression, microtubule-associated protein 1 light chain 3-II (LC3-II) expression, 70 kDa heat shock cognate protein (Hsc70) expression, the density of autophagic vacuoles, p62/SQSTM1 expression, the activity or density of lysosomes, or molecular target of rapamycin expression. These results indicate that cellular degradation activity maintains a youthful status in the trophocytes and oenocytes of queen bees during aging and that cellular degradation activity is involved in maintaining the longevity of queen bees.
Jantas, D; Greda, A; Golda, S; Korostynski, M; Grygier, B; Roman, A; Pilc, A; Lason, W
2014-08-01
Recent studies have documented that metabotropic glutamate receptors from group II and III (mGluR II/III) are a potential target in the symptomatic treatment of Parkinson's disease (PD), however, the neuroprotective effects of particular mGluR II/III subtypes in relation to PD pathology are recognized only partially. In the present study, we investigated the effect of various mGluR II/III activators in the in vitro model of PD using human neuroblastoma SH-SY5Y cell line and mitochondrial neurotoxin MPP(+). We demonstrated that all tested mGluR ligands: mGluR II agonist - LY354740, mGluR III agonist - ACPT-I, mGluR4 PAM - VU0361737, mGluR8 agonist - (S)-3,4-DCPG, mGluR8 PAM - AZ12216052 and mGluR7 allosteric agonist - AMN082 were protective against MPP(+)-evoked cell damage in undifferentiated (UN-) SH-SY5Y cells with the highest neuroprotection mediated by mGluR8-specific agents. However, in retinoic acid- differentiated (RA-) SH-SY5Y cells we found protection mediated only by mGluR8 activators. We also demonstrated the cell proliferation stimulating effect for mGluR4 and mGluR8 PAMs. Next, we showed that the protection mediated by mGluR II/III activators in UN-SH-SY5Y was not accompanied by the modulation of caspase-3 activity, however, a decrease in the number of apoptotic nuclei was found. Finally, we showed that the inhibitor of necroptosis, necrostatin-1 blocked the mGluR III-mediated protection. Altogether our comparative in vitro data add a further proof to neuroprotective effects of mGluR agonists or PAMs and point to mGluR8 as a promising target for neuroprotective interventions in PD. The results also suggest the participation of necroptosis-related molecular pathways in neuroprotective effects of mGluR III activation. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Neelakantan, M. A.; Sundaram, M.; Nair, M. Sivasankaran
2011-09-01
Several mixed ligand Ni(II), Cu(II) and Zn(II) complexes of 2-amino-3-hydroxypyridine (AHP) and imidazoles viz., imidazole (him), benzimidazole (bim), histamine (hist) and L-histidine (his) have been synthesized and characterized by elemental and spectral (vibrational, electronic, 1H NMR and EPR) data as well as by magnetic moment values. On the basis of elemental analysis and molar conductance values, all the complexes can be formulated as [MAB]Cl except histidine complexes as MAB. Thermogravimetric studies reveal the presence of coordinated water molecules in most of the complexes. From the magnetic measurements and electronic spectral data, octahedral structure was proposed for Ni(II) and Cu(II)-AHP-his, tetrahedral for Cu(II)-AHP-him/bim/hist, but square planar for the Cu(II)-AHP complex. The g∥/ A∥ calculated supports tetrahedral environment around the Cu(II) in Cu(II)-AHP-him/bim/hist and distorted octahedral for Cu(II)-AHP-his complexes. The morphology of the reported metal complexes was investigated by scanning electron micrographs (SEM). The potentiometric study has been performed in aqueous solution at 37 °C and I = 0.15 mol dm -3 NaClO 4. MABH, MAB and MAB 2 species has been identified in the present systems. Proton dissociation constants of AHP and stability constants of metal complexes were determined using MINIQUAD-75. The most probable structure of the mixed ligand species is discussed based upon their stability constants. The in vitro biological activity of the complexes was tested against the Gram positive and Gram negative bacteria, fungus and yeast. The oxidative DNA cleavage studies of the complexes were performed using gel electrophoresis method. Cu(II) complexes have been found to promote DNA cleavage in presence of biological reductant such as ascorbate and oxidant like hydrogen peroxide.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bonnefont, J.P.; Cepanec, C.; Leroux, J.P.
Carnitine palmitoyltransferase (CPT) II deficiency, an inherited disorder of mitochondrial long-chain fatty-acid (LCFA) oxidation, results in two distinct clinical act phenotypes, namely, an adult (muscular) form and an infantile (hepatocardiomuscular) form. The rationale of this phenotypic heterogeneity is poorly understood. The adult form of the disease is commonly ascribed to the Ser-113-Leu substitution in CPT II. Only few data are available regarding the molecular basis of the infantile form of the disease. We report herein a homozygous A-2399-C transversion predicting a Tyr-628-Ser substitution in a CPT II-deficient infant. In vitro expression of mutant cDNA in COS-1 cells demonstrated the responsibilitymore » of this mutation for the disease. Metabolic consequences of the Ser-113-Leu and Tyr-628-Ser substitutions were studied in fibroblasts. The Tyr-628-Ser substitution (infantile form) resulted in a 10% CPT II residual activity, markedly impairing LCFA oxidation, whereas the Ser-113-Leu substitution (adult form) resulted in a 20% CPT II residual activity, without consequence on LCFA oxidation. These data show that CPT II activity has to be reduced below a critical threshold in order for LCFA oxidation in fibroblasts to be impaired. The hypothesis that this critical threshold differs among tissues could provide a basis to explain phenotypic heterogeneity of CPT II deficiency. 32 refs., 5 figs.« less
Yoshida, Tadashi; Tabony, A Michael; Galvez, Sarah; Mitch, William E; Higashi, Yusuke; Sukhanov, Sergiy; Delafontaine, Patrice
2013-10-01
Cachexia is a serious complication of many chronic diseases, such as congestive heart failure (CHF) and chronic kidney disease (CKD). Many factors are involved in the development of cachexia, and there is increasing evidence that angiotensin II (Ang II), the main effector molecule of the renin-angiotensin system (RAS), plays an important role in this process. Patients with advanced CHF or CKD often have increased Ang II levels and cachexia, and angiotensin-converting enzyme (ACE) inhibitor treatment improves weight loss. In rodent models, an increase in systemic Ang II leads to weight loss through increased protein breakdown, reduced protein synthesis in skeletal muscle and decreased appetite. Ang II activates the ubiquitin-proteasome system via generation of reactive oxygen species and via inhibition of the insulin-like growth factor-1 signaling pathway. Furthermore, Ang II inhibits 5' AMP-activated protein kinase (AMPK) activity and disrupts normal energy balance. Ang II also increases cytokines and circulating hormones such as tumor necrosis factor-α, interleukin-6, serum amyloid-A, glucocorticoids and myostatin, which regulate muscle protein synthesis and degradation. Ang II acts on hypothalamic neurons to regulate orexigenic/anorexigenic neuropeptides, such as neuropeptide-Y, orexin and corticotropin-releasing hormone, leading to reduced appetite. Also, Ang II may regulate skeletal muscle regenerative processes. Several clinical studies have indicated that blockade of Ang II signaling via ACE inhibitors or Ang II type 1 receptor blockers prevents weight loss and improves muscle strength. Thus the RAS is a promising target for the treatment of muscle atrophy in patients with CHF and CKD. This article is part of a Directed Issue entitled: Molecular basis of muscle wasting. Copyright © 2013 Elsevier Ltd. All rights reserved.
Milacic, Vesna; Chen, Di; Giovagnini, Lorena; Diez, Alejandro; Fregona, Dolores; Dou, Q. Ping
2013-01-01
Zinc and copper are trace elements essential for proper folding, stabilization and catalytic activity of many metalloenzymes in living organisms. However, disturbed zinc and copper homeostasis is reported in many types of cancer. We have previously demonstrated that copper complexes induced proteasome inhibition and apoptosis in cultured human cancer cells. In the current study we hypothesized that zinc complexes could also inhibit the proteasomal chymotrypsin-like activity responsible for subsequent apoptosis induction. We first showed that zinc(II) chloride was able to inhibit the chymotrypsin-like activity of a purified 20S proteasome with an IC50 value of 13.8 μM, which was less potent than copper(II) chloride (IC50 5.3 μM). We then compared the potencies of a pyrrolidine dithiocarbamate (PyDT)-zinc(II) complex and a PyDT-copper(II) complex to inhibit cellular proteasomal activity, suppress proliferation and induce apoptosis in various human breast and prostate cancer cell lines. Consistently, zinc complex was less potent than copper complex in inhibiting the proteasome and inducing apoptosis. Additionally, zinc and copper complexes appear to use somewhat different mechanisms to kill tumor cells. Zinc complexes were able to activate calpain-, but not caspase-3-dependent pathway, while copper complexes were able to induce activation of both proteases. Furthermore, the potencies of these PyDT-metal complexes depend on the nature of metals and also on the ratio of PyDT to the metal ion within the complex, which probably affects their stability and availability for interacting with and inhibiting the proteasome in tumor cells. PMID:18501397
Albuminuria in mice after injection of antibodies against aminopeptidase A: role of angiotensin II.
Gerlofs-Nijland, M E; Assmann, K J; Dijkman, H B; Dieker, J W; van Son, J P; Mentzel, S; van Kats, J P; Danser, A H; Smithies, O; Groenen, P J; Wetzels, J F
2001-12-01
It has been shown that injection of combinations of anti-aminopeptidase A (APA) monoclonal antibodies (mAb) that inhibit the enzyme activity induces an acute albuminuria in mice. This albuminuria is not dependent on inflammatory cells, complement, or the coagulation system. APA is an important regulator of the renin-angiotensin system because it is involved in the degradation of angiotensin II (Ang II). This study examined the potential role of glomerular Ang II in the induction of albuminuria. The relation among renal Ang II, glomerular APAX enzyme activity, and albuminuria was examined first. Injection of the nephritogenic combinations ASD-3/37 and ASD-37/41 in BALB/c mice induced albuminuria, whereas the non-nephritogenic combination ASD-3/41 had no effect. There was no clear relation between the inhibition of glomerular APA activity and albuminuria, yet it was evident that intrarenal Ang II levels were significantly increased in albuminuric mice and not in nonalbuminuric mice. As a next step, anti-APA mAb were administered to angiotensinogen-deficient mice that do not produce Ang II, and kidney morphology and albuminuria were determined. Angiotensinogen-deficient mice also developed albuminuria upon ASD-37/41 administration. Altogether, these findings clearly demonstrate that Ang II is not required for the induction of albuminuria upon injection of enzyme-inhibiting anti-APA mAb.
Barker, Catherine R; McNamara, Anne V; Rackstraw, Stephen A; Nelson, David E; White, Mike R; Watson, Alastair J M; Jenkins, John R
2006-01-01
Topoisomerase II plays a crucial role during chromosome condensation and segregation in mitosis and meiosis and is a highly attractive target for chemotherapeutic agents. We have identified previously topoisomerase II and heat shock protein 90 (Hsp90) as part of a complex. In this paper we demonstrate that drug combinations targeting these two enzymes cause a synergistic increase in apoptosis. The objective of our study was to identify the mode of cell killing and the mechanism behind the increase in topoisomerase II mediated DNA damage. Importantly we demonstrate that Hsp90 inhibition results in an increased topoiosmerase II activity but not degradation of topoisomerase II and it is this, in the presence of a topoisomerase II poison that causes the increase in cell death. Our results suggest a novel mechanism of action where the inhibition of Hsp90 disrupts the Hsp90-topoisomerase II interaction leading to an increase in and activation of unbound topoisomerase II, which, in the presence of a topoisomerase II poison leads to the formation of an increased number of cleavable complexes ultimately resulting in rise in DNA damage and a subsequent increase cell death.
Barker, Catherine R.; McNamara, Anne V.; Rackstraw, Stephen A.; Nelson, David E.; White, Mike R.; Watson, Alastair J. M.; Jenkins, John R.
2006-01-01
Topoisomerase II plays a crucial role during chromosome condensation and segregation in mitosis and meiosis and is a highly attractive target for chemotherapeutic agents. We have identified previously topoisomerase II and heat shock protein 90 (Hsp90) as part of a complex. In this paper we demonstrate that drug combinations targeting these two enzymes cause a synergistic increase in apoptosis. The objective of our study was to identify the mode of cell killing and the mechanism behind the increase in topoisomerase II mediated DNA damage. Importantly we demonstrate that Hsp90 inhibition results in an increased topoiosmerase II activity but not degradation of topoisomerase II and it is this, in the presence of a topoisomerase II poison that causes the increase in cell death. Our results suggest a novel mechanism of action where the inhibition of Hsp90 disrupts the Hsp90–topoisomerase II interaction leading to an increase in and activation of unbound topoisomerase II, which, in the presence of a topoisomerase II poison leads to the formation of an increased number of cleavable complexes ultimately resulting in rise in DNA damage and a subsequent increase cell death. PMID:16504968
Wiernik, P H; Gordon, L I; Oken, M M; Harris, J E; O'Connell, M J
1999-10-01
Mitoguazone is a unique antitumor agent that interferes with polyamine synthesis that has been reported to have activity against AIDS-related malignant lymphoma. We, therefore, tested this agent for activity against chronic lymphocytic leukemia (CLL) in this phase II study. Mitoguazone, 500 mg/M2 was given intravenously weekly to 13 patients with relapsed or refractory, previously treated Rai stages 2-4 CLL. There were no complete or partial responses as judged by standard criteria. Toxicity was acceptable. Mitoguazone in the dose and schedule employed in this study has no significant activity as a single agent in patients with relapsed or refractory CLL.
Madankumar, Arumugam; Jayakumar, Subramaniyan; Gokuladhas, Krishnan; Rajan, Balan; Raghunandhakumar, Subramanian; Asokkumar, Selvamani; Devaki, Thiruvengadam
2013-04-05
Xenobiotic metabolizing enzymes are chief determinants in both the susceptibility to mutagenic effect of chemical carcinogens and in the response of tumors to chemotherapy. The present study was aimed to analyze the effect of geraniol administration on the activity of phase I and phase II carcinogen metabolizing enzymes through the nuclear factor erythroid 2-related factor-2 (Nrf2) activation against 4-niroquinoline-1-oxide (4NQO) induced oral carcinogenesis. The well-known chemical carcinogen 4NQO (50 ppm) was used to induce oral carcinogenesis through drinking water for 4, 12, and 20 weeks. The degree of cancer progression at each stage was confirmed by histological examination. At the end of the experimental period, 100% tumor formation was observed in the oral cavity of 4NQO induced animals with significant (P<0.05) alteration in the status of tumor markers, tongue and liver phase I and phase II drug metabolizing enzymes indicating progression of disease. Oral administration of geraniol at the dose of 200 mg/kg b.wt., thrice a week to 4NQO induced animals was able to inhibit tumor formation and thereby delayed the progression of oral carcinogenesis by modulating tongue and liver phase I and phase II drug metabolizing enzymes, as substantiated further by the histological and transmission electron microscopic studies. Our results demonstrate that geraniol exerts its chemopreventive potential by altering activities of phases I and II drug metabolizing enzymes to achieve minimum bioactivation of carcinogen and maximum detoxification. Copyright © 2013 Elsevier B.V. All rights reserved.
20 CFR 404.1311 - Ninety-day active service requirement for World War II veterans.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 20 Employees' Benefits 2 2013-04-01 2013-04-01 false Ninety-day active service requirement for... Uniformed Services World War II Veterans § 404.1311 Ninety-day active service requirement for World War II veterans. (a) The 90 days of active service required for World War II veterans do not have to be...
20 CFR 404.1311 - Ninety-day active service requirement for World War II veterans.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 20 Employees' Benefits 2 2014-04-01 2014-04-01 false Ninety-day active service requirement for... Uniformed Services World War II Veterans § 404.1311 Ninety-day active service requirement for World War II veterans. (a) The 90 days of active service required for World War II veterans do not have to be...
20 CFR 404.1311 - Ninety-day active service requirement for World War II veterans.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 20 Employees' Benefits 2 2012-04-01 2012-04-01 false Ninety-day active service requirement for... Uniformed Services World War II Veterans § 404.1311 Ninety-day active service requirement for World War II veterans. (a) The 90 days of active service required for World War II veterans do not have to be...
NASA Astrophysics Data System (ADS)
Sevgi, Fatih; Bagkesici, Ugur; Kursunlu, Ahmed Nuri; Guler, Ersin
2018-02-01
Zinc (II), copper (II), nickel (II), cobalt (II) and iron (III) complexes of Schiff bases (LG, LP) derived from 2-hydroxynaphthaldehyde with glycine and phenylalanine were reported and characterized by 1H NMR, 13C NMR, elemental analyses, melting point, FT-IR, magnetic susceptibility and thermal analyses (TGA). TGA data show that iron and cobalt include to the coordinated water and metal:ligand ratio is 1:2 while the complex stoichiometry for Ni (II), Cu (II) and Zn (II) complexes is 1:1. As expected, Ni (II) and Zn (II) complexes are diamagnetic; Cu (II), Co (II) and Fe (III) complexes are paramagnetic character due to a strong ligand of LG and LP. The LG, LP and their metal complexes were screened for their antimicrobial activities against five Gram-positive (Staphylococcus aureus, Methicillin resistant Staphylococcus aureus (MRSA), Bacillus cereus, Streptococcus mutans and Enterococcus faecalis) and three Gram-negative (Escherichia coli, Klebsiella pneumoniae and Pseudomonas aeruginosa) and one fungi (Candida albicans) by using broth microdilution techniques. The activity data show that ligands and their metal complexes exhibited moderate to good activity against Gram-positive bacteria and fungi.
Giovanella, Patricia; Cabral, Lucélia; Bento, Fátima Menezes; Gianello, Clesio; Camargo, Flávio Anastácio Oliveira
2016-01-25
This study aimed to isolate mercury resistant bacteria, determine the minimum inhibitory concentration for Hg, estimate mercury removal by selected isolates, explore the mer genes, and detect and characterize the activity of the enzyme mercuric (II) reductase produced by a new strain of Pseudomonas sp. B50A. The Hg removal capacity of the isolates was determined by incubating the isolates in Luria Bertani broth and the remaining mercury quantified by atomic absorption spectrophotometry. A PCR reaction was carried out to detect the merA gene and the mercury (II) reductase activity was determined in a spectrophotometer at 340 nm. Eight Gram-negative bacterial isolates were resistant to high mercury concentrations and capable of removing mercury, and of these, five were positive for the gene merA. The isolate Pseudomonas sp. B50A removed 86% of the mercury present in the culture medium and was chosen for further analysis of its enzyme activity. Mercuric (II) reductase activity was detected in the crude extract of this strain. This enzyme showed optimal activity at pH 8 and at temperatures between 37 °C and 45 °C. The ions NH4(+), Ba(2+), Sn(2+), Ni(2+) and Cd(2+) neither inhibited nor stimulated the enzyme activity but it decreased in the presence of the ions Ca(2+), Cu(+) and K(+). The isolate and the enzyme detected were effective in reducing Hg(II) to Hg(0), showing the potential to develop bioremediation technologies and processes to clean-up the environment and waste contaminated with mercury. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Gaber, Mohamed; El-Wakiel, Nadia A.; El-Ghamry, Hoda; Fathalla, Shaimaa K.
2014-11-01
Manganese(II), cobalt(II), nickel(II) and copper(II) complexes of [(1H-1,2,4-triazole-3-ylimino)methyl]naphthalene-2-ol have been synthesized. The structure of complexes have been characterized by elemental analysis, molar conductance, magnetic moment measurements and spectral (IR, 1H NMR, EI-mass, UV-Vis and ESR), and thermal studies. The results showed that the chloro and nitrato Cu(II) complexes have octahedral geometry while Ni(II), Co(II) and Mn(II) complexes in addition to acetato Cu(II) complex have tetrahedral geometry. The possible structures of the metal complexes have been computed using the molecular mechanic calculations using the hyper chem. 8.03 molecular modeling program to confirm the proposed structures. The kinetic and thermodynamic parameters of the thermal decomposition steps were calculated from the TG curves. The binding modes of the complexes with DNA have been investigated by UV-Vis absorption titration. The results showed that the mode of binding of the complexes to DNA is intercalative or non-intercalative binding modes. Schiff base and its metal complexes have been screened for their in vitro antimicrobial activities against Gram positive bacteria (Staphylococcus aureus), Gram negative bacteria (Escherichia coli and Pesudomonas aeruginosa), fungi (Asperigllus flavus and Mucer) and yeast (Candida albicans and Malassezia furfur).
Repression of enhancer II activity by a negative regulatory element in the hepatitis B virus genome.
Lo, W Y; Ting, L P
1994-01-01
Enhancer II of human hepatitis B virus has dual functions in vivo. Located at nucleotides (nt) 1646 to 1741, it can stimulate the surface and X promoters from a downstream position. Moreover, the same sequence can also function as upstream regulatory element that activates the core promoter in a position- and orientation-dependent manner. In this study, we report the identification and characterization of a negative regulatory element (NRE) upstream of enhancer II (nt 1613 to 1636) which can repress both the enhancer and upstream stimulatory function of the enhancer II sequence in differentiated liver cells. This NRE has marginal inhibitory effect by itself but a strong repressive function in the presence of a functional enhancer II. Mutational analysis reveals that sequence from nt 1616 to 1621 is required for repression of enhancer activity by the NRE. Gel shift analysis reveals that this negative regulatory region can be recognized by a specific protein factor(s) present at the 0.4 M NaCl fraction of HepG2 nuclear extracts. The discovery of the NRE indicates that HBV gene transcription is controlled by combined effects of both positive and negative regulation. It also provides a unique system with which to study the mechanism of negative regulation of gene expression. Images PMID:8107237
Class II G Protein-Coupled Receptors and Their Ligands in Neuronal Function and Protection
Martin, Bronwen; de Maturana, Rakel Lopez; Brenneman, Randall; Walent, Tom; Mattson, Mark P.; Maudsley, Stuart
2008-01-01
G protein-coupled receptors (GPCRs) play pivotal roles in regulating the function and plasticity of neuronal circuits in the nervous system. Among the myriad of GPCRs expressed in neural cells, class II GPCRs which couples predominantly to the Gs–adenylate cyclase–cAMP signaling pathway, have recently received considerable attention for their involvement in regulating neuronal survival. Neuropeptides that activate class II GPCRs include secretin, glucagon-like peptides (GLP-1 and GLP-2), growth hormone-releasing hormone (GHRH), pituitary adenylate cyclase activating peptide (PACAP), corticotropin-releasing hormone (CRH), vasoactive intestinal peptide (VIP), parathyroid hormone (PTH), and calcitonin-related peptides. Studies of patients and animal and cell culture models, have revealed possible roles for class II GPCRs signaling in the pathogenesis of several prominent neurodegenerative conditions including stroke, Alzheimer's, Parkinson's, and Huntington's diseases. Many of the peptides that activate class II GPCRs promote neuron survival by increasing the resistance of the cells to oxidative, metabolic, and excitotoxic injury. A better understanding of the cellular and molecular mechanisms by which class II GPCRs signaling modulates neuronal survival and plasticity will likely lead to novel therapeutic interventions for neurodegenerative disorders. PMID:16052036
RISK FACTORS FOR HTLV-II INFECTION IN PERUVIAN MEN WHO HAVE SEX WITH MEN
ZUNT, JOSEPH R.; LA ROSA, ALBERTO M.; PEINADO, JESÚS; LAMA, JAVIER R.; SUAREZ, LUIS; PUN, MONICA; CABEZAS, CESAR; SANCHEZ, JORGE
2009-01-01
Human T-cell lymphotropic virus type-II (HTLV-II) infection is endemic in indigenous groups in the Americas and injection drug users (IDUs) worldwide. In Peru, HTLV-II infection was previously identified in two indigenous Amazonians. We examined risk factors for HTLV-II infection in 2,703 Peruvian men who have sex with men (MSM): 35 (1.3%) were HTLV-II positive. HTLV-II infection was associated with syphilis, HSV-2 infection, unprotected receptive anal intercourse, and older age. This is the first report of HTLV-II in a non-indigenous non-IDU population in Peru. Additional studies are needed to determine if HTLV-II is a sexually transmitted infection in this and other sexually active populations. PMID:16687704
DOE Office of Scientific and Technical Information (OSTI.GOV)
Busbee, Philip B.; Nagarkatti, Mitzi; Nagarkatti, Prakash S., E-mail: prakash@mailbox.sc.edu
2014-01-01
Staphylococcal enterotoxin B (SEB) is a potent exotoxin produced by the Staphylococcus aureus. This toxin is classified as a superantigen because of its ability to directly bind with MHC-II class molecules followed by activation of a large proportion of T cells bearing specific Vβ-T cell receptors. Commonly associated with classic food poisoning, SEB has also been shown to induce toxic shock syndrome, and is also considered to be a potential biological warfare agent because it is easily aerosolized. In the present study, we assessed the ability of indole-3-carbinol (I3C) and one of its byproducts, 3,3′-diindolylmethane (DIM), found in cruciferous vegetables,more » to counteract the effects of SEB-induced activation of T cells in mice. Both I3C and DIM were found to decrease the activation, proliferation, and cytokine production by SEB-activated Vβ8{sup +} T cells in vitro and in vivo. Interestingly, inhibitors of histone deacetylase class I (HDAC-I), but not class II (HDAC-II), showed significant decrease in SEB-induced T cell activation and cytokine production, thereby suggesting that epigenetic modulation plays a critical role in the regulation of SEB-induced inflammation. In addition, I3C and DIM caused a decrease in HDAC-I but not HDAC-II in SEB-activated T cells, thereby suggesting that I3C and DIM may inhibit SEB-mediated T cell activation by acting as HDAC-I inhibitors. These studies not only suggest for the first time that plant-derived indoles are potent suppressors of SEB-induced T cell activation and cytokine storm but also that they may mediate these effects by acting as HDAC inhibitors. - Highlights: • I3C and DIM reduce SEB-induced T cell activation and inflammatory cytokines. • Inhibiting class I HDACs reduces T cell activation and inflammatory cytokines. • Inhibiting class II HDACs increases T cell activation and inflammatory cytokines. • I3C and DIM selectively reduce mRNA expression of class I HDACs. • Novel use and mechanism to counteract SEB with I3C and DIM.« less
Prabhakara, Chetan T; Patil, Sangamesh A; Toragalmath, Shivakumar S; Kinnal, Shivashankar M; Badami, Prema S
2016-04-01
The impregnation of halogen atoms in a molecule is an emerging trend in pharmaceutical chemistry. The presence of halogens (Cl, Br, I and F) increases the lipophilic nature of molecule and improves the penetration of lipid membrane. The presence of electronegative halogen atoms increases the bio- activity of core moiety. In the present study, Co(II), Ni(II) and Cu(II) complexes are synthesised using Schiff bases (HL(I) and HL(II)), derived from 8-formyl-7-hydroxy-4-methylcoumarin/3-chloro-8-formyl-7-hydroxy-4-methylcoumarin with 2,4-difluoroaniline/o-toluidine respectively. The synthesized compounds were characterized by spectral (IR, NMR, UV-visible, Mass, ESI-MS, ESR), thermal, fluorescence and molar conductivity studies. All the synthesized metal complexes are completely soluble in DMF and DMSO. The non-electrolytic nature of the metal complexes was confirmed by molar conductance studies. Elemental analysis study suggest [ML2(H2O)2] stoichiometry, here M=Co(II), Ni(II) and Cu(II), L=deprotonated ligand. The obtained IR data supports the binding of metal ion to Schiff base. Thermal study suggests the presence of coordinated water molecules. Electronic spectral results reveal six coordinated geometry for the synthesized metal complexes. The Schiff bases and their metal complexes were evaluated for antibacterial (Pseudomonas aureginosa and Proteus mirabilis), antifungal (Aspergillus niger and Rhizopus oryzae), anthelmintic (Pheretima posthuma) and DNA cleavage (Calf Thymus DNA) activities. Copyright © 2016 Elsevier B.V. All rights reserved.
Taylor, June S.; Mushak, Paul; Coleman, Joseph E.
1970-01-01
Electron spin resonance (esr) spectra of Cu(II) and Co(II) carbonic anhydrase, and a spin-labeled sulfonamide complex of the Zn(II) enzyme, are reported. The coordination geometry of Cu(II) bound in the enzyme appears to have approximately axial symmetry. Esr spectra of enzyme complexes with metal-binding anions also show axial symmetry and greater covalency, in the order ethoxzolamide < SH- < N3- ≤ CN-. Well-resolved superhyperfine structure in the spectrum of the cyanide complex suggests the presence of two, and probably three, equivalent nitrogen ligands from the protein. Esr spectra of the Co(II) enzyme and its complexes show two types of Co(II) environment, one typical of the native enzyme and the 1:1 CN- complex, and one typical of a 2:1 CN- complex. Co(II) in the 2:1 complex appears to be low-spin and probably has a coordination number of 5. Binding of a spin-labeled sulfonamide to the active center immobilizes the free radical. The similarity of the esr spectra of spin-labeled Zn(II) and Co(II) carbonic anhydrases suggests that the conformation at the active center is similar in the two metal derivatives. PMID:4320976
Borsoi-Ribeiro, Mariana; Bresolin, Igor Tadeu Lazzarotto; Vijayalakshmi, Mookambeswaran; Bueno, Sônia Maria Alves
2013-10-01
Iminodiacetic acid (IDA) and tris(2-aminoethyl)amine (TREN) chelating ligands were immobilized on poly(ethylene vinyl alcohol) (PEVA) hollow-fiber membranes after activation with epichlorohydrin or butanediol diglycidyl ether (bisoxirane). The affinity membranes complexed with Cu(II) were evaluated for adsorption of human immunoglobulin G (IgG). The effects of matrix activation and buffer system on adsorption of IgG were studied. Isotherms of batch IgG adsorption onto finely cut membranes showed that neither of the chelates, IDA-Cu(II) or TREN-Cu(II), had a Langmuirean behavior with negative cooperativity for IgG binding. A comparison of equilibrium and dynamic maximum capacities showed that the dynamic capacity for a mini-cartridge in a cross-flow filtration mode (52.5 and 298.4 mg g(-1) dry weight for PEVA-TREN-Cu(II) and PEVA-IDA-Cu(II), respectively) was somewhat higher than the equilibrium capacity (9.2 and 73.3 mg g(-1) dry weight for PEVA-TREN-Cu(II) and PEVA-IDA-Cu(II), respectively). When mini-cartridges were used, the dynamic adsorption capacity of IDA-Cu(II) was the same for both mini-cartridge and agarose gel. Copyright © 2013 John Wiley & Sons, Ltd.
Bacchi, A; Carcelli, M; Pelagatti, P; Pelizzi, C; Pelizzi, G; Zani, F
1999-06-15
Several mono- and bis- carbono- and thiocarbonohydrazone ligands have been synthesised and characterised; the X-ray diffraction analysis of bis(phenyl 2-pyridyl ketone) thiocarbonohydrazone is reported. The coordinating properties of the ligands have been studied towards Cu(II), Fe(II), and Zn(II) salts. The ligands and the metal complexes were tested in vitro against Gram positive and Gram negative bacteria, yeasts and moulds. In general, the bisthiocarbonohydrazones possess the best antimicrobial properties and Gram positive bacteria are the most sensitive microorganisms. Bis(ethyl 2-pyridyl ketone) thiocarbonohydrazone, bis(butyl 2-pyridyl ketone)thiocarbonohydrazone and Cu(H2nft)Cl2 (H2nft, bis(5-nitrofuraldehyde)thiocarbonohydrazone) reveal a strong activity with minimum inhibitory concentrations of 0.7 microgram ml-1 against Bacillus subtilis and of 3 micrograms ml-1 against Staphylococcus aureus. Cu(II) complexes are more effective than Fe(II) and Zn(II) ones. All bisthiocarbono- and carbonohydrazones are devoid of mutagenic properties, with the exception of the compounds derived from 5-nitrofuraldehyde. On the contrary a weak mutagenicity, that disappears in the copper complexes, is exhibited by monosubstituted thiocarbonohydrazones.
Ham, Sun Ah; Lee, Hanna; Hwang, Jung Seok; Kang, Eun Sil; Yoo, Taesik; Paek, Kyung Shin; Do, Jeong Tae; Park, Chankyu; Oh, Jae-Wook; Kim, Jin-Hoi; Han, Chang Woo; Seo, Han Geuk
2014-01-01
We investigated the role of peroxisome proliferator-activated receptor (PPAR) δ on angiotensin (Ang) II-induced activation of matrix metalloproteinase (MMP)-2 in vascular smooth muscle cells (VSMCs). Activation of PPARδ by GW501516, a specific ligand for PPARδ, attenuated Ang II-induced activation of MMP-2 in a concentration-dependent manner. GW501516 also inhibited the generation of reactive oxygen species in VSMCs treated with Ang II. A marked increase in the mRNA levels of tissue inhibitor of metalloproteinase (TIMP)-2 and -3, endogenous antagonists of MMPs, was also observed in GW501516-treated VSMCs. These effects were markedly reduced in the presence of siRNAs against PPARδ, indicating that the effects of GW501516 are PPARδ dependent. Among the protein kinases inhibited by GW501516, suppression of phosphatidylinositol 3-kinase/Akt signaling was shown to have the greatest effect on activation of MMP-2 in VSMCs treated with Ang II. Concomitantly, GW501516-mediated inhibition of MMP-2 activation in VSMCs treated with Ang II was associated with the suppression of cell migration to levels approaching those in cells not exposed to Ang II. Thus, activation of PPARδ confers resistance to Ang II-induced degradation of the extracellular matrix by upregulating expression of its endogenous inhibitor TIMP and thereby modulating cellular responses to Ang II in vascular cells. © 2014 S. Karger AG, Basel.
Isolation of lead-resistant Arthrobactor strain GQ-9 and its biosorption mechanism.
Wang, Tianqi; Yao, Jun; Yuan, Zhimin; Zhao, Yue; Wang, Fei; Chen, Huilun
2018-02-01
In this study, lead-resistant bacterium Arthrobacter sp. GQ-9 with a resistant capability to cadmium, zinc, and copper was isolated from a heavy metal polluted soil. Microcalorimetry analysis was applied to assess the strain's microbial activity under Pb(II) stress and suggested that GQ-9's microbial activities under Pb(II) stress were stronger than a non-resistant strain. Biosorption batch experiments revealed that the optimal condition for adsorption of Pb(II) by GQ-9 was pH 5.5, a biomass dosage of 1.2 g L -1 , and an initial Pb(II) concentration of 100 mg L -1 with a maximum biosorption capacity of 17.56 mg g -1 .Adsorption-desorption experiments and Fourier transform infrared spectroscopy (FTIR) analysis were applied to elucidate the biosorption mechanisms. Adsorption-desorption analysis showed that GQ-9 cells could sequester 56.60% of the adsorbed Pb(II) ions on the cell wall. FTIR analysis suggested that hydroxyl, carboxyl, amino, nitrile, and sulfhydryl groups and amide I, amide II bands on the GQ-9 cell wall participated in the complexation of Pb(II) ions. The present study illustrates that the lead-resistant bacteria GQ-9 has the potential for further development of an effective and ecofriendly adsorbent for heavy metal bioremediation.
Extreme optical Fe II emission in luminous IRAS active galactic nuclei
NASA Technical Reports Server (NTRS)
Lipari, Sebastian; Terlevich, Roberto; Macchetto, F.
1993-01-01
Results of a program of studies and observations of strong optical Fe II emission in luminous and ultraluminous IRAS AGN are presented. New spectroscopic observations and studies of three known ultraluminous IRAS AGN with extreme optical Fe II emission, the discovery that PHL 1092 is a new ultraluminous IRAS AGN, and the detection of two new AGN with strongly variable flux in the optical Fe II emission lines are reported. These results are used to test the correlations between the Fe II emission and properties at other wavelengths such as the L(IR) and the radio emission. IR AGN with extreme Fe II emission are found to belong to a very important group of AGN, whose properties provide insight into the origin of the extreme Fe II emission and into the relation between the starburst and AGN phenomena.
NASA Astrophysics Data System (ADS)
Kursunlu, Ahmed Nuri; Guler, Ersin; Sevgi, Fatih; Ozkalp, Birol
2013-09-01
In this study, the new Schiff base ligands derived from condensation of amine and 5-bromo-salicylaldehyde were characterized. All compounds, the Schiff bases and the metal complexes, were characterized by elemental analyzes, FT-IR, 1H NMR, 13C NMR and magnetic susceptibility measurements. The synthesized ligands, along with their metal (II) complexes, were screened for their in vitro antibacterial activity against four Gram-negative (Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa and Salmonella enteritidis) and four Gram-positive (Streptococcus pyogones, Bacillus cereus, Staphylococcus aureus and Methicillin-resistant S. aureus) bacterial strains by using disc diffusion and broth microdilution techniques.
NASA Astrophysics Data System (ADS)
Maghami, Mahboobeh; Farzaneh, Faezeh; Simpson, Jim; Ghiasi, Mina; Azarkish, Mohammad
2015-08-01
A cobalt complex was prepared from CoCl2·6H2O and 2,4,6-tris(2-pyridyl)-1,3,5-triazine (tptz) in methanol and designated as [Co(tptz)(CH3OH)Cl2]·CH3OH·0.5H2O (1). It was characterized by several techniques including TGA analysis and FT-IR, UV-Vis and 1H NMR spectral studies. The crystal structure of 1 was determined by single-crystal X-ray diffraction. The Co(II) metal center in 1 is six coordinated with a distorted octahedral geometry. The tptz ligand is tridentate and coordinates to the cobalt through coplanar nitrogen atoms from the triazine and two pyridyl rings. Two chloride anions and a methanol molecule complete the inner coordination sphere of the metal ion. The optimized geometrical parameters obtained by DFT calculation are in good agreement with single XRD data. The in vitro antibacterial activity of various tptz complexes of Co(II), Ni(II), Cu(II), Mn(II) and Rh(III) were evaluated against Gram-positive (Bacillus subtilis, Staphylococcus aureus and Gram-negative (Escherichia coli and Pseudomonas aeruginosa) bacteria. Whereas all complexes exhibited good activity in comparison to standard antibacterial drugs, the inhibitory effects of complexes were found to be more than that of the parent ligand. Overall, the obtained results strongly suggest that the cobalt(II) complex is a suitable candidate for counteracting antibiotic resistant microorganisms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ishizuka, Toshiaki, E-mail: tishizu@ndmc.ac.jp; Goshima, Hazuki; Ozawa, Ayako
2012-03-30
Highlights: Black-Right-Pointing-Pointer Treatment with angiotensin II enhanced LIF-induced DNA synthesis of mouse iPS cells. Black-Right-Pointing-Pointer Angiotensin II may enhance the DNA synthesis via induction of superoxide. Black-Right-Pointing-Pointer Treatment with angiotensin II significantly increased JAK/STAT3 phosphorylation. Black-Right-Pointing-Pointer Angiotensin II enhanced differentiation into mesodermal progenitor cells. Black-Right-Pointing-Pointer Angiotensin II may enhance the differentiation via activation of p38 MAPK. -- Abstract: Previous studies suggest that angiotensin receptor stimulation may enhance not only proliferation but also differentiation of undifferentiated stem/progenitor cells. Therefore, in the present study, we determined the involvement of the angiotensin receptor in the proliferation and differentiation of mouse induced pluripotent stemmore » (iPS) cells. Stimulation with angiotensin II (Ang II) significantly increased DNA synthesis in mouse iPS cells cultured in a medium with leukemia inhibitory factor (LIF). Pretreatment of the cells with either candesartan (a selective Ang II type 1 receptor [AT{sub 1}R] antagonist) or Tempol (a cell-permeable superoxide scavenger) significantly inhibited Ang II-induced DNA synthesis. Treatment with Ang II significantly increased JAK/STAT3 phosphorylation. Pretreatment with candesartan significantly inhibited Ang II- induced JAK/STAT3 phosphorylation. In contrast, induction of mouse iPS cell differentiation into Flk-1-positive mesodermal progenitor cells was performed in type IV collagen (Col IV)- coated dishes in a differentiation medium without LIF. When Col IV-exposed iPS cells were treated with Ang II for 5 days, the expression of Flk-1 was significantly increased compared with that in the cells treated with the vehicle alone. Pretreatment of the cells with both candesartan and SB203580 (a p38 MAPK inhibitor) significantly inhibited the Ang II- induced increase in Flk-1 expression. Treatment with Ang II enhanced the phosphorylation of p38 MAPK in Col IV- exposed iPS cells. These results suggest that the stimulation of mouse iPS cells with AT{sub 1}R may enhance LIF-induced DNA synthesis, by augmenting the generation of superoxide and activating JAK/STAT3, and that AT{sub 1}R stimulation may enhance Col IV-induced differentiation into mesodermal progenitor cells via p38 MAPK activation.« less
Sibling rivalry: competition between MHC class II family members inhibits immunity.
Denzin, Lisa K; Cresswell, Peter
2013-01-01
Peptide loading of major histocompatibility complex (MHC) class II molecules in the endosomes and lysosomes of antigen-presenting cells is catalyzed by human leukocyte antigen-DM (HLA-DM) and modulated by HLA-DO. In a structural study in this issue, Guce et al. show that HLA-DO is an MHC class II mimic and functions as a competitive and essentially irreversible inhibitor of HLA-DM activity, thereby inhibiting MHC class II antigen presentation.
Literature and History--A Focus on the Era of the Great Depression and World War II (1929-1945).
ERIC Educational Resources Information Center
Ahern, John; Sandmann, Alexa
1997-01-01
Provides an annotated bibliography and suggested teaching activities for units on the Great Depression and World War II. The materials support inquiry into the causes of the Great Depression and World War II and how these events transformed U.S. society. The annotated bibliography includes novels, memoirs, biographies, and political studies. (MJP)
Ebrahimi Zarandi, Mohammad Javad; Sohrabi, Mahmoud Reza; Khosravi, Morteza; Mansouriieh, Nafiseh; Davallo, Mehran; Khosravan, Azita
2016-01-01
This study synthesized magnetic nanoparticles (Fe(3)O(4)) immobilized on activated carbon (AC) and used them as an effective adsorbent for Cu(II) removal from aqueous solution. The effect of three parameters, including the concentration of Cu(II), dosage of Fe(3)O(4)/AC magnetic nanocomposite and pH on the removal of Cu(II) using Fe(3)O(4)/AC nanocomposite were studied. In order to examine and describe the optimum condition for each of the mentioned parameters, Taguchi's optimization method was used in a batch system and L9 orthogonal array was used for the experimental design. The removal percentage (R%) of Cu(II) and uptake capacity (q) were transformed into an accurate signal-to-noise ratio (S/N) for a 'larger-the-better' response. Taguchi results, which were analyzed based on choosing the best run by examining the S/N, were statistically tested using analysis of variance; the tests showed that all the parameters' main effects were significant within a 95% confidence level. The best conditions for removal of Cu(II) were determined at pH of 7, nanocomposite dosage of 0.1 gL(-1) and initial Cu(II) concentration of 20 mg L(-1) at constant temperature of 25 °C. Generally, the results showed that the simple Taguchi's method is suitable to optimize the Cu(II) removal experiments.
Michalczyk, Ryszard; Unkefer, Clifford J.; Bacik, John-Paul; Schrader, Tobias E.; Ostermann, Andreas; Kovalevsky, Andrey Y.; McKenna, Robert; Fisher, Suzanne Zoë
2015-01-01
Human carbonic anhydrase II (HCA II) uses a Zn-bound OH−/H2O mechanism to catalyze the reversible hydration of CO2. This catalysis also involves a separate proton transfer step, mediated by an ordered solvent network coordinated by hydrophilic residues. One of these residues, Tyr7, was previously shown to be deprotonated in the neutron crystal structure at pH 10. This observation indicated that Tyr7 has a perturbed pKa compared with free tyrosine. To further probe the pKa of this residue, NMR spectroscopic measurements of [13C]Tyr-labeled holo HCA II (with active-site Zn present) were preformed to titrate all Tyr residues between pH 5.4–11.0. In addition, neutron studies of apo HCA II (with Zn removed from the active site) at pH 7.5 and holo HCA II at pH 6 were conducted. This detailed interrogation of tyrosines in HCA II by NMR and neutron crystallography revealed a significantly lowered pKa of Tyr7 and how pH and Tyr proximity to Zn affect hydrogen-bonding interactions. PMID:25902526
Okamura, Keisuke; Okuda, Tetsu; Shirai, Kazuyuki; Urata, Hidenori
2018-01-01
The aim of the present study was to establish a convenient clinically applicable assay method for chymase-dependent angiotensin II forming activity of circulating mononuclear leukocytes (CML), which was potentially a marker of tissue chymase activity. Using this method, association between CML chymase activity and clinical parameters was determined. Cardiovascular outpatients (n = 170) without taking antihypertensive medication were recruited. An ELISA for chymase-dependent angiotensin II-forming activity in CML was established using Nma /Dnp-modified angiotensin I. Logistic regression analysis revealed that age and male gender were significant independent determinants of the increased CML chymase activity. After adjustment by age and gender, the CML chymase activity was positively correlated with systolic blood pressure, pulse rate, and the brain natriuretic peptide level. The relation between blood pressure and CML chymase activity suggests that it might reflect that increased tissue chymase activity contributes to systemic high blood pressure and heart rate because plasma chymase is inactive due to inhibitory plasma inhibitors.
Rigor, Robert R; Hawkins, Brian T; Miller, David S
2010-07-01
P-glycoprotein is an ATP (adenosine triphosphate)-driven drug efflux transporter that is highly expressed at the blood-brain barrier (BBB) and is a major obstacle to the pharmacotherapy of central nervous system diseases, including brain tumors, neuro-AIDS, and epilepsy. Previous studies have shown that P-glycoprotein transport activity in rat brain capillaries is rapidly reduced by the proinflammatory cytokine, tumor necrosis factor-alpha (TNF-alpha) acting through protein kinase C (PKC)-dependent signaling. In this study, we used isolated rat brain capillaries to show that the TNF-alpha-induced reduction of P-glycoprotein activity was prevented by a PKCbeta(I/II) inhibitor, LY333531, and mimicked by a PKCbeta(I/II) activator, 12-deoxyphorbol-13-phenylacetate-20-acetate (dPPA). Western blotting of brain capillary extracts with phospho-specific antibodies showed that dPPA activated PKCbeta(I), but not PKCbeta(II). Moreover, in intact rats, intracarotid infusion of dPPA potently increased brain accumulation of the P-glycoprotein substrate, [(3)H]-verapamil without compromising tight junction integrity. Thus, PKCbeta(I) activation selectively reduced P-glycoprotein activity both in vitro and in vivo. Targeting PKCbeta(I) at the BBB may prove to be an effective strategy for enhancing the delivery of small molecule therapeutics to the brain.
NASA Astrophysics Data System (ADS)
Abdel-Monem, Yasser K.; Abouel-Enein, Saeyda A.; El-Seady, Safa M.
2018-01-01
Multidentate Schiff base (H2L) ligand results from condensation of 5-aminouracil and 2-benzoyl pyridine and its metal chloride (Mn(II), Co(II), Ni(II), Cu(II), Zn(II), Pd(II), Fe(III), Cr(III), Ru(III), Zr(IV) and Hf(IV)) complexes were prepared. The structural features of the ligand and its metal complexes were confirmed by elemental analyses, spectroscopic methods (IR, UV-Vis, 1H NMR, mass), magnetic moment measurements and thermal studies. The data refer to the ligand coordinates with metal ions in a neutral form and shows different modes of chelation toward the metal atom. All complexes have octahedral skeleton structure, tetrahedrally Mn(II), Ni(II), trigonalbipyramidal Co(II) and square planner Pd(II). Thermal decomposition of complexes as well as the interaction of different types of solvent of crystallization are assigned by thermogravimetric analysis. Molecular modeling of prepared complexes were investigated to study the expected anticancer activities of the prepared complexes. All metal complexes have no interaction except the complexes of Pd(II), Fe(III) and Mn(II).
Gender affects renal vasoconstrictor response to Ang I and Ang II.
Gandhi, S K; Gainer, J; King, D; Brown, N J
1998-01-01
This study tested the hypothesis that gender affects the pressor and renal vasoconstrictor responses to angiotensin (Ang) I and Ang II in salt-replete normotensive subjects. Ang I and Ang II were infused in graded doses into 9 men and 8 women in a randomized, single-blind, crossover study. There were no differences between genders in baseline blood pressure, heart rate, sodium excretion, renal plasma flow, angiotensin-converting enzyme (ACE) genotype, ACE activity, plasma renin activity, aldosterone, or Ang II levels. Although pressor responses to Ang I and Ang II were similar in men and women, there was a negative relationship between the change in mean arterial pressure and the change in heart rate during Ang I and II infusion in women only. The half-time of the pressor response after discontinuation of Ang I but not Ang II infusion was greater in men than in women (9.5+/-2.2 versus 4.3+/-2.1 minutes, P<.05). This difference in duration did not result from gender differences in the metabolism of Ang I because Ang II levels measured during Ang I infusion were identical in men and women. In contrast, the renal vasoconstrictor response to Ang I and Ang II was significantly increased in women compared with that in men (Ang I, -243+/-31 versus -138+/-13 U/1.73 m2; Ang II, -233+/-25 versus -175+/-18 U/1.73 m2; P<.03). These data suggest an effect of gender on baroreflex reactivity during angiotensin infusion. Moreover, in the setting of similar Ang II concentrations, the dramatic difference in the renal vasoconstrictor responses to Ang I and Ang II between salt-replete men and salt-replete women suggests gender differences at a pharmacodynamic level.
Reza, Hasan Mahmud; Tabassum, Nabila; Sagor, Md Abu Taher; Chowdhury, Mohammed Riaz Hasan; Rahman, Mahbubur; Jain, Preeti; Alam, Md Ashraful
2016-01-01
Hepatic fibrosis is a common feature of chronic liver injury, and the involvement of angiotensin II in such process has been studied earlier. We hypothesized that anti-angiotensin II agents may be effective in preventing hepatic fibrosis. In this study, Long Evans female rats were used and divided into four groups such as Group-I, Control; Group-II, Control + ramipril; Group-III, CCl4; and Group-IV, CCl4 + ramipril. Group II and IV are treated with ramipril for 14 d. At the end of treatment, the livers were removed, and the level of hepatic marker enzymes (aspartate aminotransferase, Alanine aminotransferase, and alkaline phosphatase), nitric oxide, advanced protein oxidation product , catalase activity, and lipid peroxidation were determined. The degree of fibrosis was evaluated through histopathological staining with Sirius red and trichrome milligan staining. Carbon-tetrachloride (CCl4) administration in rats developed hepatic dysfunction and raised the hepatic marker enzymes activities significantly. CCl4 administration in rats also produced oxidative stress, inflammation, and fibrosis in liver. Furthermore, angiotensinogen-inhibitor ramipril normalized the hepatic enzymes activities and improved the antioxidant enzyme catalase activity. Moreover, ramipril treatment ameliorated lipid peroxidation and hepatic inflammation in CCl4-treated rats. Ramipril treatment also significantly reduced hepatic fibrosis in CCl4-administered rats. In conclusion, our investigation suggests that the antifibrotic effect of ramipril may be attributed to inhibition of angiotensin-II mediated oxidative stress and inflammation in liver CCl4-administered rats.
Benz-de Bretagne, Isabelle; Respaud, Renaud; Vourc'h, Patrick; Halimi, Jean-Michel; Caille, Agnès; Hulot, Jean-Sébastien; Andres, Christian R; Le Guellec, Chantal
2011-01-01
MRP2 encoded by ABCC2 gene is involved in the secretion of numerous drugs and endogenous substrates. Patients with Dubin-Johnson syndrome due to mutation in ABCC2 gene have elevated urinary coproporphyrin ratio (UCP I/(I + III)). Here we investigated whether this ratio could serve as a biomarker of MRP2 function. Phenotype-genotype relationships were studied in 74 healthy subjects by measuring individual UCP I/(I + III) ratio obtained on 24-hour urine and by analyzing five common SNPs in ABCC2 gene. The UCP I/(I + III) ratio varied from 14.7% to 46.0% in our population. Subjects with 3972TT genotype had a higher ratio (P = .04) than those carrying the C allele. This higher UCP I/(I + III) ratio was correlated with a higher level of isomer I excretion. This study provides a proof of concept that UCP I/(I + III) ratio can be used as a biomarker of MRP2 function in clinical studies as it provides quantitative information about the in vivo activity of MRP2 in a given patient.
Benz-de Bretagne, Isabelle; Respaud, Renaud; Vourc'h, Patrick; Halimi, Jean-Michel; Caille, Agnès; Hulot, Jean-Sébastien; Andres, Christian R.; Le Guellec, Chantal
2011-01-01
MRP2 encoded by ABCC2 gene is involved in the secretion of numerous drugs and endogenous substrates. Patients with Dubin-Johnson syndrome due to mutation in ABCC2 gene have elevated urinary coproporphyrin ratio (UCP I/(I + III)). Here we investigated whether this ratio could serve as a biomarker of MRP2 function. Phenotype-genotype relationships were studied in 74 healthy subjects by measuring individual UCP I/(I + III) ratio obtained on 24-hour urine and by analyzing five common SNPs in ABCC2 gene. The UCP I/(I + III) ratio varied from 14.7% to 46.0% in our population. Subjects with 3972TT genotype had a higher ratio (P = .04) than those carrying the C allele. This higher UCP I/(I + III) ratio was correlated with a higher level of isomer I excretion. This study provides a proof of concept that UCP I/(I + III) ratio can be used as a biomarker of MRP2 function in clinical studies as it provides quantitative information about the in vivo activity of MRP2 in a given patient. PMID:21541183
Kavitha, P; Saritha, M; Laxma Reddy, K
2013-02-01
Cu(II) complexes have been synthesized from different Schiff bases, such as 3-((2-hydroxy phenylimino)methyl)-4H-chromen-4-one (HL(1)), 2-((4-oxo-4H-chromen-3-yl)methylneamino) benzoicacid (HL(2)), 3-((3-hydroxypyridin-2-ylimino)methyl)-4H-chromen-4-one (HL(3)) and 3-((2-mercaptophenylimino)methyl)-4H-chromen-4-one (HL(4)). The complexes were characterized by analytical, molar conductance, IR, electronic, magnetic, ESR, thermal, powder XRD and SEM studies. The analytical data reveal that metal to ligand molar ratio is 1:2 in all the complexes. Molar conductivity data indicates that all the Cu(II) complexes are neutral. On the basis of magnetic and electronic spectral data, distorted octahedral geometry is proposed for all the Cu(II) complexes. Thermal behaviour of the synthesized complexes illustrates the presence of lattice water molecules in the complexes. X-ray diffraction studies reveal that all the ligands and their Cu(II) complexes have triclinic system with different unit cell parameters. Antimicrobial, antioxidant and DNA cleavage activities indicate that metal complexes exhibited greater activity as compared with ligands. Copyright © 2012 Elsevier B.V. All rights reserved.
Takemoto, Y; Sakatani, M; Takami, S; Tachibana, T; Higaki, J; Ogihara, T; Miki, T; Katsuya, T; Tsuchiyama, T; Yoshida, A; Yu, H; Tanio, Y; Ueda, E
1998-06-01
Serum angiotensin converting enzyme (SACE) is considered to reflect disease activity in sarcoidosis. SACE activity is increased in many patients with active sarcoid lesions. The mechanism for the increased SACE activity in this disease has not been clarified. ACE insertion/deletion (I/D) gene polymorphism has been reported to have an association with SACE levels in sarcoidosis, but no evidence of an association between angiotensin II receptor gene polymorphism and SACE in this disease has been found. A study of the association of angiotensin II receptor gene polymorphisms with sarcoidosis was therefore undertaken. ACE (I/D), angiotensin II type 1 receptor (AGTR1), and angiotensin II type 2 receptor (AGTR2) gene polymorphisms were investigated by polymerase chain reaction (PCR) and SACE levels were measured in three groups of patients: those with sarcoidosis or tuberculosis and normal controls. There was no difference in allele frequency of AGTR1 and AGTR2 polymorphism among the three groups. Neither AGTR1 nor AGTR2 polymorphisms were associated with sarcoidosis. SACE activity was higher in patients with sarcoidosis with the AGTR1 A/C genotype than in others. However, this tendency was not detected in patients with tuberculosis. The AGTR1 allele C is associated with high activity of SACE in patients with sarcoidosis. It is another predisposing factor for high levels of SACE in patients with sarcoidosis and is considered to be an independent factor from the ACE D allele for high levels of SACE in sarcoidosis. This fact could be one of the explanations for the increased SACE activity in sarcoidosis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Corrêa, L. C.; Marchi-Salvador, D. P.; Cintra, A. C. O.
2006-08-01
A myotoxic Asp49-PLA{sub 2} with low catalytic activity from B. jararacussu (BthTX-II) was crystallized in the monoclinic crystal system; a complete X-ray diffraction data set was collected and a molecular-replacement solution was obtained. The oligomeric structure of BthTX-II resembles those of the Asp49-PLA{sub 2} PrTX-III and all bothropic Lys49-PLA{sub 2}s. For the first time, a complete X-ray diffraction data set has been collected from a myotoxic Asp49-phospholipase A{sub 2} (Asp49-PLA{sub 2}) with low catalytic activity (BthTX-II from Bothrops jararacussu venom) and a molecular-replacement solution has been obtained with a dimer in the asymmetric unit. The quaternary structure of BthTX-II resemblesmore » the myotoxin Asp49-PLA{sub 2} PrTX-III (piratoxin III from B. pirajai venom) and all non-catalytic and myotoxic dimeric Lys49-PLA{sub 2}s. In contrast, the oligomeric structure of BthTX-II is different from the highly catalytic and non-myotoxic BthA-I (acidic PLA{sub 2} from B. jararacussu). Thus, comparison between these structures should add insight into the catalytic and myotoxic activities of bothropic PLA{sub 2}s.« less
Oki, Kenji; Plonczynski, Maria W.; Lam, Milay Luis; Gomez-Sanchez, Elise P.
2012-01-01
Angiotensin II (A-II) regulation of aldosterone secretion is initiated by inducing cell membrane depolarization, thereby increasing intracellular calcium and activating the calcium calmodulin/calmodulin kinase cascade. Mutations in the selectivity filter of the KCNJ5 gene coding for inward rectifying potassium channel (Kir)3.4 has been found in about one third of aldosterone-producing adenomas. These mutations result in loss of selectivity of the inward rectifying current for potassium, which causes membrane depolarization and opening of calcium channels and activation of the calcium calmodulin/calmodulin kinase cascade and results in an increase in aldosterone secretion. In this study we show that A-II and a calcium ionophore down-regulate the expression of KCNJ5 mRNA and protein. Activation of Kir3.4 by naringin inhibits A-II-stimulated membrane voltage and aldosterone secretion. Overexpression of KCNJ5 in the HAC15 cells using a lentivirus resulted in a decrease in membrane voltage, intracellular calcium, expression of steroidogenic acute regulatory protein, 3-β-hydroxysteroid dehydrogenase 3B2, cytochrome P450 11B1 and cytochrome P450 11B2 mRNA, and aldosterone synthesis. In conclusion, A-II appears to stimulate aldosterone secretion by depolarizing the membrane acting in part through the regulation of the expression and activity of Kir3.4. PMID:22798349
Kanasaki, Megumi; Vong, Sylvia; Rovira, Carlota; Kalluri, Raghu
2014-01-01
K-ras is essential for embryogenesis and its mutations are involved in human developmental syndromes and cancer. To determine the consequences of K-ras activation in urothelium, we used uroplakin-II (UPK II) promoter driven Cre recombinase mice and generated mice with mutated KrasG12D allele in the urothelium (UPK II-Cre;LSL-K-rasG12D). The UPK II-Cre;LSL-K-rasG12D mice died neonatally due to lung morphogenesis defects consisting of simplification with enlargement of terminal air spaces and dysmorphic pulmonary vasculature. A significant alteration in epithelial and vascular basement membranes, together with fragmentation of laminin, points to extracellular matrix degradation as the causative mechanism of alveolar and vascular defects. Our data also suggest that altered protease activity in amniotic fluid might be associated with matrix defects in lung of UPK II-Cre;LSL-K-rasG12. These defects resemble those observed in early stage human neonatal bronchopulmonary dysplasia (BPD), although the relevance of this new mouse model for BPD study needs further investigation. PMID:24760005
Rehman, Sayeed Ur; Zubair, Haseeb; Sarwar, Tarique; Husain, Mohammed Amir; Ishqi, Hassan Mubarak; Nehar, Shamshun; Tabish, Mohammad
2015-02-01
6-Mercaptopurine (6MP) is a well-known purine antimetabolite used to treat childhood acute lymphoblastic leukemia and other diseases. Cancer cells as compared to normal cells are under increased oxidative stress and show high copper level. These differences between cancer cells and normal cells can be targeted to develop effective cancer therapy. Pro-oxidant property of 6MP in the presence of metal ions is not well documented. Redox cycling of Cu(II) to Cu(I) was found to be efficiently mediated by 6MP. We have performed a series of in vitro experiments to demonstrate the pro-oxidant property of 6MP in the presence of Cu(II). Studies on human lymphocytes confirmed the DNA damaging ability of 6MP in the presence of Cu(II). Since 6MP possesses DNA damaging ability by producing reactive oxygen species (ROS) in the presence of Cu(II), it may also possess apoptosis-inducing activity by involving endogenous copper ions. Essentially, this would be an alternative and copper-dependent pathway for anticancer activity of 6MP.
Hassan, Iftekhar; Khan, Azmat Ali; Aman, Shazia; Qamar, Wajhul; Ebaid, Hossam; Al-Tamimi, Jameel; Alhazza, Ibrahim M; Rady, Ahmed M
2018-01-26
The present study was designed to investigate if elevated copper level can be targeted to enhance the efficacy of a significant anticancer drug, imatinib (ITB). The antineoplastic activity of this drug was assessed in the HepG2, HEK-293, MCF-7 and MDA-MD-231 cells targeting elevated copper level as their common drug target. The cell lines were treated with the different doses of copper chloride (Cu II) and disulfiram (DSF) alone as well as in their combinations with the drug for 24 h in standard culture medium and conditions. The treated cells were subjected to various assays including MTT, PARP, p-53, caspase-7, caspase-3, LDH and single cell electrophoresis. The study shows that DSF and Cu (II) synergizes the anticancer activity of ITB to a significant extent in a dose-specific way as evidenced by the combinations treated groups. Furthermore, the same treatment strategy was employed in cancer-induced rats in which the combinations of ITB-DSF and ITB-Cu II showed enhanced antineoplastic activity as compared to ITB alone. However, DSF was more effective than Cu (II) as an adjuvant to the drug. Hence, restrained manipulation of copper level in tumor cells can orchestrate the redox and molecular dispositions inside the cells favoring the induction of apoptosis.
NASA Astrophysics Data System (ADS)
Mohamed, Gehad G.; Omar, M. M.; Ibrahim, Amr A.
2010-02-01
Novel Schiff base (H 2L) ligand is prepared via condensation of benzil and triethylenetetraamine. The ligand is characterized based on elemental analysis, mass, IR and 1H NMR spectra. Metal complexes are reported and characterized based on elemental analyses, IR, 1H NMR, solid reflectance, magnetic moment, molar conductance, and thermal analyses (TG, DTG and DTA). 1:1 [M]:[H 2L] complexes are found from the elemental analyses data having the formulae [M(H 2L)Cl 2]· yH 2O (M = Mn(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II)), [Fe(H 2L)Cl 2]Cl·H 2O, [Th(H 2L)Cl 2]Cl 2·3H 2O and [UO 2(H 2L)](CH 3COO) 2·2H 2O. The metal chelates are found to be non-electrolytes except Fe(III), Th(IV) and UO 2(II) complexes are electrolytes. IR spectra show that H 2L is coordinated to the metal ions in a neutral tetradentate manner with 4Ns donor sites of the two azomethine N and two NH groups. The geometrical structures of these complexes are found to be octahedral. The thermal behaviour of these chelates is studied where the hydrated complexes lose water molecules of hydration in the first step followed immediately by decomposition of the anions and ligand molecules in the subsequent steps. The activation thermodynamic parameters are calculated using Coats-Redfern method. The ligand (H 2L), in comparison to its metal complexes, is screened for its antibacterial activity. The activity data show that the metal complexes have antibacterial activity more than the parent Schiff base ligand and cefepime standard against one or more bacterial species.
DNA/RNA binding and anticancer/antimicrobial activities of polymer-copper(II) complexes
NASA Astrophysics Data System (ADS)
Lakshmipraba, Jagadeesan; Arunachalam, Sankaralingam; Riyasdeen, Anvarbatcha; Dhivya, Rajakumar; Vignesh, Sivanandham; Akbarsha, Mohammad Abdulkader; James, Rathinam Arthur
2013-05-01
Water soluble polymer-copper(II) complexes with various degrees of coordination in the polymer chain were synthesized and characterized by elemental analysis, IR, UV-visible and EPR spectra. The DNA/RNA binding behavior of these polymer-copper(II) complexes was examined by UV-visible absorption, emission and circular dichroism spectroscopic methods, and cyclic voltammetry techniques. The binding of the polymer-copper(II) complexes with DNA/RNA was mainly through intercalation but some amount of electrostatic interaction was also observed. This binding capacity increased with the degree of coordination of the complexes. The polymer-copper(II) complex having the highest degree of coordination was subjected to analysis of cytotoxic and antimicrobial properties. The cytotoxicity study indicated that the polymer-copper(II) complexes affected the viability of MCF-7 mammary carcinoma cells, and the cells responded to the treatment with mostly through apoptosis although a few cells succumbed to necrosis. The antimicrobial screening showed activity against some human pathogens.
Altintop, Mehlika Dilek; Ozdemir, Ahmet; Kucukoglu, Kaan; Turan-Zitouni, Gulhan; Nadaroglu, Hayrunnisa; Kaplancikli, Zafer Asim
2015-02-01
2-[[5-(2,4-Difluoro/dichlorophenylamino)-1,3,4-thiadiazol-2-yl]thio] acetophenone derivatives (3a--s) were designed as human carbonic anhydrase isozymes (hCA-I and hCA-II) inhibitors and synthesized. hCA-I and hCA-II were purified from erythrocyte cells by the affinity chromatography. The inhibitory effects of 18 newly synthesized acetophenones on hydratase activity of these isoenzymes were studied in vitro. The average IC50 values of the new compounds for hydratase activity ranged from 0.033 to 0.14 μM for hCA-I and from 0.030 to 0.11 μM for hCA-II. Among the newly synthesized compounds, 2-[[5-(2,4-dichlorophenylamino)-1,3,4-thiadiazol-2-yl]thio]-4'-bromoacetophenone (3n) can be considered as a promising hCA-II inhibitor owing to its selective and potent inhibitory effect on hCA-II.
Fagot, Delphine; Chicherio, Christian; Albinet, Cédric T; André, Nathalie; Audiffren, Michel
2017-09-04
It is well-known that processing speed and executive functions decline with advancing age. However, physical activity (PA) has a positive impact on cognitive performances in aging, specifically for inhibition. Less is known concerning intraindividual variability (iiV) in reaction times. This study aims to investigate the influence of PA and sex differences on iiV in inhibitory performance during aging. Healthy adults were divided into active and sedentary groups according to PA level. To analyse iiV in reaction times, individual mean, standard deviation and the ex-Gaussian parameters were considered. An interaction between activity level and sex was revealed, sedentary females being slower and more variable than sedentary men. No sex differences were found in the active groups. These results indicate that the negative impact of sedentariness on cognitive performance in older age is stronger for females. The present findings underline the need to consider sex differences in active aging approaches.
Wiernik, P H; Moore, D F; Bennett, J M; Vogl, S E; Harris, J E; Luger, S; Oken, M M; Glick, J H
1998-08-01
Mitoguazone, an investigational agent with significant activity in advanced lymphoma, was added to a modified CHOP regimen (COPA) in an effort to improve the activity of standard therapy in 66 previously untreated patients with stages II-IV lymphoma and diffuse histology of intermediate or high grade other than lymphoblastic in this phase II pilot study. The regimen was well tolerated and the complete response rate in diffuse large cell lymphoma was 55%. Sixty-five percent of all complete responders were in complete response for at least one year. Despite these excellent results. it is unlikely that the addition of mitoguazone improved results compared with those obtained with standard therapy alone, since similar results have been frequently reported with the latter.
Autoimmune severe hypertriglyceridemia induced by anti-apolipoprotein C-II antibody.
Yamamoto, Hiroyasu; Tanaka, Minoru; Yoshiga, Satomi; Funahashi, Tohru; Shimomura, Iichiro; Kihara, Shinji
2014-05-01
Among type V hyperlipoproteinemias, only one-fourth of the patients have genetic defects in lipoprotein lipase (LPL) or in its associated molecules; the exact mechanism in other patients is usually unknown. The aim of the study was to report a case of severe hypertriglyceridemia induced by anti-apolipoprotein (apo) C-II autoantibody and to clarify its pathogenesis. A 29-year-old Japanese woman presented with severe persistent hypertriglyceridemia since the age of 20 years. The past history was negative for acute pancreatitis, eruptive xanthomas, or lipemia retinalis. LPL mass and activities were normal. Plasma apo C-II levels were extremely low, but no mutation was observed in APOC2. Apo C-II protein was detected in the serum by immunoprecipitation and Western blotting. Large amounts of IgG and IgM were incorporated with apo C-II protein coimmunoprecipitated by anti-apo C-II antibody. IgG, but not IgM, purified from the serum prevented interaction of apo C-II with lipid substrate and diminished LPL hydrolysis activity. We identified anti-apo C-II antibody in a myeloma-unrelated severe hypertriglyceridemic patient. In vitro analysis confirmed that the autoantibody disrupted the interaction between apo C-II and lipid substrate, suggesting the etiological role of anti-apo C-II antibody in severe hypertriglyceridemia in this patient.
NASA Astrophysics Data System (ADS)
Chai, Lan-Qin; Zhang, Hong-Song; Huang, Jiao-Jiao; Zhang, Yu-Li
2015-02-01
An unexpected Schiff base-type Ni(II) complex, [Ni(L2)2]ṡCH3OH (HL2 = 1-(2-{[(E)-3, 5-dibromo-2-hydroxybenzylidene]amino}phenyl)ethanone oxime), has been synthesized via complexation of Ni(II) acetate tetrahydrate with HL1 (2-(3,5-dibromo-2-hydroxyphenyl)-4-methyl-1,2-dihydroquinazoline 3-oxide) originally. HL1 and its corresponding Ni(II) complex were characterized by IR, 1H NMR spectra, as well as by elemental analysis, UV-Vis and emission spectroscopy, respectively. Crystal structures of the ligand and complex have been determined by single-crystal X-ray diffraction. Each complex links two other molecules into an infinite 1-D chain via intermolecular hydrogen bonding interactions. Moreover, the electrochemical property of the nickle complex was studied by cyclic voltammetry. In addition, SOD-like activities of HL1 and Ni(II) complex were also investigated.
Starvin, A M; Rao, T Prasada
2004-09-10
As a part of removal of toxic heavy metals from hazardous wastes, solid phase extraction (SPE) of mercury(II) at trace and ultra trace levels was studied using 1-(2-thiazolylazo)-2-naphthol (TAN) functionalized activated carbon (AC). The SPE material removes traces of mercury(II) quantitatively in the pH range 6.0 +/- 0.2. Other parameters that influence quantitative recovery of mercury(II), viz. percent concentration of TAN in AC, amount of TAN-AC, preconcentration time and volume of aqueous phase were varied and optimized. The possible means of removal of Hg(II) from other metal ions that are likely to be present in the wastes of the chloroalkali industry is discussed. The potential of TAN-functionalized AC SPE material for decontaminating mercury from the brine sludge and cell house effluent of a chloralkali plant has been evaluated.
NASA Astrophysics Data System (ADS)
Badave, Kirti; Patil, Yogesh; Gonnade, Rajesh; Srinivas, Darbha; Dasgupta, Rajan; Khan, Ayesha; Rane, Sandhya
2011-12-01
Compound 1 [1-imino (acetyl hydrazino)-Vitamin K 3], displays valence tautomerically related electronic isomers as Form I and Form II. Form I exhibits 2D packing fragment with 1D ribbon chains of N-H⋯O hydrogen bonds and shows EPR silent features. While Form II is EPR active and exhibits biradical nature with double quantum transitions at g = 2.0040. 1H NMR of compound 2, [1-imino (hydrazino carboxylate)-Vitamin K 3] and Form II exhibit π delocalization via resonance assisted H-bonding [RAHB] effect compared to Form I. Molecular interactions in Form I and II are visualized by DSC. The electronic structures of compounds 1 and 2 have been correlated to their API values by measuring anticancer activities, mitochondrial potentials and DNA shearing patterns. Form II and compound 2 indicate mitochondria mediated apoptosis (˜75% cell death) while Form I causes 35% cell death.
Vijayakumari, N; Srinivasan, K
2014-07-01
The adsorption of Ni (II) on modified coconut oilcake residue carbon (bicarbonate treated coconut oilcake residue carbon-BCORC) was employed for the removal of Ni (II) from water and wastewater. The influence of various factors such as agitation time, pH and carbon dosage on the adsorption capacity has been studied. Adsorption isothermal data could be interpreted by Langmuir and Freundlich equations. In order to understand the reaction mechanism, kinetic data has been studied using reversible first order rate equation. Similar studies were carried out using commercially available activated carbon--CAC, for comparison purposes. Column studies were conducted to obtain breakthrough capacities of BCORC and CAC. Common anions and cations affecting the removal of Ni (II) on both the carbons were also studied. Experiments were also done with wastewater containing Ni (II), to assess the potential of these carbons.
Michael, Bindhu; Nair, Amithraj; Lairmore, Michael D.
2010-01-01
Human T-cell lymphotropic virus type 1 (HTLV-1), causes adult T cell leukemia/lymphoma (ATLL), and initiates a variety of immune mediated disorders. The viral genome encodes common structural and enzymatic proteins characteristic of all retroviruses and utilizes alternative splicing and alternate codon usage to make several regulatory and accessory proteins encoded in the pX region (pX ORF I to IV). Recent studies indicate that the accessory proteins p12I, p27I, p13II, and p30II, encoded by pX ORF I and II, contribute to viral replication and the ability of the virus to maintain typical in vivo expression levels. Proviral clones that are mutated in either pX ORF I or II, while fully competent in cell culture, are severely limited in their replicative capacity in a rabbit model. These HTLV-1 accessory proteins are critical for establishment of viral infectivity, enhance T- lymphocyte activation and potentially alter gene transcription and mitochondrial function. HTLV-1 pX ORF I expression is critical to the viral infectivity in resting primary lymphocytes suggesting a role for the calcineurin-binding protein p12I in lymphocyte activation. The endoplasmic reticulum and cis-Golgi localizing p12I activates NFAT, a key T cell transcription factor, through calcium-mediated signaling pathways and may lower the threshold of lymphocyte activation via the JAK/STAT pathway. In contrast p30II localizes to the nucleus and represses viral promoter activity, but may regulate cellular gene expression through p300/CBP or related co-activators of transcription. The mitochondrial localizing p13II induces morphologic changes in the organelle and may influence energy metabolism infected cells. Future studies of the molecular details HTLV-1 “accessory” proteins interactions will provide important new directions for investigations of HTLV-1 and related viruses associated with lymphoproliferative diseases. Thus, the accessory proteins of HTLV-1, once thought to be dispensable for viral replication, have proven to be directly involved in viral spread in vivo and represent potential targets for therapeutic intervention against HTLV-1 infection and disease. PMID:15358581
Subramanian, Venkateswaran; Moorleghen, Jessica J.; Balakrishnan, Anju; Howatt, Deborah A.; Chishti, Athar H.; Uchida, Haruhito A.
2013-01-01
Background and Objective Recently, we demonstrated that angiotensin II (AngII)-infusion profoundly increased both aortic protein and activity of calpains, calcium-activated cysteine proteases, in mice. In addition, pharmacological inhibition of calpain attenuated AngII-induced abdominal aortic aneurysm (AA) in mice. Recent studies have shown that AngII infusion into mice leads to aneurysmal formation localized to the ascending aorta. However, the precise functional contribution of calpain isoforms (-1 or -2) in AngII-induced abdominal AA formation is not known. Similarly, a functional role of calpain in AngII-induced ascending AA remains to be defined. Using BDA-410, an inhibitor of calpains, and calpain-1 genetic deficient mice, we examined the relative contribution of calpain isoforms in AngII-induced ascending and abdominal AA development. Methodology/Results To investigate the relative contribution of calpain-1 and -2 in development of AngII-induced AAs, male LDLr −/− mice that were either calpain-1 +/+ or −/− were fed a saturated fat-enriched diet and infused with AngII (1,000 ng/kg/min) for 4 weeks. Calpain-1 deficiency had no significant effect on body weight or blood pressure during AngII infusion. Moreover, calpain-1 deficiency showed no discernible effects on AngII-induced ascending and abdominal AAs. Interestingly, AngII infusion induced increased expression of calpain-2 protein, thus compensating for total calpain activity in aortas of calpain-1 deficient mice. Oral administration of BDA-410, a calpain inhibitor, along with AngII-infusion significantly attenuated AngII-induced ascending and abdominal AA formation in both calpain-1 +/+ and −/− mice as compared to vehicle administered mice. Furthermore, BDA-410 administration attenuated AngII-induced aortic medial hypertrophy and macrophage accumulation. Western blot and immunostaining analyses revealed BDA-410 administration attenuated AngII-induced C-terminal fragmentation of filamin A, an actin binding cytoskeletal protein in aorta. Conclusion Calpain-2 compensates for loss of calpain-1, and both calpain isoforms are involved in AngII-induced aortic aneurysm formation in mice. PMID:23977256
Sakthivel, A.; Rajasekaran, K.
2007-01-01
New N2O2 donor type Schiff base has been designed and synthesized by condensing acetoacetanilido-4-aminoantipyrine with 2-aminobenzoic acid in ethanol. Solid metal complexes of the Schiff base with Cu(II), Ni(II), Co(II), Mn(II), Zn(II), VO(IV), Hg(II) and Cd(II) metal ions were synthesized and characterized by elemental analyses, magnetic susceptibility, molar conduction, fast atom bombardment (FAB) mass, IR, UV-Vis, and 1H NMR spectral studies. The data show that the complexes have the composition of ML type. The UV-Vis. and magnetic susceptibility data of the complexes suggest a square-planar geometry around the central metal ion except VO(IV) complex which has square-pyramidal geometry. The in vitro antifungal activities of the compounds were tested against fungi such as Aspergillus niger, Aspergillus flavus, Rhizopus stolonifer, Candida albicans, Rhizoctonia bataicola and Trichoderma harizanum. All the metal complexes showed stronger antifungal activities than the free ligand. The minimum inhibitory concentrations (MIC) of the metal complexes were found in the range of 10~31 µg/ml. PMID:24015086
NASA Astrophysics Data System (ADS)
Ahamad, Tansir; Alshehri, Saad M.
2012-10-01
Phenylurea-formaldehyde polymer (PUF) was synthesized via polycondensation of phenylurea and formaldehyde in basic medium, its polymer-metal complexes [PUF-M(II)] were prepared with Mn(II), Co(II), Ni(II), Cu(II), and Zn(II) ions. PUF and PUF-M(II) were characterized with magnetic moment measurements, elemental and spectral (UV-visible, FTIR, 1H-NMR, 13C-NMR and ESR) analysis. The thermal behaviors of all the synthesized polymers were carried out using thermogravimetric analysis (TGA) and differential thermal analysis (DTA). The thermal data revealed that all of the PUF-M(II) showed higher thermal stabilities than the PUF and also ascribed that the PUF-Cu(II) showed better thermal stability than the other PUF-M(II). The kinetic parameters such as activation energy, pre-exponential factor etc., were evaluated for these polymer metal complexes using Coats-Redfern equation. In addition, the antimicrobial activity of the synthesized polymers was tested against several microorganisms using agar well diffusion methods. Among all of the PUF-M(II), the antimicrobial activity of the PUF-Cu(II) showed the highest zone of inhibition because of its higher stability constant and may be used in biomedical applications.
Renn, S C; Tomkinson, B; Taghert, P H
1998-07-24
We describe the characterization, cloning, and genetic analysis of tripeptidyl peptidase II (TPP II) from Drosophila melanogaster. Mammalian TPP II removes N-terminal tripeptides, has wide distribution, and has been identified as the cholecystokinin-degrading peptidase in rat brain. Size exclusion and ion exchange chromatography produced a 70-fold purification of dTPP II activity from Drosophila tissue extracts. The substrate specificity and the inhibitor sensitivity of dTPP II is comparable to that of the human enzyme. In particular, dTPP II is sensitive to butabindide, a specific inhibitor of the rat cholecystokinin-inactivating activity. We isolated a 4309-base pair dTPP II cDNA which predicts a 1354-amino acid protein. The deduced human and Drosophila TPP II proteins display 38% overall identity. The catalytic triad, its spacing, and the sequences that surround it are highly conserved; the C-terminal end of dTPP II contains a 100-amino acid insert not found in the mammalian proteins. Recombinant dTPP II displays the predicted activity following expression in HEK cells. TPP II maps to cytological position 49F4-7; animals deficient for this interval show reduced TPP II activity.
Surgery in World War II. Orthopedic Surgery in the Zone of Interior
1970-01-01
General Reference and Research Branch ROSE C. ENGELMAN, Ph. D., Chief, Historians Branch GERALDINE B. SITES, Chief, Information Activities Branch Major...SERIES Internal Medicine in World War II: Vol. I. Activities of Medical Consultants Vol. II. Infectious Diseases Vol. III. Infectious Diseases and General...Arthropodborne Diseases Other Than Malaria Vol. IX. Special Fields Surgery in World War II: Activities of Surgical Consultants, vol. I Activities of Surgical
Tanaka, Teruyoshi; Kelly, Matthew; Takei, Yuichiro; Yamanouchi, Dai
2018-04-20
Osteoclastogenic activation of macrophages (OCG) occurs in human abdominal aortic aneurysms (AAAs) and in calcium chloride-induced degenerative AAAs in mice, which have increased matrix metalloproteinase activity. As the activity of OCG in dissecting aneurysms is not clear, we tested the hypothesis that OCG contributes to angiotensin II (Ang II)-induced dissecting aneurysm (Ang II-induced AAA) in apolipoprotein E knockout mice. AAAs were produced in apolipoprotein E knockout mice via the administration of Ang II. Additionally, receptor activator of nuclear factor kB ligand (RANKL)-neutralizing antibody (5 mg/kg) was administered to one group of mice 7 days prior to Ang II infusion. Aneurysmal sections were probed for presence of RANKL and tartrate-resistant acid phosphatase via immunohistochemistry and immunofluorescence staining. Mouse aortas were also examined for RANKL and matrix metalloproteinase 9 expression via Western blot. In vitro murine vascular smooth muscle cells (MOVAS) and murine macrophages (RAW 264.7) were analyzed for the expression of osteogenic factors via Western blot, qPCR, and flow cytometry in response to Ang II or RANKL stimulation. The signaling pathway that mediates Ang II-induced RANKL expression in MOVAS cells was also investigated via application of TG101348, a Janus kinase 2 (JAK2) inhibitor, and Western blot analysis. Immunohistochemical staining of Ang II-induced AAA sections revealed OCG as evidenced by increased RANKL and tartrate-resistant acid phosphatase expression compared with control mice. Immunofluorescence staining of AAA sections revealed co-localization of vascular smooth muscle cells and RANKL, revealing vascular smooth muscle cells as one potential source of RANKL. Systemic administration of RANKL-neutralizing antibody suppressed Ang II-induced AAA, with significant reduction of the maximum diameter of the abdominal aorta compared with vehicle controls (1.5 ± 0.4 mm vs 2.2 ± 0.2 mm). Ang II (1 μM) treatment induced a significant increase in RANKL messenger RNA expression levels in MOVAS cells compared with the vehicle control (1.0 ± 0.2 vs 2.8 ± 0.2). The activities of JAK2 and signal transducer and activator of transcription 5 (STAT5) were also significantly increased by Ang II treatment. Inhibition of JAK2/STAT5 suppressed Ang II-induced RANKL expression, suggesting the involvement of the JAK2/STAT5 signaling pathway. OCG with increased RANKL expression was present in Ang II-induced AAA, and neutralization of RANKL suppressed AAA formation. As neutralization of RANKL has been used clinically to treat osteoporosis and other osteoclast-related diseases, additional study of the effectiveness of RANKL neutralization in AAA is warranted. Copyright © 2018 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Kareem, Abdul; Zafar, Hina; Sherwani, Asif; Mohammad, Owais; Khan, Tahir Ali
2014-10-01
An effective series of 18 membered octaazamacrocyclic complexes of the type [MLX2], where X = Cl or NO3 have been synthesized by template condensation reaction of oxalyl dihydrazide with dibenzoylmethane and metal salt in 2:2:1 molar ratio. The formation of macrocyclic framework, stereochemistry and their overall geometry have been characterized by various physico-chemical studies viz., elemental analysis, electron spray ionization-mass spectrometry (ESI-MS), I.R, UV-Vis, 1H NMR, 13C NMR spectroscopy, X-ray diffraction (XRD) and TGA/DTA studies. These studies suggest formation of octahedral macrocyclic complexes of Co(II), Ni(II), Cd(II) and Sn(II). The molar conductance values suggest nonelectrolytic nature for all the complexes. Thermogravimatric analysis shows that all the complexes are stable up to 600 °C. All these complexes have been tested against different human cancer cell lines i.e. human hepatocellular carcinoma (Hep3B), human cervical carcinoma (HeLa), human breast adenocarcinoma (MCF7) and normal cells (PBMC). The newly synthesized 18-membered octaazamacrocyclic complexes during in vitro anticancer evaluation, displayed moderate to good cytotoxicity on liver (Hep3B), cervical (HeLa) and breast (MCF7) cancer cell lines, respectively. The most effective anticancer cadmium complex (C34H28N10CdO10) was found to be active with IC50 values, 2.44 ± 1.500, 3.55 ± 1.600 and 4.82 ± 1.400 in micro-molar on liver, cervical and breast cancer cell lines, respectively.
Cheung, Kwok Fan; Yung, Susan; Chau, Mel K M; Yap, Desmond Y H; Chan, Kwok Wah; Lee, Cheuk Kwong; Tang, Colin S O; Chan, Tak Mao
2017-04-25
Annexin II on mesangial cell surface mediates the binding of anti-dsDNA antibodies and consequent downstream inflammatory and fibrotic processes. We investigated the clinical relevance of circulating annexin II-binding immunoglobulins (Igs) in patients with severe proliferative lupus nephritis, and renal annexin II expression in relation to progression of nephritis in New Zealand Black and White F1 mice (NZBWF1/J) mice. Annexin II-binding Igs in serum were measured by ELISA. Ultrastructural localization of annexin II was determined by electron microscopy. Seropositivity rates for annexin II-binding IgG and IgM in patients with active lupus nephritis were significantly higher compared with controls (8.9%, 1.3% and 0.9% for annexin II-binding IgG and 11.1%, 4.0% and 1.9% for annexin II-binding IgM for patients with active lupus nephritis, patients with non-lupus renal disease and healthy subjects respectively). In lupus patients, annexin II-binding IgM level was higher at disease flare compared with remission. Annexin II-binding IgG and IgM levels were associated with that of anti-dsDNA and disease activity. Annexin II-binding IgG and IgM levels correlated with histological activity index in lupus nephritis biopsy samples. In NZBWF1/J mice, serum annexin II-binding IgG and IgM levels and glomerular annexin II and p11 expression increased with progression of active nephritis. Annexin II expression was present on mesangial cell surface and in the mesangial matrix, and co-localized with electron-dense deposits along the glomerular basement membrane. Our results show that circulating annexin II-binding IgG and IgM levels are associated with clinical and histological disease activity in proliferative lupus nephritis. The co-localization of annexin II and p11 expression with immune deposition in the kidney suggests pathogenic relevance. © 2017 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.
Manosroi, Jiradej; Boonpisuttinant, Korawinwich; Manosroi, Worapaka; Manosroi, Aranya
2012-07-13
The Thai/Lanna medicinal plant recipe database "MANOSROI II" contained the medicinal plant recipes of all regions in Thailand for the treatment of various diseases including anti-cancer medicinal plant recipes. To investigate anti-proliferative activity on HeLa cell lines of medicinal plant recipes selected from the Thai/Lanna medicinal plant recipe database "MANOSROI II". The forty aqueous extracts of Thai/Lanna medicinal plant recipes selected from the Thai/Lanna medicinal plant recipe database "MANOSROI II" were investigated for anti-proliferative activity on HeLa cell line by SRB assay. The apoptosis induction by caspase-3 activity and MMP-2 inhibition activity by zymography on HeLa cell line of the three selected aqueous extracts, which gave the highest anti-proliferative activity were determined. Phytochemicals and anti-oxidative activities including free radical scavenging activity, inhibition of lipid peroxidation and metal chelating inhibition activities were also investigated. Sixty percentages of the medicinal plant recipes selected from "MANOSROI II" database showed anti-proliferative activity on HeLa cell line. The recipes of N031(Albizia chinensis (Osbeck) Merr, Cassia fistula L., and Dargea volubilis Benth.ex Hook. etc.), N039 (Nymphoides indica L., Peltophorum pterocarpum (DC.), and Polyalthia debilis Finet et Gagnep etc.) and N040 (Nymphoides indica L. Kuntze, Sida rhombifolia L., and Xylinbaria minutiflora Pierre. etc.) gave higher anti-proliferative activity than the standard anti-cancer drug, cisplatin of 1.25, 1.29 and 30.18 times, respectively. The positive relationship between the anti-proliferative activity and the MMP-2 inhibition activity and metal chelating inhibition activity was observed, but no relationship between the anti-proliferative activity and apoptosis induction, free radical scavenging activity and lipid peroxidation inhibition activity. Phytochemicals found in these extracts were alkaloids, flavonoids, tannins and xanthones, but not anthraquinones and carotenoids. The recipe N040 exhibited the highest anti-proliferative and MMP-2 inhibition on HeLa cancer cell line at 30 and threefolds of cisplatin, respectively (p<0.05), while recipe N031 gave the highest caspase-3 activity (1.29-folds over the control) (p<0.05). This study has demonstrated that recipe N040 selected from MANOSROI II database appeared to be a good candidate with high potential for the further development as an anti-cancer agent. Crown Copyright © 2012. Published by Elsevier Ireland Ltd. All rights reserved.
Nagatsu, Toshiharu
2017-06-01
Prolyl oligopeptidase (also named prolyl endopeptidase; PREP) hydrolyzes the Pro-Xaa bonds of biologically active oligopeptides on their carboxyl side. In 1987, we detected PREP activity in human cerebrospinal fluid (CSF) using highly sensitive liquid chromatography-fluorometry with succinyl-Gly-Pro-4-methyl-coumarin amide as a new synthetic substrate, and found a marked decrease in its activity in the cerebrospinal fluid (CSF) from patients with Parkinson's disease (PD) as compared with its level in control patients without neurological diseases. In 2013, Hannula et al. found co-localization of PREP with α-synuclein in the postmortem PD brain. Several recent studies also suggest that the level of PREP in the brain of PD patients may be related to dopamine (DA) cell death via promotion of α-synuclein oligomerization and that inhibitors of PREP may play a neuroprotective role in PD. Although the relationship between another family of prolyl oligopeptidase enzymes, dipeptidyl peptidase II (DPP II) and dipeptidyl peptidase IV (DPP IV), and α-synuclein in the PD brain is not yet clear, we found that the DPP II activity/DPP IV activity ratio in the CSF was significantly increased in PD patients. This review discusses the possibility of PREP as well as the DPP II/DPP IV ratio in the CSF as potential biomarkers of PD.
Lin, Yuan-Chuan; Lin, Chih-Hsueh; Yao, Hsien-Tsung; Kuo, Wei-Wen; Shen, Chia-Yao; Yeh, Yu-Lan; Ho, Tsung-Jung; Padma, V Vijaya; Lin, Yu-Chen; Huang, Chih-Yang; Huang, Chih-Yang
2017-06-09
Platycodon grandiflorum (PG) is a Chinese medical plant used for decades as a traditional prescription to eliminate phlegm, relieve cough, reduce inflammation and lower blood pressure. PG also has a significant effect on the cardiovascular systems. The aqueous extract of Platycodon grandiflorum (JACQ.) A. DC. root was screened for inhibiting Ang II-induced IGF-IIR activation and apoptosis pathway in H9c2 cardiomyocytes. The effects were also studied in spontaneously hypertensive rats (five groups, n=5) using low and high doses of PG for 50 days. The Ang II-induced IGF-IIR activation was analyzed by luciferase reporter, RT-PCR, western blot and surface IGF-IIR expression assay. Furthermore, the major active constituent of PG was carried out by high performance liquid chromatography-mass spectrometry (HPLC-MS). Our results indicate that a crude extract of PG significantly suppresses the Ang II-induced IGF-IIR signaling pathway to prevent cardiomyocyte apoptosis. PG extract inhibits Ang II-mediated JNK activation and SIRT1 degradation to reduce IGF-IIR activity. Moreover, PG maintains SIRT1 stability to enhance HSF1-mediated IGF-IIR suppression, which prevents cardiomyocyte apoptosis. In animal models, the administration of PG markedly reduced this apoptotic pathway in the heart of SHRs. Taken together, PG may be considered as an effective treatment for cardiac diseases in hypertensive patients. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.
Wang, Jiaoni; Zhou, Yingying; Wu, Shaoze; Huang, Kaiyu; Thapa, Saroj; Tao, Luyuan; Wang, Jie; Shen, Yigen; Wang, Jinsheng; Xue, Yangjing; Ji, Kangting
2018-01-01
Abdominal aortic aneurysm (AAA), characterized by macrophage infiltration-mediated inflammation and oxidative stress, is a potentially fatal disease. Astragaloside IV (AS-IV) has been acknowledged to exhibit antioxidant and anti-inflammatory properties. This study was designed to investigate the protective effect of AS-IV against AAA formation induced by 3,4-benzopyrene (Bap) and angiotensin II (Ang II), and to explore probable mechanisms. Results showed that AS-IV decreased AAA formation, and reduced macrophage infiltration and expression of matrix metalloproteinase. Furthermore, AS-IV abrogated Bap-/Ang II-induced NF-κB activation and oxidative stress. In vitro , AS-IV inhibition of macrophage activation and NF-κB was correlated with increased phosphorylation of phosphatidylinositol 3-kinase (PI3-K)/AKT. Together, our findings suggest that AS-IV has potential as an intervention in the formation of AAA. (1)The protective effect of Astragaloside IV (AS-IV) on abdominal aortic aneurysm (AAA) is associated with its suppressing effects on inflammation in the aortic wall.(2)AS-IV abrogated 3,4-benzopyrene (Bap)/angiotensin II (Ang II)-induced nuclear factor-κB (NF-κB) activation and oxidative stress.(3)AS-IV inhibited Bap-induced RAW264.7 macrophage cells activation by inhibiting oxidative stress and NF-κB activation through phosphatidylinositol 3-kinase (PI3-K)/AKT pathway.AS-IV is a potential preventive agent for cigarette smoking-related AAA.
NASA Astrophysics Data System (ADS)
Saputro, S.; Mahardiani, L.; Wulandari, D. A.
2018-03-01
This research aimed to know the usage of sawdust of teak wood and rice husk waste as Pb (II) ion adsorbents in simulated liquid waste, the combined optimum mass required adsorbent to adsorb Pb(II) ion, the sensitivity of the solid-phase spectrophotometry (sps) method in determining the decrease of Pb (II) metal ion levels in the μg/L level. This research was conducted by experimental method in laboratory. Adsorbents used in this study were charcoal of sawdust sawdust activated using 15% ZnCl2 solution and activated rice husk using 2 N NaOH solution. The adsorption processes of sawdust and rice husk with Pb(II) solution was done by variation of mass combination with a ratio of 1: 0; 0: 1; 1: 1; 1: 2; and 2: 1. Analysis of Pb(II) ion concentration using SPS and characterization of sawdust and rice husk adsorbent ads using FTIR. The results showed that activated charcoal from sawdust of teak wood and rice husks can be used as Pb (II) metal ion adsorbents with adsorption capacity of 0.86 μg/L, charcoal from sawdust of teak wood and rice husk adsorbent with a combination of optimum mass contact of sawdust and rice husk is 2:1 as much as 3 grams can adsorb 42.80 μg/L. Solid-phase spectophotometry is a sensitive method for analysis of concentration decreasing levels of Pb(II) ion, after it was absorbed by sawdust of teak wood and rice husk with high sensitivity and has the limit of detection (LOD) of 0.06 μg/L.
Wang, Li-Ping; Wang, Yan; Zhao, Li-Mei; Li, Gui-Rong; Deng, Xiu-Ling
2013-05-15
The proliferation of cardiac fibroblasts is implicated in the pathogenesis of myocardial remodeling and fibrosis. Intermediate-conductance calcium-activated K⁺ channels (K(Ca)3.1 channels) have important roles in cell proliferation. However, it is unknown whether angiotensin II (Ang II), a potent profibrotic molecule, would regulate K(Ca)3.1 channels in cardiac fibroblasts and participate in cell proliferation. In the present study, we investigated whether K(Ca)3.1 channels were regulated by Ang II, and how the channel activity mediated cell proliferation in cultured adult rat cardiac fibroblasts using electrophysiology and biochemical approaches. It was found that mRNA, protein, and current density of K(Ca)3.1 channels were greatly enhanced in cultured cardiac fibroblasts treated with 1 μM Ang II, and the effects were countered by the angiotensin type 1 receptor (AT₁R) blocker losartan, the p38-MAPK inhibitor SB203580, the ERK1/2 inhibitor PD98059, and the PI3K/Akt inhibitor LY294002. Ang II stimulated cell proliferation and the effect was antagonized by the K(Ca)3.1 blocker TRAM-34 and siRNA targeting K(Ca)3.1. In addition, Ang II-induced increase of K(Ca)3.1 expression was attenuated by transfection of activator protein-1 (AP-1) decoy oligodeoxynucleotides. These results demonstrate for the first time that Ang II stimulates cell proliferation mediated by upregulating K(Ca)3.1 channels via interacting with the AT₁R and activating AP-1 complex through ERK1/2, p38-MAPK and PI3K/Akt signaling pathways in cultured adult rat cardiac fibroblasts. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.
Wu, Mei-ping; Zhang, Yi-shuai; Xu, Xiangbin; Zhou, Qian
2017-01-01
Purpose Pathological cardiac remodeling, characterized by cardiac hypertrophy and fibrosis, is a pathological feature of many cardiac disorders that leads to heart failure and cardiac arrest. Vinpocetine, a derivative of the alkaloid vincamine, has been used for enhancing cerebral blood flow to treat cognitive impairment. However, its role in pathological cardiac remodeling remains unknown. The aim of this study is to examine the effect of vinpocetine on pathological cardiac remodeling induced by chronic stimulation with angiotensin II (Ang II). Methods Mice received Ang II infusion via osmotic pumps in the presence of vehicle or vinpocetine. Cardiac hypertrophy and fibrosis were assessed by morphological, histological, and biochemical analyses. Mechanistic studies were carried out in vitro with isolated mouse adult cardiac myocytes and fibroblasts. Results We showed that chronic Ang II infusion caused cardiac hypertrophy and fibrosis, which were all significantly attenuated by systemic administration of vinpocetine. In isolated adult mouse cardiomyocytes, vinpocetine suppressed Ang II-stimulated myocyte hypertrophic growth. In cultured cardiac fibroblasts, vinpocetine suppressed TGFβ-induced fibroblast activation and matrix gene expression, consistent with its effect in attenuating cardiac fibrosis. The effects of vinpocetine on cardiac myocyte hypertrophy and fibroblast activation are likely mediated by targeting cyclic nucleotide phosphodiesterase 1 (PDE1). Conclusions Our results reveal a novel protective effect of vinpocetine in attenuating pathological cardiac remodeling through suppressing cardiac myocyte hypertrophic growth and fibroblast activation and fibrotic gene expression. These studies may also shed light on developing novel therapeutic agents for antagonizing pathological cardiac remodeling. PMID:28321644
Wu, Mei-Ping; Zhang, Yi-Shuai; Xu, Xiangbin; Zhou, Qian; Li, Jian-Dong; Yan, Chen
2017-04-01
Pathological cardiac remodeling, characterized by cardiac hypertrophy and fibrosis, is a pathological feature of many cardiac disorders that leads to heart failure and cardiac arrest. Vinpocetine, a derivative of the alkaloid vincamine, has been used for enhancing cerebral blood flow to treat cognitive impairment. However, its role in pathological cardiac remodeling remains unknown. The aim of this study is to examine the effect of vinpocetine on pathological cardiac remodeling induced by chronic stimulation with angiotensin II (Ang II). Mice received Ang II infusion via osmotic pumps in the presence of vehicle or vinpocetine. Cardiac hypertrophy and fibrosis were assessed by morphological, histological, and biochemical analyses. Mechanistic studies were carried out in vitro with isolated mouse adult cardiac myocytes and fibroblasts. We showed that chronic Ang II infusion caused cardiac hypertrophy and fibrosis, which were all significantly attenuated by systemic administration of vinpocetine. In isolated adult mouse cardiomyocytes, vinpocetine suppressed Ang II-stimulated myocyte hypertrophic growth. In cultured cardiac fibroblasts, vinpocetine suppressed TGFβ-induced fibroblast activation and matrix gene expression, consistent with its effect in attenuating cardiac fibrosis. The effects of vinpocetine on cardiac myocyte hypertrophy and fibroblast activation are likely mediated by targeting cyclic nucleotide phosphodiesterase 1 (PDE1). Our results reveal a novel protective effect of vinpocetine in attenuating pathological cardiac remodeling through suppressing cardiac myocyte hypertrophic growth and fibroblast activation and fibrotic gene expression. These studies may also shed light on developing novel therapeutic agents for antagonizing pathological cardiac remodeling.
NASA Astrophysics Data System (ADS)
Devi, Jai; Batra, Nisha; Malhotra, Rajesh
2012-11-01
New Schiff bases pyrazine-2-carboxylicacid (phenyl-pyridin-2-yl-methylene)-hydrazide (Hpch-bp) HL1 and pyrazine-2-carboxylicacid (pyridin-2-ylmethylene)-hydrazide (Hpch-pc) HL2 derived from condensation of pyrazine carboxylic hydrazide (Hpch) with 2-benzoyl pyridine (bp) or pyridine 2-carbaldehyde (pc) and their transition metal complexes of type ML(1-2)2 have been synthesized, where M = Mn(II), Co(II), Ni(II), Cu(II) and Zn(II). Characterization of ligands and their metal complexes was carried out by elemental analysis, conductimetric studies, magnetic susceptibility, spectroscopic techniques (IR, UV-VIS, NMR, ESR, Mass) and thermogravimetric analysis. The physico-chemical studies revealed octahedral geometry or distorted octahedral geometry around metal ion. These azomethine Schiff base ligands acted as tridentate ? coordinating through carbonyl, azomethine and pyridine nitrogen present in the ligand. The thermodynamic and thermal properties of the complexes have been investigated and it was observed on the basis of these studies that thermal stability of complexes follows the order Mn < Zn < Cu < Co < Ni. The ligands and their complexes were tested for in vitro antibacterial activity at different concentrations against bacteria viz. Gram positive Bacillus subtilis, Micrococcus luteus and Gram negative Pseudomonas aeruginosa, Pseudomonas mendocina. A marked enhancement in biocidal activity of the ligands under similar experimental conditions was observed as a consequence of coordination with metal ions. The trend of growth inhibition in the complexes was found to be in the order: Cu > Mn > Ni > Co > Zn.
Hao Liu; Junyong Zhu
2010-01-01
This study demonstrated the efficiency of Ca(II) and Mg(II) in removing inhibition of enzymatic hydrolysis by lignosulfonate through non-productive adsorption of enzymes. Adding 1 mmol/g cellulose of either metal salt restores approximately 65% of the activity lost when a pure cellulose/cellulase solution is spiked with lignosulfonate. Addition of either Ca(II) or Mg(...
Automotive Stirling engine development program
NASA Technical Reports Server (NTRS)
Farrell, R.; Hindes, C.; Battista, R.; Connelly, M.; Cronin, M.; Howarth, R.; Donahue, A.; Slate, E.; Stotts, R.; Lacy, R.
1988-01-01
The study of high power kinematic Stirling engines for transportation use, testing of Mod I and Mod II Stirling engines, and component development activities are summarized. Mod II development testing was performed to complete the development of the basic engine and begin characterization of performance. Mod I engines were used for Mod II component development and to obtain independent party (U.S. Air Force) evaluation of Stirling engine vehicle performance.
Endogenous angiotensin affects responses to stimulation of baroreceptor afferent nerves.
DiBona, Gerald F; Jones, Susan Y
2003-08-01
To study effects of endogenous angiotensin II on responses to standardized stimulation of afferent neural input into the central portion of the arterial and cardiac baroreflexes. Different dietary sodium intakes were used to physiologically alter endogenous angiotensin II activity. Candesartan, an angiotensin II type 1 receptor antagonist, was used to assess dependency of observed effects on angiotensin II stimulation of angiotensin II type 1 receptors. Electrical stimulation of arterial and cardiac baroreflex afferent nerves was used to provide a standardized input to the central portion of the arterial and cardiac baroreflexes. In anesthetized rats in balance on low, normal and high dietary sodium intake, arterial pressure, heart rate and renal sympathetic nerve activity responses to electrical stimulation of vagus and aortic depressor nerves were determined. Compared with plasma renin activity values in normal dietary sodium intake rats, those from low dietary sodium intake rats were higher and those from high dietary sodium intake rats were lower. During vagus nerve stimulation, the heart rate, arterial pressure and renal sympathetic nerve activity responses were similar in all three dietary sodium intake groups. During aortic depressor nerve stimulation, the heart rate and arterial pressure responses were similar in all three dietary sodium intake groups. However, the renal sympathetic nerve activity response was significantly greater in the low sodium group than in the normal and high sodium group at 4, 8 and 16 Hz. Candesartan administered to low dietary sodium intake rats had no effect on the heart rate and arterial pressure responses to either vagus or aortic depressor nerve stimulation but increased the magnitude of the renal sympathoinhibitory responses. Increased endogenous angiotensin II in rats on a low dietary sodium intake attenuates the renal sympathoinhibitory response to activation of the cardiac and sinoaortic baroreflexes by standardized vagus and aortic depressor nerve stimulation, respectively.
Kubiak, Katarzyna; Malinowska, Katarzyna; Langer, Ewa; Dziki, Łukasz; Dziki, Adam; Majsterek, Ireneusz
2011-03-01
Colorectal cancer (CRC) is a serious medical and economical problem of our times. It is the most common gastrointestinal cancer in the world. In Poland, the treatment and detection of CRC are poorly developed and the pathogenesis is still unclear. One hypothesis suggests a role of reactive oxygen species (ROS) in the pathogenesis of CRC. Experimental studies in recent years confirm the participation of ROS in the initiation and promotion of CRC. The aim of the study was to examine the effect of the following coordination compounds coordination compounds: dinitrate (V) tetra(3,4,5-trimethyl-N1-pyrazole-κN2) copper(II), dichloro di(3,4,5-trimethyl-N1-pyrazole-κN2) copper(II), dinitrate (V) di(1,4,5-trimethyl-N1-pyrazole-κN2) copper(II), dichloro di(1,3,4,5-tetramethyl-N1-pyrazole-κN2) copper(II) on the activity of antioxidant enzymes superoxide dismutase (SOD, ZnCu-SOD) and catalase (CAT) in a group of patients with colorectal cancer (CRC) and in the control group consisting of patients with minor gastrointestinal complaints. The study was conducted in 20 patients diagnosed with colorectal cancer at the age of 66.5±10.2 years (10 men and 10 women) versus the control group of 20 people (10 men and 10 women) aged 57.89±17.10 years without cancer lesions in the biological material - hemolysate prepared in a proportion of 1ml of water per 1 ml of blood. CAT activity was measured by the Beers method (1952), while SOD activity was measured by the Misra and Fridovich method (1972). We found that patients with CRC showed a statistically significant decrease of SOD and CAT activity (CAT - 12,75±1.97 U/g Hb, SOD - 1111.52±155.52 U/g Hb) in comparison with the control group (CAT - 19.65±2,17 U/g Hb, SOD - 2046.26±507.22 U/g Hb). Simultaneously, we observed that the investigated coordination compounds of Cu(II) significantly increased the antioxidant activity of CAT and SOD in patients with CRC (mean: CAT 25.23±4.86 U/g Hb, SOD - 3075.96±940.20 U/g Hb). Patients with colorectal cancer are characterized by reduced activity of antioxidant enzymes catalase and superoxide dismutase which suggests impaired antioxidant barrier. Therefore, coordination compounds of Cu (II), which enhance the activity of CAT and SOD, may prove useful in the prevention and treatment of colorectal cancer.
Zhang, Zhongming; Chen, Hong; Liu, Jin; Ali, Muhammad; Liu, Fan; Li, Lin
2013-01-01
Manganese-oxidizing bacteria in the aquatic environment have been comprehensively investigated. However, little information is available about the distribution and biogeochemical significance of these bacteria in terrestrial soil environments. In this study, stratified soils were initially examined to investigate the community structure and diversity of manganese-oxidizing bacteria. Total 344 culturable bacterial isolates from all substrata exhibited Mn(II)-oxidizing activities at the range of 1 µM to 240 µM of the equivalent MnO2. The high Mn(II)-oxidizing isolates (>50 mM MnO2) were identified as the species of phyla Actinobacteria, Firmicutes and Proteobacteria. Seven novel Mn(II)-oxidizing bacterial genera (species), namely, Escherichia, Agromyces, Cellulomonas, Cupriavidus, Microbacterium, Ralstonia, and Variovorax, were revealed via comparative phylogenetic analysis. Moreover, an increase in the diversity of soil bacterial community was observed after the combined enrichment of Mn(II) and carbon-rich complex. The phylogenetic classification of the enriched bacteria represented by predominant denaturing gradient gel electrophoresis bands, was apparently similar to culturable Mn(II)-oxidizing bacteria. The experiments were further undertaken to investigate the properties of the Mn oxide aggregates formed by the bacterial isolates with high Mn(II)-oxidizing activity. Results showed that these bacteria were closely encrusted with their Mn oxides and formed regular microspherical aggregates under prolonged Mn(II) and carbon-rich medium enrichment for three weeks. The biotic oxidation of Mn(II) to Mn(III/IV) by these isolates was confirmed by kinetic examinations. X-ray diffraction assays showed the characteristic peaks of several Mn oxides and rhodochrosite from these aggregates. Leucoberbelin blue tests also verified the Mn(II)-oxidizing activity of these aggregates. These results demonstrated that Mn oxides were formed at certain amounts under the enrichment conditions, along with the formation of rhodochrosite in such aggregates. Therefore, this study provides insights into the structure and diversity of soil-borne bacterial communities in Mn(II)-oxidizing habitats and supports the contribution of soil-borne Mn(II)-oxidizing bacteria to Mn oxide mineralization in soils. PMID:24069232
Hu, Mandy X; Penninx, Brenda W J H; de Geus, Eco J C; Lamers, Femke; Kuan, Dora C-H; Wright, Aidan G C; Marsland, Anna L; Muldoon, Matthew F; Manuck, Stephen B; Gianaros, Peter J
2018-06-18
This study examined 1) the cross-sectional relationships between symptoms of depression/anxiety and immunometabolic risk factors, and 2) whether these relationships might be explained in part by cardiac vagal activity. Data were drawn from the Adult Health and Behavior registries (n = 1785), comprised of community dwelling adults (52.8% women, aged 30-54). Depressive symptoms were measured with the Center for Epidemiological Studies Depression Scale (CES-D) and the Beck Depression Inventory-II (BDI-II), and anxious symptoms with the Trait Anxiety scale of the State-Trait Anxiety Inventory (STAI-T). Immunometabolic risk factors included fasting levels of triglycerides, high-density lipoproteins, glucose, and insulin, as well as blood pressure, waist circumference, body mass index, C-reactive protein, and interleukin-6. Measures of cardiac autonomic activity were high- and low-frequency indicators of heart rate variability (HRV), standard deviation of normal-to-normal R-R intervals, and the mean of absolute and successive differences in R-R intervals. Higher BDI-II scores, in contrast to CES-D and STAI-T scores, were associated with increased immunometabolic risk and decreased HRV, especially HRV likely reflecting cardiac vagal activity. Decreased HRV was also associated with increased immunometabolic risk. Structural equation models indicated that BDI-II scores may relate to immunometabolic risk via cardiac vagal activity (indirect effect: β = .012, p = .046) or to vagal activity via immunometabolic risk (indirect effect: β = -.015, p = .021). Depressive symptoms, as measured by the BDI-II, but not anxious symptoms, were related to elevated levels of immunometabolic risk factors and low cardiac vagal activity. The latter may exhibit bidirectional influences on one another in a meditational framework. Future longitudinal, intervention, an nonhuman animal work is needed to elucidate the precise and mechanistic pathways linking depressive symptoms to immune, metabolic, and autonomic parameters of physiology that predispose to cardiovascular disease risk. Copyright © 2018 Elsevier Inc. All rights reserved.
Resonance Properties of Class I and Class II Neurons Differentially Modulated by Channel Noise
NASA Astrophysics Data System (ADS)
Wang, Lei
2018-01-01
Resonance properties of two different neuron types (Class I and Class II) induced by channel noise are investigated in this study. It is found that for Class I neuron, spiking activity is enhanced when certain noise intensity is presented, especially under weak current stimuli -- a typical phenomenon of stochastic resonance (SR); while for Class II neuron, in addition to perform the SR, certain noise intensity would inhibit neuronal activity under some current stimuli -- a typical phenomenon of inverse stochastic resonance (ISR). Moreover, we show that only sodium channel noise or potassium channel noise variation can achieve the similar phenomena. Consequently, the model results suggest that channel noise may exert differential roles in modulating the resonance properties of Class I and Class II neurons.
Expression of EMAP-II in the rat dental follicle and its potential role in tooth eruption
Liu, Dawen; Wise, Gary E.
2008-01-01
Endothelial monocyte-activating polypeptide II (EMAP-II) is an inflammatory cytokine with chemotactic activity. Because the dental follicle (DF) recruits mononuclear cells (osteoclast precursors) to promote the osteoclastogenesis needed for tooth eruption, it was the aim of this study to determine if EMAP-II may contribute to this recruitment. Using a DNA microarray, EMAP-II was found to be highly expressed in vivo in the DFs of day 1 to day 11 postnatal rats, with its expression elevated at days 1 and 3. Using a siRNA to knock down EMAP-II expression also resulted in a reduction in expression of CSF-1 and MCP-1 in the DF cells. Addition of EMAP-II protein to the DF cells partially restored the expression of CSF-1 and MCP-1. In chemotaxis assays using either conditioned medium of the DF cells with anti-EMAP-II antibody added or conditioned medium of DF cells with EMAP-II knocked down by siRNA, migration indexes of bone marrow mononuclear cells were significantly reduced. These results suggest that EMAP-II is another chemotactic molecule in the dental follicle involved in recruitment of mononuclear cells, and that EMAP-II may exert its chemotactic function directly by recruiting mononuclear cells and indirectly by enhancing the expression of other chemotactic molecules (CSF-1 and MCP-1). PMID:18705801
Nitric oxide activation by distal redox modulation in tetranuclear iron nitrosyl complexes.
de Ruiter, Graham; Thompson, Niklas B; Lionetti, Davide; Agapie, Theodor
2015-11-11
A series of tetranuclear iron complexes displaying a site-differentiated metal center was synthesized. Three of the metal centers are coordinated to our previously reported ligand, based on a 1,3,5-triarylbenzene motif with nitrogen and oxygen donors. The fourth (apical) iron center is coordinatively unsaturated and appended to the trinuclear core through three bridging pyrazolates and an interstitial μ4-oxide moiety. Electrochemical studies of complex [LFe3(PhPz)3OFe][OTf]2 revealed three reversible redox events assigned to the Fe(II)4/Fe(II)3Fe(III) (-1.733 V), Fe(II)3Fe(III)/Fe(II)2Fe(III)2 (-0.727 V), and Fe(II)2Fe(III)2/Fe(II)Fe(III)3 (0.018 V) redox couples. Combined Mössbauer and crystallographic studies indicate that the change in oxidation state is exclusively localized at the triiron core, without changing the oxidation state of the apical metal center. This phenomenon is assigned to differences in the coordination environment of the two metal sites and provides a strategy for storing electron and hole equivalents without affecting the oxidation state of the coordinatively unsaturated metal. The presence of a ligand-binding site allowed the effect of redox modulation on nitric oxide activation by an Fe(II) metal center to be studied. Treatment of the clusters with nitric oxide resulted in binding of NO to the apical iron center, generating a {FeNO}(7) moiety. As with the NO-free precursors, the three reversible redox events are localized at the iron centers distal from the NO ligand. Altering the redox state of the triiron core resulted in significant change in the NO stretching frequency, by as much as 100 cm(-1). The increased activation of NO is attributed to structural changes within the clusters, in particular, those related to the interaction of the metal centers with the interstitial atom. The differences in NO activation were further shown to lead to differential reactivity, with NO disproportionation and N2O formation performed by the more electron-rich cluster.
Chen, Jie; Li, Wan-chen; Gu, Xin-li
2017-01-01
Background This study performed optimized extraction, preliminary characterization, and in vitro antioxidant activities of polysaccharides from Glycyrrhiza uralensis Fisch. Material/Methods Three parameters (extraction temperature, ratio of water to raw material, and extraction time) were optimized for yields of G. uralensis polysaccharides (GUP) using response surface methodology with Box-Behnken design (BBD). The GUP was purified using DEAE cellulose 32-column chromatography. The main fraction obtained from G. uralensis Fisch was GUP-II, which was composed of rhamnose, arabinose, galactose, and glucose monosaccharide, was screened for antioxidant properties using DP Hand hydroxyl radical scavenging assays. In addition, immunological activity of GUP-II was determined by nitric oxide and lymphocyte proliferation assays. Results Optimization revealed maximum GUP yields with an extraction temperature of 99°C, water: raw material ratio of 15: 1, and extraction duration of 2 h. GUP-II purified from G. uralensis Fisch had good in vitro DPPH and hydroxyl radical scavenging abilities. Immunologically, GUP-II significantly stimulated NO production in RAW 264.7 macrophages, and significantly enhanced LPS-induced lymphocyte proliferation. Conclusions Extraction of GUP from G. uralensis Fisch can be optimized with respect to temperature, extraction period, and ratio of water to material, using response surface methodology. The purified product (GUP-II) possesses excellent antioxidant and immunological activities. PMID:28404983
Armand-Ugon, Mercedes; Ansoleaga, Belen; Berjaoui, Sara; Ferrer, Isidro
2017-01-01
It is well established that mitochondrial damage plays a role in the pathophysiology of Alzheimer's disease (AD). However, studies carried out in humans barely contemplate regional differences with disease progression. To study the expression of selected nuclear genes encoding subunits of the mitochondrial complexes and the activity of mitochondrial complexes in AD, in two regions: the entorhinal cortex (EC) and frontal cortex area 8 (FC). Frozen samples from 148 cases processed for gene expression by qRT-PCR and determination of individual activities of mitochondrial complexes I, II, IV and V using commercial kits and home-made assays. Decreased expression of NDUFA2, NDUFB3, UQCR11, COX7C, ATPD, ATP5L and ATP50, covering subunits of complex I, II, IV and V, occurs in total homogenates of the EC in AD stages V-VI when compared with stages I-II. However reduced activity of complexes I, II and V of isolated mitochondria occurs as early as stages I-II when compared with middle-aged individuals in the EC. In contrast, no alterations in the expression of the same genes and no alterations in the activity of mitochondrial complexes are found in the FC in the same series. Different mechanisms of impaired energy metabolism may occur in AD, one of them, represented by the EC, is the result of primary and early alteration of mitochondria; the other one is probably the result, at least in part, of decreased functional input and is represented by hypometabolism in the FC in AD patients aged 86 or younger. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Esbaugh, A J; Secor, S M; Grosell, M
2015-09-01
Carbonic anhydrase (CA) is one of the most abundant proteins found in vertebrate erythrocytes with the majority of species expressing a low activity CA I and high activity CA II. However, several phylogenetic gaps remain in our understanding of the expansion of cytoplasmic CA in vertebrate erythrocytes. In particular, very little is known about isoforms from reptiles. The current study sought to characterize the erythrocyte isoforms from two squamate species, Python molurus and Nerodia rhombifer, which was combined with information from recent genome projects to address this important phylogenetic gap. Obtained sequences grouped closely with CA XIII in phylogenetic analyses. CA II mRNA transcripts were also found in erythrocytes, but found at less than half the levels of CA XIII. Structural analysis suggested similar biochemical activity as the respective mammalian isoforms, with CA XIII being a low activity isoform. Biochemical characterization verified that the majority of CA activity in the erythrocytes was due to a high activity CA II-like isoform; however, titration with copper supported the presence of two CA pools. The CA II-like pool accounted for 90 % of the total activity. To assess potential disparate roles of these isoforms a feeding stress was used to up-regulate CO2 excretion pathways. Significant up-regulation of CA II and the anion exchanger was observed; CA XIII was strongly down-regulated. While these results do not provide insight into the role of CA XIII in the erythrocytes, they do suggest that the presence of two isoforms is not simply a case of physiological redundancy. Copyright © 2015. Published by Elsevier Inc.
Zheng, Yue-Hong; Li, Fang-Da; Tian, Cui; Ren, Hua-Liang; Du, Jie; Li, Hui-Hua
2013-01-01
Abdominal aortic aneurysm (AAA) is a life-threatening aortic disease in the elderly. Activation of Notch1 pathway plays a critical role in the development of AAA, but the underlying mechanisms remain poorly understood. In the present study, we explored the mechanisms by which Notch1 activation regulates angiotensin II (Ang II)-induced AAA formation and evaluated the therapeutic potential of a new Notch γ-secretase inhibitor, dibenzazepine (DBZ), for the treatment of AAA. Apolipoprotein E knockout (Apo E−/−) mice infused for 4 weeks with Ang II (1000 ng/kg/min, IP) using osmotic mini-pumps were received an intraperitoneal injection of either vehicle or 1 mg/kg/d DBZ. Notch1 signaling was activated in AAA tissue from both Ang II-infused Apo E−/− mice and human undergoing AAA repair in vivo, with increased expression of Notch intracellular domain (NICD) and its target gene Hes1, and this effect was effectively blocked by DBZ. Moreover, infusion of Ang II markedly increased the incidence and severity of AAA in Apo E−/− mice. In contrast, inhibition of Notch activation by DBZ prevented AAA formation in vivo. Furthermore, DBZ markedly prevented Ang II-stimulated accumulation of macrophages and CD4+ T cells, and ERK-mediated angiogenesis, simultaneously reversed Th2 response, in vivo. In conclusion, these findings provide new insight into the multiple mechanisms of Notch signaling involved in AAA formation and suggest that γ-secretase inhibitor DBZ might be a novel therapeutic drug for treating AAAS. PMID:24358274
Angiotensin II enhances norepinephrine spillover during sympathetic activation in conscious rabbits.
Noshiro, T; Shimizu, K; Way, D; Miura, Y; McGrath, B P
1994-05-01
To investigate the potential modulating influence of angiotensin II (ANG II) on sympathetic activity in response to changes in baroreflex activity, renal and total norepinephrine (NE) spillover rates were examined during sodium nitroprusside (SNP) and phenylephrine (PE) infusions in four groups of conscious rabbits: 1) saline (control); 2) subpressor ANG II (ANG II, 2 ng.kg-1.min-1); 3) enalaprilat (MK-422, 200 micrograms/kg and 3.3 micrograms.kg-1.min-1); and 4) MK plus ANG II (MK+ANG II). Upper plateaus of baroreflex-NE spillover curves for renal and total NE spillover were reduced in the MK group (25 and 81 ng/min) compared with control (38 and 125 ng/min) and MK+ANG II (37 and 155 ng/min). To investigate the interaction of ANG II and sympathetic activity during treadmill exercise, hindlimb NE spillover rate was examined in three groups of rabbits: 1) control, 2) MK, and 3) MK+ANG II. Exercise at 6 and 12 m/min produced similar effort-related hemodynamic responses in the three groups. At maximal exercise, hindlimb NE spillover was reduced in the MK group (29 +/- 3 ng/min) compared with control (62 +/- 17 ng/min, P < 0.05) and MK+ANG II group (51 +/- 10 ng/min). It is concluded that endogenous ANG II enhances sympathetic activity during pharmacological (baroreflex) and physiological stimulation.
Supplement for Teaching Distributive Education II: Course of Study.
ERIC Educational Resources Information Center
Oklahoma State Univ., Stillwater.
This supplement is designed to provide motivational ideas for teaching the competencies in the curriculum guide, D.E. II--Course of Study (see note). Effort is made to provide ideas for teaching specific objectives for which there was not already a method recommended. Many of the suggested activities are ready to duplicate, trace, or implement…
Wu, Yajun; Li, Shuai; Li, Haixia; Zhao, Chunzhi; Ma, Hao; Zhao, Xiunan; Wu, Junhua; Liu, Kunlu; Shan, Junjie; Wang, Yuxia
2016-10-01
Poria cocos has a long history of medicinal use in China. Polysaccharides and their derivatives in the medicine exhibit many beneficial biological activities including anticancer, anti-inflammatory, antioxidant and antiviral activities. In this study, a new polysaccharide (PCP-II) was isolated from sclerotium of Poria cocos. Its physico-chemical characters were identified and its adjuvant activity was investigated in mice co-immunized with H1N1 influenza vaccine and hepatitis B surface antigen (HBsAg). The results revealed that PCP-II has a molecular weight of 29.0kDa. It was composed of fucose, mannose, glucose and galactose in molar ration of 1.00:1.63:0.16:6.29 respectively. Pharmacological data demonstrated that PCP-II increased antigen-specific antibody levels in mice immunized with influenza vaccine. PCP-II also elicited anti-HBsAg antibodies at significantly higher titers and generated robust and durable immunity compared to mice immunized with HBsAg-alum following two administrations. PCP-II improved proliferation of splenocytes, stimulated IL-12p70 and TNF-α productions in dendritic cells and macrophages respectively. These results suggested that PCP-II-adjuvanted vaccines enhanced humoral and cellular immunity. PCP-II could be developed as an efficacious adjuvant in human and animal vaccines. Copyright © 2016 Elsevier B.V. All rights reserved.
Wang, Beilei; Wang, Zhigang; Ai, Fujin; Tang, Wai Kin; Zhu, Guangyu
2015-01-01
Cationic monofunctional platinum(II)-based anticancer agents with a general formula of cis-[Pt(NH3)2(N-donor)Cl](+) have recently drawn significant attention due to their unique mode of action, distinctive anticancer spectrum, and promising antitumor activity both in vitro and in vivo. Understanding the mechanism of action of novel monofunctional platinum compounds through rational drug design will aid in the further development of active agents. In this study, we synthesized and evaluated a monofunctional platinum-based anticancer agent SA-Pt containing a bulky salicylanilide moiety. The antiproliferative activity of SA-Pt was close to that of cisplatin. Mechanism studies revealed that SA-Pt entered HeLa cells more efficiently than cisplatin, blocked the cell cycle at the S-phase, and induced apoptosis. The compound bound to DNA as effectively as cisplatin, but did not block RNA polymerase II-mediated transcription as strongly as cisplatin, indicating that once the compound formed Pt-DNA lesions, the salicylanilide group was more easily recognized and removed. This study not only enriches the family of monofunctional platinum-based anticancer agents but also guides the design of more potent monofunctional platinum complexes. Copyright © 2014 Elsevier Inc. All rights reserved.
Ryan, Timothy M.; Griffin, Michael D. W.; Bailey, Michael F.; Schuck, Peter; Howlett, Geoffrey J.
2014-01-01
Human apolipoprotein (apo) C-II is one of several lipid-binding proteins that self-assemble into fibrils and accumulate in disease-related amyloid deposits. A general characteristic of these amyloid deposits is the presence of lipids, known to modulate individual steps in amyloid fibril formation. ApoC-II fibril formation is activated by sub-micellar phospholipids but inhibited by micellar lipids. We examined the mechanism for the activation by sub-micellar lipids using the fluorescently-labelled, short-chain phospholipid, 1-dodecyl-[(7-nitro-2-1,3-benzoxadiazol-4-yl)amino]-2-hydroxy-glycero-3-phosphocholine (NBD-lyso-12-PC). Addition of submicellar NBD-lyso-12-PC increased the rate of fibril formation by apoC-II approximately two-fold. Stopped flow kinetic analysis using fluorescence detection and low, non-fibril forming concentrations of apoC-II indicated NBD-Lyso-12-PC binds rapidly, in the millisecond timescale, followed by the slower formation of discrete apoC-II tetramers. Sedimentation velocity analysis showed NBD-Lyso-12-PC binds to both apoC-II monomers and tetramers at approximately 5 sites per monomer with an average dissociation constant of approximately 10 μM. Mature apoC-II fibrils formed in the presence of NBD-Lyso-12-PC were devoid of lipid indicating a purely catalytic role for sub-micellar lipids in the activation of apoC-II fibril formation. These studies demonstrate the catalytic potential of small amphiphilic molecules to control protein folding and fibril assembly pathways. PMID:21985034
Carbon–hydrogen (C–H) bond activation at PdIV: a Frontier in C–H functionalization catalysis
Topczewski, Joseph J.
2015-01-01
The direct functionalization of carbon–hydrogen (C–H) bonds has emerged as a versatile strategy for the synthesis and derivatization of organic molecules. Among the methods for C–H bond activation, catalytic processes that utilize a PdII/PdIV redox cycle are increasingly common. The C–H activation step in most of these catalytic cycles is thought to occur at a PdII centre. However, a number of recent reports have suggested the feasibility of C–H cleavage occurring at PdIV complexes. Importantly, these latter processes often result in complementary reactivity and selectivity relative to analogous transformations at PdII. This mini review highlights proposed examples of C–H activation at PdIV centres. Applications of this transformation in catalysis as well as mechanistic details obtained from stoichiometric model studies are discussed. Furthermore, challenges and future perspectives for the field are reviewed. PMID:25544882
Carbon-Hydrogen (C-H) Bond Activation at PdIV: A Frontier in C-H Functionalization Catalysis.
Topczewski, Joseph J; Sanford, Melanie S
2015-01-01
The direct functionalization of carbon-hydrogen (C-H) bonds has emerged as a versatile strategy for the synthesis and derivatization of organic molecules. Among the methods for C-H bond activation, catalytic processes that utilize a Pd II /Pd IV redox cycle are increasingly common. The C-H activation step in most of these catalytic cycles is thought to occur at a Pd II centre. However, a number of recent reports have suggested the feasibility of C-H cleavage occurring at Pd IV complexes. Importantly, these latter processes often result in complementary reactivity and selectivity relative to analogous transformations at Pd II . This Mini Review highlights proposed examples of C-H activation at Pd IV centres. Applications of this transformation in catalysis as well as mechanistic details obtained from stoichiometric model studies are discussed. Furthermore, challenges and future perspectives for the field are reviewed.
Metal selectivity of the E. coli nickel metallochaperone, SlyD
Kaluarachchi, Harini; Siebel, Judith F.; Kaluarachchi-Duffy, Supipi; Krecisz, Sandra; Sutherland, Duncan E. K.; Stillman, Martin J.; Zamble, Deborah B.
2012-01-01
SlyD is a Ni(II)-binding protein that contributes to nickel homeostasis in Escherichia coli. The C-terminal domain of SlyD contains a rich variety of metal-binding amino acids, suggesting broader metal-binding capabilities, and previous work demonstrated that the protein can coordinate several types of first row transition metals. However, the binding of SlyD to metals other than Ni(II) has not been previously characterized. To further our understanding of the in vitro metal-binding activity of SlyD and how it correlates with the in vivo function of this protein, the interactions between SlyD and the series of biologically relevant transition metals Mn(II), Fe(II), Co(II), Cu(I) and Zn(II) were examined by using a combination of optical spectroscopy and mass spectrometry. SlyD binding to Mn(II) or to Fe(II) ions was not detected but the protein coordinates multiple ions of Co(II), Zn(II) and Cu(I) with appreciable affinities (KD ≤ nM), highlighting the promiscuous nature of this protein. The order of affinities of SlyD for the metals examined is Mn(II), Fe(II) < Co(II) < Ni(II) ~ Zn(II) ≪ Cu(I). Although the purified protein is unable to overcome the large thermodynamic preference for Cu(I) and exclude Zn(II) chelation in the presence of Ni(II), in vivo studies reveal a Ni(II)-specific function for the protein. Furthermore, these latter experiments support a specific role for SlyD as a [NiFe]-hydrogenase enzyme maturation factor. The implications of the divergence between the metal selectivity of SlyD in vitro and the specific activity in vivo are discussed. PMID:22047179
NASA Astrophysics Data System (ADS)
Sakthi, Marimuthu; Ramu, Andy
2017-12-01
A new salicylaldehyde derived 2,4-diiodo-6-((2-phenylaminoethylimino)methyl)phenol Schiff base(L) and its transition metal complexes of the type MLCl where, M = Cu(II), Ni(II), Co(II), Mn(II) and Zn(II) have been synthesized. The coordination mode of Schiff base holding NNO donor atoms with metal ions was well investigated by elemental analysis, ESI-mass as well as IR, UV-vis, CV and NMR spectral studies. The binding efficiency and mode of these complexes with biological macromolecules viz., herring sperm DNA (HS- DNA) and bovine serum albumin (BSA) have been explored through various spectroscopic techniques. The characteristic changes in absorption, emission and, circular dichroism spectra of the complexes with DNA indicate the noticeable interaction between them. From the all spectral information complexes could interact with DNA via non-intercalation mode of binding. The hyperchromisim in absorption band and hypochromisim in emission intensity of BSA with different complex concentrations shown significant information, and the binding affinity value has been predicted from Stern-Volmer plots. Further, all the complexes could cleave the circular plasmid pUC19 DNA efficiently by using an activator H2O2. The ligand and all metal(II) complexes showed good antibacterial activities. The molecular docking studies of the complexes with DNA were performed in order to make a comparison and conclusion with spectral technic results.
Peterson, Joshua R; Smith, Trevor A; Thordarson, Pall
2010-01-07
Photo-active bis(terpyridine)ruthenium(ii) chromophores were synthesised and attached to the redox enzyme iso-1 cytochrome c in a mixed solvent system to form photo-induced bioconjugates in greater than 40% yield after purification. The effects of up to 20% (v/v) of acetonitrile, tetrahydrofuran, dimethylformamide, or dimethyl sulfoxide at 4, 25 and 35 degrees C on the stability and biological activity of cytochrome c and its reactivity towards the model compound 4,4'-dithiodipyridine (DTDP) was measured. The second-order rate constant for the DTDP reaction was found to range between k = 2.5-4.3 M(-1) s(-1) for reactions with 5% organic solvent added compared to k = 5.6 M(-1) s(-1) in pure water at 25 degrees C. Use of 20% solvent generally results in significant protein oxidation, and 20% acetonitrile and tetrahydrofuran in particular result in significant protein dimerization, which competes with the bioconjugation reaction. Cyclic voltammetry studies indicated that the rate of electron transfer to the heme in solution was reduced in the bis(terpyridine)ruthenium(ii) cytochrome c bioconjugates compared to unmodified cytochrome c. Steady-state fluorescence studies on these bioconjugates showed that energy or electron transfer is taking place between the bis(terpyridine)ruthenium(ii) chromophores and cytochrome c. The bis(terpyridine)ruthenium(ii) cytochrome c bioconjugates demonstrate room temperature photo-activated electron transfer from the bis(terpyridine)ruthenium(ii) donor to the protein acceptor. Two sacrificial donors were used; in 50% glycerol, the bioconjugates were reduced in about 15 min while in 20 mM EDTA the bioconjugates were fully reduced in less than 5 min upon irradiation with a xenon lamp source. Under these conditions, the reduction of the non-covalent mixture of cytochrome c and bis(terpyridine)ruthenium(ii) mixtures took over 30 min. Control experiments showed that the photo-induced reduction of cytochrome c only occurs in the absence of oxygen and presence of a sacrificial donor. These results are encouraging for future incorporation of these bioconjugates in light-responsive bioelectronic circuits, including photo-activated biosensors and biofuel cells.
Spectroscopic, thermal, catalytic and biological studies of Cu(II) azo dye complexes
NASA Astrophysics Data System (ADS)
El-Sonbati, A. Z.; Diab, M. A.; El-Bindary, A. A.; Shoair, A. F.; Hussein, M. A.; El-Boz, R. A.
2017-08-01
New complexes of copper(II) with azo compounds of 5-amino-2-(aryl diazenyl)phenol (HLn) are prepared and investigated by elemental analyses, molar conductance, IR, 1H NMR, UV-Visible, mass, ESR spectra, magnetic susceptibility measurements and thermal analyses. The complexes have a square planar structure and general formula [Cu(Ln)(OAc)]H2O. Study the catalytic activities of Cu(II) complexes toward oxidation of benzyl alcohol derivatives to carbonyl compounds were tested using H2O2 as the oxidant. The intrinsic binding constants (Kb) of the ligands (HLn) and Cu(II) complexes (1-4) with CT-DNA are determined. The formed compounds have been tested for biological activity of antioxidants, antibacterial against Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria and yeast Candida albicans. Antibiotic (Ampicillin) and antifungal against (Colitrimazole) and cytotoxic compounds HL1, HL2, HL3 and complex (1) showed moderate to good activity against S. aureus, E. coli and Candida albicans, and also to be moderate on antioxidants and toxic substances. Molecular docking is used to predict the binding between the ligands with the receptor of breast cancer (2a91).
Experimental study of Pb (II) solution sorption behavior onto Coffee Husk Bioactivated Carbon
NASA Astrophysics Data System (ADS)
Fona, Z.; Habibah, U.
2018-04-01
Coffee husk which is abundantly produced in the coffee plantations is potential to be a challenging adsorbent. The fate of Pb (II) solution in the sorption mechanism onto the adsorbent has been investigated. This paper aimed to study the efficiency of Pb (II) aqueous solution removal using activated carbon from coffee husk (CAC). The sorption characteristics were using two isotherm models, Langmuir and Freundlich, were also reported. The coffee husk from local plantations in Middle Aceh was carbonized and sieved to 120/140 mesh. The charcoal was activated using hydrochloric acid before contacted with the different initial concentrations of Pb (II) solution. The remaining concentrations of the metal in the specified contact times were determined using Atomic Adsorption Spectrophotometer at 283.3 wavelength. The result showed that the equilibrium concentrations were obtained in about 30 minutes which depended on the initial concentration. The sorption mechanism followed Freundlich isotherm model where the adsorption constant and capacity were accordingly 1.353 and 1.195 mgg‑1. The iodine sorption was up to 1,053 mgg‑1. Based on the ash and moisture content, as well as iodine sorption, the activated carbon met the national standard.
Mu, Xiaoyu; Qi, Weihong; Liu, Yunzhang; Zhou, Jianfeng; Li, Yun; Rong, Xiaozhi; Lu, Ling
2017-08-01
Insulin-like growth factor II (IGF-II) can stimulate myogenesis and is critically involved in skeletal muscle differentiation. The presence of negative regulators of this process, however, is not well explored. Here, we showed that in myoblast cells, IGF-II negatively regulated peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) mRNA expression, while constitutive expression of PGC-1α induced myoblast differentiation. These results suggest that the negative regulation of PGC-1α by IGF-II may act as a negative feedback mechanism in IGF-II-induced myogenic differentiation. Reporter assays demonstrated that IGF-II suppresses the basal PGC-1α promoter activity. Blocking the IGF-II signaling pathway increased the endogenous PGC-1α levels. In addition, pharmacological inhibition of PI3 kinase activity prevented the downregulation of PGC-1α but the activation of mTOR was not required for this process. Importantly, further analysis showed that forkhead transcription factor FoxO1 contributes to mediating the effects of IGF-II on PGC-1 promoter activity. These findings indicate that IGF-II reduces PGC-1α expression in skeletal muscle cells through a mechanism involving PI3K-Akt-FoxO1 but not p38 MAPK or Erk1/2 MAPK pathways.
Koohdani, Fariba; Sadrzadeh-Yeganeh, Haleh; Djalali, Mahmoud; Eshraghian, Mohammadreza; Keramat, Laleh; Mansournia, Mohammad-Ali; Zamani, Elham
2015-01-01
Apolipoprotein A-II (ApoA-II) constitutes approximately 20% of the total HDL protein content. The results of various studies on the relationship between cardiovascular diseases (CVD) and the plasma ApoA-II level are contradictory. The aim of this study was to determine the relationship between ApoA-II polymorphism and oxidative stress (OS) as a risk factor for CVD. The present comparative study was carried out on 180 obese and non-obese patients with type 2 diabetes, with equal numbers of CC, TC, and TT genotypes of ApoA-II -265T/C gene. The ApoA-II genotype was determined by the TaqMan assay method. The anthropometric measurements and serum levels of lipid profile, superoxide dismutase activity (SOD), total antioxidant capacity (TAC), and 8-isoprostaneF2α were measured. After adjusting for confounding factors, in the total study population and in obese and non-obese groups, the subjects with CC genotype had a lower mean serum SOD activity (p=0.002, p=0.007 and p=0.005, respectively) and higher mean 8-isoprostaneF2α concentration (p<0.001, p=0.003 and p=0.004, respectively) than the T-allele carriers. In the TT/TC group, the mean 8-isoprostanF2α concentration was significantly higher in the obese subjects than the non-obese subjects (p=0.009). In the CC group, no significant differences were found in the OS factors between obese and non-obese groups. The T allele in patients with type 2 diabetes is a protective factor against OS; obesity inhibits this protective effect. The results of this study represent the anti-atherogenic properties of ApoA-II. However, further studies are needed in this field. Copyright © 2015 Elsevier Inc. All rights reserved.
Amino, Hisako; Osanai, Arihiro; Miyadera, Hiroko; Shinjyo, Noriko; Tomitsuka, Eriko; Taka, Hikari; Mineki, Reiko; Murayama, Kimie; Takamiya, Shinzaburo; Aoki, Takashi; Miyoshi, Hideto; Sakamoto, Kimitoshi; Kojima, Somei; Kita, Kiyoshi
2003-05-01
We recently reported that Ascaris suum mitochondria express stage-specific isoforms of complex II: the flavoprotein subunit and the small subunit of cytochrome b (CybS) of the larval complex II differ from those of adult enzyme, while two complex IIs share a common iron-sulfur cluster subunit (Ip). In the present study, A. suum larval complex II was highly purified to characterize the larval cytochrome b subunits in more detail. Peptide mass fingerprinting and N-terminal amino acid sequencing showed that the larval and adult cytochrome b (CybL) proteins are identical. In contrast, cDNA sequences revealed that the small subunit of larval cytochrome b (CybS(L)) is distinct from the adult CybS (CybS(A)). Furthermore, Northern analysis and immunoblotting showed stage-specific expression of CybS(L) and CybS(A) in larval and adult mitochondria, respectively. Enzymatic assays revealed that the ratio of rhodoquinol-fumarate reductase (RQFR) to succinate-ubiquinone reductase (SQR) activities and the K(m) values for quinones are almost identical for the adult and larval complex IIs, but that the fumarate reductase (FRD) activity is higher for the adult form than for the larval form. These results indicate that the adult and larval A. suum complex IIs have different properties than the complex II of the mammalian host and that the larval complex II is able to function as a RQFR. Such RQFR activity of the larval complex II would be essential for rapid adaptation to the dramatic change of oxygen availability during infection of the host.
Stapleton, Brian; Walker, Lawrence R; Logan, Timothy M
2013-03-19
Thermodynamic measurements of Fe(II) binding and activation of repressor function in the iron-dependent repressor from Mycobacterium tuberculosis (IdeR) are reported. IdeR, a member of the diphtheria toxin repressor family of proteins, regulates iron homeostasis and contributes to the virulence response in M. tuberculosis. Although iron is the physiological ligand, this is the first detailed analysis of iron binding and activation in this protein. The results showed that IdeR binds 2 equiv of Fe(II) with dissociation constants that differ by a factor of 25. The high- and low-affinity iron binding sites were assigned to physical binding sites I and II, respectively, using metal binding site mutants. IdeR was also found to contain a high-affinity Zn(II) binding site that was assigned to physical metal binding site II through the use of binding site mutants and metal competition assays. Fe(II) binding was modestly weaker in the presence of Zn(II), but the coupled metal binding-DNA binding affinity was significantly stronger, requiring 30-fold less Fe(II) to activate DNA binding compared to Fe(II) alone. Together, these results suggest that IdeR is a mixed-metal repressor, where Zn(II) acts as a structural metal and Fe(II) acts to trigger the physiologically relevant promoter binding. This new model for IdeR activation provides a better understanding of IdeR and the biology of iron homeostasis in M. tuberculosis.
Tang, Qiang; Tang, Xiaowu; Hu, Manman; Li, Zhenze; Chen, Yunmin; Lou, Peng
2010-07-15
Cadmium pollution is known to cause severe public health problems. This study is intended to examine the effect of an activated Firmiana Simplex Leaf (FSL) on the removal of Cd(II) from aqueous solution. Results showed that the active Firmiana Simplex Leaf could efficiently remove Cd(II) from wastewater due to the preservation of beneficial groups (amine, carboxyl, and phosphate) at a temperature of 250 degrees C. The adsorbent component, dosage, concentration of the initial solute, and the pH of the solution were all found to have significant effects on Cd(II) adsorption. The kinetic constants were predicted by pseudo-first-order kinetics, and the thermodynamic analysis revealed the endothermic and spontaneous nature of the adsorption. FT-IR and XRD analyses confirmed the strong adsorption between beneficial groups and cadmium ions, and the adsorption capacity was calculated to be 117.786 mg g(-1) according to the Langmuir isotherm. 2010 Elsevier B.V. All rights reserved.
Clinical Results of Flexor Tendon Repair in Zone II Using a six Strand Double Loop Technique.
Savvidou, Christiana; Tsai, Tsu-Min
2015-06-01
The purpose of this study is to report the clinical results after repair of flexor tendon zone II injuries utilizing a 6-strand double-loop technique and early post-operative active rehabilitation. We retrospectively reviewed 22 patients involving 51 cases with zone II flexor tendon repair using a six strand double loop technique from September 1996 to December 2012. Most common mechanism of injuries was sharp lacerations (86.5 %). Tendon injuries occurred equally in manual and non-manual workers and were work-related in 33 % of the cases. The Strickland score for active range of motion (ROM) postoperatively was excellent and good in the majority of the cases (81 %). The rupture rate was 1.9 %. The six strand double loop technique for Zone II flexor tendon repair leads to good and excellent motion in the majority of patients and low re- rupture rate. It is clinically effective and allows for early postoperative active rehabilitation.
Saif, Muhammad Jawwad; Zia, Khalid Mahmood; Fazal-ur-Rehman; Usman, Muhammad; Hussain, Abdullah Ijaz; Chatha, Shahzad Ali Shahid
2015-04-01
Activated carbon derived from cones of Pinus roxburghii (Himalayan Pine) was used as an adsorbent for the removal of copper, nickel and chromium ions from waste water. Surface analysis was carried out to determine the specific surface area and pore size distribution of the pine cone derived activated carbon. Optimal parameters, effect of adsorbent quantity, pH, equilibrium time, agitation speed and temperature were studied. Equilibrium data were evaluated by Langmuir and Freundlich isotherm models. Langmuir isotherm afforded the best fit to the equilibrium data with a maximum adsorption capacity of 14.2, 31.4 and 29.6 mg/g for Cu(II), Ni(II) and Cr(VI) respectively. Maximum adsorption of Cu(II), Ni(II) was observed in the pH range 4.0 to 4.5, whereas the best adsorption of Cr(VI) was observed at pH 2.5. It was found that 180 minutes was sufficient to gain adsorption equilibrium. The adsorption process follows a pseudo-second-order kinetic model.
Xiong, Yuyan; Yepuri, Gautham; Necetin, Sevil; Montani, Jean-Pierre; Ming, Xiu-Fen; Yang, Zhihong
2017-06-01
Aging is associated with glucose intolerance. Arginase-II (Arg-II), the type-II L -arginine-ureahydrolase, is highly expressed in pancreas. However, its role in regulation of pancreatic β-cell function is not known. Here we show that female (not male) mice deficient in Arg-II (Arg-II -/- ) are protected from age-associated glucose intolerance and reveal greater glucose induced-insulin release, larger islet size and β-cell mass, and more proliferative and less apoptotic β-cells compared with the age-matched wild-type (WT) controls. Moreover, Arg-II is mainly expressed in acinar cells and is upregulated with aging, which enhances p38 mitogen-activated protein kinase (p38 MAPK) activation and release of tumor necrosis factor-α (TNF-α). Accordingly, conditioned medium of isolated acinar cells from old WT (not Arg-II -/- ) mice contains higher TNF-α levels than the young mice and stimulates β-cell apoptosis and dysfunction, which are prevented by a neutralizing anti-TNF-α antibody. In acinar cells, our study demonstrates an age-associated Arg-II upregulation, which promotes TNF-α release through p38 MAPK leading to β-cell apoptosis, insufficient insulin secretion, and glucose intolerance in female rather than male mice. © 2017 by the American Diabetes Association.
Protective Efficacy of Selenite against Lead-Induced Neurotoxicity in Caenorhabditis elegans
Tseng, I-Ling; Liao, Vivian Hsiu-Chuan
2013-01-01
Background Selenium is an essential micronutrient that has a narrow exposure window between its beneficial and toxic effects. This study investigated the protective potential of selenite (IV) against lead (Pb(II))-induced neurotoxicity in Caenorhabditis elegans. Principal Findings The results showed that Se(IV) (0.01 µM) pretreatment ameliorated the decline of locomotion behaviors (frequencies of body bends, head thrashes, and reversal ) of C. elegans that are damaged by Pb(II) (100 µM) exposure. The intracellular ROS level of C. elegans induced by Pb(II) exposure was significantly lowered by Se(IV) supplementation prior to Pb(II) exposure. Finally, Se(IV) protects AFD sensory neurons from Pb(II)-induced toxicity. Conclusions Our study suggests that Se(IV) has protective activities against Pb(II)-induced neurotoxicity through its antioxidant property. PMID:23638060
Activity of pyramidal I and II < c + a > slip in Mg alloys as revealed by texture development
NASA Astrophysics Data System (ADS)
Zecevic, Miroslav; Beyerlein, Irene J.; Knezevic, Marko
2018-02-01
Due to the geometry of the hexagonal close-packed (HCP) lattice, there are two types of pyramidal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heo, Kyung-Sun; Department of Pharmacy, Chungnam National University, Yuseong, Daejeon; Kim, Dong-Uk
Native LDL may be a mitogenic stimulus of VSMC proliferation in lesions where endothelial disruption occurs. Recent studies have demonstrated that the mitogenic effects of LDL are accompanied by Erk1/2 activation via an unknown G-protein-coupled receptor (GPCR). In this article, we report that LDL translocated PKC{beta}{sub II} and PKC{theta} from cytosol to plasma membrane, and inhibition of PKC{beta}{sub II} and PKC{theta} decreased LDL effects via the deactivation of Erk1/2. Moreover, pertussis toxin, but not cholera toxin or heparin, inhibited LDL-induced translocation of PKC{beta}{sub II} and PKC{theta}, suggesting that Gi protein plays a role in LDL effects. Of LPA, S1P, andmore » LDL, whose signaling is conveyed via Gi/o proteins, only LDL induced translocation of PKC{beta}{sub II} and PKC{theta}. Inhibition of PKC{beta}{sub II} or PKC{theta}, as well as of Erk1/2 and GPCR, decreases LDL-induced upregulation of Egr-1, which is critical for cell proliferation. This is the first report, to our knowledge, that the participation of PKC{theta} in VSMC proliferation is unique.« less
NASA Astrophysics Data System (ADS)
Saeidifar, Maryam; Mirzaei, Hamidreza; Ahmadi Nasab, Navid; Mansouri-Torshizi, Hassan
2017-11-01
The binding ability between a new water-soluble palladium(II) complex [Pd(bpy)(bez-dtc)]Cl (where bpy is 2,2‧-bipyridine and bez-dtc is benzyl dithiocarbamate), as an antitumor agent, and calf thymus DNA was evaluated using various physicochemical methods, such as UV-Vis absorption, Competitive fluorescence studies, viscosity measurement, zeta potential and circular dichroism (CD) spectroscopy. The Pd(II) complex was synthesized and characterized using elemental analysis, molar conductivity measurements, FT-IR, 1H NMR, 13C NMR and electronic spectra studies. The anticancer activity against HeLa cell lines demonstrated lower cytotoxicity than cisplatin. The binding constants and the thermodynamic parameters were determined at different temperatures (300 K, 310 K and 320 K) and shown that the complex can bind to DNA via electrostatic forces. Furthermore, this result was confirmed by the viscosity and zeta potential measurements. The CD spectral results demonstrated that the binding of Pd(II) complex to DNA induced conformational changes in DNA. We hope that these results will provide a basis for further studies and practical clinical use of anticancer drugs.
Hayakawa, Y; Hayashi, T; Hayashi, T; Niiya, K; Sakuragawa, N
1995-10-01
While checking anticoagulant activities in crude fractions from Wakan-Yakus (traditional herbal drugs), we detected antithrombin activity in the polysaccharide fraction of the leaves of Artemisia princeps Pamp. A sulfated polysaccharide purified from the crude fractions by ion-exchange chromatography on DEAE-cellulose and gel filtration on Sepharose 6B potentiated the heparin cofactor II (HC II)-dependent antithrombin activity but not the antithrombin activity of antithrombin III (AT III). The polysaccharide enhanced the HC II-thrombin reaction more than 6000-fold. The apparent second-order rate constant of thrombin inhibition by HC II increased from 3.8 x 10(4) (in the absence of the polysaccharide) to 2.5 x 10(8) M-1 min-1 in the presence of 25-125 micrograms/ml of the polysaccharide. In human plasma, the polysaccharide accelerated the formation of thrombin-HC II complex. The stimulating effect on HC II-dependent antithrombin activity was almost totally abolished by treatment with chondroitinase AC I, heparinase or heparitinase, while chondroitinase ABC or chondroitinase AC II had little or no effect. These results suggest that the polysaccharide is a glycosaminoglycan-like material with properties that are quite distinct from heparin or dermatan sulfate.
Zhang, Bing-Zhao; Inngjerdingen, Kari T; Zou, Yuan-Feng; Rise, Frode; Michaelsen, Terje E; Yan, Pei-Sheng; Paulsen, Berit S
2014-11-15
Exo-polysaccharides were purified and characterized from the fermentation broth of Hypsizigus marmoreus, a popular edible mushroom consumed in Asia. Among them, B-I-I and B-II-I exhibited potent complement fixating activity, meanwhile, B-N-I, B-I-I, B-II-I and B-II-II exhibited significant macrophage stimulating activity. Molecular weights of the four exo-polysaccharides were determined to be 6.3, 120, 150 and 11 kDa respectively. Molecular characterisation showed that B-N-I is basically an α-1→4 glucan, with branches on C6; B-I-I is a heavily branched α-mannan with 1→2 linked main chain. B-II-I and B-II-II, have a backbone of rhamno-galacturonan with 1→2 linked l-rhamnose interspersed with 1→4 linked galacturonic acid. Structure-activity relationship analysis indicated that monosaccharide compositions, molecular weight, certain structural units (rhamno-galacturonan type I and arabinogalactan type II) are the principal factors responsible for potent complement fixating and macrophage-stimulating activities. Their immunomodulating activities may, at least partly, explain the health benefits of the mushroom. Copyright © 2014 Elsevier Ltd. All rights reserved.
Gray, A.; Tsybizova, A.
2015-01-01
The C–H activation of 2-phenylpyridine, catalyzed by copper(ii), palladium(ii) and ruthenium(ii) carboxylates, was studied in the gas phase. ESI-MS, infrared multiphoton dissociation spectroscopy and quantum chemical calculations were combined to investigate the intermediate species in the reaction. Collision induced dissociation (CID) experiments and DFT calculations allowed estimation of the energy required for this C–H activation step and the subsequent acetic acid loss. Hammett plots constructed from the CID experiments using different copper carboxylates as catalysts revealed that the use of stronger acids accelerates the C–H activation step. The reasoning can be traced from the associated transition structures that suggest a concerted mechanism and the key effect of the carbon–metal bond pre-formation. Carboxylates derived from stronger acids make the metal atom more electrophilic and therefore shift the reaction towards the formation of C–H activated products. PMID:29861892
Lakshmipraba, Jagadeesan; Arunachalam, Sankaralingam; Gandi, Devadas A; Thirunalasundari, Thyagarajan; Vignesh, Sivanandham; James, Rathinam A
2017-05-01
Ultraviolet-visible, emission and circular dichroism spectroscopic methods were used in transfer RNA (tRNA) interaction studies performed for polyethyleneimine-copper(II) complexes [Cu(phen)(l-Tyr)BPEI]ClO 4 (where phen =1,10-phenanthroline, l-Tyr = l-tyrosine and BPEI = branched polyethyleneimine) with various degrees of coordination (x = 0.059, 0.149, 0.182) in the polymer chain. The results indicated that polyethyleneimine-copper(II) complexes bind with tRNA mostly through surface binding, although other binding modes, such as hydrogen bonding and van der Waals interactions, might also be present. Dye-exclusion, sulforhodamine B and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays of a polyethyleneimine-copper(II) complex with a higher degree of coordination against different cancer cell lines proved that the complex exhibited cytotoxic specificity and a significant cancer cell inhibition rate. Antimicrobial screening showed activity against some human pathogens. Copyright © 2016 John Wiley & Sons, Ltd.
Chen, Fan; Chen, Dandan; Zhang, Yubin; Jin, Liang; Zhang, Han; Wan, Miyang; Pan, Tianshu; Wang, Xiaochuan; Su, Yuheng; Xu, Yitao; Ye, Junmei
2017-12-16
Interleukin-6 (IL-6) signaling is critical for cardiomyocyte hypertrophy, while the role of IL-6 in the pathogenesis of myocardium hypertrophy remains controversial. To determine the essential role of IL-6 signaling for the cardiac development during AngII-induced hypertension, and to elucidate the mechanisms, wild-type (WT) and IL-6 knockout (IL-6 KO) mice were infused subcutaneously with either vehicle or AngII (1.5 μg/h/mouse) for 1 week. Immunohistological and serum studies revealed that the extents of cardiac fibrosis, inflammation and apoptosis were reduced in IL-6 KO heart during AngII-stimulation, while cardiac hypertrophy was obviously induced. To investigate the underlying mechanisms, by using myocardial tissue and neonatal cardiomyocytes, we observed that IL-6/STAT3 signaling was activated under the stimulation of AngII both in vivo and in vitro. Further investigation suggested that STAT3 activation enhances the inhibitory effect of EndoG on MEF2A and hampers cardiomyocyte hypertrophy. Our study is the first to show the important role of IL-6 in regulating cardiac pathogenesis via inflammation and apoptosis during AngII-induced hypertension. We also provide a novel link between IL-6/STAT3 and EndoG/MEF2A pathway that affects cardiac hypertrophy during AngII stimulation. Copyright © 2017 Elsevier Inc. All rights reserved.
Takemoto, Y.; Sakatani, M.; Takami, S.; Tachibana, T.; Higaki, J.; Ogihara, T.; Miki, T.; Katsuya, T.; Tsuchiyama, T.; Yoshida, A.; Yu, H.; Tanio, Y.; Ueda, E.
1998-01-01
BACKGROUND—Serum angiotensin converting enzyme (SACE) is considered to reflect disease activity in sarcoidosis. SACE activity is increased in many patients with active sarcoid lesions. The mechanism for the increased SACE activity in this disease has not been clarified. ACE insertion/deletion (I/D) gene polymorphism has been reported to have an association with SACE levels in sarcoidosis, but no evidence of an association between angiotensin II receptor gene polymorphism and SACE in this disease has been found. A study of the association of angiotensin II receptor gene polymorphisms with sarcoidosis was therefore undertaken. METHODS—ACE (I/D), angiotensin II type 1 receptor (AGTR1), and angiotensin II type 2 receptor (AGTR2 ) gene polymorphisms were investigated by polymerase chain reaction (PCR) and SACE levels were measured in three groups of patients: those with sarcoidosis or tuberculosis and normal controls. RESULTS—There was no difference in allele frequency of AGTR1 and AGTR2 polymorphism among the three groups. Neither AGTR1 nor AGTR2 polymorphisms were associated with sarcoidosis. SACE activity was higher in patients with sarcoidosis with the AGTR1 A/C genotype than in others. However, this tendency was not detected in patients with tuberculosis. CONCLUSIONS—The AGTR1 allele C is associated with high activity of SACE in patients with sarcoidosis. It is another predisposing factor for high levels of SACE in patients with sarcoidosis and is considered to be an independent factor from the ACE D allele for high levels of SACE in sarcoidosis. This fact could be one of the explanations for the increased SACE activity in sarcoidosis. PMID:9713444
Ahamad, Tansir; Alshehri, Saad M
2012-10-01
Phenylurea-formaldehyde polymer (PUF) was synthesized via polycondensation of phenylurea and formaldehyde in basic medium, its polymer-metal complexes [PUF-M(II)] were prepared with Mn(II), Co(II), Ni(II), Cu(II), and Zn(II) ions. PUF and PUF-M(II) were characterized with magnetic moment measurements, elemental and spectral (UV-visible, FTIR, 1H-NMR, 13C-NMR and ESR) analysis. The thermal behaviors of all the synthesized polymers were carried out using thermogravimetric analysis (TGA) and differential thermal analysis (DTA). The thermal data revealed that all of the PUF-M(II) showed higher thermal stabilities than the PUF and also ascribed that the PUF-Cu(II) showed better thermal stability than the other PUF-M(II). The kinetic parameters such as activation energy, pre-exponential factor etc., were evaluated for these polymer metal complexes using Coats-Redfern equation. In addition, the antimicrobial activity of the synthesized polymers was tested against several microorganisms using agar well diffusion methods. Among all of the PUF-M(II), the antimicrobial activity of the PUF-Cu(II) showed the highest zone of inhibition because of its higher stability constant and may be used in biomedical applications. Copyright © 2012 Elsevier B.V. All rights reserved.
Ho, C L; Li, C H
1985-03-01
Three synthetic analogs of human beta-endorphin (beta h-EP) (I, [Gln8, Gly31]-beta h-EP-Gly-Gly-NH2; II, [Arg9,12,24,28,29]-beta h-EP and III, [Cys11,26, Phe27, Gly31]-beta h-EP), which have been shown to possess potent inhibiting activity to beta h-EP-induced analgesia, were assayed in rat vas deferens and guinea pig ileum bioassay systems. In the rat vas deferens assay, relative potencies of these analogs were beta h-EP, 100; I, 30; II, 40; III, 1, whereas in the guinea pig ileum assay: beta h-EP, 100; I, 184; II, 81; III, 163. From previous studies on their analgesia potency in mice and opiate receptor-binding activity in rat brain membranes, their activity in rat vas deferens correlates well with the analgesic potency and the activity from guinea pig ileum assay shows good correlations with that from the opiate receptor-binding assay.
Sharma, Nitin Kumar; Ameta, Rakesh Kumar; Singh, Man
2016-01-01
The Pd (II) complexes with a series of halosubstituted benzylamine ligands (BLs) have been synthesized and characterized with different spectroscopic technique such as FTIR, UV/Vis, LCMS, 1H, and 13C NMR. Their molecular sustainability in different solvents such as DMSO, DMSO : H2O, and DMSO : PBS at physiological condition (pH 7.2) was determined by UV/Vis spectrophotometer. The in vitro antibacterial and antifungal activities of the complexes were investigated against Gram-positive and Gram-negative microbes and two different fungi indicated their significant biological potential. Additionally, their antioxidant activity has been analyzed with DPPH• free radical through spectrophotometric method and the result inferred them as an antioxidant. The stronger antibacterial and antioxidant activities of the synthesized complexes suggested them as a stronger antimicrobial agent. Our study advances the biological importance of palladium (II) amine complexes in the field of antimicrobial and antioxidant activities. PMID:27119023
Das, Falguni; Ghosh-Choudhury, Nandini; Mariappan, Meenalakshmi M; Kasinath, Balakuntalam S; Choudhury, Goutam Ghosh
2016-04-01
PKCβII controls the pathologic features of diabetic nephropathy, including glomerular mesangial cell hypertrophy. PKCβII contains the COOH-terminal hydrophobic motif site Ser-660. Whether this hydrophobic motif phosphorylation contributes to high glucose-induced mesangial cell hypertrophy has not been determined. Here we show that, in mesangial cells, high glucose increased phosphorylation of PKCβII at Ser-660 in a phosphatidylinositol 3-kinase (PI3-kinase)-dependent manner. Using siRNAs to downregulate PKCβII, dominant negative PKCβII, and PKCβII hydrophobic motif phosphorylation-deficient mutant, we found that PKCβII regulates activation of mechanistic target of rapamycin complex 1 (mTORC1) and mesangial cell hypertrophy by high glucose. PKCβII via its phosphorylation at Ser-660 regulated phosphorylation of Akt at both catalytic loop and hydrophobic motif sites, resulting in phosphorylation and inactivation of its substrate PRAS40. Specific inhibition of mTORC2 increased mTORC1 activity and induced mesangial cell hypertrophy. In contrast, inhibition of mTORC2 decreased the phosphorylation of PKCβII and Akt, leading to inhibition of PRAS40 phosphorylation and mTORC1 activity and prevented mesangial cell hypertrophy in response to high glucose; expression of constitutively active Akt or mTORC1 restored mesangial cell hypertrophy. Moreover, constitutively active PKCβII reversed the inhibition of high glucose-stimulated Akt phosphorylation and mesangial cell hypertrophy induced by suppression of mTORC2. Finally, using renal cortexes from type 1 diabetic mice, we found that increased phosphorylation of PKCβII at Ser-660 was associated with enhanced Akt phosphorylation and mTORC1 activation. Collectively, our findings identify a signaling route connecting PI3-kinase to mTORC2 to phosphorylate PKCβII at the hydrophobic motif site necessary for Akt phosphorylation and mTORC1 activation, leading to mesangial cell hypertrophy.
Das, Falguni; Mariappan, Meenalakshmi M.; Kasinath, Balakuntalam S.; Choudhury, Goutam Ghosh
2016-01-01
PKCβII controls the pathologic features of diabetic nephropathy, including glomerular mesangial cell hypertrophy. PKCβII contains the COOH-terminal hydrophobic motif site Ser-660. Whether this hydrophobic motif phosphorylation contributes to high glucose-induced mesangial cell hypertrophy has not been determined. Here we show that, in mesangial cells, high glucose increased phosphorylation of PKCβII at Ser-660 in a phosphatidylinositol 3-kinase (PI3-kinase)-dependent manner. Using siRNAs to downregulate PKCβII, dominant negative PKCβII, and PKCβII hydrophobic motif phosphorylation-deficient mutant, we found that PKCβII regulates activation of mechanistic target of rapamycin complex 1 (mTORC1) and mesangial cell hypertrophy by high glucose. PKCβII via its phosphorylation at Ser-660 regulated phosphorylation of Akt at both catalytic loop and hydrophobic motif sites, resulting in phosphorylation and inactivation of its substrate PRAS40. Specific inhibition of mTORC2 increased mTORC1 activity and induced mesangial cell hypertrophy. In contrast, inhibition of mTORC2 decreased the phosphorylation of PKCβII and Akt, leading to inhibition of PRAS40 phosphorylation and mTORC1 activity and prevented mesangial cell hypertrophy in response to high glucose; expression of constitutively active Akt or mTORC1 restored mesangial cell hypertrophy. Moreover, constitutively active PKCβII reversed the inhibition of high glucose-stimulated Akt phosphorylation and mesangial cell hypertrophy induced by suppression of mTORC2. Finally, using renal cortexes from type 1 diabetic mice, we found that increased phosphorylation of PKCβII at Ser-660 was associated with enhanced Akt phosphorylation and mTORC1 activation. Collectively, our findings identify a signaling route connecting PI3-kinase to mTORC2 to phosphorylate PKCβII at the hydrophobic motif site necessary for Akt phosphorylation and mTORC1 activation, leading to mesangial cell hypertrophy. PMID:26739493
Mei, Xueting; Xu, Donghui; Xu, Sika; Zheng, Yanping; Xu, Shibo
2011-07-01
Curcumin, a yellow pigment found in the rhizome of Curcuma loga, has been used to treat a variety of digestive and neuropsychiatric disorders since ancient times in China. Curcumin can chelate various metal ions to form metallocomplexes of curcumin which show greater effects than curcumin alone. This study investigated the antiulcerogenic and antidepressant effects of a Zn(II)-curcumin complex on cold-restraint stress (CRS)-induced gastric ulcers in rats, and on the forced swimming test (FST), tail suspension test (TST) and 5-hydroxy-l-tryptophan (5-HTP)-induced head twitch test in mice. CRS disrupted the rat mucosal barrier and induced gastric ulcers by decreasing the activities of the antioxidant enzymes, and increasing H(+)-K(+)-ATPase activity and malondialdehyde (MDA) level. Pretreatment with Zn(II)-curcumin (12, 24, and 48mg/kg) dose-dependently reversed these trends, reduced gastric lesions and H(+)-K(+)-ATPase activity, and increased antioxidant activities compared with control groups. Zn(II)-curcumin significantly increased HSP70 mRNA, and attenuated increased iNOS mRNA in the mucosa. Zn(II)-curcumin (17, 34, and 68mg/kg) also significantly decreased immobility time in the FST and TST, and enhanced 5-HTP-induced head twitches in mice. These results demonstrate that the Zn(II)-curcumin complex showed significant gastroprotective and antidepressant effects compared with curcumin alone via a synergistic effect between curcumin and zinc. Crown Copyright © 2011. Published by Elsevier Inc. All rights reserved.
Li, Jiabao; Cai, Shichun; Luo, Yuanming; Dong, Xiuzhu
2011-09-01
Feruloyl esterases (Faes) constitute a subclass of carboxyl esterases that specifically hydrolyze the ester linkages between ferulate and polysaccharides in plant cell walls. Until now, the described microbial Faes were mainly from fungi. In this study, we report that Cellulosilyticum ruminicola H1, a previously described fibrolytic rumen bacterium, possesses three different active feruloyl esterases, FaeI, FaeII, and FaeIII. Phylogenetic analysis classified the described bacterial Faes into two types, FaeI and FaeII in type I and FaeIII in type II. Substrate specificity assays indicated that FaeI is more active against the ester bonds in natural hemicelluloses and FaeIII preferentially attacks the ferulate esters with a small moiety, such as methyl groups, while FaeII is active on both types of substrates. Among the three feruloyl esterase genes, faeI was the only one induced significantly by xylose and xylan, while pectin appeared to moderately induce the three genes during the late log phase to stationary phase. Western blot analysis determined that FaeI and FaeIII were secreted and cytoplasmic proteins, respectively, whereas FaeII seemed to be cell associated. The addition of FaeI and FaeII but not FaeIII enhanced the activity of a xylanase on maize cob, suggesting a synergy of the former two with xylanase. Hence, we propose that the three feruloyl esterases work in concert to hydrolyze ferulate esters in natural hemicelluloses.
Lei, Chang; Yan, Bo; Chen, Tao; Xiao, Xian-Ming
2018-05-19
To comprehensively reuse the leaching residue obtained from lead-zinc tailings, an active silicon adsorbent (ASA) was prepared from leaching residue and studied as an adsorbent for copper(II), lead(II), zinc(II), and cadmium(II) in this paper. The ASA was prepared by roasting the leaching residue with either a Na 2 CO 3 /residue ratio of 0.6:1 at 700 °C for 1 h or a CaCO 3 /residue ratio of 0.8:1 at 800 °C for 1 h. Under these conditions, the available SiO 2 content of the ASA was more than 20%. The adsorption behaviors of the metal ions onto the ASA were investigated and the Langmuir, Freundlich, and Dubinin-Radushkevich isotherm models were used to analyze the adsorption isotherm. The result showed that the maximum adsorption capacities of copper(II), lead(II), cadmium(II), and zinc(II) calculated by the Langmuir model were 3.40, 2.83, 0.66, and 0.62 mmol g -1 , respectively. The FT-IR spectra of the ASA and the mean free adsorption energies indicated that ion exchange was the mechanism of copper(II), lead(II), and cadmium(II) adsorption and that chemical reaction was the mechanism of zinc(II) adsorption. These results provide a method for reusing the leaching residue obtained from lead-zinc tailings and show that the ASA is an effective adsorbent for heavy metal pollution remediation.
Martín-Sánchez, Paloma; Luengo, Alicia; Griera, Mercedes; Orea, María Jesús; López-Olañeta, Marina; Chiloeches, Antonio; Lara-Pezzi, Enrique; de Frutos, Sergio; Rodríguez-Puyol, Manuel; Calleros, Laura; Rodríguez-Puyol, Diego
2018-02-01
Ras proteins regulate cell survival, growth, differentiation, blood pressure, and fibrosis in some organs. We have demonstrated that H- ras gene deletion produces mice hypotension via a soluble guanylate cyclase-protein kinase G (PKG)-dependent mechanism. In this study, we analyzed the consequences of H- ras deletion on cardiac remodeling induced by continuous angiotensin II (AngII) infusion and the molecular mechanisms implied. Left ventricular posterior wall thickness and mass and cardiomyocyte cross-sectional area were similar between AngII-treated H-Ras knockout (H -ras -/- ) and control wild-type (H -ras +/+ ) mice, as were extracellular matrix protein expression. Increased cardiac PKG-Iβ protein expression in H -ras -/- mice suggests the involvement of this protein in heart protection. Ex vivo experiments on cardiac explants could support this mechanism, as PKG blockade blunted protection against AngII-induced cardiac hypertrophy and fibrosis markers in H -ras -/- mice. Genetic modulation studies in cardiomyocytes and cardiac and embryonic fibroblasts revealed that the lack of H-Ras down-regulates the B-RAF/MEK/ERK pathway, which induces the glycogen synthase kinase-3β-dependent activation of the transcription factor, cAMP response element-binding protein, which is responsible for PKG-Iβ overexpression in H -ras -/- mouse embryonic fibroblasts. This study demonstrates that H- ras deletion protects against AngII-induced cardiac remodeling, possibly via a mechanism in which PKG-Iβ overexpression could play a partial role, and points to H-Ras and/or downstream proteins as potential therapeutic targets in cardiovascular disease.-Martín-Sánchez, P., Luengo, A., Griera, M., Orea, M. J., López-Olañeta, M., Chiloeches, A., Lara-Pezzi, E., de Frutos, S., Rodríguez-Puyol, M., Calleros, L., Rodríguez-Puyol, D. H- ras deletion protects against angiotensin II-induced arterial hypertension and cardiac remodeling through protein kinase G-Iβ pathway activation.
Functional adaptation between yeast actin and its cognate myosin motors.
Stark, Benjamin C; Wen, Kuo-Kuang; Allingham, John S; Rubenstein, Peter A; Lord, Matthew
2011-09-02
We employed budding yeast and skeletal muscle actin to examine the contribution of the actin isoform to myosin motor function. While yeast and muscle actin are highly homologous, they exhibit different charge density at their N termini (a proposed myosin-binding interface). Muscle myosin-II actin-activated ATPase activity is significantly higher with muscle versus yeast actin. Whether this reflects inefficiency in the ability of yeast actin to activate myosin is not known. Here we optimized the isolation of two yeast myosins to assess actin function in a homogenous system. Yeast myosin-II (Myo1p) and myosin-V (Myo2p) accommodate the reduced N-terminal charge density of yeast actin, showing greater activity with yeast over muscle actin. Increasing the number of negative charges at the N terminus of yeast actin from two to four (as in muscle) had little effect on yeast myosin activity, while other substitutions of charged residues at the myosin interface of yeast actin reduced activity. Thus, yeast actin functions most effectively with its native myosins, which in part relies on associations mediated by its outer domain. Compared with yeast myosin-II and myosin-V, muscle myosin-II activity was very sensitive to salt. Collectively, our findings suggest differing degrees of reliance on electrostatic interactions during weak actomyosin binding in yeast versus muscle. Our study also highlights the importance of native actin isoforms when considering the function of myosins.
Wolf, Sebastian; Balciuniene, Vilma Jurate; Laganovska, Guna; Menchini, Ugo; Ohno-Matsui, Kyoko; Sharma, Tarun; Wong, Tien Y; Silva, Rufino; Pilz, Stefan; Gekkieva, Margarita
2014-03-01
To compare the efficacy and safety of ranibizumab 0.5 mg, guided by visual acuity (VA) stabilization or disease activity criteria, versus verteporfin photodynamic therapy (vPDT) in patients with visual impairment due to myopic choroidal neovascularization (CNV). Phase III, 12-month, randomized, double-masked, multicenter, active-controlled study. Patients (N = 277) with visual impairment due to myopic CNV. Patients were randomized to receive ranibizumab on day 1, month 1, and thereafter as needed guided by VA stabilization criteria (group I, n = 106); ranibizumab on day 1 and thereafter as needed guided by disease activity criteria (group II, n=116); or vPDT on day 1 and disease activity treated with ranibizumab or vPDT at investigators' discretion from month 3 (group III, n = 55). Mean average best-corrected visual acuity (BCVA) change from baseline to month 1 through months 3 (primary) and 6, mean BCVA change and safety over 12 months. Ranibizumab treatment in groups I and II was superior to vPDT based on mean average BCVA change from baseline to month 1 through month 3 (group I: +10.5, group II: +10.6 vs. group III: +2.2 Early Treatment Diabetic Retinopathy Study [ETDRS] letters; both P<0.0001). Ranibizumab treatment guided by disease activity was noninferior to VA stabilization-guided retreatment based on mean average BCVA change from baseline to month 1 through month 6 (group II: +11.7 vs. group I: +11.9 ETDRS letters; P<0.00001). Mean BCVA change from baseline to month 12 was +13.8 (group I), +14.4 (group II), and +9.3 ETDRS letters (group III). At month 12, 63.8% to 65.7% of patients showed resolution of myopic CNV leakage. Patients received a median of 4.0 (group I) and 2.0 (groups II and III) ranibizumab injections over 12 months. No deaths or cases of endophthalmitis and myocardial infarction occurred. Ranibizumab treatment, irrespective of retreatment criteria, provided superior BCVA gains versus vPDT up to month 3. Ranibizumab treatment guided by disease activity criteria was noninferior to VA stabilization criteria up to month 6. Over 12 months, individualized ranibizumab treatment was effective in improving and sustaining BCVA and was generally well tolerated in patients with myopic CNV. Copyright © 2014 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.
2013-01-01
Background Many studies have suggested that the immune response may play a crucial role in the progression of hepatocellular carcinoma (HCC). Therefore, our aim was to establish a (i) functional culture of primary human tumor hepatocytes and non-tumor from patients with hepatocellular carcinoma (HCC) and (ii) a co-culture system of HCC and non-HCC hepatocytes with autologous peripheral blood mononuclear cells (PBMCs) in order to study in vitro cell-to-cell interactions. Methods Tumor (HCC) and non-tumor (non-HCC) hepatocytes were isolated from the liver resection specimens of 11 patients operated for HCC, while PBMCs were retrieved immediately prior to surgery. Four biopsies were obtained from patients with no liver disease who had surgery for non malignant tumor (normal hepatocytes). Hepatocytes were either cultured alone (monoculture) or co-cultured with PBMCs. Flow cytometry measurements for MHC class II expression, apoptosis, necrosis and viability (7AAD) were performed 24 h, 48 h and 72 h in co-culture and monocultures. Results HCC and non-HCC hepatocytes exhibited increased MHC-II expression at 48h and 72h in co-culture with PBMCs as compared to monoculture, with MHC II-expressing HCC hepatocytes showing increased viability at 72 h. PBMCs showed increased MHC-II expression (activation) in co-culture with HCC as compared to non-HCC hepatocytes at all time points. Moreover, CD8+ T cells had significantly increased apoptosis and necrosis at 48h in co-culture with HCC hepatocytes as compared to monocultures. Interestingly, MHC-II expression on both HCC and non-HCC hepatocytes in co-culture was positively correlated with the respective activated CD8+ T cells. Conclusions We have established an in vitro co-culture model to study interactions between autologous PBMCs and primary HCC and non-HCC hepatocytes. This direct interaction leads to increased antigen presenting ability of HCC hepatocytes, activation of PBMCs with a concomitant apoptosis of activated CD8+ T cells. Although, a partially effective immune response against HCC exists, still tumor hepatocytes manage to escape. PMID:23331458
NASA Astrophysics Data System (ADS)
El-Samanody, El-Sayed A.; Emam, Sanaa M.; Emara, Esam M.
2017-10-01
A new series of some biologically active Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) complexes was synthesized from the novel thiosemicarbazone ligand; (E)-N'-(furan-2-ylmethylene)morpholine-4-carbothiohydrazide (HL). Elemental, spectral, thermal analyses, magnetic susceptibility and molar conductivity measurements were used to elucidate the structure of separated compounds. The data prove that the ligand reacts with all metal ions in a neutral thione form. The electrolytic tetra-coordinate Cu(II); Zn(II) complexes (5, 6; 10) bind through the thione sulfur, furfural oxygen and azomethine nitrogen atoms of the ligand (NSO type) to construct fused five membered rings. However, the rest non-electrolyte octahedral complexes chelate via the furfural oxygen and azomethine nitrogen atoms of the ligand (NO type). Molecular modeling was conducted for the ligand and two representative complexes (1, 5) in order to substantiate their chemical structures. Thermal analyses are compatible with molecular modeling studies to support the proposed thermal decomposition pathways of metal complexes which start with the rupture of the long and weak N-NH bond. The thermal stability of metal complexes varies according to the number of solvents of crystallization, ionic radii and steric effect of anions. The ESR spectra of Cu(II) complexes are compatible with a primarily (dx2-y2)1 ground state with axial symmetry. The ligand and its Co(II); Cu(II); Cd(II) complexes (1; 5, 8; 11) along with their mixtures with metaldehyde were screened in vitro for their molluscicidal activity against Eobania vermiculata. Combination with metaldehyde enhances the toxicity effect of the tested compounds through reducing the period required for mortality and increasing the percentage of mortality after 24 h of treatments. The tested compounds gathered with metaldehyde are strongly affecting on the activity of ACP and ALP enzymes and TP content which are very important factors in the mucous secretion of Eobania vermiculata. These effects lead to excess mucous secretion, causing dryness and death for the snails.
Pamukoglu, M Yunus; Kargi, Fikret
2007-09-05
Copper(II) ion toxicity onto activated sludge organisms was eliminated by addition of powdered waste sludge (PWS) to the feed wastewater for removal of Cu(II) ions by biosorption before biological treatment. The synthetic feed wastewater containing 14 or 22 mgl(-1) Cu(II) was mixed with PWS in a mixing tank where Cu(II) ions were adsorbed onto PWS and the mixture was fed to a sedimentation tank to separate Cu(II) containing PWS from the feed wastewater. The activated sludge unit fed with the effluent of the sedimentation tank was operated at a hydraulic residence time (HRT) of 10h and sludge age (SRT) of 10 days. To investigate Cu(II), COD and toxicity removal performance of the activated sludge unit at different PWS loadings, the system was operated at different PWS loading rates (0.1-1 gPWSh(-1)) while the Cu(II) loading rate was constant throughout the operation. Percent copper, COD and toxicity removals increased with increasing PWS loading rate due to increased adsorption of Cu(II) onto PWS yielding low Cu(II) contents in the feed. Biomass concentration in the aeration tank increased and the sludge volume index (SVI) decreased with increasing PWS loading rate due to elimination of Cu(II) from the feed wastewater by PWS addition. PWS addition to the Cu(II) containing wastewater was proven to be effective for removal of Cu(II) by biosorption before biological treatment. Approximately, 1 gPWSh(-1) should be added for 28 mgCuh(-1) loading rate for complete removal of Cu(II) from the feed wastewater to obtain high COD removals in the activated sludge unit.
The ERK pathway regulates Na(+)-HCO(3)(-) cotransport activity in adult rat cardiomyocytes.
Baetz, Delphine; Haworth, Robert S; Avkiran, Metin; Feuvray, Danielle
2002-11-01
The sarcolemmal Na(+)-HCO cotransporter (NBC) is stimulated by intracellular acidification and acts as an acid extruder. We examined the role of the ERK pathway of the MAPK cascade as a potential mediator of NBC activation by intracellular acidification in the presence and absence of angiotensin II (ANG II) in adult rat ventricular myocytes. Intracellular pH (pH(i)) was recorded with the use of seminaphthorhodafluor-1. The NH method was used to induce an intracellular acid load. NBC activation was significantly decreased with the ERK inhibitors PD-98059 and U-0126. NBC activity after acidification was increased in the presence of ANG II (pH(i) range of 6.75-7.00). ANG II plus PD-123319 (AT(2) antagonist) still increased NBC activity, whereas ANG II plus losartan (AT(1) antagonist) did not affect it. ERK phosphorylation (measured by immunoblot analysis) during intracellular acidification was increased by ANG II, an effect that was abolished by losartan and U-0126. In conclusion, the MAPK(ERK)-dependent pathway facilitates the rate of pH(i) recovery from acid load through NBC activity and is involved in the AT(1) receptor-mediated stimulation of such activity by ANG II.
Singh, Badri Nath; Achary, V Mohan Murali; Panditi, Varakumar; Sopory, Sudhir K; Reddy, Malireddy K
2017-08-01
The topoisomerase II expression varies as a function of cell proliferation. Maximal topoisomerase II expression was tightly coupled to S phase and G2/M phase via both transcriptional and post-transcriptional regulation. Investigation in meiosis using pollen mother cells also revealed that it is not the major component of meiotic chromosomes, it seems to diffuse out once meiotic chromosomal condensation is completed. Synchronized tobacco BY-2 cell cultures were used to study the role of topoisomerase II in various stages of the cell cycle. Topoisomerase II transcript accumulation was observed during the S- and G2/M- phase of cell cycle. This biphasic expression pattern indicates the active requirement of topoisomerase II during these stages of the cell cycle. Through immuno-localization of topoisomerase II was observed diffusely throughout the nucleoplasm in interphase nuclei, whereas, the nucleolus region exhibited a more prominent immuno-positive staining that correlated with rRNA transcription, as shown by propidium iodide staining and BrUTP incorporation. The immuno-staining analysis also showed that topoisomerase II is the major component of mitotic chromosomes and remain attached to the chromosomes during cell division. The inhibition of topoisomerase II activity using specific inhibitors revealed quite dramatic effect on condensation of chromatin and chromosome individualization from prophase to metaphase transition. Partially condensed chromosomes were not arranged on metaphase plate and chromosomal perturbations were observed when advance to anaphase, suggesting the importance of topoisomerase II activity for proper chromosome condensation and segregation during mitosis. Contrary, topoisomerase II is not the major component of meiotic chromosomes, even though mitosis and meiosis share many processes, including the DNA replication, chromosome condensation and precisely regulated partitioning of chromosomes into daughter cells. Even if topoisomerase II is required for individualization and condensation of meiotic chromosomes, it seems to diffuse out once meiotic chromosomal condensation is completed.
NASA Technical Reports Server (NTRS)
Smith, Graeme H.; Burstein, David; Fanelli, Michael N.; O'Connell, Robert W.; Wu, C.-C.
1991-01-01
Low resolution IUE spectroscopy of the 2800-A Mg II h and k lines is shown to provide a useful means for documenting chromospheric activity among relatively young dwarf stars. An index I(Mg II) has been defined which measures the integrated flux in the region 2784-2814 A relative to the flux interpolated from nearby comparison regions. Values of this index have been derived from low resolution IUE spectra for a sample of field dwarfs for which Ca II H and K line indices have been published as part of the Mount Wilson HK program. The large range in chromospheric activity among field dwarfs that is exhibited by the Mount Wilson Ca II S index is found to also be reflected by the lower resolution I(Mg II) index. Using an age calibration of Ca II emission line strengths derived by Barry, it is found that the value of I(Mg II) can be used to distinguish between dwarfs younger and older than 3 Gyr. The low resolution nature of the I(Mg II) index means that it holds potential for use as an age diagnostic for stellar population studies. Among dwarfs of age greater than 3 Gyr there is some evidence that this Mg II index is affected by line blanketing.
NASA Astrophysics Data System (ADS)
Daravath, Sreenu; Kumar, Marri Pradeep; Rambabu, Aveli; Vamsikrishna, Narendrula; Ganji, Nirmala; Shivaraj
2017-09-01
Two novel Schiff bases, L1 = (2-benzo[d]thiazol-6-ylimino)methyl)-4,6-dichlorophenol), L2 = (1-benzo[d]thiazol-6-ylimino)methyl)-6-bromo-4-chlorophenol) and their bivalent transition metal complexes [M(L1)2] and [M(L2)2], where M = Cu(II), Co(II) and Ni(II) were synthesized and characterized by elemental analysis, NMR, IR, UV-visible, mass, magnetic moments, ESR, TGA, SEM, EDX and powder XRD. Based on the experimental data a square planar geometry around the metal ion is assigned to all the complexes (1a-2c). The interaction of synthesized metal complexes with calf thymus DNA was explored using UV-visible absorption spectra, fluorescence and viscosity measurements. The experimental evidence indicated that all the metal complexes strongly bound to CT-DNA through an intercalation mode. DNA cleavage experiments of metal(II) complexes with supercoiled pBR322 DNA have also been explored by gel electrophoresis in the presence of H2O2 as well as UV light, and it is found that the Cu(II) complexes cleaved DNA more effectively compared to Co(II), Ni(II) complexes. In addition, the ligands and their metal complexes were screened for antimicrobial activity and it is found that all the metal complexes were more potent than free ligands.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yan; Wu, Jian-Feng; Tang, Yan-Yan
Highlights: • U II reduces cholesterol efflux in THP-1 macrophages. • U II decreases the expression of ABCA1. • Inhibition of the ERK/NF-κB pathway reduces U II effects on ABCA1 expression and cholesterol efflux. - Abstract: Objective: Foam cell formation in the arterial wall plays a key role in the development of atherosclerosis. Recent studies showed that Urotensin II (U II) is involved in the pathogenesis of atherosclerosis. Here we examined the effects of human U II on ATP-binding cassette transporter A1 (ABCA1) expression and the underlying mechanism in THP-1 macrophages. Methods and results: Cultured THP-1 macrophages were treated withmore » U II, followed by measuring the intracellular lipid contents, cholesterol efflux and ABCA1 levels. The results showed that U II dramatically decreased ABCA1 levels and impaired cholesterol efflux. However, the effects of U II on ABCA1 protein expression and cellular cholesterol efflux were partially reversed by inhibition of extracellular signal regulated kinase 1/2 (ERK1/2) and nuclear factor kappa B (NF-κB) activity, suggesting the potential roles of ERK1/2 and NF-κB in ABCA1 expression, respectively. Conclusion: Our current data indicate that U II may have promoting effects on the progression of atherosclerosis, likely through suppressing ABCA1 expression via activation of the ERK/NF-κB pathway and reducing cholesterol efflux to promote macrophage foam cell formation.« less
NASA Astrophysics Data System (ADS)
Abd El-Halim, Hanan F.; Mohamed, Gehad G.; Khalil, Eman A. M.
2017-10-01
A series of mixed ligand complexes were prepared from the Schiff base (L1) as a primary ligand, prepared by condensation of oxamide and furan-2-carbaldehyde, and 1,10-phenanthroline (1,10-phen) as a secondary ligand. The Schiff base ligand and its mixed ligand chelates were characterized based on elemental analysis, IR, 1H NMR, thermal analysis, UV-Visible, mass, molar conductance, magnetic moment. X-ray diffraction, solid reflectance and ESR also have been studied. The mixed ligand complexes were found to have the formulae of [M(L1) (1,10-phen)]Clm.nH2O (M = Cr(III) and Fe(III) (m = 3) (n = 0); M = Mn(II), Cu(II) and Cd(II) (m = 2) (n = 0); and M = Co(II) (m = 2) (n = 1), Ni(II) (m = 2) (n = 2) and Zn(II) (m = 2) (n = 3)) and that the geometrical structure of the complexes were octahedral. The parameters of thermodynamic using Coats-Redfern and Horowitz-Metzger equations were calculated. The synthesized Schiff base ligand, 1,10-phenanthroline ligand and Their mixed ligand complexes were also investigated for their antibacterial and antifungal activity against bacterial species (Gram-Ve bacteria: Pseudomonas aeruginosa and Escherichia coli) and (Gram + Ve bacteria: Bacillus subtilis and Streptococcus pneumonia) and fungi (Aspergillus fumigates and Candida albicans). The anticancer activity of the new compounds had been tested against breast (MFC7) and colon (HCT-116) cell lines. The results showed high activity for the synthesized compounds.
Antimicrobial effect of Cu(II) complexes containing oxime ligands.
Donde, K J; Patil, V R; Malve, S P
2004-01-01
The antibacterial, antifungal and antitubercular activity of Cu(II) complexes was studied. All the complexes have been screened against Staphylococcus aureus, Salmonella typhi, Candida albican, Aspergillus niger, Saccharomyces cerevisiae and H37Rv and found to be more toxic than the parent ligand. The activity increased in the order Cu(5-methyl-2,3-hexanedione dioxime)2 < Cu(5-methyl-3-oximino-hexan-2-o-ne-hydrazone)2 < Cu(5-methyl-3-oximino-hexan-2-one-phenylhydrazone)2.
Kırça, M; Oğuz, N; Çetin, A; Uzuner, F; Yeşilkaya, A
2017-04-01
Hyperuricemia and angiotensin II (Ang II) may have a pathogenetic role in the development of hypertension and atherosclerosis as well as cardiovascular disease (CVD) and its prognosis. The purpose of this study was to investigate whether uric acid can induce proliferative pathways of vascular smooth muscle cell (VSMC) that are thought to be responsible for the development of CVD. The phosphorylation of p38 mitogen-activated protein kinase (p38 MAPK), p44/42 mitogen-activated protein kinase (p44/42 MAPK) and platelet-derived growth factor receptor β (PDGFRβ) was measured by Elisa and Western blot techniques to determine the activation of proliferative pathways in primary cultured VSMCs from rat aorta. Results demonstrated that uric acid can stimulate p38 MAPK, p44/42 MAPK and PDGFRβ phosphorylation in a time- and concentration-dependent manner. Furthermore, treatment of VSMCs with the angiotensin II type I receptor (AT1R) inhibitor losartan suppressed p38 MAPK and p44/42 MAPK induction by uric acid. The stimulatory effect of uric acid on p38 MAPK was higher compared to that of Ang II. The results of this study show for the first time that uric acid-induced PDGFRβ phosphorylation plays a crucial role in the development of CVDs and that elevated uric acid levels could be a potential therapeutical target in CVD patients.
Runge, Shannon K; Small, Brent J; McFall, G Peggy; Dixon, Roger A
2014-05-01
The current study examined independent and interactive effects between Apolipoprotein E (APOE) genotype and two types of cognitively-stimulating lifestyle activities (CSLA)-integrated information processing (CSLA-II) and novel information processing (CSLA-NI)-on concurrent and longitudinal changes in cognition. Three-wave data across 6 years of follow-up from the Victoria Longitudinal Study (n=278; ages 55-94) and linear mixed model analyses were used to characterize the effects of APOE genotype and participation in CSLA-II and CSLA-NI in four cognitive domains. Significant CSLA effects on cognition were observed. More frequent participation in challenging activities (i.e., CSLA-NI) was associated with higher baseline scores on word recall, fact recall, vocabulary and verbal fluency. Conversely, higher participation in less cognitively-challenging activities (i.e., CSLA-II) was associated with lower scores on fact recall and verbal fluency. No longitudinal CSLA-cognition effects were found. Two significant genetic effects were observed. First, APOE moderated CSLA-II and CSLA-NI associations with baseline verbal fluency and fact recall scores. Second, APOE non-ɛ4 carriers' baseline performance were more likely to be moderated by CSLA participation, compared to APOE-ɛ4 carriers. Our findings suggest APOE may be a "plasticity" gene that makes individuals more or less amenable to the influence of protective factors such as CSLA.
Satagopan, Sriram; Chan, Sum; Perry, L. Jeanne; Tabita, F. Robert
2014-01-01
The first x-ray crystal structure has been solved for an activated transition-state analog-bound form II ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). This enzyme, from Rhodopseudomonas palustris, assembles as a unique hexamer with three pairs of catalytic large subunit homodimers around a central 3-fold symmetry axis. This oligomer arrangement is unique among all known Rubisco structures, including the form II homolog from Rhodospirillum rubrum. The presence of a transition-state analog in the active site locked the activated enzyme in a “closed” conformation and revealed the positions of critical active site residues during catalysis. Functional roles of two form II-specific residues (Ile165 and Met331) near the active site were examined via site-directed mutagenesis. Substitutions at these residues affect function but not the ability of the enzyme to assemble. Random mutagenesis and suppressor selection in a Rubisco deletion strain of Rhodobacter capsulatus identified a residue in the amino terminus of one subunit (Ala47) that compensated for a negative change near the active site of a neighboring subunit. In addition, substitution of the native carboxyl-terminal sequence with the last few dissimilar residues from the related R. rubrum homolog increased the enzyme's kcat for carboxylation. However, replacement of a longer carboxyl-terminal sequence with termini from either a form III or a form I enzyme, which varied both in length and sequence, resulted in complete loss of function. From these studies, it is evident that a number of subtle interactions near the active site and the carboxyl terminus account for functional differences between the different forms of Rubiscos found in nature. PMID:24942737
Satagopan, Sriram; Chan, Sum; Perry, L Jeanne; Tabita, F Robert
2014-08-01
The first x-ray crystal structure has been solved for an activated transition-state analog-bound form II ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). This enzyme, from Rhodopseudomonas palustris, assembles as a unique hexamer with three pairs of catalytic large subunit homodimers around a central 3-fold symmetry axis. This oligomer arrangement is unique among all known Rubisco structures, including the form II homolog from Rhodospirillum rubrum. The presence of a transition-state analog in the active site locked the activated enzyme in a "closed" conformation and revealed the positions of critical active site residues during catalysis. Functional roles of two form II-specific residues (Ile(165) and Met(331)) near the active site were examined via site-directed mutagenesis. Substitutions at these residues affect function but not the ability of the enzyme to assemble. Random mutagenesis and suppressor selection in a Rubisco deletion strain of Rhodobacter capsulatus identified a residue in the amino terminus of one subunit (Ala(47)) that compensated for a negative change near the active site of a neighboring subunit. In addition, substitution of the native carboxyl-terminal sequence with the last few dissimilar residues from the related R. rubrum homolog increased the enzyme's kcat for carboxylation. However, replacement of a longer carboxyl-terminal sequence with termini from either a form III or a form I enzyme, which varied both in length and sequence, resulted in complete loss of function. From these studies, it is evident that a number of subtle interactions near the active site and the carboxyl terminus account for functional differences between the different forms of Rubiscos found in nature. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
Polycomb repressive complex 1 modifies transcription of active genes
Pherson, Michelle; Misulovin, Ziva; Gause, Maria; Mihindukulasuriya, Kathie; Swain, Amanda; Dorsett, Dale
2017-01-01
This study examines the role of Polycomb repressive complex 1 (PRC1) at active genes. The PRC1 and PRC2 complexes are crucial for epigenetic silencing during development of an organism. They are recruited to Polycomb response elements (PREs) and establish silenced domains over several kilobases. Recent studies show that PRC1 is also directly recruited to active genes by the cohesin complex. Cohesin participates broadly in control of gene transcription, but it is unknown whether cohesin-recruited PRC1 also plays a role in transcriptional control of active genes. We address this question using genome-wide RNA sequencing (RNA-seq) and chromatin immunoprecipitation sequencing (ChIP-seq). The results show that PRC1 influences transcription of active genes, and a significant fraction of its effects are likely direct. The roles of different PRC1 subunits can also vary depending on the gene. Depletion of PRC1 subunits by RNA interference alters phosphorylation of RNA polymerase II (Pol II) and occupancy by the Spt5 pausing-elongation factor at most active genes. These effects on Pol II phosphorylation and Spt5 are likely linked to changes in elongation and RNA processing detected by nascent RNA-seq, although the mechanisms remain unresolved. The experiments also reveal that PRC1 facilitates association of Spt5 with enhancers and PREs. Reduced Spt5 levels at these regulatory sequences upon PRC1 depletion coincide with changes in Pol II occupancy and phosphorylation. Our findings indicate that, in addition to its repressive roles in epigenetic gene silencing, PRC1 broadly influences transcription of active genes and may suppress transcription of nonpromoter regulatory sequences. PMID:28782042
Malina, Jaroslav; Hannon, Michael J; Brabec, Viktor
2016-07-12
The interaction between the HIV-1 transactivator protein Tat and TAR (transactivation responsive region) RNA, plays a critical role in HIV-1 transcription. Iron(II) supramolecular helicates were evaluated for their in vitro activity to inhibit Tat-TAR RNA interaction using UV melting studies, electrophoretic mobility shift assay, and RNase A footprinting. The results demonstrate that iron(II) supramolecular helicates inhibit Tat-TAR interaction at nanomolar concentrations by binding to TAR RNA. These studies provide a new insight into the biological potential of metallosupramolecular helicates.
Ulex europaeus agglutinin II (UEA-II) is a novel, potent inhibitor of complement activation.
Lekowski, R; Collard, C D; Reenstra, W R; Stahl, G L
2001-02-01
Complement is an important mediator of vascular injury following oxidative stress. We recently demonstrated that complement activation following endothelial oxidative stress is mediated by mannose-binding lectin (MBL) and activation of the lectin complement pathway. Here, we investigated whether nine plant lectins which have a binding profile similar to that of MBL competitively inhibit MBL deposition and subsequent complement activation following human umbilical vein endothelial cell (HUVEC) oxidative stress. HUVEC oxidative stress (1% O(2), 24 hr) significantly increased Ulex europaeus agglutinin II (UEA-II) binding by 72 +/- 9% compared to normoxic cells. UEA-II inhibited MBL binding to HUVEC in a concentration-dependent manner following oxidative stress. Further, MBL inhibited UEA-II binding to HUVEC in a concentration-dependent manner following oxidative stress, suggesting a common ligand. UEA-II (< or = 100 micromol/L) did not attenuate the hemolytic activity, nor did it inhibit C3a des Arg formation from alternative or classical complement pathway-specific hemolytic assays. C3 deposition (measured by ELISA) following HUVEC oxidative stress was inhibited by UEA-II in a concentration-dependent manner (IC(50) = 10 pmol/L). UEA-II inhibited C3 and MBL co-localization (confocal microscopy) in a concentration-dependent manner on HUVEC following oxidative stress (IC(50) approximately 1 pmol/L). Finally, UEA-II significantly inhibited complement-dependent neutrophil chemotaxis, but failed to inhibit fMLP-mediated chemotaxis, following endothelial oxidative stress. These data demonstrate that UEA-II is a novel, potent inhibitor of human MBL deposition and complement activation following human endothelial oxidative stress.
Ulex europaeus agglutinin II (UEA-II) is a novel, potent inhibitor of complement activation
Lekowski, Robert; Collard, Charles D.; Reenstra, Wende R.; Stahl, Gregory L.
2001-01-01
Complement is an important mediator of vascular injury following oxidative stress. We recently demonstrated that complement activation following endothelial oxidative stress is mediated by mannose-binding lectin (MBL) and activation of the lectin complement pathway. Here, we investigated whether nine plant lectins which have a binding profile similar to that of MBL competitively inhibit MBL deposition and subsequent complement activation following human umbilical vein endothelial cell (HUVEC) oxidative stress. HUVEC oxidative stress (1% O2, 24 hr) significantly increased Ulex europaeus agglutinin II (UEA-II) binding by 72 ± 9% compared to normoxic cells. UEA-II inhibited MBL binding to HUVEC in a concentration-dependent manner following oxidative stress. Further, MBL inhibited UEA-II binding to HUVEC in a concentration-dependent manner following oxidative stress, suggesting a common ligand. UEA-II (≤ 100 μmol/L) did not attenuate the hemolytic activity, nor did it inhibit C3a des Arg formation from alternative or classical complement pathway-specific hemolytic assays. C3 deposition (measured by ELISA) following HUVEC oxidative stress was inhibited by UEA-II in a concentration-dependent manner (IC50 = 10 pmol/L). UEA-II inhibited C3 and MBL co-localization (confocal microscopy) in a concentration-dependent manner on HUVEC following oxidative stress (IC50 ≈ 1 pmol/L). Finally, UEA-II significantly inhibited complement-dependent neutrophil chemotaxis, but failed to inhibit fMLP-mediated chemotaxis, following endothelial oxidative stress. These data demonstrate that UEA-II is a novel, potent inhibitor of human MBL deposition and complement activation following human endothelial oxidative stress. PMID:11266613
Dab, Houcine; Hachani, Rafik; Hodroj, Wassim; Sakly, Mohsen; Bricca, Giampiero; Kacem, Kamel
2011-09-01
The aim of our present study is to investigate the interaction between angiotensin II (ANG II) and sympathetic nervous system (SNS) on matrix metalloproteinase MMP-2 and MMP-9 expression and activity in juvenile rat aorta under normal conditions. Sympathectomy with guanethidine and blockade of the ANG II receptors (AT1R) by losartan were performed alone or in combination on new-born rats. mRNA, protein expression and activity of MMP-2 and MMP-9 were examined by Q-RT-PCR, immunoblotting and zymography, respectively. MMP-2 mRNA and protein amount were decreased after sympathectomy or AT1R blockade and an additive effect was observed after combined treatment. However, MMP-9 expression was reduced to the same level in the three treated groups. There were some detectable gelatinolytic activity of the MMPs in both control and treated rats. We concluded that ANG II stimulates directly and indirectly (via sympathostimulator pathway) the MMP-2 expression but seems unable to affect MMP-9 expression through direct pathway. Combined inhibition of SNS and ANG II were more efficient than a single inhibition in reducing MMP amounts in rat vessels.
NASA Astrophysics Data System (ADS)
Alaghaz, Abdel-Nasser M. A.; Zayed, Mohamed E.; Alharbi, Suliman A.
2015-03-01
The Schiff's base derived from condensation of s-triazole (4-amino-5-mercapto-3-methyl-S-triazole) with pyridine-2-aldehyde and their corresponding Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) complexes have been synthesized. The isolated solid complexes were characterized by elemental analyses, molar conductance, spectral (IR, UV-Vis, 1H NMR, mass), magnetic moment and thermal measurements. The IR spectral data suggest that the ligand coordinate in a tridentate manner (SNN) via the one thiol (SH), one pyridine ring and the azomethine (Cdbnd N) groups. The data show that the complexes have composition of ML2 type. The activation of thermodynamic parameters are calculated using Coats-Redfern, Horowitz-Metzger (HM), and Piloyan-Novikova (PN). The octahedral geometry of the complexes is confirmed using DFT method from DMOL3 calculations and ligand field parameters. Protonation constants of Schiff base and stability constants of their binary metal complexes have been determined potentiometrically in 50% DMSO-water media at 25 °C and ionic strength 0.10 M potassium nitrate. The biological activity of these compounds against various fungi has been investigated.
Barik, Atanu; Mishra, Beena; Kunwar, Amit; Kadam, Ramakant M; Shen, Liang; Dutta, Sabari; Padhye, Subhash; Satpati, Ashis K; Zhang, Hong-Yu; Indira Priyadarsini, K
2007-04-01
Two stoichiometrically different copper(II) complexes of curcumin (stoichiometry, 1:1 and 1:2 for copper:curcumin), were examined for their superoxide dismutase (SOD) activity, free radical-scavenging ability and antioxidant potential. Both the complexes are soluble in lipids and DMSO. The formation constants of the complexes were determined by voltammetry. EPR spectra of the complexes in DMSO at 77K showed that the 1:2 Cu(II)-curcumin complex is square planar and the 1:1 Cu(II)-curcumin complex is distorted orthorhombic. Cu(II)-curcumin complex (1:1) with larger distortion from square planar structure shows higher SOD activity. These complexes inhibit gamma-radiation induced lipid peroxidation in liposomes and react with DPPH acting as free radical scavengers. One-electron oxidation of the two complexes by radiolytically generated azide radicals in Tx-100 micellar solutions produced phenoxyl radicals, indicating that the phenolic moiety of curcumin in the complexes participates in free radical reactions. Depending on the structure, these two complexes possess different SOD activities, free radical neutralizing abilities and antioxidant potentials. In addition, quantum chemical calculations with density functional theory have been performed to support the experimental observations.
Ensafi, Ali A; Khayamian, Taghi; Karbasi, Mohammad H
2003-06-01
An on-line system for enrichment and determination of lead(II) is presented. It is based on the adsorption of lead(II) ions on a minicolumn packed with active carbon loaded with Pyrogallol Red. After preconcentration step, the metal ions are eluted automatically by 5.0 ml of 0.50 M nitric acid solution and the lead ion contents were determined by atomic absorption spectrometry. The influence of chemicals, pH and flow variables were studied as well as effect of potential interfering ions. Under the optimum conditions, the lead ions in aqueous samples were concentrated about 100 fold by the column. The detection limit was 0.001 microg ml(-1). The recovery percent of spliced lead(II) was in the range of 98%-103%.
Rajapaksha, Harinda; Forbes, Briony E.
2015-01-01
The insulin receptor (IR) is a tyrosine kinase receptor that can mediate both metabolic and mitogenic biological actions. The IR isoform-A (IR-A) arises from alternative splicing of exon 11 and has different ligand binding and signaling properties compared to the IR isoform-B. The IR-A not only binds insulin but also insulin-like growth factor-II (IGF-II) with high affinity. IGF-II acting through the IR-A promotes cancer cell proliferation, survival, and migration by activating some unique signaling molecules compared to those activated by insulin. This observation led us to investigate whether the different IR-A signaling outcomes in response to IGF-II and insulin could be attributed to phosphorylation of a different subset of IR-A tyrosine residues or to the phosphorylation kinetics. We correlated IR-A phosphorylation to activation of molecules involved in mitogenic and metabolic signaling (MAPK and Akt) and receptor internalization rates (related to mitogenic signaling). We also extended this study to incorporate two ligands that are known to promote predominantly mitogenic [(His4, Tyr15, Thr49, Ile51) IGF-I, qIGF-I] or metabolic (S597 peptide) biological actions, to see if common mechanisms can be used to define mitogenic or metabolic signaling through the IR-A. The threefold lower mitogenic action of IGF-II compared to insulin was associated with a decreased potency in activation of Y960, Y1146, Y1150, Y1151, Y1316, and Y1322, in MAPK phosphorylation and in IR-A internalization. With the poorly mitogenic S597 peptide, it was a decreased rate of tyrosine phosphorylation rather than potency that was associated with a low mitogenic potential. We conclude that both decreased affinity of IR-A binding and kinetics of IR-A phosphorylation can independently lead to a lower mitogenic activity. None of the studied parameters could account for the lower metabolic activity of qIGF-I. PMID:26217307
Uhm, Yo-Han; Yang, Dae-Jung
2018-02-01
[Purpose] The purpose of this study was to examine the effect of computerized postural control training using whole body vibration on lower limb muscle activity and cerebral cortical activation in acute stroke patients. [Subjects and Methods] Thirty stroke patients participated and were divided into groups of 10, a group of the computerized postural control training using whole body vibration (Group I), the computerized postural control training combined with aero step (Group II) and computerized postural control training (Group III). MP100 was used to measure lower limb muscle activity, and QEEG-8 was used to measure cerebral cortical activation. [Results] Comparison of muscle activity and cerebral cortical activation before and after intervention between groups showed that Group I had significant differences in lower limb muscle activity and cerebral cortical activation compared to Groups II and III. [Conclusion] This study showed that whole body vibration combined computerized postural control training is effective for improving muscle activity and cerebral cortex activity in stroke patients.
Gestational Protein Restriction Increases Angiotensin II Production in Rat Lung1
Gao, Haijun; Yallampalli, Uma; Yallampalli, Chandra
2013-01-01
ABSTRACT Gestational protein restriction (PR) alters the renin-angiotensin system in uterine arteries and placentas and elevates plasma levels of angiotensin II in pregnant rats. To date, how PR increases maternal plasma levels of angiotensin II remains unknown. In this study, we hypothesize that the expression and/or the activity of angiotensin I converting enzyme (peptidyl-dipeptidase A) 1 (ACE) in lungs, but not kidneys and blood, largely contribute to elevated plasma angiotensin II levels in pregnant rats subject to gestational PR. Time-scheduled pregnant Sprague-Dawley rats were fed a normal or low-protein diet from Day 3 of pregnancy until euthanized at Day 19 or 22. Expressions of Ace and Ace2 (angiotens in I converting enzyme [peptidyl-dipeptidase A] 2) in lungs and kidneys from pregnant rats by quantitative real-time PCR and Western blotting, and the activities of these proteins in lungs, kidneys, and plasma, were measured. The mRNA levels of Ace and Ace2 in lungs were elevated by PR at both Days 19 and 22 of pregnancy. The abundance of ACE protein in lungs was increased, but ACE2 protein was decreased, by PR. The activities of ACE, but not ACE2, in lungs were increased by PR. PR did not change expressions of Ace and Ace2, the activities of both ACE and ACE2 in kidneys, and the abundance and activity of plasma ACE. These findings suggest that maternal lungs contribute to the elevated plasma levels of angiotensin II by increasing both the expression and the activity of ACE in response to gestational PR. PMID:23365412
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Zhuqin; Yu, Fengxiang; Gong, Ping
2014-04-15
Microglia-mediated neuroinflammation and the associated neuronal damage play critical roles in the pathogenesis of neurodegenerative disorders. Evidence shows an elevated concentration of extracellular copper(II) in the brains of these disorders, which may contribute to neuronal death through direct neurotoxicity. Here we explored whether extracellular copper(II) triggers microglial activation. Primary rat microglia and murine microglial cell line BV-2 cells were cultured and treated with copper(II). The content of tumor necrosis factor-α (TNF-α) and nitric oxide in the medium was determined. Extracellular hydrogen peroxide was quantified by a fluorometric assay with Amplex Red. Mitochondrial superoxide was measured by MitoSOX oxidation. At subneurotoxicmore » concentrations, copper(II) treatment induced a dose- and time-dependent release of TNF-α and nitric oxide from microglial cells, and caused an indirect, microglia-mediated neurotoxicity that was blocked by inhibition of TNF-α and nitric oxide production. Copper(II)-initiated microglial activation was accompanied with reduced IkB-α expression as well as phosphorylation and translocation of nuclear factor-κB (NF-κB) p65 and was blocked by NF-κB inhibitors (BAY11-7082 and SC-514). Moreover, copper(II) treatment evoked a rapid release of hydrogen peroxide from microglial cells, an effect that was not affected by NADPH oxidase inhibitors. N-acetyl-cysteine, a scavenger of reactive oxygen species (ROS), abrogated copper(II)-elicited microglial release of TNF-α and nitric oxide and subsequent neurotoxicity. Importantly, mitochondrial production of superoxide, paralleled to extracellular release of hydrogen peroxide, was induced after copper(II) stimulation. Our findings suggest that extracellular copper(II) at subneurotoxic concentrations could trigger NF-κB-dependent microglial activation and subsequent neurotoxicity. NADPH oxidase-independent, mitochondria-derived ROS may be involved in this activation. - Highlights: • Subneurotoxic copper(II) triggers NF-κB-dependent microglial activation. • This activation leads to hippocampal neuronal death. • This activation may involve mitochondria-derived reactive oxygen species.« less
Mesa‐Galloso, Haydeé; Delgado‐Magnero, Karelia H.; Cabezas, Sheila; López‐Castilla, Aracelys; Hernández‐González, Jorge E.; Pedrera, Lohans; Alvarez, Carlos; Peter Tieleman, D.; García‐Sáez, Ana J.; Lanio, Maria E.; Valiente, Pedro A.
2017-01-01
Abstract Crystallographic data of the dimeric and octameric forms of fragaceatoxin C (FraC) suggested the key role of a small hydrophobic protein–protein interaction surface for actinoporins oligomerization and pore formation in membranes. However, site‐directed mutagenesis studies supporting this hypothesis for others actinoporins are still lacking. Here, we demonstrate that disrupting the key hydrophobic interaction between V60 and F163 (FraC numbering scheme) in the oligomerization interface of FraC, equinatoxin II (EqtII), and sticholysin II (StII) impairs the pore formation activity of these proteins. Our results allow for the extension of the importance of FraC protein–protein interactions in the stabilization of the oligomeric intermediates of StII and EqtII pointing out that all of these proteins follow a similar pathway of membrane disruption. These findings support the hybrid pore proposal as the universal model of actinoporins pore formation. Moreover, we reinforce the relevance of dimer formation, which appears to be a functional intermediate in the assembly pathway of some different pore‐forming proteins. PMID:28000294
NASA Astrophysics Data System (ADS)
Karadeniz, Şeyma; Ataol, Cigdem Yuksektepe; Şahin, Onur; İdil, Önder; Bati, Hümeyra
2018-06-01
A new aroylhydrazoneoxime, N'-((2Z, 3E)-3-(hydroxyimino)butan-2-ylidene)-2-phenylacetohydrazide ligand (LH2) and its Ni(II) and Co(II) complexes, have been synthesized and characterized by elemental and thermal analyses, IR and UV-vis spectroscopy, magnetic moment and X-ray diffraction. The antimicrobial activities of these compounds were tested by using minimal inhibitory concentration method (MIC). The ligand-containing aroylhydrazone and oxime groups and its Ni complex crystallize in the triclinic system and P 1 - space group, while its Co complex crystallizes in the monoclinic system and the C 2/c space group. X-ray results show that the ligand in the keto form is transformed into enolic form when it forms coordination. From elemental analysis data, the stoichiometry of Co(II) complex was found to be 1:2 (metal/ligand), but 1:1 for Ni(II). IR spectra indicate that the ligand acts as monoanionic NNO- tridentate and coordination takes place form through the oxime nitrogen, imine nitrogen, and enolate oxygen atoms.
NASA Astrophysics Data System (ADS)
Gündüzalp, Ayla Balaban; Özsen, İffet; Alyar, Hamit; Alyar, Saliha; Özbek, Neslihan
2016-09-01
Schiff bases; 1,8-bis(thiophene-2-carboxaldimine)-p-menthane (L1) and 1,8-bis(furan-2-carboxaldimine)-p-menthane (L2) have been synthesized and characterized by elemental analysis, 1Hsbnd 13C NMR, UV-vis, FT-IR and LC-MS methods. 1H and 13C shielding tensors for L1 and L2 were calculated with GIAO/DFT/B3LYP/6-311++G(d,p) methods in CDCl3. The vibrational band assignments, nonlinear optical (NLO) activities, frontier molecular orbitals (FMOs) and absorption spectrum have been investigated by the same basis set. Schiff base-copper(II) complexes have been synthesized and structurally characterized with spectroscopic methods, magnetic and conductivity measurements. The spectroscopic data suggest that Schiff base ligands coordinate through azomethine-N and thiophene-S/furan-O donors (as SNNS and ONNO chelating systems) to give a tetragonal geometry around the copper(II) ions. Schiff bases and Cu(II) complexes have been screened for their biological activities on different species of pathogenic bacteria, those are, Gram positive bacteria: Bacillus subtitilus, Yersinia enterotica, Bacillus cereus, Listeria monocytogenes, Micrococcus luteus and Gram negative bacteria: Escherichia coli, Pseudomonas aeroginosa, Shigella dysenteriae, Salmonella typhi, Klebsiella pseudomonas by using microdilution technique (MIC values in mM). Biological activity results show that Cu(II) complexes have higher activities than parent ligands and metal chelation may affect significantly the antibacterial behavior of the organic ligands.
Lu, B; Yang, X J; Chen, K; Yang, D J; Yan, J Q
2009-12-15
Previous studies have indicated that the renin-angiotensin-aldosterone system (RAAS) is implicated in the induction of sodium appetite in rats and that different dietary sodium intakes influence the mRNA expression of central and peripheral RAAS components. To determine whether dietary sodium deprivation activates regional brain neurons related to sodium appetite, and changes their gene expression of RAAS components of rats, the present study examined the c-Fos expression after chronic exposure to low sodium diet, and determined the relationship between plasma and brain angiotensin I (ANG I), angiotensin II (ANG II) and aldosterone (ALD) levels and the sodium ingestive behavior variations, as well as the effects of prolonged dietary sodium deprivation on ANG II type 1 (AT1) and ANG II type 2 (AT2) receptors and angiotensin-convertion enzyme (ACE) mRNA levels in the involved brain regions using the method of real-time polymerase chain reaction (PCR). Results showed that the Fos immunoreactivity (Fos-ir) expression in forebrain areas such as subfornical organ (SFO), paraventricular hypothalamic nuclei (PVN), supraoptic nucleus (SON) and organum vasculosum laminae terminalis (OVLT) all increased significantly and that the levels of ANG I, ANG II and ALD also increased in plasma and forebrain in rats fed with low sodium diet. In contrast, AT1, ACE mRNA in PVN, SON and OVLT decreased significantly in dietary sodium depleted rats, while AT2 mRNA expression did not change in the examined areas. These results suggest that many brain areas are activated by increased levels of plasma and/or brain ANG II and ALD, which underlies the elevated preference for hypertonic salt solution after prolonged exposure to low sodium diet, and that the regional AT1 and ACE mRNA are down-regulated after dietary sodium deprivation, which may be mediated by increased ANG II in plasma and/or brain tissue.
NASA Astrophysics Data System (ADS)
Chioma, Festus; Ekennia, Anthony C.; Ibeji, Collins U.; Okafor, Sunday N.; Onwudiwe, Damian C.; Osowole, Aderoju A.; Ujam, Oguejiofo T.
2018-07-01
A pyrimidine-based ligand, 2-(pyrimidin-2-ylamino)naphthalene-1,4-dione (L), has been synthesized by the reaction of 2-aminopyrimidine with 2-hydroxy-1,4-napthoquinone. Reaction of the ligand with Ni(II), Co(II), Mn(II) and Zn(II) acetate gave the corresponding metal complexes which were characterized by spectroscopic techniques, (infrared, electronic), elemental analysis, room-temperature magnetometry, conductance measurements and thermogravimetry-differential scanning calorimetry (TG-DSC) analyses. The room-temperature magnetic data and electronic spectral measurements of the complexes gave evidence of 4-coordinate square planar/tetrahedral geometry. The thermal analyses values obtained indicated the monohydrate complexes. The antimicrobial screening of the compounds showed mild to very good results. The Mn(II) complex showed the best result within in the range of 11.5-29 mm. The electronic, structural and spectroscopic properties of the complexes were further discussed using density functional theory. Molecular docking studies showed significant binding affinity with the drug targets and the metal complexes have potentials to be used as drugs.
A performance study of WebDav access to storages within the Belle II collaboration
NASA Astrophysics Data System (ADS)
Pardi, S.; Russo, G.
2017-10-01
WebDav and HTTP are becoming popular protocols for data access in the High Energy Physics community. The most used Grid and Cloud storage solutions provide such kind of interfaces, in this scenario tuning and performance evaluation became crucial aspects to promote the adoption of these protocols within the Belle II community. In this work, we present the results of a large-scale test activity, made with the goal to evaluate performances and reliability of the WebDav protocol, and study a possible adoption for the user analysis. More specifically, we considered a pilot infrastructure composed by a set of storage elements configured with the WebDav interface, hosted at the Belle II sites. The performance tests include a comparison with xrootd and gridftp. As reference tests we used a set of analysis jobs running under the Belle II software framework, accessing the input data with the ROOT I/O library, in order to simulate as much as possible a realistic user activity. The final analysis shows the possibility to achieve promising performances with WebDav on different storage systems, and gives an interesting feedback, for Belle II community and for other high energy physics experiments.
Attention and Activity in the Young Child.
ERIC Educational Resources Information Center
Tyler, S.; And Others
1979-01-01
Study I examined activity spans in four types of preschool establishments. Overall span was greatest in the nursery school and lowest in the day nursery. Study II examined attention spans in a primary school. Both studies demonstrated the influence of adults in increasing children's attention. (Author/SJL)
Hurbánková, M
1994-01-01
The phagocytic activity of leukocytes in peripheral blood was investigated after 2, 24, and 48 hr; 1, 2, 4, and 8 weeks; and 6 and 12 months following intraperitoneal administration of asbestos and basalt fibers to Wistar rats. Asbestos and basalt fibers differed in their effects on the parameters studied. Both granulocyte count and phagocytic activity of leukocytes during the 1-year dynamic follow-up in both dust-exposed groups of animals changed in two phases, characterized by the initial stimulation of the acute phase I, followed by the suppression of the parameters in the chronic phase II. Exposure to asbestos and basalt fibers led, in phase II, to impairment of the phagocytic activity of granulocytes. Asbestos fibers also significantly decreased phagocytic activity of monocytes. Exposure to basalt fibers did not affect the phagocytic activity of monocytes in phase II. Results suggest that the monocytic component of leukocytes plays an important role in the development of diseases caused by exposure to fibrous dusts, but basalt fibers have lesser biological effects than asbestos fibers. PMID:7882931
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chi, Liyi; Departments of Cardiology, The 451st Hospital of People's Liberation Army; Hu, Xiaojing
Angiotensin II (AngII) is the most important component of angiotensin, which has been regarded as a major contributor to the incidence of hypertension and vascular endothelial dysfunction. The adipocytokine C1q/TNF-related protein 6 (CTRP6) was recently reported to have multiple protective effects on cardiac and cardiovascular function. However, the exact role of CTRP6 in the progression of AngII induced hypertension and vascular endothelial function remains unclear. Here, we showed that serum CTRP6 content was significantly downregulated in SHRs, accompanied by a marked increase in arterial systolic pressure and serum AngII, CRP and ET-1 content. Then, pcDNA3.1-mediated CTRP6 delivery or CTRP6 siRNAmore » was injected into SHRs. CTRP6 overexpression caused a significant decrease in AngII expression and AngII-mediated hypertension and vascular endothelial inflammation. In contrast, CTRP6 knockdown had the opposite effect to CTRP6 overexpression. Moreover, we found that CTRP6 positively regulated the activation of the ERK1/2 signaling pathway and the expression of peroxisome proliferator-activated receptor γ (PPARγ), a recently proven negative regulator of AngII, in the brain and vascular endothelium of SHRs. Finally, CTRP6 was overexpressed in endothelial cells, and caused a significant increase in PPARγ activation and suppression in AngII-mediated vascular endothelial dysfunction and apoptosis. The effect of that could be rescued by the ERK inhibitor PD98059. In contrast, silencing CTRP6 suppressed PPARγ activation and exacerbated AngII-mediated vascular endothelial dysfunction and apoptosis. In conclusion, CTRP6 improves PPARγ activation and alleviates AngII-induced hypertension and vascular endothelial dysfunction. - Highlights: • Serum CTRP6 was significantly decreased in spontaneously hypertensive rats (SHRs). • CTRP6 positively regulated the activation of the ERK1/2 signaling pathway. • CTRP6 negatively regulates PPARγ mediated Angiotensin II (AngII) expression. • CTRP6 alleviates AngII-induced hypertension and vascular endothelial dysfunction.« less
Fenoterol stimulates human erythropoietin production via activation of the renin angiotensin system
Freudenthaler, S M; Schenck, T; Lucht, I; Gleiter, C H
1999-01-01
Aims The present study assessed the hypothesis that the β2 sympathomimetic fenoterol influences the production of erythropoietin (EPO) by activation of the renin angiotensin system (RAS), i.e. angiotensin II. Methods In an open, parallel, randomized study healthy volunteers received i.v. either placebo (electrolyte solution), fenoterol or fenoterol in combination with an oral dose of the AT1-receptor antagonist losartan. Results Compared with placebo treatment AUCEPO(0,24 h) was significantly increased after fenoterol application by 48% whereas no increase in the group receiving fenoterol and losartan could be detected. The rise of PRA was statistically significant under fenoterol and fenoterol plus lorsartan. Conclusions Stimulation of EPO production during fenoterol infusion appears to be angiotensin II-mediated. Thus, angiotensin II may be considered as one important physiological modulator of EPO production in humans. PMID:10583037
Fenoterol stimulates human erythropoietin production via activation of the renin angiotensin system.
Freudenthaler, S M; Schenck, T; Lucht, I; Gleiter, C H
1999-10-01
The present study assessed the hypothesis that the beta2 sympathomimetic fenoterol influences the production of erythropoietin (EPO) by activation of the renin angiotensin system (RAS), i.e. angiotensin II. In an open, parallel, randomized study healthy volunteers received i.v. either placebo (electrolyte solution), fenoterol or fenoterol in combination with an oral dose of the AT1-receptor antagonist losartan. Compared with placebo treatment AUCEPO(0,24 h) was significantly increased after fenoterol application by 48% whereas no increase in the group receiving fenoterol and losartan could be detected. The rise of PRA was statistically significant under fenoterol and fenoterol plus lorsartan. Stimulation of EPO production during fenoterol infusion appears to be angiotensin II-mediated. Thus, angiotensin II may be considered as one important physiological modulator of EPO production in humans.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seletskiy, S.; Podobedov, B.
2015-12-30
The NSLS-II storage ring vacuum chamber, including frontends (FE) and beamlines (BL), is protected from possible damage from synchrotron radiation (SR) emitted from insertion devices (IDs) by a dedicated active interlock system (AIS). The system monitors electron beam position and angle and triggers a beam dump if the beam orbit is outside of the active interlock envelope (AIE). The AIE was calculated under the assumptions of 3 GeV beam energy and ID gaps set to their minimum operating values (i.e. “fully closed”). Recently it was proposed to perform machine studies that would ramp the stored beam energy significantly below themore » nominal operational value of 3 GeV. These studies may potentially include the use of NSLS-II damping wigglers (DWs) for electron beam emittance reduction and control.« less
Masaoka, Shigeyuki; Mukawa, Yuichiro; Sakai, Ken
2010-07-07
Two new Ru(II)Pt(II) dimers, [Ru(bpy)(2)(mu-L2)PtCl(2)](2+) (5) and [Ru(bpy)(2)(mu-L3)PtCl(2)](2+) (6), were synthesized and characterized, and their electrochemical and spectroscopic properties together with their photo-hydrogen-evolving activities were evaluated (bpy = 2,2'-bypridine; L2 = 4'-[1,10]phenanthrolin-5-ylcarbamoyl)-[2,2']bipyridinyl-4-carboxylic acid ethyl ester; L3 = 4'-methyl-[2,2']bipyridinyl-4-carboxylic acid [1,10]phenanthrolin-5-ylamide). The structures of 5 and 6 are basically identical with that of the first active model of a photo-hydrogen-evolving molecular device developed in our group, [Ru(bpy)(2)(mu-L1)PtCl(2)](2+) (4) (L1 = 4'-([1,10]phenanthrolin-5-ylcarbamoyl)-[2,2']bipyridinyl-4-carboxylic acid), except for the difference in the substituent group at the 4-position of the bpy moiety bound to Pt(II) (-COOH for 4; -COOEt for 5; -CH(3) for 6). Electrochemical studies revealed that the first reduction potential of 5 (E(1/2) = -1.23 V) is nearly consistent with that of 4 (E(1/2) = -1.20 V) but is more positive than that of 6 (E(1/2) = -1.39 V), where the first reduction is associated with the reduction of the bpy moiety bound to Pt(II), consistent with a general tendency that the first reduction of bpy shows an anodic shift upon introduction of electron-withdrawing group. Density functional theory (DFT) calculations for 5 and 6 also show that the lowest unoccupied molecular orbital (LUMO) corresponds to the pi* orbital of the bpy moiety bound to Pt(II) for all the Ru(II)Pt(II) dimers, and the energy level of the LUMO of 6 is destabilized compared with those of 4 and 5, consistent with the results of the electrochemical studies. The photochemical hydrogen evolution from water driven by 4-6 in the presence a sacrificial electron donor (EDTA) was investigated. 5 was found to be active as an H(2)-evolving catalyst, while 6 shows no activity at all. However, 6 was found to drive photochemical H(2) evolution in the presence of both EDTA and methyl viologen (N,N'-dimethyl-4,4'-bipyridinium, MV(2+)), indicating that the (3)MLCT excited state of the Ru(bpy)(2)(phen)(2+) moiety is once oxidatively quenched by MV(2+) to give MV(+) and then hydrogen evolution from water by MV(+*) proceeds as a dark reaction. Emission decays and transient absorption spectra also show that the intramolecular electron transfer (IET) is accelerated in the active Ru(II)Pt(II) dimers 4 and 5, while such acceleration is not realized for the inactive Ru(II)Pt(II) dimer 6. The driving forces (DeltaG degrees(ET)) for the IET processes are estimated to be -0.16 eV for 4, -0.09 eV for 5 and 0.03 eV for 6, indicating that the IET process in 6 is uphill. It is concluded that efficient IET is required to drive the photochemical H(2) evolution from water with these Ru(II)Pt(II)-based molecular devices.
Water Oxidation Catalysis by Co(II) Impurities in Co(III) 4O 4 Cubanes
Ullman, Andrew M.; Liu, Yi; Huynh, Michael; ...
2014-11-18
Here, the observed water oxidation activity of the compound class Co 4O 4(OAc) 4(Py–X) 4 emanates from a Co(II) impurity. This impurity is oxidized to produce the well-known Co-OEC heterogeneous cobaltate catalyst, which is an active water oxidation catalyst. We present results from electron paramagnetic resonance spectroscopy, nuclear magnetic resonance line broadening analysis, and electrochemical titrations to establish the existence of the Co(II) impurity as the major source of water oxidation activity that has been reported for Co 4O 4 molecular cubanes. Differential electrochemical mass spectrometry is used to characterize the fate of glassy carbon at water oxidizing potentials andmore » demonstrate that such electrode materials should be used with caution for the study of water oxidation catalysis.« less
Use of ferrous iron by metallo-β-lactamases.
Cahill, Samuel T; Tarhonskaya, Hanna; Rydzik, Anna M; Flashman, Emily; McDonough, Michael A; Schofield, Christopher J; Brem, Jürgen
2016-10-01
Metallo-β-lactamases (MBLs) catalyse the hydrolysis of almost all β-lactam antibacterials including the latest generation carbapenems and are a growing worldwide clinical problem. It is proposed that MBLs employ one or two zinc ion cofactors in vivo. Isolated MBLs are reported to use transition metal ions other than zinc, including copper, cadmium and manganese, with iron ions being a notable exception. We report kinetic and biophysical studies with the di-iron(II)-substituted metallo-β-lactamase II from Bacillus cereus (di-Fe(II) BcII) and the clinically relevant B1 subclass Verona integron-encoded metallo-β-lactamase 2 (di-Fe(II) VIM-2). The results reveal that MBLs can employ ferrous iron in catalysis, but with altered kinetic and inhibition profiles compared to the zinc enzymes. A crystal structure of di-Fe(II) BcII reveals only small overall changes in the active site compared to the di-Zn(II) enzyme including retention of the di-metal bridging water; however, the positions of the metal ions are altered in the di-Fe(II) compared to the di-Zn(II) structure. Stopped-flow analyses reveal that the mechanism of nitrocefin hydrolysis by both di-Fe(II) BcII and di-Fe(II) VIM-2 is altered compared to the di-Zn(II) enzymes. Notably, given that the MBLs are the subject of current medicinal chemistry efforts, the results raise the possibility the Fe(II)-substituted MBLs may be of clinical relevance under conditions of low zinc availability, and reveal potential variation in inhibitor activity against the differently metallated MBLs. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Xu, Zheng; Li, Weixin; Han, Jibo; Zou, Chunpeng; Huang, Weijian; Yu, Weihui; Shan, Xiaoou; Lum, Hazel; Li, Xiaokun; Liang, Guang
2017-03-21
Growing evidence indicates that angiotensin II (Ang II), a potent biologically active product of RAS, is a key regulator of renal inflammation and fibrosis. In this study, we tested the hypothesis that Ang II induces renal inflammatory injury and fibrosis through interaction with myeloid differentiation protein-2 (MD2), the accessory protein of toll-like receptor 4 (TLR4) of the immune system. Results indicated that in MD2 -/- mice, the Ang II-induced renal fibrosis, inflammation and kidney dysfunction were significantly reduced compared to control Ang II-infused wild-type mice. Similarly, in the presence of small molecule MD2 specific inhibitor L6H21 or siRNA-MD2, the Ang II-induced increases of pro-fibrotic and pro-inflammatory molecules were prevented in tubular NRK-52E cells. MD2 blockade also inhibited activation of NF-κB and ERK. Moreover, MD2 blockade prevented the Ang II-stimulated formation of the MD2/TLR4/MyD88 signaling complex, as well as the increased surface binding of Ang II in NRK-52E cells. In addition, Ang II directly bound recombinant MD2 protein, rather than TLR4 protein. We conclude that MD2 is a significant contributor in the Ang II-induced kidney inflammatory injury in chronic renal diseases. Furthermore, MD2 inhibition could be a new and important therapeutic strategy for preventing progression of chronic renal diseases.
Song, Kang; Zhou, Xu; Liu, Yiqi; Gong, Yanyan; Zhou, Beibei; Wang, Dongbo; Wang, Qilin
2016-01-01
Improving dewaterability of sludge is important for the disposal of sludge in wastewater treatment plants (WWTPs). This study, for the first time, investigated the Fe(II) activated oxidization processes in improving anaerobically digested sludge (ADS) dewaterability. The combination of Fe(II) (0–100 mg/g total solids (TS)) and persulfate (0–1,000 mg/g TS) under neutral pH as well as the combination of Fe(II) (0–100 mg/g TS) and hydrogen peroxide (HP) (0–1,000 mg/g TS) under pH 3.0 were used to examine and compare their effect on the ADS dewaterability enhancement. The highest ADS dewaterability enhancement was attained at 25 mg Fe(II)/g TS and 50 mg HP/g TS, when the CST (CST: the capillary suction time, a sludge dewaterability indicator) was reduced by 95%. In contrast, the highest CST reduction in Fe(II)-persulfate conditioning was 90%, which was obtained at 50 mg Fe(II)/g TS and 250 mg persulfate/g TS. The results showed that Fe(II)-HP conditioning was comparable with Fe(II)-persulfate conditioning in terms of highest CST reduction. Economic analysis suggested that the Fe(II)-HP conditioning was more promising for improving ADS dewaterability compared with Fe(II)-persulfate conditioning, with the saving being up to $65,000 per year in a WWTP with a population equivalent of 100,000. PMID:27109500
Bae, Yeunook; Kim, Dooil; Cho, Hyun-Hee; Singhal, Naresh; Park, Jae-Woo
2012-12-01
In this research, we conducted trichloroethylene (TCE) reduction in a column filled with iron and iron-reducing bacteria (IRB) and developed a mathematical model to investigate the critical reactions between active species in iron/IRB/contaminant systems. The formation of ferrous iron (Fe(II)) in this system with IRB and zero-valent iron (ZVI, Fe(0)) coated with a ferric iron (Fe(III)) crust significantly affected TCE reduction and IRB respiration in various ways. This study presents a new framework for transformation property and reducing ability of both dissolved (Fe(II)(dissolved)) and solid form ferrous iron (Fe(II)(solid)). Results showed that TCE reduction was strongly depressed by Fe(II)(solid) rather than by other inhibitors (e.g., Fe(III) and lactate), suggesting that Fe(II)(solid) might reduce IRB activation due to attachment to IRB cells. Newly exposed Fe(0) from the released Fe(II)(dissolved) was a strong contributor to TCE reduction compared to Fe(II)(solid). In addition, our research confirmed that less Fe(II)(solid) production strongly supported long-term TCE reduction because it may create an easier TCE approach to Fe(0) or increase IRB growth. Our findings will aid the understanding of the contributions of iron media (e.g., Fe(II)(solid), Fe(II)(dissolved), Fe(III), and Fe(0)) to IRB for decontamination in natural groundwater systems. Copyright © 2012 Elsevier Ltd. All rights reserved.
Casarsa, B S; Marinzalda, M Á; Marchese, N A; Paz, M C; Vivas, L; Baiardi, G; Bregonzio, C
2015-10-29
Previous results from our laboratory showed that angiotensin II AT1 receptors (AT1-R) are involved in the neuroadaptative changes induced by amphetamine. The aim of the present work was to study functional and neurochemical responses to angiotensin II (ANG II) mediated by AT1-R activation in animals previously exposed to amphetamine. For this purpose male Wistar rats (250-320 g) were treated with amphetamine (2.5mg/kg/day intraperitoneal) or saline for 5 days and implanted with intracerebroventricular (i.c.v.) cannulae. Seven days after the last amphetamine administration the animals received ANG II (400 pmol) i.c.v. One group was tested in a free choice paradigm for sodium (2% NaCl) and water intake and sacrificed for Fos immunoreactivity (Fos-IR) determinations. In a second group of rats, urine and plasma samples were collected for electrolytes and plasma renin activity determination and then they were sacrificed for Fos-IR determination in Oxytocinergic neurons (Fos-OT-IR). Repeated amphetamine exposure (a) prevented the increase in sodium intake and Fos-IR cells in caudate-putamen and accumbens nucleus induced by ANG II i.c.v. (b) potentiated urinary sodium excretion and Fos-OT-IR in hypothalamus and (c) increased the inhibitory response in plasma renin activity, in response to ANG II i.c.v. Our results indicate a possible functional desensitisation of AT1-R in response to ANG II, induced by repeated amphetamine exposure. This functional AT1-R desensitisation allows to unmask the effects of ANG II i.c.v. mediated by oxytocin. We conclude that the long lasting changes in brain AT1-R functionality should be considered among the psychostimulant-induced neuroadaptations. Published by Elsevier Ltd.
Ferreira-Duarte, Ana P; Pinheiro-Torres, Anelize S; Anhê, Gabriel F; Condino-Neto, Antônio; Antunes, Edson; DeSouza, Ivani A
2017-01-01
Staphylococcal enterotoxins are classified as superantigens that act by linking T-cell receptor with MHC class II molecules, which are expressed on classical antigen-presenting cells (APC). Evidence shows that MHC class II is also expressed in neutrophils and eosinophils. This study aimed to investigate the role of MHC class II and IFN-γ on chemotactic and adhesion properties of neutrophils and eosinophils after incubation with SEA. Bone marrow (BM) cells obtained from BALB/c mice were resuspended in culture medium, and incubated with SEA (3-30 ng/ml; 1-4 h), after which chemotaxis and adhesion were evaluated. Incubation with SEA significantly reduced the chemotactic and adhesive responses in BM neutrophils activated with IL-8 (200 ng/ml). Likewise, SEA significantly reduced the chemotactic and adhesive responses of BM eosinophils activated with eotaxin (300 ng/ml). The inhibitory effects of SEA on cell chemotaxis and adhesion were fully prevented by prior incubation with an anti-MHC class II blocking antibody (2 μg/ml). SEA also significantly reduced the intracellular Ca 2+ levels in IL-8- and eotaxin-activated BM cells. No alterations of MAC-1, VLA4, and LFA-1α expressions were observed after SEA incubation. In addition, SEA elevated by 3.5-fold ( P < 0.05) the INF-γ levels in BM cells. Incubation of BM leukocytes with IFN-γ (10 ng/ml, 2 h) reduced both neutrophil and eosinophil chemotaxis and adhesion, which were prevented by prior incubation with anti-MHC class II antibody (2 μg/ml). In conclusion, SEA inhibits neutrophil and eosinophil by MHC class II-dependent mechanism, which may be modulated by concomitant release of IFN-γ.
Domazet, Ivana; Holleran, Brian J; Richard, Alexandra; Vandenberghe, Camille; Lavigne, Pierre; Escher, Emanuel; Leduc, Richard; Guillemette, Gaétan
2015-06-01
The octapeptide angiotensin II (AngII) exerts a variety of cardiovascular effects through the activation of the AngII type 1 receptor (AT1), a G protein-coupled receptor. The AT1 receptor engages and activates several signaling pathways, including heterotrimeric G proteins Gq and G12, as well as the extracellular signal-regulated kinases (ERK) 1/2 pathway. Additionally, following stimulation, βarrestin is recruited to the AT1 receptor, leading to receptor desensitization. It is increasingly recognized that specific ligands selectively bind and favor the activation of some signaling pathways over others, a concept termed ligand bias or functional selectivity. A better understanding of the molecular basis of functional selectivity may lead to the development of better therapeutics with fewer adverse effects. In the present study, we developed assays allowing the measurement of six different signaling modalities of the AT1 receptor. Using a series of AngII peptide analogs that were modified in positions 1, 4, and 8, we sought to better characterize the molecular determinants of AngII that underlie functional selectivity of the AT1 receptor in human embryonic kidney 293 cells. The results reveal that position 1 of AngII does not confer functional selectivity, whereas position 4 confers a bias toward ERK signaling over Gq signaling, and position 8 confers a bias toward βarrestin recruitment over ERK activation and Gq signaling. Interestingly, the analogs modified in position 8 were also partial agonists of the protein kinase C (PKC)-dependent ERK pathway via atypical PKC isoforms PKCζ and PKCι. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.
Windham-Myers, L.; Marvin-DiPasquale, M.; Krabbenhoft, D.P.; Agee, J.L.; Cox, M.H.; Heredia-Middleton, P.; Coates, C.; Kakouros, E.
2009-01-01
We performed plant removal (devegetation) experiments across a suite of ecologically diverse wetland settings (tidal salt marshes, river floodplain, rotational rice fields, and freshwater wetlands with permanent or seasonal flooding) to determine the extent to which the presence (or absence) of actively growing plants influences the activity of the Hg(II)-methylating microbial community and the availability of Hg(II) to those microbes. Vegetated control plots were paired with neighboring devegetated plots in which photosynthetic input was terminated 4-8 months prior to measurements, through clipping aboveground biomass, severing belowground connections, and shading the sediment surface to prevent regrowth. Across all wetlands, devegetation decreased the activity of the Hg(II)-methylating microbial community (kmeth) by 38%, calculated MeHg production potential (MP) rates by 36%, and pore water acetate concentration by 78%. Decreases in MP were associated with decreases in microbial sulfate reduction in salt marsh settings. In freshwater agricultural wetlands, decreases in MP were related to indices of microbial iron reduction. Sediment MeHg concentrations were also significantly lower in devegetated than in vegetated plots in most wetland settings studied. Devegetation effects were correlated with live root density (percent volume) and were most profound in vegetated sites with higher initial pore water acetate concentrations. Densely rooted wetlands had the highest rates of microbial Hg(II)-methylation activity but often the lowest concentrations of bioavailable reactive Hg(II). We conclude that the exudation of labile organic carbon (e.g., acetate) by plants leads to enhanced microbial sulfate and iron reduction activity in the rhizosphere, which results in high rates of microbial Hg(II)-methyation and high MeHg concentrations in wetland sediment.
Windham-Myers, Lisamarie; Marvin-DiPasquale, Mark; Krabbenhoft, David P.; Agee, Jennifer L.; Cox, Marisa H.; Heredia-Middleton, Pilar; Coates, Carolyn; Kakouros, Evangelos
2009-01-01
We performed plant removal (devegetation) experiments across a suite of ecologically diverse wetland settings (tidal salt marshes, river floodplain, rotational rice fields, and freshwater wetlands with permanent or seasonal flooding) to determine the extent to which the presence (or absence) of actively growing plants influences the activity of the Hg(II)-methylating microbial community and the availability of Hg(II) to those microbes. Vegetated control plots were paired with neighboring devegetated plots in which photosynthetic input was terminated 4–8 months prior to measurements, through clipping aboveground biomass, severing belowground connections, and shading the sediment surface to prevent regrowth. Across all wetlands, devegetation decreased the activity of the Hg(II)-methylating microbial community (kmeth) by 38%, calculated MeHg production potential (MP) rates by 36%, and pore water acetate concentration by 78%. Decreases in MP were associated with decreases in microbial sulfate reduction in salt marsh settings. In freshwater agricultural wetlands, decreases in MP were related to indices of microbial iron reduction. Sediment MeHg concentrations were also significantly lower in devegetated than in vegetated plots in most wetland settings studied. Devegetation effects were correlated with live root density (percent volume) and were most profound in vegetated sites with higher initial pore water acetate concentrations. Densely rooted wetlands had the highest rates of microbial Hg(II)-methylation activity but often the lowest concentrations of bioavailable reactive Hg(II). We conclude that the exudation of labile organic carbon (e.g., acetate) by plants leads to enhanced microbial sulfate and iron reduction activity in the rhizosphere, which results in high rates of microbial Hg(II)-methyation and high MeHg concentrations in wetland sediment.
Human type II pneumocyte chemotactic responses to CXCR3 activation are mediated by splice variant A.
Ji, Rong; Lee, Clement M; Gonzales, Linda W; Yang, Yi; Aksoy, Mark O; Wang, Ping; Brailoiu, Eugen; Dun, Nae; Hurford, Matthew T; Kelsen, Steven G
2008-06-01
Chemokine receptors control several fundamental cellular processes in both hematopoietic and structural cells, including directed cell movement, i.e., chemotaxis, cell differentiation, and proliferation. We have previously demonstrated that CXCR3, the chemokine receptor expressed by Th1/Tc1 inflammatory cells present in the lung, is also expressed by human airway epithelial cells. In airway epithelial cells, activation of CXCR3 induces airway epithelial cell movement and proliferation, processes that underlie lung repair. The present study examined the expression and function of CXCR3 in human alveolar type II pneumocytes, whose destruction causes emphysema. CXCR3 was present in human fetal and adult type II pneumocytes as assessed by immunocytochemistry, immunohistochemistry, and Western blotting. CXCR3-A and -B splice variant mRNA was present constitutively in cultured type II cells, but levels of CXCR3-B greatly exceeded CXCR3-A mRNA. In cultured type II cells, I-TAC, IP-10, and Mig induced chemotaxis. Overexpression of CXCR3-A in the A549 pneumocyte cell line produced robust chemotactic responses to I-TAC and IP-10. In contrast, I-TAC did not induce chemotactic responses in CXCR3-B and mock-transfected cells. Finally, I-TAC increased cytosolic Ca(2+) and activated the extracellular signal-regulated kinase, p38, and phosphatidylinositol 3-kinase (PI 3-kinase)/protein kinase B kinases only in CXCR3-A-transfected cells. These data indicate that the CXCR3 receptor is expressed by human type II pneumocytes, and the CXCR3-A splice variant mediates chemotactic responses possibly through Ca(2+) activation of both mitogen-activated protein kinase and PI 3-kinase signaling pathways. Expression of CXCR3 in alveolar epithelial cells may be important in pneumocyte repair from injury.