Immunity in Drosophila melanogaster--from microbial recognition to whole-organism physiology.
Buchon, Nicolas; Silverman, Neal; Cherry, Sara
2014-12-01
Since the discovery of antimicrobial peptide responses 40 years ago, the fruit fly Drosophila melanogaster has proven to be a powerful model for the study of innate immunity. Early work focused on innate immune mechanisms of microbial recognition and subsequent nuclear factor-κB signal transduction. More recently, D. melanogaster has been used to understand how the immune response is regulated and coordinated at the level of the whole organism. For example, researchers have used this model in studies investigating interactions between the microbiota and the immune system at barrier epithelial surfaces that ensure proper nutritional and immune homeostasis both locally and systemically. In addition, studies in D. melanogaster have been pivotal in uncovering how the immune response is regulated by both endocrine and metabolic signalling systems, and how the immune response modifies these systems as part of a homeostatic circuit. In this Review, we briefly summarize microbial recognition and antiviral immunity in D. melanogaster, and we highlight recent studies that have explored the effects of organism-wide regulation of the immune response and, conversely, the effects of the immune response on organism physiology.
Costs of mounting an immune response during pregnancy in a lizard.
Meylan, Sandrine; Richard, Murielle; Bauer, Sophie; Haussy, Claudy; Miles, Donald
2013-01-01
Immune defenses are of great benefit to hosts, but reducing the impact of infection by mounting an immune response also entails costs. However, the physiological mechanisms that generate the costs of an immune response remain poorly understood. Moreover, the majority of studies investigating the consequences of an immune challenge in vertebrates have been conducted on mammals and birds. The aim of this study is to investigate the physiological costs of mounting an immune response during gestation in an ectothermic species. Indeed, because ectothermic species are unable to internally regulate their body temperature, the apportionment of resources to homeostatic activities in ectothermic species can differ from that in endothermic species. We conducted this study on the common lizard Zootoca vivipara. We investigated the costs of mounting an immune response by injecting females with sheep red blood cells and quantified the consequences to reproductive performance (litter mass and success) and physiological performance (standard metabolic rate, endurance, and phytohemagglutinin response). In addition, we measured basking behavior. Our analyses revealed that mounting an immune response affected litter mass, physiological performance, and basking behavior. Moreover, we demonstrated that the modulation of an immune challenge is impacted by intrinsic factors, such as body size and condition.
Cellular Immune Response to Cytomegalovirus Infection After Renal Transplantation
Linnemann, Calvin C.; Kauffman, Carol A.; First, M. Roy; Schiff, Gilbert M.; Phair, John P.
1978-01-01
A prospective study of 15 patients who received renal transplants defined the effect of renal transplantation on the cellular immune response to cytomegalovirus infection. Of 15 patients, 14 developed cytomegalovirus infection, usually in the first 2 months after transplantation, and all infections were accompanied by a normal humoral immune response. After the initiation of immunosuppressive therapy and transplantation, there was a general depression of lymphocyte transformation, as reflected in the response to phytohemagglutinin, accompanied by a specific defect in cellular immunity, as indicated by lymphocyte transformation to cytomegalovirus antigen. Eleven patients had cellular immunity to cytomegalovirus before transplantation, and all of these became negative in the first month after transplantation. In subsequent months, only 6 of the 14 study patients with cytomegalovirus infection developed specific cellular immune responses to cytomegalovirus. This occurred most often in patients who had severe febrile illnesses in association with infection. The specific cellular immune response which developed in the posttransplant period did not persist in three of the patients. This study demonstrates the dissociation of the humoral and cellular immune response to cytomegalovirus infection in renal transplant patients and indicates the importance of the loss of cellular immunity in the appearance of infection. Previously infected patients lost their cell-mediated immunity and had reactivation infections despite the presence of serum antibody. PMID:215541
Hajam, Irshad Ahmed; Lee, John Hwa
2017-06-01
Recombinant Salmonella strains expressing foreign heterologous antigens have been extensively studied as promising live vaccine delivery vehicles. In this study, we constructed attenuated smooth (S-HA) and rough (R-HA) Salmonella strains expressing hemagglutinin (HA) of H9N2, a low pathogenic avian influenza A virus. We then investigated the HA-specific immune responses following oral immunization with either S-HA or R-HA strain in chicken model. We further examined the effects of the preexisting anti-Salmonella immunity on the subsequent elicitation of the HA and the Salmonella ompA specific immune responses. Our results showed that primary immunization with either the S-HA or the R-HA strain elicited comparable HA-specific immune responses and the responses were significantly (p<0.05) higher compared to the Salmonella vector control. When chickens were pre-immunized with the smooth Salmonella carrier alone and then vaccinated with either S-HA or R-HA strain 3, 6 and 9 weeks later, respectively, significant reductions were seen for HA-specific immune responses at week 6, a point which corresponded to the peak of the primary Salmonella-specific antibody responses. No reductions were seen at week 3 and 9, albeit, the HA-specific immune responses were boosted at week 9, a point which corresponded to the lowest primary Salmonella-specific antibody responses. The ompA recall responses remain refractory at week 3 and 6 following deliberate immunization with the carrier strain, but were significantly (p<0.05) increased at week 9 post-primary immunization. We conclude that preexisting anti-Salmonella immunity inhibits antigen-specific immune responses and this effect could be avoided by carefully selecting the time point when carrier-specific immune responses are relatively low. Copyright © 2017 Elsevier B.V. All rights reserved.
Tilapia show immunization response against Ich
USDA-ARS?s Scientific Manuscript database
This study compares the immune response of Nile tilapia and red tilapia against parasite Ichthyophthirius multifiliis (Ich) using a cohabitation challenge model. Both Nile and red tilapia showed strong immune response post immunization with live Ich theronts by IP injection or immersion. Blood serum...
Contribution of advances in immunology to vaccine development.
Morrison, W I; Taylor, G; Gaddum, R M; Ellis, S A
1999-01-01
During the last 10 years, investigation of the bovine immune system has generated knowledge and reagents that can now be applied to study the mechanisms of immunity to disease and the identity of antigens recognized by protective immune responses. Such studies can indicate which antigens are likely to be effective in subunit vaccines and also highlight the type of antigen delivery system that will be required for a vaccine to induce a protective immune response. In the case of bovine RSV, studies of immune responses in the target host have demonstrated that both antibody and CTL responses play an important role in immunity. Both the F and G glycoproteins have been identified as targets of protective antibodies, and systems have been established that will allow the identification of the viral antigens recognized by CTL. Further studies of CD4+ T-cell responses to the virus are required to determine whether or not components of the response have the potential to enhance disease and, therefore, need to be avoided in vaccination strategies.
Meier, Helen C S; Haan, Mary N; Mendes de Leon, Carlos F; Simanek, Amanda M; Dowd, Jennifer B; Aiello, Allison E
2016-10-01
Persistent infections, such as cytomegalovirus (CMV), herpes simplex virus-1 (HSV-1), Helicobacter pylori (H. pylori), and Toxoplasma gondii (T. gondii), are common in the U.S. but their prevalence varies by socioeconomic status. It is unclear if early or later life socioeconomic position (SEP) is a more salient driver of disparities in immune control of these infections. Using data from the Sacramento Area Latino Study on Aging, we examined whether early or later life SEP was the strongest predictor of immune control later in life by contrasting two life course models, the critical period model and the chain of risk model. Early life SEP was measured as a latent variable, derived from parental education and occupation, and food availability. Indicators for SEP in later life included education level and occupation. Individuals were categorized by immune response to each pathogen (seronegative, low, medium and high) with increasing immune response representing poorer immune control. Cumulative immune response was estimated using a latent profile analysis with higher total immune response representing poorer immune control. Structural equation models were used to examine direct, indirect and total effects of early life SEP on each infection and cumulative immune response, controlling for age and gender. The direct effect of early life SEP on immune response was not statistically significant for the infections or cumulative immune response. Higher early life SEP was associated with lower immune response for T. gondii, H. pylori and cumulative immune response through pathways mediated by later life SEP. For CMV, higher early life SEP was both directly associated and partially mediated by later life SEP. No association was found between SEP and HSV-1. Findings from this study support a chain of risk model, whereby early life SEP acts through later life SEP to affect immune response to persistent infections in older age. Copyright © 2016 Elsevier Ltd. All rights reserved.
Marburg virus survivor immune responses are Th1 skewed with limited neutralizing antibody responses.
Stonier, Spencer W; Herbert, Andrew S; Kuehne, Ana I; Sobarzo, Ariel; Habibulin, Polina; Dahan, Chen V Abramovitch; James, Rebekah M; Egesa, Moses; Cose, Stephen; Lutwama, Julius Julian; Lobel, Leslie; Dye, John M
2017-09-04
Until recently, immune responses in filovirus survivors remained poorly understood. Early studies revealed IgM and IgG responses to infection with various filoviruses, but recent outbreaks have greatly expanded our understanding of filovirus immune responses. Immune responses in survivors of Ebola virus (EBOV) and Sudan virus (SUDV) infections have provided the most insight, with T cell responses as well as detailed antibody responses having been characterized. Immune responses to Marburg virus (MARV), however, remain almost entirely uncharacterized. We report that immune responses in MARV survivors share characteristics with EBOV and SUDV infections but have some distinct differences. MARV survivors developed multivariate CD4 + T cell responses but limited CD8 + T cell responses, more in keeping with SUDV survivors than EBOV survivors. In stark contrast to SUDV survivors, rare neutralizing antibody responses in MARV survivors diminished rapidly after the outbreak. These results warrant serious consideration for any vaccine or therapeutic that seeks to be broadly protective, as different filoviruses may require different immune responses to achieve immunity. © 2017 Stonier et al.
Liu, Heng; Patil, Harshad P.; de Vries-Idema, Jacqueline; Wilschut, Jan; Huckriede, Anke
2013-01-01
Vaccines for protection against respiratory infections should optimally induce a mucosal immune response in the respiratory tract in addition to a systemic immune response. However, current parenteral immunization modalities generally fail to induce mucosal immunity, while mucosal vaccine delivery often results in poor systemic immunity. In order to find an immunization strategy which satisfies the need for induction of both mucosal and systemic immunity, we compared local and systemic immune responses elicited by two mucosal immunizations, given either by the intranasal (IN) or the intrapulmonary (IPL) route, with responses elicited by a mucosal prime followed by a systemic boost immunization. The study was conducted in BALB/c mice and the vaccine formulation was an influenza subunit vaccine supplemented with GPI-0100, a saponin-derived adjuvant. While optimal mucosal antibody titers were obtained after two intrapulmonary vaccinations, optimal systemic antibody responses were achieved by intranasal prime followed by intramuscular boost. The latter strategy also resulted in the best T cell response, yet, it was ineffective in inducing nose or lung IgA. Successful induction of secretory IgA, IgG and T cell responses was only achieved with prime-boost strategies involving intrapulmonary immunization and was optimal when both immunizations were given via the intrapulmonary route. Our results underline that immunization via the lungs is particularly effective for priming as well as boosting of local and systemic immune responses. PMID:23936066
Kumar, Amit; Wonganan, Piyanuch; Sandoval, Michael A.; Li, Xinran; Zhu, Saijie; Cui, Zhengrong
2012-01-01
Previously, it was shown that microneedle-mediated transcutaneous immunization with plasmid DNA can potentially induce a stronger immune response than intramuscular injection of the same plasmid DNA. In the present study, we showed that the immune responses induced by transcutaneous immunization by applying plasmid DNA onto a skin area pretreated with solid microneedles were significantly enhanced by coating the plasmid DNA on the surface of cationic nanoparticles. In addition, the net surface charge of the DNA-coated nanoparticles significantly affected their in vitro skin permeation and their ability to induce immune responses in vivo. Transcutaneous immunization with plasmid DNA-coated net positively charged anoparticles elicited a stronger immune response than with plasmid DNA-coated net negatively charged nanoparticles or by intramuscular immunization with plasmid DNA alone. Transcutaneous immunization with plasmid DNA-coated net positively charged nanoparticles induced comparable immune responses as intramuscular injection of them, but transcutaneous immunization was able to induce specific mucosal immunity and a more balanced T helper type 1 and type 2 response. The ability of the net positively charged DNA-coated nanoparticles to induce a strong immune response through microneedle-mediated transcutaneous immunization may be attributed to their ability to increase the expression of the antigen gene encoded by the plasmid and to more effectively stimulate the maturation of antigen-presenting cells. PMID:22921518
Nguyen, Ut V; Melkebeek, Vesna; Devriendt, Bert; Goetstouwers, Tiphanie; Van Poucke, Mario; Peelman, Luc; Goddeeris, Bruno M; Cox, Eric
2015-06-23
F4 enterotoxigenic Escherichia coli (ETEC) cause diarrhoea and mortality in piglets leading to severe economic losses. Oral immunization of piglets with F4 fimbriae induces a protective intestinal immune response evidenced by an F4-specific serum and intestinal IgA response. However, successful oral immunization of pigs with F4 fimbriae in the presence of maternal immunity has not been demonstrated yet. In the present study we aimed to evaluate the effect of maternal immunity on the induction of a systemic immune response upon oral immunization of piglets. Whereas F4-specific IgG and IgA could be induced by oral immunization of pigs without maternal antibodies and by intramuscular immunization of pigs with maternal antibodies, no such response was seen in the orally immunized animals with maternal antibodies. Since maternal antibodies can mask an antibody response, we also looked by ELIspot assays for circulating F4-specific antibody secreting cells (ASCs). Enumerating the F4-specific ASCs within the circulating peripheral blood mononuclear cells, and the number of F4-specific IgA ASCs within the circulating IgA(+) B-cells revealed an F4-specific immune response in the orally immunized animals with maternal antibodies. Interestingly, results suggest a more robust IgA booster response by oral immunization of pigs with than without maternal antibodies. These results demonstrate that oral immunization of piglets with F4-specific maternal antibodies is feasible and that these maternal antibodies seem to enhance the secondary systemic immune response. Furthermore, our ELIspot assay on enriched IgA(+) B-cells could be used as a screening procedure to optimize mucosal immunization protocols in pigs with maternal immunity.
Koop, Jennifer A H; Owen, Jeb P; Knutie, Sarah A; Aguilar, Maria A; Clayton, Dale H
2013-08-01
Ecological immunology aims to explain variation among hosts in the strength and efficacy of immunological defenses. However, a shortcoming has been the failure to link host immune responses to actual parasites under natural conditions. Here, we present one of the first experimental demonstrations of a parasite-induced immune response in a wild bird population. The recently introduced ectoparasitic nest fly Philornis downsi severely impacts the fitness of Darwin's finches and other land birds in the Galápagos Islands. An earlier study showed that female medium ground finches (Geospiza fortis) had P. downsi-binding antibodies correlating with presumed variation in fly exposure over time. In the current study, we experimentally manipulated fly abundance to test whether the fly does, in fact, cause changes in antibody levels. We manipulated P. downsi abundance in nests and quantified P. downsi-binding antibody levels of medium ground finch mothers, fathers, and nestlings. We also quantified host behaviors, such as preening, which can integrate with antibody-mediated defenses against ectoparasites. Philornis downsi-binding antibody levels were significantly higher among mothers at parasitized nests, compared to mothers at (fumigated) nonparasitized nests. Mothers with higher antibody levels tended to have fewer parasites in their nests, suggesting that antibodies play a role in defense against parasites. Mothers showed no behavioral changes that would enhance the effectiveness of the immune response. Neither adult males, nor nestlings, had P. downsi-induced immunological or behavioral responses that would enhance defense against flies. None of the parasitized nests fledged any offspring, despite the immune response by mothers. Thus, this study shows that, while the immune response of mothers appeared to be defensive, it was not sufficient to rescue current reproductive fitness. This study further shows the importance of testing the fitness consequences of immune defenses, rather than assuming that such responses increase host fitness. Host immune responses can protect against the negative fitness consequences of parasitism; however, the strength and effectiveness of these responses vary among hosts. Strong host immune responses are often assumed to correlate with greater host fitness. This study investigates the relationship between host immune response, parasite load, and host fitness using Darwin's finches and an invasive nest parasite. We found that while the immune response of mothers appeared defensive, it did not rescue current reproductive fitness.
Innate immune response to Burkholderia mallei.
Saikh, Kamal U; Mott, Tiffany M
2017-06-01
Burkholderia mallei is a facultative intracellular pathogen that causes the highly contagious and often the fatal disease, glanders. With its high rate of infectivity via aerosol and recalcitrance toward antibiotics, this pathogen is considered a potential biological threat agent. This review focuses on the most recent literature highlighting host innate immune response to B. mallei. Recent studies focused on elucidating host innate immune responses to the novel mechanisms and virulence factors employed by B. mallei for survival. Studies suggest that pathogen proteins manipulate various cellular processes, including host ubiquitination pathways, phagosomal escape, and actin-cytoskeleton rearrangement. Immune-signaling molecules such as Toll-like receptors, nucleotode-binding oligomerization domain, myeloid differentiation primary response protein 88, and proinflammatory cytokines such as interferon-gamma and tumor necrosis factor-α, play key roles in the induction of innate immune responses. Modifications in B. mallei lipopolysaccharide, in particular, the lipid A acyl groups, stimulate immune responses via Toll-like receptor4 activation that may contribute to persistent infection. Mortality is high because of septicemia and immune pathogenesis with B. mallei exposure. An effective innate immune response is critical to controlling the acute phase of the infection. Both vaccination and therapeutic approaches are necessary for complete protection against B. mallei.
The influence of pregnancy on systemic immunity.
Pazos, Michael; Sperling, Rhoda S; Moran, Thomas M; Kraus, Thomas A
2012-12-01
Adaptations in maternal systemic immunity are presumed to be responsible for observed alterations in disease susceptibility and severity as pregnancy progresses. Epidemiological evidence as well as animal studies have shown that influenza infections are more severe during the second and third trimesters of pregnancy, resulting in greater morbidity and mortality, although the reason for this is still unclear. Our laboratory has taken advantage of 20 years of experience studying the murine immune response to respiratory viruses to address questions of altered immunity during pregnancy. With clinical studies and unique animal model systems, we are working to define the mechanisms responsible for altered immune responses to influenza infection during pregnancy and what roles hormones such as estrogen or progesterone play in these alterations.
Freitak, Dalial; Wheat, Christopher W; Heckel, David G; Vogel, Heiko
2007-01-01
Background Insects helped pioneer, and persist as model organisms for, the study of specific aspects of immunity. Although they lack an adaptive immune system, insects possess an innate immune system that recognizes and destroys intruding microorganisms. Its operation under natural conditions has not been well studied, as most studies have introduced microbes to laboratory-reared insects via artificial mechanical wounding. One of the most common routes of natural exposure and infection, however, is via food; thus, the role of dietary microbial communities in herbivorous insect immune system evolution invites study. Here, we examine the immune system response and consequences of exposing a lepidopteran agricultural pest to non-infectious microorganisms via simple oral consumption. Results Immune system response was compared between Trichoplusia ni larvae reared on diets with or without non-pathogenic bacteria (Escherichia coli and Micrococcus luteus). Two major immune response-related enzymatic activities responded to diets differently – phenoloxidase activity was inhibited in the bacteria-fed larvae, whereas general antibacterial activity was enhanced. Eight proteins were highly expressed in the hemolymph of the bacteria fed larvae, among them immune response related proteins arylphorin, apolipophorin III and gloverin. Expression response among 25 putative immune response-related genes were assayed via RT-qPCR. Seven showed more than fivefold up regulation in the presence of bacterial diet, with 22 in total being differentially expressed, among them apolipophorin III, cecropin, gallerimycin, gloverin, lysozyme, and phenoloxidase inhibiting enzyme. Finally, potential life-history trade-offs were studied, with pupation time and pupal mass being negatively affected in bacteria fed larvae. Conclusion The presence of bacteria in food, even if non-pathogenic, can trigger an immune response cascade with life history tradeoffs. Trichoplusia ni larvae are able to detect and respond to environmental microbes encountered in the diet, possibly even using midgut epithelial tissue as a sensing organ. Potential benefits of this immune system priming may outweigh the observed tradeoffs, as priming based on environmentally sensed bacterial may decrease risk of serious infection. These results show that food plant microbial communities represent a dynamic and unstudied part of the coevolutionary interactions between plants and their insect herbivores. PMID:18154650
Kumar, Amit; Wonganan, Piyanuch; Sandoval, Michael A; Li, Xinran; Zhu, Saijie; Cui, Zhengrong
2012-10-28
Previously, it was shown that microneedle-mediated transcutaneous immunization with plasmid DNA can potentially induce a stronger immune response than intramuscular injection of the same plasmid DNA. In the present study, we showed that the immune responses induced by transcutaneous immunization by applying plasmid DNA onto a skin area pretreated with solid microneedles were significantly enhanced by coating the plasmid DNA on the surface of cationic nanoparticles. In addition, the net surface charge of the DNA-coated nanoparticles significantly affected their in vitro skin permeation and their ability to induce immune responses in vivo. Transcutaneous immunization with plasmid DNA-coated net positively charged nanoparticles elicited a stronger immune response than with plasmid DNA-coated net negatively charged nanoparticles or by intramuscular immunization with plasmid DNA alone. Transcutaneous immunization with plasmid DNA-coated net positively charged nanoparticles induced comparable immune responses as intramuscular injection of them, but transcutaneous immunization was able to induce specific mucosal immunity and a more balanced T helper type 1 and type 2 response. The ability of the net positively charged DNA-coated nanoparticles to induce a strong immune response through microneedle-mediated transcutaneous immunization may be attributed to their ability to increase the expression of the antigen gene encoded by the plasmid and to more effectively stimulate the maturation of antigen-presenting cells. Copyright © 2012 Elsevier B.V. All rights reserved.
Senescence in immune priming and attractiveness in a beetle.
Daukšte, J; Kivleniece, I; Krama, T; Rantala, M J; Krams, I
2012-07-01
Age-related decline in immune activity is referred to as immunosenescence and has been observed for both the adaptive immune response of vertebrates and the innate immune system of invertebrates. Because maintaining a basic level of immune defence and mounting an immune response is costly, optimal investment in immune function should vary over a wide range of individual states such as the individual's age. In this study, we tested whether the immune response and immunological priming within individuals become less efficient with age using mealworm beetles, Tenebrio molitor, as a model organism. We also tested whether ageing and immunological priming affected the odours produced by males. We found that young males of T. molitor were capable of mounting an immune response a sterile nylon monofilament implant with the potential to exhibit a simple form of immune memory through mechanisms of immune priming. Older males did not increase their immune response to a second immune challenge, which negatively affected their sexual attractiveness and remaining life span. Our results indicate that the immune system of older males in T. molitor is less effective, suggesting complex evolutionary trade-offs between ageing, immune response and sexual attractiveness. © 2012 The Authors. Journal of Evolutionary Biology © 2012 European Society For Evolutionary Biology.
Immune and stress responses in oysters with insights on adaptation.
Guo, Ximing; He, Yan; Zhang, Linlin; Lelong, Christophe; Jouaux, Aude
2015-09-01
Oysters are representative bivalve molluscs that are widely distributed in world oceans. As successful colonizers of estuaries and intertidal zones, oysters are remarkably resilient against harsh environmental conditions including wide fluctuations in temperature and salinity as well as prolonged air exposure. Oysters have no adaptive immunity but can thrive in microbe-rich estuaries as filter-feeders. These unique adaptations make oysters interesting models to study the evolution of host-defense systems. Recent advances in genomic studies including sequencing of the oyster genome have provided insights into oyster's immune and stress responses underlying their amazing resilience. Studies show that the oyster genomes are highly polymorphic and complex, which may be key to their resilience. The oyster genome has a large gene repertoire that is enriched for immune and stress response genes. Thousands of genes are involved in oyster's immune and stress responses, through complex interactions, with many gene families expanded showing high sequence, structural and functional diversity. The high diversity of immune receptors and effectors may provide oysters with enhanced specificity in immune recognition and response to cope with diverse pathogens in the absence of adaptive immunity. Some members of expanded immune gene families have diverged to function at different temperatures and salinities or assumed new roles in abiotic stress response. Most canonical innate immunity pathways are conserved in oysters and supported by a large number of diverse and often novel genes. The great diversity in immune and stress response genes exhibited by expanded gene families as well as high sequence and structural polymorphisms may be central to oyster's adaptation to highly stressful and widely changing environments. Copyright © 2015 Elsevier Ltd. All rights reserved.
Lohan, Paul; Treacy, Oliver; Griffin, Matthew D.; Ritter, Thomas; Ryan, Aideen E.
2017-01-01
Mesenchymal stromal cells (MSC) have been used to treat a broad range of disease indications such as acute and chronic inflammatory disorders, autoimmune diseases, and transplant rejection due to their potent immunosuppressive/anti-inflammatory properties. The breadth of their usage is due in no small part to the vast quantity of published studies showing their ability to modulate multiple immune cell types of both the innate and adaptive immune response. While patient-derived (autologous) MSC may be the safer choice in terms of avoiding unwanted immune responses, factors including donor comorbidities may preclude these cells from use. In these situations, allogeneic MSC derived from genetically unrelated individuals must be used. While allogeneic MSC were initially believed to be immune-privileged, substantial evidence now exists to prove otherwise with multiple studies documenting specific cellular and humoral immune responses against donor antigens following administration of these cells. In this article, we will review recent published studies using non-manipulated, inflammatory molecule-activated (licensed) and differentiated allogeneic MSC, as well as MSC extracellular vesicles focusing on the immune responses to these cells and whether or not such responses have an impact on allogeneic MSC-mediated safety and efficacy. PMID:29225601
Virus-like nanostructures for tuning immune response
NASA Astrophysics Data System (ADS)
Mammadov, Rashad; Cinar, Goksu; Gunduz, Nuray; Goktas, Melis; Kayhan, Handan; Tohumeken, Sehmus; Topal, Ahmet E.; Orujalipoor, Ilghar; Delibasi, Tuncay; Dana, Aykutlu; Ide, Semra; Tekinay, Ayse B.; Guler, Mustafa O.
2015-11-01
Synthetic vaccines utilize viral signatures to trigger immune responses. Although the immune responses raised against the biochemical signatures of viruses are well characterized, the mechanism of how they affect immune response in the context of physical signatures is not well studied. In this work, we investigated the ability of zero- and one-dimensional self-assembled peptide nanostructures carrying unmethylated CpG motifs (signature of viral DNA) for tuning immune response. These nanostructures represent the two most common viral shapes, spheres and rods. The nanofibrous structures were found to direct immune response towards Th1 phenotype, which is responsible for acting against intracellular pathogens such as viruses, to a greater extent than nanospheres and CpG ODN alone. In addition, nanofibers exhibited enhanced uptake into dendritic cells compared to nanospheres or the ODN itself. The chemical stability of the ODN against nuclease-mediated degradation was also observed to be enhanced when complexed with the peptide nanostructures. In vivo studies showed that nanofibers promoted antigen-specific IgG production over 10-fold better than CpG ODN alone. To the best of our knowledge, this is the first report showing the modulation of the nature of an immune response through the shape of the carrier system.
The Immunology of Wild Rodents: Current Status and Future Prospects
Viney, Mark; Riley, Eleanor M.
2017-01-01
Wild animals’ immune responses contribute to their evolutionary fitness. These responses are moulded by selection to be appropriate to the actual antigenic environment in which the animals live, but without imposing an excessive energetic demand which compromises other component of fitness. But, exactly what these responses are, and how they compare with those of laboratory animals, has been little studied. Here, we review the very small number of published studies of immune responses of wild rodents, finding general agreement that their humoral (antibody) responses are highly elevated when compared with those of laboratory animals, and that wild rodents’ cellular immune system reveals extensive antigenic exposure. In contrast, proliferative and cytokine responses of ex vivo-stimulated immune cells of wild rodents are typically depressed compared with those of laboratory animals. Collectively, these responses are appropriate to wild animals’ lives, because the elevated responses reflect the cumulative exposure to infection, while the depressed proliferative and cytokine responses are indicative of effective immune homeostasis that minimizes immunopathology. A more comprehensive understanding of the immune ecology of wild animals requires (i) understanding the antigenic load to which wild animals are exposed, and identification of any key antigens that mould the immune repertoire, (ii) identifying immunoregulatory processes of wild animals and the events that induce them, and (iii) understanding the actual resource state of wild animals, and the immunological consequences that flow from this. Together, by extending studies of wild rodents, particularly addressing these questions (while drawing on our immunological understanding of laboratory animals), we will be better able to understand how rodents’ immune responses contribute to their fitness in the wild. PMID:29184549
The Immunology of Wild Rodents: Current Status and Future Prospects.
Viney, Mark; Riley, Eleanor M
2017-01-01
Wild animals' immune responses contribute to their evolutionary fitness. These responses are moulded by selection to be appropriate to the actual antigenic environment in which the animals live, but without imposing an excessive energetic demand which compromises other component of fitness. But, exactly what these responses are, and how they compare with those of laboratory animals, has been little studied. Here, we review the very small number of published studies of immune responses of wild rodents, finding general agreement that their humoral (antibody) responses are highly elevated when compared with those of laboratory animals, and that wild rodents' cellular immune system reveals extensive antigenic exposure. In contrast, proliferative and cytokine responses of ex vivo -stimulated immune cells of wild rodents are typically depressed compared with those of laboratory animals. Collectively, these responses are appropriate to wild animals' lives, because the elevated responses reflect the cumulative exposure to infection, while the depressed proliferative and cytokine responses are indicative of effective immune homeostasis that minimizes immunopathology. A more comprehensive understanding of the immune ecology of wild animals requires (i) understanding the antigenic load to which wild animals are exposed, and identification of any key antigens that mould the immune repertoire, (ii) identifying immunoregulatory processes of wild animals and the events that induce them, and (iii) understanding the actual resource state of wild animals, and the immunological consequences that flow from this. Together, by extending studies of wild rodents, particularly addressing these questions (while drawing on our immunological understanding of laboratory animals), we will be better able to understand how rodents' immune responses contribute to their fitness in the wild.
Immune TB Antibody Phage Display Library as a Tool To Study B Cell Immunity in TB Infections.
Hamidon, Nurul Hamizah; Suraiya, Siti; Sarmiento, Maria E; Acosta, Armando; Norazmi, Mohd Nor; Lim, Theam Soon
2018-03-01
B cells and in particular antibodies has always played second fiddle to cellular immunity in regard to tuberculosis (TB). However, recent studies has helped position humoral immunity especially antibodies back into the foray in relation to TB immunity. Therefore, the ability to correlate the natural antibody responses of infected individuals toward TB antigens would help strengthen this concept. Phage display is an intriguing approach that can be utilized to study antibody-mediated responses against a particular infection via harvesting the B cell repertoire from infected individuals. The development of disease-specific antibody libraries or immune libraries is useful to better understand antibody-mediated immune responses against specific disease antigens. This study describes the generation of an immune single-chain variable fragment (scFv) library derived from TB-infected individuals. The immune library with an estimated diversity of 10 9 independent clones was then applied for the identification of monoclonal antibodies against Mycobacterium tuberculosis α-crystalline as a model antigen. Biopanning of the library isolated three monoclonal antibodies with unique gene usage. This strengthens the role of antibodies in TB immunity in addition to the role played by cellular immunity. The developed library can be applied against other TB antigens and aid antibody-derived TB immunity studies in the future.
Holmström, Morten Orebo; Riley, Caroline Hasselbalch; Skov, Vibe; Svane, Inge Marie; Hasselbalch, Hans Carl; Andersen, Mads Hald
2018-01-01
The Chronic Myeloproliferative Neoplasms (MPN) are cancers characterized by hyperinflammation and immune deregulation. Concurrently, the expression of the immune check point programmed death ligand 1 (PD-L1) is induced by inflammation. In this study we report on the occurrence of spontaneous T cell responses against a PD-L1 derived epitope in patients with MPN. We show that 71% of patients display a significant immune response against PD-L1, and patients with advanced MPN have significantly fewer and weaker PD-L1 specific immune responses compared to patients with non-advanced MPN. The PD-L1 specific T cell responses are CD4 + T cell responses, and by gene expression analysis we show that expression of PD-L1 is enhanced in patients with MPN. This could imply that the tumor specific immune response in MPN could be enhanced by vaccination with PD-L1 derived epitopes by boosting the anti-regulatory immune response hereby allowing tumor specific T cell to exert anti-tumor immunity.
Advances of Immune Checkpoint Inhibitors in Tumor Immunotherapy
NASA Astrophysics Data System (ADS)
Guo, Qiao
2018-01-01
Immune checkpoints are cell surface molecules that can fine-tune the immune responses, they are crucial for modulating the duration and amplitude of immune reactions while maintaining self-tolerance in order to minimize autoimmune responses. Numerous studies have demonstrated that tumors cells can directly express immune-checkpoint molecules, or induce many inhibitory molecules expression in the tumor microenvironment to inhibit the anti-tumor immunity. Releasing these brakes has emerged as an exciting strategy to cure cancer. In the past few years, clinical trials with therapeutic antibodies targeting to the checkpoint molecules CTLA-4 and PD-1 have rekindled the hope for cancer immunotherapy. In contrast to the conventional treatment, checkpoint inhibitors induce broad and durable antitumor responses. In the future, treatment may involve combination therapy to target different checkpoint molecules and stages of the adaptive immune responses. In this review, we summarized the recent advances of the study and development of other checkpoint molecules in tumor immunotherapy.
Immune challenges and visual signalling in tree frogs
NASA Astrophysics Data System (ADS)
Desprat, Julia L.; Lengagne, Thierry; Mondy, Nathalie
2017-04-01
In animals, mate-choice is often based on sexual signals that carry information and help the receiver make the best choice to improve the receiver's fitness. Orange visual sexual signals have been hypothesised to carry immune information because they are often due to carotenoid pigments which are also involved in immunity response. Although many studies have focused on the direct relationships between coloration and immunocompetence, few studies have simultaneously studied immunocompetent response and coloration variation after an immune challenge. We tested this hypothesis on starved and ad libitum-fed males of the European tree frog Hyla arborea. Our results show that male coloration is not a reliable indicator of its immune response capacity in this species. However, after an immune challenge induced by a PHA ( Phaseolus vulgaris phytohaemagglutinin) injection, starved males presented a significant coloration loss and this alteration was related to the immune response intensity. Taken together, these results suggest that the brighter (lighter) coloration may be used as a cue by female to exclude males with a recent immune challenge, due to diseases or parasites for example.
Memory and Specificity in the Insect Immune System: Current Perspectives and Future Challenges.
Cooper, Dustin; Eleftherianos, Ioannis
2017-01-01
The immune response of a host to a pathogen is typically described as either innate or adaptive. The innate form of the immune response is conserved across all organisms, including insects. Previous and recent research has focused on the nature of the insect immune system and the results imply that the innate immune response of insects is more robust and specific than previously thought. Priming of the insect innate immune system involves the exposure of insects to dead or a sublethal dose of microbes in order to elicit an initial response. Comparing subsequent infections in primed insects to non-primed individuals indicates that the insect innate immune response may possess some of the qualities of an adaptive immune system. Although some studies demonstrate that the protective effects of priming are due to a "loitering" innate immune response, others have presented more convincing elements of adaptivity. While an immune mechanism capable of producing the same degree of recognition specificity as seen in vertebrates has yet to be discovered in insects, a few interesting cases have been identified and discussed.
Interplay between behavioural thermoregulation and immune response in mealworms.
Catalán, Tamara P; Niemeyer, Hermann M; Kalergis, Alexis M; Bozinovic, Francisco
2012-11-01
Since the preferential body temperature should positively correlate with physiological performance, behavioural fever should enhance an organism's immune response under an immune challenge. Here we have studied the preferential body temperature (T(p)) and its consequences on immune response performance after an immune challenge in larvae of Tenebrio molitor. We evaluated T(p) and immune responses of larvae following a challenge with various concentrations of lipopolysaccharide (LPS), and we studied the correlation between T(p) and two immune traits, namely antibacterial and phenoloxidase (PO) activities. Larvae that were immune challenged with higher LPS concentrations (C(50) and C(100)) preferred in average, warmer temperatures than did larvae challenged with lower concentrations (C(0) and C(25)). T(p) of C(25)-C(100) (challenged)-mealworms was 2.3°C higher than of C(0) (control) larvae. At lower LPS concentration immune challenge (C(0) and C(25)) antibacterial activity correlated positively with T(p), but at C(50) and C(100) correlation was lose. PO activity was higher at higher LPS concentration, but its magnitude of response did not correlate with T(p) Our data suggest that behavioural fever may have a positive effect on host performance by enhancing antibacterial response under a low pathogen load situation. Copyright © 2012 Elsevier Ltd. All rights reserved.
Chang, Yu-Hsuan; Kumar, Ramya; Ng, Tze Hann; Wang, Han-Ching
2018-03-01
The possibility of immunological memory in invertebrates is a topic that has recently attracted a lot of attention. Today, even vertebrates are known to exhibit innate immune responses that show memory-like properties, and since these responses are triggered by cells that are involved in the innate immune system, it seems that immune specificity and immune memory do not necessarily require the presence of B cells and T cells after all. This kind of immune response has been called "immune priming" or "trained immunity". In this report, we review recent observations and our current understanding of immunological memory within the innate immune system in cultured shrimp and crayfish after vaccination with live vaccine, killed vaccine and subunit vaccines. We also discuss the possible mechanisms involved in this immune response. Copyright © 2017 Elsevier Ltd. All rights reserved.
Almeida, Freya M Freyre; Blanco, Aracelys; Trujillo, Heidy; Hernández, Dunia; García, Daymir; Alba, José S; Abad, Matilde López; Merino, Nelson; Lobaina, Yadira
2016-01-01
ABSTRACT The development of therapeutic vaccines against chronic hepatitis B requires the capacity of the formulation to subvert a tolerated immune response as well as the evaluation of histopathological damage resulting from the treatment. In the present study, the dynamicity of induced immune response to hepatitis B surface antigen (HBsAg) was evaluated in transgenic mice that constitutively express the HBsAg gene (HBsAg-tg mice). After immunization with a vaccine candidate containing both surface (HBsAg) and core (HBcAg) antigens of hepatitis B virus (HBV), the effect of vaccination on clearance of circulating HBsAg and the potential histological alterations were examined. Transgenic (tg) and non-transgenic (Ntg) mice were immunized by intranasal (IN) and subcutaneous (SC) routes simultaneously. A control group received phosphate-buffered saline (PBS) by IN route and aluminum by SC route. Positive responses, at both humoral and cellular levels, were obtained after five immunizations in HBsAg-tg mice. Such responses were delayed and of lower intensity in tg mice, compared to vaccinated Ntg mice. Serum IgG response was characterized by a similar IgG subclass pattern. Even when HBsAg-specific CD8+ T cell responses were clearly detectable by gamma-interferon ELISPOT assay, histopathological alterations were not detected in any organ, including the liver and kidneys. Our study demonstrated, that it is possible to subvert the immune tolerance against HBsAg in tg mice, opening a window for new studies to optimize the schedule, dose, and formulation to improve the immune response to the therapeutic vaccine candidate. These results can be considered a safety proof to support clinical developments for the formulation under study. How to cite this article Freyre FM, Blanco A, Trujillo H, Hernández D, García D, Alba JS, Lopez M, Merino N, Lobaina Y, Aguilar JC. Dynamic of Immune Response induced in Hepatitis B Surface Antigen-transgenic Mice Immunized with a Novel Therapeutic Formulation. Euroasian J Hepato-Gastroenterol 2016;6(1):25-30. PMID:29201720
Innate immune response to Burkholderia mallei
Saikh, Kamal U.; Mott, Tiffany M.
2017-01-01
Purpose of review Burkholderia mallei is a facultative intracellular pathogen that causes the highly contagious and often the fatal disease, glanders. With its high rate of infectivity via aerosol and recalcitrance toward antibiotics, this pathogen is considered a potential biological threat agent. This review focuses on the most recent literature highlighting host innate immune response to B. mallei. Recent findings Recent studies focused on elucidating host innate immune responses to the novel mechanisms and virulence factors employed by B. mallei for survival. Studies suggest that pathogen proteins manipulate various cellular processes, including host ubiquitination pathways, phagosomal escape, and actin–cytoskeleton rearrangement. Immune-signaling molecules such as Toll-like receptors, nucleotode-binding oligomerization domain, myeloid differentiation primary response protein 88, and proinflammatory cytokines such as interferon-gamma and tumor necrosis factor-α, play key roles in the induction of innate immune responses. Modifications in B. mallei lipopolysaccharide, in particular, the lipid A acyl groups, stimulate immune responses via Toll-like receptor4 activation that may contribute to persistent infection. Summary Mortality is high because of septicemia and immune pathogenesis with B. mallei exposure. An effective innate immune response is critical to controlling the acute phase of the infection. Both vaccination and therapeutic approaches are necessary for complete protection against B. mallei. PMID:28177960
Subverting Toll-Like Receptor Signaling by Bacterial Pathogens
McGuire, Victoria A.; Arthur, J. Simon C.
2015-01-01
Pathogenic bacteria are detected by pattern-recognition receptors (PRRs) expressed on innate immune cells, which activate intracellular signal transduction pathways to elicit an immune response. Toll-like receptors are, perhaps, the most studied of the PRRs and can activate the mitogen-activated protein kinase (MAPK) and Nuclear Factor-κB (NF-κB) pathways. These pathways are critical for mounting an effective immune response. In order to evade detection and promote virulence, many pathogens subvert the host immune response by targeting components of these signal transduction pathways. This mini-review highlights the diverse mechanisms that bacterial pathogens have evolved to manipulate the innate immune response, with a particular focus on those that target MAPK and NF-κB signaling pathways. Understanding the elaborate strategies that pathogens employ to subvert the immune response not only highlights the importance of these proteins in mounting effective immune responses, but may also identify novel approaches for treatment or prevention of infection. PMID:26648936
Immunity against Helminths: Interactions with the Host and the Intercurrent Infections
Moreau, Emmanuelle; Chauvin, Alain
2010-01-01
Helminth parasites are of considerable medical and economic importance. Studies of the immune response against helminths are of great interest in understanding interactions between the host immune system and parasites. Effector immune mechanisms against tissue-dwelling helminths and helminths localized in the lumen of organs, and their regulation, are reviewed. Helminth infections are characterized by an association of Th2-like and Treg responses. Worms are able to persist in the host and are mainly responsible for chronic infection despite a strong immune response developed by the parasitized host. Two types of protection against the parasite, namely, premune and partial immunities, have been described. Immune responses against helminths can also participate in pathogenesis. Th2/Treg-like immunomodulation allows the survival of both host and parasite by controlling immunopathologic disorders and parasite persistence. Consequences of the modified Th2-like responses on co-infection, vaccination, and inflammatory diseases are discussed. PMID:20150967
Functional Roles of Syk in Macrophage-Mediated Inflammatory Responses
Yi, Young-Su; Son, Young-Jin; Ryou, Chongsuk; Sung, Gi-Ho; Kim, Jong-Hoon; Cho, Jae Youl
2014-01-01
Inflammation is a series of complex biological responses to protect the host from pathogen invasion. Chronic inflammation is considered a major cause of diseases, such as various types of inflammatory/autoimmune diseases and cancers. Spleen tyrosine kinase (Syk) was initially found to be highly expressed in hematopoietic cells and has been known to play crucial roles in adaptive immune responses. However, recent studies have reported that Syk is also involved in other biological functions, especially in innate immune responses. Although Syk has been extensively studied in adaptive immune responses, numerous studies have recently presented evidence that Syk has critical functions in macrophage-mediated inflammatory responses and is closely related to innate immune response. This review describes the characteristics of Syk-mediated signaling pathways, summarizes the recent findings supporting the crucial roles of Syk in macrophage-mediated inflammatory responses and diseases, and discusses Syk-targeted drug development for the therapy of inflammatory diseases. PMID:25045209
Cao, Pengxing; Yan, Ada W C; Heffernan, Jane M; Petrie, Stephen; Moss, Robert G; Carolan, Louise A; Guarnaccia, Teagan A; Kelso, Anne; Barr, Ian G; McVernon, Jodie; Laurie, Karen L; McCaw, James M
2015-08-01
Influenza is an infectious disease that primarily attacks the respiratory system. Innate immunity provides both a very early defense to influenza virus invasion and an effective control of viral growth. Previous modelling studies of virus-innate immune response interactions have focused on infection with a single virus and, while improving our understanding of viral and immune dynamics, have been unable to effectively evaluate the relative feasibility of different hypothesised mechanisms of antiviral immunity. In recent experiments, we have applied consecutive exposures to different virus strains in a ferret model, and demonstrated that viruses differed in their ability to induce a state of temporary immunity or viral interference capable of modifying the infection kinetics of the subsequent exposure. These results imply that virus-induced early immune responses may be responsible for the observed viral hierarchy. Here we introduce and analyse a family of within-host models of re-infection viral kinetics which allow for different viruses to stimulate the innate immune response to different degrees. The proposed models differ in their hypothesised mechanisms of action of the non-specific innate immune response. We compare these alternative models in terms of their abilities to reproduce the re-exposure data. Our results show that 1) a model with viral control mediated solely by a virus-resistant state, as commonly considered in the literature, is not able to reproduce the observed viral hierarchy; 2) the synchronised and desynchronised behaviour of consecutive virus infections is highly dependent upon the interval between primary virus and challenge virus exposures and is consistent with virus-dependent stimulation of the innate immune response. Our study provides the first mechanistic explanation for the recently observed influenza viral hierarchies and demonstrates the importance of understanding the host response to multi-strain viral infections. Re-exposure experiments provide a new paradigm in which to study the immune response to influenza and its role in viral control.
Cao, Pengxing; Yan, Ada W. C.; Heffernan, Jane M.; Petrie, Stephen; Moss, Robert G.; Carolan, Louise A.; Guarnaccia, Teagan A.; Kelso, Anne; Barr, Ian G.; McVernon, Jodie; Laurie, Karen L.; McCaw, James M.
2015-01-01
Influenza is an infectious disease that primarily attacks the respiratory system. Innate immunity provides both a very early defense to influenza virus invasion and an effective control of viral growth. Previous modelling studies of virus–innate immune response interactions have focused on infection with a single virus and, while improving our understanding of viral and immune dynamics, have been unable to effectively evaluate the relative feasibility of different hypothesised mechanisms of antiviral immunity. In recent experiments, we have applied consecutive exposures to different virus strains in a ferret model, and demonstrated that viruses differed in their ability to induce a state of temporary immunity or viral interference capable of modifying the infection kinetics of the subsequent exposure. These results imply that virus-induced early immune responses may be responsible for the observed viral hierarchy. Here we introduce and analyse a family of within-host models of re-infection viral kinetics which allow for different viruses to stimulate the innate immune response to different degrees. The proposed models differ in their hypothesised mechanisms of action of the non-specific innate immune response. We compare these alternative models in terms of their abilities to reproduce the re-exposure data. Our results show that 1) a model with viral control mediated solely by a virus-resistant state, as commonly considered in the literature, is not able to reproduce the observed viral hierarchy; 2) the synchronised and desynchronised behaviour of consecutive virus infections is highly dependent upon the interval between primary virus and challenge virus exposures and is consistent with virus-dependent stimulation of the innate immune response. Our study provides the first mechanistic explanation for the recently observed influenza viral hierarchies and demonstrates the importance of understanding the host response to multi-strain viral infections. Re-exposure experiments provide a new paradigm in which to study the immune response to influenza and its role in viral control. PMID:26284917
Rolland-Turner, Magali; Farre, Guillaume; Muller, Delphine; Rouet, Nelly; Boue, Franck
2004-10-22
The immune response in the fox (Vulpes vulpes), despite the success of the oral rabies vaccine is not well characterized, and specific immunological tools are needed. To investigate both the humoral and cellular immune response, we used ovalbumin (OVA) and cholera toxin B (CTB) as an antigenic model to set-up ELISA and ELISPOT antibodies secreting cells (ASC) assays in the fox model. Identification of antibodies that cross-react with fox immunoglobulin was performed by Western blot, and their use was adapted for both the ELISA and ELISPOT ASC assay. The humoral and cellular specific immune responses were assessed after intra-muscular or intra-nasal immunization. Intra-muscular immunization resulted in the development of both cellular and humoral anti-OVA and anti-CTB responses in peripheral blood mononuclear cells (PBMCs). Immunization via the intra-nasal route resulted in the development of a cellular and humoral response against CTB in PBMCs. This immune response was confirmed using splenocytes from immunized animals by ELISPOT assay at euthanasia. Females immunized via the intra-nasal route developed specific anti-CTB IgM, IgA and IgG in vaginal fluids after the initial boost (day 26) showing that mucosal immunization produces a vaginal immune response in foxes. These immunological tools developed here are now available to be adapted to other antigenic models to facilitate further immune studies in foxes.
Interplay between immune responses to HLA and non-HLA self-antigens in allograft rejection.
Angaswamy, Nataraju; Tiriveedhi, Venkataswarup; Sarma, Nayan J; Subramanian, Vijay; Klein, Christina; Wellen, Jason; Shenoy, Surendra; Chapman, William C; Mohanakumar, T
2013-11-01
Recent studies strongly suggest an increasing role for immune responses against self-antigens (Ags) which are not encoded by the major histocompatibility complex in the immunopathogenesis of allograft rejection. Although, improved surgical techniques coupled with improved methods to detect and avoid sensitization against donor human leukocyte antigen (HLA) have improved the immediate and short term function of transplanted organs. However, acute and chronic rejection still remains a vexing problem for the long term function of the transplanted organ. Immediately following organ transplantation, several factors both immune and non immune mechanisms lead to the development of local inflammatory milieu which sets the stage for allograft rejection. Traditionally, development of antibodies (Abs) against mismatched donor HLA have been implicated in the development of Ab mediated rejection. However, recent studies from our laboratory and others have demonstrated that development of humoral and cellular immune responses against non-HLA self-Ags may contribute in the pathogenesis of allograft rejection. There are reports demonstrating that immune responses to self-Ags especially Abs to the self-Ags as well as cellular immune responses especially through IL17 has significant pro-fibrotic properties leading to chronic allograft failure. This review summarizes recent studies demonstrating the role for immune responses to self-Ags in allograft immunity leading to rejection as well as present recent evidence suggesting there is interplay between allo- and autoimmunity leading to allograft dysfunction. Copyright © 2013 American Society for Histocompatibility and Immunogenetics. Published by Elsevier Inc. All rights reserved.
Dendritic Cell Immune Responses in HIV-1 Controllers.
Martin-Gayo, Enrique; Yu, Xu G
2017-02-01
Robust HIV-1-specific CD8 T cell responses are currently regarded as the main correlate of immune defense in rare individuals who achieve natural, drug-free control of HIV-1; however, the mechanisms that support evolution of such powerful immune responses are not well understood. Dendritic cells (DCs) are specialized innate immune cells critical for immune recognition, immune regulation, and immune induction, but their possible contribution to HIV-1 immune defense in controllers remains ill-defined. Recent studies suggest that myeloid DCs from controllers have improved abilities to recognize HIV-1 through cytoplasmic immune sensors, resulting in more potent, cell-intrinsic type I interferon secretion in response to viral infection. This innate immune response may facilitate DC-mediated induction of highly potent antiviral HIV-1-specific T cells. Moreover, protective HLA class I isotypes restricting HIV-1-specific CD8 T cells may influence DC function through specific interactions with innate myelomonocytic MHC class I receptors from the leukocyte immunoglobulin-like receptor family. Bi-directional interactions between dendritic cells and HIV-1-specific T cells may contribute to natural HIV-1 immune control, highlighting the importance of a fine-tuned interplay between innate and adaptive immune activities for effective antiviral immune defense.
Spaceflight and immune responses of Rhesus monkeys
NASA Technical Reports Server (NTRS)
Sonnenfeld, Gerald
1994-01-01
Evidence from both human and rodent studies indicates that alterations in immunological parameters occur after space flight. The objective of this project is to determine the effects of space flight on immune responses of Rhesus monkeys. The expected significance of the work is a determination of the range of immunological functions of the Rhesus monkey, a primate similar in many ways to man, affected by space flight. Changes in immune responses that could yield alterations in resistance to infection may be determined as well as the duration of alterations in immune responses. Additional information on the nature of cellular interactions for the generation of immune responses may also be obtained.
Immune Memory to Sudan Virus: Comparison between Two Separate Disease Outbreaks
Sobarzo, Ariel; Eskira, Yael; Herbert, Andrew S.; Kuehne, Ana I.; Stonier, Spencer W.; Ochayon, David E.; Fedida-Metula, Shlomit; Balinandi, Steven; Kislev, Yaara; Tali, Neta; Lewis, Eli C.; Lutwama, Julius Julian; Dye, John M.; Yavelsky, Victoria; Lobel, Leslie
2015-01-01
Recovery from ebolavirus infection in humans is associated with the development of both cell-mediated and humoral immune responses. According to recent studies, individuals that did not survive infection with ebolaviruses appear to have lacked a robust adaptive immune response and the expression of several early innate response markers. However, a comprehensive protective immune profile has yet to be described. Here, we examine cellular memory immune responses among survivors of two separate Ebolavirus outbreaks (EVDs) due to Sudan virus (SUDV) infection in Uganda—Gulu 2000–2001 and Kibaale 2012. Freshly collected blood samples were stimulated with inactivated SUDV, as well as with recombinant SUDV or Ebola virus (EBOV) GP (GP1–649). In addition, ELISA and plaque reduction neutralization assays were performed to determine anti-SUDV IgG titers and neutralization capacity. Cytokine expression was measured in whole blood cultures in response to SUDV and SUDV GP stimulation in both survivor pools, demonstrating recall responses that indicate immune memory. Cytokine responses between groups were similar but had distinct differences. Neutralizing, SUDV-specific IgG activity against irradiated SUDV and SUDV recombinant proteins were detected in both survivor cohorts. Furthermore, humoral and cell-mediated crossreactivity to EBOV and EBOV recombinant GP1–649 was observed in both cohorts. In conclusion, immune responses in both groups of survivors demonstrate persistent recognition of relevant antigens, albeit larger cohorts are required in order to reach greater statistical significance. The differing cytokine responses between Gulu and Kibaale outbreak survivors suggests that each outbreak may not yield identical memory responses and promotes the merits of studying the immune responses among outbreaks of the same virus. Finally, our demonstration of cross-reactive immune recognition suggests that there is potential for developing cross-protective vaccines for ebolaviruses. PMID:25569078
Immune memory to Sudan virus: comparison between two separate disease outbreaks.
Sobarzo, Ariel; Eskira, Yael; Herbert, Andrew S; Kuehne, Ana I; Stonier, Spencer W; Ochayon, David E; Fedida-Metula, Shlomit; Balinandi, Steven; Kislev, Yaara; Tali, Neta; Lewis, Eli C; Lutwama, Julius Julian; Dye, John M; Yavelsky, Victoria; Lobel, Leslie
2015-01-06
Recovery from ebolavirus infection in humans is associated with the development of both cell-mediated and humoral immune responses. According to recent studies, individuals that did not survive infection with ebolaviruses appear to have lacked a robust adaptive immune response and the expression of several early innate response markers. However, a comprehensive protective immune profile has yet to be described. Here, we examine cellular memory immune responses among survivors of two separate Ebolavirus outbreaks (EVDs) due to Sudan virus (SUDV) infection in Uganda-Gulu 2000-2001 and Kibaale 2012. Freshly collected blood samples were stimulated with inactivated SUDV, as well as with recombinant SUDV or Ebola virus (EBOV) GP (GP1-649). In addition, ELISA and plaque reduction neutralization assays were performed to determine anti-SUDV IgG titers and neutralization capacity. Cytokine expression was measured in whole blood cultures in response to SUDV and SUDV GP stimulation in both survivor pools, demonstrating recall responses that indicate immune memory. Cytokine responses between groups were similar but had distinct differences. Neutralizing, SUDV-specific IgG activity against irradiated SUDV and SUDV recombinant proteins were detected in both survivor cohorts. Furthermore, humoral and cell-mediated crossreactivity to EBOV and EBOV recombinant GP1-649 was observed in both cohorts. In conclusion, immune responses in both groups of survivors demonstrate persistent recognition of relevant antigens, albeit larger cohorts are required in order to reach greater statistical significance. The differing cytokine responses between Gulu and Kibaale outbreak survivors suggests that each outbreak may not yield identical memory responses and promotes the merits of studying the immune responses among outbreaks of the same virus. Finally, our demonstration of cross-reactive immune recognition suggests that there is potential for developing cross-protective vaccines for ebolaviruses.
Wang, Shixia; Goguen, Jon D; Li, Fusheng; Lu, Shan
2011-09-09
Yersinia pestis (Y. pestis) is the causative pathogen of plague, a highly fatal disease for which an effective vaccine, especially against mucosal transmission, is still not available. Like many bacterial infections, antigen-specific antibody responses have been traditionally considered critical, if not solely responsible, for vaccine-induced protection against Y. pestis. Studies in recent years have suggested the importance of T cell immune responses against Y. pestis infection but information is still limited about the details of Y. pestis antigen-specific T cell immune responses. In current report, studies are conducted to identify the presence of CD8+ T cell epitopes in LcrV protein, the leading antigen of plague vaccine development. Furthermore, depletion of CD8+ T cells in LcrV DNA vaccinated Balb/C mice led to reduced protection against lethal intranasal challenge of Y. pestis. These findings establish that an LcrV DNA vaccine is able to elicit CD8+ T cell immune responses against specific epitopes of this key plague antigen and that a CD8+ T cell immune response is involved in LcrV DNA vaccine-elicited protection. Future studies in plague vaccine development will need to examine if the presence of detectable T cell immune responses, in particular CD8+ T-cell immune responses, will enhance the protection against Y. pestis in higher animal species or humans. Copyright © 2010 Elsevier Ltd. All rights reserved.
Mucosal immunology of HIV infection.
Xu, Huanbin; Wang, Xiaolei; Veazey, Ronald S
2013-07-01
Recent advances in the immunology, pathogenesis, and prevention of human immunodeficiency virus (HIV) infection continue to reveal clues to the mechanisms involved in the progressive immunodeficiency attributed to infection, but more importantly have shed light on the correlates of immunity to infection and disease progression. HIV selectively infects, eliminates, and/or dysregulates several key cells of the human immune system, thwarting multiple arms of the host immune response, and inflicting severe damage to mucosal barriers, resulting in tissue infiltration of 'symbiotic' intestinal bacteria and viruses that essentially become opportunistic infections promoting systemic immune activation. This leads to activation and recruitment or more target cells for perpetuating HIV infection, resulting in persistent, high-level viral replication in lymphoid tissues, rapid evolution of resistant strains, and continued evasion of immune responses. However, vaccine studies and studies of spontaneous controllers are finally providing correlates of immunity from protection and disease progression, including virus-specific CD4(+) T-cell responses, binding anti-bodies, innate immune responses, and generation of antibodies with potent antibody-dependent cell-mediated cytotoxicity activity. Emerging correlates of immunity indicate that prevention of HIV infection may be possible through effective vaccine strategies that protect and stimulate key regulatory cells and immune responses in susceptible hosts. Furthermore, immune therapies specifically directed toward boosting specific aspects of the immune system may eventually lead to a cure for HIV-infected patients. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Mucosal Immunology of HIV Infection
Xu, Huanbin; Wang, Xiaolei; Veazey, Ronald S.
2013-01-01
Summary Recent advances in the immunology, pathogenesis, and prevention of human immunodeficiency virus (HIV) infection continue to reveal clues to the mechanisms involved in the progressive immunodeficiency attributed to infection but more importantly have shed light on the correlates of immunity to infection and disease progression. HIV selectively infects, eliminates, and/or dysregulates several key cells of the human immune system, thwarting multiple arms of the host immune response, and inflicting severe damage to mucosal barriers, resulting in tissue infiltration of ‘symbiotic’ intestinal bacteria and viruses that essentially become opportunistic infections promoting systemic immune activation. This leads to activation and recruitment or more target cells for perpetuating HIV infection, resulting in persistent, high level viral replication in lymphoid tissues, rapid evolution of resistant strains, and continued evasion of immune responses. However, vaccine studies and studies of spontaneous controllers are finally providing correlates of immunity from protection and disease progression, including virus-specific CD4+ T-cell responses, binding antibodies, innate immune responses, and generation of antibodies with potent antibody-dependent cell-mediated cytotoxicity activity. Emerging correlates of immunity indicate that prevention of HIV infection may be possible through effective vaccine strategies that protect and stimulate key regulatory cells and immune responses in susceptible hosts. Further, immune therapies specifically directed towards boosting specific aspects of the immune system may eventually lead to a cure for HIV-infected patients. PMID:23772612
A comparative study of an innate immune response in Lamprologine cichlid fishes.
O'Connor, Constance M; Reddon, Adam R; Marsh-Rollo, Susan E; Hellmann, Jennifer K; Ligocki, Isaac Y; Hamilton, Ian M; Balshine, Sigal
2014-10-01
Social interactions facilitate pathogen transmission and increase virulence. Therefore, species that live in social groups are predicted to suffer a higher pathogen burden, to invest more heavily in immune defence against pathogens, or both. However, there are few empirical tests of whether social species indeed invest more heavily in immune defence than non-social species. In the current study, we conducted a phylogenetically controlled comparison of innate immune response in Lamprologine cichlid fishes. We focused on three species of highly social cichlids that live in permanent groups and exhibit cooperative breeding (Julidochromis ornatus, Neolamprologus pulcher and Neolamprologus savoryi) and three species of non-social cichlids that exhibit neither grouping nor cooperative behaviour (Telmatochromis temporalis, Neolamprologus tetracanthus and Neolamprologus modestus). We quantified the innate immune response by injecting wild fishes with phytohaemagglutinin (PHA), a lectin that causes a cell-mediated immune response. We predicted that the three highly social species would show a greater immune reaction to the PHA treatment, indicating higher investment in immune defence against parasites relative to the three non-social species. We found significant species-level variation in immune response, but contrary to our prediction, this variation did not correspond to social system. However, we found that immune response was correlated with territory size across the six species. Our results indicate that the common assumption of a positive relationship between social system and investment in immune function may be overly simplistic. We suggest that factors such as rates of both in-group and out-group social interactions are likely to be important mediators of the relationship between sociality and immune function.
A comparative study of an innate immune response in Lamprologine cichlid fishes
NASA Astrophysics Data System (ADS)
O'Connor, Constance M.; Reddon, Adam R.; Marsh-Rollo, Susan E.; Hellmann, Jennifer K.; Ligocki, Isaac Y.; Hamilton, Ian M.; Balshine, Sigal
2014-10-01
Social interactions facilitate pathogen transmission and increase virulence. Therefore, species that live in social groups are predicted to suffer a higher pathogen burden, to invest more heavily in immune defence against pathogens, or both. However, there are few empirical tests of whether social species indeed invest more heavily in immune defence than non-social species. In the current study, we conducted a phylogenetically controlled comparison of innate immune response in Lamprologine cichlid fishes. We focused on three species of highly social cichlids that live in permanent groups and exhibit cooperative breeding ( Julidochromis ornatus, Neolamprologus pulcher and Neolamprologus savoryi) and three species of non-social cichlids that exhibit neither grouping nor cooperative behaviour ( Telmatochromis temporalis, Neolamprologus tetracanthus and Neolamprologus modestus). We quantified the innate immune response by injecting wild fishes with phytohaemagglutinin (PHA), a lectin that causes a cell-mediated immune response. We predicted that the three highly social species would show a greater immune reaction to the PHA treatment, indicating higher investment in immune defence against parasites relative to the three non-social species. We found significant species-level variation in immune response, but contrary to our prediction, this variation did not correspond to social system. However, we found that immune response was correlated with territory size across the six species. Our results indicate that the common assumption of a positive relationship between social system and investment in immune function may be overly simplistic. We suggest that factors such as rates of both in-group and out-group social interactions are likely to be important mediators of the relationship between sociality and immune function.
Synthetic immunology: modulating the human immune system.
Geering, Barbara; Fussenegger, Martin
2015-02-01
Humans have manipulated the immune system to dampen or boost the immune response for thousands of years. As our understanding of fundamental immunology and biotechnological methodology accumulates, we can capitalize on this combined knowledge to engineer biological devices with the aim of rationally manipulating the immune response. We address therapeutic approaches based on the principles of synthetic immunology that either ameliorate disorders of the immune system by interfering with the immune response, or improve diverse pathogenic conditions by exploiting immune cell effector functions. We specifically highlight synthetic proteins investigated in preclinical and clinical trials, summarize studies that have used engineered immune cells, and finish with a discussion of possible future therapeutic concepts. Copyright © 2014 Elsevier Ltd. All rights reserved.
2014-01-01
Background Previous exposures to flu and subsequent immune responses may impact on 2009/2010 pandemic flu vaccine responses and clinical symptoms upon infection with the 2009 pandemic H1N1 influenza strain. Qualitative and quantitative differences in humoral and cellular immune responses associated with the flu vaccination in 2009/2010 (pandemic H1N1 vaccine) and natural infection have not yet been described in detail. We designed a longitudinal study to examine influenza- (flu-) specific immune responses and the association between pre-existing flu responses, symptoms of influenza-like illness (ILI), impact of pandemic flu infection, and pandemic flu vaccination in a cohort of 2,040 individuals in Sweden in 2009–2010. Methods Cellular flu-specific immune responses were assessed by whole-blood antigen stimulation assay, and humoral responses by a single radial hemolysis test. Results Previous seasonal flu vaccination was associated with significantly lower flu-specific IFN-γ responses (using a whole-blood assay) at study entry. Pandemic flu vaccination induced long-lived T-cell responses (measured by IFN-γ production) to influenza A strains, influenza B strains, and the matrix (M1) antigen. In contrast, individuals with pandemic flu infection (PCR positive) exhibited increased flu-specific T-cell responses shortly after onset of ILI symptoms but the immune response decreased after the flu season (spring 2010). We identified non-pandemic-flu vaccinated participants without ILI symptoms who showed an IFN-γ production profile similar to pandemic-flu infected participants, suggesting exposure without experiencing clinical symptoms. Conclusions Strong and long-lived flu-M1 specific immune responses, defined by IFN-γ production, in individuals after vaccination suggest that M1-responses may contribute to protective cellular immune responses. Silent flu infections appeared to be frequent in 2009/2010. The pandemic flu vaccine induced qualitatively and quantitatively different humoral and cellular immune responses as compared to infection with the 2009 H1N1 pandemic H1N1 influenza strain. PMID:24916787
2013-01-01
Background The availability of gene expression data that corresponds to pig immune response challenges provides compelling material for the understanding of the host immune system. Meta-analysis offers the opportunity to confirm and expand our knowledge by combining and studying at one time a vast set of independent studies creating large datasets with increased statistical power. In this study, we performed two meta-analyses of porcine transcriptomic data: i) scrutinized the global immune response to different challenges, and ii) determined the specific response to Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) infection. To gain an in-depth knowledge of the pig response to PRRSV infection, we used an original approach comparing and eliminating the common genes from both meta-analyses in order to identify genes and pathways specifically involved in the PRRSV immune response. The software Pointillist was used to cope with the highly disparate data, circumventing the biases generated by the specific responses linked to single studies. Next, we used the Ingenuity Pathways Analysis (IPA) software to survey the canonical pathways, biological functions and transcription factors found to be significantly involved in the pig immune response. We used 779 chips corresponding to 29 datasets for the pig global immune response and 279 chips obtained from 6 datasets for the pig response to PRRSV infection, respectively. Results The pig global immune response analysis showed interconnected canonical pathways involved in the regulation of translation and mitochondrial energy metabolism. Biological functions revealed in this meta-analysis were centred around translation regulation, which included protein synthesis, RNA-post transcriptional gene expression and cellular growth and proliferation. Furthermore, the oxidative phosphorylation and mitochondria dysfunctions, associated with stress signalling, were highly regulated. Transcription factors such as MYCN, MYC and NFE2L2 were found in this analysis to be potentially involved in the regulation of the immune response. The host specific response to PRRSV infection engendered the activation of well-defined canonical pathways in response to pathogen challenge such as TREM1, toll-like receptor and hyper-cytokinemia/ hyper-chemokinemia signalling. Furthermore, this analysis brought forth the central role of the crosstalk between innate and adaptive immune response and the regulation of anti-inflammatory response. The most significant transcription factor potentially involved in this analysis was HMGB1, which is required for the innate recognition of viral nucleic acids. Other transcription factors like interferon regulatory factors IRF1, IRF3, IRF5 and IRF8 were also involved in the pig specific response to PRRSV infection. Conclusions This work reveals key genes, canonical pathways and biological functions involved in the pig global immune response to diverse challenges, including PRRSV infection. The powerful statistical approach led us to consolidate previous findings as well as to gain new insights into the pig immune response either to common stimuli or specifically to PRRSV infection. PMID:23552196
Strain difference in the immune response to hydralazine in inbred guinea-pigs
Ellman, L.; Inman, J.; Green, Ira
1971-01-01
Guinea-pigs were immunized with hydralazine in Freund's complete adjuvant. A marked strain difference in the immune response involving both anti-hydralazine antibody and delayed hypersensitivity to hydralazine was observed in different strains of guinea-pigs: Hartley guinea-pigs and inbred strain 13 guinea-pigs were able to mount a vigorous immune response to the drug while inbred strain 2 guinea-pigs appeared to be `low or non-responders'. This difference could not be explained in terms of metabolism of the drug in that no differences in acetylation were observed. Breeding studies suggest that immune responsiveness to hydralazine is inherited in an autosomal dominant manner. The immune response to hydralazine may be controlled by a `specific immune response gene' which appears not to be linked to the major strain 13 histocompatibility gene. Anti-nuclear and anti-DNA antibodies could not be demonstrated at a time when the animals manifested a strong immune response to hydralazine. Thus, the development of auto-immune phenomena does not appear to be related to the development of an immune response to the drug in short term immunization. Hydralazine-protein conjugates were synthesized, radio-iodinated and used in a Farr technique for the measurement of anti-hydralazine antibody. These techniques for the assay of anti-hydralazine antibodies may be useful in clinical investigations. Imagesp933-a PMID:5316639
[IMMUNE SYSTEM INTERNSHIP WITH SYMBIOTIC MICROORGANISMS IN GNOTOBIOTIC ANIMAL'S INTESTINUM ILEUM].
Kochlamasashvili, B; Gogiashvili, L; Jandieri, K
2017-11-01
Structures, responsible for acceptive (comensaling relation) and protective (pathogenic defense) immunity, were studied and compared in small intestine - to ileum mucosa. Data shown, that main application of the both domains of immune system is to support the correlation between body and foreign microbes, but they response is different. Most significant differences are as follows: in acceptive reactions presented only in aseptic animals - gnotobionts, inflammatory changes absent, so immune reaction complex develops into physiological condition. Symbiotic reactions release in mucosa epithelial cells, also in cells, responsible for adaptive and congenital immune reactivity. Thus, acceptive immune reactions contribute symbiotic biocenosis versus elimination; which is function of protective immunity.
Genetic polymorphism and immune response to tuberculosis in indigenous populations: a brief review.
Longhi, Renata Maronna Praça; Zembrzuski, Verônica Marques; Basta, Paulo Cesar; Croda, Julio
2013-01-01
We systematically reviewed studies of the immune response to tuberculosis and the genetic polymorphisms associated with Th1- or Th2-mediated cytokine expression in indigenous populations. A bibliographic search was performed on the Medline and ISI databases and included studies published between January 1980 and October 2011. The search terms were tuberculosis, American Indians, Amerindian, indigenous, Indians, native people, aboriginal, immun*, host immune, immune response, cytokine*, polymorphism*, and gene. Regardless of their design, studies that evaluated immunoglobulin, cytokine levels and genetic polymorphisms that altered cytokine expression were included. Thirteen studies met the inclusion criteria. The majority of studies were performed in Latin America, and five investigated the Warao ethnic group of Venezuela. Most of the investigations indirectly evaluated the immune response. Higher anergy to the tuberculin skin test, higher IgG4 and IgM levels, higher IL-5 production and lower TNF-α, IL-12p40 and IFN-γ production were found in the indigenous populations. The studies also reported a predominantly Th2-type response in these populations and a possibly higher susceptibility to tuberculosis. A better understanding of the relevant genetic polymorphisms and their role in immune regulation would help to clarify the immunogenetic mechanisms of TB infection in these populations. This information would be useful for identifying new treatments and preventing infection and progression to active disease. Copyright © 2013 Elsevier Editora Ltda. All rights reserved.
Effect of antipyretic analgesics on immune responses to vaccination.
Saleh, Ezzeldin; Moody, M Anthony; Walter, Emmanuel B
2016-09-01
While antipyretic analgesics are widely used to ameliorate vaccine adverse reactions, their use has been associated with blunted vaccine immune responses. Our objective was to review literature evaluating the effect of antipyretic analgesics on vaccine immune responses and to highlight potential underlying mechanisms. Observational studies reporting on antipyretic use around the time of immunization concluded that their use did not affect antibody responses. Only few randomized clinical trials demonstrated blunted antibody response of unknown clinical significance. This effect has only been noted following primary vaccination with novel antigens and disappears following booster immunization. The mechanism by which antipyretic analgesics reduce antibody response remains unclear and not fully explained by COX enzyme inhibition. Recent work has focused on the involvement of nuclear and subcellular signaling pathways. More detailed immunological investigations and a systems biology approach are needed to precisely define the impact and mechanism of antipyretic effects on vaccine immune responses.
Effect of antipyretic analgesics on immune responses to vaccination
Saleh, Ezzeldin; Moody, M. Anthony; Walter, Emmanuel B.
2016-01-01
ABSTRACT While antipyretic analgesics are widely used to ameliorate vaccine adverse reactions, their use has been associated with blunted vaccine immune responses. Our objective was to review literature evaluating the effect of antipyretic analgesics on vaccine immune responses and to highlight potential underlying mechanisms. Observational studies reporting on antipyretic use around the time of immunization concluded that their use did not affect antibody responses. Only few randomized clinical trials demonstrated blunted antibody response of unknown clinical significance. This effect has only been noted following primary vaccination with novel antigens and disappears following booster immunization. The mechanism by which antipyretic analgesics reduce antibody response remains unclear and not fully explained by COX enzyme inhibition. Recent work has focused on the involvement of nuclear and subcellular signaling pathways. More detailed immunological investigations and a systems biology approach are needed to precisely define the impact and mechanism of antipyretic effects on vaccine immune responses. PMID:27246296
Plant Immune Responses Against Viruses: How Does a Virus Cause Disease?[OA
Mandadi, Kranthi K.; Scholthof, Karen-Beth G.
2013-01-01
Plants respond to pathogens using elaborate networks of genetic interactions. Recently, significant progress has been made in understanding RNA silencing and how viruses counter this apparently ubiquitous antiviral defense. In addition, plants also induce hypersensitive and systemic acquired resistance responses, which together limit the virus to infected cells and impart resistance to the noninfected tissues. Molecular processes such as the ubiquitin proteasome system and DNA methylation are also critical to antiviral defenses. Here, we provide a summary and update of advances in plant antiviral immune responses, beyond RNA silencing mechanisms—advances that went relatively unnoticed in the realm of RNA silencing and nonviral immune responses. We also document the rise of Brachypodium and Setaria species as model grasses to study antiviral responses in Poaceae, aspects that have been relatively understudied, despite grasses being the primary source of our calories, as well as animal feed, forage, recreation, and biofuel needs in the 21st century. Finally, we outline critical gaps, future prospects, and considerations central to studying plant antiviral immunity. To promote an integrated model of plant immunity, we discuss analogous viral and nonviral immune concepts and propose working definitions of viral effectors, effector-triggered immunity, and viral pathogen-triggered immunity. PMID:23709626
Martín-Gandul, Cecilia; Pérez-Romero, Pilar; Mena-Romo, Damián; Molina-Ortega, Alejandro; González-Roncero, Francisco M; Suñer, Marta; Bernal, Gabriel; Cordero, Elisa
2018-03-23
Some studies have suggested that rATG treatment may be associated with an increased incidence of CMV infection and delayed CMV immune response. However, the evidences supporting this matter are scarce. This study aims to characterize the kinetic of the CMV-specific T-cell immune response before and after rATG induction therapy and the relationship with the development of CMV infection in CMV-seropositive kidney transplant recipients. An observational prospective study of CMV-seropositive kidney transplant patients that received rATG induction therapy was performed. A pretransplant sample was obtained before the surgery to determine the CMV-specific immunity. CMV viral load (by PCR) and CMV-specific T-cell immune response (by flow cytometry) were determined during the follow-up at 0.5, 1, 2, 3, 6, and 12 months post transplantation. A total of 23 patients were included in the study. CMV prophylaxis was administrated for a media of 90 days after transplantation. At the end of follow-up, 18 (78.3%) patients had CMV-specific immunity with a median value of 0.31% CD8 + CD69 + INF-γ + T cells at a median of 16 weeks post transplantation. Five patients never acquired CMV-specific immunity. No statistically significant association between CMV infection and CMV-specific T-cell immune response (P = .086) was observed. However, patients with positive pretransplant CMV-specific immunity developed earlier immunity and achieved higher levels of CD8 + CD69 + INF-γ+ T-cell post-transplantation than patients with negative pretransplant immunity. CMV-specific immune monitoring in addition to CMV-serology may be useful to stratify patient's risk of CMV infection before transplantation. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Immune Impact Induced by PROSTVAC (PSA-TRICOM), a Therapeutic Vaccine for Prostate Cancer
Gulley, James L.; Madan, Ravi A.; Tsang, Kwong Y.; Jochems, Caroline; Marté, Jennifer L.; Farsaci, Benedetto; Tucker, Jo A.; Hodge, James W.; Liewehr, David J.; Steinberg, Seth M.; Heery, Christopher R.; Schlom, Jeffrey
2013-01-01
PSA-TRICOM (PROSTVAC) is a novel vector-based vaccine designed to generate a robust immune response against prostate-specific antigen (PSA)–expressing tumor cells. The purpose of this report is to present an overview of both published studies and new data in the evaluation of immune responses to the PSA-TRICOM vaccine platform, currently in phase III testing. Of 104 patients tested for T-cell responses, 57% (59/104) demonstrated a ≥ 2-fold increase in PSA-specific T cells 4 weeks after vaccine (median 5-fold increase) compared with pre-vaccine, and 68% (19/28) of patients tested mounted post-vaccine immune responses to tumor-associated antigens not present in the vaccine (antigen-spreading). The PSA-specific immune responses observed 28 days after vaccine (i.e., likely memory cells) are quantitatively similar to the levels of circulating T cells specific for influenza seen in the same patients. Measurements of systemic immune response to PSA may underestimate the true therapeutic immune response (as this does not account for cells that have trafficked to the tumor) and does not include antigen-spreading. Furthermore, while the entire PSA gene is the vaccine, only one epitope of PSA is evaluated in the T-cell responses. Since this therapeutic vaccine is directed at generating a cellular/Th1 immune response (T-cell costimulatory molecules and use of a viral vector), it is not surprising that < 0.6% of patients (2/349) tested have evidence of PSA antibody-induction following vaccine. This suggests that post-vaccine PSA kinetics were not affected by PSA antibodies. An ongoing phase III study will evaluate the systemic immune responses and correlation with clinical outcomes. PMID:24778277
Effect of gender and sex hormones on immune responses following shock.
Angele, M K; Schwacha, M G; Ayala, A; Chaudry, I H
2000-08-01
Several clinical and experimental studies show a gender dimorphism of the immune and organ responsiveness in the susceptibility to and morbidity from shock, trauma, and sepsis. In this respect, cell-mediated immune responses are depressed in males after trauma-hemorrhage, whereas they are unchanged or enhanced in females. Sex hormones contribute to this gender-specific immune response after adverse circulatory conditions. Specifically, studies indicate that androgens are responsible for the immunodepression after trauma-hemorrhage in males. In contrast, female sex steroids seem to exhibit immunoprotective properties after trauma and severe blood loss, because administration of estrogen prevents the androgen-induced immunodepression in castrated male mice. Nonetheless, the precise underlying mechanisms for these immunomodulatory effects of sex steroids after shock remain unknown. Although testosterone depletion, testosterone receptor antagonism, or estrogen treatment has been shown to prevent the depression of immune functions after trauma-hemorrhage, it remains to be established whether differences in the testosterone-estradiol ratio are responsible for the immune dysfunction. Furthermore, sex hormone receptors have been identified on various immune cells, suggesting direct effects. Thus, the immunomodulatory properties of sex hormones after trauma-hemorrhage might represent novel therapeutic strategies for the treatment of immunodepression in trauma patients.
Effect of space flight on interferon production - mechanistic studies
NASA Technical Reports Server (NTRS)
Sonnenfeld, Gerald
1991-01-01
Ground-based models were studied for the effects of space flight on immune responses. Most time was spent on the model for the antiorthostatic, hypokinetic, hypodynamic suspension model for rats. Results indicate that suspension is useful for modeling the effects of spaceflight on functional immune responses, such as interferon and interleukin production. It does not appear to be useful for modeling shifts in leukocyte sub-populations. Calcium and 1,25-dihydroxyvitamin D sub 3 appear to play a pivitol role in regulating shifts in immune responses due to suspension. The macrophage appears to be an important target cell for the effects of suspension on immune responses.
Current views on the mechanisms of immune responses to trauma and infection
Michalak, Grzegorz; Słotwiński, Robert
2015-01-01
According to the World Health Organization, post-traumatic mortality rates are still very high and show an increasing tendency. Disorders of innate immune response that may increase the risk of serious complications play a key role in the immunological system response to trauma and infection. The mechanism of these disorders is multifactorial and is still poorly understood. The changing concepts of systemic inflammatory response syndrome (SIRS) and compensatory anti-inflammatory response syndrome (CARS) early inflammatory response, presented in this work, have been extended to genetic studies. Overexpression of genes and increased production of immune response mediators are among the main causes of multiple organ dysfunction syndrome (MODS). Changes in gene expression detected early after injury precede the occurrence of subsequent complications with a typical clinical picture. Rapid depletion of energy resources leads to immunosuppression and persistent inflammation and immune suppression catabolism syndrome (PICS). Early diagnosis of immune disorders and appropriate nutritional therapy can significantly reduce the incidence of complications, length of hospital stay, and mortality. The study presents the development of knowledge and current views explaining the mechanisms of the immune response to trauma and infection. PMID:26557036
Lein, B
1995-12-01
Several immune-based HIV therapy studies presented at the Interscience Conference on Antimicrobial Agents Chemotherapy (ICAAC) are summarized. These studies involve the following therapies: HIV-IT, a gene therapy approach to augmenting the body's anti-HIV responses; interferon-alpha n3, a new formulation of alpha interferon with fewer toxicities; transfer of immune responses from one individual to another, also called passive immune therapy; and interleukin-2 (IL-2) in combination with protease inhibitors.
Role of MicroRNAs in Obesity-Induced Metabolic Disorder and Immune Response.
Zhong, Hong; Ma, Minjuan; Liang, Tingming; Guo, Li
2018-01-01
In all living organisms, metabolic homeostasis and the immune system are the most fundamental requirements for survival. Recently, obesity has become a global public health issue, which is the cardinal risk factor for metabolic disorder. Many diseases emanating from obesity-induced metabolic dysfunction are responsible for the activated immune system, including innate and adaptive responses. Of note, inflammation is the manifest accountant signal. Deeply studied microRNAs (miRNAs) have participated in many pathways involved in metabolism and immune responses to protect cells from multiple harmful stimulants, and they play an important role in determining the progress through targeting different inflammatory pathways. Thus, immune response and metabolic regulation are highly integrated with miRNAs. Collectively, miRNAs are the new targets for therapy in immune dysfunction.
Role of MicroRNAs in Obesity-Induced Metabolic Disorder and Immune Response
Zhong, Hong; Ma, Minjuan
2018-01-01
In all living organisms, metabolic homeostasis and the immune system are the most fundamental requirements for survival. Recently, obesity has become a global public health issue, which is the cardinal risk factor for metabolic disorder. Many diseases emanating from obesity-induced metabolic dysfunction are responsible for the activated immune system, including innate and adaptive responses. Of note, inflammation is the manifest accountant signal. Deeply studied microRNAs (miRNAs) have participated in many pathways involved in metabolism and immune responses to protect cells from multiple harmful stimulants, and they play an important role in determining the progress through targeting different inflammatory pathways. Thus, immune response and metabolic regulation are highly integrated with miRNAs. Collectively, miRNAs are the new targets for therapy in immune dysfunction. PMID:29484304
Lukasch, Barbara; Westerdahl, Helena; Strandh, Maria; Winkler, Hans; Moodley, Yoshan; Knauer, Felix
2017-01-01
Background A well-functioning immune defence is crucial for fitness, but our knowledge about the immune system and its complex interactions is still limited. Major histocompatibility complex (MHC) molecules are involved in T-cell mediated adaptive immune responses, but MHC is also highly upregulated during the initial innate immune response. The aim of our study was therefore to determine to what extent the highly polymorphic MHC is involved in interactions of the innate and adaptive immune defence and if specific functional MHC alleles (FA) or heterozygosity at the MHC are more important. Methods To do this we used captive house sparrows (Passer domesticus) to survey MHC diversity and immune function controlling for several environmental factors. MHC class I alleles were identified using parallel amplicon sequencing and to mirror immune function, several immunological tests that correspond to the innate and adaptive immunity were conducted. Results Our results reveal that MHC was linked to all immune tests, highlighting its importance for the immune defence. While all innate responses were associated with one single FA, adaptive responses (cell-mediated and humoral) were associated with several different alleles. Discussion We found that repeated injections of an antibody in nestlings and adults were linked to different FA and hence might affect different areas of the immune system. Also, individuals with a higher number of different FA produced a smaller secondary response, indicating a disadvantage of having numerous MHC alleles. These results demonstrate the complexity of the immune system in relation to the MHC and lay the foundation for other studies to further investigate this topic. PMID:28875066
Lukasch, Barbara; Westerdahl, Helena; Strandh, Maria; Winkler, Hans; Moodley, Yoshan; Knauer, Felix; Hoi, Herbert
2017-01-01
A well-functioning immune defence is crucial for fitness, but our knowledge about the immune system and its complex interactions is still limited. Major histocompatibility complex (MHC) molecules are involved in T-cell mediated adaptive immune responses, but MHC is also highly upregulated during the initial innate immune response. The aim of our study was therefore to determine to what extent the highly polymorphic MHC is involved in interactions of the innate and adaptive immune defence and if specific functional MHC alleles (FA) or heterozygosity at the MHC are more important. To do this we used captive house sparrows ( Passer domesticus ) to survey MHC diversity and immune function controlling for several environmental factors. MHC class I alleles were identified using parallel amplicon sequencing and to mirror immune function, several immunological tests that correspond to the innate and adaptive immunity were conducted. Our results reveal that MHC was linked to all immune tests, highlighting its importance for the immune defence. While all innate responses were associated with one single FA, adaptive responses (cell-mediated and humoral) were associated with several different alleles. We found that repeated injections of an antibody in nestlings and adults were linked to different FA and hence might affect different areas of the immune system. Also, individuals with a higher number of different FA produced a smaller secondary response, indicating a disadvantage of having numerous MHC alleles. These results demonstrate the complexity of the immune system in relation to the MHC and lay the foundation for other studies to further investigate this topic.
Sil, Susmita; Ghosh, Arijit; Ghosh, Tusharkanti
2016-09-01
The neurodegeneration in AD patients may be associated with changes of peripheral immune responses. Some peripheral immune responses are altered due to neuroinflammation in colchicine induced AD (cAD) rats. The leaky blood brain barrier (BBB) in cAD-rats may be involved in inducing peripheral inflammation, though there is no report in this regard. Therefore, the present study was designed to investigate the role of BBB in cADrats by altering the BBB in a time dependent manner with injection (i.v.) of mannitol (BBB opener). The inflammatory markers in the brain and serum along with the peripheral immune responses were measured after 30 and 60min of mannitol injection in cAD rats. The results showed higher inflammatory markers in the hippocampus and serum along with alterations in peripheral immune parameters in cAD rats. Although the hippocampal inflammatory markers did not further change after mannitol injection in cAD rats, the serum inflammatory markers and peripheral immune responses were altered and these changes were greater after 60min than that of 30min of mannitol injection. The present study shows that the peripheral immune responses in cAD rats after 30 and 60min of mannitol injection are related to magnitude of impairment of BBB in these conditions. It can be concluded from this study that impairment of BBB in cAD rats is related to the changes of peripheral immune responses observed in that condition. Copyright © 2016 Elsevier B.V. All rights reserved.
Manocha, Monika; Pal, Pramod Chandra; Chitralekha, K T; Thomas, Beena Elizabeth; Tripathi, Vinita; Gupta, Siddhartha Dutta; Paranjape, Ramesh; Kulkarni, Smita; Rao, D Nageswara
2005-12-01
The predominant route of HIV infection is through the sexual transmission via M cells. Most of the peptide and protein vaccines show poor transport across the epithelial barrier and are commonly administered by parenteral route. In the present study four HIV peptides from envelope (gp 41-LZ (leucine zipper), gp 41-FD (fusion domain) and gp120-C2) and regulatory (Nef) region in poly lactic-co-glycolide (PLG) micro-particle delivery were evaluated in mice of outbred and with different genetic background to compare immune response versus MHC restriction. Out of the combinational and single routes of immunization attempted, the single route maintained the IgG, IgA and sIgA in sera and washes for longer duration as compared to combinational routes in which the response was declined. The study demonstrated that single intranasal immunization offered significantly higher immune response (p<0.05) over oral and rectal mucosal routes in terms of inducing systemic as well as mucosal response. Also, the specific activity measurement of IgA and IgG in sera and sIgA in washes were correlating to the antibody titers. However, the intramuscular route of immunization generated systemic response only. The entrapment of plant lectin UEA-1 a ligand specific for M cells in micro-particle further enhanced the immune response in all the mucosal routes. The IgG isotypes generated were of IgG1 and IgG2a/2b in sera for all the peptides. The T cell proliferation response study with and without UEA-1 lectin in micro-particles showed significantly high (p<0.05) stimulation index (SI) with intranasal immunization for all the peptides from cells collected from spleen (SP), peyer's patches (PP) and lamina propria (LP) with SI in the order LP cells>PP>or=SP. The cytokine measurement profile of IL-2, IFN-gamma and IL-6 and low levels of IL-4 in the cultural supernatants of SP, PP and LP showed mixed CD4(+) Th1 and Th2 immune response. The p24 assay showed high percent inhibition of HIV-IIIB virus with sera and washes obtained from intranasal route. Thus, overall the study highlighted the combination of UEA-1 lectin with HIV peptides in micro-particles through intranasal immunization generated systemic as well as mucosal immune response.
Cram, Dominic L; Blount, Jonathan D; York, Jennifer E; Young, Andrew J
2015-01-01
The immune system provides vital protection against pathogens, but extensive evidence suggests that mounting immune responses can entail survival and fecundity costs. The physiological mechanisms that underpin these costs remain poorly understood, despite their potentially important role in shaping life-histories. Recent studies involving laboratory models highlight the possibility that oxidative stress could mediate these costs, as immune-activation can increase the production of reactive oxygen species leading to oxidative stress. However, this hypothesis has rarely been tested in free-ranging wild populations, where natural oxidative statuses and compensatory strategies may moderate immune responses and their impacts on oxidative status. Furthermore, the possibility that individuals scale their immune responses according to their oxidative status, conceivably to mitigate such costs, remains virtually unexplored. Here, we experimentally investigate the effects of a phytohaemagglutinin (PHA) immune-challenge on oxidative status in wild male and female white-browed sparrow weavers, Plocepasser mahali. We also establish whether baseline oxidative status prior to challenge predicts the scale of the immune responses. Contrary to previous work on captive animals, our findings suggest that PHA-induced immune-activation does not elicit oxidative stress. Compared with controls (n = 25 birds), PHA-injected birds (n = 27 birds) showed no evidence of a differential change in markers of oxidative damage or enzymatic and non-enzymatic antioxidant protection 24 hours after challenge. We did, however, find that the activity of a key antioxidant enzyme (superoxide dismutase, SOD) prior to immune-activation predicted the scale of the resulting swelling: birds with stronger initial SOD activity subsequently produced smaller swellings. Our findings (i) suggest that wild birds can mount immune responses without suffering from systemic oxidative stress, and (ii) lend support to biomedical evidence that baseline oxidative status can impact the scale of immune responses; a possibility not yet recognised in ecological studies of immunity.
Immune Response in a Wild Bird Is Predicted by Oxidative Status, but Does Not Cause Oxidative Stress
Cram, Dominic L.; Blount, Jonathan D.; York, Jennifer E.; Young, Andrew J.
2015-01-01
The immune system provides vital protection against pathogens, but extensive evidence suggests that mounting immune responses can entail survival and fecundity costs. The physiological mechanisms that underpin these costs remain poorly understood, despite their potentially important role in shaping life-histories. Recent studies involving laboratory models highlight the possibility that oxidative stress could mediate these costs, as immune-activation can increase the production of reactive oxygen species leading to oxidative stress. However, this hypothesis has rarely been tested in free-ranging wild populations, where natural oxidative statuses and compensatory strategies may moderate immune responses and their impacts on oxidative status. Furthermore, the possibility that individuals scale their immune responses according to their oxidative status, conceivably to mitigate such costs, remains virtually unexplored. Here, we experimentally investigate the effects of a phytohaemagglutinin (PHA) immune-challenge on oxidative status in wild male and female white-browed sparrow weavers, Plocepasser mahali. We also establish whether baseline oxidative status prior to challenge predicts the scale of the immune responses. Contrary to previous work on captive animals, our findings suggest that PHA-induced immune-activation does not elicit oxidative stress. Compared with controls (n = 25 birds), PHA-injected birds (n = 27 birds) showed no evidence of a differential change in markers of oxidative damage or enzymatic and non-enzymatic antioxidant protection 24 hours after challenge. We did, however, find that the activity of a key antioxidant enzyme (superoxide dismutase, SOD) prior to immune-activation predicted the scale of the resulting swelling: birds with stronger initial SOD activity subsequently produced smaller swellings. Our findings (i) suggest that wild birds can mount immune responses without suffering from systemic oxidative stress, and (ii) lend support to biomedical evidence that baseline oxidative status can impact the scale of immune responses; a possibility not yet recognised in ecological studies of immunity. PMID:25815888
Rantala, Markus J; Coetzee, Vinet; Moore, Fhionna R; Skrinda, Ilona; Kecko, Sanita; Krama, Tatjana; Kivleniece, Inese; Krams, Indrikis
2013-08-23
Recent studies suggest that facial attractiveness indicates immune responsiveness in men and that this relationship is moderated by stress hormones which interact with testosterone levels. However, studies testing whether facial attractiveness in women signals their immune responsiveness are lacking. Here, we photographed young Latvian women, vaccinated them against hepatitis B and measured the amount of specific antibodies produced, cortisol levels and percentage body fat. Latvian men rated the attractiveness of the women's faces. Interestingly, in women, immune responsiveness (amount of antibodies produced) did not predict facial attractiveness. Instead, plasma cortisol level was negatively associated with attractiveness, indicating that stressed women look less attractive. Fat percentage was curvilinearly associated with facial attractiveness, indicating that being too thin or too fat reduces attractiveness. Our study suggests that in contrast to men, facial attractiveness in women does not indicate immune responsiveness against hepatitis B, but is associated with two other aspects of long-term health and fertility: circulating levels of the stress hormone cortisol and percentage body fat.
Halder, Sumita; Mehta, Ashish K; Mediratta, Pramod K; Sharma, Krishna K
2011-08-01
The present study was undertaken to explore the effect of the essential oil isolated from the buds of Eugenia caryophyllata on some immunological parameters. Humoral immunity was assessed by measuring the hemagglutination titre to sheep red blood cells and delayed type hypersensitivity was assessed by measuring foot pad thickness. Clove oil administration produced a significant increase in the primary as well as secondary humoral immune response. In addition, it also produced a significant decrease in foot pad thickness compared with the control group. Thus, these results suggest that clove oil can modulate the immune response by augmenting humoral immunity and decreasing cell mediated immunity. Copyright © 2011 John Wiley & Sons, Ltd.
Sherer, Morgan L; Posillico, Caitlin K; Schwarz, Jaclyn M
2017-11-01
There is strong evidence that the immune system changes dramatically during pregnancy in order to prevent the developing fetus from being "attacked" by the maternal immune system. Due to these alterations in peripheral immune function, many women that suffer from autoimmune disorders actually find significant relief from their symptoms throughout pregnancy; however, these changes can also leave the mother more susceptible to infections that would otherwise be mitigated by the inflammatory response (Robinson and Klein, 2012). Only one other study has looked at changes in microglial number and morphology during pregnancy and the postpartum period (Haim et al., 2016), but no one has yet examined the neuroimmune response following an immune challenge during this time. Therefore, in this study, we investigated the impact of an immune challenge during various time-points throughout pregnancy and the postpartum period on the expression of immune molecules in the brain of the mother and fetus. Our results indicate that similar to the peripheral immune suppression measured during pregnancy, we also see significant suppression of the immune response in the maternal brain, particularly during late gestation. In contrast to the peripheral immune system, immune modulation in the maternal brain extends moderately into the postpartum period. Additionally, we found that the fetal immune response in the brain and placenta is also suppressed just before parturition, suggesting that cytokine production in the fetus and placenta are mirroring the peripheral cytokine response of the mother. Copyright © 2017 Elsevier Inc. All rights reserved.
Transcriptional response to West Nile virus infection in the zebra finch (Taeniopygia guttata)
Newhouse, Daniel J.; Hofmeister, Erik K.; Balakrishnan, Christopher N.
2017-01-01
West Nile virus (WNV) is a widespread arbovirus that imposes a significant cost to both human and wildlife health. WNV exists in a bird-mosquito transmission cycle in which passerine birds act as the primary reservoir host. As a public health concern, the mammalian immune response to WNV has been studied in detail. Little, however, is known about the avian immune response to WNV. Avian taxa show variable susceptibility to WNV and what drives this variation is unknown. Thus, to study the immune response to WNV in birds, we experimentally infected captive zebra finches (Taeniopygia guttata). Zebra finches provide a useful model, as like many natural avian hosts they are moderately susceptible to WNV and thus provide sufficient viremia to infect mosquitoes. We performed RNAseq in spleen tissue during peak viremia to provide an overview of the transcriptional response. In general, we find strong parallels with the mammalian immune response to WNV, including upregulation of five genes in the Rig-I-like receptor signalling pathway, and offer insights into avian-specific responses. Together with complementary immunological assays, we provide a model of the avian immune response to WNV and set the stage for future comparative studies among variably susceptible populations and species.
Inflammatory cytokines in the brain: does the CNS shape immune responses?
Owens, T; Renno, T; Taupin, V; Krakowski, M
1994-12-01
Immune responses in the central nervous system (CNS) have traditionally been regarded as representing the intrusion of an unruly, ill-behaved mob of leukocytes into the well-ordered and organized domain of thought and reason. However, results accumulated over the past few years suggest that, far from being an immunologically privileged organ, T lymphocytes may be regular and frequent visitors to the CNS, for purposes of immune surveillance. Here, Trevor Owens and colleagues propose that the brain itself can regulate or shape immune responses therein. Furthermore, given that the immune cells may be subverted to autoimmunity, they suggest that the study of inflammatory autoimmune disease in the brain may shed light on the ability of the local environment to regulate immune responses.
Immunity to viruses: learning from successful human vaccines.
Pulendran, Bali; Oh, Jason Z; Nakaya, Helder I; Ravindran, Rajesh; Kazmin, Dmitri A
2013-09-01
For more than a century, immunologists and vaccinologists have existed in parallel universes. Immunologists have for long reveled in using 'model antigens', such as chicken egg ovalbumin or nitrophenyl haptens, to study immune responses in model organisms such as mice. Such studies have yielded many seminal insights about the mechanisms of immune regulation, but their relevance to humans has been questioned. In another universe, vaccinologists have relied on human clinical trials to assess vaccine efficacy, but have done little to take advantage of such trials for studying the nature of immune responses to vaccination. The human model provides a nexus between these two universes, and recent studies have begun to use this model to study the molecular profile of innate and adaptive responses to vaccination. Such 'systems vaccinology' studies are beginning to provide mechanistic insights about innate and adaptive immunity in humans. Here, we present an overview of such studies, with particular examples from studies with the yellow fever and the seasonal influenza vaccines. Vaccination with the yellow fever vaccine causes a systemic acute viral infection and thus provides an attractive model to study innate and adaptive responses to a primary viral challenge. Vaccination with the live attenuated influenza vaccine causes a localized acute viral infection in mucosal tissues and induces a recall response, since most vaccinees have had prior exposure to influenza, and thus provides a unique opportunity to study innate and antigen-specific memory responses in mucosal tissues and in the blood. Vaccination with the inactivated influenza vaccine offers a model to study immune responses to an inactivated immunogen. Studies with these and other vaccines are beginning to reunite the estranged fields of immunology and vaccinology, yielding unexpected insights about mechanisms of viral immunity. Vaccines that have been proven to be of immense benefit in saving lives offer us a new fringe benefit: lessons in viral immunology. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Effect of adjuvants and route of immunizations on the immune response to recombinant plague antigens
Uddowla, Sabena; Freytag, Lucy C.; Clements, John D.
2007-01-01
In this study, we compare four different adjuvants, LT(R192G), CpG ODN, MPL®TDM and alum, for their ability to affect the magnitude, distribution, and duration of antibody responses against F1-V, the lead-candidate antigen for the next generation vaccine against plague, in a murine model. In addition, three different routes of immunization – intranasal (IN), transcutaneous (TC), and subcutaneous (SC), were compared with each adjuvant. Since aerosol exposure to biological warfare agents is of primary concern, both serum and bronchioalveolar lavage (BAL) were analyzed for antigen-specific antibody responses. The most significant findings of the study reported here are that 1) the adjuvant influences the Type 1/Type 2 balance of the antibody response in both the serum and BAL, 2) mucosal immunization is not necessary to obtain F1-V-specific BAL responses, 3) non-traditional adjuvants such as LT(R192G) work when delivered SC, 4) the route of immunization affects the magnitude of the immune response, and 5) F1-V is highly immunogenic by some routes even in the absence of an exogenously applied adjuvant. These studies provide important insights into the influence of different classes of adjuvants on the immune outcome in biodefense vaccines and for development of new generation vaccines against other pathogens as well. PMID:17933440
TLR7 imidazoquinoline ligand 3M-019 is a potent adjuvant for pure protein prototype vaccines.
Johnston, Dean; Zaidi, Bushra; Bystryn, Jean-Claude
2007-08-01
Cancer vaccines, while theoretically attractive, present difficult challenges that must be overcome to be effective. Cancer vaccines are often poorly immunogenic and may require augmentation of immunogenicity through the use of adjuvants and/or immune response modifiers. Toll-like receptor (TLR) ligands are a relatively new class of immune response modifiers that may have great potential in inducing and augmenting both cellular and humoral immunity to vaccines. TLR7 ligands produce strong cellular responses and specific IgG2a and IgG2b antibody responses to protein immunogens. This study shows that a new TLR7 ligand, 3M-019, in combination with liposomes produces very strong immune responses to a pure protein prototype vaccine in mice. Female C57BL/6 mice were immunized subcutaneously with ovalbumin (OVA, 0.1 mg/dose) weekly 4x. Some groups were immunized to OVA plus 3M-019 or to OVA plus 3M-019 encapsulated in liposomes. Both antibody and cellular immune responses against OVA were measured after either two or four immunizations. Anti-OVA IgG antibody responses were significantly increased after two immunizations and were substantially higher after four immunizations in mice immunized with OVA combined with 3M-019. Encapsulation in liposomes further augmented antibody responses. IgM responses, on the other hand, were lowered by 3M-019. OVA-specific IgG2a levels were increased 625-fold by 3M-019 in liposomes compared to OVA alone, while anti-OVA IgG2b levels were over 3,000 times higher. In both cases encapsulation of 3M-019 in liposomes was stronger than either liposomes alone or 3M-019 without liposomes. Cellular immune responses were likewise increased by 3M-019 but further enhanced when it was encapsulated in liposomes. The lack of toxicity also indicates that this combination may by safe, effective method to boost immune response to cancer vaccines.
2012-01-01
Background Social insects, such as honey bees, use molecular, physiological and behavioral responses to combat pathogens and parasites. The honey bee genome contains all of the canonical insect immune response pathways, and several studies have demonstrated that pathogens can activate expression of immune effectors. Honey bees also use behavioral responses, termed social immunity, to collectively defend their hives from pathogens and parasites. These responses include hygienic behavior (where workers remove diseased brood) and allo-grooming (where workers remove ectoparasites from nestmates). We have previously demonstrated that immunostimulation causes changes in the cuticular hydrocarbon profiles of workers, which results in altered worker-worker social interactions. Thus, cuticular hydrocarbons may enable workers to identify sick nestmates, and adjust their behavior in response. Here, we test the specificity of behavioral, chemical and genomic responses to immunostimulation by challenging workers with a panel of different immune stimulants (saline, Sephadex beads and Gram-negative bacteria E. coli). Results While only bacteria-injected bees elicited altered behavioral responses from healthy nestmates compared to controls, all treatments resulted in significant changes in cuticular hydrocarbon profiles. Immunostimulation caused significant changes in expression of hundreds of genes, the majority of which have not been identified as members of the canonical immune response pathways. Furthermore, several new candidate genes that may play a role in cuticular hydrocarbon biosynthesis were identified. Effects of immune challenge expression of several genes involved in immune response, cuticular hydrocarbon biosynthesis, and the Notch signaling pathway were confirmed using quantitative real-time PCR. Finally, we identified common genes regulated by pathogen challenge in honey bees and other insects. Conclusions These results demonstrate that honey bee genomic responses to immunostimulation are substantially broader than the previously identified canonical immune response pathways, and may mediate the behavioral changes associated with social immunity by orchestrating changes in chemical signaling. These studies lay the groundwork for future research into the genomic responses of honey bees to native honey bee parasites and pathogens. PMID:23072398
Richard, Freddie-Jeanne; Holt, Holly L; Grozinger, Christina M
2012-10-16
Social insects, such as honey bees, use molecular, physiological and behavioral responses to combat pathogens and parasites. The honey bee genome contains all of the canonical insect immune response pathways, and several studies have demonstrated that pathogens can activate expression of immune effectors. Honey bees also use behavioral responses, termed social immunity, to collectively defend their hives from pathogens and parasites. These responses include hygienic behavior (where workers remove diseased brood) and allo-grooming (where workers remove ectoparasites from nestmates). We have previously demonstrated that immunostimulation causes changes in the cuticular hydrocarbon profiles of workers, which results in altered worker-worker social interactions. Thus, cuticular hydrocarbons may enable workers to identify sick nestmates, and adjust their behavior in response. Here, we test the specificity of behavioral, chemical and genomic responses to immunostimulation by challenging workers with a panel of different immune stimulants (saline, Sephadex beads and Gram-negative bacteria E. coli). While only bacteria-injected bees elicited altered behavioral responses from healthy nestmates compared to controls, all treatments resulted in significant changes in cuticular hydrocarbon profiles. Immunostimulation caused significant changes in expression of hundreds of genes, the majority of which have not been identified as members of the canonical immune response pathways. Furthermore, several new candidate genes that may play a role in cuticular hydrocarbon biosynthesis were identified. Effects of immune challenge expression of several genes involved in immune response, cuticular hydrocarbon biosynthesis, and the Notch signaling pathway were confirmed using quantitative real-time PCR. Finally, we identified common genes regulated by pathogen challenge in honey bees and other insects. These results demonstrate that honey bee genomic responses to immunostimulation are substantially broader than the previously identified canonical immune response pathways, and may mediate the behavioral changes associated with social immunity by orchestrating changes in chemical signaling. These studies lay the groundwork for future research into the genomic responses of honey bees to native honey bee parasites and pathogens.
James McNeil; Diana Cox-Foster; James Slavicek; Kelli Hoover
2010-01-01
How the innate immune system functions to defend insects from viruses is an emerging field of study. We examined the impact of melanized encapsulation, a component of innate immunity that integrates both cellular and humoral immune responses, on the success of the baculovirus Lymantria dispar multiple nucleocapsid nucleopolyhedrovirus (LdMNPV) in its...
Modeling the interactions between pathogenic bacteria, bacteriophage and immune response
NASA Astrophysics Data System (ADS)
Leung, Chung Yin (Joey); Weitz, Joshua S.
The prevalence of antibiotic-resistant strains of pathogenic bacteria has led to renewed interest in the use of bacteriophage (phage), or virus that infects bacteria, as a therapeutic agent against bacterial infections. However, little is known about the theoretical mechanism by which phage therapy may work. In particular, interactions between the bacteria, the phage and the host immune response crucially influences the outcome of the therapy. Few models of phage therapy have incorporated all these three components, and existing models suffer from unrealistic assumptions such as unbounded growth of the immune response. We propose a model of phage therapy with an emphasis on nonlinear feedback arising from interactions with bacteria and the immune response. Our model shows a synergistic effect between the phage and the immune response which underlies a possible mechanism for phage to catalyze the elimination of bacteria even when neither the immune response nor phage could do so alone. We study the significance of this effect for different parameters of infection and immune response, and discuss its implications for phage therapy.
Transcriptome landscape of a bacterial pathogen under plant immunity.
Nobori, Tatsuya; Velásquez, André C; Wu, Jingni; Kvitko, Brian H; Kremer, James M; Wang, Yiming; He, Sheng Yang; Tsuda, Kenichi
2018-03-27
Plant pathogens can cause serious diseases that impact global agriculture. The plant innate immunity, when fully activated, can halt pathogen growth in plants. Despite extensive studies into the molecular and genetic bases of plant immunity against pathogens, the influence of plant immunity in global pathogen metabolism to restrict pathogen growth is poorly understood. Here, we developed RNA sequencing pipelines for analyzing bacterial transcriptomes in planta and determined high-resolution transcriptome patterns of the foliar bacterial pathogen Pseudomonas syringae in Arabidopsis thaliana with a total of 27 combinations of plant immunity mutants and bacterial strains. Bacterial transcriptomes were analyzed at 6 h post infection to capture early effects of plant immunity on bacterial processes and to avoid secondary effects caused by different bacterial population densities in planta We identified specific "immune-responsive" bacterial genes and processes, including those that are activated in susceptible plants and suppressed by plant immune activation. Expression patterns of immune-responsive bacterial genes at the early time point were tightly linked to later bacterial growth levels in different host genotypes. Moreover, we found that a bacterial iron acquisition pathway is commonly suppressed by multiple plant immune-signaling pathways. Overexpression of a P. syringae sigma factor gene involved in iron regulation and other processes partially countered bacterial growth restriction during the plant immune response triggered by AvrRpt2. Collectively, this study defines the effects of plant immunity on the transcriptome of a bacterial pathogen and sheds light on the enigmatic mechanisms of bacterial growth inhibition during the plant immune response.
Probiotics, antibiotics and the immune responses to vaccines
Praharaj, Ira; John, Sushil M.; Bandyopadhyay, Rini; Kang, Gagandeep
2015-01-01
Orally delivered vaccines have been shown to perform poorly in developing countries. There are marked differences in the structure and the luminal environment of the gut in developing countries resulting in changes in immune and barrier function. Recent studies using newly developed technology and analytic methods have made it increasingly clear that the intestinal microbiota activate a multitude of pathways that control innate and adaptive immunity in the gut. Several hypotheses have been proposed for the underperformance of oral vaccines in developing countries, and modulation of the intestinal microbiota is now being tested in human clinical trials. Supplementation with specific strains of probiotics has been shown to have modulatory effects on intestinal and systemic immune responses in animal models and forms the basis for human studies with vaccines. However, most studies published so far that have evaluated the immune response to vaccines in children and adults have been small and results have varied by age, antigen, type of antibody response and probiotic strain. Use of anthelminthic drugs in children has been shown to possibly increase immunogenicity following oral cholera vaccination, lending further support to the rationale for modulation of the immune response to oral vaccination through the intestinal microbiome. PMID:25964456
Li, Yao; Li, Shengjie; Li, Ruimin; Xu, Jiao; Jin, Ping; Chen, Liming; Ma, Fei
2017-03-01
Although innate immunity mediated by Toll signaling has been extensively studied in Drosophila melanogaster, the role of miRNAs in regulating the Toll-mediated immune response remains largely unknown. In this study, following Gram-positive bacterial challenge, we identified 93 differentially expressed miRNAs via genome-wide miRNA screening. These miRNAs were regarded as immune response related (IRR). Eight miRNAs were confirmed to be involved in the Toll-mediated immune response upon Gram-positive bacterial infection through genetic screening of 41 UAS-miRNA lines covering 60 miRNAs of the 93 IRR miRNAs. Interestingly, four out of these eight miRNAs, miR-310, miR-311, miR-312 and miR-313, are clustered miRNAs and belong to the miR-310 family. These miR-310 family members were shown to target and regulate the expression of Drosomycin, an antimicrobial peptide produced by Toll signaling. Taken together, our study implies important regulatory roles of miRNAs in the Toll-mediated innate immune response of Drosophila upon Gram-positive bacterial infection. Copyright © 2016 Elsevier Ltd. All rights reserved.
CELL SURFACE SIGNALING MOLECULES IN THE CONTROL OF IMMUNE RESPONSES: A TIDE MODEL
Zhu, Yuwen; Yao, Sheng; Chen, Lieping
2011-01-01
Summary A large numbers of cell surface signaling molecules (CSSMs) have been molecularly identified and functionally characterized in recent years and, via these studies, our knowledge in the control of immune response has increased exponentially. Two major lines of evidence emerge. First, the majority of immune cells rely on one or few CSSMs to deliver a primary triggering signal to sense their environment, leading to initiation of an immune response. Second, both costimulatory CSSMs that promote the response, and coinhibitory CSSMs that inhibit the response, are required to control direction and magnitude of a given immune response. With such tight feedback, immune responses are tuned and returned to baseline. These findings extend well beyond our previous observation in the requirement for lymphocyte activation and argue a revisit of the traditional “two-signal model” for activation and tolerance of lymphocytes. Here we propose a “tide” model to accommodate and interpret current experimental findings. PMID:21511182
Geczy, A F; de Weck, A L
1977-10-01
Further breeding studies were carried out to investigate the polygenic control of the cellular immune response in the guinea-pig to low doses of aspirin anhydride (ASAN), penicilloylated bovine immunoglobulin (BPO-BGG) and to the multi-chain copolymer (T, G)-A-L. Although responsiveness to these three antigens is controlled by three independently segregating loci, at least one gene required for these responses is linked to the strain 13 haplotype.
Immune responses in space flight
NASA Technical Reports Server (NTRS)
Sonnenfeld, G.
1998-01-01
Space flight has been shown to have profound effects on immunological parameters of humans, monkeys and rodents. These studies have been carried out by a number of different laboratories. Among the parameters affected are leukocyte blastogenesis, natural killer cell activity, leukocyte subset distribution, cytokine production - including interferons and interleukins, and macrophage maturation and activity. These changes start to occur only after a few days space flight, and some changes continue throughout long-term space flight. Antibody responses have received only very limited study, and total antibody levels have been shown to be increased after long-term space flight. Several factors could be involved in inducing these changes. These factors could include microgravity, lack of load-bearing, stress, acceleration forces, and radiation. The mechanism(s) for space flight-induced changes in immune responses remain(s) to be established. Certainly, there can be direct effects of microgravity, or other factors, on cells that play a fundamental role in immune responses. However, it is now clear that there are interactions between the immune system and other physiological systems that could play a major role. For example, changes occurring in calcium use in the musculoskeletal system induced by microgravity or lack of use could have great impact on the immune system. Most of the changes in immune responses have been observed using samples taken immediately after return from space flight. However, there have been two recent studies that have used in-flight testing. Delayed-type hypersensitivity responses to common recall antigens of astronauts and cosmonauts have been shown to be decreased when tested during space flights. Additionally, natural killer cell and blastogenic activities are inhibited in samples taken from rats during space flight. Therefore, it is now clear that events occurring during space flight itself can affect immune responses. The biological significance of space flight-induced changes in immune parameters remains to be established; however, as duration of flights increases, the potential for difficulties due to impaired immune responses also increases.
Dubinsky, Marla C.; Lin, Ying-Chao; Dutridge, Debra; Picornell, Yoana; Landers, Carol J.; Farrior, Sharmayne; Wrobel, Iwona; Quiros, Antonio; Vasiliauskas, Eric A.; Grill, Bruce; Israel, David; Bahar, Ron; Christie, Dennis; Wahbeh, Ghassan; Silber, Gary; Dallazadeh, Saied; Shah, Praful; Thomas, Danny; Kelts, Drew; Hershberg, Robert M.; Elson, Charles O.; Targan, Stephan R.; Taylor, Kent D.; Rotter, Jerome I.; Yang, Huiying
2007-01-01
BACKGROUND AND AIM Crohn’s disease (CD) is a heterogeneous disorder characterized by diverse clinical phenotypes. Childhood-onset CD has been described as a more aggressive phenotype. Genetic and immune factors may influence disease phenotype and clinical course. We examined the association of immune responses to microbial antigens with disease behavior and prospectively determined the influence of immune reactivity on disease progression in pediatric CD patients. METHODS Sera were collected from 196 pediatric CD cases and tested for immune responses: anti-I2, anti-outer membrane protein C (anti-OmpC), anti-CBir1 flagellin (anti-CBir1), and anti-Saccharomyces-cerevisiae (ASCA) using ELISA. Associations between immune responses and clinical phenotype were evaluated. RESULTS Fifty-eight patients (28%) developed internal penetrating and/or stricturing (IP/S) disease after a median follow-up of 18 months. Both anti-OmpC (p < 0.0006) and anti-I2 (p < 0.003) were associated with IP/S disease. The frequency of IP/S disease increased with increasing number of immune responses (p trend = 0.002). The odds of developing IP/S disease were highest in patients positive for all four immune responses (OR (95% CI): 11 (1.5–80.4); p = 0.03). Pediatric CD patients positive for ≥1 immune response progressed to IP/S disease sooner after diagnosis as compared to those negative for all immune responses (p < 0.03). CONCLUSIONS The presence and magnitude of immune responses to microbial antigens are significantly associated with more aggressive disease phenotypes among children with CD. This is the first study to prospectively demonstrate that the time to develop a disease complication in children is significantly faster in the presence of immune reactivity, thereby predicting disease progression to more aggressive disease phenotypes among pediatric CD patients. PMID:16454844
Reuben, C; Sundaram, K; Phondke, G P
1979-01-01
The effect of antilymphocyte serum (ALS) on the secondary humoral immune response to sheep erythrocytes (SRBC) in rats was studied by the Jerne plaque assay technique. Its effect was also studied on the delayed hypersensitivity (DH) response to SRBC by the foot pad swelling test. ALS(N), which was prepared against lymphocytes from normal rats, had no effect on the secondary humoral and cellular response or on the primary cellular response, when administered postantigenically. ALS(I), which was raised against lymph node cells from SRBC immunized rats produced significant immunosuppression of the secondary response to SRBC when administered either before or after the antigenic injections. In the case of DH, ALS(I) behaved just like ALS(N) having no effect on the secondary response and suppressing the primary only when administered prior to the antigen. PMID:369994
Recombinant poxviruses as mucosal vaccine vectors.
Gherardi, M Magdalena; Esteban, Mariano
2005-11-01
The majority of infections initiate their departure from a mucosal surface, such as Human immunodeficiency virus (HIV), a sexually transmitted virus. Therefore, the induction of mucosal immunity is a high priority in the development of vaccines against mucosal pathogens. The selection of an appropriate antigen delivery system is necessary to induce an efficient mucosal immune response. Poxvirus vectors have been the most intensively studied live recombinant vector, and numerous studies have demonstrated their ability to induce mucosal immune responses against foreign expressed antigens. Previous studies have demonstrated that recombinants based on the attenuated modified vaccinia virus Ankara (MVA) vector were effective in inducing protective responses against different respiratory viruses, such as influenza and respiratory syncytial virus, following immunization via mucosal routes. Recent studies performed in the murine and macaque models have shown that recombinant MVA (rMVA) does not only stimulate HIV-specific immunity in the genital and rectal tracts following mucosal delivery, but can also control simian/human immunodeficiency viraemia and disease progression. In addition, a prime-boost vaccination approach against tuberculosis emphasized the importance of the intranasal rMVA antigen delivery to induce protective immunity against Mycobacterium tuberculosis. The aim of this review is to summarize the studies employing recombinant poxviruses, specifically rMVA as a mucosal delivery vector. The results demonstrate that rMVAs can activate specific immune responses at mucosal surfaces, and encourage further studies to characterize and improve the MVA mucosal immunogenicity of poxvirus vectors.
Hopewell, Emily L.; Bronk, Crystina C.; Massengill, Michael; Engelman, Robert W.; Beg, Amer A.
2012-01-01
Microbial adjuvants in vaccines activate key transcription factors, including NF-κB and interferon response factors (IRFs). However, the individual role of these transcription factor pathways in promoting adaptive immunity by adjuvants is not clear. It is widely believed that induction of a strong inflammatory response potentiates an adaptive immune response. In this study, we sought to determine whether activation of the pro-inflammatory inhibitor of κB kinase β (IKKβ) canonical NF-κB pathway promoted vaccine-induced immune responses. An adenovirus expressing constitutively-activated IKKβ (AdIKK) induced robust DC maturation and high expression of key cytokines compared to a control virus. In vivo, AdIKK triggered rapid inflammation after pulmonary infection, increased leukocyte entry into draining LNs, and enhanced early antibody and T-cell responses. Notably, AdIKK did not influence the overall magnitude of the adaptive immune response. These results indicate that induction of inflammation by IKKβ/NF-κB in this setting impacts the kinetics but not the magnitude of adaptive immune responses. These findings therefore help define the individual role of a key pathway induced by vaccine adjuvants in promoting adaptive immunity. PMID:22161279
Sugai, Toshiyuki; Mori, Masaaki; Nakazawa, Masatoshi; Ichino, Motohide; Naruto, Takuya; Kobayashi, Naoki; Kobayashi, Yoshinori; Minami, Mutsuhiko; Yokota, Shumpei
2005-11-16
Adjuvants in vaccines are immune stimulants that play an important role in the induction of effective and appropriate immune responses to vaccine component(s). Diphtheria-tetanus-pertussis (DPT) vaccine contains not only aluminum hydrate (alum) to enhance the immune response to the vaccine ingredients, but also, both for that purpose and as a principal ingredient, pertussis toxin (PT). However, both adjuvants strongly promote T helper (Th) 2 type immune responses. Th1 and Th2 type immune responses are counterbalanced in vivo, and a Th2-prone immune response is not effective against intracellular infections but promotes IgE production, which is related to allergic disease. In this study, we used the CpG motif contained in oligodeoxynucleotide (CpG-ODN), which has an adjuvant effect and also induces the Th1 response, as an adjuvant to this vaccine, and we investigated its adjuvanticity and its potential to modulate immune responses to DPT vaccine. Administration of DPT vaccine with CpG-ODN (DPT-alum/ODN) to mice significantly reduced the total IgE levels and increased the anti-PT specific IgG2a titer in serum, in comparison with ordinary DPT vaccine (DPT-alum). Moreover, we investigated the antibody response to orally administrated ovalbumin (OVA) after vaccine administration. In the DPT-alum/ODN-administered group, the OVA specific IgE production in serum greatly decreased in comparison with that in the DPT-alum-administered group. These data indicate that CpG-ODN was not useful only as an efficient vaccine adjuvant but also shifted the immune responses substantially toward Th1 and modulated the Th1/Th2 immune response in DPT vaccine. These data suggested new applications of CpG-ODN as adjuvants in DPT vaccine.
Nystrand, M; Dowling, D K
2014-05-01
Immune responses are highly dynamic. The magnitude and efficiency of an immune response to a pathogen can change markedly across individuals, and such changes may be influenced by variance in a range of intrinsic (e.g. age, genotype, sex) and external (e.g. abiotic stress, pathogen identity, strain) factors. Life history theory predicts that up-regulation of the immune system will come at a physiological cost, and studies have confirmed that increased investment in immunity can reduce reproductive output and survival. Furthermore, males and females often have divergent reproductive strategies, and this might drive the evolution of sex-specific life history trade-offs involving immunity, and sexual dimorphism in immune responses per se. Here, we employ an experiment design to elucidate dose-dependent and sex-specific responses to exposure to a nonpathogenic immune elicitor at two scales--the 'ultimate' life history and the underlying 'proximate' immune level in Drosophila melanogaster. We found dose-dependent effects of immune challenges on both male and female components of reproductive success, but not on survival, as well as a response in antimicrobial activity. These results indicate that even in the absence of the direct pathogenic effects that are associated with actual disease, individual life histories respond to a perceived immune challenge--but with the magnitude of this response being contingent on the initial dose of exposure. Furthermore, the results indicate that immune responses at the ultimate life history level may indeed reflect underlying processes that occur at the proximate level. © 2014 The Authors. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.
Complex Immune Correlates of Protection in HIV-1 Vaccine Efficacy Trials
Tomaras, Georgia D.; Plotkin, Stanley A.
2016-01-01
Summary Development of an efficacious HIV-1 vaccine is a major priority for improving human health worldwide. Vaccine mediated protection against human pathogens can be achieved through elicitation of protective innate, humoral, and cellular responses. Identification of specific immune responses responsible for pathogen protection enables vaccine development and provides insights into host defenses against pathogens and the immunological mechanisms that most effectively fight infection. Defining immunological correlates of transmission risk in preclinical and clinical HIV-1 vaccine trials has moved the HIV-1 vaccine development field forward and directed new candidate vaccine development. Immune correlate studies are providing novel hypotheses about immunological mechanisms that may be responsible for preventing HIV-1 acquisition. Recent results from HIV-1 immune correlates work has demonstrated that there are multiple types of immune responses that together, comprise an immune correlate—thus implicating polyfunctional immune control of HIV-1 transmission. An in depth understanding of these complex immunological mechanisms of protection against HIV-1 will accelerate the development of an efficacious HIV-1 vaccine. PMID:28133811
An Evolutionarily Conserved Innate Immunity Protein Interaction Network*
De Arras, Lesly; Seng, Amara; Lackford, Brad; Keikhaee, Mohammad R.; Bowerman, Bruce; Freedman, Jonathan H.; Schwartz, David A.; Alper, Scott
2013-01-01
The innate immune response plays a critical role in fighting infection; however, innate immunity also can affect the pathogenesis of a variety of diseases, including sepsis, asthma, cancer, and atherosclerosis. To identify novel regulators of innate immunity, we performed comparative genomics RNA interference screens in the nematode Caenorhabditis elegans and mouse macrophages. These screens have uncovered many candidate regulators of the response to lipopolysaccharide (LPS), several of which interact physically in multiple species to form an innate immunity protein interaction network. This protein interaction network contains several proteins in the canonical LPS-responsive TLR4 pathway as well as many novel interacting proteins. Using RNAi and overexpression studies, we show that almost every gene in this network can modulate the innate immune response in mouse cell lines. We validate the importance of this network in innate immunity regulation in vivo using available mutants in C. elegans and mice. PMID:23209288
PEG-PLA-PEG block copolymeric nanoparticles for oral immunization against hepatitis B.
Jain, Arvind K; Goyal, Amit K; Mishra, Neeraj; Vaidya, Bhuvaneshwar; Mangal, Sharad; Vyas, Suresh P
2010-03-15
PLA/PLGA nanoparticles are well known as efficient vaccine delivery systems, but they have got limitation in oral vaccine delivery because of their sensitivity to harsh gastric environment. The aim of present study was to improve the stability of PLA nanoparticles in such environment by copolymerizing PLA with PEG. Nanoparticles were formulated using different block copolymers AB, ABA and BAB (where 'A' is PLA and 'B' is PEG) encapsulating hepatitis B surface antigen (HBsAg) to evaluate their efficacy as oral vaccine delivery system. The results of in vitro studies engrave the efficiency of copolymeric nanoparticles to retain encapsulated antigen and average particle size even after 2 h incubation in simulated gastric fluid and simulated intestinal fluid. Fluorescence microscopic studies indicated efficient uptake of copolymeric nanoparticles by gut mucosa of immunized mice model as compared to control. Finally copolymeric and PLA nanoparticles, encapsulating HBsAg, were evaluated for their adjuvancity in generating immune response after oral administration. PLA nanoparticles could not generate an effective immune response due to stability issues. On the other hand, oral administration of copolymeric nanoparticles exhibited effective levels of humoral immunity along with the mucosal (sIgA) and cellular immune response (T(H)1). The results of in vitro and in vivo studies demonstrate that BAB nanoparticles depict enhanced mucosal uptake leading to effective immune response as compared to other copolymeric nanoparticles. Present study indicates the efficacy of BAB nanoparticles as a promising carrier for oral immunization. 2009 Elsevier B.V. All rights reserved.
Carrasco, Fábio Ricardo; Schmidt, Gustavo; Romero, Adriano Lopez; Sartoretto, Juliano Luiz; Caparroz-Assef, Silvana Martins; Bersani-Amado, Ciomar Aparecida; Cuman, Roberto Kenji Nakamura
2009-07-01
The immunomodulatory effect of ginger, Zingiber officinale (Zingiberaceae), sage, Salvia officinalis (Lamiaceae) and clove, Syzygium aromaticum (Myrtaceae), essential oils were evaluated by studying humor- and cell-mediated immune responses. Essential oils were administered to mice (once a day, orally, for a week) previously immunized with sheep red blood cells (SRBCs). Clove essential oil increased the total white blood cell (WBC) count and enhanced the delayed-type hypersensitivity (DTH) response in mice. Moreover, it restored cellular and humoral immune responses in cyclophosphamide-immunosuppressed mice in a dose-dependent manner. Ginger essential oil recovered the humoral immune response in immunosuppressed mice. Contrary to the ginger essential oil response, sage essential oil did not show any immunomodulatory activity. Our findings establish that the immunostimulatory activity found in mice treated with clove essential oil is due to improvement in humor- and cell-mediated immune response mechanisms.
Teran, Rommy; Mitre, Edward; Vaca, Maritza; Erazo, Silvia; Oviedo, Gisela; Hübner, Marc P; Chico, Martha E; Mattapallil, Joseph J; Bickle, Quentin; Rodrigues, Laura C; Cooper, Philip J
2011-03-01
The immune response that develops in early childhood underlies the development of inflammatory diseases such as asthma and there are few data from tropical Latin America (LA). This study investigated the effects of age on the development of immunity during the first 5 years of life by comparing innate and adaptive immune responses in Ecuadorian children aged 6-9 months, 22-26 months, and 48-60 months. Percentages of naïve CD4+ T cells declined with age while those of memory CD4(+) and CD8(+) T cells increased indicating active development of the immune system throughout the first five years. Young infants had greater innate immune responses to TLR agonists compared to older children while regulatory responses including SEB-induced IL-10 and percentages of FoxP3(+) T-regulatory cells decreased with age. Enhanced innate immunity in early life may be important for host defense against pathogens but may increase the risk of immunopathology. Copyright © 2010 Elsevier Inc. All rights reserved.
Shearer, M H; Bright, R K; Lanford, R E; Kennedy, R C
1993-01-01
In this study, we examined the humoral immune responses and in vivo tumour immunity induced by baculovirus recombinant simian virus 40 (SV40) large tumour antigen (rSV40 T-ag). BALB/c mice immunized with rSV40 T-ag produced antibody responses that recognized SV40 large tumour antigen (T-ag) by ELISA. Analysis of these anti-SV40 T-ag responses indicated that the antibodies recognized epitopes associated with both the carboxy and amino terminus of SV40 T-ag. This pattern of SV40 T-ag epitope recognition was similar to that observed in anti-SV40 T-ag responses induced by inoculation with irradiated SV40-transformed cells. Mice immunized with either rSV40 T-ag or with the inactivated transformed cells were protected from a subsequent in vivo lethal tumour challenge with live SV40-transformed cells. These studies suggest that humoral immune responses induced by rSV40 T-ag are similar in epitope specificity to that induced by inactivated SV40-transformed cells. In addition, recombinant tumour-specific antigens from papovaviruses, such as SV40, can be used to induce tumour immunity which protects from a subsequent lethal tumour challenge. This study may provide insight into the use of recombinant tumour antigens as putative tumour vaccines and in the development of active immunotherapeutic strategies for treating virus-induced cancers. PMID:7679059
Nielsen, Line; Søgaard, Mette; Karlskov-Mortensen, Peter; Jensen, Trine Hammer; Jensen, Tove Dannemann; Aasted, Bent; Blixenkrone-Møller, Merete
2009-07-30
The aim of the study was to investigate the different phases of the immune response after DNA immunization with the hemagglutinin and nucleoprotein genes from canine distemper virus (CDV). Although attenuated live CDV vaccines have effectively reduced the incidence of disease, canine distemper is still a problem worldwide. The broad host range of CDV creates a constant viral reservoir among wildlife animals. Our results demonstrated early humoral and cell-mediated immune responses (IFN-gamma) in DNA vaccinated mink compared to mock-vaccinated mink after challenge with a Danish wild-type CDV. The DNA vaccine-induced immunity protected the natural host against disease development.
c-di-GMP enhances protective innate immunity in a murine model of pertussis.
Elahi, Shokrollah; Van Kessel, Jill; Kiros, Tedele G; Strom, Stacy; Hayakawa, Yoshihiro; Hyodo, Mamoru; Babiuk, Lorne A; Gerdts, Volker
2014-01-01
Innate immunity represents the first line of defense against invading pathogens in the respiratory tract. Innate immune cells such as monocytes, macrophages, dendritic cells, NK cells, and granulocytes contain specific pathogen-recognition molecules which induce the production of cytokines and subsequently activate the adaptive immune response. c-di-GMP is a ubiquitous second messenger that stimulates innate immunity and regulates biofilm formation, motility and virulence in a diverse range of bacterial species with potent immunomodulatory properties. In the present study, c-di-GMP was used to enhance the innate immune response against pertussis, a respiratory infection mainly caused by Bordetella pertussis. Intranasal treatment with c-di-GMP resulted in the induction of robust innate immune responses to infection with B. pertussis characterized by enhanced recruitment of neutrophils, macrophages, natural killer cells and dendritic cells. The immune responses were associated with an earlier and more vigorous expression of Th1-type cytokines, as well as an increase in the induction of nitric oxide in the lungs of treated animals, resulting in significant reduction of bacterial numbers in the lungs of infected mice. These results demonstrate that c-di-GMP is a potent innate immune stimulatory molecule that can be used to enhance protection against bacterial respiratory infections. In addition, our data suggest that priming of the innate immune system by c-di-GMP could further skew the immune response towards a Th1 type phenotype during subsequent infection. Thus, our data suggest that c-di-GMP might be useful as an adjuvant for the next generation of acellular pertussis vaccine to mount a more protective Th1 phenotype immune response, and also in other systems where a Th1 type immune response is required.
c-di-GMP Enhances Protective Innate Immunity in a Murine Model of Pertussis
Elahi, Shokrollah; Van Kessel, Jill; Kiros, Tedele G.; Strom, Stacy; Hayakawa, Yoshihiro; Hyodo, Mamoru; Babiuk, Lorne A.; Gerdts, Volker
2014-01-01
Innate immunity represents the first line of defense against invading pathogens in the respiratory tract. Innate immune cells such as monocytes, macrophages, dendritic cells, NK cells, and granulocytes contain specific pathogen-recognition molecules which induce the production of cytokines and subsequently activate the adaptive immune response. c-di-GMP is a ubiquitous second messenger that stimulates innate immunity and regulates biofilm formation, motility and virulence in a diverse range of bacterial species with potent immunomodulatory properties. In the present study, c-di-GMP was used to enhance the innate immune response against pertussis, a respiratory infection mainly caused by Bordetella pertussis. Intranasal treatment with c-di-GMP resulted in the induction of robust innate immune responses to infection with B. pertussis characterized by enhanced recruitment of neutrophils, macrophages, natural killer cells and dendritic cells. The immune responses were associated with an earlier and more vigorous expression of Th1-type cytokines, as well as an increase in the induction of nitric oxide in the lungs of treated animals, resulting in significant reduction of bacterial numbers in the lungs of infected mice. These results demonstrate that c-di-GMP is a potent innate immune stimulatory molecule that can be used to enhance protection against bacterial respiratory infections. In addition, our data suggest that priming of the innate immune system by c-di-GMP could further skew the immune response towards a Th1 type phenotype during subsequent infection. Thus, our data suggest that c-di-GMP might be useful as an adjuvant for the next generation of acellular pertussis vaccine to mount a more protective Th1 phenotype immune response, and also in other systems where a Th1 type immune response is required. PMID:25333720
Scheid, Adam D; Van Keulen, Virginia P; Felts, Sara J; Neier, Steven C; Middha, Sumit; Nair, Asha A; Techentin, Robert W; Gilbert, Barry K; Jen, Jin; Neuhauser, Claudia; Zhang, Yuji; Pease, Larry R
2018-03-01
Human immunity exhibits remarkable heterogeneity among individuals, which engenders variable responses to immune perturbations in human populations. Population studies reveal that, in addition to interindividual heterogeneity, systemic immune signatures display longitudinal stability within individuals, and these signatures may reliably dictate how given individuals respond to immune perturbations. We hypothesize that analyzing relationships among these signatures at the population level may uncover baseline immune phenotypes that correspond with response outcomes to immune stimuli. To test this, we quantified global gene expression in peripheral blood CD4 + cells from healthy individuals at baseline and following CD3/CD28 stimulation at two time points 1 mo apart. Systemic CD4 + cell baseline and poststimulation molecular immune response signatures (MIRS) were defined by identifying genes expressed at levels that were stable between time points within individuals and differential among individuals in each state. Iterative differential gene expression analyses between all possible phenotypic groupings of at least three individuals using the baseline and stimulated MIRS gene sets revealed shared baseline and response phenotypic groupings, indicating the baseline MIRS contained determinants of immune responsiveness. Furthermore, significant numbers of shared phenotype-defining sets of determinants were identified in baseline data across independent healthy cohorts. Combining the cohorts and repeating the analyses resulted in identification of over 6000 baseline immune phenotypic groups, implying that the MIRS concept may be useful in many immune perturbation contexts. These findings demonstrate that patterns in complex gene expression variability can be used to define immune phenotypes and discover determinants of immune responsiveness. Copyright © 2018 by The American Association of Immunologists, Inc.
Andrews, Chasity D.; Huh, Myung-Sook; Patton, Kathryn; Higgins, Debbie; Van Nest, Gary; Ott, Gary; Lee, Kyung-Dall
2013-01-01
Immunostimulatory sequences (ISS) are short DNA sequences containing unmethylated CpG dimers that have multiple effects on the host immune system, including the ability to stimulate antigen-specific cytotoxic T lymphocytes (CTLs) and drive Th1-type immune responses. Listeriolysin O (LLO)-containing pH-sensitive liposomes have been shown to efficiently deliver macromolecules to the cytosol of APCs and efficiently stimulate CTLs. We hypothesized that encapsulating ISS-oligodeoxyribonucleotides (ODNs) in this delivery system would enhance the cell-mediated immune response and skew Th1-type responses in protein antigen-based vaccination utilizing LLO-liposomes. In vitro studies indicated that co-encapsulation of ISS in LLO-liposomes engendered activation of the NF-κB pathway while maintaining the efficient cytosolic delivery of antigen mediated by the co-encapsulated LLO. Antigen-specific CTL responses monitored by using the model antigen ovalbumin (OVA) in mice were enhanced when mice were immunized with OVA and ISS-ODN-containing LLO-liposomes compared with those immunized with either OVA-containing LLO-liposomes or OVA-ISS conjugates. The enhanced immune responses were of the Th1-type as monitored by the robust OVA-specific IgG2a induction and the OVA CD8 peptide-stimulated IFN-γ secretion. Our study suggests that including ISS-ODN in LLO-containing pH-sensitive liposomes yields a vaccine delivery system that enhances the cell-mediated immune response and skews this response toward the Th1-type. PMID:22376145
The role of dehydroepiandrosterone on functional innate immune responses to acute stress.
Prall, Sean P; Larson, Emilee E; Muehlenbein, Michael P
2017-12-01
The androgen dehydroepiandrosterone (DHEA) responds to stress activation, exhibits anti-glucocorticoid properties, and modulates immunity in diverse ways, yet little is known of its role in acute stress responses. In this study, the effects of DHEA and its sulfate ester DHEA-S on human male immune function during exposure to an acute stressor is explored. Variation in DHEA, DHEA-S, testosterone, and cortisol, along with bacterial killing assays, was measured in response to a modified Trier Social Stress test in 27 young adult males. Cortisol was positively related to salivary innate immunity but only for participants who also exhibited high DHEA responses. Additionally, DHEA positively and DHEA-S negatively predicted salivary immunity, but the opposite was observed for serum-based innate immunity. The DHEA response to acute stress appears to be an important factor in stress-mediated immunological responses, with differential effects on immunity dependent upon the presence of other hormones, primarily cortisol and DHEA-S. These results suggest that DHEA plays an important role, alongside other hormones, in modulating immunological shifts during acute stress. Copyright © 2017 John Wiley & Sons, Ltd.
[Prokaryotic expression and immunological characteristics of Mycobacterium tuberculosis Rv1886c].
Tao, Chengwu; Zhao, Dan; Dong, Hui; Shan, Fa; Lian, Kai; Pan, Zhiming; Chen, Xiang; Yin, Yuelan; Jiao, Xin'an
2014-03-04
Ag85B (Rv1886c) is secreted during the early stages of infection by Mycobacterium tuberculosis. The purpose of this study was probed into the immune response against Ag85B in vivo. Ag85B was prokaryotic expressed and identified, its immunological characteristics were evaluated with indirect-ELSIA, Sandwich-ELISA and Ag85B was mainly expressed in form of inclusion body enzyme-linked immunospot assay (ELISPOT). confirmed by SDS-PAGE. Western blot analysis shows that the fusion protein had good specific reaction with serum of tuberculosis patient and serum of mice immunized with LM-Ag85B. C57BL/6 mice were subcutaneously immunized with Ag85B, the production of IFN-gamma and IL-4 in the spleen cells was determined by Sandwich ELISA, the level of IFN-gamma was significantly higher than that of IL-4 (P < 0.001) in the Ag85B immunization group, it indicated the protein induced Th1-tendency immune responses. Furthermore, purified protein derivative (PPD) used as coating antigen, antibody titer against Ag85B in murine serum reached 1:6400, it was demonstrated that Ag85B could also induce humoral immune responses. Additionally, C57BL/6 mice were intravenously immunized with M. tb H37Rv and bacillus Calmette-Guérin (BCG) respectively for 42 days, M. tb H37Rv group intended to induce Ag85B specific Th1 type immune response, and its ability of eliciting cellular immunity was significantly stronger than BCG group (P < 0.001). Ag85B can affectively induce strongly Th1-tendency immune response and humoral response. Whereas, BCG prime vaccination only can elicit low levels of Ag85B(240-259) specific immune response. The study laid foundation for probing the pathogenic mechanism, the development of novel vaccine and the establishment of clinical diagnostic method.
The Multifaceted Role of T-Helper Responses in Host Defense against Aspergillus fumigatus.
Dewi, Intan M W; van de Veerdonk, Frank L; Gresnigt, Mark S
2017-10-04
The ubiquitous opportunistic fungal pathogen Aspergillus fumigatus rarely causes infections in immunocompetent individuals. A healthy functional innate immune system plays a crucial role in preventing Aspergillus -infection. This pivotal role for the innate immune system makes it a main research focus in studying the pathogenesis of aspergillosis. Although sometimes overshadowed by the innate immune response, the adaptive immune response, and in particular T-helper responses, also represents a key player in host defense against Aspergillus . Virtually all T-helper subsets have been described to play a role during aspergillosis, with the Th1 response being crucial for fungal clearance. However; morbidity and mortality of aspergillosis can also be partly attributed to detrimental immune responses resulting from adaptive immune activation. Th2 responses benefit fungal persistence; and are the foundation of allergic forms of aspergillosis. The Th17 response has two sides; although crucial for granulocyte recruitment, it can be involved in detrimental immunopathology. Regulatory T-cells, the endogenous regulators of inflammatory responses, play a key role in controlling detrimental inflammatory responses during aspergillosis. The current knowledge of the adaptive immune response against A. fumigatus is summarized in this review. A better understanding on how T-helper responses facilitate clearance of Aspergillus -infection and control inflammation can be the fundamental basis for understanding the pathogenesis of aspergillosis and for the development of novel host-directed therapies.
Negri, Pedro; Ramirez, Leonor; Quintana, Silvina; Szawarski, Nicolás; Maggi, Matías; Le Conte, Yves; Lamattina, Lorenzo; Eguaras, Martin
2017-08-15
Many biotic and abiotic stressors impact bees' health, acting as immunosupressors and contribute to colony losses. Thus, the importance of studying the immune response of honey bees is central to develop new strategies aiming to enhance bees' fitness to confront the threats affecting them. If a pathogen breaches the physical and chemical barriers, honey bees can protect themselves from infection with cellular and humoral immune responses which represent a second line of defense. Through a series of correlative studies we have previously reported that abscisic acid (ABA) and nitric oxide (NO) share roles in the same immune defenses of Apis mellifera ( A. mellifera ). Here we show results supporting that the supplementation of bee larvae's diet reared in vitro with l-Arginine (precursor of NO) or ABA enhanced the immune activation of the granulocytes in response to wounding and lipopolysaccharide (LPS) injection.
Ramirez, Leonor; Quintana, Silvina; Szawarski, Nicolás; Maggi, Matías; Le Conte, Yves; Lamattina, Lorenzo; Eguaras, Martin
2017-01-01
Many biotic and abiotic stressors impact bees’ health, acting as immunosupressors and contribute to colony losses. Thus, the importance of studying the immune response of honey bees is central to develop new strategies aiming to enhance bees’ fitness to confront the threats affecting them. If a pathogen breaches the physical and chemical barriers, honey bees can protect themselves from infection with cellular and humoral immune responses which represent a second line of defense. Through a series of correlative studies we have previously reported that abscisic acid (ABA) and nitric oxide (NO) share roles in the same immune defenses of Apis mellifera (A. mellifera). Here we show results supporting that the supplementation of bee larvae’s diet reared in vitro with l-Arginine (precursor of NO) or ABA enhanced the immune activation of the granulocytes in response to wounding and lipopolysaccharide (LPS) injection. PMID:28809782
Immunization with excreted-secreted antigens reduces tissue cyst formation in pigs.
Wang, Yanhua; Zhang, Delin; Wang, Guangxiang; Yin, Hong; Wang, Meng
2013-11-01
It has been demonstrated that tachyzoite-pooled excreted-secreted antigens (ESAs) of Toxoplasma gondii are highly immunogenic and can be used in vaccine development. However, most of the information regarding protective immunity induced by immunization with ESAs is derived from studies using mouse model systems. These results cannot be extrapolated to pigs due to important differences in the susceptibility and immune response mechanisms between pigs and mice. We show that the immunization of pigs with ESAs emulsified in Freund's adjuvant induced not only a humoral immune response but also a cellular response. The cellular immune response was associated with the production of IFN-γ and IL-4. The humoral immune response was mainly directed against the antigens with molecular masses between 34 and 116 kDa. After intraperitoneal challenge with 10(7) T. gondii of the Gansu Jingtai strain (GJS) of tachyzoites, the immunized pigs remained clinically normal except for a brief low-grade fever (≤40.5 °C), while the control pigs developed clinical signs of toxoplasmosis (cough, anorexia, prostration, and high fever). At necropsy, visible lesions were found at multiple locations (enlarged mesenteric lymph nodes, an enlarged spleen with focal necrosis, and enlarged lungs with miliary or focal necrosis and off-white lesions) in all of the control pigs but not in the pigs that had been immunized. We also found that immunization with ESAs reduced tissue cyst formation in the muscle (P < 0.01). Our data demonstrate that immunization with ESAs can trigger a strong immune response against T. gondii infection in pigs.
Chimeric parasites as tools to study Plasmodium immunology and assess malaria vaccines.
Cockburn, Ian
2013-01-01
The study of pathogen immunity relies upon being able to track antigen specific immune responses and assess their protective capacity. To study immunity to Plasmodium antigens, chimeric rodent or human malaria parasites that express proteins from other Plasmodium species or unrelated species have been developed. Different types of chimeric parasites have been used to address a range of specific questions. Parasites expressing model T cell epitopes have been used to monitor cellular immune responses to the preerythrocytic and blood stages of malaria. Other parasites have been used to assess the functional significance of immune responses targeting particular proteins. Finally, a number of rodent malaria parasites that express vaccine-candidate antigens from P. falciparum and P. vivax have been used in functional assays of vaccine-induced antibody responses. Here, I review the experimental contributions that have been made using these parasites, and discuss the potential of these approaches to continue advancing our understanding of malaria immunology and vaccine research.
Mueller, Tobias; Beutler, Claudia; Picó, Almudena Hurtado; Shibolet, Oren; Pratt, Daniel S; Pascher, Andreas; Neuhaus, Peter; Wiedenmann, Bertram; Berg, Thomas; Podolsky, Daniel K
2011-11-01
Pattern recognition receptors (PRRs) orchestrate the innate immune defence in human biliary epithelial cells (BECs). Tight control of PRR signalling provides tolerance to physiological amounts of intestinal endotoxins in human bile to avoid constant innate immune activation in BECs. We wanted to determine whether inappropriate innate immune responses to intestinal endotoxins contribute to the development and perpetuation of chronic biliary inflammation. We examined PRR-mediated innate immune responses and protective endotoxin tolerance in primary BECs isolated from patients with primary sclerosing cholangitis (PSC), alcoholic liver disease and patients without chronic liver disease. Expression studies comprised northern blots, RT-PCR, Western blots and immunocytochemistry. Functional studies comprised immuno-precipitation Western blots, FACS for endotoxin uptake, and NF-κB activation assays and ELISA for secreted IL-8 and tumour necrosis factor (TNF)-α. Primary BECs from explanted PSC livers showed reversibly increased TLR and NOD protein expression and activation of the MyD88/IRAK signalling complex. Consecutively, PSC BECs exhibited inappropriate innate immune responses to endotoxins and did not develop immune tolerance after repeated endotoxin exposures. This endotoxin hyper-responsiveness was probably because of the stimulatory effect of abundantly expressed IFN-γ and TNF-α in PSC livers, which stimulated TLR4-mediated endotoxin signalling in BECs, leading to increased TLR4-mediated endotoxin incorporation and impaired inactivation of the TLR4 signalling cascade. As TNF-α inhibition partly restored protective innate immune tolerance, endogenous TNF-α secretion probably contributed to inappropriate endotoxin responses in BECs. Inappropriate innate immune responses to intestinal endotoxins and subsequent endotoxin intolerance because of enhanced PRR signalling in BECs probably contribute to chronic cholangitis. © 2011 John Wiley & Sons A/S.
Khan, Shahneaz Ali; Desclozeaux, Marion; Waugh, Courtney; Hanger, Jon; Loader, Jo; Gerdts, Volker; Potter, Andrew; Polkinghorne, Adam; Beagley, Kenneth; Timms, Peter
2016-01-01
Developing a vaccine against Chlamydia is key to combating widespread mortalities and morbidities associated with this infection in koalas (Phascolarctos cinereus). In previous studies, we have shown that two or three doses of a Recombinant Major Outer Membrane Protein (rMOMP) antigen-based vaccine, combined with immune stimulating complex (ISC) adjuvant, results in strong cellular and humoral immune responses in koalas. We have also separately evaluated a single dose vaccine, utilising a tri-adjuvant formula that comprises polyphosphazine based poly I: C and host defense peptides, with the same antigen. This formulation also produced strong cellular and humoral immune responses in captive koalas. In this current study, we directly compared the host immune responses of two sub-groups of wild Chlamydia negative koalas in one population vaccinated with the rMOMP protein antigen and adjuvanted with either the ISC or tri-adjuvant formula. Overall, both adjuvants produced strong Chlamydia-specific cellular (IFN-γ and IL-17A) responses in circulating PBMCs as well as MOMP-specific and functional, in vitro neutralising antibodies. While the immune responses were similar, there were adjuvant-specific immune differences between the two adjuvants, particularly in relation to the specificity of the MOMP epitope antibody responses. PMID:27219467
Human Immune Responses to Dengue Viruses.
1986-07-01
0-1 NO- 3K1- INO. "o. ________________%______ 61102A 1611025810 AA r104 (U) xvne Im e Seepuses to Donueo viruses If Irms Al. W~al 71W c 4w O PIT(w...HUMAN IMMUNE RESPONSES TO DENGUE VIRUSES . .. .............. Accesion For NTIS CRAM DTIC TAB 0 ANNUAL REPORT Unannounced 0 Justification FRANCIS A...purp6se of this study is to define the Immune responses of humans to dengue viruses . These studies should provide data which will be helpful in
Haralambieva, Iana H.; Salk, Hannah M.; Lambert, Nathaniel D.; Ovsyannikova, Inna G.; Kennedy, Richard B.; Warner, Nathaniel D.; Pankratz, V.Shane; Poland, Gregory A.
2014-01-01
Introduction Immune response variations after vaccination are influenced by host genetic factors and demographic variables, such as race, ethnicity and sex. The latter have not been systematically studied in regard to live rubella vaccine, but are of interest for developing next generation vaccines for diverse populations, for predicting immune responses after vaccination, and for better understanding the variables that impact immune response. Methods We assessed associations between demographic variables, including race, ethnicity and sex, and rubella-specific neutralizing antibody levels and secreted cytokines (IFN! , IL-6) in two independent cohorts (1,994 subjects), using linear and linear mixed models approaches, and genetically defined racial and ethnic categorizations. Results Our replicated findings in two independent, large, racially diverse cohorts indicate that individuals of African descent have significantly higher rubella-specific neutralizing antibody levels compared to individuals of European descent and/or Hispanic ethnicity (p! 0.001). Conclusion Our study provides consistent evidence for racial/ethnic differences in humoral immune response following rubella vaccination. PMID:24530932
Lang, Pierre Olivier; Aspinall, Richard
2015-01-01
Vitamin D (VitD), which is well known for its classic role in the maintenance of bone mineral density, has now become increasingly studied for its extra-skeletal roles. It has an important influence on the body’s immune system and modulates both innate and adaptive immunity and regulates the inflammatory cascade. In this review our aim was to describe how VitD might influence immune responsiveness and its potential modulating role in vaccine immunogenicity. In the first instance, we consider the literature that may provide molecular and genetic support to the idea that VitD status may be related to innate and/or adaptive immune response with a particular focus on vaccine immunogenicity and then discuss observational studies and controlled trials of VitD supplementation conducted in humans. Finally, we conclude with some knowledge gaps surrounding VitD and vaccine response, and that it is still premature to recommend “booster” of VitD at vaccination time to enhance vaccine response. PMID:25803545
Barth, Kenneth; Genco, Caroline Attardo
2016-01-01
The NFκB and MAPK signaling pathways are critical components of innate immunity that orchestrate appropriate immune responses to control and eradicate pathogens. Their activation results in the induction of proinflammatory mediators, such as TNFα a potent bioactive molecule commonly secreted by recruited inflammatory cells, allowing for paracrine signaling at the site of an infection. In this study we identified a novel mechanism by which the opportunistic pathogen Porphyromonas gingivalis dampens innate immune responses by disruption of kinase signaling and degradation of inflammatory mediators. The intracellular immune kinases RIPK1, TAK1, and AKT were selectively degraded by the P. gingivalis lysine-specific gingipain (Kgp) in human endothelial cells, which correlated with dysregulated innate immune signaling. Kgp was also observed to attenuate endothelial responsiveness to TNFα, resulting in a reduction in signal flux through AKT, ERK and NFκB pathways, as well as a decrease in downstream proinflammatory mRNA induction of cytokines, chemokines and adhesion molecules. A deficiency in Kgp activity negated decreases to host cell kinase protein levels and responsiveness to TNFα. Given the essential role of kinase signaling in immune responses, these findings highlight a unique mechanism of pathogen-induced immune dysregulation through inhibition of cell activation, paracrine signaling, and dampened cellular proinflammatory responses. PMID:27698456
de Vos, Paul; Mujagic, Zlatan; de Haan, Bart J.; Siezen, Roland J.; Bron, Peter A.; Meijerink, Marjolein; Wells, Jerry M.; Masclee, Ad A. M.; Boekschoten, Mark V.; Faas, Marijke M.; Troost, Freddy J.
2017-01-01
Orally ingested bacteria interact with intestinal mucosa and may impact immunity. However, insights in mechanisms involved are limited. In this randomized placebo-controlled cross-over trial, healthy human subjects were given Lactobacillus plantarum supplementation (strain TIFN101, CIP104448, or WCFS1) or placebo for 7 days. To determine whether L. plantarum can enhance immune response, we compared the effects of three stains on systemic and gut mucosal immunity, by among others assessing memory responses against tetanus toxoid (TT)-antigen, and mucosal gene transcription, in human volunteers during induction of mild immune stressor in the intestine, by giving a commonly used enteropathic drug, indomethacin [non-steroidal anti-inflammatory drug (NSAID)]. Systemic effects of the interventions were studies in peripheral blood samples. NSAID was found to induce a reduction in serum CD4+/Foxp3 regulatory cells, which was prevented by L. plantarum TIFN101. T-cell polarization experiments showed L. plantarum TIFN101 to enhance responses against TT-antigen, which indicates stimulation of memory responses by this strain. Cell extracts of the specific L. plantarum strains provoked responses after WCFS1 and TIFN101 consumption, indicating stimulation of immune responses against the specific bacteria. Mucosal immunomodulatory effects were studied in duodenal biopsies. In small intestinal mucosa, TIFN101 upregulated genes associated with maintenance of T- and B-cell function and antigen presentation. Furthermore, L. plantarum TIFN101 and WCFS1 downregulated immunological pathways involved in antigen presentation and shared downregulation of snoRNAs, which may suggest cellular destabilization, but may also be an indicator of tissue repair. Full sequencing of the L. plantarum strains revealed possible gene clusters that might be responsible for the differential biological effects of the bacteria on host immunity. In conclusion, the impact of oral consumption L. plantarum on host immunity is strain dependent and involves responses against bacterial cell components. Some strains may enhance specific responses against pathogens by enhancing antigen presentation and leukocyte maintenance in mucosa. In future studies and clinical settings, caution should be taken in selecting beneficial bacteria as closely related strains can have different effects. Our data show that specific bacterial strains can prevent immune stress induced by commonly consumed painkillers such as NSAID and can have enhancing beneficial effects on immunity of consumers by stimulating antigen presentation and memory responses. PMID:28878772
Jain, Sanyog; Harde, Harshad; Indulkar, Anura; Agrawal, Ashish Kumar
2014-02-01
The present study was designed with the objective to investigate the stability and potential of glucomannan-modified bilosomes (GM-bilosomes) in eliciting immune response following oral administration. GM-bilosomes exhibited desired quality attributes simultaneously maintaining the chemical and conformation stability of the tetanus toxoid (TT) entrapped in to freeze dried formulations. The GM-bilosomes exhibited excellent stability in different simulated biological fluids and sustained release profile up to 24 h. GM-bilosomes elicited significantly higher (P<0.05) systemic immune response (serum IgG level) as compared to bilosomes, niosomes and alum adsorbed TT administered through oral route. More importantly, GM-bilosomes were found capable of inducing mucosal immune response, i.e. sIgA titre in salivary and intestinal secretions as well as cell mediated immune response (IL-2 and IFN-γ levels in spleen homogenate) which was not induced by i.m. TT, the conventional route of immunization. Conclusively, GM-bilosomes could be considered as a promising carrier and adjuvant system for oral mucosal immunization. This team reports on the development and effects of a glucomannan-modified bilosome as an oral vaccine vector, using tetanus toxoid in the experiments. These GM-bilosomes not only elicited significantly higher systemic immune response as compared to bilosomes, niosomes and alum adsorbed orally administered TT, but also demonstrated mucosal immune response induction as well as cell mediated immune responses, which were not induced by the conventional route of immunization. © 2014.
Tarbell, Kristin V; Egen, Jackson G
2018-02-02
The generation and regulation of innate immune signals are key determinants of autoimmune pathogenesis. Emerging evidence suggests that parallel processes operating in the setting of solid tumors can similarly determine the balance between tolerance and immunity and ultimately the effectiveness of the antitumor immune response. In both contexts, self-specific responses start with innate immune cell activation that leads to the initial break in self-tolerance, which can be followed by immune response amplification and maturation through innate-adaptive crosstalk, and finally immune-mediated tissue/tumor destruction that can further potentiate inflammation. Of particular importance for these processes is type I IFN, which is induced in response to endogenous ligands, such as self-nucleic acids, and acts on myeloid cells to promote the expansion of autoreactive or tumor-specific T cells and their influx into the target tissue. Evidence from the study of human disease pathophysiology and genetics and mouse models of disease has revealed an extensive and complex network of negative regulatory pathways that has evolved to restrain type I IFN production and activity. Here, we review the overlapping features of self- and tumor-specific immune responses, including the central role that regulators of the type I IFN response and innate immune cell activation play in maintaining tolerance, and discuss how a better understanding of the pathophysiology of autoimmunity can help to identify new approaches to promote immune-mediated tumor destruction. ©2018 Society for Leukocyte Biology.
Qiu, Qi; Wang, Richard Yuan-Hu; Jiao, Xuanmao; Jin, Bo; Sugauchi, Fuminaka; Grandinetti, Teresa; Alter, Harvey J.; Shih, J. Wai-Kuo
2017-01-01
Recent studies demonstrate that Th1-type immune responses against a broad spectrum of hepatitis C virus (HCV) gene products are crucial to the resolution of acute HCV infection. We investigated new vaccine approaches to augment the strength of HCV-specific Th1-type immune responses. ELISPOT assay revealed that single or multiple protein immunization using both CpG ODN and Montanide ISA 720 as adjuvants induced much stronger IFN-γ-producing Th1 responses against core, NS3 and NS5b targets than did the formulation without these adjuvants. Protein vaccination using CpG ODN and Montanide ISA 720 as adjuvants also greatly enhanced humoral responses to HCV core, E1/E2 and NS3. When specific IgG isotypes were assayed, protein immunization using CpG ODN and Montanide ISA 720 as adjuvants produced higher titers of IgG2a dominant antibodies than did protein immunization alone, indicating a more Th1-biasedpathway. This increase in IgG2a is consistent with the induction of Th1 cells secreting IFN-γ demonstrated by ELISPOT assay. In conclusion, protein immunization using CpG ODN and Montanide ISA 720 as adjuvants greatly enhanced cellular (Th1 type) as well as humoral immune responses against HCV in Balb/c mice. The use of adjuvants appears critical to the induction of Th1 immune responses during HCV vaccination with recombinant proteins. PMID:18675871
Qiu, Qi; Wang, Richard Yuan-Hu; Jiao, Xuanmao; Jin, Bo; Sugauchi, Fuminaka; Grandinetti, Teresa; Alter, Harvey J; Shih, J Wai-Kuo
2008-10-09
Recent studies demonstrate that Th1-type immune responses against a broad spectrum of hepatitis C virus (HCV) gene products are crucial to the resolution of acute HCV infection. We investigated new vaccine approaches to augment the strength of HCV-specific Th1-type immune responses. ELISPOT assay revealed that single or multiple protein immunization using both CpG ODN and Montanide ISA 720 as adjuvants induced much stronger IFN-gamma-producing Th1 responses against core, NS3 and NS5b targets than did the formulation without these adjuvants. Protein vaccination using CpG ODN and Montanide ISA 720 as adjuvants also greatly enhanced humoral responses to HCV core, E1/E2 and NS3. When specific IgG isotypes were assayed, protein immunization using CpG ODN and Montanide ISA 720 as adjuvants produced higher titers of IgG2a dominant antibodies than did protein immunization alone, indicating a more Th1-biased pathway. This increase in IgG2a is consistent with the induction of Th1 cells secreting IFN-gamma demonstrated by ELISPOT assay. In conclusion, protein immunization using CpG ODN and Montanide ISA 720 as adjuvants greatly enhanced cellular (Th1 type) as well as humoral immune responses against HCV in Balb/c mice. The use of adjuvants appears critical to the induction of Th1 immune responses during HCV vaccination with recombinant proteins.
Jayashankar, Bindhya; Singh, Divya; Tanwar, Himanshi; Mishra, K P; Murthy, Swetha; Chanda, Sudipta; Mishra, Jigni; Tulswani, R; Misra, K; Singh, S B; Ganju, Lilly
2017-03-01
Hippophae rhamnoides L. commonly known as Seabuckthorn (SBT), a wild shrub of family Elaegnacea, has extensively used for treating various ailments like skin diseases, jaundice, asthma, lung troubles. SBT leaves have been reported to possess several pharmacological properties including immunomodulatory, antioxidant, anti-inflammatory, antimicrobial and tissue regeneration etc. The present study was undertaken to evaluate the adjuvant property of supercritical carbon dioxide extracts (SCEs 300ET and 350ET) of SBT leaves in balb/c mice immunized with Tetanus and Diphtheria toxoids. The dynamic changes in the immune response were measured in terms of humoral and cell-mediated immune responses. We have seen the effect of SCEs on immunoglobulin subtypes and secondary immune response generation. In addition, the effect of SCEs on antigen specific cellular immunity was evaluated. Our results show that SCEs 300ET and 350ET significantly enhanced antibody titers in response to both TT and DT antigens. The secondary immune response generated was significantly increased in case of TT immunized animals. SCEs also enhanced cytokine levels (IFN-γ, IL-4, TNF-α and IL-1β) and increased lymphoproliferation. Besides, both SCEs did not show any toxic effects. Therefore, the study suggests that SCEs are safe and have potent immunostimulatory activity and hence, seems to be a promising balanced Th1 and Th2 directing immunological adjuvant for various veterinary as well as human vaccines. Copyright © 2017. Published by Elsevier B.V.
Sanborn, Rachel E; Ross, Helen J; Aung, Sandra; Acheson, Anupama; Moudgil, Tarsem; Puri, Sachin; Hilton, Traci; Fisher, Brenda; Coffey, Todd; Paustian, Christopher; Neuberger, Michael; Walker, Edwin; Hu, Hong-Ming; Urba, Walter J; Fox, Bernard A
2017-12-19
Tumor-derived autophagosome vaccines (DRibbles) have the potential to broaden immune response to poorly immunogenic tumors. Autologous vaccine generated from tumor cells harvested from pleural effusions was administered to patients with advanced NSCLC with the objectives of assessing safety and immune response. Four patients were vaccinated and evaluable for immune response; each received two to four doses of vaccine. Study therapy included two cycles of docetaxel 75 mg/m 2 on days 1 and 29 to treat the tumor, release hidden antigens and produce lymphopenia. DRibbles were to be administered intradermally on days 14, 43, 57, 71, and 85, together with GM-CSF (50 μg/d x 6d, administered via SQ mini pump). Peripheral blood was tested for immune parameters at baseline and at each vaccination. Three of four patients had tumor cells available for testing. Autologous tumor-specific immune response was seen in two of the three, manifested by IL-5 (1 patient after 3 doses), and IFN-γ, TNF-α, IL-5, IL-10 (after 4 doses in one patient). All 4 patients had evidence of specific antibody responses against potential tumor antigens. All patients came off study after 4 or fewer vaccine treatments due to progression of disease. No significant immune toxicities were seen during the course of the study. DRibble vaccine given with GM-CSF appeared safe and capable of inducing an immune response against tumor cells in this small, pilot study. There was no evidence of efficacy in this small poor-prognosis patient population, with treatment not feasible. Trial registration NCT00850785, initial registration date February 23, 2009.
Post-translational regulation of plant immunity.
Withers, John; Dong, Xinnian
2017-08-01
Plants have evolved multi-layered molecular defense strategies to protect against pathogens. Plant immune signaling largely relies on post-translational modifications (PTMs) to induce rapid alterations of signaling pathways to achieve a response that is appropriate to the type of pathogen and infection pressure. In host cells, dynamic PTMs have emerged as powerful regulatory mechanisms that cells use to adjust their immune response. PTM is also a virulence strategy used by pathogens to subvert host immunity through the activities of effector proteins secreted into the host cell. Recent studies focusing on deciphering post-translational mechanisms underlying plant immunity have offered an in-depth view of how PTMs facilitate efficient immune responses and have provided a more dynamic and holistic view of plant immunity. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
A stochastic chemical dynamic approach to correlate autoimmunity and optimal vitamin-D range.
Roy, Susmita; Shrinivas, Krishna; Bagchi, Biman
2014-01-01
Motivated by several recent experimental observations that vitamin-D could interact with antigen presenting cells (APCs) and T-lymphocyte cells (T-cells) to promote and to regulate different stages of immune response, we developed a coarse grained but general kinetic model in an attempt to capture the role of vitamin-D in immunomodulatory responses. Our kinetic model, developed using the ideas of chemical network theory, leads to a system of nine coupled equations that we solve both by direct and by stochastic (Gillespie) methods. Both the analyses consistently provide detail information on the dependence of immune response to the variation of critical rate parameters. We find that although vitamin-D plays a negligible role in the initial immune response, it exerts a profound influence in the long term, especially in helping the system to achieve a new, stable steady state. The study explores the role of vitamin-D in preserving an observed bistability in the phase diagram (spanned by system parameters) of immune regulation, thus allowing the response to tolerate a wide range of pathogenic stimulation which could help in resisting autoimmune diseases. We also study how vitamin-D affects the time dependent population of dendritic cells that connect between innate and adaptive immune responses. Variations in dose dependent response of anti-inflammatory and pro-inflammatory T-cell populations to vitamin-D correlate well with recent experimental results. Our kinetic model allows for an estimation of the range of optimum level of vitamin-D required for smooth functioning of the immune system and for control of both hyper-regulation and inflammation. Most importantly, the present study reveals that an overdose or toxic level of vitamin-D or any steroid analogue could give rise to too large a tolerant response, leading to an inefficacy in adaptive immune function.
Nosratababadi, Reza; Bagheri, Vahid; Zare-Bidaki, Mohammad; Hakimi, Hamid; Zainodini, Nahid; Kazemi Arababadi, Mohammad
2017-04-01
Chlamydia species are obligate intracellular pathogens causing different infectious diseases particularly asymptomatic genital infections and are also responsible for a wide range of complications. Previous studies showed that there are different immune responses to Chlamydia species and their infections are limited to some cases. Moreover, Chlamydia species are able to alter immune responses through modulating the expression of some immune system related molecules including cytokines. Toll like receptors (TLRs) belonge to pathogen recognition receptors (PRRs) and play vital roles in recognition of microbes and stimulation of appropriate immune responses. Therefore, it appears that TLRs may be considered as important sensors for recognition of Chlamydia and promotion of immune responses against these bacterial infections. Accordingly, TLR4 detects several microbial PAMPs such as bacterial lipopolysacharide (LPS) and subsequently activates transcription from pro-inflammatory cytokines in both MYD88 and TRIF pathways dependent manner. The purpose of this review is to provide the recent data about the status and major roles played by TLR4 in Chlamydia species recognition and promotion of immune responses against these infections and also the relationship between TLR4 activities and pathogenesis of Chlamydia infections. Copyright © 2017 Elsevier Ltd. All rights reserved.
ABORDO-ADESIDA, EVELYN; FOLLENZI, ANTONIA; BARCIA, CARLOS; SCIASCIA, SANDRA; CASTRO, MARIA G.; NALDINI, LUIGI; LOWENSTEIN, PEDRO R.
2009-01-01
Lentiviral vectors are promising tools for gene therapy in the CNS. It is therefore important to characterize their interactions with the immune system in the CNS. This work characterizes transgene expression and brain inflammation in the presence or absence of immune responses generated after systemic immunization with lentiviral vectors. We characterized transduction with SIN-LV vectors in the CNS. A dose—response curve using SIN-LV-GFP demonstrated detectable transgene expression in the striatum at a dose of 102, and maximum expression at 106, transducing units of lentiviral vector, with minimal increase in inflammatory markers between the lowest and highest dose of vector injected. Our studies demonstrate that injection of a lentiviral vector into the CNS did not cause a measurable inflammatory response. Systemic immunization after CNS injection, with the lentiviral vector expressing the same transgene as a vector injected into the CNS, caused a decrease in transgene expression in the CNS, concomitantly with an infiltration of inflammatory cells into the CNS parenchyma at the injection site. However, peripheral immunization with a lentiviral vector carrying a different transgene did not diminish transgene expression, or cause CNS inflammation. Systemic immunization preceding injection of lentiviral vectors into the CNS determined that preexisting antilentiviral immunity, regardless of the transgene, did not affect transgene expression. Furthermore, we showed that the transgene, but not the virion or vector components, is responsible for providing antigenic epitopes to the activated immune system, on systemic immunization with lentivirus. Low immunogenicity and prolonged transgene expression in the presence of preexisting lentiviral immunity are encouraging data for the future use of lentiviral vectors in CNS gene therapy. In summary, the lentiviral vectors tested induced undetectable activation of innate immune responses, and stimulation of adaptive immune responses against lentiviral vectors was effective in causing a decrease in transgene expression only if the immune response was directed against the transgene. A systemic immune response against vector components alone did not cause brain inflammation, possibly because vector-derived epitopes were not being presented in the CNS. PMID:15960605
Innate Immune Sensing and Response to Influenza
Pulendran, Bali; Maddur, Mohan S.
2015-01-01
Influenza viruses pose a substantial threat to human and animal health worldwide. Recent studies in mouse models have revealed an indispensable role for the innate immune system in defense against influenza virus. Recognition of the virus by innate immune receptors in a multitude of cell types activates intricate signaling networks, functioning to restrict viral replication. Downstream effector mechanisms include activation of innate immune cells and, induction and regulation of adaptive immunity. However, uncontrolled innate responses are associated with exaggerated disease, especially in pandemic influenza virus infection. Despite advances in the understanding of innate response to influenza in the mouse model, there is a large knowledge gap in humans, particularly in immunocom-promised groups such as infants and the elderly. We propose here, the need for further studies in humans to decipher the role of innate immunity to influenza virus, particularly at the site of infection. These studies will complement the existing work in mice and facilitate the quest to design improved vaccines and therapeutic strategies against influenza. PMID:25078919
Innate immune sensing and response to influenza.
Pulendran, Bali; Maddur, Mohan S
2015-01-01
Influenza viruses pose a substantial threat to human and animal health worldwide. Recent studies in mouse models have revealed an indispensable role for the innate immune system in defense against influenza virus. Recognition of the virus by innate immune receptors in a multitude of cell types activates intricate signaling networks, functioning to restrict viral replication. Downstream effector mechanisms include activation of innate immune cells and, induction and regulation of adaptive immunity. However, uncontrolled innate responses are associated with exaggerated disease, especially in pandemic influenza virus infection. Despite advances in the understanding of innate response to influenza in the mouse model, there is a large knowledge gap in humans, particularly in immunocompromised groups such as infants and the elderly. We propose here, the need for further studies in humans to decipher the role of innate immunity to influenza virus, particularly at the site of infection. These studies will complement the existing work in mice and facilitate the quest to design improved vaccines and therapeutic strategies against influenza.
2016-01-01
Photodynamic therapy (PDT) is a minimally invasive therapeutic strategy for cancer treatment, which can destroy local tumor cells and induce systemic antitumor immune response, whereas, focusing on improving direct cytotoxicity to tumor cells treated by PDT, there is growing interest in developing approaches to further explore the immune stimulatory properties of PDT. In this review we summarize the current knowledge of the innate and adaptive immune responses induced by PDT against tumors, providing evidence showing PDT facilitated-antitumor immunity. Various immunotherapeutic approaches on different cells are reviewed for their effectiveness in improving the treatment efficiency in concert with PDT. Future perspectives are discussed for further enhancing PDT efficiency via intracellular targetable drug delivery as well as optimized experimental model development associated with the study of antitumor immune response. PMID:27672421
SUMO-Enriched Proteome for Drosophila Innate Immune Response
Handu, Mithila; Kaduskar, Bhagyashree; Ravindranathan, Ramya; Soory, Amarendranath; Giri, Ritika; Elango, Vijay Barathi; Gowda, Harsha; Ratnaparkhi, Girish S.
2015-01-01
Small ubiquitin-like modifier (SUMO) modification modulates the expression of defense genes in Drosophila, activated by the Toll/nuclear factor-κB and immune-deficient/nuclear factor-κB signaling networks. We have, however, limited understanding of the SUMO-modulated regulation of the immune response and lack information on SUMO targets in the immune system. In this study, we measured the changes to the SUMO proteome in S2 cells in response to a lipopolysaccharide challenge and identified 1619 unique proteins in SUMO-enriched lysates. A confident set of 710 proteins represents the immune-induced SUMO proteome and analysis suggests that specific protein domains, cellular pathways, and protein complexes respond to immune stress. A small subset of the confident set was validated by in-bacto SUMOylation and shown to be bona-fide SUMO targets. These include components of immune signaling pathways such as Caspar, Jra, Kay, cdc42, p38b, 14-3-3ε, as well as cellular proteins with diverse functions, many being components of protein complexes, such as prosß4, Rps10b, SmD3, Tango7, and Aats-arg. Caspar, a human FAF1 ortholog that negatively regulates immune-deficient signaling, is SUMOylated at K551 and responds to treatment with lipopolysaccharide in cultured cells. Our study is one of the first to describe SUMO proteome for the Drosophila immune response. Our data and analysis provide a global framework for the understanding of SUMO modification in the host response to pathogens. PMID:26290570
SUMO-Enriched Proteome for Drosophila Innate Immune Response.
Handu, Mithila; Kaduskar, Bhagyashree; Ravindranathan, Ramya; Soory, Amarendranath; Giri, Ritika; Elango, Vijay Barathi; Gowda, Harsha; Ratnaparkhi, Girish S
2015-08-18
Small ubiquitin-like modifier (SUMO) modification modulates the expression of defense genes in Drosophila, activated by the Toll/nuclear factor-κB and immune-deficient/nuclear factor-κB signaling networks. We have, however, limited understanding of the SUMO-modulated regulation of the immune response and lack information on SUMO targets in the immune system. In this study, we measured the changes to the SUMO proteome in S2 cells in response to a lipopolysaccharide challenge and identified 1619 unique proteins in SUMO-enriched lysates. A confident set of 710 proteins represents the immune-induced SUMO proteome and analysis suggests that specific protein domains, cellular pathways, and protein complexes respond to immune stress. A small subset of the confident set was validated by in-bacto SUMOylation and shown to be bona-fide SUMO targets. These include components of immune signaling pathways such as Caspar, Jra, Kay, cdc42, p38b, 14-3-3ε, as well as cellular proteins with diverse functions, many being components of protein complexes, such as prosß4, Rps10b, SmD3, Tango7, and Aats-arg. Caspar, a human FAF1 ortholog that negatively regulates immune-deficient signaling, is SUMOylated at K551 and responds to treatment with lipopolysaccharide in cultured cells. Our study is one of the first to describe SUMO proteome for the Drosophila immune response. Our data and analysis provide a global framework for the understanding of SUMO modification in the host response to pathogens. Copyright © 2015 Handu et al.
Incubation period and immune function: A comparative field study among coexisting birds
Palacios, M.G.; Martin, T.E.
2006-01-01
Developmental periods are integral components of life history strategies that can have important fitness consequences and vary enormously among organisms. However, the selection pressures and mechanisms causing variation in length of developmental periods are poorly understood. Particularly puzzling are prolonged developmental periods, because their selective advantage is unclear. Here we tested the hypotheses that immune function is stronger in species that are attacked at a higher rate by parasites and that prolonged embryonic development allows the development of this stronger immune system. Through a comparative field study among 12 coexisting passerine bird species, we show that species with higher blood parasite prevalence mounted stronger cellular immune responses than species with lower prevalence. These results provide support for the hypothesis that species facing greater selection pressure from parasites invest more in immune function. However, species with longer incubation periods mounted weaker cellular immune responses than species with shorter periods. Therefore, cellular immune responses do not support the hypothesis that longer development time enhances immunocompentence. Future studies should assess other components of the immune system and test alternative causes of variation in incubation periods among bird species. ?? Springer-Verlag 2005.
Gupta, Nancy; Kumar, Rakesh; Agrawal, Babita
2018-01-01
Tuberculosis (TB) is a highly contagious infection and devastating chronic disease, causing 10.4 million new infections and 1.8 million deaths every year globally. Efforts to control and eradicate TB are hampered by the rapid emergence of drug resistance and limited efficacy of the only available vaccine, BCG. Immunological events in the airways and lungs are of major importance in determining whether exposure to Mycobacterium tuberculosis (Mtb) results in successful infection or protective immunity. Several studies have demonstrated that the host microbiota is in constant contact with the immune system, and thus continually directs the nature of immune responses occurring during new infections. However, little is known about its role in the eventual outcome of the mycobacterial infection. In this review, we highlight the changes in microbial composition in the respiratory tract and gut that have been linked to the alteration of immune responses, and to the risk, prevention, and treatment of TB. In addition, we summarize our current understanding of alveolar epithelial cells and the innate immune system, and their interaction with Mtb during early infection. Extensive studies are warranted to fully understand the all-inclusive role of the lung microbiota, its interaction with epithelium and innate immune responses and resulting adaptive immune responses, and in the pathogenesis and/or protection from Mtb infection. Novel interventions aimed at influencing the microbiota, the alveolar immune system and innate immunity will shape future strategies of prevention and treatment for TB. PMID:29692778
Gupta, Nancy; Kumar, Rakesh; Agrawal, Babita
2018-01-01
Tuberculosis (TB) is a highly contagious infection and devastating chronic disease, causing 10.4 million new infections and 1.8 million deaths every year globally. Efforts to control and eradicate TB are hampered by the rapid emergence of drug resistance and limited efficacy of the only available vaccine, BCG. Immunological events in the airways and lungs are of major importance in determining whether exposure to Mycobacterium tuberculosis ( Mtb ) results in successful infection or protective immunity. Several studies have demonstrated that the host microbiota is in constant contact with the immune system, and thus continually directs the nature of immune responses occurring during new infections. However, little is known about its role in the eventual outcome of the mycobacterial infection. In this review, we highlight the changes in microbial composition in the respiratory tract and gut that have been linked to the alteration of immune responses, and to the risk, prevention, and treatment of TB. In addition, we summarize our current understanding of alveolar epithelial cells and the innate immune system, and their interaction with Mtb during early infection. Extensive studies are warranted to fully understand the all-inclusive role of the lung microbiota, its interaction with epithelium and innate immune responses and resulting adaptive immune responses, and in the pathogenesis and/or protection from Mtb infection. Novel interventions aimed at influencing the microbiota, the alveolar immune system and innate immunity will shape future strategies of prevention and treatment for TB.
Garssen, Johan; Sandalova, Elena
2016-01-01
Vaccination, designed to trigger a protective immune response against infection, is a trigger for mild inflammatory responses. Vaccination studies can address the question of inflammation initiation, levels, and resolution as well as its regulation for respective studied pathogens. Such studies largely based on analyzing the blood components including specific antibodies and cytokines were usually constrained by number of participants and volume of collected blood sample. Hence, blood-based studies may not be able to cover the full dynamic range of inflammation responses induced by vaccination. In this review, the potential of using saliva in addition to blood for studying the kinetics of inflammatory response studies was assessed. Saliva sampling is noninvasive and has a great potential to be used for studies aimed at analysing the magnitude, time course, and variance in immune responses, including inflammation after vaccination. Based on a literature survey of inflammatory biomarkers that can be determined in saliva and an analysis of how these biomarkers could help to understand the mechanisms and dynamics of immune reactivity and inflammation, we propose that the saliva-based approach might have potential to add substantial value to clinical studies, particularly in vulnerable populations such as infants, toddlers, and ill individuals. PMID:27022211
Zak, Daniel E; Andersen-Nissen, Erica; Peterson, Eric R; Sato, Alicia; Hamilton, M Kristina; Borgerding, Joleen; Krishnamurty, Akshay T; Chang, Joanne T; Adams, Devin J; Hensley, Tiffany R; Salter, Alexander I; Morgan, Cecilia A; Duerr, Ann C; De Rosa, Stephen C; Aderem, Alan; McElrath, M Juliana
2012-12-11
To better understand how innate immune responses to vaccination can lead to lasting protective immunity, we used a systems approach to define immune signatures in humans over 1 wk following MRKAd5/HIV vaccination that predicted subsequent HIV-specific T-cell responses. Within 24 h, striking increases in peripheral blood mononuclear cell gene expression associated with inflammation, IFN response, and myeloid cell trafficking occurred, and lymphocyte-specific transcripts decreased. These alterations were corroborated by marked serum inflammatory cytokine elevations and egress of circulating lymphocytes. Responses of vaccinees with preexisting adenovirus serotype 5 (Ad5) neutralizing antibodies were strongly attenuated, suggesting that enhanced HIV acquisition in Ad5-seropositive subgroups in the Step Study may relate to the lack of appropriate innate activation rather than to increased systemic immune activation. Importantly, patterns of chemoattractant cytokine responses at 24 h and alterations in 209 peripheral blood mononuclear cell transcripts at 72 h were predictive of subsequent induction and magnitude of HIV-specific CD8(+) T-cell responses. This systems approach provides a framework to compare innate responses induced by vectors, as shown here by contrasting the more rapid, robust response to MRKAd5/HIV with that to yellow fever vaccine. When applied iteratively, the findings may permit selection of HIV vaccine candidates eliciting innate immune response profiles more likely to drive HIV protective immunity.
Chen, Chong-Sheng; Doloff, Joshua C; Waxman, David J
2014-01-01
Metronomic chemotherapy using cyclophosphamide (CPA) is widely associated with antiangiogenesis; however, recent studies implicate other immune-based mechanisms, including antitumor innate immunity, which can induce major tumor regression in implanted brain tumor models. This study demonstrates the critical importance of drug schedule: CPA induced a potent antitumor innate immune response and tumor regression when administered intermittently on a 6-day repeating metronomic schedule but not with the same total exposure to activated CPA administered on an every 3-day schedule or using a daily oral regimen that serves as the basis for many clinical trials of metronomic chemotherapy. Notably, the more frequent metronomic CPA schedules abrogated the antitumor innate immune and therapeutic responses. Further, the innate immune response and antitumor activity both displayed an unusually steep dose-response curve and were not accompanied by antiangiogenesis. The strong recruitment of innate immune cells by the 6-day repeating CPA schedule was not sustained, and tumor regression was abolished, by a moderate (25%) reduction in CPA dose. Moreover, an ∼20% increase in CPA dose eliminated the partial tumor regression and weak innate immune cell recruitment seen in a subset of the every 6-day treated tumors. Thus, metronomic drug treatment must be at a sufficiently high dose but also sufficiently well spaced in time to induce strong sustained antitumor immune cell recruitment. Many current clinical metronomic chemotherapeutic protocols employ oral daily low-dose schedules that do not meet these requirements, suggesting that they may benefit from optimization designed to maximize antitumor immune responses. PMID:24563621
NASA Astrophysics Data System (ADS)
Baek, Kyung-Hwa; Zhang, Haiying; Lee, Bo Ryeong; Kwon, Young-Guen; Ha, Sang-Jun; Shin, Injae
2015-12-01
The ATPase activities of Hsp70 and Hsc70 are known to be responsible for regulation of various biological processes. However, little is known about the roles of Hsp70 and Hsc70 in modulation of immune responses to antigens. In the present study, we investigated the effect of apoptozole (Az), a small molecule inhibitor of Hsp70 and Hsc70, on immune responses to protein antigens. The results show that mice administered with both protein antigen and Az produce more antibodies than those treated with antigen alone, showing that Az enhances immune responses to administered antigens. Treatment of mice with Az elicits production of antibodies with a high IgG2c/IgG1 ratio and stimulates the release of Th1 and Th2-type cytokines, suggesting that Az activates the Th1 and Th2 immune responses. The observations made in the present study suggest that inhibition of Hsp70 and Hsc70 activities could be a novel strategy designing small molecule-based adjuvants in protein vaccines.
Díaz, A M; Almozni, B; Molina, M A; Sparo, M D; Manghi, M A; Canellada, A M; Castro, M S
2018-04-10
Vaccination against pathogens involved in bovine respiratory disease (BRD) is a useful tool to reduce the risk of this disease however, it has been observed that the commercially available vaccines only partially prevent the infections caused by Pasteurella multocida and Mannheimia haemolytica. Therefore, it is recommended to search for new adjuvant strategies to minimise the economic impact of this respiratory syndrome. A possibility to improve the conventional vaccine response is to modulate the immune system with probiotics, since there is accumulating evidence that certain immunomodulatory strains administered around the time of vaccination can potentiate the immune response. Considering veterinary vaccines are frequently tested in murine models, we have developed an immunisation schedule in BALB/c mice that allows us to study the immune response elicited by BRD vaccine. In order to evaluate a potential strategy to enhance vaccine efficacy, the adjuvant effect of Enterococcus faecalis CECT7121 on the murine specific humoral immune response elicited by a commercial vaccine against BRD was studied. Results indicate that the intragastric administration of E. faecalis CECT7121 was able to induce an increase in the specific antibody titres against the bacterial components of the BRD vaccines (P. multocida and M. haemolytica). The quality of the humoral immune response, in terms of antibody avidity, was also improved. Regarding the cellular immune response, although the BRD vaccination induced a low specific secretion of cytokines in the spleen cell culture supernatants, E. faecalis CECT7121-treated mice showed higher interferon-γ production than immunised control mice. Our results allowed us to conclude that the administration of E. faecalis CECT7121 could be employed as an adjuvant strategy to potentiate humoral immune responses.
Hinkula, Jorma; Åkerström, Sara; Karlberg, Helen; Wattrang, Eva; Bereczky, Sándor; Mousavi-Jazi, Mehrdad; Risinger, Christian; Lindegren, Gunnel; Vernersson, Caroline; Paweska, Janusz; van Vuren, Petrus Jansen; Blixt, Ola; Brun, Alejandro
2017-01-01
ABSTRACT Crimean-Congo hemorrhagic fever virus (CCHFV) is a bunyavirus causing severe hemorrhagic fever disease in humans, with high mortality rates. The requirement of a high-containment laboratory and the lack of an animal model hampered the study of the immune response and protection of vaccine candidates. Using the recently developed interferon alpha receptor knockout (IFNAR−/−) mouse model, which replicates human disease, we investigated the immunogenicity and protection of two novel CCHFV vaccine candidates: a DNA vaccine encoding a ubiquitin-linked version of CCHFV Gc, Gn, and N and one using transcriptionally competent virus-like particles (tc-VLPs). In contrast to most studies that focus on neutralizing antibodies, we measured both humoral and cellular immune responses. We demonstrated a clear and 100% efficient preventive immunity against lethal CCHFV challenge with the DNA vaccine. Interestingly, there was no correlation with the neutralizing antibody titers alone, which were higher in the tc-VLP-vaccinated mice. However, the animals with a lower neutralizing titer, but a dominant cell-mediated Th1 response and a balanced Th2 response, resisted the CCHFV challenge. Moreover, we found that in challenged mice with a Th1 response (immunized by DNA/DNA and boosted by tc-VLPs), the immune response changed to Th2 at day 9 postchallenge. In addition, we were able to identify new linear B-cell epitope regions that are highly conserved between CCHFV strains. Altogether, our results suggest that a predominantly Th1-type immune response provides the most efficient protective immunity against CCHFV challenge. However, we cannot exclude the importance of the neutralizing antibodies as the surviving immunized mice exhibited substantial amounts of them. IMPORTANCE Crimean-Congo hemorrhagic fever virus (CCHFV) is responsible for hemorrhagic diseases in humans, with a high mortality rate. There is no FDA-approved vaccine, and there are still gaps in our knowledge of the immune responses to infection. The recently developed mouse models mimic human CCHF disease and are useful to study the immunogenicity and the protection by vaccine candidates. Our study shows that mice vaccinated with a specific DNA vaccine were fully protected. Importantly, we show that neutralizing antibodies are not sufficient for protection against CCHFV challenge but that an extra Th1-specific cellular response is required. Moreover, we describe the identification of five conserved B-cell epitopes, of which only one was previously known, that could be of great importance for the development of diagnostics tools and the improvement of vaccine candidates. PMID:28250124
Bretscher, P A
2014-01-01
It is well recognized that the physiological/pathological consequences of an immune response, against a foreign or a self-antigen, are often critically dependent on the class of immunity generated. Here we focus on how antigen interacts with the cells of the immune system to determine whether antigen predominantly generates Th1 or Th2 cells. We refer to this mechanism as the ‘decision criterion’ controlling the Th1/Th2 phenotype of the immune response. A plausible decision criterion should account for the variables of immunization known to affect the Th1/Th2 phenotype of the ensuing immune response. Documented variables include the nature of the antigen, in terms of its degree of foreignness, the dose of antigen and the time after immunization at which the Th1/Th2 phenotype of the immune response is assessed. These are quantitative variables made at the level of the system. In addition, the route of immunization is also critical. I describe a quantitative hypothesis as to the nature of the decision criterion, referred to as the Threshold Hypothesis. This hypothesis accounts for the quantitative variables of immunization known to affect the Th1/Th2 phenotype of the immune response generated. I suggest and illustrate how this is not true of competing, contemporary hypotheses. I outline studies testing predictions of the hypothesis and illustrate its potential utility in designing strategies to prevent or treat medical situations where a predominant Th1 response is required to contain an infection, such as those caused by HIV-1 and by Mycobacterium tuberculosis, or to contain cancers. PMID:24684592
Hahn, D. Caldwell; Summers, Scott G.; Genovese, Kenneth J.; He, Haiqi; Kogut, Michael H.
2013-01-01
Immune adaptations of obligate brood parasites attracted interest when three New World cowbird species (Passeriformes, Icteridae, genus Molothrus) proved unusually resistant to West Nile virus. We have used cowbirds as models to investigate the eco-immunological hypothesis that species in parasite-rich environments characteristically have enhanced immunity as a life history adaptation. As part of an ongoing program to understand the cowbird immune system, in this study we measured degranulation and oxidative burst, two fundamental responses of the innate immune system. Innate immunity provides non-specific, fast-acting defenses against a variety of invading pathogens, and we hypothesized that innate immunity experiences particularly strong selection in cowbirds, because their life history strategy exposes them to diverse novel and unpredictable parasites. We compared the relative effectiveness of degranulation and oxidative burst responses in two cowbird species and one related, non-parasitic species. Both innate immune defenses were significantly more functionally efficient in the two parasitic cowbird species than in the non-parasitic red-winged blackbird (Icteridae, Agelaius phoeniceus). Additionally, both immune defenses were more functionally efficient in the brown-headed cowbird (M. ater), an extreme host-generalist brood parasite, than in the bronzed cowbird (M. aeneus), a moderate host-specialist with lower exposure to other species and their parasites. Thus the relative effectiveness of these two innate immune responses corresponds to the diversity of parasites in the niche of each species and to their relative resistance to WNV. This study is the first use of these two specialized assays in a comparative immunology study of wild avian species.
Probiotics, antibiotics and the immune responses to vaccines.
Praharaj, Ira; John, Sushil M; Bandyopadhyay, Rini; Kang, Gagandeep
2015-06-19
Orally delivered vaccines have been shown to perform poorly in developing countries. There are marked differences in the structure and the luminal environment of the gut in developing countries resulting in changes in immune and barrier function. Recent studies using newly developed technology and analytic methods have made it increasingly clear that the intestinal microbiota activate a multitude of pathways that control innate and adaptive immunity in the gut. Several hypotheses have been proposed for the underperformance of oral vaccines in developing countries, and modulation of the intestinal microbiota is now being tested in human clinical trials. Supplementation with specific strains of probiotics has been shown to have modulatory effects on intestinal and systemic immune responses in animal models and forms the basis for human studies with vaccines. However, most studies published so far that have evaluated the immune response to vaccines in children and adults have been small and results have varied by age, antigen, type of antibody response and probiotic strain. Use of anthelminthic drugs in children has been shown to possibly increase immunogenicity following oral cholera vaccination, lending further support to the rationale for modulation of the immune response to oral vaccination through the intestinal microbiome. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Antiviral immunity following smallpox virus infection: a case-control study.
Hammarlund, Erika; Lewis, Matthew W; Hanifin, Jon M; Mori, Motomi; Koudelka, Caroline W; Slifka, Mark K
2010-12-01
Outbreaks of smallpox (i.e., caused by variola virus) resulted in up to 30% mortality, but those who survived smallpox infection were regarded as immune for life. Early studies described the levels of neutralizing antibodies induced after infection, but smallpox was eradicated before contemporary methods for quantifying T-cell memory were developed. To better understand the levels and duration of immunity after smallpox infection, we performed a case-control study comparing antiviral CD4(+) and CD8(+) T-cell responses and neutralizing antibody levels of 24 smallpox survivors with the antiviral immunity observed in 60 smallpox-vaccinated (i.e., vaccinia virus-immune) control subjects. We found that the duration of immunity following smallpox infection was remarkably similar to that observed after smallpox vaccination, with antiviral T-cell responses that declined slowly over time and antiviral antibody responses that remained stable for decades after recovery from infection. These results indicate that severe, potentially life-threatening disease is not required for the development of sustainable long-term immunity. This study shows that the levels of immunity induced following smallpox vaccination are comparable in magnitude to that achieved through natural variola virus infection, and this may explain the notable success of vaccination in eradicating smallpox, one of the world's most lethal diseases.
Lane, Sarah M; Briffa, Mark
2018-02-20
The ability to mitigate the costs of engaging in a fight will depend on an individual's physiological state. However, the experience of fighting itself may, in turn, affect an individual's state, especially if the fight results in injury. Previous studies have found a correlation between immune state and fighting success, but the causal direction of this relationship remains unclear. Does immune state determine fighting success? Or does fighting itself influence subsequent immune state? Using the beadlet anemone, Actinia equina , we disentangled the cause and effect of this relationship, measuring immune response once pre-fight and twice post-fight. Contrary to previous findings, pre-fight immune response did not predict fighting success, but rather predicted whether an individual used its weapons during the fight. Furthermore, weapon use and contest outcome significantly affected post-fight immune response. Individuals that used their weapons maintained a stable immune response following the fight, whereas those that fought non-injuriously did not. Furthermore, although winners suffered a reduction in immune response similar to that of losers immediately post-fight, winners began to recover pre-fight levels within 24 h. Our findings indicate that immune state can influence strategic fighting decisions and, moreover, that fight outcome and the agonistic behaviours expressed can significantly affect subsequent immunity. © 2018. Published by The Company of Biologists Ltd.
Immune activation alters cellular and humoral responses to yellow fever 17D vaccine
Muyanja, Enoch; Ssemaganda, Aloysius; Ngauv, Pearline; Cubas, Rafael; Perrin, Helene; Srinivasan, Divya; Canderan, Glenda; Lawson, Benton; Kopycinski, Jakub; Graham, Amanda S.; Rowe, Dawne K.; Smith, Michaela J.; Isern, Sharon; Michael, Scott; Silvestri, Guido; Vanderford, Thomas H.; Castro, Erika; Pantaleo, Giuseppe; Singer, Joel; Gillmour, Jill; Kiwanuka, Noah; Nanvubya, Annet; Schmidt, Claudia; Birungi, Josephine; Cox, Josephine; Haddad, Elias K.; Kaleebu, Pontiano; Fast, Patricia; Sekaly, Rafick-Pierre; Trautmann, Lydie
2014-01-01
Background. Defining the parameters that modulate vaccine responses in African populations will be imperative to design effective vaccines for protection against HIV, malaria, tuberculosis, and dengue virus infections. This study aimed to evaluate the contribution of the patient-specific immune microenvironment to the response to the licensed yellow fever vaccine 17D (YF-17D) in an African cohort. Methods. We compared responses to YF-17D in 50 volunteers in Entebbe, Uganda, and 50 volunteers in Lausanne, Switzerland. We measured the CD8+ T cell and B cell responses induced by YF-17D and correlated them with immune parameters analyzed by flow cytometry prior to vaccination. Results. We showed that YF-17D–induced CD8+ T cell and B cell responses were substantially lower in immunized individuals from Entebbe compared with immunized individuals from Lausanne. The impaired vaccine response in the Entebbe cohort associated with reduced YF-17D replication. Prior to vaccination, we observed higher frequencies of exhausted and activated NK cells, differentiated T and B cell subsets and proinflammatory monocytes, suggesting an activated immune microenvironment in the Entebbe volunteers. Interestingly, activation of CD8+ T cells and B cells as well as proinflammatory monocytes at baseline negatively correlated with YF-17D–neutralizing antibody titers after vaccination. Additionally, memory T and B cell responses in preimmunized volunteers exhibited reduced persistence in the Entebbe cohort but were boosted by a second vaccination. Conclusion. Together, these results demonstrate that an activated immune microenvironment prior to vaccination impedes efficacy of the YF-17D vaccine in an African cohort and suggest that vaccine regimens may need to be boosted in African populations to achieve efficient immunity. Trial registration. Registration is not required for observational studies. Funding. This study was funded by Canada’s Global Health Research Initiative, Defense Threat Reduction Agency, National Institute of Allergy and Infectious Diseases, Bill & Melinda Gates Foundation, and United States Agency for International Development. PMID:24911151
Immune activation alters cellular and humoral responses to yellow fever 17D vaccine.
Muyanja, Enoch; Ssemaganda, Aloysius; Ngauv, Pearline; Cubas, Rafael; Perrin, Helene; Srinivasan, Divya; Canderan, Glenda; Lawson, Benton; Kopycinski, Jakub; Graham, Amanda S; Rowe, Dawne K; Smith, Michaela J; Isern, Sharon; Michael, Scott; Silvestri, Guido; Vanderford, Thomas H; Castro, Erika; Pantaleo, Giuseppe; Singer, Joel; Gillmour, Jill; Kiwanuka, Noah; Nanvubya, Annet; Schmidt, Claudia; Birungi, Josephine; Cox, Josephine; Haddad, Elias K; Kaleebu, Pontiano; Fast, Patricia; Sekaly, Rafick-Pierre; Trautmann, Lydie; Gaucher, Denis
2014-07-01
Defining the parameters that modulate vaccine responses in African populations will be imperative to design effective vaccines for protection against HIV, malaria, tuberculosis, and dengue virus infections. This study aimed to evaluate the contribution of the patient-specific immune microenvironment to the response to the licensed yellow fever vaccine 17D (YF-17D) in an African cohort. We compared responses to YF-17D in 50 volunteers in Entebbe, Uganda, and 50 volunteers in Lausanne, Switzerland. We measured the CD8+ T cell and B cell responses induced by YF-17D and correlated them with immune parameters analyzed by flow cytometry prior to vaccination. We showed that YF-17D-induced CD8+ T cell and B cell responses were substantially lower in immunized individuals from Entebbe compared with immunized individuals from Lausanne. The impaired vaccine response in the Entebbe cohort associated with reduced YF-17D replication. Prior to vaccination, we observed higher frequencies of exhausted and activated NK cells, differentiated T and B cell subsets and proinflammatory monocytes, suggesting an activated immune microenvironment in the Entebbe volunteers. Interestingly, activation of CD8+ T cells and B cells as well as proinflammatory monocytes at baseline negatively correlated with YF-17D-neutralizing antibody titers after vaccination. Additionally, memory T and B cell responses in preimmunized volunteers exhibited reduced persistence in the Entebbe cohort but were boosted by a second vaccination. Together, these results demonstrate that an activated immune microenvironment prior to vaccination impedes efficacy of the YF-17D vaccine in an African cohort and suggest that vaccine regimens may need to be boosted in African populations to achieve efficient immunity. Registration is not required for observational studies. This study was funded by Canada's Global Health Research Initiative, Defense Threat Reduction Agency, National Institute of Allergy and Infectious Diseases, Bill & Melinda Gates Foundation, and United States Agency for International Development.
Lambracht-Washington, Doris; Fu, Min; Frost, Pat; Rosenberg, Roger N
2017-04-26
Aggregated amyloid-β peptide 1-42 (Aβ42), derived from the cellular amyloid precursor protein, is one of the pathological hallmarks of Alzheimer's disease (AD). Although active immunization against Aβ42 peptide was successful in AD mouse models and led to removal of plaques and improved memory, a similar clinical trial in humans (Aβ42 peptide immunization with QS-21 adjuvant) was stopped in phase II, when 6% of the treated patients developed encephalitis. Currently ongoing passive immunizations with the injection of preformed monoclonal antibodies against different epitopes within the Aβ 1-42 peptide, which do not lead to activation of the immune system, have shown some effects in slowing AD pathology. Active DNA Aβ42 immunizations administered with the gene gun into the skin are noninflammatory because they activate a different T-cell population (Th2) with different cytokine responses eliciting a different humoral immune response. We present our findings in rhesus macaques that underwent the DNA Aβ42 immunization via gene gun delivery into the skin. Six rhesus monkeys received two different doses of a DNA Aβ42 trimer vaccine. The humoral immune response was analyzed from blood throughout the study, and cellular immune responses were determined in peripheral blood mononuclear cells (PBMCs) after three and six immunizations. DNA Aβ42 trimer immunization led to high titer antibody responses in the nonhuman primate (NHP) model. Antibodies generated in the rhesus monkeys following DNA Aβ42 immunization detected amyloid plaques consisting of human Aβ42 peptide in the brain of the triple-transgenic AD mouse model. T-cell responses showed no interferon (IFN)-γ- and interleukin (IL)-17-producing cells from PBMCs in Enzyme-Linked ImmunoSpot assays after three immunization time points. At six immunization time points, IFN-γ- and IL-17-producing cells were found in immunized animals as well as in control animals and were thus considered nonspecific and not due to the immunization regimen. IFN-γ and IL-17 secretion in response to Aβ42 peptide restimulation became undetectable after a 3-month rest period. Intradermal DNA Aβ42 immunization delivered with the gene gun produces a high antibody response in NHPs and is highly likely to be effective and safe in a clinical AD prevention trial in patients.
CMV immune evasion and manipulation of the immune system with aging.
Jackson, Sarah E; Redeker, Anke; Arens, Ramon; van Baarle, Debbie; van den Berg, Sara P H; Benedict, Chris A; Čičin-Šain, Luka; Hill, Ann B; Wills, Mark R
2017-06-01
Human cytomegalovirus (HCMV) encodes numerous proteins and microRNAs that function to evade the immune response and allow the virus to replicate and disseminate in the face of a competent innate and acquired immune system. The establishment of a latent infection by CMV, which if completely quiescent at the level of viral gene expression would represent an ultimate in immune evasion strategies, is not sufficient for lifelong persistence and dissemination of the virus. CMV needs to reactivate and replicate in a lytic cycle of infection in order to disseminate further, which occurs in the face of a fully primed secondary immune response. Without reactivation, latency itself would be redundant for the virus. It is also becoming clear that latency is not a totally quiescent state, but is characterized by limited viral gene expression. Therefore, the virus also needs immune evasion strategies during latency. An effective immune response to CMV is required or viral replication will cause morbidity and ultimately mortality in the host. There is clearly a complex balance between virus immune evasion and host immune recognition over a lifetime. This poses the important question of whether long-term evasion or manipulation of the immune response driven by CMV is detrimental to health. In this meeting report, three groups used the murine model of CMV (MCMV) to examine if the contribution of the virus to immune senescence is set by the (i) initial viral inoculum, (ii) inflation of T cell responses, (iii) or the balance between functionally distinct effector CD4+ T cells. The work of other groups studying the CMV response in humans is discussed. Their work asks whether the ability to make immune responses to new antigens is compromised by (i) age and HCMV carriage, (ii) long-term exposure to HCMV giving rise to an overall immunosuppressive environment and increased levels of latent virus, or (iii) adapted virus mutants (used as potential vaccines) that have the capacity to elicit conventional and unconventional T cell responses.
Walia, Vishakh; Kumar, Rohit; Mitra, Abhijit
2015-01-01
Monocyte derived macrophages (MDMs), as an in vitro model in pathogen challenge studies, are generally induced with lipopolysaccharide (LPS) and concanavalin A (ConA) to assay cellular immunity. General immune responses to LPS and ConA have been studied in a wide range of species, but similar studies are limited to goats. In the present study, caprine MDMs were induced with LPS and ConA and the expression profile of immune response (IR) genes, namely, Tumor Necrosis Factor Alpha (TNFA), Interferon Gamma (IFNG), Interleukin 2 (IL2), Granulocyte Macrophage Colony Stimulating Factor (GMCSF), Interleukin 10 (IL10), Transforming Growth Factor Beta (TGFB), Natural Resistance-Associated Macrophage Protein-1 (NRAMP1), inducible nitric oxide synthase (NOS2), and caspase1 (CASP1) were studied to compare the potential of LPS and ConA in initiating immune responses in goat macrophages. Real Time quantitative PCR (RT-qPCR) analysis revealed that both LPS and ConA caused an upregulation (p < 0.05) of GMCSF, TGFB1, IL10, and IFNG and down-regulation of NRAMP1. TNFA and IL2, and NOS2 were upregulated (p < 0.05) by ConA and LPS, respectively. Whereas, the expression of CASP1 remain unaltered. Comparatively, the effect of ConA was more pronounced (p < 0.05) in regulating the expression of IR genes suggesting its suitability for studying the general immune responses in caprine MDM.
Role of Innate Immunity in a Model of Histidyl-tRNA Synthetase (Jo-1)-mediated Myositis
Soejima, Makoto; Kang, Eun Ha; Gu, Xinyan; Katsumata, Yasuhiro; Clemens, Paula R.; Ascherman, Dana P.
2010-01-01
Objectives Previous work in humans and in animal models supports a key role for histidyl-tRNA synthetase (HRS=Jo-1) in the pathogenesis of idiopathic inflammatory myopathy. While most investigations have focused on the ability of HRS to trigger adaptive immune responses, in vitro studies clearly indicate that HRS possesses intrinsic chemokine-like properties capable of activating the innate immune system. The purpose of this study was therefore to examine the ability of HRS to direct innate immune responses in a murine model of myositis. Methods Following intramuscular immunization with soluble HRS in the absence of exogenous adjuvant, selected strains of mice were evaluated at different time points for histopathologic evidence of myositis. ELISA-based assessment of autoantibody formation and CFSE proliferation studies provided complementary measures of B and T cell responses triggered by HRS immunization. Results Compared to appropriate control proteins, a murine HRS fusion protein induced robust, statistically significant muscle inflammation in multiple congenic strains of C57BL/6 and NOD mice. Time course experiments revealed that this inflammatory response occurred as early as 7 days post immunization and persisted for up to 7 weeks. Parallel immunization strategies in DO11.10/Rag2−/− and C3H/HeJ (TLR4−/−) mice indicated that the ability of murine HRS to drive muscle inflammation was not dependent on B cell receptor or T cell receptor recognition and did not require TLR4 signaling. Conclusion Collectively, these experiments support a model in which HRS can trigger both innate and adaptive immune responses which culminate in severe muscle inflammation that is the hallmark of idiopathic inflammatory myopathy. PMID:21280002
Yuen, Grace J; Ausubel, Frederick M
2018-12-31
The innate immune response of the nematode Caenorhabditis elegans has been extensively studied and a variety of Toll-independent immune response pathways have been identified. Surprisingly little, however, is known about how pathogens activate the C. elegans immune response. Enterococcus faecalis and Enterococcus faecium are closely related enterococcal species that exhibit significantly different levels of virulence in C. elegans infection models. Previous work has shown that activation of the C. elegans immune response by Pseudomonas aeruginosa involves P. aeruginosa-mediated host damage. Through ultrastructural imaging, we report that infection with either E. faecalis or E. faecium causes the worm intestine to become distended with proliferating bacteria in the absence of extensive morphological changes and apparent physical damage. Genetic analysis, whole-genome transcriptional profiling, and multiplexed gene expression analysis demonstrate that both enterococcal species, whether live or dead, induce a rapid and similar transcriptional defense response dependent upon previously described immune signaling pathways. The host response to E. faecium shows a stricter dependence upon stress response signaling pathways than the response to E. faecalis. Unexpectedly, we find that E. faecium is a C. elegans pathogen and that an active wild-type host defense response is required to keep an E. faecium infection at bay. These results provide new insights into the mechanisms underlying the C. elegans immune response to pathogen infection.
2018-01-01
ABSTRACT The innate immune response of the nematode Caenorhabditis elegans has been extensively studied and a variety of Toll-independent immune response pathways have been identified. Surprisingly little, however, is known about how pathogens activate the C. elegans immune response. Enterococcus faecalis and Enterococcus faecium are closely related enterococcal species that exhibit significantly different levels of virulence in C. elegans infection models. Previous work has shown that activation of the C. elegans immune response by Pseudomonas aeruginosa involves P. aeruginosa-mediated host damage. Through ultrastructural imaging, we report that infection with either E. faecalis or E. faecium causes the worm intestine to become distended with proliferating bacteria in the absence of extensive morphological changes and apparent physical damage. Genetic analysis, whole-genome transcriptional profiling, and multiplexed gene expression analysis demonstrate that both enterococcal species, whether live or dead, induce a rapid and similar transcriptional defense response dependent upon previously described immune signaling pathways. The host response to E. faecium shows a stricter dependence upon stress response signaling pathways than the response to E. faecalis. Unexpectedly, we find that E. faecium is a C. elegans pathogen and that an active wild-type host defense response is required to keep an E. faecium infection at bay. These results provide new insights into the mechanisms underlying the C. elegans immune response to pathogen infection. PMID:29436902
Zimmermann, Michael T.; Kennedy, Richard B.; Grill, Diane E.; Oberg, Ann L.; Goergen, Krista M.; Ovsyannikova, Inna G.; Haralambieva, Iana H.; Poland, Gregory A.
2017-01-01
The development of a humoral immune response to influenza vaccines occurs on a multisystems level. Due to the orchestration required for robust immune responses when multiple genes and their regulatory components across multiple cell types are involved, we examined an influenza vaccination cohort using multiple high-throughput technologies. In this study, we sought a more thorough understanding of how immune cell composition and gene expression relate to each other and contribute to interindividual variation in response to influenza vaccination. We first hypothesized that many of the differentially expressed (DE) genes observed after influenza vaccination result from changes in the composition of participants’ peripheral blood mononuclear cells (PBMCs), which were assessed using flow cytometry. We demonstrated that DE genes in our study are correlated with changes in PBMC composition. We gathered DE genes from 128 other publically available PBMC-based vaccine studies and identified that an average of 57% correlated with specific cell subset levels in our study (permutation used to control false discovery), suggesting that the associations we have identified are likely general features of PBMC-based transcriptomics. Second, we hypothesized that more robust models of vaccine response could be generated by accounting for the interplay between PBMC composition, gene expression, and gene regulation. We employed machine learning to generate predictive models of B-cell ELISPOT response outcomes and hemagglutination inhibition (HAI) antibody titers. The top HAI and B-cell ELISPOT model achieved an area under the receiver operating curve (AUC) of 0.64 and 0.79, respectively, with linear model coefficients of determination of 0.08 and 0.28. For the B-cell ELISPOT outcomes, CpG methylation had the greatest predictive ability, highlighting potentially novel regulatory features important for immune response. B-cell ELISOT models using only PBMC composition had lower performance (AUC = 0.67), but highlighted well-known mechanisms. Our analysis demonstrated that each of the three data sets (cell composition, mRNA-Seq, and DNA methylation) may provide distinct information for the prediction of humoral immune response outcomes. We believe that these findings are important for the interpretation of current omics-based studies and set the stage for a more thorough understanding of interindividual immune responses to influenza vaccination. PMID:28484452
Hou, Jue; Wang, Shuhui; Jia, Manxue; Li, Dan; Liu, Ying; Li, Zhengpeng; Zhu, Hong; Xu, Huifang; Sun, Meiping; Lu, Li; Zhou, Zhinan; Peng, Hong; Zhang, Qichen; Fu, Shihong; Liang, Guodong; Yao, Lena; Yu, Xuesong; Carpp, Lindsay N; Huang, Yunda; McElrath, Julie; Self, Steve; Shao, Yiming
2017-08-15
In this study, we used a systems vaccinology approach to identify temporal changes in immune response signatures to the yellow fever (YF)-17D vaccine, with the aim of comprehensively characterizing immune responses associated with protective immunity. We conducted a cohort study in which 21 healthy subjects in China were administered one dose of the YF-17D vaccine; PBMCs were collected at 0 h and then at 4 h and days 1, 2, 3, 5, 7, 14, 28, 84, and 168 postvaccination, and analyzed by transcriptional profiling and immunological assays. At 4 h postvaccination, genes associated with innate cell differentiation and cytokine pathways were dramatically downregulated, whereas receptor genes were upregulated, compared with their baseline levels at 0 h. Immune response pathways were primarily upregulated on days 5 and 7, accompanied by the upregulation of the transcriptional factors JUP, STAT1, and EIF2AK2. We also observed robust activation of innate immunity within 2 d postvaccination and a durable adaptive response, as assessed by transcriptional profiling. Coexpression network analysis indicated that lysosome activity and lymphocyte proliferation were associated with dendritic cell (DC) and CD4 + T cell responses; FGL2, NFAM1, CCR1, and TNFSF13B were involved in these associations. Moreover, individuals who were baseline-seropositive for Abs against another flavivirus exhibited significantly impaired DC, NK cell, and T cell function in response to YF-17D vaccination. Overall, our findings indicate that YF-17D vaccination induces a prompt innate immune response and DC activation, a robust Ag-specific T cell response, and a persistent B cell/memory B cell response. Copyright © 2017 by The American Association of Immunologists, Inc.
Burn Enhances Toll-Like Receptor Induced Responses by Circulating Leukocytes
2012-04-30
Introduction Major burn is associated with a local and sys- temic activation of the innate immune system resulting in a profound inflammatory...plications. Previous studies have shown that responses after burn differ between fixed-tissue immune cells and circulating immune cells [15]. In the current...Abstract: Burn and toll-like receptors (TLR) are associated with innate immune system activation, but the impact of burn on TLR-induced inflammation
Mesenchymal stem cells: a double-edged sword in regulating immune responses
Li, W; Ren, G; Huang, Y; Su, J; Han, Y; Li, J; Chen, X; Cao, K; Chen, Q; Shou, P; Zhang, L; Yuan, Z-R; Roberts, A I; Shi, S; Le, A D; Shi, Y
2012-01-01
Mesenchymal stem cells (MSCs) have been employed successfully to treat various immune disorders in animal models and clinical settings. Our previous studies have shown that MSCs can become highly immunosuppressive upon stimulation by inflammatory cytokines, an effect exerted through the concerted action of chemokines and nitric oxide (NO). Here, we show that MSCs can also enhance immune responses. This immune-promoting effect occurred when proinflammatory cytokines were inadequate to elicit sufficient NO production. When inducible nitric oxide synthase (iNOS) production was inhibited or genetically ablated, MSCs strongly enhance T-cell proliferation in vitro and the delayed-type hypersensitivity response in vivo. Furthermore, iNOS−/− MSCs significantly inhibited melanoma growth. It is likely that in the absence of NO, chemokines act to promote immune responses. Indeed, in CCR5−/−CXCR3−/− mice, the immune-promoting effect of iNOS−/− MSCs is greatly diminished. Thus, NO acts as a switch in MSC-mediated immunomodulation. More importantly, the dual effect on immune reactions was also observed in human MSCs, in which indoleamine 2,3-dioxygenase (IDO) acts as a switch. This study provides novel information about the pathophysiological roles of MSCs. PMID:22421969
Effect of adjuvants on the humoral immune response to congopain in mice and cattle.
Kateregga, John; Lubega, George W; Lindblad, Erik B; Authié, Edith; Coetzer, Theresa Helen Taillefer; Boulangé, Alain François Vincent
2012-05-23
We investigated several adjuvants for their effects on the humoral immune response in both mice and cattle using the central domain of congopain (C2), the major cysteine protease of Trypanosoma congolense, as a model for developing a vaccine against animal trypanosomosis. The magnitude and sustainability of the immune response against C2 and the occurrence of a booster effect of infection, an indirect measure of the presence of memory cells, were determined by ELISA, while spectrofluorometry was used to determine and measure the presence of enzyme-inhibiting antibodies. Mice immunized with recombinant C2 in TiterMax™, Adjuphos™, purified saponin Quil A™ or Gerbu™ showed the best response according to the evaluation criteria and the latter three were chosen for the cattle vaccination study. The cattle were challenged with T. congolense four and a half months after the last booster. Cattle immunized with recombinant C2 in purified saponin Quil A™ showed the best antibody response according to the measured parameters. We identified purified saponin Quil A™ as a good adjuvant for immunizations with C2. The results from this study will be useful in future attempts to develop an effective anti-disease vaccine against African trypanosomosis.
Cutaneous immunization: an evolving paradigm in influenza vaccines
Gill, Harvinder S; Kang, Sang-Moo; Quan, Fu-Shi; Compans, Richard W
2014-01-01
Introduction Most vaccines are administered by intramuscular injection using a hypodermic needle and syringe. Some limitations of this procedure include reluctance to be immunized because of fear of needlesticks, and concerns associated with the safe disposal of needles after their use. Skin delivery is an alternate route of vaccination that has potential to be painless and could even lead to dose reduction of vaccines. Recently, microneedles have emerged as a novel painless approach for delivery of influenza vaccines via the skin. Areas covered In this review, we briefly summarize the approaches and devices used for skin vaccination, and then focus on studies of skin immunization with influenza vaccines using microneedles. We discuss both the functional immune response and the nature of this immune response following vaccination with microneedles. Expert opinion The cutaneous administration of influenza vaccines using microneedles offers several advantages: it is painless, elicits stronger immune responses in preclinical studies and could improve responses in high-risk populations. These dry formulations of vaccines provide enhanced stability, a property of high importance in enabling their rapid global distribution in response to possible outbreaks of pandemic influenza and newly emerging infectious diseases. PMID:24521050
Motrich, Ruben D; Breser, María L; Sánchez, Leonardo R; Godoy, Gloria J; Prinz, Immo; Rivero, Virginia E
2016-03-01
Pain and inflammation in the absence of infection are hallmarks in chronic prostatitis and chronic pelvic pain syndrome (CP/CPPS) patients. The etiology of CP/CPPS is unclear, and autoimmunity has been proposed as a cause. Experimental autoimmune prostatitis (EAP) models have long been used for studying CP/CPPS. Herein, we studied prostate inflammation induction and chronic pelvic pain development in EAP using IL-12p40-KO, IL-4-KO, IL-17-KO, and wild-type (C57BL/6) mice. Prostate antigen (PAg) immunization in C57BL/6 mice induced specific Th1 and Th17 immune responses and severe prostate inflammation and cell infiltration, mainly composed of CD4 T cells and macrophages. Moreover, chronic pelvic pain was evidenced by increased allodynia responses. In immunized IL-17-KO mice, the presence of a prominent PAg-specific Th1 immune response caused similar prostate inflammation and chronic pelvic pain. Furthermore, markedly high PAg-specific Th1 immune responses, exacerbated prostate inflammation, and chronic pelvic pain were detected in immunized IL-4-KO mice. Conversely, immunized IL-12p40-KO mice developed PAg-specific Th2 immune responses, characterized by high IL-4 secretion and neither infiltration nor damage in the prostate. As observed in wild-type control animals, IL12p40-KO mice did not evidence tactile allodynia responses. Our results suggest that, as in patients, chronic pelvic pain is a consequence of prostate inflammation. After PAg immunization, a Th1-associated immune response develops and induces prostate inflammation and chronic pelvic pain. The absence of Th1 or Th2 cytokines, respectively, diminishes or enhances EAP susceptibility. In addition, IL-17 showed not to be essential for pathology induction and chronic pelvic pain development.
Sherri, Nour; Salloum, Noor; Mouawad, Carine; Haidar-Ahmad, Nathaline; Shirinian, Margret; Rahal, Elias A
2018-01-01
Infection with the Epstein-Barr virus (EBV) is associated with several malignancies and autoimmune diseases in humans. The following EBV infection and establishment of latency, recurrences frequently occur resulting in potential viral DNA shedding, which may then trigger the activation of immune pathways. We have previously demonstrated that levels of the pro-inflammatory cytokine IL-17, which is associated with several autoimmune diseases, are increased in response to EBV DNA injection in mice. Whether other pro-inflammatory pathways are induced in EBV DNA pathobiology remains to be investigated. The complexity of mammalian immune systems presents a challenge to studying differential activities of their intricate immune pathways in response to a particular immune stimulus. In this study, we used Drosophila melanogaster to identify innate humoral and cellular immune pathways that are activated in response to EBV DNA. Injection of wild-type adult flies with EBV DNA induced the immune deficiency (IMD) pathway resulting in enhanced expression of the antimicrobial peptide diptericin. Furthermore, EBV DNA increased the number of hemocytes in flies. Conditional silencing of the IMD pathway decreased diptericin expression in addition to curbing of hemocyte proliferation in response to challenge with EBV DNA. Comparatively, upon injecting mice with EBV DNA, we detected enhanced expression of tumor necrosis factor-α (TNFα); this enhancement is rather comparable to IMD pathway activation in flies. This study hence indicates that D. melanogaster could possibly be utilized to identify immune mediators that may also play a role in the response to EBV DNA in higher systems.
DNA β-Amyloid1–42 Trimer Immunization for Alzheimer Disease in a Wild-Type Mouse Model
Lambracht-Washington, Doris; Qu, Bao-Xi; Fu, Min; Eagar, Todd N.; Stüve, Olaf; Rosenberg, Roger N.
2010-01-01
Context DNA β-amyloid1–42 (Aβ42) trimer immunization was developed to produce specific T helper 2 cell (TH2)–type antibodies to provide an effective and safe therapy for Alzheimer disease (AD) by reducing elevated levels of Aβ42 peptide that occur in the brain of patients with AD. Objective To compare the immune response in wild-type mice after immunization with DNA Aβ42 trimer and Aβ42 peptide. Design and Intervention Wild-type mice received either 4 µg of DNA Aβ42 trimer immunization administered with gene gun (n=8) or intraperitoneal injection of 100 µg of human Aβ42 peptide with the adjuvant Quil A (n=8). Titers, epitope mapping, and isotypes of the Aβ42-specific antibodies were analyzed. Main Outcome Measures Antibody titers, mapping of binding sites (epitopes), isotype profiles of the Aβ42-specific antibodies, and T-cell activation. Results DNA Aβ42 trimer immunization resulted in antibody titers with a mean of 15 µg per milliliter of plasma. The isotype profile of the antibodies differed markedly. A predominant IgG1 antibody response was found in the DNA-immunized mice, indicating a TH2 type of immune response (IgG1/IgG2a ratio of 10). The peptide-immunized mice showed a mixed TH1/TH2 immune response (IgG1/IgG2a ratio of 1) (P<.001). No increased T-cell proliferation was observed in the DNA-immunized mice (P=.03). Conclusion In this preliminary study in a wild-type mouse model, DNA Aβ42 trimer immunization protocol produced a TH2 immune response and appeared to have low potential to cause an inflammatory T-cell response. PMID:19861672
DNA beta-amyloid(1-42) trimer immunization for Alzheimer disease in a wild-type mouse model.
Lambracht-Washington, Doris; Qu, Bao-Xi; Fu, Min; Eagar, Todd N; Stüve, Olaf; Rosenberg, Roger N
2009-10-28
DNA beta-amyloid(1-42) (Abeta42) trimer immunization was developed to produce specific T helper 2 cell (T(H)2)-type antibodies to provide an effective and safe therapy for Alzheimer disease (AD) by reducing elevated levels of Abeta42 peptide that occur in the brain of patients with AD. To compare the immune response in wild-type mice after immunization with DNA Abeta42 trimer and Abeta42 peptide. Wild-type mice received either 4 microg of DNA Abeta42 trimer immunization administered with gene gun (n = 8) or intraperitoneal injection of 100 microg of human Abeta42 peptide with the adjuvant Quil A (n = 8). Titers, epitope mapping, and isotypes of the Abeta42-specific antibodies were analyzed. Antibody titers, mapping of binding sites (epitopes), isotype profiles of the Abeta42-specific antibodies, and T-cell activation. DNA Abeta42 trimer immunization resulted in antibody titers with a mean of 15 microg per milliliter of plasma. The isotype profile of the antibodies differed markedly. A predominant IgG1 antibody response was found in the DNA-immunized mice, indicating a T(H)2 type of immune response (IgG1/IgG2a ratio of 10). The peptide-immunized mice showed a mixed T(H)1/T(H)2 immune response (IgG1/IgG2a ratio of 1) (P < .001). No increased T-cell proliferation was observed in the DNA-immunized mice (P = .03). In this preliminary study in a wild-type mouse model, DNA Abeta42 trimer immunization protocol produced a T(H)2 immune response and appeared to have low potential to cause an inflammatory T-cell response.
Retinoic Acid as a Modulator of T Cell Immunity
Bono, Maria Rosa; Tejon, Gabriela; Flores-Santibañez, Felipe; Fernandez, Dominique; Rosemblatt, Mario; Sauma, Daniela
2016-01-01
Vitamin A, a generic designation for an array of organic molecules that includes retinal, retinol and retinoic acid, is an essential nutrient needed in a wide array of aspects including the proper functioning of the visual system, maintenance of cell function and differentiation, epithelial surface integrity, erythrocyte production, reproduction, and normal immune function. Vitamin A deficiency is one of the most common micronutrient deficiencies worldwide and is associated with defects in adaptive immunity. Reports from epidemiological studies, clinical trials and experimental studies have clearly demonstrated that vitamin A plays a central role in immunity and that its deficiency is the cause of broad immune alterations including decreased humoral and cellular responses, inadequate immune regulation, weak response to vaccines and poor lymphoid organ development. In this review, we will examine the role of vitamin A in immunity and focus on several aspects of T cell biology such as T helper cell differentiation, function and homing, as well as lymphoid organ development. Further, we will provide an overview of the effects of vitamin A deficiency in the adaptive immune responses and how retinoic acid, through its effect on T cells can fine-tune the balance between tolerance and immunity. PMID:27304965
Dahiya, S S; Saini, M; Kumar, P; Gupta, P K
2011-01-01
A Sindbis virus replicon-based DNA vaccine containing VP2 gene of canine parvovirus (CPV) was delivered by Escherichia coli to elicit immune responses. The orally immunized dogs developed CPV-specific serum IgG and virus neutralizing antibody responses. The cellular immune responses analyzed using lymphocyte proliferation test and flow cytometry indicated CPV-specific sensitization of both CD3+CD4+ and CD3+CD8+ lymphocytes. This study demonstrated that the oral CPV DNA vaccine delivered by E. coli can be considered as a promising approach for vaccination of dogs against CPV.
[Research advances of anti-tumor immune response induced by pulse electric field ablation].
Cui, Guang-ying; Diao, Hong-yan
2015-11-01
As a novel tumor therapy, pulse electric field has shown a clinical perspective. This paper reviews the characteristics of tumor ablation by microsecond pulse and nanosecond pulse electric field, and the research advances of anti-tumor immune response induced by pulse electric field ablation. Recent researches indicate that the pulse electric field not only leads to a complete ablation of local tumor, but also stimulates a protective immune response, thereby inhibiting tumor recurrence and metastasis. These unique advantages will show an extensive clinical application in the future. However, the mechanism of anti-tumor immune response and the development of related tumor vaccine need further studies.
Lopez, Wilfredo; Page, Alexis M; Carlson, Darby J; Ericson, Brad L; Cserhati, Matyas F; Guda, Chittibabu; Carlson, Kimberly A
2018-01-01
Drosophila melanogaster depends upon the innate immune system to regulate and combat viral infection. This is a complex, yet widely conserved process that involves a number of immune pathways and gene interactions. In addition, expression of genes involved in immunity are differentially regulated as the organism ages. This is particularly true for viruses that demonstrate chronic infection, as is seen with Nora virus. Nora virus is a persistent non-pathogenic virus that replicates in a horizontal manner in D. melanogaster . The genes involved in the regulation of the immune response to Nora virus infection are largely unknown. In addition, the temporal response of immune response genes as a result of infection has not been examined. In this study, D. melanogaster either infected with Nora virus or left uninfected were aged for 2, 10, 20 and 30 days. The RNA from these samples was analyzed by next generation sequencing (NGS) and the resulting immune-related genes evaluated by utilizing both the PANTHER and DAVID databases, as well as comparison to lists of immune related genes and FlyBase. The data demonstrate that Nora virus infected D. melanogaster exhibit an increase in immune related gene expression over time. In addition, at day 30, the data demonstrate that a persistent immune response may occur leading to an upregulation of specific immune response genes. These results demonstrate the utility of NGS in determining the potential immune system genes involved in Nora virus replication, chronic infection and involvement of antiviral pathways.
Muñoz-Carrillo, José Luis; Muñoz-López, José Luis; Muñoz-Escobedo, José Jesús; Maldonado-Tapia, Claudia; Gutiérrez-Coronado, Oscar; Contreras-Cordero, Juan Francisco; Moreno-García, María Alejandra
2017-12-01
The immune response against Trichinella spiralis at the intestinal level depends on the CD4+ T cells, which can both suppress or promote the inflammatory response through the synthesis of diverse cytokines. During the intestinal phase, the immune response is mixed (Th1/Th2) with the initial predominance of the Th1 response and the subsequent domination of Th2 response, which favor the development of intestinal pathology. In this context, the glucocorticoids (GC) are the pharmacotherapy for the intestinal inflammatory response in trichinellosis. However, its therapeutic use is limited, since studies have shown that treatment with GC suppresses the host immune system, favoring T. spiralis infection. In the search for novel pharmacological strategies that inhibit the Th1 immune response (proinflammatory) and assist the host against T. spiralis infection, recent studies showed that resiniferatoxin (RTX) had anti-inflammatory activity, which decreased the serum levels of IL-12, INF-γ, IL-1β, TNF-α, NO, and PGE2, as well the number of eosinophils in the blood, associated with decreased intestinal pathology and muscle parasite burden. These researches demonstrate that RTX is capable to inhibit the production of Th1 cytokines, contributing to the defense against T. spiralis infection, which places it as a new potential drug modulator of the immune response.
Muñoz-Carrillo, José Luis; Muñoz-López, José Luis; Muñoz-Escobedo, José Jesús; Maldonado-Tapia, Claudia; Gutiérrez-Coronado, Oscar; Contreras-Cordero, Juan Francisco; Moreno-García, María Alejandra
2017-01-01
The immune response against Trichinella spiralis at the intestinal level depends on the CD4+ T cells, which can both suppress or promote the inflammatory response through the synthesis of diverse cytokines. During the intestinal phase, the immune response is mixed (Th1/Th2) with the initial predominance of the Th1 response and the subsequent domination of Th2 response, which favor the development of intestinal pathology. In this context, the glucocorticoids (GC) are the pharmacotherapy for the intestinal inflammatory response in trichinellosis. However, its therapeutic use is limited, since studies have shown that treatment with GC suppresses the host immune system, favoring T. spiralis infection. In the search for novel pharmacological strategies that inhibit the Th1 immune response (proinflammatory) and assist the host against T. spiralis infection, recent studies showed that resiniferatoxin (RTX) had anti-inflammatory activity, which decreased the serum levels of IL-12, INF-γ, IL-1β, TNF-α, NO, and PGE2, as well the number of eosinophils in the blood, associated with decreased intestinal pathology and muscle parasite burden. These researches demonstrate that RTX is capable to inhibit the production of Th1 cytokines, contributing to the defense against T. spiralis infection, which places it as a new potential drug modulator of the immune response. PMID:29320813
Voigt, Emily A.; Ovsyannikova, Inna G.; Haralambieva, Iana H.; Kennedy, Richard B.; Larrabee, Beth R.; Schaid, Daniel J.; Poland, Gregory A.
2017-01-01
In addition to host genetic and environmental factors, variations in immune responses to vaccination are influenced by demographic variables, such as race and sex. The influence of genetic race and sex on measles vaccine responses is not well understood, yet important for the development of much-needed improved measles vaccines with lower failure rates. We assessed associations between genetically defined race and sex with measles humoral and cellular immunity after measles vaccination in three independent and geographically distinct cohorts totaling 2,872 healthy racially diverse children, older adolescents, and young adults. We found no associations between biological sex and either humoral or cellular immunity to measles vaccine, and no correlation between humoral and cellular immunity in these study subjects. Genetically defined race was, however, significantly associated with both measles vaccine-induced humoral and cellular immune responses, with subjects genetically classified as having African-American ancestry demonstrating significantly higher antibody and cell-mediated immune responses relative to subjects of Caucasian ancestry. This information may be useful in designing novel measles vaccines that are optimally effective across human genetic backgrounds. PMID:27591105
Qu, Baoxi; Rosenberg, Roger N; Li, Liping; Boyer, Philip J; Johnston, Stephen A
2004-12-01
The amyloid-beta (Abeta) peptide has a central role in the neurodegeneration of Alzheimer disease (AD). Immunization of AD transgenic mice with Abeta(1-42) (Abeta(42)) peptide reduces both the spatial memory impairments and AD-like neuropathologic changes in these mice. Therapeutic immunization with Abeta in patients with AD was shown to be effective in reducing Abeta deposition, but studies were discontinued owing to the development of an autoimmune, cell-mediated meningoencephalitis. We hypothesized that gene vaccination could be used to generate an immune response to Abeta(42) that produced antibody response but avoided an adverse cell-mediated immune effect. To develop an effective genetic immunization approach for treatment and prevention of AD without causing an autoimmune, cell-mediated meningoencephalitis. Mice were vaccinated with a plasmid that encodes Abeta(42), administered by gene gun. The immune response of the mice to Abeta(42) was monitored by measurement of (1) antibody levels by enzyme-linked immunosorbent assay (ELISA) and Western blot and (2) Abeta(42)-specific T-cell response as measured by interferon-gamma enzyme-linked immunospot (ELISPOT) assay. Gene-gun delivery of the mouse Abeta(42) dimer gene induced significant humoral immune responses in BALB/c wild-type mice after 3 vaccinations in 10-day intervals. All 3 mice in the treated group showed significant humoral immune responses. The ELISPOT assay for interferon-gamma release with mouse Abeta(42) peptide and Abeta(9-18) showed no evident cytotoxic T-lymphocyte response. We further tested the responses of wild-type BALB/c mice to the monomer Abeta(42) gene vaccine. Western blot evaluation showed both human and mouse Abeta monomer gene vaccine elicited detectable humoral immune responses. We also introduced the human Abeta(42) monomer gene vaccine into AD double transgenic mice APPswe/PSEN1(A246E). Mice were vaccinated with plasmids that encode Abeta(1-42) and Abeta(1-16), or with plasmid without the Abeta gene. Treated mice showed significant humoral immune responses as demonstrated by ELISA and by Western blot. These mice also showed no significant cellular immune response as tested by ELISPOT. One of the treated mice was killed at 7 months of age for histological observations, and scattered amyloid plaques were noted in all layers of the cerebral cortex and in the hippocampus in both Abeta(42)- and control-vaccinated mice. No definite difference was discerned between the experimental and control animals. Gene-gun-administered genetic immunization with the Abeta(42) gene in wild-type BALB/c and AD transgenic mice can effectively elicit humoral immune responses without a significant T-cell-mediated immune response to the Abeta peptide. This immunotherapeutic approach could provide an alternative active immunization method for therapy and prevention of AD.
Suppressed plasmablast responses in febrile infants, including children with Kawasaki disease
Martin, Meghan; Wrotniak, Brian H.
2018-01-01
Background Kawasaki disease (KD), the leading cause of acquired heart disease in children, primarily affects infants and toddlers. Investigations on immune responses during KD are hampered by a limited understanding of normal immune responses in these ages. It’s well known that Infants have poorer vaccine responses and difficulty with maintaining prolonged serum immunity, but there are few studies on human infants detailing immune deficiencies. Limited studies propose an inability to maintain life-long bone marrow plasma cells. Plasmablasts are a transitional cell form of B cells that lead to long-term Plasma cells. Plasmablasts levels rise in the peripheral blood after exposure to a foreign antigen. In adult studies, these responses are both temporally and functionally well characterized. To date, there have been few studies on plasmablasts in the predominant age range of KD. Methods Children presenting to an urban pediatric emergency room undergoing laboratory evaluation, who had concern of KD or had fever and symptoms overlapping those of KD, were recruited. Peripheral blood mononuclear cells were isolated and evaluated utilizing flow cytometry with specific B cell markers from 18 KD subjects and 69 febrile controls. Results Plasmablast numbers and temporal formation are similar between infectious disease controls and KD subjects. In both groups, infants have diminished plasmablast responses compared to older children. Conclusion In this single-time point survey, infants have a blunted peripheral plasmablast response. Overall, similar plasmablast responses in KD and controls support an infectious disease relationship to KD. Future time-course studies of plasmablasts in infants are warranted as this phenomenon may contribute to observed immune responses in this age group. PMID:29579044
Tae, Donghyun; Seok, Junhee
2018-05-29
In this paper, we introduce multiple-matching Evidence-based Translator (mEBT) to discover genomic responses from murine expression data for human immune studies, which are significant in the given condition of mice and likely have similar responses in the corresponding condition of human. mEBT is evaluated over multiple data sets and shows improved inter-species agreement. mEBT is expected to be useful for research groups who use murine models to study human immunity. http://cdal.korea.ac.kr/mebt/. jseok14@korea.ac.kr. Supplementary data are available at Bioinformatics online.
Masking of antigenic epitopes by antibodies shapes the humoral immune response to influenza
Zarnitsyna, Veronika I.; Ellebedy, Ali H.; Davis, Carl; Jacob, Joshy; Ahmed, Rafi; Antia, Rustom
2015-01-01
The immune responses to influenza, a virus that exhibits strain variation, show complex dynamics where prior immunity shapes the response to the subsequent infecting strains. Original antigenic sin (OAS) describes the observation that antibodies to the first encountered influenza strain, specifically antibodies to the epitopes on the head of influenza's main surface glycoprotein, haemagglutinin (HA), dominate following infection with new drifted strains. OAS suggests that responses to the original strain are preferentially boosted. Recent studies also show limited boosting of the antibodies to conserved epitopes on the stem of HA, which are attractive targets for a ‘universal vaccine’. We develop multi-epitope models to explore how pre-existing immunity modulates the immune response to new strains following immunization. Our models suggest that the masking of antigenic epitopes by antibodies may play an important role in describing the complex dynamics of OAS and limited boosting of antibodies to the stem of HA. Analysis of recently published data confirms model predictions for how pre-existing antibodies to an epitope on HA decrease the magnitude of boosting of the antibody response to this epitope following immunization. We explore strategies for boosting of antibodies to conserved epitopes and generating broadly protective immunity to multiple strains. PMID:26194761
Immunological and Hematopoietic Biotechnology Studies
NASA Technical Reports Server (NTRS)
Fernandez-Botran, Rafael; Sonnenfeld, Gerald
1996-01-01
The purpose of the work carried under this interchanges was to support the development of space flight biotechnology experiments in the areas of immunology and hematopoiesis to facilitate the commercial development of space. The studies involved the interaction and development of experiments with biotechnology companies for necessary ground-based studies to allow the development of flight studies. The thrust of the work was to develop experiments with the Chiron Corporation and Bioserve involving the use of interleukin-2 to modulate the effects of spaceflight on immune responses. Spaceflight has been shown to have multiple effects on immune responses (1). lnterleukin-2 is an immuno-regulator that could have potential to counter some of the alterations induced in immune responses by spaceflight (1). To test this possibility before flight, rats were suspended antiorthostatically (2) and treated with interleukin-2. Antiorthostatic suspension is a model for some of the effects of spaceflight on immune responses (2). The interleukin-2 was given to see if it could alter some of the effects of suspension. This was achieved. As a result of these studies, two flight experiments were developed and flown with the Chiron Corp. And Bioserve to determine if use of interleukin-2 could prevent or attenuate the effects of space flight on immune responses.
Gupta, Shishir Kumar; Yadav, Pavan Kumar; Tiwari, A K; Gandham, Ravi Kumar; Sahoo, A P
2016-09-01
The canine parvovirus NS1 (CPV2.NS1) protein selectively induces apoptosis in the malignant cells. However, for an effective in vivo tumor treatment strategy, an oncolytic agent also needs to induce a potent anti-tumor immune response. In the present study, we used poly (I:C), a TLR3 ligand, as an adjuvant along with CPV2.NS1 to find out if the combination can enhance the oncolytic activity by inducing a potent anti-tumor immune response. The 4T1 mammary carcinoma cells were used to induce mammary tumor in Balb/c mice. The results suggested that poly (I:C), when given along with CPV2.NS1, not only significantly reduced the tumor growth but also augmented the immune response against tumor antigen(s) as indicated by the increase in blood CD4+ and CD8+ counts and infiltration of immune cells in the tumor tissue. Further, blood serum analysis of the cytokines revealed that Th1 cytokines (IFN-γ and IL-2) were significantly upregulated in the treatment group indicating activation of cell-mediated immune response. The present study reports the efficacy of CPV2.NS1 along with poly (I:C) not only in inhibiting the mammary tumor growth but also in generating an active anti-tumor immune response without any visible toxicity. The results of our study may help in developing CPV2.NS1 and poly (I: C) combination as a cancer therapeutic regime to treat various malignancies.
USDA-ARS?s Scientific Manuscript database
Microbe associated molecular pattern (MAMP)-triggered immunity (MTI) is an important component of the plant innate immunity response to invading pathogens. However, most of our knowledge of MTI comes from studies of model systems with relatively little work done with crop plants. In this work, we re...
USDA-ARS?s Scientific Manuscript database
Several studies indicate stronger humoral immune responses in breast-fed than formula-fed infants. The key to the beneficial impact of breastmilk on the gastrointestinal (GI) tract and immune system development is the interaction between diet and the gut microbiome. A more comprehensive, mechanistic...
big bang gene modulates gut immune tolerance in Drosophila.
Bonnay, François; Cohen-Berros, Eva; Hoffmann, Martine; Kim, Sabrina Y; Boulianne, Gabrielle L; Hoffmann, Jules A; Matt, Nicolas; Reichhart, Jean-Marc
2013-02-19
Chronic inflammation of the intestine is detrimental to mammals. Similarly, constant activation of the immune response in the gut by the endogenous flora is suspected to be harmful to Drosophila. Therefore, the innate immune response in the gut of Drosophila melanogaster is tightly balanced to simultaneously prevent infections by pathogenic microorganisms and tolerate the endogenous flora. Here we describe the role of the big bang (bbg) gene, encoding multiple membrane-associated PDZ (PSD-95, Discs-large, ZO-1) domain-containing protein isoforms, in the modulation of the gut immune response. We show that in the adult Drosophila midgut, BBG is present at the level of the septate junctions, on the apical side of the enterocytes. In the absence of BBG, these junctions become loose, enabling the intestinal flora to trigger a constitutive activation of the anterior midgut immune response. This chronic epithelial inflammation leads to a reduced lifespan of bbg mutant flies. Clearing the commensal flora by antibiotics prevents the abnormal activation of the gut immune response and restores a normal lifespan. We now provide genetic evidence that Drosophila septate junctions are part of the gut immune barrier, a function that is evolutionarily conserved in mammals. Collectively, our data suggest that septate junctions are required to maintain the subtle balance between immune tolerance and immune response in the Drosophila gut, which represents a powerful model to study inflammatory bowel diseases.
Application of pharmacogenomics to vaccines
Poland, Gregory A; Ovsyannikova, Inna G; Jacobson, Robert M
2009-01-01
The field of pharmacogenomics and pharmacogenetics provides a promising science base for vaccine research and development. A broad range of phenotype/genotype data combined with high-throughput genetic sequencing and bioinformatics are increasingly being integrated into this emerging field of vaccinomics. This paper discusses the hypothesis of the ‘immune response gene network’ and genetic (and bioinformatic) strategies to study associations between immune response gene polymorphisms and variations in humoral and cellular immune responses to prophylactic viral vaccines, such as measles–mumps–rubella, influenza, HIV, hepatitis B and smallpox. Immunogenetic studies reveal promising new vaccine targets by providing a better understanding of the mechanisms by which gene polymorphisms may influence innate and adaptive immune responses to vaccines, including vaccine failure and vaccine-associated adverse events. Additional benefits from vaccinomic studies include the development of personalized vaccines, the development of novel vaccines and the development of novel vaccine adjuvants. PMID:19450131
Immune function trade-offs in response to parasite threats.
Kirschman, Lucas J; Quade, Adam H; Zera, Anthony J; Warne, Robin W
2017-04-01
Immune function is often involved in physiological trade-offs because of the energetic costs of maintaining constitutive immunity and mounting responses to infection. However, immune function is a collection of discrete immunity factors and animals should allocate towards factors that combat the parasite threat with the highest fitness cost. For example, animals on dispersal fronts of expanding population may be released from density-dependent diseases. The costs of immunity, however, and life history trade-offs in general, are often context dependent. Trade-offs are often most apparent under conditions of unusually limited resources or when animals are particularly stressed, because the stress response can shift priorities. In this study we tested how humoral and cellular immune factors vary between phenotypes of a wing dimorphic cricket and how physiological stress influences these immune factors. We measured constitutive lysozyme activity, a humoral immune factor, and encapsulation response, a cellular immune factor. We also stressed the crickets with a sham predator in a full factorial design. We found that immune strategy could be explained by the selective pressures encountered by each morph and that stress decreased encapsulation, but not lysozyme activity. These results suggest a possible trade-off between humoral and cellular immunity. Given limited resources and the expense of immune factors, parasite pressures could play a key factor in maintaining insect polyphenism via disruptive selection. Copyright © 2017 Elsevier Ltd. All rights reserved.
García-León, Miguel L; Bonifaz, Laura C; Espinosa-Torres, Bogart; Hernández-Pérez, Brenda; Cardiel-Marmolejo, Lino; Santos-Preciado, José I; Wong-Chew, Rosa M
2015-01-01
Measles virus (MeV) represents one of the main causes of death among young children, particularly in developing countries. Upon infection, MeV controls both interferon induction (IFN) and the interferon signaling pathway which results in a severe host immunosuppression that can persists for up to 6 mo after infection. Despite the global biology of MeV infection is well studied, the role of the plasmacytoid dendritic cells (pDCs) during the host innate immune response after measles vaccination remains largely uncharacterized. Here we investigated the role of pDCs, the major producers of interferon in response to viral infections, in the development of adaptive immune response against MeV vaccine. We report that there is a strong correlation between pDCs population and the humoral immune response to Edmonston Zagreb (EZ) measles vaccination in 9-month-old mexican infants. Five infants were further evaluated after vaccination, showing a clear increase in pDCs at baseline, one week and 3 months after immunization. Three months postvaccination they showed increase in memory T-cells and pDCs populations, high induction of adaptive immunity and also observed a correlation between pDCs number and the humoral immune response. These findings suggest that the development and magnitude of the adaptive immune response following measles immunization is directly dependent on the number of pDCs of the innate immune response. PMID:26075901
Solanki, Amit Kumar; Bhatia, Bharati; Kaushik, Himani; Deshmukh, Sachin K; Dixit, Aparna; Garg, Lalit C
2017-07-01
Clostridium perfringens beta toxin (CPB) is the primary pathogenic factor responsible for necrotic enteritis in sheep, cattle and humans. Owing to rapid progression of the disease, vaccination is the only possible recourse to avoid high mortality in animal farms and huge economic losses. The present study reports evaluation of a cpb gene-based DNA vaccine encoding the beta toxin of C. perfringens with homologous as well as heterologous booster strategy. Immunization strategy employing heterologous booster with heat-inactivated rCPB mounted stronger immune response when compared to that generated by homologous booster. Antibody isotyping and cytokine ELISA demonstrated the immune response to be Th1-biased mixed immune response. While moderate protection of immunized BALB/c and C57BL/6 mice against rCPB challenge was observed with homologous booster strategy, heterologous booster strategy led to complete protection. Thus, beta toxin-based DNA vaccine using the heterologous prime-boosting strategy was able to generate better immune response and conferred greater degree of protection against high of dose rCPB challenge than homologous booster regimen, making it an effective vaccination approach against C. perfringens beta toxin.
Rezende, Taia Maria Berto; Vieira, Leda Quercia; Sobrinho, Antônio Paulino Ribeiro; Oliveira, Ricardo Reis; Taubman, Martin A; Kawai, Toshihisa
2008-09-01
This study assessed the influence of mineral trioxide aggregate (MTA) on adaptive immune responses. BALB/c mice were immunized with heat-killed Fusobacterium nucleatum (Fn) in MTA or other control adjuvants, and serum IgG responses to Fn were measured. Either Fn- or Peptostreptococcus anaerobius (Pa)-reactive memory T cells (Tm) were preincubated in vitro with/without MTA and restimulated with Fn or Pa. Tm proliferation and cytokine production were assessed. Compared with control groups, immunoglobulin G-antibody responses were upregulated in mice immunized with Fn in MTA in a similar manner to animals immunized with Fn in Freund's adjuvant or aluminum hydroxide adjuvant. Although MTA did not affect the upregulated expression of interleukin 10, tumor necrosis factor alpha, or RANKL by Tm, it suppressed the proliferation of Pa- or Fn-Tm and inhibited their production of Th1- or Th2-signature cytokines. MTA upregulated the adaptive humoral immune responses but had little or no effect on pro- or anti-inflammatory cytokine production by Tm.
Boothby, J T; Schore, C E; Jasper, D E; Osburn, B I; Thomas, C B
1988-01-01
This study characterized the immune responses in four vaccinated and four control cows in response to vaccination and experimental intramammary inoculation with Mycoplasma bovis. Specific antibody responses occurred in serum and milk in response to vaccination and experimental infection. Lymphocytes from peripheral blood, but not from the mammary gland of vaccinated cows had increased responsiveness to mitogens. No lymphocytes tested were responsive to M. bovis antigen. Both vaccination and experimental infection resulted in skin test reactivity. These results imply that vaccination results in immune responses which may alter the course of experimental M. bovis mastitis, but may contribute to cellular inflammation. PMID:3167718
Berg, Michael G; Adams, Robert J; Gambhira, Ratish; Siracusa, Mark C; Scott, Alan L; Roden, Richard B S; Ketner, Gary
2014-09-01
Immunization with human papillomavirus (HPV) L1 virus-like particles (VLPs) prevents infection with HPV. However, the expense and logistical demands of current VLP vaccines will limit their widespread use in resource-limited settings, where most HPV-induced cervical cancer occurs. Live oral adenovirus vaccines have properties that are well-suited for use in such settings. We have described a live recombinant adenovirus vaccine prototype that produces abundant HPV16 L1 protein from the adenovirus major late transcriptional unit and directs the assembly of HPV16 VLPs in tissue culture. Recombinant-derived VLPs potently elicit neutralizing antibodies in mice. Here, we characterize the immune response to the recombinant after dual oral and intranasal immunization of pigtail macaques, in which the virus replicates as it would in immunized humans. The immunization of macaques induced vigorous humoral responses to adenovirus capsid and nonstructural proteins, although, surprisingly, not against HPV L1. In contrast, immunization elicited strong T-cell responses to HPV VLPs as well as adenovirus virions. T-cell responses arose immediately after the primary immunization and were boosted by a second immunization with recombinant virus. T-cell immunity contributes to protection against a wide variety of pathogens, including many viruses. The induction of a strong cellular response by the recombinant indicates that live adenovirus recombinants have potential as vaccines for those agents. These studies encourage and will inform the continued development of viable recombinant adenovirus vaccines. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Oh, Ji Eun; Oh, Dong Sun; Jung, Hi Eun; Lee, Heung Kyu
2017-02-14
The genital mucosa is a barrier that is constantly exposed to a variety of pathogens, allergens, and external stimuli. Although both allergen exposure and parasite infections frequently occur in the genital area, the mechanism by which immune responses-particularly type 2 immunity-are induced has rarely been studied in the genital mucosa. Here, we demonstrate the induction of T helper type 2 (Th2) immunity in the genital mucosa in response to a model allergen, the protease papain. Intravaginal papain immunization induced type 2 immunity in a manner that was dependent on protease activity and the estrous phase of the mice. In addition, IL-33 was released from the vaginal epithelia after intravaginal papain immunization, leading to the activation of type 2 innate lymphoid cells (ILC2s). Moreover, the IL-33-MyD88 (myeloid differentiation primary response gene 88) signaling pathway was critical for the induction of type 2 immunity. We also found that Th2 differentiation in response to intravaginal papain treatment requires a specific dendritic cell (DC) subset that is controlled by interferon regulatory factor 4 (IRF4). These findings suggest that type 2 immunity is induced by a unique mechanism in the genital tract, which is an important, but often overlooked, barrier surface.
Baccarella, Alyssa; Craft, Joshua F.; Boyle, Michelle J.; McIntyre, Tara I.; Wood, Matthew D.; Thorn, Kurt S.; Anidi, Chioma; Bayat, Aqieda; Chung, Me Ree; Hamburger, Rebecca; Kim, Chris Y.; Pearman, Emily; Pham, Jennifer; Tang, Jia J.; Boon, Louis; Kamya, Moses R.; Dorsey, Grant; Feeney, Margaret E.; Kim, Charles C.
2016-01-01
In humans, immunity to Plasmodium sp. generally takes the form of protection from symptomatic malaria (i.e., 'clinical immunity') rather than infection ('sterilizing immunity'). In contrast, mice infected with Plasmodium develop sterilizing immunity, hindering progress in understanding the mechanistic basis of clinical immunity. Here we present a novel model in which mice persistently infected with P. chabaudi exhibit limited clinical symptoms despite sustaining patent parasite burdens for many months. Characterization of immune responses in persistently infected mice revealed development of CD4+ T cell exhaustion, increased production of IL-10, and expansion of B cells with an atypical surface phenotype. Additionally, persistently infected mice displayed a dramatic increase in circulating nonclassical monocytes, a phenomenon that we also observed in humans with both chronic Plasmodium exposure and asymptomatic infection. Following pharmacological clearance of infection, previously persistently infected mice could not control a secondary challenge, indicating that persistent infection disrupts the sterilizing immunity that typically develops in mouse models of acute infection. This study establishes an animal model of asymptomatic, persistent Plasmodium infection that recapitulates several central aspects of the immune response in chronically exposed humans. As such, it provides a novel tool for dissection of immune responses that may prevent development of sterilizing immunity and limit pathology during infection. PMID:27583554
Interaction Between Sleep and the Immune Response in Drosophila: A Role for the NFκB Relish
Williams, Julie A.; Sathyanarayanan, Sriram; Hendricks, Joan C.; Sehgal, Amita
2010-01-01
Study Objectives The regulation of sleep is poorly understood. While some molecules, including those involved in inflammatory/immune responses, have been implicated in the control of sleep, their role in this process remains unclear. The Drosophila model for sleep provides a powerful system to identify and test the role of sleep-relevant molecules. Design We conducted an unbiased screen for molecular candidates involved in sleep regulation by analyzing genome-wide changes in gene expression associated with sleep deprivation in Drosophila. To further examine a role of immune-related genes identified in the screen, we performed molecular assays, analysis of sleep behavior in relevant mutant and transgenic flies, and quantitative analysis of the immune response following sleep deprivation. Results A major class of genes that increased expression with sleep deprivation was that involved in the immune response. We found that immune genes were also upregulated during baseline conditions in the cyc01 sleep mutant. Since the expression of an NFκB, Relish, a central player in the inflammatory response, was increased with all manipulations that reduced sleep, we focused on this gene. Flies deficient in, but not lacking, Relish expression exhibited reduced levels of nighttime sleep, supporting a role for Relish in the control of sleep. This mutant phenotype was rescued by expression of a Relish transgene in fat bodies, which are the major site of inflammatory responses in Drosophila. Finally, sleep deprivation also affected the immune response, such that flies deprived of sleep for several hours were more resistant to bacterial infection than those flies not deprived of sleep. Conclusion These results demonstrate a conserved interaction between sleep and the immune system. Genetic manipulation of an immune component alters sleep, and likewise, acute sleep deprivation alters the immune response. PMID:17520783
Rodríguez, Airam; Broggi, Juli; Alcaide, Miguel; Negro, Juan José; Figuerola, Jordi
2014-08-01
Individual immune responses are likely affected by genetic, physiological, and environmental determinants. We studied the determinants and short-term consequences of Phytohaemagglutinin (PHA) induced immune response, a commonly used immune challenge eliciting both innate and acquired immunity, on lesser kestrel (Falco naumanni) nestlings in semi-captivity conditions and with a homogeneous diet composition. We conducted a repeated measures analyses of a set of blood parameters (carotenoids, triglycerides, β-hydroxybutyrate, cholesterol, uric acid, urea, total proteins, and total antioxidant capacity), metabolic (resting metabolic rate), genotypic (MHC class II B heterozygosity), and biometric (body mass) variables. PHA challenge did not affect the studied physiological parameters on a short-term basis (<12 hr), except plasma concentrations of triglycerides and carotenoids, which decreased and increased, respectively. Uric acid was the only physiological parameter correlated with the PHA induced immune response (skin swelling), but the change of body mass, cholesterol, total antioxidant capacity, and triglycerides between sessions (i.e., post-pre treatment) were also positively correlated to PHA response. No relationships were detected between MHC gene heterozygosity or resting metabolic rate and PHA response. Our results indicate that PHA response in lesser kestrel nestlings growing in optimal conditions does not imply a severe energetic cost 12 hr after challenge, but is condition-dependent as a rapid mobilization of carotenoids and decrease of triglycerides is elicited on a short-term basis. © 2014 Wiley Periodicals, Inc.
Baril, L; Dietemann, J; Essevaz-Roulet, M; Béniguel, L; Coan, P; Briles, D E; Guy, B; Cozon, G
2006-01-01
Humoral immune response is essential for protection against invasive pneumococcal disease and this property is the basis of the polysaccharide-based anti-pneumococcal vaccines. Pneumococcal surface protein A (PspA), a cell-wall-associated surface protein, is a promising component for the next generation of pneumococcal vaccines. This PspA antigen has been shown to stimulate an antibody-based immunity. In the present study, we evaluated the capacity of PspA to stimulate CD4+ T cells which are needed for the correct development of a B cell based immune response in humans. Cellular immunity to PspA was evaluated by whole-blood culture with different pneumococcal antigens, followed by flow cytometric detection of activated CD4+CD25+ T cells. T cell-mediated immune responses to recombinant PspA proteins were assessed in acute-phase and convalescent blood from adults with invasive pneumococcal disease and in blood from healthy subjects. All cases had detectable antibodies against PspA on admission. We found that invasive pneumococcal disease induced transient T cell depletion but adaptive immune responses strengthened markedly during convalescence. The increased production of both interleukin (IL)-10 and interferon (IFN)-γ during convalescence suggests that these cytokines may be involved in modulating antibody-based immunity to pneumococcal disease. We demonstrated that PspA is efficient at eliciting T cell immune responses and antibodies to PspA. This study broadens the applicability of recombinant PspA as potent pneumococcal antigen for vaccination against S. pneumoniae. PMID:16879247
The Immune System in the Pathogenesis of Ovarian Cancer
Charbonneau, Bridget; Goode, Ellen L.; Kalli, Kimberly R.; Knutson, Keith L.; DeRycke, Melissa S.
2014-01-01
Clinical outcomes in ovarian cancer are heterogeneous even when considering common features such as stage, response to therapy, and grade. This disparity in outcomes warrants further exploration into tumor and host characteristics. One compelling host characteristic is the immune response to ovarian cancer. While several studies have confirmed a prominent role for the immune system in modifying the clinical course of the disease, recent genetic and protein analyses also suggest a role in disease incidence. Recent studies also show that anti-tumor immunity is often negated by immune suppressive cells present in the tumor microenvironment. These suppressive immune cells also directly enhance the pathogenesis through the release of various cytokines and chemokines, which together form an integrated pathologic network. Thus, future research into immunotherapy targeting ovarian cancer will likely become increasingly focused on combination approaches that simultaneously augment immunity while preventing local immune suppression or by disrupting critical cytokine networks. PMID:23582060
Pinaud, Silvain; Portela, Julien; Duval, David; Nowacki, Fanny C.; Olive, Marie-Aude; Allienne, Jean-François; Galinier, Richard; Dheilly, Nolwenn M.; Kieffer-Jaquinod, Sylvie; Mitta, Guillaume; Théron, André; Gourbal, Benjamin
2016-01-01
Discoveries made over the past ten years have provided evidence that invertebrate antiparasitic responses may be primed in a sustainable manner, leading to the failure of a secondary encounter with the same pathogen. This phenomenon called “immune priming” or "innate immune memory" was mainly phenomenological. The demonstration of this process remains to be obtained and the underlying mechanisms remain to be discovered and exhaustively tested with rigorous functional and molecular methods, to eliminate all alternative explanations. In order to achieve this ambitious aim, the present study focuses on the Lophotrochozoan snail, Biomphalaria glabrata, in which innate immune memory was recently reported. We provide herein the first evidence that a shift from a cellular immune response (encapsulation) to a humoral immune response (biomphalysin) occurs during the development of innate memory. The molecular characterisation of this process in Biomphalaria/Schistosoma system was undertaken to reconcile mechanisms with phenomena, opening the way to a better comprehension of innate immune memory in invertebrates. This prompted us to revisit the artificial dichotomy between innate and memory immunity in invertebrate systems. PMID:26735307
Morrison, Juliet; Rathore, Abhay P S; Mantri, Chinmay K; Aman, Siti A B; Nishida, Andrew; St John, Ashley L
2017-09-15
There are no approved therapeutics for the treatment of dengue disease despite the global prevalence of dengue virus (DENV) and its mosquito vectors. DENV infections can lead to vascular complications, hemorrhage, and shock due to the ability of DENV to infect a variety of immune and nonimmune cell populations. Increasingly, studies have implicated the host response as a major contributor to severe disease. Inflammatory products of various cell types, including responding T cells, mast cells (MCs), and infected monocytes, can contribute to immune pathology. In this study, we show that the host response to DENV infection in immunocompetent mice recapitulates transcriptional changes that have been described in human studies. We found that DENV infection strongly induced metabolic dysregulation, complement signaling, and inflammation. DENV also affected the immune cell content of the spleen and liver, enhancing NK, NKT, and CD8 + T cell activation. The MC-stabilizing drug ketotifen reversed many of these responses without suppressing memory T cell formation and induced additional changes in the transcriptome and immune cell composition of the spleen, consistent with reduced inflammation. This study provides a global transcriptional map of immune activation in DENV target organs of an immunocompetent host and supports the further development of targeted immunomodulatory strategies to treat DENV disease. IMPORTANCE Dengue virus (DENV), which causes febrile illness, is transmitted by mosquito vectors throughout tropical and subtropical regions of the world. Symptoms of DENV infection involve damage to blood vessels and, in rare cases, hemorrhage and shock. Currently, there are no targeted therapies to treat DENV infection, but it is thought that drugs that target the host immune response may be effective in limiting symptoms that result from excessive inflammation. In this study, we measured the host transcriptional response to infection in multiple DENV target organs using a mouse model of disease. We found that DENV infection induced metabolic dysregulation and inflammatory responses and affected the immune cell content of the spleen and liver. The use of the mast cell stabilization drug ketotifen reversed many of these responses and induced additional changes in the transcriptome and immune cell repertoire that contribute to decreased dengue disease. Copyright © 2017 Morrison et al.
Induction of pneumococcal polysaccharide-specific mucosal immune responses by oral immunization.
VanCott, J L; Kobayashi, T; Yamamoto, M; Pillai, S; McGhee, J R; Kiyono, H
1996-04-01
Liposome and cholera toxin (CT) are considered to be effective antigen delivery vehicles and adjuvants for mucosal vaccines. The effect of these antigen delivery systems on adjuvant responses to mucosally administered pneumococcal polysaccharide (Pnup) was investigated in this study. Both mucosal (e.g. oral) and systemic (i.p.) immunization of mice with purified preparations of Pnup type 23F induced antigen-specific IgM responses in sera. Interestingly, oral immunization of as little as 10 micrograms of Pnup type 23F was sufficient to induce systemic IgM responses. Pnup-specific IgM antibodies peaked by day 7 and no booster responses were evident after a second dose on day 14. In order to examine whether IgG and IgA Pnup-specific immune responses are induced by mucosal immunization, the mucosal adjuvant CT was mixed with Pnup type 23 as an oral vaccine. Co-oral administration of CT and Pnup type 23F resulted in the induction of Pnup-specific faecal IgA antibodies. These results were confirmed by detecting antigen-specific IgA-spot-forming cells in mononuclear cell suspensions prepared from the intestine of immunized mice. These findings suggest that oral immunization with Pnup in the presence of mucosal adjuvants, such as CT, could induce Pnup-specific IgA responses whereas Pnup alone did not. In an attempt to further enhance antigen-specific antibody responses, Pnup type 23F was encapsulated in liposomes and used as mucosal vaccine. However, immunogenicity of Pnup was not improved.
Effects of inbreeding on potential and realized immune responses in Tenebrio molitor.
Rantala, Markus J; Viitaniemi, Heidi; Roff, Derek A
2011-06-01
Although numerous studies on vertebrates suggest that inbreeding reduces their resistance against parasites and pathogens, studies in insects have found contradictory evidence. In this study we tested the effect of 1 generation of brother-sister mating (inbreeding) on potential and realized immune responses and other life-history traits in Tenebrio molitor. We found that inbreeding reduced adult mass, pre-adult survival and increased development time, suggesting that inbreeding reduced the condition of the adults and thus potentially made them more susceptible to physiological stress. However, we found no significant effect of inbreeding on the potential immune response (encapsulation response), but inbreeding reduced the realized immune response (resistance against the entomopathogenic fungi, Beauveria bassiana). There was a significant family effect on encapsulation response, but no family effect on the resistance against the entomopathogenic fungi. Given that this latter trait showed significant inbreeding depression and that the sample size for the family-effect analysis was small it is likely that the lack of a significant family effect is due to reduced statistical power, rather than the lack of a heritable basis to the trait. Our study highlights the importance of using pathogens and parasites in immunoecological studies.
Assessing humoral and cell-mediated immune response in Hawaiian green turtles, Chelonia mydas
Work, Thierry M.; Balazs, George H.; Rameyer, Robert; Chang, S.P.; Berestecky, J.
2000-01-01
Seven immature green turtles, Chelonia mydas, captured from Kaneohe Bay on the island of Oahu were used to evaluate methods for assessing their immune response. Two turtles each were immunized intramuscularly with egg white lysozyme (EWL) in Freund’s complete adjuvant, Gerbu, or ISA-70; a seventh turtle was immunized with saline only and served as a control. Humoral immune response was measured with an indirect enzyme linked immunosorbent assay (ELISA). Cell-mediated immune response was measured using in vitro cell proliferation assays (CPA) using whole blood or peripheral blood mononuclear cells (PBM) cultured with concanavalin A (ConA), phytohaemagglutinin (PHA), or soluble egg EWL antigen. All turtles, except for one immunized with Gerbu and the control, produced a detectable humoral immune response by 6 weeks which persisted for at least 14 weeks after a single immunization. All turtles produced an anamnestic humoral immune response after secondary immunization. Antigen specific cell-mediated immune response in PBM was seen in all turtles either after primary or secondary immunization, but it was not as consistent as humoral immune response; antigen specific cell-mediated immune response in whole blood was rarely seen. Mononuclear cells had significantly higher stimulation indices than whole blood regardless of adjuvant, however, results with whole blood had lower variability. Both Gerbu and ISA-70 appeared to potentiate the cell-mediated immune response when PBM or whole blood were cultured with PHA. This is the first time cell proliferation assays have been compared between whole blood and PBM for reptiles. This is also the first demonstration of antigen specific cell-mediated response in reptiles. Cell proliferation assays allowed us to evaluate the cell-mediated immune response of green turtles. However, CPA may be less reliable than ELISA for detecting antigen specific immune response. Either of the three adjuvants appears suitable to safely elicit a detectable immune response in green turtles.
Behavioral Fever Drives Epigenetic Modulation of the Immune Response in Fish.
Boltana, Sebastian; Aguilar, Andrea; Sanhueza, Nataly; Donoso, Andrea; Mercado, Luis; Imarai, Monica; Mackenzie, Simon
2018-01-01
Ectotherms choose the best thermal conditions to mount a successful immune response, a phenomenon known as behavioral fever. The cumulative evidence suggests that behavioral fever impacts positively upon lymphocyte proliferation, inflammatory cytokine expression, and other immune functions. In this study, we have explored how thermal choice during infection impacts upon underpinning molecular processes and how temperature increase is coupled to the immune response. Our results show that behavioral fever results in a widespread, plastic imprint on gene regulation, and lymphocyte proliferation. We further explored the possible contribution of histone modification and identified global associations between temperature and histone changes that suggest epigenetic remodeling as a result of behavioral fever. Together, these results highlight the critical importance of thermal choice in mobile ectotherms, particularly in response to an infection, and demonstrate the key role of epigenetic modification to orchestrate the thermocoupling of the immune response during behavioral fever.
Bluestein, H G; Green, I; Benacerraf, B
1971-08-01
The ability of guinea pigs to make immune responses to GA, a linear random copolymer of L-glutamic acid and L-alanine, GT, a random linear copolymer of L-glutamic acid and L-tyrosine, and PLL, a linear homopolymer of L-lysine, is controlled by different autosomal dominant genes specific for each of those polymers. We have investigated the relationship between the PLL gene and the GA and GT immune response genes by simultaneously immunizing random-bred Hartley strain guinea pigs with GA and PLL, GT and PLL, or GA and GT. In most Hartley guinea pigs the ability to respond immunologically to GA and to PLL is inherited together; that is, most animals responding to GA respond to PLL and vice versa. However, a few animals respond to either GA or to PLL but not both, demonstrating that the GA and PLL immune response genes are not identical but linked in most Hartley animals. Conversely, when simultaneously immunized with GT and PLL, most Hartley guinea pigs respond to either PLL or GT but not both, indicating that GT and PLL responsiveness tends to segregate away from each other. Thus, the GT and PLL immune response genes also are not inherited independently but, rather, behave as alleles or pseudoalleles. Similar results are observed when Hartley guinea pigs are simultaneously immunized with GA and GT. The ability to respond to GA segregates away from the ability to respond to GT. Our studies demonstrated that the specific immune response genes thus far identified in guinea pigs controlling the ability to respond to GA, GT, and PLL, respectively, are found on the same chromosome. In most Hartley animals, the GA and PLL immune response genes are often linked, i.e. occur on the same chromosome strand, and tend to behave as alleles or pseudoalleles to the GT immune response gene.
Maspi, N; Ghaffarifar, F; Sharifi, Z; Dalimi, A; Khademi, S Z
2017-12-01
Vaccination would be the most important strategy for the prevention and elimination of leishmaniasis. The aim of the present study was to compare the immune responses induced following DNA vaccination with LACK (Leishmania analogue of the receptor kinase C), TSA (Thiol-specific-antioxidant) genes alone or LACK-TSA fusion against cutaneous leishmaniasis (CL). Cellular and humoral immune responses were evaluated before and after challenge with Leishmania major (L. major). In addition, the mean lesion size was also measured from 3th week post-infection. All immunized mice showed a partial immunity characterized by higher interferon (IFN)-γ and Immunoglobulin G (IgG2a) levels compared to control groups (p<0.05). IFN-γ/ Interleukin (IL)-4 and IgG2a/IgG1 ratios demonstrated the highest IFN-γ and IgG2a levels in the group receiving LACK-TSA fusion. Mean lesion sizes reduced significantly in all immunized mice compared with control groups at 7th week post-infection (p<0.05). In addition, there was a significant reduction in mean lesion size of LACK-TSA and TSA groups than LACK group after challenge (p<0.05). In the present study, DNA immunization promoted Th1 immune response and confirmed the previous observations on immunogenicity of LACK and TSA antigens against CL. Furthermore, this study demonstrated that a bivalent vaccine can induce stronger immune responses and protection against infectious challenge with L. major.
Pauthner, Matthias; Havenar-Daughton, Colin; Sok, Devin; Nkolola, Joseph P; Bastidas, Raiza; Boopathy, Archana V; Carnathan, Diane G; Chandrashekar, Abishek; Cirelli, Kimberly M; Cottrell, Christopher A; Eroshkin, Alexey M; Guenaga, Javier; Kaushik, Kirti; Kulp, Daniel W; Liu, Jinyan; McCoy, Laura E; Oom, Aaron L; Ozorowski, Gabriel; Post, Kai W; Sharma, Shailendra K; Steichen, Jon M; de Taeye, Steven W; Tokatlian, Talar; Torrents de la Peña, Alba; Butera, Salvatore T; LaBranche, Celia C; Montefiori, David C; Silvestri, Guido; Wilson, Ian A; Irvine, Darrell J; Sanders, Rogier W; Schief, William R; Ward, Andrew B; Wyatt, Richard T; Barouch, Dan H; Crotty, Shane; Burton, Dennis R
2017-06-20
The development of stabilized recombinant HIV envelope trimers that mimic the virion surface molecule has increased enthusiasm for a neutralizing antibody (nAb)-based HIV vaccine. However, there is limited experience with recombinant trimers as immunogens in nonhuman primates, which are typically used as a model for humans. Here, we tested multiple immunogens and immunization strategies head-to-head to determine their impact on the quantity, quality, and kinetics of autologous tier 2 nAb development. A bilateral, adjuvanted, subcutaneous immunization protocol induced reproducible tier 2 nAb responses after only two immunizations 8 weeks apart, and these were further enhanced by a third immunization with BG505 SOSIP trimer. We identified immunogens that minimized non-neutralizing V3 responses and demonstrated that continuous immunogen delivery could enhance nAb responses. nAb responses were strongly associated with germinal center reactions, as assessed by lymph node fine needle aspiration. This study provides a framework for preclinical and clinical vaccine studies targeting nAb elicitation. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Cardinaud, Marion; Dheilly, Nolwenn M; Huchette, Sylvain; Moraga, Dario; Paillard, Christine
2015-08-01
Vibrio harveyi is a marine bacterial pathogen responsible for episodic abalone mortalities in France, Japan and Australia. In the European abalone, V. harveyi invades the circulatory system in a few hours after exposure and is lethal after 2 days of infection. In this study, we investigated the responses of European abalone immune cells over the first 24 h of infection. Results revealed an initial induction of immune gene expression including Rel/NF-kB, Mpeg and Clathrin. It is rapidly followed by a significant immuno-suppression characterized by reduced cellular hemocyte parameters, immune response gene expressions and enzymatic activities. Interestingly, Ferritin was overexpressed after 24 h of infection suggesting that abalone attempt to counter V. harveyi infection using soluble effectors. Immune function alteration was positively correlated with V. harveyi concentration. This study provides the evidence that V. harveyi has a hemolytic activity and an immuno-suppressive effect in the European abalone. Copyright © 2015 Elsevier Ltd. All rights reserved.
Nelson, Michelle; Prior, Joann L; Lever, M Stephen; Jones, Helen E; Atkins, Timothy P; Titball, Richard W
2004-12-01
Burkholderia pseudomallei is the causative agent of melioidosis, which is a major cause of morbidity and mortality in endemic regions. Currently there is no human vaccine against melioidosis. In this study, LPS or capsular polysaccharide was used to immunize BALB/c mice. The different polysaccharide antigens induced antibody responses. Mice vaccinated with LPS developed predominantly IgM and IgG3 responses. Contrastingly, mice vaccinated with capsular polysaccharide developed a predominantly IgG2b response. After immunization, mice were challenged by the intra-peritoneal route and an increased mean time to death was observed compared with unvaccinated controls. Immunization with LPS provided an optimal protective response. Mice challenged by the aerosol route showed a small increase in the mean time to death compared with the unvaccinated controls. The passive transfer of antigen from immunized into naive mice provided protection against a subsequent challenge. This study is the first time antigens protective by active immunization have been identified and suggests that polysaccharides have potential as vaccine candidates against melioidosis.
Bi, Zhuangli; Zhu, Yingqi; Chen, Zongyan; Li, Chuanfeng; Wang, Yong; Wang, Guijun; Liu, Guangqing
2016-01-01
Novel duck reovirus (NDRV) disease emerged in China in 2011 and continues to cause high morbidity and about 5.0 to 50% mortality in ducklings. Currently there are no approved vaccines for the virus. This study aimed to assess the efficacy of a new vaccine created from the baculovirus and sigma C gene against NDRV. In this study, a recombinant baculovirus containing the sigma C gene was constructed, and the purified protein was used as a vaccine candidate in ducklings. The efficacy of sigma C vaccine was estimated according to humoral immune responses, cellular immune response and protection against NDRV challenge. The results showed that sigma C was highly expressed in Sf9 cells. Robust humoral and cellular immune responses were induced in all ducklings immunized with the recombinant sigma C protein. Moreover, 100% protection against lethal challenge with NDRV TH11 strain was observed. Summary, the recombinant sigma C protein could be utilized as a good candidate against NDRV infection. PMID:27974824
Wu, Yu-Sheng; Liau, Shu-Yu; Huang, Cheng-Ting; Nan, Fan-Hua
2016-10-01
This study mainly evaluated the effects of orally administered beta 1,3/1,6-glucan and vitamin C on the nonspecific immune responses of white shrimp (Litopenaeus vannamei). In this study, we found that the white shrimp oral administration with 1 g/kg of beta 1,3/1,6-glucan effectively enhanced O2(-) production and phenoloxidase and superoxide dismutase activity. Shrimp were oral administration with 0.2 g/kg of vitamin C presented beneficial nonspecific immune responses and enzyme activity and also observed in the beta 1,3/1,6-glucan treatment groups. Consequently, we compared the alterations in the immune activity between the beta 1,3/1,6-glucan and vitamin C groups and the evidence illustrated that combination of beta 1,3/1,6-glucan and vitamin C presented an additive effect on inducing the nonspecific immune responses of white shrimp. Copyright © 2016 Elsevier Ltd. All rights reserved.
Zimmermann, Michael T; Oberg, Ann L; Grill, Diane E; Ovsyannikova, Inna G; Haralambieva, Iana H; Kennedy, Richard B; Poland, Gregory A
2016-01-01
Failure to achieve a protected state after influenza vaccination is poorly understood but occurs commonly among aged populations experiencing greater immunosenescence. In order to better understand immune response in the elderly, we studied epigenetic and transcriptomic profiles and humoral immune response outcomes in 50-74 year old healthy participants. Associations between DNA methylation and gene expression reveal a system-wide regulation of immune-relevant functions, likely playing a role in regulating a participant's propensity to respond to vaccination. Our findings show that sites of methylation regulation associated with humoral response to vaccination impact known cellular differentiation signaling and antigen presentation pathways. We performed our analysis using per-site and regionally average methylation levels, in addition to continuous or dichotomized outcome measures. The genes and molecular functions implicated by each analysis were compared, highlighting different aspects of the biologic mechanisms of immune response affected by differential methylation. Both cis-acting (within the gene or promoter) and trans-acting (enhancers and transcription factor binding sites) sites show significant associations with measures of humoral immunity. Specifically, we identified a group of CpGs that, when coordinately hypo-methylated, are associated with lower humoral immune response, and methylated with higher response. Additionally, CpGs that individually predict humoral immune responses are enriched for polycomb-group and FOXP2 transcription factor binding sites. The most robust associations implicate differential methylation affecting gene expression levels of genes with known roles in immunity (e.g. HLA-B and HLA-DQB2) and immunosenescence. We believe our data and analysis strategy highlight new and interesting epigenetic trends affecting humoral response to vaccination against influenza; one of the most common and impactful viral pathogens.
Sauerborn, Melody; van Beers, Miranda M C; Jiskoot, Wim; Kijanka, Grzegorz M; Boon, Louis; Schellekens, Huub; Brinks, Vera
2013-01-01
The immunological processes underlying immunogenicity of recombinant human therapeutics are poorly understood. Using an immune tolerant mouse model we previously demonstrated that aggregates are a major trigger of the antidrug antibody (ADA) response against recombinant human interferon beta (rhIFNβ) products including Betaferon®, and that immunological memory seems to be lacking after a rechallenge with non-aggregated rhIFNβ. The apparent absence of immunological memory indicates a CD4+ T-cell independent (Tind) immune response underlying ADA formation against Betaferon®. This hypothesis was tested. Using the immune tolerant mouse model we first validated that rechallenge with highly aggregated rhIFNβ (Betaferon®) does not lead to a subsequent fast increase in ADA titers, suggesting a lack of immunological memory. Next we assessed whether Betaferon® could act as Tind antigen by inactivation of marginal zone (MZ) B-cells during treatment. MZ B-cells are major effector cells involved in a Tind immune response. In a following experiment we depleted the mice from CD4+ T-cells to test their involvement in the ADA response against Betaferon®. Inactivation of MZ B-cells at the start of Betaferon® treatment drastically lowered ADA levels, suggesting a Tind immune response. However, persistent depletion of CD4+ T-cells before and during Betaferon® treatment abolished the ADA response in almost all mice. The immune response against rhIFNβ in immune tolerant mice is neither a T-cell independent nor a classical T-cell dependent immune response. Further studies are needed to confirm absence of immunological memory (cells).
Liu, Zhaoqun; Wang, Lingling; Zhou, Zhi; Sun, Ying; Wang, Mengqiang; Wang, Hao; Hou, Zhanhui; Gao, Dahai; Gao, Qiang; Song, Linsheng
2016-05-19
The neuroendocrine-immune (NEI) regulatory network is a complex system, which plays an indispensable role in the immunity of the host. In the present study, the bioinformatical analysis of the transcriptomic data from oyster Crassostrea gigas and further biological validation revealed that oyster TNF (CgTNF-1 CGI_10018786) could activate the transcription factors NF-κB and HSF (heat shock transcription factor) through MAPK signaling pathway, and then regulate apoptosis, redox reaction, neuro-regulation and protein folding in oyster haemocytes. The activated immune cells then released neurotransmitters including acetylcholine, norepinephrine and [Met(5)]-enkephalin to regulate the immune response by arising the expression of three TNF (CGI_10005109, CGI_10005110 and CGI_10006440) and translocating two NF-κB (Cgp65, CGI_10018142 and CgRel, CGI_10021567) between the cytoplasm and nuclei of haemocytes. Neurotransmitters exhibited the immunomodulation effects by influencing apoptosis and phagocytosis of oyster haemocytes. Acetylcholine and norepinephrine could down-regulate the immune response, while [Met(5)]-enkephalin up-regulate the immune response. These results suggested that the simple neuroendocrine-immune regulatory network in oyster might be activated by oyster TNF and then regulate the immune response by virtue of neurotransmitters, cytokines and transcription factors.
NASA Astrophysics Data System (ADS)
Liu, Zhaoqun; Wang, Lingling; Zhou, Zhi; Sun, Ying; Wang, Mengqiang; Wang, Hao; Hou, Zhanhui; Gao, Dahai; Gao, Qiang; Song, Linsheng
2016-05-01
The neuroendocrine-immune (NEI) regulatory network is a complex system, which plays an indispensable role in the immunity of the host. In the present study, the bioinformatical analysis of the transcriptomic data from oyster Crassostrea gigas and further biological validation revealed that oyster TNF (CgTNF-1 CGI_10018786) could activate the transcription factors NF-κB and HSF (heat shock transcription factor) through MAPK signaling pathway, and then regulate apoptosis, redox reaction, neuro-regulation and protein folding in oyster haemocytes. The activated immune cells then released neurotransmitters including acetylcholine, norepinephrine and [Met5]-enkephalin to regulate the immune response by arising the expression of three TNF (CGI_10005109, CGI_10005110 and CGI_10006440) and translocating two NF-κB (Cgp65, CGI_10018142 and CgRel, CGI_10021567) between the cytoplasm and nuclei of haemocytes. Neurotransmitters exhibited the immunomodulation effects by influencing apoptosis and phagocytosis of oyster haemocytes. Acetylcholine and norepinephrine could down-regulate the immune response, while [Met5]-enkephalin up-regulate the immune response. These results suggested that the simple neuroendocrine-immune regulatory network in oyster might be activated by oyster TNF and then regulate the immune response by virtue of neurotransmitters, cytokines and transcription factors.
Group 2 ILCs: A way of enhancing immune protection against human helminths?
Nausch, N; Mutapi, F
2018-02-01
Group 2 innate lymphoid cells (ILC2s) play crucial roles in type 2 immune responses associated with allergic and autoimmune diseases, viral and helminth infections and tissue homoeostasis. Experimental models show that in helminth infections ILC2s provide an early source of type 2 cytokines and therefore are essential for the induction of potentially protective type 2 responses. Much of our knowledge of ILC2s in helminth infections has come from experimental mouse models with very few studies analysing ILC2s in natural human infections. In attempts to harness knowledge from paradigms of the development of protective immunity in human helminth infections for vaccine development, the role of ILC2 cells could be pivotal. So far, potential vaccines against human helminth infections have failed to provide effective protection when evaluated in human studies. In addition to appropriate antigen selection, it is apparent that more detailed knowledge on mechanisms of induction and maintenance of protective immune responses is required. Therefore, there is need to understand how ILC2 cells induce type 2 responses and subsequently support the development of a protective immune response in the context of immunizations. Within this review, we summarize the current knowledge of the biology of ILC2s, discuss the importance of ILC2s in human helminth infections and explore how ILC2 responses could be boosted to efficiently induce protective immunity. © 2017 The Authors. Parasite Immunology Published by John Wiley & Sons Ltd.
Antiviral Immunity following Smallpox Virus Infection: a Case-Control Study▿
Hammarlund, Erika; Lewis, Matthew W.; Hanifin, Jon M.; Mori, Motomi; Koudelka, Caroline W.; Slifka, Mark K.
2010-01-01
Outbreaks of smallpox (i.e., caused by variola virus) resulted in up to 30% mortality, but those who survived smallpox infection were regarded as immune for life. Early studies described the levels of neutralizing antibodies induced after infection, but smallpox was eradicated before contemporary methods for quantifying T-cell memory were developed. To better understand the levels and duration of immunity after smallpox infection, we performed a case-control study comparing antiviral CD4+ and CD8+ T-cell responses and neutralizing antibody levels of 24 smallpox survivors with the antiviral immunity observed in 60 smallpox-vaccinated (i.e., vaccinia virus-immune) control subjects. We found that the duration of immunity following smallpox infection was remarkably similar to that observed after smallpox vaccination, with antiviral T-cell responses that declined slowly over time and antiviral antibody responses that remained stable for decades after recovery from infection. These results indicate that severe, potentially life-threatening disease is not required for the development of sustainable long-term immunity. This study shows that the levels of immunity induced following smallpox vaccination are comparable in magnitude to that achieved through natural variola virus infection, and this may explain the notable success of vaccination in eradicating smallpox, one of the world's most lethal diseases. PMID:20926574
Tong, Guixian; Geng, Qingqing; Cheng, Jing; Chai, Jing; Xia, Yi; Feng, Rui; Zhang, Lu; Wang, Debin
2014-01-01
This study aimed at summarizing evidence about effects of psycho-behavioral interventions (PBIs) on immune responses among cancer patients and analyzing quality of published studies so as to inform future researches. Literature retrieval utilized both highly inclusive algorithms searching randomized controlled studies published in English and Chinese and manual searching of eligible studies from references of relevant review papers. Two researchers examined the articles selected separately and extracted the information using a pre-designed form for soliciting data about the trials (e.g., sample size, disease status, intervention, immune responses) and quality ratings of the studies. Both narrative descriptions and meta-analysis (via Review manager 5) were used synthesizing the effects of PBIs on immune responses among cancer patients and state of art of the researches in this area. Seventy-six RCTs met inclusion criteria. PBIs implemented were divided into three major categories including psychological state adjustment, physical activity and dietary modification. Immune indicators measured included CD4+ cells, CD8+ cells, CD4/CDC8+ ratio, CD3+ cells, NK cell activity, etc. Effects of PBIs on immune responses documented in individual papers were mixed and pooled analysis of CD4+ cells, CD4+/CD8+ ratio, CD3+ cells, NKCA, IgG, IgM and IL-2 showed modest effects. However, there were huge discrepancies in intervention effects between studies published in English and Chinese and the results should be interpreted with caution. Besides, most studies suffer from some quality flaws concerning blinding, randomization procedures, compliance, attrition and intention-to-treat analyses, etc. Although there are considerable evidences of PBI effects on some immune indicators, the effect sizes are modest and it is still premature to conclude whether PBIs have effects on immune functions among cancer patients. There is a clear need for much more rigorous efforts in this area and future researches should pay particular attention to intervention dose and focus, sample size and comparable immune measures.
Fight or flight? - Flight increases immune gene expression but does not help to fight an infection.
Woestmann, L; Kvist, J; Saastamoinen, M
2017-03-01
Flight represents a key trait in most insects, being energetically extremely demanding, yet often necessary for foraging and reproduction. Additionally, dispersal via flight is especially important for species living in fragmented landscapes. Even though, based on life-history theory, a negative relationship may be expected between flight and immunity, a number of previous studies have indicated flight to induce an increased immune response. In this study, we assessed whether induced immunity (i.e. immune gene expression) in response to 15-min forced flight treatment impacts individual survival of bacterial infection in the Glanville fritillary butterfly (Melitaea cinxia). We were able to confirm previous findings of flight-induced immune gene expression, but still observed substantially stronger effects on both gene expression levels and life span due to bacterial infection compared to flight treatment. Even though gene expression levels of some immunity-related genes were elevated due to flight, these individuals did not show increased survival of bacterial infection, indicating that flight-induced immune activation does not completely protect them from the negative effects of bacterial infection. Finally, an interaction between flight and immune treatment indicated a potential trade-off: flight treatment increased immune gene expression in naïve individuals only, whereas in infected individuals no increase in immune gene expression was induced by flight. Our results suggest that the up-regulation of immune genes upon flight is based on a general stress response rather than reflecting an adaptive response to cope with potential infections during flight or in new habitats. © 2016 The Authors. Journal of Evolutionary Biology Published by John Wiley & Sons ltd on behalf of European Society for Evolutionary Biology.
Immune response and immunologic memory in medical personnel vaccinated with hepatitis B vaccine.
Kevorkyan, Ani K; Teoharov, Pavel B; Petrova, Nedyalka S; Baltadzhiev, Ivan G; Stoilova, Yordanka D; Angelova, Nevena G; Plachkova, Angelina D
2011-01-01
The occupation-related nature of Hepatitis B viral infection in medical personnel has been well documented in a lot of studies. The only reliable way of prevention of this infection is immunisation with hepatitis B vaccine. To follow-up the primary immune response after immunisation with recombinant vaccine and its duration in adult immunocompetent subjects. One hundred sixty-five health-care workers working at St. George University Hospital, Plovdiv in 2009/2010 were included in the study and allocated to two groups. Group 1 (N1 = 70) was followed up for the primary immune response after immunization; group 2 (N2 = 95) was with documented immunization in 1998/1999 (n = 81) and in 1994/1995 (n = 14). Tests based on ELISA for quantitative determination of anti-HBs in mIU/ml were used. The measurement were performed at the National Reference Laboratory of Viral Hepatitis at the NCIPD, Sofia. Descriptive statistics, non-parametric and parametric tests, qualitative correlation were used to analyse data. Group 1 mean age was 40.3 +/- 2.6 years; anti-HBs concentration of > or = 10 mIU/ ml was found in 92.8%. No association between the immune response and the commonly involved factors such as gender, age, overweight, smoking, etc., was found. In group 2, anti-HBs concentration of > or = 10 mIU/ml was found in 77.9%: it was in 75.3% in those immunized 10 years before, and in 92.9% in those immunized 15 years before (t = 0.24, p > 0.05). A booster dose of the vaccine was received by 15/21 subjects from group 2 (those immunized 10 years before that) with anti-HBs < 10 mIU/ml. After the booster, 9/15 produced anti-HBs in protective concentrations (anamnestic immune response). The actual level of seroprotection among the immunized more than 10 years ago was 92%. This study and the documentation of the primary postvaccinal immunity in high-risk medical personnel will help specify if additional hepatitis B vaccine shots are needed.
Willinger, Tim; Rongvaux, Anthony; Takizawa, Hitoshi; Yancopoulos, George D.; Valenzuela, David M.; Murphy, Andrew J.; Auerbach, Wojtek; Eynon, Elizabeth E.; Stevens, Sean; Manz, Markus G.; Flavell, Richard A.
2011-01-01
Mice with a functional human immune system have the potential to allow in vivo studies of human infectious diseases and to enable vaccine testing. To this end, mice need to fully support the development of human immune cells, allow infection with human pathogens, and be capable of mounting effective human immune responses. A major limitation of humanized mice is the poor development and function of human myeloid cells and the absence of human immune responses at mucosal surfaces, such as the lung. To overcome this, we generated human IL-3/GM-CSF knock-in (hIL-3/GM-CSF KI) mice. These mice faithfully expressed human GM-CSF and IL-3 and developed pulmonary alveolar proteinosis because of elimination of mouse GM-CSF. We demonstrate that hIL-3/GM-CSF KI mice engrafted with human CD34+ hematopoietic cells had improved human myeloid cell reconstitution in the lung. In particular, hIL-3/GM-CSF KI mice supported the development of human alveolar macrophages that partially rescued the pulmonary alveolar proteinosis syndrome. Moreover, human alveolar macrophages mounted correlates of a human innate immune response against influenza virus. The hIL-3/GM-CSF KI mice represent a unique mouse model that permits the study of human mucosal immune responses to lung pathogens. PMID:21262803
Radiation induces an antitumour immune response to mouse melanoma.
Perez, Carmen A; Fu, Allie; Onishko, Halina; Hallahan, Dennis E; Geng, Ling
2009-12-01
Irradiation of cancer cells can cause immunogenic death. We used mouse models to determine whether irradiation of melanoma can enhance the host antitumour immune response and function as an effective vaccination strategy, and investigated the molecular mechanisms involved in this radiation-induced response. For in vivo studies, C57BL6/J mice and the B16F0 melanoma cell line were used in a lung metastasis model, intratumoural host immune activation assays, and tumour growth delay studies. In vitro studies included a dendritic cell (DC) phagocytosis assay, detection of cell surface exposure of the protein calreticulin (CRT), and small interfering RNA (siRNA)-mediated depletion of CRT cellular levels. Irradiation of cutaneous melanomas prior to their resection resulted in more than 20-fold reduction in lung metastases after systemic challenge with untreated melanoma cells. A syngeneic vaccine derived from irradiated melanoma cells also induced adaptive immune response markers in irradiated melanoma implants. Our data indicate a trend for radiation-induced increase in melanoma cell surface exposure of CRT, which is involved in the enhanced phagocytic activity of DC against irradiated melanoma cells (VIACUC). The present study suggests that neoadjuvant irradiation of cutaneous melanoma tumours prior to surgical resection can stimulate an endogenous anti-melanoma host immune response.
Spore load and immune response of honey bees naturally infected by Nosema ceranae.
Li, Wenfeng; Evans, Jay D; Li, Jianghong; Su, Songkun; Hamilton, Michele; Chen, Yanping
2017-12-01
Nosema ceranae causes widespread infection in adult workers of European honey bees, Apis mellifera, and has often been linked to honey bee colony losses worldwide. Previous investigations of honey bee immune response to N. ceranae infection were largely based on laboratory experiment, however, little is known about the immune response of honey bees that are naturally infected by N. ceranae. Here, we compared the infection levels of N. ceranae in three different categories of adult bees (emergent bees, nurses, and foragers) and detected the host immune response to the N. ceranae infection under natural conditions. Our studies showed that the Nosema spore load and infection prevalence varied among the different types of adult workers, and both of them increased as honey bees aged: No infection was detected in emergent bees, nurses had a medium spore load and prevalence, while foragers were with the highest Nosema infection level and prevalence. Quantification of the mRNA levels of antimicrobial peptides (abaecin, apidaecin, defensin-1, defensin-2, and hymenoptaecin) and microbial recognition proteins (PGRP-S1, PGRP-S2, PGRP-S3, PGRP-LC, GNBP1-1, and GNBP1-2) confirmed the involvement of the Toll and/or Imd immune pathways in the host response to N. ceranae infection, and revealed an activation of host immune response by N. ceranae infection under natural conditions. Additionally, the levels of immune response were positively correlated with the Nosema spore loads in the infected bees. The information gained from this study will be relevant to the predictive modeling of honey bee disease dynamics for Nosema disease prevention and management.
Cellular immune response experiment MA-031
NASA Technical Reports Server (NTRS)
Criswell, B. S.
1976-01-01
Significant changes in phytohemagglutinin (PHA) lymphocytic responsiveness occurred in the cellular immune response of three astronauts during the 9 day flight of the Apollo Soyuz Test Project. Parameters studied were white blood cell concentrations, lymphocyte numbers, B- and T-lymphocyte distributions in peripheral blood, and lymphocyte responsiveness to PHA, pokeweed mitogen, Concanavalin A, and influenza virus antigen.
Hormetic Response to Low-Dose Radiation: Focus on the Immune System and Its Clinical Implications
Cui, Jiuwei; Yang, Guozi; Pan, Zhenyu; Zhao, Yuguang; Liang, Xinyue; Li, Wei; Cai, Lu
2017-01-01
The interrelationship between ionizing radiation and the immune system is complex, multifactorial, and dependent on radiation dose/quality and immune cell type. High-dose radiation usually results in immune suppression. On the contrary, low-dose radiation (LDR) modulates a variety of immune responses that have exhibited the properties of immune hormesis. Although the underlying molecular mechanism is not fully understood yet, LDR has been used clinically for the treatment of autoimmune diseases and malignant tumors. These advancements in preclinical and clinical studies suggest that LDR-mediated immune modulation is a well-orchestrated phenomenon with clinical potential. We summarize recent developments in the understanding of LDR-mediated immune modulation, with an emphasis on its potential clinical applications. PMID:28134809
Boltaña, Sebastian; Sanchez, Marcos; Valenzuela, Valentina; Gallardo-Escárate, Cristian
2016-12-01
Sea lice infestations are a particular concern in the salmonid aquaculture industry due to damaging effects on fish growth, disease/infection susceptibility, and survival. Despite the impacts of sea lice parasitism, few studies have determined corresponding physiological thresholds, or the quantity of sea lice that can trigger measurable effects in the host immune response. The present study evaluated the mRNA expressions of immune-related genes in Salmo salar (Atlantic salmon) under infestation challenges with contrasting loads of the sea louse Caligus rogercresseyi. Specifically, two groups of S. salar were infected with either 35 (i.e. low parasitic load) or 100 (i.e. high parasitic load) copepodids per fish. At 14 days post-infestation, the mRNA levels of immune-related genes (e.g. related to oxidative stress, pro- and inflammatory responses, and the adaptive T H 1/T H 2 pathways) were assessed through RT-qPCR. Significant differences were found in relation to parasitic load, suggesting density-dependent effects that activated the S. salar immune system. Higher parasitic load promoted strong inflammatory and oxidative stress responses that were correlated with the T H 1 immune response. This study highlights the molecular signatures for distinct parasitic loads, providing new perspectives towards fully understanding parasite-host interactions. Copyright © 2016 Elsevier Ltd. All rights reserved.
Endogenous egg immune defenses in the yellow mealworm beetle (Tenebrio molitor).
Jacobs, Chris G C; Gallagher, Joe D; Evison, Sophie E F; Heckel, David G; Vilcinskas, Andreas; Vogel, Heiko
2017-05-01
In order to survive microbe encounters, insects rely on both physical barriers as well as local and systemic immune responses. Most research focusses on adult or larval defenses however, whereas insect eggs are also in need of protection. Lately, the defense of eggs against microbes has received an increasing amount of attention, be it through endogenous egg defenses, trans-generational immune priming (TGIP) or parental investment. Here we studied the endogenous immune response in eggs and adults of Tenebrio molitor. We show that many immune genes are induced in both adults and eggs. Furthermore, we show that eggs reach comparable levels of immune gene expression as adults. These findings show that the eggs of Tenebrio are capable of an impressive endogenous immune response, and indicate that such inducible egg defenses are likely common in insects. Copyright © 2016 Elsevier Ltd. All rights reserved.
Ishida, S; Feng, N; Tang, B; Gilbert, J M; Greenberg, H B
1996-01-01
The purpose of the present study was to develop a quantitative assay that could be used to measure the local and systemic immune responses to specific rotavirus proteins following rotavirus infection of adult mice. To measure these responses, we used an immunocytochemical staining assay of Spodoptera frugiperda (Sf-9) cells which were infected with recombinant baculovirus expressing selected rotavirus proteins. The specificity of the assay was documented by using a series of monoclonal antibodies to individual rotavirus proteins. We observed that the assay had high levels of sensitivity and specificity for a series of VP7- and VP4-specific neutralizing monoclonal antibodies which recognized conformation-dependent epitopes on their target proteins. We also studied immunoglobulin G (IgG) immune responses in serum and IgA immune responses in the stools of mice infected with wild-type murine rotavirus strain EHPw. In both sera and stools, the most immunogenic proteins were VP6 and VP4. VP2 was less immunogenic than VP6 or VP4, and the immune responses to VP7, NSP2, and NSP4 were very low in serum and undetectable in stools. PMID:8784572
Martin, C E; Paibomesai, M A; Emam, S M; Gallienne, J; Hine, B C; Thompson-Crispi, K A; Mallard, B A
2016-03-01
Genetic selection for enhanced immune response has been shown to decrease disease occurrence in dairy cattle. Cows can be classified as high (H), average, or low responders based on antibody-mediated immune response (AMIR), predominated by type-2 cytokine production, and cell-mediated immune response (CMIR) through estimated breeding values for these traits. The purpose of this study was to identify in vitro tests that correlate with in vivo immune response phenotyping in dairy cattle. Blood mononuclear cells (BMC) isolated from cows classified as H-AMIR and H-CMIR through estimated breeding values for immune response traits were stimulated with concanavalin A (ConA; Sigma Aldrich, St. Louis, MO) and gene expression, cytokine production, and cell proliferation was determined at multiple time points. A repeated measures model, which included the effects of immune response group, parity, and stage of lactation, was used to compare differences between immune response phenotype groups. The H-AMIR cows produced more IL-4 protein than H-CMIR cows at 48 h; however, no difference in gene expression of type-2 transcription factor GATA3 or IL4 was noted. The BMC from H-CMIR cows had increased production of IFN-γ protein at 48, 72, and 96 h compared with H-AMIR animals. Further, H-CMIR cows had increased expression of the IFNG gene at 16, 24, and 48 h post-treatment with ConA, although expression of the type-1 transcription factor gene TBX21 did not differ between immune response groups. Although proliferation of BMC increased from 24 to 72 h after ConA stimulation, no differences were found between the immune response groups. Overall, stimulation of H-AMIR and H-CMIR bovine BMC with ConA resulted in distinct cytokine production profiles according to genetically defined groups. These distinct cytokine profiles could be used to define disease resistance phenotypes in dairy cows according to stimulation in vitro; however, other immune response phenotypes should be assessed. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Emerging role of lipid droplets in Aedes aegypti immune response against bacteria and Dengue virus
Barletta, Ana Beatriz Ferreira; Alves, Liliane Rosa; Nascimento Silva, Maria Clara L.; Sim, Shuzhen; Dimopoulos, George; Liechocki, Sally; Maya-Monteiro, Clarissa M.; Sorgine, Marcos H. Ferreira
2016-01-01
In mammals, lipid droplets (LDs) are ubiquitous organelles that modulate immune and inflammatory responses through the production of lipid mediators. In insects, it is unknown whether LDs play any role during the development of immune responses. We show that Aedes aegypti Aag2 cells – an immune responsive cell lineage – accumulates LDs when challenged with Enterobacter cloacae, Sindbis, and Dengue viruses. Microarray analysis of Aag2 challenged with E.cloacae or infected with Dengue virus revealed high transcripts levels of genes associated with lipid storage and LDs biogenesis, correlating with the increased LDs numbers in those conditions. Similarly, in mosquitoes, LDs accumulate in midgut cells in response to Serratia marcescens and Sindbis virus or when the native microbiota proliferates, following a blood meal. Also, constitutive activation of Toll and IMD pathways by knocking-down their respective negative modulators (Cactus and Caspar) increases LDs numbers in the midgut. Our results show for the first time an infection-induced LDs accumulation in response to both bacterial and viral infections in Ae. Aegypti, and we propose a role for LDs in mosquito immunity. These findings open new venues for further studies in insect immune responses associated with lipid metabolism. PMID:26887863
Role of Microbiota in Sexually Dimorphic Immunity.
Elderman, Marlies; de Vos, Paul; Faas, Marijke
2018-01-01
Sex differences in peripheral immune responses are well recognized. This is associated with sex differences in many immunological diseases. As the intestinal microbiota is known to influence the immune system, such sex differences in immune responses may be a consequence of sex-specific microbiota. Therefore, this mini-review discusses sex differences in intestinal microbiota and the possible role of microbiota in shaping sexually dimorphic immunity. Sex differences in microbiota composition are clearly found in mice studies and also in human studies. However, the lack of standardization in human studies may mask the sexual dimorphism in microbiota composition in human studies, since many factors such as age, genetic background, BMI, diet, and sex hormones appear to interfere with the sexual dimorphism in microbiota composition. Only a few mice studies found that differences in gut microbiota composition are causative for some aspects of sexually dimorphic immunity. Therefore, future studies should focus on a causal relationship between sexually dimorphic immunity and microbiota, considering the abovementioned interfering confounding factors. This would benefit the development of more sex-specific effective treatment options for immunological diseases.
Long-Range Activation of Systemic Immunity through Peptidoglycan Diffusion in Drosophila
Gendrin, Mathilde; Welchman, David P.; Poidevin, Mickael; Hervé, Mireille; Lemaitre, Bruno
2009-01-01
The systemic immune response of Drosophila is known to be induced both by septic injury and by oral infection with certain bacteria, and is characterized by the secretion of antimicrobial peptides (AMPs) into the haemolymph. To investigate other possible routes of bacterial infection, we deposited Erwinia carotovora (Ecc15) on various sites of the cuticle and monitored the immune response via expression of the AMP gene Diptericin. A strong response was observed to deposition on the genital plate of males (up to 20% of a septic injury response), but not females. We show that the principal response to genital infection is systemic, but that some AMPs, particularly Defensin, are induced locally in the genital tract. At late time points we detected bacteria in the haemolymph of immune deficient RelishE20 flies, indicating that the genital plate can be a route of entry for pathogens, and that the immune response protects flies against the progression of genital infection. The protective role of the immune response is further illustrated by our observation that RelishE20 flies exhibit significant lethality in response to genital Ecc15 infections. We next show that a systemic immune response can be induced by deposition of the bacterial elicitor peptidoglycan (PGN), or its terminal monomer tracheal cytotoxin (TCT), on the genital plate. This immune response is downregulated by PGRP-LB and Pirk, known regulators of the Imd pathway, and can be suppressed by the overexpression of PGRP-LB in the haemolymph compartment. Finally, we provide strong evidence that TCT can activate a systemic response by crossing epithelia, by showing that radiolabelled TCT deposited on the genital plate can subsequently be detected in the haemolymph. Genital infection is thus an intriguing new model for studying the systemic immune response to local epithelial infections and a potential route of entry for naturally occurring pathogens of Drosophila. PMID:20019799
Long-range activation of systemic immunity through peptidoglycan diffusion in Drosophila.
Gendrin, Mathilde; Welchman, David P; Poidevin, Mickael; Hervé, Mireille; Lemaitre, Bruno
2009-12-01
The systemic immune response of Drosophila is known to be induced both by septic injury and by oral infection with certain bacteria, and is characterized by the secretion of antimicrobial peptides (AMPs) into the haemolymph. To investigate other possible routes of bacterial infection, we deposited Erwinia carotovora (Ecc15) on various sites of the cuticle and monitored the immune response via expression of the AMP gene Diptericin. A strong response was observed to deposition on the genital plate of males (up to 20% of a septic injury response), but not females. We show that the principal response to genital infection is systemic, but that some AMPs, particularly Defensin, are induced locally in the genital tract. At late time points we detected bacteria in the haemolymph of immune deficient Relish(E20) flies, indicating that the genital plate can be a route of entry for pathogens, and that the immune response protects flies against the progression of genital infection. The protective role of the immune response is further illustrated by our observation that Relish(E20) flies exhibit significant lethality in response to genital Ecc15 infections. We next show that a systemic immune response can be induced by deposition of the bacterial elicitor peptidoglycan (PGN), or its terminal monomer tracheal cytotoxin (TCT), on the genital plate. This immune response is downregulated by PGRP-LB and Pirk, known regulators of the Imd pathway, and can be suppressed by the overexpression of PGRP-LB in the haemolymph compartment. Finally, we provide strong evidence that TCT can activate a systemic response by crossing epithelia, by showing that radiolabelled TCT deposited on the genital plate can subsequently be detected in the haemolymph. Genital infection is thus an intriguing new model for studying the systemic immune response to local epithelial infections and a potential route of entry for naturally occurring pathogens of Drosophila.
The role of B cells and humoral immunity in Mycobacterium tuberculosis infection.
Chan, John; Mehta, Simren; Bharrhan, Sushma; Chen, Yong; Achkar, Jacqueline M; Casadevall, Arturo; Flynn, JoAnne
2014-12-01
Mycobacterium tuberculosis remains a major public health burden. It is generally thought that while B cell- and antibody-mediated immunity plays an important role in host defense against extracellular pathogens, the primary control of intracellular microbes derives from cellular immune mechanisms. Studies on the immune regulatory mechanisms during infection with M. tuberculosis, a facultative intracellular organism, has established the importance of cell-mediated immunity in host defense during tuberculous infection. Emerging evidence suggest a role for B cell and humoral immunity in the control of intracellular pathogens, including obligatory species, through interactions with the cell-mediated immune compartment. Recent studies have shown that B cells and antibodies can significantly impact on the development of immune responses to the tubercle bacillus. In this review, we present experimental evidence supporting the notion that the importance of humoral and cellular immunity in host defense may not be entirely determined by the niche of the pathogen. A comprehensive approach that examines both humoral and cellular immunity could lead to better understanding of the immune response to M. tuberculosis. Copyright © 2014 Elsevier Ltd. All rights reserved.
The role of B cells and humoral immunity in Mycobacterium tuberculosis infection
Chan, John; Mehta, Simren; Bharrhan, Sushma; Chen, Yong; Achkar, Jacqueline M.; Casadevall, Arturo; Flynn, JoAnne
2014-01-01
Mycobacterium tuberculosis remains a major public health burden. It is generally thought that while B cell- and antibody-mediated immunity plays an important role in host defense against extracellular pathogens, the primary control of intracellular microbes derives from cellular immune mechanisms. Studies on the immune regulatory mechanisms during infection with M. tuberculosis, a facultative intracellular organism, has established the importance of cell-mediated immunity in host defense during tuberculous infection. Emerging evidence suggest a role for B cell and humoral immunity in the control of intracellular pathogens, including obligatory species, through interactions with the cell-mediated immune compartment. Recent studies have shown that B cells and antibodies can significantly impact on the development of immune responses to the tubercle bacillus. In this review, we present experimental evidence supporting the notion that the importance of humoral and cellular immunity in host defense may not be entirely determined by the niche of the pathogen. A comprehensive approach that examines both humoral and cellular immunity could lead to better understanding of the immune response to M. tuberculosis. PMID:25458990
Kangassalo, Katariina; Valtonen, Terhi M; Sorvari, Jouni; Kecko, Sanita; Pölkki, Mari; Krams, Indrikis; Krama, Tatjana; Rantala, Markus J
2018-06-29
Organisms in the wild are likely to face multiple immune challenges as well as additional ecological stressors, yet their interactive effects on immune function are poorly understood. Insects are found to respond to cues of increased infection risk by enhancing their immune capacity. However, such adaptive plasticity in immune function may be limited by physiological and environmental constraints. Here, we investigated the effects of two environmental stressors - poor larval diet and an artificial parasite-like immune challenge at the pupal stage - on adult immune function, growth and development in the greater wax moth (Galleria mellonella). Males whose immune system was activated with an artificial parasite-like immune challenge had weaker immune response - measured as strength of encapsulation response - as adults compared to the control groups, but only when raised in high-nutrition larval diet. Immune activation did not negatively affect adult immune response in males reared in low-nutrition larval diet, indicating that poor larval diet improved the capacity of the insects to respond to repeated immune challenges. Low-nutrition larval diet also had a positive independent effect on immune capacity in females, yet it negatively affected development time and adult body mass in both sexes. As in the nature immune challenges are rarely isolated, and adverse nutritional environment may indicate an elevated risk of infection, resilience to repeated immune challenges as a response to poor nutritional environment could provide a significant fitness advantage. The present study highlights the importance of considering environmental context when investigating effects of immune activation in insects. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Hinkula, Jorma; Devignot, Stéphanie; Åkerström, Sara; Karlberg, Helen; Wattrang, Eva; Bereczky, Sándor; Mousavi-Jazi, Mehrdad; Risinger, Christian; Lindegren, Gunnel; Vernersson, Caroline; Paweska, Janusz; van Vuren, Petrus Jansen; Blixt, Ola; Brun, Alejandro; Weber, Friedemann; Mirazimi, Ali
2017-05-15
Crimean-Congo hemorrhagic fever virus (CCHFV) is a bunyavirus causing severe hemorrhagic fever disease in humans, with high mortality rates. The requirement of a high-containment laboratory and the lack of an animal model hampered the study of the immune response and protection of vaccine candidates. Using the recently developed interferon alpha receptor knockout (IFNAR -/- ) mouse model, which replicates human disease, we investigated the immunogenicity and protection of two novel CCHFV vaccine candidates: a DNA vaccine encoding a ubiquitin-linked version of CCHFV Gc, Gn, and N and one using transcriptionally competent virus-like particles (tc-VLPs). In contrast to most studies that focus on neutralizing antibodies, we measured both humoral and cellular immune responses. We demonstrated a clear and 100% efficient preventive immunity against lethal CCHFV challenge with the DNA vaccine. Interestingly, there was no correlation with the neutralizing antibody titers alone, which were higher in the tc-VLP-vaccinated mice. However, the animals with a lower neutralizing titer, but a dominant cell-mediated Th1 response and a balanced Th2 response, resisted the CCHFV challenge. Moreover, we found that in challenged mice with a Th1 response (immunized by DNA/DNA and boosted by tc-VLPs), the immune response changed to Th2 at day 9 postchallenge. In addition, we were able to identify new linear B-cell epitope regions that are highly conserved between CCHFV strains. Altogether, our results suggest that a predominantly Th1-type immune response provides the most efficient protective immunity against CCHFV challenge. However, we cannot exclude the importance of the neutralizing antibodies as the surviving immunized mice exhibited substantial amounts of them. IMPORTANCE Crimean-Congo hemorrhagic fever virus (CCHFV) is responsible for hemorrhagic diseases in humans, with a high mortality rate. There is no FDA-approved vaccine, and there are still gaps in our knowledge of the immune responses to infection. The recently developed mouse models mimic human CCHF disease and are useful to study the immunogenicity and the protection by vaccine candidates. Our study shows that mice vaccinated with a specific DNA vaccine were fully protected. Importantly, we show that neutralizing antibodies are not sufficient for protection against CCHFV challenge but that an extra Th1-specific cellular response is required. Moreover, we describe the identification of five conserved B-cell epitopes, of which only one was previously known, that could be of great importance for the development of diagnostics tools and the improvement of vaccine candidates. Copyright © 2017 Hinkula et al.
Lopez, Wilfredo; Page, Alexis M.; Carlson, Darby J.; Ericson, Brad L.; Cserhati, Matyas F.; Guda, Chittibabu; Carlson, Kimberly A.
2018-01-01
Drosophila melanogaster depends upon the innate immune system to regulate and combat viral infection. This is a complex, yet widely conserved process that involves a number of immune pathways and gene interactions. In addition, expression of genes involved in immunity are differentially regulated as the organism ages. This is particularly true for viruses that demonstrate chronic infection, as is seen with Nora virus. Nora virus is a persistent non-pathogenic virus that replicates in a horizontal manner in D. melanogaster. The genes involved in the regulation of the immune response to Nora virus infection are largely unknown. In addition, the temporal response of immune response genes as a result of infection has not been examined. In this study, D. melanogaster either infected with Nora virus or left uninfected were aged for 2, 10, 20 and 30 days. The RNA from these samples was analyzed by next generation sequencing (NGS) and the resulting immune-related genes evaluated by utilizing both the PANTHER and DAVID databases, as well as comparison to lists of immune related genes and FlyBase. The data demonstrate that Nora virus infected D. melanogaster exhibit an increase in immune related gene expression over time. In addition, at day 30, the data demonstrate that a persistent immune response may occur leading to an upregulation of specific immune response genes. These results demonstrate the utility of NGS in determining the potential immune system genes involved in Nora virus replication, chronic infection and involvement of antiviral pathways. PMID:29707694
Effect of space flight on cell-mediated immunity
NASA Technical Reports Server (NTRS)
Mandel, A. D.; Balish, E.
1977-01-01
The cell-mediated immune response to Listeria monocytogenes was studied in rats subjected to 20 days of flight aboard the Soviet biosatellite Kosmos 7820. Groups of rats were immunized with 1,000,000 formalin-killed Listeria suspended in Freunds Complete Adjuvant, 5 days prior to flight. Immunized rats subjected to the same environmental factors as the flight rats, except flight itself, and immunized and nonimmunized rats held in a normal animal colony served as controls. Following recovery, lymphocyte cultures were harvested from spleens of all rats, cultured in vitro in the presence of L. monocytogenes antigens, Phytohemagglutinin, Conconavlin A, or purified protein derivative (PPD), and measured for their uptake of H-3-thymidine. Although individual rats varied considerably, all flight and immunized control rats gave a blastogenic response to the Listeria antigens and PPD. With several mitogens, the lymphocytes of flight rats showed a significantly increased blastogenic response over the controls. The results of this study do not support a hypothesis of a detrimental effect of space flight on cell-mediated immunity. The data suggest a possible suppressive effect of stress and gravity on an in vitro correlate of cell-mediated immunity.
Goettel, Jeremy A.; Biswas, Subhabrata; Lexmond, Willem S.; Yeste, Ada; Passerini, Laura; Patel, Bonny; Yang, Siyoung; Sun, Jiusong; Ouahed, Jodie; Shouval, Dror S.; McCann, Katelyn J.; Horwitz, Bruce H.; Mathis, Diane; Milford, Edgar L.; Notarangelo, Luigi D.; Roncarolo, Maria-Grazia; Fiebiger, Edda; Marasco, Wayne A.; Bacchetta, Rosa; Quintana, Francisco J.; Pai, Sung-Yun; Klein, Christoph; Muise, Aleixo M.
2015-01-01
Mice reconstituted with a human immune system provide a tractable in vivo model to assess human immune cell function. To date, reconstitution of murine strains with human hematopoietic stem cells (HSCs) from patients with monogenic immune disorders have not been reported. One obstacle precluding the development of immune-disease specific “humanized” mice is that optimal adaptive immune responses in current strains have required implantation of autologous human thymic tissue. To address this issue, we developed a mouse strain that lacks murine major histocompatibility complex class II (MHC II) and instead expresses human leukocyte antigen DR1 (HLA-DR1). These mice displayed improved adaptive immune responses when reconstituted with human HSCs including enhanced T-cell reconstitution, delayed-type hypersensitivity responses, and class-switch recombination. Following immune reconstitution of this novel strain with HSCs from a patient with immune dysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX) syndrome, associated with aberrant FOXP3 function, mice developed a lethal inflammatory disorder with multiorgan involvement and autoantibody production mimicking the pathology seen in affected humans. This humanized mouse model permits in vivo evaluation of immune responses associated with genetically altered HSCs, including primary immunodeficiencies, and should facilitate the study of human immune pathobiology and the development of targeted therapeutics. PMID:25833964
Innate immunity; Humoral immunity; Cellular immunity; Immunity; Inflammatory response; Acquired (adaptive) immunity ... normal and usually does not react against them. INNATE IMMUNITY Innate, or nonspecific, immunity is the defense ...
T cell-derived Lymphotoxin is Essential for anti-HSV-1 Humoral Immune Response.
Yang, Kaiting; Liang, Yong; Sun, Zhichen; Xue, Diyuan; Xu, Hairong; Zhu, Mingzhao; Fu, Yang-Xin; Peng, Hua
2018-05-09
B cell-derived lymphotoxin (LT) is required for the development of follicular dendritic cell clusters for the formation of primary and secondary lymphoid follicles, but the role of T cell-derived LT in antibody response has not been well demonstrated. We observed that lymphotoxin-β-receptor (LTβR) signaling is essential for optimal humoral immune response and protection against an acute HSV-1 infection. Blocking the LTβR pathway caused poor maintenance of germinal center B (GC-B) cells and follicular helper T (Tfh) cells. Using bone marrow chimeric mice and adoptive transplantation, we determined that T cell-derived LT played an indispensable role in the humoral immune response to HSV-1. Up-regulation of IFNγ by the LTβR-Ig blockade impairs the sustainability of Tfh-like cells, thus leading to an impaired humoral immune response. Our findings have identified a novel role of T cell-derived LT in the humoral immune response against HSV-1 infection. IMPORTANCE Immunocompromised people are susceptible for HSV-1 infection and lethal recurrence, which could be inhibited by anti-HSV-1 humoral immune response in the host. This study sought to explore the role of T cell-derived LT in the anti-HSV-1 humoral immune response using LT-LTβR signaling deficient mice and the LTβR-Ig blockade. The data indicate that the T cell-derived LT may play an essential role in sustaining Tfh-like cells and ensure Tfh-like cells' migration into primary or secondary follicles for further maturation. This study provides insights for vaccine development against infectious diseases. Copyright © 2018 American Society for Microbiology.
Abdallah, Fatma; Hassanin, Ola
2015-12-01
Avian Influenza (AI) vaccines are widely used for mammals and birds in a trial to eliminate the Avian Influenza virus (AIV) infection from the world. However and up till now the virus is still existed via modulation of its antigenic structure to evade the pressure of host immune responses. For a complete understanding of the immune responses following AI vaccination in chickens, the modulations of the chickens humoral immune responses and interferon-alpha signaling pathway, as a fundamental part of the innate immune responses, were investigated. In our study, we measured the humoral immune response using hemagglutination-inhibition (HI) and enzyme-linked immunosorbent assay (ELISA) tests. In addition, chicken interferon-alpha pathway components was measured at RNA levels using Quantitative Real-time PCR (qRT-PCR) following one dose of inactivated H5N1 influenza vaccine at 14 days of age. In this study, the protective levels of humoral antibody responses were observed at 14, 21 and 28 days following immunization with inactivated (Re-1/H5N1) AI vaccine. In the chicken spleen cells, up regulation in the chicken interferon-alpha pathway components (MX1 & IRF7) was existed as early as 48 h post vaccination and remained until 28 days post vaccination at the endogenous state. However, after the recall with ex-vivo stimulation, the up regulation was more pronounced in the transcriptional factor (IRF7) compared to the antiviral gene (MX1) at 28 days post vaccination. So far, from our results it appears that the inactivated H5N1 vaccine can trigger the chicken interferon-alpha signaling pathway as well as it can elicit protective humoral antibody responses.
Immune selection of tumor cells in TCR β-chain transgenic mice.
Silaeva, Yulia Yu; Grinenko, Tatyana S; Vagida, Murad S; Kalinina, Anastasia A; Khromykh, Ludmila M; Kazansky, Dmitry B
2014-10-01
The concept of immunological surveillance implies that immunogenic variants of tumor cells arising in the organism can be recognized by the immune system. Tumor progression is provided by somatic evolution of tumor cells under the pressure of the immune system. The loss of MHC Class I molecules on the surface of tumor cells is one of the most known outcomes of immune selection. This study developed a model of immune selection based on the immune response of TCR 1d1 single β-chain transgenic B10.D2(R101) (K(d)I(d)D(b)) mice to allogeneic EL4 (H-2(b)) thymoma cells. In wild-type B10.D2(R101) mice, immunization with EL4 cells induced a vigorous CTL response targeted to the H-2K(b) molecule and results in full rejection of the tumor cells. In contrast, transgenic mice developed a compromised proliferative response in mixed-lymphocyte response assays and were unable to reject transplanted allogeneic EL4 cells. During the immune response to EL4 cells, CD8(+) T-lymphocytes with endogenous β-chains accumulated predominantly in the spleen of transgenic mice and only a small part of the T-lymphocytes expressing transgenic β-chains became CD8(+)CD44(+)CD62L(-) effectors. Then, instead of a full elimination of tumor cells as in wild-type mice, a reproducible prolonged equilibrium phase and subsequent escape was observed in transgenic mice that resulted in death of 90% of the mice in 40-60 days after grafting. Prolonged exposure of tumor cells to the pressure of the immune system in transgenic mice in vivo resulted in a stable loss of H-2K(b) molecules on the EL4 cell surface. Genetic manipulation of the T-lymphocyte repertoire was sufficient to reproduce the classic pattern of interactions between tumor cells and the immune system, usually observed in reliable syngeneic models of anti-tumor immunity. This newly-developed model could be used in further studies of immunoregulatory circuits common for transplantational and anti-tumor immune responses.
Spectroscopic techniques to study the immune response in human saliva
NASA Astrophysics Data System (ADS)
Nepomnyashchaya, E.; Savchenko, E.; Velichko, E.; Bogomaz, T.; Aksenov, E.
2018-01-01
Studies of the immune response dynamics by means of spectroscopic techniques, i.e., laser correlation spectroscopy and fluorescence spectroscopy, are described. The laser correlation spectroscopy is aimed at measuring sizes of particles in biological fluids. The fluorescence spectroscopy allows studying of the conformational and other structural changings in immune complex. We have developed a new scheme of a laser correlation spectrometer and an original signal processing algorithm. We have suggested a new fluorescence detection scheme based on a prism and an integrating pin diode. The developed system based on the spectroscopic techniques allows studies of complex process in human saliva and opens some prospects for an individual treatment of immune diseases.
Bielinska, Anna U; Makidon, Paul E; Janczak, Katarzyna W; Blanco, Luz P; Swanson, Benjamin; Smith, Douglas M; Pham, Tiffany; Szabo, Zsuzsanna; Kukowska-Latallo, Jolanta F; Baker, James R
2014-03-15
Nasal administration of an oil-in-water nanoemulsion (NE) adjuvant W805EC produces potent systemic and mucosal, Th-1- and Th-17-balanced cellular responses. However, its molecular mechanism of action has not been fully characterized and is of particular interest because NE does not contain specific ligands for innate immune receptors. In these studies, we demonstrate that W805EC NE adjuvant activates innate immunity, induces specific gene transcription, and modulates NF-κB activity via TLR2 and TLR4 by a mechanism that appears to be distinct from typical TLR agonists. Nasal immunization with NE-based vaccine showed that the TLR2, TLR4, and MyD88 pathways and IL-12 and IL-12Rβ1 expression are not required for an Ab response, but they are essential for the induction of balanced Th-1 polarization and Th-17 cellular immunity. NE adjuvant induces MHC class II, CD80, and CD86 costimulatory molecule expression and dendritic cell maturation. Further, upon immunization with NE, adjuvant mice deficient in the CD86 receptor had normal Ab responses but significantly reduced Th-1 cellular responses, whereas animals deficient in both CD80 and CD86 or lacking CD40 failed to produce either humoral or cellular immunity. Overall, our data show that intranasal administration of Ag with NE induces TLR2 and TLR4 activation along with a MyD88-independent Ab response and a MyD88-dependent Th-1 and Th-17 cell-mediated immune response. These findings suggest that the unique properties of NE adjuvant may offer novel opportunities for understanding previously unrecognized mechanisms of immune activation important for generating effective mucosal and systemic immune responses.
Cai, Ming-sheng; Deng, Shu-xuan; Li, Mei-li
2013-02-18
The objective of this study was to compare immune responses induced in BALB/c mice following immunization with pcDNA-GPV-VP2 DNA by gene gun bombardment (6 μg) or by intramuscular (im) injection (100 μg) with the responses to live attenuated vaccine by im injection (100 μl). pcDNA3.1 (+) and physiological saline were used as controls. Peripheral blood samples were collected at 3, 7, 14, 21, 28, 35, 49, 63, 77 and 105 d after immunization. T lymphocyte proliferation was analyzed by MTT assay and enumeration of CD4(+), and CD8(+) T cell populations in peripheral blood was performed by flow cytometric analysis. Indirect ELISA was used to detect IgG levels. Cellular and humoral responses were induced by pcDNA-GPV-VP2 DNA and live virus vaccines. No differences were observed in T cell proliferation and CD8(+) T cell responses induced by the genetic vaccine regardless of the route of delivery. However, CD4(+) T cell responses and humoral immunity were enhanced in following gene gun immunization compared with im injection of the genetic vaccine. Cellular and humoral immunity was enhanced in following gene gun delivery of the genetic vaccine compared with the live attenuated vaccine. In conclusion, the pcDNA-GPV-VP2 DNA vaccine induced enhanced cellular and humoral immunity compared with that induced by the live attenuated vaccine. Copyright © 2012 Elsevier Ltd. All rights reserved.
Wang, Rui-ning; Wang, Ya-bin; Geng, Jing-wei; Guo, Dong-hui; Liu, Fang; Chen, Hong-ying; Zhang, Hong-ying; Cui, Bao-an; Wei, Zhan-yong
2012-07-27
Inactivated porcine parvovirus (PPV) vaccines are available commercially and widely used in the breeding herds. However, inactivated PPV vaccines have deficiencies in induction of specific cellular immune response. Transfer factor (TF) is a material that obtained from the leukocytes, and is a novel immune-stimulatory reagent that as a modulator of the immune system. In this study, the immunogenicity of PPV oil emulsion vaccine and the immuno-regulatory activities of TF were investigated. The inactivated PPV oil emulsion vaccines with or without TF were inoculated into BALB/c mice by subcutaneous injection. Then humoral and cellular immune responses were evaluated by indirect enzyme-linked immunosorbent assays (ELISA), fluorescence-activated cell sorter analyses (FACS). The results showed that the PPV specific immune responses could be evoked in mice by inoculating with PPV oil emulsion vaccine alone or by co-inoculation with TF. The cellular immune response levels in the co-inoculation groups were higher than those groups receiving the PPV oil emulsion vaccine alone, with the phenomena of higher level of IFN-γ, a little IL-6 and a trace of IL-4 in serum, and a vigorous T-cell response. However, there was no significant difference in antibody titers between TF synergy inactivated vaccine and the inactivated vaccine group (P>0.05). In conclusion, these results suggest that TF possess better cellular immune-enhancing capability and would be exploited into an effective immune-adjuvant for inactivated vaccines. Copyright © 2012 Elsevier Ltd. All rights reserved.
Chu, Pinpin; Ma, Miaopeng; Shi, Juqing; Cai, Haiming; Huang, Chaoyuan; Li, Huazhou; Jiang, Zhenggu; Wang, Houguang; Wang, Weifang; Zhang, Shuiqing; Zhang, Linghua
2013-01-01
Background and Aims Attempts to immunize aged subjects often result in the failure to elicit a protective immune response. Murine model studies have shown that oligonucleotides containing CpG motifs (CpG ODN) can stimulate immune system in aged mice as effectively as in young mice. Since many physiological and pathophysiological data of pigs can be transferred to humans, research in pigs is important to confirm murine data. Here we investigated whether immunization of aged pig model with attenuated pseudorabies virus vaccine (PRV vaccine) formulated with CpG ODN could promote a successful development of immune responses that were comparable to those induced in young pigs in a similar manner. Methodology Young and aged pigs were immunized IM with PRV vaccine alone, or in combination with CpG ODN respectively. At days 3, 7, 14 post immunization sera were assayed by ELISA for IgG titres, at day 7 for IgG1 and IgG2 subtypes titres. All blood samples collected in evacuated test tubes with K-EDTA at day 7 were analyzed for flow cytometer assay. Blood samples at day 7 collected in evacuated test tubes with heparin were analysed for antigen-specific cytokines production and peripheral blood mononuclear cells (PBMCs) proliferative responses. Results CpG ODN could enhance Th1 responses (PRV-specific IgG2/IgG1 ratio, proliferative responses, Th1 cytokines production) when used as an adjuvant for the vaccination of aged pigs, which were correlated with enhanced CD4+ T cells percentage, decreased CD4+CD8+CD45RO+ T cells percentage and improved PRV-specific CD4+ T cells activation. Conclusions Our results demonstrate a utility for CpG ODN, as a safe vaccine adjuvant for promoting effective systemic immune responses in aged pig model. This agent could have important clinical uses in overcoming some of age-associated depressions in immune function that occur in response to vaccination. PMID:23785433
Immune Response to Human Metapneumovirus Infection: What We Have Learned from the Mouse Model
Cheemarla, Nagarjuna R.; Guerrero-Plata, Antonieta
2015-01-01
Human Metapneumovirus (hMPV) is a leading respiratory viral pathogen associated with bronchiolitis, pneumonia, and asthma exacerbation in young children, the elderly and immunocompromised individuals. The development of a potential vaccine against hMPV requires detailed understanding of the host immune system, which plays a significant role in hMPV pathogenesis, susceptibility and vaccine efficacy. As a result, animal models have been developed to better understand the mechanisms by which hMPV causes disease. Several animal models have been evaluated and established so far to study the host immune responses and pathophysiology of hMPV infection. However, inbred laboratory mouse strains have been one of the most used animal species for experimental modeling and therefore used for the studies of immunity and immunopathogenesis to hMPV. This review summarizes the contributions of the mouse model to our understanding of the immune response against hMPV infection. PMID:26393657
Immune Response to Human Metapneumovirus Infection: What We Have Learned from the Mouse Model.
Cheemarla, Nagarjuna R; Guerrero-Plata, Antonieta
2015-09-18
Human Metapneumovirus (hMPV) is a leading respiratory viral pathogen associated with bronchiolitis, pneumonia, and asthma exacerbation in young children, the elderly and immunocompromised individuals. The development of a potential vaccine against hMPV requires detailed understanding of the host immune system, which plays a significant role in hMPV pathogenesis, susceptibility and vaccine efficacy. As a result, animal models have been developed to better understand the mechanisms by which hMPV causes disease. Several animal models have been evaluated and established so far to study the host immune responses and pathophysiology of hMPV infection. However, inbred laboratory mouse strains have been one of the most used animal species for experimental modeling and therefore used for the studies of immunity and immunopathogenesis to hMPV. This review summarizes the contributions of the mouse model to our understanding of the immune response against hMPV infection.
Kidney dendritic cells in acute and chronic renal disease.
Hochheiser, Katharina; Tittel, André; Kurts, Christian
2011-06-01
Dendritic cells are not only the master regulators of adaptive immunity, but also participate profoundly in innate immune responses. Much has been learned about their basic immunological functions and their roles in various diseases. Comparatively little is still known about their role in renal disease, despite their obvious potential to affect immune responses in the kidney, and immune responses that are directed against renal components. Kidney dendritic cells form an abundant network in the renal tubulointerstitium and constantly survey the environment for signs of injury or infection, in order to alert the immune system to the need to initiate defensive action. Recent studies have identified a role for dendritic cells in several murine models of acute renal injury and chronic nephritis. Here we summarize the current knowledge on the role of kidney dendritic cells that has been obtained from the study of murine models of renal disease. © 2010 The Authors. Journal compilation © 2010 Blackwell Publishing Ltd.
Effect of aging on microRNAs and regulation of pathogen recognition receptors
Olivieri, Fabiola; Procopio, Antonio Dormenico
2014-01-01
Immunosenescence is the multifactorial age-associated immune deteriorization that leads to increased susceptibility to infections and decreased responses to vaccines. Recent studies have shown a fundamental role for microRNAs (miRNAs) in regulating immune responses, and nearly all the miRNAs involved in immune regulation show modulation during aging. Aging-associated miRNAs are largely negative regulators of the immune innate response and target central nodes of aging-associated networks, in particular, NF-κB, the downstream effector of TLR signals that leads to induction of proinflammatory responses. Multiple miRNAs have been reported to share similar regulatory activity. Here we review miRNA regulation of human innate immune recognition in aging, including both activation and resolution of inflammation, critical issues in detection, and areas of active investigation into our understanding of immunosenescence. PMID:24769423
Potential for Cell-Mediated Immune Responses in Mouse Models of Pelizaeus-Merzbacher Disease
Southwood, Cherie M.; Fykkolodziej, Bozena; Dachet, Fabien; Gow, Alexander
2013-01-01
Although activation of the innate and adaptive arms of the immune system are undoubtedly involved in the pathophysiology of neurodegenerative diseases, it is unclear whether immune system activation is a primary or secondary event. Increasingly, published studies link primary metabolic stress to secondary inflammatory responses inside and outside of the nervous system. In this study, we show that the metabolic stress pathway known as the unfolded protein response (UPR) leads to secondary activation of the immune system. First, we observe innate immune system activation in autopsy specimens from Pelizaeus-Merzbacher disease (PMD) patients and mouse models stemming from PLP1 gene mutations. Second, missense mutations in mildly- and severely-affected Plp1-mutant mice exhibit immune-associated expression profiles with greater disease severity causing an increasingly proinflammatory environment. Third, and unexpectedly, we find little evidence for dysregulated expression of major antioxidant pathways, suggesting that the unfolded protein and oxidative stress responses are separable. Together, these data show that UPR activation can precede innate and/or adaptive immune system activation and that neuroinflammation can be titrated by metabolic stress in oligodendrocytes. Whether or not such activation leads to autoimmune disease in humans is unclear, but the case report of steroid-mitigated symptoms in a PMD patient initially diagnosed with multiple sclerosis lends support. PMID:24575297
Drosophila cellular immunity: a story of migration and adhesion.
Fauvarque, Marie-Odile; Williams, Michael J
2011-05-01
Research during the past 15 years has led to significant breakthroughs, providing evidence of a high degree of similarity between insect and mammalian innate immune responses, both humoural and cellular, and highlighting Drosophila melanogaster as a model system for studying the evolution of innate immunity. In a manner similar to cells of the mammalian monocyte and macrophage lineage, Drosophila immunosurveillance cells (haemocytes) have a number of roles. For example, they respond to wound signals, are involved in wound healing and contribute to the coagulation response. Moreover, they participate in the phagocytosis and encapsulation of invading pathogens, are involved in the removal of apoptotic bodies and produce components of the extracellular matrix. There are several reasons for using the Drosophila cellular immune response as a model to understand cell signalling during adhesion and migration in vivo: many genes involved in the regulation of Drosophila haematopoiesis and cellular immunity have been maintained across taxonomic groups ranging from flies to humans, many aspects of Drosophila and mammalian innate immunity seem to be conserved, and Drosophila is a simplified and well-studied genetic model system. In the present Commentary, we will discuss what is known about cellular adhesion and migration in the Drosophila cellular immune response, during both embryonic and larval development, and where possible compare it with related mechanisms in vertebrates.
Coding and non-coding gene regulatory networks underlie the immune response in liver cirrhosis.
Gao, Bo; Zhang, Xueming; Huang, Yongming; Yang, Zhengpeng; Zhang, Yuguo; Zhang, Weihui; Gao, Zu-Hua; Xue, Dongbo
2017-01-01
Liver cirrhosis is recognized as being the consequence of immune-mediated hepatocyte damage and repair processes. However, the regulation of these immune responses underlying liver cirrhosis has not been elucidated. In this study, we used GEO datasets and bioinformatics methods to established coding and non-coding gene regulatory networks including transcription factor-/lncRNA-microRNA-mRNA, and competing endogenous RNA interaction networks. Our results identified 2224 mRNAs, 70 lncRNAs and 46 microRNAs were differentially expressed in liver cirrhosis. The transcription factor -/lncRNA- microRNA-mRNA network we uncovered that results in immune-mediated liver cirrhosis is comprised of 5 core microRNAs (e.g., miR-203; miR-219-5p), 3 transcription factors (i.e., FOXP3, ETS1 and FOS) and 7 lncRNAs (e.g., ENTS00000671336, ENST00000575137). The competing endogenous RNA interaction network we identified includes a complex immune response regulatory subnetwork that controls the entire liver cirrhosis network. Additionally, we found 10 overlapping GO terms shared by both liver cirrhosis and hepatocellular carcinoma including "immune response" as well. Interestingly, the overlapping differentially expressed genes in liver cirrhosis and hepatocellular carcinoma were enriched in immune response-related functional terms. In summary, a complex gene regulatory network underlying immune response processes may play an important role in the development and progression of liver cirrhosis, and its development into hepatocellular carcinoma.
Multiple Vaccinations: Friend or Foe
Church, Sarah E.; Jensen, Shawn M.; Twitty, Chris; Bahjat, Keith; Hu, Hong-Ming; Urba, Walter J.; Fox, Bernard A.
2013-01-01
Few immunotherapists would accept the concept of a single vaccination inducing a therapeutic anti-cancer immune response in a patient with advanced cancer. But what is the evidence to support the “more-is-better” approach of multiple vaccinations? Since we are unaware of trials comparing the effect of a single vaccine versus multiple vaccinations on patient outcome, we considered that an anti-cancer immune response might provide a surrogate measure of the effectiveness of vaccination strategies. Since few large trials include immunological monitoring, the majority of information is gleaned from smaller trials in which an evaluation of immune responses to vaccine or tumor, before and at one or more times following the first vaccine was performed. In some studies there is convincing evidence that repeated administration of a specific vaccine can augment the immune response to antigens contained in the vaccine. In other settings multiple vaccinations can significantly reduce the immune response to one or more targets. Results from three large adjuvant vaccine studies support the potential detrimental effect of multiple vaccinations as clinical outcomes in the control arms were significantly better than that for treatment groups. Recent research has provided insights into mechanisms that are likely responsible for the reduced responses in the studies noted above, but supporting evidence from clinical specimens is generally lacking. Interpretation of these results is further complicated by the possibility that the dominant immune response may evolve to recognize epitopes not present in the vaccine. Nonetheless, the FDA-approval of the first therapeutic cancer vaccine and recent developments from preclinical models and clinical trials provide a substantial basis for optimism and a critical evaluation of cancer vaccine strategies. PMID:21952289
Effect of adjuvants on the humoral immune response to congopain in mice and cattle
2012-01-01
Background We investigated several adjuvants for their effects on the humoral immune response in both mice and cattle using the central domain of congopain (C2), the major cysteine protease of Trypanosoma congolense, as a model for developing a vaccine against animal trypanosomosis. The magnitude and sustainability of the immune response against C2 and the occurrence of a booster effect of infection, an indirect measure of the presence of memory cells, were determined by ELISA, while spectrofluorometry was used to determine and measure the presence of enzyme-inhibiting antibodies. Results Mice immunized with recombinant C2 in TiterMax™, Adjuphos™, purified saponin Quil A™ or Gerbu™ showed the best response according to the evaluation criteria and the latter three were chosen for the cattle vaccination study. The cattle were challenged with T. congolense four and a half months after the last booster. Cattle immunized with recombinant C2 in purified saponin Quil A™ showed the best antibody response according to the measured parameters. Conclusions We identified purified saponin Quil A™ as a good adjuvant for immunizations with C2. The results from this study will be useful in future attempts to develop an effective anti-disease vaccine against African trypanosomosis. PMID:22621378
Cherukuri, Anu; Servat, Esteban; Woo, Jennifer
2012-01-05
Currently, a robust set of immune correlates for live attenuated influenza vaccine (LAIV) efficacy in humans has not been fully elucidated. The serum hemagglutination inhibition (HAI) assay has been historically used to measure humoral immune responses to injectable inactivated influenza vaccination. However, serum antibody titers do not reliably reflect the complete mechanism of action of LAIV, which is an intranasally delivered vaccine and is expected to induce local mucosal and cellular immune responses in addition to humoral immune responses. Therefore, we designed a study to evaluate potential immune correlates of LAIV vaccination in the ferret animal model of influenza infection. Ferrets were vaccinated with increasing doses of LAIV and four weeks later challenged with a homologous wild-type (wt) H1N1 strain. Humoral immune responses measured following LAIV vaccination included HAI, serum antibodies and antibody secreting cells (ASC); and the responses were found to correlate with the dose level of LAIV administered in this model. Protection from wt virus challenge was determined by measuring inhibition of wt viral replication in nasal washes and in lung tissue. Results demonstrated that LAIV doses ≥ 5.0 log(10) Plaque Forming Units (PFU) elicited vaccine-specific IgG and IgA ASC frequencies and induced complete protection in the lungs. Further, we developed a novel model utilizing seropositive older ferrets to demonstrate that in the background of previous wt influenza infection LAIV induces a robust vaccine-specific B-cell response even in the absence of serum antibody response, a result that suggests that effector B-cell responses generated by LAIV are not inhibited by prior viral exposure. Finally, we demonstrated that LAIV elicits strain-specific memory B-cell responses that are measurable in a background of wt influenza infections. Taken together, results from these studies identified the antigen-specific ASC frequency as a useful early biomarker of LAIV-induced B-cell immune response. Copyright © 2011 Elsevier Ltd. All rights reserved.
Immunological evaluation of chitosan nanoparticles loaded with tetanus toxoid.
Ghalavand, M; Saadati, M; Ahmadi, A; Abbasi, E; Salimian, J
2018-01-01
The present study was aimed at comparing tetanus toxoid (TT)‑loaded-chitosan nanoparticles with aluminum hydroxide as a common vaccine adjuvant. Tetanus remains to be a major public health problem. Nanoparticles have been extensively used as immune adjuvants. Tetanus toxoid (TT) encapsulated in chitosan nanoparticles is considered to be a promising tetanus vaccine candidate. TT‑loaded chitosan nanoparticles were prepared by the ionic gelation method. The nanoparticles were studied by SEM for their size and morphology. In vivo study was conducted to evaluate the immunity response using mice divided into 4 groups and injected with encapsulated toxoid. The immune responses were then measured using indirect ELISA. The purity and integrity of antigen were confirmed by SDS-PAGE electrophoresis. The size of nanoparticles was estimated at 100 nm. As a result, the IgG antibody levels were 1.9, 1.76, and 0.87 in chitosan nanoparticles, aluminum hydroxide, and TT alone groups, respectively. Also, the immune responses were significantly higher in immunized groups compared to control groups vaccinated with free adjuvant vaccines (p < 0.05). The quality and efficacy of toxoid‑loaded chitosan nanoparticles were reasonable. It enhanced the immune responses as much as aluminum hydroxide adjuvant does and thus may be a good alternative candidate (Tab. 1, Fig. 3, Ref. 16).
The immunology of smallpox vaccines
Kennedy, Richard B; Ovsyannikova, Inna G; Jacobson, Robert M; Poland, Gregory A
2010-01-01
In spite of the eradication of smallpox over 30 years ago; orthopox viruses such as smallpox and monkeypox remain serious public health threats both through the possibility of bioterrorism and the intentional release of smallpox and through natural outbreaks of emerging infectious diseases such as monkeypox. The eradication effort was largely made possible by the availability of an effective vaccine based on the immunologically cross-protective vaccinia virus. Although the concept of vaccination dates back to the late 1800s with Edward Jenner, it is only in the past decade that modern immunologic tools have been applied toward deciphering poxvirus immunity. Smallpox vaccines containing vaccinia virus elicit strong humoral and cellular immune responses that confer cross-protective immunity against variola virus for decades after immunization. Recent studies have focused on: establishing the longevity of poxvirus-specific immunity, defining key immune epitopes targeted by T and B cells, developing subunit-based vaccines, and developing genotypic and phenotypic immune response profiles that predict either vaccine response or adverse events following immunization. PMID:19524427
Assessment of Different Strategies to Determine MAP-specific Cellular Immune Responses in Cattle
USDA-ARS?s Scientific Manuscript database
Assessment of cellular immunity in cattle against Mycobacterium avium ssp. paratuberculosis (MAP) by established methods remains unsatisfactory for diagnostic purposes. Recent studies conclude that analysis of T-cell subset responsiveness may improve diagnostic outcome. Aim of this study was to iden...
Enhancement of Th1 immune responses to recombinant influenza nucleoprotein by Ribi adjuvant.
Cargnelutti, Diego E; Sanchez, María A V; Alvarez, Paula; Boado, Lorena; Mattion, Nora; Scodeller, Eduardo A
2013-04-01
A broad coverage influenza vaccine against multiple viral strains based on the viral nucleoprotein (NP) is a goal pursued by many laboratories. If the goal is to formulate the vaccine with recombinant NP it is essential to count on adjuvants capable of inducing cellular immunity. This work have studied the effect of the monophosphoryl lipid A and trehalose dimycolate, known as the Ribi Adjuvant System (RAS), in the immune response induced in mice immunized with recombinant NP. The NP was formulated with RAS and used to immunize BALB/c mice. Immunizations with NP-RAS increased the humoral and cellular immune responses compared to unadjuvanted NP. The predominant antibody isotype was IgG2a, suggesting the development of a Th1 response. Analysis of the cytokines from mice immunized with NP-RAS showed a significant increase in the production of IFN-g and a decreased production of IL-10 and IL-4 compared to controls without RAS. These results are similar to those usually obtained using Freund’s adjuvant, known to induce Th1 and CTL responses when co-administered with purified proteins, and suggest that a similar approach may be possible to enhance the performance of a T-cell vaccine containing NP.
Bivalve immunity and response to infections: Are we looking at the right place?
Allam, Bassem; Pales Espinosa, Emmanuelle
2016-06-01
Significant progress has been made in the understanding of cellular and molecular mediators of immunity in invertebrates in general and bivalve mollusks in particular. Despite this information, there is a lack of understanding of factors affecting animal resistance and specific responses to infections. This in part results from limited consideration of the spatial (and to some extent temporal) heterogeneity of immune responses and very limited information on host-pathogen (and microbes in general) interactions at initial encounter/colonization sites. Of great concern is the fact that most studies on molluscan immunity focus on the circulating hemocytes and the humoral defense factors in the plasma while most relevant host-microbe interactions occur at mucosal interfaces. This paper summarizes information available on the contrasting value of information available on focal and systemic immune responses in infected bivalves, and highlights the role of mucosal immune factors in host-pathogen interactions. Available information underlines the diversity of immune effectors at molluscan mucosal interfaces and highlights the tailored immune response to pathogen stimuli. This context raises fascinating basic research questions around host-microbe crosstalk and feedback controls of these interactions and may lead to novel disease mitigation strategies and improve the assessment of resistant crops or the screening of probiotic candidates. Copyright © 2016 Elsevier Ltd. All rights reserved.
Molecular mechanism of PDT-induced apoptotic cells stimulation NO production in macrophages
NASA Astrophysics Data System (ADS)
Song, Sheng; Zhou, Fei-fan; Yang, Si-hua; Chen, Wei R.
2011-03-01
It is well known that apoptotic cells (AC) participate in immune response. The immune response induced by AC, either immunostimulatory or immunosuppressive, have been extensively studied. However, the molecular mechanisms of the immunostimulatory effects induced by PDT-treated AC remain unclear. Nitric oxide (NO) is an important signal transduction molecule and has been implicated in a variety of functions. It has also been found to play an important role not only as a cytotoxic effector but an immune regulatory mediator. In this study, we demonstrate that the PDT-induced apoptotic tumor cells stimulate the production of NO in macrophages by up-regulating expression of inducible nitric oxide synthase (iNOS). In addition, we show that AC, through toll-like receptors (TLRs), can activate myeloid differentiation factor-88 (MyD88), indicating that AC serves as an intercellular signal to induce iNOS expression in immune cells after PDT treatment. This study provided more details for understanding the molecular mechanism of the immune response induced by PDT-treated AC.
Innate Immune Responses of Drosophila melanogaster Are Altered by Spaceflight
Marcu, Oana; Lera, Matthew P.; Sanchez, Max E.; Levic, Edina; Higgins, Laura A.; Shmygelska, Alena; Fahlen, Thomas F.; Nichol, Helen; Bhattacharya, Sharmila
2011-01-01
Alterations and impairment of immune responses in humans present a health risk for space exploration missions. The molecular mechanisms underpinning innate immune defense can be confounded by the complexity of the acquired immune system of humans. Drosophila (fruit fly) innate immunity is simpler, and shares many similarities with human innate immunity at the level of molecular and genetic pathways. The goals of this study were to elucidate fundamental immune processes in Drosophila affected by spaceflight and to measure host-pathogen responses post-flight. Five containers, each containing ten female and five male fruit flies, were housed and bred on the space shuttle (average orbit altitude of 330.35 km) for 12 days and 18.5 hours. A new generation of flies was reared in microgravity. In larvae, the immune system was examined by analyzing plasmatocyte number and activity in culture. In adults, the induced immune responses were analyzed by bacterial clearance and quantitative real-time polymerase chain reaction (qPCR) of selected genes following infection with E. coli. The RNA levels of relevant immune pathway genes were determined in both larvae and adults by microarray analysis. The ability of larval plasmatocytes to phagocytose E. coli in culture was attenuated following spaceflight, and in parallel, the expression of genes involved in cell maturation was downregulated. In addition, the level of constitutive expression of pattern recognition receptors and opsonins that specifically recognize bacteria, and of lysozymes, antimicrobial peptide (AMP) pathway and immune stress genes, hallmarks of humoral immunity, were also reduced in larvae. In adults, the efficiency of bacterial clearance measured in vivo following a systemic infection with E. coli post-flight, remained robust. We show that spaceflight altered both cellular and humoral immune responses in Drosophila and that the disruption occurs at multiple interacting pathways. PMID:21264297
Bliska, James B; Wang, Xiaoying; Viboud, Gloria I; Brodsky, Igor E
2013-10-01
The innate immune system of mammals responds to microbial infection through detection of conserved molecular determinants called 'pathogen-associated molecular patterns' (PAMPs). Pathogens use virulence factors to counteract PAMP-directed responses. The innate immune system can in turn recognize signals generated by virulence factors, allowing for a heightened response to dangerous pathogens. Many Gram-negative bacterial pathogens encode type III secretion systems (T3SSs) that translocate effector proteins, subvert PAMP-directed responses and are critical for infection. A plasmid-encoded T3SS in the human-pathogenic Yersinia species translocates seven effectors into infected host cells. Delivery of effectors by the T3SS requires plasma membrane insertion of two translocators, which are thought to form a channel called a translocon. Studies of the Yersinia T3SS have provided key advances in our understanding of how innate immune responses are generated by perturbations in plasma membrane and other signals that result from translocon insertion. Additionally, studies in this system revealed that effectors function to inhibit innateimmune responses resulting from insertion of translocons into plasma membrane. Here, we review these advances with the goal of providing insight into how a T3SS can activate and inhibit innate immune responses, allowing a virulent pathogen to bypass host defences. © 2013 John Wiley & Sons Ltd.
Yersinia vs. host Immunity: how a pathogen evades or triggers a protective response
Chung, Lawton K.; Bliska, James B.
2015-01-01
The human pathogenic Yersinia species cause diseases that represent a significant source of morbidity and mortality. Despite this, specific mechanisms underlying Yersinia pathogenesis and protective host responses remain poorly understood. Recent studies have shown that Yersinia disrupt cell death pathways, perturb inflammatory processes and exploit immune cells to promote disease. The ensuing host responses following Yersinia infection include coordination of innate and adaptive immune responses in an attempt to control bacterial replication. Here, we highlight current advances in our understanding of the interactions between the pathogenic yersiniae and host cells, as well as the protective host responses mobilized to counteract these pathogens. Together, these studies enhance our understanding of Yersinia pathogenesis and highlight the ongoing battle between host and microbe. PMID:26638030
Antibodies enhance CXCL10 production during RSV infection of infant and adult immune cells.
Vissers, Marloes; Schreurs, Inge; Jans, Jop; Heldens, Jacco; de Groot, Ronald; de Jonge, Marien I; Ferwerda, Gerben
2015-12-01
Respiratory syncytial virus (RSV) bronchiolitis is a major burden in infants below three months of age, when the primary immune response is mainly dependent on innate immunity and maternal antibodies. We investigated the influence of antibodies on innate immunity during RSV infection. PBMCs from infants and adults were stimulated with live RSV and inactivated RSV in combination with antibody-containing and antibody-depleted serum. The immune response was determined by transcriptome analysis and chemokine levels were measured using ELISA and flow cytometry. Microarray data showed that CXCL10 gene transcription was RSV dependent, whereas CXCL11 and IFNα were upregulated in an antibody-dependent manner. Although the presence of antibodies reduces RSV infection rate, it enhances the innate immune response. In adult immune cells, antibodies enhance CXCL10, CXCL11, IFNα and IFNγ production in response to RSV infection. Contrary, in infant immune cells only CXCL10 was enhanced in an antibody-dependent manner. Monocytes are the main source of CXCL10 and they produce CXCL10 in both an antibody- and virus-dependent manner. This study shows that antibodies enhance CXCL10 production in infant immune cells. CXCL10 has been implicated in exuberating the inflammatory response during viral infections and antibodies could therefore play a role in the pathogenesis of RSV infections. Copyright © 2015 Elsevier Ltd. All rights reserved.
Tsave, Olga; Petanidis, Savvas; Kioseoglou, Efrosini; Yavropoulou, Maria P.; Yovos, John G.; Anestakis, Doxakis; Tsepa, Androniki; Salifoglou, Athanasios
2016-01-01
Over the last decade, a diverse spectrum of vanadium compounds has arisen as anti-inflammatory therapeutic metallodrugs targeting various diseases. Recent studies have demonstrated that select well-defined vanadium species are involved in many immune-driven molecular mechanisms that regulate and influence immune responses. In addition, advances in cell immunotherapy have relied on the use of metallodrugs to create a “safe,” highly regulated, environment for optimal control of immune response. Emerging findings include optimal regulation of B/T cell signaling and expression of immune suppressive or anti-inflammatory cytokines, critical for immune cell effector functions. Furthermore, in-depth perusals have explored NF-κB and Toll-like receptor signaling mechanisms in order to enhance adaptive immune responses and promote recruitment or conversion of inflammatory cells to immunodeficient tissues. Consequently, well-defined vanadium metallodrugs, poised to access and resensitize the immune microenvironment, interact with various biomolecular targets, such as B cells, T cells, interleukin markers, and transcription factors, thereby influencing and affecting immune signaling. A synthetically formulated and structure-based (bio)chemical reactivity account of vanadoforms emerges as a plausible strategy for designing drugs characterized by selectivity and specificity, with respect to the cellular molecular targets intimately linked to immune responses, thereby giving rise to a challenging field linked to the development of immune system vanadodrugs. PMID:27190573
Robertson, Shaun; Bradley, Janette E; MacColl, Andrew D C
2017-01-01
Parasitism represents one of the most widespread lifestyles in the animal kingdom, with the potential to drive coevolutionary dynamics with their host population. Where hosts and parasites evolve together, we may find local adaptation. As one of the main host defences against infection, there is the potential for the immune response to be adapted to local parasites. In this study, we used the three-spined stickleback and its Gyrodactylus parasites to examine the extent of local adaptation of parasite infection dynamics and the immune response to infection. We took two geographically isolated host populations infected with two distinct Gyrodactylus species and performed a reciprocal cross-infection experiment in controlled laboratory conditions. Parasite burdens were monitored over the course of the infection, and individuals were sampled at multiple time points for immune gene expression analysis. We found large differences in virulence between parasite species, irrespective of host, and maladaptation of parasites to their sympatric host. The immune system responded to infection, with a decrease in expression of innate and Th1-type adaptive response genes in fish infected with the less virulent parasite, representing a marker of a possible resistance mechanism. There was no evidence of local adaptation in immune gene expression levels. Our results add to the growing understanding of the extent of host-parasite local adaptation, and demonstrate a systemic immune response during infection with a common ectoparasite. Further immunological studies using the stickleback-Gyrodactylus system can continue to contribute to our understanding of the function of the immune response in natural populations. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Improved proliferation of antigen-specific cytolytic T lymphocytes using a multimodal nanovaccine
Li, Bo; Siuta, Michael; Bright, Vanessa; Koktysh, Dmitry; Matlock, Brittany K; Dumas, Megan E; Zhu, Meiying; Holt, Alex; Stec, Donald; Deng, Shenglou; Savage, Paul B; Joyce, Sebastian; Pham, Wellington
2016-01-01
The present study investigated the immunoenhancing property of our newly designed nanovaccine, that is, its ability to induce antigen-specific immunity. This study also evaluated the synergistic effect of a novel compound PBS-44, an α-galactosylceramide analog, in boosting the immune response induced by our nanovaccine. The nanovaccine was prepared by encapsulating ovalbumin (ova) and an adjuvant within the poly(lactic-co-glycolic acid) nanoparticles. Quantitative analysis of our study data showed that the encapsulated vaccine was physically and biologically stable; the core content of our nanovaccine was found to be released steadily and slowly, and nearly 90% of the core content was slowly released over the course of 25 days. The in vivo immunization studies exhibited that the nanovaccine induced stronger and longer immune responses compared to its soluble counterpart. Similarly, intranasal inhalation of the nanovaccine induced more robust antigen-specific CD8+ T cell response than intraperitoneal injection of nanovaccine. PMID:27895483
pH-Responsive Micelle-Based Cytoplasmic Delivery System for Induction of Cellular Immunity.
Yuba, Eiji; Sakaguchi, Naoki; Kanda, Yuhei; Miyazaki, Maiko; Koiwai, Kazunori
2017-11-04
(1) Background: Cytoplasmic delivery of antigens is crucial for the induction of cellular immunity, which is an important immune response for the treatment of cancer and infectious diseases. To date, fusogenic protein-incorporated liposomes and pH-responsive polymer-modified liposomes have been used to achieve cytoplasmic delivery of antigen via membrane rupture or fusion with endosomes. However, a more versatile cytoplasmic delivery system is desired for practical use. For this study, we developed pH-responsive micelles composed of dilauroyl phosphatidylcholine (DLPC) and deoxycholic acid and investigated their cytoplasmic delivery performance and immunity-inducing capability. (2) Methods: Interaction of micelles with fluorescence dye-loaded liposomes, intracellular distribution of micelles, and antigenic proteins were observed. Finally, antigen-specific cellular immune response was evaluated in vivo using ELIspot assay. (3) Results: Micelles induced leakage of contents from liposomes via lipid mixing at low pH. Micelles were taken up by dendritic cells mainly via macropinocytosis and delivered ovalbumin (OVA) into the cytosol. After intradermal injection of micelles and OVA, OVA-specific cellular immunity was induced in the spleen. (4) Conclusions: pH-responsive micelles composed of DLPC and deoxycholic acid are promising as enhancers of cytosol delivery of antigens and the induction capability of cellular immunity for the treatment of cancer immunotherapy and infectious diseases.
Methods to study Drosophila immunity.
Neyen, Claudine; Bretscher, Andrew J; Binggeli, Olivier; Lemaitre, Bruno
2014-06-15
Innate immune mechanisms are well conserved throughout evolution, and many theoretical concepts, molecular pathways and gene networks are applicable to invertebrate model organisms as much as vertebrate ones. Drosophila immunity research benefits from an easily manipulated genome, a fantastic international resource of transgenic tools and over a quarter century of accumulated techniques and approaches to study innate immunity. Here we present a short collection of ways to challenge the fruit fly immune system with various pathogens and parasites, as well as read-outs to assess its functions, including cellular and humoral immune responses. Our review covers techniques for assessing the kinetics and efficiency of immune responses quantitatively and qualitatively, such as survival analysis, bacterial persistence, antimicrobial peptide gene expression, phagocytosis and melanisation assays. Finally, we offer a toolkit of Drosophila strains available to the research community for current and future research. Copyright © 2014 Elsevier Inc. All rights reserved.
Park, Chang-Jin; Caddell, Daniel F.; Ronald, Pamela C.
2012-01-01
Plants are continuously challenged by pathogens including viruses, bacteria, and fungi. The plant immune system recognizes invading pathogens and responds by activating an immune response. These responses occur rapidly and often involve post-translational modifications (PTMs) within the proteome. Protein phosphorylation is a common and intensively studied form of these PTMs and regulates many plant processes including plant growth, development, and immunity. Most well-characterized pattern recognition receptors (PRRs), including Xanthomonas resistance 21, flagellin sensitive 2, and elongation factor-Tu receptor, possess intrinsic protein kinase activity and regulate downstream signaling through phosphorylation events. Here, we focus on the phosphorylation events of plant PRRs that play important roles in the immune response. We also discuss the role of phosphorylation in regulating mitogen-associated protein kinase cascades and transcription factors in plant immune signaling. PMID:22876255
Cytokines in Drosophila immunity.
Vanha-Aho, Leena-Maija; Valanne, Susanna; Rämet, Mika
2016-02-01
Cytokines are a large and diverse group of small proteins that can affect many biological processes, but most commonly cytokines are known as mediators of the immune response. In the event of an infection, cytokines are produced in response to an immune stimulus, and they function as key regulators of the immune response. Cytokines come in many shapes and sizes, and although they vary greatly in structure, their functions have been well conserved in evolution. The immune signaling pathways that respond to cytokines are remarkably conserved from fly to man. Therefore, Drosophila melanogaster, provides an excellent platform for studying the biology and function of cytokines. In this review, we will describe the cytokines and cytokine-like molecules found in the fly and discuss their roles in host immunity. Copyright © 2015 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.
Metabolic costs of mounting an antigen-stimulated immune response in adult and aged C57BL/6J mice.
Demas, G E; Chefer, V; Talan, M I; Nelson, R J
1997-11-01
Animals must balance their energy budget despite seasonal changes in both energy availability and physiological expenditures. Immunity, in addition to growth, thermoregulation, and cellular maintenance, requires substantial energy to maintain function, although few studies have directly tested the energetic cost of immunity. The present study assessed the metabolic costs of an antibody response. Adult and aged male C5BL/6J mice were implanted with either empty Silastic capsules or capsules filled with melatonin and injected with either saline or keyhole limpet hemocyanin (KLH). O2 consumption was monitored periodically throughout antibody production using indirect calorimetry. KLH-injected mice mounted significant immunoglobulin G (IgG) responses and consumed more O2 compared with animals injected with saline. Melatonin treatment increased O2 consumption in mice injected with saline but suppressed the increased metabolic rate associated with an immune response in KLH-injected animals. Melatonin had no effect on immune response to KLH. Adult and aged mice did not differ in antibody response or metabolic activity. Aged mice appear unable to maintain sufficient heat production despite comparable O2 production to adult mice. These results suggest that mounting an immune response requires significant energy and therefore requires using resources that could otherwise be allocated to other physiological processes. Energetic trade-offs are likely when energy demands are high (e.g., during winter, pregnancy, or lactation). Melatonin appears to play an adaptive role in coordinating reproductive, immunologic, and energetic processes.
Zhang, Congdang; Wang, Yi; Ma, Shuzhi; Li, Leike; Chen, Liyun; Yan, Huimin; Peng, Tao
2016-06-01
Human enterovirus 71 (EV-A71), a major agent of hand, foot, and mouth disease, has become an important public health issue in recent years. No effective antiviral or vaccines against EV-A71 infection are currently available. EV-A71 infection intrudes bodies through the gastric mucosal surface and it is necessary to enhance mucosal immune response to protect children from these pathogens. Recently, the majority of EV-A71 vaccine candidates have been developed for parenteral immunization. However, parenteral vaccine candidates often induce poor mucosal responses. On the other hand, oral vaccines could induce effective mucosal and systemic immunity, and could be easily and safely administered. Thus, proper oral vaccines have attached more interest compared with parenteral vaccine. In this study, the major immunogenic capsid protein of EV-A71 was displayed on the surface of Saccharomyces cerevisiae. Oral immunization of mice with surface-displayed VP1 S. cerevisiae induced systemic humoral and mucosal immune responses, including virus-neutralizing titers, VP1-specific antibody, and the induction of Th1 immune responses in the spleen. Furthermore, oral immunization of mother mice with surface-displayed VP1 S. cerevisiae conferred protection to neonatal mice against the lethal EV-A71 infection. Furthermore, we observed that multiple boost immunization as well as higher immunization dosage could induce higher EV-A71-specific immune response. Our results demonstrated that surface-displayed VP1 S. cerevisiae could be used as potential oral vaccine against EV-A71 infection.
Aggression, Social Stress, and the Immune System in Humans and Animal Models.
Takahashi, Aki; Flanigan, Meghan E; McEwen, Bruce S; Russo, Scott J
2018-01-01
Social stress can lead to the development of psychological problems ranging from exaggerated anxiety and depression to antisocial and violence-related behaviors. Increasing evidence suggests that the immune system is involved in responses to social stress in adulthood. For example, human studies show that individuals with high aggression traits display heightened inflammatory cytokine levels and dysregulated immune responses such as slower wound healing. Similar findings have been observed in patients with depression, and comorbidity of depression and aggression was correlated with stronger immune dysregulation. Therefore, dysregulation of the immune system may be one of the mediators of social stress that produces aggression and/or depression. Similar to humans, aggressive animals also show increased levels of several proinflammatory cytokines, however, unlike humans these animals are more protected from infectious organisms and have faster wound healing than animals with low aggression. On the other hand, subordinate animals that receive repeated social defeat stress have been shown to develop escalated and dysregulated immune responses such as glucocorticoid insensitivity in monocytes. In this review we synthesize the current evidence in humans, non-human primates, and rodents to show a role for the immune system in responses to social stress leading to psychiatric problems such as aggression or depression. We argue that while depression and aggression represent two fundamentally different behavioral and physiological responses to social stress, it is possible that some overlapped, as well as distinct, pattern of immune signaling may underlie both of them. We also argue the necessity of studying animal models of maladaptive aggression induced by social stress (i.e., social isolation) for understanding neuro-immune mechanism of aggression, which may be relevant to human aggression.
Aggression, Social Stress, and the Immune System in Humans and Animal Models
Takahashi, Aki; Flanigan, Meghan E.; McEwen, Bruce S.; Russo, Scott J.
2018-01-01
Social stress can lead to the development of psychological problems ranging from exaggerated anxiety and depression to antisocial and violence-related behaviors. Increasing evidence suggests that the immune system is involved in responses to social stress in adulthood. For example, human studies show that individuals with high aggression traits display heightened inflammatory cytokine levels and dysregulated immune responses such as slower wound healing. Similar findings have been observed in patients with depression, and comorbidity of depression and aggression was correlated with stronger immune dysregulation. Therefore, dysregulation of the immune system may be one of the mediators of social stress that produces aggression and/or depression. Similar to humans, aggressive animals also show increased levels of several proinflammatory cytokines, however, unlike humans these animals are more protected from infectious organisms and have faster wound healing than animals with low aggression. On the other hand, subordinate animals that receive repeated social defeat stress have been shown to develop escalated and dysregulated immune responses such as glucocorticoid insensitivity in monocytes. In this review we synthesize the current evidence in humans, non-human primates, and rodents to show a role for the immune system in responses to social stress leading to psychiatric problems such as aggression or depression. We argue that while depression and aggression represent two fundamentally different behavioral and physiological responses to social stress, it is possible that some overlapped, as well as distinct, pattern of immune signaling may underlie both of them. We also argue the necessity of studying animal models of maladaptive aggression induced by social stress (i.e., social isolation) for understanding neuro-immune mechanism of aggression, which may be relevant to human aggression. PMID:29623033
Harrington, David; Din, Hatem Mohi El; Guy, Jonathan; Robinson, Karen; Sparagano, Olivier
2009-03-23
Dermanyssus gallinae is the most significant ectoparasite of European poultry egg laying production systems due to high costs of control and associated production losses as well as adverse effects on bird welfare. In this study, soluble proteins were extracted from unfed D. gallinae (DGE) using a urea-based detergent and ultra-filtration, passed through a 0.22 microm filter and blended aseptically with adjuvant. One group of laying hens was immunized with DGE and adjuvant (Montanide ISA 50 V) whilst another group (Control) received physiological saline and adjuvant. All birds were immunized on two occasions, 21 days apart. Antibody response to immunization was determined by ELISA and western blotting using immunoglobulins (Igs) extracted from egg yolk. DGE immunization of hens resulted in a significant (P<0.05) IgY response compared to controls, although there was no significant difference in IgM response between treatments. A number of proteins were identified by western blotting using IgY antibodies from DGE immunized birds, most prominently at 40 and 230kDa. Analysis of proteins from approximately corresponding bands on SDS-PAGE confirmed the identity of tropomyosin, whilst other proteins showed high sequence homology with myosin and actin from other arachnid and insect species. Immunization of hens with DGE resulted in a 50.6% increase in mite mortality (P<0.001) 17h after feeding when tested by an in vitro mite feeding model. Data in this study demonstrate that somatic antigens from D. gallinae can be used to stimulate a protective immune response in laying hens. Further work is needed to identify other proteins of interest that could confer higher protection against D. gallinae, as well as optimization of the vaccination and in vitro testing protocol.
Kai, S; Tanaka, J; Nomoto, K; Torisu, M
1979-01-01
The effects of the anti-tumour agent OK-432 on the immune response to hamster erythrocytes (HRBC) and nucleated chicken erythrocytes (CRBC) were studied in inbred SL mice. Mice were treated repeatedly with OK-432 before immunization with erythrocytes in saline. The cytotoxicity of CRBC-primed spleen cells, as demonstrated by 51Cr release from labelled CRBC, was markedly increased by treatment with OD-432. The delayed footpad reaction to CRBC was significantly augmented by treatment with OK-432. These results in mice indicate that OK-432 can enhance the cellular immune responses which require the contribution of T cells. Such an activation of T cells by OK-432 was observed in the humoral immune response to a trinitrophenyl group. Augmentation of anti-hapten antibody production, suggesting the enhancement of helper T cell activity by OK-432, was noticed after immunization with trinitrophenyl conjugated to erythrocytes. Furthermore, this enhancement of helper T cell activity by OK-432 was confirmed by utilizing an adoptive transfer system. These results support the possibility that T cell activation may be one of the important effects of OK-432 as an immunopotentiator. PMID:314874
Larsen, Jeppe Madura; Brix, Susanne; Thysen, Anna Hammerich; Birch, Sune; Rasmussen, Morten Arendt; Bisgaard, Hans
2014-04-01
Asthma is a highly prevalent chronic lung disease that commonly originates in early childhood. Colonization of neonatal airways with the pathogenic bacterial strains Haemophilus influenzae, Moraxella catarrhalis, and Streptococcus pneumoniae is associated with increased risk of later childhood asthma. We hypothesized that children with asthma have an abnormal immune response to pathogenic bacteria in infancy. We aimed to assess the bacterial immune response in asymptomatic infants and the association with later development of asthma by age 7 years. The Copenhagen Prospective Studies on Asthma in Childhood birth cohort was followed prospectively, and asthma was diagnosed at age 7 years. The immune response to H influenzae, M catarrhalis, and S pneumoniae was analyzed in 292 infants using PBMCs isolated and stored since the age of 6 months. The immune response was assessed based on the pattern of cytokines produced and T-cell activation. The immune response to pathogenic bacteria was different in infants with asthma by 7 years of age (P = .0007). In particular, prospective asthmatic subjects had aberrant production of IL-5 (P = .008), IL-13 (P = .057), IL-17 (P = .001), and IL-10 (P = .028), whereas there were no differences in T-cell activation or peripheral T-cell composition. Children with asthma by school age exhibited an aberrant immune response to pathogenic bacteria in infancy. We propose that an abnormal immune response to pathogenic bacteria colonizing the airways in early life might lead to chronic airway inflammation and childhood asthma. Copyright © 2014 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.
Bacterial Outer Membrane Vesicles Induce Plant Immune Responses.
Bahar, Ofir; Mordukhovich, Gideon; Luu, Dee Dee; Schwessinger, Benjamin; Daudi, Arsalan; Jehle, Anna Kristina; Felix, Georg; Ronald, Pamela C
2016-05-01
Gram-negative bacteria continuously pinch off portions of their outer membrane, releasing membrane vesicles. These outer membrane vesicles (OMVs) are involved in multiple processes including cell-to-cell communication, biofilm formation, stress tolerance, horizontal gene transfer, and virulence. OMVs are also known modulators of the mammalian immune response. Despite the well-documented role of OMVs in mammalian-bacterial communication, their interaction with plants is not well studied. To examine whether OMVs of plant pathogens modulate the plant immune response, we purified OMVs from four different plant pathogens and used them to treat Arabidopsis thaliana. OMVs rapidly induced a reactive oxygen species burst, medium alkalinization, and defense gene expression in A. thaliana leaf discs, cell cultures, and seedlings, respectively. Western blot analysis revealed that EF-Tu is present in OMVs and that it serves as an elicitor of the plant immune response in this form. Our results further show that the immune coreceptors BAK1 and SOBIR1 mediate OMV perception and response. Taken together, our results demonstrate that plants can detect and respond to OMV-associated molecules by activation of their immune system, revealing a new facet of plant-bacterial interactions.
Colavecchia, S B; Jolly, A; Fernández, B; Fontanals, A M; Fernández, E; Mundo, S L
2012-02-01
The aim of the present study was to determine whether lipoarabinomannan (LAM), in combination with Freund's incomplete adjuvant (FIA), was able to improve cell-mediated and antibody-mediated immune responses against ovalbumin (OVA) in cattle. Twenty-three calves were assigned to four treatment groups, which were subcutaneously immunized with either OVA plus FIA, OVA plus FIA and LAM from Mycobacterium avium subsp avium, FIA plus LAM, or FIA alone. Lymphoproliferation, IFN-γ production and cell subpopulations on peripheral blood mononuclear cells before and 15 days after treatment were evaluated. Delayed hypersensitivity was evaluated on day 57. Specific humoral immune response was measured by ELISA. Inoculation with LAM induced higher levels of lymphoproliferation and IFN-γ production in response to ConA and OVA (P < 0.05). Specific antibody titers were similar in both OVA-immunized groups. Interestingly, our results showed that the use of LAM in vaccine preparations improved specific cell immune response evaluated by lymphoproliferation and IFN-γ production by at least 50 and 25%, respectively, in cattle without interfering with tuberculosis and paratuberculosis diagnosis.
Colavecchia, S.B.; Jolly, A.; Fernández, B.; Fontanals, A.M.; Fernández, E.; Mundo, S.L.
2012-01-01
The aim of the present study was to determine whether lipoarabinomannan (LAM), in combination with Freund's incomplete adjuvant (FIA), was able to improve cell-mediated and antibody-mediated immune responses against ovalbumin (OVA) in cattle. Twenty-three calves were assigned to four treatment groups, which were subcutaneously immunized with either OVA plus FIA, OVA plus FIA and LAM from Mycobacterium avium subsp avium, FIA plus LAM, or FIA alone. Lymphoproliferation, IFN-γ production and cell subpopulations on peripheral blood mononuclear cells before and 15 days after treatment were evaluated. Delayed hypersensitivity was evaluated on day 57. Specific humoral immune response was measured by ELISA. Inoculation with LAM induced higher levels of lymphoproliferation and IFN-γ production in response to ConA and OVA (P < 0.05). Specific antibody titers were similar in both OVA-immunized groups. Interestingly, our results showed that the use of LAM in vaccine preparations improved specific cell immune response evaluated by lymphoproliferation and IFN-γ production by at least 50 and 25%, respectively, in cattle without interfering with tuberculosis and paratuberculosis diagnosis. PMID:22286534
Helminths in the hygiene hypothesis: sooner or later?
Maizels, R M; McSorley, H J; Smyth, D J
2014-01-01
There is increasing recognition that exposures to infectious agents evoke fundamental effects on the development and behaviour of the immune system. Moreover, where infections (especially parasitic infections) have declined, immune responses appear to be increasingly prone to hyperactivity. For example, epidemiological studies of parasite-endemic areas indicate that prenatal or early-life experience of infections can imprint an individual's immunological reactivity. However, the ability of helminths to dampen pathology in established inflammatory diseases implies that they can have therapeutic effects even if the immune system has developed in a low-infection setting. With recent investigations of how parasites are able to modulate host immune pathology at the level of individual parasite molecules and host cell populations, we are now able to dissect the nature of the host–parasite interaction at both the initiation and recall phases of the immune response. Thus the question remains – is the influence of parasites on immunity one that acts primarily in early life, and at initiation of the immune response, or in adulthood and when recall responses occur? In short, parasite immunosuppression – sooner or later? PMID:24749722
Shao, Wenwei; Earley, Lauriel F; Chai, Zheng; Chen, Xiaojing; Sun, Junjiang; He, Ting; Deng, Meng; Hirsch, Matthew L; Ting, Jenny; Samulski, R Jude; Li, Chengwen
2018-06-21
Data from clinical trials for hemophilia B using adeno-associated virus (AAV) vectors have demonstrated decreased transgenic coagulation factor IX (hFIX) expression 6-10 weeks after administration of a high vector dose. While it is likely that capsid-specific cytotoxic T lymphocytes eliminate vector-transduced hepatocytes, thereby resulting in decreased hFIX, this observation is not intuitively consistent with restored hFIX levels following prednisone application. Although the innate immune response is immediately activated following AAV vector infection via TLR pathways, no studies exist regarding the role of the innate immune response at later time points after AAV vector transduction. Herein, activation of the innate immune response in cell lines, primary human hepatocytes, and hepatocytes in a human chimeric mouse model was observed at later time points following AAV vector transduction. Mechanistic analysis demonstrated that the double-stranded RNA (dsRNA) sensor MDA5 was necessary for innate immune response activation and that transient knockdown of MDA5, or MAVS, decreased IFN-β expression while increasing transgene production in AAV-transduced cells. These results both highlight the role of the dsRNA-triggered innate immune response in therapeutic transgene expression at later time points following AAV transduction and facilitate the execution of effective strategies to block the dsRNA innate immune response in future clinical trials.
The host immune response to gastrointestinal nematode infection in sheep.
McRae, K M; Stear, M J; Good, B; Keane, O M
2015-12-01
Gastrointestinal nematode infection represents a major threat to the health, welfare and productivity of sheep populations worldwide. Infected lambs have a reduced ability to absorb nutrients from the gastrointestinal tract, resulting in morbidity and occasional mortality. The current chemo-dominant approach to nematode control is considered unsustainable due to the increasing incidence of anthelmintic resistance. In addition, there is growing consumer demand for food products from animals not subjected to chemical treatment. Future mechanisms of nematode control must rely on alternative, sustainable strategies such as vaccination or selective breeding of resistant animals. Such strategies take advantage of the host's natural immune response to nematodes. The ability to resist gastrointestinal nematode infection is considered to be dependent on the development of a protective acquired immune response, although the precise immune mechanisms involved in initiating this process remain to be fully elucidated. In this study, current knowledge on the innate and acquired host immune response to gastrointestinal nematode infection in sheep and the development of immunity is reviewed. © 2015 John Wiley & Sons Ltd.
Sakai, Tohru; Kogiso, Mari
2008-08-01
The amount of soy products consumed in Japan is much greater than that in Western countries. Recent evidence indicates that soy isoflavones play a beneficial role in obesity, cancer, osteoporosis, and cardiovascular disease. The soybean isoflavone genistein is present at high levels in soy products. Genistein is structurally similar to 17beta-estradiol (E2), and genistein has been suggested to be act as E2 or an antagonist against E2. Genistein suppresses antigen-specific immune response in vivo and lymphocyte proliferation response in vitro. However, genistein enhances the cytotoxic response mediated by NK and cytotoxic T cells and the cytokine production from T cells. Thus, the effect of genistein on immunity is immune cell-dependent. Due to its unique effect on immune function, genistein has been used for the treatment of the diseases in animal models and it has been found that genistein inhibits allergic inflammatory responses. In this review, we summarize current studies related to the effect of isoflavone genistein on the immune system.
Quick, Eamon D.; Leser, J. Smith; Tyler, Kenneth L.
2014-01-01
ABSTRACT West Nile virus (WNV) is a neurotropic flavivirus that causes significant neuroinvasive disease involving the brain and/or spinal cord. Experimental mouse models of WNV infection have established the importance of innate and adaptive immune responses in controlling the extent and severity of central nervous system (CNS) disease. However, differentiating between immune responses that are intrinsic to the CNS and those that are dependent on infiltrating inflammatory cells has proven difficult. We used a murine ex vivo spinal cord slice culture (SCSC) model to determine the innate immune processes specific to the CNS during WNV infections. By 7 days after ex vivo infection of SCSCs, the majority of neurons and a substantial percentage of astrocytes were infected with WNV, resulting in apoptotic cell death and astrogliosis. Microglia, the resident immune cells of the CNS, were activated by WNV infection, as exemplified by their amoeboid morphology, the development of filopodia and lamellipodia, and phagocytosis of WNV-infected cells and debris. Microglial cell activation was concomitant with increased expression of proinflammatory cytokines and chemokines, including CXCL10, CXCL1, CCL5, CCL3, CCL2, tumor necrosis factor alpha (TNF-α), TNF-related apoptosis-inducing ligand (TRAIL), and interleukin-6 (IL-6). The application of minocycline, an inhibitor of neuroinflammation, altered the WNV-induced proinflammatory cytokine/chemokine expression profile, with inhibited production of CCL5, CCL2, and IL-6. Our findings establish that CNS-resident cells have the capacity to initiate a robust innate immune response against WNV infection in the absence of infiltrating inflammatory cells and systemic immune responses. IMPORTANCE There are no specific treatments of proven efficacy available for WNV neuroinvasive disease. A better understanding of the pathogenesis of WNV CNS infection is crucial for the rational development of novel therapies. Development of a spinal cord slice culture (SCSC) model facilitates the study of WNV pathogenesis and allows investigation of the intrinsic immune responses of the CNS. Our studies demonstrate that robust CNS innate immune responses, including microglial activation and proinflammatory cytokine/chemokine production, develop independently of contributions from the peripheral immune system and CNS-infiltrating inflammatory cells. PMID:25165111
Reeves, Daniel B; Peterson, Christopher W; Kiem, Hans-Peter; Schiffer, Joshua T
2017-07-01
Primary HIV-1 infection induces a virus-specific adaptive/cytolytic immune response that impacts the plasma viral load set point and the rate of progression to AIDS. Combination antiretroviral therapy (cART) suppresses plasma viremia to undetectable levels that rebound upon cART treatment interruption. Following cART withdrawal, the memory component of the virus-specific adaptive immune response may improve viral control compared to primary infection. Here, using primary infection and treatment interruption data from macaques infected with simian/human immunodeficiency virus (SHIV), we observe a lower peak viral load but an unchanged viral set point during viral rebound. The addition of an autologous stem cell transplant before cART withdrawal alters viral dynamics: we found a higher rebound set point but similar peak viral loads compared to the primary infection. Mathematical modeling of the data that accounts for fundamental immune parameters achieves excellent fit to heterogeneous viral loads. Analysis of model output suggests that the rapid memory immune response following treatment interruption does not ultimately lead to better viral containment. Transplantation decreases the durability of the adaptive immune response following cART withdrawal and viral rebound. Our model's results highlight the impact of the endogenous adaptive immune response during primary SHIV infection. Moreover, because we capture adaptive immune memory and the impact of transplantation, this model will provide insight into further studies of cure strategies inspired by the Berlin patient. IMPORTANCE HIV patients who interrupt combination antiretroviral therapy (cART) eventually experience viral rebound, the return of viral loads to pretreatment levels. However, the "Berlin patient" remained free of HIV rebound over a decade after stopping cART. His cure is attributed to leukemia treatment that included an HIV-resistant stem cell transplant. Inspired by this case, we studied the impact of stem cell transplantation in a macaque simian/HIV (SHIV) system. Using a mechanistic mathematical model, we found that while primary infection generates an adaptive immune memory response, stem cell transplantation disrupts this learned immunity. The results have implications for HIV cure regimens based on stem cell transplantation. Copyright © 2017 American Society for Microbiology.
Peterson, Christopher W.; Kiem, Hans-Peter
2017-01-01
ABSTRACT Primary HIV-1 infection induces a virus-specific adaptive/cytolytic immune response that impacts the plasma viral load set point and the rate of progression to AIDS. Combination antiretroviral therapy (cART) suppresses plasma viremia to undetectable levels that rebound upon cART treatment interruption. Following cART withdrawal, the memory component of the virus-specific adaptive immune response may improve viral control compared to primary infection. Here, using primary infection and treatment interruption data from macaques infected with simian/human immunodeficiency virus (SHIV), we observe a lower peak viral load but an unchanged viral set point during viral rebound. The addition of an autologous stem cell transplant before cART withdrawal alters viral dynamics: we found a higher rebound set point but similar peak viral loads compared to the primary infection. Mathematical modeling of the data that accounts for fundamental immune parameters achieves excellent fit to heterogeneous viral loads. Analysis of model output suggests that the rapid memory immune response following treatment interruption does not ultimately lead to better viral containment. Transplantation decreases the durability of the adaptive immune response following cART withdrawal and viral rebound. Our model's results highlight the impact of the endogenous adaptive immune response during primary SHIV infection. Moreover, because we capture adaptive immune memory and the impact of transplantation, this model will provide insight into further studies of cure strategies inspired by the Berlin patient. IMPORTANCE HIV patients who interrupt combination antiretroviral therapy (cART) eventually experience viral rebound, the return of viral loads to pretreatment levels. However, the “Berlin patient” remained free of HIV rebound over a decade after stopping cART. His cure is attributed to leukemia treatment that included an HIV-resistant stem cell transplant. Inspired by this case, we studied the impact of stem cell transplantation in a macaque simian/HIV (SHIV) system. Using a mechanistic mathematical model, we found that while primary infection generates an adaptive immune memory response, stem cell transplantation disrupts this learned immunity. The results have implications for HIV cure regimens based on stem cell transplantation. PMID:28404854
Dissecting innate immune responses with the tools of systems biology.
Smith, Kelly D; Bolouri, Hamid
2005-02-01
Systems biology strives to derive accurate predictive descriptions of complex systems such as innate immunity. The innate immune system is essential for host defense, yet the resulting inflammatory response must be tightly regulated. Current understanding indicates that this system is controlled by complex regulatory networks, which maintain homoeostasis while accurately distinguishing pathogenic infections from harmless exposures. Recent studies have used high throughput technologies and computational techniques that presage predictive models and will be the foundation of a systems level understanding of innate immunity.
Does major surgery induce immune suppression and increase the risk of postoperative infection?
Torrance, Hew D T; Pearse, Rupert M; O'Dwyer, Michael J
2016-06-01
Infection is the commonest cause of a postoperative complication. Following major surgery alterations in immune function are commonplace and these may contribute to an enhanced susceptibility to acquire nosocomial infections. This review will discuss postoperative infections in the context of an altered perioperative immune response and the factors influencing this response. Up to 10% of patients undergoing elective in-patient surgery may develop a postoperative infection. Laboratory advances now permit systematic monitoring of single-cell immune signatures, which enable a clearer description of the interaction between tissue damage, immune modulation and clinical outcomes. Traditional candidate gene expression has identified pathways that define the detrimental immune modulating effects of perioperative allogeneic blood transfusion. Large clinical studies have demonstrated that the choice of anaesthetic technique may have an impact on postoperative infections through differential immune modulation. Point of care tests are emerging that allow monitoring of the perioperative immune response. These could be further developed to introduce personalised care pathways. Consideration must also be given to anaesthesia techniques and perioperative treatments that may be associated with poor outcomes through immune modulation.
Cytokines and macrophage function in humans - role of stress
NASA Technical Reports Server (NTRS)
Sonnenfeld, Gerald (Principal Investigator)
1996-01-01
We have begun this study to commence the determination of the role of mild chronic stress in the effects of space flight on macrophage/monocyte function, a component of the immune response. Medical students undergoing regular periods of stress and relaxation have been shown to be an excellent model for determining the effects of stress on immune responses. We have begun using this model using the macrophage/monocyte as model leukocyte. The monocyte/macrophage plays a central role in immunoregulation. The studies to be included in this three year project are the effects of stress on: (1) interactions of monocytes with microbes, (2) monocyte production of cytokines, (3) monocyte phagocytosis and activity, and (4) monocyte expression of cell surface antigens important in immune responses. Stress hormone levels will also be carried out to determine if there is a correlation between stress effects on immune responses and hormonal levels. Psychological testing to insure subjects are actually stressed or relaxed at the time of testing will also be carried out. The results obtained from the proposed studies should be comparable with space flight studies with whole animals and isolated cell cultures. When complete this study should allow the commencement of the establishment of the role of stress as one compartment of the induction of immune alterations by space flight.
Basso, B; Marini, V
2015-03-01
Trypanosoma cruzi is a real challenge to the host's immune system, because it requires strong humoral and cellular immune response to remove circulating trypomastigote forms, and to prevent the replication of amastigote forms in tissues, involving many regulator and effector components. This protozoan is responsible for Chagas disease, a major public health problem in Latinamerica. We have developed a model of vaccination with Trypanosoma rangeli, a parasite closely related to T. cruzi, but nonpathogenic to humans, which reduces the infectiousness in three different species of animals, mice, dogs and guinea pigs, against challenge with T. cruzi. In a previous work, we demonstrated that mice vaccinated with T. rangeli showed important soluble mediators that stimulate phagocytic activity versus only infected groups. The aim of this work was to study the innate immune response in mice vaccinated or not with T. rangeli. Different population cells and some soluble mediators (cytokines) in peritoneal fluid and plasma in mice vaccinated-infected and only infected with T. cruzi were studied. In the first hours of challenge vaccinated mice showed an increase of macrophages, NK, granulocytes, and regulation of IL6, IFNγ, TNFα and IL10, with an increase of IL12, with respect to only infected mice. Furthermore an increase was observed of Li T, Li B responsible for adaptative response. Finally the findings showed that the innate immune response plays an important role in vaccinated mice for the early elimination of the parasites, complementary with the adaptative immune response, suggesting that vaccination with T. rangeli modulates the innate response, which develops some kind of immunological memory, recognizing shared antigens with T. cruzi. These results could contribute to the knowledge of new mechanisms which would have an important role in the immune response to Chagas disease. Copyright © 2014 Elsevier GmbH. All rights reserved.
Flores, Jose; DuPont, Herbert L; Paredes-Paredes, Mercedes; Aguirre-Garcia, M Magdalena; Rojas, Araceli; Gonzalez, Alexei; Okhuysen, Pablo C
2010-05-01
Enterotoxigenic Escherichia coli (ETEC), which produces heat-labile toxin (LT), is a common cause of travelers' diarrhea (TD). The B subunit of ETEC LT is immunologically related to the B subunit of Vibrio cholerae toxin (CT). In this pilot study we evaluated the whole-blood gamma interferon response to CT B in 17 U.S. adults traveling to Mexico. Only one of nine subjects who demonstrated a cellular immune response as determined by whole-blood gamma interferon production to CT B on arrival to Mexico developed diarrhea, whereas five of eight without a cellular response developed diarrhea. Markers of the cellular immune response to ETEC LT could help in identifying individuals immune to ETEC LT, and these markers deserve additional study.
Cribbs, David H; Berchtold, Nicole C; Perreau, Victoria; Coleman, Paul D; Rogers, Joseph; Tenner, Andrea J; Cotman, Carl W
2012-07-23
This study undertakes a systematic and comprehensive analysis of brain gene expression profiles of immune/inflammation-related genes in aging and Alzheimer's disease (AD). In a well-powered microarray study of young (20 to 59 years), aged (60 to 99 years), and AD (74 to 95 years) cases, gene responses were assessed in the hippocampus, entorhinal cortex, superior frontal gyrus, and post-central gyrus. Several novel concepts emerge. First, immune/inflammation-related genes showed major changes in gene expression over the course of cognitively normal aging, with the extent of gene response far greater in aging than in AD. Of the 759 immune-related probesets interrogated on the microarray, approximately 40% were significantly altered in the SFG, PCG and HC with increasing age, with the majority upregulated (64 to 86%). In contrast, far fewer immune/inflammation genes were significantly changed in the transition to AD (approximately 6% of immune-related probesets), with gene responses primarily restricted to the SFG and HC. Second, relatively few significant changes in immune/inflammation genes were detected in the EC either in aging or AD, although many genes in the EC showed similar trends in responses as in the other brain regions. Third, immune/inflammation genes undergo gender-specific patterns of response in aging and AD, with the most pronounced differences emerging in aging. Finally, there was widespread upregulation of genes reflecting activation of microglia and perivascular macrophages in the aging brain, coupled with a downregulation of select factors (TOLLIP, fractalkine) that when present curtail microglial/macrophage activation. Notably, essentially all pathways of the innate immune system were upregulated in aging, including numerous complement components, genes involved in toll-like receptor signaling and inflammasome signaling, as well as genes coding for immunoglobulin (Fc) receptors and human leukocyte antigens I and II. Unexpectedly, the extent of innate immune gene upregulation in AD was modest relative to the robust response apparent in the aged brain, consistent with the emerging idea of a critical involvement of inflammation in the earliest stages, perhaps even in the preclinical stage, of AD. Ultimately, our data suggest that an important strategy to maintain cognitive health and resilience involves reducing chronic innate immune activation that should be initiated in late midlife.
2012-01-01
Background This study undertakes a systematic and comprehensive analysis of brain gene expression profiles of immune/inflammation-related genes in aging and Alzheimer’s disease (AD). Methods In a well-powered microarray study of young (20 to 59 years), aged (60 to 99 years), and AD (74 to 95 years) cases, gene responses were assessed in the hippocampus, entorhinal cortex, superior frontal gyrus, and post-central gyrus. Results Several novel concepts emerge. First, immune/inflammation-related genes showed major changes in gene expression over the course of cognitively normal aging, with the extent of gene response far greater in aging than in AD. Of the 759 immune-related probesets interrogated on the microarray, approximately 40% were significantly altered in the SFG, PCG and HC with increasing age, with the majority upregulated (64 to 86%). In contrast, far fewer immune/inflammation genes were significantly changed in the transition to AD (approximately 6% of immune-related probesets), with gene responses primarily restricted to the SFG and HC. Second, relatively few significant changes in immune/inflammation genes were detected in the EC either in aging or AD, although many genes in the EC showed similar trends in responses as in the other brain regions. Third, immune/inflammation genes undergo gender-specific patterns of response in aging and AD, with the most pronounced differences emerging in aging. Finally, there was widespread upregulation of genes reflecting activation of microglia and perivascular macrophages in the aging brain, coupled with a downregulation of select factors (TOLLIP, fractalkine) that when present curtail microglial/macrophage activation. Notably, essentially all pathways of the innate immune system were upregulated in aging, including numerous complement components, genes involved in toll-like receptor signaling and inflammasome signaling, as well as genes coding for immunoglobulin (Fc) receptors and human leukocyte antigens I and II. Conclusions Unexpectedly, the extent of innate immune gene upregulation in AD was modest relative to the robust response apparent in the aged brain, consistent with the emerging idea of a critical involvement of inflammation in the earliest stages, perhaps even in the preclinical stage, of AD. Ultimately, our data suggest that an important strategy to maintain cognitive health and resilience involves reducing chronic innate immune activation that should be initiated in late midlife. PMID:22824372
Arginine and Citrulline and the Immune Response in Sepsis
Wijnands, Karolina A.P.; Castermans, Tessy M.R.; Hommen, Merel P.J.; Meesters, Dennis M.; Poeze, Martijn
2015-01-01
Arginine, a semi-essential amino acid is an important initiator of the immune response. Arginine serves as a precursor in several metabolic pathways in different organs. In the immune response, arginine metabolism and availability is determined by the nitric oxide synthases and the arginase enzymes, which convert arginine into nitric oxide (NO) and ornithine, respectively. Limitations in arginine availability during inflammatory conditions regulate macrophages and T-lymfocyte activation. Furthermore, over the past years more evidence has been gathered which showed that arginine and citrulline deficiencies may underlie the detrimental outcome of inflammatory conditions, such as sepsis and endotoxemia. Not only does the immune response contribute to the arginine deficiency, also the impaired arginine de novo synthesis in the kidney has a key role in the eventual observed arginine deficiency. The complex interplay between the immune response and the arginine-NO metabolism is further underscored by recent data of our group. In this review we give an overview of physiological arginine and citrulline metabolism and we address the experimental and clinical studies in which the arginine-citrulline NO pathway plays an essential role in the immune response, as initiator and therapeutic target. PMID:25699985
Collagen Membrane and Immune Response in Guided Bone Regeneration: Recent Progress and Perspectives.
Chu, Chenyu; Deng, Jia; Sun, Xianchang; Qu, Yili; Man, Yi
2017-10-01
Collagen is one of the important components of collagen membranes as well as the extracellular matrix (ECM). Most previous studies have focused on combining collagen membranes with various cross-linking agents, grafting materials, and cytokines to enhance their mechanical properties and bioactivities. Moreover, collagen membranes are often designed to minimize foreign body reactions involving macrophages. However, macrophages were recently found to play a pivotal role during bone regeneration based on their polarization into both proinflammatory and anti-inflammatory phenotypes. Because of the abilities to modulate macrophage polarization and mediate the balance of proinflammatory and anti-inflammatory microenvironments, immune-responsive collagen membranes may be an innovative strategy for promoting bone regeneration. Herein, following a brief review of collagen membranes and the background of macrophages, recent modulations and studies of immune-responsive collagen are described to express the potential of collagen interacting with macrophages and the necessity of further studies in the field of immune-responsive collagen membranes.
Mahan, C. Scott; Zalwango, Sarah; Thiel, Bonnie A.; Malone, LaShaunda L.; Chervenak, Keith A.; Baseke, Joy; Dobbs, Dennis; Stein, Catherine M.; Mayanja, Harriet; Joloba, Moses; Whalen, Christopher C.; Boom, W. Henry
2012-01-01
Contacts of active pulmonary tuberculosis (TB) patients are at risk for Mycobacterium tuberculosis (MTB) infection. Because most infections are controlled, studies during MTB infection provide insight into protective immunity. We compared immune responses of adult household contacts that did and did not convert the tuberculin skin test (TST). Innate and adaptive immune responses were measured by whole blood assay. Responses of TST converters (TSTC) were compared with persistently TST negative contacts (PTST–) and contacts who were TST+ at baseline (TST+). TLR-2, TLR-4, and IFN-γR responses to IFN-γ did not differ between the groups, nor did γδ T cell responses. T cell responses to MTB antigens differed markedly among TSTC, PTST–, and TST+ contacts. Thus, no differences in innate responses were found among the three household contact groups. However, adaptive T cell responses to MTB antigens did differ before and during MTB infection among PTST–, TSTC, and TST+ contacts. PMID:22492155
Tailoring the Immune Response via Customization of Pathogen Gene Expression.
Runco, Lisa M; Stauft, Charles B; Coleman, J Robert
2014-01-01
The majority of studies focused on the construction and reengineering of bacterial pathogens have mainly relied on the knocking out of virulence factors or deletion/mutation of amino acid residues to then observe the microbe's phenotype and the resulting effect on the host immune response. These knockout bacterial strains have also been proposed as vaccines to combat bacterial disease. Theoretically, knockout strains would be unable to cause disease since their virulence factors have been removed, yet they could induce a protective memory response. While knockout strains have been valuable tools to discern the role of virulence factors in host immunity and bacterial pathogenesis, they have been unable to yield clinically relevant vaccines. The advent of synthetic biology and enhanced user-directed gene customization has altered this binary process of knockout, followed by observation. Recent studies have shown that a researcher can now tailor and customize a given microbe's gene expression to produce a desired immune response. In this commentary, we highlight these studies as a new avenue for controlling the inflammatory response as well as vaccine development.
Tailoring the Immune Response via Customization of Pathogen Gene Expression
Runco, Lisa M.; Stauft, Charles B.
2014-01-01
The majority of studies focused on the construction and reengineering of bacterial pathogens have mainly relied on the knocking out of virulence factors or deletion/mutation of amino acid residues to then observe the microbe's phenotype and the resulting effect on the host immune response. These knockout bacterial strains have also been proposed as vaccines to combat bacterial disease. Theoretically, knockout strains would be unable to cause disease since their virulence factors have been removed, yet they could induce a protective memory response. While knockout strains have been valuable tools to discern the role of virulence factors in host immunity and bacterial pathogenesis, they have been unable to yield clinically relevant vaccines. The advent of synthetic biology and enhanced user-directed gene customization has altered this binary process of knockout, followed by observation. Recent studies have shown that a researcher can now tailor and customize a given microbe's gene expression to produce a desired immune response. In this commentary, we highlight these studies as a new avenue for controlling the inflammatory response as well as vaccine development. PMID:24719769
Romanenko, E G
2014-01-01
Study of the immune system mechanisms in chronic catarrhal gingivitis in children with gastrointestinal pathology was performed in 102 children (49 with chronic gastritis and duodenitis and 53 with no signs of gastrointestinal pathology). Forty-eight children with healthy periodontium constituted control group. Generalized chronic catarrhal gingivitis in children with gastroduodenal pathology is characterized by intense humoral response by simultaneous T-cell immunity suppression. Detection of high serum titers of circulating immune complexes in patients with chronic catarrhal gingivitis suggests a role of immune response in the pathogenesis of periodontal disease increases with concomitant diseases of the upper gastrointestinal tract.
Effect of space flight on cytokine production
NASA Astrophysics Data System (ADS)
Sonnenfeld, Gerald
Space flight has been shown to alter many immunological responses. Among those affected are the production of cytokines, Cytokines are the messengers of the immune system that facilitate communication among cells that allow the interaction among cells leading to the development of immune responses. Included among the cytokines are the interferons, interleukins, and colony stimulating factors. Cytokines also facilitate communication between the immune system and other body systems, such as the neuroendocrine and musculoskeletal systems. Some cytokines also have direct protective effects on the host, such as interferon, which can inhibit the replication of viruses. Studies in both humans and animals indicate that models of space flight as well as actual space flight alter the production and action of cytokines. Included among these changes are altered interferon production, altered responsiveness of bone marrow cells to granulocyte/monocyte-colony stimulating factor, but no alteration in the production of interleukin-3. This suggests that there are selective effects of space flight on immune responses, i.e. not all cytokines are affected in the same fashion by space flight. Tissue culture studies also suggest that there may be direct effects of space flight on the cells responsible for cytokine production and action. The results of the above study indicate that the effects of space flight on cytokines may be a fundamental mechanism by which space flight not only affects immune responses, but also other biological systems of the human.
Tokusumi, Yumiko; Tokusumi, Tsuyoshi; Schulz, Robert A
2017-05-13
In vertebrates, interaction between the nervous system and immune system is important to protect a challenged host from stress inputs from external sources. In this study, we demonstrate that sensory neurons are involved in the cellular immune response elicited by wasp infestation of Drosophila larvae. Multidendritic class IV neurons sense contacts from external stimuli and induce avoidance behaviors for host defense. Our findings show that inactivation of these sensory neurons impairs the cellular response against wasp parasitization. We also demonstrate that the nociception genes encoding the mechanosensory receptors Painless and Piezo, both expressed in class IV neurons, are essential for the normal cellular immune response to parasite challenge. Copyright © 2017. Published by Elsevier Inc.
Drosophila blood cells and their role in immune responses.
Vlisidou, Isabella; Wood, Will
2015-04-01
Drosophila melanogaster has been extensively used to study the humoral arm of innate immunity because of the developmental and functional parallels with mammalian innate immunity. However, the fly cellular response to infection is far less understood. Investigative work on Drosophila haemocytes, the immunosurveillance cells of the insect, has revealed that they fulfil roles similar to mammalian monocytes and macrophages. They respond to wound signals and orchestrate the coagulation response. In addition, they phagocytose and encapsulate invading pathogens, and clear up apoptotic bodies controlling inflammation. This review briefly describes the Drosophila haematopoietic system and discusses what is currently known about the contribution of haemocytes to the immune response upon infection and wounding, during all stages of development. © 2015 FEBS.
γ-Oryzanol-Rich Black Rice Bran Extract Enhances the Innate Immune Response.
Shin, Soon Young; Kim, Heon-Woong; Jang, Hwan-Hee; Hwang, Yu-Jin; Choe, Jeong-Sook; Lim, Yoongho; Kim, Jung-Bong; Lee, Young Han
2017-09-01
The innate immune response is an important host primary defense system against pathogens. γ-Oryzanol is one of the nutritionally important phytoceutical components in rice bran oil. The goal of this study was to investigate the effect of γ-oryzanol-rich extract from black rice bran (γORE) on the activation of the innate immune system. In this study, we show that γORE increased the expression of CD14 and Toll-like receptor 4 and enhanced the phagocytic activity of RAW264.7 macrophages. Furthermore, γORE and its active ingredient γ-oryzanol promoted the secretion of innate cytokines, interleukin-8, and CCL2, which facilitate phagocytosis by RAW264.7 cells. These findings suggest that γ-oryzanol in the γORE enhances innate immune responses.
Perillyl alcohol suppresses antigen-induced immune responses in the lung
DOE Office of Scientific and Technical Information (OSTI.GOV)
Imamura, Mitsuru; Sasaki, Oh; Okunishi, Katsuhide
Highlights: •Perillyl alcohol (POH) is an isoprenoid which inhibits the mevalonate pathway. •We examined whether POH suppresses immune responses with a mouse model of asthma. •POH treatment during sensitization suppressed Ag-induced priming of CD4{sup +} T cells. •POH suppressed airway eosinophila and cytokine production in thoracic lymph nodes. -- Abstract: Perillyl alcohol (POH) is an isoprenoid which inhibits farnesyl transferase and geranylgeranyl transferase, key enzymes that induce conformational and functional changes in small G proteins to conduct signal production for cell proliferation. Thus, it has been tried for the treatment of cancers. However, although it affects the proliferation of immunocytes,more » its influence on immune responses has been examined in only a few studies. Notably, its effect on antigen-induced immune responses has not been studied. In this study, we examined whether POH suppresses Ag-induced immune responses with a mouse model of allergic airway inflammation. POH treatment of sensitized mice suppressed proliferation and cytokine production in Ag-stimulated spleen cells or CD4{sup +} T cells. Further, sensitized mice received aerosolized OVA to induce allergic airway inflammation, and some mice received POH treatment. POH significantly suppressed indicators of allergic airway inflammation such as airway eosinophilia. Cytokine production in thoracic lymph nodes was also significantly suppressed. These results demonstrate that POH suppresses antigen-induced immune responses in the lung. Considering that it exists naturally, POH could be a novel preventive or therapeutic option for immunologic lung disorders such as asthma with minimal side effects.« less
Predictive Virtual Infection Modeling of Fungal Immune Evasion in Human Whole Blood.
Prauße, Maria T E; Lehnert, Teresa; Timme, Sandra; Hünniger, Kerstin; Leonhardt, Ines; Kurzai, Oliver; Figge, Marc Thilo
2018-01-01
Bloodstream infections by the human-pathogenic fungi Candida albicans and Candida glabrata increasingly occur in hospitalized patients and are associated with high mortality rates. The early immune response against these fungi in human blood comprises a concerted action of humoral and cellular components of the innate immune system. Upon entering the blood, the majority of fungal cells will be eliminated by innate immune cells, i.e., neutrophils and monocytes. However, recent studies identified a population of fungal cells that can evade the immune response and thereby may disseminate and cause organ dissemination, which is frequently observed during candidemia. In this study, we investigate the so far unresolved mechanism of fungal immune evasion in human whole blood by testing hypotheses with the help of mathematical modeling. We use a previously established state-based virtual infection model for whole-blood infection with C. albicans to quantify the immune response and identified the fungal immune-evasion mechanism. While this process was assumed to be spontaneous in the previous model, we now hypothesize that the immune-evasion process is mediated by host factors and incorporate such a mechanism in the model. In particular, we propose, based on previous studies that the fungal immune-evasion mechanism could possibly arise through modification of the fungal surface by as of yet unknown proteins that are assumed to be secreted by activated neutrophils. To validate or reject any of the immune-evasion mechanisms, we compared the simulation of both immune-evasion models for different infection scenarios, i.e., infection of whole blood with either C. albicans or C. glabrata under non-neutropenic and neutropenic conditions. We found that under non-neutropenic conditions, both immune-evasion models fit the experimental data from whole-blood infection with C. albicans and C. glabrata . However, differences between the immune-evasion models could be observed for the infection outcome under neutropenic conditions with respect to the distribution of fungal cells across the immune cells. Based on these predictions, we suggested specific experimental studies that might allow for the validation or rejection of the proposed immune-evasion mechanism.
Predictive Virtual Infection Modeling of Fungal Immune Evasion in Human Whole Blood
Prauße, Maria T. E.; Lehnert, Teresa; Timme, Sandra; Hünniger, Kerstin; Leonhardt, Ines; Kurzai, Oliver; Figge, Marc Thilo
2018-01-01
Bloodstream infections by the human-pathogenic fungi Candida albicans and Candida glabrata increasingly occur in hospitalized patients and are associated with high mortality rates. The early immune response against these fungi in human blood comprises a concerted action of humoral and cellular components of the innate immune system. Upon entering the blood, the majority of fungal cells will be eliminated by innate immune cells, i.e., neutrophils and monocytes. However, recent studies identified a population of fungal cells that can evade the immune response and thereby may disseminate and cause organ dissemination, which is frequently observed during candidemia. In this study, we investigate the so far unresolved mechanism of fungal immune evasion in human whole blood by testing hypotheses with the help of mathematical modeling. We use a previously established state-based virtual infection model for whole-blood infection with C. albicans to quantify the immune response and identified the fungal immune-evasion mechanism. While this process was assumed to be spontaneous in the previous model, we now hypothesize that the immune-evasion process is mediated by host factors and incorporate such a mechanism in the model. In particular, we propose, based on previous studies that the fungal immune-evasion mechanism could possibly arise through modification of the fungal surface by as of yet unknown proteins that are assumed to be secreted by activated neutrophils. To validate or reject any of the immune-evasion mechanisms, we compared the simulation of both immune-evasion models for different infection scenarios, i.e., infection of whole blood with either C. albicans or C. glabrata under non-neutropenic and neutropenic conditions. We found that under non-neutropenic conditions, both immune-evasion models fit the experimental data from whole-blood infection with C. albicans and C. glabrata. However, differences between the immune-evasion models could be observed for the infection outcome under neutropenic conditions with respect to the distribution of fungal cells across the immune cells. Based on these predictions, we suggested specific experimental studies that might allow for the validation or rejection of the proposed immune-evasion mechanism. PMID:29619027
Influence of a cocoa-enriched diet on specific immune response in ovalbumin-sensitized rats.
Pérez-Berezo, Teresa; Ramiro-Puig, Emma; Pérez-Cano, Francisco J; Castellote, Cristina; Permanyer, Joan; Franch, Angels; Castell, Margarida
2009-03-01
Previous studies in young rats have reported the impact of 3 weeks of high cocoa intake on healthy immune status. The present article describes the effects of a longer-term cocoa-enriched diet (9 weeks) on the specific immune response to ovalbumin (OVA) in adult Wistar rats. At 4 weeks after immunization, control rats produced anti-OVA antibodies, which, according their amount and isotype, were arranged as follows: IgG1 > IgG2a > IgM > IgG2b > IgG2c. Both cocoa diets studied (4% and 10%) down-modulated OVA-specific antibody levels of IgG1 (main subclass associated with the Th2 immune response in rats), IgG2a, IgG2c and IgM isotypes. Conversely, cocoa-fed rats presented equal or higher levels of anti-OVA IgG2b antibodies (subclass linked to the Th1 response). Spleen and lymph node cells from OVA-immunized control and cocoa-fed animals proliferated similarly under OVA stimulation. However, spleen cells from cocoa-fed animals showed decreased interleukin-4 secretion (main Th2 cytokine), and lymph node cells from the same rats displayed higher interferon-gamma secretion (main Th1 cytokine). These changes were accompanied by a reduction in the number of anti-OVA IgG-secreting cells in spleen. In conclusion, cocoa diets induced attenuation of antibody synthesis that may be attributable to specific down-regulation of the Th2 immune response.
Transcriptomic Response of Porcine PBMCs to Vaccination with Tetanus Toxoid as a Model Antigen
Adler, Marcel; Murani, Eduard; Brunner, Ronald; Ponsuksili, Siriluck; Wimmers, Klaus
2013-01-01
The aim of the present study was to characterize in vivo genome-wide transcriptional responses to immune stimulation in order to get insight into the resulting changes of allocation of resources. Vaccination with tetanus toxoid was used as a model for a mixed Th1 and Th2 immune response in pig. Expression profiles of PBMCs (peripheral blood mononuclear cells) before and at 12 time points over a period of four weeks after initial and booster vaccination at day 14 were studied by use of Affymetrix GeneChip microarrays and Ingenuity Pathway Analysis (IPA). The transcriptome data in total comprised more than 5000 genes with different transcript abundances (DE-genes). Within the single time stages the numbers of DE-genes were between several hundred and more than 1000. Ingenuity Pathway Analysis mainly revealed canonical pathways of cellular immune response and cytokine signaling as well as a broad range of processes in cellular and organismal growth, proliferation and development, cell signaling, biosynthesis and metabolism. Significant changes in the expression profiles of PBMCs already occurred very early after immune stimulation. At two hours after the first vaccination 679 DE-genes corresponding to 110 canonical pathways of cytokine signaling, cellular immune response and other multiple cellular functions were found. Immune competence and global disease resistance are heritable but difficult to measure and to address by breeding. Besides QTL mapping of immune traits gene expression profiling facilitates the detection of functional gene networks and thus functional candidate genes. PMID:23536793
Transcriptomic response of porcine PBMCs to vaccination with tetanus toxoid as a model antigen.
Adler, Marcel; Murani, Eduard; Brunner, Ronald; Ponsuksili, Siriluck; Wimmers, Klaus
2013-01-01
The aim of the present study was to characterize in vivo genome-wide transcriptional responses to immune stimulation in order to get insight into the resulting changes of allocation of resources. Vaccination with tetanus toxoid was used as a model for a mixed Th1 and Th2 immune response in pig. Expression profiles of PBMCs (peripheral blood mononuclear cells) before and at 12 time points over a period of four weeks after initial and booster vaccination at day 14 were studied by use of Affymetrix GeneChip microarrays and Ingenuity Pathway Analysis (IPA). The transcriptome data in total comprised more than 5000 genes with different transcript abundances (DE-genes). Within the single time stages the numbers of DE-genes were between several hundred and more than 1000. Ingenuity Pathway Analysis mainly revealed canonical pathways of cellular immune response and cytokine signaling as well as a broad range of processes in cellular and organismal growth, proliferation and development, cell signaling, biosynthesis and metabolism. Significant changes in the expression profiles of PBMCs already occurred very early after immune stimulation. At two hours after the first vaccination 679 DE-genes corresponding to 110 canonical pathways of cytokine signaling, cellular immune response and other multiple cellular functions were found. Immune competence and global disease resistance are heritable but difficult to measure and to address by breeding. Besides QTL mapping of immune traits gene expression profiling facilitates the detection of functional gene networks and thus functional candidate genes.
Marcos-López, Mar; Espinosa Ruiz, Cristóbal; Rodger, Hamish D; O'Connor, Ian; MacCarthy, Eugene; Esteban, M Ángeles
2017-07-01
Amoebic gill disease (AGD), caused by the protozoan parasite Neoparamoeba perurans, is one of the most significant infectious diseases for Atlantic salmon (Salmo salar L.) mariculture. The present study investigated the humoral immune response (both local in gill mucus and systemic in serum) of farmed Atlantic salmon naturally infected with N. perurans in commercial sea pens, at two different stages of the disease and after freshwater treatment. Parameters analysed included activity of immune related enzymes (i.e. lysozyme, peroxidase, protease, anti-protease, esterase, alkaline phosphatase), IgM levels, and the terminal carbohydrate profile in the gill mucus. Overall, greater variations between groups were noted in the immune parameters determined in gill mucus than the equivalent in the serum. In gill mucus, IgM levels and peroxidase, lysozyme, esterase and protease activities were decreased in fish showing longer exposure time to the infection and higher disease severity, then showed a sequential increase after treatment. Results obtained highlight the capacity of gills to elicit a local response to the infection, indicate an impaired immune response at the later stages of the disease, and show partial reestablishment of the host immune status after freshwater treatment. In addition to providing data on the humoral response to AGD, this study increases knowledge on gill mucosal humoral immunity, since some of the parameters were analysed for the first time in gill mucus. Copyright © 2017 Elsevier Ltd. All rights reserved.
Systems integration of innate and adaptive immunity.
Zak, Daniel E; Aderem, Alan
2015-09-29
The pathogens causing AIDS, malaria, and tuberculosis have proven too complex to be overcome by classical approaches to vaccination. The complexities of human immunology and pathogen-induced modulation of the immune system mandate new approaches to vaccine discovery and design. A new field, systems vaccinology, weds holistic analysis of innate and adaptive immunity within a quantitative framework to enable rational design of new vaccines that elicit tailored protective immune responses. A key step in the approach is to discover relationships between the earliest innate inflammatory responses to vaccination and the subsequent vaccine-induced adaptive immune responses and efficacy. Analysis of these responses in clinical studies is complicated by the inaccessibility of relevant tissue compartments (such as the lymph node), necessitating reliance upon peripheral blood responses as surrogates. Blood transcriptomes, although indirect to vaccine mechanisms, have proven very informative in systems vaccinology studies. The approach is most powerful when innate and adaptive immune responses are integrated with vaccine efficacy, which is possible for malaria with the advent of a robust human challenge model. This is more difficult for AIDS and tuberculosis, given that human challenge models are lacking and efficacy observed in clinical trials has been low or highly variable. This challenge can be met by appropriate clinical trial design for partially efficacious vaccines and by analysis of natural infection cohorts. Ultimately, systems vaccinology is an iterative approach in which mechanistic hypotheses-derived from analysis of clinical studies-are evaluated in model systems, and then used to guide the development of new vaccine strategies. In this review, we will illustrate the above facets of the systems vaccinology approach with case studies. Copyright © 2015. Published by Elsevier Ltd.
Patial, Sonika; Chaturvedi, V K; Rai, A; Saini, M; Chandra, Rajesh; Saini, Y; Gupta, Praveen K
2007-05-16
A bicistronic DNA vaccine against rabies and parvovirus infection of dogs was developed by subcloning rabies glycoprotein and canine parvovirus (CPV) VP2 genes into a bicistronic vector. After characterizing the expression of both the proteins in vitro, the bicistronic DNA vaccine was injected in mice and induced immune response was compared with monocistronic DNA vaccines. There was no significant difference in ELISA and virus neutralizing (VN) antibody responses against rabies and CPV in mice immunized with either bicistronic or monocistronic DNA vaccine. Further, there was significantly similar protection in mice immunized with either bicistronic or monocistronic rabies DNA vaccine on rabies virus challenge. Similarly, dogs immunized with monocistronic and bicistronic DNA vaccines developed comparable VN antibodies against rabies and CPV. This study indicated that bicistronic DNA vaccine can be used in dogs to induce virus neutralizing immune responses against both rabies and CPV.
A short history of research on immunity to infectious diseases in fish.
Van Muiswinkel, Willem B; Nakao, Miki
2014-04-01
This review describes the history of research on immunity to infectious diseases of fish in the period between 1965 and today. Special attention is paid to those studies, which are dealing with the interaction between immune system and invading pathogens in bony fish. Moreover, additional biographic information will be provided of people involved. In the 1960s and 1970s the focus of most studies was on humoral (Ig, B-cell) responses. Thorough studies on specific cellular (T-cell) responses and innate immunity (lectins, lysozyme, interferon, phagocytic cells) became available later. In the period between 1980 and today an overwhelming amount of data on regulation (e.g. cell cooperation, cytokines) and cell surface receptors (e.g. T-cell receptor; MHC) was published. It became also clear, that innate responses were often interacting with the acquired immune responses. Fish turned out to be vertebrates like all others with a sophisticated immune system showing specificity and memory. These basic data on the immune system could be applied in vaccination or in selection of disease resistant fish. Successful vaccines against bacterial diseases became available in the 1970s and 1980s. Effective anti-viral vaccines appeared from the 1980s onwards. There is no doubt, that Fish Immunology has become a flourishing science by the end of the 20th century and has contributed to our understanding of fish diseases as well as the success of aquaculture. Copyright © 2013 Elsevier Ltd. All rights reserved.
Hu, Liang; Ge, Anle; Wang, Xixian; Wang, Shanshan; Yue, Xinpei; Wang, Jie; Feng, Xiaojun; Du, Wei; Liu, Bi-Feng
2018-07-01
Immune response to environmental pathogen invasion is a complex process to prevent host from further damage. For quantitatively understanding immune responses and revealing the pathogenic environmental information, real-time monitoring of such a whole dynamic process with single-animal resolution in well-defined environments is highly desired. In this work, an integrated microfluidic device coupled with worm-based biosensor was proposed for in vivo studies of dynamic immune responses and antibiotics interference in infected C. elegans. Individual worms housed in chambers were exposed to the various pathogens and discontinuously manipulated for imaging with limited influence on physiological activities. The expression of immune responses gene (irg-1) was time-lapse measured in intact worms during pathogen infection. Results demonstrated that irg-1 gene could be induced in the presence of P. aeruginosa strain PA14 in a dose-dependent manner, and the survival of infected worm could be rescued under gentamicin or erythromycin treatments. We expect it to be a versatile platform to facilitate future studies on pathogenesis researches and rapid drug screen using C. elegans disease model. Copyright © 2018 Elsevier B.V. All rights reserved.
Leshem, Onir; Kashino, Suely S.; Gonçalves, Reginaldo B.; Suzuki, Noriyuki; Onodera, Masao; Fujimura, Akira; Sasaki, Hajime; Stashenko, Philip; Campos-Neto, Antonio
2013-01-01
In previous studies we showed that biasing the immune response to Porphyromonas gingivalis antigens to the Th1 phenotype increases inflammatory bone resorption caused by this organism. Using a T cell screening strategy we identified eight P. gingivalis genes coding for proteins that appear to be involved in T-helper cell responses. In the present study we characterized the protein, encoded by PG_1841 gene and evaluated its relevance in the in bone resorption caused by P. gingivalis because subcutaneous infection of mice with this organism resulted in the induction of Th1 biased response to the recombinant PG1841 antigen molecule. Using an immunization regime that strongly biases toward the Th1 phenotype followed by challenge with P. gingivalis in dental pulp tissue, we demonstrate that mice pre-immunized with rPG1841 developed severe bone loss compared with control immunized mice. Pre-immunization of mice with the antigen using a Th2 biasing regime resulted in no exacerbation of the disease. These results support the notion that selected antigens of P. gingivalis are involved in a biased Th1 host response that leads to the severe bone loss caused by this oral pathogen. PMID:18457976
Virus-like particles as nanovaccine candidates
NASA Astrophysics Data System (ADS)
Guillen, G.; Aguilar, J. C.; Dueñas, S.; Hermida, L.; Iglesias, E.; Penton, E.; Lobaina, Y.; Lopez, M.; Mussachio, A.; Falcon, V.; Alvarez, L.; Martinez, G.; Gil, L.; Valdes, I.; Izquierdo, A.; Lazo, L.; Marcos, E.; Guzman, G.; Muzio, V.; Herrera, L.
2013-03-01
The existing vaccines are mainly limited to the microorganisms we are able to culture and produce and/or to those whose killing is mediated by humoral response (antibody mediated). It has been more difficult to develop vaccines capable of inducing a functional cellular response needed to prevent or cure chronic diseases. New strategies should be taken into account in the improvement of cell-based immune responses in order to prevent and control the infections and eventually clear the virus. Preclinical and clinical results with vaccine candidates developed as a vaccine platform based on virus-like particles (VLPs) evidenced their ability to stimulate mucosal as well as systemic immunity. Particles based on envelope, membrane or nucleocapsid microbial proteins induce a strong immune response after nasal or parenteral administration in mice, non-human primates and humans. In addition, the immune response obtained was modulated in a Th1 sense. The VLPs were also able to immunoenhance the humoral and cellular immune responses against several viral pathogens. Studies in animals and humans with nasal and systemic formulations evidenced that it is possible to induce functional immune response against HBV, HCV, HIV and dengue virus. Invited talk at the 6th International Workshop on Advanced Materials Science and Nanotechnology, 30 October - 2 November 2012, Ha Long, Vietnam.
Jung, Bock-Gie; Lee, Jin-A; Lee, Bong-Joo
2012-12-01
It has been considered that drinking oxygenated water improves oxygen availability, which may increase vitality and improve immune functions. The present study evaluated the effects of oxygenated drinking water on immune function in pigs. Continuous drinking of oxygenated water markedly increased peripheral blood mononuclear cell proliferation, interleukin-1β expression level and the CD4(+):CD8(+) cell ratio in pigs. During Salmonella Typhimurium infection, total leukocytes and relative cytokines expression levels were significantly increased in pigs consuming oxygenated water compared with pigs consuming tap water. These findings suggest that oxygenated drinking water enhances immune activity in pigs and increases immune responses of pigs during S. Typhimurium Infection.
Imagining 'reactivity': allergy within the history of immunology.
Jamieson, Michelle
2010-12-01
An allergy is commonly understood to be an overreaction of the immune system to harmless substances that are misrecognised as foreign. This concept of allergy as an abnormal, misdirected immune response-a biological fault-stems from the idea that the immune system is an inherently defensive operation designed to protect the individual through an innate capacity to discriminate between the benign and toxic, or self and nonself. However, this definition of allergy represents a radical departure from its original formulation. Literally meaning 'altered reactivity', the term was coined in 1906 by Austrian paediatrician Clemens von Pirquet, to describe the fundamentally mutable nature of the immune response. This paper argues that the conventional interpretation of allergy-as-pathology derives from specific concepts of 'organism', 'response', and 'normal' immune function that have-for over a century-governed the perception and study of immune phenomena within immunology. Through an examination of Louis Pasteur's conceptualisation of the host body/microorganism relationship, I argue that immunology is founded on a view of the organism as a discrete, autonomous entity, and on a concomitant notion of the immune response as essentially reactive. Revisiting the concept of 'altered reactivity', this paper points to the fact that allergy was initially posited as a general theory of immune responsiveness and, importantly, one that poses a significant challenge to orthodox notions of immunopathology. It suggests that Pirquet's unique view of immune responsiveness presents an account of organismic or biological identity that encapsulates, rather than reduces, its ecological complexity. Copyright © 2010 Elsevier Ltd. All rights reserved.
Ni, Wei-Ya; Wu, Ming-Fanf; Liao, Nien-Chieh; Yeh, Ming-Yang; Lu, Hsu-Feng; Hsueh, Shu-Ching; Liu, Jia-You; Huang, Yi-Ping; Chang, Chuan-Hsun; Chung, Jing-Gung
2013-01-01
Agaricus blazei Murill (AbM) is traditionally used against a wide range of conditions such as ulcerative colitis, Crohn's disease, foot-and-mouth disease and chronic hepatitis C infection. In this study, we evaluated the immunomodulatory effects of AbM. For the non-specific immune response experiments, a total of 40 female BALB/c mice were divided into control (group 1) and experimental (groups 2-4) groups of 10 animals each. Groups 2, 3 and 4 were orally-administered high (819 mg/kg), medium (273 mg/kg) and low (136.5 mg/kg) doses of AbM daily for six weeks and then six parameters related to non-specific immune response were detected. For the adaptive immune response experiments, 40 female mice were similarly divided into four groups. After six weeks of treatment, animals were immunized with the OVA immunogen. Two weeks later, splenocytes and sera were collected. Four parameters related to adaptive immune response were evaluated. We found that feeding mice with AbM extract increased the IgG level in serum, promoted phagocytosis of peritoneal macrophages and elevated the activity of Natural killer cells. We also found that the highest dose of AbM increased interleukin-2 (IL-2) levels in splenocytes and that a medium dose increased interferon-γ. The levels of interleukin-4 (IL-4) were reduced or unchanged. T-helper type 1 cytokine levels were increased. AbM increased the humoral immune response and also affected the cellular immune response. These results provide evidence that AbM can modulate innate and adaptive immunity.
Lundberg, L; Koch, C; Magnusson, M; Bertelsen, C
1983-06-01
Two strains of guinea-pigs selectively bred for either high (IMM/S) or low (IMM/R) responsiveness to ovalbumin-induced respiratory anaphylaxis were examined for their immune response to a copolymer of L-glutamic acid and L-alanine (GA), a copolymer of L-glutamic acid and L-tyrosine (GT), and to a dinitro-phenyl derivative of a homopolymer of L-lysine (DNP-PLL). Considerable differences between the strains in development of cellular hypersensitivity and in the production of antibodies were observed. Guinea-pigs from IMM/S were all responders to GA and DNP-PLL and non-responders to GT, while guinea-pigs from two of three lines from IMM/R were responders to GT and non-responders to GA and DNP-PLL. The third IMM/R line showed an immune response pattern similar to guinea-pigs of strain IMM/S. Preliminary breeding studies confirmed that the immune response to these three antigens is under the control of dominant autosomal genes, since (IMM/S x IMM/R) F1 animals responded to all three antigens. It is concluded that these three antigens may serve as immune response markers in genetic studies of the differences between guinea-pigs from IMM/S and IMM/R in their ability to develop respiratory anaphylaxis.
Nyman, Tuula A; Lorey, Martina B; Cypryk, Wojciech; Matikainen, Sampsa
2017-05-01
The immune system is our defense system against microbial infections and tissue injury, and understanding how it works in detail is essential for developing drugs for different diseases. Mass spectrometry-based proteomics can provide in-depth information on the molecular mechanisms involved in immune responses. Areas covered: Summarized are the key immunology findings obtained with MS-based proteomics in the past five years, with a focus on inflammasome activation, global protein secretion, mucosal immunology, immunopeptidome and T cells. Special focus is on extracellular vesicle-mediated protein secretion and its role in immune responses. Expert commentary: Proteomics is an essential part of modern omics-scale immunology research. To date, MS-based proteomics has been used in immunology to study protein expression levels, their subcellular localization, secretion, post-translational modifications, and interactions in immune cells upon activation by different stimuli. These studies have made major contributions to understanding the molecular mechanisms involved in innate and adaptive immune responses. New developments in proteomics offer constantly novel possibilities for exploring the immune system. Examples of these techniques include mass cytometry and different MS-based imaging approaches which can be widely used in immunology.
Kumagai, T; Yamanaka, T; Wataya, Y; Umetsu, A; Kawamura, N; Ikeda, K; Furukawa, H; Kimura, K; Chiba, S; Saito, S; Sugawara, N; Kurimoto, F; Sakaguchi, M; Inouye, S
1997-07-01
This study was designed to investigate the development of both cellular and humoral immune responses to gelatin in patients with vaccine-related immediate and nonimmediate reactions. Our purpose was to define the nature of the responses in the different clinical states. Six patients with immediate reactions and 21 patients with nonimmediate reactions after inoculation of various live vaccines were studied. Measurement of gelatin-specific IgE was performed in all subjects. Gelatin-specific T-cell responses detected by an in vitro lymphocyte proliferation assay and by an assay for IL-2 responsiveness were investigated to compare the immune response in patients with the two types of reaction. All six patients with immediate reactions had IgE responses to gelatin, whereas none of the 21 patients with nonimmediate reactions had any anti-gelatin IgE. All of the six patients with immediate reactions and 17 of the 21 patients with nonimmediate reactions exhibited positive T-lymphocyte responses specific to gelatin. Immediate and nonimmediate reactions are caused by different types of allergy to gelatin, and cell-mediated immunity to gelatin may play an important role in the pathogenesis of nonimmediate reactions.
Development of a human adaptive immune system in cord blood cell-transplanted mice.
Traggiai, Elisabetta; Chicha, Laurie; Mazzucchelli, Luca; Bronz, Lucio; Piffaretti, Jean-Claude; Lanzavecchia, Antonio; Manz, Markus G
2004-04-02
Because ethical restrictions limit in vivo studies of the human hemato-lymphoid system, substitute human to small animal xenotransplantation models have been employed. Existing models, however, sustain only limited development and maintenance of human lymphoid cells and rarely produce immune responses. Here we show that intrahepatic injection of CD34+ human cord blood cells into conditioned newborn Rag2-/-gammac-/- mice leads to de novo development of B, T, and dendritic cells; formation of structured primary and secondary lymphoid organs; and production of functional immune responses. This provides a valuable model to study development and function of the human adaptive immune system in vivo.
Yersinia versus host immunity: how a pathogen evades or triggers a protective response.
Chung, Lawton K; Bliska, James B
2016-02-01
The human pathogenic Yersinia species cause diseases that represent a significant source of morbidity and mortality. Despite this, specific mechanisms underlying Yersinia pathogenesis and protective host responses remain poorly understood. Recent studies have shown that Yersinia disrupt cell death pathways, perturb inflammatory processes and exploit immune cells to promote disease. The ensuing host responses following Yersinia infection include coordination of innate and adaptive immune responses in an attempt to control bacterial replication. Here, we highlight current advances in our understanding of the interactions between the pathogenic yersiniae and host cells, as well as the protective host responses mobilized to counteract these pathogens. Together, these studies enhance our understanding of Yersinia pathogenesis and highlight the ongoing battle between host and microbe. Copyright © 2015 Elsevier Ltd. All rights reserved.
Comparative study of two human diploid rabies vaccines administered with antirabies globulin.
Vodopija, I; Sureau, P; Smerdel, S; Lafon, M; Baklaic, Z; Ljubicic, M; Svjetlicic, M
1988-12-01
The association of human rabies immune globulin (HRIG) to the vaccine is recommended for postexposure rabies treatment in cases of severe exposure. In a previous study using an abbreviated postexposure vaccination schedule it was observed that passive immunization could partially inhibit the active immune response, with three cell-culture purified vaccines but not with the concentrated human diploid cell vaccine (HDCV). In order to see if this difference was related to the purification process, the present study was designed comparing two HDCV, one concentrated and the other concentrated and purified, both of them administered in association with HRIG. The neutralizing antibody response in the vaccines was found to be identical with both vaccines, ruling out the role of the purification and confirming the excellent immunogenicity of both human diploid cell vaccines and the absence of inhibition of the active immune response by the association of HRIG to HDCV.
Antimicrobial autophagy: a conserved innate immune response in Drosophila.
Moy, Ryan H; Cherry, Sara
2013-01-01
Autophagy is a highly conserved degradative pathway that has rapidly emerged as a critical component of immunity and host defense. Studies have implicated autophagy genes in restricting the replication of a diverse array of pathogens, including bacteria, viruses and protozoans. However, in most cases, the in vivo role of antimicrobial autophagy against pathogens has been undefined. Drosophila provides a genetically tractable model system that can be easily adapted to study autophagy in innate immunity, and recent studies in flies have demonstrated that autophagy is an essential antimicrobial response against bacteria and viruses in vivo. These findings reveal striking conservation of antimicrobial autophagy between flies and mammals, and in particular, the role of pathogen-associated pattern recognition in triggering this response. This review discusses our current understanding of antimicrobial autophagy in Drosophila and its potential relevance to human immunity. Copyright © 2013 S. Karger AG, Basel.
Utilizing population variation, vaccination, and systems biology to study human immunology
Tsang, John S.
2016-01-01
The move toward precision medicine has highlighted the importance of understanding biological variability within and across individuals in the human population. In particular, given the prevalent involvement of the immune system in diverse pathologies, an important question is how much and what information about the state of the immune system is required to enable accurate prediction of future health and response to medical interventions. Towards addressing this question, recent studies using vaccination as a model perturbation and systems-biology approaches are beginning to provide a glimpse of how natural population variation together with multiplexed, high-throughput measurement and computational analysis can be used to uncover predictors of immune response quality in humans. Here I discuss recent developments in this emerging field, with emphasis on baseline correlates of vaccination responses, sources of immune-state variability, as well as relevant features of study design, data generation, and computational analysis. PMID:26187853
Merianos, Demetri J.; Tiblad, Eleonor; Santore, Matthew T.; Todorow, Carlyn A.; Laje, Pablo; Endo, Masayuki; Zoltick, Philip W.; Flake, Alan W.
2009-01-01
The lack of fetal immune responses to foreign antigens, i.e., fetal immunologic tolerance, is the most compelling rationale for prenatal stem cell and gene therapy. However, the frequency of engraftment following in utero hematopoietic cell transplantation (IUHCT) in the murine model is reduced in allogeneic, compared with congenic, recipients. This observation supports the existence of an immune barrier to fetal transplantation and challenges the classic assumptions of fetal tolerance. Here, we present evidence that supports the presence of an adaptive immune response in murine recipients of IUHCT that failed to maintain engraftment. However, when IUHCT recipients were fostered by surrogate mothers, they all maintained long-term chimerism. Furthermore, we have demonstrated that the cells responsible for rejection of the graft were recipient in origin. Our observations suggest a mechanism by which IUHCT-dependent sensitization of the maternal immune system and the subsequent transmission of maternal alloantibodies to pups through breast milk induces a postnatal adaptive immune response in the recipient, which, in turn, results in the ablation of engraftment after IUHCT. Finally, we showed that non-fostered pups that maintained their chimerism had higher levels of Tregs as well as a more suppressive Treg phenotype than their non-chimeric, non-fostered siblings. This study resolves the apparent contradiction of induction of an adaptive immune response in the pre-immune fetus and confirms the potential of actively acquired tolerance to facilitate prenatal therapeutic applications. PMID:19652363
Autophagic Mechanism in Anti-Cancer Immunity: Its Pros and Cons for Cancer Therapy
Li, Ying-Ying; Feun, Lynn G.; Thongkum, Angkana; Tu, Chiao-Hui; Chen, Shu-Mei; Wangpaichitr, Medhi; Wu, Chunjing; Kuo, Macus T.; Savaraj, Niramol
2017-01-01
Autophagy, a self-eating machinery, has been reported as an adaptive response to maintain metabolic homeostasis when cancer cells encounter stress. It has been appreciated that autophagy acts as a double-edge sword to decide the fate of cancer cells upon stress factors, molecular subtypes, and microenvironmental conditions. Currently, the majority of evidence support that autophagy in cancer cells is a vital mechanism bringing on resistance to current and prospective treatments, yet whether autophagy affects the anticancer immune response remains unclear and controversial. Accumulated studies have demonstrated that triggering autophagy is able to facilitate anticancer immunity due to an increase in immunogenicity, whereas other studies suggested that autophagy is likely to disarm anticancer immunity mediated by cytotoxic T cells and nature killer (NK) cells. Hence, this contradiction needs to be elucidated. In this review, we discuss the role of autophagy in cancer cells per se and in cancer microenvironment as well as its dual regulatory roles in immune surveillance through modulating presentation of tumor antigens, development of immune cells, and expression of immune checkpoints. We further focus on emerging roles of autophagy induced by current treatments and its impact on anticancer immune response, and illustrate the pros and cons of utilizing autophagy in cancer immunotherapy based on preclinical references. PMID:28629173
Dao, Maria Carlota; Meydani, Simin Nikbin
2013-01-01
Iron status and immune response become impaired in situations that involve chronic inflammation, such as obesity or aging. Little is known, however, about the additional burden that obesity may place on the iron status and immune response in the elderly. This question is relevant given the rising numbers of elderly obese (BMI >30 kg/m2) individuals and the high prevalence of iron deficiency worldwide. Iron is necessary for proper function of both the innate and adaptive immune system. Hepcidin, a peptide hormone that regulates cellular iron export, is essential for the maintenance of iron homeostasis. Therefore, since immune cells require iron for proper function hepcidin may also play an important role in immune response. In this review, we summarize the evidence for hepcidin as a link between the fields of gerontology, obesity, iron biology, and immunology. We also identify several gaps in knowledge and unanswered questions pertaining to iron homeostasis and immunity in obese populations. Finally, we review studies that have shown the impact of weight loss, focusing on calorie restriction, iron homeostasis, and immunity. These studies are important both in elucidating mechanistic links between obesity and health impairments and identifying possible approaches to target immune impairment and iron deficiency as comorbidities of obesity. PMID:24228190
Adrenergic Signaling: A Targetable Checkpoint Limiting Development of the Antitumor Immune Response.
Qiao, Guanxi; Chen, Minhui; Bucsek, Mark J; Repasky, Elizabeth A; Hylander, Bonnie L
2018-01-01
An immune response must be tightly controlled so that it will be commensurate with the level of response needed to protect the organism without damaging normal tissue. The roles of cytokines and chemokines in orchestrating these processes are well known, but although stress has long been thought to also affect immune responses, the underlying mechanisms were not as well understood. Recently, the role of nerves and, specifically, the sympathetic nervous system, in regulating immune responses is being revealed. Generally, an acute stress response is beneficial but chronic stress is detrimental because it suppresses the activities of effector immune cells while increasing the activities of immunosuppressive cells. In this review, we first discuss the underlying biology of adrenergic signaling in cells of both the innate and adaptive immune system. We then focus on the effects of chronic adrenergic stress in promoting tumor growth, giving examples of effects on tumor cells and immune cells, explaining the methods commonly used to induce stress in preclinical mouse models. We highlight how this relates to our observations that mandated housing conditions impose baseline chronic stress on mouse models, which is sufficient to cause chronic immunosuppression. This problem is not commonly recognized, but it has been shown to impact conclusions of several studies of mouse physiology and mouse models of disease. Moreover, the fact that preclinical mouse models are chronically immunosuppressed has critical ramifications for analysis of any experiments with an immune component. Our group has found that reducing adrenergic stress by housing mice at thermoneutrality or treating mice housed at cooler temperatures with β-blockers reverses immunosuppression and significantly improves responses to checkpoint inhibitor immunotherapy. These observations are clinically relevant because there are numerous retrospective epidemiological studies concluding that cancer patients who were taking β-blockers have better outcomes. Clinical trials testing whether β-blockers can be repurposed to improve the efficacy of traditional and immunotherapies in patients are on the horizon.
Wei, Guanyun; Sun, Lianjie; Li, Ruimin; Li, Lei; Xu, Jiao; Ma, Fei
2018-04-01
Pathogen bacteria infections can lead to dynamic changes of microRNA (miRNA) and mRNA expression profiles, which may control synergistically the outcome of immune responses. To reveal the role of dynamic miRNA-mRNA regulation in Drosophila innate immune responses, we have detailedly analyzed the paired miRNA and mRNA expression profiles at three time points during Drosophila adult males with Micrococcus luteus (M. luteus) infection using RNA- and small RNA-seq data. Our results demonstrate that differentially expressed miRNAs and mRNAs represent extensively dynamic changes over three time points during Drosophila with M. luteus infection. The pathway enrichment analysis indicates that differentially expressed genes are involved in diverse signaling pathways, including Toll and Imd as well as orther signaling pathways at three time points during Drosophila with M. luteus infection. Remarkably, the dynamic change of miRNA expression is delayed by compared to mRNA expression change over three time points, implying that the "time" parameter should be considered when the function of miRNA/mRNA is further studied. In particular, the dynamic miRNA-mRNA regulatory networks have shown that miRNAs may synergistically regulate gene expressions of different signaling pathways to promote or inhibit innate immune responses and maintain homeostasis in Drosophila, and some new regulators involved in Drosophila innate immune response have been identified. Our findings strongly suggest that miRNA regulation is a key mechanism involved in fine-tuning cooperatively gene expressions of diverse signaling pathways to maintain innate immune response and homeostasis in Drosophila. Taken together, the present study reveals a novel role of dynamic miRNA-mRNA regulation in immune response to bacteria infection, and provides a new insight into the underlying molecular regulatory mechanism of Drosophila innate immune responses. Copyright © 2017 Elsevier Ltd. All rights reserved.
Adrenergic Signaling: A Targetable Checkpoint Limiting Development of the Antitumor Immune Response
Qiao, Guanxi; Chen, Minhui; Bucsek, Mark J.; Repasky, Elizabeth A.; Hylander, Bonnie L.
2018-01-01
An immune response must be tightly controlled so that it will be commensurate with the level of response needed to protect the organism without damaging normal tissue. The roles of cytokines and chemokines in orchestrating these processes are well known, but although stress has long been thought to also affect immune responses, the underlying mechanisms were not as well understood. Recently, the role of nerves and, specifically, the sympathetic nervous system, in regulating immune responses is being revealed. Generally, an acute stress response is beneficial but chronic stress is detrimental because it suppresses the activities of effector immune cells while increasing the activities of immunosuppressive cells. In this review, we first discuss the underlying biology of adrenergic signaling in cells of both the innate and adaptive immune system. We then focus on the effects of chronic adrenergic stress in promoting tumor growth, giving examples of effects on tumor cells and immune cells, explaining the methods commonly used to induce stress in preclinical mouse models. We highlight how this relates to our observations that mandated housing conditions impose baseline chronic stress on mouse models, which is sufficient to cause chronic immunosuppression. This problem is not commonly recognized, but it has been shown to impact conclusions of several studies of mouse physiology and mouse models of disease. Moreover, the fact that preclinical mouse models are chronically immunosuppressed has critical ramifications for analysis of any experiments with an immune component. Our group has found that reducing adrenergic stress by housing mice at thermoneutrality or treating mice housed at cooler temperatures with β-blockers reverses immunosuppression and significantly improves responses to checkpoint inhibitor immunotherapy. These observations are clinically relevant because there are numerous retrospective epidemiological studies concluding that cancer patients who were taking β-blockers have better outcomes. Clinical trials testing whether β-blockers can be repurposed to improve the efficacy of traditional and immunotherapies in patients are on the horizon. PMID:29479349
Immune transfer studies in canine allogeneic marrow graft donor-recipient pairs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grosse-Wilde, H.; Krumbacher, K.; Schuening, F.D.
1986-07-01
Transfer of immunity occurring with bone marrow grafting was studied using the dog as a preclinical model. Allogeneic bone marrow transplantation (BMT) was performed between DLA-identical beagle litter-mates. The donors were immunized with tetanus toxoid (TT) or sheep red blood cells (SRBC), and their humoral response was monitored by hemagglutination. The recipients of bone marrow from TT-immunized donors showed a marked increase of antibody titer one week posttransplantation, while in the recipients of marrow from SRBC immunized donors the antibody titers were considerably lower. Within the following 60 days the antibody titers in both groups diminished gradually to pregrafting levels.more » Control experiments in which cell-free plasma from donors immunized with TT and SRBC respectively was transfused indicated that the initial rise of specific antibody titers after marrow grafting is likely to be due to a passive transfer of humoral immunity. A single challenge of these marrow graft recipients with the respective antigen 15-18 weeks posttransplantation led to a secondary type of humoral immune response. It could be demonstrated that transfer of memory against TT or SRBC was independent from the actual antibody titer and the time of vaccination of the donor. One dog was immunized with TT after serving as marrow donor. When the donor had shown an antibody response, a peripheral blood leukocytes (PBL) transfusion was given to his chimera. Subsequent challenge of the latter resulted in a secondary type of specific antibody response. This indicates that specific cellular-bound immunological memory can be transferred after BMT from the donor to his allogeneic bone marrow chimera by transfusion of peripheral blood leukocytes. The data may be of importance in clinical BMT to protect patients during the phase of reduced immune reactivity by transfer of memory cells.« less
USDA-ARS?s Scientific Manuscript database
Limitations in energy availability are known to impede the efficiency of the immune response to endotoxemia. Therefore, this study examined the effects of increasing energy availability on the pro-inflammatory response to LPS in Holstein steers. Steers were randomly assigned to 1 of 3 groups (n = 7 ...
Zinkernagel, Martin S; McMenamin, Paul G; Forrester, John V; Degli-Esposti, Mariapia A
2011-07-01
T lymphocytes play a decisive role in the course and clinical outcome of viral retinal infection. This review focuses on aspects of the adaptive cellular immune response against viral pathogens in the retina. Two distinct models to study adaptive cell mediated immune responses in viral retinitis are presented: (i) experimental retinitis induced by murine cytomegalovirus (MCMV), where the immune system prevents necrotizing damage to the retina and (ii) retinitis induced by the non-cytopathic lymphocytic choriomeningitis virus (LCMV), where the retinal microanatomy is compromised not by the virus, but by the immune response itself. From these studies it is clear that, in the context of viral infections, the cytotoxic T cell response against a pathogen in the retina does not differ from that seen in other organs, and that once such a response has been initiated, clearing of virus from retinal tissue has priority over preservation of retinal architecture and function. Furthermore, implications drawn from these models for gene therapy in retinal diseases are discussed. Copyright © 2011. Published by Elsevier Ltd.
Ebola Virus Glycoprotein Induces an Innate Immune Response In vivo via TLR4
Lai, Chih-Yun; Strange, Daniel P.; Wong, Teri Ann S.; Lehrer, Axel T.; Verma, Saguna
2017-01-01
Ebola virus (EBOV), a member of the Filoviridae family, causes the most severe form of viral hemorrhagic fever. Although no FDA licensed vaccine or treatment against Ebola virus disease (EVD) is currently available, Ebola virus glycoprotein (GP) is the major antigen used in all candidate Ebola vaccines. Recent reports of protection as quickly as within 6 days of administration of the rVSV-based vaccine expressing EBOV GP before robust humoral responses were generated suggests that the innate immune responses elicited early after vaccination may contribute to the protection. However, the innate immune responses induced by EBOV GP in the absence of viral vectors or adjuvants have not been fully characterized in vivo. Our recent studies demonstrated that immunization with highly purified recombinant GP in the absence of adjuvants induced a robust IgG response and partial protection against EBOV infection suggesting that GP alone can induce protective immunity. In this study we investigated the early immune response to purified EBOV GP alone in vitro and in vivo. We show that GP was efficiently internalized by antigen presenting cells and subsequently induced production of key inflammatory cytokines. In vivo, immunization of mice with EBOV GP triggered the production of key Th1 and Th2 innate immune cytokines and chemokines, which directly governed the recruitment of CD11b+ macrophages and CD11c+ dendritic cells to the draining lymph nodes (DLNs). Pre-treatment of mice with a TLR4 antagonist inhibited GP-induced cytokine production and recruitment of immune cells to the DLN. EBOV GP also upregulated the expression of costimulatory molecules in bone marrow derived macrophages suggesting its ability to enhance APC stimulatory capacity, which is critical for the induction of effective antigen-specific adaptive immunity. Collectively, these results provide the first in vivo evidence that early innate immune responses to EBOV GP are mediated via the TLR4 pathway and are able to modulate the innate-adaptive interface. These mechanistic insights into the adjuvant-like property of EBOV GP may help to develop a better understanding of how optimal prophylactic efficacy of EBOV vaccines can be achieved as well as further explore the potential post-exposure use of vaccines to prevent filoviral disease. PMID:28861075
Restrepo, B I; Aguilar, M I; Melby, P C; Teale, J M
2001-10-01
In neurocysticercosis (NCC), it is thought that the long-term survival of the parasite within the human brain is due in part to the ability of the cestode to suppress the local immune response. When the parasite dies, the immunosuppression is apparently lost and a strong local inflammatory response then develops. In contrast, little is known about the immunologic response that may occur in the peripheral immune system of these patients. In this study, the status of the peripheral (extracerebral) cellular and humoral response was evaluated in patients with a history of NCC. The in vitro proliferation of peripheral blood mononuclear cells to mitogens and foreign antigens was similar in patients and controls. Importantly, a substantive response was elicited by two Taenia solium metacestode antigens. In addition, 8 of 10 patients had a detectable humoral response to the antigenic glycoproteins of the cestode. Considering both the cellular and humoral response, all of the patients with NCC presented an active peripheral immunity.
Immunity to fish rhabdoviruses
Purcell, Maureen K.; Laing, Kerry J.; Winton, James R.
2012-01-01
Members of the family Rhabdoviridae are single-stranded RNA viruses and globally important pathogens of wild and cultured fish and thus relatively well studied in their respective hosts or other model systems. Here, we review the protective immune mechanisms that fish mount in response to rhabdovirus infections. Teleost fish possess the principal components of innate and adaptive immunity found in other vertebrates. Neutralizing antibodies are critical for long-term protection from fish rhabdoviruses, but several studies also indicate a role for cell-mediated immunity. Survival of acute rhabdoviral infection is also dependent on innate immunity, particularly the interferon (IFN) system that is rapidly induced in response to infection. Paradoxically, rhabdoviruses are sensitive to the effects of IFN but virulent rhabdoviruses can continue to replicate owing to the abilities of the matrix (M) protein to mediate host-cell shutoff and the non-virion (NV) protein to subvert programmed cell death and suppress functional IFN. While many basic features of the fish immune response to rhabdovirus infections are becoming better understood, much less is known about how factors in the environment affect the ecology of rhabdovirus infections in natural populations of aquatic animals.
Immunity to fish rhabdoviruses.
Purcell, Maureen K; Laing, Kerry J; Winton, James R
2012-01-01
Members of the family Rhabdoviridae are single-stranded RNA viruses and globally important pathogens of wild and cultured fish and thus relatively well studied in their respective hosts or other model systems. Here, we review the protective immune mechanisms that fish mount in response to rhabdovirus infections. Teleost fish possess the principal components of innate and adaptive immunity found in other vertebrates. Neutralizing antibodies are critical for long-term protection from fish rhabdoviruses, but several studies also indicate a role for cell-mediated immunity. Survival of acute rhabdoviral infection is also dependent on innate immunity, particularly the interferon (IFN) system that is rapidly induced in response to infection. Paradoxically, rhabdoviruses are sensitive to the effects of IFN but virulent rhabdoviruses can continue to replicate owing to the abilities of the matrix (M) protein to mediate host-cell shutoff and the non‑virion (NV) protein to subvert programmed cell death and suppress functional IFN. While many basic features of the fish immune response to rhabdovirus infections are becoming better understood, much less is known about how factors in the environment affect the ecology of rhabdovirus infections in natural populations of aquatic animals.
Gut immunity in Lepidopteran insects.
Wu, Kai; Yang, Bing; Huang, Wuren; Dobens, Leonard; Song, Hongsheng; Ling, Erjun
2016-11-01
Lepidopteran insects constitute one of the largest fractions of animals on earth, but are considered pests in their relationship with man. Key to the success of this order of insects is its ability to digest food and absorb nutrition, which takes place in the midgut. Because environmental microorganisms can easily enter Lepidopteran guts during feeding, the innate immune response guards against pathogenic bacteria, virus and microsporidia that can be devoured with food. Gut immune responses are complicated by both resident gut microbiota and the surrounding peritrophic membrane and are distinct from immune responses in the body cavity, which depend on the function of the fat body and hemocytes. Due to their relevance to agricultural production, studies of Lepidopteran insect midgut and immunity are receiving more attention, and here we summarize gut structures and functions, and discuss how these confer immunity against different microorganisms. It is expected that increased knowledge of Lepidopteran gut immunity may be utilized for pest biological control in the future. Copyright © 2016 Elsevier Ltd. All rights reserved.
Muñoz-Gómez, Amalia; Corredor, Mauricio; Benítez-Páez, Alfonso; Peláez, Carlos
2014-01-01
Galleria mellonella has emerged as a potential invertebrate model for scrutinizing innate immunity. Larvae are easy to handle in host-pathogen assays. We undertook proteomics research in order to understand immune response in a heterologous host when challenged with microconidia of Fusarium oxysporum. The aim of this study was to investigate hemolymph proteins that were differentially expressed between control and immunized larvae sets, tested with F. oxysporum at two temperatures. The iTRAQ approach allowed us to observe the effects of immune challenges in a lucid and robust manner, identifying more than 50 proteins, 17 of them probably involved in the immune response. Changes in protein expression were statistically significant, especially when temperature was increased because this was notoriously affected by F. oxysporum 104 or 106 microconidia/mL. Some proteins were up-regulated upon immune fungal microconidia challenge when temperature changed from 25 to 37°C. After analysis of identified proteins by bioinformatics and meta-analysis, results revealed that they were involved in transport, immune response, storage, oxide-reduction and catabolism: 20 from G. mellonella, 20 from the Lepidoptera species and 19 spread across bacteria, protista, fungi and animal species. Among these, 13 proteins and 2 peptides were examined for their immune expression, and the hypothetical 3D structures of 2 well-known proteins, unannotated for G. mellonella, i.e., actin and CREBP, were resolved using peptides matched with Bombyx mori and Danaus plexippus, respectively. The main conclusion in this study was that iTRAQ tool constitutes a consistent method to detect proteins associated with the innate immune system of G. mellonella in response to infection caused by F. oxysporum. In addition, iTRAQ was a reliable quantitative proteomic approach to detect and quantify the expression levels of immune system proteins and peptides, in particular, it was found that 104 microconidia/mL at 37°C over expressed many more proteins than other treatments. PMID:25379782
Li, Li; Wang, Wei; Pan, Hong; Ma, Ge; Shi, Xinyi; Xie, Hui; Liu, Xiaoan; Ding, Qiang; Zhou, Wenbin; Wang, Shui
2017-01-31
Minimally invasive therapies, such as microwave ablation (MWA), are widely used for the treatment of solid tumors. Previous studies suggest that MWA is feasible for the treatment of small breast cancer, and thermal ablation may induce adaptive antitumor immunity. However, the induced immune responses are mostly weak, and the immunomodulation effects of MWA in breast cancer are unclear. Immunostimulant OK-432 can induce tumor-specific T-cell responses and may augment the immunity induced by MWA. We treated 4T1 breast cancer bearing BALB/c mice with MWA, OK-432, MWA plus OK-432, or left without treatment. Survival time was evaluated with the Kaplan-Meyer method comparing survival curves by log-rank test. On day 25 after ablation, surviving mice received tumor rechallenge, and the rechallenged tumor volumes were calculated every 5 days. Immunohistochemistry and flow cytometry were used to evaluate the T-cell immune responses in ablated tissues and spleens. The tumor-specific immunity was assessed by enzyme-linked immunospot assays. Besides, the cytokine patterns were identified from enzyme-linked immunosorbent assay. Microwave ablation plus OK-432 resulted in longer survival than single treatment and protect most surviving mice from tumor rechallenge. Both local and systemic T-cell responses were induced by MWA and were further enhanced by subsequent administration of OK-432. Moreover, the combination of MWA and OK-432 induced stronger tumor-specific immune responses than MWA alone. In addition, OK-432 and MWA synergistically promoted the production of Th1-type but not Th2-type cytokines, and polarized T-cell responses to Th1-dominant state. The T-cell immune responses were activated by MWA in breast cancer. Furthermore, the combination of MWA and OK-432 induced Th1-type response and elicited specific antitumor immunity.
Toll immune signal activates cellular immune response via eicosanoids.
Shafeeq, Tahir; Ahmed, Shabbir; Kim, Yonggyun
2018-07-01
Upon immune challenge, insects recognize nonself. The recognition signal will propagate to nearby immune effectors. It is well-known that Toll signal pathway induces antimicrobial peptide (AMP) gene expression. Eicosanoids play crucial roles in mediating the recognition signal to immune effectors by enhancing humoral immune response through activation of AMP synthesis as well as cellular immune responses, suggesting a functional cross-talk between Toll and eicosanoid signals. This study tested a cross-talk between these two signals. Two signal transducing factors (MyD88 and Pelle) of Toll immune pathway were identified in Spodoptera exigua. RNA interference (RNAi) of either SeMyD88 or SePelle expression interfered with the expression of AMP genes under Toll signal pathway. Bacterial challenge induced PLA 2 enzyme activity. However, RNAi of these two immune factors significantly suppressed the induction of PLA 2 enzyme activity. Furthermore, RNAi treatment prevented gene expression of cellular PLA 2 . Inhibition of PLA 2 activity reduced phenoloxidase activity and subsequent suppression in cellular immune response measured by hemocyte nodule formation. However, immunosuppression induced by RNAi of Toll signal molecules was significantly reversed by addition of arachidonic acid (AA), a catalytic product of PLA 2 . The addition also significantly reduced the enhanced fungal susceptibility of S. exigua treated by RNAi against two Toll signal molecules. These results indicate that there is a cross-talk between Toll and eicosanoid signals in insect immunity. Copyright © 2018 Elsevier Ltd. All rights reserved.
Aballai, Víctor; Aedo, Jorge E; Maldonado, Jonathan; Bastias-Molina, Macarena; Silva, Herman; Meneses, Claudio; Boltaña, Sebastian; Reyes, Ariel; Molina, Alfredo; Valdés, Juan Antonio
2017-12-01
Stress is a primary contributing factor of fish disease and mortality in aquaculture. We have previously reported that the red cusk-eel (Genypterus chilensis), an important farmed marine fish, demonstrates a handling-stress response that results in increased juvenile mortality, which is mainly associated with skeletal muscle atrophy and liver steatosis. To better understand the systemic effects of stress on red cusk-eel immune-related gene expression, the present study assessed the transcriptomic head-kidney response to handling-stress. The RNA sequencing generated a total of 61,655,525 paired-end reads from control and stressed conditions. De novo assembly using the CLC Genomic Workbench produced 86,840 transcripts and created a reference transcriptome with a N50 of 1426bp. Reads mapped onto the assembled reference transcriptome resulted in the identification of 569 up-regulated and 513 down-regulated transcripts. Gene ontology enrichment analysis revealed a significant up-regulation of the biological processes, like response to stress, response to biotic stimulus, and immune response. Conversely, a significant down-regulation of biological processes is associated with metabolic processes. These results were validated by RT-qPCR analysis for nine candidate genes involved in the immune response. The present data demonstrated that short term stress promotes the immune innate response in the marine teleost G. chilensis. This study is an important step towards understanding the immune adaptive response to stress in non-model teleost species. Copyright © 2017 Elsevier Inc. All rights reserved.
Thakur, Tarun; Gulati, Kavita; Rai, Nishant; Ray, Arunabha
2017-09-01
The present study was designed to investigate the effects of chronic predictable stress (CPS) and chronic unpredictable stress (CUS) on immunological responses in KLH-sensitized rats and involvement of NOergic signaling pathways mediating such responses. Male Wistar rats (200-250g) were exposed to either CPS or CUS for 14days and IgG antibody levels and delayed type hypersensitivity (DTH) response was determined to assess changes in adaptive immunity. To evaluate the role of nitric oxide during such immunomodulation, biochemical estimation of stable metabolite of nitric oxide (NOx) and 3-nitrotyrosine (3-NT, a marker of peroxynitrite formation) were done in both blood and brain. Chronic stress exposure resulted in suppression of IgG and DTH response and elevated NOx and 3-NT levels, with a difference in magnitude of response in CPS vs CUS. Pretreatment with aminoguanidine (iNOS inhibitor) caused further reduction of adaptive immune responses and attenuated the increased NOx and 3-NT levels in CPS or CUS exposed rats. On the other hand 7-NI (nNOS inhibitor) did not significantly affect these estimated parameters. The results suggest involvement of iNOS and lesser/no role of nNOS during modulation of adaptive immunity to stress. Thus, the result showed that predictability of stressors results in differential degree of modulation of immune responses and complex NO-mediated signaling mechanisms may be involved during responses. Copyright © 2017. Published by Elsevier B.V.
Liu, Si; Shi, DanYang; Wang, Hai-Chao; Yu, Yun-Zhou; Xu, Qing; Sun, Zhi-Wei
2015-01-14
Active immunotherapy targeting β-amyloid (Aβ) is the most promising strategy to prevent or treat Alzheimer's disease (AD). Based on pre-clinical studies and clinical trials, a safe and effective AD vaccine requires a delicate balance between providing therapeutically adequate anti-Aβ antibodies and eliminating or suppressing unwanted adverse T cell-mediated inflammatory reactions. We describe here the immunological characterization and protective efficacy of co-immunization with a 6Aβ15-T DNA and protein mixture without adjuvant as an AD immunotherapeutic strategy. Impressively, this co-immunization induced robust Th2-polarized Aβ-specific antibodies while simultaneously suppressed unwanted inflammatory T cell reactions and avoiding Aβ42-specific T cell-mediated autoimmune responses in immunized mice. Co-immunization with the DNA + protein vaccine could overcome Aβ42-associated hypo-responsiveness and elicit long-term Aβ-specific antibody responses, which helped to maintain antibody-mediated clearance of amyloid and accordingly alleviated AD symptoms in co-immunized PDAPP mice. Our DNA and protein combined vaccine, which could induce an anti-inflammatory Th2 immune response with high level Aβ-specific antibodies and low level IFN-γ production, also demonstrated the capacity to inhibit amyloid accumulation and prevent cognitive dysfunction. Hence, co-immunization with antigen-matched DNA and protein may represent a novel and efficacious strategy for AD immunotherapy to eliminate T cell inflammatory reactions while retaining high level antibody responses.
Ruane, D; Do, Y; Brane, L; Garg, A; Bozzacco, L; Kraus, T; Caskey, M; Salazar, A; Trumpheller, C; Mehandru, S
2016-09-01
Despite significant therapeutic advances for HIV-1 infected individuals, a preventative HIV-1 vaccine remains elusive. Studies focusing on early transmission events, including the observation that there is a profound loss of gastrointestinal (GI) CD4(+) T cells during acute HIV-1 infection, highlight the importance of inducing HIV-specific immunity within the gut. Here we report on the generation of cellular and humoral immune responses in the intestines by a mucosally administered, dendritic cell (DC) targeted vaccine. Our results show that nasally delivered α-CD205-p24 vaccine in combination with polyICLC, induced polyfunctional immune responses within naso-pulmonary lymphoid sites that disseminated widely to systemic and mucosal (GI tract and the vaginal epithelium) sites. Qualitatively, while α-CD205-p24 prime-boost immunization generated CD4(+) T-cell responses, heterologous prime-boost immunization with α-CD205-p24 and NYVAC gag-p24 generated high levels of HIV-specific CD4(+) and CD8(+) T cells within the GI tract. Finally, DC-targeting enhanced the amplitude and longevity of vaccine-induced immune responses in the GI tract. This is the first report of a nasally delivered, DC-targeted vaccine to generate HIV-specific immune responses in the GI tract and will potentially inform the design of preventative approaches against HIV-1 and other mucosal infections.
Waning of vaccine-induced immunity to measles in kidney transplanted children.
Rocca, Salvatore; Santilli, Veronica; Cotugno, Nicola; Concato, Carlo; Manno, Emma Concetta; Nocentini, Giulia; Macchiarulo, Giulia; Cancrini, Caterina; Finocchi, Andrea; Guzzo, Isabella; Dello Strologo, Luca; Palma, Paolo
2016-09-01
Vaccine-preventable diseases are a significant cause of morbidity and mortality in solid organ transplant recipients who undergo immunosuppression after transplantation. Data on immune responses and long-term maintenance after vaccinations in such population are still limited.We cross-sectionally evaluated the maintenance of immune response to measles vaccine in kidney transplanted children on immunosuppressive therapy. Measles-specific enzyme-linked immunosorbent assay and B-cell enzyme-linked immunosorbent spot were performed in 74 kidney transplant patients (Tps) and in 23 healthy controls (HCs) previously vaccinated and tested for humoral protection against measles. The quality of measles antibody response was measured by avidity test. B-cell phenotype, investigated via flow cytometry, was further correlated to the ability of Tps to maintain protective humoral responses to measles over time.We observed the loss of vaccine-induced immunity against measles in 19% of Tps. Nonseroprotected children showed signs of impaired B-cell distribution as well as immune senescence and lower antibody avidity. We further reported as time elapsed between vaccination and transplantation, as well as the vaccine administration during dialysis are clinical factors affecting the maintenance of the immune memory response against measles.Tps present both quantitative and qualitative alterations in the maintenance of protective immunity to measles vaccine. Prospective studies are needed to optimize the vaccination schedules in kidney transplant recipients in order to increase the immunization coverage over time in this population.
Ali, H. Raza; Chlon, Leon; Pharoah, Paul D. P.; Caldas, Carlos
2016-01-01
Background Immune infiltration of breast tumours is associated with clinical outcome. However, past work has not accounted for the diversity of functionally distinct cell types that make up the immune response. The aim of this study was to determine whether differences in the cellular composition of the immune infiltrate in breast tumours influence survival and treatment response, and whether these effects differ by molecular subtype. Methods and Findings We applied an established computational approach (CIBERSORT) to bulk gene expression profiles of almost 11,000 tumours to infer the proportions of 22 subsets of immune cells. We investigated associations between each cell type and survival and response to chemotherapy, modelling cellular proportions as quartiles. We found that tumours with little or no immune infiltration were associated with different survival patterns according to oestrogen receptor (ER) status. In ER-negative disease, tumours lacking immune infiltration were associated with the poorest prognosis, whereas in ER-positive disease, they were associated with intermediate prognosis. Of the cell subsets investigated, T regulatory cells and M0 and M2 macrophages emerged as the most strongly associated with poor outcome, regardless of ER status. Among ER-negative tumours, CD8+ T cells (hazard ratio [HR] = 0.89, 95% CI 0.80–0.98; p = 0.02) and activated memory T cells (HR 0.88, 95% CI 0.80–0.97; p = 0.01) were associated with favourable outcome. T follicular helper cells (odds ratio [OR] = 1.34, 95% CI 1.14–1.57; p < 0.001) and memory B cells (OR = 1.18, 95% CI 1.0–1.39; p = 0.04) were associated with pathological complete response to neoadjuvant chemotherapy in ER-negative disease, suggesting a role for humoral immunity in mediating response to cytotoxic therapy. Unsupervised clustering analysis using immune cell proportions revealed eight subgroups of tumours, largely defined by the balance between M0, M1, and M2 macrophages, with distinct survival patterns by ER status and associations with patient age at diagnosis. The main limitations of this study are the use of diverse platforms for measuring gene expression, including some not previously used with CIBERSORT, and the combined analysis of different forms of follow-up across studies. Conclusions Large differences in the cellular composition of the immune infiltrate in breast tumours appear to exist, and these differences are likely to be important determinants of both prognosis and response to treatment. In particular, macrophages emerge as a possible target for novel therapies. Detailed analysis of the cellular immune response in tumours has the potential to enhance clinical prediction and to identify candidates for immunotherapy. PMID:27959923
Garcia-Morante, Beatriz; Segalés, Joaquim; Fraile, Lorenzo; Llardén, Gemma; Coll, Teresa; Sibila, Marina
2017-01-01
Immunopathological events are key for the development of enzootic pneumonia (EP), which is macroscopically observed as cranioventral pulmonary consolidation (CVPC). This study aimed to investigate the putative association between the humoral immune response against Mycoplasma hyopneumoniae (M. hyopneumoniae) and prevalence and extension of CVPC in 1) experimentally infected pigs, 2) slaughtered pigs and 3) sequentially necropsied pigs in a longitudinal study. CVPC was scored by means of the European Pharmacopoeia recommended methodology. Specific IgG, IgG1 and IgG2 antibodies were assessed in serum. In addition, mucosal IgG and IgA antibodies were analyzed in broncho-alveolar lavage fluid (BALF) from experimentally challenged pigs. The systemic humoral immune response in experimentally infected pigs was delayed in onset whereas humoral respiratory mucosal immune response appeared more rapidly but declined earlier. Although low, BALF IgG antibodies showed the highest correlation with CVPC scores (r = 0.49, p<0.05). In slaughter-aged pigs, both percentage of lungs with CVPC and mean lung lesion score were significantly higher in M. hyopneumoniae seropositive farms compared to the seronegative ones (p<0.001). Similarly, seropositive sequentially necropsied pigs showed more severe CVPC than seronegative ones. Overall, mean serological values might help to forecast prevalence and severity of EP-like lung lesions using a population based approach. Remarkably, the specific systemic humoral immune response was found to be predominated by the IgG2 subclass, suggesting a dominant Th1-mediated immune response to M. hyopneumoniae.
Two-Component Elements Mediate Interactions between Cytokinin and Salicylic Acid in Plant Immunity
Argueso, Cristiana T.; Ferreira, Fernando J.; Epple, Petra; To, Jennifer P. C.; Hutchison, Claire E.; Schaller, G. Eric; Dangl, Jeffery L.; Kieber, Joseph J.
2012-01-01
Recent studies have revealed an important role for hormones in plant immunity. We are now beginning to understand the contribution of crosstalk among different hormone signaling networks to the outcome of plant–pathogen interactions. Cytokinins are plant hormones that regulate development and responses to the environment. Cytokinin signaling involves a phosphorelay circuitry similar to two-component systems used by bacteria and fungi to perceive and react to various environmental stimuli. In this study, we asked whether cytokinin and components of cytokinin signaling contribute to plant immunity. We demonstrate that cytokinin levels in Arabidopsis are important in determining the amplitude of immune responses, ultimately influencing the outcome of plant–pathogen interactions. We show that high concentrations of cytokinin lead to increased defense responses to a virulent oomycete pathogen, through a process that is dependent on salicylic acid (SA) accumulation and activation of defense gene expression. Surprisingly, treatment with lower concentrations of cytokinin results in increased susceptibility. These functions for cytokinin in plant immunity require a host phosphorelay system and are mediated in part by type-A response regulators, which act as negative regulators of basal and pathogen-induced SA–dependent gene expression. Our results support a model in which cytokinin up-regulates plant immunity via an elevation of SA–dependent defense responses and in which SA in turn feedback-inhibits cytokinin signaling. The crosstalk between cytokinin and SA signaling networks may help plants fine-tune defense responses against pathogens. PMID:22291601
Jeon, Yung Jin; Kim, Hyun Jik
2018-05-01
Respiratory mucosa especially nasal epithelium is well known as the first-line barrier of air-borne pathogens. High levels of reactive oxygen species (ROS) are detected in in vitro cultured human epithelial cells and in vivo lung. With identification of NADPH oxidase (Nox) system of respiratory epithelium, the antimicrobial role of ROS has been studied. Duox2 is the most abundant Nox isoform and produces the regulated amount of ROS in respiratory epithelium. Duox2-derived ROS are involved in antiviral innate immune responses but more studies are needed to verify the mechanism. In respiratory epithelium, Duox2-derived ROS is critical for recognition of virus through families retinoic acid-inducible gene-I (RIG-I) and melanoma differentiation-associated protein 5 (MDA5) at the early stage of antiviral innate immune responses. Various secreted interferons (IFNs) play essential roles for antiviral host defense by downstream cell signaling, and transcription of IFN-stimulated genes is started to suppress viral replication. Type I and type III IFNs are verified more responsible for influenza A virus (IAV) infection in respiratory epithelium and Duox2 is required to regulate IFN-related immune responses. Transient overexpression of Duox2 using cationic polymer polyethylenimine (PEI) induces secretion of type I and type III IFNs and significantly attenuated IAV replication in respiratory epithelium. Here, we discuss Duox2-mediated antiviral innate immune responses and the role of Duox2 as a mucosal vaccine to resist respiratory viral infection.
Maestre, Amanda; Carmona-Fonseca, Jaime
2014-04-15
Women pregnant with their first child are susceptible to severe P. falciparum disease from placental malaria because they lack immunity to placenta-specific cytoadherence proteins. In subsequent pregnancies, as immunity against placental parasites is acquired, there is a reduced risk of adverse effects of malaria on the mother and fetus and asymptomatic parasitaemia is common. In the case of vivax malaria, with increasing reports of severe cases in Asia and South America, the effects of infection by this species during pregnancy remain to be elucidated. This review summarized the main aspects involved in the acquisition of specific antimalarial immune responses during pregnancy with emphasis in research carried out in America and Asia, in order to offer a framework of interpretation for studies on pregnant women with malaria which are recently being produced in these regions. The authors conclude that (1) Effective humoral responses during gestational malaria are mainly directed against variant surface antigens codified by genes of the var2Csa family of P. falciparum; (2) Acquisition of immunity against these variant antigens depends on the degree and intensity of transmission, and the chance increases with age and successive pregnancies; (3) Antibody development is guided by specific cellular immune responses in cases of placental and maternal infection, and (4) The study of the significance of acquisition of specific immunity against both P. falciparum and P. vivax in America, should be performed.
Gu, Jie; Dai, Shuya; Liu, Haitao; Cao, Quanquan; Yin, Shaowu; Lai, Keng Po; Tse, William Ka Fai; Wong, Chris Kong Chu; Shi, Haifeng
2018-02-01
The changes in ambient salinity influence ion and water homeostasis, hormones secretion, and immune response in fish gills. The physiological functions of hormones and ion transporters in the regulation of gill-osmoregulation have been widely studied, however the modulation of immune response under salinity changes is not determined. Using transcriptome sequencing, we obtained a comprehensive profile of osmo-responsive genes in gill cells of Japanese eel (Anguilla japonica). Herein, we applied bioinformatics analysis to identify the immune-related genes that were significantly higher expressed in gill pavement cells (PVCs) and mitochondrial-rich cells (MRCs) in freshwater (FW) than seawater (SW) adapted fish. We validated the data using the real-time qPCR, which showed a high correlation between the RNA-seq and real-time qPCR data. In addition, the immunohistochemistry results confirmed the changes of the expression of selected immune-related genes, including C-reactive protein (CRP) in PVCs, toll-like receptor 2 (TLR2) in MRCs and interleukin-1 receptor type 2 (IL-1R2) in both PVCs and MRCs. Collectively our results demonstrated that those immune-related genes respond to salinity changes, and might trigger related special signaling pathways and network. This study provides new insights into the impacts of ambient salinity changes on adaptive immune response in fish gill cells. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ge, Wei; Hu, Pei-Zhen; Huang, Yang; Wang, Xiao-Ming; Zhang, Xiu-Min; Sun, Yu-Jing; Li, Zeng-Shan; Si, Shao-Yan; Sui, Yan-Fang
2009-10-01
Our previous study showed that nanoemulsion-encapsulated MAGE1-HSP70/SEA (MHS) complex protein vaccine elicited MAGE-1 specific immune response and antitumor effects against MAGE-1-expressing tumor and nanoemulsion is a useful vehicle with possible important implications for cancer biotherapy. The purpose of this study was to compare the immune responses induced by nanoemulsion-encapsulated MAGE1-HSP70 and SEA as NE(MHS) vaccine following different administration routes and to find out the new and effective immune routes. Nanoemulsion vaccine was prepared using magnetic ultrasound methods. C57BL/6 mice were immunized with NE(MHS) via po., i.v., s.c. or i.p., besides mice s.c. injected with PBS or NE(-) as control. The cellular immunocompetence was detected by ELISpot assay and LDH release assay. The therapeutic and tumor challenge assay were also examined. The results showed that the immune responses against MAGE-1 expressing murine tumors elicited by NE(MHS) via 4 different routes were approximately similar and were all stronger than that elicited by PBS or NE(-), suggesting that this novel nanoemulsion carrier can exert potent antitumor immunity against antigens encapsulated in it. Especially, the present results indicated that nanoemulsion vaccine adapted to administration via different routes including peroral, and may have broader applications in the future.
Santos Rocha, Clarissa; Hirao, Lauren A; Weber, Mariana G; Méndez-Lagares, Gema; Chang, W L William; Jiang, Guochun; Deere, Jesse D; Sparger, Ellen E; Roberts, Jeffrey; Barry, Peter A; Hartigan-O'Connor, Dennis J; Dandekar, Satya
2018-04-18
Subclinical viral infections (SVI) including cytomegalovirus (CMV) are highly prevalent in humans, resulting in life-long persistence. However, the impact of SVI on the interplay between the host immunity and gut microbiota in the context of environmental exposures is not well defined. We utilized the preclinical nonhuman primate (NHP) model consisting of SVI-free (SPF) rhesus macaques and compared them to the animals with SVI (non-SPF) acquired through natural exposure and investigated the impact of SVI on immune cell distribution and function as well as on gut microbiota. These changes were examined in animals housed in the outdoor environment as compared to the controlled indoor environment. We report that SVI are associated with altered immune cell subsets and gut microbiota composition in animals housed in the outdoor environment. Non-SPF animals harbored a higher proportion of potential butyrate-producing Firmicutes and higher numbers of lymphocytes, effector T cells and cytokine-producing T cells. Surprisingly, these differences diminished following their transfer to the controlled indoor environment, suggesting that non-SPFs had increased responsiveness to environmental exposures. An experimental infection of indoor SPF animals with CMV resulted in an increased abundance of butyrate-producing bacteria, validating that CMV enhanced colonization of butyrate-producing commensals. Finally, non-SPF animals displayed lower antibody responses to influenza vaccination as compared to SPF animals. Our data show that subclinical CMV infection heightens host immunity and gut microbiota changes in response to environmental exposures. This may contribute to the heterogeneity in host immune response to vaccines and environmental stimuli at the population level. IMPORTANCE Humans harbor several latent viruses that modulate host immunity and commensal microbiota, thus introducing heterogeneity in their responses to pathogens, vaccines and environmental exposures. Most of our understanding of the effect of CMV on the immune system is based on studies of children acquiring CMV or of immune-compromised humans with acute or reactivated CMV infection or in ageing individuals. The experimental mouse models are genetically inbred and are completely adapted to the indoor laboratory environment. In contrast, nonhuman primates are genetically outbred and are raised in the outdoor environment. Our study is the first to report the impact of long-term subclinical CMV infection on host immunity and gut microbiota, which is evident only in the outdoor environment but not in the indoor environment. The significance of this study is in highlighting the impact of SVI on enhancing host immune susceptibility to environmental exposures and immune heterogeneity. Copyright © 2018 American Society for Microbiology.
Downham, M R; Auton, T R; Rosul, A; Sharp, H L; Sjöström, L; Rushton, A; Richards, J P; Mant, T G K; Gardiner, S M; Bennett, T; Glover, J F
2003-01-01
Aims We aim to modulate the renin–angiotensin system (RAS) by active immunization against angiotensin I hormone (AI), potentially providing a novel conjugate vaccine treatment for hypertension in man. Methods Immunization studies in rat and human subjects compare the effectiveness of tetanus toxoid (TT) and keyhole limpet haemocyanin (KLH) vaccines for immunotherapy following conjugation with an AI peptide analogue (AI). Cardiovascular responses were assessed in immunized rats and human subjects (two-dose trial only), following increasing i.v. infusions of either AI or angiotensin II hormone (AII). Results The AI–TT and AI–KLH conjugate vaccines induced an equivalent immune response, and inhibition of the pressor effects to exogenous AI in rats. Single-dose clinical trials with both conjugate vaccines only resulted in an immune response to the KLH carrier protein. A two-dose clinical trial of AI–KLH conjugate vaccine resulted in a significant immune response to AI. A shift in diastolic blood pressure (DBP) dose–response was demonstrated following challenge with AI and AII for the study volunteer showing the largest anti-AI IgG induction. Conclusion KLH was shown to be a suitable alternative to TT as a carrier protein for AI, thus supporting continued evaluation of our AI–KLH conjugate vaccine for treatment of hypertension in man. PMID:14651724
Finlay, Conor M; Walsh, Kevin P; Mills, Kingston H G
2014-05-01
Helminth parasites are highly successful pathogens, chronically infecting a quarter of the world's population, causing significant morbidity but rarely causing death. Protective immunity and expulsion of helminths is mediated by T-helper 2 (Th2) cells, type 2 (M2) macrophages, type 2 innate lymphoid cells, and eosinophils. Failure to mount these type 2 immune responses can result in immunopathology mediated by Th1 or Th17 cells. Helminths have evolved a wide variety of approaches for immune suppression, especially the generation of regulatory T cells and anti-inflammatory cytokines interleukin-10 and transforming growth factor-β. This is a very effective strategy for subverting protective immune responses to prolong their survival in the host but has the bystander effect of modulating immune responses to unrelated antigens. Epidemiological studies in humans have shown that infection with helminth parasites is associated with a low incidence of allergy/asthma and autoimmunity in developing countries. Experimental studies in mice have demonstrated that regulatory immune responses induced by helminth can suppress Th2 and Th1/Th17 responses that mediate allergy and autoimmunity, respectively. This has provided a rational explanation of the 'hygiene hypothesis' and has also led to the exploitation of helminths or their immunomodulatory products in the development of new immunosuppressive therapies for inflammatory diseases in humans. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Sordo, Yusmel; Suárez, Marisela; Caraballo, Rosalina; Sardina, Talía; Brown, Emma; Duarte, Carlos; Lugo, Joanna; Gil, Lázaro; Perez, Danny; Oliva, Ayme; Vargas, Milagros; Santana, Elaine; Valdés, Rodolfo; Rodríguez, María Pilar
2018-03-01
The development of subunit vaccines against classical swine fever is a desirable goal, because it allows discrimination between vaccinated and infected animals. In this study, humoral and cellular immune response elicited in inbred BALB/c mice by immunization with a recombinant classical swine fever virus (CSFV) E2 protein fused to porcine CD154 antigen (E2CD154) was assessed. This model was used as a predictor of immune response in swine. Mice were immunized with E2CD154 emulsified in Montanide ISA50V2 or dissolved in saline on days 1 and 21. Another group received E2His antigen, without CD154, in the same adjuvant. Montanide ISA50V2 or saline served as negative controls for each experimental group. Animals immunized with 12.5 and 2.5 μg/dose of E2CD154 developed the highest titers (>1:2000) of CSFV neutralizing antibodies. Moreover, CSFV specific splenocyte gamma-interferon production, measured after seven and twenty-eight days of immunization, was significantly higher in mice immunized with 12.5 μg of E2CD154. As a conclusion, E2CD154 emulsified in Montanide ISA50 V2 was able to induce a potent humoral and an early cellular immune response in inbred BALB/c mice. Therefore, this immunogen might be an appropriate candidate to elicit immune response in swine, control CSF disease and to eliminate CSFV in swine. Copyright © 2018 International Alliance for Biological Standardization. Published by Elsevier Ltd. All rights reserved.
Guirola, María; Urquiza, Dioslaida; Alvarez, Anabel; Cannan-Haden, Leonardo; Caballero, Evelin; Guillén, Gerardo
2006-03-01
In this study, we used an adoptive lymphocyte transfer experiment to evaluate the ability of the P64k recombinant protein to recruit T-helper activity and induce immunologic memory response to the polysaccharide moiety in a meningococcal serogroup C conjugate vaccine. Adoptive transfer of splenocytes from mice immunized with the glycoconjugate conferred antipolysaccharide immunologic memory to naive recipient mice. The observed anamnestic immune response was characterized by more rapid kinetics, isotype switching from IgM to IgG and higher antipolysaccharide antibody titers compared with those reached in groups transferred with splenocytes from plain polysaccharide or phosphate-immunized mice. The memory response generated was also long lasting. Sera from mice transferred with cells from conjugate-immunized mice were the only protective in the infant rat passive protection assay, and also showed higher bactericidal titers. We demonstrated that priming the mice immune system with the glycoconjugate using the P64k protein as carrier induced a memory response to the polysaccharide, promoting a switch of the T-cell-independent response to a T-cell dependent one.
Borgia, V J Florence; Thatheyus, A J; Murugesan, A G; Alexander, S Catherine P; Geetha, I
2018-08-01
The present study was designed to assess the effect of sublethal concentrations of electoplating industry effluent (EIE) on the non-specific and specific immune responses in the freshwater fish, Cyprinus carpio. Sublethal concentrations of electroplating industry effluent such as 0.004, 0.007, 0.010 and 0.013% were chosen based on the LC 50 values. Experimental fish were exposed to these sublethal concentrations of EIE for 28 days. After 7, 14, 21 and 28 days of treatment, non-specific immune response by serum lysozyme activity, myeloperoxidase activity and antiprotease activity and specific immune response by antibody response to Aeromonas hydrophila using bacterial agglutination assay and ELISA were assessed. The results showed that chronic exposure of fish to 0.004, 0.007, 0.010 and 0.013% EIE, dose-dependently decreased the non-specific and specific immune responses on all the days tested compared to control fish whereas statistically significant suppressive effects were observed in fish exposed to 0.013% of EIE on all activities tested. Copyright © 2018 Elsevier Ltd. All rights reserved.
da Silva, Tatiana Pereira; Giacoia-Gripp, Carmem Beatriz Wagner; Schmaltz, Carolina A; Sant'Anna, Flavia Marinho; Saad, Maria Helena; Matos, Juliana Arruda de; de Lima E Silva, Julio Castro Alves; Rolla, Valeria Cavalcanti; Morgado, Mariza Gonçalves
2017-09-06
Little is known regarding the restoration of the specific immune response after combined antiretroviral therapy (cART) and anti-tuberculosis (TB) therapy introduction among TB-HIV patients. In this study, we examined the immune response of TB-HIV patients to Mycobacterium tuberculosis (Mtb) antigens to evaluate the response dynamics to different antigens over time. Moreover, we also evaluated the influence of two different doses of efavirenz and the factors associated with immune reconstitution. This is a longitudinal study nested in a clinical trial, where cART was initiated during the baseline visit (D0), which occurred 30 ± 10 days after the introduction of anti-TB therapy. Follow-up visits were performed at 30, 60, 90 and 180 days after cART initiation. The production of IFN-γ upon in vitro stimulation with Mtb antigens purified protein derivative (PPD), ESAT-6 and 38 kDa/CFP-10 using ELISpot was examined at baseline and follow-up visits. Sixty-one patients, all ART-naïve, were selected and included in the immune reconstitution analysis; seven (11.5%) developed Immune Reconstitution Inflammatory Syndrome (IRIS). The Mtb specific immune response was higher for the PPD antigen followed by 38 kDa/CFP-10 and increased in the first 60 days after cART initiation. In multivariate analysis, the variables independently associated with increased IFN-γ production in response to PPD antigen were CD4 + T cell counts <200 cells/mm 3 at baseline, age, site of tuberculosis, 800 mg efavirenz dose and follow-up CD4 + T cell counts. Moreover, the factors associated with the production of IFN-γ in response to 38 kDa/CFP-10 were detectable HIV viral load (VL) and CD4 + T cell counts at follow-up visits of ≥200 cells/mm 3 . These findings highlight the differences in immune response according to the specificity of the Mtb antigen, which contributes to a better understanding of TB-HIV immunopathogenesis. IFN-γ production elicited by PPD and 38 kDa/CFP-10 antigens have a greater magnitude compared to ESAT-6 and are associated with different factors. The low response to ESAT-6, even during immune restoration, suggests that this antigen is not adequate to assess the immune response of immunosuppressed TB-HIV patients.
Baszler, Timothy V; Shkap, Varda; Mwangi, Waithaka; Davies, Christopher J; Mathison, Bruce A; Mazuz, Monica; Resnikov, Dror; Fish, Lea; Leibovitch, Benjamin; Staska, Lauren M; Savitsky, Igor
2008-04-01
Infection of cattle with Neospora caninum protozoa, the causative agent of bovine protozoal abortion, results in robust cellular and humoral immune responses, particularly CD4(+) T-lymphocyte activation and gamma interferon (IFN-gamma) secretion. In the present study, N. caninum SRS2 (NcSRS2) T-lymphocyte-epitope-bearing subunits were incorporated into DNA and peptide preparations to assess CD4(+) cell proliferation and IFN-gamma T-lymphocyte-secretion immune responses in cattle with predetermined major histocompatibility complex (MHC) genotypes. In order to optimize dendritic-cell processing, NcSRS2 DNA vaccine was delivered with granulocyte macrophage-colony-stimulating factor and Flt3 ligand adjuvant. The synthesized NcSRS2 peptides were coupled with a palmitic acid molecule (lipopeptide) and delivered with Freund's adjuvant. Cattle vaccinated with NcSRS2 DNA vaccine alone did not induce T-lymphocyte activation or IFN-gamma secretion, whereas subsequent booster inoculation with NcSRS2-lipopeptides induced robust NcSRS2-specific immune responses. Compared to the response in control animals, NcSRS2-lipopeptide-immunized cattle had significantly increased NcSRS2-specific T-lymphocyte proliferation, numbers of IFN-gamma-secreting peripheral blood mononuclear cells, and immunoglobulin G1 (IgG1) and IgG2a antibody levels. The findings show that N. caninum NcSRS2 subunits bearing T-lymphocyte epitopes induced cell-mediated immune responses similar to the protective immune responses previously described against live parasite infection, namely T-lymphocyte activation and IFN-gamma secretion. The findings support the investigation of NcSRS2 immunogens for protection against N. caninum-induced fetal infection and abortion in cattle.
Limmer, Stefanie; Haller, Samantha; Drenkard, Eliana; Lee, Janice; Yu, Shen; Kocks, Christine; Ausubel, Frederick M.; Ferrandon, Dominique
2011-01-01
An in-depth mechanistic understanding of microbial infection necessitates a molecular dissection of host–pathogen relationships. Both Drosophila melanogaster and Pseudomonas aeruginosa have been intensively studied. Here, we analyze the infection of D. melanogaster by P. aeruginosa by using mutants in both host and pathogen. We show that orally ingested P. aeruginosa crosses the intestinal barrier and then proliferates in the hemolymph, thereby causing the infected flies to die of bacteremia. Host defenses against ingested P. aeruginosa included an immune deficiency (IMD) response in the intestinal epithelium, systemic Toll and IMD pathway responses, and a cellular immune response controlling bacteria in the hemocoel. Although the observed cellular and intestinal immune responses appeared to act throughout the course of the infection, there was a late onset of the systemic IMD and Toll responses. In this oral infection model, P. aeruginosa PA14 did not require its type III secretion system or other well-studied virulence factors such as the two-component response regulator GacA or the protease AprA for virulence. In contrast, the quorum-sensing transcription factor RhlR, but surprisingly not LasR, played a key role in counteracting the cellular immune response against PA14, possibly at an early stage when only a few bacteria are present in the hemocoel. These results illustrate the power of studying infection from the dual perspective of host and pathogen by revealing that RhlR plays a more complex role during pathogenesis than previously appreciated. PMID:21987808
Keef, Ericka; Zhang, Li Ang; Swigon, David; Urbano, Alisa; Ermentrout, G Bard; Matuszewski, Michael; Toapanta, Franklin R; Ross, Ted M; Parker, Robert S; Clermont, Gilles
2017-12-01
Immunosenescence, an age-related decline in immune function, is a major contributor to morbidity and mortality in the elderly. Older hosts exhibit a delayed onset of immunity and prolonged inflammation after an infection, leading to excess damage and a greater likelihood of death. Our study applies a rule-based model to infer which components of the immune response are most changed in an aged host. Two groups of BALB/c mice (aged 12 to 16 weeks and 72 to 76 weeks) were infected with 2 inocula: a survivable dose of 50 PFU and a lethal dose of 500 PFU. Data were measured at 10 points over 19 days in the sublethal case and at 6 points over 7 days in the lethal case, after which all mice had died. Data varied primarily in the onset of immunity, particularly the inflammatory response, which led to a 2-day delay in the clearance of the virus from older hosts in the sublethal cohort. We developed a Boolean model to describe the interactions between the virus and 21 immune components, including cells, chemokines, and cytokines, of innate and adaptive immunity. The model identifies distinct sets of rules for each age group by using Boolean operators to describe the complex series of interactions that activate and deactivate immune components. Our model accurately simulates the immune responses of mice of both ages and with both inocula included in the data (95% accurate for younger mice and 94% accurate for older mice) and shows distinct rule choices for the innate immunity arm of the model between younger and aging mice in response to influenza A virus infection. IMPORTANCE Influenza virus infection causes high morbidity and mortality rates every year, especially in the elderly. The elderly tend to have a delayed onset of many immune responses as well as prolonged inflammatory responses, leading to an overall weakened response to infection. Many of the details of immune mechanisms that change with age are currently not well understood. We present a rule-based model of the intrahost immune response to influenza virus infection. The model is fit to experimental data for young and old mice infected with influenza virus. We generated distinct sets of rules for each age group to capture the temporal differences seen in the immune responses of these mice. These rules describe a network of interactions leading to either clearance of the virus or death of the host, depending on the initial dosage of the virus. Our models clearly demonstrate differences in these two age groups, particularly in the innate immune responses. Copyright © 2017 American Society for Microbiology.
Luukinen, Hanna; Vanha-aho, Leena-Maija; Svorjova, Aleksandra; Kantanen, Laura; Järvinen, Sampsa; Dufour, Eric; Rämet, Mika; Hytönen, Vesa Pekka
2018-01-01
ABSTRACT Mycobacterium tuberculosis remains one of the most problematic infectious agents, owing to its highly developed mechanisms to evade host immune responses combined with the increasing emergence of antibiotic resistance. Host-directed therapies aiming to optimize immune responses to improve bacterial eradication or to limit excessive inflammation are a new strategy for the treatment of tuberculosis. In this study, we have established a zebrafish-Mycobacterium marinum natural host-pathogen model system to study induced protective immune responses in mycobacterial infection. We show that priming adult zebrafish with heat-killed Listeria monocytogenes (HKLm) at 1 day prior to M. marinum infection leads to significantly decreased mycobacterial loads in the infected zebrafish. Using rag1−/− fish, we show that the protective immunity conferred by HKLm priming can be induced through innate immunity alone. At 24 h post-infection, HKLm priming leads to a significant increase in the expression levels of macrophage-expressed gene 1 (mpeg1), tumor necrosis factor α (tnfa) and nitric oxide synthase 2b (nos2b), whereas superoxide dismutase 2 (sod2) expression is downregulated, implying that HKLm priming increases the number of macrophages and boosts intracellular killing mechanisms. The protective effects of HKLm are abolished when the injected material is pretreated with nucleases or proteinase K. Importantly, HKLm priming significantly increases the frequency of clearance of M. marinum infection by evoking sterilizing immunity (25 vs 3.7%, P=0.0021). In this study, immune priming is successfully used to induce sterilizing immunity against mycobacterial infection. This model provides a promising new platform for elucidating the mechanisms underlying sterilizing immunity and to develop host-directed treatment or prevention strategies against tuberculosis. This article has an associated First Person interview with the first author of the paper. PMID:29208761
Murai, Atsushi; Kitahara, Kazuki; Okumura, Shouta; Kobayashi, Misato; Horio, Fumihiko
2016-02-01
Recent studies have emphasized the crucial role of gut microbiota in triggering and modulating immune response. We aimed to determine whether the modification of gut microbiota by oral co-administration of two antibiotics, ampicillin and neomycin, would lead to changes in the antibody response to antigens in chickens. Neonatal chickens were given or not given ampicillin and neomycin (0.25 and 0.5 g/L, respectively) in drinking water. At 2 weeks of age, the chicks were muscularly or orally immunized with antigenic keyhole limpet hemocyanin (KLH), and then serum anti-KLH antibody levels were examined by ELISA. In orally immunized chicks, oral antibiotics treatment enhanced antibody responses (IgM, IgA, IgY) by 2-3-fold compared with the antibiotics-free control, while the antibiotics did not enhance antibody responses in the muscularly immunized chicks. Concomitant with their enhancement of antibody responses, the oral antibiotics also lowered the Lactobacillus species in feces. Low doses of antibiotics (10-fold and 100-fold lower than the initial trial), which failed to change the fecal Lactobacillus population, did not modify any antibody responses when chicks were orally immunized with KLH. In conclusion, oral antibiotics treatment enhanced the antibody response to orally exposed antigens in chickens. This enhancement of antibody response was associated with a modification of the fecal Lactobacillus content, suggesting a possible link between gut microbiota and antibody response in chickens. © 2015 Japanese Society of Animal Science.
HCV-specific immune responses induced by CIGB-230 in combination with IFN-α plus ribavirin
Amador-Cañizares, Yalena; Martínez-Donato, Gillian; Álvarez-Lajonchere, Liz; Vasallo, Claudia; Dausá, Mariacarla; Aguilar-Noriega, Daylen; Valenzuela, Carmen; Raíces, Ivette; Dubuisson, Jean; Wychowski, Czeslaw; Cinza-Estévez, Zurina; Castellanos, Marlén; Núñez, Magdalys; Armas, Anny; González, Yaimé; Revé, Ismariley; Guerra, Ivis; Pérez Aguiar, Ángel; Dueñas-Carrera, Santiago
2014-01-01
AIM: To analyze hepatitis C virus (HCV)-specific immune responses in chronically infected patients under triple therapy with interferon-α (IFN-α) plus ribavirin and CIGB-230. METHODS: CIGB-230 was administered in different schedules with respect to IFN-α plus ribavirin therapy. Paired serum and peripheral blood mononuclear cells (PBMC) samples from baseline and end of treatment were analyzed. The HCV-specific humoral response was tested by enzyme-linked immunosorbent assay, neutralizing antibodies were evaluated by cell culture HCV neutralization assays, PBMC proliferation was assayed by carboxyfluorescein succinimidyl ester staining and IFN-γ secretion was assessed by enzyme-linked immunospot. Data on virological and histological response and their association with immune variables are also provided. RESULTS: From week 12 to week 48, all groups of patients showed a significant reduction in mean leukocyte counts. Statistically significant reductions in antibody titers were frequent, but only individuals immunized with CIGB-230 as early add-on treatment sustained the core-IgG response, and the neutralizing antibody response was enhanced only in patients receiving CIGB-230. Cell-mediated immune responses also tended to decline, but significant reductions in IFN-γ secretion and total absence of core-specific lymphoproliferation were exclusive of the control group. Only CIGB-230-immunized individuals showed de novo induced lymphoproliferative responses against the structural antigens. Importantly, it was demonstrated that the quality of the CIGB-230-induced immune response depended on the number of doses and timing of administration in relation to the antiviral therapy. Specifically, the administration of 6 doses of CIGB-230 as late add-on to therapy increased the neutralizing antibody activity and the de novo core-specific IFN-γ secretion, both of which were associated with the sustained virological response. CONCLUSION: CIGB-230, combined with IFN-α-based therapy, modifies the immune response in chronic patients. The study provides evidence for the design of more effective therapeutic vaccine interventions against HCV. PMID:24415868
Santoro, Francesco; Pettini, Elena; Kazmin, Dmitri; Ciabattini, Annalisa; Fiorino, Fabio; Gilfillan, Gregor D; Evenroed, Ida M; Andersen, Peter; Pozzi, Gianni; Medaglini, Donata
2018-01-01
Transcriptomic profiling of the immune response induced by vaccine adjuvants is of critical importance for the rational design of vaccination strategies. In this study, transcriptomics was employed to profile the effect of the vaccine adjuvant used for priming on the immune response following re-exposure to the vaccine antigen alone. Mice were primed with the chimeric vaccine antigen H56 of Mycobacterium tuberculosis administered alone or with the CAF01 adjuvant and boosted with the antigen alone. mRNA sequencing was performed on blood samples collected 1, 2, and 7 days after priming and after boosting. Gene expression analysis at day 2 after priming showed that the CAF01 adjuvanted vaccine induced a stronger upregulation of the innate immunity modules compared with the unadjuvanted formulation. The immunostimulant effect of the CAF01 adjuvant, used in the primary immunization, was clearly seen after a booster immunization with a low dose of antigen alone. One day after boost, we observed a strong upregulation of multiple genes in blood of mice primed with H56 + CAF01 compared with mice primed with the H56 alone. In particular, blood transcription modules related to innate immune response, such as monocyte and neutrophil recruitment, activation of antigen-presenting cells, and interferon response were activated. Seven days after boost, differential expression of innate response genes faded while a moderate differential expression of T cell activation modules was appreciable. Indeed, immunological analysis showed a higher frequency of H56-specific CD4+ T cells and germinal center B cells in draining lymph nodes, a strong H56-specific humoral response and a higher frequency of antibody-secreting cells in spleen of mice primed with H56 + CAF01. Taken together, these data indicate that the adjuvant used for priming strongly reprograms the immune response that, upon boosting, results in a stronger recall innate response essential for shaping the downstream adaptive response.
Immune defense and host life history.
Zuk, Marlene; Stoehr, Andrew M
2002-10-01
Recent interest has focused on immune response in an evolutionary context, with particular attention to disease resistance as a life-history trait, subject to trade-offs against other traits such as reproductive effort. Immune defense has several characteristics that complicate this approach, however; for example, because of the risk of autoimmunity, optimal immune defense is not necessarily maximum immune defense. Two important types of cost associated with immunity in the context of life history are resource costs, those related to the allocation of essential but limited resources, such as energy or nutrients, and option costs, those paid not in the currency of resources but in functional or structural components of the organism. Resource and option costs are likely to apply to different aspects of resistance. Recent investigations into possible trade-offs between reproductive effort, particularly sexual displays, and immunity have suggested interesting functional links between the two. Although all organisms balance the costs of immune defense against the requirements of reproduction, this balance works out differently for males than it does for females, creating sex differences in immune response that in turn are related to ecological factors such as the mating system. We conclude that immune response is indeed costly and that future work would do well to include invertebrates, which have sometimes been neglected in studies of the ecology of immune defense.
Immunity to betanodavirus infections of marine fish.
Chen, Young-Mao; Wang, Ting-Yu; Chen, Tzong-Yueh
2014-04-01
Betanodaviruses cause viral nervous necrosis in numerous fish species, but some species are resistant to infection by these viruses. It is essential to fully characterize the immune responses that underlie this protective response. Complete characterization of the immune responses against nodaviruses may allow the development of methods that stimulate fish immunity and of an effective betanodavirus vaccine. Such strategies could include stimulation of specific immune system responses or blockage of factors that decrease the immune response. The innate immune system clearly provides a front-line defense, and this includes the production of interferons and other cytokines. Interferons that are released inside infected cells and that suppress viral replication may be the most ancient form of innate immunity. This review focuses on the immune responses of fish to betanodavirus infection. Copyright © 2013 Elsevier Ltd. All rights reserved.
Epigenetic modifiers in immunotherapy: a focus on checkpoint inhibitors.
Terranova-Barberio, Manuela; Thomas, Scott; Munster, Pamela N
2016-06-01
Immune surveillance should be directed to suppress tumor development and progression, involving a balance of coinhibitory and costimulatory signals that amplify immune response without overwhelming the host. Immunotherapy confers durable clinical benefit in 'immunogenic tumors', whereas in other tumors the responses are modest. Thus, immune checkpoint inhibitors may need to be combined with strategies to boost immune response or increase the tumor immune profile. Epigenetic aberrations contribute significantly to carcinogenesis. Recent findings suggest that epigenetic drugs prime the immune response by increasing expression of tumor-associated antigens and immune-related genes, as well as modulating chemokines and cytokines involved in immune system activation. This review describes our current understanding regarding epigenetic and immunotherapy combination, focusing on immune response priming to checkpoint blockade.
Li, Ning; Harkema, Jack R.; Lewandowski, Ryan P.; Wang, Meiying; Bramble, Lori A.; Gookin, Glenn R.; Ning, Zhi; Kleinman, Michael T.; Sioutas, Constantinos
2010-01-01
We have previously demonstrated that intranasal administration of ambient ultrafine particles (UFP) acts as an adjuvant for primary allergic sensitization to ovalbumin (OVA) in Balb/c mice. It is important to find out whether inhaled UFP exert the same effect on the secondary immune response as a way of explaining asthma flares in already-sensitized individuals due to traffic exposure near a freeway. The objective of this study is to determine whether inhalation exposure to ambient UFP near an urban freeway could enhance the secondary immune response to OVA in already-sensitized mice. Prior OVA-sensitized animals were exposed to concentrated ambient UFP at the time of secondary OVA challenge in our mobile animal laboratory in Los Angeles. OVA-specific antibody production, airway morphometry, allergic airway inflammation, cytokine gene expression, and oxidative stress marker were assessed. As few as five ambient UFP exposures were sufficient to promote the OVA recall immune response, including generating allergic airway inflammation in smaller and more distal airways compared with the adjuvant effect of intranasally instilled UFP on the primary immune response. The secondary immune response was characterized by the T helper 2 and IL-17 cytokine gene expression in the lung. In summary, our results demonstrated that inhalation of prooxidative ambient UFP could effectively boost the secondary immune response to an experimental allergen, indicating that vehicular traffic exposure could exacerbate allergic inflammation in already-sensitized subjects. PMID:20562226
Correlative Gene Expression to Protective Seroconversion in Rift Valley Fever Vaccinates.
Laughlin, Richard C; Drake, Kenneth L; Morrill, John C; Adams, L Garry
2016-01-01
Rift Valley fever Virus (RVFV), a negative-stranded RNA virus, is the etiological agent of the vector-borne zoonotic disease, Rift Valley fever (RVF). In both humans and livestock, protective immunity can be achieved through vaccination. Earlier and more recent vaccine trials in cattle and sheep demonstrated a strong neutralizing antibody and total IgG response induced by the RVF vaccine, authentic recombinant MP-12 (arMP-12). From previous work, protective immunity in sheep and cattle vaccinates normally occurs from 7 to 21 days after inoculation with arMP-12. While the serology and protective response induced by arMP-12 has been studied, little attention has been paid to the underlying molecular and genetic events occurring prior to the serologic immune response. To address this, we isolated RNA from whole blood of vaccinated calves over a time course of 21 days before and after vaccination with arMP-12. The time course RNAs were sequenced by RNASeq and bioinformatically analyzed. Our results revealed time-dependent activation or repression of numerous gene ontologies and pathways related to the vaccine induced immune response and its regulation. Additional bioinformatic analyses identified a correlative relationship between specific host immune response genes and protective immunity prior to the detection of protective serum neutralizing antibody responses. These results contribute an important proof of concept for identifying molecular and genetic components underlying the immune response to RVF vaccination and protection prior to serologic detection.
Rigato, Paula Ordonhez; Maciel, Milton; Goldoni, Adriana Letícia; Piubelli, Orlando Guerra; Orii, Noemia Mie; Marques, Ernesto Torres; August, Joseph Thomas; Duarte, Alberto José da Silva; Sato, Maria Notomi
2012-01-01
Infants born to HIV-infected mothers are at high risk of becoming infected during gestation or the breastfeeding period. A search is thus warranted for vaccine formulations that will prevent mother-to-child HIV transmission. The LAMP/gag DNA chimeric vaccine encodes the HIV-1 p55gag fused to the lysosome-associated membrane protein-1 (LAMP-1) and has been shown to enhance anti-Gag antibody (Ab) and cellular immune responses in adult and neonatal mice; such a vaccine represents a new concept in antigen presentation. In this study, we evaluated the effect of LAMP/gag DNA immunization on neonates either before conception or during pregnancy. LAMP/gag immunization of BALB/c mice before conception by the intradermal route led to the transfer of anti-Gag IgG1 Ab through the placenta and via breastfeeding. Furthermore, there were an increased percentage of CD4+CD25+Foxp3+T cells in the spleens of neonates. When offspring were immunized with LAMP/gag DNA, the anti-Gag Ab response and the Gag-specific IFN-γ-secreting cells were decreased. Inhibition of anti-Gag Ab production and cellular responses were not observed six months after immunization, indicating that maternal immunization did not interfere with the long-lasting memory response in offspring. Injection of purified IgG in conjunction with LAMP/gag DNA immunization decreased humoral and cytotoxic T-cell responses. LAMP/gag DNA immunization by intradermal injection prior to conception promoted the transfer of Ab, leading to a diminished response to Gag without interfering with the development of anti-Gag T- and B-cell memory. Finally, we assessed responses after one intravenous injection of LAMP/gag DNA during the last five days of pregnancy. The intravenous injection led to in utero immunization. In conclusion, DNA vaccine enconding LAMP-1 with Gag and other HIV-1 antigens should be considered in the development of a protective vaccine for the maternal/fetal and newborn periods.
Rigato, Paula Ordonhez; Maciel, Milton; Goldoni, Adriana Letícia; Piubelli, Orlando Guerra; Orii, Noemia Mie; Marques, Ernesto Torres; August, Joseph Thomas; Duarte, Alberto José da Silva; Sato, Maria Notomi
2012-01-01
Infants born to HIV-infected mothers are at high risk of becoming infected during gestation or the breastfeeding period. A search is thus warranted for vaccine formulations that will prevent mother-to-child HIV transmission. The LAMP/gag DNA chimeric vaccine encodes the HIV-1 p55gag fused to the lysosome-associated membrane protein-1 (LAMP-1) and has been shown to enhance anti-Gag antibody (Ab) and cellular immune responses in adult and neonatal mice; such a vaccine represents a new concept in antigen presentation. In this study, we evaluated the effect of LAMP/gag DNA immunization on neonates either before conception or during pregnancy. LAMP/gag immunization of BALB/c mice before conception by the intradermal route led to the transfer of anti-Gag IgG1 Ab through the placenta and via breastfeeding. Furthermore, there were an increased percentage of CD4+CD25+Foxp3+T cells in the spleens of neonates. When offspring were immunized with LAMP/gag DNA, the anti-Gag Ab response and the Gag-specific IFN-γ-secreting cells were decreased. Inhibition of anti-Gag Ab production and cellular responses were not observed six months after immunization, indicating that maternal immunization did not interfere with the long-lasting memory response in offspring. Injection of purified IgG in conjunction with LAMP/gag DNA immunization decreased humoral and cytotoxic T-cell responses. LAMP/gag DNA immunization by intradermal injection prior to conception promoted the transfer of Ab, leading to a diminished response to Gag without interfering with the development of anti-Gag T- and B-cell memory. Finally, we assessed responses after one intravenous injection of LAMP/gag DNA during the last five days of pregnancy. The intravenous injection led to in utero immunization. In conclusion, DNA vaccine enconding LAMP-1 with Gag and other HIV-1 antigens should be considered in the development of a protective vaccine for the maternal/fetal and newborn periods. PMID:22355381
Dietary nucleotides prevent decrease in cellular immunity in ground-based microgravity analog
NASA Technical Reports Server (NTRS)
Yamauchi, Keiko; Hales, Nathan W.; Robinson, Sandra M.; Niehoff, Michael L.; Ramesh, Vani; Pellis, Neal R.; Kulkarni, Anil D.
2002-01-01
Microgravity and stress of spaceflights result in immune dysfunction. The role of nutrition, especially nucleotide supplementation, has become an area of intensive research and significant interest in immunomodulation for maintenance of cellular immune responses. The studies presented here evaluate the plausibility of administering nucleotides to obviate immune dysfunction in an Earth-based in vivo analog of microgravity as studied in anti-orthostatic tail suspension (AOS) of mice. Mice were divided into three housing groups: group, isolation, and AOS. Mice were fed either control chow diet (CD), or RNA-, adenine-, or uracil-supplemented CD for the 1-wk duration of the experiments. In AOS mice, supplemental nucleotides significantly increased in vivo lymph node proliferation and ex vivo lymphoproliferation response to alloantigen and mitogens, respectively, and interleukin-2 and interferon-gamma production. A lower corticosterone level was observed in uracil-supplemented CD compared with CD. These results suggest that exogenous nucleotide supplementation, especially uracil, of normal diet is beneficial in the maintenance and restoration of the immune response during the microgravity analog conditions.
Tail loss compromises immunity in the many-lined skink, Eutropis multifasciata
NASA Astrophysics Data System (ADS)
Kuo, Chi-Chien; Yao, Chiou-Ju; Lin, Te-En; Liu, Hsu-Che; Hsu, Yu-Cheng; Hsieh, Ming-Kun; Huang, Wen-San
2013-04-01
Tail autotomy incurs energetic costs, and thus, a trade-off in resource allocation may lead to compromised immunity in lizards. We tested the hypothesis that tailless lizards will favor constitutive innate immunity responses over an energetically costly inflammatory response. The influence of fasting and colorful ornamentation was also investigated. We experimentally induced tail autotomy in the lizard Eutropis multifasciata and found that inflammation was suppressed by tail loss, but not further affected by fasting; the suppressive effect of colorful ornamentation was manifested only in males, but not in females. Constitutive innate immunity was not affected by any of these factors. As expected, only costly inflammation was compromised, and a less expensive constitutive innate immunity might be favored as a competent first-line defense during energetically demanding periods. After considering conventional trade-offs among tail regeneration and reproduction, further extending these studies to incorporate disease risk and how this influences escape responses to predators and future reproduction would make worthwhile studies.
Gupta, Sameer; Haldar, Chandana
2017-03-01
Studies demonstrate the importance of metabolic resources in the regulation of reproduction and immune functions in seasonal breeders. In this regard, the restricted energy availability can be considered as an environmental variable that may act as a seasonal stressor and can lead to compromised immune functions. The present study explored the effect of photoperiodic variation in the regulation of immune function under metabolic stress condition. The T-cell-dependent immune response in a tropical seasonal breeder Funambulus pennanti was studied following the inhibition of cellular glucose utilization with 2-deoxy-d-glucose (2-DG). 2-DG treatment resulted in the suppression of general (e.g., proliferative response of lymphocytes) and antigen-specific [anti-keyhole limpet hemocyanin IgG titer and delayed-type hypersensitivity response] T-cell responses with an activation of the hypothalamic-pituitary-adrenal axis, which was evident from the increased levels of plasma corticosterone. 2-DG administration increased the production of inflammatory cytokines [interleukin (IL)-1β and tumor necrosis factor (TNF)-α] and decreased the autocrine T-cell growth factor IL-2. The immunocompromising effect of 2-DG administration was retarded in animals exposed to short photoperiods compared with the control and long photoperiod-exposed groups. This finding suggested that short photoperiodic conditions enhanced the resilience of the immune system, possibly by diverting metabolic resources from the reproductive organs toward the immune system. In addition, melatonin may have facilitated the energy "trade-off" between reproductive and immune mechanisms, thereby providing an advantage to the seasonal breeders for their survival during stressful environmental conditions. Copyright © 2017. Published by Elsevier Inc.
Wu, Gongqing; Li, Mei; Liu, Yi; Ding, Ying; Yi, Yunhong
2015-10-01
In the past decade, the phenomenon of immune priming was documented in many invertebrates in a large number of studies; however, in most of these studies, behavioral evidence was used to identify the immune priming. The underlying mechanism and the degree of specificity of the priming response remain unclear. We studied the mechanism of immune priming in the larvae of the silkworm, Bombyx mori, and analyzed the specificity of the priming response using two closely related Gram-negative pathogenic bacteria (Photorhabdus luminescens TT01 and P. luminescens H06) and one Gram-positive pathogenic bacterium (Bacillus thuringiensis HD-1). Primed with heat-killed bacteria, the B. mori larvae were more likely to survive subsequent homologous exposure (the identical bacteria used in the priming and in the subsequent challenge) than heterologous (different bacteria used in the priming and subsequent exposure) exposure to live bacteria. This result indicated that the B. mori larvae possessed a strong immune priming response and revealed a degree of specificity to TT01, H06 and HD-1 bacteria. The degree of enhanced immune protection was positively correlated with the level of phagocytic ability of the granular cells and the antibacterial activity of the cell-free hemolymph. Moreover, the granular cells of the immune-primed larvae increased the phagocytosis of a previously encountered bacterial strain compared with other bacteria. Thus, the enhanced immune protection of the B. mori larvae after priming was mediated by the phagocytic ability of the granular cells and the antibacterial activity of the hemolymph; the specificity of the priming response was primarily attributed to the phagocytosis of bacteria by the granular cells. Copyright © 2015 Elsevier Ltd. All rights reserved.
Photochemistry-based immune modulation in the treatment of cutaneous leishmaniasis
NASA Astrophysics Data System (ADS)
Akilov, Oleg E.; Kosaka, Sachiko; Hasan, Tayyaba
2009-06-01
The destruction of infectious pathogens by photodynamic therapy (PDT) is an emerging modality. We demonstrated the efficacy of PDT for the management of cutaneous leishmaniasis in our previous studies. However, much remains to be done for the improvement of PDT regimens. The modulation of the immune response by photochemistry is an exciting but under-explored area of PDT research. The goal of this study is to understand the mechanisms of the augmentation of the host immune response after PDT of cutaneous leishmaniasis (CL). We found that PDT with phenoxiazine analogues was capable for induction of Th1 immune response due to stimulation of IL- 12 production by dendritic cells. Single PDT treatment facilitated fast healing of the CL lesions due to effective parasite eradication and augmentation of the immune system. Comparative study with different photosensitizers (PS) (porphyrins, pehnoxiazines) demonstrated different immunomodulating properties of PDT depending on chemical class of PS. Knowing the particular profiles and immunomodulating properties of the pertinent PSs allows us to select the optimal PS with regards to both the photodestructive and immunostimulating potential.
Rotavirus intestinal infection induces an oral mucosa cytokine response.
Gómez-Rial, José; Curras-Tuala, María José; Rivero-Calle, Irene; Rodríguez-Tenreiro, Carmen; Redondo-Collazo, Lorenzo; Gómez-Carballa, Alberto; Pardo-Seco, Jacobo; Salas, Antonio; Martinón-Torres, Federico
2018-01-01
Salivary glands are known immune effector sites and considered to be part of the whole mucosal immune system. The aim of the present study was to assess the salivary immune response to rotavirus (RV) infection through the analysis of the cytokine immune profile in saliva. A prospective comparative study of serial saliva samples from 27 RV-infected patients (sampled upon admission to the hospital during acute phase and at convalescence-i.e. at least three months after recovery) and 36 healthy controls was performed. Concentrations of 11 salivary cytokines (IFN-γ, IFN-α2, IL-1β, IL-6, IL-8, IL-10, IL-15, IL12p70, TNF-α, IFN-λ1, IL-22) were determined. Cytokine levels were compared between healthy controls acute infection and convalescence. The correlation between clinical data and salivary cytokine profile in infected children was assessed. The salivary cytokine profile changes significantly in response to acute RV infection. In RV-infected patients, IL-22 levels were increased in the acute phase with respect to convalescence (P-value < 0.001). Comparisons between infected and control group showed significant differences in salivary IFN-α2, IL-1β, IL-6, IL-8, IL-10 and IL-22. Although acute-phase levels of IL-12, IL-10, IL-6 and IFN-γ showed nominal association with Vesikari's severity, this trend did not reach statistical significance after multiple test adjustment. RV infection induces a host salivary immune response, indicating that immune mucosal response to RV infection is not confined to the intestinal mucosa. Our data point to a whole mucosal implication in the RV infection as a result of the integrative mucosal immune response, and suggest the salivary gland as effector site for RV infection.
Rotavirus intestinal infection induces an oral mucosa cytokine response
Curras-Tuala, María José; Rivero-Calle, Irene; Rodríguez-Tenreiro, Carmen; Redondo-Collazo, Lorenzo; Gómez-Carballa, Alberto; Pardo-Seco, Jacobo
2018-01-01
Introduction Salivary glands are known immune effector sites and considered to be part of the whole mucosal immune system. The aim of the present study was to assess the salivary immune response to rotavirus (RV) infection through the analysis of the cytokine immune profile in saliva. Material and methods A prospective comparative study of serial saliva samples from 27 RV-infected patients (sampled upon admission to the hospital during acute phase and at convalescence—i.e. at least three months after recovery) and 36 healthy controls was performed. Concentrations of 11 salivary cytokines (IFN-γ, IFN-α2, IL-1β, IL-6, IL-8, IL-10, IL-15, IL12p70, TNF-α, IFN-λ1, IL-22) were determined. Cytokine levels were compared between healthy controls acute infection and convalescence. The correlation between clinical data and salivary cytokine profile in infected children was assessed. Results The salivary cytokine profile changes significantly in response to acute RV infection. In RV-infected patients, IL-22 levels were increased in the acute phase with respect to convalescence (P-value < 0.001). Comparisons between infected and control group showed significant differences in salivary IFN-α2, IL-1β, IL-6, IL-8, IL-10 and IL-22. Although acute-phase levels of IL-12, IL-10, IL-6 and IFN-γ showed nominal association with Vesikari’s severity, this trend did not reach statistical significance after multiple test adjustment. Conclusions RV infection induces a host salivary immune response, indicating that immune mucosal response to RV infection is not confined to the intestinal mucosa. Our data point to a whole mucosal implication in the RV infection as a result of the integrative mucosal immune response, and suggest the salivary gland as effector site for RV infection. PMID:29621276
Famakin, Bolanle M.
2014-01-01
It is currently well established that the immune system is activated in response to transient or focal cerebral ischemia. This acute immune activation occurs in response to damage, and injury, to components of the neurovascular unit and is mediated by the innate and adaptive arms of the immune response. The initial immune activation is rapid, occurs via the innate immune response and leads to inflammation. The inflammatory mediators produced during the innate immune response in turn lead to recruitment of inflammatory cells and the production of more inflammatory mediators that result in activation of the adaptive immune response. Under ideal conditions, this inflammation gives way to tissue repair and attempts at regeneration. However, for reasons that are just being understood, immunosuppression occurs following acute stroke leading to post-stroke immunodepression. This review focuses on the current state of knowledge regarding innate and adaptive immune activation in response to focal cerebral ischemia as well as the immunodepression that can occur following stroke. A better understanding of the intricate and complex events that take place following immune response activation, to acute cerebral ischemia, is imperative for the development of effective novel immunomodulatory therapies for the treatment of acute stroke. PMID:25276490
Fang, Y; Zhang, T; Lidell, L; Xu, X; Lycke, N; Xiang, Z
2013-11-01
We have previously reported that CTA1-DD/IgG immune complexes augment antibody responses in a mast cell-dependent manner following intranasal (IN) immunizations. However, from a safety perspective, mast cell activation could preclude clinical use. Therefore, we have extended these studies and demonstrate that CTA1-DD/IgG immune complexes administered IN did not trigger an anaphylactic reaction. Importantly, CTA1-DD/IgE immune complexes did not activate mast cells. Interestingly, only connective tissue, but not mucosal, mast cells could be activated by CTA1-DD/IgG immune complexes. This effect was mediated by FcγRIIIA, only expressed on connective tissue mast cells, and found in the nasal submucosa. FcγRIIIA-deficient mice had compromised responses to immunization adjuvanted by CTA1-DD/IgG. Proof-of-concept studies revealed that IN immunized mice with human papillomavirus (HPV) type 16 L1 virus-like particles (VLP) and CTA1-DD/IgG immune complexes demonstrated strong and sustained specific antibody titers in serum and vaginal secretions. From a mast cell perspective, CTA1-DD/IgG immune complexes appear to be safe and effective mucosal adjuvants.
Laws, Thomas R; Kuchuloria, Tinatin; Chitadze, Nazibriola; Little, Stephen F; Webster, Wendy M; Debes, Amanda K; Saginadze, Salome; Tsertsvadze, Nikoloz; Chubinidze, Mariam; Rivard, Robert G; Tsanava, Shota; Dyson, Edward H; Simpson, Andrew J H; Hepburn, Matthew J; Trapaidze, Nino
2016-01-01
Several different human vaccines are available to protect against anthrax. We compared the human adaptive immune responses generated by three different anthrax vaccines or by previous exposure to cutaneous anthrax. Adaptive immunity was measured by ELISPOT to count cells that produce interferon (IFN)-γ in response to restimulation ex vivo with the anthrax toxin components PA, LF and EF and by measuring circulating IgG specific to these antigens. Neutralising activity of antisera against anthrax toxin was also assayed. We found that the different exposures to anthrax antigens promoted varying immune responses. Cutaneous anthrax promoted strong IFN-γ responses to all three antigens and antibody responses to PA and LF. The American AVA and Russian LAAV vaccines induced antibody responses to PA only. The British AVP vaccine produced IFN-γ responses to EF and antibody responses to all three antigens. Anti-PA (in AVA and LAAV vaccinees) or anti-LF (in AVP vaccinees) antibody titres correlated with toxin neutralisation activities. Our study is the first to compare all three vaccines in humans and show the diversity of responses against anthrax antigens.
Zhang, Xiaolong; Jiang, Quanlong; Xu, Xingli; Wang, Yongrong; Liu, Lei; Lian, Yaru; Li, Hao; Wang, Lichun; Zhang, Ying; Jiang, Guorun; Zeng, Jieyuan; Zhang, Han; Han, Jing-Dong Jackie; Li, Qihan
2018-04-25
Herpes simplex virus is a prevalent pathogen of humans of various age groups. The fact that no prophylactic or therapeutic vaccine is currently available suggests a significant need to further investigate the immune mechanisms induced by the virus and various vaccine candidates. We previously generated an HSV-1 mutant strain, M3, with partial deletions in ul7, ul41 and LAT that produced an attenuated phenotype in mice. In the present study, we performed a comparative analysis to characterize the immune responses induced by M3 versus wild-type HSV-1 in a mouse model. Infection with wild-type HSV-1 triggered an inflammatory-dominated response and adaptive immunity suppression and was accompanied by severe pathological damage. In contrast, infection with M3 induced a systematic immune response involving full activation of both innate and adaptive immunity and was accompanied by no obvious pathological changes. Furthermore, the immune response induced by M3 protected mice from lethal challenge with wild-type strains of HSV-1 and restrained virus proliferation and impaired latency. These data are useful for further HSV-1 vaccine development using a mutant strain construction strategy. Copyright © 2018 Elsevier Ltd. All rights reserved.
The relative abundance of hemocyte types in a polyphagous moth larva depends on diet.
Vogelweith, Fanny; Moret, Yannick; Monceau, Karine; Thiéry, Denis; Moreau, Jérôme
2016-05-01
Hemocytes are crucial cells of the insect immune system because of their involvement in multiple immune responses including coagulation, phagocytosis and encapsulation. There are various types of hemocytes, each having a particular role in immunity, such that variation in their relative abundance affects the outcome of the immune response. This study aims to characterize these various types of hemocytes in larvae of the grapevine pest insect Eupoecilia ambiguella, and to assess variation in their concentration as a function of larval diet and immune challenge. Four types of hemocytes were found in the hemolymph of 5th instar larvae: granulocytes, oenocytoids, plasmatocytes and spherulocytes. We found that the total concentration of hemocytes and the concentration of each hemocyte type varied among diets and in response to the immune challenge. Irrespective of the diet, the concentration of granulocytes increased following a bacterial immune challenge, while the concentration of plasmatocytes and spherulocytes differentially varied between larval diets. The concentration of oenocytoids did not vary among diets before the immune challenge but varied between larval diets in response to the challenge. These results suggest that the resistance of insect larvae to different natural enemies critically depends on the effect of larval diet on the larvae's investment into the different types of hemocytes. Copyright © 2016 Elsevier Ltd. All rights reserved.
Immunology of Gut Mucosal Vaccines
Pasetti, Marcela F.; Simon, Jakub K.; Sztein, Marcelo B.; Levine, Myron M.
2011-01-01
Summary Understanding the mechanisms underlying the induction of immunity in the gastrointestinal mucosa following oral immunization and the cross-talk between mucosal and systemic immunity should expedite the development of vaccines to diminish the global burden caused by enteric pathogens. Identifying an immunological correlate of protection in the course of field trials of efficacy, animal models (when available), or human challenge studies is also invaluable. In industrialized country populations, live attenuated vaccines (e.g. polio, typhoid, and rotavirus) mimic natural infection and generate robust protective immune responses. In contrast, a major challenge is to understand and overcome the barriers responsible for the diminished immunogenicity and efficacy of the same enteric vaccines in underprivileged populations in developing countries. Success in developing vaccines against some enteric pathogens has heretofore been elusive (e.g. Shigella). Different types of oral vaccines can selectively or inclusively elicit mucosal secretory immunoglobulin A and serum immunoglobulin G antibodies and a variety of cell-mediated immune responses. Areas of research that require acceleration include interaction between the gut innate immune system and the stimulation of adaptive immunity, development of safe yet effective mucosal adjuvants, better understanding of homing to the mucosa of immunologically relevant cells, and elicitation of mucosal immunologic memory. This review dissects the immune responses elicited in humans by enteric vaccines. PMID:21198669
Lombardo, Fabrizio; Ghani, Yasmeen; Kafatos, Fotis C.; Christophides, George K.
2013-01-01
Reverse genetics in the mosquito Anopheles gambiae by RNAi mediated gene silencing has led in recent years to an advanced understanding of the mosquito immune response against infections with bacteria and malaria parasites. We developed RNAi screens in An. gambiae hemocyte-like cells using a library of double-stranded RNAs targeting 109 genes expressed highly or specifically in mosquito hemocytes to identify novel regulators of the hemocyte immune response. Assays included phagocytosis of bacterial bioparticles, expression of the antimicrobial peptide CEC1, and basal and induced expression of the mosquito complement factor LRIM1. A cell viability screen was also carried out to assess dsRNA cytotoxicity and to identify genes involved in cell growth and survival. Our results identify 22 novel immune regulators, including proteins putatively involved in phagosome assembly and maturation (Ca2+ channel, v-ATPase and cyclin-dependent protein kinase), pattern recognition (fibrinogen-domain lectins and Nimrod), immune modulation (peptidase and serine protease homolog), immune signaling (Eiger and LPS-induced factor), cell adhesion and communication (Laminin B1 and Ninjurin) and immune homeostasis (Lipophorin receptor). The development of robust functional cell-based assays paves the way for genome-wide functional screens to study the mosquito immune response to infections with human pathogens. PMID:23382679
Schijf, Marcel A; Lukens, Michael V; Kruijsen, Debby; van Uden, Nathalie O P; Garssen, Johan; Coenjaerts, Frank E J; Van't Land, Belinda; van Bleek, Grada M
2013-01-01
Innate immune responses elicited upon virus exposure are crucial for the effective eradication of viruses, the onset of adaptive immune responses and for establishing proper immune memory. Respiratory syncytial virus (RSV) is responsible for a high disease burden in neonates and immune compromised individuals, causing severe lower respiratory tract infections. During primary infections exuberant innate immune responses may contribute to disease severity. Furthermore, immune memory is often insufficient to protect during RSV re-exposure, which results in frequent symptomatic reinfections. Therefore, identifying the cell types and pattern recognition receptors (PRRs) involved in RSV-specific innate immune responses is necessary to understand incomplete immunity against RSV. We investigated the innate cellular response triggered upon infection of epithelial cells and peripheral blood mononuclear cells. We show that CD14(+) myeloid cells and epithelial cells are the major source of IL-8 and inflammatory cytokines, IL-6 and TNF-α, when exposed to live RSV Three routes of RSV-induced IFN-α production can be distinguished that depend on the cross-talk of different cell types and the presence or absence of virus specific antibodies, whereby pDC are the ultimate source of IFN-α. RSV-specific antibodies facilitate direct TLR7 access into endosomal compartments, while in the absence of antibodies, infection of monocytes or epithelial cells is necessary to provide an early source of type I interferons, required to engage the IFN-α,β receptor (IFNAR)-mediated pathway of IFN-α production by pDC. However, at high pDC density infection with RSV causes IFN-α production without the need for a second party cell. Our study shows that cellular context and immune status are factors affecting innate immune responses to RSV. These issues should therefore be addressed during the process of vaccine development and other interventions for RSV disease.
Schijf, Marcel A.; Lukens, Michael V.; Kruijsen, Debby; van Uden, Nathalie O. P.; Garssen, Johan; Coenjaerts, Frank E. J.; van’t Land, Belinda; van Bleek, Grada M.
2013-01-01
Innate immune responses elicited upon virus exposure are crucial for the effective eradication of viruses, the onset of adaptive immune responses and for establishing proper immune memory. Respiratory syncytial virus (RSV) is responsible for a high disease burden in neonates and immune compromised individuals, causing severe lower respiratory tract infections. During primary infections exuberant innate immune responses may contribute to disease severity. Furthermore, immune memory is often insufficient to protect during RSV re-exposure, which results in frequent symptomatic reinfections. Therefore, identifying the cell types and pattern recognition receptors (PRRs) involved in RSV-specific innate immune responses is necessary to understand incomplete immunity against RSV. We investigated the innate cellular response triggered upon infection of epithelial cells and peripheral blood mononuclear cells. We show that CD14+ myeloid cells and epithelial cells are the major source of IL-8 and inflammatory cytokines, IL-6 and TNF-α, when exposed to live RSV Three routes of RSV-induced IFN-α production can be distinguished that depend on the cross-talk of different cell types and the presence or absence of virus specific antibodies, whereby pDC are the ultimate source of IFN-α. RSV-specific antibodies facilitate direct TLR7 access into endosomal compartments, while in the absence of antibodies, infection of monocytes or epithelial cells is necessary to provide an early source of type I interferons, required to engage the IFN-α,β receptor (IFNAR)-mediated pathway of IFN-α production by pDC. However, at high pDC density infection with RSV causes IFN-α production without the need for a second party cell. Our study shows that cellular context and immune status are factors affecting innate immune responses to RSV. These issues should therefore be addressed during the process of vaccine development and other interventions for RSV disease. PMID:24303065
Wern, Jeanette Erbo; Sorensen, Maria Rathmann; Olsen, Anja Weinreich; Andersen, Peter; Follmann, Frank
2017-01-01
The selection of any specific immunization route is critical when defining future vaccine strategies against a genital infection like Chlamydia trachomatis (C.t.). An optimal Chlamydia vaccine needs to elicit mucosal immunity comprising both neutralizing IgA/IgG antibodies and strong Th1/Th17 responses. A strategic tool to modulate this immune profile and mucosal localization of vaccine responses is to combine parenteral and mucosal immunizations routes. In this study, we investigate whether this strategy can be adapted into a two-visit strategy by simultaneous subcutaneous (SC) and nasal immunization. Using a subunit vaccine composed of C.t. antigens (Ags) adjuvanted with CAF01, a Th1/Th17 promoting adjuvant, we comparatively evaluated Ag-specific B and T cell responses and efficacy in mice following SC and simultaneous SC and nasal immunization (SIM). We found similar peripheral responses with regard to interferon gamma and IL-17 producing Ag-specific splenocytes and IgG serum levels in both vaccine strategies but in addition, the SIM protocol also led to Ag-specific IgA responses and increased B and CD4+ T cells in the lung parenchyma, and in lower numbers also in the genital tract (GT). Following vaginal infection with C.t., we observed that SIM immunization gave rise to an early IgA response and IgA-secreting plasma cells in the GT in contrast to SC immunization, but we were not able to detect more rapid recruitment of mucosal T cells. Interestingly, although SIM vaccination in general improved mucosal immunity we observed no improved efficacy against genital infection compared to SC, a finding that warrants for further investigation. In conclusion, we demonstrate a novel vaccination strategy that combines systemic and mucosal immunity in a two-visit strategy. PMID:28567043
Belderok, Sanne-Meike; Sonder, Gerard J B; van Rossum, Marion; van Dijk-Hummelman, Annette; Hartwig, Nico; Scherpbier, Henriette; Geelen, Sibyl; Speksnijder, Arjen G C L; Baaten, Gijs; van den Hoek, Anneke
2013-08-28
A phase IV interventional study with a combined hepatitis A and B vaccine was conducted in HIV-infected children and children receiving immunosuppressive medication for treatment of rheumatic diseases to evaluate immune responses. Both groups (1-16 years of age) received combined (inactivated) HAV and (rDNA) HBV vaccine Ambirix(®) at months 0 and 6. Serum samples were taken at four time points and tested for anti-HAV and anti-HBs antibodies. Anti-HAV concentrations ≥20 mIU/mL or anti-HBs concentrations ≥10 mIU/mL were considered protective. Seropositivity percentages were calculated and geometric mean concentrations (GMCs) were compared by nonparametric Mann-Whitney U-test or Kruskal-Wallis one-way-analysis-of-variance. Of 80 HIV-infected children who completed the study, 67 were HAV-susceptible and 68 HBV-susceptible at enrolment. Of 80 children with rheumatic diseases who completed the study, 65 were HAV-susceptible and 74 HBV-susceptible at enrolment. Immune responses to HAV after first dose of vaccine in both study groups were low: 71% and 55% respectively, whereas immune responses after the second dose were 99% and 100% respectively. Immune response to HBV after first dose of vaccine in both groups was also low: 27% and 17% respectively. Immune responses after the second dose were 97% and 93%, respectively. A larger proportion of children on combination antiretroviral therapy (cART) and of children with viral load <50 copies/mL responded to HBV, and also showed a significantly higher GMC. Although immune response after full series of combined HAV and HBV vaccine in both groups was excellent and comparable to healthy children, a substantial proportion of both groups was not protected for HAV after first dose of vaccine. This protection gap is especially important for HAV in travel health and postexposure prophylactic treatment: both groups of children should be serologically tested for anti-HAV prior to travel to ensure protection if there is no time to await second dose of vaccine. Copyright © 2013 Elsevier Ltd. All rights reserved.
Sadeghi, Mostafa; Najafpanah, Mohammad Javad
2013-12-01
Chromium is a biologically important element for humans and laboratory animals. Although the favorable effects of trivalent chromiumon immune responses of studied animals have been well documented, the precise mechanisms by which the chromium acts on immune system is relatively poor studied. In this study, real-time qPCR technique was employed to evaluate the expression profiles of four immune-related genes (B2M, MHCA, MHCB, and Rap2A) in spleens of the domestic goats, Capra hircus, feeding on four different levels of supplemental chromium (0, 0.5, 1, and 1.5 mg/day) as chromium– methionine. The results showed that 1.5 mg/day of supplemental chromium significantly increased the expression of the four studied genes (P <0.01). Since the studied genes play important roles in development, activation, and migration of lymphocytes, their increased expression seems to be an unknown mechanism by which chromium impose reinforcing effects on immune system. Therefore, supplemental chromium can be potentially used to improve immune responses especially in animals experiencing any type of stress such as invasion by a pathogen.
Helminths in the hygiene hypothesis: sooner or later?
Maizels, R M; McSorley, H J; Smyth, D J
2014-07-01
There is increasing recognition that exposures to infectious agents evoke fundamental effects on the development and behaviour of the immune system. Moreover, where infections (especially parasitic infections) have declined, immune responses appear to be increasingly prone to hyperactivity. For example, epidemiological studies of parasite-endemic areas indicate that prenatal or early-life experience of infections can imprint an individual's immunological reactivity. However, the ability of helminths to dampen pathology in established inflammatory diseases implies that they can have therapeutic effects even if the immune system has developed in a low-infection setting. With recent investigations of how parasites are able to modulate host immune pathology at the level of individual parasite molecules and host cell populations, we are now able to dissect the nature of the host-parasite interaction at both the initiation and recall phases of the immune response. Thus the question remains - is the influence of parasites on immunity one that acts primarily in early life, and at initiation of the immune response, or in adulthood and when recall responses occur? In short, parasite immunosuppression - sooner or later? © 2014 The Authors. Clinical & Experimental Immunology published by John Wiley & Sons Ltd on behalf of British Society for Immunology.
Behdani, Elham; Bakhtiarizadeh, Mohammad Reza
2017-10-01
The immune system is an important biological system that is negatively impacted by stress. This study constructed an integrated regulatory network to enhance our understanding of the regulatory gene network used in the stress-related immune system. Module inference was used to construct modules of co-expressed genes with bovine leukocyte RNA-Seq data. Transcription factors (TFs) were then assigned to these modules using Lemon-Tree algorithms. In addition, the TFs assigned to each module were confirmed using the promoter analysis and protein-protein interactions data. Therefore, our integrated method identified three TFs which include one TF that is previously known to be involved in immune response (MYBL2) and two TFs (E2F8 and FOXS1) that had not been recognized previously and were identified for the first time in this study as novel regulatory candidates in immune response. This study provides valuable insights on the regulatory programs of genes involved in the stress-related immune system.
A newly evolved Drosophila Cytorace-9 shows trade-off between longevity and immune response.
Sinam, Yoirentomba Meetei; Chatterjee, Arunita; Ranjini, Mysore S; Poojari, Adarsh; Nagarajan, Aarthi; Ramachandra, Nallur B; Nongthomba, Upendra
2016-10-01
Species with an efficient immune system would be at an advantage to evade pathogenic challenges and adapt to an ever changing ecological niche. The upkeep of immunity is a costly affair, thus trade-offs between immunity and other life history traits are expected. However, studies on the relation between immunity and life span have yielded paradoxical results. Drosophila Cytoraces, being at different stages of evolutionary divergence, provide an excellent experimental model system to study how evolving populations gain novel traits in the absence of selection. We found that in the absence of pathogenic infections, the Cytorace-9 flies lived longer than those of Cytorace-3. However, when these Cytoraces were challenged with different pathogenic microbes, the trend was opposite. After infection with pathogens, the long-lived Cytorace-9 survived worse than the short lived Cytorace-3, which can be attributed to a reduction in its immune response. This study provides evidence to support the existence of a trade-off between life span and immunity. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pomorska-Mól, Małgorzata, E-mail: mpomorska@piwet.pulawy.pl; Kwit, Krzysztof; Markowska-Daniel, Iwona
The effect of a seven-day antibiotic therapy with doxycycline was investigated on the postvaccinal humoral and cellular immune response in pigs. The selected parameters of non-specific immunity were also studied. Fifty pigs were used (control not vaccinated (C, n = 10), control vaccinated (CV, n = 20), and experimental — received doxycycline (DOXY, n = 20)). For vaccination live-attenuated vaccine against pseudorabies (PR) was used. From day − 1 to day 5 pigs from DOXY group received doxycycline orally with drinking water, at the recommended dose. Pigs from DOXY and CV groups were vaccinated at 8 and 10 weeks ofmore » age. The results of the present study showed that cell-mediated postvaccinal immune response can be modulated by oral treatment with doxycycline. Significantly lower values of stimulation index were observed after PRV restimulation in doxycycline-treated pigs. Moreover, in the DOXY group a significant decrease in IFN-γ production after PRV restimulation was noted. The significantly lower number of CD4+CD8 + cells was also observed in doxy-treated, vaccinated pigs, 2 weeks after final vaccination. Simultaneously, specific humoral response was not disturbed. This study demonstrated the importance of defining the immune modulatory activity of doxycycline because it may alter the immune responses to vaccines. The exact mechanism of T-cell response suppression by doxycycline remains to be elucidated, however the influence of doxycycline on the secretion of various cytokines, including IFN-γ, may be considered as a possible cause. The present observations should prompt further studies on the practical significance of such phenomena in terms of clinical implications. - Highlights: • We examine the postvaccinal immune response in pigs treated with doxycycline. • Doxycycline negatively influenced the specific proliferation after recall stimulation. • Doxycycline negatively influenced secretion of IFN-γ after recall stimulation. • The lower number of CD4+CD8 + cells was observed in doxy-treated pigs. • The development of specific humoral response was not disturbed by doxycycline.« less
Systems analysis of protective immune responses to RTS,S malaria vaccination in humans
Kazmin, Dmitri; Nakaya, Helder I.; Lee, Eva K.; Johnson, Matthew J.; van der Most, Robbert; van den Berg, Robert A.; Ballou, W. Ripley; Jongert, Erik; Wille-Reece, Ulrike; Ockenhouse, Christian; Aderem, Alan; Zak, Daniel E.; Sadoff, Jerald; Hendriks, Jenny; Wrammert, Jens; Ahmed, Rafi; Pulendran, Bali
2017-01-01
RTS,S is an advanced malaria vaccine candidate and confers significant protection against Plasmodium falciparum infection in humans. Little is known about the molecular mechanisms driving vaccine immunity. Here, we applied a systems biology approach to study immune responses in subjects receiving three consecutive immunizations with RTS,S (RRR), or in those receiving two immunizations of RTS,S/AS01 following a primary immunization with adenovirus 35 (Ad35) (ARR) vector expressing circumsporozoite protein. Subsequent controlled human malaria challenge (CHMI) of the vaccinees with Plasmodium-infected mosquitoes, 3 wk after the final immunization, resulted in ∼50% protection in both groups of vaccinees. Circumsporozoite protein (CSP)-specific antibody titers, prechallenge, were associated with protection in the RRR group. In contrast, ARR-induced lower antibody responses, and protection was associated with polyfunctional CD4+ T-cell responses 2 wk after priming with Ad35. Molecular signatures of B and plasma cells detected in PBMCs were highly correlated with antibody titers prechallenge and protection in the RRR cohort. In contrast, early signatures of innate immunity and dendritic cell activation were highly associated with protection in the ARR cohort. For both vaccine regimens, natural killer (NK) cell signatures negatively correlated with and predicted protection. These results suggest that protective immunity against P. falciparum can be achieved via multiple mechanisms and highlight the utility of systems approaches in defining molecular correlates of protection to vaccination. PMID:28193898
Wang, Lilin; Smith, Dan; Bot, Simona; Dellamary, Luis; Bloom, Amy; Bot, Adrian
2002-01-01
The adaptive immune response is triggered by recognition of T and B cell epitopes and is influenced by “danger” motifs that act via innate immune receptors. This study shows that motifs associated with noncoding RNA are essential features in the immune response reminiscent of viral infection, mediating rapid induction of proinflammatory chemokine expression, recruitment and activation of antigen-presenting cells, modulation of regulatory cytokines, subsequent differentiation of Th1 cells, isotype switching, and stimulation of cross-priming. The heterogeneity of RNA-associated motifs results in differential binding to cellular receptors, and specifically impacts the immune profile. Naturally occurring double-stranded RNA (dsRNA) triggered activation of dendritic cells and enhancement of specific immunity, similar to selected synthetic dsRNA motifs. Based on the ability of specific RNA motifs to block tolerance induction and effectively organize the immune defense during viral infection, we conclude that such RNA species are potent danger motifs. We also demonstrate the feasibility of using selected RNA motifs as adjuvants in the context of novel aerosol carriers for optimizing the immune response to subunit vaccines. In conclusion, RNA-associated motifs produced during viral infection bridge the early response with the late adaptive phase, regulating the activation and differentiation of antigen-specific B and T cells, in addition to a short-term impact on innate immunity. PMID:12393853
Hareendran, Sangeetha; Ramakrishna, Banumathi; Jayandharan, Giridhara R
2016-01-01
Host immune response remains a key obstacle to widespread application of adeno-associated virus (AAV) based gene therapy. Thus, targeted inhibition of the signaling pathways that trigger such immune responses will be beneficial. Previous studies have reported that DNA damage response proteins such as poly(ADP-ribose) polymerase-1 (PARP-1) negatively affect the integration of AAV in the host genome. However, the role of PARP-1 in regulating AAV transduction and the immune response against these vectors has not been elucidated. In this study, we demonstrate that repression of PARP-1 improves the transduction of single-stranded AAV vectors both in vitro (∼174%) and in vivo (two- to 3.4-fold). Inhibition of PARP-1, also significantly downregulated the expression of several proinflammatory and cytokine markers such as TLRs, ILs, NF-κB subunit proteins associated with the host innate response against self-complementary AAV2 vectors. The suppression of the inflammatory response targeted against these vectors was more effective upon combined inhibition of PARP-1 and NF-κB signaling. This strategy also effectively attenuated the AAV capsid-specific cytotoxic T-cell response, with minimal effect on vector transduction, as demonstrated in normal C57BL/6 and hemophilia B mice. These data suggest that targeting specific host cellular proteins could be useful to attenuate the immune barriers to AAV-mediated gene therapy. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Herbert, Bethany A.; Novince, Chad M.; Kirkwood, Keith L.
2015-01-01
Summary Aggregatibacter actinomycetemcomitans is a perio-pathogenic bacteria that has long been associated with localized aggressive periodontitis. The mechanisms of its pathogenicity have been studied in humans and pre-clinical experimental models. Although different serotypes of A. actinomycetemcomitans have differential virulence factor expression, A. actinomycetemcomitans cytolethal distending toxin (CDT), leukotoxin, and lipopolysaccharide (LPS) have been most extensively studied in the context of modulating the host immune response. Following colonization and attachment in the oral cavity, A. actinomycetemcomitans employs CDT, leukotoxin, and LPS to evade host innate defense mechanisms and drive a pathophysiologic inflammatory response. This supra-physiologic immune response state perturbs normal periodontal tissue remodeling/turnover and ultimately has catabolic effects on periodontal tissue homeostasis. In this review, we have divided the host response into two systems: non-hematopoietic and hematopoietic. Non-hematopoietic barriers include epithelium and fibroblasts that initiate the innate immune host response. The hematopoietic system contains lymphoid and myeloid-derived cell lineages that are responsible for expanding the immune response and driving the pathophysiologic inflammatory state in the local periodontal microenvironment. Effector systems and signaling transduction pathways activated and utilized in response to A. actinomycetemcomitans will be discussed to further delineate immune cell mechanisms during A. actinomycetemcomitans infection. Finally, we will discuss the osteo-immunomodulatory effects induced by A. actinomycetemcomitans and dissect the catabolic disruption of balanced osteoclast-osteoblast mediated bone remodeling, which subsequently leads to net alveolar bone loss. PMID:26197893
Zauberman, Ayelet; Flashner, Yehuda; Levy, Yinon; Vagima, Yaron; Tidhar, Avital; Cohen, Ofer; Bar-Haim, Erez; Gur, David; Aftalion, Moshe; Halperin, Gideon; Shafferman, Avigdor; Mamroud, Emanuelle
2013-01-01
Plague, initiated by Yersinia pestis infection, is a rapidly progressing disease with a high mortality rate if not quickly treated. The existence of antibiotic-resistant Y. pestis strains emphasizes the need for the development of novel countermeasures against plague. We previously reported the generation of a recombinant Y. pestis strain (Kim53ΔJ+P) that over-expresses Y. enterocolitica YopP. When this strain was administered subcutaneously to mice, it elicited a fast and effective protective immune response in models of bubonic, pneumonic and septicemic plague. In the present study, we further characterized the immune response induced by the Kim53ΔJ+P recombinant strain. Using a panel of mouse strains defective in specific immune functions, we observed the induction of a prompt protective innate immune response that was interferon-γ dependent. Moreover, inoculation of mice with Y. pestis Kim53ΔJ+P elicited a rapid protective response against secondary infection by other bacterial pathogens, including the enteropathogen Y. enterocolitica and the respiratory pathogen Francisella tularensis. Thus, the development of new therapies to enhance the innate immune response may provide an initial critical delay in disease progression following the exposure to highly virulent bacterial pathogens, extending the time window for successful treatment.
Thompson, Jill C; Smith, Maria W; Yeh, Matthew M; Proll, Sean; Zhu, Lin-Fu; Gao, T. J; Kneteman, Norman M; Tyrrell, D. Lorne; Katze, Michael G
2006-01-01
The severe combined immunodeficiency disorder (SCID)-beige/albumin (Alb)-urokinase plasminogen activator (uPA) mouse containing a human-mouse chimeric liver is currently the only small animal model capable of supporting hepatitis C virus (HCV) infection. This model was utilized to characterize the host transcriptional response to HCV infection. The purpose of these studies was to investigate the genetic component of the host response to HCV infection and also to distinguish virus-induced gene expression changes from adaptive HCV-specific immune-mediated effects. Gene expression profiles from HCV-infected mice were also compared to those from HCV-infected patients. Analyses of the gene expression data demonstrate that host factors regulate the response to HCV infection, including the nature of the innate antiviral immune response. They also indicate that HCV mediates gene expression changes, including regulation of lipid metabolism genes, which have the potential to be directly cytopathic, indicating that liver pathology may not be exclusively mediated by HCV-specific adaptive immune responses. This effect appears to be inversely related to the activation of the innate antiviral immune response. In summary, the nature of the initial interferon response to HCV infection may determine the extent of viral-mediated effects on host gene expression. PMID:16789836
Ultraviolet radiation (UVR) is known to suppress immune responses in human subjects. The purpose of this study was to develop dose responses across a broad range of skin pigmentation in order to facilitate risk assessment. UVR was administered using FS 20 bulbs. Skin pigmentation...
Ankomah, Peter; Levin, Bruce R
2014-06-10
The successful treatment of bacterial infections is the product of a collaboration between antibiotics and the host's immune defenses. Nevertheless, in the design of antibiotic treatment regimens, few studies have explored the combined action of antibiotics and the immune response to clearing infections. Here, we use mathematical models to examine the collective contribution of antibiotics and the immune response to the treatment of acute, self-limiting bacterial infections. Our models incorporate the pharmacokinetics and pharmacodynamics of the antibiotics, the innate and adaptive immune responses, and the population and evolutionary dynamics of the target bacteria. We consider two extremes for the antibiotic-immune relationship: one in which the efficacy of the immune response in clearing infections is directly proportional to the density of the pathogen; the other in which its action is largely independent of this density. We explore the effect of antibiotic dose, dosing frequency, and term of treatment on the time before clearance of the infection and the likelihood of antibiotic-resistant bacteria emerging and ascending. Our results suggest that, under most conditions, high dose, full-term therapy is more effective than more moderate dosing in promoting the clearance of the infection and decreasing the likelihood of emergence of antibiotic resistance. Our results also indicate that the clinical and evolutionary benefits of increasing antibiotic dose are not indefinite. We discuss the current status of data in support of and in opposition to the predictions of this study, consider those elements that require additional testing, and suggest how they can be tested.
Wang, Raymond M; Johnson, Todd D; He, Jingjin; Rong, Zhili; Wong, Michelle; Nigam, Vishal; Behfar, Atta; Xu, Yang; Christman, Karen L
2017-06-01
Current assessment of biomaterial biocompatibility is typically implemented in wild type rodent models. Unfortunately, different characteristics of the immune systems in rodents versus humans limit the capability of these models to mimic the human immune response to naturally derived biomaterials. Here we investigated the utility of humanized mice as an improved model for testing naturally derived biomaterials. Two injectable hydrogels derived from decellularized porcine or human cadaveric myocardium were compared. Three days and one week after subcutaneous injection, the hydrogels were analyzed for early and mid-phase immune responses, respectively. Immune cells in the humanized mouse model, particularly T-helper cells, responded distinctly between the xenogeneic and allogeneic biomaterials. The allogeneic extracellular matrix derived hydrogels elicited significantly reduced total, human specific, and CD4 + T-helper cell infiltration in humanized mice compared to xenogeneic extracellular matrix hydrogels, which was not recapitulated in wild type mice. T-helper cells, in response to the allogeneic hydrogel material, were also less polarized towards a pro-remodeling Th2 phenotype compared to xenogeneic extracellular matrix hydrogels in humanized mice. In both models, both biomaterials induced the infiltration of macrophages polarized towards a M2 phenotype and T-helper cells polarized towards a Th2 phenotype. In conclusion, these studies showed the importance of testing naturally derived biomaterials in immune competent animals and the potential of utilizing this humanized mouse model for further studying human immune cell responses to biomaterials in an in vivo environment. Copyright © 2017 Elsevier Ltd. All rights reserved.
Elhaik Goldman, Shirin; Dotan, Shahar; Talias, Amir; Lilo, Amit; Azriel, Shalhevet; Malka, Itay; Portnoi, Maxim; Ohayon, Ariel; Kafka, Daniel; Ellis, Ronald; Elkabets, Moshe; Porgador, Angel; Levin, Ditza; Azhari, Rosa; Swiatlo, Edwin; Ling, Eduard; Feldman, Galia; Tal, Michael; Dagan, Ron; Mizrachi Nebenzahl, Yaffa
2016-04-01
Streptococcus pneumoniae (S. pneumoniae) is a major pathogen worldwide. The currently available polysaccharide-based vaccines significantly reduce morbidity and mortality. However, the inherent disadvantages of the currently available polysaccharide-based vaccines have motivated the search for other bacterial immunogens capable of eliciting a protective immune response against S. pneumoniae. Fructose-1,6-bisphosphate aldolase (FBA) is a glycolytic enzyme, which was found to localize to the bacterial surface, where it functions as an adhesin. Previously, immunizing mice with recombinant FBA (rFBA) in the presence of alum elicited a protective immune response against a lethal challenge with S. pneumoniae. Thus, the aim of the present study was to determine the cytokine responses that are indicative of protective immunity following immunization with rFBA. The protective effects against pneumococcal challenge in mice immunized with rFBA with complete Freund's adjuvant (CFA) in the initial immunization and with incomplete Freund's adjuvant (IFA) in booster immunizations surpassed the protective effects observed following immunization with either rFBA + alum or pVACfba. CD4+ T-cells obtained from the rFBA/CFA/IFA/IFA-immunized mice co-cultured with rFBA-pulsed antigen-presenting cells (APCs), exhibited a significantly greater proliferative ability than CD4+ T-cells obtained from the adjuvant-immunized mice co-cultured with rFBA‑pulsed APCs. The levels of the Th1-type cytokines, interferon (IFN)-γ, interleukin (IL)-2, tumor necrosis factor (TNF)-α and IL-12, the Th2-type cytokines, IL-4, IL-5 and IL-10, and the Th17-type cytokine, IL-17A, significantly increased within 72 h of the initiation of co-culture with CD4+ T-cells obtained from the rFBA‑immunized mice, in comparison with the co-cultures with CD4+ T-cells obtained from the adjuvant-immunized mice. Immunizing mice with rFBA resulted in an IgG1/IgG2 ratio of 41, indicating a Th2 response with substantial Th1 involvement. In addition, rabbit and mouse anti-rFBA antisera significantly protected the mice against a lethal S. pneumoniae challenge in comparison with preimmune sera. Our results emphasize the mixed involvement of the Th1, Th2 and Th17 arms of the immune system in response to immunization with pneumococcal rFBA, a potential vaccine candidate.
Singh, Jogender
2017-01-01
ABSTRACT The unfolded protein response (UPR) is a stress response pathway that is activated upon increased unfolded and/or misfolded proteins in the endoplasmic reticulum (ER), and enhanced ER stress response prolongs life span and improves immunity. However, the mechanism by which ER stress affects immunity remains poorly understood. Using the nematode Caenorhabditis elegans, we show that mutations in the lipoproteins vitellogenins, which are homologs of human apolipoprotein B-100, resulted in upregulation of the UPR. Lipoprotein accumulation in the intestine adversely affects the immune response and the life span of the organism, suggesting that it could be a contributing factor to immunosenescence. We show that lipoprotein accumulation inhibited the expression of several immune genes encoding proteins secreted by the intestinal cells in an IRE-1-independent manner. Our studies provide a mechanistic explanation for adverse effects caused by protein aggregation and ER stress on immunity and highlight the role of an IRE-1-independent pathway in the suppression of the expression of genes encoding secreted proteins. PMID:28559483
Wang, Yuqing; Hu, Yongjun; Li, Ping; Weng, Yayun; Kamada, Nobuhiko; Jiang, Huidi; Smith, David E
2018-02-01
A number of studies have implicated proton-coupled oligopeptide transporters (POTs) in the initiation and/or progression of inflammatory bowel disease and immune cell signaling. With this in mind, the aim of this study was to delineate the expression of POTs in mouse colonic tissues and immune cells, and characterize the potential role of these transporters in nucleotide-binding oligomerization domain (NOD) signaling. Using a dextran sodium sulfate (DSS)-induced colitis mouse model, we found that DSS down regulated Pht1 gene expression and up regulated Pht2 gene expression in colonic tissue and immune cells. In contrast, PEPT1 protein was absent from the colonic tissue and immune cells of normal and DSS-treated mice. NOD ligands, muramyl dipeptide (MDP) and l-Ala-γ-d-Glu-meso-diaminopimelic acid (tri-DAP), were shown to be substrates of PHT2 in MDCK-hPHT2 19,20AA cells. Subsequent studies revealed that the immune response of lamina propia mononuclear cells may be regulated by PHT1 and PHT2, and that PHT2 facilitated the NOD-dependent immune response in RAW264.7 macrophages. These results clarified the expression of POTs in mouse colonic segments, cells and subtypes, and the role of increased Pht2 expression during chemically-induced colitis in facilitating NOD-dependent immune response. The findings further suggest that intestinal PHT2 may serve as a therapeutic target for IBD therapy. Copyright © 2018 Elsevier Inc. All rights reserved.
Hellmann, Anna-Maria; Lother, Jasmin; Wurster, Sebastian; Lutz, Manfred B; Schmitt, Anna Lena; Morton, Charles Oliver; Eyrich, Matthias; Czakai, Kristin; Einsele, Hermann; Loeffler, Juergen
2017-01-01
Aspergillus fumigatus is the main cause of invasive fungal infections occurring almost exclusively in immunocompromised patients. An improved understanding of the initial innate immune response is key to the development of better diagnostic tools and new treatment options. Mice are commonly used to study immune defense mechanisms during the infection of the mammalian host with A. fumigatus . However, little is known about functional differences between the human and murine immune response against this fungal pathogen. Thus, we performed a comparative functional analysis of human and murine dendritic cells (DCs), macrophages, and polymorphonuclear cells (PMNs) using standardized and reproducible working conditions, laboratory protocols, and readout assays. A. fumigatus did not provoke identical responses in murine and human immune cells but rather initiated relatively specific responses. While human DCs showed a significantly stronger upregulation of their maturation markers and major histocompatibility complex molecules and phagocytosed A. fumigatus more efficiently compared to their murine counterparts, murine PMNs and macrophages exhibited a significantly stronger release of reactive oxygen species after exposure to A. fumigatus . For all studied cell types, human and murine samples differed in their cytokine response to conidia or germ tubes of A. fumigatus . Furthermore, Dectin-1 showed inverse expression patterns on human and murine DCs after fungal stimulation. These specific differences should be carefully considered and highlight potential limitations in the transferability of murine host-pathogen interaction studies.
Hellmann, Anna-Maria; Lother, Jasmin; Wurster, Sebastian; Lutz, Manfred B.; Schmitt, Anna Lena; Morton, Charles Oliver; Eyrich, Matthias; Czakai, Kristin; Einsele, Hermann; Loeffler, Juergen
2017-01-01
Aspergillus fumigatus is the main cause of invasive fungal infections occurring almost exclusively in immunocompromised patients. An improved understanding of the initial innate immune response is key to the development of better diagnostic tools and new treatment options. Mice are commonly used to study immune defense mechanisms during the infection of the mammalian host with A. fumigatus. However, little is known about functional differences between the human and murine immune response against this fungal pathogen. Thus, we performed a comparative functional analysis of human and murine dendritic cells (DCs), macrophages, and polymorphonuclear cells (PMNs) using standardized and reproducible working conditions, laboratory protocols, and readout assays. A. fumigatus did not provoke identical responses in murine and human immune cells but rather initiated relatively specific responses. While human DCs showed a significantly stronger upregulation of their maturation markers and major histocompatibility complex molecules and phagocytosed A. fumigatus more efficiently compared to their murine counterparts, murine PMNs and macrophages exhibited a significantly stronger release of reactive oxygen species after exposure to A. fumigatus. For all studied cell types, human and murine samples differed in their cytokine response to conidia or germ tubes of A. fumigatus. Furthermore, Dectin-1 showed inverse expression patterns on human and murine DCs after fungal stimulation. These specific differences should be carefully considered and highlight potential limitations in the transferability of murine host–pathogen interaction studies. PMID:29270175
Perrigault, Mickael; Allam, Bassem
2012-06-01
The immune response of the hard clam (quahog) Mercenaria mercenaria following challenge with live bacteria (Vibrio alginolyticus) and the protist QPX (Quahog Parasite Unknown) was investigated. The study also compared immune responses following QPX challenge in two different hard clam broodstocks exhibiting different degrees of susceptibility toward this parasite. Different immune and stress-related cellular and humoral factors were assessed including general hemocyte parameters (total and differential hemocyte counts, percentage of dead cells, reactive oxygen production, phagocytosis), parameters geared toward QPX (anti-QPX activity in plasma and hemocyte resistance to the cytotoxicity of QPX extracellular products). Two genes (ferritin and metallothionein) previously shown to be modulated following QPX exposure were molecularly characterized by rapid amplification of cDNA ends (RACE) and their transcription levels were determined in resistant and susceptible clams in response to QPX and bacterial challenge. Results indicated that both V. alginolyticus and QPX challenge triggered significant immune responses in clams with similar trends for most measured parameters. However, specific responses were observed for anti-QPX activity in plasma and hemocyte resistance to QPX products as well as ferritin and metallothionein expression according to each inoculum. Similarly, different response patterns were detected following QPX challenge in susceptible and resistant clam stocks. Resistant clams were able to elicit effective response against the parasite leading to the elimination of QPX and the restoration of constitutive immune status whereas QPX-susceptible clams triggered a strong immune modulation characterized by an acute phase response and associated acute phase protein but appeared to be less active in eliminating the parasite. These results suggest that different signaling pathways are triggered during V. alginolyticus and QPX challenge. Moreover, differences in the immune response toward QPX might be linked to the susceptibility or resistance of different clam stocks to the infection by this parasite. Copyright © 2012 Elsevier Ltd. All rights reserved.
Maspi, Nahid; Ghaffarifar, Fatemeh; Sharifi, Zohreh; Dalimi, Abdolhossein; Dayer, Mohammad Saaid
2018-02-01
In the present study, we evaluated induced immune responses following DNA vaccine containing cocktail or fusion of LeIF, LACK and TSA genes or each gene alone. Mice were injected with 100 µg of each plasmid containing the gene of insert, plasmid DNA alone as the first control group or phosphate buffer saline as the second control group. Then, cellular and humoral responses, lesion size were measured for all groups. All vaccinated mice induced Th1 immune responses against Leishmania characterized by higher IFN-γ and IgG2a levels compared with control groups (p < 0.05). In addition, IFN-γ levels increased in groups immunized with fusion and cocktail vaccines in comparison with LACK (p < 0.001) and LeIF (p < 0.01) groups after challenge. In addition, fusion and cocktail groups produced higher IgG2a values than groups vaccinated with a gene alone (p < 0.05). Lesion progression delayed for all immunized groups compared with control groups from 5th week post-infection (p < 0.05). Mean lesion size decreased in immunized mice with fusion DNA than three groups vaccinated with one gene alone (p < 0.05). While, lesion size decreased significantly in cocktail recipient group than LeIF recipient group (p < 0.05). There was no difference in lesion size between fusion and cocktail groups. Overall, immunized mice with cocktail and fusion vaccines showed stronger Th1 response by production of higher IFN-γ and IgG2a and showed smaller mean lesion size. Therefore, use of multiple antigens can improve induced immune responses by DNA vaccination.
Deng, Shu-xuan; Cai, Ming-sheng; Cui, Wei; Huang, Jin-lu; Li, Mei-li
2014-01-01
Goose parvovirus (GPV) is a highly contagious and deadly disease for goslings and Muscovy ducklings. To compare the differences in immune response of geese immunized with GPV-VP1 DNA-based and live attenuated vaccines. Shitou geese were immunized once with either 20 μg pcDNA-GPV-VP1 DNA gene vaccine by gene gun bombardment via intramuscular injection, or 300 μg by i.m. injection, or 300 μL live attenuated vaccine by i.m. injection, whereas 300 μg pcDNA3.1 (+) i.m. or 300 μL saline i.m. were used as positive and negative controls, respectively. Each group comprised 28 animals. Peripheral blood samples were collected from 2-210 days after immunization and the proliferation of T lymphocytes, the number of CD4(+) and CD8(+) T cells and the level of IgG assessed. Statistical analysis was performed using a one-way analysis of variance with group multiple comparisons via Tukey's test. The pcDNA-GPV-VP1 DNA and attenuated vaccine induced cellular and humoral responses, and there were no differences between the 20 and 300 μg group in the responses of proliferation of T lymphocyte and the CD8(+) T-cell. However, as to CD4(+) T-cell response and humoral immunity, the 20 μg group performed better than the 300 μg group, which induced better cellular and humoral immunity than live attenuated vaccine. This study showed that it is possible to induce both cellular and humoral response using DNA-based vaccines and that the pcDNA-GPV-VP1 DNA gene vaccine induced better cellular and humoral immunity than live attenuated vaccine.
2013-01-01
Background The complexity and multiscale nature of the mammalian immune response provides an excellent test bed for the potential of mathematical modeling and simulation to facilitate mechanistic understanding. Historically, mathematical models of the immune response focused on subsets of the immune system and/or specific aspects of the response. Mathematical models have been developed for the humoral side of the immune response, or for the cellular side, or for cytokine kinetics, but rarely have they been proposed to encompass the overall system complexity. We propose here a framework for integration of subset models, based on a system biology approach. Results A dynamic simulator, the Fully-integrated Immune Response Model (FIRM), was built in a stepwise fashion by integrating published subset models and adding novel features. The approach used to build the model includes the formulation of the network of interacting species and the subsequent introduction of rate laws to describe each biological process. The resulting model represents a multi-organ structure, comprised of the target organ where the immune response takes place, circulating blood, lymphoid T, and lymphoid B tissue. The cell types accounted for include macrophages, a few T-cell lineages (cytotoxic, regulatory, helper 1, and helper 2), and B-cell activation to plasma cells. Four different cytokines were accounted for: IFN-γ, IL-4, IL-10 and IL-12. In addition, generic inflammatory signals are used to represent the kinetics of IL-1, IL-2, and TGF-β. Cell recruitment, differentiation, replication, apoptosis and migration are described as appropriate for the different cell types. The model is a hybrid structure containing information from several mammalian species. The structure of the network was built to be physiologically and biochemically consistent. Rate laws for all the cellular fate processes, growth factor production rates and half-lives, together with antibody production rates and half-lives, are provided. The results demonstrate how this framework can be used to integrate mathematical models of the immune response from several published sources and describe qualitative predictions of global immune system response arising from the integrated, hybrid model. In addition, we show how the model can be expanded to include novel biological findings. Case studies were carried out to simulate TB infection, tumor rejection, response to a blood borne pathogen and the consequences of accounting for regulatory T-cells. Conclusions The final result of this work is a postulated and increasingly comprehensive representation of the mammalian immune system, based on physiological knowledge and susceptible to further experimental testing and validation. We believe that the integrated nature of FIRM has the potential to simulate a range of responses under a variety of conditions, from modeling of immune responses after tuberculosis (TB) infection to tumor formation in tissues. FIRM also has the flexibility to be expanded to include both complex and novel immunological response features as our knowledge of the immune system advances. PMID:24074340
Afzal, Muhammad Faheem; Sultan, Muhammad Ashraf; Saleemi, Ahmad Imran
2016-01-01
Diseases caused by Hepatitis B virus (HBV) have a worldwide distribution. Pakistan adopted the recommendations of World Health Organization (WHO) for routine universal infant vaccination against hepatitis B in 2002, currently being administered at 6, 10, and 14 weeks of age in a combination vaccine. This study was conducted to determine the immune response & anamnestic immune response in children, 9 months-10 years of age, after a 3dose primary Hepatitis B vaccination. This cross sectional study was conducted in the Department of Paediatrics, King Edward Medical University/Mayo Hospital, Lahore, Pakistan, from January to June, 2014. A total of 200 children of either sex between the ages of 9 months to 10 years, documented to have received 3 doses of hepatitis B vaccines according to Expanded Program of Immunization (6,10,14 weeks) schedule in infancy, were recruited by consecutive sampling. The level of serum antiHBsAb by ELIZA was measured. Children with antiHBs titers ≥10 mIU/mL were considered to be immune. Those with anti HBsAb levels <10 mIU/mL were offered a booster dose of infant recombinant hepatitis B vaccine. The second serum sample was obtained 21-28 days following the administration of the booster dose and the anamnestic immune response was measured. Data was analysed using SPSS 17 to determine the relation between time interval since last vaccination and antibody titer. Chi square test was applied. Of the 200 children, protective antibody response was found in 58%. Median serological response was 18.60 (range 2.82 - 65.15). Antibody levels were found to have a statistically significant ( pvalue 0.019) negative correlation with the time since last administration of vaccine. A booster dose of Hepatitis B vacci ne was administered to all nonresponders, with each registering a statistically significant (pvalue 0.00) anamnestic response. The vaccination schedule with short dosage interval was unable to provide protection to 42% of the study population. Introduction of birth dose of Hepatitis B vaccine to the existing schedule is recommended.
Bartholomew, J.L.; Arkoosh , M.R.; Rohovec, J.S.
1991-01-01
The specificity of the antibody response of salmonids to Renibacterium salmoninarum antigens was demonstrated by western blotting techniques that utilized a monoclonal antibody against salmonid immunoglobulin. In this study, the specificity of the response in immunized chinook salmon Oncorhynchus tshawytschawas compared with the response in naturally infected chinook salmon and coho salmon O. kisutch, and immunized rabbits. The antibody response in immunized salmon and rabbits and the naturally infected fish was primarily against the 57–58kilodalton protein complex. In addition to recognizing these proteins in the extracellular fraction and whole-cell preparations, antibody from the immunized salmon and rabbits detected four proteins with lower molecular masses. Western blotting techniques allow identification of the specific antigens recognized and are a useful tool for comparing the immunogenicity of different R. salmoninarumpreparations. Immunofluorescent techniques with whole bacteria were less sensitive than western blotting in detecting salmonid anti-R. salmoninarumantibody.
Azizi, Hakim; Mirzaeei, Hadi; Nasiri, Ali Akbar; Bazi, Ali; Mirzapour, Aliyar; Khatami, Mehrdad; Nahavandi, Kareem Hatam; Azimi, Ako; Yaghoobi, Hajar
2018-06-01
Toxic effects of available therapeutics are major drawbacks for conventional management approaches in parasitic infections. Vaccines have provided a promising opportunity to obviate such unwanted complications. In present study, we examined immune augmenting capacities of an emerging adjuvant, Naltrexone, against Fasciola hepatica infection in BALB/c mice. Seventy BALB/c mice were divided into five experimental groups (14 mice per group) including 1- control (received PBS), 2- vaccine (immunized with F. hepatica E/S antigens), 3- Alum-vaccine (immunized with Alum adjuvant and E/S antigens), 4- NLT-vaccine (immunized with NLT adjuvant and E/S antigens), and 5- Alum-NLT-vaccine (immunized with mixed Alum-NLT adjuvant and E/S antigens). Lymphocyte stimulation index was assessed by MTT assay. Production of IFN-γ, IL-4, IgG2a and IgG1 was assessed by ELISA method. Results showed that NLT, either alone or in combination with alum, can induce immune response toward production of IFN-γ and IgG2a as representatives of Th1 immune response. Also, using this adjuvant in immunization experiment was associated with significantly high proliferative response of splenocytes/lymphocytes. Utilization of mixed Alum-NLT adjuvant revealed the highest protection rate (73.8%) in challenge test of mice infected with F. hepatica. These findings suggest the potential role of NLT as an effective adjuvant in induction of protective cellular and Th1 immune responses against fasciolosis. Copyright © 2018 Elsevier Inc. All rights reserved.
Berger, Christoph T; Greiff, Victor; Mehling, Matthias; Fritz, Stefanie; Meier, Marc A; Hoenger, Gideon; Conen, Anna; Recher, Mike; Battegay, Manuel; Reddy, Sai T; Hess, Christoph
2015-01-01
Vaccines dramatically reduce infection-related morbidity and mortality. Determining factors that modulate the host response is key to rational vaccine design and demands unsupervised analysis. To longitudinally resolve influenza-specific humoral immune response dynamics we constructed vaccine response profiles of influenza A- and B-specific IgM and IgG levels from 42 healthy and 31 HIV infected influenza-vaccinated individuals. Pre-vaccination antibody levels and levels at 3 predefined time points after vaccination were included in each profile. We performed hierarchical clustering on these profiles to study the extent to which HIV infection associated immune dysfunction, adaptive immune factors (pre-existing influenza-specific antibodies, T cell responses), an innate immune factor (Mannose Binding Lectin, MBL), demographic characteristics (gender, age), or the vaccine preparation (split vs. virosomal) impacted the immune response to influenza vaccination. Hierarchical clustering associated vaccine preparation and pre-existing IgG levels with the profiles of healthy individuals. In contrast to previous in vitro and animal data, MBL levels had no impact on the adaptive vaccine response. Importantly, while HIV infected subjects with low CD4 T cell counts showed a reduced magnitude of their vaccine response, their response profiles were indistinguishable from those of healthy controls, suggesting quantitative but not qualitative deficits. Unsupervised profile-based analysis ranks factors impacting the vaccine-response by relative importance, with substantial implications for comparing, designing and improving vaccine preparations and strategies. Profile similarity between HIV infected and HIV negative individuals suggests merely quantitative differences in the vaccine response in these individuals, offering a rationale for boosting strategies in the HIV infected population.
Burge, Colleen A.; Mouchka, Morgan E.; Harvell, C. Drew; Roberts, Steven
2013-01-01
Coral reef communities are undergoing marked declines due to a variety of stressors including disease. The sea fan coral, Gorgonia ventalina, is a tractable study system to investigate mechanisms of immunity to a naturally occurring pathogen. Functional studies in Gorgonia ventalina immunity indicate that several key pathways and cellular components are involved in response to natural microbial invaders, although to date the functional and regulatory pathways remain largely un-described. This study used short-read sequencing (Illumina GAIIx) to identify genes involved in the response of G. ventalina to a naturally occurring Aplanochytrium spp. parasite. De novo assembly of the G. ventalina transcriptome yielded 90,230 contigs of which 40,142 were annotated. RNA-Seq analysis revealed 210 differentially expressed genes in sea fans exposed to the Aplanochytrium parasite. Differentially expressed genes involved in immunity include pattern recognition molecules, anti-microbial peptides, and genes involved in wound repair and reactive oxygen species formation. Gene enrichment analysis indicated eight biological processes were enriched representing 36 genes, largely involved with protein translation and energy production. This is the first report using high-throughput sequencing to characterize the host response of a coral to a natural pathogen. Furthermore, we have generated the first transcriptome for a soft (octocoral or non-scleractinian) coral species. Expression analysis revealed genes important in invertebrate innate immune pathways, as well as those whose role is previously un-described in cnidarians. This resource will be valuable in characterizing G. ventalina immune response to infection and co-infection of pathogens in the context of environmental change. PMID:23898300
Xu, Qingyu; Gu, Junfei; Lv, You; Yuan, Jiarui; Yang, Nan; Chen, Juan; Wang, Chunfei; Hou, Xuefeng; Jia, Xiaobin; Feng, Liang; Yin, Guowen
2018-03-01
Tumor vascular normalization involved in immune response is beneficial to the chemotherapy of tumors. Recombinant human endostatin (Endostar), an angiogenesis inhibitor, has been demonstrated to be effective in hepatocellular cancer (HCC). However, its vascular normalization in HCC and the role of the immune response in angiogenesis were unclear. In the present study, effects of Endostar on tumor vascular normalization were evaluated in hepatoma 22 (H22) tumor-bearing mice. Endostar was able to inhibit the proliferation and infiltration of tumor cells and improve α-fetoprotein, tumor necrosis factor-α and cyclic adenosine 5'-phosphate levels in the serum of H22-bearing mice, as well as the protein expression levels of the immune factors interferon-γ and cluster of differentiation (CD)86 in liver tissue. Endostar also exhibited more marked downregulation of the levels of vascular endothelial growth factor, CD31, matrix metalloproteinase (MMP)-2, MMP-9 and interleukin-17 during day 3-9 treatment, resulting in short-term normalization of tumor blood vessels. The period of vascular normalization was 3-9 days. The results of the present study demonstrated that Endostar was able to induce the period of vascular normalization, contributing to a more efficacious means of HCC treatment combined with other chemotherapy, and this effect was associated with the immune response. It may be concluded that Endostar inhibited immunity-associated angiogenesis behaviors of vascular endothelial cells in response to HCC. The results of the present study provided more reasonable possibility for the combination therapy of Endostar for the treatment of HCC.
Immunomodulation with bacterial extracts in respiratory diseases.
Palma-Carlos, A G; Palma-Carlos, M L
1990-01-01
A lyophilized bacterial extract (Broncho-Vaxom) has been studied in a large number of models and found to induce specific and nonspecific responses by oral administration. It stimulates the systemic and local immune response. It activates the macrophages that play a key part in the immune system, modulates the immunoglobulin level, and potentiates the lymphocyte response to phytohemagglutinin (PHA) and other mitogens. The effect of this bacterial extract on T-lymphocyte subpopulations is currently under study.
Agrati, Chiara; Castilletti, Concetta; Cimini, Eleonora; Lapa, Daniele; Quartu, Serena; Caglioti, Claudia; Lanini, Simone; Cattoli, Giovanni; Martini, Federico; Ippolito, Giuseppe; Capobianchi, Maria R
2014-01-01
Human cases of infection due to a novel swine-origin variant of influenza A virus subtype H3N2 (H3N2v) have recently been identified in the United States. Pre-existing humoral and cellular immunity has been recognized as one of the key factors in limiting the infection burden of an emerging influenza virus strain, contributing to restrict its circulation and to mitigate clinical presentation. Aim of this study was to assess humoral and cell-mediated cross immune responses to H3N2v in immuno-competent (healthy donors, n = 45) and immuno-compromised hosts (HIV-infected subjects, n = 46) never exposed to H3N2v influenza strain. Humoral response against i) H3N2v (A/H3N2/Ind/08/11), ii) animal vaccine H3N2 strain (A/H3N2/Min/11/10), and iii) pandemic H1N1 virus (A/H1N1/Cal/07/09) was analysed by hemagglutination inhibition assay; cell-mediated response against the same influenza strains was analysed by ELISpot assay. A large proportion of healthy and HIV subjects displayed cross-reacting humoral and cellular immune responses against two H3N2v strains, suggesting the presence of B- and T-cell clones able to recognize epitopes from emerging viral strains in both groups. Specifically, humoral response was lower in HIV subjects than in HD, and a specific age-related pattern of antibody response against different influenza strains was observed both in HD and in HIV. Cellular immune response was similar between HD and HIV groups and no relationship with age was reported. Finally, no correlation between humoral and cellular immune response was observed. Overall, a high prevalence of HD and HIV patients showing cross reactive immunity against two H3N2v strains was observed, with a slightly lower proportion in HIV persons. Other studies focused on HIV subjects at different stages of diseases are needed in order to define how cross immunity can be affected by advanced immunosuppression.
Chatterjee, Arunita; Roy, Debasish; Patnaik, Esha; Nongthomba, Upendra
2016-06-01
Muscle contraction brings about movement and locomotion in animals. However, muscles have also been implicated in several atypical physiological processes including immune response. The role of muscles in immunity and the mechanism involved has not yet been deciphered. In this paper, using Drosophila indirect flight muscles (IFMs) as a model, we show that muscles are immune-responsive tissues. Flies with defective IFMs are incapable of mounting a potent humoral immune response. Upon immune challenge, the IFMs produce anti-microbial peptides (AMPs) through the activation of canonical signaling pathways, and these IFM-synthesized AMPs are essential for survival upon infection. The trunk muscles of zebrafish, a vertebrate model system, also possess the capacity to mount an immune response against bacterial infections, thus establishing that immune responsiveness of muscles is evolutionarily conserved. Our results suggest that physiologically fit muscles might boost the innate immune response of an individual. © 2016. Published by The Company of Biologists Ltd.
Evaluation of mucoadhesive carrier adjuvant: toward an oral anthrax vaccine.
Mangal, Sharad; Pawar, Dilip; Agrawal, Udita; Jain, Arvind K; Vyas, Suresh P
2014-02-01
The aim of present study was to evaluate the potential of mucoadhesive alginate-coated chitosan microparticles (A-CHMp) for oral vaccine against anthrax. The zeta potential of A-CHMp was -29.7 mV, and alginate coating could prevent the burst release of antigen in simulated gastric fluid. The results indicated that A-CHMp was mucoadhesive in nature and transported it to the peyer's patch upon oral delivery. The immunization studies indicated that A-CHMp resulted in the induction of potent systemic and mucosal immune responses, whereas alum-adjuvanted rPA could induce only systemic immune response. Thus, A-CHMp represents a promising acid carrier adjuvant for oral immunization against anthrax.
Jankowska, M; Trzonkowski, P; Dębska-Ślizień, A; Marszałł, M; Rutkowski, B
2014-10-01
Vitamin B6 status has an impact on the body's inflammatory and immune responses. Immunosuppressive therapy may influence vitamin B6 metabolism in kidney transplant recipients. Treatment with polyclonal anti-thymocyte globulin (ATG) is associated with long-term changes in inflammatory and immune parameters. It is not known if ATG therapy also may have an impact on vitamin B6 status in kidney transplant recipients. We aimed to analyze the impact of therapy with ATG on vitamin B6 status, immune response, and the profile of inflammatory cytokines. This was a retrospective, observational study that included 44 kidney allograft recipients. Twenty patients received induction therapy with ATG (6 to 24 months before enrollment). Twenty-four patients constituted the control group, matched with respect to time since transplantation. The B6 vitamers, total lymphocyte count, CD3 percentage, interleukin (IL)-6, -7, and -10, transforming growth factor β, interferon γ, and chemokine ligand 21 were analyzed in a study group. All indicators of vitamin B6 status were lower in the ATG group than in the control group. There were also significant differences with respect to immune response (significantly lower total lymphocyte count and CD3 in the ATG group) and inflammatory status (significantly higher IL-6 and IL-10 in the ATG group). Vitamin B6 vitamers and derivatives were not related to lymphocyte count and cytokine levels or to estimated glomerular filtration rate and age of the study population. Vitamin B6 stores and active forms are lower in kidney transplant recipients treated with ATG. ATG therapy promotes CD3 and total lymphocyte depletion and increases indicators of inflammation. We found no associations between vitamers of B6, immune response cells, and inflammatory cytokines in study population.
Asano, Kazunobu; Wu, Zhiliang; Srinontong, Piyarat; Ikeda, Takahide; Nagano, Isao; Morita, Hirokuyi
2016-01-01
Infectious microorganisms often modify host immunity to escape from immune elimination. Trichinella is a unique nematode of the helminth family, whose members parasitize the muscle cells inside the host without robust eliminative reactions. There are several species of Trichinella; some develop in muscle cells that become encapsulated (e.g., Trichinella spiralis) and others in cells that do not encapsulate (e.g., Trichinella pseudospiralis). It has already been established that Trichinella infection affects host immune responses in several experimental immune diseases in animal models; however, most of those studies were done using T. spiralis infection. As host immune responses to T. spiralis and T. pseudospiralis infections have been reported to be different, it is necessary to clarify how T. pseudospiralis infection influences the host immune responses. In this study, we investigated the influence on host humoral immunity in T. pseudospiralis-infected mice. We demonstrated that T. pseudospiralis infection decreased antigen-specific IgG2a and IgG2b antibody (Ab) production in mice immunized with a model antigen. This selective decrease in gamma interferon (IFN-γ)-dependent Ab production was not due to a decrease in IFN-γ production, and we instead found impaired follicular helper T (Tfh) cell differentiation. The affinity maturation of antigen-specific Ab tended to be delayed but was not significant in T. pseudospiralis-infected mice. We also observed that CD11b+ spleen cells in T. pseudospiralis-infected mice expressed CD206 and PD-L2, the phenotype of which was M2 macrophages with weak production of interleukin-6 (IL-6), possibly resulting in impaired Tfh differentiation. Taken together, our results indicate that nonencapsulated Trichinella infection induces selective dampening in humoral immunity with the suppression of Tfh differentiation. PMID:27736779
Immunological Consequences of Maternal Separation in Infant Primates.
ERIC Educational Resources Information Center
Coe, Christopher L.; And Others
1989-01-01
Reports recent studies which establish that maternal separation and early rearing conditions can influence the development and expression of immune responses of the primate infant. Current findings extend an earlier finding on alterations in lymphocyte proliferation responses to a number of other immune parameters. (NH)
Chu, Wan-Loy; Quynh, Le Van; Radhakrishnan, Ammu Kutty
2013-09-01
The aim of this study was to investigate whether Spirulina (Arthrospira) supplementation could enhance the immune response to tetanus toxoid (TT) vaccine in a mouse model. Vaccination of TT was performed on day 7 and 21 in mice fed daily with Spirulina (50 and 150 mg/kg body weight). Both Spirulina supplementation and TT vaccination did not significantly affect body weight gain of the mice. Supplementation of Spirulina significantly enhanced IgG level (p = .01) after the first but not after the second TT vaccination. The anti-TT IgG levels of the groups that received low dose and high dose of Spirulina were not significantly different. Spirulina supplementation did not show significant effects on in vitro splenocyte proliferation and cytokine (IFN-γ and IL-4) production induced by Con A and TT. This study showed that Spirulina supplementation could enhance primary immune response in terms of antibody production, but not secondary immune response following TT vaccination in a mouse model.
MicroRNA-466l inhibits antiviral innate immune response by targeting interferon-alpha
Li, Yingke; Fan, Xiaohua; He, Xingying; Sun, Haijing; Zou, Zui; Yuan, Hongbin; Xu, Haitao; Wang, Chengcai; Shi, Xueyin
2012-01-01
Effective recognition of viral infections and subsequent triggering of antiviral innate immune responses are essential for the host antiviral defense, which is tightly regulated by multiple regulators, including microRNAs (miRNAs). A previous study showed that miR-466l upregulates IL-10 expression in macrophages by antagonizing RNA-binding protein tristetraprolin-mediated IL-10 mRNA degradation. However, the ability of miR-466l to regulate antiviral immune responses remains unknown. Here, we found that interferon-alpha (IFN-α) expression was repressed in Sendai virus (SeV)- and vesicular stomatitis virus (VSV)-infected macrophages and in dendritic cells transfected with miR-466l expression. Moreover, multiple IFN-α species can be directly targeted by miR-466l through their 3′ untranslated region (3′UTR). This study has demonstrated that miR-466l could directly target IFN-α expression to inhibit host antiviral innate immune response. PMID:23042536
Simpson, Richard J; Guy, Keith
2010-01-01
The elderly population is at an unprecedented risk of infectious diseases and malignancy due to apparently inevitable age-related declines in immunity. The 'immune risk profile' (IRP) is an array of biomarkers that has been used to predict morbidity and mortality in older adults. As it is generally accepted that middle-aged and elderly individuals who habitually participate in moderate-intensity exercise are less likely to incur an infection than their sedentary counterparts, this review addresses current knowledge on the effects of regular exercise on aspects of adaptive immunity as they relate to the IRP. Findings from cross-sectional studies mostly show enhanced immunity in physically active compared to sedentary older adults. These include greater T-cell responsiveness to mitogens in vitro, a reduced frequency of antigen-experienced and senescent T-cells (i.e. CD45RO+/KLRG1+/CD57+/CD28-), enhanced IL-2 production and T-lymphocyte expression of the IL-2 receptor, longer chromosome telomere lengths in blood leukocytes and in vivo immune responses to vaccines and recall antigens. In contrast, the evidence from the available longitudinal studies that have used an exercise training intervention in previously sedentary elderly to improve similar immune responses is less compelling. Although this might indicate that exercise has limited immune restorative properties in previously sedentary elderly, there are still relatively few studies that have addressed specific IRP criteria and the large variation in experimental design among the longitudinal studies complicates the juxtaposition of these results. It is clear that a more substantial and focused research approach is required before physical exercise can be used in earnest as an effective immune restorative strategy in the elderly. This mini-review summarizes the major findings of these studies and proposes future avenues of research to investigate the effects of regular exercise on aspects of adaptive immunity in the elderly as they relate to the IRP. Copyright (c) 2009 S. Karger AG, Basel.
Jiang, Jing; Chen, Xinchun; An, Hongjuan; Yang, Bingfen; Zhang, Fuping; Cheng, Xiaoxing
2016-09-02
The functions of MAIT cells at the site of Mycobacterium tuberculosis infection in humans are still largely unknown. In this study, the phenotypes and immune response of MAIT cells from tuberculous pleural effusions and peripheral blood were investigated. MAIT cells in tuberculous pleural effusions had greatly enhanced IFN-γ, IL-17F and granzyme B response compared with those in peripheral blood. The level of IFN-γ response in MAIT cells from tuberculous pleural effusions was inversely correlated with the extent of tuberculosis infection (p = 0.0006). To determine whether cytokines drive the immune responses of MAIT cells at the site of tuberculosis infection, the role of IL-1β, IL-2, IL-7, IL-12, IL-15 and IL-18 was investigated. Blockade of IL-2, IL-12 or IL-18 led to significantly reduced production of IFN-γ and/or granzyme B in MAIT cells from tuberculous pleural effusions. Majority of IL-2-producing cells (94.50%) in tuberculous pleural effusions had phenotype of CD3(+)CD4(+), and most IL-12p40-producing cells (91.39%) were CD14(+) cells. MAIT cells had significantly elevated expression of γc receptor which correlated with enhanced immune responses of MAIT cells. It is concluded that MAIT cells from tuberculous pleural effusions exhibited highly elevated immune response to Mtb antigens, which are controlled by cytokines produced by innate/adaptive immune cells.
Seghatoleslam, Atefeh; Hemmati, Mina; Ebadat, Saeedeh; Movahedi, Bahram; Mostafavi-Pour, Zohreh
2016-01-01
Background: Macrophage immune responses are affected by the secretory proteins of Mycobacterium tuberculosis (Mtb). This study aimed to examine the immune responses of macrophages to Mtb secretory antigens, namely ESAT-6, CFP-10, and ESAT-6/CFP-10. Methods: THP-1 cells (a human monocytic cell line) were cultured and differentiated to macrophages by phorbol 12-myristate 13-acetate. The cytotoxicity of the recombinant Mtb proteins was assessed using the MTT assay. Two important immune responses of macrophages, namely NO and ROS production, were measured in response to the ESAT-6, CFP-10, and ESAT-6/CFP-10 antigens. The data were analyzed using one-way ANOVA with SPSS, version 16, and considered significant at P<0.05. Results: The results showed that the ESAT-6, CFP-10, and ESAT-6/CFP-10 proteins markedly reduced macrophage immune response. The treatment of the THP-1-differentiated cells with ESAT-6, CFP-10, and ESAT-6/CFP-10 reduced NO and ROS production. The treated THP-1-differentiated cells exhibited less inducible NO synthase activity than did the untreated cells. No toxic effect on macrophage viability was observed for the applied proteins at the different concentrations. Conclusion: It seems that the decline in macrophage immune response is due to the suppression of NO and ROS production pathways without any effect on cell viability. PMID:27365551
Perdiguero, Beatriz; Gómez, Carmen Elena; Di Pilato, Mauro; Sorzano, Carlos Oscar S.; Delaloye, Julie; Roger, Thierry; Calandra, Thierry; Pantaleo, Giuseppe; Esteban, Mariano
2013-01-01
Viruses have developed strategies to counteract signalling through Toll-like receptors (TLRs) that are involved in the detection of viruses and induction of proinflammatory cytokines and IFNs. Vaccinia virus (VACV) encodes A46 protein which disrupts TLR signalling by interfering with TLR: adaptor interactions. Since the innate immune response to viruses is critical to induce protective immunity, we studied whether deletion of A46R gene in a NYVAC vector expressing HIV-1 Env, Gag, Pol and Nef antigens (NYVAC-C) improves immune responses against HIV-1 antigens. This question was examined in human macrophages and in mice infected with a single A46R deletion mutant of the vaccine candidate NYVAC-C (NYVAC-C-ΔA46R). The viral gene A46R is not required for virus replication in primary chicken embryo fibroblast (CEF) cells and its deletion in NYVAC-C markedly increases TNF, IL-6 and IL-8 secretion by human macrophages. Analysis of the immune responses elicited in BALB/c mice after DNA prime/NYVAC boost immunization shows that deletion of A46R improves the magnitude of the HIV-1-specific CD4 and CD8 T cell immune responses during adaptive and memory phases, maintains the functional profile observed with the parental NYVAC-C and enhances anti-gp120 humoral response during the memory phase. These findings establish the immunological role of VACV A46R on innate immune responses of macrophages in vitro and antigen-specific T and B cell immune responses in vivo and suggest that deletion of viral inhibitors of TLR signalling is a useful approach for the improvement of poxvirus-based vaccine candidates. PMID:24069354
Neuro-immune interactions in inflammation and host defense: Implications for transplantation.
Chavan, Sangeeta S; Ma, Pingchuan; Chiu, Isaac M
2018-03-01
Sensory and autonomic neurons of the peripheral nervous system (PNS) play a critical role in regulating the immune system during tissue inflammation and host defense. Recent studies have identified the molecular mechanisms underlying the bidirectional communication between the nervous system and the immune system. Here, we highlight the studies that demonstrate the importance of the neuro-immune interactions in health and disease. Nociceptor sensory neurons detect immune mediators to produce pain, and release neuropeptides that act on the immune system to regulate inflammation. In parallel, neural reflex circuits including the vagus nerve-based inflammatory reflex are physiological regulators of inflammatory responses and cytokine production. In transplantation, neuro-immune communication could significantly impact the processes of host-pathogen defense, organ rejection, and wound healing. Emerging approaches to target the PNS such as bioelectronics could be useful in improving the outcome of transplantation. Therefore, understanding how the nervous system shapes the immune response could have important therapeutic ramifications for transplantation medicine. © 2017 The American Society of Transplantation and the American Society of Transplant Surgeons.
Morrison, W I
2007-08-19
The evolution of antigenically distinct pathogen strains that fail to cross-protect is well documented for pathogens controlled primarily by humoral immune responses. Unlike antibodies, which recognise native proteins, protective T cells can potentially recognise epitopes in a variety of proteins that are not necessarily displayed on the pathogen surface. Moreover, individual hosts of different MHC genotypes generally respond to different sets of epitopes. It is therefore less easy to envisage how strain restricted immunity can arise for pathogens controlled by T cell responses, particularly in antigenically complex parasites. Nevertheless, strain restricted immunity is clearly a feature of a number of parasitic infections, where immunity is known to be mediated by T cell responses. One such parasite is Theileria parva which induces potent CD8 T cell responses that play an important role in immunity. CD8 T cells specific for parasitized lymphoblasts exhibit strain specificity, which appears to correlate with the ability of parasite strains to cross-protect. Studies using recently identified T. parva antigens recognised by CD8 T cells have shown that the strain restricted nature of immunity is a consequence of the CD8 T cell response in individual animals being focused on a limited number of dominant polymorphic antigenic determinants. Responses in animals of different MHC genotypes are often directed to different parasite antigens, indicating that, at the host population level, a larger number of parasite proteins can serve as targets for the protective T cell response. Nevertheless, the finding that parasite strains show overlapping antigenic profiles, probably as a consequence of sexual recombination, suggests that induction of responses to an extended but limited set of antigens in individual animals may overcome the strain restricted nature of immunity.
Whary, M T; Palley, L S; Batchelder, M; Murphy, J C; Yan, L; Taylor, N S; Fox, J G
1997-06-01
The purpose of this study was to determine whether oral immunization of ferret kits with a whole-cell sonicate of Helicobacter mustelae lysate (Hml) and the adjuvant muramyl dipeptide (MDP) would reduce the incidence of natural colonization with H. mustelae and the extent of Helicobacter-associated gastritis by enhancing the host mucosal immune response. Between the ages of 4 and 11 weeks, 44 ferret kits were gavaged with Hml and various doses of MDP. The extent of gastritis and duodenitis and the immune response to H. mustelae were evaluated. All kits became colonized naturally with H. mustelae and the majority developed mild to severe gastritis and duodenitis. Kits that received Hml with MDP developed significantly greater inflammation of the gastric antrum and duodenum, as compared to kits vaccinated with Hml alone. Vaccination with Hml and 50 micrograms of MDP was associated with severe lesions in the proximal duodenum characterized by accumulation of mononuclear inflammatory cells, mucosal erosion, and ulceration. Although serum antibody specific for H. mustelae in 4-week-old kits was approximately 50% of adult levels, a finding attributable to passively acquired maternal antibody, both systemic and mucosal antibody levels became depressed over time despite oral vaccination. The humoral immune response was sufficiently low to prevent detection of any significant dose effect of MDP on antibody levels among experimental groups. Oral vaccination of young ferrets with Hml and 50 micrograms MDP increased the risk of Helicobacter-associated mucosal ulceration in the proximal duodenum, which was associated with low humoral (but significant cell-mediated) immune responses to H. mustelae. In retrospect, the frequency of vaccination may have suppressed the systemic humoral immune response, thereby promoting mucosal damage by H. mustelae. The 50-microgram dose of MDP enhanced the cell-mediated immune response, which indirectly contributed to development of severe lesions. The increased frequency of mucosal damage associated with this vaccination regimen enhances the value of the ferret model for studying duodenal ulceration secondary to Helicobacter infection.
Complex pattern of immune evasion in MSI colorectal cancer.
Ozcan, Mine; Janikovits, Jonas; von Knebel Doeberitz, Magnus; Kloor, Matthias
2018-01-01
Mismatch repair (MMR)-deficient cancers accumulate multiple insertion/deletion mutations at coding microsatellites (cMS), which give rise to frameshift peptide neoantigens. The high mutational neoantigen load of MMR-deficient cancers is reflected by pronounced anti-tumoral immune responses of the host and high responsiveness towards immune checkpoint blockade. However, immune evasion mechanisms can interfere with the immune response against MMR-deficient tumors. We here performed a comprehensive analysis of immune evasion in MMR-deficient colorectal cancers, focusing on HLA class I-mediated antigen presentation. 72% of MMR-deficient colorectal cancers of the DFCI database harbored alterations affecting genes involved in HLA class I-mediated antigen presentation, and 54% of these mutations were predicted to abrogate function. Mutations affecting the HLA class I transactivator NLRC5 were observed as a potential new immune evasion mechanism in 26% (6% abrogating) of the analyzed tumors. NLRC5 mutations in MMR-deficient cancers were associated with decreased levels of HLA class I antigen expression. In summary, the majority of MMR-deficient cancers display mutations interfering with HLA class I antigen presentation that reflect active immune surveillance and immunoselection during tumor development. Clinical studies focusing on immune checkpoint blockade in MSI cancer should account for the broad variety of immune evasion mechanisms as potential biomarkers of therapy success.
Mucosal and systemic anti-HIV immunity controlled by A20 in mouse dendritic cells.
Hong, Bangxing; Song, Xiao-Tong; Rollins, Lisa; Berry, Lindsey; Huang, Xue F; Chen, Si-Yi
2011-02-01
Both mucosal and systemic immune responses are required for preventing or containing HIV transmission and chronic infection. However, currently described vaccination approaches are largely ineffective in inducing both mucosal and systemic responses. In this study, we found that the ubiquitin-editing enzyme A20--an inducible feedback inhibitor of the TNFR, RIG-I, and TLR signaling pathways that broadly controls the maturation, cytokine production, and immunostimulatory potency of DCs--restricted systemically immunized DCs to induce both robust mucosal and systemic HIV-specific cellular and humoral responses. Mechanistic studies revealed that A20 regulated DC production of retinoic acid and proinflammatory cytokines, inhibiting the expression of gut-homing receptors on T and B cells. Furthermore, A20-silenced, hyperactivated DCs exhibited an enhanced homing capacity to draining and gut-associated lymphoid tissues (GALTs) after systemic administration. Thus, this study provides insights into the role of A20 in innate immunity. This work may allow the development of an efficient HIV vaccination strategy that is capable of inducing both robust systemic and mucosal anti-HIV cellular and humoral responses.
Hoek, Kristen L; Samir, Parimal; Howard, Leigh M; Niu, Xinnan; Prasad, Nripesh; Galassie, Allison; Liu, Qi; Allos, Tara M; Floyd, Kyle A; Guo, Yan; Shyr, Yu; Levy, Shawn E; Joyce, Sebastian; Edwards, Kathryn M; Link, Andrew J
2015-01-01
Systems biology is an approach to comprehensively study complex interactions within a biological system. Most published systems vaccinology studies have utilized whole blood or peripheral blood mononuclear cells (PBMC) to monitor the immune response after vaccination. Because human blood is comprised of multiple hematopoietic cell types, the potential for masking responses of under-represented cell populations is increased when analyzing whole blood or PBMC. To investigate the contribution of individual cell types to the immune response after vaccination, we established a rapid and efficient method to purify human T and B cells, natural killer (NK) cells, myeloid dendritic cells (mDC), monocytes, and neutrophils from fresh venous blood. Purified cells were fractionated and processed in a single day. RNA-Seq and quantitative shotgun proteomics were performed to determine expression profiles for each cell type prior to and after inactivated seasonal influenza vaccination. Our results show that transcriptomic and proteomic profiles generated from purified immune cells differ significantly from PBMC. Differential expression analysis for each immune cell type also shows unique transcriptomic and proteomic expression profiles as well as changing biological networks at early time points after vaccination. This cell type-specific information provides a more comprehensive approach to monitor vaccine responses.
Mirkov, Ivana; Popov Aleksandrov, Aleksandra; Subota, Vesna; Kataranovski, Dragan; Kataranovski, Milena
2018-03-01
Studies of wild animals' immunity often use comparison with laboratory-raised individuals. Using such an approach, various data were obtained concerning wild Norway rat's immunity. Lower or higher potential of immune system cells to respond to activation stimuli were shown, because of analysis of disparate parameters and/ or small number of analyzed individuals. Inconsistent differences between laboratory and wild rats were shown too, owing to great response variability in wild rats. We hypothesized that wild rats will express more intense immune activity compared to their laboratory counterparts which live in a less demanding environment. To test this, we analyzed the circulating levels of inflammatory cytokine interleukin-6 (IL-6), a mediator which has a central role in host immune defense. In addition, we examined the activity of the central immune organ, the spleen, including cell proliferation and production of pro-inflammatory cytokines interferon-γ (IFN-γ) and interleukin-17 (IL-17), which are major effectors of cellular adaptive immune response. In order to obtain reasonable insight into the immunity of wild Norway rats, analysis was conducted on a much larger number of individuals compared to other studies. Higher levels of plasma IL-6, higher spleen mass, cellularity and basal IFN-γ production concomitantly with lower basal production of anti-inflammatory cytokine interleukin-10 (IL-10) revealed more intense immune activity in the wild compared to laboratory rats. However, lower responsiveness of their spleen cells' proinflammatory cytokine production to concanavalin A (ConA) stimulation, along with preserved capacity of IL-10 response, might be perceived as an indication of wild rats' reduced capability to cope with incoming environmental stimuli, but also as a means to limit tissue damage. © 2017 International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.
Fonseca, Jairo A; McCaffery, Jessica N; Kashentseva, Elena; Singh, Balwan; Dmitriev, Igor P; Curiel, David T; Moreno, Alberto
2017-05-31
Malaria remains a considerable burden on public health. In 2015, the WHO estimates there were 212 million malaria cases causing nearly 429,000 deaths globally. A highly effective malaria vaccine is needed to reduce the burden of this disease. We have developed an experimental vaccine candidate (PyCMP) based on pre-erythrocytic (CSP) and erythrocytic (MSP1) stage antigens derived from the rodent malaria parasite P. yoelii. Our protein-based vaccine construct induces protective antibodies and CD4 + T cell responses. Based on evidence that viral vectors increase CD8 + T cell-mediated immunity, we also have tested heterologous prime-boost immunization regimens that included human adenovirus serotype 5 vector (Ad5), obtaining protective CD8 + T cell responses. While Ad5 is commonly used for vaccine studies, the high prevalence of pre-existing immunity to Ad5 severely compromises its utility. Here, we report the use of the novel simian adenovirus 36 (SAd36) as a candidate for a vectored malaria vaccine since this virus is not known to infect humans, and it is not neutralized by anti-Ad5 antibodies. Our study shows that the recombinant SAd36PyCMP can enhance specific CD8 + T cell response and elicit similar antibody titers when compared to an immunization regimen including the recombinant Ad5PyCMP. The robust immune responses induced by SAd36PyCMP are translated into a lower parasite load following P. yoelii infectious challenge when compared to mice immunized with Ad5PyCMP. Copyright © 2017 Elsevier Ltd. All rights reserved.
Hillyer, Julián F; Schmidt, Shelley L; Christensen, Bruce M
2003-07-01
Mosquitoes are important vectors of disease. These insects respond to invading organisms with strong cellular and humoral immune responses that share many similarities with vertebrate immune systems. The strength and specificity of these responses are directly correlated to a mosquito's ability to transmit disease. In the current study, we characterized the hemocytes (blood cells) of Armigeres subalbatus by morphology (ultrastructure), lectin binding, enzyme activity, immunocytochemistry, and function. We found four hemocyte types: granulocytes, oenocytoids, adipohemocytes, and thrombocytoids. Granulocytes contained acid phosphatase activity and bound the exogenous lectins Helix pomatia agglutinin, Galanthus nivalis lectin, and wheat germ agglutinin. Following bacteria inoculation, granulocytes mounted a strong phagocytic response as early as 5 min postexposure. Bacteria also elicited a hemocyte-mediated melanization response. Phenoloxidase, the rate-limiting enzyme in the melanization pathway, was present exclusively in oenocytoids and in many of the melanotic capsules enveloping bacteria. The immune responses mounted against different bacteria were not identical; gram(-) Escherichia coli were predominantly phagocytosed and gram(+) Micrococcus luteus were melanized. These studies implicate hemocytes as the primary line of defense against bacteria.
Immune Responses to HIV and SIV in Mucosal Tissues: “Location, Location, Location”
Shacklett, Barbara L.
2010-01-01
Purpose of review This review summarizes research literature regarding mucosal immunity to HIV and SIV, with an emphasis on work published within the past 18 months. Recent findings Notable recent studies have focused on the pivotal events occurring within mucosal tissues during acute HIV/SIV infection that serve to establish a balance between detrimental immune activation and beneficial adaptive responses. In cervicovaginal mucosa, an early inflammatory response leads to recruitment of susceptible target cells. At this acute stage, the in vivo ratio between CD8+ effector cells and infected CD4+ T-cells may be critical for limiting viral dissemination. Acute infection is also accompanied by loss of germinal center architecture and T/B cell apoptosis in Peyer’s patches of the gastrointestinal tract. During chronic infection, mucosal CD8+ T-cells may play a role in immune control, as suggested by studies of elite controllers. Summary Mucosal tissues serve as the major portal of entry for HIV, and house a majority of the body’s lymphocytes, including CD4+ T-cells that are targets for infection. Recent studies have focused renewed attention on events occurring immediately after transmission, and underscore the concept that the balance between inflammation and protective immunity is established by host responses in mucosal tissues. PMID:20543589
Pomorska-Mól, Małgorzata; Czyżewska-Dors, Ewelina; Kwit, Krzysztof; Wierzchosławski, Karol; Pejsak, Zygmunt
2015-10-22
Cephalosporins are a class of antibiotics that are active against many Gram-positive and some Gram-negative bacteria. Beyond their antibacterial activity, they are reported to have various immunomodulatory properties. It has been shown that they reduce the secretion of cytokines as well as influence the humoral and cellular immune response. In the field conditions antibiotics are frequently administered at the same time as vaccines in pigs and, in the view of their potential immunomodulatory properties, it is important to examine their effect on the development and persistence of the post-vaccinal immune response. Ceftiofur is a very popular veterinary medicine third-generation cephalosporin with a broad spectrum of activity. It has been shown that it can inhibit cytokines secretion and in this way can potentially affect host immune response. The influence of ceftiofur on the immune response has not yet been investigated in pigs. In the present study we evaluated the influence of therapeutic doses of ceftiofur hydrochloride on the post-vaccinal immune response after vaccination with two model vaccines (live and inactivated). Seventy pigs were divided into five groups: control, unvaccinated (C), control vaccinated against swine influenza (SI-V), control vaccinated against pseudorabies (PR-V), vaccinated against SI during ceftiofur administration (SI-CEF) and vaccinated against PR during ceftiofur administration (PR-CEF). Pigs from SICEF and PR-CEF groups received therapeutic dose of ceftiofur for five days. Pigs from SI-CEF, PR-CEF, SIV and PR-V groups were vaccinated against SI and PR. Antibodies to PRV were determined with the use of blocking ELISA tests (IDEXX Laboratories, USA). Humoral responses to SIV were assessed based on haemagglutination inhibition assay. T-cell response was analyzed with the use of proliferation test. The concentrations of IFN- γ and IL-4 in culture supernatant were determined with the use of ELISA kits Invitrogen Corporation, USA). The significant delay in the development of humoral response against pseudorabies virus (PRV) as well as a significant suppression of production of antibodies against swine influenza virus (SIV) was found in pigs receiving ceftiofur hydrochloride at the time of vaccination. The cellular immune response against PRV was also significantly affected by ceftiofur. In contrast, there were no significant differences between vaccinated groups with regard to the T-cell response against SIV. From day 28 of study to day 70, the concentration of INF-γ in culture supernatants were significantly lower in group treated with ceftiofur after restimulation with PRV. While, no significant differences were observed after restimulation of PBMC with H3N2 SIV. The effect of an antibiotic therapy with ceftiofur hydrochloride on the humoral and cellular post-vaccinal immune responses in pigs was investigated. Ceftiofur hydrochloride was given in therapeutic doses. The results of the present study indicate that both, humoral and cell-mediated post-vaccinal immune responses can be modulated by treatment with ceftiofur hydrochloride. The results of our study point out that caution should be taken when administered this antibiotic during vaccination of pigs.
The immune response against Candida spp. and Sporothrix schenckii.
Martínez-Álvarez, José A; Pérez-García, Luis A; Flores-Carreón, Arturo; Mora-Montes, Héctor M
2014-01-01
Candida albicans is the main causative agent of systemic candidiasis, a condition with high mortality rates. The study of the interaction between C. albicans and immune system components has been thoroughly studied and nowadays there is a model for the anti-C. albicans immune response; however, little is known about the sensing of other pathogenic species of the Candida genus. Sporothrix schenckii is the causative agent of sporotrichosis, a subcutaneous mycosis, and thus far there is limited information about its interaction with the immune system. In this paper, we review the most recent information about the immune sensing of species from genus Candida and S. schenckii. Thoroughly searches in scientific journal databases were performed, looking for papers addressing either Candida- or Sporothrix-immune system interactions. There is a significant advance in the knowledge of non-C. albicans species of Candida and Sporothrix immune sensing; however, there are still relevant points to address, such as the specific contribution of pathogen-associated molecular patterns (PAMPs) for sensing by different immune cells and the immune receptors involved in such interactions. This manuscript is part of the series of works presented at the "V International Workshop: Molecular genetic approaches to the study of human pathogenic fungi" (Oaxaca, Mexico, 2012). Copyright © 2013 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.
Impact of nest sanitation on the immune system of parents and nestlings in a passerine bird.
Evans, Jessica K; Griffith, Simon C; Klasing, Kirk C; Buchanan, Katherine L
2016-07-01
Bacterial communities are thought to have fundamental effects on the growth and development of nestling birds. The antigen exposure hypothesis suggests that, for both nestlings and adult birds, exposure to a diverse range of bacteria would select for stronger immune defences. However, there are relatively few studies that have tested the immune/bacterial relationships outside of domestic poultry. We therefore sought to examine indices of immunity (microbial killing ability in naive birds, which is a measure of innate immunity, and the antibody response to sheep red blood cells, which measures adaptive immunity) in both adult and nestling zebra finches (Taeniopygia guttata). We did this throughout breeding and between reproductive attempts in nests that were experimentally manipulated to change the intensity of bacterial exposure. Our results suggest that nest sanitation and bacterial load affected measures of the adaptive immune system, but not the innate immune parameters tested. Adult finches breeding in clean nests had a lower primary antibody response to sheep red blood cells, particularly males, and a greater difference between primary and secondary responses. Adult microbial killing of Escherichia coli decreased as parents moved from incubation to nestling rearing for both nest treatments; however, killing of Candida albicans remained consistent throughout. In nestlings, both innate microbial killing and the adaptive antibody response did not differ between nest environments. Together, these results suggest that exposure to microorganisms in the environment affects the adaptive immune system in nesting birds, with exposure upregulating the antibody response in adult birds. © 2016. Published by The Company of Biologists Ltd.
Heuts, Frank; Nagy, Noemi
2017-01-01
Recent developments in mouse models that harbor part of a human immune system have proved extremely valuable to study the in vivo immune response to human specific pathogens such as Epstein-Barr virus. Over the last decades, advances in immunodeficient mouse strains that can be used as recipients for human immune cells have greatly enhanced the use of these models. Here, we describe the generation of mice with reconstituted human immune system (HIS mice) using immunocompromised mice transplanted with human CD34 + hematopoietic stem cells. We will also describe how such mice, in which human immune cells are generated de novo, can be used to study EBV infection.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Xiaoli; Xia, Chang-Qing, E-mail: cqx65@yahoo.com; Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL32610
It remains a top research priority to develop immunotherapeutic approaches to induce potent antigen-specific immune responses against tumors. However, in spite of some promising results, most strategies are ineffective because they generate low numbers of tumor-reactive cytotoxic T lymphocytes (CTLs). Here we designed a strategy to enhance antigen-specific immune response via administering sulfosuccinimidyl-4-[N-maleimidomethyl] cyclohexane-1-carboxylate (sulfo-SMCC)-conjugated melanoma tumor antigen GP100{sub 25–33} peptide-coupled syngeneic spleen cells in a mouse model of melanoma. We found that infusion of GP100{sub 25–33} peptide-coupled spleen cells significantly attenuated the growth of melanoma in prophylactic and therapeutic immunizations. Consistent with these findings, the adoptive transfer of spleenmore » cells from immunized mice to naïve syngeneic mice was able to transfer anti-tumor effect, suggesting that GP100{sub 25–33} peptide-specific immune response was induced. Further studies showed that, CD8+ T cell proliferation and the frequency of interferon (IFN)-γ-producing CD8+ T cells upon ex vivo stimulation by GP100{sub 25–33} were significantly increased compared to control groups. Tumor antigen, GP100{sub 25–23} specific immune response was also confirmed by ELISpot and GP100-tetramer assays. This approach is simple, easy-handled, and efficiently delivering antigens to lymphoid tissues. Our study offers an opportunity for clinically translating this approach into tumor immunotherapy. - Highlights: • Infusion of GP100{sub 25–33}-coupled spleen cells leads to potent anti-melanoma immunity. • GP100{sub 25–33}-coupled spleen cell treatment induces antigen-specific IFN-γ-producing CD8 T cells. • This approach takes advantage of homing nature of immune cells.« less
Expected Paradigm Shift in Brain Metastases Therapy-Immune Checkpoint Inhibitors.
Jindal, Vishal; Gupta, Sorab
2018-01-30
Brain metastasis (BM) is one of the dreadful complications of malignancies. The prognosis after BM is extremely poor and life expectancy is meager. Currently, our treatment modalities are limited to radiotherapy and surgical resection, which also has poor outcomes and leads to various neurological deficits and affects the quality of life of patients. New treatment modality, i.e., immune checkpoint inhibitors, has brought revolution in management of melanoma, renal cancer, and non-small cell lung cancer (NSCLC). Immune checkpoint inhibitors basically enhance the immune response of the body to fight against cancers. Immune response in the brain is highly regulated; therefore, it is challenging to use immune-modulator drugs in BM. The microenvironment of BM is rich in cytotoxic T lymphocytes and which is the target of immune checkpoint inhibitors. Few studies have shown some hope regarding use of immune checkpoint inhibitors in management of BM. It works through inhibiting immune check point gates, i.e., CTLA-4 (cytotoxic T-lymphocyte-associated protein) and PD-1/PD-L1 (programmed cell death protein-1/program death ligand-1). This article explains the basic mechanism of immune check point inhibitors, rationale behind their usage in BM, and some of the clinical studies which have shown the efficacy of immune check point inhibitors in BM.
Roved, Jacob; Westerdahl, Helena; Hasselquist, Dennis
2017-02-01
Males and females differ in both parasite load and the strength of immune responses and these effects have been verified in humans and other vertebrates. Sex hormones act as important modulators of immune responses; the male sex hormone testosterone is generally immunosuppressive while the female sex hormone estrogen tends to be immunoenhancing. Different sets of T-helper cells (Th) have important roles in adaptive immunity, e.g. Th1 cells trigger type 1 responses which are primarily cell-mediated, and Th2 cells trigger type 2 responses which are primarily humoral responses. In our review of the literature, we find that estrogen and progesterone enhance type 2 and suppress type 1 responses in females, whereas testosterone suppresses type 2 responses and shows an inconsistent pattern for type 1 responses in males. When we combine these patterns of generally immunosuppressive and immunoenhancing effects of the sex hormones, our results imply that the sex differences in immune responses should be particularly strong in immune functions associated with type 2 responses, and less pronounced with type 1 responses. In general the hormone-mediated sex differences in immune responses may lead to genetic sexual conflicts on immunity. Thus, we propose the novel hypothesis that sexually antagonistic selection may act on immune genes shared by the sexes, and that the strength of this sexually antagonistic selection should be stronger for type 2- as compared with type 1-associated immune genes. Finally, we put the consequences of sex hormone-induced effects on immune responses into behavioral and ecological contexts, considering social mating system, sexual selection, geographical distribution of hosts, and parasite abundance. Copyright © 2016 Elsevier Inc. All rights reserved.
Leukocyte susceptibility and immune response against Vibrio parahaemolyticus in Totoaba macdonaldi.
Reyes-Becerril, Martha; Alamillo, Erika; Sánchez-Torres, Luvia; Ascencio-Valle, Felipe; Perez-Urbiola, Juan C; Angulo, Carlos
2016-12-01
Vibrio parahaemolyticus is a serious pathogen that affects aquaculture. Nonetheless, to the best of our knowledge, no studies have focused on its immunological implications in Totoaba macdonaldi. Thus, the early immune response to V. parahaemolyticus in juveniles of totoaba was studied at 24 h post-infection with an in vivo study. In addition, changes in cellular innate immune parameters - phagocytosis, respiratory burst activity and viability (annexin V/propidium iodide) - were evaluated in vitro in head-kidney, spleen and thymus leukocytes at 6 and 24 h after bacterial stimulation by flow cytometry. Simultaneously, the expression levels of two immune-relevant genes (IL-1β and IL-8) were measured by using real time PCR. During in vivo study, mRNA transcripts of IL-1β were highly expressed in spleen, thymus and intestine and down-regulated in liver after 24 h post-infection. IL-8 gene expression was upregulated in spleen, intestine and liver compared to that of non-infected fish and down-regulated in thymus after 24 h post-infection. Generally, the results showed a significant decrease in cellular immune responses during the infection, principally in phagocytic ability and respiratory burst. The survival or viability of stimulated leukocytes was significantly reduced causing necrosis and apoptosis, indicating a robust killing response by V. parahaemolyticus. Finally the in vitro analysis showed that transcript levels of IL-1β and IL-8 were up-regulated during stimulation with V. parahaemolyticus in head-kidney, spleen and intestine and down-regulated in thymus at any time of the experiment. Although V. parahaemolyticus has been reported to be an important pathogen for many aquatic organisms, to our knowledge this might be the first report of early-immune response in juvenile totoaba and these immune parameters may be reliable indicators and can be useful in the health control of this species. Copyright © 2016 Elsevier Ltd. All rights reserved.
Commensal Gut-Derived Anaerobes as Novel Therapy for Inflammatory Autoimmune Diseases
2011-05-01
treatment of arthritis. Treatment of mice with P. histicola as probiotics and therapy are ongoing. In vitro study showed that treatment of mice with P...histicola in CII-immunized mice led to suppression of antigen-specific immune response and reduction in production of inflammatory cytokines. Our data...effect of Prevotella on antigen specific immune response and production of pro-inflammatory cytokines by antigen specific T-cells. Mice were fed
Muñoz-Carrillo, J L; Contreras-Cordero, J F; Muñoz-López, J L; Maldonado-Tapia, C H; Muñoz-Escobedo, J J; Moreno-García, M A
2017-09-01
In the early stage of the intestinal phase of Trichinella spiralis infection, the host triggers a Th1-type immune response with the aim of eliminating the parasite. However, this response damages the host which favours the survival of the parasite. In the search for novel pharmacological strategies that inhibit the Th1 immune response and assist the host against T. spiralis infection, a recent study showed that resiniferatoxin had anti-inflammatory activity contributed to the host in T. spiralis infection. In this study, we evaluated whether RTX modulates the host immune response through the inhibition of Th1 cytokines in the intestinal phase. In addition, it was determined whether the treatment with RTX affects the infectivity of T. spiralis-L1 and the development of the T. spiralis life cycle. Our results show that RTX decreased serum levels of IL-12, INF-γ, IL-1β, TNF-α and parasite burden on muscle tissue. It was observed that T. spiralis-L1 treated with RTX decreased their infectivity affecting the development of the T. spiralis life cycle in mouse. These results demonstrate that RTX is able to inhibit the production of Th1 cytokines, contributing to the defence against T. spiralis, which places it as a potential drug modulator of the immune response. © 2017 John Wiley & Sons Ltd.
Oncolytic Viral Therapy and the Immune System: A Double-Edged Sword Against Cancer.
Marelli, Giulia; Howells, Anwen; Lemoine, Nicholas R; Wang, Yaohe
2018-01-01
Oncolytic viral therapy is a new promising strategy against cancer. Oncolytic viruses (OVs) can replicate in cancer cells but not in normal cells, leading to lysis of the tumor mass. Beside this primary effect, OVs can also stimulate the immune system. Tumors are an immuno-suppressive environment in which the immune system is silenced in order to avoid the immune response against cancer cells. The delivery of OVs into the tumor wakes up the immune system so that it can facilitate a strong and durable response against the tumor itself. Both innate and adaptive immune responses contribute to this process, producing an immune response against tumor antigens and facilitating immunological memory. However, viruses are recognized by the immune system as pathogens and the consequent anti-viral response could represent a big hurdle for OVs. Finding a balance between anti-tumor and anti-viral immunity is, under this new light, a priority for researchers. In this review, we provide an overview of the various ways in which different components of the immune system can be allied with OVs. We have analyzed the different immune responses in order to highlight the new and promising perspectives leading to increased anti-tumor response and decreased immune reaction to the OVs.
Immunity and Immunopathology in the Tuberculous Granuloma
Pagán, Antonio J.; Ramakrishnan, Lalita
2015-01-01
Granulomas, organized aggregates of immune cells, are a defining feature of tuberculosis (TB). Granuloma formation is implicated in the pathogenesis of a variety of inflammatory disorders. However, the tuberculous granuloma has been assigned the role of a host protective structure which “walls-off” mycobacteria. Work conducted over the past decade has provided a more nuanced view of its role in pathogenesis. On the one hand, pathogenic mycobacteria accelerate and exploit granuloma formation for their expansion and dissemination by manipulating host immune responses to turn leukocyte recruitment and cell death pathways in their favor. On the other hand, granuloma macrophages can preserve granuloma integrity by exerting a microbicidal immune response, thus preventing an even more rampant expansion of infection in the extracellular milieu. Even this host-beneficial immune response required to maintain the bacteria intracellular must be tempered, as an overly vigorous immune response can also cause granuloma breakdown, thereby directly supporting bacterial growth extracellularly. This review will discuss how mycobacteria manipulate inflammatory responses to drive granuloma formation and will consider the roles of the granuloma in pathogenesis and protective immunity, drawing from clinical studies of TB in humans and from animal models—rodents, zebrafish, and nonhuman primates. A deeper understanding of TB pathogenesis and immunity in the granuloma could suggest therapeutic approaches to abrogate the host-detrimental aspects of granuloma formation to convert it into the host-beneficial structure that it has been thought to be for nearly a century. PMID:25377142
Coding and non-coding gene regulatory networks underlie the immune response in liver cirrhosis
Zhang, Xueming; Huang, Yongming; Yang, Zhengpeng; Zhang, Yuguo; Zhang, Weihui; Gao, Zu-hua; Xue, Dongbo
2017-01-01
Liver cirrhosis is recognized as being the consequence of immune-mediated hepatocyte damage and repair processes. However, the regulation of these immune responses underlying liver cirrhosis has not been elucidated. In this study, we used GEO datasets and bioinformatics methods to established coding and non-coding gene regulatory networks including transcription factor-/lncRNA-microRNA-mRNA, and competing endogenous RNA interaction networks. Our results identified 2224 mRNAs, 70 lncRNAs and 46 microRNAs were differentially expressed in liver cirrhosis. The transcription factor -/lncRNA- microRNA-mRNA network we uncovered that results in immune-mediated liver cirrhosis is comprised of 5 core microRNAs (e.g., miR-203; miR-219-5p), 3 transcription factors (i.e., FOXP3, ETS1 and FOS) and 7 lncRNAs (e.g., ENTS00000671336, ENST00000575137). The competing endogenous RNA interaction network we identified includes a complex immune response regulatory subnetwork that controls the entire liver cirrhosis network. Additionally, we found 10 overlapping GO terms shared by both liver cirrhosis and hepatocellular carcinoma including “immune response” as well. Interestingly, the overlapping differentially expressed genes in liver cirrhosis and hepatocellular carcinoma were enriched in immune response-related functional terms. In summary, a complex gene regulatory network underlying immune response processes may play an important role in the development and progression of liver cirrhosis, and its development into hepatocellular carcinoma. PMID:28355233
Immunologically active biomaterials for cancer therapy.
Ali, Omar A; Mooney, David J
2011-01-01
Our understanding of immunological regulation has progressed tremendously alongside the development of materials science, and at their intersection emerges the possibility to employ immunologically active biomaterials for cancer immunotherapy. Strong and sustained anticancer, immune responses are required to clear large tumor burdens in patients, but current approaches for immunotherapy are formulated as products for delivery in bolus, which may be indiscriminate and/or shortlived. Multifunctional biomaterial particles are now being developed to target and sustain antigen and adjuvant delivery to dendritic cells in vivo, and these have the potential to direct and prolong antigen-specific T cell responses. Three-dimensional immune cell niches are also being developed to regulate the recruitment, activation and deployment of immune cells in situ to promote potent antitumor responses. Recent studies demonstrate that materials with immune targeting and stimulatory capabilities can enhance the magnitude and duration of immune responses to cancer antigens, and preclinical results utilizing material-based immunotherapy in tumor models show a strong therapeutic benefit, justifying translation to and future testing in the clinic.
Boyd, Ashleigh S; Wood, Kathryn J
2010-06-04
The fully differentiated progeny of ES cells (ESC) may eventually be used for cell replacement therapy (CRT). However, elements of the innate immune system may contribute to damage or destruction of these tissues when transplanted. Herein, we assessed the hitherto ill-defined contribution of the early innate immune response in CRT after transplantation of either ESC derived insulin producing cell clusters (IPCCs) or adult pancreatic islets. Ingress of neutrophil or macrophage cells was noted immediately at the site of IPCC transplantation, but this infiltration was attenuated by day three. Gene profiling identified specific inflammatory cytokines and chemokines that were either absent or sharply reduced by three days after IPCC transplantation. Thus, IPCC transplantation provoked less of an early immune response than pancreatic islet transplantation. Our study offers insights into the characteristics of the immune response of an ESC derived tissue in the incipient stages following transplantation and suggests potential strategies to inhibit cell damage to ensure their long-term perpetuation and functionality in CRT.
Hwang, Hye Suk; Lee, Young-Tae; Kim, Ki-Hye; Ko, Eun-Ju; Lee, Youri; Kwon, Young-Man; Kang, Sang-Moo
2017-11-01
Formalin inactivated respiratory syncytial virus (FI-RSV) vaccination caused vaccine-enhanced respiratory disease (ERD) upon exposure to RSV in children. Virus-like particles presenting RSV F fusion protein (F VLP) are known to increase T helper type-1 (Th1) immune responses and avoid ERD in animal models. We hypothesized that F VLP would prime immune responses preventing ERD upon subsequent exposure to ERD-prone FI-RSV. Here, we demonstrated that heterologous F VLP priming and FI-RSV boosting of mice prevented FI-RSV vaccine-enhanced lung inflammation and eosinophilia upon RSV challenge. F VLP priming redirected pulmonary T cells toward effector CD8 T cells producing Th1 cytokines and significantly suppressed pulmonary Th2 cytokines. This study suggests that RSV F VLP priming would modulate and shift immune responses to subsequent exposure to ERD-prone FI-RSV vaccine and RSV infection, suppressing Th2 immune-mediated pulmonary histopathology and eosinophilia. Copyright © 2017. Published by Elsevier Inc.
Immunity to intestinal pathogens: lessons learned from Salmonella
McSorley, Stephen J.
2014-01-01
Summary Salmonella are a common source of food or water-borne infection and cause a wide range of clinical disease in human and animal hosts. Salmonella are relatively easy to culture and manipulate in a laboratory setting, and the infection of laboratory animals induces robust innate and adaptive immune responses. Thus, immunologists have frequently turned to Salmonella infection models to expand understanding of immunity to intestinal pathogens. In this review, I summarize current knowledge of innate and adaptive immunity to Salmonella and highlight features of this response that have emerged from recent studies. These include the heterogeneity of the antigen-specific T-cell response to intestinal infection, the prominence of microbial mechanisms to impede T and B-cell responses, and the contribution of non-cognate pathways for elicitation of T-cell effector functions. Together, these different issues challenge an overly simplistic view of host-pathogen interaction during mucosal infection but also allow deeper insight into the real-world dynamic of protective immunity to intestinal pathogens. PMID:24942689
Huang, Qiang; Kryger, Per; Le Conte, Yves; Moritz, Robin F A
2012-03-01
Honey bee colonies (Apis mellifera) have been selected for low level of Nosema in Denmark over decades and Nosema is now rarely found in bee colonies from these breeding lines. We compared the immune response of a selected and an unselected honey bee lineage, taking advantage of the haploid males to study its potential impact on the tolerance toward Nosema ceranae, a novel introduced microsporidian pathogen. After artificial infections of the N. ceranae spores, the lineage selected for Nosema tolerance showed a higher N. ceranae spore load, a lower mortality and an up-regulated immune response. The differences in the response of the innate immune system between the selected and unselected lineage were strongest at day six post infection. In particular genes of the Toll pathway were up-regulated in the selected strain, probably is the main immune pathway involved in N. ceranae infection response. After decades of selective breeding for Nosema tolerance in the Danish strain, it appears these bees are tolerant to N. ceranae infections. Copyright © 2012 Elsevier Inc. All rights reserved.
Stress, Anxiety, and Immunomodulation: A Pharmacological Analysis.
Ray, A; Gulati, K; Rai, N
2017-01-01
Stress and stressful events are common occurrences in our daily lives and such aversive situations bring about complex changes in the biological system. Such stress responses influence the brain and behavior, neuroendocrine and immune systems, and these responses orchestrate to increase or decrease the ability of the organism to cope with such stressors. The brain via expression of complex behavioral paradigms controls peripheral responses to stress and a bidirectional link exists in the modulation of stress effects. Anxiety is a common neurobehavioral correlate of a variety of stressors, and both acute and chronic stress exposure could precipitate anxiety disorders. Psychoneuroimmunology involves interactions between the brain and the immune system, and it is now being increasingly recognized that the immune system could contribute to the neurobehavioral responses to stress. Studies have shown that the brain and its complex neurotransmitter networks could influence immune function, and there could be a possible link between anxiogenesis and immunomodulation during stress. Physiological and pharmacological data have highlighted this concept, and the present review gives an overview of the relationship between stress, anxiety, and immune responsiveness. © 2017 Elsevier Inc. All rights reserved.
The Hepatitis C Virus Glycan Shield and Evasion of the Humoral Immune Response
Helle, François; Duverlie, Gilles; Dubuisson, Jean
2011-01-01
Despite the induction of effective immune responses, 80% of hepatitis C virus (HCV)-infected individuals progress from acute to chronic hepatitis. In contrast to the cellular immune response, the role of the humoral immune response in HCV clearance is still subject to debate. Indeed, HCV escapes neutralizing antibodies in chronically infected patients and reinfection has been described in human and chimpanzee. Studies of antibody-mediated HCV neutralization have long been hampered by the lack of cell-culture-derived virus and the absence of a small animal model. However, the development of surrogate models and recent progress in HCV propagation in vitro now enable robust neutralization assays to be performed. These advances are beginning to shed some light on the mechanisms of HCV neutralization. This review summarizes the current state of knowledge of the viral targets of anti-HCV-neutralizing antibodies and the mechanisms that enable HCV to evade the humoral immune response. The recent description of the HCV glycan shield that reduces the immunogenicity of envelope proteins and masks conserved neutralizing epitopes at their surface constitutes the major focus of this review. PMID:22069522
Gap junctions in cells of the immune system: structure, regulation and possible functional roles.
Sáez, J C; Brañes, M C; Corvalán, L A; Eugenín, E A; González, H; Martínez, A D; Palisson, F
2000-04-01
Gap junction channels are sites of cytoplasmic communication between contacting cells. In vertebrates, they consist of protein subunits denoted connexins (Cxs) which are encoded by a gene family. According to their Cx composition, gap junction channels show different gating and permeability properties that define which ions and small molecules permeate them. Differences in Cx primary sequences suggest that channels composed of different Cxs are regulated differentially by intracellular pathways under specific physiological conditions. Functional roles of gap junction channels could be defined by the relative importance of permeant substances, resulting in coordination of electrical and/or metabolic cellular responses. Cells of the native and specific immune systems establish transient homo- and heterocellular contacts at various steps of the immune response. Morphological and functional studies reported during the last three decades have revealed that many intercellular contacts between cells in the immune response present gap junctions or "gap junction-like" structures. Partial characterization of the molecular composition of some of these plasma membrane structures and regulatory mechanisms that control them have been published recently. Studies designed to elucidate their physiological roles suggest that they might permit coordination of cellular events which favor the effective and timely response of the immune system.
Transcriptional Profiling of the Immune Response to Marburg Virus Infection.
Connor, John H; Yen, Judy; Caballero, Ignacio S; Garamszegi, Sara; Malhotra, Shikha; Lin, Kenny; Hensley, Lisa; Goff, Arthur J
2015-10-01
Marburg virus is a genetically simple RNA virus that causes a severe hemorrhagic fever in humans and nonhuman primates. The mechanism of pathogenesis of the infection is not well understood, but it is well accepted that pathogenesis is appreciably driven by a hyperactive immune response. To better understand the overall response to Marburg virus challenge, we undertook a transcriptomic analysis of immune cells circulating in the blood following aerosol exposure of rhesus macaques to a lethal dose of Marburg virus. Using two-color microarrays, we analyzed the transcriptomes of peripheral blood mononuclear cells that were collected throughout the course of infection from 1 to 9 days postexposure, representing the full course of the infection. The response followed a 3-stage induction (early infection, 1 to 3 days postexposure; midinfection, 5 days postexposure; late infection, 7 to 9 days postexposure) that was led by a robust innate immune response. The host response to aerosolized Marburg virus was evident at 1 day postexposure. Analysis of cytokine transcripts that were overexpressed during infection indicated that previously unanalyzed cytokines are likely induced in response to exposure to Marburg virus and further suggested that the early immune response is skewed toward a Th2 response that would hamper the development of an effective antiviral immune response early in disease. Late infection events included the upregulation of coagulation-associated factors. These findings demonstrate very early host responses to Marburg virus infection and provide a rich data set for identification of factors expressed throughout the course of infection that can be investigated as markers of infection and targets for therapy. Marburg virus causes a severe infection that is associated with high mortality and hemorrhage. The disease is associated with an immune response that contributes to the lethality of the disease. In this study, we investigated how the immune cells circulating in the blood of infected primates respond following exposure to Marburg virus. Our results show that there are three discernible stages of response to infection that correlate with presymptomatic, early, and late symptomatic stages of infection, a response format similar to that seen following challenge with other hemorrhagic fever viruses. In contrast to the ability of the virus to block innate immune signaling in vitro, the earliest and most sustained response is an interferon-like response. Our analysis also identifies a number of cytokines that are transcriptionally upregulated during late stages of infection and suggest that there is a Th2-skewed response to infection. When correlated with companion data describing the animal model from which our samples were collected, our results suggest that the innate immune response may contribute to overall pathogenesis. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Immune response to functionalized mesoporous silica nanoparticles for targeted drug delivery
NASA Astrophysics Data System (ADS)
Heidegger, Simon; Gößl, Dorothée; Schmidt, Alexandra; Niedermayer, Stefan; Argyo, Christian; Endres, Stefan; Bein, Thomas; Bourquin, Carole
2015-12-01
Multifunctional mesoporous silica nanoparticles (MSN) have attracted substantial attention with regard to their high potential for targeted drug delivery. For future clinical applications it is crucial to address safety concerns and understand the potential immunotoxicity of these nanoparticles. In this study, we assess the biocompatibility and functionality of multifunctional MSN in freshly isolated, primary murine immune cells. We show that the functionalized silica nanoparticles are rapidly and efficiently taken up into the endosomal compartment by specialized antigen-presenting cells such as dendritic cells. The silica nanoparticles showed a favorable toxicity profile and did not affect the viability of primary immune cells from the spleen in relevant concentrations. Cargo-free MSN induced only very low immune responses in primary cells as determined by surface expression of activation markers and release of pro-inflammatory cytokines such as Interleukin-6, -12 and -1β. In contrast, when surface-functionalized MSN with a pH-responsive polymer capping were loaded with an immune-activating drug, the synthetic Toll-like receptor 7 agonist R848, a strong immune response was provoked. We thus demonstrate that MSN represent an efficient drug delivery vehicle to primary immune cells that is both non-toxic and non-inflammagenic, which is a prerequisite for the use of these particles in biomedical applications.Multifunctional mesoporous silica nanoparticles (MSN) have attracted substantial attention with regard to their high potential for targeted drug delivery. For future clinical applications it is crucial to address safety concerns and understand the potential immunotoxicity of these nanoparticles. In this study, we assess the biocompatibility and functionality of multifunctional MSN in freshly isolated, primary murine immune cells. We show that the functionalized silica nanoparticles are rapidly and efficiently taken up into the endosomal compartment by specialized antigen-presenting cells such as dendritic cells. The silica nanoparticles showed a favorable toxicity profile and did not affect the viability of primary immune cells from the spleen in relevant concentrations. Cargo-free MSN induced only very low immune responses in primary cells as determined by surface expression of activation markers and release of pro-inflammatory cytokines such as Interleukin-6, -12 and -1β. In contrast, when surface-functionalized MSN with a pH-responsive polymer capping were loaded with an immune-activating drug, the synthetic Toll-like receptor 7 agonist R848, a strong immune response was provoked. We thus demonstrate that MSN represent an efficient drug delivery vehicle to primary immune cells that is both non-toxic and non-inflammagenic, which is a prerequisite for the use of these particles in biomedical applications. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06122a
Innate immune memory in plants.
Reimer-Michalski, Eva-Maria; Conrath, Uwe
2016-08-01
The plant innate immune system comprises local and systemic immune responses. Systemic plant immunity develops after foliar infection by microbial pathogens, upon root colonization by certain microbes, or in response to physical injury. The systemic plant immune response to localized foliar infection is associated with elevated levels of pattern-recognition receptors, accumulation of dormant signaling enzymes, and alterations in chromatin state. Together, these systemic responses provide a memory to the initial infection by priming the remote leaves for enhanced defense and immunity to reinfection. The plant innate immune system thus builds immunological memory by utilizing mechanisms and components that are similar to those employed in the trained innate immune response of jawed vertebrates. Therefore, there seems to be conservation, or convergence, in the evolution of innate immune memory in plants and vertebrates. Copyright © 2016 Elsevier Ltd. All rights reserved.
Photodynamic therapy for cancer and activation of immune response
NASA Astrophysics Data System (ADS)
Mroz, Pawel; Huang, Ying-Ying; Hamblin, Michael R.
2010-02-01
Anti-tumor immunity is stimulated after PDT for cancer due to the acute inflammatory response, exposure and presentation of tumor-specific antigens, and induction of heat-shock proteins and other danger signals. Nevertheless effective, powerful tumor-specific immune response in both animal models and also in patients treated with PDT for cancer, is the exception rather than the rule. Research in our laboratory and also in others is geared towards identifying reasons for this sub-optimal immune response and discovering ways of maximizing it. Reasons why the immune response after PDT is less than optimal include the fact that tumor-antigens are considered to be self-like and poorly immunogenic, the tumor-mediated induction of CD4+CD25+foxP3+ regulatory T-cells (T-regs), that are able to inhibit both the priming and the effector phases of the cytotoxic CD8 T-cell anti-tumor response and the defects in dendritic cell maturation, activation and antigen-presentation that may also occur. Alternatively-activated macrophages (M2) have also been implicated. Strategies to overcome these immune escape mechanisms employed by different tumors include combination regimens using PDT and immunostimulating treatments such as products obtained from pathogenic microorganisms against which mammals have evolved recognition systems such as PAMPs and toll-like receptors (TLR). This paper will cover the use of CpG oligonucleotides (a TLR9 agonist found in bacterial DNA) to reverse dendritic cell dysfunction and methods to remove the immune suppressor effects of T-regs that are under active study.
Smelser, Lisa K; Walker, Callum; Burns, Erin M; Curry, Michael; Black, Nathanael; Metzler, Jennifer A; McDowell, Susan A; Bruns, Heather A
Statins are potent modulators of immune responses, resulting in their ability to enhance host survival from primary bacterial infections. Alterations in primary immune responses that may be beneficial for survival following infection may also result in alterations in the generation of the immunologic memory response and subsequently affect immune responses mounted during secondary bacterial infection. In this study, we report that levels of total serum IgG2c, following primary infection, were decreased in simvastatin pretreated mice, and investigate the effect of simvastatin treatment, prior to primary infection, on immune responses activated during secondary S. aureus infection. A secondary infection model was implemented whereby simvastatin pretreated and control mice were reinfected with S. aureus 14 days after primary infection, with no additional simvastatin treatment, and assessed for survival and alterations in immune function. While survivability to secondary S. aureus infection was not different between simvastatin pretreated and control mice, memory B and T lymphocyte functions were altered. Memory B cells, isolated 14 days after secondary infection, from simvastatin pretreated mice and stimulated ex vivo produced increased levels of IgG1 compared to memory B cells isolated from control mice, while levels of IgM and IgG2c remained similar. Furthermore, memory B and T lymphocytes from simvastatin pretreated mice exhibited a decreased proliferative response when stimulated ex vivo compared to memory cells isolated from control mice. These findings demonstrate the ability of a short term, low dose simvastatin treatment to modulate memory immune function.
Toll Mediated Infection Response Is Altered by Gravity and Spaceflight in Drosophila
Taylor, Katherine; Kleinhesselink, Kurt; George, Michael D.; Morgan, Rachel; Smallwood, Tangi; Hammonds, Ann S.; Fuller, Patrick M.; Saelao, Perot; Alley, Jeff; Gibbs, Allen G.; Hoshizaki, Deborah K.; von Kalm, Laurence; Fuller, Charles A.; Beckingham, Kathleen M.; Kimbrell, Deborah A.
2014-01-01
Space travel presents unlimited opportunities for exploration and discovery, but requires better understanding of the biological consequences of long-term exposure to spaceflight. Immune function in particular is relevant for space travel. Human immune responses are weakened in space, with increased vulnerability to opportunistic infections and immune-related conditions. In addition, microorganisms can become more virulent in space, causing further challenges to health. To understand these issues better and to contribute to design of effective countermeasures, we used the Drosophila model of innate immunity to study immune responses in both hypergravity and spaceflight. Focusing on infections mediated through the conserved Toll and Imd signaling pathways, we found that hypergravity improves resistance to Toll-mediated fungal infections except in a known gravitaxis mutant of the yuri gagarin gene. These results led to the first spaceflight project on Drosophila immunity, in which flies that developed to adulthood in microgravity were assessed for immune responses by transcription profiling on return to Earth. Spaceflight alone altered transcription, producing activation of the heat shock stress system. Space flies subsequently infected by fungus failed to activate the Toll pathway. In contrast, bacterial infection produced normal activation of the Imd pathway. We speculate on possible linkage between functional Toll signaling and the heat shock chaperone system. Our major findings are that hypergravity and spaceflight have opposing effects, and that spaceflight produces stress-related transcriptional responses and results in a specific inability to mount a Toll-mediated infection response. PMID:24475130
Suppression of allergic airway inflammation in a mouse model by Der p2 recombined BCG.
Ou-Yang, Hai-Feng; Hu, Xing-Bin; Ti, Xin-Yu; Shi, Jie-Ran; Li, Shu-Jun; Qi, Hao-Wen; Wu, Chang-Gui
2009-09-01
Allergic asthma is a chronic inflammatory disease mediated by T helper (Th)2 cell immune responses. Currently, immunotherapies based on both immune deviation and immune suppression, including the development of recombinant mycobacteria as immunoregulatory vaccines, are attractive treatment strategies for asthma. In our previous studies, we created a genetically recombinant form of bacille Calmette-Guerin (rBCG) that expressed Der p2 of house dust mites and established that it induced a shift from a Th2 response to a Th1 response in naive mice. However, it is unclear whether rBCG could suppress allergic airway inflammation in a mouse model. In this article we report that rBCG dramatically inhibited airway inflammation, eosinophilia, mucus production and mast cell degranulation in allergic mice. Analysis of interferon-gamma (IFN-gamma) and interleukin-4 (IL-4) levels in bronchoalveolar lavage fluid (BALF) and lung tissue revealed that the suppression was associated with a shift from a Th2 response to a Th1 response. At the same time, rBCG induced a CD4(+) CD25(+) Foxp3(+) T-cell subtype that could suppress the proliferation of Th2 effector cells in vitro in an antigen-specific manner. Moreover, suppression of CD4(+) CD25(+) T cells could be adoptively transferred. Thus, our results demonstrate that rBCG induces both generic and specific immune responses. The generic immune response is associated with a shift from a Th2 to a Th1 cytokine response, whereas the specific immune response against Der p2 appears to be related to the expansion of transforming growth factor-beta (TGF-beta)-producing CD4(+) CD25(+) Foxp3(+) regulatory T cells. rBCG can suppress asthmatic airway inflammation through both immune deviation and immune suppression and may be a feasible, efficient immunotherapy for asthma.
Mathematical modeling provides kinetic details of the human immune response to vaccination
Le, Dustin; Miller, Joseph D.; Ganusov, Vitaly V.
2015-01-01
With major advances in experimental techniques to track antigen-specific immune responses many basic questions on the kinetics of virus-specific immunity in humans remain unanswered. To gain insights into kinetics of T and B cell responses in human volunteers we combined mathematical models and experimental data from recent studies employing vaccines against yellow fever and smallpox. Yellow fever virus-specific CD8 T cell population expanded slowly with the average doubling time of 2 days peaking 2.5 weeks post immunization. Interestingly, we found that the peak of the yellow fever-specific CD8 T cell response was determined by the rate of T cell proliferation and not by the precursor frequency of antigen-specific cells as has been suggested in several studies in mice. We also found that while the frequency of virus-specific T cells increased slowly, the slow increase could still accurately explain clearance of yellow fever virus in the blood. Our additional mathematical model described well the kinetics of virus-specific antibody-secreting cell and antibody response to vaccinia virus in vaccinated individuals suggesting that most of antibodies in 3 months post immunization were derived from the population of circulating antibody-secreting cells. Taken together, our analysis provided novel insights into mechanisms by which live vaccines induce immunity to viral infections and highlighted challenges of applying methods of mathematical modeling to the current, state-of-the-art yet limited immunological data. PMID:25621280
Mathematical modeling provides kinetic details of the human immune response to vaccination.
Le, Dustin; Miller, Joseph D; Ganusov, Vitaly V
2014-01-01
With major advances in experimental techniques to track antigen-specific immune responses many basic questions on the kinetics of virus-specific immunity in humans remain unanswered. To gain insights into kinetics of T and B cell responses in human volunteers we combined mathematical models and experimental data from recent studies employing vaccines against yellow fever and smallpox. Yellow fever virus-specific CD8 T cell population expanded slowly with the average doubling time of 2 days peaking 2.5 weeks post immunization. Interestingly, we found that the peak of the yellow fever-specific CD8 T cell response was determined by the rate of T cell proliferation and not by the precursor frequency of antigen-specific cells as has been suggested in several studies in mice. We also found that while the frequency of virus-specific T cells increased slowly, the slow increase could still accurately explain clearance of yellow fever virus in the blood. Our additional mathematical model described well the kinetics of virus-specific antibody-secreting cell and antibody response to vaccinia virus in vaccinated individuals suggesting that most of antibodies in 3 months post immunization were derived from the population of circulating antibody-secreting cells. Taken together, our analysis provided novel insights into mechanisms by which live vaccines induce immunity to viral infections and highlighted challenges of applying methods of mathematical modeling to the current, state-of-the-art yet limited immunological data.
Bovine response to lipoarabinomannan vaccination and challenge with Mycobacterium paratuberculosis.
Jolly, Ana; Morsella, Claudia; Bass, Laura; Fiorentino, María Andrea; Paolicchi, Fernando Alberto; Mundo, Silvia Leonor
2013-01-01
This study aimed to evaluate the immune response in bovines following immunization with a mycobaterial Lipoarabinomannan extract (LAMe) and the effect of Map challenge. LAMe vaccine induced specific antibody levels that diminished after the challenge and affected Map excretion at least for 100 days thereafter.
The innate and adaptive immune response to avian influenza virus
USDA-ARS?s Scientific Manuscript database
Protective immunity against viruses is mediated by the early innate immune responses and later on by the adaptive immune responses. The early innate immunity is designed to contain and limit virus replication in the host, primarily through cytokine and interferon production. Most all cells are cap...
Vallejo, Alejandro; Monge-Maillo, Begoña; Gutiérrez, Carolina; Norman, Francesca F; López-Vélez, Rogelio; Pérez-Molina, José A
2016-12-01
Symptomatic chronic Chagas disease affects up to 40% of patients infected with Trypanosoma cruzi. The lack of reliable early markers of cure after therapy hinders disease management and clinical trials with new drugs. We performed a study with 18 months of follow-up to compare changes in immune parameters and T. cruzi-specific immune responses as surrogate markers of response to therapy between patients treated with benznidazole and untreated patients. This was a pilot, open-label, randomised clinical trial of treatment with benznidazole versus no treatment in patients with indeterminate chronic T. cruzi infection. In both groups we investigated changes in T-cell activation, T-cell subpopulations, regulatory T-cell counts, IL6, and sCD14 levels, and T. cruzi-specific immune responses (Th1, Th2, and Th17 responses). Fourteen patients were included in the study (seven in each group). Median age was 35 years (P 25-75 31-43), 57% were female, and 93% were Bolivian. Benznidazole was administered at 5mg/kg/day for 60days. Three patients discontinued benznidazole owing to adverse reactions and were not evaluated. At the end of the follow-up period, treated patients showed significantly less immune activation and lower regulatory T-cell counts, with an increased Th17 and Th1 response. This randomised pilot clinical trial administering benznidazole to patients with indeterminate chronic Chagas disease brings about changes in the adaptive immunity, leading to a general decrease in inflammatory status. This apparently beneficial response could act as the basis for monitoring new antiparasitic drugs. Copyright © 2016 Elsevier B.V. All rights reserved.
Ferrari, Luca; Borghetti, Paolo; De Angelis, Elena; Martelli, Paolo
2014-04-16
Porcine circovirus type 2 (PCV2) vaccination represents an important measure to cope with PCV2 infection; however, data regarding the modulation of the immune cell compartment are still limited, especially under field conditions. This study is aimed at investigating the features of the cellular immune response in conventional piglets induced by vaccination using a capsid (Cap) protein-based PCV2 vaccine compared to unvaccinated animals when exposed to PCV2 natural infection. Immune reactivity was evaluated by quantifying peripheral cell subsets involved in the anti-viral response and characterizing the interferon-gamma (IFN-γ) secreting cell (SC) responsiveness both in vivo and upon in vitro whole PCV2 recall. The vaccination triggered an early and intense IFN-γ secreting cell response and induced the activation of peripheral lymphocytes. The early increase of IFN-γ SC frequencies resulted in a remarkable and transient tendency to increased IFN-γ productivity in vaccinated pigs. In vaccinated animals, soon before the onset of infection occurred 15-16 weeks post-vaccination, the recalled PCV2-specific immune response was characterized by moderate PCV2-specific IFN-γ secreting cell frequencies and augmented productivity together with reactive CD4+CD8+ memory T cells. Conversely, upon infection, unvaccinated animals showed very high frequencies of IFN-γ secreting cells and a tendency to lower productivity, which paralleled with effector CD4-CD8+ cytotoxic cell responsiveness. The study shows that PCV2 vaccination induces a long-lasting immunity sustained by memory T cells and IFN-γ secreting cells that potentially played a role in preventing the onset of infection; the extent and duration of this reactivity can be an important feature for evaluating the protective immunity induced by vaccination.
Induction of antigen-specific immunity by pH-sensitive carbonate apatite as a potent vaccine carrier
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hebishima, Takehisa; Tada, Seiichi; Takeshima, Shin-nosuke
Highlights: Black-Right-Pointing-Pointer To develop effective vaccine, we examined the effects of CO{sub 3}Ap as an antigen carrier. Black-Right-Pointing-Pointer OVA contained in CO{sub 3}Ap was taken up by BMDCs more effectively than free OVA. Black-Right-Pointing-Pointer OVA-immunized splenocytes was activated by OVA contained in CO{sub 3}Ap effectively. Black-Right-Pointing-Pointer OVA contained in CO{sub 3}Ap induced strong OVA-specific immune responses to C57BL/6 mice. Black-Right-Pointing-Pointer CO{sub 3}Ap is promising antigen carrier for the achievement of effective vaccine. -- Abstract: The ability of carbonate apatite (CO{sub 3}Ap) to enhance antigen-specific immunity was examined in vitro and in vivo to investigate its utility as a vaccine carrier.more » Murine bone marrow-derived dendritic cells took up ovalbumin (OVA) containing CO{sub 3}Ap more effectively than free OVA. Interestingly, mice immunized with OVA-containing CO{sub 3}Ap produced OVA-specific antibodies more effectively than mice immunized with free OVA. Furthermore, immunization of C57BL/6 mice with OVA-containing CO{sub 3}Ap induced the proliferation and antigen-specific production of IFN-{gamma} by splenocytes more strongly than immunization with free OVA. Moreover, no significant differences were detected in the induction of delayed-type hypersensitivity responses, an immune reaction involving an antigen-specific, cell-mediated immune response between OVA-containing CO{sub 3}Ap and OVA-containing alumina salt (Alum), suggesting that CO{sub 3}Ap induced cell-mediated immune response to the same degree as Alum, which is commonly used for clinical applications. This study is the first to demonstrate the induction of antigen-specific immune responses in vivo by CO{sub 3}Ap.« less
RNA-Seq Reveals an Integrated Immune Response in Nucleated Erythrocytes
Morera, Davinia; Roher, Nerea; Ribas, Laia; Balasch, Joan Carles; Doñate, Carmen; Callol, Agnes; Boltaña, Sebastian; Roberts, Steven; Goetz, Giles; Goetz, Frederick W.; MacKenzie, Simon A.
2011-01-01
Background Throughout the primary literature and within textbooks, the erythrocyte has been tacitly accepted to have maintained a unique physiological role; namely gas transport and exchange. In non-mammalian vertebrates, nucleated erythrocytes are present in circulation throughout the life cycle and a fragmented series of observations in mammals support a potential role in non-respiratory biological processes. We hypothesised that nucleated erythrocytes could actively participate via ligand-induced transcriptional re-programming in the immune response. Methodology/Principal Findings Nucleated erythrocytes from both fish and birds express and regulate specific pattern recognition receptor (PRR) mRNAs and, thus, are capable of specific pathogen associated molecular pattern (PAMP) detection that is central to the innate immune response. In vitro challenge with diverse PAMPs led to de novo specific mRNA synthesis of both receptors and response factors including interferon-alpha (IFNα) that exhibit a stimulus-specific polysomal shift supporting active translation. RNA-Seq analysis of the PAMP (Poly (I∶C), polyinosinic∶polycytidylic acid)-erythrocyte response uncovered diverse cohorts of differentially expressed mRNA transcripts related to multiple physiological systems including the endocrine, reproductive and immune. Moreover, erythrocyte-derived conditioned mediums induced a type-1 interferon response in macrophages thus supporting an integrative role for the erythrocytes in the immune response. Conclusions/Significance We demonstrate that nucleated erythrocytes in non-mammalian vertebrates spanning significant phylogenetic distance participate in the immune response. RNA-Seq studies highlight a mRNA repertoire that suggests a previously unrecognized integrative role for the erythrocytes in other physiological systems. PMID:22046430
Marciani, Dante J
2016-06-01
The promising results obtained with aducanumab and solanezumab against Alzheimer's disease (AD) strengthen the vaccine approach to prevent AD, despite of the many clinical setbacks. It has been problematic to use conjugated peptides with Th1/Th2 adjuvants to induce immune responses against conformational epitopes formed by Aβ oligomers, which is critical to induce protective antibodies. Hence, vaccination should mimic natural immunity by using whole or if possible conjugated antigens, but biasing the response to Th2 with anti-inflammatory adjuvants. Also, selection of the carrier and cross-linking agents is important to prevent suppression of the immune response against the antigen. That certain compounds having phosphorylcholine or fucose induce a sole Th2 immunity would allow antigens with T-cell epitopes without inflammatory autoimmune reactions to be used. Another immunization method is DNA vaccines combined with antigenic ones, which favors the clonal selection and expansion of high affinity antibodies needed for immune protection, but this also requires Th2 immunity. Since AD transgenic mouse models have limited value for immunogen selection as shown by the clinical studies, screening may require the use of validated antibodies and biophysical methods to identify the antigens that would be most likely recognized by the human immune system and thus capable to stimulate a protective antibody response. To induce an anti-Alzheimer's disease protective immunity and prevent possible damage triggered by antigens having B-cell epitopes-only, whole antigens might be used; while inducing Th2 immunity with sole anti-inflammatory fucose-based adjuvants. This approach would avert a damaging systemic inflammatory immunity and the suppression of immunoresponse against the antigen because of carrier and cross-linkers; immune requirements that extend to DNA vaccines. © 2016 International Society for Neurochemistry.
Shima, Fumiaki; Akagi, Takami; Uto, Tomofumi; Akashi, Mitsuru
2013-12-01
The new generation vaccines are safe but poorly immunogenic, and thus they require the use of adjuvants. However, conventional vaccine adjuvants fail to induce potent cellular immunity, and their toxicity and side-effects hinder the clinical use. Therefore, a vaccine adjuvant which is safe and can induce an antigen-specific cellular immunity-biased immune response is urgently required. In the development of nanoparticle-based vaccine adjuvants, the hydrophobicity is one of the most important factors. It could control the interaction between the encapsulated antigens and/or nanoparticles with immune cells. In this study, nanoparticles (NPs) composed of amphiphilic poly(γ-glutamic acid)-graft-L-phenylalanine ethyl ester (γ-PGA-Phe) with various grafting degrees of hydrophobic side chains were prepared to evaluate the effect of hydrophobicity of vaccine carriers on the antigen encapsulation behavior, cellular uptake, activation of dendritic cells (DCs), and induction of antigen-specific cellular immunity-biased immune responses. These NPs could efficiently encapsulate antigens, and the uptake amount of the encapsulated antigen by DCs was dependent on the hydrophobicity of γ-PGA-Phe NPs. Moreover, the activation potential of the DCs and the induction of antigen-specific cellular immunity were correlated with the hydrophobicity of γ-PGA-Phe NPs. By controlling the hydrophobicity of antigen-encapsulated γ-PGA-Phe NPs, the activation potential of DCs was able to manipulate about 5 to 30-hold than the conventional vaccine, and the cellular immunity was about 10 to 40-hold. These results suggest that the hydrophobicity of NPs is a key factor for changing the interaction between NPs and immune cells, and thus the induction of cellular immunity-biased immune response could be achieved by controlling the hydrophobicity of them. Copyright © 2013 Elsevier Ltd. All rights reserved.
Defective B cell response to T-dependent immunization in lupus-prone mice
Niu, Haitao; Sobel, Eric S.; Morel, Laurence
2009-01-01
Lupus anti-nuclear Abs show the characteristics of Ag-driven T cell-dependent (TD) humoral responses. If autoAgs elicit the same response as exogenous Ags, lupus should enhance humoral responses to immunization. Blunted responses to various immunizations have, however, been reported in a significant portion of lupus patients. In this study, we show that lupus-prone B6.Sle1.Sle2.Sle3 (B6.TC) mice produce significantly less Ab in response to TD immunization than congenic controls, while producing significantly more total Ig. This blunted Ab response to TD Ag could be reconstituted with B6.TC B and CD4+ T cells. Multiple defects were found in the B6.TC response to NP-KLH as compared to total Ig, including a smaller percentage of B cells participating to the NP-response, a reduced entry into germinal centers, and highly defective production of NP-specific long-lived plasma cells in the bone marrow. B6.TC plasma cells expressed reduced levels of FcγRIIb, which suggests that reduced apoptosis in resident plasma cells prevents the establishment of newly-formed NP-specific plasma cells in bone marrow niches. Overall, these results show that lupus-prone mice responded differently to auto- and exogenous antigens and suggest that low FcγRIIb, hypergammaglobulinemia and high autoantibody production would be predictive of a poor response to immunization in lupus patients. PMID:18924209
USDA-ARS?s Scientific Manuscript database
It has been hypothesized that micronutrient levels play a role in the immune 2 response to vaccination. However, population-level research on the association between 3 micronutrient levels and immune response to influenza vaccination is needed. To determine whether serum vitamin A, vitamin E, or zin...
Miglior, Filippo; Mallard, Bonnie A.
2013-01-01
The objective of this study was to compare the incidence rate of clinical mastitis (IRCM) between cows classified as high, average, or low for antibody-mediated immune responses (AMIR) and cell-mediated immune responses (CMIR). In collaboration with the Canadian Bovine Mastitis Research Network, 458 lactating Holsteins from 41 herds were immunized with a type 1 and a type 2 test antigen to stimulate adaptive immune responses. A delayed-type hypersensitivity test to the type 1 test antigen was used as an indicator of CMIR, and serum antibody of the IgG1 isotype to the type 2 test antigen was used for AMIR determination. By using estimated breeding values for these traits, cows were classified as high, average, or low responders. The IRCM was calculated as the number of cases of mastitis experienced over the total time at risk throughout the 2-year study period. High-AMIR cows had an IRCM of 17.1 cases per 100 cow-years, which was significantly lower than average and low responders, with 27.9 and 30.7 cases per 100 cow-years, respectively. Low-AMIR cows tended to have the most severe mastitis. No differences in the IRCM were noted when cows were classified based on CMIR, likely due to the extracellular nature of mastitis-causing pathogens. The results of this study demonstrate the desirability of breeding dairy cattle for enhanced immune responses to decrease the incidence and severity of mastitis in the Canadian dairy industry. PMID:23175290
Thompson-Crispi, Kathleen A; Miglior, Filippo; Mallard, Bonnie A
2013-01-01
The objective of this study was to compare the incidence rate of clinical mastitis (IRCM) between cows classified as high, average, or low for antibody-mediated immune responses (AMIR) and cell-mediated immune responses (CMIR). In collaboration with the Canadian Bovine Mastitis Research Network, 458 lactating Holsteins from 41 herds were immunized with a type 1 and a type 2 test antigen to stimulate adaptive immune responses. A delayed-type hypersensitivity test to the type 1 test antigen was used as an indicator of CMIR, and serum antibody of the IgG1 isotype to the type 2 test antigen was used for AMIR determination. By using estimated breeding values for these traits, cows were classified as high, average, or low responders. The IRCM was calculated as the number of cases of mastitis experienced over the total time at risk throughout the 2-year study period. High-AMIR cows had an IRCM of 17.1 cases per 100 cow-years, which was significantly lower than average and low responders, with 27.9 and 30.7 cases per 100 cow-years, respectively. Low-AMIR cows tended to have the most severe mastitis. No differences in the IRCM were noted when cows were classified based on CMIR, likely due to the extracellular nature of mastitis-causing pathogens. The results of this study demonstrate the desirability of breeding dairy cattle for enhanced immune responses to decrease the incidence and severity of mastitis in the Canadian dairy industry.
Tian, Tian; Dubin, Krista; Jin, Qiushuang; Qureshi, Ali; King, Sandra L.; Liu, Luzheng; Jiang, Xiaodong; Murphy, George F.; Kupper, Thomas S.; Fuhlbrigge, Robert C.
2012-01-01
One strategy adopted by vaccinia virus (VV) to evade the host immune system is to encode homologs of TNF receptors (TNFR) that block TNFα function. The response to VV skin infection under conditions of TNFα deficiency, however, has not been reported. We found that TNFR1−/− mice developed larger primary lesions, numerous satellite lesions and higher skin virus levels after VV scarification. Following their recovery, these TNFR1−/− mice were fully protected against challenge with a lethal intranasal dose of VV, suggesting these mice developed an effective memory immune response. A functional systemic immune response of TNFR1−/− mice was further demonstrated by enhanced production of VV-specific IFNγ and VV-specific CD8+ T cells in spleens and draining lymph nodes. Interestingly, bone marrow (BM) reconstitution studies using WT BM in TNFR1−/− host mice, but not TNFR1−/− BM in WT host mice, reproduced the original results seen in TNFR1−/− mice, indicating that TNFR1 deficiency in resident skin cells, rather than hematopoietic cells, accounts for the impaired cutaneous immune response. Our data suggest that lack of TNFR1 leads to a skin-specific immune deficiency and that resident skin cells play a crucial role in mediating an optimal immune defense to VV cutaneous infection via TNFα/TNFR1 signaling. PMID:22318381
Liu, Lanxia; Ma, Pingchuan; Wang, Hai; Zhang, Chao; Sun, Hongfan; Wang, Chun; Song, Cunxian; Leng, Xigang; Kong, Deling; Ma, Guilei
2016-03-10
In this study, we used cationic lipid-poly(lactide-co-glycolide) acid (PLGA) hybrid nanoparticles as antigen delivery carriers to investigate how antigen-loading methods affect antigen exposure to the immune system and evaluated the resulting antigen-specific immune responses. We formulated three classes of antigen adsorbed and/or encapsulated cationic lipid-PLGA hybrid nanoparticles; we designated antigen-adsorbed (out), antigen-encapsulated (in), and antigen-adsorbed/encapsulated (both) nanoparticles. Our results demonstrate significantly more efficient lysosomal escape and cross-presentation of antigen from dendritic cells (DCs) that were exposed to "both" and "in" nanoparticles. In vivo experiments further revealed that "both" nanoparticles significantly more effectively provided not only adequate initial antigen exposure but also long-term antigen persistence at the injection site. Data from flow cytometry and ELISA analyses demonstrated elevated in vivo immune responses from mice that were immunized with nanoparticles-delivered OVA when compared with free OVA. In addition, "in" and "both" nanoparticles elicited significantly higher antigen-specific immune response than "out" nanoparticles and free OVA. These results suggest that the location of antigen entrapment is an important factor in modulating the immune responses of antigens delivered by nanoparticles. Overall, we propose here a promising approach for the future design of vaccines using cationic lipid-PLGA nanoparticles. Copyright © 2016 Elsevier B.V. All rights reserved.
Peterson, Karin E; Du, Min
2009-01-01
Neuroinflammation, including astrogliosis, microgliosis, and the production of proinflammatory cytokines and chemokines is a common response in the central nervous system (CNS) to virus infection, including retrovirus infection. However, the contribution of this innate immune response in disease pathogenesis remains unresolved. Analysis of the neuroinflammatory response to polytropic retrovirus infection in the mouse has provided insight into the potential contribution of the innate immune response to retrovirus-induced neurologic disease. In this model, retroviral pathogenesis correlates with the induction of neuroinflammatory responses including the activation of astrocytes and microglia, as well as the production of proinflammatory cytokines and chemokines. Studies of the neurovirulent determinants of the polytropic envelope protein as well as studies with knockout mice suggest that retroviral pathogenesis in the brain is multifaceted and that cytokine and chemokine production may be only one mechanism of disease pathogenesis. Analysis of the activation of the innate immune response to retrovirus infection in the CNS indicates that toll-like receptor 7 (TLR7) is a contributing factor to retrovirus-induced neuroinflammation, but that other factors can compensate for the lack of TLR7 in inducing both neuroinflammation and neurologic disease.
NF-κB/Rel Proteins and the Humoral Immune Responses of Drosophila melanogaster
Ganesan, Sandhya; Aggarwal, Kamna; Paquette, Nicholas; Silverman, Neal
2011-01-01
Nuclear Factor-κB (NF-κB)/Rel transcription factors form an integral part of innate immune defenses and are conserved throughout the animal kingdom. Studying the function, mechanism of activation and regulation of these factors is crucial for understanding host responses to microbial infections. The fruit fly Drosophila melanogaster has proved to be a valuable model system to study these evolutionarily conserved NF-κB mediated immune responses. Drosophila combats pathogens through humoral and cellular immune responses. These humoral responses are well characterized and are marked by the robust production of a battery of anti-microbial peptides. Two NF-κB signaling pathways, the Toll and the IMD pathways, are responsible for the induction of these antimicrobial peptides. Signal transduction in these pathways is strikingly similar to that in mammalian TLR pathways. In this chapter, we discuss in detail the molecular mechanisms of microbial recognition, signal transduction and NF-κB regulation, in both the Toll and the IMD pathways. Similarities and differences relative to their mammalian counterparts are discussed, and recent advances in our understanding of the intricate regulatory networks in these NF-κB signaling pathways are also highlighted. PMID:20852987
Veazey, Ronald S; Siddiqui, Asna; Klein, Katja; Buffa, Viviana; Fischetti, Lucia; Doyle-Meyers, Lara; King, Deborah F; Tregoning, John S; Shattock, Robin J
2015-01-01
Delivering vaccine antigens to mucosal surfaces is potentially very attractive, especially as protection from mucosal infections may be mediated by local immune responses. However, to date mucosal immunization has had limited successes, with issues of both safety and poor immunogenicity. One approach to improve immunogenicity is to develop adjuvants that are effective and safe at mucosal surfaces. Differences in immune responses between mice and men have overstated the value of some experimental adjuvants which have subsequently performed poorly in the clinic. Due to their closer similarity, non-human primates can provide a more accurate picture of adjuvant performance. In this study we immunised rhesus macaques (Macaca mulatta) using a unique matrix experimental design that maximised the number of adjuvants screened while reducing the animal usage. Macaques were immunised by the intranasal, sublingual and intrarectal routes with the model protein antigens keyhole limpet haemocyanin (KLH), β-galactosidase (β-Gal) and ovalbumin (OVA) in combination with the experimental adjuvants Poly(I:C), Pam3CSK4, chitosan, Thymic Stromal Lymphopoietin (TSLP), MPLA and R848 (Resiquimod). Of the routes used, only intranasal immunization with KLH and R848 induced a detectable antibody response. When compared to intramuscular immunization, intranasal administration gave slightly lower levels of antigen specific antibody in the plasma, but enhanced local responses. Following intranasal delivery of R848, we observed a mildly inflammatory response, but no difference to the control. From this we conclude that R848 is able to boost antibody responses to mucosally delivered antigen, without causing excess local inflammation.
Cold exposure down-regulates immune response pathways in ferret aortic perivascular adipose tissue.
Reynés, Bàrbara; van Schothorst, Evert M; García-Ruiz, Estefanía; Keijer, Jaap; Palou, Andreu; Oliver, Paula
2017-05-03
Perivascular adipose tissue (PVAT) surrounds blood vessels and releases paracrine factors, such as cytokines, which regulate local inflammation. The inflammatory state of PVAT has an important role in vascular disease; a pro-inflammatory state has been related with atherosclerosis development, whereas an anti-inflammatory one is protective. Cold exposure beneficially affects immune responses and, could thus impact the pathogenesis of cardiovascular diseases. In this study, we investigated the effects of one-week of cold exposure at 4°C of ferrets on aortic PVAT (aPVAT) versus subcutaneous adipose tissue. Ferrets were used because of the similarity of their adipose tissues to those of humans. A ferret-specific Agilent microarray was designed to cover the complete ferret genome and global gene expression analysis was performed. The data showed that cold exposure altered gene expression mainly in aPVAT. Most of the regulated genes were associated with cell cycle, immune response and gene expression regulation, and were mainly down-regulated. Regarding the effects on immune response, cold acclimation decreased the expression of genes involved in antigen recognition and presentation, cytokine signalling and immune system maturation and activation. This immunosuppressive gene expression pattern was depot-specific, as it was not observed in the inguinal subcutaneous depot. Interestingly, this depression in immune response related genes was also evident in peripheral blood mononuclear cells (PBMC). In conclusion, these results reveal that cold acclimation produces an inhibition of immune response-related pathways in aPVAT, reflected in PBMC, indicative of an anti-inflammatory response, which can potentially be exploited for the enhancement or maintenance of cardiovascular health.
Brown, Aisling F.; Leech, John M.; Rogers, Thomas R.; McLoughlin, Rachel M.
2014-01-01
In apparent contrast to its invasive potential Staphylococcus aureus colonizes the anterior nares of 20–80% of the human population. The relationship between host and microbe appears particularly individualized and colonization status seems somehow predetermined. After decolonization, persistent carriers often become re-colonized with their prior S. aureus strain, whereas non-carriers resist experimental colonization. Efforts to identify factors facilitating colonization have thus far largely focused on the microorganism rather than on the human host. The host responds to S. aureus nasal colonization via local expression of anti-microbial peptides, lipids, and cytokines. Interplay with the co-existing microbiota also influences colonization and immune regulation. Transient or persistent S. aureus colonization induces specific systemic immune responses. Humoral responses are the most studied of these and little is known of cellular responses induced by colonization. Intriguingly, colonized patients who develop bacteremia may have a lower S. aureus-attributable mortality than their non-colonized counterparts. This could imply a staphylococcal-specific immune “priming” or immunomodulation occurring as a consequence of colonization and impacting on the outcome of infection. This has yet to be fully explored. An effective vaccine remains elusive. Anti-S. aureus vaccine strategies may need to drive both humoral and cellular immune responses to confer efficient protection. Understanding the influence of colonization on adaptive response is essential to intelligent vaccine design, and may determine the efficacy of vaccine-mediated immunity. Clinical trials should consider colonization status and the resulting impact of this on individual patient responses. We urgently need an increased appreciation of colonization and its modulation of host immunity. PMID:24409186