Sample records for study implicates rewired

  1. Structural basis of a rationally rewired protein-protein interface critical to bacterial signaling

    PubMed Central

    Podgornaia, Anna I.; Casino, Patricia; Marina, Alberto; Laub, Michael T.

    2013-01-01

    Summary Two-component signal transduction systems typically involve a sensor histidine kinase that specifically phosphorylates a single, cognate response regulator. This protein-protein interaction relies on molecular recognition via a small set of residues in each protein. To better understand how these residues determine the specificity of kinase-substrate interactions, we rationally rewired the interaction interface of a Thermotoga maritima two-component system, HK853-RR468, to match that found in a different two-component system, E. coli PhoR-PhoB. The rewired proteins interacted robustly with each other, but no longer interacted with the parent proteins. Analysis of the crystal structures of the wild-type and mutant protein complexes, along with a systematic mutagenesis study, reveals how individual mutations contribute to the rewiring of interaction specificity. Our approach and conclusions have implications for studies of other protein-protein interactions, protein evolution, and the design of novel protein interfaces. PMID:23954504

  2. Rewiring the connectome: Evidence and effects.

    PubMed

    Bennett, Sophie H; Kirby, Alastair J; Finnerty, Gerald T

    2018-05-01

    Neuronal connections form the physical basis for communication in the brain. Recently, there has been much interest in mapping the "connectome" to understand how brain structure gives rise to brain function, and ultimately, to behaviour. These attempts to map the connectome have largely assumed that connections are stable once formed. Recent studies, however, indicate that connections in mammalian brains may undergo rewiring during learning and experience-dependent plasticity. This suggests that the connectome is more dynamic than previously thought. To what extent can neural circuitry be rewired in the healthy adult brain? The connectome has been subdivided into multiple levels of scale, from synapses and microcircuits through to long-range tracts. Here, we examine the evidence for rewiring at each level. We then consider the role played by rewiring during learning. We conclude that harnessing rewiring offers new avenues to treat brain diseases. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Impact of constrained rewiring on network structure and node dynamics

    NASA Astrophysics Data System (ADS)

    Rattana, P.; Berthouze, L.; Kiss, I. Z.

    2014-11-01

    In this paper, we study an adaptive spatial network. We consider a susceptible-infected-susceptible (SIS) epidemic on the network, with a link or contact rewiring process constrained by spatial proximity. In particular, we assume that susceptible nodes break links with infected nodes independently of distance and reconnect at random to susceptible nodes available within a given radius. By systematically manipulating this radius we investigate the impact of rewiring on the structure of the network and characteristics of the epidemic. We adopt a step-by-step approach whereby we first study the impact of rewiring on the network structure in the absence of an epidemic, then with nodes assigned a disease status but without disease dynamics, and finally running network and epidemic dynamics simultaneously. In the case of no labeling and no epidemic dynamics, we provide both analytic and semianalytic formulas for the value of clustering achieved in the network. Our results also show that the rewiring radius and the network's initial structure have a pronounced effect on the endemic equilibrium, with increasingly large rewiring radiuses yielding smaller disease prevalence.

  4. Efficient randomization of biological networks while preserving functional characterization of individual nodes.

    PubMed

    Iorio, Francesco; Bernardo-Faura, Marti; Gobbi, Andrea; Cokelaer, Thomas; Jurman, Giuseppe; Saez-Rodriguez, Julio

    2016-12-20

    Networks are popular and powerful tools to describe and model biological processes. Many computational methods have been developed to infer biological networks from literature, high-throughput experiments, and combinations of both. Additionally, a wide range of tools has been developed to map experimental data onto reference biological networks, in order to extract meaningful modules. Many of these methods assess results' significance against null distributions of randomized networks. However, these standard unconstrained randomizations do not preserve the functional characterization of the nodes in the reference networks (i.e. their degrees and connection signs), hence including potential biases in the assessment. Building on our previous work about rewiring bipartite networks, we propose a method for rewiring any type of unweighted networks. In particular we formally demonstrate that the problem of rewiring a signed and directed network preserving its functional connectivity (F-rewiring) reduces to the problem of rewiring two induced bipartite networks. Additionally, we reformulate the lower bound to the iterations' number of the switching-algorithm to make it suitable for the F-rewiring of networks of any size. Finally, we present BiRewire3, an open-source Bioconductor package enabling the F-rewiring of any type of unweighted network. We illustrate its application to a case study about the identification of modules from gene expression data mapped on protein interaction networks, and a second one focused on building logic models from more complex signed-directed reference signaling networks and phosphoproteomic data. BiRewire3 it is freely available at https://www.bioconductor.org/packages/BiRewire/ , and it should have a broad application as it allows an efficient and analytically derived statistical assessment of results from any network biology tool.

  5. Rescue of endemic states in interconnected networks with adaptive coupling

    NASA Astrophysics Data System (ADS)

    Vazquez, F.; Serrano, M. Ángeles; Miguel, M. San

    2016-07-01

    We study the Susceptible-Infected-Susceptible model of epidemic spreading on two layers of networks interconnected by adaptive links, which are rewired at random to avoid contacts between infected and susceptible nodes at the interlayer. We find that the rewiring reduces the effective connectivity for the transmission of the disease between layers, and may even totally decouple the networks. Weak endemic states, in which the epidemics spreads when the two layers are interconnected but not in each layer separately, show a transition from the endemic to the healthy phase when the rewiring overcomes a threshold value that depends on the infection rate, the strength of the coupling and the mean connectivity of the networks. In the strong endemic scenario, in which the epidemics is able to spread on each separate network -and therefore on the interconnected system- the prevalence in each layer decreases when increasing the rewiring, arriving to single network values only in the limit of infinitely fast rewiring. We also find that rewiring amplifies finite-size effects, preventing the disease transmission between finite networks, as there is a non zero probability that the epidemics stays confined in only one network during its lifetime.

  6. Rescue of endemic states in interconnected networks with adaptive coupling

    PubMed Central

    Vazquez, F.; Serrano, M. Ángeles; Miguel, M. San

    2016-01-01

    We study the Susceptible-Infected-Susceptible model of epidemic spreading on two layers of networks interconnected by adaptive links, which are rewired at random to avoid contacts between infected and susceptible nodes at the interlayer. We find that the rewiring reduces the effective connectivity for the transmission of the disease between layers, and may even totally decouple the networks. Weak endemic states, in which the epidemics spreads when the two layers are interconnected but not in each layer separately, show a transition from the endemic to the healthy phase when the rewiring overcomes a threshold value that depends on the infection rate, the strength of the coupling and the mean connectivity of the networks. In the strong endemic scenario, in which the epidemics is able to spread on each separate network –and therefore on the interconnected system– the prevalence in each layer decreases when increasing the rewiring, arriving to single network values only in the limit of infinitely fast rewiring. We also find that rewiring amplifies finite-size effects, preventing the disease transmission between finite networks, as there is a non zero probability that the epidemics stays confined in only one network during its lifetime. PMID:27380771

  7. Localization of multilayer networks by optimized single-layer rewiring.

    PubMed

    Jalan, Sarika; Pradhan, Priodyuti

    2018-04-01

    We study localization properties of principal eigenvectors (PEVs) of multilayer networks (MNs). Starting with a multilayer network corresponding to a delocalized PEV, we rewire the network edges using an optimization technique such that the PEV of the rewired multilayer network becomes more localized. The framework allows us to scrutinize structural and spectral properties of the networks at various localization points during the rewiring process. We show that rewiring only one layer is enough to attain a MN having a highly localized PEV. Our investigation reveals that a single edge rewiring of the optimized MN can lead to the complete delocalization of a highly localized PEV. This sensitivity in the localization behavior of PEVs is accompanied with the second largest eigenvalue lying very close to the largest one. This observation opens an avenue to gain a deeper insight into the origin of PEV localization of networks. Furthermore, analysis of multilayer networks constructed using real-world social and biological data shows that the localization properties of these real-world multilayer networks are in good agreement with the simulation results for the model multilayer network. This paper is relevant to applications that require understanding propagation of perturbation in multilayer networks.

  8. Localization of multilayer networks by optimized single-layer rewiring

    NASA Astrophysics Data System (ADS)

    Jalan, Sarika; Pradhan, Priodyuti

    2018-04-01

    We study localization properties of principal eigenvectors (PEVs) of multilayer networks (MNs). Starting with a multilayer network corresponding to a delocalized PEV, we rewire the network edges using an optimization technique such that the PEV of the rewired multilayer network becomes more localized. The framework allows us to scrutinize structural and spectral properties of the networks at various localization points during the rewiring process. We show that rewiring only one layer is enough to attain a MN having a highly localized PEV. Our investigation reveals that a single edge rewiring of the optimized MN can lead to the complete delocalization of a highly localized PEV. This sensitivity in the localization behavior of PEVs is accompanied with the second largest eigenvalue lying very close to the largest one. This observation opens an avenue to gain a deeper insight into the origin of PEV localization of networks. Furthermore, analysis of multilayer networks constructed using real-world social and biological data shows that the localization properties of these real-world multilayer networks are in good agreement with the simulation results for the model multilayer network. This paper is relevant to applications that require understanding propagation of perturbation in multilayer networks.

  9. Coevolution of Cooperation and Partner Rewiring Range in Spatial Social Networks

    NASA Astrophysics Data System (ADS)

    Khoo, Tommy; Fu, Feng; Pauls, Scott

    2016-11-01

    In recent years, there has been growing interest in the study of coevolutionary games on networks. Despite much progress, little attention has been paid to spatially embedded networks, where the underlying geographic distance, rather than the graph distance, is an important and relevant aspect of the partner rewiring process. It thus remains largely unclear how individual partner rewiring range preference, local vs. global, emerges and affects cooperation. Here we explicitly address this issue using a coevolutionary model of cooperation and partner rewiring range preference in spatially embedded social networks. In contrast to local rewiring, global rewiring has no distance restriction but incurs a one-time cost upon establishing any long range link. We find that under a wide range of model parameters, global partner switching preference can coevolve with cooperation. Moreover, the resulting partner network is highly degree-heterogeneous with small average shortest path length while maintaining high clustering, thereby possessing small-world properties. We also discover an optimum availability of reputation information for the emergence of global cooperators, who form distant partnerships at a cost to themselves. From the coevolutionary perspective, our work may help explain the ubiquity of small-world topologies arising alongside cooperation in the real world.

  10. Is sternal rewiring mandatory in surgical treatment of deep sternal wound infections?

    PubMed

    Rashed, Aref; Gombocz, Karoly; Alotti, Nasri; Verzar, Zsofia

    2018-04-01

    Deep sternal wound infections (DSWIs) are a rare but serious complication after median sternotomy, and treatment success depends mainly on surgical experience. We compared treatment outcomes after conventional sternal rewiring and reconstruction with no sternal rewiring in patients with a sternal wound infection. We retrospectively enrolled patients who developed a DSWI after an open-heart procedure with median sternotomy at the Department of Cardiac Surgery, at the St. Rafael Hospital, Zalaegerszeg, Hungary, between 2012 and 2016. All patients received negative pressure wound and antibiotic therapy before surgical reconstruction. Patients were divided into groups determined by the reconstruction technique and compared. Subjects were followed up for 12 months, and the primary end-points were readmission and 90-day mortality. Among 3,177 median sternotomy cases, 60 patients developed a DSWI, 4 of whom died of sepsis before surgical treatment. Fifty-six patients underwent surgical reconstruction with conventional sternal rewiring (23 cases, 41%) or another interventions with no sternal refixation (33 cases, 59%). Eighty-one percent of sternal wound infections followed coronary bypass surgery (alone or combinated with another procedures), and 60% were diagnosed after hospital discharge. Staphylococcus aureus was cultured in 30% of all wounds and, 56.5% of cases reconstructed by sternal rewiring vs. 26.5% with no sternal rewiring, (P=0.022). Hospital readmission occurred in 63.6% of the sternal rewiring group vs. 14.7% of the no sternal rewiring group. The rate of death before wound healing or the 90 th postoperative day was 21.7% in the sternal rewiring group vs. 0% in the no sternal rewiring group. The median hospital stay was longer in the sternal rewiring group than in the other group (51 vs. 30 days, P=0.006). Sternal rewiring may be associated with a higher rate of treatment failure than other forms of treatment for sternal wound infections.

  11. Different Evolutionary Modifications as a Guide to Rewire Two-Component Systems

    PubMed Central

    Krueger, Beate; Friedrich, Torben; Förster, Frank; Bernhardt, Jörg; Gross, Roy; Dandekar, Thomas

    2012-01-01

    Two-component systems (TCS) are short signalling pathways generally occurring in prokaryotes. They frequently regulate prokaryotic stimulus responses and thus are also of interest for engineering in biotechnology and synthetic biology. The aim of this study is to better understand and describe rewiring of TCS while investigating different evolutionary scenarios. Based on large-scale screens of TCS in different organisms, this study gives detailed data, concrete alignments, and structure analysis on three general modification scenarios, where TCS were rewired for new responses and functions: (i) exchanges in the sequence within single TCS domains, (ii) exchange of whole TCS domains; (iii) addition of new components modulating TCS function. As a result, the replacement of stimulus and promotor cassettes to rewire TCS is well defined exploiting the alignments given here. The diverged TCS examples are non-trivial and the design is challenging. Designed connector proteins may also be useful to modify TCS in selected cases. PMID:22586357

  12. Epidemics in interconnected small-world networks.

    PubMed

    Liu, Meng; Li, Daqing; Qin, Pengju; Liu, Chaoran; Wang, Huijuan; Wang, Feilong

    2015-01-01

    Networks can be used to describe the interconnections among individuals, which play an important role in the spread of disease. Although the small-world effect has been found to have a significant impact on epidemics in single networks, the small-world effect on epidemics in interconnected networks has rarely been considered. Here, we study the susceptible-infected-susceptible (SIS) model of epidemic spreading in a system comprising two interconnected small-world networks. We find that the epidemic threshold in such networks decreases when the rewiring probability of the component small-world networks increases. When the infection rate is low, the rewiring probability affects the global steady-state infection density, whereas when the infection rate is high, the infection density is insensitive to the rewiring probability. Moreover, epidemics in interconnected small-world networks are found to spread at different velocities that depend on the rewiring probability.

  13. Cushing's syndrome mutant PKA L205R exhibits altered substrate specificity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lubner, Joshua M.; Dodge-Kafka, Kimberly L.; Carlson, Cathrine R.

    The PKA L205R hotspot mutation has been implicated in Cushing's syndrome through hyperactive gain-of-function PKA signaling; however, its influence on substrate specificity has not been investigated. Here, we employ the Proteomic Peptide Library (ProPeL) approach to create high-resolution models for PKA WT and PKA L205R substrate specificity. We reveal that the L205R mutation reduces canonical hydrophobic preference at the substrate P + 1 position, and increases acidic preference in downstream positions. Using these models, we designed peptide substrates that exhibit altered selectivity for specific PKA variants, and demonstrate the feasibility of selective PKA L205R loss-of-function signaling. Through these results, wemore » suggest that substrate rewiring may contribute to Cushing's syndrome disease etiology, and introduce a powerful new paradigm for investigating mutation-induced kinase substrate rewiring in human disease.« less

  14. Cushing's syndrome mutant PKA L205R exhibits altered substrate specificity

    DOE PAGES

    Lubner, Joshua M.; Dodge-Kafka, Kimberly L.; Carlson, Cathrine R.; ...

    2017-02-01

    The PKA L205R hotspot mutation has been implicated in Cushing's syndrome through hyperactive gain-of-function PKA signaling; however, its influence on substrate specificity has not been investigated. Here, we employ the Proteomic Peptide Library (ProPeL) approach to create high-resolution models for PKA WT and PKA L205R substrate specificity. We reveal that the L205R mutation reduces canonical hydrophobic preference at the substrate P + 1 position, and increases acidic preference in downstream positions. Using these models, we designed peptide substrates that exhibit altered selectivity for specific PKA variants, and demonstrate the feasibility of selective PKA L205R loss-of-function signaling. Through these results, wemore » suggest that substrate rewiring may contribute to Cushing's syndrome disease etiology, and introduce a powerful new paradigm for investigating mutation-induced kinase substrate rewiring in human disease.« less

  15. Effects of rewiring strategies on information spreading in complex dynamic networks

    NASA Astrophysics Data System (ADS)

    Ally, Abdulla F.; Zhang, Ning

    2018-04-01

    Recent advances in networks and communication services have attracted much interest to understand information spreading in social networks. Consequently, numerous studies have been devoted to provide effective and accurate models for mimicking information spreading. However, knowledge on how to spread information faster and more widely remains a contentious issue. Yet, most existing works are based on static networks which limit the reality of dynamism of entities that participate in information spreading. Using the SIR epidemic model, this study explores and compares effects of two rewiring models (Fermi-Dirac and Linear functions) on information spreading in scale free and small world networks. Our results show that for all the rewiring strategies, the spreading influence replenishes with time but stabilizes in a steady state at later time-steps. This means that information spreading takes-off during the initial spreading steps, after which the spreading prevalence settles toward its equilibrium, with majority of the population having recovered and thus, no longer affecting the spreading. Meanwhile, rewiring strategy based on Fermi-Dirac distribution function in one way or another impedes the spreading process, however, the structure of the networks mimic the spreading, even with a low spreading rate. The worst case can be when the spreading rate is extremely small. The results emphasize that despite a big role of such networks in mimicking the spreading, the role of the parameters cannot be simply ignored. Apparently, the probability of giant degree neighbors being informed grows much faster with the rewiring strategy of linear function compared to that of Fermi-Dirac distribution function. Clearly, rewiring model based on linear function generates the fastest spreading across the networks. Therefore, if we are interested in speeding up the spreading process in stochastic modeling, linear function may play a pivotal role.

  16. Measuring the Evolutionary Rewiring of Biological Networks

    PubMed Central

    Shou, Chong; Bhardwaj, Nitin; Lam, Hugo Y. K.; Yan, Koon-Kiu; Kim, Philip M.; Snyder, Michael; Gerstein, Mark B.

    2011-01-01

    We have accumulated a large amount of biological network data and expect even more to come. Soon, we anticipate being able to compare many different biological networks as we commonly do for molecular sequences. It has long been believed that many of these networks change, or “rewire”, at different rates. It is therefore important to develop a framework to quantify the differences between networks in a unified fashion. We developed such a formalism based on analogy to simple models of sequence evolution, and used it to conduct a systematic study of network rewiring on all the currently available biological networks. We found that, similar to sequences, biological networks show a decreased rate of change at large time divergences, because of saturation in potential substitutions. However, different types of biological networks consistently rewire at different rates. Using comparative genomics and proteomics data, we found a consistent ordering of the rewiring rates: transcription regulatory, phosphorylation regulatory, genetic interaction, miRNA regulatory, protein interaction, and metabolic pathway network, from fast to slow. This ordering was found in all comparisons we did of matched networks between organisms. To gain further intuition on network rewiring, we compared our observed rewirings with those obtained from simulation. We also investigated how readily our formalism could be mapped to other network contexts; in particular, we showed how it could be applied to analyze changes in a range of “commonplace” networks such as family trees, co-authorships and linux-kernel function dependencies. PMID:21253555

  17. Predicting language diversity with complex networks.

    PubMed

    Raducha, Tomasz; Gubiec, Tomasz

    2018-01-01

    We analyze the model of social interactions with coevolution of the topology and states of the nodes. This model can be interpreted as a model of language change. We propose different rewiring mechanisms and perform numerical simulations for each. Obtained results are compared with the empirical data gathered from two online databases and anthropological study of Solomon Islands. We study the behavior of the number of languages for different system sizes and we find that only local rewiring, i.e. triadic closure, is capable of reproducing results for the empirical data in a qualitative manner. Furthermore, we cancel the contradiction between previous models and the Solomon Islands case. Our results demonstrate the importance of the topology of the network, and the rewiring mechanism in the process of language change.

  18. TCA cycle rewiring fosters metabolic adaptation to oxygen restriction in skeletal muscle from rodents and humans.

    PubMed

    Capitanio, Daniele; Fania, Chiara; Torretta, Enrica; Viganò, Agnese; Moriggi, Manuela; Bravatà, Valentina; Caretti, Anna; Levett, Denny Z H; Grocott, Michael P W; Samaja, Michele; Cerretelli, Paolo; Gelfi, Cecilia

    2017-08-29

    In mammals, hypoxic stress management is under the control of the Hypoxia Inducible Factors, whose activity depends on the stabilization of their labile α subunit. In particular, the skeletal muscle appears to be able to react to changes in substrates and O 2 delivery by tuning its metabolism. The present study provides a comprehensive overview of skeletal muscle metabolic adaptation to hypoxia in mice and in human subjects exposed for 7/9 and 19 days to high altitude levels. The investigation was carried out combining proteomics, qRT-PCR mRNA transcripts analysis, and enzyme activities assessment in rodents, and protein detection by antigen antibody reactions in humans and rodents. Results indicate that the skeletal muscle react to a decreased O 2 delivery by rewiring the TCA cycle. The first TCA rewiring occurs in mice in 2-day hypoxia and is mediated by cytosolic malate whereas in 10-day hypoxia the rewiring is mediated by Idh1 and Fasn, supported by glutamine and HIF-2α increments. The combination of these specific anaplerotic steps can support energy demand despite HIFs degradation. These results were confirmed in human subjects, demonstrating that the TCA double rewiring represents an essential factor for the maintenance of muscle homeostasis during adaptation to hypoxia.

  19. Predicting language diversity with complex networks

    PubMed Central

    Gubiec, Tomasz

    2018-01-01

    We analyze the model of social interactions with coevolution of the topology and states of the nodes. This model can be interpreted as a model of language change. We propose different rewiring mechanisms and perform numerical simulations for each. Obtained results are compared with the empirical data gathered from two online databases and anthropological study of Solomon Islands. We study the behavior of the number of languages for different system sizes and we find that only local rewiring, i.e. triadic closure, is capable of reproducing results for the empirical data in a qualitative manner. Furthermore, we cancel the contradiction between previous models and the Solomon Islands case. Our results demonstrate the importance of the topology of the network, and the rewiring mechanism in the process of language change. PMID:29702699

  20. Rewiring of the inferred protein interactome during blood development studied with the tool PPICompare.

    PubMed

    Will, Thorsten; Helms, Volkhard

    2017-04-04

    Differential analysis of cellular conditions is a key approach towards understanding the consequences and driving causes behind biological processes such as developmental transitions or diseases. The progress of whole-genome expression profiling enabled to conveniently capture the state of a cell's transcriptome and to detect the characteristic features that distinguish cells in specific conditions. In contrast, mapping the physical protein interactome for many samples is experimentally infeasible at the moment. For the understanding of the whole system, however, it is equally important how the interactions of proteins are rewired between cellular states. To overcome this deficiency, we recently showed how condition-specific protein interaction networks that even consider alternative splicing can be inferred from transcript expression data. Here, we present the differential network analysis tool PPICompare that was specifically designed for isoform-sensitive protein interaction networks. Besides detecting significant rewiring events between the interactomes of grouped samples, PPICompare infers which alterations to the transcriptome caused each rewiring event and what is the minimal set of alterations necessary to explain all between-group changes. When applied to the development of blood cells, we verified that a reasonable amount of rewiring events were reported by the tool and found that differential gene expression was the major determinant of cellular adjustments to the interactome. Alternative splicing events were consistently necessary in each developmental step to explain all significant alterations and were especially important for rewiring in the context of transcriptional control. Applying PPICompare enabled us to investigate the dynamics of the human protein interactome during developmental transitions. A platform-independent implementation of the tool PPICompare is available at https://sourceforge.net/projects/ppicompare/ .

  1. Distributed rewiring model for complex networking: The effect of local rewiring rules on final structural properties.

    PubMed

    López Chavira, Magali Alexander; Marcelín-Jiménez, Ricardo

    2017-01-01

    The study of complex networks has become an important subject over the last decades. It has been shown that these structures have special features, such as their diameter, or their average path length, which in turn are the explanation of some functional properties in a system such as its fault tolerance, its fragility before attacks, or the ability to support routing procedures. In the present work, we study some of the forces that help a network to evolve to the point where structural properties are settled. Although our work is mainly focused on the possibility of applying our ideas to Information and Communication Technologies systems, we consider that our results may contribute to understanding different scenarios where complex networks have become an important modeling tool. Using a discrete event simulator, we get each node to discover the shortcuts that may connect it with regions away from its local environment. Based on this partial knowledge, each node can rewire some of its links, which allows modifying the topology of the entire underlying graph to achieve new structural properties. We proposed a distributed rewiring model that creates networks with features similar to those found in complex networks. Although each node acts in a distributed way and seeking to reduce only the trajectories of its packets, we observed a decrease of diameter and an increase in clustering coefficient in the global structure compared to the initial graph. Furthermore, we can find different final structures depending on slight changes in the local rewiring rules.

  2. miR2Pathway: A novel analytical method to discover MicroRNA-mediated dysregulated pathways involved in hepatocellular carcinoma.

    PubMed

    Li, Chaoxing; Dinu, Valentin

    2018-05-01

    MicroRNAs (miRNAs) are small, non-coding RNAs involved in the regulation of gene expression at a post-transcriptional level. Recent studies have shown miRNAs as key regulators of a variety of biological processes, such as proliferation, differentiation, apoptosis, metabolism, etc. Aberrantly expressed miRNAs influence individual gene expression level, but rewired miRNA-mRNA connections can influence the activity of biological pathways. Here, we define rewired miRNA-mRNA connections as the differential (rewiring) effects on the activity of biological pathways between hepatocellular carcinoma (HCC) and normal phenotypes. Our work presented here uses a PageRank-based approach to measure the degree of miRNA-mediated dysregulation of biological pathways between HCC and normal samples based on rewired miRNA-mRNA connections. In our study, we regard the degree of miRNA-mediated dysregulation of biological pathways as disease risk of biological pathways. Therefore, we propose a new method, miR2Pathway, to measure and rank the degree of miRNA-mediated dysregulation of biological pathways by measuring the total differential influence of miRNAs on the activity of pathways between HCC and normal states. miR2Pathway proposed here systematically shows the first evidence for a mechanism of biological pathways being dysregulated by rewired miRNA-mRNA connections, and provides new insight into exploring mechanisms behind HCC. Thus, miR2Pathway is a novel method to identify and rank miRNA-dysregulated pathways in HCC. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Infection dynamics on spatial small-world network models

    NASA Astrophysics Data System (ADS)

    Iotti, Bryan; Antonioni, Alberto; Bullock, Seth; Darabos, Christian; Tomassini, Marco; Giacobini, Mario

    2017-11-01

    The study of complex networks, and in particular of social networks, has mostly concentrated on relational networks, abstracting the distance between nodes. Spatial networks are, however, extremely relevant in our daily lives, and a large body of research exists to show that the distances between nodes greatly influence the cost and probability of establishing and maintaining a link. A random geometric graph (RGG) is the main type of synthetic network model used to mimic the statistical properties and behavior of many social networks. We propose a model, called REDS, that extends energy-constrained RGGs to account for the synergic effect of sharing the cost of a link with our neighbors, as is observed in real relational networks. We apply both the standard Watts-Strogatz rewiring procedure and another method that conserves the degree distribution of the network. The second technique was developed to eliminate unwanted forms of spatial correlation between the degree of nodes that are affected by rewiring, limiting the effect on other properties such as clustering and assortativity. We analyze both the statistical properties of these two network types and their epidemiological behavior when used as a substrate for a standard susceptible-infected-susceptible compartmental model. We consider and discuss the differences in properties and behavior between RGGs and REDS as rewiring increases and as infection parameters are changed. We report considerable differences both between the network types and, in the case of REDS, between the two rewiring schemes. We conclude that REDS represent, with the application of these rewiring mechanisms, extremely useful and interesting tools in the study of social and epidemiological phenomena in synthetic complex networks.

  4. Effects of local and global network connectivity on synergistic epidemics

    NASA Astrophysics Data System (ADS)

    Broder-Rodgers, David; Pérez-Reche, Francisco J.; Taraskin, Sergei N.

    2015-12-01

    Epidemics in networks can be affected by cooperation in transmission of infection and also connectivity between nodes. An interplay between these two properties and their influence on epidemic spread are addressed in the paper. A particular type of cooperative effects (called synergy effects) is considered, where the transmission rate between a pair of nodes depends on the number of infected neighbors. The connectivity effects are studied by constructing networks of different topology, starting with lattices with only local connectivity and then with networks that have both local and global connectivity obtained by random bond-rewiring to nodes within a certain distance. The susceptible-infected-removed epidemics were found to exhibit several interesting effects: (i) for epidemics with strong constructive synergy spreading in networks with high local connectivity, the bond rewiring has a negative role in epidemic spread, i.e., it reduces invasion probability; (ii) in contrast, for epidemics with destructive or weak constructive synergy spreading on networks of arbitrary local connectivity, rewiring helps epidemics to spread; (iii) and, finally, rewiring always enhances the spread of epidemics, independent of synergy, if the local connectivity is low.

  5. Effects of local and global network connectivity on synergistic epidemics.

    PubMed

    Broder-Rodgers, David; Pérez-Reche, Francisco J; Taraskin, Sergei N

    2015-12-01

    Epidemics in networks can be affected by cooperation in transmission of infection and also connectivity between nodes. An interplay between these two properties and their influence on epidemic spread are addressed in the paper. A particular type of cooperative effects (called synergy effects) is considered, where the transmission rate between a pair of nodes depends on the number of infected neighbors. The connectivity effects are studied by constructing networks of different topology, starting with lattices with only local connectivity and then with networks that have both local and global connectivity obtained by random bond-rewiring to nodes within a certain distance. The susceptible-infected-removed epidemics were found to exhibit several interesting effects: (i) for epidemics with strong constructive synergy spreading in networks with high local connectivity, the bond rewiring has a negative role in epidemic spread, i.e., it reduces invasion probability; (ii) in contrast, for epidemics with destructive or weak constructive synergy spreading on networks of arbitrary local connectivity, rewiring helps epidemics to spread; (iii) and, finally, rewiring always enhances the spread of epidemics, independent of synergy, if the local connectivity is low.

  6. Quantum transport with long-range steps on Watts-Strogatz networks

    NASA Astrophysics Data System (ADS)

    Wang, Yan; Xu, Xin-Jian

    2016-07-01

    We study transport dynamics of quantum systems with long-range steps on the Watts-Strogatz network (WSN) which is generated by rewiring links of the regular ring. First, we probe physical systems modeled by the discrete nonlinear schrödinger (DNLS) equation. Using the localized initial condition, we compute the time-averaged occupation probability of the initial site, which is related to the nonlinearity, the long-range steps and rewiring links. Self-trapping transitions occur at large (small) nonlinear parameters for coupling ɛ=-1 (1), as long-range interactions are intensified. The structure disorder induced by random rewiring, however, has dual effects for ɛ=-1 and inhibits the self-trapping behavior for ɛ=1. Second, we investigate continuous-time quantum walks (CTQW) on the regular ring ruled by the discrete linear schrödinger (DLS) equation. It is found that only the presence of the long-range steps does not affect the efficiency of the coherent exciton transport, while only the allowance of random rewiring enhances the partial localization. If both factors are considered simultaneously, localization is greatly strengthened, and the transport becomes worse.

  7. Regulatory network rewiring for secondary metabolism in Arabidopsis thaliana under various conditions

    PubMed Central

    2014-01-01

    Background Plant secondary metabolites are critical to various biological processes. However, the regulations of these metabolites are complex because of regulatory rewiring or crosstalk. To unveil how regulatory behaviors on secondary metabolism reshape biological processes, we constructed and analyzed a dynamic regulatory network of secondary metabolic pathways in Arabidopsis. Results The dynamic regulatory network was constructed through integrating co-expressed gene pairs and regulatory interactions. Regulatory interactions were either predicted by conserved transcription factor binding sites (TFBSs) or proved by experiments. We found that integrating two data (co-expression and predicted regulatory interactions) enhanced the number of highly confident regulatory interactions by over 10% compared with using single data. The dynamic changes of regulatory network systematically manifested regulatory rewiring to explain the mechanism of regulation, such as in terpenoids metabolism, the regulatory crosstalk of RAV1 (AT1G13260) and ATHB1 (AT3G01470) on HMG1 (hydroxymethylglutaryl-CoA reductase, AT1G76490); and regulation of RAV1 on epoxysqualene biosynthesis and sterol biosynthesis. Besides, we investigated regulatory rewiring with expression, network topology and upstream signaling pathways. Regulatory rewiring was revealed by the variability of genes’ expression: pathway genes and transcription factors (TFs) were significantly differentially expressed under different conditions (such as terpenoids biosynthetic genes in tissue experiments and E2F/DP family members in genotype experiments). Both network topology and signaling pathways supported regulatory rewiring. For example, we discovered correlation among the numbers of pathway genes, TFs and network topology: one-gene pathways (such as δ-carotene biosynthesis) were regulated by a fewer TFs, and were not critical to metabolic network because of their low degrees in topology. Upstream signaling pathways of 50 TFs were identified to comprehend the underlying mechanism of TFs’ regulatory rewiring. Conclusion Overall, this dynamic regulatory network largely improves the understanding of perplexed regulatory rewiring in secondary metabolism in Arabidopsis. PMID:24993737

  8. Measuring partner choice in plant-pollinator networks: using null models to separate rewiring and fidelity from chance.

    PubMed

    MacLeod, Molly; Genung, Mark A; Ascher, John S; Winfree, Rachael

    2016-11-01

    Recent studies of mutualistic networks show that interactions between partners change across years. Both biological mechanisms and chance could drive these patterns, but the relative importance of these factors has not been separated. We established a field experiment consisting of 102 monospecific plots of 17 native plant species, from which we collected 6713 specimens of 52 bee species over four years. We used these data and a null model to determine whether bee species' foraging choices varied more or less over time beyond the variation expected by chance. Thus we provide the first quantitative definition of rewiring and fidelity as these terms are used in the literature on interaction networks. All 52 bee species varied in plant partner choice across years, but for 27 species this variation was indistinguishable from random partner choice. Another 11 species showed rewiring, varying more across years than expected by chance, while 14 species showed fidelity, indicating that they both prefer certain plant species and are consistent in those preferences across years. Our study shows that rewiring and fidelity both exist in mutualist networks, but that once sampling effects have been accounted for, they are less common than has been reported in the ecological literature. © 2016 by the Ecological Society of America.

  9. TRACING CO-REGULATORY NETWORK DYNAMICS IN NOISY, SINGLE-CELL TRANSCRIPTOME TRAJECTORIES.

    PubMed

    Cordero, Pablo; Stuart, Joshua M

    2017-01-01

    The availability of gene expression data at the single cell level makes it possible to probe the molecular underpinnings of complex biological processes such as differentiation and oncogenesis. Promising new methods have emerged for reconstructing a progression 'trajectory' from static single-cell transcriptome measurements. However, it remains unclear how to adequately model the appreciable level of noise in these data to elucidate gene regulatory network rewiring. Here, we present a framework called Single Cell Inference of MorphIng Trajectories and their Associated Regulation (SCIMITAR) that infers progressions from static single-cell transcriptomes by employing a continuous parametrization of Gaussian mixtures in high-dimensional curves. SCIMITAR yields rich models from the data that highlight genes with expression and co-expression patterns that are associated with the inferred progression. Further, SCIMITAR extracts regulatory states from the implicated trajectory-evolvingco-expression networks. We benchmark the method on simulated data to show that it yields accurate cell ordering and gene network inferences. Applied to the interpretation of a single-cell human fetal neuron dataset, SCIMITAR finds progression-associated genes in cornerstone neural differentiation pathways missed by standard differential expression tests. Finally, by leveraging the rewiring of gene-gene co-expression relations across the progression, the method reveals the rise and fall of co-regulatory states and trajectory-dependent gene modules. These analyses implicate new transcription factors in neural differentiation including putative co-factors for the multi-functional NFAT pathway.

  10. Coevolution of game and network structure with adjustable linking

    NASA Astrophysics Data System (ADS)

    Qin, Shao-Meng; Zhang, Guo-Yong; Chen, Yong

    2009-12-01

    Most papers about the evolutionary game on graph assume the statistic network structure. However, in the real world, social interaction could change the relationship among people. And the change of social structure will also affect people’s strategies. We build a coevolution model of prisoner’s dilemma game and network structure to study the dynamic interaction in the real world. Differing from other coevolution models, players rewire their network connections according to the density of cooperation and other players’ payoffs. We use a parameter α to control the effect of payoff in the process of rewiring. Based on the asynchronous update rule and Monte Carlo simulation, we find that, when players prefer to rewire their links to those who are richer, the temptation can increase the cooperation density.

  11. Fast randomization of large genomic datasets while preserving alteration counts.

    PubMed

    Gobbi, Andrea; Iorio, Francesco; Dawson, Kevin J; Wedge, David C; Tamborero, David; Alexandrov, Ludmil B; Lopez-Bigas, Nuria; Garnett, Mathew J; Jurman, Giuseppe; Saez-Rodriguez, Julio

    2014-09-01

    Studying combinatorial patterns in cancer genomic datasets has recently emerged as a tool for identifying novel cancer driver networks. Approaches have been devised to quantify, for example, the tendency of a set of genes to be mutated in a 'mutually exclusive' manner. The significance of the proposed metrics is usually evaluated by computing P-values under appropriate null models. To this end, a Monte Carlo method (the switching-algorithm) is used to sample simulated datasets under a null model that preserves patient- and gene-wise mutation rates. In this method, a genomic dataset is represented as a bipartite network, to which Markov chain updates (switching-steps) are applied. These steps modify the network topology, and a minimal number of them must be executed to draw simulated datasets independently under the null model. This number has previously been deducted empirically to be a linear function of the total number of variants, making this process computationally expensive. We present a novel approximate lower bound for the number of switching-steps, derived analytically. Additionally, we have developed the R package BiRewire, including new efficient implementations of the switching-algorithm. We illustrate the performances of BiRewire by applying it to large real cancer genomics datasets. We report vast reductions in time requirement, with respect to existing implementations/bounds and equivalent P-value computations. Thus, we propose BiRewire to study statistical properties in genomic datasets, and other data that can be modeled as bipartite networks. BiRewire is available on BioConductor at http://www.bioconductor.org/packages/2.13/bioc/html/BiRewire.html. Supplementary data are available at Bioinformatics online. © The Author 2014. Published by Oxford University Press.

  12. Impact of Bounded Noise and Rewiring on the Formation and Instability of Spiral Waves in a Small-World Network of Hodgkin-Huxley Neurons.

    PubMed

    Yao, Yuangen; Deng, Haiyou; Ma, Chengzhang; Yi, Ming; Ma, Jun

    2017-01-01

    Spiral waves are observed in the chemical, physical and biological systems, and the emergence of spiral waves in cardiac tissue is linked to some diseases such as heart ventricular fibrillation and epilepsy; thus it has importance in theoretical studies and potential medical applications. Noise is inevitable in neuronal systems and can change the electrical activities of neuron in different ways. Many previous theoretical studies about the impacts of noise on spiral waves focus an unbounded Gaussian noise and even colored noise. In this paper, the impacts of bounded noise and rewiring of network on the formation and instability of spiral waves are discussed in small-world (SW) network of Hodgkin-Huxley (HH) neurons through numerical simulations, and possible statistical analysis will be carried out. Firstly, we present SW network of HH neurons subjected to bounded noise. Then, it is numerically demonstrated that bounded noise with proper intensity σ, amplitude A, or frequency f can facilitate the formation of spiral waves when rewiring probability p is below certain thresholds. In other words, bounded noise-induced resonant behavior can occur in the SW network of neurons. In addition, rewiring probability p always impairs spiral waves, while spiral waves are confirmed to be robust for small p, thus shortcut-induced phase transition of spiral wave with the increase of p is induced. Furthermore, statistical factors of synchronization are calculated to discern the phase transition of spatial pattern, and it is confirmed that larger factor of synchronization is approached with increasing of rewiring probability p, and the stability of spiral wave is destroyed.

  13. Network rewiring dynamics with convergence towards a star network

    PubMed Central

    Dick, G.; Parry, M.

    2016-01-01

    Network rewiring as a method for producing a range of structures was first introduced in 1998 by Watts & Strogatz (Nature 393, 440–442. (doi:10.1038/30918)). This approach allowed a transition from regular through small-world to a random network. The subsequent interest in scale-free networks motivated a number of methods for developing rewiring approaches that converged to scale-free networks. This paper presents a rewiring algorithm (RtoS) for undirected, non-degenerate, fixed size networks that transitions from regular, through small-world and scale-free to star-like networks. Applications of the approach to models for the spread of infectious disease and fixation time for a simple genetics model are used to demonstrate the efficacy and application of the approach. PMID:27843396

  14. Network rewiring dynamics with convergence towards a star network.

    PubMed

    Whigham, P A; Dick, G; Parry, M

    2016-10-01

    Network rewiring as a method for producing a range of structures was first introduced in 1998 by Watts & Strogatz ( Nature 393 , 440-442. (doi:10.1038/30918)). This approach allowed a transition from regular through small-world to a random network. The subsequent interest in scale-free networks motivated a number of methods for developing rewiring approaches that converged to scale-free networks. This paper presents a rewiring algorithm (RtoS) for undirected, non-degenerate, fixed size networks that transitions from regular, through small-world and scale-free to star-like networks. Applications of the approach to models for the spread of infectious disease and fixation time for a simple genetics model are used to demonstrate the efficacy and application of the approach.

  15. Coevolutionary network approach to cultural dynamics controlled by intolerance

    NASA Astrophysics Data System (ADS)

    Gracia-Lázaro, Carlos; Quijandría, Fernando; Hernández, Laura; Floría, Luis Mario; Moreno, Yamir

    2011-12-01

    Starting from Axelrod's model of cultural dissemination, we introduce a rewiring probability, enabling agents to cut the links with their unfriendly neighbors if their cultural similarity is below a tolerance parameter. For low values of tolerance, rewiring promotes the convergence to a frozen monocultural state. However, intermediate tolerance values prevent rewiring once the network is fragmented, resulting in a multicultural society even for values of initial cultural diversity in which the original Axelrod model reaches globalization.

  16. Explicit instructions and consolidation promote rewiring of automatic behaviors in the human mind.

    PubMed

    Szegedi-Hallgató, Emese; Janacsek, Karolina; Vékony, Teodóra; Tasi, Lia Andrea; Kerepes, Leila; Hompoth, Emőke Adrienn; Bálint, Anna; Németh, Dezső

    2017-06-29

    One major challenge in human behavior and brain sciences is to understand how we can rewire already existing perceptual, motor, cognitive, and social skills or habits. Here we aimed to characterize one aspect of rewiring, namely, how we can update our knowledge of sequential/statistical regularities when they change. The dynamics of rewiring was explored from learning to consolidation using a unique experimental design which is suitable to capture the effect of implicit and explicit processing and the proactive and retroactive interference. Our results indicate that humans can rewire their knowledge of such regularities incidentally, and consolidation has a critical role in this process. Moreover, old and new knowledge can coexist, leading to effective adaptivity of the human mind in the changing environment, although the execution of the recently acquired knowledge may be more fluent than the execution of the previously learned one. These findings can contribute to a better understanding of the cognitive processes underlying behavior change, and can provide insights into how we can boost behavior change in various contexts, such as sports, educational settings or psychotherapy.

  17. Robust criticality of an Ising model on rewired directed networks

    NASA Astrophysics Data System (ADS)

    Lipowski, Adam; Gontarek, Krzysztof; Lipowska, Dorota

    2015-06-01

    We show that preferential rewiring, which is supposed to mimic the behavior of financial agents, changes a directed-network Ising ferromagnet with a single critical point into a model with robust critical behavior. For the nonrewired random graph version, due to a constant number of out-links for each site, we write a simple mean-field-like equation describing the behavior of magnetization; we argue that it is exact and support the claim with extensive Monte Carlo simulations. For the rewired version, this equation is obeyed only at low temperatures. At higher temperatures, rewiring leads to strong heterogeneities, which apparently invalidates mean-field arguments and induces large fluctuations and divergent susceptibility. Such behavior is traced back to the formation of a relatively small core of agents that influence the entire system.

  18. Epidemics on adaptive networks with geometric constraints

    NASA Astrophysics Data System (ADS)

    Shaw, Leah; Schwartz, Ira

    2008-03-01

    When a population is faced with an epidemic outbreak, individuals may modify their social behavior to avoid exposure to the disease. Recent work has considered models in which the contact network is rewired dynamically so that susceptibles avoid contact with infectives. We consider extensions in which the rewiring is subject to constraints that preserve key properties of the social network structure. Constraining to a fixed degree distribution destroys previously observed bistable behavior. The most effective rewiring strategy is found to depend on the spreading rate.

  19. Deliberate Science - Continuum Magazine | NREL

    Science.gov Websites

    potential to revolutionize powering vehicles. Rewiring Algae's Catalytic Circuits Rewiring Algae's Catalytic applications. Singlet Fission's Two-for-One Potential Singlet Fission's Two-for-One Potential NREL scientists

  20. Cascading failures with local load redistribution in interdependent Watts-Strogatz networks

    NASA Astrophysics Data System (ADS)

    Hong, Chen; Zhang, Jun; Du, Wen-Bo; Sallan, Jose Maria; Lordan, Oriol

    2016-05-01

    Cascading failures of loads in isolated networks have been studied extensively over the last decade. Since 2010, such research has extended to interdependent networks. In this paper, we study cascading failures with local load redistribution in interdependent Watts-Strogatz (WS) networks. The effects of rewiring probability and coupling strength on the resilience of interdependent WS networks have been extensively investigated. It has been found that, for small values of the tolerance parameter, interdependent networks are more vulnerable as rewiring probability increases. For larger values of the tolerance parameter, the robustness of interdependent networks firstly decreases and then increases as rewiring probability increases. Coupling strength has a different impact on robustness. For low values of coupling strength, the resilience of interdependent networks decreases with the increment of the coupling strength until it reaches a certain threshold value. For values of coupling strength above this threshold, the opposite effect is observed. Our results are helpful to understand and design resilient interdependent networks.

  1. Network evolution by nonlinear preferential rewiring of edges

    NASA Astrophysics Data System (ADS)

    Xu, Xin-Jian; Hu, Xiao-Ming; Zhang, Li-Jie

    2011-06-01

    The mathematical framework for small-world networks proposed in a seminal paper by Watts and Strogatz sparked a widespread interest in modeling complex networks in the past decade. However, most of research contributing to static models is in contrast to real-world dynamic networks, such as social and biological networks, which are characterized by rearrangements of connections among agents. In this paper, we study dynamic networks evolved by nonlinear preferential rewiring of edges. The total numbers of vertices and edges of the network are conserved, but edges are continuously rewired according to the nonlinear preference. Assuming power-law kernels with exponents α and β, the network structures in stationary states display a distinct behavior, depending only on β. For β>1, the network is highly heterogeneous with the emergence of starlike structures. For β<1, the network is widely homogeneous with a typical connectivity. At β=1, the network is scale free with an exponential cutoff.

  2. Metabolic pathway rewiring in engineered cyanobacteria for solar-to-chemical and solar-to-fuel production from CO2.

    PubMed

    Woo, Han Min

    2018-01-01

    Photoautotrophic cyanobacteria have been developed to convert CO 2 to valuable chemicals and fuels as solar-to-chemical (S2C) and solar-to-fuel (S2F) platforms. Here, I describe the rewiring of the metabolic pathways in cyanobacteria to better understand the endogenous carbon flux and to enhance the yield of heterologous products. The plasticity of the cyanobacterial metabolism has been proposed to be advantageous for the development of S2C and S2F processes. The rewiring of the sugar catabolism and of the phosphoketolase pathway in the central cyanobacterial metabolism allowed for an enhancement in the level of target products by redirecting the carbon fluxes. Thus, metabolic pathway rewiring can promote the development of more efficient cyanobacterial cell factories for the generation of feasible S2C and S2F platforms.

  3. Emergence of synchronization and regularity in firing patterns in time-varying neural hypernetworks

    NASA Astrophysics Data System (ADS)

    Rakshit, Sarbendu; Bera, Bidesh K.; Ghosh, Dibakar; Sinha, Sudeshna

    2018-05-01

    We study synchronization of dynamical systems coupled in time-varying network architectures, composed of two or more network topologies, corresponding to different interaction schemes. As a representative example of this class of time-varying hypernetworks, we consider coupled Hindmarsh-Rose neurons, involving two distinct types of networks, mimicking interactions that occur through the electrical gap junctions and the chemical synapses. Specifically, we consider the connections corresponding to the electrical gap junctions to form a small-world network, while the chemical synaptic interactions form a unidirectional random network. Further, all the connections in the hypernetwork are allowed to change in time, modeling a more realistic neurobiological scenario. We model this time variation by rewiring the links stochastically with a characteristic rewiring frequency f . We find that the coupling strength necessary to achieve complete neuronal synchrony is lower when the links are switched rapidly. Further, the average time required to reach the synchronized state decreases as synaptic coupling strength and/or rewiring frequency increases. To quantify the local stability of complete synchronous state we use the Master Stability Function approach, and for global stability we employ the concept of basin stability. The analytically derived necessary condition for synchrony is in excellent agreement with numerical results. Further we investigate the resilience of the synchronous states with respect to increasing network size, and we find that synchrony can be maintained up to larger network sizes by increasing either synaptic strength or rewiring frequency. Last, we find that time-varying links not only promote complete synchronization, but also have the capacity to change the local dynamics of each single neuron. Specifically, in a window of rewiring frequency and synaptic coupling strength, we observe that the spiking behavior becomes more regular.

  4. Crossover between structured and well-mixed networks in an evolutionary prisoner's dilemma game

    NASA Astrophysics Data System (ADS)

    Dai, Qionglin; Cheng, Hongyan; Li, Haihong; Li, Yuting; Zhang, Mei; Yang, Junzhong

    2011-07-01

    In a spatial evolutionary prisoner’s dilemma game (PDG), individuals interact with their neighbors and update their strategies according to some rules. As is well known, cooperators are destined to become extinct in a well-mixed population, whereas they could emerge and be sustained on a structured network. In this work, we introduce a simple model to investigate the crossover between a structured network and a well-mixed one in an evolutionary PDG. In the model, each link j is designated a rewiring parameter τj, which defines the time interval between two successive rewiring events for link j. By adjusting the rewiring parameter τ (the mean time interval for any link in the network), we could change a structured network into a well-mixed one. For the link rewiring events, three situations are considered: one synchronous situation and two asynchronous situations. Simulation results show that there are three regimes of τ: large τ where the density of cooperators ρc rises to ρc,∞ (the value of ρc for the case without link rewiring), small τ where the mean-field description for a well-mixed network is applicable, and moderate τ where the crossover between a structured network and a well-mixed one happens.

  5. The Nutrient-Sensing Hexosamine Biosynthetic Pathway as the Hub of Cancer Metabolic Rewiring.

    PubMed

    Chiaradonna, Ferdinando; Ricciardiello, Francesca; Palorini, Roberta

    2018-06-02

    Alterations in glucose and glutamine utilizing pathways and in fatty acid metabolism are currently considered the most significant and prevalent metabolic changes observed in almost all types of tumors. Glucose, glutamine and fatty acids are the substrates for the hexosamine biosynthetic pathway (HBP). This metabolic pathway generates the "sensing molecule" UDP- N -Acetylglucosamine (UDP-Glc N Ac). UDP-Glc N Ac is the substrate for the enzymes involved in protein N - and O -glycosylation, two important post-translational modifications (PTMs) identified in several proteins localized in the extracellular space, on the cell membrane and in the cytoplasm, nucleus and mitochondria. Since protein glycosylation controls several key aspects of cell physiology, aberrant protein glycosylation has been associated with different human diseases, including cancer. Here we review recent evidence indicating the tight association between the HBP flux and cell metabolism, with particular emphasis on the post-transcriptional and transcriptional mechanisms regulated by the HBP that may cause the metabolic rewiring observed in cancer. We describe the implications of both protein O - and N -glycosylation in cancer cell metabolism and bioenergetics; focusing our attention on the effect of these PTMs on nutrient transport and on the transcriptional regulation and function of cancer-specific metabolic pathways.

  6. Recurrent rewiring and emergence of RNA regulatory networks.

    PubMed

    Wilinski, Daniel; Buter, Natascha; Klocko, Andrew D; Lapointe, Christopher P; Selker, Eric U; Gasch, Audrey P; Wickens, Marvin

    2017-04-04

    Alterations in regulatory networks contribute to evolutionary change. Transcriptional networks are reconfigured by changes in the binding specificity of transcription factors and their cognate sites. The evolution of RNA-protein regulatory networks is far less understood. The PUF (Pumilio and FBF) family of RNA regulatory proteins controls the translation, stability, and movements of hundreds of mRNAs in a single species. We probe the evolution of PUF-RNA networks by direct identification of the mRNAs bound to PUF proteins in budding and filamentous fungi and by computational analyses of orthologous RNAs from 62 fungal species. Our findings reveal that PUF proteins gain and lose mRNAs with related and emergent biological functions during evolution. We demonstrate at least two independent rewiring events for PUF3 orthologs, independent but convergent evolution of PUF4/5 binding specificity and the rewiring of the PUF4/5 regulons in different fungal lineages. These findings demonstrate plasticity in RNA regulatory networks and suggest ways in which their rewiring occurs.

  7. Metabolic network rewiring of propionate flux compensates vitamin B12 deficiency in C. elegans

    PubMed Central

    Watson, Emma; Olin-Sandoval, Viridiana; Hoy, Michael J; Li, Chi-Hua; Louisse, Timo; Yao, Victoria; Mori, Akihiro; Holdorf, Amy D; Troyanskaya, Olga G; Ralser, Markus; Walhout, Albertha JM

    2016-01-01

    Metabolic network rewiring is the rerouting of metabolism through the use of alternate enzymes to adjust pathway flux and accomplish specific anabolic or catabolic objectives. Here, we report the first characterization of two parallel pathways for the breakdown of the short chain fatty acid propionate in Caenorhabditis elegans. Using genetic interaction mapping, gene co-expression analysis, pathway intermediate quantification and carbon tracing, we uncover a vitamin B12-independent propionate breakdown shunt that is transcriptionally activated on vitamin B12 deficient diets, or under genetic conditions mimicking the human diseases propionic- and methylmalonic acidemia, in which the canonical B12-dependent propionate breakdown pathway is blocked. Our study presents the first example of transcriptional vitamin-directed metabolic network rewiring to promote survival under vitamin deficiency. The ability to reroute propionate breakdown according to B12 availability may provide C. elegans with metabolic plasticity and thus a selective advantage on different diets in the wild. DOI: http://dx.doi.org/10.7554/eLife.17670.001 PMID:27383050

  8. Interaction rewiring and the rapid turnover of plant-pollinator networks.

    PubMed

    CaraDonna, Paul J; Petry, William K; Brennan, Ross M; Cunningham, James L; Bronstein, Judith L; Waser, Nickolas M; Sanders, Nathan J

    2017-03-01

    Whether species interactions are static or change over time has wide-reaching ecological and evolutionary consequences. However, species interaction networks are typically constructed from temporally aggregated interaction data, thereby implicitly assuming that interactions are fixed. This approach has advanced our understanding of communities, but it obscures the timescale at which interactions form (or dissolve) and the drivers and consequences of such dynamics. We address this knowledge gap by quantifying the within-season turnover of plant-pollinator interactions from weekly censuses across 3 years in a subalpine ecosystem. Week-to-week turnover of interactions (1) was high, (2) followed a consistent seasonal progression in all years of study and (3) was dominated by interaction rewiring (the reassembly of interactions among species). Simulation models revealed that species' phenologies and relative abundances constrained both total interaction turnover and rewiring. Our findings reveal the diversity of species interactions that may be missed when the temporal dynamics of networks are ignored. © 2017 John Wiley & Sons Ltd/CNRS.

  9. Quarantine-generated phase transition in epidemic spreading

    NASA Astrophysics Data System (ADS)

    Lagorio, C.; Dickison, M.; Vazquez, F.; Braunstein, L. A.; Macri, P. A.; Migueles, M. V.; Havlin, S.; Stanley, H. E.

    2011-02-01

    We study the critical effect of quarantine on the propagation of epidemics on an adaptive network of social contacts. For this purpose, we analyze the susceptible-infected-recovered model in the presence of quarantine, where susceptible individuals protect themselves by disconnecting their links to infected neighbors with probability w and reconnecting them to other susceptible individuals chosen at random. Starting from a single infected individual, we show by an analytical approach and simulations that there is a phase transition at a critical rewiring (quarantine) threshold wc separating a phase (w

  10. Quarantine generated phase transition in epidemic spreading

    NASA Astrophysics Data System (ADS)

    Dicksion, Mark; Lagorio, Cecilia; Vazquez, F.; Braunstein, L.; Macri, P. A.; Migueles, M. V.; Havlin, S.; Stanley, H. E.

    2011-03-01

    We study the critical effect of quarantine on the propagation of epidemics on an adaptive network of social contacts. For this purpose, we analyze the susceptible-infected-recovered (SIR) model in the presence of quarantine, where susceptible individuals protect themselves by disconnecting their links to infected neighbors with probability w, and reconnecting them to other susceptible individuals chosen at random. Starting from a single infected individual, we show by an analytical approach and simulations that there is a phase transition at a critical rewiring (quarantine) threshold wc separating a phase (w =wc) where the disease does not spread out. We find that in our model the topology of the network strongly affects the size of the propagation, and that wc increases with the mean degree and heterogeneity of the network. We also find that wc is reduced if we perform a preferential rewiring, in which the rewiring probability is proportional to the degree of infected nodes.

  11. A Proteome-wide Fission Yeast Interactome Reveals Network Evolution Principles from Yeasts to Human.

    PubMed

    Vo, Tommy V; Das, Jishnu; Meyer, Michael J; Cordero, Nicolas A; Akturk, Nurten; Wei, Xiaomu; Fair, Benjamin J; Degatano, Andrew G; Fragoza, Robert; Liu, Lisa G; Matsuyama, Akihisa; Trickey, Michelle; Horibata, Sachi; Grimson, Andrew; Yamano, Hiroyuki; Yoshida, Minoru; Roth, Frederick P; Pleiss, Jeffrey A; Xia, Yu; Yu, Haiyuan

    2016-01-14

    Here, we present FissionNet, a proteome-wide binary protein interactome for S. pombe, comprising 2,278 high-quality interactions, of which ∼ 50% were previously not reported in any species. FissionNet unravels previously unreported interactions implicated in processes such as gene silencing and pre-mRNA splicing. We developed a rigorous network comparison framework that accounts for assay sensitivity and specificity, revealing extensive species-specific network rewiring between fission yeast, budding yeast, and human. Surprisingly, although genes are better conserved between the yeasts, S. pombe interactions are significantly better conserved in human than in S. cerevisiae. Our framework also reveals that different modes of gene duplication influence the extent to which paralogous proteins are functionally repurposed. Finally, cross-species interactome mapping demonstrates that coevolution of interacting proteins is remarkably prevalent, a result with important implications for studying human disease in model organisms. Overall, FissionNet is a valuable resource for understanding protein functions and their evolution. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Quarantine-generated phase transition in epidemic spreading.

    PubMed

    Lagorio, C; Dickison, M; Vazquez, F; Braunstein, L A; Macri, P A; Migueles, M V; Havlin, S; Stanley, H E

    2011-02-01

    We study the critical effect of quarantine on the propagation of epidemics on an adaptive network of social contacts. For this purpose, we analyze the susceptible-infected-recovered model in the presence of quarantine, where susceptible individuals protect themselves by disconnecting their links to infected neighbors with probability w and reconnecting them to other susceptible individuals chosen at random. Starting from a single infected individual, we show by an analytical approach and simulations that there is a phase transition at a critical rewiring (quarantine) threshold w(c) separating a phase (w

  13. Differential regulation of polarized synaptic vesicle trafficking and synapse stability in neural circuit rewiring in Caenorhabditis elegans

    PubMed Central

    Kurup, Naina; Kono, Karina

    2017-01-01

    Neural circuits are dynamic, with activity-dependent changes in synapse density and connectivity peaking during different phases of animal development. In C. elegans, young larvae form mature motor circuits through a dramatic switch in GABAergic neuron connectivity, by concomitant elimination of existing synapses and formation of new synapses that are maintained throughout adulthood. We have previously shown that an increase in microtubule dynamics during motor circuit rewiring facilitates new synapse formation. Here, we further investigate cellular control of circuit rewiring through the analysis of mutants obtained in a forward genetic screen. Using live imaging, we characterize novel mutations that alter cargo binding in the dynein motor complex and enhance anterograde synaptic vesicle movement during remodeling, providing in vivo evidence for the tug-of-war between kinesin and dynein in fast axonal transport. We also find that a casein kinase homolog, TTBK-3, inhibits stabilization of nascent synapses in their new locations, a previously unexplored facet of structural plasticity of synapses. Our study delineates temporally distinct signaling pathways that are required for effective neural circuit refinement. PMID:28636662

  14. Rewiring of embryonic glucose metabolism via suppression of PFK-1 and aldolase during mouse chorioallantoic branching

    PubMed Central

    Sugiura, Yuki; Honda, Kurara; Kondo, Koki; Miura, Masayuki

    2017-01-01

    Adapting the energy metabolism state to changing bioenergetic demands is essential for mammalian development accompanying massive cell proliferation and cell differentiation. However, it remains unclear how developing embryos meet the changing bioenergetic demands during the chorioallantoic branching (CB) stage, when the maternal-fetal exchange of gases and nutrients is promoted. In this study, using metabolome analysis with mass-labeled glucose, we found that developing embryos redirected glucose carbon flow into the pentose phosphate pathway via suppression of the key glycolytic enzymes PFK-1 and aldolase during CB. Concomitantly, embryos exhibited an increase in lactate pool size and in the fractional contribution of glycolysis to lactate biosynthesis. Imaging mass spectrometry visualized lactate-rich tissues, such as the dorsal or posterior neural tube, somites and head mesenchyme. Furthermore, we found that the heterochronic gene Lin28a could act as a regulator of the metabolic changes observed during CB. Perturbation of glucose metabolism rewiring by suppressing Lin28a downregulation resulted in perinatal lethality. Thus, our work demonstrates that developing embryos rewire glucose metabolism following CB for normal development. PMID:28049690

  15. Engineering microbial phenotypes through rewiring of genetic networks

    PubMed Central

    Rodrigues, Rui T.L.; Lee, Sangjin; Haines, Matthew

    2017-01-01

    Abstract The ability to program cellular behaviour is a major goal of synthetic biology, with applications in health, agriculture and chemicals production. Despite efforts to build ‘orthogonal’ systems, interactions between engineered genetic circuits and the endogenous regulatory network of a host cell can have a significant impact on desired functionality. We have developed a strategy to rewire the endogenous cellular regulatory network of yeast to enhance compatibility with synthetic protein and metabolite production. We found that introducing novel connections in the cellular regulatory network enabled us to increase the production of heterologous proteins and metabolites. This strategy is demonstrated in yeast strains that show significantly enhanced heterologous protein expression and higher titers of terpenoid production. Specifically, we found that the addition of transcriptional regulation between free radical induced signalling and nitrogen regulation provided robust improvement of protein production. Assessment of rewired networks revealed the importance of key topological features such as high betweenness centrality. The generation of rewired transcriptional networks, selection for specific phenotypes, and analysis of resulting library members is a powerful tool for engineering cellular behavior and may enable improved integration of heterologous protein and metabolite pathways. PMID:28369627

  16. Evolution of regulatory networks towards adaptability and stability in a changing environment

    NASA Astrophysics Data System (ADS)

    Lee, Deok-Sun

    2014-11-01

    Diverse biological networks exhibit universal features distinguished from those of random networks, calling much attention to their origins and implications. Here we propose a minimal evolution model of Boolean regulatory networks, which evolve by selectively rewiring links towards enhancing adaptability to a changing environment and stability against dynamical perturbations. We find that sparse and heterogeneous connectivity patterns emerge, which show qualitative agreement with real transcriptional regulatory networks and metabolic networks. The characteristic scaling behavior of stability reflects the balance between robustness and flexibility. The scaling of fluctuation in the perturbation spread shows a dynamic crossover, which is analyzed by investigating separately the stochasticity of internal dynamics and the network structure differences depending on the evolution pathways. Our study delineates how the ambivalent pressure of evolution shapes biological networks, which can be helpful for studying general complex systems interacting with environments.

  17. Rewiring of embryonic glucose metabolism via suppression of PFK-1 and aldolase during mouse chorioallantoic branching.

    PubMed

    Miyazawa, Hidenobu; Yamaguchi, Yoshifumi; Sugiura, Yuki; Honda, Kurara; Kondo, Koki; Matsuda, Fumio; Yamamoto, Takehiro; Suematsu, Makoto; Miura, Masayuki

    2017-01-01

    Adapting the energy metabolism state to changing bioenergetic demands is essential for mammalian development accompanying massive cell proliferation and cell differentiation. However, it remains unclear how developing embryos meet the changing bioenergetic demands during the chorioallantoic branching (CB) stage, when the maternal-fetal exchange of gases and nutrients is promoted. In this study, using metabolome analysis with mass-labeled glucose, we found that developing embryos redirected glucose carbon flow into the pentose phosphate pathway via suppression of the key glycolytic enzymes PFK-1 and aldolase during CB. Concomitantly, embryos exhibited an increase in lactate pool size and in the fractional contribution of glycolysis to lactate biosynthesis. Imaging mass spectrometry visualized lactate-rich tissues, such as the dorsal or posterior neural tube, somites and head mesenchyme. Furthermore, we found that the heterochronic gene Lin28a could act as a regulator of the metabolic changes observed during CB. Perturbation of glucose metabolism rewiring by suppressing Lin28a downregulation resulted in perinatal lethality. Thus, our work demonstrates that developing embryos rewire glucose metabolism following CB for normal development. © 2017. Published by The Company of Biologists Ltd.

  18. Large developing receptive fields using a distributed and locally reprogrammable address-event receiver.

    PubMed

    Bamford, Simeon A; Murray, Alan F; Willshaw, David J

    2010-02-01

    A distributed and locally reprogrammable address-event receiver has been designed, in which incoming address-events are monitored simultaneously by all synapses, allowing for arbitrarily large axonal fan-out without reducing channel capacity. Synapses can change the address of their presynaptic neuron, allowing the distributed implementation of a biologically realistic learning rule, with both synapse formation and elimination (synaptic rewiring). Probabilistic synapse formation leads to topographic map development, made possible by a cross-chip current-mode calculation of Euclidean distance. As well as synaptic plasticity in rewiring, synapses change weights using a competitive Hebbian learning rule (spike-timing-dependent plasticity). The weight plasticity allows receptive fields to be modified based on spatio-temporal correlations in the inputs, and the rewiring plasticity allows these modifications to become embedded in the network topology.

  19. Exact solution for the time evolution of network rewiring models

    NASA Astrophysics Data System (ADS)

    Evans, T. S.; Plato, A. D. K.

    2007-05-01

    We consider the rewiring of a bipartite graph using a mixture of random and preferential attachment. The full mean-field equations for the degree distribution and its generating function are given. The exact solution of these equations for all finite parameter values at any time is found in terms of standard functions. It is demonstrated that these solutions are an excellent fit to numerical simulations of the model. We discuss the relationship between our model and several others in the literature, including examples of urn, backgammon, and balls-in-boxes models, the Watts and Strogatz rewiring problem, and some models of zero range processes. Our model is also equivalent to those used in various applications including cultural transmission, family name and gene frequencies, glasses, and wealth distributions. Finally some Voter models and an example of a minority game also show features described by our model.

  20. Disordered configurations of the Glauber model in two-dimensional networks

    NASA Astrophysics Data System (ADS)

    Bačić, Iva; Franović, Igor; Perc, Matjaž

    2017-12-01

    We analyze the ordering efficiency and the structure of disordered configurations for the zero-temperature Glauber model on Watts-Strogatz networks obtained by rewiring 2D regular square lattices. In the small-world regime, the dynamics fails to reach the ordered state in the thermodynamic limit. Due to the interplay of the perturbed regular topology and the energy neutral stochastic state transitions, the stationary state consists of two intertwined domains, manifested as multiclustered states on the original lattice. Moreover, for intermediate rewiring probabilities, one finds an additional source of disorder due to the low connectivity degree, which gives rise to small isolated droplets of spins. We also examine the ordering process in paradigmatic two-layer networks with heterogeneous rewiring probabilities. Comparing the cases of a multiplex network and the corresponding network with random inter-layer connectivity, we demonstrate that the character of the final state qualitatively depends on the type of inter-layer connections.

  1. Enhancement of Spike Synchrony in Hindmarsh-Rose Neural Networks by Randomly Rewiring Connections

    NASA Astrophysics Data System (ADS)

    Yang, Renhuan; Song, Aiguo; Yuan, Wujie

    Spike synchrony of the neural system is thought to have very dichotomous roles. On the one hand, it is ubiquitously present in the healthy brain and is thought to underlie feature binding during information processing. On the other hand, large scale synchronization is an underlying mechanism of epileptic seizures. In this paper, we investigate the spike synchrony of Hindmarsh-Rose (HR) neural networks. Our focus is the influence of the network connections on the spike synchrony of the neural networks. The simulations show that desynchronization in the nearest-neighbor coupled network evolves into accurate synchronization with connection-rewiring probability p increasing. We uncover a phenomenon of enhancement of spike synchrony by randomly rewiring connections. With connection strength c and average connection number m increasing spike synchrony is enhanced but it is not the whole story. Furthermore, the possible mechanism behind such synchronization is also addressed.

  2. Altered Pathway Analyzer: A gene expression dataset analysis tool for identification and prioritization of differentially regulated and network rewired pathways

    PubMed Central

    Kaushik, Abhinav; Ali, Shakir; Gupta, Dinesh

    2017-01-01

    Gene connection rewiring is an essential feature of gene network dynamics. Apart from its normal functional role, it may also lead to dysregulated functional states by disturbing pathway homeostasis. Very few computational tools measure rewiring within gene co-expression and its corresponding regulatory networks in order to identify and prioritize altered pathways which may or may not be differentially regulated. We have developed Altered Pathway Analyzer (APA), a microarray dataset analysis tool for identification and prioritization of altered pathways, including those which are differentially regulated by TFs, by quantifying rewired sub-network topology. Moreover, APA also helps in re-prioritization of APA shortlisted altered pathways enriched with context-specific genes. We performed APA analysis of simulated datasets and p53 status NCI-60 cell line microarray data to demonstrate potential of APA for identification of several case-specific altered pathways. APA analysis reveals several altered pathways not detected by other tools evaluated by us. APA analysis of unrelated prostate cancer datasets identifies sample-specific as well as conserved altered biological processes, mainly associated with lipid metabolism, cellular differentiation and proliferation. APA is designed as a cross platform tool which may be transparently customized to perform pathway analysis in different gene expression datasets. APA is freely available at http://bioinfo.icgeb.res.in/APA. PMID:28084397

  3. Cellular plasticity enables adaptation to unforeseen cell-cycle rewiring challenges.

    PubMed

    Katzir, Yair; Stolovicki, Elad; Stern, Shay; Braun, Erez

    2012-01-01

    The fundamental dynamics of the cell cycle, underlying cell growth and reproduction, were previously found to be robust under a wide range of environmental and internal perturbations. This property was commonly attributed to its network structure, which enables the coordinated interactions among hundreds of proteins. Despite significant advances in deciphering the components and autonomous interactions of this network, understanding the interfaces of the cell cycle with other major cellular processes is still lacking. To gain insight into these interfaces, we used the process of genome-rewiring in yeast by placing an essential metabolic gene HIS3 from the histidine biosynthesis pathway, under the exclusive regulation of different cell-cycle promoters. In a medium lacking histidine and under partial inhibition of the HIS3p, the rewired cells encountered an unforeseen multitasking challenge; the cell-cycle regulatory genes were required to regulate the essential histidine-pathway gene in concert with the other metabolic demands, while simultaneously driving the cell cycle through its proper temporal phases. We show here that chemostat cell populations with rewired cell-cycle promoters adapted within a short time to accommodate the inhibition of HIS3p and stabilized a new phenotypic state. Furthermore, a significant fraction of the population was able to adapt and grow into mature colonies on plates under such inhibiting conditions. The adapted state was shown to be stably inherited across generations. These adaptation dynamics were accompanied by a non-specific and irreproducible genome-wide transcriptional response. Adaptation of the cell-cycle attests to its multitasking capabilities and flexible interface with cellular metabolic processes and requirements. Similar adaptation features were found in our previous work when rewiring HIS3 to the GAL system and switching cells from galactose to glucose. Thus, at the basis of cellular plasticity is the emergence of a yet-unknown general, non-specific mechanism allowing fast inherited adaptation to unforeseen challenges.

  4. Coevolving complex networks in the model of social interactions

    NASA Astrophysics Data System (ADS)

    Raducha, Tomasz; Gubiec, Tomasz

    2017-04-01

    We analyze Axelrod's model of social interactions on coevolving complex networks. We introduce four extensions with different mechanisms of edge rewiring. The models are intended to catch two kinds of interactions-preferential attachment, which can be observed in scientists or actors collaborations, and local rewiring, which can be observed in friendship formation in everyday relations. Numerical simulations show that proposed dynamics can lead to the power-law distribution of nodes' degree and high value of the clustering coefficient, while still retaining the small-world effect in three models. All models are characterized by two phase transitions of a different nature. In case of local rewiring we obtain order-disorder discontinuous phase transition even in the thermodynamic limit, while in case of long-distance switching discontinuity disappears in the thermodynamic limit, leaving one continuous phase transition. In addition, we discover a new and universal characteristic of the second transition point-an abrupt increase of the clustering coefficient, due to formation of many small complete subgraphs inside the network.

  5. Enhancement of large fluctuations to extinction in adaptive networks

    NASA Astrophysics Data System (ADS)

    Hindes, Jason; Schwartz, Ira B.; Shaw, Leah B.

    2018-01-01

    During an epidemic, individual nodes in a network may adapt their connections to reduce the chance of infection. A common form of adaption is avoidance rewiring, where a noninfected node breaks a connection to an infected neighbor and forms a new connection to another noninfected node. Here we explore the effects of such adaptivity on stochastic fluctuations in the susceptible-infected-susceptible model, focusing on the largest fluctuations that result in extinction of infection. Using techniques from large-deviation theory, combined with a measurement of heterogeneity in the susceptible degree distribution at the endemic state, we are able to predict and analyze large fluctuations and extinction in adaptive networks. We find that in the limit of small rewiring there is a sharp exponential reduction in mean extinction times compared to the case of zero adaption. Furthermore, we find an exponential enhancement in the probability of large fluctuations with increased rewiring rate, even when holding the average number of infected nodes constant.

  6. Gene Network Rewiring to Study Melanoma Stage Progression and Elements Essential for Driving Melanoma

    PubMed Central

    Kaushik, Abhinav; Bhatia, Yashuma; Ali, Shakir; Gupta, Dinesh

    2015-01-01

    Metastatic melanoma patients have a poor prognosis, mainly attributable to the underlying heterogeneity in melanoma driver genes and altered gene expression profiles. These characteristics of melanoma also make the development of drugs and identification of novel drug targets for metastatic melanoma a daunting task. Systems biology offers an alternative approach to re-explore the genes or gene sets that display dysregulated behaviour without being differentially expressed. In this study, we have performed systems biology studies to enhance our knowledge about the conserved property of disease genes or gene sets among mutually exclusive datasets representing melanoma progression. We meta-analysed 642 microarray samples to generate melanoma reconstructed networks representing four different stages of melanoma progression to extract genes with altered molecular circuitry wiring as compared to a normal cellular state. Intriguingly, a majority of the melanoma network-rewired genes are not differentially expressed and the disease genes involved in melanoma progression consistently modulate its activity by rewiring network connections. We found that the shortlisted disease genes in the study show strong and abnormal network connectivity, which enhances with the disease progression. Moreover, the deviated network properties of the disease gene sets allow ranking/prioritization of different enriched, dysregulated and conserved pathway terms in metastatic melanoma, in agreement with previous findings. Our analysis also reveals presence of distinct network hubs in different stages of metastasizing tumor for the same set of pathways in the statistically conserved gene sets. The study results are also presented as a freely available database at http://bioinfo.icgeb.res.in/m3db/. The web-based database resource consists of results from the analysis presented here, integrated with cytoscape web and user-friendly tools for visualization, retrieval and further analysis. PMID:26558755

  7. Topological, functional, and dynamic properties of the protein interaction networks rewired by benzo(a)pyrene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ba, Qian; Key Laboratory of Food Safety Risk Assessment, Ministry of Health, Beijing; Li, Junyang

    2015-03-01

    Benzo(a)pyrene is a common environmental and foodborne pollutant that has been identified as a human carcinogen. Although the carcinogenicity of benzo(a)pyrene has been extensively reported, its precise molecular mechanisms and the influence on system-level protein networks are not well understood. To investigate the system-level influence of benzo(a)pyrene on protein interactions and regulatory networks, a benzo(a)pyrene-rewired protein interaction network was constructed based on 769 key proteins derived from more than 500 literature reports. The protein interaction network rewired by benzo(a)pyrene was a scale-free, highly-connected biological system. Ten modules were identified, and 25 signaling pathways were enriched, most of which belong tomore » the human diseases category, especially cancer and infectious disease. In addition, two lung-specific and two liver-specific pathways were identified. Three pathways were specific in short and medium-term networks (< 48 h), and five pathways were enriched only in the medium-term network (6 h–48 h). Finally, the expression of linker genes in the network was validated by Western blotting. These findings establish the overall, tissue- and time-specific benzo(a)pyrene-rewired protein interaction networks and provide insights into the biological effects and molecular mechanisms of action of benzo(a)pyrene. - Highlights: • Benzo(a)pyrene induced scale-free, highly-connected protein interaction networks. • 25 signaling pathways were enriched through modular analysis. • Tissue- and time-specific pathways were identified.« less

  8. Coupling of link- and node-ordering in the coevolving voter model.

    PubMed

    Toruniewska, J; Kułakowski, K; Suchecki, K; Hołyst, J A

    2017-10-01

    We consider the process of reaching the final state in the coevolving voter model. There is a coevolution of state dynamics, where a node can copy a state from a random neighbor with probabilty 1-p and link dynamics, where a node can rewire its link to another node of the same state with probability p. That exhibits an absorbing transition to a frozen phase above a critical value of rewiring probability. Our analytical and numerical studies show that in the active phase mean values of magnetization of nodes n and links m tend to the same value that depends on initial conditions. In a similar way mean degrees of spins up and spins down become equal. The system obeys a special statistical conservation law since a linear combination of both types magnetizations averaged over many realizations starting from the same initial conditions is a constant of motion: Λ≡(1-p)μm(t)+pn(t)=const., where μ is the mean node degree. The final mean magnetization of nodes and links in the active phase is proportional to Λ while the final density of active links is a square function of Λ. If the rewiring probability is above a critical value and the system separates into disconnected domains, then the values of nodes and links magnetizations are not the same and final mean degrees of spins up and spins down can be different.

  9. Role of social environment and social clustering in spread of opinions in coevolving networks.

    PubMed

    Malik, Nishant; Mucha, Peter J

    2013-12-01

    Taking a pragmatic approach to the processes involved in the phenomena of collective opinion formation, we investigate two specific modifications to the coevolving network voter model of opinion formation studied by Holme and Newman [Phys. Rev. E 74, 056108 (2006)]. First, we replace the rewiring probability parameter by a distribution of probability of accepting or rejecting opinions between individuals, accounting for heterogeneity and asymmetric influences in relationships between individuals. Second, we modify the rewiring step by a path-length-based preference for rewiring that reinforces local clustering. We have investigated the influences of these modifications on the outcomes of simulations of this model. We found that varying the shape of the distribution of probability of accepting or rejecting opinions can lead to the emergence of two qualitatively distinct final states, one having several isolated connected components each in internal consensus, allowing for the existence of diverse opinions, and the other having a single dominant connected component with each node within that dominant component having the same opinion. Furthermore, more importantly, we found that the initial clustering in the network can also induce similar transitions. Our investigation also indicates that these transitions are governed by a weak and complex dependence on system size. We found that the networks in the final states of the model have rich structural properties including the small world property for some parameter regimes.

  10. Rewiring protein synthesis: From natural to synthetic amino acids.

    PubMed

    Fan, Yongqiang; Evans, Christopher R; Ling, Jiqiang

    2017-11-01

    The protein synthesis machinery uses 22 natural amino acids as building blocks that faithfully decode the genetic information. Such fidelity is controlled at multiple steps and can be compromised in nature and in the laboratory to rewire protein synthesis with natural and synthetic amino acids. This review summarizes the major quality control mechanisms during protein synthesis, including aminoacyl-tRNA synthetases, elongation factors, and the ribosome. We will discuss evolution and engineering of such components that allow incorporation of natural and synthetic amino acids at positions that deviate from the standard genetic code. The protein synthesis machinery is highly selective, yet not fixed, for the correct amino acids that match the mRNA codons. Ambiguous translation of a codon with multiple amino acids or complete reassignment of a codon with a synthetic amino acid diversifies the proteome. Expanding the genetic code with synthetic amino acids through rewiring protein synthesis has broad applications in synthetic biology and chemical biology. Biochemical, structural, and genetic studies of the translational quality control mechanisms are not only crucial to understand the physiological role of translational fidelity and evolution of the genetic code, but also enable us to better design biological parts to expand the proteomes of synthetic organisms. This article is part of a Special Issue entitled "Biochemistry of Synthetic Biology - Recent Developments" Guest Editor: Dr. Ilka Heinemann and Dr. Patrick O'Donoghue. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Rewiring the History and Social Studies Classroom: Needs, Frameworks, Dangers, and Proposals.

    ERIC Educational Resources Information Center

    Bass, Randy; Rosenzweig, Roy

    This paper discusses the implementation of technology in social studies education. The first section addresses reasons why technology is used in social studies education, including the goal of making the social studies classroom a site of active learning and critical thinking. The second section describes three frameworks for using technology to…

  12. Evolving network simulation study. From regular lattice to scale free network

    NASA Astrophysics Data System (ADS)

    Makowiec, D.

    2005-12-01

    The Watts-Strogatz algorithm of transferring the square lattice to a small world network is modified by introducing preferential rewiring constrained by connectivity demand. The evolution of the network is two-step: sequential preferential rewiring of edges controlled by p and updating the information about changes done. The evolving system self-organizes into stationary states. The topological transition in the graph structure is noticed with respect to p. Leafy phase a graph formed by multiple connected vertices (graph skeleton) with plenty of leaves attached to each skeleton vertex emerges when p is small enough to pretend asynchronous evolution. Tangling phase where edges of a graph circulate frequently among low degree vertices occurs when p is large. There exist conditions at which the resulting stationary network ensemble provides networks which degree distribution exhibit power-law decay in large interval of degrees.

  13. Epidemic spreading on complex networks with overlapping and non-overlapping community structure

    NASA Astrophysics Data System (ADS)

    Shang, Jiaxing; Liu, Lianchen; Li, Xin; Xie, Feng; Wu, Cheng

    2015-02-01

    Many real-world networks exhibit community structure where vertices belong to one or more communities. Recent studies show that community structure plays an import role in epidemic spreading. In this paper, we investigate how the extent of overlap among communities affects epidemics. In order to experiment on the characteristic of overlapping communities, we propose a rewiring algorithm that can change the community structure from overlapping to non-overlapping while maintaining the degree distribution of the network. We simulate the Susceptible-Infected-Susceptible (SIS) epidemic process on synthetic scale-free networks and real-world networks by applying our rewiring algorithm. Experiments show that epidemics spread faster on networks with higher level of overlapping communities. Furthermore, overlapping communities' effect interacts with the average degree's effect. Our work further illustrates the important role of overlapping communities in the process of epidemic spreading.

  14. Two statistical mechanics aspects of complex networks

    NASA Astrophysics Data System (ADS)

    Thurner, Stefan; Biely, Christoly

    2006-12-01

    By adopting an ensemble interpretation of non-growing rewiring networks, network theory can be reduced to a counting problem of possible network states and an identification of their associated probabilities. We present two scenarios of how different rewirement schemes can be used to control the state probabilities of the system. In particular, we review how by generalizing the linking rules of random graphs, in combination with superstatistics and quantum mechanical concepts, one can establish an exact relation between the degree distribution of any given network and the nodes’ linking probability distributions. In a second approach, we control state probabilities by a network Hamiltonian, whose characteristics are motivated by biological and socio-economical statistical systems. We demonstrate that a thermodynamics of networks becomes a fully consistent concept, allowing to study e.g. ‘phase transitions’ and computing entropies through thermodynamic relations.

  15. Exact solutions for network rewiring models

    NASA Astrophysics Data System (ADS)

    Evans, T. S.

    2007-03-01

    Evolving networks with a constant number of edges may be modelled using a rewiring process. These models are used to describe many real-world processes including the evolution of cultural artifacts such as family names, the evolution of gene variations, and the popularity of strategies in simple econophysics models such as the minority game. The model is closely related to Urn models used for glasses, quantum gravity and wealth distributions. The full mean field equation for the degree distribution is found and its exact solution and generating solution are given.

  16. Effects of adaptive degrees of trust on coevolution of quantum strategies on scale-free networks.

    PubMed

    Li, Qiang; Chen, Minyou; Perc, Matjaž; Iqbal, Azhar; Abbott, Derek

    2013-10-15

    We study the impact of adaptive degrees of trust on the evolution of cooperation in the quantum prisoner's dilemma game. In addition to the strategies, links between players are also subject to evolution. Starting with a scale-free interaction network, players adjust trust towards their neighbors based on received payoffs. The latter governs the strategy adoption process, while trust governs the rewiring of links. As soon as the degree of trust towards a neighbor drops to zero, the link is rewired to another randomly chosen player within the network. We find that for small temptations to defect cooperators always dominate, while for intermediate and strong temptations a single quantum strategy is able to outperform all other strategies. In general, reciprocal trust remains within close relationships and favors the dominance of a single strategy. Due to coevolution, the power-law degree distributions transform to Poisson distributions.

  17. Effects of adaptive degrees of trust on coevolution of quantum strategies on scale-free networks

    NASA Astrophysics Data System (ADS)

    Li, Qiang; Chen, Minyou; Perc, Matjaž; Iqbal, Azhar; Abbott, Derek

    2013-10-01

    We study the impact of adaptive degrees of trust on the evolution of cooperation in the quantum prisoner's dilemma game. In addition to the strategies, links between players are also subject to evolution. Starting with a scale-free interaction network, players adjust trust towards their neighbors based on received payoffs. The latter governs the strategy adoption process, while trust governs the rewiring of links. As soon as the degree of trust towards a neighbor drops to zero, the link is rewired to another randomly chosen player within the network. We find that for small temptations to defect cooperators always dominate, while for intermediate and strong temptations a single quantum strategy is able to outperform all other strategies. In general, reciprocal trust remains within close relationships and favors the dominance of a single strategy. Due to coevolution, the power-law degree distributions transform to Poisson distributions.

  18. Usefulness of Corsair microcatheter to cross stent struts in bifurcation lesions.

    PubMed

    Fujimoto, Yoshihide; Iwata, Yo; Yamamoto, Masashi; Kobayashi, Yoshio

    2014-01-01

    Side branch compromise after stenting in bifurcation lesions is a matter of concern. It may happen that even low-profile balloon catheters do not cross stent struts after rewiring. The Corsair catheter is a hybrid catheter that has features of a microcatheter and a support catheter. The present study evaluated usefulness of the Corsair catheter to facilitate advancing a low-profile balloon catheter through stent struts in bifurcation lesions. After rewiring, low-profile balloon catheters failed to cross stent struts of 29 bifurcation lesions. The Corsair microcatheter successfully crossed stent struts in all lesions except one (97 %) where a stent was implanted to treat in-stent restenosis (stent-in-stent). Low-profile balloon catheters were able to advance into the side branch of all bifurcation lesions where the Corsair microcatheter crossed stent struts. In conclusion, the Corsair microcatheter may be utilized if low-profile balloon catheters are unable to cross stent struts in bifurcation lesions.

  19. Practicing Sustainability in an Urban University: A Case Study of a Behavior Based Energy Conservation Project

    ERIC Educational Resources Information Center

    Chan, Stuart; Dolderman, Dan; Savan, Beth; Wakefield, Sarah

    2012-01-01

    This case study of the University of Toronto Sustainability Office's energy conservation project, Rewire, explores the implementation of a social marketing campaign that encourages energy efficient behavior. Energy conservation activities have reached approximately 3,000 students and staff members annually, and have saved electricity, thermal…

  20. Sox5 is involved in germ-cell regulation and sex determination in medaka following co-option of nested transposable elements.

    PubMed

    Schartl, Manfred; Schories, Susanne; Wakamatsu, Yuko; Nagao, Yusuke; Hashimoto, Hisashi; Bertin, Chloé; Mourot, Brigitte; Schmidt, Cornelia; Wilhelm, Dagmar; Centanin, Lazaro; Guiguen, Yann; Herpin, Amaury

    2018-01-29

    Sex determination relies on a hierarchically structured network of genes, and is one of the most plastic processes in evolution. The evolution of sex-determining genes within a network, by neo- or sub-functionalization, also requires the regulatory landscape to be rewired to accommodate these novel gene functions. We previously showed that in medaka fish, the regulatory landscape of the master male-determining gene dmrt1bY underwent a profound rearrangement, concomitantly with acquiring a dominant position within the sex-determining network. This rewiring was brought about by the exaptation of a transposable element (TE) called Izanagi, which is co-opted to act as a silencer to turn off the dmrt1bY gene after it performed its function in sex determination. We now show that a second TE, Rex1, has been incorporated into Izanagi. The insertion of Rex1 brought in a preformed regulatory element for the transcription factor Sox5, which here functions in establishing the temporal and cell-type-specific expression pattern of dmrt1bY. Mutant analysis demonstrates the importance of Sox5 in the gonadal development of medaka, and possibly in mice, in a dmrt1bY-independent manner. Moreover, Sox5 medaka mutants have complete female-to-male sex reversal. Our work reveals an unexpected complexity in TE-mediated transcriptional rewiring, with the exaptation of a second TE into a network already rewired by a TE. We also show a dual role for Sox5 during sex determination: first, as an evolutionarily conserved regulator of germ-cell number in medaka, and second, by de novo regulation of dmrt1 transcriptional activity during primary sex determination due to exaptation of the Rex1 transposable element.

  1. Evolutionary re-wiring of p63 and the epigenomic regulatory landscape in keratinocytes and its potential implications on species-specific gene expression and phenotypes

    PubMed Central

    Sethi, Isha; Gluck, Christian; Zhou, Huiqing

    2017-01-01

    Abstract Although epidermal keratinocyte development and differentiation proceeds in similar fashion between humans and mice, evolutionary pressures have also wrought significant species-specific physiological differences. These differences between species could arise in part, by the rewiring of regulatory network due to changes in the global targets of lineage-specific transcriptional master regulators such as p63. Here we have performed a systematic and comparative analysis of the p63 target gene network within the integrated framework of the transcriptomic and epigenomic landscape of mouse and human keratinocytes. We determined that there exists a core set of ∼1600 genomic regions distributed among enhancers and super-enhancers, which are conserved and occupied by p63 in keratinocytes from both species. Notably, these DNA segments are typified by consensus p63 binding motifs under purifying selection and are associated with genes involved in key keratinocyte and skin-centric biological processes. However, the majority of the p63-bound mouse target regions consist of either murine-specific DNA elements that are not alignable to the human genome or exhibit no p63 binding in the orthologous syntenic regions, typifying an occupancy lost subset. Our results suggest that these evolutionarily divergent regions have undergone significant turnover of p63 binding sites and are associated with an underlying inactive and inaccessible chromatin state, indicative of their selective functional activity in the transcriptional regulatory network in mouse but not human. Furthermore, we demonstrate that this selective targeting of genes by p63 correlates with subtle, but measurable transcriptional differences in mouse and human keratinocytes that converges on major metabolic processes, which often exhibit species-specific trends. Collectively our study offers possible molecular explanation for the observable phenotypic differences between the mouse and human skin and broadly informs on the prevailing principles that govern the tug-of-war between evolutionary forces of rigidity and plasticity over transcriptional regulatory programs. PMID:28505376

  2. Rewiring a Working Library or Teaching an Old Dog New Tricks.

    ERIC Educational Resources Information Center

    White, Robert L.; Jaffe, Lee David

    1995-01-01

    This case study describes the planning, funding, and implementation of a complete data-wiring renovation at the University of California, Santa Cruz library. Highlights include design principles; project schedule; benefits for staff's electronic mail and network use and for upgraded public terminals; and the importance of planning and…

  3. Correction of Stent Distortion and Overhanging Stent Struts during Left Main Bifurcation Stenting by Selective Distal Stent Cell Re-Wiring: A Novel Guidewire Approach

    PubMed Central

    Sabbah, Mahmoud; Kadota, Kazushige; Fuku, Yasushi; Mitsudo, Kazuaki

    2015-01-01

    Stent malapposition and overhanging stent struts in front of the side branch (SB) ostium are not uncommon following bifurcation stenting that might lead to stent thrombosis. We herein present 2 cases, in which optical frequency domain imaging and intravascular ultrasound effectively revealed stent malapposition and overhanging struts inside the ostium of the SB following left main coronary artery stenting. Therefore, we introduced a novel technique for rectification of these incidental findings by selective SB re-wiring through the most distal stent cell with the adjunctive help of a double lumen microcatheter. PMID:27122906

  4. Bursting endemic bubbles in an adaptive network

    NASA Astrophysics Data System (ADS)

    Sherborne, N.; Blyuss, K. B.; Kiss, I. Z.

    2018-04-01

    The spread of an infectious disease is known to change people's behavior, which in turn affects the spread of disease. Adaptive network models that account for both epidemic and behavioral change have found oscillations, but in an extremely narrow region of the parameter space, which contrasts with intuition and available data. In this paper we propose a simple susceptible-infected-susceptible epidemic model on an adaptive network with time-delayed rewiring, and show that oscillatory solutions are now present in a wide region of the parameter space. Altering the transmission or rewiring rates reveals the presence of an endemic bubble—an enclosed region of the parameter space where oscillations are observed.

  5. Adaptive random walks on the class of Web graphs

    NASA Astrophysics Data System (ADS)

    Tadić, B.

    2001-09-01

    We study random walk with adaptive move strategies on a class of directed graphs with variable wiring diagram. The graphs are grown from the evolution rules compatible with the dynamics of the world-wide Web [B. Tadić, Physica A 293, 273 (2001)], and are characterized by a pair of power-law distributions of out- and in-degree for each value of the parameter β, which measures the degree of rewiring in the graph. The walker adapts its move strategy according to locally available information both on out-degree of the visited node and in-degree of target node. A standard random walk, on the other hand, uses the out-degree only. We compute the distribution of connected subgraphs visited by an ensemble of walkers, the average access time and survival probability of the walks. We discuss these properties of the walk dynamics relative to the changes in the global graph structure when the control parameter β is varied. For β≥ 3, corresponding to the world-wide Web, the access time of the walk to a given level of hierarchy on the graph is much shorter compared to the standard random walk on the same graph. By reducing the amount of rewiring towards rigidity limit β↦βc≲ 0.1, corresponding to the range of naturally occurring biochemical networks, the survival probability of adaptive and standard random walk become increasingly similar. The adaptive random walk can be used as an efficient message-passing algorithm on this class of graphs for large degree of rewiring.

  6. Networked Ising-Sznajd AR-β Model

    NASA Astrophysics Data System (ADS)

    Nagao, Tomonori; Ohmiya, Mayumi

    2009-09-01

    The modified Ising-Sznajd model is studied to clarify the machanism of price formation in the stock market. The conventional Ising-Sznajd model is improved as a small world network with the rewireing probability β(t) which depends on the time. Numerical experiments show that phase transition, regarded as a economical crisis, is inevitable in this model.

  7. Implantable Microsystems for Anatomical Rewiring of Cortical Circuitry: A New Approach for Brain Repair

    DTIC Science & Technology

    2009-03-01

    dopamine or serotonin, provide outputs to large regions of the brain that affect mood, learning, and cognition [4]. Hence, understanding brain function on a...Sutton, B. T. Higashikubo, C. A. Chestek, H. J. Chiel, and H. B. Martin, “Diamond electrodes for neurodynamic studies in Aplysia californica,” Diam

  8. Rewiring monocyte glucose metabolism via C-type lectin signaling protects against disseminated candidiasis.

    PubMed

    Domínguez-Andrés, Jorge; Arts, Rob J W; Ter Horst, Rob; Gresnigt, Mark S; Smeekens, Sanne P; Ratter, Jacqueline M; Lachmandas, Ekta; Boutens, Lily; van de Veerdonk, Frank L; Joosten, Leo A B; Notebaart, Richard A; Ardavín, Carlos; Netea, Mihai G

    2017-09-01

    Monocytes are innate immune cells that play a pivotal role in antifungal immunity, but little is known regarding the cellular metabolic events that regulate their function during infection. Using complementary transcriptomic and immunological studies in human primary monocytes, we show that activation of monocytes by Candida albicans yeast and hyphae was accompanied by metabolic rewiring induced through C-type lectin-signaling pathways. We describe that the innate immune responses against Candida yeast are energy-demanding processes that lead to the mobilization of intracellular metabolite pools and require induction of glucose metabolism, oxidative phosphorylation and glutaminolysis, while responses to hyphae primarily rely on glycolysis. Experimental models of systemic candidiasis models validated a central role for glucose metabolism in anti-Candida immunity, as the impairment of glycolysis led to increased susceptibility in mice. Collectively, these data highlight the importance of understanding the complex network of metabolic responses triggered during infections, and unveil new potential targets for therapeutic approaches against fungal diseases.

  9. Recovering time-varying networks of dependencies in social and biological studies.

    PubMed

    Ahmed, Amr; Xing, Eric P

    2009-07-21

    A plausible representation of the relational information among entities in dynamic systems such as a living cell or a social community is a stochastic network that is topologically rewiring and semantically evolving over time. Although there is a rich literature in modeling static or temporally invariant networks, little has been done toward recovering the network structure when the networks are not observable in a dynamic context. In this article, we present a machine learning method called TESLA, which builds on a temporally smoothed l(1)-regularized logistic regression formalism that can be cast as a standard convex-optimization problem and solved efficiently by using generic solvers scalable to large networks. We report promising results on recovering simulated time-varying networks and on reverse engineering the latent sequence of temporally rewiring political and academic social networks from longitudinal data, and the evolving gene networks over >4,000 genes during the life cycle of Drosophila melanogaster from a microarray time course at a resolution limited only by sample frequency.

  10. Rewiring monocyte glucose metabolism via C-type lectin signaling protects against disseminated candidiasis

    PubMed Central

    Smeekens, Sanne P.; Lachmandas, Ekta; Boutens, Lily; van de Veerdonk, Frank L.; Joosten, Leo A. B.; Ardavín, Carlos; Netea, Mihai G.

    2017-01-01

    Monocytes are innate immune cells that play a pivotal role in antifungal immunity, but little is known regarding the cellular metabolic events that regulate their function during infection. Using complementary transcriptomic and immunological studies in human primary monocytes, we show that activation of monocytes by Candida albicans yeast and hyphae was accompanied by metabolic rewiring induced through C-type lectin-signaling pathways. We describe that the innate immune responses against Candida yeast are energy-demanding processes that lead to the mobilization of intracellular metabolite pools and require induction of glucose metabolism, oxidative phosphorylation and glutaminolysis, while responses to hyphae primarily rely on glycolysis. Experimental models of systemic candidiasis models validated a central role for glucose metabolism in anti-Candida immunity, as the impairment of glycolysis led to increased susceptibility in mice. Collectively, these data highlight the importance of understanding the complex network of metabolic responses triggered during infections, and unveil new potential targets for therapeutic approaches against fungal diseases. PMID:28922415

  11. Adaptive Network Dynamics - Modeling and Control of Time-Dependent Social Contacts

    PubMed Central

    Schwartz, Ira B.; Shaw, Leah B.; Shkarayev, Maxim S.

    2013-01-01

    Real networks consisting of social contacts do not possess static connections. That is, social connections may be time dependent due to a variety of individual behavioral decisions based on current network connections. Examples of adaptive networks occur in epidemics, where information about infectious individuals may change the rewiring of healthy people, or in the recruitment of individuals to a cause or fad, where rewiring may optimize recruitment of susceptible individuals. In this paper, we will review some of the dynamical properties of adaptive networks, and show how they predict novel phenomena as well as yield insight into new controls. The applications will be control of epidemic outbreaks and terrorist recruitment modeling. PMID:25414913

  12. Rewiring the Brain: Potential Role of the Premotor Cortex in Motor Control, Learning, and Recovery of Function Following Brain Injury

    PubMed Central

    Kantak, Shailesh S.; Stinear, James W.; Buch, Ethan R.; Cohen, Leonardo G.

    2016-01-01

    The brain is a plastic organ with a capability to reorganize in response to behavior and/or injury. Following injury to the motor cortex or emergent corticospinal pathways, recovery of function depends on the capacity of surviving anatomical resources to recover and repair in response to task-specific training. One such area implicated in poststroke reorganization to promote recovery of upper extremity recovery is the premotor cortex (PMC). This study reviews the role of distinct subdivisions of PMC: dorsal (PMd) and ventral (PMv) premotor cortices as critical anatomical and physiological nodes within the neural networks for the control and learning of goal-oriented reach and grasp actions in healthy individuals and individuals with stroke. Based on evidence emerging from studies of intrinsic and extrinsic connectivity, transcranial magnetic stimulation, functional neuroimaging, and experimental studies in animals and humans, the authors propose 2 distinct patterns of reorganization that differentially engage ipsilesional and contralesional PMC. Research directions that may offer further insights into the role of PMC in motor control, learning, and poststroke recovery are also proposed. This research may facilitate neuroplasticity for maximal recovery of function following brain injury. PMID:21926382

  13. Signaling Pathways Regulating Redox Balance in Cancer Metabolism

    PubMed Central

    De Santis, Maria Chiara; Porporato, Paolo Ettore; Martini, Miriam; Morandi, Andrea

    2018-01-01

    The interplay between rewiring tumor metabolism and oncogenic driver mutations is only beginning to be appreciated. Metabolic deregulation has been described for decades as a bystander effect of genomic aberrations. However, for the biology of malignant cells, metabolic reprogramming is essential to tackle a harsh environment, including nutrient deprivation, reactive oxygen species production, and oxygen withdrawal. Besides the well-investigated glycolytic metabolism, it is emerging that several other metabolic fluxes are relevant for tumorigenesis in supporting redox balance, most notably pentose phosphate pathway, folate, and mitochondrial metabolism. The relationship between metabolic rewiring and mutant genes is still unclear and, therefore, we will discuss how metabolic needs and oncogene mutations influence each other to satisfy cancer cells’ demands. Mutations in oncogenes, i.e., PI3K/AKT/mTOR, RAS pathway, and MYC, and tumor suppressors, i.e., p53 and liver kinase B1, result in metabolic flexibility and may influence response to therapy. Since metabolic rewiring is shaped by oncogenic driver mutations, understanding how specific alterations in signaling pathways affect different metabolic fluxes will be instrumental for the development of novel targeted therapies. In the era of personalized medicine, the combination of driver mutations, metabolite levels, and tissue of origins will pave the way to innovative therapeutic interventions. PMID:29740540

  14. Signaling Pathways Regulating Redox Balance in Cancer Metabolism.

    PubMed

    De Santis, Maria Chiara; Porporato, Paolo Ettore; Martini, Miriam; Morandi, Andrea

    2018-01-01

    The interplay between rewiring tumor metabolism and oncogenic driver mutations is only beginning to be appreciated. Metabolic deregulation has been described for decades as a bystander effect of genomic aberrations. However, for the biology of malignant cells, metabolic reprogramming is essential to tackle a harsh environment, including nutrient deprivation, reactive oxygen species production, and oxygen withdrawal. Besides the well-investigated glycolytic metabolism, it is emerging that several other metabolic fluxes are relevant for tumorigenesis in supporting redox balance, most notably pentose phosphate pathway, folate, and mitochondrial metabolism. The relationship between metabolic rewiring and mutant genes is still unclear and, therefore, we will discuss how metabolic needs and oncogene mutations influence each other to satisfy cancer cells' demands. Mutations in oncogenes, i.e., PI3K/AKT/mTOR, RAS pathway, and MYC, and tumor suppressors, i.e., p53 and liver kinase B1, result in metabolic flexibility and may influence response to therapy. Since metabolic rewiring is shaped by oncogenic driver mutations, understanding how specific alterations in signaling pathways affect different metabolic fluxes will be instrumental for the development of novel targeted therapies. In the era of personalized medicine, the combination of driver mutations, metabolite levels, and tissue of origins will pave the way to innovative therapeutic interventions.

  15. Acetyl-CoA carboxylase rewires cancer metabolism to allow cancer cells to survive inhibition of the Warburg effect by cetuximab

    PubMed Central

    Luo, Jingtao; Hong, Yun; Lu, Yang; Qiu, Songbo; Chaganty, Bharat K. R.; Zhang, Lun; Wang, Xudong; Li, Qiang; Fan, Zhen

    2016-01-01

    Cetuximab inhibits HIF-1-regulated glycolysis in cancer cells, thereby reversing the Warburg effect and leading to inhibition of cancer cell metabolism. AMP-activated protein kinase (AMPK) is activated after cetuximab treatment, and a sustained AMPK activity is a mechanism contributing to cetuximab resistance. Here, we investigated how acetyl-CoA carboxylase (ACC), a downstream target of AMPK, rewires cancer metabolism in response to cetuximab treatment. We found that introduction of experimental ACC mutants lacking the AMPK phosphorylation sites (ACC1_S79A and ACC2_S212A) into head and neck squamous cell carcinoma (HNSCC) cells protected HNSCC cells from cetuximab-induced growth inhibition. HNSCC cells with acquired cetuximab resistance contained not only high levels of T172-phosphorylated AMPK and S79-phosphorylated ACC1 but also an increased level of total ACC. These findings were corroborated in tumor specimens of HNSCC patients treated with cetuximab. Cetuximab plus TOFA (an allosteric inhibitor of ACC) achieved remarkable growth inhibition of cetuximab-resistant HNSCC xenografts. Our data suggest a novel paradigm in which cetuximab-mediated activation of AMPK and subsequent phosphorylation and inhibition of ACC is followed by a compensatory increase in total ACC, which rewires cancer metabolism from glycolysis-dependent to lipogenesis-dependent. PMID:27693630

  16. Competing contact processes in the Watts-Strogatz network

    NASA Astrophysics Data System (ADS)

    Rybak, Marcin; Malarz, Krzysztof; Kułakowski, Krzysztof

    2016-06-01

    We investigate two competing contact processes on a set of Watts-Strogatz networks with the clustering coefficient tuned by rewiring. The base for network construction is one-dimensional chain of N sites, where each site i is directly linked to nodes labelled as i ± 1 and i ± 2. So initially, each node has the same degree k i = 4. The periodic boundary conditions are assumed as well. For each node i the links to sites i + 1 and i + 2 are rewired to two randomly selected nodes so far not-connected to node i. An increase of the rewiring probability q influences the nodes degree distribution and the network clusterization coefficient 𝓒. For given values of rewiring probability q the set 𝓝(q)={𝓝1,𝓝2,...,𝓝 M } of M networks is generated. The network's nodes are decorated with spin-like variables s i ∈ { S,D }. During simulation each S node having a D-site in its neighbourhood converts this neighbour from D to S state. Conversely, a node in D state having at least one neighbour also in state D-state converts all nearest-neighbours of this pair into D-state. The latter is realized with probability p. We plot the dependence of the nodes S final density n S T on initial nodes S fraction n S 0. Then, we construct the surface of the unstable fixed points in (𝓒, p, n S 0) space. The system evolves more often toward n S T for (𝓒, p, n S 0) points situated above this surface while starting simulation with (𝓒, p, n S 0) parameters situated below this surface leads system to n S T =0. The points on this surface correspond to such value of initial fraction n S * of S nodes (for fixed values 𝓒 and p) for which their final density is n S T=1/2.

  17. Rewired: Understanding the generation and the Way They Learn

    ERIC Educational Resources Information Center

    Rosen, Larry D.

    2010-01-01

    Look around at today's youth and you can see how technology has changed their lives. They lie on their beds and study while listening to mp3 players, texting and chatting online with friends, and reading and posting Facebook messages. How does the new, charged-up, multitasking generation respond to traditional textbooks and lectures? Are we…

  18. Interplay between cooperation-enhancing mechanisms in evolutionary games with tag-mediated interactions

    NASA Astrophysics Data System (ADS)

    Hadzibeganovic, Tarik; Stauffer, Dietrich; Han, Xiao-Pu

    2018-04-01

    Cooperation is fundamental for the long-term survival of biological, social, and technological networks. Previously, mechanisms for the enhancement of cooperation, such as network reciprocity, have largely been studied in isolation and with often inconclusive findings. Here, we present an evolutionary, multiagent-based, and spatially explicit computer model to specifically address the interactive interplay between such mechanisms. We systematically investigate the effects of phenotypic diversity, network structure, and rewards on cooperative behavior emerging in a population of reproducing artificial decision makers playing tag-mediated evolutionary games. Cooperative interactions are rewarded such that both the benefits of recipients and costs of donators are affected by the reward size. The reward size is determined by the number of cooperative acts occurring within a given reward time frame. Our computational experiments reveal that small reward frames promote unconditional cooperation in populations with both low and high diversity, whereas large reward frames lead to cycles of conditional and unconditional strategies at high but not at low diversity. Moreover, an interaction between rewards and spatial structure shows that relative to small reward frames, there is a strong difference between the frequency of conditional cooperators populating rewired versus non-rewired networks when the reward frame is large. Notably, in a less diverse population, the total number of defections is comparable across different network topologies, whereas in more diverse environments defections become more frequent in a regularly structured than in a rewired, small-world network of contacts. Acknowledging the importance of such interaction effects in social dilemmas will have inevitable consequences for the future design of cooperation-enhancing protocols in large-scale, distributed, and decentralized systems such as peer-to-peer networks.

  19. Stochastic resonance on a modular neuronal network of small-world subnetworks with a subthreshold pacemaker

    NASA Astrophysics Data System (ADS)

    Yu, Haitao; Wang, Jiang; Liu, Chen; Deng, Bin; Wei, Xile

    2011-12-01

    We study the phenomenon of stochastic resonance on a modular neuronal network consisting of several small-world subnetworks with a subthreshold periodic pacemaker. Numerical results show that the correlation between the pacemaker frequency and the dynamical response of the network is resonantly dependent on the intensity of additive spatiotemporal noise. This effect of pacemaker-driven stochastic resonance of the system depends extensively on the local and the global network structure, such as the intra- and inter-coupling strengths, rewiring probability of individual small-world subnetwork, the number of links between different subnetworks, and the number of subnetworks. All these parameters play a key role in determining the ability of the network to enhance the noise-induced outreach of the localized subthreshold pacemaker, and only they bounded to a rather sharp interval of values warrant the emergence of the pronounced stochastic resonance phenomenon. Considering the rather important role of pacemakers in real-life, the presented results could have important implications for many biological processes that rely on an effective pacemaker for their proper functioning.

  20. Cancer cell metabolism: one hallmark, many faces.

    PubMed

    Cantor, Jason R; Sabatini, David M

    2012-10-01

    Cancer cells must rewire cellular metabolism to satisfy the demands of growth and proliferation. Although many of the metabolic alterations are largely similar to those in normal proliferating cells, they are aberrantly driven in cancer by a combination of genetic lesions and nongenetic factors such as the tumor microenvironment. However, a single model of altered tumor metabolism does not describe the sum of metabolic changes that can support cell growth. Instead, the diversity of such changes within the metabolic program of a cancer cell can dictate by what means proliferative rewiring is driven, and can also impart heterogeneity in the metabolic dependencies of the cell. A better understanding of this heterogeneity may enable the development and optimization of therapeutic strategies that target tumor metabolism.

  1. Neural circuit rewiring: insights from DD synapse remodeling.

    PubMed

    Kurup, Naina; Jin, Yishi

    2016-01-01

    Nervous systems exhibit many forms of neuronal plasticity during growth, learning and memory consolidation, as well as in response to injury. Such plasticity can occur across entire nervous systems as with the case of insect metamorphosis, in individual classes of neurons, or even at the level of a single neuron. A striking example of neuronal plasticity in C. elegans is the synaptic rewiring of the GABAergic Dorsal D-type motor neurons during larval development, termed DD remodeling. DD remodeling entails multi-step coordination to concurrently eliminate pre-existing synapses and form new synapses on different neurites, without changing the overall morphology of the neuron. This mini-review focuses on recent advances in understanding the cellular and molecular mechanisms driving DD remodeling.

  2. Development of structural correlations and synchronization from adaptive rewiring in networks of Kuramoto oscillators

    NASA Astrophysics Data System (ADS)

    Papadopoulos, Lia; Kim, Jason Z.; Kurths, Jürgen; Bassett, Danielle S.

    2017-07-01

    Synchronization of non-identical oscillators coupled through complex networks is an important example of collective behavior, and it is interesting to ask how the structural organization of network interactions influences this process. Several studies have explored and uncovered optimal topologies for synchronization by making purposeful alterations to a network. On the other hand, the connectivity patterns of many natural systems are often not static, but are rather modulated over time according to their dynamics. However, this co-evolution and the extent to which the dynamics of the individual units can shape the organization of the network itself are less well understood. Here, we study initially randomly connected but locally adaptive networks of Kuramoto oscillators. In particular, the system employs a co-evolutionary rewiring strategy that depends only on the instantaneous, pairwise phase differences of neighboring oscillators, and that conserves the total number of edges, allowing the effects of local reorganization to be isolated. We find that a simple rule—which preserves connections between more out-of-phase oscillators while rewiring connections between more in-phase oscillators—can cause initially disordered networks to organize into more structured topologies that support enhanced synchronization dynamics. We examine how this process unfolds over time, finding a dependence on the intrinsic frequencies of the oscillators, the global coupling, and the network density, in terms of how the adaptive mechanism reorganizes the network and influences the dynamics. Importantly, for large enough coupling and after sufficient adaptation, the resulting networks exhibit interesting characteristics, including degree-frequency and frequency-neighbor frequency correlations. These properties have previously been associated with optimal synchronization or explosive transitions in which the networks were constructed using global information. On the contrary, by considering a time-dependent interplay between structure and dynamics, this work offers a mechanism through which emergent phenomena and organization can arise in complex systems utilizing local rules.

  3. Acetyl-CoA carboxylase rewires cancer metabolism to allow cancer cells to survive inhibition of the Warburg effect by cetuximab.

    PubMed

    Luo, Jingtao; Hong, Yun; Lu, Yang; Qiu, Songbo; Chaganty, Bharat K R; Zhang, Lun; Wang, Xudong; Li, Qiang; Fan, Zhen

    2017-01-01

    Cetuximab inhibits HIF-1-regulated glycolysis in cancer cells, thereby reversing the Warburg effect and leading to inhibition of cancer cell metabolism. AMP-activated protein kinase (AMPK) is activated after cetuximab treatment, and a sustained AMPK activity is a mechanism contributing to cetuximab resistance. Here, we investigated how acetyl-CoA carboxylase (ACC), a downstream target of AMPK, rewires cancer metabolism in response to cetuximab treatment. We found that introduction of experimental ACC mutants lacking the AMPK phosphorylation sites (ACC1_S79A and ACC2_S212A) into head and neck squamous cell carcinoma (HNSCC) cells protected HNSCC cells from cetuximab-induced growth inhibition. HNSCC cells with acquired cetuximab resistance contained not only high levels of T172-phosphorylated AMPK and S79-phosphorylated ACC1 but also an increased level of total ACC. These findings were corroborated in tumor specimens of HNSCC patients treated with cetuximab. Cetuximab plus TOFA (an allosteric inhibitor of ACC) achieved remarkable growth inhibition of cetuximab-resistant HNSCC xenografts. Our data suggest a novel paradigm in which cetuximab-mediated activation of AMPK and subsequent phosphorylation and inhibition of ACC is followed by a compensatory increase in total ACC, which rewires cancer metabolism from glycolysis-dependent to lipogenesis-dependent. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  4. Generating clustered scale-free networks using Poisson based localization of edges

    NASA Astrophysics Data System (ADS)

    Türker, İlker

    2018-05-01

    We introduce a variety of network models using a Poisson-based edge localization strategy, which result in clustered scale-free topologies. We first verify the success of our localization strategy by realizing a variant of the well-known Watts-Strogatz model with an inverse approach, implying a small-world regime of rewiring from a random network through a regular one. We then apply the rewiring strategy to a pure Barabasi-Albert model and successfully achieve a small-world regime, with a limited capacity of scale-free property. To imitate the high clustering property of scale-free networks with higher accuracy, we adapted the Poisson-based wiring strategy to a growing network with the ingredients of both preferential attachment and local connectivity. To achieve the collocation of these properties, we used a routine of flattening the edges array, sorting it, and applying a mixing procedure to assemble both global connections with preferential attachment and local clusters. As a result, we achieved clustered scale-free networks with a computational fashion, diverging from the recent studies by following a simple but efficient approach.

  5. Extensive cortical rewiring after brain injury.

    PubMed

    Dancause, Numa; Barbay, Scott; Frost, Shawn B; Plautz, Erik J; Chen, Daofen; Zoubina, Elena V; Stowe, Ann M; Nudo, Randolph J

    2005-11-02

    Previously, we showed that the ventral premotor cortex (PMv) underwent neurophysiological remodeling after injury to the primary motor cortex (M1). In the present study, we examined cortical connections of PMv after such lesions. The neuroanatomical tract tracer biotinylated dextran amine was injected into the PMv hand area at least 5 months after ischemic injury to the M1 hand area. Comparison of labeling patterns between experimental and control animals demonstrated extensive proliferation of novel PMv terminal fields and the appearance of retrogradely labeled cell bodies within area 1/2 of the primary somatosensory cortex after M1 injury. Furthermore, evidence was found for alterations in the trajectory of PMv intracortical axons near the site of the lesion. The results suggest that M1 injury results in axonal sprouting near the ischemic injury and the establishment of novel connections within a distant target. These results support the hypothesis that, after a cortical injury, such as occurs after stroke, cortical areas distant from the injury undergo major neuroanatomical reorganization. Our results reveal an extraordinary anatomical rewiring capacity in the adult CNS after injury that may potentially play a role in recovery.

  6. Modeling confirmation bias and polarization

    NASA Astrophysics Data System (ADS)

    Del Vicario, Michela; Scala, Antonio; Caldarelli, Guido; Stanley, H. Eugene; Quattrociocchi, Walter

    2017-01-01

    Online users tend to select claims that adhere to their system of beliefs and to ignore dissenting information. Confirmation bias, indeed, plays a pivotal role in viral phenomena. Furthermore, the wide availability of content on the web fosters the aggregation of likeminded people where debates tend to enforce group polarization. Such a configuration might alter the public debate and thus the formation of the public opinion. In this paper we provide a mathematical model to study online social debates and the related polarization dynamics. We assume the basic updating rule of the Bounded Confidence Model (BCM) and we develop two variations a) the Rewire with Bounded Confidence Model (RBCM), in which discordant links are broken until convergence is reached; and b) the Unbounded Confidence Model, under which the interaction among discordant pairs of users is allowed even with a negative feedback, either with the rewiring step (RUCM) or without it (UCM). From numerical simulations we find that the new models (UCM and RUCM), unlike the BCM, are able to explain the coexistence of two stable final opinions, often observed in reality. Lastly, we present a mean field approximation of the newly introduced models.

  7. Dynamic and interacting complex networks

    NASA Astrophysics Data System (ADS)

    Dickison, Mark E.

    This thesis employs methods of statistical mechanics and numerical simulations to study some aspects of dynamic and interacting complex networks. The mapping of various social and physical phenomena to complex networks has been a rich field in the past few decades. Subjects as broad as petroleum engineering, scientific collaborations, and the structure of the internet have all been analyzed in a network physics context, with useful and universal results. In the first chapter we introduce basic concepts in networks, including the two types of network configurations that are studied and the statistical physics and epidemiological models that form the framework of the network research, as well as covering various previously-derived results in network theory that are used in the work in the following chapters. In the second chapter we introduce a model for dynamic networks, where the links or the strengths of the links change over time. We solve the model by mapping dynamic networks to the problem of directed percolation, where the direction corresponds to the time evolution of the network. We show that the dynamic network undergoes a percolation phase transition at a critical concentration pc, that decreases with the rate r at which the network links are changed. The behavior near criticality is universal and independent of r. We find that for dynamic random networks fundamental laws are changed: i) The size of the giant component at criticality scales with the network size N for all values of r, rather than as N2/3 in static network, ii) In the presence of a broad distribution of disorder, the optimal path length between two nodes in a dynamic network scales as N1/2, compared to N1/3 in a static network. The third chapter consists of a study of the effect of quarantine on the propagation of epidemics on an adaptive network of social contacts. For this purpose, we analyze the susceptible-infected-recovered model in the presence of quarantine, where susceptible individuals protect themselves by disconnecting their links to infected neighbors with probability w and reconnecting them to other susceptible individuals chosen at random. Starting from a single infected individual, we show by an analytical approach and simulations that there is a phase transition at a critical rewiring (quarantine) threshold wc separating a phase (w < wc) where the disease reaches a large fraction of the population from a phase (w > wc) where the disease does not spread out. We find that in our model the topology of the network strongly affects the size of the propagation and that wc increases with the mean degree and heterogeneity of the network. We also find that wc is reduced if we perform a preferential rewiring, in which the rewiring probability is proportional to the degree of infected nodes. In the fourth chapter, we study epidemic processes on interconnected network systems, and find two distinct regimes. In strongly-coupled network systems, epidemics occur simultaneously across the entire system at a critical value betac. In contrast, in weakly-coupled network systems, a mixed phase exists below betac where an epidemic occurs in one network but does not spread to the coupled network. We derive an expression for the network and disease parameters that allow this mixed phase and verify it numerically. Public health implications of communities comprising these two classes of network systems are also mentioned.

  8. Bias, belief, and consensus: Collective opinion formation on fluctuating networks

    NASA Astrophysics Data System (ADS)

    Ngampruetikorn, Vudtiwat; Stephens, Greg J.

    2016-11-01

    With the advent of online networks, societies have become substantially more interconnected with individual members able to easily both maintain and modify their own social links. Here, we show that active network maintenance exposes agents to confirmation bias, the tendency to confirm one's beliefs, and we explore how this bias affects collective opinion formation. We introduce a model of binary opinion dynamics on a complex, fluctuating network with stochastic rewiring and we analyze these dynamics in the mean-field limit of large networks and fast link rewiring. We show that confirmation bias induces a segregation of individuals with different opinions and stabilizes the consensus state. We further show that bias can have an unusual, nonmonotonic effect on the time to consensus and this suggests a novel avenue for large-scale opinion manipulation.

  9. Bias, belief, and consensus: Collective opinion formation on fluctuating networks.

    PubMed

    Ngampruetikorn, Vudtiwat; Stephens, Greg J

    2016-11-01

    With the advent of online networks, societies have become substantially more interconnected with individual members able to easily both maintain and modify their own social links. Here, we show that active network maintenance exposes agents to confirmation bias, the tendency to confirm one's beliefs, and we explore how this bias affects collective opinion formation. We introduce a model of binary opinion dynamics on a complex, fluctuating network with stochastic rewiring and we analyze these dynamics in the mean-field limit of large networks and fast link rewiring. We show that confirmation bias induces a segregation of individuals with different opinions and stabilizes the consensus state. We further show that bias can have an unusual, nonmonotonic effect on the time to consensus and this suggests a novel avenue for large-scale opinion manipulation.

  10. Chronic 2P-STED imaging reveals high turnover of dendritic spines in the hippocampus in vivo.

    PubMed

    Pfeiffer, Thomas; Poll, Stefanie; Bancelin, Stephane; Angibaud, Julie; Inavalli, Vvg Krishna; Keppler, Kevin; Mittag, Manuel; Fuhrmann, Martin; Nägerl, U Valentin

    2018-06-22

    Rewiring neural circuits by the formation and elimination of synapses is thought to be a key cellular mechanism of learning and memory in the mammalian brain. Dendritic spines are the postsynaptic structural component of excitatory synapses, and their experience-dependent plasticity has been extensively studied in mouse superficial cortex using two-photon microscopy in vivo. By contrast, very little is known about spine plasticity in the hippocampus, which is the archetypical memory center of the brain, mostly because it is difficult to visualize dendritic spines in this deeply embedded structure with sufficient spatial resolution. We developed chronic 2P-STED microscopy in mouse hippocampus, using a 'hippocampal window' based on resection of cortical tissue and a long working distance objective for optical access. We observed a two-fold higher spine density than previous studies and measured a spine turnover of ~40% within 4 days, which depended on spine size. We thus provide direct evidence for a high level of structural rewiring of synaptic circuits and new insights into the structure-dynamics relationship of hippocampal spines. Having established chronic super-resolution microscopy in the hippocampus in vivo, our study enables longitudinal and correlative analyses of nanoscale neuroanatomical structures with genetic, molecular and behavioral experiments. © 2018, Pfeiffer et al.

  11. Integration of Network Biology and Imaging to Study Cancer Phenotypes and Responses.

    PubMed

    Tian, Ye; Wang, Sean S; Zhang, Zhen; Rodriguez, Olga C; Petricoin, Emanuel; Shih, Ie-Ming; Chan, Daniel; Avantaggiati, Maria; Yu, Guoqiang; Ye, Shaozhen; Clarke, Robert; Wang, Chao; Zhang, Bai; Wang, Yue; Albanese, Chris

    2014-01-01

    Ever growing "omics" data and continuously accumulated biological knowledge provide an unprecedented opportunity to identify molecular biomarkers and their interactions that are responsible for cancer phenotypes that can be accurately defined by clinical measurements such as in vivo imaging. Since signaling or regulatory networks are dynamic and context-specific, systematic efforts to characterize such structural alterations must effectively distinguish significant network rewiring from random background fluctuations. Here we introduced a novel integration of network biology and imaging to study cancer phenotypes and responses to treatments at the molecular systems level. Specifically, Differential Dependence Network (DDN) analysis was used to detect statistically significant topological rewiring in molecular networks between two phenotypic conditions, and in vivo Magnetic Resonance Imaging (MRI) was used to more accurately define phenotypic sample groups for such differential analysis. We applied DDN to analyze two distinct phenotypic groups of breast cancer and study how genomic instability affects the molecular network topologies in high-grade ovarian cancer. Further, FDA-approved arsenic trioxide (ATO) and the ND2-SmoA1 mouse model of Medulloblastoma (MB) were used to extend our analyses of combined MRI and Reverse Phase Protein Microarray (RPMA) data to assess tumor responses to ATO and to uncover the complexity of therapeutic molecular biology.

  12. Women of valor: post-traumatic stress disorder in the dental practice.

    PubMed

    Kloeffler, G Davis

    2015-01-01

    Dental professionals can intervene in head, neck and facial pain found in female patients who suffer from post-traumatic stress disorder (PTSD). There are three theories for why women are predisposed to pain: hormonal differences, nervous system rewiring and sympathetic issues. This article includes case studies of three patients who are representative of these theories. A rapid, nonintrusive intervention will also be described.

  13. Gut microbiota directs PPARγ-driven reprogramming of the liver circadian clock by nutritional challenge.

    PubMed

    Murakami, Mari; Tognini, Paola; Liu, Yu; Eckel-Mahan, Kristin L; Baldi, Pierre; Sassone-Corsi, Paolo

    2016-09-01

    The liver circadian clock is reprogrammed by nutritional challenge through the rewiring of specific transcriptional pathways. As the gut microbiota is tightly connected to host metabolism, whose coordination is governed by the circadian clock, we explored whether gut microbes influence circadian homeostasis and how they distally control the peripheral clock in the liver. Using fecal transplant procedures we reveal that, in response to high-fat diet, the gut microbiota drives PPARγ-mediated activation of newly oscillatory transcriptional programs in the liver. Moreover, antibiotics treatment prevents PPARγ-driven transcription in the liver, underscoring the essential role of gut microbes in clock reprogramming and hepatic circadian homeostasis. Thus, a specific molecular signature characterizes the influence of the gut microbiome in the liver, leading to the transcriptional rewiring of hepatic metabolism. © 2016 The Authors.

  14. Rewiring yeast sugar transporter preference through modifying a conserved protein motif.

    PubMed

    Young, Eric M; Tong, Alice; Bui, Hang; Spofford, Caitlin; Alper, Hal S

    2014-01-07

    Utilization of exogenous sugars found in lignocellulosic biomass hydrolysates, such as xylose, must be improved before yeast can serve as an efficient biofuel and biochemical production platform. In particular, the first step in this process, the molecular transport of xylose into the cell, can serve as a significant flux bottleneck and is highly inhibited by other sugars. Here we demonstrate that sugar transport preference and kinetics can be rewired through the programming of a sequence motif of the general form G-G/F-XXX-G found in the first transmembrane span. By evaluating 46 different heterologously expressed transporters, we find that this motif is conserved among functional transporters and highly enriched in transporters that confer growth on xylose. Through saturation mutagenesis and subsequent rational mutagenesis, four transporter mutants unable to confer growth on glucose but able to sustain growth on xylose were engineered. Specifically, Candida intermedia gxs1 Phe(38)Ile(39)Met(40), Scheffersomyces stipitis rgt2 Phe(38) and Met(40), and Saccharomyces cerevisiae hxt7 Ile(39)Met(40)Met(340) all exhibit this phenotype. In these cases, primary hexose transporters were rewired into xylose transporters. These xylose transporters nevertheless remained inhibited by glucose. Furthermore, in the course of identifying this motif, novel wild-type transporters with superior monosaccharide growth profiles were discovered, namely S. stipitis RGT2 and Debaryomyces hansenii 2D01474. These findings build toward the engineering of efficient pentose utilization in yeast and provide a blueprint for reprogramming transporter properties.

  15. Accelerating consensus on coevolving networks: The effect of committed individuals

    NASA Astrophysics Data System (ADS)

    Singh, P.; Sreenivasan, S.; Szymanski, B. K.; Korniss, G.

    2012-04-01

    Social networks are not static but, rather, constantly evolve in time. One of the elements thought to drive the evolution of social network structure is homophily—the need for individuals to connect with others who are similar to them. In this paper, we study how the spread of a new opinion, idea, or behavior on such a homophily-driven social network is affected by the changing network structure. In particular, using simulations, we study a variant of the Axelrod model on a network with a homophily-driven rewiring rule imposed. First, we find that the presence of rewiring within the network, in general, impedes the reaching of consensus in opinion, as the time to reach consensus diverges exponentially with network size N. We then investigate whether the introduction of committed individuals who are rigid in their opinion on a particular issue can speed up the convergence to consensus on that issue. We demonstrate that as committed agents are added, beyond a critical value of the committed fraction, the consensus time growth becomes logarithmic in network size N. Furthermore, we show that slight changes in the interaction rule can produce strikingly different results in the scaling behavior of consensus time, Tc. However, the benefit gained by introducing committed agents is qualitatively preserved across all the interaction rules we consider.

  16. Sparsely-synchronized brain rhythm in a small-world neural network

    NASA Astrophysics Data System (ADS)

    Kim, Sang-Yoon; Lim, Woochang

    2013-07-01

    Sparsely-synchronized cortical rhythms, associated with diverse cognitive functions, have been observed in electric recordings of brain activity. At the population level, cortical rhythms exhibit small-amplitude fast oscillations while at the cellular level, individual neurons show stochastic firings sparsely at a much lower rate than the population rate. We study the effect of network architecture on sparse synchronization in an inhibitory population of subthreshold Morris-Lecar neurons (which cannot fire spontaneously without noise). Previously, sparse synchronization was found to occur for cases of both global coupling ( i.e., regular all-to-all coupling) and random coupling. However, a real neural network is known to be non-regular and non-random. Here, we consider sparse Watts-Strogatz small-world networks which interpolate between a regular lattice and a random graph via rewiring. We start from a regular lattice with only short-range connections and then investigate the emergence of sparse synchronization by increasing the rewiring probability p for the short-range connections. For p = 0, the average synaptic path length between pairs of neurons becomes long; hence, only an unsynchronized population state exists because the global efficiency of information transfer is low. However, as p is increased, long-range connections begin to appear, and global effective communication between distant neurons may be available via shorter synaptic paths. Consequently, as p passes a threshold p th (}~ 0.044), sparsely-synchronized population rhythms emerge. However, with increasing p, longer axon wirings become expensive because of their material and energy costs. At an optimal value p* DE (}~ 0.24) of the rewiring probability, the ratio of the synchrony degree to the wiring cost is found to become maximal. In this way, an optimal sparse synchronization is found to occur at a minimal wiring cost in an economic small-world network through trade-off between synchrony and wiring cost.

  17. Biconnectivity of the cellular metabolism: A cross-species study and its implication for human diseases

    PubMed Central

    Kim, P.; Lee, D.-S.; Kahng, B.

    2015-01-01

    The maintenance of stability during perturbations is essential for living organisms, and cellular networks organize multiple pathways to enable elements to remain connected and communicate, even when some pathways are broken. Here, we evaluated the biconnectivity of the metabolic networks of 506 species in terms of the clustering coefficients and the largest biconnected components (LBCs), wherein a biconnected component (BC) indicates a set of nodes in which every pair is connected by more than one path. Via comparison with the rewired networks, we illustrated how biconnectivity in cellular metabolism is achieved on small and large scales. Defining the biconnectivity of individual metabolic compounds by counting the number of species in which the compound belonged to the LBC, we demonstrated that biconnectivity is significantly correlated with the evolutionary age and functional importance of a compound. The prevalence of diseases associated with each metabolic compound quantifies the compounds vulnerability, i.e., the likelihood that it will cause a metabolic disorder. Moreover, the vulnerability depends on both the biconnectivity and the lethality of the compound. This fact can be used in drug discovery and medical treatments. PMID:26490723

  18. The effect of zealots on the rate of consensus achievement in complex networks

    NASA Astrophysics Data System (ADS)

    Kashisaz, Hadi; Hosseini, S. Samira; Darooneh, Amir H.

    2014-05-01

    In this study, we investigate the role of zealots on the result of voting process on both scale-free and Watts-Strogatz networks. We observe that inflexible individuals are very effective in consensus achievement and also in the rate of ordering process in complex networks. Zealots make the magnetization of the system to vary exponentially with time. We obtain that on SF networks, increasing the zealots' population, Z, exponentially increases the rate of consensus achievement. The time needed for the system to reach a desired magnetization, shows a power-law dependence on Z. As well, we obtain that the decay time of the order parameter shows a power-law dependence on Z. We also investigate the role of zealots' degree on the rate of ordering process and finally, we analyze the effect of network's randomness on the efficiency of zealots. Moving from a regular to a random network, the re-wiring probability P increases. We show that with increasing P, the efficiency of zealots for reducing the consensus achievement time increases. The rate of consensus is compared with the rate of ordering for different re-wiring probabilities of WS networks.

  19. Phase transition of the susceptible-infected-susceptible dynamics on time-varying configuration model networks

    NASA Astrophysics Data System (ADS)

    St-Onge, Guillaume; Young, Jean-Gabriel; Laurence, Edward; Murphy, Charles; Dubé, Louis J.

    2018-02-01

    We present a degree-based theoretical framework to study the susceptible-infected-susceptible (SIS) dynamics on time-varying (rewired) configuration model networks. Using this framework on a given degree distribution, we provide a detailed analysis of the stationary state using the rewiring rate to explore the whole range of the time variation of the structure relative to that of the SIS process. This analysis is suitable for the characterization of the phase transition and leads to three main contributions: (1) We obtain a self-consistent expression for the absorbing-state threshold, able to capture both collective and hub activation. (2) We recover the predictions of a number of existing approaches as limiting cases of our analysis, providing thereby a unifying point of view for the SIS dynamics on random networks. (3) We obtain bounds for the critical exponents of a number of quantities in the stationary state. This allows us to reinterpret the concept of hub-dominated phase transition. Within our framework, it appears as a heterogeneous critical phenomenon: observables for different degree classes have a different scaling with the infection rate. This phenomenon is followed by the successive activation of the degree classes beyond the epidemic threshold.

  20. Zealotry effects on opinion dynamics in the adaptive voter model

    NASA Astrophysics Data System (ADS)

    Klamser, Pascal P.; Wiedermann, Marc; Donges, Jonathan F.; Donner, Reik V.

    2017-11-01

    The adaptive voter model has been widely studied as a conceptual model for opinion formation processes on time-evolving social networks. Past studies on the effect of zealots, i.e., nodes aiming to spread their fixed opinion throughout the system, only considered the voter model on a static network. Here we extend the study of zealotry to the case of an adaptive network topology co-evolving with the state of the nodes and investigate opinion spreading induced by zealots depending on their initial density and connectedness. Numerical simulations reveal that below the fragmentation threshold a low density of zealots is sufficient to spread their opinion to the whole network. Beyond the transition point, zealots must exhibit an increased degree as compared to ordinary nodes for an efficient spreading of their opinion. We verify the numerical findings using a mean-field approximation of the model yielding a low-dimensional set of coupled ordinary differential equations. Our results imply that the spreading of the zealots' opinion in the adaptive voter model is strongly dependent on the link rewiring probability and the average degree of normal nodes in comparison with that of the zealots. In order to avoid a complete dominance of the zealots' opinion, there are two possible strategies for the remaining nodes: adjusting the probability of rewiring and/or the number of connections with other nodes, respectively.

  1. Critical behavior of the contact process on small-world networks

    NASA Astrophysics Data System (ADS)

    Ferreira, Ronan S.; Ferreira, Silvio C.

    2013-11-01

    We investigate the role of clustering on the critical behavior of the contact process (CP) on small-world networks using the Watts-Strogatz (WS) network model with an edge rewiring probability p. The critical point is well predicted by a homogeneous cluster-approximation for the limit of vanishing clustering ( p → 1). The critical exponents and dimensionless moment ratios of the CP are in agreement with those predicted by the mean-field theory for any p > 0. This independence on the network clustering shows that the small-world property is a sufficient condition for the mean-field theory to correctly predict the universality of the model. Moreover, we compare the CP dynamics on WS networks with rewiring probability p = 1 and random regular networks and show that the weak heterogeneity of the WS network slightly changes the critical point but does not alter other critical quantities of the model.

  2. Competing of Sznajd and Voter Dynamics in the Watts-Strogatz Network

    NASA Astrophysics Data System (ADS)

    Rybak, M.; Kułakowski, K.

    We investigate the Watts-Strogatz network with the clustering coefficient C dependent on the rewiring probability. The network is an area of two opposite contact processes, where nodes can be in two states, S or D. One of the processes is governed by the Sznajd dynamics: if there are two connected nodes in D-state, all their neighbors become D with probability p. For the opposite process it is sufficient to have only one neighbor in state S; this transition occurs with probability 1. The concentration of S-nodes changes abruptly at given value of the probability p. The result is that for small p, in clusterized networks the activation of S nodes prevails. This result is explained by a comparison of two limit cases: the Watts-Strogatz network without rewiring, where C=0.5, and the Bethe lattice where C=0.

  3. Lung Adenocarcinoma Distally Rewires Hepatic Circadian Homeostasis

    PubMed Central

    Masri, Selma; Papagiannakopoulos, Thales; Kinouchi, Kenichiro; Liu, Yu; Cervantes, Marlene; Baldi, Pierre; Jacks, Tyler; Sassone-Corsi, Paolo

    2016-01-01

    SUMMARY The circadian clock controls metabolic and physiological processes through finely tuned molecular mechanisms. The clock is remarkably plastic and adapts to exogenous zeitgebers, such as light and nutrition. How a pathological condition in a given tissue influences systemic circadian homeostasis in other tissues remains an unanswered question of conceptual and biomedical importance. Here we show that lung adenocarcinoma operates as an endogenous reorganizer of circadian metabolism. High-throughput transcriptomics and metabolomics revealed unique signatures of transcripts and metabolites cycling exclusively in livers of tumor-bearing mice. Remarkably, lung cancer has no effect on the core clock, but rather reprograms hepatic metabolism through altered pro-inflammatory response via the STAT3-Socs3 pathway. This results in disruption of AKT, AMPK and SREBP signaling, leading to altered insulin, glucose and lipid metabolism. Thus, lung adenocarcinoma functions as a potent endogenous circadian organizer (ECO), which rewires the pathophysiological dimension of a distal tissue such as the liver. PMID:27153497

  4. Parallel evolution of the make–accumulate–consume strategy in Saccharomyces and Dekkera yeasts

    PubMed Central

    Rozpędowska, Elżbieta; Hellborg, Linda; Ishchuk, Olena P.; Orhan, Furkan; Galafassi, Silvia; Merico, Annamaria; Woolfit, Megan; Compagno, Concetta; Piškur, Jure

    2011-01-01

    Saccharomyces yeasts degrade sugars to two-carbon components, in particular ethanol, even in the presence of excess oxygen. This characteristic is called the Crabtree effect and is the background for the 'make–accumulate–consume' life strategy, which in natural habitats helps Saccharomyces yeasts to out-compete other microorganisms. A global promoter rewiring in the Saccharomyces cerevisiae lineage, which occurred around 100 mya, was one of the main molecular events providing the background for evolution of this strategy. Here we show that the Dekkera bruxellensis lineage, which separated from the Saccharomyces yeasts more than 200 mya, also efficiently makes, accumulates and consumes ethanol and acetic acid. Analysis of promoter sequences indicates that both lineages independently underwent a massive loss of a specific cis-regulatory element from dozens of genes associated with respiration, and we show that also in D. bruxellensis this promoter rewiring contributes to the observed Crabtree effect. PMID:21556056

  5. Optogenetic rewiring of thalamocortical circuits to restore function in the stroke injured brain

    PubMed Central

    Tennant, Kelly A.; Taylor, Stephanie L.; White, Emily R.; Brown, Craig E.

    2017-01-01

    To regain sensorimotor functions after stroke, surviving neural circuits must reorganize and form new connections. Although the thalamus is critical for processing and relaying sensory information to the cortex, little is known about how stroke affects the structure and function of these connections, or whether a therapeutic approach targeting these circuits can improve recovery. Here we reveal with in vivo calcium imaging that stroke in somatosensory cortex dampens the excitability of surviving thalamocortical circuits. Given this deficit, we hypothesized that chronic transcranial window optogenetic stimulation of thalamocortical axons could facilitate recovery. Using two-photon imaging, we show that optogenetic stimulation promotes the formation of new and stable thalamocortical synaptic boutons, without impacting axon branch dynamics. Stimulation also enhances the recovery of somatosensory cortical circuit function and forepaw sensorimotor abilities. These results demonstrate that an optogenetic approach can rewire thalamocortical circuits and restore function in the damaged brain. PMID:28643802

  6. A Brain-Machine-Brain Interface for Rewiring of Cortical Circuitry after Traumatic Brain Injury

    DTIC Science & Technology

    2013-09-01

    were requested to provide further evidence, either neurophysiological or neuroanatomical, of enhanced connectivity (no additional studies in new...report. The algorithms developed during the course of the manuscript revision have proved to be very enlightening . During Year 3, we revisited our Year...to our local IACUC and subsequently, to ACURO during Year 4. As a result of the Nature reviews, we focused on a more neurophysiological approach to

  7. Engineering secondary cell wall deposition in plants

    PubMed Central

    Yang, Fan; Mitra, Prajakta; Zhang, Ling; Prak, Lina; Verhertbruggen, Yves; Kim, Jin-Sun; Sun, Lan; Zheng, Kejian; Tang, Kexuan; Auer, Manfred; Scheller, Henrik V; Loqué, Dominique

    2013-01-01

    Lignocellulosic biomass was used for thousands of years as animal feed and is now considered a great sugar source for biofuels production. It is composed mostly of secondary cell walls built with polysaccharide polymers that are embedded in lignin to reinforce the cell wall structure and maintain its integrity. Lignin is the primary material responsible for biomass recalcitrance to enzymatic hydrolysis. During plant development, deep reductions of lignin cause growth defects and often correlate with the loss of vessel integrity that adversely affects water and nutrient transport in plants. The work presented here describes a new approach to decrease lignin content while preventing vessel collapse and introduces a new strategy to boost transcription factor expression in native tissues. We used synthetic biology tools in Arabidopsis to rewire the secondary cell network by changing promoter-coding sequence associations. The result was a reduction in lignin and an increase in polysaccharide depositions in fibre cells. The promoter of a key lignin gene, C4H, was replaced by the vessel-specific promoter of transcription factor VND6. This rewired lignin biosynthesis specifically for vessel formation while disconnecting C4H expression from the fibre regulatory network. Secondly, the promoter of the IRX8 gene, secondary cell wall glycosyltransferase, was used to express a new copy of the fibre transcription factor NST1, and as the IRX8 promoter is induced by NST1, this also created an artificial positive feedback loop (APFL). The combination of strategies—lignin rewiring with APFL insertion—enhances polysaccharide deposition in stems without over-lignifying them, resulting in higher sugar yields after enzymatic hydrolysis. PMID:23140549

  8. A Brain-Machine-Brain Interface for Rewiring of Cortical Circuitry after Traumatic Brain Injury

    DTIC Science & Technology

    2015-11-01

    or asymmetric biphasic current pulses up to ~100 A with passive discharge , and W-level digital signal processing 6 (DSP) unit for real-time SAR...voltage compliance of 4.68 V with a 5 V supply, when configured for monophasic stimulation with passive discharge . The programmable microstimulator...superficial aspects of the corona radiate was evident. In the full study, impact parameters will be altered slightly (somewhat larger impact tip, slightly

  9. Extensive and systematic rewiring of histone post-translational modifications in cancer model systems.

    PubMed

    Noberini, Roberta; Osti, Daniela; Miccolo, Claudia; Richichi, Cristina; Lupia, Michela; Corleone, Giacomo; Hong, Sung-Pil; Colombo, Piergiuseppe; Pollo, Bianca; Fornasari, Lorenzo; Pruneri, Giancarlo; Magnani, Luca; Cavallaro, Ugo; Chiocca, Susanna; Minucci, Saverio; Pelicci, Giuliana; Bonaldi, Tiziana

    2018-05-04

    Histone post-translational modifications (PTMs) generate a complex combinatorial code that regulates gene expression and nuclear functions, and whose deregulation has been documented in different types of cancers. Therefore, the availability of relevant culture models that can be manipulated and that retain the epigenetic features of the tissue of origin is absolutely crucial for studying the epigenetic mechanisms underlying cancer and testing epigenetic drugs. In this study, we took advantage of quantitative mass spectrometry to comprehensively profile histone PTMs in patient tumor tissues, primary cultures and cell lines from three representative tumor models, breast cancer, glioblastoma and ovarian cancer, revealing an extensive and systematic rewiring of histone marks in cell culture conditions, which includes a decrease of H3K27me2/me3, H3K79me1/me2 and H3K9ac/K14ac, and an increase of H3K36me1/me2. While some changes occur in short-term primary cultures, most of them are instead time-dependent and appear only in long-term cultures. Remarkably, such changes mostly revert in cell line- and primary cell-derived in vivo xenograft models. Taken together, these results support the use of xenografts as the most representative models of in vivo epigenetic processes, suggesting caution when using cultured cells, in particular cell lines and long-term primary cultures, for epigenetic investigations.

  10. Extensive and systematic rewiring of histone post-translational modifications in cancer model systems

    PubMed Central

    Noberini, Roberta; Osti, Daniela; Miccolo, Claudia; Richichi, Cristina; Lupia, Michela; Corleone, Giacomo; Hong, Sung-Pil; Colombo, Piergiuseppe; Pollo, Bianca; Fornasari, Lorenzo; Pruneri, Giancarlo; Magnani, Luca; Cavallaro, Ugo; Chiocca, Susanna; Minucci, Saverio; Pelicci, Giuliana; Bonaldi, Tiziana

    2018-01-01

    Abstract Histone post-translational modifications (PTMs) generate a complex combinatorial code that regulates gene expression and nuclear functions, and whose deregulation has been documented in different types of cancers. Therefore, the availability of relevant culture models that can be manipulated and that retain the epigenetic features of the tissue of origin is absolutely crucial for studying the epigenetic mechanisms underlying cancer and testing epigenetic drugs. In this study, we took advantage of quantitative mass spectrometry to comprehensively profile histone PTMs in patient tumor tissues, primary cultures and cell lines from three representative tumor models, breast cancer, glioblastoma and ovarian cancer, revealing an extensive and systematic rewiring of histone marks in cell culture conditions, which includes a decrease of H3K27me2/me3, H3K79me1/me2 and H3K9ac/K14ac, and an increase of H3K36me1/me2. While some changes occur in short-term primary cultures, most of them are instead time-dependent and appear only in long-term cultures. Remarkably, such changes mostly revert in cell line- and primary cell-derived in vivo xenograft models. Taken together, these results support the use of xenografts as the most representative models of in vivo epigenetic processes, suggesting caution when using cultured cells, in particular cell lines and long-term primary cultures, for epigenetic investigations. PMID:29618087

  11. Conference Connections: Rewiring the Circuit

    ERIC Educational Resources Information Center

    Siemens, George; Tittenberger, Peter; Anderson, Terry

    2008-01-01

    Increased openness, two-way dialogue, and blurred distinctions between experts and amateurs have combined with numerous technology tools for dialogue, personal expression, networking, and community formation to "remake" conferences, influencing not only how attendees participate in but also how organizers host conferences today. (Contains 31…

  12. RANK rewires energy homeostasis in lung cancer cells and drives primary lung cancer

    PubMed Central

    Rao, Shuan; Sigl, Verena; Wimmer, Reiner Alois; Novatchkova, Maria; Jais, Alexander; Wagner, Gabriel; Handschuh, Stephan; Uribesalgo, Iris; Hagelkruys, Astrid; Kozieradzki, Ivona; Tortola, Luigi; Nitsch, Roberto; Cronin, Shane J.; Orthofer, Michael; Branstetter, Daniel; Canon, Jude; Rossi, John; D'Arcangelo, Manolo; Botling, Johan; Micke, Patrick; Fleur, Linnea La; Edlund, Karolina; Bergqvist, Michael; Ekman, Simon; Lendl, Thomas; Popper, Helmut; Takayanagi, Hiroshi; Kenner, Lukas; Hirsch, Fred R.; Dougall, William

    2017-01-01

    Lung cancer is the leading cause of cancer deaths. Besides smoking, epidemiological studies have linked female sex hormones to lung cancer in women; however, the underlying mechanisms remain unclear. Here we report that the receptor activator of nuclear factor-kB (RANK), the key regulator of osteoclastogenesis, is frequently expressed in primary lung tumors, an active RANK pathway correlates with decreased survival, and pharmacologic RANK inhibition reduces tumor growth in patient-derived lung cancer xenografts. Clonal genetic inactivation of KRasG12D in mouse lung epithelial cells markedly impairs the progression of KRasG12D-driven lung cancer, resulting in a significant survival advantage. Mechanistically, RANK rewires energy homeostasis in human and murine lung cancer cells and promotes expansion of lung cancer stem-like cells, which is blocked by inhibiting mitochondrial respiration. Our data also indicate survival differences in KRasG12D-driven lung cancer between male and female mice, and we show that female sex hormones can promote lung cancer progression via the RANK pathway. These data uncover a direct role for RANK in lung cancer and may explain why female sex hormones accelerate lung cancer development. Inhibition of RANK using the approved drug denosumab may be a therapeutic drug candidate for primary lung cancer. PMID:29118048

  13. Search for the Heisenberg spin glass on rewired square lattices with antiferromagnetic interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Surungan, Tasrief, E-mail: tasrief@unhas.ac.id; Bansawang, B.J.; Tahir, Dahlang

    Spin glass (SG) is a typical magnetic system with frozen random spin orientation at low temperatures. The system exhibits rich physical properties, such as infinite number of ground states, memory effect, and aging phenomena. There are two main ingredients considered to be pivotal for the existence of SG behavior, namely, frustration and randomness. For the canonical SG system, frustration is led by the presence of competing interaction between ferromagnetic (FM) and antiferromagnetic (AF) couplings. Previously, Bartolozzi et al. [Phys. Rev. B73, 224419 (2006)], reported the SG properties of the AF Ising spins on scale free network (SFN). It is amore » new type of SG, different from the canonical one which requires the presence of both FM and AF couplings. In this new system, frustration is purely caused by the topological factor and its randomness is related to the irregular connectvity. Recently, Surungan et. al. [Journal of Physics: Conference Series, 640, 012001 (2015)] reported SG bahavior of AF Heisenberg model on SFN. We further investigate this type of system by studying an AF Heisenberg model on rewired square lattices. We used Replica Exchange algorithm of Monte Carlo Method and calculated the SG order parameter to search for the existence of SG phase.« less

  14. Differential Coexpression Analysis Reveals Extensive Rewiring of Arabidopsis Gene Coexpression in Response to Pseudomonas syringae Infection

    PubMed Central

    Jiang, Zhenhong; Dong, Xiaobao; Li, Zhi-Gang; He, Fei; Zhang, Ziding

    2016-01-01

    Plant defense responses to pathogens involve massive transcriptional reprogramming. Recently, differential coexpression analysis has been developed to study the rewiring of gene networks through microarray data, which is becoming an important complement to traditional differential expression analysis. Using time-series microarray data of Arabidopsis thaliana infected with Pseudomonas syringae, we analyzed Arabidopsis defense responses to P. syringae through differential coexpression analysis. Overall, we found that differential coexpression was a common phenomenon of plant immunity. Genes that were frequently involved in differential coexpression tend to be related to plant immune responses. Importantly, many of those genes have similar average expression levels between normal plant growth and pathogen infection but have different coexpression partners. By integrating the Arabidopsis regulatory network into our analysis, we identified several transcription factors that may be regulators of differential coexpression during plant immune responses. We also observed extensive differential coexpression between genes within the same metabolic pathways. Several metabolic pathways, such as photosynthesis light reactions, exhibited significant changes in expression correlation between normal growth and pathogen infection. Taken together, differential coexpression analysis provides a new strategy for analyzing transcriptional data related to plant defense responses and new insights into the understanding of plant-pathogen interactions. PMID:27721457

  15. Ablation as targeted perturbation to rewire communication network of persistent atrial fibrillation

    PubMed Central

    Tao, Susumu; Way, Samuel F.; Garland, Joshua; Chrispin, Jonathan; Ciuffo, Luisa A.; Balouch, Muhammad A.; Nazarian, Saman; Spragg, David D.; Marine, Joseph E.; Berger, Ronald D.; Calkins, Hugh

    2017-01-01

    Persistent atrial fibrillation (AF) can be viewed as disintegrated patterns of information transmission by action potential across the communication network consisting of nodes linked by functional connectivity. To test the hypothesis that ablation of persistent AF is associated with improvement in both local and global connectivity within the communication networks, we analyzed multi-electrode basket catheter electrograms of 22 consecutive patients (63.5 ± 9.7 years, 78% male) during persistent AF before and after the focal impulse and rotor modulation-guided ablation. Eight patients (36%) developed recurrence within 6 months after ablation. We defined communication networks of AF by nodes (cardiac tissue adjacent to each electrode) and edges (mutual information between pairs of nodes). To evaluate patient-specific parameters of communication, thresholds of mutual information were applied to preserve 10% to 30% of the strongest edges. There was no significant difference in network parameters between both atria at baseline. Ablation effectively rewired the communication network of persistent AF to improve the overall connectivity. In addition, successful ablation improved local connectivity by increasing the average clustering coefficient, and also improved global connectivity by decreasing the characteristic path length. As a result, successful ablation improved the efficiency and robustness of the communication network by increasing the small-world index. These changes were not observed in patients with AF recurrence. Furthermore, a significant increase in the small-world index after ablation was associated with synchronization of the rhythm by acute AF termination. In conclusion, successful ablation rewires communication networks during persistent AF, making it more robust, efficient, and easier to synchronize. Quantitative analysis of communication networks provides not only a mechanistic insight that AF may be sustained by spatially localized sources and global connectivity, but also patient-specific metrics that could serve as a valid endpoint for therapeutic interventions. PMID:28678805

  16. Kinome-wide Decoding of Network-Attacking Mutations Rewiring Cancer Signaling

    PubMed Central

    Creixell, Pau; Schoof, Erwin M.; Simpson, Craig D.; Longden, James; Miller, Chad J.; Lou, Hua Jane; Perryman, Lara; Cox, Thomas R.; Zivanovic, Nevena; Palmeri, Antonio; Wesolowska-Andersen, Agata; Helmer-Citterich, Manuela; Ferkinghoff-Borg, Jesper; Itamochi, Hiroaki; Bodenmiller, Bernd; Erler, Janine T.; Turk, Benjamin E.; Linding, Rune

    2015-01-01

    Summary Cancer cells acquire pathological phenotypes through accumulation of mutations that perturb signaling networks. However, global analysis of these events is currently limited. Here, we identify six types of network-attacking mutations (NAMs), including changes in kinase and SH2 modulation, network rewiring, and the genesis and extinction of phosphorylation sites. We developed a computational platform (ReKINect) to identify NAMs and systematically interpreted the exomes and quantitative (phospho-)proteomes of five ovarian cancer cell lines and the global cancer genome repository. We identified and experimentally validated several NAMs, including PKCγ M501I and PKD1 D665N, which encode specificity switches analogous to the appearance of kinases de novo within the kinome. We discover mutant molecular logic gates, a drift toward phospho-threonine signaling, weakening of phosphorylation motifs, and kinase-inactivating hotspots in cancer. Our method pinpoints functional NAMs, scales with the complexity of cancer genomes and cell signaling, and may enhance our capability to therapeutically target tumor-specific networks. PMID:26388441

  17. Rewiring food systems to enhance human health and biosphere stewardship

    NASA Astrophysics Data System (ADS)

    Gordon, Line J.; Bignet, Victoria; Crona, Beatrice; Henriksson, Patrik J. G.; Van Holt, Tracy; Jonell, Malin; Lindahl, Therese; Troell, Max; Barthel, Stephan; Deutsch, Lisa; Folke, Carl; Jamila Haider, L.; Rockström, Johan; Queiroz, Cibele

    2017-10-01

    Food lies at the heart of both health and sustainability challenges. We use a social-ecological framework to illustrate how major changes to the volume, nutrition and safety of food systems between 1961 and today impact health and sustainability. These changes have almost halved undernutrition while doubling the proportion who are overweight. They have also resulted in reduced resilience of the biosphere, pushing four out of six analysed planetary boundaries across the safe operating space of the biosphere. Our analysis further illustrates that consumers and producers have become more distant from one another, with substantial power consolidated within a small group of key actors. Solutions include a shift from a volume-focused production system to focus on quality, nutrition, resource use efficiency, and reduced antimicrobial use. To achieve this, we need to rewire food systems in ways that enhance transparency between producers and consumers, mobilize key actors to become biosphere stewards, and re-connect people to the biosphere.

  18. Re-wiring of energy metabolism promotes viability during hyperreplication stress in E. coli

    PubMed Central

    Campion, Christopher; Weimann, Allan

    2017-01-01

    Chromosome replication in Escherichia coli is initiated by DnaA. DnaA binds ATP which is essential for formation of a DnaA-oriC nucleoprotein complex that promotes strand opening, helicase loading and replisome assembly. Following initiation, DnaAATP is converted to DnaAADP primarily by the Regulatory Inactivation of DnaA process (RIDA). In RIDA deficient cells, DnaAATP accumulates leading to uncontrolled initiation of replication and cell death by accumulation of DNA strand breaks. Mutations that suppress RIDA deficiency either dampen overinitiation or permit growth despite overinitiation. We characterize mutations of the last group that have in common that distinct metabolic routes are rewired resulting in the redirection of electron flow towards the cytochrome bd-1. We propose a model where cytochrome bd-1 lowers the formation of reactive oxygen species and hence oxidative damage to the DNA in general. This increases the processivity of replication forks generated by overinitiation to a level that sustains viability. PMID:28129339

  19. Pathogenic adaptation of intracellular bacteria by rewiring a cis-regulatory input function.

    PubMed

    Osborne, Suzanne E; Walthers, Don; Tomljenovic, Ana M; Mulder, David T; Silphaduang, Uma; Duong, Nancy; Lowden, Michael J; Wickham, Mark E; Waller, Ross F; Kenney, Linda J; Coombes, Brian K

    2009-03-10

    The acquisition of DNA by horizontal gene transfer enables bacteria to adapt to previously unexploited ecological niches. Although horizontal gene transfer and mutation of protein-coding sequences are well-recognized forms of pathogen evolution, the evolutionary significance of cis-regulatory mutations in creating phenotypic diversity through altered transcriptional outputs is not known. We show the significance of regulatory mutation for pathogen evolution by mapping and then rewiring a cis-regulatory module controlling a gene required for murine typhoid. Acquisition of a binding site for the Salmonella pathogenicity island-2 regulator, SsrB, enabled the srfN gene, ancestral to the Salmonella genus, to play a role in pathoadaptation of S. typhimurium to a host animal. We identified the evolved cis-regulatory module and quantified the fitness gain that this regulatory output accrues for the bacterium using competitive infections of host animals. Our findings highlight a mechanism of pathogen evolution involving regulatory mutation that is selected because of the fitness advantage the new regulatory output provides the incipient clones.

  20. Pathogenic adaptation of intracellular bacteria by rewiring a cis-regulatory input function

    PubMed Central

    Osborne, Suzanne E.; Walthers, Don; Tomljenovic, Ana M.; Mulder, David T.; Silphaduang, Uma; Duong, Nancy; Lowden, Michael J.; Wickham, Mark E.; Waller, Ross F.; Kenney, Linda J.; Coombes, Brian K.

    2009-01-01

    The acquisition of DNA by horizontal gene transfer enables bacteria to adapt to previously unexploited ecological niches. Although horizontal gene transfer and mutation of protein-coding sequences are well-recognized forms of pathogen evolution, the evolutionary significance of cis-regulatory mutations in creating phenotypic diversity through altered transcriptional outputs is not known. We show the significance of regulatory mutation for pathogen evolution by mapping and then rewiring a cis-regulatory module controlling a gene required for murine typhoid. Acquisition of a binding site for the Salmonella pathogenicity island-2 regulator, SsrB, enabled the srfN gene, ancestral to the Salmonella genus, to play a role in pathoadaptation of S. typhimurium to a host animal. We identified the evolved cis-regulatory module and quantified the fitness gain that this regulatory output accrues for the bacterium using competitive infections of host animals. Our findings highlight a mechanism of pathogen evolution involving regulatory mutation that is selected because of the fitness advantage the new regulatory output provides the incipient clones. PMID:19234126

  1. Differential pathway dependency discovery associated with drug response across cancer cell lines* | Office of Cancer Genomics

    Cancer.gov

    The effort to personalize treatment plans for cancer patients involves the identification of drug treatments that can effectively target the disease while minimizing the likelihood of adverse reactions. In this study, the gene-expression profile of 810 cancer cell lines and their response data to 368 small molecules from the Cancer Therapeutics Research Portal (CTRP) are analyzed to identify pathways with significant rewiring between genes, or differential gene dependency, between sensitive and non-sensitive cell lines.

  2. Paracrine interactions of cancer-associated fibroblasts, macrophages and endothelial cells: tumor allies and foes.

    PubMed

    Ronca, Roberto; Van Ginderachter, Jo A; Turtoi, Andrei

    2018-01-01

    Tumor stroma is composed of many cellular subtypes, of which the most abundant are fibroblasts, macrophages and endothelial cells. During the process of tissue injury, these three cellular subtypes must coordinate their activity to efficiently contribute to tissue regeneration. In tumor, this mechanism is hijacked by cancer cells, which rewire the interaction of stromal cells to benefit tumor development. The present review aims at summarizing most relevant information concerning both pro-tumorigenic and anti-tumorigenic actions implicating the three stromal cell subtypes as well as their mutual interactions. Although stromal cells are generally regarded as tumor-supportive and at will manipulated by cancer cells, several novel studies point at many defaults in cancer cell-mediated stromal reprograming. Indeed, parts of initial tissue-protective and homeostatic functions of the stromal cells remain in place even after tumor development. Both tumor-supportive and tumor-suppressive functions have been well described for macrophages, whereas similar results are emerging for fibroblasts and endothelial cells. Recent success of immunotherapies have finally brought the long awaited proof that stroma is key for efficient tumor targeting. However, a better understanding of paracrine stromal interactions is needed in order to encourage drug development not only aiming at disruption of tumor-supportive communication but also re-enforcing, existing, tumor-suppressive mechanisms.

  3. Cable TV: The Re-regulation, Re-wiring, and Re-education of America.

    ERIC Educational Resources Information Center

    Nelson, Milo

    1992-01-01

    Discusses federal regulation of cable television. Topics addressed include Congressional legislation; Federal Communications Commission (FCC) guidelines; pricing; conflicts between broadcasters and the cable industry; the telephone industry's entrance into the cable market; and possible effects of regulatory changes on educational television. (LRW)

  4. Robot Wars: US Empire and geopolitics in the robotic age

    PubMed Central

    Shaw, Ian GR

    2017-01-01

    How will the robot age transform warfare? What geopolitical futures are being imagined by the US military? This article constructs a robotic futurology to examine these crucial questions. Its central concern is how robots – driven by leaps in artificial intelligence and swarming – are rewiring the spaces and logics of US empire, warfare, and geopolitics. The article begins by building a more-than-human geopolitics to de-center the role of humans in conflict and foreground a worldly understanding of robots. The article then analyzes the idea of US empire, before speculating upon how and why robots are materializing new forms of proxy war. A three-part examination of the shifting spaces of US empire then follows: (1) Swarm Wars explores the implications of miniaturized drone swarming; (2) Roboworld investigates how robots are changing US military basing strategy and producing new topological spaces of violence; and (3) The Autogenic Battle-Site reveals how autonomous robots will produce emergent, technologically event-ful sites of security and violence – revolutionizing the battlespace. The conclusion reflects on the rise of a robotic US empire and its consequences for democracy. PMID:29081605

  5. Robot Wars: US Empire and geopolitics in the robotic age.

    PubMed

    Shaw, Ian Gr

    2017-10-01

    How will the robot age transform warfare? What geopolitical futures are being imagined by the US military? This article constructs a robotic futurology to examine these crucial questions. Its central concern is how robots - driven by leaps in artificial intelligence and swarming - are rewiring the spaces and logics of US empire, warfare, and geopolitics. The article begins by building a more-than-human geopolitics to de-center the role of humans in conflict and foreground a worldly understanding of robots. The article then analyzes the idea of US empire, before speculating upon how and why robots are materializing new forms of proxy war. A three-part examination of the shifting spaces of US empire then follows: (1) Swarm Wars explores the implications of miniaturized drone swarming; (2) Roboworld investigates how robots are changing US military basing strategy and producing new topological spaces of violence; and (3) The Autogenic Battle-Site reveals how autonomous robots will produce emergent, technologically event-ful sites of security and violence - revolutionizing the battlespace. The conclusion reflects on the rise of a robotic US empire and its consequences for democracy.

  6. Rewiring of cellular membrane homeostasis by picornaviruses.

    PubMed

    Belov, George A; Sztul, Elizabeth

    2014-09-01

    Viruses are obligatory intracellular parasites and utilize host elements to support key viral processes, including penetration of the plasma membrane, initiation of infection, replication, and suppression of the host's antiviral defenses. In this review, we focus on picornaviruses, a family of positive-strand RNA viruses, and discuss the mechanisms by which these viruses hijack the cellular machinery to form and operate membranous replication complexes. Studies aimed at revealing factors required for the establishment of viral replication structures identified several cellular-membrane-remodeling proteins and led to the development of models in which the virus used a preexisting cellular-membrane-shaping pathway "as is" for generating its replication organelles. However, as more data accumulate, this view is being increasingly questioned, and it is becoming clearer that viruses may utilize cellular factors in ways that are distinct from the normal functions of these proteins in uninfected cells. In addition, the proteincentric view is being supplemented by important new studies showing a previously unappreciated deep remodeling of lipid homeostasis, including extreme changes to phospholipid biosynthesis and cholesterol trafficking. The data on viral modifications of lipid biosynthetic pathways are still rudimentary, but it appears once again that the viruses may rewire existing pathways to generate novel functions. Despite remarkable progress, our understanding of how a handful of viral proteins can completely overrun the multilayered, complex mechanisms that control the membrane organization of a eukaryotic cell remains very limited. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  7. The Electronic School Library Resource Center: Facilities Planning for the New Information Technologies.

    ERIC Educational Resources Information Center

    Blodgett, Teresa; Repman, Judi

    1995-01-01

    Addresses the necessity of incorporating new computer technologies into school library resource centers and notes some administrative challenges. An extensive checklist is provided for assessing equipment and furniture needs, physical facilities, and rewiring needs. A glossary of 20 terms and 11 additional resources is included. (AEF)

  8. Have Technology and Multitasking Rewired How Students Learn?

    ERIC Educational Resources Information Center

    Willingham, Daniel T.

    2010-01-01

    Cognitive science is an interdisciplinary field of researchers from psychology, neuroscience, linguistics, philosophy, computer science, and anthropology who seek to understand the mind. In this article, the author considers findings from this field that are strong and clear enough to merit classroom application. He examines how technology has…

  9. Rewiring Algae's Catalytic Circuits - Continuum Magazine | NREL

    Science.gov Websites

    with labels depicting the engineering of hydrogen-producing enzyme to create a hydrogen production circuit to increase hydrogen during photosynthesis. Engineering of the hydrogen-producing enzyme to create circuits, or pathways. To do so, they would replace the normal hydrogen-producing enzyme, hydrogenase

  10. Rewiring of regenerated axons by combining treadmill training with semaphorin3A inhibition

    PubMed Central

    2014-01-01

    Background Rats exhibit extremely limited motor function recovery after total transection of the spinal cord (SCT). We previously reported that SM-216289, a semaphorin3A inhibitor, enhanced axon regeneration and motor function recovery in SCT adult rats. However, these effects were limited because most regenerated axons likely do not connect to the right targets. Thus, rebuilding the appropriate connections for regenerated axons may enhance recovery. In this study, we combined semaphorin3A inhibitor treatment with extensive treadmill training to determine whether combined treatment would further enhance the “rewiring” of regenerated axons. In this study, which aimed for clinical applicability, we administered a newly developed, potent semaphorin3A inhibitor, SM-345431 (Vinaxanthone), using a novel drug delivery system that enables continuous drug delivery over the period of the experiment. Results Treatment with SM-345431 using this delivery system enhanced axon regeneration and produced significant, but limited, hindlimb motor function recovery. Although extensive treadmill training combined with SM-345431 administration did not further improve axon regeneration, hindlimb motor performance was restored, as evidenced by the significant improvement in the execution of plantar steps on a treadmill. In contrast, control SCT rats could not execute plantar steps at any point during the experimental period. Further analyses suggested that this strategy reinforced the wiring of central pattern generators in lumbar spinal circuits, which, in turn, led to enhanced motor function recovery (especially in extensor muscles). Conclusions This study highlights the importance of combining treatments that promote axon regeneration with specific and appropriate rehabilitations that promote rewiring for the treatment of spinal cord injury. PMID:24618249

  11. Autonomous rehabilitation at stroke patients home for balance and gait: safety, usability and compliance of a virtual reality system.

    PubMed

    Held, Jeremia P; Ferrer, Begoña; Mainetti, Renato; Steblin, Alexander; Hertler, Benjamin; Moreno-Conde, Alberto; Dueñas, Alvaro; Pajaro, Marta; L-Parra-Calderón, Carlos; Vargiu, Eloisa; Zarco, Maria J; Barrera, Maria; Echevarria, Carmen; Jódar-Sánchez, Francisco; Luft, Andreas R; Borghese, Nunzio A

    2017-09-25

    New technologies, such as telerehabilitation and gaming devices offer the possibility for patients to train at home. This opens the challenge of safety for the patient as he is called to exercise neither with a therapist on the patients' side nor with a therapist linked remotely to supervise the sessions. To study the safety, usability and patient acceptance of an autonomous telerehabilitation system for balance and gait (the REWIRE platform) in the patients home. Cohort study. Community, in the stroke patients' home. 15 participants with first-ever stroke, with a mild to moderate residual deficit of the lower extremities. Autonomous rehabilitation based on virtual rehabilitation was provided at the participants' home for twelve weeks. The primary outcome was compliance (the ratio between days of actual and scheduled training), analysed with the two-tailed Wilcoxon Mann- Whitney test. Furthermore safety is defined by adverse events. The secondary endpoint was the acceptance of the system measured with the Technology Acceptance Model. Additionally, the cumulative duration of weekly training was analysed. During the study there were no adverse events related to the therapy. Patients performed on average 71% (range 39 to 92%) of the scheduled sessions. The Technology Acceptance Model Questionnaire showed excellent values for stroke patients after the training. The average training duration per week was 99 ±53min. Autonomous telerehabilitation for balance and gait training with the REWIRE-system is safe, feasible and can help to intensive rehabilitative therapy at home. Telerehabilitation enables safe training in home environment and supports of the standard rehabilitation therapy.

  12. Integrated metabolomic and proteomic analysis reveals systemic responses of Rubrivivax benzoatilyticus JA2 to aniline stress.

    PubMed

    Mujahid, Md; Prasuna, M Lakshmi; Sasikala, Ch; Ramana, Ch Venkata

    2015-02-06

    Aromatic amines are widely distributed in the environment and are major environmental pollutants. Although degradation of aromatic amines is well studied in bacteria, physiological adaptations and stress response to these toxic compounds is not yet fully understood. In the present study, systemic responses of Rubrivivax benzoatilyticus JA2 to aniline stress were deciphered using metabolite and iTRAQ-labeled protein profiling. Strain JA2 tolerated high concentrations of aniline (30 mM) with trace amounts of aniline being transformed to acetanilide. GC-MS metabolite profiling revealed aniline stress phenotype wherein amino acid, carbohydrate, fatty acid, nitrogen metabolisms, and TCA (tricarboxylic acid cycle) were modulated. Strain JA2 responded to aniline by remodeling the proteome, and cellular functions, such as signaling, transcription, translation, stress tolerance, transport and carbohydrate metabolism, were highly modulated. Key adaptive responses, such as transcription/translational changes, molecular chaperones to control protein folding, and efflux pumps implicated in solvent extrusion, were induced in response to aniline stress. Proteo-metabolomics indicated extensive rewiring of metabolism to aniline. TCA cycle and amino acid catabolism were down-regulated while gluconeogenesis and pentose phosphate pathways were up-regulated, leading to the synthesis of extracellular polymeric substances. Furthermore, increased saturated fatty acid ratios in membranes due to aniline stress suggest membrane adaptation. The present study thus indicates that strain JA2 employs multilayered responses: stress response, toxic compound tolerance, energy conservation, and metabolic rearrangements to aniline.

  13. Deregulation upon DNA damage revealed by joint analysis of context-specific perturbation data

    PubMed Central

    2011-01-01

    Background Deregulation between two different cell populations manifests itself in changing gene expression patterns and changing regulatory interactions. Accumulating knowledge about biological networks creates an opportunity to study these changes in their cellular context. Results We analyze re-wiring of regulatory networks based on cell population-specific perturbation data and knowledge about signaling pathways and their target genes. We quantify deregulation by merging regulatory signal from the two cell populations into one score. This joint approach, called JODA, proves advantageous over separate analysis of the cell populations and analysis without incorporation of knowledge. JODA is implemented and freely available in a Bioconductor package 'joda'. Conclusions Using JODA, we show wide-spread re-wiring of gene regulatory networks upon neocarzinostatin-induced DNA damage in Human cells. We recover 645 deregulated genes in thirteen functional clusters performing the rich program of response to damage. We find that the clusters contain many previously characterized neocarzinostatin target genes. We investigate connectivity between those genes, explaining their cooperation in performing the common functions. We review genes with the most extreme deregulation scores, reporting their involvement in response to DNA damage. Finally, we investigate the indirect impact of the ATM pathway on the deregulated genes, and build a hypothetical hierarchy of direct regulation. These results prove that JODA is a step forward to a systems level, mechanistic understanding of changes in gene regulation between different cell populations. PMID:21693013

  14. Deregulation upon DNA damage revealed by joint analysis of context-specific perturbation data.

    PubMed

    Szczurek, Ewa; Markowetz, Florian; Gat-Viks, Irit; Biecek, Przemysław; Tiuryn, Jerzy; Vingron, Martin

    2011-06-21

    Deregulation between two different cell populations manifests itself in changing gene expression patterns and changing regulatory interactions. Accumulating knowledge about biological networks creates an opportunity to study these changes in their cellular context. We analyze re-wiring of regulatory networks based on cell population-specific perturbation data and knowledge about signaling pathways and their target genes. We quantify deregulation by merging regulatory signal from the two cell populations into one score. This joint approach, called JODA, proves advantageous over separate analysis of the cell populations and analysis without incorporation of knowledge. JODA is implemented and freely available in a Bioconductor package 'joda'. Using JODA, we show wide-spread re-wiring of gene regulatory networks upon neocarzinostatin-induced DNA damage in Human cells. We recover 645 deregulated genes in thirteen functional clusters performing the rich program of response to damage. We find that the clusters contain many previously characterized neocarzinostatin target genes. We investigate connectivity between those genes, explaining their cooperation in performing the common functions. We review genes with the most extreme deregulation scores, reporting their involvement in response to DNA damage. Finally, we investigate the indirect impact of the ATM pathway on the deregulated genes, and build a hypothetical hierarchy of direct regulation. These results prove that JODA is a step forward to a systems level, mechanistic understanding of changes in gene regulation between different cell populations.

  15. RANK rewires energy homeostasis in lung cancer cells and drives primary lung cancer.

    PubMed

    Rao, Shuan; Sigl, Verena; Wimmer, Reiner Alois; Novatchkova, Maria; Jais, Alexander; Wagner, Gabriel; Handschuh, Stephan; Uribesalgo, Iris; Hagelkruys, Astrid; Kozieradzki, Ivona; Tortola, Luigi; Nitsch, Roberto; Cronin, Shane J; Orthofer, Michael; Branstetter, Daniel; Canon, Jude; Rossi, John; D'Arcangelo, Manolo; Botling, Johan; Micke, Patrick; Fleur, Linnea La; Edlund, Karolina; Bergqvist, Michael; Ekman, Simon; Lendl, Thomas; Popper, Helmut; Takayanagi, Hiroshi; Kenner, Lukas; Hirsch, Fred R; Dougall, William; Penninger, Josef M

    2017-10-15

    Lung cancer is the leading cause of cancer deaths. Besides smoking, epidemiological studies have linked female sex hormones to lung cancer in women; however, the underlying mechanisms remain unclear. Here we report that the receptor activator of nuclear factor-kB (RANK), the key regulator of osteoclastogenesis, is frequently expressed in primary lung tumors, an active RANK pathway correlates with decreased survival, and pharmacologic RANK inhibition reduces tumor growth in patient-derived lung cancer xenografts. Clonal genetic inactivation of KRas G12D in mouse lung epithelial cells markedly impairs the progression of KRas G12D -driven lung cancer, resulting in a significant survival advantage. Mechanistically, RANK rewires energy homeostasis in human and murine lung cancer cells and promotes expansion of lung cancer stem-like cells, which is blocked by inhibiting mitochondrial respiration. Our data also indicate survival differences in KRas G12D -driven lung cancer between male and female mice, and we show that female sex hormones can promote lung cancer progression via the RANK pathway. These data uncover a direct role for RANK in lung cancer and may explain why female sex hormones accelerate lung cancer development. Inhibition of RANK using the approved drug denosumab may be a therapeutic drug candidate for primary lung cancer. © 2017 Rao et al.; Published by Cold Spring Harbor Laboratory Press.

  16. Enhanced vaccine control of epidemics in adaptive networks

    NASA Astrophysics Data System (ADS)

    Shaw, Leah B.; Schwartz, Ira B.

    2010-04-01

    We study vaccine control for disease spread on an adaptive network modeling disease avoidance behavior. Control is implemented by adding Poisson-distributed vaccination of susceptibles. We show that vaccine control is much more effective in adaptive networks than in static networks due to feedback interaction between the adaptive network rewiring and the vaccine application. When compared to extinction rates in static social networks, we find that the amount of vaccine resources required to sustain similar rates of extinction are as much as two orders of magnitude lower in adaptive networks.

  17. Enhanced vaccine control of epidemics in adaptive networks.

    PubMed

    Shaw, Leah B; Schwartz, Ira B

    2010-04-01

    We study vaccine control for disease spread on an adaptive network modeling disease avoidance behavior. Control is implemented by adding Poisson-distributed vaccination of susceptibles. We show that vaccine control is much more effective in adaptive networks than in static networks due to feedback interaction between the adaptive network rewiring and the vaccine application. When compared to extinction rates in static social networks, we find that the amount of vaccine resources required to sustain similar rates of extinction are as much as two orders of magnitude lower in adaptive networks.

  18. Making Mentoring Work: The Need for Rewiring Epistemology

    ERIC Educational Resources Information Center

    Olsson, Cliff; Cruickshank, Andrew; Collins, Dave

    2017-01-01

    To help produce more expert coaches at the participation and performance levels, a number of governing bodies have established coach mentoring systems. In light of this trend, against the limited literature on coach mentoring and the risks of superficial treatment by coach education systems, this article critically discusses the role of the mentor…

  19. Starting Smart: How Early Experiences Affect Brain Development. Second Edition.

    ERIC Educational Resources Information Center

    Hawley, Theresa

    Based on recent research, it is now believed that brain growth is highly dependent upon children's early experiences. Neurons allow communication and coordinated functioning among various brain areas. Brain development after birth consists of an ongoing process of wiring and rewiring the connections among neurons. The forming and breaking of…

  20. Rebuilding a Dream

    ERIC Educational Resources Information Center

    Villano, Matt

    2007-01-01

    A long time ago, revamping a school's telecommunications infrastructure was up there with scaling Mount Everest as one of the toughest challenges around. First up was the task of finding a new PBX. Then came the chore of rewiring the campus. Before long, project costs skyrocketed. Even well-funded IT departments struggled to get the job done.…

  1. A broken krebs cycle in macrophages.

    PubMed

    O'Neill, Luke A J

    2015-03-17

    Macrophages undergo metabolic rewiring during polarization but details of this process are unclear. In this issue of Immunity, Jha et al. (2015) report a systems approach for unbiased analysis of cellular metabolism that reveals key metabolites and metabolic pathways required for distinct macrophage polarization states. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Nested Neural Networks

    NASA Technical Reports Server (NTRS)

    Baram, Yoram

    1992-01-01

    Report presents analysis of nested neural networks, consisting of interconnected subnetworks. Analysis based on simplified mathematical models more appropriate for artificial electronic neural networks, partly applicable to biological neural networks. Nested structure allows for retrieval of individual subpatterns. Requires fewer wires and connection devices than fully connected networks, and allows for local reconstruction of damaged subnetworks without rewiring entire network.

  3. Metabolic Reprogramming and Oncogenesis: One Hallmark, Many Organelles.

    PubMed

    Costa, A S H; Frezza, C

    2017-01-01

    The process of tumorigenesis can be described by a series of molecular features, among which alteration of cellular metabolism has recently emerged. This metabolic rewiring fulfills the energy and biosynthetic demands of fast proliferating cancer cells and amplifies their metabolic repertoire to survive and proliferate in the poorly oxygenated and nutrient-deprived tumor microenvironment. During the last decade, the complex reprogramming of cancer cell metabolism has been widely investigated, revealing cancer-specific metabolic alterations. These include dysregulation of glucose and glutamine metabolism, alterations of lipid synthesis and oxidation, and a complex rewiring of mitochondrial function. However, mitochondria are not the only metabolically active organelles within the cell, and other organelles, including lysosomes, peroxisomes, and endoplasmic reticulum, harbor components of the metabolic network. Of note, dysregulation of the function of these organelles is increasingly recognized in cancer cells. However, to what extent these organelles contribute to the metabolic reprogramming of cancer is not fully understood. In this review, we describe the main metabolic functions of these organelles and provide insights into how they communicate to orchestrate a coordinated metabolic reprogramming during transformation. © 2017 Elsevier Inc. All rights reserved.

  4. Model-based redesign of global transcription regulation

    PubMed Central

    Carrera, Javier; Rodrigo, Guillermo; Jaramillo, Alfonso

    2009-01-01

    Synthetic biology aims to the design or redesign of biological systems. In particular, one possible goal could be the rewiring of the transcription regulation network by exchanging the endogenous promoters. To achieve this objective, we have adapted current methods to the inference of a model based on ordinary differential equations that is able to predict the network response after a major change in its topology. Our procedure utilizes microarray data for training. We have experimentally validated our inferred global regulatory model in Escherichia coli by predicting transcriptomic profiles under new perturbations. We have also tested our methodology in silico by providing accurate predictions of the underlying networks from expression data generated with artificial genomes. In addition, we have shown the predictive power of our methodology by obtaining the gene profile in experimental redesigns of the E. coli genome, where rewiring the transcriptional network by means of knockouts of master regulators or by upregulating transcription factors controlled by different promoters. Our approach is compatible with most network inference methods, allowing to explore computationally future genome-wide redesign experiments in synthetic biology. PMID:19188257

  5. Engineering Synthetic Proteins to Generate Ca2+ Signals in Mammalian Cells.

    PubMed

    Qudrat, Anam; Truong, Kevin

    2017-03-17

    The versatility of Ca 2+ signals allows it to regulate diverse cellular processes such as migration, apoptosis, motility and exocytosis. In some receptors (e.g., VEGFR2), Ca 2+ signals are generated upon binding their ligand(s) (e.g., VEGF-A). Here, we employed a design strategy to engineer proteins that generate a Ca 2+ signal upon binding various extracellular stimuli by creating fusions of protein domains that oligomerize to the transmembrane domain and the cytoplasmic tail of the VEGFR2. To test the strategy, we created chimeric proteins that generate Ca 2+ signals upon stimulation with various extracellular stimuli (e.g., rapamycin, EDTA or extracellular free Ca 2+ ). By coupling these chimeric proteins that generate Ca 2+ signals with proteins that respond to Ca 2+ signals, we rewired, for example, dynamic cellular blebbing to increases in extracellular free Ca 2+ . Thus, using this design strategy, it is possible to engineer proteins to generate a Ca 2+ signal to rewire a wide range of extracellular stimuli to a wide range of Ca 2+ -activated processes.

  6. Critical behavior and correlations on scale-free small-world networks: Application to network design

    NASA Astrophysics Data System (ADS)

    Ostilli, M.; Ferreira, A. L.; Mendes, J. F. F.

    2011-06-01

    We analyze critical phenomena on networks generated as the union of hidden variable models (networks with any desired degree sequence) with arbitrary graphs. The resulting networks are general small worlds similar to those à la Watts and Strogatz, but with a heterogeneous degree distribution. We prove that the critical behavior (thermal or percolative) remains completely unchanged by the presence of finite loops (or finite clustering). Then, we show that, in large but finite networks, correlations of two given spins may be strong, i.e., approximately power-law-like, at any temperature. Quite interestingly, if γ is the exponent for the power-law distribution of the vertex degree, for γ⩽3 and with or without short-range couplings, such strong correlations persist even in the thermodynamic limit, contradicting the common opinion that, in mean-field models, correlations always disappear in this limit. Finally, we provide the optimal choice of rewiring under which percolation phenomena in the rewired network are best performed, a natural criterion to reach best communication features, at least in noncongested regimes.

  7. Optimizing diffusion in multiplexes by maximizing layer dissimilarity

    NASA Astrophysics Data System (ADS)

    Serrano, Alfredo B.; Gómez-Gardeñes, Jesús; Andrade, Roberto F. S.

    2017-05-01

    Diffusion in a multiplex depends on the specific link distribution between the nodes in each layer, but also on the set of the intralayer and interlayer diffusion coefficients. In this work we investigate, in a quantitative way, the efficiency of multiplex diffusion as a function of the topological similarity among multiplex layers. This similarity is measured by the distance between layers, taken among the pairs of layers. Results are presented for a simple two-layer multiplex, where one of the layers is held fixed, while the other one can be rewired in a controlled way in order to increase or decrease the interlayer distance. The results indicate that, for fixed values of all intra- and interlayer diffusion coefficients, a large interlayer distance generally enhances the global multiplex diffusion, providing a topological mechanism to control the global diffusive process. For some sets of networks, we develop an algorithm to identify the most sensitive nodes in the rewirable layer, so that changes in a small set of connections produce a drastic enhancement of the global diffusion of the whole multiplex system.

  8. Pyruvate decarboxylase and alcohol dehydrogenase overexpression in Escherichia coli resulted in high ethanol production and rewired metabolic enzyme networks.

    PubMed

    Yang, Mingfeng; Li, Xuefeng; Bu, Chunya; Wang, Hui; Shi, Guanglu; Yang, Xiushan; Hu, Yong; Wang, Xiaoqin

    2014-11-01

    Pyruvate decarboxylase and alcohol dehydrogenase are efficient enzymes for ethanol production in Zymomonas mobilis. These two enzymes were over-expressed in Escherichia coli, a promising candidate for industrial ethanol production, resulting in high ethanol production in the engineered E. coli. To investigate the intracellular changes to the enzyme overexpression for homoethanol production, 2-DE and LC-MS/MS were performed. More than 1,000 protein spots were reproducibly detected in the gel by image analysis. Compared to the wild-type, 99 protein spots showed significant changes in abundance in the recombinant E. coli, in which 46 were down-regulated and 53 were up-regulated. Most proteins related to tricarboxylic acid cycle, glycerol metabolism and other energy metabolism were up-regulated, whereas proteins involved in glycolysis and glyoxylate pathway were down-regulated, indicating the rewired metabolism in the engineered E. coli. As glycolysis is the main pathway for ethanol production, and it was inhibited significantly in engineered E. coli, further efforts should be directed at minimizing the repression of glycolysis to optimize metabolism network for higher yields of ethanol production.

  9. Rewiring the reductive tricarboxylic acid pathway and L-malate transport pathway of Aspergillus oryzae for overproduction of L-malate.

    PubMed

    Liu, Jingjing; Xie, Zhipeng; Shin, Hyun-Dong; Li, Jianghua; Du, Guocheng; Chen, Jian; Liu, Long

    2017-07-10

    Aspergillus oryzae finds wide application in the food, feed, and wine industries, and is an excellent cell factory platform for production of organic acids. In this work, we achieved the overproduction of L-malate by rewiring the reductive tricarboxylic acid (rTCA) pathway and L-malate transport pathway of A. oryzae NRRL 3488. First, overexpression of native pyruvate carboxylase and malate dehydrogenase in the rTCA pathway improved the L-malate titer from 26.1gL -1 to 42.3gL -1 in shake flask culture. Then, the oxaloacetate anaplerotic reaction was constructed by heterologous expression of phosphoenolpyruvate carboxykinase and phosphoenolpyruvate carboxylase from Escherichia coli, increasing the L-malate titer to 58.5gL -1 . Next, the export of L-malate from the cytoplasm to the external medium was strengthened by overexpression of a C4-dicarboxylate transporter gene from A. oryzae and an L-malate permease gene from Schizosaccharomyces pombe, improving the L-malate titer from 58.5gL -1 to 89.5gL -1 . Lastly, guided by transcription analysis of the expression profile of key genes related to L-malate synthesis, the 6-phosphofructokinase encoded by the pfk gene was identified as a potential limiting step for L-malate synthesis. Overexpression of pfk with the strong sodM promoter increased the L-malate titer to 93.2gL -1 . The final engineered A. oryzae strain produced 165gL -1 L-malate with a productivity of 1.38gL -1 h -1 in 3-L fed-batch culture. Overall, we constructed an efficient L-malate producer by rewiring the rTCA pathway and L-malate transport pathway of A. oryzae NRRL 3488, and the engineering strategy adopted here may be useful for the construction of A. oryzae cell factories to produce other organic acids. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. A systems biology road map for the discovery of drugs targeting cancer cell metabolism.

    PubMed

    Alberghina, Lilia; Gaglio, Daniela; Moresco, Rosa Maria; Gilardi, Maria Carla; Messa, Cristina; Vanoni, Marco

    2014-01-01

    Despite their different histological and molecular properties, different types of cancers share few essential functional alterations. Some of these cancer hallmarks may easily be studied in in vitro cultures, while others are related to the way in which tumors grow in vivo. According to the systems biology paradigm, complex cellular functions arise as system-level properties from the dynamic interaction of a large number of biomolecules. We previously newly defined four basic cancer cell properties derived from known cancer hallmarks amenable to system-level investigation in cell cultures: enhanced growth, altered response to apoptotic cues, genomic instability and inability to enter senescence following oncogenic signaling. Here we summarize the major properties of enhanced growth that is dependent on metabolism rewiring - in which glucose is mostly used by fermentation while glutamine provides nitrogen and carbon atoms for biosyntheses - and controlled by oncogene signaling. We then briefly review the major drugs used to target signaling pathways in preclinical and clinical studies, whose clinical efficacy is unfortunately severely limited by tumor resistance, substantially due to signaling cross-talk. We present a systems biology roadmap that integrates different types of mathematical models with conventional and post-genomic biomolecular analyses that will provide a deeper mechanistic understanding of the links between metabolism and uncontrolled cancer cell growth. This approach is taken to be instrumental both in unraveling cancer's first principles and in designing novel drugs able to target one or more control or execution steps of the cancer rewired metabolism, in order to achieve permanent arrest of tumor development.

  11. IGF system targeted therapy: Therapeutic opportunities for ovarian cancer.

    PubMed

    Liefers-Visser, J A L; Meijering, R A M; Reyners, A K L; van der Zee, A G J; de Jong, S

    2017-11-01

    The insulin-like growth factor (IGF) system comprises multiple growth factor receptors, including insulin-like growth factor 1 receptor (IGF-1R), insulin receptor (IR) -A and -B. These receptors are activated upon binding to their respective growth factor ligands, IGF-I, IGF-II and insulin, and play an important role in development, maintenance, progression, survival and chemotherapeutic response of ovarian cancer. In many pre-clinical studies anti-IGF-1R/IR targeted strategies proved effective in reducing growth of ovarian cancer models. In addition, anti-IGF-1R targeted strategies potentiated the efficacy of platinum based chemotherapy. Despite the vast amount of encouraging and promising pre-clinical data, anti-IGF-1R/IR targeted strategies lacked efficacy in the clinic. The question is whether targeting the IGF-1R/IR signaling pathway still holds therapeutic potential. In this review we address the complexity of the IGF-1R/IR signaling pathway, including receptor heterodimerization within and outside the IGF system and downstream signaling. Further, we discuss the implications of this complexity on current targeted strategies and indicate therapeutic opportunities for successful targeting of the IGF-1R/IR signaling pathway in ovarian cancer. Multiple-targeted approaches circumventing bidirectional receptor tyrosine kinase (RTK) compensation and prevention of system rewiring are expected to have more therapeutic potential. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  12. Neuropsychological Definition of Learning: Strategies for Rewiring Neural Networks

    ERIC Educational Resources Information Center

    Barwegen, Laura

    2008-01-01

    For many years, most scientists believed that the physical structure of our brains, and by definition the people we had become, was set after the initial developmental period of early childhood and adolescence. New research in the area of neurology and neuropsychology is revealing that our brain is a much more open system than ever thought…

  13. Analyzing Barriers to Energy Conservation in Residences and Offices: The Rewire Program at the University of Toronto

    ERIC Educational Resources Information Center

    Stokes, Leah C.; Mildenberger, Matto; Savan, Beth; Kolenda, Brian

    2012-01-01

    Conducting a barriers analysis is an important first step when designing proenvironmental behavior change interventions. Yet, detailed information on common barriers to energy conservation campaigns remains unavailable. Using a pair of original surveys, we leverage the theory of planned behavior to report on the most important barriers for…

  14. Rewiring carbohydrate catabolism differentially affects survival of pancreatic cancer cell lines with diverse metabolic profiles

    PubMed Central

    Tataranni, Tiziana; Agriesti, Francesca; Ruggieri, Vitalba; Mazzoccoli, Carmela; Simeon, Vittorio; Laurenzana, Ilaria; Scrima, Rosella; Pazienza, Valerio; Capitanio, Nazzareno; Piccoli, Claudia

    2017-01-01

    An increasing body of evidence suggests that targeting cellular metabolism represents a promising effective approach to treat pancreatic cancer, overcome chemoresistance and ameliorate patient's prognosis and survival. In this study, following whole-genome expression analysis, we selected two pancreatic cancer cell lines, PANC-1 and BXPC-3, hallmarked by distinct metabolic profiles with specific concern to carbohydrate metabolism. Functional comparative analysis showed that BXPC-3 displayed a marked deficit of the mitochondrial respiratory and oxidative phosphorylation activity and a higher production of reactive oxygen species and a reduced NAD+/NADH ratio, indicating their bioenergetic reliance on glycolysis and a different redox homeostasis as compared to PANC-1. Both cell lines were challenged to rewire their metabolism by substituting glucose with galactose as carbon source, a condition inhibiting the glycolytic flux and fostering full oxidation of the sugar carbons. The obtained data strikingly show that the mitochondrial respiration-impaired-BXPC-3 cell line was unable to sustain the metabolic adaptation required by glucose deprivation/substitution, thereby resulting in a G2\\M cell cycle shift, unbalance of the redox homeostasis, apoptosis induction. Conversely, the mitochondrial respiration-competent-PANC-1 cell line did not show clear evidence of cell sufferance. Our findings provide a strong rationale to candidate metabolism as a promising target for cancer therapy. Defining the metabolic features at time of pancreatic cancer diagnosis and likely of other tumors, appears to be crucial to predict the responsiveness to therapeutic approaches or coadjuvant interventions affecting metabolism. PMID:28476035

  15. Statistical mechanics of scale-free gene expression networks

    NASA Astrophysics Data System (ADS)

    Gross, Eitan

    2012-12-01

    The gene co-expression networks of many organisms including bacteria, mice and man exhibit scale-free distribution. This heterogeneous distribution of connections decreases the vulnerability of the network to random attacks and thus may confer the genetic replication machinery an intrinsic resilience to such attacks, triggered by changing environmental conditions that the organism may be subject to during evolution. This resilience to random attacks comes at an energetic cost, however, reflected by the lower entropy of the scale-free distribution compared to the more homogenous, random network. In this study we found that the cell cycle-regulated gene expression pattern of the yeast Saccharomyces cerevisiae obeys a power-law distribution with an exponent α = 2.1 and an entropy of 1.58. The latter is very close to the maximal value of 1.65 obtained from linear optimization of the entropy function under the constraint of a constant cost function, determined by the average degree connectivity . We further show that the yeast's gene expression network can achieve scale-free distribution in a process that does not involve growth but rather via re-wiring of the connections between nodes of an ordered network. Our results support the idea of an evolutionary selection, which acts at the level of the protein sequence, and is compatible with the notion of greater biological importance of highly connected nodes in the protein interaction network. Our constrained re-wiring model provides a theoretical framework for a putative thermodynamically driven evolutionary selection process.

  16. A distance constrained synaptic plasticity model of C. elegans neuronal network

    NASA Astrophysics Data System (ADS)

    Badhwar, Rahul; Bagler, Ganesh

    2017-03-01

    Brain research has been driven by enquiry for principles of brain structure organization and its control mechanisms. The neuronal wiring map of C. elegans, the only complete connectome available till date, presents an incredible opportunity to learn basic governing principles that drive structure and function of its neuronal architecture. Despite its apparently simple nervous system, C. elegans is known to possess complex functions. The nervous system forms an important underlying framework which specifies phenotypic features associated to sensation, movement, conditioning and memory. In this study, with the help of graph theoretical models, we investigated the C. elegans neuronal network to identify network features that are critical for its control. The 'driver neurons' are associated with important biological functions such as reproduction, signalling processes and anatomical structural development. We created 1D and 2D network models of C. elegans neuronal system to probe the role of features that confer controllability and small world nature. The simple 1D ring model is critically poised for the number of feed forward motifs, neuronal clustering and characteristic path-length in response to synaptic rewiring, indicating optimal rewiring. Using empirically observed distance constraint in the neuronal network as a guiding principle, we created a distance constrained synaptic plasticity model that simultaneously explains small world nature, saturation of feed forward motifs as well as observed number of driver neurons. The distance constrained model suggests optimum long distance synaptic connections as a key feature specifying control of the network.

  17. Wealth distribution on complex networks

    NASA Astrophysics Data System (ADS)

    Ichinomiya, Takashi

    2012-12-01

    We study the wealth distribution of the Bouchaud-Mézard model on complex networks. It is known from numerical simulations that this distribution depends on the topology of the network; however, no one has succeeded in explaining it. Using “adiabatic” and “independent” assumptions along with the central-limit theorem, we derive equations that determine the probability distribution function. The results are compared to those of simulations for various networks. We find good agreement between our theory and the simulations, except for the case of Watts-Strogatz networks with a low rewiring rate due to the breakdown of independent assumption.

  18. Partner choice cooperation in prisoner's dilemma

    NASA Astrophysics Data System (ADS)

    Wang, Qi; Xu, Zhaojin; Zhang, Lianzhong

    2017-12-01

    In this paper, we investigated the cooperative behavior in prisoner's dilemma when the individual behaviors and interaction structures could coevolve. Here, we study the model that the individuals can imitate the strategy of their neighbors and rewire their social ties throughout evolution, based exclusively on a fitness comparison. We find that the cooperation can be achieved if the time scale of network adaptation is large enough, even when the social dilemma strength is very strong. Detailed investigation shows that the presence or absence of the network adaptation has a profound impact on the collective behavior in the system.

  19. Expanding and reprogramming the genetic code.

    PubMed

    Chin, Jason W

    2017-10-04

    Nature uses a limited, conservative set of amino acids to synthesize proteins. The ability to genetically encode an expanded set of building blocks with new chemical and physical properties is transforming the study, manipulation and evolution of proteins, and is enabling diverse applications, including approaches to probe, image and control protein function, and to precisely engineer therapeutics. Underpinning this transformation are strategies to engineer and rewire translation. Emerging strategies aim to reprogram the genetic code so that noncanonical biopolymers can be synthesized and evolved, and to test the limits of our ability to engineer the translational machinery and systematically recode genomes.

  20. Cancer type-dependent genetic interactions between cancer driver alterations indicate plasticity of epistasis across cell types

    PubMed Central

    Park, Solip; Lehner, Ben

    2015-01-01

    Cancers, like many diseases, are normally caused by combinations of genetic alterations rather than by changes affecting single genes. It is well established that the genetic alterations that drive cancer often interact epistatically, having greater or weaker consequences in combination than expected from their individual effects. In a stringent statistical analysis of data from > 3,000 tumors, we find that the co-occurrence and mutual exclusivity relationships between cancer driver alterations change quite extensively in different types of cancer. This cannot be accounted for by variation in tumor heterogeneity or unrecognized cancer subtypes. Rather, it suggests that how genomic alterations interact cooperatively or partially redundantly to driver cancer changes in different types of cancers. This re-wiring of epistasis across cell types is likely to be a basic feature of genetic architecture, with important implications for understanding the evolution of multicellularity and human genetic diseases. In addition, if this plasticity of epistasis across cell types is also true for synthetic lethal interactions, a synthetic lethal strategy to kill cancer cells may frequently work in one type of cancer but prove ineffective in another. PMID:26227665

  1. Developing Research Capabilities in Energy Biosciences: Design principles of photosynthetic biofuel production.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donald D. Brown; David Savage

    2012-06-30

    The current fossil fuel-based energy infrastructure is not sustainable. Solar radiation is a plausible alternative, but realizing it as such will require significant technological advances in the ability to harvest light energy and convert it into suitable fuels. The biological system of photosynthesis can carry out these reactions, and in principle could be engineered using the tools of synthetic biology. One desirable implementation would be to rewire the reactions of a photosynthetic bacterium to direct the energy harvested from solar radiation into the synthesis of the biofuel H2. Proposed here is a series of experiments to lay the basic sciencemore » groundwork for such an attempt. The goal is to elucidate the transcriptional network of photosynthesis using a novel driver-reporter screen, evolve more robust hydrogenases for improved catalysis, and to test the ability of the photosynthetic machinery to directly produce H2 in vivo. The results of these experiments will have broad implications for the understanding of photosynthesis, enzyme function, and the engineering of biological systems for sustainable energy production. The ultimate impact could be a fundamental transformation of the world's energy economy.« less

  2. Overexpression of the tomato pollen receptor kinase LePRK1 rewires pollen tube growth to a blebbling mode

    USDA-ARS?s Scientific Manuscript database

    The tubular growth of a pollen tube cell is crucial for the sexual reproduction of flowering plants. LePRK1 is a pollen-specific and plasma membrane–localized receptor-like kinase from tomato (Solanum lycopersicum). LePRK1 interacts with another receptor, LePRK2, and with KINASE PARTNER PROTEIN (KPP...

  3. Rewired: Understanding the iGeneration and the Way They Learn

    ERIC Educational Resources Information Center

    Rosen, Larry D.

    2010-01-01

    The iGeneration is radically different from any previous generation of students and a variety of existing technologies can be used to engage and excite them in the learning process. The iGeneration is a creative, multimedia generation. They think of the world as a canvas to paint with words, sights, sounds, video, music, web pages, and anything…

  4. Intraspinal Rewiring of the Corticospinal Tract Requires Target-Derived Brain-Derived Neurotrophic Factor and Compensates Lost Function after Brain Injury

    ERIC Educational Resources Information Center

    Ueno, Masaki; Hayano, Yasufumi; Nakagawa, Hiroshi; Yamashita, Toshihide

    2012-01-01

    Brain injury that results in an initial behavioural deficit is frequently followed by spontaneous recovery. The intrinsic mechanism of this functional recovery has never been fully understood. Here, we show that reorganization of the corticospinal tract induced by target-derived brain-derived neurotrophic factor is crucial for spontaneous recovery…

  5. Rewiring the Corporate Brain: Using the New Science To Rethink How We Structure and Lead Organizations.

    ERIC Educational Resources Information Center

    Zohar, Danah

    This book relates the radically new sciences of the 20th century--quantum mechanics, chaos theory, and complexity theory--to organizational problems and challenges facing corporate leaders. The book draws on the science of the human brain, with its three different kinds of neural structures--mental, emotional, and spiritual--to illustrate how to…

  6. Dynamic plasticity in coupled avian midbrain maps

    NASA Astrophysics Data System (ADS)

    Atwal, Gurinder Singh

    2004-12-01

    Internal mapping of the external environment is carried out using the receptive fields of topographic neurons in the brain, and in a normal barn owl the aural and visual subcortical maps are aligned from early experiences. However, instantaneous misalignment of the aural and visual stimuli has been observed to result in adaptive behavior, manifested by functional and anatomical changes of the auditory processing system. Using methods of information theory and statistical mechanics a model of the adaptive dynamics of the aural receptive field is presented and analyzed. The dynamics is determined by maximizing the mutual information between the neural output and the weighted sensory neural inputs, admixed with noise, subject to biophysical constraints. The reduced costs of neural rewiring, as in the case of young barn owls, reveal two qualitatively different types of receptive field adaptation depending on the magnitude of the audiovisual misalignment. By letting the misalignment increase with time, it is shown that the ability to adapt can be increased even when neural rewiring costs are high, in agreement with recent experimental reports of the increased plasticity of the auditory space map in adult barn owls due to incremental learning. Finally, a critical speed of misalignment is identified, demarcating the crossover from adaptive to nonadaptive behavior.

  7. Small-world networks exhibit pronounced intermittent synchronization

    NASA Astrophysics Data System (ADS)

    Choudhary, Anshul; Mitra, Chiranjit; Kohar, Vivek; Sinha, Sudeshna; Kurths, Jürgen

    2017-11-01

    We report the phenomenon of temporally intermittently synchronized and desynchronized dynamics in Watts-Strogatz networks of chaotic Rössler oscillators. We consider topologies for which the master stability function (MSF) predicts stable synchronized behaviour, as the rewiring probability (p) is tuned from 0 to 1. MSF essentially utilizes the largest non-zero Lyapunov exponent transversal to the synchronization manifold in making stability considerations, thereby ignoring the other Lyapunov exponents. However, for an N-node networked dynamical system, we observe that the difference in its Lyapunov spectra (corresponding to the N - 1 directions transversal to the synchronization manifold) is crucial and serves as an indicator of the presence of intermittently synchronized behaviour. In addition to the linear stability-based (MSF) analysis, we further provide global stability estimate in terms of the fraction of state-space volume shared by the intermittently synchronized state, as p is varied from 0 to 1. This fraction becomes appreciably large in the small-world regime, which is surprising, since this limit has been otherwise considered optimal for synchronized dynamics. Finally, we characterize the nature of the observed intermittency and its dominance in state-space as network rewiring probability (p) is varied.

  8. Installation of C-6533(XE-2)/ARC ICS in UH-1H helicopter

    NASA Astrophysics Data System (ADS)

    Hnat, J. A.

    1980-07-01

    This report documents the results of the installation of the C-6533(XE-2)/ARC ICS in UH-1H helicopter. Installation was performed at the AEL, Inc., Monmouth County Airport facility. Design of each installation was coordinated and approved by the Government. The mechanical and electrical installation drawings for the helicopter are attached as Appendix A of this report. The new ICS system consisted of new cabling, new intercoms and helmets rewired with new microphones. All four crew stations of the helicopter were reconfigured with the new system. Existing cabling for the standard ICS system remained in the aircraft but was securely stowed for later restoration of the aircraft. The helmets (4) were rewired using separate jacks for headphones and microphone lines. Transmit and receive cables were installed in the aircraft with a minimum separation of one inch between cables. A junction box was fabricated and installed on the aft end of the console to house the fan-out terminal strips. Transmit and receive lines' separation was maintained in the junction box. During the test phase the onboard radios were used with the new ICS system.

  9. Fast growth phenotype of E. coli K-12 from adaptive laboratory evolution does not require intracellular flux rewiring.

    PubMed

    Long, Christopher P; Gonzalez, Jacqueline E; Feist, Adam M; Palsson, Bernhard O; Antoniewicz, Maciek R

    2017-11-01

    Adaptive laboratory evolution (ALE) is a widely-used method for improving the fitness of microorganisms in selected environmental conditions. It has been applied previously to Escherichia coli K-12 MG1655 during aerobic exponential growth on glucose minimal media, a frequently used model organism and growth condition, to probe the limits of E. coli growth rate and gain insights into fast growth phenotypes. Previous studies have described up to 1.6-fold increases in growth rate following ALE, and have identified key causal genetic mutations and changes in transcriptional patterns. Here, we report for the first time intracellular metabolic fluxes for six such adaptively evolved strains, as determined by high-resolution 13 C-metabolic flux analysis. Interestingly, we found that intracellular metabolic pathway usage changed very little following adaptive evolution. Instead, at the level of central carbon metabolism the faster growth was facilitated by proportional increases in glucose uptake and all intracellular rates. Of the six evolved strains studied here, only one strain showed a small degree of flux rewiring, and this was also the strain with unique genetic mutations. A comparison of fluxes with two other wild-type (unevolved) E. coli strains, BW25113 and BL21, showed that inter-strain differences are greater than differences between the parental and evolved strains. Principal component analysis highlighted that nearly all flux differences (95%) between the nine strains were captured by only two principal components. The distance between measured and flux balance analysis predicted fluxes was also investigated. It suggested a relatively wide range of similar stoichiometric optima, which opens new questions about the path-dependency of adaptive evolution. Copyright © 2017 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  10. Fast growth phenotype of E. coli K-12 from adaptive laboratory evolution does not require intracellular flux rewiring

    PubMed Central

    Long, Christopher P.; Gonzalez, Jacqueline E.; Feist, Adam M.; Palsson, Bernhard O.; Antoniewicz, Maciek R.

    2018-01-01

    Adaptive laboratory evolution (ALE) is a widely-used method for improving the fitness of microorganisms in selected environmental conditions. It has been applied previously to Escherichia coli K-12 MG1655 during aerobic exponential growth on glucose minimal media, a frequently used model organism and growth condition, to probe the limits of E. coli growth rate and gain insights into fast growth phenotypes. Previous studies have described up to 1.6-fold increases in growth rate following ALE, and have identified key causal genetic mutations and changes in transcriptional patterns. Here, we report for the first time intracellular metabolic fluxes for six such adaptively evolved strains, as determined by high-resolution 13C-metabolic flux analysis. Interestingly, we found that intracellular metabolic pathway usage changed very little following adaptive evolution. Instead, at the level of central carbon metabolism the faster growth was facilitated by proportional increases in glucose uptake and all intracellular rates. Of the six evolved strains studied here, only one strain showed a small degree of flux rewiring, and this was also the strain with unique genetic mutations. A comparison of fluxes with two other wild-type (unevolved) E. coli strains, BW25113 and BL21, showed that inter-strain differences are greater than differences between the parental and evolved strains. Principal component analysis highlighted that nearly all flux differences (95%) between the nine strains were captured by only two principal components. The distance between measured and flux balance analysis predicted fluxes was also investigated. It suggested a relatively wide range of similar stoichiometric optima, which opens new questions about the path-dependency of adaptive evolution. PMID:28951266

  11. Systematic network assessment of the carcinogenic activities of cadmium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Peizhan; Duan, Xiaohua; Li, Mian

    Cadmium has been defined as type I carcinogen for humans, but the underlying mechanisms of its carcinogenic activity and its influence on protein-protein interactions in cells are not fully elucidated. The aim of the current study was to evaluate, systematically, the carcinogenic activity of cadmium with systems biology approaches. From a literature search of 209 studies that performed with cellular models, 208 proteins influenced by cadmium exposure were identified. All of these were assessed by Western blotting and were recognized as key nodes in network analyses. The protein-protein functional interaction networks were constructed with NetBox software and visualized with Cytoscapemore » software. These cadmium-rewired genes were used to construct a scale-free, highly connected biological protein interaction network with 850 nodes and 8770 edges. Of the network, nine key modules were identified and 60 key signaling pathways, including the estrogen, RAS, PI3K-Akt, NF-κB, HIF-1α, Jak-STAT, and TGF-β signaling pathways, were significantly enriched. With breast cancer, colorectal and prostate cancer cellular models, we validated the key node genes in the network that had been previously reported or inferred form the network by Western blotting methods, including STAT3, JNK, p38, SMAD2/3, P65, AKT1, and HIF-1α. These results suggested the established network was robust and provided a systematic view of the carcinogenic activities of cadmium in human. - Highlights: • A cadmium-influenced network with 850 nodes and 8770 edges was established. • The cadmium-rewired gene network was scale-free and highly connected. • Nine modules were identified, and 60 key signaling pathways related to cadmium-induced carcinogenesis were found. • Key mediators in the network were validated in multiple cellular models.« less

  12. Sensitivity and network topology in chemical reaction systems

    NASA Astrophysics Data System (ADS)

    Okada, Takashi; Mochizuki, Atsushi

    2017-08-01

    In living cells, biochemical reactions are catalyzed by specific enzymes and connect to one another by sharing substrates and products, forming complex networks. In our previous studies, we established a framework determining the responses to enzyme perturbations only from network topology, and then proved a theorem, called the law of localization, explaining response patterns in terms of network topology. In this paper, we generalize these results to reaction networks with conserved concentrations, which allows us to study any reaction system. We also propose network characteristics quantifying robustness. We compare E. coli metabolic network with randomly rewired networks, and find that the robustness of the E. coli network is significantly higher than that of the random networks.

  13. Moving Toward the Ground State.

    PubMed

    Kumar, Ishan; Ivanova, Natalia

    2015-10-01

    Transferring mouse ESCs to a media supplemented with Mek and Gsk3β inhibitors (2i) provokes marked transcriptional and epigenetic changes, embodying a shift toward ground-state pluripotency. In this issue of Cell Stem Cell, Kolodziejczyk et al. (2015) examine population structures of ESCs while Galonska et al. (2015) unravel the mechanisms underlying regulatory network rewiring during 2i-mediated reprogramming. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. A Brain-Machine-Brain Interface for Rewiring of Cortical Circuitry after Traumatic Brain Injury

    DTIC Science & Technology

    2012-09-01

    Oral presentations (Dr. Nudo):  Invited Speaker, Neuroprosthetic tools for repair of the injured brain, American Society for Neurorehabilitation... Neuroprosthetic tools for repair of the injured brain, Neurobiology of Disease Course, University of Texas Health Science Center, Houston, Texas...Congress of NeuroRehabilitation, Melbourne, Australia, May 17, 2012.  Invited Speaker, Novel neuroprosthetic tools for repair of the injured brain

  15. Metabolic Compensation of Fitness Costs Is a General Outcome for Antibiotic-Resistant Pseudomonas aeruginosa Mutants Overexpressing Efflux Pumps.

    PubMed

    Olivares Pacheco, Jorge; Alvarez-Ortega, Carolina; Alcalde Rico, Manuel; Martínez, José Luis

    2017-07-25

    It is generally assumed that the acquisition of antibiotic resistance is associated with a fitness cost. We have shown that overexpression of the MexEF-OprN efflux pump does not decrease the fitness of a resistant Pseudomonas aeruginosa strain compared to its wild-type counterpart. This lack of fitness cost was associated with a metabolic rewiring that includes increased expression of the anaerobic nitrate respiratory chain when cells are growing under fully aerobic conditions. It was not clear whether this metabolic compensation was exclusive to strains overexpressing MexEF-OprN or if it extended to other resistant strains that overexpress similar systems. To answer this question, we studied a set of P. aeruginosa mutants that independently overexpress the MexAB-OprM, MexCD-OprJ, or MexXY efflux pumps. We observed increased expression of the anaerobic nitrate respiratory chain in all cases, with a concomitant increase in NO 3 consumption and NO production. These efflux pumps are proton/substrate antiporters, and their overexpression may lead to intracellular H + accumulation, which may in turn offset the pH homeostasis. Indeed, all studied mutants showed a decrease in intracellular pH under anaerobic conditions. The fastest way to eliminate the excess of protons is by increasing oxygen consumption, a feature also displayed by all analyzed mutants. Taken together, our results support metabolic rewiring as a general mechanism to avoid the fitness costs derived from overexpression of P. aeruginosa multidrug efflux pumps. The development of drugs that block this metabolic "reaccommodation" might help in reducing the persistence and spread of antibiotic resistance elements among bacterial populations. IMPORTANCE It is widely accepted that the acquisition of resistance confers a fitness cost in such a way that in the absence of antibiotics, resistant populations will be outcompeted by susceptible ones. Based on this assumption, antibiotic cycling regimes have been proposed in the belief that they will reduce the persistence and spread of resistance among bacterial pathogens. Unfortunately, trials testing this possibility have frequently failed, indicating that resistant microorganisms are not always outcompeted by susceptible ones. Indeed, some mutations do not result in a fitness cost, and in case they do, the cost may be compensated for by a secondary mutation. Here we describe an alternative nonmutational mechanism for compensating for fitness costs, which consists of the metabolic rewiring of resistant mutants. Deciphering the mechanisms involved in the compensation of fitness costs of antibiotic-resistant mutants may help in the development of drugs that will reduce the persistence of resistance by increasing said costs. Copyright © 2017 Olivares Pacheco et al.

  16. Can Learning Collaboratives Support Implementation by Rewiring Professional Networks?

    PubMed

    Bunger, Alicia C; Hanson, Rochelle F; Doogan, Nathan J; Powell, Byron J; Cao, Yiwen; Dunn, Jerry

    2016-01-01

    This study examined how a learning collaborative focusing on trauma-focused CBT (TF-CBT) impacted advice-seeking patterns between clinicians and three key learning sources: (1) training experts who share technical knowledge about TF-CBT, (2) peers from other participating organizations who share their implementation experiences, and (3) colleagues from their own agency who provide social and professional support. Based on surveys administered to 132 clinicians from 32 agencies, participants' professional networks changed slightly over time by forming new advice-seeking relationships with training experts. While small, these changes at the clinician-level yielded substantial changes in the structure of the regional advice network.

  17. Can Learning Collaboratives Support Implementation By Rewiring Professional Networks?

    PubMed Central

    Hanson, Rochelle F.; Doogan, Nathan J.; Powell, Byron J.; Cao, Yiwen; Dunn, Jerry

    2015-01-01

    This study examined how a learning collaborative focusing on Trauma-Focused CBT (TF-CBT) impacted advice-seeking patterns between clinicians and three key learning sources: (1) training experts who share technical knowledge about TF-CBT, (2) peers from other participating organizations who share their implementation experiences, and (3) colleagues from their own agency who provide social and professional support. Based on surveys administered to 132 clinicians from 32 agencies, participants’ professional networks changed slightly over time by forming new advice-seeking relationships with training experts. While small, these changes at the clinician-level yielded substantial changes in the structure of the regional advice network. PMID:25542237

  18. On the effect of memory in one-dimensional K=4 automata on networks

    NASA Astrophysics Data System (ADS)

    Alonso-Sanz, Ramón; Cárdenas, Juan Pablo

    2008-12-01

    The effect of implementing memory in cells of one-dimensional CA, and on nodes of various types of automata on networks with increasing degrees of random rewiring is studied in this article, paying particular attention to the case of four inputs. As a rule, memory induces a moderation in the rate of changing nodes and in the damage spreading, albeit in the latter case memory turns out to be ineffective in the control of the damage as the wiring network moves away from the ordered structure that features proper one-dimensional CA. This article complements the previous work done in the two-dimensional context.

  19. Network control principles predict neuron function in the Caenorhabditis elegans connectome

    PubMed Central

    Chew, Yee Lian; Walker, Denise S.; Schafer, William R.; Barabási, Albert-László

    2017-01-01

    Recent studies on the controllability of complex systems offer a powerful mathematical framework to systematically explore the structure-function relationship in biological, social and technological networks1–3. Despite theoretical advances, we lack direct experimental proof of the validity of these widely used control principles. Here we fill this gap by applying a control framework to the connectome of the nematode C. elegans4–6, allowing us to predict the involvement of each C. elegans neuron in locomotor behaviours. We predict that control of the muscles or motor neurons requires twelve neuronal classes, which include neuronal groups previously implicated in locomotion by laser ablation7–13, as well as one previously uncharacterised neuron, PDB. We validate this prediction experimentally, finding that the ablation of PDB leads to a significant loss of dorsoventral polarity in large body bends. Importantly, control principles also allow us to investigate the involvement of individual neurons within each neuronal class. For example, we predict that, within the class of DD motor neurons, only three (DD04, DD05, or DD06) should affect locomotion when ablated individually. This prediction is also confirmed, with single-cell ablations of DD04 or DD05, but not DD02 or DD03, specifically affecting posterior body movements. Our predictions are robust to deletions of weak connections, missing connections, and rewired connections in the current connectome, indicating the potential applicability of this analytical framework to larger and less well-characterised connectomes. PMID:29045391

  20. Network control principles predict neuron function in the Caenorhabditis elegans connectome

    NASA Astrophysics Data System (ADS)

    Yan, Gang; Vértes, Petra E.; Towlson, Emma K.; Chew, Yee Lian; Walker, Denise S.; Schafer, William R.; Barabási, Albert-László

    2017-10-01

    Recent studies on the controllability of complex systems offer a powerful mathematical framework to systematically explore the structure-function relationship in biological, social, and technological networks. Despite theoretical advances, we lack direct experimental proof of the validity of these widely used control principles. Here we fill this gap by applying a control framework to the connectome of the nematode Caenorhabditis elegans, allowing us to predict the involvement of each C. elegans neuron in locomotor behaviours. We predict that control of the muscles or motor neurons requires 12 neuronal classes, which include neuronal groups previously implicated in locomotion by laser ablation, as well as one previously uncharacterized neuron, PDB. We validate this prediction experimentally, finding that the ablation of PDB leads to a significant loss of dorsoventral polarity in large body bends. Importantly, control principles also allow us to investigate the involvement of individual neurons within each neuronal class. For example, we predict that, within the class of DD motor neurons, only three (DD04, DD05, or DD06) should affect locomotion when ablated individually. This prediction is also confirmed; single cell ablations of DD04 or DD05 specifically affect posterior body movements, whereas ablations of DD02 or DD03 do not. Our predictions are robust to deletions of weak connections, missing connections, and rewired connections in the current connectome, indicating the potential applicability of this analytical framework to larger and less well-characterized connectomes.

  1. Network control principles predict neuron function in the Caenorhabditis elegans connectome.

    PubMed

    Yan, Gang; Vértes, Petra E; Towlson, Emma K; Chew, Yee Lian; Walker, Denise S; Schafer, William R; Barabási, Albert-László

    2017-10-26

    Recent studies on the controllability of complex systems offer a powerful mathematical framework to systematically explore the structure-function relationship in biological, social, and technological networks. Despite theoretical advances, we lack direct experimental proof of the validity of these widely used control principles. Here we fill this gap by applying a control framework to the connectome of the nematode Caenorhabditis elegans, allowing us to predict the involvement of each C. elegans neuron in locomotor behaviours. We predict that control of the muscles or motor neurons requires 12 neuronal classes, which include neuronal groups previously implicated in locomotion by laser ablation, as well as one previously uncharacterized neuron, PDB. We validate this prediction experimentally, finding that the ablation of PDB leads to a significant loss of dorsoventral polarity in large body bends. Importantly, control principles also allow us to investigate the involvement of individual neurons within each neuronal class. For example, we predict that, within the class of DD motor neurons, only three (DD04, DD05, or DD06) should affect locomotion when ablated individually. This prediction is also confirmed; single cell ablations of DD04 or DD05 specifically affect posterior body movements, whereas ablations of DD02 or DD03 do not. Our predictions are robust to deletions of weak connections, missing connections, and rewired connections in the current connectome, indicating the potential applicability of this analytical framework to larger and less well-characterized connectomes.

  2. A Brain-Machine-Brain Interface for Rewiring of Cortical Circuitry after Traumatic Brain Injury

    DTIC Science & Technology

    2013-09-01

    implemented to significantly decrease the IIR system response time, especially when artifacts were highly reproducible in consecutive stimulation...cycles. The proposed system architecture was hardware- implemented on a field- programmable gate array (FPGA) and tested using two sets of prerecorded...its FPGA implementation and testing with prerecorded neural datasets are reported in a manuscript currently in press with the IEEE Transactions on

  3. Engineering Probiotics that Improve Warfighter Performance by Maintaining Lean Body Mass and Inhibiting Anxiety

    DTIC Science & Technology

    2017-10-03

    and Microbiome Research Seminar Series . Baylor College of Medicine. 10/26/16. 12. "Rewiring the DNA binding domains ofbacterial two-component system...Structural and Quantitative Biology Seminar Series . 11/16/15. 16. "Engineering bacterial two component signal transduction systems to function as sensors...hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and

  4. From "Somatic Scandals" to "A Constant Potential for Violence"? The Culture of Dissection, Brain-Based Learning, and the Rewriting/Rewiring of "The Child"

    ERIC Educational Resources Information Center

    Baker, Bernadette

    2015-01-01

    Within educational research across Europe and the US, one of the most rapidly traveling discourses and highly funded pursuits of the moment is brain-based learning (BBL). BBL is an approach to curriculum and pedagogical decision-making that is located within the new field of educational neuroscience. In some strands of BBL research the structure…

  5. Rewiring the Carbon Economy: Engineered Carbon Reduction Listening Day Summary Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Illing, Lauren; Natelson, Robert; Resch, Michael

    On July 8, 2017, the U.S. Department of Energy’s Bioenergy Technologies Office (BETO) sponsored the Engineered Carbon Reduction Listening Day: Advanced Strategies to Bypass Land Use for the Emerging Bioeconomy in La Jolla, California. This event explored non-photosynthetic carbon dioxide–reduction technologies, including electrocatalytic, thermocatalytic, photocatalytic, and biocatalytic approaches. BETO has summarized stakeholder input from the listening day in a summary report.

  6. Various stress stimuli rewire the profile of liver secretome in a p53-dependent manner.

    PubMed

    Charni-Natan, Meital; Solomon, Hilla; Molchadsky, Alina; Jacob-Berger, Adi; Goldfinger, Naomi; Rotter, Varda

    2018-05-29

    Liver is an important secretory organ that consistently manages various insults in order to retain whole-body homeostasis. Importantly, it was suggested that the tumor-suppressor p53 plays a role in a variety of liver physiological processes and thus it is being regarded as a systemic homeostasis regulator. Using high-throughput mass spectrometric analysis, we identified various p53-dependent liver secretome profiles. This allowed a global view on the role of p53 in maintaining the harmony of liver and whole-body homeostasis. We found that p53 altered the liver secretome differently under various conditions. Under physiological conditions, p53 controls factors that are related mainly to lipid metabolism and injury response. Upon exposure to various types of cancer therapy agents, the hepatic p53 is activated and induces the secretion of proteins related to additional pathways, such as hemostasis, immune response, and cell adhesion. Interestingly, we identified a possible relationship between p53-dependent liver functions and lung tumors. The latter modify differently liver secretome profile toward the secretion of proteins mainly related to cell migration and immune response. The notion that p53 may rewire the liver secretome profile suggests a new non-cell autonomous role of p53 that affect different liver functions and whole organism homeostasis.

  7. The data-driven null models for information dissemination tree in social networks

    NASA Astrophysics Data System (ADS)

    Zhang, Zhiwei; Wang, Zhenyu

    2017-10-01

    For the purpose of detecting relatedness and co-occurrence between users, as well as the distribution features of nodes in spreading path of a social network, this paper explores topological characteristics of information dissemination trees (IDT) that can be employed indirectly to probe the information dissemination laws within social networks. Hence, three different null models of IDT are presented in this article, including the statistical-constrained 0-order IDT null model, the random-rewire-broken-edge 0-order IDT null model and the random-rewire-broken-edge 2-order IDT null model. These null models firstly generate the corresponding randomized copy of an actual IDT; then the extended significance profile, which is developed by adding the cascade ratio of information dissemination path, is exploited not only to evaluate degree correlation of two nodes associated with an edge, but also to assess the cascade ratio of different length of information dissemination paths. The experimental correspondences of the empirical analysis for several SinaWeibo IDTs and Twitter IDTs indicate that the IDT null models presented in this paper perform well in terms of degree correlation of nodes and dissemination path cascade ratio, which can be better to reveal the features of information dissemination and to fit the situation of real social networks.

  8. Rewiring of auxin signaling under persistent shade.

    PubMed

    Pucciariello, Ornella; Legris, Martina; Costigliolo Rojas, Cecilia; Iglesias, María José; Hernando, Carlos Esteban; Dezar, Carlos; Vazquez, Martín; Yanovsky, Marcelo J; Finlayson, Scott A; Prat, Salomé; Casal, Jorge J

    2018-05-22

    Light cues from neighboring vegetation rapidly initiate plant shade-avoidance responses. Despite our detailed knowledge of the early steps of this response, the molecular events under prolonged shade are largely unclear. Here we show that persistent neighbor cues reinforce growth responses in addition to promoting auxin-responsive gene expression in Arabidopsis and soybean. However, while the elevation of auxin levels is well established as an early event, in Arabidopsis , the response to prolonged shade occurs when auxin levels have declined to the prestimulation values. Remarkably, the sustained low activity of phytochrome B under prolonged shade led to ( i ) decreased levels of PHYTOCHROME INTERACTING FACTOR 4 (PIF4) in the cotyledons (the organs that supply auxin) along with increased levels in the vascular tissues of the stem, ( ii ) elevated expression of the PIF4 targets INDOLE-3-ACETIC ACID 19 ( IAA19 ) and IAA29 , which in turn reduced the expression of the growth-repressive IAA17 regulator, ( iii ) reduced abundance of AUXIN RESPONSE FACTOR 6, ( iv ) reduced expression of MIR393 and increased abundance of its targets, the auxin receptors, and ( v ) elevated auxin signaling as indicated by molecular markers. Mathematical and genetic analyses support the physiological role of this system-level rearrangement. We propose that prolonged shade rewires the connectivity between light and auxin signaling to sustain shade avoidance without enhanced auxin levels.

  9. Controlling biofilm formation, prophage excision and cell death by rewiring global regulator H‐NS of Escherichia coli

    PubMed Central

    Hong, Seok Hoon; Wang, Xiaoxue; Wood, Thomas K.

    2010-01-01

    Summary The global regulator H‐NS of Escherichia coli controls genes related to stress response, biofilm formation and virulence by recognizing curved DNA and by silencing acquired genes. Here, we rewired H‐NS to control biofilm formation using protein engineering; H‐NS variant K57N was obtained that reduces biofilm formation 10‐fold compared with wild‐type H‐NS (wild‐type H‐NS increases biofilm formation whereas H‐NS K57N reduces it). Whole‐transcriptome analysis revealed that H‐NS K57N represses biofilm formation through its interaction with the nucleoid‐associated proteins Cnu and StpA and in the absence of these proteins, H‐NS K57N was unable to reduce biofilm formation. Significantly, H‐NS K57N enhanced the excision of defective prophage Rac while wild‐type H‐NS represses excision, and H‐NS controlled only Rac excision among the nine resident E. coli K‐12 prophages. Rac prophage excision not only led to the change in biofilm formation but also resulted in cell lysis through the expression of toxin HokD. Hence, the H‐NS regulatory system may be evolved through a single‐amino‐acid change in its N‐terminal oligomerization domain to control biofilm formation, prophage excision and apoptosis. PMID:21255333

  10. MRI/DTI of the Brain Stem Reveals Reversible and Irreversible Disruption of the Baroreflex Neural Circuits: Clinical Implications

    PubMed Central

    Su, Chia-Hao; Tsai, Ching-Yi; Chang, Alice Y.W.; Chan, Julie Y.H.; Chan, Samuel H.H.

    2016-01-01

    Baroreflex is the physiological mechanism for the maintenance of blood pressure and heart rate. Impairment of baroreflex is not a disease per se. However, depending on severity, the eventuality of baroreflex dysfunction varies from inconvenience in daily existence to curtailment of mobility to death. Despite universal acceptance, neuronal traffic within the contemporary neural circuits during the execution of baroreflex has never been visualized. By enhancing signal detection and fine-tuning the scanning parameters, we have successfully implemented tractographic analysis of the medulla oblongata in mice that allowed for visualization of connectivity between key brain stem nuclei in the baroreflex circuits. When viewed in conjunction with radiotelemetric analysis of the baroreflex, we found that under pathophysiological conditions when the disrupted connectivity between key nuclei in the baroreflex circuits was reversible, the associated disease condition (e.g. neurogenic hypertension) was amenable to remedial measures. Nevertheless, fatality ensues under pathological conditions (e.g. hepatic encephalopathy) when the connectivity between key substrates in the baroreflex circuits was irreversibly severed. MRI/DTI also prompted partial re-wiring of the contemporary circuit for baroreflex-mediated sympathetic vasomotor tone, and unearthed an explanation for the time lapse between brain death and the inevitable asystole signifying cardiac death that follows. PMID:27162554

  11. MRI/DTI of the Brain Stem Reveals Reversible and Irreversible Disruption of the Baroreflex Neural Circuits: Clinical Implications.

    PubMed

    Su, Chia-Hao; Tsai, Ching-Yi; Chang, Alice Y W; Chan, Julie Y H; Chan, Samuel H H

    2016-01-01

    Baroreflex is the physiological mechanism for the maintenance of blood pressure and heart rate. Impairment of baroreflex is not a disease per se. However, depending on severity, the eventuality of baroreflex dysfunction varies from inconvenience in daily existence to curtailment of mobility to death. Despite universal acceptance, neuronal traffic within the contemporary neural circuits during the execution of baroreflex has never been visualized. By enhancing signal detection and fine-tuning the scanning parameters, we have successfully implemented tractographic analysis of the medulla oblongata in mice that allowed for visualization of connectivity between key brain stem nuclei in the baroreflex circuits. When viewed in conjunction with radiotelemetric analysis of the baroreflex, we found that under pathophysiological conditions when the disrupted connectivity between key nuclei in the baroreflex circuits was reversible, the associated disease condition (e.g. neurogenic hypertension) was amenable to remedial measures. Nevertheless, fatality ensues under pathological conditions (e.g. hepatic encephalopathy) when the connectivity between key substrates in the baroreflex circuits was irreversibly severed. MRI/DTI also prompted partial re-wiring of the contemporary circuit for baroreflex-mediated sympathetic vasomotor tone, and unearthed an explanation for the time lapse between brain death and the inevitable asystole signifying cardiac death that follows.

  12. Emerging role of lipid metabolism alterations in Cancer stem cells.

    PubMed

    Yi, Mei; Li, Junjun; Chen, Shengnan; Cai, Jing; Ban, Yuanyuan; Peng, Qian; Zhou, Ying; Zeng, Zhaoyang; Peng, Shuping; Li, Xiaoling; Xiong, Wei; Li, Guiyuan; Xiang, Bo

    2018-06-15

    Cancer stem cells (CSCs) or tumor-initiating cells (TICs) represent a small population of cancer cells with self-renewal and tumor-initiating properties. Unlike the bulk of tumor cells, CSCs or TICs are refractory to traditional therapy and are responsible for relapse or disease recurrence in cancer patients. Stem cells have distinct metabolic properties compared to differentiated cells, and metabolic rewiring contributes to self-renewal and stemness maintenance in CSCs. Recent advances in metabolomic detection, particularly in hyperspectral-stimulated raman scattering microscopy, have expanded our knowledge of the contribution of lipid metabolism to the generation and maintenance of CSCs. Alterations in lipid uptake, de novo lipogenesis, lipid droplets, lipid desaturation, and fatty acid oxidation are all clearly implicated in CSCs regulation. Alterations on lipid metabolism not only satisfies the energy demands and biomass production of CSCs, but also contributes to the activation of several important oncogenic signaling pathways, including Wnt/β-catenin and Hippo/YAP signaling. In this review, we summarize the current progress in this attractive field and describe some recent therapeutic agents specifically targeting CSCs based on their modulation of lipid metabolism. Increased reliance on lipid metabolism makes it a promising therapeutic strategy to eliminate CSCs. Targeting key players of fatty acids metabolism shows promising to anti-CSCs and tumor prevention effects.

  13. Histone methyltransferase Ash1L mediates activity-dependent repression of neurexin-1α

    PubMed Central

    Zhu, Τao; Liang, Chen; Li, Dongdong; Tian, Miaomiao; Liu, Sanxiong; Gao, Guanjun; Guan, Ji-Song

    2016-01-01

    Activity-dependent transcription is critical for the regulation of long-term synaptic plasticity and plastic rewiring in the brain. Here, we report that the transcription of neurexin1α (nrxn1α), a presynaptic adhesion molecule for synaptic formation, is regulated by transient neuronal activation. We showed that 10 minutes of firing at 50 Hz in neurons repressed the expression of nrxn1α for 24 hours in a primary cortical neuron culture through a transcriptional repression mechanism. By performing a screening assay using a synthetic zinc finger protein (ZFP) to pull down the proteins enriched near the nrxn1α promoter region in vivo, we identified that Ash1L, a histone methyltransferase, is enriched in the nrxn1α promoter. Neuronal activity triggered binding of Ash1L to the promoter and enriched the histone marker H3K36me2 at the nrxn1α promoter region. Knockout of Ash1L in mice completely abolished the activity-dependent repression of nrxn1α. Taken together, our results reveal that a novel process of activity-dependent transcriptional repression exists in neurons and that Ash1L mediates the long-term repression of nrxn1α, thus implicating an important role for epigenetic modification in brain functioning. PMID:27229316

  14. Structural signatures of DRD4 mutants revealed using molecular dynamics simulations: Implications for drug targeting.

    PubMed

    Jatana, Nidhi; Thukral, Lipi; Latha, N

    2016-01-01

    Human Dopamine Receptor D4 (DRD4) orchestrates several neurological functions and represents a target for many psychological disorders. Here, we examined two rare variants in DRD4; V194G and R237L, which elicit functional alterations leading to disruption of ligand binding and G protein coupling, respectively. Using atomistic molecular dynamics (MD) simulations, we provide in-depth analysis to reveal structural signatures of wild and mutant complexes with their bound agonist and antagonist ligands. We constructed intra-protein network graphs to discriminate the global conformational changes induced by mutations. The simulations also allowed us to elucidate the local side-chain dynamical variations in ligand-bound mutant receptors. The data suggest that the mutation in transmembrane V (V194G) drastically disrupts the organization of ligand binding site and causes disorder in the native helical arrangement. Interestingly, the R237L mutation leads to significant rewiring of side-chain contacts in the intracellular loop 3 (site of mutation) and also affects the distant transmembrane topology. Additionally, these mutations lead to compact ICL3 region compared to the wild type, indicating that the receptor would be inaccessible for G protein coupling. Our findings thus reveal unreported structural determinants of the mutated DRD4 receptor and provide a robust framework for design of effective novel drugs.

  15. Knowledge-Assisted Approach to Identify Pathways with Differential Dependencies | Office of Cancer Genomics

    Cancer.gov

    We have previously developed a statistical method to identify gene sets enriched with condition-specific genetic dependencies. The method constructs gene dependency networks from bootstrapped samples in one condition and computes the divergence between distributions of network likelihood scores from different conditions. It was shown to be capable of sensitive and specific identification of pathways with phenotype-specific dysregulation, i.e., rewiring of dependencies between genes in different conditions.

  16. Rewiring Warfighters for Joint Mindedness: Solutions for Joint Education in the 21st Century

    DTIC Science & Technology

    2010-06-01

    begins " developing concepts to test the model or theory or plan for a forthcoming experience.൱ ELT provides a mechanism to reduce cognitive ...solving a lack of jointness requires a new way of thinking that focuses on developing cognitive symmetry among officers of different services... developing cognitive symmetry using P2C. Perception is the second P2C element. Creating cognitive symmetry through perception and not misperception

  17. Temporally distinct transcriptional regulation of myocyte dedifferentiation and Myofiber growth during muscle regeneration.

    PubMed

    Louie, Ke'ale W; Saera-Vila, Alfonso; Kish, Phillip E; Colacino, Justin A; Kahana, Alon

    2017-11-09

    Tissue regeneration requires a series of steps, beginning with generation of the necessary cell mass, followed by cell migration into damaged area, and ending with differentiation and integration with surrounding tissues. Temporal regulation of these steps lies at the heart of the regenerative process, yet its basis is not well understood. The ability of zebrafish to dedifferentiate mature "post-mitotic" myocytes into proliferating myoblasts that in turn regenerate lost muscle tissue provides an opportunity to probe the molecular mechanisms of regeneration. Following subtotal excision of adult zebrafish lateral rectus muscle, dedifferentiating residual myocytes were collected at two time points prior to cell cycle reentry and compared to uninjured muscles using RNA-seq. Functional annotation (GAGE or K-means clustering followed by GO enrichment) revealed a coordinated response encompassing epigenetic regulation of transcription, RNA processing, and DNA replication and repair, along with protein degradation and translation that would rewire the cellular proteome and metabolome. Selected candidate genes were phenotypically validated in vivo by morpholino knockdown. Rapidly induced gene products, such as the Polycomb group factors Ezh2 and Suz12a, were necessary for both efficient dedifferentiation (i.e. cell reprogramming leading to cell cycle reentry) and complete anatomic regeneration. In contrast, the late activated gene fibronectin was important for efficient anatomic muscle regeneration but not for the early step of myocyte cell cycle reentry. Reprogramming of a "post-mitotic" myocyte into a dedifferentiated myoblast requires a complex coordinated effort that reshapes the cellular proteome and rewires metabolic pathways mediated by heritable yet nuanced epigenetic alterations and molecular switches, including transcription factors and non-coding RNAs. Our studies show that temporal regulation of gene expression is programmatically linked to distinct steps in the regeneration process, with immediate early expression driving dedifferentiation and reprogramming, and later expression facilitating anatomical regeneration.

  18. Cortical rewiring and information storage

    NASA Astrophysics Data System (ADS)

    Chklovskii, D. B.; Mel, B. W.; Svoboda, K.

    2004-10-01

    Current thinking about long-term memory in the cortex is focused on changes in the strengths of connections between neurons. But ongoing structural plasticity in the adult brain, including synapse formation/elimination and remodelling of axons and dendrites, suggests that memory could also depend on learning-induced changes in the cortical `wiring diagram'. Given that the cortex is sparsely connected, wiring plasticity could provide a substantial boost in storage capacity, although at a cost of more elaborate biological machinery and slower learning.

  19. Oscillatory stimuli differentiate adapting circuit topologies

    PubMed Central

    Rahi, Sahand Jamal; Larsch, Johannes; Pecani, Kresti; Katsov, Alexander Y.; Mansouri, Nahal; Tsaneva-Atanasova, Krasimira; Sontag, Eduardo D.; Cross, Frederick R.

    2017-01-01

    Adapting pathways consist of negative feedback loops (NFLs) or incoherent feedforward loops (IFFLs), which we show can be differentiated using oscillatory stimulation: NFLs but not IFFLs generically show ‘refractory period stabilization’ or ‘period skipping’. Using these signatures and genetic rewiring we identified the circuit dominating cell cycle timing in yeast. In C. elegans AWA neurons we uncovered a Ca2+-NFL, diffcult to find by other means, especially in wild-type, intact animals. (70 words) PMID:28846089

  20. A Brain-Machine-Brain Interface for Rewiring of Cortical Circuitry after Traumatic Brain Injury

    DTIC Science & Technology

    2014-09-01

    2004. He served as Guest Coeditor of a special issue on applied neurodynamics for the Journal of Neural Engineering with Dr. Peter Thomas in December...for the millions of individuals who are left with permanent motor and cognitive impairments after acquired brain injury, as occurs in stroke and...Other investigators have proposed a closed-loop approach for a cognitive prosthesis that has shown promise in animal models (40). Other potential

  1. Stochastic Switching Induced Adaptation in a Starved Escherichia coli Population

    PubMed Central

    Ito, Yoichiro; Ying, Bei-Wen; Yomo, Tetsuya

    2011-01-01

    Population adaptation can be determined by stochastic switching in living cells. To examine how stochastic switching contributes to the fate decision for a population under severe stress, we constructed an Escherichia coli strain crucially dependent on the expression of a rewired gene. The gene essential for tryptophan biosynthesis, trpC, was removed from the native regulatory unit, the Trp operon, and placed under the extraneous control of the lactose utilisation network. Bistability of the network provided the cells two discrete phenotypes: the induced and suppressed level of trpC. The two phenotypes permitted the cells to grow or not, respectively, under conditions of tryptophan depletion. We found that stochastic switching between the two states allowed the initially suppressed cells to form a new population with induced trpC in response to tryptophan starvation. However, the frequency of the transition from suppressed to induced state dropped off dramatically in the starved population, in comparison to that in the nourished population. This reduced switching rate was compensated by increasing the initial population size, which probably provided the cell population more chances to wait for the rarely appearing fit cells from the unfit cells. Taken together, adaptation of a starved bacterial population because of stochasticity in the gene rewired from the ancient regulon was experimentally confirmed, and the nutritional status and the population size played a great role in stochastic adaptation. PMID:21931628

  2. The gut-brain axis rewired: adding a functional vagal nicotinic "sensory synapse".

    PubMed

    Perez-Burgos, Azucena; Mao, Yu-Kang; Bienenstock, John; Kunze, Wolfgang A

    2014-07-01

    It is generally accepted that intestinal sensory vagal fibers are primary afferent, responding nonsynaptically to luminal stimuli. The gut also contains intrinsic primary afferent neurons (IPANs) that respond to luminal stimuli. A psychoactive Lactobacillus rhamnosus (JB-1) that affects brain function excites both vagal fibers and IPANs. We wondered whether, contrary to its primary afferent designation, the sensory vagus response to JB-1 might depend on IPAN to vagal fiber synaptic transmission. We recorded ex vivo single- and multiunit afferent action potentials from mesenteric nerves supplying mouse jejunal segments. Intramural synaptic blockade with Ca(2+) channel blockers reduced constitutive or JB-1-evoked vagal sensory discharge. Firing of 60% of spontaneously active units was reduced by synaptic blockade. Synaptic or nicotinic receptor blockade reduced firing in 60% of vagal sensory units that were stimulated by luminal JB-1. In control experiments, increasing or decreasing IPAN excitability, respectively increased or decreased nerve firing that was abolished by synaptic blockade or vagotomy. We conclude that >50% of vagal afferents function as interneurons for stimulation by JB-1, receiving input from an intramural functional "sensory synapse." This was supported by myenteric plexus nicotinic receptor immunohistochemistry. These data offer a novel therapeutic target to modify pathological gut-brain axis activity.-Perez-Burgos, A., Mao, Y.-K., Bienenstock, J., Kunze, W. A. The gut-brain axis rewired: adding a functional vagal nicotinic "sensory synapse." © FASEB.

  3. Rewiring the Glucose Transportation and Central Metabolic Pathways for Overproduction of N-Acetylglucosamine in Bacillus subtilis.

    PubMed

    Gu, Yang; Deng, Jieying; Liu, Yanfeng; Li, Jianghua; Shin, Hyun-Dong; Du, Guocheng; Chen, Jian; Liu, Long

    2017-10-01

    N-acetylglucosamine (GlcNAc) is an important amino sugar extensively used in the healthcare field. In a previous study, the recombinant Bacillus subtilis strain BSGN6-P xylA -glmS-pP43NMK-GNA1 (BN0-GNA1) had been constructed for microbial production of GlcNAc by pathway design and modular optimization. Here, the production of GlcNAc is further improved by rewiring both the glucose transportation and central metabolic pathways. First, the phosphotransferase system (PTS) is blocked by deletion of three genes, yyzE (encoding the PTS system transporter subunit IIA YyzE), ypqE (encoding the PTS system transporter subunit IIA YpqE), and ptsG (encoding the PTS system glucose-specific EIICBA component), resulting in 47.6% increase in the GlcNAc titer (from 6.5 ± 0.25 to 9.6 ± 0.16 g L -1 ) in shake flasks. Then, reinforcement of the expression of the glcP and glcK genes and optimization of glucose facilitator proteins are performed to promote glucose import and phosphorylation. Next, the competitive pathways for GlcNAc synthesis, namely glycolysis, peptidoglycan synthesis pathway, pentose phosphate pathway, and tricarboxylic acid cycle, are repressed by initiation codon-optimization strategies, and the GlcNAc titer in shake flasks is improved from 10.8 ± 0.25 to 13.2 ± 0.31 g L -1 . Finally, the GlcNAc titer is further increased to 42.1 ± 1.1 g L -1 in a 3-L fed-batch bioreactor, which is 1.72-fold that of the original strain, BN0-GNA1. This study shows considerably enhanced GlcNAc production, and the metabolic engineering strategy described here will be useful for engineering other prokaryotic microorganisms for the production of GlcNAc and related molecules. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Systems Level Analyses Reveal Multiple Regulatory Activities of CodY Controlling Metabolism, Motility and Virulence in Listeria monocytogenes

    PubMed Central

    Lobel, Lior; Herskovits, Anat A.

    2016-01-01

    Bacteria sense and respond to many environmental cues, rewiring their regulatory network to facilitate adaptation to new conditions/niches. Global transcription factors that co-regulate multiple pathways simultaneously are essential to this regulatory rewiring. CodY is one such global regulator, controlling expression of both metabolic and virulence genes in Gram-positive bacteria. Branch chained amino acids (BCAAs) serve as a ligand for CodY and modulate its activity. Classically, CodY was considered to function primarily as a repressor under rich growth conditions. However, our previous studies of the bacterial pathogen Listeria monocytogenes revealed that CodY is active also when the bacteria are starved for BCAAs. Under these conditions, CodY loses the ability to repress genes (e.g., metabolic genes) and functions as a direct activator of the master virulence regulator gene, prfA. This observation raised the possibility that CodY possesses multiple functions that allow it to coordinate gene expression across a wide spectrum of metabolic growth conditions, and thus better adapt bacteria to the mammalian niche. To gain a deeper understanding of CodY’s regulatory repertoire and identify direct target genes, we performed a genome wide analysis of the CodY regulon and DNA binding under both rich and minimal growth conditions, using RNA-Seq and ChIP-Seq techniques. We demonstrate here that CodY is indeed active (i.e., binds DNA) under both conditions, serving as a repressor and activator of different genes. Further, we identified new genes and pathways that are directly regulated by CodY (e.g., sigB, arg, his, actA, glpF, gadG, gdhA, poxB, glnR and fla genes), integrating metabolism, stress responses, motility and virulence in L. monocytogenes. This study establishes CodY as a multifaceted factor regulating L. monocytogenes physiology in a highly versatile manner. PMID:26895237

  5. Laterally confined growth of cells induces nuclear reprogramming in the absence of exogenous biochemical factors.

    PubMed

    Roy, Bibhas; Venkatachalapathy, Saradha; Ratna, Prasuna; Wang, Yejun; Jokhun, Doorgesh Sharma; Nagarajan, Mallika; Shivashankar, G V

    2018-05-22

    Cells in tissues undergo transdifferentiation programs when stimulated by specific mechanical and biochemical signals. While seminal studies have demonstrated that exogenous biochemical factors can reprogram somatic cells into pluripotent stem cells, the critical roles played by mechanical signals in such reprogramming process have not been well documented. In this paper, we show that laterally confined growth of fibroblasts on micropatterned substrates induces nuclear reprogramming with high efficiency in the absence of any exogenous reprogramming factors. We provide compelling evidence on the induction of stem cell-like properties using alkaline phosphatase assays and expression of pluripotent markers. Early onset of reprogramming was accompanied with enhanced nuclear dynamics and changes in chromosome intermingling degrees, potentially facilitating rewiring of the genome. Time-lapse analysis of promoter occupancy by immunoprecipitation of H3K9Ac chromatin fragments revealed that epithelial, proliferative, and reprogramming gene promoters were progressively acetylated, while mesenchymal promoters were deacetylated by 10 days. Consistently, RNA sequencing analysis showed a systematic progression from mesenchymal to stem cell transcriptome, highlighting pathways involving mechanisms underlying nuclear reprogramming. We then demonstrated that these mechanically reprogrammed cells could be maintained as stem cells and can be redifferentiated into multiple lineages with high efficiency. Importantly, we also demonstrate the induction of cancer stemness properties in MCF7 cells grown in such laterally confined conditions. Collectively, our results highlight an important generic property of somatic cells that, when grown in laterally confined conditions, acquire stemness. Such mechanical reprogramming of somatic cells demonstrated here has important implications in tissue regeneration and disease models. Copyright © 2018 the Author(s). Published by PNAS.

  6. Gene networks and the evolution of plant morphology.

    PubMed

    Das Gupta, Mainak; Tsiantis, Miltos

    2018-06-06

    Elaboration of morphology depends on the precise orchestration of gene expression by key regulatory genes. The hierarchy and relationship among the participating genes is commonly known as gene regulatory network (GRN). Therefore, the evolution of morphology ultimately occurs by the rewiring of gene network structures or by the co-option of gene networks to novel domains. The availability of high-resolution expression data combined with powerful statistical tools have opened up new avenues to formulate and test hypotheses on how diverse gene networks influence trait development and diversity. Here we summarize recent studies based on both big-data and genetics approaches to understand the evolution of plant form and physiology. We also discuss recent genome-wide investigations on how studying open-chromatin regions may help study the evolution of gene expression patterns. Copyright © 2018. Published by Elsevier Ltd.

  7. Determining Effects of Non-synonymous SNPs on Protein-Protein Interactions using Supervised and Semi-supervised Learning

    PubMed Central

    Zhao, Nan; Han, Jing Ginger; Shyu, Chi-Ren; Korkin, Dmitry

    2014-01-01

    Single nucleotide polymorphisms (SNPs) are among the most common types of genetic variation in complex genetic disorders. A growing number of studies link the functional role of SNPs with the networks and pathways mediated by the disease-associated genes. For example, many non-synonymous missense SNPs (nsSNPs) have been found near or inside the protein-protein interaction (PPI) interfaces. Determining whether such nsSNP will disrupt or preserve a PPI is a challenging task to address, both experimentally and computationally. Here, we present this task as three related classification problems, and develop a new computational method, called the SNP-IN tool (non-synonymous SNP INteraction effect predictor). Our method predicts the effects of nsSNPs on PPIs, given the interaction's structure. It leverages supervised and semi-supervised feature-based classifiers, including our new Random Forest self-learning protocol. The classifiers are trained based on a dataset of comprehensive mutagenesis studies for 151 PPI complexes, with experimentally determined binding affinities of the mutant and wild-type interactions. Three classification problems were considered: (1) a 2-class problem (strengthening/weakening PPI mutations), (2) another 2-class problem (mutations that disrupt/preserve a PPI), and (3) a 3-class classification (detrimental/neutral/beneficial mutation effects). In total, 11 different supervised and semi-supervised classifiers were trained and assessed resulting in a promising performance, with the weighted f-measure ranging from 0.87 for Problem 1 to 0.70 for the most challenging Problem 3. By integrating prediction results of the 2-class classifiers into the 3-class classifier, we further improved its performance for Problem 3. To demonstrate the utility of SNP-IN tool, it was applied to study the nsSNP-induced rewiring of two disease-centered networks. The accurate and balanced performance of SNP-IN tool makes it readily available to study the rewiring of large-scale protein-protein interaction networks, and can be useful for functional annotation of disease-associated SNPs. SNIP-IN tool is freely accessible as a web-server at http://korkinlab.org/snpintool/. PMID:24784581

  8. Rewiring juvenile justice: the intersection of developmental neuroscience and legal policy.

    PubMed

    Cohen, Alexandra O; Casey, B J

    2014-02-01

    The past decade has been marked by historic opinions regarding the culpability of juveniles by the US Supreme Court. In 2005, the death penalty was abolished, 5 years later, life without parole for crimes, other than homicide, was banned, and then just last year, mandatory life sentences for any crime was abolished. The court referenced developmental science in all these cases. In this article, we highlight new scientific findings and their relevance to law and policy. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. A Brain-Machine-Brain Interface for Rewiring of Cortical Circuitry after Traumatic Brain Injury

    DTIC Science & Technology

    2011-09-01

    parietal bones, and a threaded rod was implanted into the interparietal bone. These were affixed to the skull with dental acrylic. A hybrid, 16...then sealed with a silicone polymer (Kwik-Cast, WPI). The base of the probe connector was lowered onto the dental acrylic and fixed into place. An...the skull using a dental drill with a trephine bit over the cortex contralateral to the dominant forelimb. A total of 14 animals received CCI in the

  10. A Brain-Machine-Brain Interface for Rewiring of Cortical Circuitry after Traumatic Brain Injury

    DTIC Science & Technology

    2014-09-01

    810. 22. Plow EB, Carey JR, Nudo RJ, Pascual-Leone A (2009) Invasive cortical stimulation to promote recovery of function after stroke: A critical...stimulation of the motor cortex enhances pro- genitor cell migration in the adult rat brain. Exp Brain Res 231(2):165–177. 28. Edwardson MA, Lucas TH, Carey ...The screws and rod were further secured with dental acrylic (all animals). In both the ADS and OLS groups, a hybrid, 16-channel, single-shank, chronic

  11. A Brain-Machine-Brain Interface for Rewiring of Cortical Circuitry after Traumatic Brain Injury

    DTIC Science & Technology

    2015-11-01

    asymmetric biphasic current pulses up to ~100 A with passive discharge , and W-level digital signal processing 6 (DSP) unit for real-time SAR based on...compliance of 4.68 V with a 5 V supply, when configured for monophasic stimulation with passive discharge . The programmable microstimulator could also...severely disrupted. While the underlying white matter was intact, distortion of the most superficial aspects of the corona radiate was evident. In the

  12. Kinome rewiring reveals AURKA is a molecular barrier to the efficacy of PI3K/mTOR-pathway inhibitors in breast cancer | Office of Cancer Genomics

    Cancer.gov

    Dysregulation of the PI3K-AKT-mTOR signaling network is a prominent feature of breast cancers. However, clinical responses to drugs targeting this pathway have been modest. We hypothesized that dynamic changes in signaling, including adaptation and feedback, limit drug efficacy. Using a quantitative chemoproteomics approach we mapped dynamic changes in the kinome in response to various agents and identified signaling changes that correlate with drug sensitivity.

  13. NAD+ metabolism and the control of energy homeostasis - a balancing act between mitochondria and the nucleus

    PubMed Central

    Cantó, Carles; Menzies, Keir; Auwerx, Johan

    2015-01-01

    NAD+ has emerged as a vital cofactor that can rewire metabolism, activate sirtuins and maintain mitochondrial fitness through mechanisms such as the mitochondrial unfolded protein response. This improved understanding of NAD+ metabolism revived interest in NAD+ boosting strategies to manage a wide spectrum of diseases, ranging from diabetes to cancer. In this review, we summarize how NAD+ metabolism links energy status with adaptive cellular and organismal responses and how this knowledge can be therapeutically exploited. PMID:26118927

  14. A Brain-Machine-Brain Interface for Rewiring of Cortical Circuitry after Traumatic Brain Injury

    DTIC Science & Technology

    2011-09-01

    cerebral cortex of a rat’s brain. The flow chart for spike discrimination algorithm is also shown. Negative threshold level (not shown in bottom left...portion of the transistor drain current can flow into its bulk due to impact ionization effect [40], greatly degrading the output impedance of the...current source. This can be solved by connecting the bulk and source of together, as also seen in Fig. 4, allowing its drain-bulk current to also flow

  15. Antegrade rewiring of the retrograde Corsair catheter during revascularization of chronic total coronary occlusions: a simple alternative to guidewire exteriorization.

    PubMed

    Haworth, P A J; Hildick-Smith, D

    2014-08-01

    Chronic total occlusions prevent a significant challenge to interventional cardiologists. Successful opening of chronically occluded vessels has been shown to be associated with decreased mortality and morbidity. Recently, the retrograde approach to chronic total occlusion intervention has been developed. In this case series, we present a novel technique to assist with this procedure involving antegrade wiring of a retrograde microcatheter. © 2011 Wiley Periodicals, Inc., a Wiley company.

  16. Limited ability driven phase transitions in the coevolution process in Axelrod's model

    NASA Astrophysics Data System (ADS)

    Wang, Bing; Han, Yuexing; Chen, Luonan; Aihara, Kazuyuki

    2009-04-01

    We study the coevolution process in Axelrod's model by taking into account of agents' abilities to access information, which is described by a parameter α to control the geographical range of communication. We observe two kinds of phase transitions in both cultural domains and network fragments, which depend on the parameter α. By simulation, we find that not all rewiring processes pervade the dissemination of culture, that is, a very limited ability to access information constrains the cultural dissemination, while an exceptional ability to access information aids the dissemination of culture. Furthermore, by analyzing the network characteristics at the frozen states, we find that there exists a stage at which the network develops to be a small-world network with community structures.

  17. Genome Organization Drives Chromosome Fragility.

    PubMed

    Canela, Andres; Maman, Yaakov; Jung, Seolkyoung; Wong, Nancy; Callen, Elsa; Day, Amanda; Kieffer-Kwon, Kyong-Rim; Pekowska, Aleksandra; Zhang, Hongliang; Rao, Suhas S P; Huang, Su-Chen; Mckinnon, Peter J; Aplan, Peter D; Pommier, Yves; Aiden, Erez Lieberman; Casellas, Rafael; Nussenzweig, André

    2017-07-27

    In this study, we show that evolutionarily conserved chromosome loop anchors bound by CCCTC-binding factor (CTCF) and cohesin are vulnerable to DNA double strand breaks (DSBs) mediated by topoisomerase 2B (TOP2B). Polymorphisms in the genome that redistribute CTCF/cohesin occupancy rewire DNA cleavage sites to novel loop anchors. While transcription- and replication-coupled genomic rearrangements have been well documented, we demonstrate that DSBs formed at loop anchors are largely transcription-, replication-, and cell-type-independent. DSBs are continuously formed throughout interphase, are enriched on both sides of strong topological domain borders, and frequently occur at breakpoint clusters commonly translocated in cancer. Thus, loop anchors serve as fragile sites that generate DSBs and chromosomal rearrangements. VIDEO ABSTRACT. Published by Elsevier Inc.

  18. Constitutively elevated salicylic acid levels alter photosynthesis and oxidative state but not growth in transgenic populus.

    PubMed

    Xue, Liang-Jiao; Guo, Wenbing; Yuan, Yinan; Anino, Edward O; Nyamdari, Batbayar; Wilson, Mark C; Frost, Christopher J; Chen, Han-Yi; Babst, Benjamin A; Harding, Scott A; Tsai, Chung-Jui

    2013-07-01

    Salicylic acid (SA) has long been implicated in plant responses to oxidative stress. SA overproduction in Arabidopsis thaliana leads to dwarfism, making in planta assessment of SA effects difficult in this model system. We report that transgenic Populus tremula × alba expressing a bacterial SA synthase hyperaccumulated SA and SA conjugates without negative growth consequences. In the absence of stress, endogenously elevated SA elicited widespread metabolic and transcriptional changes that resembled those of wild-type plants exposed to oxidative stress-promoting heat treatments. Potential signaling and oxidative stress markers azelaic and gluconic acids as well as antioxidant chlorogenic acids were strongly coregulated with SA, while soluble sugars and other phenylpropanoids were inversely correlated. Photosynthetic responses to heat were attenuated in SA-overproducing plants. Network analysis identified potential drivers of SA-mediated transcriptome rewiring, including receptor-like kinases and WRKY transcription factors. Orthologs of Arabidopsis SA signaling components NON-EXPRESSOR OF PATHOGENESIS-RELATED GENES1 and thioredoxins were not represented. However, all members of the expanded Populus nucleoredoxin-1 family exhibited increased expression and increased network connectivity in SA-overproducing Populus, suggesting a previously undescribed role in SA-mediated redox regulation. The SA response in Populus involved a reprogramming of carbon uptake and partitioning during stress that is compatible with constitutive chemical defense and sustained growth, contrasting with the SA response in Arabidopsis, which is transient and compromises growth if sustained.

  19. INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY: Consensus of Multi-Agent Systems with Prestissimo Scale-Free Networks

    NASA Astrophysics Data System (ADS)

    Yang, Hong-Yong; Lu, Lan; Cao, Ke-Cai; Zhang, Si-Ying

    2010-04-01

    In this paper, the relations of the network topology and the moving consensus of multi-agent systems are studied. A consensus-prestissimo scale-free network model with the static preferential-consensus attachment is presented on the rewired link of the regular network. The effects of the static preferential-consensus BA network on the algebraic connectivity of the topology graph are compared with the regular network. The robustness gain to delay is analyzed for variable network topology with the same scale. The time to reach the consensus is studied for the dynamic network with and without communication delays. By applying the computer simulations, it is validated that the speed of the convergence of multi-agent systems can be greatly improved in the preferential-consensus BA network model with different configuration.

  20. A Framework for Engineering Stress Resilient Plants Using Genetic Feedback Control and Regulatory Network Rewiring.

    PubMed

    Foo, Mathias; Gherman, Iulia; Zhang, Peijun; Bates, Declan G; Denby, Katherine J

    2018-05-23

    Crop disease leads to significant waste worldwide, both pre- and postharvest, with subsequent economic and sustainability consequences. Disease outcome is determined both by the plants' response to the pathogen and by the ability of the pathogen to suppress defense responses and manipulate the plant to enhance colonization. The defense response of a plant is characterized by significant transcriptional reprogramming mediated by underlying gene regulatory networks, and components of these networks are often targeted by attacking pathogens. Here, using gene expression data from Botrytis cinerea-infected Arabidopsis plants, we develop a systematic approach for mitigating the effects of pathogen-induced network perturbations, using the tools of synthetic biology. We employ network inference and system identification techniques to build an accurate model of an Arabidopsis defense subnetwork that contains key genes determining susceptibility of the plant to the pathogen attack. Once validated against time-series data, we use this model to design and test perturbation mitigation strategies based on the use of genetic feedback control. We show how a synthetic feedback controller can be designed to attenuate the effect of external perturbations on the transcription factor CHE in our subnetwork. We investigate and compare two approaches for implementing such a controller biologically-direct implementation of the genetic feedback controller, and rewiring the regulatory regions of multiple genes-to achieve the network motif required to implement the controller. Our results highlight the potential of combining feedback control theory with synthetic biology for engineering plants with enhanced resilience to environmental stress.

  1. Tuning fresh: radiation through rewiring of central metabolism in streamlined bacteria

    DOE PAGES

    Eiler, Alexander; Mondav, Rhiannon; Sinclair, Lucas; ...

    2016-01-19

    Most free-living planktonic cells are streamlined and in spite of their limitations in functional flexibility, their vast populations have radiated into a wide range of aquatic habitats. Here we compared the metabolic potential of subgroups in the Alphaproteobacteria lineage SAR11 adapted to marine and freshwater habitats. Our results suggest that the successful leap from marine to freshwaters in SAR11 was accompanied by a loss of several carbon degradation pathways and a rewiring of the central metabolism. Examples for these are C1 and methylated compounds degradation pathways, the Entner-Doudouroff pathway, the glyoxylate shunt and anapleuretic carbon fixation being absent from themore » freshwater genomes. Evolutionary reconstruc tions further suggest that the metabolic modules making up these important freshwater metabolic traits were already present in the gene pool of ancestral marine SAR11 populations. The loss of the glyoxylate shunt had already occurred in the common ancestor of the freshwater subgroup and its closest marine relatives, suggesting that the adaptation to freshwater was a gradual process. Furthermore, our results indicate rapid evolution of TRAP transporters in the freshwater clade involved in the uptake of low molecular weight carboxylic acids. We propose that such gradual tuning of metabolic pathways and transporters toward locally available organic substrates is linked to the formation of subgroups within the SAR11 clade and that this process was critical for the freshwater clade to find and fix an adaptive phenotype.« less

  2. Metabolomic strategies to map functions of metabolic pathways

    PubMed Central

    Mulvihill, Melinda M.

    2014-01-01

    Genome sequencing efforts have revealed a strikingly large number of unannotated and uncharacterized genes that fall into metabolic enzymes classes, likely indicating that our current knowledge of biochemical pathways in normal physiology, let alone in disease states, remains largely incomplete. This realization presents a daunting challenge for post-genomic-era scientists in deciphering the biochemical and (patho)physiological roles of these enzymes and their metabolites and metabolic networks. This is further complicated by many recent studies showing a rewiring of normal metabolic networks in disease states to give rise to unique pathophysiological functions of enzymes, metabolites, and metabolic pathways. This review focuses on recent discoveries made using metabolic mapping technologies to uncover novel pathways and metabolite-mediated posttranslational modifications and epigenetic alterations and their impact on physiology and disease. PMID:24918200

  3. Coevolution of Glauber-like Ising dynamics and topology

    NASA Astrophysics Data System (ADS)

    Mandrà, Salvatore; Fortunato, Santo; Castellano, Claudio

    2009-11-01

    We study the coevolution of a generalized Glauber dynamics for Ising spins with tunable threshold and of the graph topology where the dynamics takes place. This simple coevolution dynamics generates a rich phase diagram in the space of the two parameters of the model, the threshold and the rewiring probability. The diagram displays phase transitions of different types: spin ordering, percolation, and connectedness. At variance with traditional coevolution models, in which all spins of each connected component of the graph have equal value in the stationary state, we find that, for suitable choices of the parameters, the system may converge to a state in which spins of opposite sign coexist in the same component organized in compact clusters of like-signed spins. Mean field calculations enable one to estimate some features of the phase diagram.

  4. Potts Model in One-Dimension on Directed Small-World Networks

    NASA Astrophysics Data System (ADS)

    Aquino, Édio O.; Lima, F. W. S.; Araújo, Ascânio D.; Costa Filho, Raimundo N.

    2018-06-01

    The critical properties of the Potts model with q=3 and 8 states in one-dimension on directed small-world networks are investigated. This disordered system is simulated by updating it with the Monte Carlo heat bath algorithm. The Potts model on these directed small-world networks presents in fact a second-order phase transition with a new set of critical exponents for q=3 considering a rewiring probability p=0.1. For q=8 the system exhibits only a first-order phase transition independent of p.

  5. Unique Metabolic Adaptations Dictate Distal Organ-Specific Metastatic Colonization

    PubMed Central

    Schild, Tanya; Low, Vivien; Blenis, John; Gomes, Ana P.

    2018-01-01

    Summary Metastases arising from tumors have the proclivity to colonize specific organs, suggesting that they must rewire their biology to meet the demands of the organ colonized, thus altering their primary properties. Each metastatic site presents distinct metabolic challenges to a colonizing cancer cell, ranging from fuel and oxygen availability to oxidative stress. Here, we discuss the organ-specific metabolic adaptations cancer cells must undergo, which provide the ability to overcome the unique barriers to colonization in foreign tissues and establish the metastatic tissue tropism phenotype. PMID:29533780

  6. Bifurcations in models of a society of reasonable contrarians and conformists

    NASA Astrophysics Data System (ADS)

    Bagnoli, Franco; Rechtman, Raúl

    2015-10-01

    We study models of a society composed of a mixture of conformist and reasonable contrarian agents that at any instant hold one of two opinions. Conformists tend to agree with the average opinion of their neighbors and reasonable contrarians tend to disagree, but revert to a conformist behavior in the presence of an overwhelming majority, in line with psychological experiments. The model is studied in the mean-field approximation and on small-world and scale-free networks. In the mean-field approximation, a large fraction of conformists triggers a polarization of the opinions, a pitchfork bifurcation, while a majority of reasonable contrarians leads to coherent oscillations, with an alternation of period-doubling and pitchfork bifurcations up to chaos. Similar scenarios are obtained by changing the fraction of long-range rewiring and the parameter of scale-free networks related to the average connectivity.

  7. Bifurcations in models of a society of reasonable contrarians and conformists.

    PubMed

    Bagnoli, Franco; Rechtman, Raúl

    2015-10-01

    We study models of a society composed of a mixture of conformist and reasonable contrarian agents that at any instant hold one of two opinions. Conformists tend to agree with the average opinion of their neighbors and reasonable contrarians tend to disagree, but revert to a conformist behavior in the presence of an overwhelming majority, in line with psychological experiments. The model is studied in the mean-field approximation and on small-world and scale-free networks. In the mean-field approximation, a large fraction of conformists triggers a polarization of the opinions, a pitchfork bifurcation, while a majority of reasonable contrarians leads to coherent oscillations, with an alternation of period-doubling and pitchfork bifurcations up to chaos. Similar scenarios are obtained by changing the fraction of long-range rewiring and the parameter of scale-free networks related to the average connectivity.

  8. High Resilience of Seed Dispersal Webs Highlighted by the Experimental Removal of the Dominant Disperser.

    PubMed

    Timóteo, Sérgio; Ramos, Jaime Albino; Vaughan, Ian Phillip; Memmott, Jane

    2016-04-04

    The pressing need to conserve and restore habitats in the face of ongoing species loss [1, 2] requires a better understanding of what happens to communities when species are lost or reinstated [3, 4]. Theoretical models show that communities are relatively insensitive to species loss [5, 6]; however, they disagree with field manipulations showing a cascade of extinctions [7, 8] and have seldom been tested under field conditions (e.g., [9]). We experimentally removed the most abundant seed-dispersing ant species from seed dispersal networks in a Mediterranean landscape, replicating the experiment in three types of habitat, and then compared these communities to un-manipulated control communities. Removal did not result in large-scale changes in network structure. It revealed extensive structural plasticity of the remaining community, which rearranged itself through rewiring, while maintaining its functionality. The remaining ant species widened their diet breadth in a way that maintained seed dispersal, despite the identity of many interactions changing. The species interaction strength decreased; thus, the importance of each ant species for seed dispersal became more homogeneous, thereby reducing the dependence of seed species on one dominant ant species. Compared to the experimental results, a simulation model that included rewiring considerably overestimated the effect of species loss on network robustness. If community-level species loss models are to be of practical use in ecology or conservation, they need to include behavioral and population responses, and they need to be routinely tested under field conditions; doing this would be to the advantage of both empiricists and theoreticians. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Targeted mini-strokes produce changes in interhemispheric sensory signal processing that are indicative of disinhibition within minutes.

    PubMed

    Mohajerani, Majid H; Aminoltejari, Khatereh; Murphy, Timothy H

    2011-05-31

    Most processing of sensation involves the cortical hemisphere opposite (contralateral) to the stimulated limb. Stroke patients can exhibit changes in the interhemispheric balance of sensory signal processing. It is unclear whether these changes are the result of poststroke rewiring and experience, or whether they could result from the immediate effect of circuit loss. We evaluated the effect of mini-strokes over short timescales (<2 h) where cortical rewiring is unlikely by monitoring sensory-evoked activity throughout much of both cortical hemispheres using voltage-sensitive dye imaging. Blockade of a single pial arteriole within the C57BL6J mouse forelimb somatosensory cortex reduced the response evoked by stimulation of the limb contralateral to the stroke. However, after stroke, the ipsilateral (uncrossed) forelimb response within the unaffected hemisphere was spared and became independent of the contralateral forelimb cortex. Within the unaffected hemisphere, mini-strokes in the opposite hemisphere significantly enhanced sensory responses produced by stimulation of either contralateral or ipsilateral pathways within 30-50 min of stroke onset. Stroke-induced enhancement of responses within the spared hemisphere was not reproduced by inhibition of either cortex or thalamus using pharmacological agents in nonischemic animals. I/LnJ acallosal mice showed similar rapid interhemispheric redistribution of sensory processing after stroke, suggesting that subcortical connections and not transcallosal projections were mediating the novel activation patterns. Thalamic inactivation before stroke prevented the bilateral rearrangement of sensory responses. These findings suggest that acute stroke, and not merely loss of activity, activates unique pathways that can rapidly redistribute function within the spared cortical hemisphere.

  10. Regulating Critical Period Plasticity: Insight from the Visual System to Fear Circuitry for Therapeutic Interventions

    PubMed Central

    Nabel, Elisa M.; Morishita, Hirofumi

    2013-01-01

    Early temporary windows of heightened brain plasticity called critical periods developmentally sculpt neural circuits and contribute to adult behavior. Regulatory mechanisms of visual cortex development – the preeminent model of experience-dependent critical period plasticity-actively limit adult plasticity and have proved fruitful therapeutic targets to reopen plasticity and rewire faulty visual system connections later in life. Interestingly, these molecular mechanisms have been implicated in the regulation of plasticity in other functions beyond vision. Applying mechanistic understandings of critical period plasticity in the visual cortex to fear circuitry may provide a conceptual framework for developing novel therapeutic tools to mitigate aberrant fear responses in post traumatic stress disorder. In this review, we turn to the model of experience-dependent visual plasticity to provide novel insights for the mechanisms regulating plasticity in the fear system. Fear circuitry, particularly fear memory erasure, also undergoes age-related changes in experience-dependent plasticity. We consider the contributions of molecular brakes that halt visual critical period plasticity to circuitry underlying fear memory erasure. A major molecular brake in the visual cortex, perineuronal net formation, recently has been identified in the development of fear systems that are resilient to fear memory erasure. The roles of other molecular brakes, myelin-related Nogo receptor signaling and Lynx family proteins – endogenous inhibitors for nicotinic acetylcholine receptor, are explored in the context of fear memory plasticity. Such fear plasticity regulators, including epigenetic effects, provide promising targets for therapeutic interventions. PMID:24273519

  11. The HUSH complex cooperates with TRIM28 to repress young retrotransposons and new genes.

    PubMed

    Robbez-Masson, Luisa; Tie, Christopher H C; Conde, Lucia; Tunbak, Hale; Husovsky, Connor; Tchasovnikarova, Iva A; Timms, Richard T; Herrero, Javier; Lehner, Paul J; Rowe, Helen M

    2018-05-04

    Retrotransposons encompass half of the human genome and contribute to the formation of heterochromatin, which provides nuclear structure and regulates gene expression. Here, we asked if the human silencing hub (HUSH) complex is necessary to silence retrotransposons and whether it collaborates with TRIM28 and the chromatin remodeler ATRX at specific genomic loci. We show that the HUSH complex contributes to de novo repression and DNA methylation of a SVA retrotransposon reporter. By using naïve vs. primed mouse pluripotent stem cells, we reveal a critical role for the HUSH complex in naïve cells, implicating it in programming epigenetic marks in development. While the HUSH component FAM208A binds to endogenous retroviruses (ERVs) and long interspersed element-1s (LINE-1s or L1s), it is mainly required to repress evolutionarily young L1s (mouse-specific lineages less than 5 million years old). TRIM28, in contrast, is necessary to repress both ERVs and young L1s. Genes co-repressed by TRIM28 and FAM208A are evolutionarily young, or exhibit tissue-specific expression, are enriched in young L1s and display evidence for regulation through LTR promoters. Finally, we demonstrate that the HUSH complex is also required to repress L1 elements in human cells. Overall, these data indicate that the HUSH complex and TRIM28 co-repress young retrotransposons and new genes rewired by retrotransposon non-coding DNA. Published by Cold Spring Harbor Laboratory Press.

  12. Constitutively Elevated Salicylic Acid Levels Alter Photosynthesis and Oxidative State but Not Growth in Transgenic Populus[C][W

    PubMed Central

    Xue, Liang-Jiao; Guo, Wenbing; Yuan, Yinan; Anino, Edward O.; Nyamdari, Batbayar; Wilson, Mark C.; Frost, Christopher J.; Chen, Han-Yi; Babst, Benjamin A.; Harding, Scott A.; Tsai, Chung-Jui

    2013-01-01

    Salicylic acid (SA) has long been implicated in plant responses to oxidative stress. SA overproduction in Arabidopsis thaliana leads to dwarfism, making in planta assessment of SA effects difficult in this model system. We report that transgenic Populus tremula × alba expressing a bacterial SA synthase hyperaccumulated SA and SA conjugates without negative growth consequences. In the absence of stress, endogenously elevated SA elicited widespread metabolic and transcriptional changes that resembled those of wild-type plants exposed to oxidative stress-promoting heat treatments. Potential signaling and oxidative stress markers azelaic and gluconic acids as well as antioxidant chlorogenic acids were strongly coregulated with SA, while soluble sugars and other phenylpropanoids were inversely correlated. Photosynthetic responses to heat were attenuated in SA-overproducing plants. Network analysis identified potential drivers of SA-mediated transcriptome rewiring, including receptor-like kinases and WRKY transcription factors. Orthologs of Arabidopsis SA signaling components NON-EXPRESSOR OF PATHOGENESIS-RELATED GENES1 and thioredoxins were not represented. However, all members of the expanded Populus nucleoredoxin-1 family exhibited increased expression and increased network connectivity in SA-overproducing Populus, suggesting a previously undescribed role in SA-mediated redox regulation. The SA response in Populus involved a reprogramming of carbon uptake and partitioning during stress that is compatible with constitutive chemical defense and sustained growth, contrasting with the SA response in Arabidopsis, which is transient and compromises growth if sustained. PMID:23903318

  13. Pseudouridine profiling reveals regulated mRNA pseudouridylation in yeast and human cells

    PubMed Central

    Carlile, Thomas M.; Rojas-Duran, Maria F.; Zinshteyn, Boris; Shin, Hakyung; Bartoli, Kristen M.; Gilbert, Wendy V.

    2014-01-01

    Post-transcriptional modification of RNA nucleosides occurs in all living organisms. Pseudouridine, the most abundant modified nucleoside in non-coding RNAs1, enhances the function of transfer RNA and ribosomal RNA by stabilizing RNA structure2–8. mRNAs were not known to contain pseudouridine, but artificial pseudouridylation dramatically affects mRNA function – it changes the genetic code by facilitating non-canonical base pairing in the ribosome decoding center9,10. However, without evidence of naturally occurring mRNA pseudouridylation, its physiological was unclear. Here we present a comprehensive analysis of pseudouridylation in yeast and human RNAs using Pseudo-seq, a genome-wide, single-nucleotide-resolution method for pseudouridine identification. Pseudo-seq accurately identifies known modification sites as well as 100 novel sites in non-coding RNAs, and reveals hundreds of pseudouridylated sites in mRNAs. Genetic analysis allowed us to assign most of the new modification sites to one of seven conserved pseudouridine synthases, Pus1–4, 6, 7 and 9. Notably, the majority of pseudouridines in mRNA are regulated in response to environmental signals, such as nutrient deprivation in yeast and serum starvation in human cells. These results suggest a mechanism for the rapid and regulated rewiring of the genetic code through inducible mRNA modifications. Our findings reveal unanticipated roles for pseudouridylation and provide a resource for identifying the targets of pseudouridine synthases implicated in human disease11–13. PMID:25192136

  14. Evolutionary rewiring of bacterial regulatory networks

    PubMed Central

    Taylor, Tiffany B.; Mulley, Geraldine; McGuffin, Liam J.; Johnson, Louise J.; Brockhurst, Michael A.; Arseneault, Tanya; Silby, Mark W.; Jackson, Robert W.

    2015-01-01

    Bacteria have evolved complex regulatory networks that enable integration of multiple intracellular and extracellular signals to coordinate responses to environmental changes. However, our knowledge of how regulatory systems function and evolve is still relatively limited. There is often extensive homology between components of different networks, due to past cycles of gene duplication, divergence, and horizontal gene transfer, raising the possibility of cross-talk or redundancy. Consequently, evolutionary resilience is built into gene networks - homology between regulators can potentially allow rapid rescue of lost regulatory function across distant regions of the genome. In our recent study [Taylor, et al. Science (2015), 347(6225)] we find that mutations that facilitate cross-talk between pathways can contribute to gene network evolution, but that such mutations come with severe pleiotropic costs. Arising from this work are a number of questions surrounding how this phenomenon occurs. PMID:28357301

  15. Acidic Calcium Stores of Saccharomyces cerevisiae

    PubMed Central

    Cunningham, Kyle W.

    2011-01-01

    Fungi and animals constitute sister kingdoms in the eukaryotic domain of life. The major classes of transporters, channels, sensors, and effectors that move and respond to calcium ions were already highly networked in the common ancestor of fungi and animals. Since that time, some key components of the network have been moved, altered, relocalized, lost, or duplicated in the fungal and animal lineages and at the same time some of the regulatory circuitry has been dramatically rewired. Today the calcium transport and signaling networks in fungi provide a fresh perspective on the scene that has emerged from studies of the network in animal cells. This review provides an overview of calcium signaling networks in fungi, particularly the model yeast Saccharomyces cerevisiae, with special attention to the dominant roles of acidic calcium stores in fungal cell physiology. PMID:21377728

  16. Metabolomic strategies to map functions of metabolic pathways.

    PubMed

    Mulvihill, Melinda M; Nomura, Daniel K

    2014-08-01

    Genome sequencing efforts have revealed a strikingly large number of unannotated and uncharacterized genes that fall into metabolic enzymes classes, likely indicating that our current knowledge of biochemical pathways in normal physiology, let alone in disease states, remains largely incomplete. This realization presents a daunting challenge for post-genomic-era scientists in deciphering the biochemical and (patho)physiological roles of these enzymes and their metabolites and metabolic networks. This is further complicated by many recent studies showing a rewiring of normal metabolic networks in disease states to give rise to unique pathophysiological functions of enzymes, metabolites, and metabolic pathways. This review focuses on recent discoveries made using metabolic mapping technologies to uncover novel pathways and metabolite-mediated posttranslational modifications and epigenetic alterations and their impact on physiology and disease. Copyright © 2014 the American Physiological Society.

  17. Principal Component Analysis Based Measure of Structural Holes

    NASA Astrophysics Data System (ADS)

    Deng, Shiguo; Zhang, Wenqing; Yang, Huijie

    2013-02-01

    Based upon principal component analysis, a new measure called compressibility coefficient is proposed to evaluate structural holes in networks. This measure incorporates a new effect from identical patterns in networks. It is found that compressibility coefficient for Watts-Strogatz small-world networks increases monotonically with the rewiring probability and saturates to that for the corresponding shuffled networks. While compressibility coefficient for extended Barabasi-Albert scale-free networks decreases monotonically with the preferential effect and is significantly large compared with that for corresponding shuffled networks. This measure is helpful in diverse research fields to evaluate global efficiency of networks.

  18. Modeling of contact tracing in social networks

    NASA Astrophysics Data System (ADS)

    Tsimring, Lev S.; Huerta, Ramón

    2003-07-01

    Spreading of certain infections in complex networks is effectively suppressed by using intelligent strategies for epidemic control. One such standard epidemiological strategy consists in tracing contacts of infected individuals. In this paper, we use a recently introduced generalization of the standard susceptible-infectious-removed stochastic model for epidemics in sparse random networks which incorporates an additional (traced) state. We describe a deterministic mean-field description which yields quantitative agreement with stochastic simulations on random graphs. We also discuss the role of contact tracing in epidemics control in small-world and scale-free networks. Effectiveness of contact tracing grows as the rewiring probability is reduced.

  19. CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY: Order parameters and synchronization of FitzHugh-Nagumo small-world networks

    NASA Astrophysics Data System (ADS)

    Li, Yan-Long; Ma, Jun; Zhang, Wei; Liu, Yan-Jun

    2009-10-01

    This paper numerically investigates the order parameter and synchronisation in the small world connected FitzHugh-Nagumo excitable systems. The simulations show that the order parameter continuously decreases with increasing D, the quality of the synchronisation worsens for large noise intensity. As the coupling intensity goes up, the quality of the synchronisation worsens, and it finds that the larger rewiring probability becomes the larger order parameter. It obtains the complete phase diagram for a wide range of values of noise intensity D and control parameter g.

  20. Transposable elements re-wire and fine-tune the transcriptome.

    PubMed

    Cowley, Michael; Oakey, Rebecca J

    2013-01-01

    What good are transposable elements (TEs)? Although their activity can be harmful to host genomes and can cause disease, they nevertheless represent an important source of genetic variation that has helped shape genomes. In this review, we examine the impact of TEs, collectively referred to as the mobilome, on the transcriptome. We explore how TEs-particularly retrotransposons-contribute to transcript diversity and consider their potential significance as a source of small RNAs that regulate host gene transcription. We also discuss a critical role for the mobilome in engineering transcriptional networks, permitting coordinated gene expression, and facilitating the evolution of novel physiological processes.

  1. Big-data-based edge biomarkers: study on dynamical drug sensitivity and resistance in individuals.

    PubMed

    Zeng, Tao; Zhang, Wanwei; Yu, Xiangtian; Liu, Xiaoping; Li, Meiyi; Chen, Luonan

    2016-07-01

    Big-data-based edge biomarker is a new concept to characterize disease features based on biomedical big data in a dynamical and network manner, which also provides alternative strategies to indicate disease status in single samples. This article gives a comprehensive review on big-data-based edge biomarkers for complex diseases in an individual patient, which are defined as biomarkers based on network information and high-dimensional data. Specifically, we firstly introduce the sources and structures of biomedical big data accessible in public for edge biomarker and disease study. We show that biomedical big data are typically 'small-sample size in high-dimension space', i.e. small samples but with high dimensions on features (e.g. omics data) for each individual, in contrast to traditional big data in many other fields characterized as 'large-sample size in low-dimension space', i.e. big samples but with low dimensions on features. Then, we demonstrate the concept, model and algorithm for edge biomarkers and further big-data-based edge biomarkers. Dissimilar to conventional biomarkers, edge biomarkers, e.g. module biomarkers in module network rewiring-analysis, are able to predict the disease state by learning differential associations between molecules rather than differential expressions of molecules during disease progression or treatment in individual patients. In particular, in contrast to using the information of the common molecules or edges (i.e.molecule-pairs) across a population in traditional biomarkers including network and edge biomarkers, big-data-based edge biomarkers are specific for each individual and thus can accurately evaluate the disease state by considering the individual heterogeneity. Therefore, the measurement of big data in a high-dimensional space is required not only in the learning process but also in the diagnosing or predicting process of the tested individual. Finally, we provide a case study on analyzing the temporal expression data from a malaria vaccine trial by big-data-based edge biomarkers from module network rewiring-analysis. The illustrative results show that the identified module biomarkers can accurately distinguish vaccines with or without protection and outperformed previous reported gene signatures in terms of effectiveness and efficiency. © The Author 2015. Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  2. Mutant Kras copy number defines metabolic reprogramming and therapeutic susceptibilities

    PubMed Central

    Kerr, Emma; Gaude, Edoardo; Turrell, Frances; Frezza, Christian; Martins, Carla P

    2016-01-01

    Summary The RAS/MAPK-signalling pathway is frequently deregulated in non-small cell lung cancer (NSCLC), often through KRAS activating mutations1-3. A single endogenous mutant Kras allele is sufficient to promote lung tumour formation in mice but malignant progression requires additional genetic alterations4-7. We recently showed that advanced lung tumours from KrasG12D/+;p53-null mice frequently exhibit KrasG12D allelic enrichment (KrasG12D/Kraswild-type>1)7, implying that mutant Kras copy gains are positively selected during progression. Through a comprehensive analysis of mutant Kras homozygous and heterozygous MEFs and lung cancer cells we now show that these genotypes are phenotypically distinct. In particular, KrasG12D/G12D cells exhibit a glycolytic switch coupled to increased channelling of glucose-derived metabolites into the TCA cycle and glutathione biosynthesis, resulting in enhanced glutathione-mediated detoxification. This metabolic rewiring is recapitulated in mutant KRAS homozygous NSCLC cells and in vivo, in spontaneous advanced murine lung tumours (which display a high frequency of KrasG12D copy gain), but not in the corresponding early tumours (KrasG12D heterozygous). Finally, we demonstrate that mutant Kras copy gain creates unique metabolic dependences that can be exploited to selectively target these aggressive mutant Kras tumours. Our data demonstrate that mutant Kras lung tumours are not a single disease but rather a heterogeneous group comprised of two classes of tumours with distinct metabolic profiles, prognosis and therapeutic susceptibility, which can be discriminated based on their relative mutant allelic content. We also provide the first in vivo evidence of metabolic rewiring during lung cancer malignant progression. PMID:26909577

  3. Single-Neuron NMDA Receptor Phenotype Influences Neuronal Rewiring and Reintegration following Traumatic Injury

    PubMed Central

    Patel, Tapan P.; Ventre, Scott C.; Geddes-Klein, Donna; Singh, Pallab K.

    2014-01-01

    Alterations in the activity of neural circuits are a common consequence of traumatic brain injury (TBI), but the relationship between single-neuron properties and the aggregate network behavior is not well understood. We recently reported that the GluN2B-containing NMDA receptors (NMDARs) are key in mediating mechanical forces during TBI, and that TBI produces a complex change in the functional connectivity of neuronal networks. Here, we evaluated whether cell-to-cell heterogeneity in the connectivity and aggregate contribution of GluN2B receptors to [Ca2+]i before injury influenced the functional rewiring, spontaneous activity, and network plasticity following injury using primary rat cortical dissociated neurons. We found that the functional connectivity of a neuron to its neighbors, combined with the relative influx of calcium through distinct NMDAR subtypes, together contributed to the individual neuronal response to trauma. Specifically, individual neurons whose [Ca2+]i oscillations were largely due to GluN2B NMDAR activation lost many of their functional targets 1 h following injury. In comparison, neurons with large GluN2A contribution or neurons with high functional connectivity both independently protected against injury-induced loss in connectivity. Mechanistically, we found that traumatic injury resulted in increased uncorrelated network activity, an effect linked to reduction of the voltage-sensitive Mg2+ block of GluN2B-containing NMDARs. This uncorrelated activation of GluN2B subtypes after injury significantly limited the potential for network remodeling in response to a plasticity stimulus. Together, our data suggest that two single-cell characteristics, the aggregate contribution of NMDAR subtypes and the number of functional connections, influence network structure following traumatic injury. PMID:24647941

  4. Characterization of In Vivo Resistance to Osimertinib and JNJ-61186372, an EGFR/Met Bispecific Antibody, Reveals Unique and Consensus Mechanisms of Resistance.

    PubMed

    Emdal, Kristina B; Dittmann, Antje; Reddy, Raven J; Lescarbeau, Rebecca S; Moores, Sheri L; Laquerre, Sylvie; White, Forest M

    2017-11-01

    Approximately 10% of non-small cell lung cancer (NSCLC) patients in the United States and 40% of NSCLC patients in Asia have activating epidermal growth factor receptor (EGFR) mutations and are eligible to receive targeted anti-EGFR therapy. Despite an extension of life expectancy associated with this treatment, resistance to EGFR tyrosine kinase inhibitors and anti-EGFR antibodies is almost inevitable. To identify additional signaling routes that can be cotargeted to overcome resistance, we quantified tumor-specific molecular changes that govern resistant cancer cell growth and survival. Mass spectrometry-based quantitative proteomics was used to profile in vivo signaling changes in 41 therapy-resistant tumors from four xenograft NSCLC models. We identified unique and tumor-specific tyrosine phosphorylation rewiring in tumors resistant to treatment with the irreversible third-generation EGFR-inhibitor, osimertinib, or the novel dual-targeting EGFR/Met antibody, JNJ-61186372. Tumor-specific increases in tyrosine-phosphorylated peptides from EGFR family members, Shc1 and Gab1 or Src family kinase (SFK) substrates were observed, underscoring a differential ability of tumors to uniquely escape EGFR inhibition. Although most resistant tumors within each treatment group displayed a marked inhibition of EGFR as well as SFK signaling, the combination of EGFR inhibition (osimertinib) and SFK inhibition (saracatinib or dasatinib) led to further decrease in cell growth in vitro This result suggests that residual SFK signaling mediates therapeutic resistance and that elimination of this signal through combination therapy may delay onset of resistance. Overall, analysis of individual resistant tumors captured unique in vivo signaling rewiring that would have been masked by analysis of in vitro cell population averages. Mol Cancer Ther; 16(11); 2572-85. ©2017 AACR . ©2017 American Association for Cancer Research.

  5. In silico gene expression analysis reveals glycolysis and acetate anaplerosis in IDH1 wild-type glioma and lactate and glutamate anaplerosis in IDH1-mutated glioma.

    PubMed

    Khurshed, Mohammed; Molenaar, Remco J; Lenting, Krissie; Leenders, William P; van Noorden, Cornelis J F

    2017-07-25

    Hotspot mutations in isocitrate dehydrogenase 1 (IDH1) initiate low-grade glioma and secondary glioblastoma and induce a neomorphic activity that converts α-ketoglutarate (α-KG) to the oncometabolite D-2-hydroxyglutarate (D-2-HG). It causes metabolic rewiring that is not fully understood. We investigated the effects of IDH1 mutations (IDH1MUT) on expression of genes that encode for metabolic enzymes by data mining The Cancer Genome Atlas. We analyzed 112 IDH1 wild-type (IDH1WT) versus 399 IDH1MUT low-grade glioma and 157 IDH1WT versus 9 IDH1MUT glioblastoma samples. In both glioma types, IDH1WT was associated with high expression levels of genes encoding enzymes that are involved in glycolysis and acetate anaplerosis, whereas IDH1MUT glioma overexpress genes encoding enzymes that are involved in the oxidative tricarboxylic acid (TCA) cycle. In vitro, we observed that IDH1MUT cancer cells have a higher basal respiration compared to IDH1WT cancer cells and inhibition of the IDH1MUT shifts the metabolism by decreasing oxygen consumption and increasing glycolysis. Our findings indicate that IDH1WT glioma have a typical Warburg phenotype whereas in IDH1MUT glioma the TCA cycle, rather than glycolytic lactate production, is the predominant metabolic pathway. Our data further suggest that the TCA in IDH1MUT glioma is driven by lactate and glutamate anaplerosis to facilitate production of α-KG, and ultimately D-2-HG. This metabolic rewiring may be a basis for novel therapies for IDH1MUT and IDH1WT glioma.

  6. Engineering bacterial motility towards hydrogen-peroxide.

    PubMed

    Virgile, Chelsea; Hauk, Pricila; Wu, Hsuan-Chen; Shang, Wu; Tsao, Chen-Yu; Payne, Gregory F; Bentley, William E

    2018-01-01

    Synthetic biologists construct innovative genetic/biological systems to treat environmental, energy, and health problems. Many systems employ rewired cells for non-native product synthesis, while a few have employed the rewired cells as 'smart' devices with programmable function. Building on the latter, we developed a genetic construct to control and direct bacterial motility towards hydrogen peroxide, one of the body's immune response signaling molecules. A motivation for this work is the creation of cells that can target and autonomously treat disease, the latter signaled by hydrogen peroxide release. Bacteria naturally move towards a variety of molecular cues (e.g., nutrients) in the process of chemotaxis. In this work, we engineered bacteria to recognize and move towards hydrogen peroxide, a non-native chemoattractant and potential toxin. Our system exploits oxyRS, the native oxidative stress regulon of E. coli. We first demonstrated H2O2-mediated upregulation motility regulator, CheZ. Using transwell assays, we showed a two-fold increase in net motility towards H2O2. Then, using a 2D cell tracking system, we quantified bacterial motility descriptors including velocity, % running (of tumble/run motions), and a dynamic net directionality towards the molecular cue. In CheZ mutants, we found that increased H2O2 concentration (0-200 μM) and induction time resulted in increased running speeds, ultimately reaching the native E. coli wild-type speed of ~22 μm/s with a ~45-65% ratio of running to tumbling. Finally, using a microfluidic device with stable H2O2 gradients, we characterized responses and the potential for "programmed" directionality towards H2O2 in quiescent fluids. Overall, the synthetic biology framework and tracking analysis in this work will provide a framework for investigating controlled motility of E. coli and other 'smart' probiotics for signal-directed treatment.

  7. The evolutionary history of vertebrate cranial placodes II. Evolution of ectodermal patterning.

    PubMed

    Schlosser, Gerhard; Patthey, Cedric; Shimeld, Sebastian M

    2014-05-01

    Cranial placodes are evolutionary innovations of vertebrates. However, they most likely evolved by redeployment, rewiring and diversification of preexisting cell types and patterning mechanisms. In the second part of this review we compare vertebrates with other animal groups to elucidate the evolutionary history of ectodermal patterning. We show that several transcription factors have ancient bilaterian roles in dorsoventral and anteroposterior regionalisation of the ectoderm. Evidence from amphioxus suggests that ancestral chordates then concentrated neurosecretory cells in the anteriormost non-neural ectoderm. This anterior proto-placodal domain subsequently gave rise to the oral siphon primordia in tunicates (with neurosecretory cells being lost) and anterior (adenohypophyseal, olfactory, and lens) placodes of vertebrates. Likewise, tunicate atrial siphon primordia and posterior (otic, lateral line, and epibranchial) placodes of vertebrates probably evolved from a posterior proto-placodal region in the tunicate-vertebrate ancestor. Since both siphon primordia in tunicates give rise to sparse populations of sensory cells, both proto-placodal domains probably also gave rise to some sensory receptors in the tunicate-vertebrate ancestor. However, proper cranial placodes, which give rise to high density arrays of specialised sensory receptors and neurons, evolved from these domains only in the vertebrate lineage. We propose that this may have involved rewiring of the regulatory network upstream and downstream of Six1/2 and Six4/5 transcription factors and their Eya family cofactors. These proteins, which play ancient roles in neuronal differentiation were first recruited to the dorsal non-neural ectoderm in the tunicate-vertebrate ancestor but subsequently probably acquired new target genes in the vertebrate lineage, allowing them to adopt new functions in regulating proliferation and patterning of neuronal progenitors. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Resilience of biochemical activity in protein domains in the face of structural divergence.

    PubMed

    Zhang, Dapeng; Iyer, Lakshminarayan M; Burroughs, A Maxwell; Aravind, L

    2014-06-01

    Recent studies point to the prevalence of the evolutionary phenomenon of drastic structural transformation of protein domains while continuing to preserve their basic biochemical function. These transformations span a wide spectrum, including simple domains incorporated into larger structural scaffolds, changes in the structural core, major active site shifts, topological rewiring and extensive structural transmogrifications. Proteins from biological conflict systems, such as toxin-antitoxin, restriction-modification, CRISPR/Cas, polymorphic toxin and secondary metabolism systems commonly display such transformations. These include endoDNases, metal-independent RNases, deaminases, ADP ribosyltransferases, immunity proteins, kinases and E1-like enzymes. In eukaryotes such transformations are seen in domains involved in chromatin-related peptide recognition and protein/DNA-modification. Intense selective pressures from 'arms-race'-like situations in conflict and macromolecular modification systems could favor drastic structural divergence while preserving function. Published by Elsevier Ltd.

  9. Immunometabolic circuits in trained immunity.

    PubMed

    Arts, Rob J W; Joosten, Leo A B; Netea, Mihai G

    2016-10-01

    The classical view that only adaptive immunity can build immunological memory has recently been challenged. Both in organisms lacking adaptive immunity as well as in mammals, the innate immune system can adapt to mount an increased resistance to reinfection, a de facto innate immune memory termed trained immunity. Recent studies have revealed that rewiring of cellular metabolism induced by different immunological signals is a crucial step for determining the epigenetic changes underlying trained immunity. Processes such as a shift of glucose metabolism from oxidative phosphorylation to aerobic glycolysis, increased glutamine metabolism and cholesterol synthesis, play a crucial role in these processes. The discovery of trained immunity opens the door for the design of novel generations of vaccines, for new therapeutic strategies for the treatment of immune deficiency states, and for modulation of exaggerated inflammation in autoinflammatory diseases. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Short-Range Mobility and the Evolution of Cooperation: An Experimental Study

    PubMed Central

    Antonioni, Alberto; Tomassini, Marco; Sánchez, Angel

    2015-01-01

    A pressing issue in biology and social sciences is to explain how cooperation emerges in a population of self-interested individuals. Theoretical models suggest that one such explanation may involve the possibility of changing one’s neighborhood by removing and creating connections to others, but this hypothesis has problems when random motion is considered and lacks experimental support. To address this, we have carried out experiments on diluted grids with human subjects playing a Prisoner’s Dilemma. In contrast to previous results on purposeful rewiring in relational networks, we have found no noticeable effect of mobility in space on the level of cooperation. Clusters of cooperators form momentarily but in a few rounds they dissolve as cooperators at the boundaries stop tolerating being cheated upon. Our results highlight the difficulties that mobile agents have to establish a cooperative environment in a spatial setting. PMID:25992715

  11. Short-range mobility and the evolution of cooperation: an experimental study.

    PubMed

    Antonioni, Alberto; Tomassini, Marco; Sánchez, Angel

    2015-05-20

    A pressing issue in biology and social sciences is to explain how cooperation emerges in a population of self-interested individuals. Theoretical models suggest that one such explanation may involve the possibility of changing one's neighborhood by removing and creating connections to others, but this hypothesis has problems when random motion is considered and lacks experimental support. To address this, we have carried out experiments on diluted grids with human subjects playing a Prisoner's Dilemma. In contrast to previous results on purposeful rewiring in relational networks, we have found no noticeable effect of mobility in space on the level of cooperation. Clusters of cooperators form momentarily but in a few rounds they dissolve as cooperators at the boundaries stop tolerating being cheated upon. Our results highlight the difficulties that mobile agents have to establish a cooperative environment in a spatial setting.

  12. Inhibition of the mitochondrial pyruvate carrier protects from excitotoxic neuronal death.

    PubMed

    Divakaruni, Ajit S; Wallace, Martina; Buren, Caodu; Martyniuk, Kelly; Andreyev, Alexander Y; Li, Edward; Fields, Jerel A; Cordes, Thekla; Reynolds, Ian J; Bloodgood, Brenda L; Raymond, Lynn A; Metallo, Christian M; Murphy, Anne N

    2017-04-03

    Glutamate is the dominant excitatory neurotransmitter in the brain, but under conditions of metabolic stress it can accumulate to excitotoxic levels. Although pharmacologic modulation of excitatory amino acid receptors is well studied, minimal consideration has been given to targeting mitochondrial glutamate metabolism to control neurotransmitter levels. Here we demonstrate that chemical inhibition of the mitochondrial pyruvate carrier (MPC) protects primary cortical neurons from excitotoxic death. Reductions in mitochondrial pyruvate uptake do not compromise cellular energy metabolism, suggesting neuronal metabolic flexibility. Rather, MPC inhibition rewires mitochondrial substrate metabolism to preferentially increase reliance on glutamate to fuel energetics and anaplerosis. Mobilizing the neuronal glutamate pool for oxidation decreases the quantity of glutamate released upon depolarization and, in turn, limits the positive-feedback cascade of excitotoxic neuronal injury. The finding links mitochondrial pyruvate metabolism to glutamatergic neurotransmission and establishes the MPC as a therapeutic target to treat neurodegenerative diseases characterized by excitotoxicity. © 2017 Divakaruni et al.

  13. Inhibition of the mitochondrial pyruvate carrier protects from excitotoxic neuronal death

    PubMed Central

    Wallace, Martina; Buren, Caodu; Martyniuk, Kelly; Andreyev, Alexander Y.; Li, Edward; Fields, Jerel A.; Cordes, Thekla; Reynolds, Ian J.; Bloodgood, Brenda L.; Metallo, Christian M.

    2017-01-01

    Glutamate is the dominant excitatory neurotransmitter in the brain, but under conditions of metabolic stress it can accumulate to excitotoxic levels. Although pharmacologic modulation of excitatory amino acid receptors is well studied, minimal consideration has been given to targeting mitochondrial glutamate metabolism to control neurotransmitter levels. Here we demonstrate that chemical inhibition of the mitochondrial pyruvate carrier (MPC) protects primary cortical neurons from excitotoxic death. Reductions in mitochondrial pyruvate uptake do not compromise cellular energy metabolism, suggesting neuronal metabolic flexibility. Rather, MPC inhibition rewires mitochondrial substrate metabolism to preferentially increase reliance on glutamate to fuel energetics and anaplerosis. Mobilizing the neuronal glutamate pool for oxidation decreases the quantity of glutamate released upon depolarization and, in turn, limits the positive-feedback cascade of excitotoxic neuronal injury. The finding links mitochondrial pyruvate metabolism to glutamatergic neurotransmission and establishes the MPC as a therapeutic target to treat neurodegenerative diseases characterized by excitotoxicity. PMID:28254829

  14. Mouse regulatory DNA landscapes reveal global principles of cis-regulatory evolution.

    PubMed

    Vierstra, Jeff; Rynes, Eric; Sandstrom, Richard; Zhang, Miaohua; Canfield, Theresa; Hansen, R Scott; Stehling-Sun, Sandra; Sabo, Peter J; Byron, Rachel; Humbert, Richard; Thurman, Robert E; Johnson, Audra K; Vong, Shinny; Lee, Kristen; Bates, Daniel; Neri, Fidencio; Diegel, Morgan; Giste, Erika; Haugen, Eric; Dunn, Douglas; Wilken, Matthew S; Josefowicz, Steven; Samstein, Robert; Chang, Kai-Hsin; Eichler, Evan E; De Bruijn, Marella; Reh, Thomas A; Skoultchi, Arthur; Rudensky, Alexander; Orkin, Stuart H; Papayannopoulou, Thalia; Treuting, Piper M; Selleri, Licia; Kaul, Rajinder; Groudine, Mark; Bender, M A; Stamatoyannopoulos, John A

    2014-11-21

    To study the evolutionary dynamics of regulatory DNA, we mapped >1.3 million deoxyribonuclease I-hypersensitive sites (DHSs) in 45 mouse cell and tissue types, and systematically compared these with human DHS maps from orthologous compartments. We found that the mouse and human genomes have undergone extensive cis-regulatory rewiring that combines branch-specific evolutionary innovation and loss with widespread repurposing of conserved DHSs to alternative cell fates, and that this process is mediated by turnover of transcription factor (TF) recognition elements. Despite pervasive evolutionary remodeling of the location and content of individual cis-regulatory regions, within orthologous mouse and human cell types the global fraction of regulatory DNA bases encoding recognition sites for each TF has been strictly conserved. Our findings provide new insights into the evolutionary forces shaping mammalian regulatory DNA landscapes. Copyright © 2014, American Association for the Advancement of Science.

  15. Entropic determination of the phase transition in a coevolving opinion-formation model.

    PubMed

    Burgos, E; Hernández, Laura; Ceva, H; Perazzo, R P J

    2015-03-01

    We study an opinion formation model by the means of a coevolving complex network where the vertices represent the individuals, characterized by their evolving opinions, and the edges represent the interactions among them. The network adapts to the spreading of opinions in two ways: not only connected agents interact and eventually change their thinking but an agent may also rewire one of its links to a neighborhood holding the same opinion as his. The dynamics, based on a global majority rule, depends on an external parameter that controls the plasticity of the network. We show how the information entropy associated to the distribution of group sizes allows us to locate the phase transition between a phase of full consensus and another, where different opinions coexist. We also determine the minimum size of the most informative sampling. At the transition the distribution of the sizes of groups holding the same opinion is scale free.

  16. The Advantages of Targeted Protein Degradation Over Inhibition: An RTK Case Study.

    PubMed

    Burslem, George M; Smith, Blake E; Lai, Ashton C; Jaime-Figueroa, Saul; McQuaid, Daniel C; Bondeson, Daniel P; Toure, Momar; Dong, Hanqing; Qian, Yimin; Wang, Jing; Crew, Andrew P; Hines, John; Crews, Craig M

    2018-01-18

    Proteolysis targeting chimera (PROTAC) technology has emerged over the last two decades as a powerful tool for targeted degradation of endogenous proteins. Herein we describe the development of PROTACs for receptor tyrosine kinases, a protein family yet to be targeted for induced protein degradation. The use of VHL-recruiting PROTACs against this protein family reveals several advantages of degradation over inhibition alone: direct comparisons of fully functional, target-degrading PROTACs with target-inhibiting variants that contain an inactivated E3 ligase-recruiting ligand show that degradation leads to more potent inhibition of cell proliferation and a more durable and sustained downstream signaling response, and thus addresses the kinome rewiring challenge seen with many receptor tyrosine kinase inhibitors. Combined, these findings demonstrate the ability to target receptor tyrosine kinases for degradation using the PROTAC technology and outline the advantages of this degradation-based approach. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Macroscopic description of complex adaptive networks coevolving with dynamic node states

    NASA Astrophysics Data System (ADS)

    Wiedermann, Marc; Donges, Jonathan F.; Heitzig, Jobst; Lucht, Wolfgang; Kurths, Jürgen

    2015-05-01

    In many real-world complex systems, the time evolution of the network's structure and the dynamic state of its nodes are closely entangled. Here we study opinion formation and imitation on an adaptive complex network which is dependent on the individual dynamic state of each node and vice versa to model the coevolution of renewable resources with the dynamics of harvesting agents on a social network. The adaptive voter model is coupled to a set of identical logistic growth models and we mainly find that, in such systems, the rate of interactions between nodes as well as the adaptive rewiring probability are crucial parameters for controlling the sustainability of the system's equilibrium state. We derive a macroscopic description of the system in terms of ordinary differential equations which provides a general framework to model and quantify the influence of single node dynamics on the macroscopic state of the network. The thus obtained framework is applicable to many fields of study, such as epidemic spreading, opinion formation, or socioecological modeling.

  18. Unifying concepts in mechanism of amblyopia.

    PubMed

    Tong, L M

    1997-02-01

    Most of the evidence of formation of amblyopia is derived traditionally from electrophysiological studies. Recently, there have been many discoveries from genetics, histopathology, biochemistry, immunology and interventional studies. On the basis of evidence gathered in the last five years, the various types of amblyopia (strabismic and non-strabismic amblyopia) can be seen not only as disturbance of the development of the visual system at different points but as basically different pathologic processes. It is postulated here that strabismic amblyopia is initiated as a maladaptive differentiation in the ocular dominance columns, whereas the non-strabismic amblyopia may be initiated from the ganglion cell population of the amblyopic eye. The total clinical picture is confusing because of secondary changes in other parts of the central nervous system. The manifested features can be due to a slower, more enduring type of change (pooling, loss and re-wiring of the neurones) as well as a more transient, adaptive type of response (such as suppression of diplopia). Neurotransmitter replacement has a potential therapeutic application.

  19. Facilitated Protein Association via Engineered Target Search Pathways Visualized by Paramagnetic NMR Spectroscopy.

    PubMed

    An, So Young; Kim, Eun-Hee; Suh, Jeong-Yong

    2018-06-05

    Proteins assemble to form functional complexes via the progressive evolution of nonspecific complexes formed by transient encounters. This target search process generally involves multiple routes that lead the initial encounters to the final complex. In this study, we have employed NMR paramagnetic relaxation enhancement to visualize the encounter complexes between histidine-containing phosphocarrier protein and the N-terminal domain of enzyme I and demonstrate that protein association can be significantly enhanced by engineering on-pathways. Specifically, mutations in surface charges away from the binding interface can elicit new on-pathway encounter complexes, increasing their binding affinity by an order of magnitude. The structure of these encounter complexes indicates that such on-pathways extend the built-in target search process of the native protein complex. Furthermore, blocking on-pathways by countering mutations reverts their binding affinity. Our study thus illustrates that protein interactions can be engineered by rewiring the target search process. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Macroscopic description of complex adaptive networks coevolving with dynamic node states.

    PubMed

    Wiedermann, Marc; Donges, Jonathan F; Heitzig, Jobst; Lucht, Wolfgang; Kurths, Jürgen

    2015-05-01

    In many real-world complex systems, the time evolution of the network's structure and the dynamic state of its nodes are closely entangled. Here we study opinion formation and imitation on an adaptive complex network which is dependent on the individual dynamic state of each node and vice versa to model the coevolution of renewable resources with the dynamics of harvesting agents on a social network. The adaptive voter model is coupled to a set of identical logistic growth models and we mainly find that, in such systems, the rate of interactions between nodes as well as the adaptive rewiring probability are crucial parameters for controlling the sustainability of the system's equilibrium state. We derive a macroscopic description of the system in terms of ordinary differential equations which provides a general framework to model and quantify the influence of single node dynamics on the macroscopic state of the network. The thus obtained framework is applicable to many fields of study, such as epidemic spreading, opinion formation, or socioecological modeling.

  1. Nondestructive evaluation and characterization of damage and repair to continuous-fiber ceramic composite panels.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, J. G.; Petrak, D. R.; Pillai, T. A. K.

    1998-04-01

    Continuous fiber ceramic matrix composites are currently being developed for a variety of high-temperature applications. Because of the high costs of making these components, minor damage incurred during manufacturing or operation must be rewired in order to extend the life of the components. In this study, five ceramic-grade Nicalon{trademark} fiber/SiNC-matrix composite panels were intentionally damaged with a pendulum-type impactor during an impact test. The damaged panels were then repaired at Dow Corning Corporation. Three nondestructive evaluation (NDE) methods were used to study the characteristics of the panels after the damage and again after the panels were repaired. The NDE methodsmore » were X-ray radiography, infrared thermal imaging, and air-coupled ultrasound. The results showed that the impact test induced various types of damage in the panels. The NDE data that were obtained by the three NDE methods were correlated with each other.« less

  2. Customizing cell signaling using engineered genetic logic circuits.

    PubMed

    Wang, Baojun; Buck, Martin

    2012-08-01

    Cells live in an ever-changing environment and continuously sense, process and react to environmental signals using their inherent signaling and gene regulatory networks. Recently, there have been great advances on rewiring the native cell signaling and gene networks to program cells to sense multiple noncognate signals and integrate them in a logical manner before initiating a desired response. Here, we summarize the current state-of-the-art of engineering synthetic genetic logic circuits to customize cellular signaling behaviors, and discuss their promising applications in biocomputing, environmental, biotechnological and biomedical areas as well as the remaining challenges in this growing field. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Transposable Elements Re-Wire and Fine-Tune the Transcriptome

    PubMed Central

    Cowley, Michael; Oakey, Rebecca J.

    2013-01-01

    What good are transposable elements (TEs)? Although their activity can be harmful to host genomes and can cause disease, they nevertheless represent an important source of genetic variation that has helped shape genomes. In this review, we examine the impact of TEs, collectively referred to as the mobilome, on the transcriptome. We explore how TEs—particularly retrotransposons—contribute to transcript diversity and consider their potential significance as a source of small RNAs that regulate host gene transcription. We also discuss a critical role for the mobilome in engineering transcriptional networks, permitting coordinated gene expression, and facilitating the evolution of novel physiological processes. PMID:23358118

  4. Synaptic reorganization of inhibitory hilar interneuron circuitry after traumatic brain injury in mice

    PubMed Central

    Hunt, Robert F.; Scheff, Stephen W.; Smith, Bret N.

    2011-01-01

    Functional plasticity of synaptic networks in the dentate gyrus has been implicated in the development of posttraumatic epilepsy and in cognitive dysfunction after traumatic brain injury, but little is known about potentially pathogenic changes in inhibitory circuits. We examined synaptic inhibition of dentate granule cells and excitability of surviving GABAergic hilar interneurons 8–13 weeks after cortical contusion brain injury in transgenic mice that express enhanced green fluorescent protein in a subpopulation of inhibitory neurons. Whole-cell voltage-clamp recordings in granule cells revealed a reduction in spontaneous and miniature IPSC frequency after head injury; no concurrent change in paired-pulse ratio was found in granule cells after paired electrical stimulation of the hilus. Despite reduced inhibitory input to granule cells, action potential and EPSC frequencies were increased in hilar GABA neurons from slices ipsilateral to the injury, versus those from control or contralateral slices. Further, increased excitatory synaptic activity was detected in hilar GABA neurons ipsilateral to the injury after glutamate photostimulation of either the granule cell or CA3 pyramidal cell layers. Together, these findings suggest that excitatory drive to surviving hilar GABA neurons is enhanced by convergent input from both pyramidal and granule cells, but synaptic inhibition of granule cells is not fully restored after injury. This rewiring of circuitry regulating hilar inhibitory neurons may reflect an important compensatory mechanism, but it may also contribute to network destabilization by increasing the relative impact of surviving individual interneurons in controlling granule cell excitability in the posttraumatic dentate gyrus. PMID:21543618

  5. The role of Transposable Elements in shaping the combinatorial interaction of Transcription Factors

    PubMed Central

    2012-01-01

    Background In the last few years several studies have shown that Transposable Elements (TEs) in the human genome are significantly associated with Transcription Factor Binding Sites (TFBSs) and that in several cases their expansion within the genome led to a substantial rewiring of the regulatory network. Another important feature of the regulatory network which has been thoroughly studied is the combinatorial organization of transcriptional regulation. In this paper we combine these two observations and suggest that TEs, besides rewiring the network, also played a central role in the evolution of particular patterns of combinatorial gene regulation. Results To address this issue we searched for TEs overlapping Estrogen Receptor α (ERα) binding peaks in two publicly available ChIP-seq datasets from the MCF7 cell line corresponding to different modalities of exposure to estrogen. We found a remarkable enrichment of a few specific classes of Transposons. Among these a prominent role was played by MIR (Mammalian Interspersed Repeats) transposons. These TEs underwent a dramatic expansion at the beginning of the mammalian radiation and then stabilized. We conjecture that the special affinity of ERα for the MIR class of TEs could be at the origin of the important role assumed by ERα in Mammalians. We then searched for TFBSs within the TEs overlapping ChIP-seq peaks. We found a strong enrichment of a few precise combinations of TFBS. In several cases the corresponding Transcription Factors (TFs) were known cofactors of ERα, thus supporting the idea of a co-regulatory role of TFBS within the same TE. Moreover, most of these correlations turned out to be strictly associated to specific classes of TEs thus suggesting the presence of a well-defined "transposon code" within the regulatory network. Conclusions In this work we tried to shed light into the role of Transposable Elements (TEs) in shaping the regulatory network of higher eukaryotes. To test this idea we focused on a particular transcription factor: the Estrogen Receptor α (ERα) and we found that ERα preferentially targets a well defined set of TEs and that these TEs host combinations of transcriptional regulators involving several of known co-regulators of ERα. Moreover, a significant number of these TEs turned out to be conserved between human and mouse and located in the vicinity (and thus candidate to be regulators) of important estrogen-related genes. PMID:22897927

  6. Structure-Based Sequence Alignment of the Transmembrane Domains of All Human GPCRs: Phylogenetic, Structural and Functional Implications

    PubMed Central

    Cvicek, Vaclav; Goddard, William A.; Abrol, Ravinder

    2016-01-01

    The understanding of G-protein coupled receptors (GPCRs) is undergoing a revolution due to increased information about their signaling and the experimental determination of structures for more than 25 receptors. The availability of at least one receptor structure for each of the GPCR classes, well separated in sequence space, enables an integrated superfamily-wide analysis to identify signatures involving the role of conserved residues, conserved contacts, and downstream signaling in the context of receptor structures. In this study, we align the transmembrane (TM) domains of all experimental GPCR structures to maximize the conserved inter-helical contacts. The resulting superfamily-wide GpcR Sequence-Structure (GRoSS) alignment of the TM domains for all human GPCR sequences is sufficient to generate a phylogenetic tree that correctly distinguishes all different GPCR classes, suggesting that the class-level differences in the GPCR superfamily are encoded at least partly in the TM domains. The inter-helical contacts conserved across all GPCR classes describe the evolutionarily conserved GPCR structural fold. The corresponding structural alignment of the inactive and active conformations, available for a few GPCRs, identifies activation hot-spot residues in the TM domains that get rewired upon activation. Many GPCR mutations, known to alter receptor signaling and cause disease, are located at these conserved contact and activation hot-spot residue positions. The GRoSS alignment places the chemosensory receptor subfamilies for bitter taste (TAS2R) and pheromones (Vomeronasal, VN1R) in the rhodopsin family, known to contain the chemosensory olfactory receptor subfamily. The GRoSS alignment also enables the quantification of the structural variability in the TM regions of experimental structures, useful for homology modeling and structure prediction of receptors. Furthermore, this alignment identifies structurally and functionally important residues in all human GPCRs. These residues can be used to make testable hypotheses about the structural basis of receptor function and about the molecular basis of disease-associated single nucleotide polymorphisms. PMID:27028541

  7. Candida species Rewired Hyphae Developmental Programs for Chlamydospore Formation

    PubMed Central

    Böttcher, Bettina; Pöllath, Christine; Staib, Peter; Hube, Bernhard; Brunke, Sascha

    2016-01-01

    Chlamydospore formation is a characteristic of many fungal species, among them the closely related human-pathogenic dimorphic yeasts Candida albicans and C. dubliniensis. Whereas function and regulation of filamentation are well-studied in these species, the basis of chlamydospore formation is mostly unknown. Here, we investigate the contribution of environmental and genetic factors and identified central proteins involved in species-specific regulation of chlamydosporulation. We show that specific nutrient levels strongly impact chlamydospore initiation, with starvation favoring sporulation and elevated levels of saccharides or peptone inhibiting it. Thresholds for these nutritional effects differ between C. albicans and C. dubliniensis, which explain species-specific chlamydospore formation on certain diagnostic media. A C. albicans nrg1Δ mutant phenocopied C. dubliniensis, putting Nrg1 regulation at the basis of species-specific chlamydospore formation under various conditions. By screening a series of potential chlamydospore regulators, we identified the TOR and cAMP pathways as crucial for sporulation. As rapamycin treatment blocked chlamydosporulation, a low basal Tor1 activity seems to be essential. In addition, TOR effector pathways play an important role, and loss of the NCR (nitrogen catabolite repression) gene regulators Gat1 and Gln3 reduced chlamydospore formation. A severe reduction was seen for a C. albicans gcn4Δ deletion strain, implicating a link between regulation of amino acid biosynthesis and chlamydospore development. On the other hand, deletion of the GTPase gene RAS1 and the adenylyl cyclase gene CYR1 caused a defect in chlamydospore formation that was mostly rescued by cAMP supplementation. Thus, cAMP-signaling is a second major pathway to control chlamydospore production. Finally, we confirmed light exposure to have a repressive effect on chlamydosporulation. However, permanent illumination only reduced, but not abolished chlamydospore production of C. albicans whereas C. dubliniensis sporulation was unaffected. In summary, we describe novel environmental factors which determine chlamydosporulation and propose a first model for the regulatory network of chlamydospore formation by different Candida species. PMID:27833594

  8. Diffany: an ontology-driven framework to infer, visualise and analyse differential molecular networks.

    PubMed

    Van Landeghem, Sofie; Van Parys, Thomas; Dubois, Marieke; Inzé, Dirk; Van de Peer, Yves

    2016-01-05

    Differential networks have recently been introduced as a powerful way to study the dynamic rewiring capabilities of an interactome in response to changing environmental conditions or stimuli. Currently, such differential networks are generated and visualised using ad hoc methods, and are often limited to the analysis of only one condition-specific response or one interaction type at a time. In this work, we present a generic, ontology-driven framework to infer, visualise and analyse an arbitrary set of condition-specific responses against one reference network. To this end, we have implemented novel ontology-based algorithms that can process highly heterogeneous networks, accounting for both physical interactions and regulatory associations, symmetric and directed edges, edge weights and negation. We propose this integrative framework as a standardised methodology that allows a unified view on differential networks and promotes comparability between differential network studies. As an illustrative application, we demonstrate its usefulness on a plant abiotic stress study and we experimentally confirmed a predicted regulator. Diffany is freely available as open-source java library and Cytoscape plugin from http://bioinformatics.psb.ugent.be/supplementary_data/solan/diffany/.

  9. Retention of data in heat-damaged SIM cards and potential recovery methods.

    PubMed

    Jones, B J; Kenyon, A J

    2008-05-02

    Examination of various SIM cards and smart card devices indicates that data may be retained in SIM card memory structures even after heating to temperatures up to 450 degrees C, which the National Institute of Standards and Technology (NIST) has determined to be approximately the maximum average sustained temperature at desk height in a house fire. However, in many cases, and certainly for temperatures greater than 450 degrees C, the SIM card chip has suffered structural or mechanical damage that renders simple probing or rewiring ineffective. Nevertheless, this has not necessarily affected the data, which is stored as charge in floating gates, and alternative methods for directly accessing the stored charge may be applicable.

  10. Coronary and peripheral stenting in aorto-ostial protruding stents: The balloon assisted access to protruding stent technique.

    PubMed

    Helmy, Tarek A; Sanchez, Carlos E; Bailey, Steven R

    2016-03-01

    Treatment of aorto-ostial in-stent restenosis lesions represents a challenge for interventional cardiologists. Excessive protrusion of the stent into the aorta may lead to multiple technical problems, such as difficult catheter reengagement of the vessel ostium or inability to re-wire through the stent lumen in repeat interventions. We describe a balloon assisted access to protruding stent technique in cases where conventional coaxial engagement of an aorto-ostial protruding stent with the guide catheter or passage of the guide wire through the true lumen is not feasible. This technique is applicable both in coronary and peripheral arteries. © 2015 Wiley Periodicals, Inc.

  11. Pivotal response treatment prompts a functional rewiring of the brain among individuals with autism spectrum disorder.

    PubMed

    Venkataraman, Archana; Yang, Daniel Y-J; Dvornek, Nicha; Staib, Lawrence H; Duncan, James S; Pelphrey, Kevin A; Ventola, Pamela

    2016-09-28

    Behavioral interventions for autism have gained prominence in recent years; however, the neural-systems-level targets of these interventions remain poorly understood. We use a novel Bayesian framework to extract network-based differences before and after a 16-week pivotal response treatment (PRT) regimen. Our results suggest that the functional changes induced by PRT localize to the posterior cingulate and are marked by a shift in connectivity from the orbitofrontal cortex to the occipital-temporal cortex. Our results illuminate a potential PRT-induced learning mechanism, whereby the neural circuits involved during social perception shift from sensory and attentional systems to higher-level object and face processing areas.

  12. Pivotal Response Treatment Prompts a Functional Rewiring of the Brain amongst Individuals with Autism Spectrum Disorder

    PubMed Central

    Venkataraman, Archana; Yang, Daniel Y.-J.; Dvornek, Nicha; Staib, Lawrence H.; Duncan, James S.; Pelphrey, Kevin A.; Ventola, Pamela

    2016-01-01

    Behavioral interventions for autism have gained prominence in recent years; however, the neural-systems-level targets of these interventions remain poorly understood. We use a novel Bayesian framework to extract network-based differences before and after a 16-week Pivotal Response Treatment (PRT) regimen. Our results suggest that functional changes induced by PRT localize to the posterior cingulate and are marked by a shift in connectivity from the orbitofrontal cortex to the occipital temporal cortex. Our results illuminate a potential PRT-induced learning mechanism, whereby the neural circuits involved during social perception shift from sensory and attentional systems to higher-level object and face processing areas. PMID:27532879

  13. MYC and metabolism on the path to cancer

    PubMed Central

    Hsieh, Annie L.; Walton, Zandra E.; Altman, Brian J.; Stine, Zachary E.; Dang, Chi V.

    2015-01-01

    The MYC proto-oncogene is frequently deregulated in human cancers, activating genetic programs that orchestrate biological processes to promote growth and proliferation. Altered metabolism characterized by heightened nutrients uptake, enhanced glycolysis and glutaminolysis and elevated fatty acid and nucleotide synthesis is the hallmark of MYC-driven cancer. Recent evidence strongly suggests that Myc-dependent metabolic reprogramming is critical for tumorigenesis, which could be attenuated by targeting specific metabolic pathways using small drug-like molecules. Understanding the complexity of MYC-mediated metabolic re-wiring in cancers as well as how MYC cooperates with other metabolic drivers such as mammalian target of rapamycin (mTOR) will provide translational opportunities for cancer therapy. PMID:26277543

  14. σI from Bacillus subtilis: Impact on Gene Expression and Characterization of σI-dependent Transcription that Requires New Types of Promoters with Extended -35 and -10 Elements.

    PubMed

    Ramaniuk, Olga; Převorovský, Martin; Pospíšil, Jiří; Vítovská, Dragana; Kofroňová, Olga; Benada, Oldřich; Schwarz, Marek; Šanderová, Hana; Hnilicová, Jarmila; Krásný, Libor

    2018-06-18

    σ I from Bacillus subtilis is a σ factor associating with RNA polymerase (RNAP) that was previously implicated in adaptation of the cell to elevated temperature. Here we provide a comprehensive characterization of this transcriptional regulator. By RNA-seq of wt and σ I -null strains at 37°C and 52°C we identified ∼130 genes affected by the absence of σ I Further analysis revealed that the majority of these genes were affected by σ I indirectly. The σ I regulon, i.e., the genes directly regulated by σ I , consists of 16 genes of which eight (the dhb and yku operons) are involved in iron metabolism. The involvement of σ I in iron metabolism was confirmed phenotypically. Next, we set up an in vitro transcription system and defined and experimentally validated the promoter sequence logo that, in addition to -35 and -10 regions, also contains extended -35 and -10 motifs. Thus, σ I -dependent promoters are relatively information-rich in comparison with most other promoters. In summary, this study supplies information about the least explored σ factor from the industrially important model organism B. subtilis Importance In bacteria, σ factors are essential for transcription initiation. Knowledge about their regulons ( i.e., genes transcribed from promoters dependent on these σ factors) is the key for understanding how bacteria cope with the changing environment and could be instrumental for biotechnologically motivated rewiring of gene expression. Here, we characterize the σ I regulon from the industrially important model Gram-positive bacterium - Bacillus subtilis We reveal that σ I affects expression of ∼ 130 genes, of which 16 are directly regulated by σ I , including genes encoding proteins involved in iron homeostasis. Detailed analysis of promoter elements then identifies unique sequences important for σ I -dependent transcription. This study thus provides a comprehensive view on this underexplored component of the B. subtilis transcription machinery. Copyright © 2018 American Society for Microbiology.

  15. Cystine addiction of triple-negative breast cancer associated with EMT augmented death signaling.

    PubMed

    Tang, X; Ding, C-K; Wu, J; Sjol, J; Wardell, S; Spasojevic, I; George, D; McDonnell, D P; Hsu, D S; Chang, J T; Chi, J-T

    2017-07-27

    Despite the advances in the diagnosis and treatment of breast cancer, breast cancers still cause significant mortality. For some patients, especially those with triple-negative breast cancer, current treatments continue to be limited and ineffective. Therefore, there remains an unmet need for a novel therapeutic approach. One potential strategy is to target the altered metabolic state that is rewired by oncogenic transformation. Specifically, this rewiring may render certain outside nutrients indispensable. To identify such a nutrient, we performed a nutrigenetic screen by removing individual amino acids to identify possible addictions across a panel of breast cancer cells. This screen revealed that cystine deprivation triggered rapid programmed necrosis, but not apoptosis, in the basal-type breast cancer cells mostly seen in TNBC tumors. In contrast, luminal-type breast cancer cells are cystine-independent and exhibit little death during cystine deprivation. The cystine addiction phenotype is associated with a higher level of cystine-deprivation signatures noted in the basal type breast cancer cells and tumors. We found that the cystine-addicted breast cancer cells and tumors have strong activation of TNFα and MEKK4-p38-Noxa pathways that render them susceptible to cystine deprivation-induced necrosis. Consistent with this model, silencing of TNFα and MEKK4 dramatically reduces cystine-deprived death. In addition, the cystine addiction phenotype can be abrogated in the cystine-addictive cells by miR-200c, which converts the mesenchymal-like cells to adopt epithelial features. Conversely, the introduction of inducers of epithelial-mesenchymal transition (EMT) in cystine-independent breast cancer cells conferred the cystine-addiction phenotype by modulating the signaling components of cystine addiction. Together, our data reveal that cystine-addiction is associated with EMT in breast cancer during tumor progression. These findings provide the genetic and mechanistic basis to explain how cystine deprivation triggers necrosis by activating pre-existing oncogenic pathways in cystine-addicted TNBC with prominent mesenchymal features.

  16. The Rewiring of Ubiquitination Targets in a Pathogenic Yeast Promotes Metabolic Flexibility, Host Colonization and Virulence

    PubMed Central

    Childers, Delma S.; Raziunaite, Ingrida; Mol Avelar, Gabriela; Mackie, Joanna; Budge, Susan; Stead, David; Gow, Neil A. R.; Lenardon, Megan D.; Ballou, Elizabeth R.; MacCallum, Donna M.; Brown, Alistair J. P.

    2016-01-01

    Efficient carbon assimilation is critical for microbial growth and pathogenesis. The environmental yeast Saccharomyces cerevisiae is “Crabtree positive”, displaying a rapid metabolic switch from the assimilation of alternative carbon sources to sugars. Following exposure to sugars, this switch is mediated by the transcriptional repression of genes (carbon catabolite repression) and the turnover (catabolite inactivation) of enzymes involved in the assimilation of alternative carbon sources. The pathogenic yeast Candida albicans is Crabtree negative. It has retained carbon catabolite repression mechanisms, but has undergone posttranscriptional rewiring such that gluconeogenic and glyoxylate cycle enzymes are not subject to ubiquitin-mediated catabolite inactivation. Consequently, when glucose becomes available, C. albicans can continue to assimilate alternative carbon sources alongside the glucose. We show that this metabolic flexibility promotes host colonization and virulence. The glyoxylate cycle enzyme isocitrate lyase (CaIcl1) was rendered sensitive to ubiquitin-mediated catabolite inactivation in C. albicans by addition of a ubiquitination site. This mutation, which inhibits lactate assimilation in the presence of glucose, reduces the ability of C. albicans cells to withstand macrophage killing, colonize the gastrointestinal tract and cause systemic infections in mice. Interestingly, most S. cerevisiae clinical isolates we examined (67%) have acquired the ability to assimilate lactate in the presence of glucose (i.e. they have become Crabtree negative). These S. cerevisiae strains are more resistant to macrophage killing than Crabtree positive clinical isolates. Moreover, Crabtree negative S. cerevisiae mutants that lack Gid8, a key component of the Glucose-Induced Degradation complex, are more resistant to macrophage killing and display increased virulence in immunocompromised mice. Thus, while Crabtree positivity might impart a fitness advantage for yeasts in environmental niches, the more flexible carbon assimilation strategies offered by Crabtree negativity enhance the ability of yeasts to colonize and infect the mammalian host. PMID:27073846

  17. Competition for popularity in bipartite networks.

    PubMed

    Díaz, Mariano Beguerisse; Porter, Mason A; Onnela, Jukka-Pekka

    2010-12-01

    We present a dynamical model for rewiring and attachment in bipartite networks. Edges are placed between nodes that belong to catalogs that can either be fixed in size or growing in size. The model is motivated by an empirical study of data from the video rental service Netflix, which invites its users to give ratings to the videos available in its catalog. We find that the distribution of the number of ratings given by users and that of the number of ratings received by videos both follow a power law with an exponential cutoff. We also examine the activity patterns of Netflix users and find bursts of intense video-rating activity followed by long periods of inactivity. We derive ordinary differential equations to model the acquisition of edges by the nodes over time and obtain the corresponding time-dependent degree distributions. We then compare our results with the Netflix data and find good agreement. We conclude with a discussion of how catalog models can be used to study systems in which agents are forced to choose, rate, or prioritize their interactions from a large set of options. © 2010 American Institute of Physics.

  18. The effect of hubs and shortcuts on fixation time in evolutionary graphs

    NASA Astrophysics Data System (ADS)

    Askari, Marziyeh; Moradi Miraghaei, Zeinab; Aghababaei Samani, Keivan

    2017-07-01

    How can a new species (like a gene, an idea, or a strategy) take over the whole of a population? This process, which is called fixation, is considerably affected by the structure of the population. There are two key quantities to quantify the fixation process, namely fixation probability and fixation time. Fixation probability has been vastly studied in recent years, but fixation time has not been completely explored, yet. This is because the discovery of a relationship between fixation time and network structure is quite challenging. In this paper we investigate this relationship for a number of well-known complex networks. We show that the existence of a few high-degree nodes (hubs) in the network results in a longer fixation time, while the existence of a few short-cuts decreases the fixation time. Furthermore we investigate the effect of network parameters, such as connection probability, on fixation time. We show that by increasing the density of edges, fixation time decreases for all types of studied networks. Finally, we survey the effect of rewiring probability in a Watts-Strogatz network on fixation time.

  19. Competition for popularity in bipartite networks

    NASA Astrophysics Data System (ADS)

    Beguerisse Díaz, Mariano; Porter, Mason A.; Onnela, Jukka-Pekka

    2010-12-01

    We present a dynamical model for rewiring and attachment in bipartite networks. Edges are placed between nodes that belong to catalogs that can either be fixed in size or growing in size. The model is motivated by an empirical study of data from the video rental service Netflix, which invites its users to give ratings to the videos available in its catalog. We find that the distribution of the number of ratings given by users and that of the number of ratings received by videos both follow a power law with an exponential cutoff. We also examine the activity patterns of Netflix users and find bursts of intense video-rating activity followed by long periods of inactivity. We derive ordinary differential equations to model the acquisition of edges by the nodes over time and obtain the corresponding time-dependent degree distributions. We then compare our results with the Netflix data and find good agreement. We conclude with a discussion of how catalog models can be used to study systems in which agents are forced to choose, rate, or prioritize their interactions from a large set of options.

  20. Social dilemmas in an online social network: The structure and evolution of cooperation

    NASA Astrophysics Data System (ADS)

    Fu, Feng; Chen, Xiaojie; Liu, Lianghuan; Wang, Long

    2007-11-01

    We investigate two paradigms for studying the evolution of cooperation—Prisoner's Dilemma and Snowdrift game in an online friendship network, obtained from a social networking site. By structural analysis, it is revealed that the empirical social network has small-world and scale-free properties. Besides, it exhibits assortative mixing pattern. Then, we study the evolutionary version of the two types of games on it. It is found that cooperation is substantially promoted with small values of game matrix parameters in both games. Whereas the competent cooperators induced by the underlying network of contacts will be dramatically inhibited with increasing values of the game parameters. Further, we explore the role of assortativity in evolution of cooperation by random edge rewiring. We find that increasing amount of assortativity will to a certain extent diminish the cooperation level. We also show that connected large hubs are capable of maintaining cooperation. The evolution of cooperation on empirical networks is influenced by various network effects in a combined manner, compared with that on model networks. Our results can help understand the cooperative behaviors in human groups and society.

  1. Cancer systems biology in the genome sequencing era: part 1, dissecting and modeling of tumor clones and their networks.

    PubMed

    Wang, Edwin; Zou, Jinfeng; Zaman, Naif; Beitel, Lenore K; Trifiro, Mark; Paliouras, Miltiadis

    2013-08-01

    Recent tumor genome sequencing confirmed that one tumor often consists of multiple cell subpopulations (clones) which bear different, but related, genetic profiles such as mutation and copy number variation profiles. Thus far, one tumor has been viewed as a whole entity in cancer functional studies. With the advances of genome sequencing and computational analysis, we are able to quantify and computationally dissect clones from tumors, and then conduct clone-based analysis. Emerging technologies such as single-cell genome sequencing and RNA-Seq could profile tumor clones. Thus, we should reconsider how to conduct cancer systems biology studies in the genome sequencing era. We will outline new directions for conducting cancer systems biology by considering that genome sequencing technology can be used for dissecting, quantifying and genetically characterizing clones from tumors. Topics discussed in Part 1 of this review include computationally quantifying of tumor subpopulations; clone-based network modeling, cancer hallmark-based networks and their high-order rewiring principles and the principles of cell survival networks of fast-growing clones. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  2. Modelling opinion formation driven communities in social networks

    NASA Astrophysics Data System (ADS)

    Iñiguez, Gerardo; Barrio, Rafael A.; Kertész, János; Kaski, Kimmo K.

    2011-09-01

    In a previous paper we proposed a model to study the dynamics of opinion formation in human societies by a co-evolution process involving two distinct time scales of fast transaction and slower network evolution dynamics. In the transaction dynamics we take into account short range interactions as discussions between individuals and long range interactions to describe the attitude to the overall mood of society. The latter is handled by a uniformly distributed parameter α, assigned randomly to each individual, as quenched personal bias. The network evolution dynamics is realised by rewiring the societal network due to state variable changes as a result of transaction dynamics. The main consequence of this complex dynamics is that communities emerge in the social network for a range of values in the ratio between time scales. In this paper we focus our attention on the attitude parameter α and its influence on the conformation of opinion and the size of the resulting communities. We present numerical studies and extract interesting features of the model that can be interpreted in terms of social behaviour.

  3. Constructing Robust Cooperative Networks using a Multi-Objective Evolutionary Algorithm

    PubMed Central

    Wang, Shuai; Liu, Jing

    2017-01-01

    The design and construction of network structures oriented towards different applications has attracted much attention recently. The existing studies indicated that structural heterogeneity plays different roles in promoting cooperation and robustness. Compared with rewiring a predefined network, it is more flexible and practical to construct new networks that satisfy the desired properties. Therefore, in this paper, we study a method for constructing robust cooperative networks where the only constraint is that the number of nodes and links is predefined. We model this network construction problem as a multi-objective optimization problem and propose a multi-objective evolutionary algorithm, named MOEA-Netrc, to generate the desired networks from arbitrary initializations. The performance of MOEA-Netrc is validated on several synthetic and real-world networks. The results show that MOEA-Netrc can construct balanced candidates and is insensitive to the initializations. MOEA-Netrc can find the Pareto fronts for networks with different levels of cooperation and robustness. In addition, further investigation of the robustness of the constructed networks revealed the impact on other aspects of robustness during the construction process. PMID:28134314

  4. Diversification of transcription factor-DNA interactions and the evolution of gene regulatory networks.

    PubMed

    Rogers, Julia M; Bulyk, Martha L

    2018-04-25

    Sequence-specific transcription factors (TFs) bind short DNA sequences in the genome to regulate the expression of target genes. In the last decade, numerous technical advances have enabled the determination of the DNA-binding specificities of many of these factors. Large-scale screens of many TFs enabled the creation of databases of TF DNA-binding specificities, typically represented as position weight matrices (PWMs). Although great progress has been made in determining and predicting binding specificities systematically, there are still many surprises to be found when studying a particular TF's interactions with DNA in detail. Paralogous TFs' binding specificities can differ in subtle ways, in a manner that is not immediately apparent from looking at their PWMs. These differences affect gene regulatory outputs and enable TFs to rewire transcriptional networks over evolutionary time. This review discusses recent observations made in the study of TF-DNA interactions that highlight the importance of continued in-depth analysis of TF-DNA interactions and their inherent complexity. This article is categorized under: Biological Mechanisms > Regulatory Biology. © 2018 Wiley Periodicals, Inc.

  5. The Calcineurin Signaling Network Evolves Via Conserved Kinase–Phosphatase Modules That Transcend Substrate Identity

    PubMed Central

    Bodenmiller, Bernd; Wanka, Stefanie; Landry, Christian R.; Aebersold, Ruedi; Cyert, Martha S.

    2014-01-01

    Summary To define the first functional network for calcineurin, the conserved Ca2+/calmodulin-regulated phosphatase, we systematically identified its substrates in S. cerevisiae using phosphoproteomics and bioinformatics, followed by co-purification and dephosphorylation assays. This study establishes new calcineurin functions and reveals mechanisms that shape calcineurin network evolution. Analyses of closely related yeasts show that many proteins were recently recruited to the network by acquiring a calcineurin-recognition motif. Calcineurin substrates in yeast and mammals are distinct due to network rewiring but surprisingly are phosphorylated by similar kinases. We postulate that co-recognition of conserved substrate features, including phosphorylation and docking motifs, preserves calcineurin-kinase opposition during evolution. One example we document is a composite docking site that confers substrate recognition by both calcineurin and MAPK. We propose that conserved kinase-phosphatase pairs define the architecture of signaling networks and allow other connections between kinases and phosphatases to develop and establish common regulatory motifs in signaling networks. PMID:24930733

  6. Multistability, local pattern formation, and global collective firing in a small-world network of nonleaky integrate-and-fire neurons.

    PubMed

    Rothkegel, Alexander; Lehnertz, Klaus

    2009-03-01

    We investigate numerically the collective dynamical behavior of pulse-coupled nonleaky integrate-and-fire neurons that are arranged on a two-dimensional small-world network. To ensure ongoing activity, we impose a probability for spontaneous firing for each neuron. We study network dynamics evolving from different sets of initial conditions in dependence on coupling strength and rewiring probability. Besides a homogeneous equilibrium state for low coupling strength, we observe different local patterns including cyclic waves, spiral waves, and turbulentlike patterns, which-depending on network parameters-interfere with the global collective firing of the neurons. We attribute the various network dynamics to distinct regimes in the parameter space. For the same network parameters different network dynamics can be observed depending on the set of initial conditions only. Such a multistable behavior and the interplay between local pattern formation and global collective firing may be attributable to the spatiotemporal dynamics of biological networks.

  7. Optimal synchronization of Kuramoto oscillators: A dimensional reduction approach

    NASA Astrophysics Data System (ADS)

    Pinto, Rafael S.; Saa, Alberto

    2015-12-01

    A recently proposed dimensional reduction approach for studying synchronization in the Kuramoto model is employed to build optimal network topologies to favor or to suppress synchronization. The approach is based in the introduction of a collective coordinate for the time evolution of the phase locked oscillators, in the spirit of the Ott-Antonsen ansatz. We show that the optimal synchronization of a Kuramoto network demands the maximization of the quadratic function ωTL ω , where ω stands for the vector of the natural frequencies of the oscillators and L for the network Laplacian matrix. Many recently obtained numerical results can be reobtained analytically and in a simpler way from our maximization condition. A computationally efficient hill climb rewiring algorithm is proposed to generate networks with optimal synchronization properties. Our approach can be easily adapted to the case of the Kuramoto models with both attractive and repulsive interactions, and again many recent numerical results can be rederived in a simpler and clearer analytical manner.

  8. Improving furfural tolerance of Zymomonas mobilis by rewiring a sigma factor RpoD protein.

    PubMed

    Tan, Fu-Rong; Dai, Li-Chun; Wu, Bo; Qin, Han; Shui, Zong-Xia; Wang, Jing-Li; Zhu, Qi-Li; Hu, Qi-Chun; Ruan, Zhi-Yong; He, Ming-Xiong

    2015-06-01

    Furfural from lignocellulosic hydrolysates is the key inhibitor for bio-ethanol fermentation. In this study, we report a strategy of improving the furfural tolerance in Zymomonas mobilis on the transcriptional level by engineering its global transcription sigma factor (σ(70), RpoD) protein. Three furfural tolerance RpoD mutants (ZM4-MF1, ZM4-MF2, and ZM4-MF3) were identified from error-prone PCR libraries. The best furfural-tolerance strain ZM4-MF2 reached to the maximal cell density (OD600) about 2.0 after approximately 30 h, while control strain ZM4-rpoD reached its highest cell density of about 1.3 under the same conditions. ZM4-MF2 also consumed glucose faster and yield higher ethanol; expression levels and key Entner-Doudoroff (ED) pathway enzymatic activities were also compared to control strain under furfural stress condition. Our results suggest that global transcription machinery engineering could potentially be used to improve stress tolerance and ethanol production in Z. mobilis.

  9. Harnessing Integrative Omics to Facilitate Molecular Imaging of the Human Epidermal Growth Factor Receptor Family for Precision Medicine.

    PubMed

    Pool, Martin; de Boer, H Rudolf; Hooge, Marjolijn N Lub-de; van Vugt, Marcel A T M; de Vries, Elisabeth G E

    2017-01-01

    Cancer is a growing problem worldwide. The cause of death in cancer patients is often due to treatment-resistant metastatic disease. Many molecularly targeted anticancer drugs have been developed against 'oncogenic driver' pathways. However, these treatments are usually only effective in properly selected patients. Resistance to molecularly targeted drugs through selective pressure on acquired mutations or molecular rewiring can hinder their effectiveness. This review summarizes how molecular imaging techniques can potentially facilitate the optimal implementation of targeted agents. Using the human epidermal growth factor receptor (HER) family as a model in (pre)clinical studies, we illustrate how molecular imaging may be employed to characterize whole body target expression as well as monitor drug effectiveness and the emergence of tumor resistance. We further discuss how an integrative omics discovery platform could guide the selection of 'effect sensors' - new molecular imaging targets - which are dynamic markers that indicate treatment effectiveness or resistance.

  10. Deep Sternal Wound Infection after Open-Heart Surgery: A 13-Year Single Institution Analysis.

    PubMed

    Juhl, Alexander Andersen; Hody, Sofie; Videbaek, Tina Senholt; Damsgaard, Tine Engberg; Nielsen, Per Hostrup

    2017-04-20

    The present study aimed to compare the clinical outcome for patients with or without muscle flap reconstruction after deep sternal wound infection due to open-heart surgery. The study was a retrospective cohort study, including patients who developed deep sternal wound infection after open-heart surgery in the Western Denmark Region from 1999 to 2011. Journals of included patients were reviewed for clinical data regarding the treatment of their sternal defect. Patients were divided into two groups depending on whether they received a muscle-flap-based sternal reconstruction or traditional rewiring of the sternum. A total of 130 patients developed deep sternal wound infection in the study period. In all, 12 patients died before being discharged, leaving a total of 118 patients for analysis. Of these, 50 (42%) patients received muscle flap reconstruction. Muscle flap recipients had significantly longer total hospital stays (p <0.001). However, after receiving muscle flap reconstruction, patients were discharged after a median of 14 days, with 74% not needing additional surgery. It is difficult to predict which patients eventually require muscle flap reconstruction after deep sternal wound infection. Although patients receiving muscle flap reconstructions have longer hospital stays, they are quickly discharged after the reconstruction.

  11. Collagen VI Null Mice as a Model for Early Onset Muscle Decline in Aging.

    PubMed

    Capitanio, Daniele; Moriggi, Manuela; De Palma, Sara; Bizzotto, Dario; Molon, Sibilla; Torretta, Enrica; Fania, Chiara; Bonaldo, Paolo; Gelfi, Cecilia; Braghetta, Paola

    2017-01-01

    Collagen VI is an extracellular matrix (ECM) protein playing a key role in skeletal muscles and whose deficiency leads to connective tissue diseases in humans and in animal models. However, most studies have been focused on skeletal muscle features. We performed an extensive proteomic profiling in two skeletal muscles (diaphragm and gastrocnemius) of wild-type and collagen VI null ( Col6a1 -/- ) mice at different ages, from 6- (adult) to 12- (aged) month-old to 24 (old) month-old. While in wild-type animals the number of proteins and the level of modification occurring during aging were comparable in the two analyzed muscles, Col6a1 -/- mice displayed a number of muscle-type specific variations. In particular, gastrocnemius displayed a limited number of dysregulated proteins in adult mice, while in aged muscles the modifications were more pronounced in terms of number and level. In diaphragm, the differences displayed by 6-month-old Col6a1 -/- mice were more pronounced compared to wild-type mice and persisted at 12 months of age. In adult Col6a1 -/- mice, the major variations were found in the enzymes belonging to the glycolytic pathway and the tricarboxylic acid (TCA) cycle, as well as in autophagy-related proteins. When compared to wild-type animals Col6a1 -/- mice displayed a general metabolic rewiring which was particularly prominent the diaphragm at 6 months of age. Comparison of the proteomic features and the molecular analysis of metabolic and autophagic pathways in adult and aged Col6a1 -/- diaphragm indicated that the effects of aging, culminating in lipotoxicity and autophagic impairment, were already present at 6 months of age. Conversely, the effects of aging in Col6a1 -/- gastrocnemius were similar but delayed becoming apparent at 12 months of age. A similar metabolic rewiring and autophagic impairment was found in the diaphragm of 24-month-old wild-type mice, confirming that fatty acid synthase (FASN) increment and decreased microtubule-associated proteins 1A/1B light chain 3B (LC3B) lipidation are hallmarks of the aging process. Altogether these data indicate that the diaphragm of Col6a1 -/- animal model can be considered as a model of early skeletal muscle aging.

  12. Collagen VI Null Mice as a Model for Early Onset Muscle Decline in Aging

    PubMed Central

    Capitanio, Daniele; Moriggi, Manuela; De Palma, Sara; Bizzotto, Dario; Molon, Sibilla; Torretta, Enrica; Fania, Chiara; Bonaldo, Paolo; Gelfi, Cecilia; Braghetta, Paola

    2017-01-01

    Collagen VI is an extracellular matrix (ECM) protein playing a key role in skeletal muscles and whose deficiency leads to connective tissue diseases in humans and in animal models. However, most studies have been focused on skeletal muscle features. We performed an extensive proteomic profiling in two skeletal muscles (diaphragm and gastrocnemius) of wild-type and collagen VI null (Col6a1−/−) mice at different ages, from 6- (adult) to 12- (aged) month-old to 24 (old) month-old. While in wild-type animals the number of proteins and the level of modification occurring during aging were comparable in the two analyzed muscles, Col6a1−/− mice displayed a number of muscle-type specific variations. In particular, gastrocnemius displayed a limited number of dysregulated proteins in adult mice, while in aged muscles the modifications were more pronounced in terms of number and level. In diaphragm, the differences displayed by 6-month-old Col6a1−/− mice were more pronounced compared to wild-type mice and persisted at 12 months of age. In adult Col6a1−/− mice, the major variations were found in the enzymes belonging to the glycolytic pathway and the tricarboxylic acid (TCA) cycle, as well as in autophagy-related proteins. When compared to wild-type animals Col6a1−/− mice displayed a general metabolic rewiring which was particularly prominent the diaphragm at 6 months of age. Comparison of the proteomic features and the molecular analysis of metabolic and autophagic pathways in adult and aged Col6a1−/− diaphragm indicated that the effects of aging, culminating in lipotoxicity and autophagic impairment, were already present at 6 months of age. Conversely, the effects of aging in Col6a1−/− gastrocnemius were similar but delayed becoming apparent at 12 months of age. A similar metabolic rewiring and autophagic impairment was found in the diaphragm of 24-month-old wild-type mice, confirming that fatty acid synthase (FASN) increment and decreased microtubule-associated proteins 1A/1B light chain 3B (LC3B) lipidation are hallmarks of the aging process. Altogether these data indicate that the diaphragm of Col6a1−/− animal model can be considered as a model of early skeletal muscle aging. PMID:29114203

  13. Growth and structure of the World Wide Web: Towards realistic modeling

    NASA Astrophysics Data System (ADS)

    Tadić, Bosiljka

    2002-08-01

    We simulate evolution of the World Wide Web from the dynamic rules incorporating growth, bias attachment, and rewiring. We show that the emergent double-hierarchical structure with distinct distributions of out- and in-links is comparable with the observed empirical data when the control parameter (average graph flexibility β) is kept in the range β=3-4. We then explore the Web graph by simulating (a) Web crawling to determine size and depth of connected components, and (b) a random walker that discovers the structure of connected subgraphs with dominant attractor and promoter nodes. A random walker that adapts its move strategy to mimic local node linking preferences is shown to have a short access time to "important" nodes on the Web graph.

  14. The Spring of Systems Biology-Driven Breeding.

    PubMed

    Lavarenne, Jérémy; Guyomarc'h, Soazig; Sallaud, Christophe; Gantet, Pascal; Lucas, Mikaël

    2018-05-12

    Genetics and molecular biology have contributed to the development of rationalized plant breeding programs. Recent developments in both high-throughput experimental analyses of biological systems and in silico data processing offer the possibility to address the whole gene regulatory network (GRN) controlling a given trait. GRN models can be applied to identify topological features helping to shortlist potential candidate genes for breeding purposes. Time-series data sets can be used to support dynamic modelling of the network. This will enable a deeper comprehension of network behaviour and the identification of the few elements to be genetically rewired to push the system towards a modified phenotype of interest. This paves the way to design more efficient, systems biology-based breeding strategies. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Adaptive dynamical networks

    NASA Astrophysics Data System (ADS)

    Maslennikov, O. V.; Nekorkin, V. I.

    2017-10-01

    Dynamical networks are systems of active elements (nodes) interacting with each other through links. Examples are power grids, neural structures, coupled chemical oscillators, and communications networks, all of which are characterized by a networked structure and intrinsic dynamics of their interacting components. If the coupling structure of a dynamical network can change over time due to nodal dynamics, then such a system is called an adaptive dynamical network. The term ‘adaptive’ implies that the coupling topology can be rewired; the term ‘dynamical’ implies the presence of internal node and link dynamics. The main results of research on adaptive dynamical networks are reviewed. Key notions and definitions of the theory of complex networks are given, and major collective effects that emerge in adaptive dynamical networks are described.

  16. Complex networks: Effect of subtle changes in nature of randomness

    NASA Astrophysics Data System (ADS)

    Goswami, Sanchari; Biswas, Soham; Sen, Parongama

    2011-03-01

    In two different classes of network models, namely, the Watts Strogatz type and the Euclidean type, subtle changes have been introduced in the randomness. In the Watts Strogatz type network, rewiring has been done in different ways and although the qualitative results remain the same, finite differences in the exponents are observed. In the Euclidean type networks, where at least one finite phase transition occurs, two models differing in a similar way have been considered. The results show a possible shift in one of the phase transition points but no change in the values of the exponents. The WS and Euclidean type models are equivalent for extreme values of the parameters; we compare their behaviour for intermediate values.

  17. Tabu Search enhances network robustness under targeted attacks

    NASA Astrophysics Data System (ADS)

    Sun, Shi-wen; Ma, Yi-lin; Li, Rui-qi; Wang, Li; Xia, Cheng-yi

    2016-03-01

    We focus on the optimization of network robustness with respect to intentional attacks on high-degree nodes. Given an existing network, this problem can be considered as a typical single-objective combinatorial optimization problem. Based on the heuristic Tabu Search optimization algorithm, a link-rewiring method is applied to reconstruct the network while keeping the degree of every node unchanged. Through numerical simulations, BA scale-free network and two real-world networks are investigated to verify the effectiveness of the proposed optimization method. Meanwhile, we analyze how the optimization affects other topological properties of the networks, including natural connectivity, clustering coefficient and degree-degree correlation. The current results can help to improve the robustness of existing complex real-world systems, as well as to provide some insights into the design of robust networks.

  18. Incorporating comparative genomics into the design-test-learn cycle of microbial strain engineering.

    PubMed

    Sardi, Maria; Gasch, Audrey P

    2017-08-01

    Engineering microbes with new properties is an important goal in industrial engineering, to establish biological factories for production of biofuels, commodity chemicals and pharmaceutics. But engineering microbes to produce new compounds with high yield remains a major challenge toward economically viable production. Incorporating several modern approaches, including synthetic and systems biology, metabolic modeling and regulatory rewiring, has proven to significantly advance industrial strain engineering. This review highlights how comparative genomics can also facilitate strain engineering, by identifying novel genes and pathways, regulatory mechanisms and genetic background effects for engineering. We discuss how incorporating comparative genomics into the design-test-learn cycle of strain engineering can provide novel information that complements other engineering strategies. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. International Space Station Configuration After P6 Truss Installation

    NASA Technical Reports Server (NTRS)

    2006-01-01

    Photographed from the Space Shuttle Discovery upon its separation from the orbital outpost, the International Space Station (ISS) is shown sporting its new additions. A fly-around gave the crew a look at their handiwork, a new P5 spacer truss segment and a fully retracted P6 solar array wing. Earlier, the STS-116 and Expedition 14 crews concluded eight days of cooperative work onboard the shuttle and station where they accomplished the installation of the newest piece of the station and completely rewired the power grid over the course of four space walks. The station is currently the size of a typical three-bedroom house, with a surface area large enough to cover four basketball courts. The image reflects the latest configuration of the ISS as of December 19, 2006.

  20. Hooked on fat: the role of lipid synthesis in cancer metabolism and tumour development

    PubMed Central

    Baenke, Franziska; Peck, Barrie; Miess, Heike; Schulze, Almut

    2013-01-01

    An increased rate of lipid synthesis in cancerous tissues has long been recognised as an important aspect of the rewired metabolism of transformed cells. However, the contribution of lipids to cellular transformation, tumour development and tumour progression, as well as their potential role in facilitating the spread of cancerous cells to secondary sites, are not yet fully understood. In this article, we review the recent findings that support the importance of lipid synthesis and metabolism in tumorigenesis. Specifically, we explore the role of aberrant lipid biosynthesis in cancer cell migration and invasion, and in the induction of tumour angiogenesis. These processes are crucial for the dissemination of tumour cells and formation of metastases, which constitute the main cause of cancer mortality. PMID:24203995

  1. Links between metabolism and cancer

    PubMed Central

    Dang, Chi V.

    2012-01-01

    Metabolism generates oxygen radicals, which contribute to oncogenic mutations. Activated oncogenes and loss of tumor suppressors in turn alter metabolism and induce aerobic glycolysis. Aerobic glycolysis or the Warburg effect links the high rate of glucose fermentation to cancer. Together with glutamine, glucose via glycolysis provides the carbon skeletons, NADPH, and ATP to build new cancer cells, which persist in hypoxia that in turn rewires metabolic pathways for cell growth and survival. Excessive caloric intake is associated with an increased risk for cancers, while caloric restriction is protective, perhaps through clearance of mitochondria or mitophagy, thereby reducing oxidative stress. Hence, the links between metabolism and cancer are multifaceted, spanning from the low incidence of cancer in large mammals with low specific metabolic rates to altered cancer cell metabolism resulting from mutated enzymes or cancer genes. PMID:22549953

  2. Chemical Approaches to Probe Metabolic Networks

    PubMed Central

    Medina-Cleghorn, Daniel; Nomura, Daniel K.

    2013-01-01

    One of the more provocative realizations that have come out of the genome sequencing projects is that organisms possess a large number of uncharacterized or poorly characterized enzymes. This finding belies the commonly held notion that our knowledge of cell metabolism is nearly complete, underscoring the vast landscape of unannotated metabolic and signaling networks that operate under normal physiological conditions, let alone in disease states where metabolic networks may be rewired, dysregulated, or altered to drive disease progression. Consequently, the functional annotation of enzymatic pathways represents a grand challenge for researchers in the post-genomic era. This review will highlight the chemical technologies that have been successfully used to characterize metabolism, and put forth some of the challenges we face as we expand our map of metabolic pathways. PMID:23296751

  3. Exploring the read-write genome: mobile DNA and mammalian adaptation.

    PubMed

    Shapiro, James A

    2017-02-01

    The read-write genome idea predicts that mobile DNA elements will act in evolution to generate adaptive changes in organismal DNA. This prediction was examined in the context of mammalian adaptations involving regulatory non-coding RNAs, viviparous reproduction, early embryonic and stem cell development, the nervous system, and innate immunity. The evidence shows that mobile elements have played specific and sometimes major roles in mammalian adaptive evolution by generating regulatory sites in the DNA and providing interaction motifs in non-coding RNA. Endogenous retroviruses and retrotransposons have been the predominant mobile elements in mammalian adaptive evolution, with the notable exception of bats, where DNA transposons are the major agents of RW genome inscriptions. A few examples of independent but convergent exaptation of mobile DNA elements for similar regulatory rewiring functions are noted.

  4. SH3 interactome conserves general function over specific form

    PubMed Central

    Xin, Xiaofeng; Gfeller, David; Cheng, Jackie; Tonikian, Raffi; Sun, Lin; Guo, Ailan; Lopez, Lianet; Pavlenco, Alevtina; Akintobi, Adenrele; Zhang, Yingnan; Rual, Jean-François; Currell, Bridget; Seshagiri, Somasekar; Hao, Tong; Yang, Xinping; Shen, Yun A; Salehi-Ashtiani, Kourosh; Li, Jingjing; Cheng, Aaron T; Bouamalay, Dryden; Lugari, Adrien; Hill, David E; Grimes, Mark L; Drubin, David G; Grant, Barth D; Vidal, Marc; Boone, Charles; Sidhu, Sachdev S; Bader, Gary D

    2013-01-01

    Src homology 3 (SH3) domains bind peptides to mediate protein–protein interactions that assemble and regulate dynamic biological processes. We surveyed the repertoire of SH3 binding specificity using peptide phage display in a metazoan, the worm Caenorhabditis elegans, and discovered that it structurally mirrors that of the budding yeast Saccharomyces cerevisiae. We then mapped the worm SH3 interactome using stringent yeast two-hybrid and compared it with the equivalent map for yeast. We found that the worm SH3 interactome resembles the analogous yeast network because it is significantly enriched for proteins with roles in endocytosis. Nevertheless, orthologous SH3 domain-mediated interactions are highly rewired. Our results suggest a model of network evolution where general function of the SH3 domain network is conserved over its specific form. PMID:23549480

  5. Recent advances in metabolic engineering of Saccharomyces cerevisiae: New tools and their applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lian, Jiazhang; Mishra, Shekhar; Zhao, Huimin

    Metabolic engineering aims to develop efficient cell factories by rewiring cellular metabolism. As one of the most commonly used cell factories, Saccharomyces cerevisiae has been extensively engineered to produce a wide variety of products at high levels from various feedstocks. In this paper, we summarize the recent development of metabolic engineering approaches to modulate yeast metabolism with representative examples. Particularly, we highlight new tools for biosynthetic pathway optimization (i.e. combinatorial transcriptional engineering and dynamic metabolic flux control) and genome engineering (i.e. clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated (Cas) system based genome engineering and RNA interference assisted genome evolution)more » to advance metabolic engineering in yeast. Lastly, we also discuss the challenges and perspectives for high throughput metabolic engineering.« less

  6. Recent advances in metabolic engineering of Saccharomyces cerevisiae: New tools and their applications

    DOE PAGES

    Lian, Jiazhang; Mishra, Shekhar; Zhao, Huimin

    2018-04-25

    Metabolic engineering aims to develop efficient cell factories by rewiring cellular metabolism. As one of the most commonly used cell factories, Saccharomyces cerevisiae has been extensively engineered to produce a wide variety of products at high levels from various feedstocks. In this paper, we summarize the recent development of metabolic engineering approaches to modulate yeast metabolism with representative examples. Particularly, we highlight new tools for biosynthetic pathway optimization (i.e. combinatorial transcriptional engineering and dynamic metabolic flux control) and genome engineering (i.e. clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated (Cas) system based genome engineering and RNA interference assisted genome evolution)more » to advance metabolic engineering in yeast. Lastly, we also discuss the challenges and perspectives for high throughput metabolic engineering.« less

  7. Scaling of Directed Dynamical Small-World Networks with Random Responses

    NASA Astrophysics Data System (ADS)

    Zhu, Chen-Ping; Xiong, Shi-Jie; Tian, Ying-Jie; Li, Nan; Jiang, Ke-Sheng

    2004-05-01

    A dynamical model of small-world networks, with directed links which describe various correlations in social and natural phenomena, is presented. Random responses of sites to the input message are introduced to simulate real systems. The interplay of these ingredients results in the collective dynamical evolution of a spinlike variable S(t) of the whole network. The global average spreading length s and average spreading time s are found to scale as p-αln(N with different exponents. Meanwhile, S(t) behaves in a duple scaling form for N≫N*: S˜f(p-βqγt˜), where p and q are rewiring and external parameters, α, β, and γ are scaling exponents, and f(t˜) is a universal function. Possible applications of the model are discussed.

  8. Efficient community-based control strategies in adaptive networks

    NASA Astrophysics Data System (ADS)

    Yang, Hui; Tang, Ming; Zhang, Hai-Feng

    2012-12-01

    Most studies on adaptive networks concentrate on the properties of steady state, but neglect transient dynamics. In this study, we pay attention to the emergence of community structure in the transient process and the effects of community-based control strategies on epidemic spreading. First, by normalizing the modularity, we investigate the evolution of community structure during the transient process, and find that a strong community structure is induced by the rewiring mechanism in the early stage of epidemic dynamics, which, remarkably, delays the outbreak of disease. We then study the effects of control strategies started at different stages on the prevalence. Both immunization and quarantine strategies indicate that it is not ‘the earlier, the better’ for the implementation of control measures. And the optimal control effect is obtained if control measures can be efficiently implemented in the period of a strong community structure. For the immunization strategy, immunizing the susceptible nodes on susceptible-infected links and immunizing susceptible nodes randomly have similar control effects. However, for the quarantine strategy, quarantining the infected nodes on susceptible-infected links can yield a far better result than quarantining infected nodes randomly. More significantly, the community-based quarantine strategy performs better than the community-based immunization strategy. This study may shed new light on the forecast and the prevention of epidemics among humans.

  9. Bioinformatic approaches to augment study of epithelial-to-mesenchymal transition in lung cancer

    PubMed Central

    Beck, Tim N.; Chikwem, Adaeze J.; Solanki, Nehal R.

    2014-01-01

    Bioinformatic approaches are intended to provide systems level insight into the complex biological processes that underlie serious diseases such as cancer. In this review we describe current bioinformatic resources, and illustrate how they have been used to study a clinically important example: epithelial-to-mesenchymal transition (EMT) in lung cancer. Lung cancer is the leading cause of cancer-related deaths and is often diagnosed at advanced stages, leading to limited therapeutic success. While EMT is essential during development and wound healing, pathological reactivation of this program by cancer cells contributes to metastasis and drug resistance, both major causes of death from lung cancer. Challenges of studying EMT include its transient nature, its molecular and phenotypic heterogeneity, and the complicated networks of rewired signaling cascades. Given the biology of lung cancer and the role of EMT, it is critical to better align the two in order to advance the impact of precision oncology. This task relies heavily on the application of bioinformatic resources. Besides summarizing recent work in this area, we use four EMT-associated genes, TGF-β (TGFB1), NEDD9/HEF1, β-catenin (CTNNB1) and E-cadherin (CDH1), as exemplars to demonstrate the current capacities and limitations of probing bioinformatic resources to inform hypothesis-driven studies with therapeutic goals. PMID:25096367

  10. Stretched exponential dynamics of coupled logistic maps on a small-world network

    NASA Astrophysics Data System (ADS)

    Mahajan, Ashwini V.; Gade, Prashant M.

    2018-02-01

    We investigate the dynamic phase transition from partially or fully arrested state to spatiotemporal chaos in coupled logistic maps on a small-world network. Persistence of local variables in a coarse grained sense acts as an excellent order parameter to study this transition. We investigate the phase diagram by varying coupling strength and small-world rewiring probability p of nonlocal connections. The persistent region is a compact region bounded by two critical lines where band-merging crisis occurs. On one critical line, the persistent sites shows a nonexponential (stretched exponential) decay for all p while for another one, it shows crossover from nonexponential to exponential behavior as p → 1 . With an effectively antiferromagnetic coupling, coupling to two neighbors on either side leads to exchange frustration. Apart from exchange frustration, non-bipartite topology and nonlocal couplings in a small-world network could be a reason for anomalous relaxation. The distribution of trap times in asymptotic regime has a long tail as well. The dependence of temporal evolution of persistence on initial conditions is studied and a scaling form for persistence after waiting time is proposed. We present a simple possible model for this behavior.

  11. INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY: Spiral Wave in Small-World Networks of Hodgkin-Huxley Neurons

    NASA Astrophysics Data System (ADS)

    Ma, Jun; Yang, Li-Jian; Wu, Ying; Zhang, Cai-Rong

    2010-09-01

    The effect of small-world connection and noise on the formation and transition of spiral wave in the networks of Hodgkin-Huxley neurons are investigated in detail. Some interesting results are found in our numerical studies. i) The quiescent neurons are activated to propagate electric signal to others by generating and developing spiral wave from spiral seed in small area. ii) A statistical factor is defined to describe the collective properties and phase transition induced by the topology of networks and noise. iii) Stable rotating spiral wave can be generated and keeps robust when the rewiring probability is below certain threshold, otherwise, spiral wave can not be developed from the spiral seed and spiral wave breakup occurs for a stable rotating spiral wave. iv) Gaussian white noise is introduced on the membrane of neurons to study the noise-induced phase transition on spiral wave in small-world networks of neurons. It is confirmed that Gaussian white noise plays active role in supporting and developing spiral wave in the networks of neurons, and appearance of smaller factor of synchronization indicates high possibility to induce spiral wave.

  12. Audio-tactile integration in congenitally and late deaf cochlear implant users.

    PubMed

    Nava, Elena; Bottari, Davide; Villwock, Agnes; Fengler, Ineke; Büchner, Andreas; Lenarz, Thomas; Röder, Brigitte

    2014-01-01

    Several studies conducted in mammals and humans have shown that multisensory processing may be impaired following congenital sensory loss and in particular if no experience is achieved within specific early developmental time windows known as sensitive periods. In this study we investigated whether basic multisensory abilities are impaired in hearing-restored individuals with deafness acquired at different stages of development. To this aim, we tested congenitally and late deaf cochlear implant (CI) recipients, age-matched with two groups of hearing controls, on an audio-tactile redundancy paradigm, in which reaction times to unimodal and crossmodal redundant signals were measured. Our results showed that both congenitally and late deaf CI recipients were able to integrate audio-tactile stimuli, suggesting that congenital and acquired deafness does not prevent the development and recovery of basic multisensory processing. However, we found that congenitally deaf CI recipients had a lower multisensory gain compared to their matched controls, which may be explained by their faster responses to tactile stimuli. We discuss this finding in the context of reorganisation of the sensory systems following sensory loss and the possibility that these changes cannot be "rewired" through auditory reafferentation.

  13. Elucidation of the binding preferences of peptide recognition modules: SH3 and PDZ domains.

    PubMed

    Teyra, Joan; Sidhu, Sachdev S; Kim, Philip M

    2012-08-14

    Peptide-binding domains play a critical role in regulation of cellular processes by mediating protein interactions involved in signalling. In recent years, the development of large-scale technologies has enabled exhaustive studies on the peptide recognition preferences for a number of peptide-binding domain families. These efforts have provided significant insights into the binding specificities of these modular domains. Many research groups have taken advantage of this unprecedented volume of specificity data and have developed a variety of new algorithms for the prediction of binding specificities of peptide-binding domains and for the prediction of their natural binding targets. This knowledge has also been applied to the design of synthetic peptide-binding domains in order to rewire protein-protein interaction networks. Here, we describe how these experimental technologies have impacted on our understanding of peptide-binding domain specificities and on the elucidation of their natural ligands. We discuss SH3 and PDZ domains as well characterized examples, and we explore the feasibility of expanding high-throughput experiments to other peptide-binding domains. Copyright © 2012. Published by Elsevier B.V.

  14. In vivo imaging of neural reactive plasticity after laser axotomy in cerebellar cortex

    NASA Astrophysics Data System (ADS)

    Allegra Mascaro, A. L.; Sacconi, L.; Maco, B.; Knott, G. W.; Pavone, F. S.

    2014-03-01

    Multi-photon imaging provides valuable insights into the continuous reshaping of neuronal connectivity in live brain. We previously showed that single neuron or even single spine ablation can be achieved by laser-mediated dissection. Furthermore, single axonal branches can be dissected avoiding collateral damage to the adjacent dendrite and the formation of a persistent glial scar. Here, we describe the procedure to address the structural plasticity of cerebellar climbing fibers by combining two-photon in vivo imaging with laser axotomy in a mouse model. This method is a powerful tool to study the basic mechanisms of axonal rewiring after single branch axotomy in vivo. In fact, despite the denervated area being very small, the injured axons consistently reshape the connectivity with surrounding neurons, as indicated by the increase in the turnover of synaptic boutons. In addition, time-lapse imaging reveals the sprouting of new branches from the injured axon. Newly formed branches with varicosities suggest the possible formation of synaptic contacts. Correlative light and electron microscopy revealed that the sprouted branch contains large numbers of vesicles, with varicosities in the close vicinity of Purkinje dendrites.

  15. Metabolomics in chemical ecology.

    PubMed

    Kuhlisch, Constanze; Pohnert, Georg

    2015-07-01

    Chemical ecology elucidates the nature and role of natural products as mediators of organismal interactions. The emerging techniques that can be summarized under the concept of metabolomics provide new opportunities to study such environmentally relevant signaling molecules. Especially comparative tools in metabolomics enable the identification of compounds that are regulated during interaction situations and that might play a role as e.g. pheromones, allelochemicals or in induced and activated defenses. This approach helps overcoming limitations of traditional bioassay-guided structure elucidation approaches. But the power of metabolomics is not limited to the comparison of metabolic profiles of interacting partners. Especially the link to other -omics techniques helps to unravel not only the compounds in question but the entire biosynthetic and genetic re-wiring, required for an ecological response. This review comprehensively highlights successful applications of metabolomics in chemical ecology and discusses existing limitations of these novel techniques. It focuses on recent developments in comparative metabolomics and discusses the use of metabolomics in the systems biology of organismal interactions. It also outlines the potential of large metabolomics initiatives for model organisms in the field of chemical ecology.

  16. Principles of long noncoding RNA evolution derived from direct comparison of transcriptomes in 17 species.

    PubMed

    Hezroni, Hadas; Koppstein, David; Schwartz, Matthew G; Avrutin, Alexandra; Bartel, David P; Ulitsky, Igor

    2015-05-19

    The inability to predict long noncoding RNAs from genomic sequence has impeded the use of comparative genomics for studying their biology. Here, we develop methods that use RNA sequencing (RNA-seq) data to annotate the transcriptomes of 16 vertebrates and the echinoid sea urchin, uncovering thousands of previously unannotated genes, most of which produce long intervening noncoding RNAs (lincRNAs). Although in each species, >70% of lincRNAs cannot be traced to homologs in species that diverged >50 million years ago, thousands of human lincRNAs have homologs with similar expression patterns in other species. These homologs share short, 5'-biased patches of sequence conservation nested in exonic architectures that have been extensively rewired, in part by transposable element exonization. Thus, over a thousand human lincRNAs are likely to have conserved functions in mammals, and hundreds beyond mammals, but those functions require only short patches of specific sequences and can tolerate major changes in gene architecture. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Rewiring AMPK and mitochondrial retrograde signaling for metabolic control of aging and histone acetylation in respiratory-defective cells.

    PubMed

    Friis, R Magnus N; Glaves, John Paul; Huan, Tao; Li, Liang; Sykes, Brian D; Schultz, Michael C

    2014-04-24

    Abnormal respiratory metabolism plays a role in numerous human disorders. We find that regulation of overall histone acetylation is perturbed in respiratory-incompetent (ρ(0)) yeast. Because histone acetylation is highly sensitive to acetyl-coenzyme A (acetyl-CoA) availability, we sought interventions that suppress this ρ(0) phenotype through reprogramming metabolism. Nutritional intervention studies led to the discovery that genetic coactivation of the mitochondrion-to-nucleus retrograde (RTG) response and the AMPK (Snf1) pathway prevents abnormal histone deacetylation in ρ(0) cells. Metabolic profiling of signaling mutants uncovered links between chromatin-dependent phenotypes of ρ(0) cells and metabolism of ATP, acetyl-CoA, glutathione, branched-chain amino acids, and the storage carbohydrate trehalose. Importantly, RTG/AMPK activation reprograms energy metabolism to increase the supply of acetyl-CoA to lysine acetyltransferases and extend the chronological lifespan of ρ(0) cells. Our results strengthen the framework for rational design of nutrient supplementation schemes and drug-discovery initiatives aimed at mimicking the therapeutic benefits of dietary interventions. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Brain anatomical networks in early human brain development.

    PubMed

    Fan, Yong; Shi, Feng; Smith, Jeffrey Keith; Lin, Weili; Gilmore, John H; Shen, Dinggang

    2011-02-01

    Recent neuroimaging studies have demonstrated that human brain networks have economic small-world topology and modular organization, enabling efficient information transfer among brain regions. However, it remains largely unknown how the small-world topology and modular organization of human brain networks emerge and develop. Using longitudinal MRI data of 28 healthy pediatric subjects, collected at their ages of 1 month, 1 year, and 2 years, we analyzed development patterns of brain anatomical networks derived from morphological correlations of brain regional volumes. The results show that the brain network of 1-month-olds has the characteristically economic small-world topology and nonrandom modular organization. The network's cost efficiency increases with the brain development to 1 year and 2 years, so does the modularity, providing supportive evidence for the hypothesis that the small-world topology and the modular organization of brain networks are established during early brain development to support rapid synchronization and information transfer with minimal rewiring cost, as well as to balance between local processing and global integration of information. Copyright © 2010. Published by Elsevier Inc.

  19. Rewiring cells: synthetic biology as a tool to interrogate the organizational principles of living systems.

    PubMed

    Bashor, Caleb J; Horwitz, Andrew A; Peisajovich, Sergio G; Lim, Wendell A

    2010-01-01

    The living cell is an incredibly complex entity, and the goal of predictively and quantitatively understanding its function is one of the next great challenges in biology. Much of what we know about the cell concerns its constituent parts, but to a great extent we have yet to decode how these parts are organized to yield complex physiological function. Classically, we have learned about the organization of cellular networks by disrupting them through genetic or chemical means. The emerging discipline of synthetic biology offers an additional, powerful approach to study systems. By rearranging the parts that comprise existing networks, we can gain valuable insight into the hierarchical logic of the networks and identify the modular building blocks that evolution uses to generate innovative function. In addition, by building minimal toy networks, one can systematically explore the relationship between network structure and function. Here, we outline recent work that uses synthetic biology approaches to investigate the organization and function of cellular networks, and describe a vision for a synthetic biology toolkit that could be used to interrogate the design principles of diverse systems.

  20. Modularity, pollination systems, and interaction turnover in plant-pollinator networks across space.

    PubMed

    Carstensen, Daniel W; Sabatino, Malena; Morellato, Leonor Patricia C

    2016-05-01

    Mutualistic interaction networks have been shown to be structurally conserved over space and time while pairwise interactions show high variability. In such networks, modularity is the division of species into compartments, or modules, where species within modules share more interactions with each other than they do with species from other modules. Such a modular structure is common in mutualistic networks and several evolutionary and ecological mechanisms have been proposed as underlying drivers. One prominent explanation is the existence of pollination syndromes where flowers tend to attract certain pollinators as determined by a set of traits. We investigate the modularity of seven community level plant-pollinator networks sampled in rupestrian grasslands, or campos rupestres, in SE Brazil. Defining pollination systems as corresponding groups of flower syndromes and pollinator functional groups, we test the two hypotheses that (1) interacting species from the same pollination system are more often assigned to the same module than interacting species from different pollination systems and; that (2) interactions between species from the same pollination system are more consistent across space than interactions between species from different pollination systems. Specifically we ask (1) whether networks are consistently modular across space; (2) whether interactions among species of the same pollination system occur more often inside modules, compared to interactions among species of different pollination systems, and finally; (3) whether the spatial variation in interaction identity, i.e., spatial interaction rewiring, is affected by trait complementarity among species as indicated by pollination systems. We confirm that networks are consistently modular across space and that interactions within pollination systems principally occur inside modules. Despite a strong tendency, we did not find a significant effect of pollination systems on the spatial consistency of pairwise interactions. These results indicate that the spatial rewiring of interactions could be constrained by pollination systems, resulting in conserved network structures in spite of high variation in pairwise interactions. Our findings suggest a relevant role of pollination systems in structuring plant-pollinator networks and we argue that structural patterns at the sub-network level can help us to fully understand how and why interactions vary across space and time.

  1. Bayesian model of signal rewiring reveals mechanisms of gene dysregulation in acquired drug resistance in breast cancer

    PubMed Central

    Azad, A. K. M.; Keith, Jonathan M.

    2017-01-01

    Small molecule inhibitors, such as lapatinib, are effective against breast cancer in clinical trials, but tumor cells ultimately acquire resistance to the drug. Maintaining sensitization to drug action is essential for durable growth inhibition. Recently, adaptive reprogramming of signaling circuitry has been identified as a major cause of acquired resistance. We developed a computational framework using a Bayesian statistical approach to model signal rewiring in acquired resistance. We used the p1-model to infer potential aberrant gene-pairs with differential posterior probabilities of appearing in resistant-vs-parental networks. Results were obtained using matched gene expression profiles under resistant and parental conditions. Using two lapatinib-treated ErbB2-positive breast cancer cell-lines: SKBR3 and BT474, our method identified similar dysregulated signaling pathways including EGFR-related pathways as well as other receptor-related pathways, many of which were reported previously as compensatory pathways of EGFR-inhibition via signaling cross-talk. A manual literature survey provided strong evidence that aberrant signaling activities in dysregulated pathways are closely related to acquired resistance in EGFR tyrosine kinase inhibitors. Our approach predicted literature-supported dysregulated pathways complementary to both node-centric (SPIA, DAVID, and GATHER) and edge-centric (ESEA and PAGI) methods. Moreover, by proposing a novel pattern of aberrant signaling called V-structures, we observed that genes were dysregulated in resistant-vs-sensitive conditions when they were involved in the switch of dependencies from targeted to bypass signaling events. A literature survey of some important V-structures suggested they play a role in breast cancer metastasis and/or acquired resistance to EGFR-TKIs, where the mRNA changes of TGFBR2, LEF1 and TP53 in resistant-vs-sensitive conditions were related to the dependency switch from targeted to bypass signaling links. Our results suggest many signaling pathway structures are compromised in acquired resistance, and V-structures of aberrant signaling within/among those pathways may provide further insights into the bypass mechanism of targeted inhibition. PMID:28288164

  2. Exaptation of Transposable Elements into Novel Cis-Regulatory Elements: Is the Evidence Always Strong?

    PubMed Central

    de Souza, Flávio S.J.; Franchini, Lucía F.; Rubinstein, Marcelo

    2013-01-01

    Transposable elements (TEs) are mobile genetic sequences that can jump around the genome from one location to another, behaving as genomic parasites. TEs have been particularly effective in colonizing mammalian genomes, and such heavy TE load is expected to have conditioned genome evolution. Indeed, studies conducted both at the gene and genome levels have uncovered TE insertions that seem to have been co-opted—or exapted—by providing transcription factor binding sites (TFBSs) that serve as promoters and enhancers, leading to the hypothesis that TE exaptation is a major factor in the evolution of gene regulation. Here, we critically review the evidence for exaptation of TE-derived sequences as TFBSs, promoters, enhancers, and silencers/insulators both at the gene and genome levels. We classify the functional impact attributed to TE insertions into four categories of increasing complexity and argue that so far very few studies have conclusively demonstrated exaptation of TEs as transcriptional regulatory regions. We also contend that many genome-wide studies dealing with TE exaptation in recent lineages of mammals are still inconclusive and that the hypothesis of rapid transcriptional regulatory rewiring mediated by TE mobilization must be taken with caution. Finally, we suggest experimental approaches that may help attributing higher-order functions to candidate exapted TEs. PMID:23486611

  3. Dysfunctional whole brain networks in mild cognitive impairment patients: an fMRI study

    NASA Astrophysics Data System (ADS)

    Liu, Zhenyu; Bai, Lijun; Dai, Ruwei; Zhong, Chongguang; Xue, Ting; You, Youbo; Tian, Jie

    2012-03-01

    Mild cognitive impairment (MCI) was recognized as the prodromal stage of Alzheimer's disease (AD). Recent researches have shown that cognitive and memory decline in AD patients is coupled with losses of small-world attributes. However, few studies pay attention to the characteristics of the whole brain networks in MCI patients. In the present study, we investigated the topological properties of the whole brain networks utilizing graph theoretical approaches in 16 MCI patients, compared with 18 age-matched healthy subjects as a control. Both MCI patients and normal controls showed small-world architectures, with large clustering coefficients and short characteristic path lengths. We detected significantly longer characteristic path length in MCI patients compared with normal controls at the low sparsity. The longer characteristic path lengths in MCI indicated disrupted information processing among distant brain regions. Compared with normal controls, MCI patients showed decreased nodal centrality in the brain areas of the angular gyrus, heschl gyrus, hippocampus and superior parietal gyrus, while increased nodal centrality in the calcarine, inferior occipital gyrus and superior frontal gyrus. These changes in nodal centrality suggested a widespread rewiring in MCI patients, which may be an integrated reflection of reorganization of the brain networks accompanied with the cognitive decline. Our findings may be helpful for further understanding the pathological mechanisms of MCI.

  4. Exploring the evolutionary mechanism of complex supply chain systems using evolving hypergraphs

    NASA Astrophysics Data System (ADS)

    Suo, Qi; Guo, Jin-Li; Sun, Shiwei; Liu, Han

    2018-01-01

    A new evolutionary model is proposed to describe the characteristics and evolution pattern of supply chain systems using evolving hypergraphs, in which nodes represent enterprise entities while hyperedges represent the relationships among diverse trades. The nodes arrive at the system in accordance with a Poisson process, with the evolving process incorporating the addition of new nodes, linking of old nodes, and rewiring of links. Grounded in the Poisson process theory and continuum theory, the stationary average hyperdegree distribution is shown to follow a shifted power law (SPL), and the theoretical predictions are consistent with the results of numerical simulations. Testing the impact of parameters on the model yields a positive correlation between hyperdegree and degree. The model also uncovers macro characteristics of the relationships among enterprises due to the microscopic interactions among individuals.

  5. Regulatory RNAs

    PubMed Central

    Vazquez-Anderson, Jorge; Contreras, Lydia M

    2013-01-01

    RNAs have many important functional properties, including that they are independently controllable and highly tunable. As a result of these advantageous properties, their use in a myriad of sophisticated devices has been widely explored. Yet, the exploitation of RNAs for synthetic applications is highly dependent on the ability to characterize the many new molecules that continue to be discovered by large-scale sequencing and high-throughput screening techniques. In this review, we present an exhaustive survey of the most recent synthetic bacterial riboswitches and small RNAs while emphasizing their virtues in gene expression management. We also explore the use of these RNA components as building blocks in the RNA synthetic biology toolbox and discuss examples of synthetic RNA components used to rewire bacterial regulatory circuitry. We anticipate that this field will expand its catalog of smart devices by mimicking and manipulating natural RNA mechanisms and functions. PMID:24356572

  6. Metabolic support for the heart: complementary therapy for heart failure?

    PubMed

    Heggermont, Ward A; Papageorgiou, Anna-Pia; Heymans, Stephane; van Bilsen, Marc

    2016-12-01

    The failing heart has an increased metabolic demand and at the same time suffers from impaired energy efficiency, which is a detrimental combination. Therefore, therapies targeting the energy-deprived failing heart and rewiring cardiac metabolism are of great potential, but are lacking in daily clinical practice. Metabolic impairment in heart failure patients has been well characterized for patients with reduced ejection fraction, and is coming of age in patients with 'preserved' ejection fraction. Targeting cardiomyocyte metabolism in heart failure could complement current heart failure treatments that do improve cardiovascular haemodynamics, but not the energetic status of the heart. In this review, we discuss the hallmarks of normal cardiac metabolism, typical metabolic disturbances in heart failure, and past and present therapeutic targets that impact on cardiac metabolism. © 2016 The Authors. European Journal of Heart Failure © 2016 European Society of Cardiology.

  7. Centrality in the host-pathogen interactome is associated with pathogen fitness during infection.

    PubMed

    Crua Asensio, Núria; Muñoz Giner, Elisabet; de Groot, Natalia Sánchez; Torrent Burgas, Marc

    2017-01-16

    To perform their functions proteins must interact with each other, but how these interactions influence bacterial infection remains elusive. Here we demonstrate that connectivity in the host-pathogen interactome is directly related to pathogen fitness during infection. Using Y. pestis as a model organism, we show that the centrality-lethality rule holds for pathogen fitness during infection but only when the host-pathogen interactome is considered. Our results suggest that the importance of pathogen proteins during infection is directly related to their number of interactions with the host. We also show that pathogen proteins causing an extensive rewiring of the host interactome have a higher impact in pathogen fitness during infection. Hence, we conclude that hubs in the host-pathogen interactome should be explored as promising targets for antimicrobial drug design.

  8. Antiviral Goes Viral: Harnessing CRISPR/Cas9 to Combat Viruses in Humans.

    PubMed

    Soppe, Jasper Adriaan; Lebbink, Robert Jan

    2017-10-01

    The clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated (Cas) systems are RNA-guided sequence-specific prokaryotic antiviral immune systems. In prokaryotes, small RNA molecules guide Cas effector endonucleases to invading foreign genetic elements in a sequence-dependent manner, resulting in DNA cleavage by the endonuclease upon target binding. A rewired CRISPR/Cas9 system can be used for targeted and precise genome editing in eukaryotic cells. CRISPR/Cas has also been harnessed to target human pathogenic viruses as a potential new antiviral strategy. Here, we review recent CRISPR/Cas9-based approaches to combat specific human viruses in humans and discuss challenges that need to be overcome before CRISPR/Cas9 may be used in the clinic as an antiviral strategy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. A chemical arms race at sea mediates algal host-virus interactions.

    PubMed

    Bidle, Kay D; Vardi, Assaf

    2011-08-01

    Despite the critical importance of viruses in shaping marine microbial ecosystems and lubricating upper ocean biogeochemical cycles, relatively little is known about the molecular mechanisms mediating phytoplankton host-virus interactions. Recent work in algal host-virus systems has begun to shed novel insight into the elegant strategies of viral infection and subcellular regulation of cell fate, which not only reveal tantalizing aspects of viral replication and host resistance strategies but also provide new diagnostic tools toward elucidating the impact of virus-mediated processes in the ocean. Widespread lateral gene transfer between viruses and their hosts plays a prominent role in host-virus diversification and in the regulation of host-virus infection mechanisms by allowing viruses to manipulate and 'rewire' host metabolic pathways to facilitate infection. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Dynamic Evolution Model Based on Social Network Services

    NASA Astrophysics Data System (ADS)

    Xiong, Xi; Gou, Zhi-Jian; Zhang, Shi-Bin; Zhao, Wen

    2013-11-01

    Based on the analysis of evolutionary characteristics of public opinion in social networking services (SNS), in the paper we propose a dynamic evolution model, in which opinions are coupled with topology. This model shows the clustering phenomenon of opinions in dynamic network evolution. The simulation results show that the model can fit the data from a social network site. The dynamic evolution of networks accelerates the opinion, separation and aggregation. The scale and the number of clusters are influenced by confidence limit and rewiring probability. Dynamic changes of the topology reduce the number of isolated nodes, while the increased confidence limit allows nodes to communicate more sufficiently. The two effects make the distribution of opinion more neutral. The dynamic evolution of networks generates central clusters with high connectivity and high betweenness, which make it difficult to control public opinions in SNS.

  11. Centrality in the host-pathogen interactome is associated with pathogen fitness during infection

    NASA Astrophysics Data System (ADS)

    Crua Asensio, Núria; Muñoz Giner, Elisabet; de Groot, Natalia Sánchez; Torrent Burgas, Marc

    2017-01-01

    To perform their functions proteins must interact with each other, but how these interactions influence bacterial infection remains elusive. Here we demonstrate that connectivity in the host-pathogen interactome is directly related to pathogen fitness during infection. Using Y. pestis as a model organism, we show that the centrality-lethality rule holds for pathogen fitness during infection but only when the host-pathogen interactome is considered. Our results suggest that the importance of pathogen proteins during infection is directly related to their number of interactions with the host. We also show that pathogen proteins causing an extensive rewiring of the host interactome have a higher impact in pathogen fitness during infection. Hence, we conclude that hubs in the host-pathogen interactome should be explored as promising targets for antimicrobial drug design.

  12. Computer modeling of Epilepsy

    PubMed Central

    Lytton, William W.

    2009-01-01

    Preface Epilepsy is a complex set of disorders that can involve many areas of cortex as well as underlying deep brain systems. The myriad manifestations of seizures, as varied as déjà vu and olfactory hallucination, can thereby give researchers insights into regional functions and relations. Epilepsy is also complex genetically and pathophysiologically, involving microscopic (ion channels, synaptic proteins), macroscopic (brain trauma and rewiring) and intermediate changes in a complex interplay of causality. It has long been recognized that computer modeling will be required to disentangle causality, to better understand seizure spread and to understand and eventually predict treatment efficacy. Over the past few years, substantial progress has been made modeling epilepsy at levels ranging from the molecular to the socioeconomic. We review these efforts and connect them to the medical goals of understanding and treating this disorder. PMID:18594562

  13. Metabolic engineering of microorganisms for biofuels production: from bugs to synthetic biology to fuels.

    PubMed

    Lee, Sung Kuk; Chou, Howard; Ham, Timothy S; Lee, Taek Soon; Keasling, Jay D

    2008-12-01

    The ability to generate microorganisms that can produce biofuels similar to petroleum-based transportation fuels would allow the use of existing engines and infrastructure and would save an enormous amount of capital required for replacing the current infrastructure to accommodate biofuels that have properties significantly different from petroleum-based fuels. Several groups have demonstrated the feasibility of manipulating microbes to produce molecules similar to petroleum-derived products, albeit at relatively low productivity (e.g. maximum butanol production is around 20 g/L). For cost-effective production of biofuels, the fuel-producing hosts and pathways must be engineered and optimized. Advances in metabolic engineering and synthetic biology will provide new tools for metabolic engineers to better understand how to rewire the cell in order to create the desired phenotypes for the production of economically viable biofuels.

  14. Increase in cellular triacylglycerol content and emergence of large ER-associated lipid droplets in the absence of CDP-DG synthase function

    PubMed Central

    He, Yue; Yam, Candice; Pomraning, Kyle; Chin, Jacqueline S. R.; Yew, Joanne Y.; Freitag, Michael; Oliferenko, Snezhana

    2014-01-01

    Excess fatty acids and sterols are stored as triacylglycerols and sterol esters in specialized cellular organelles, called lipid droplets. Understanding what determines the cellular amount of neutral lipids and their packaging into lipid droplets is of fundamental and applied interest. Using two species of fission yeast, we show that cycling cells deficient in the function of the ER-resident CDP-DG synthase Cds1 exhibit markedly increased triacylglycerol content and assemble large lipid droplets closely associated with the ER membranes. We demonstrate that these unusual structures recruit the triacylglycerol synthesis machinery and grow by expansion rather than by fusion. Our results suggest that interfering with the CDP-DG route of phosphatidic acid utilization rewires cellular metabolism to adopt a triacylglycerol-rich lifestyle reliant on the Kennedy pathway. PMID:25318672

  15. Engineering Cellular Metabolism.

    PubMed

    Nielsen, Jens; Keasling, Jay D

    2016-03-10

    Metabolic engineering is the science of rewiring the metabolism of cells to enhance production of native metabolites or to endow cells with the ability to produce new products. The potential applications of such efforts are wide ranging, including the generation of fuels, chemicals, foods, feeds, and pharmaceuticals. However, making cells into efficient factories is challenging because cells have evolved robust metabolic networks with hard-wired, tightly regulated lines of communication between molecular pathways that resist efforts to divert resources. Here, we will review the current status and challenges of metabolic engineering and will discuss how new technologies can enable metabolic engineering to be scaled up to the industrial level, either by cutting off the lines of control for endogenous metabolism or by infiltrating the system with disruptive, heterologous pathways that overcome cellular regulation. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Ancestral whole-genome duplication in the marine chelicerate horseshoe crabs

    PubMed Central

    Kenny, N J; Chan, K W; Nong, W; Qu, Z; Maeso, I; Yip, H Y; Chan, T F; Kwan, H S; Holland, P W H; Chu, K H; Hui, J H L

    2016-01-01

    Whole-genome duplication (WGD) results in new genomic resources that can be exploited by evolution for rewiring genetic regulatory networks in organisms. In metazoans, WGD occurred before the last common ancestor of vertebrates, and has been postulated as a major evolutionary force that contributed to their speciation and diversification of morphological structures. Here, we have sequenced genomes from three of the four extant species of horseshoe crabs—Carcinoscorpius rotundicauda, Limulus polyphemus and Tachypleus tridentatus. Phylogenetic and sequence analyses of their Hox and other homeobox genes, which encode crucial transcription factors and have been used as indicators of WGD in animals, strongly suggests that WGD happened before the last common ancestor of these marine chelicerates >135 million years ago. Signatures of subfunctionalisation of paralogues of Hox genes are revealed in the appendages of two species of horseshoe crabs. Further, residual homeobox pseudogenes are observed in the three lineages. The existence of WGD in the horseshoe crabs, noted for relative morphological stasis over geological time, suggests that genomic diversity need not always be reflected phenotypically, in contrast to the suggested situation in vertebrates. This study provides evidence of ancient WGD in the ecdysozoan lineage, and reveals new opportunities for studying genomic and regulatory evolution after WGD in the Metazoa. PMID:26419336

  17. The Watcombe Housing Study: the short term effect of improving housing conditions on the health of residents.

    PubMed

    Barton, Andy; Basham, Meryl; Foy, Chris; Buckingham, Ken; Somerville, Margaret

    2007-09-01

    To assess the short term health effects of improving housing. Randomised to waiting list. 119 council owned houses in south Devon, UK. About 480 residents of these houses. Upgrading houses (including central heating, ventilation, rewiring, insulation, and re-roofing) in two phases a year apart. All residents completed an annual health questionnaire: SF36 and GHQ12 (adults). Residents reporting respiratory illness or arthritis were interviewed using condition-specific questionnaires, the former also completing peak flow and symptom diaries (children) or spirometry (adults). Data on health service use and time lost from school were collected. Interventions improved energy efficiency. For those living in intervention houses, non-asthma-related chest problems (Mann-Whitney test, p = 0.005) and the combined asthma symptom score for adults (Mann-Whitney test, z = 2.7, p = 0.007) diminished significantly compared with control houses. No difference between intervention and control houses was seen for SF36 or GHQ12. Rigorous study designs for the evaluation of complex public health and community based interventions are possible. Quantitatively measured health benefits are small, but as health benefits were measured over a short time scale, there may have been insufficient time for measurable improvements in general and disease-specific health to become apparent.

  18. CrosstalkNet: A Visualization Tool for Differential Co-expression Networks and Communities.

    PubMed

    Manem, Venkata; Adam, George Alexandru; Gruosso, Tina; Gigoux, Mathieu; Bertos, Nicholas; Park, Morag; Haibe-Kains, Benjamin

    2018-04-15

    Variations in physiological conditions can rewire molecular interactions between biological compartments, which can yield novel insights into gain or loss of interactions specific to perturbations of interest. Networks are a promising tool to elucidate intercellular interactions, yet exploration of these large-scale networks remains a challenge due to their high dimensionality. To retrieve and mine interactions, we developed CrosstalkNet, a user friendly, web-based network visualization tool that provides a statistical framework to infer condition-specific interactions coupled with a community detection algorithm for bipartite graphs to identify significantly dense subnetworks. As a case study, we used CrosstalkNet to mine a set of 54 and 22 gene-expression profiles from breast tumor and normal samples, respectively, with epithelial and stromal compartments extracted via laser microdissection. We show how CrosstalkNet can be used to explore large-scale co-expression networks and to obtain insights into the biological processes that govern cross-talk between different tumor compartments. Significance: This web application enables researchers to mine complex networks and to decipher novel biological processes in tumor epithelial-stroma cross-talk as well as in other studies of intercompartmental interactions. Cancer Res; 78(8); 2140-3. ©2018 AACR . ©2018 American Association for Cancer Research.

  19. Coordination sequences and information spreading in small-world networks

    NASA Astrophysics Data System (ADS)

    Herrero, Carlos P.

    2002-10-01

    We study the spread of information in small-world networks generated from different d-dimensional regular lattices, with d=1, 2, and 3. With this purpose, we analyze by numerical simulations the behavior of the coordination sequence, e.g., the average number of sites C(n) that can be reached from a given node of the network in n steps along its bonds. For sufficiently large networks, we find an asymptotic behavior C(n)~ρn, with a constant ρ that depends on the network dimension d and on the rewiring probability p (which measures the disorder strength of a given network). A simple model of information spreading in these networks is studied, assuming that only a fraction q of the network sites are active. The number of active nodes reached in n steps has an asymptotic form λn, λ being a constant that depends on p and q, as well as on the dimension d of the underlying lattice. The information spreading presents two different regimes depending on the value of λ: For λ>1 the information propagates along the whole system, and for λ<1 the spreading is damped and the information remains confined in a limited region of the network. We discuss the connection of these results with site percolation in small-world networks.

  20. Removing brakes on adult brain plasticity: from molecular to behavioral interventions

    PubMed Central

    Bavelier, D.; Levi, D.M.; Li, R.W.; Dan, Y.; Hensch, T.K.

    2010-01-01

    Adult brain plasticity, although possible, remains more restricted in scope than during development. Here, we address conditions under which circuit rewiring may be facilitated in the mature brain. At a cellular and molecular level, adult plasticity is actively limited. Some of these “brakes” are structural, such as peri-neuronal nets or myelin, which inhibit neurite outgrowth. Others are functional, acting directly upon excitatory-inhibitory balance within local circuits. Plasticity in adulthood can be induced either by lifting these brakes through invasive interventions or by exploiting endogenous permissive factors, such as neuromodulators. Using the amblyopic visual system as a model, we discuss genetic, pharmacological, and environmental removal of brakes to enable recovery of vision in adult rodents. Although these mechanisms remain largely uncharted in the human, we consider how they may provide a biological foundation for the remarkable increase in plasticity after action video game play by amblyopic subjects. PMID:21068299

  1. Mandatory neurotechnological treatment: ethical issues.

    PubMed

    Focquaert, Farah

    2014-02-01

    What if neurofeedback or other types of neurotechnological treatment, by itself or in combination with behavioral treatment, could achieve a successful "rewiring" of the psychopath's brain? Imagine that such treatments exist and that they provide a better long-term risk-minimizing strategy compared to imprisonment. Would it be ethical to offer such treatments as a condition of probation, parole, or (early) prison release? In this paper, I argue that it can be ethical to offer effective, non-invasive neurotechnological treatments to offenders as a condition of probation, parole, or (early) prison release provided that: (1) the status quo is in no way cruel, inhuman, degrading, or in some other way wrong, (2) the treatment option is in no way cruel, inhuman, degrading, or in some other way wrong, (3) the treatment is in the best interests of the offender, and (4) the offender gives his/her informed consent.

  2. Controlling allosteric networks in proteins

    NASA Astrophysics Data System (ADS)

    Dokholyan, Nikolay

    2013-03-01

    We present a novel methodology based on graph theory and discrete molecular dynamics simulations for delineating allosteric pathways in proteins. We use this methodology to uncover the structural mechanisms responsible for coupling of distal sites on proteins and utilize it for allosteric modulation of proteins. We will present examples where inference of allosteric networks and its rewiring allows us to ``rescue'' cystic fibrosis transmembrane conductance regulator (CFTR), a protein associated with fatal genetic disease cystic fibrosis. We also use our methodology to control protein function allosterically. We design a novel protein domain that can be inserted into identified allosteric site of target protein. Using a drug that binds to our domain, we alter the function of the target protein. We successfully tested this methodology in vitro, in living cells and in zebrafish. We further demonstrate transferability of our allosteric modulation methodology to other systems and extend it to become ligh-activatable.

  3. Network pharmacology of JAK inhibitors

    PubMed Central

    Moodley, Devapregasan; Yoshida, Hideyuki; Mostafavi, Sara; Asinovski, Natasha; Ortiz-Lopez, Adriana; Symanowicz, Peter; Telliez, Jean-Baptiste; Hegen, Martin; Clark, James D.; Mathis, Diane; Benoist, Christophe

    2016-01-01

    Small-molecule inhibitors of the Janus kinase family (JAKis) are clinically efficacious in multiple autoimmune diseases, albeit with increased risk of certain infections. Their precise mechanism of action is unclear, with JAKs being signaling hubs for several cytokines. We assessed the in vivo impact of pan- and isoform-specific JAKi in mice by immunologic and genomic profiling. Effects were broad across the immunogenomic network, with overlap between inhibitors. Natural killer (NK) cell and macrophage homeostasis were most immediately perturbed, with network-level analysis revealing a rewiring of coregulated modules of NK cell transcripts. The repression of IFN signature genes after repeated JAKi treatment continued even after drug clearance, with persistent changes in chromatin accessibility and phospho-STAT responsiveness to IFN. Thus, clinical use and future development of JAKi might need to balance effects on immunological networks, rather than expect that JAKis affect a particular cytokine response and be cued to long-lasting epigenomic modifications rather than by short-term pharmacokinetics. PMID:27516546

  4. Paper-based Synthetic Gene Networks

    PubMed Central

    Pardee, Keith; Green, Alexander A.; Ferrante, Tom; Cameron, D. Ewen; DaleyKeyser, Ajay; Yin, Peng; Collins, James J.

    2014-01-01

    Synthetic gene networks have wide-ranging uses in reprogramming and rewiring organisms. To date, there has not been a way to harness the vast potential of these networks beyond the constraints of a laboratory or in vivo environment. Here, we present an in vitro paper-based platform that provides a new venue for synthetic biologists to operate, and a much-needed medium for the safe deployment of engineered gene circuits beyond the lab. Commercially available cell-free systems are freeze-dried onto paper, enabling the inexpensive, sterile and abiotic distribution of synthetic biology-based technologies for the clinic, global health, industry, research and education. For field use, we create circuits with colorimetric outputs for detection by eye, and fabricate a low-cost, electronic optical interface. We demonstrate this technology with small molecule and RNA actuation of genetic switches, rapid prototyping of complex gene circuits, and programmable in vitro diagnostics, including glucose sensors and strain-specific Ebola virus sensors. PMID:25417167

  5. Synthetic Biology Expands the Industrial Potential of Yarrowia lipolytica.

    PubMed

    Markham, Kelly A; Alper, Hal S

    2018-06-04

    The oleaginous yeast Yarrowia lipolytica is quickly emerging as the most popular non-conventional (i.e., non-model organism) yeast in the bioproduction field. With a high propensity for flux through tricarboxylic acid (TCA) cycle intermediates and biological precursors such as acetyl-CoA and malonyl-CoA, this host is especially well suited to meet our industrial chemical production needs. Recent progress in synthetic biology tool development has greatly enhanced our ability to rewire this organism, with advances in genetic component design, CRISPR technologies, and modular cloning strategies. In this review we investigate recent developments in metabolic engineering and describe how the new tools being developed help to realize the full industrial potential of this host. Finally, we conclude with our vision of the developments that will be necessary to enhance future engineering efforts. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Combinatorial genetic perturbation to refine metabolic circuits for producing biofuels and biochemicals.

    PubMed

    Kim, Hyo Jin; Turner, Timothy Lee; Jin, Yong-Su

    2013-11-01

    Recent advances in metabolic engineering have enabled microbial factories to compete with conventional processes for producing fuels and chemicals. Both rational and combinatorial approaches coupled with synthetic and systematic tools play central roles in metabolic engineering to create and improve a selected microbial phenotype. Compared to knowledge-based rational approaches, combinatorial approaches exploiting biological diversity and high-throughput screening have been demonstrated as more effective tools for improving various phenotypes of interest. In particular, identification of unprecedented targets to rewire metabolic circuits for maximizing yield and productivity of a target chemical has been made possible. This review highlights general principles and the features of the combinatorial approaches using various libraries to implement desired phenotypes for strain improvement. In addition, recent applications that harnessed the combinatorial approaches to produce biofuels and biochemicals will be discussed. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. A Bayesian Active Learning Experimental Design for Inferring Signaling Networks.

    PubMed

    Ness, Robert O; Sachs, Karen; Mallick, Parag; Vitek, Olga

    2018-06-21

    Machine learning methods for learning network structure are applied to quantitative proteomics experiments and reverse-engineer intracellular signal transduction networks. They provide insight into the rewiring of signaling within the context of a disease or a phenotype. To learn the causal patterns of influence between proteins in the network, the methods require experiments that include targeted interventions that fix the activity of specific proteins. However, the interventions are costly and add experimental complexity. We describe an active learning strategy for selecting optimal interventions. Our approach takes as inputs pathway databases and historic data sets, expresses them in form of prior probability distributions on network structures, and selects interventions that maximize their expected contribution to structure learning. Evaluations on simulated and real data show that the strategy reduces the detection error of validated edges as compared with an unguided choice of interventions and avoids redundant interventions, thereby increasing the effectiveness of the experiment.

  8. Accuracy test for link prediction in terms of similarity index: The case of WS and BA models

    NASA Astrophysics Data System (ADS)

    Ahn, Min-Woo; Jung, Woo-Sung

    2015-07-01

    Link prediction is a technique that uses the topological information in a given network to infer the missing links in it. Since past research on link prediction has primarily focused on enhancing performance for given empirical systems, negligible attention has been devoted to link prediction with regard to network models. In this paper, we thus apply link prediction to two network models: The Watts-Strogatz (WS) model and Barabási-Albert (BA) model. We attempt to gain a better understanding of the relation between accuracy and each network parameter (mean degree, the number of nodes and the rewiring probability in the WS model) through network models. Six similarity indices are used, with precision and area under the ROC curve (AUC) value as the accuracy metrics. We observe a positive correlation between mean degree and accuracy, and size independence of the AUC value.

  9. Effects of channel noise on firing coherence of small-world Hodgkin-Huxley neuronal networks

    NASA Astrophysics Data System (ADS)

    Sun, X. J.; Lei, J. Z.; Perc, M.; Lu, Q. S.; Lv, S. J.

    2011-01-01

    We investigate the effects of channel noise on firing coherence of Watts-Strogatz small-world networks consisting of biophysically realistic HH neurons having a fraction of blocked voltage-gated sodium and potassium ion channels embedded in their neuronal membranes. The intensity of channel noise is determined by the number of non-blocked ion channels, which depends on the fraction of working ion channels and the membrane patch size with the assumption of homogeneous ion channel density. We find that firing coherence of the neuronal network can be either enhanced or reduced depending on the source of channel noise. As shown in this paper, sodium channel noise reduces firing coherence of neuronal networks; in contrast, potassium channel noise enhances it. Furthermore, compared with potassium channel noise, sodium channel noise plays a dominant role in affecting firing coherence of the neuronal network. Moreover, we declare that the observed phenomena are independent of the rewiring probability.

  10. Computer modelling of epilepsy.

    PubMed

    Lytton, William W

    2008-08-01

    Epilepsy is a complex set of disorders that can involve many areas of the cortex, as well as underlying deep-brain systems. The myriad manifestations of seizures, which can be as varied as déjà vu and olfactory hallucination, can therefore give researchers insights into regional functions and relations. Epilepsy is also complex genetically and pathophysiologically: it involves microscopic (on the scale of ion channels and synaptic proteins), macroscopic (on the scale of brain trauma and rewiring) and intermediate changes in a complex interplay of causality. It has long been recognized that computer modelling will be required to disentangle causality, to better understand seizure spread and to understand and eventually predict treatment efficacy. Over the past few years, substantial progress has been made in modelling epilepsy at levels ranging from the molecular to the socioeconomic. We review these efforts and connect them to the medical goals of understanding and treating the disorder.

  11. Effective augmentation of networked systems and enhancing pinning controllability

    NASA Astrophysics Data System (ADS)

    Jalili, Mahdi

    2018-06-01

    Controlling dynamics of networked systems to a reference state, known as pinning control, has many applications in science and engineering. In this paper, we introduce a method for effective augmentation of networked systems, while also providing high levels of pinning controllability for the final augmented network. The problem is how to connect a sub-network to an already existing network such that the pinning controllability is maximised. We consider the eigenratio of the augmented Laplacian matrix as a pinning controllability metric, and use graph perturbation theory to approximate the influence of edge addition on the eigenratio. The proposed metric can be effectively used to find the inter-network links connecting the disjoint networks. Also, an efficient link rewiring approach is proposed to further optimise the pinning controllability of the augmented network. We provide numerical simulations on synthetic networks and show that the proposed method is more effective than heuristic ones.

  12. Therapeutic synthetic gene networks.

    PubMed

    Karlsson, Maria; Weber, Wilfried

    2012-10-01

    The field of synthetic biology is rapidly expanding and has over the past years evolved from the development of simple gene networks to complex treatment-oriented circuits. The reprogramming of cell fate with open-loop or closed-loop synthetic control circuits along with biologically implemented logical functions have fostered applications spanning over a wide range of disciplines, including artificial insemination, personalized medicine and the treatment of cancer and metabolic disorders. In this review we describe several applications of interactive gene networks, a synthetic biology-based approach for future gene therapy, as well as the utilization of synthetic gene circuits as blueprints for the design of stimuli-responsive biohybrid materials. The recent progress in synthetic biology, including the rewiring of biosensing devices with the body's endogenous network as well as novel therapeutic approaches originating from interdisciplinary work, generates numerous opportunities for future biomedical applications. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Small molecule activation of PKM2 in cancer cells induces serine auxotrophy.

    PubMed

    Kung, Charles; Hixon, Jeff; Choe, Sung; Marks, Kevin; Gross, Stefan; Murphy, Erin; DeLaBarre, Byron; Cianchetta, Giovanni; Sethumadhavan, Shalini; Wang, Xiling; Yan, Shunqi; Gao, Yi; Fang, Cheng; Wei, Wentao; Jiang, Fan; Wang, Shaohui; Qian, Kevin; Saunders, Jeff; Driggers, Ed; Woo, Hin Koon; Kunii, Kaiko; Murray, Stuart; Yang, Hua; Yen, Katharine; Liu, Wei; Cantley, Lewis C; Vander Heiden, Matthew G; Su, Shinsan M; Jin, Shengfang; Salituro, Francesco G; Dang, Lenny

    2012-09-21

    Proliferating tumor cells use aerobic glycolysis to support their high metabolic demands. Paradoxically, increased glycolysis is often accompanied by expression of the lower activity PKM2 isoform, effectively constraining lower glycolysis. Here, we report the discovery of PKM2 activators with a unique allosteric binding mode. Characterization of how these compounds impact cancer cells revealed an unanticipated link between glucose and amino acid metabolism. PKM2 activation resulted in a metabolic rewiring of cancer cells manifested by a profound dependency on the nonessential amino acid serine for continued cell proliferation. Induction of serine auxotrophy by PKM2 activation was accompanied by reduced carbon flow into the serine biosynthetic pathway and increased expression of high affinity serine transporters. These data support the hypothesis that PKM2 expression confers metabolic flexibility to cancer cells that allows adaptation to nutrient stress. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Connection adaption for control of networked mobile chaotic agents.

    PubMed

    Zhou, Jie; Zou, Yong; Guan, Shuguang; Liu, Zonghua; Xiao, Gaoxi; Boccaletti, S

    2017-11-22

    In this paper, we propose a strategy for the control of mobile chaotic oscillators by adaptively rewiring connections between nearby agents with local information. In contrast to the dominant adaptive control schemes where coupling strength is adjusted continuously according to the states of the oscillators, our method does not request adaption of coupling strength. As the resulting interaction structure generated by this proposed strategy is strongly related to unidirectional chains, by investigating synchronization property of unidirectional chains, we reveal that there exists a certain coupling range in which the agents could be controlled regardless of the length of the chain. This feature enables the adaptive strategy to control the mobile oscillators regardless of their moving speed. Compared with existing adaptive control strategies for networked mobile agents, our proposed strategy is simpler for implementation where the resulting interaction networks are kept unweighted at all time.

  15. Global metabolic rewiring for improved CO2 fixation and chemical production in cyanobacteria.

    PubMed

    Kanno, Masahiro; Carroll, Austin L; Atsumi, Shota

    2017-03-13

    Cyanobacteria have attracted much attention as hosts to recycle CO 2 into valuable chemicals. Although cyanobacteria have been engineered to produce various compounds, production efficiencies are too low for commercialization. Here we engineer the carbon metabolism of Synechococcus elongatus PCC 7942 to improve glucose utilization, enhance CO 2 fixation and increase chemical production. We introduce modifications in glycolytic pathways and the Calvin Benson cycle to increase carbon flux and redirect it towards carbon fixation. The engineered strain efficiently uses both CO 2 and glucose, and produces 12.6 g l -1 of 2,3-butanediol with a rate of 1.1 g l -1  d -1 under continuous light conditions. Removal of native regulation enables carbon fixation and 2,3-butanediol production in the absence of light. This represents a significant step towards industrial viability and an excellent example of carbon metabolism plasticity.

  16. Mechanisms and pathways of Toxoplasma gondii transepithelial migration

    PubMed Central

    Jones, Emily J.; Carding, Simon R.

    2017-01-01

    ABSTRACT Toxoplasma gondii is a ubiquitous parasite and a prevalent food-borne parasitic pathogen. Infection of the host occurs principally through oral consumption of contaminated food and water with the gastrointestinal tract being the primary route for entry into the host. To promote infection, T. gondii has evolved highly specialized strategies for rapid traversal of the single cell thick intestinal epithelial barrier. Parasite transmigration via the paracellular pathway between adjacent cells enables parasite dissemination to secondary sites of infection where chronic infection of muscle and brain tissue is established. It has recently been proposed that parasite interactions with the integral tight junction (TJ) protein occludin influences parasite transmigration of the intestinal epithelium. We review here the emerging mechanisms of T. gondii transmigration of the small intestinal epithelium alongside the developing role played in modulating the wider TJ-associated proteome to rewire host cell regulatory systems for the benefit of the parasite. PMID:28452683

  17. Mechanisms and pathways of Toxoplasma gondii transepithelial migration.

    PubMed

    Jones, Emily J; Korcsmaros, Tamas; Carding, Simon R

    2017-01-02

    Toxoplasma gondii is a ubiquitous parasite and a prevalent food-borne parasitic pathogen. Infection of the host occurs principally through oral consumption of contaminated food and water with the gastrointestinal tract being the primary route for entry into the host. To promote infection, T. gondii has evolved highly specialized strategies for rapid traversal of the single cell thick intestinal epithelial barrier. Parasite transmigration via the paracellular pathway between adjacent cells enables parasite dissemination to secondary sites of infection where chronic infection of muscle and brain tissue is established. It has recently been proposed that parasite interactions with the integral tight junction (TJ) protein occludin influences parasite transmigration of the intestinal epithelium. We review here the emerging mechanisms of T. gondii transmigration of the small intestinal epithelium alongside the developing role played in modulating the wider TJ-associated proteome to rewire host cell regulatory systems for the benefit of the parasite.

  18. Global metabolic rewiring for improved CO2 fixation and chemical production in cyanobacteria

    NASA Astrophysics Data System (ADS)

    Kanno, Masahiro; Carroll, Austin L.; Atsumi, Shota

    2017-03-01

    Cyanobacteria have attracted much attention as hosts to recycle CO2 into valuable chemicals. Although cyanobacteria have been engineered to produce various compounds, production efficiencies are too low for commercialization. Here we engineer the carbon metabolism of Synechococcus elongatus PCC 7942 to improve glucose utilization, enhance CO2 fixation and increase chemical production. We introduce modifications in glycolytic pathways and the Calvin Benson cycle to increase carbon flux and redirect it towards carbon fixation. The engineered strain efficiently uses both CO2 and glucose, and produces 12.6 g l-1 of 2,3-butanediol with a rate of 1.1 g l-1 d-1 under continuous light conditions. Removal of native regulation enables carbon fixation and 2,3-butanediol production in the absence of light. This represents a significant step towards industrial viability and an excellent example of carbon metabolism plasticity.

  19. Paper-based synthetic gene networks.

    PubMed

    Pardee, Keith; Green, Alexander A; Ferrante, Tom; Cameron, D Ewen; DaleyKeyser, Ajay; Yin, Peng; Collins, James J

    2014-11-06

    Synthetic gene networks have wide-ranging uses in reprogramming and rewiring organisms. To date, there has not been a way to harness the vast potential of these networks beyond the constraints of a laboratory or in vivo environment. Here, we present an in vitro paper-based platform that provides an alternate, versatile venue for synthetic biologists to operate and a much-needed medium for the safe deployment of engineered gene circuits beyond the lab. Commercially available cell-free systems are freeze dried onto paper, enabling the inexpensive, sterile, and abiotic distribution of synthetic-biology-based technologies for the clinic, global health, industry, research, and education. For field use, we create circuits with colorimetric outputs for detection by eye and fabricate a low-cost, electronic optical interface. We demonstrate this technology with small-molecule and RNA actuation of genetic switches, rapid prototyping of complex gene circuits, and programmable in vitro diagnostics, including glucose sensors and strain-specific Ebola virus sensors.

  20. Metabolic engineering of microorganisms for biofuels production: from bugs to synthetic biology to fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuk Lee, Sung; Chou, Howard; Ham, Timothy S.

    2009-12-02

    The ability to generate microorganisms that can produce biofuels similar to petroleum-based transportation fuels would allow the use of existing engines and infrastructure and would save an enormous amount of capital required for replacing the current infrastructure to accommodate biofuels that have properties significantly different from petroleum-based fuels. Several groups have demonstrated the feasibility of manipulating microbes to produce molecules similar to petroleum-derived products, albeit at relatively low productivity (e.g. maximum butanol production is around 20 g/L). For cost-effective production of biofuels, the fuel-producing hosts and pathways must be engineered and optimized. Advances in metabolic engineering and synthetic biology willmore » provide new tools for metabolic engineers to better understand how to rewire the cell in order to create the desired phenotypes for the production of economically viable biofuels.« less

  1. Retuning the Catalytic Bias and Overpotential of a [NiFe]-Hydrogenase via a Single Amino Acid Exchange at the Electron Entry/Exit Site

    PubMed Central

    2017-01-01

    The redox chemistry of the electron entry/exit site in Escherichia coli hydrogenase-1 is shown to play a vital role in tuning biocatalysis. Inspired by nature, we generate a HyaA-R193L variant to disrupt a proposed Arg–His cation−π interaction in the secondary coordination sphere of the outermost, “distal”, iron–sulfur cluster. This rewires the enzyme, enhancing the relative rate of H2 production and the thermodynamic efficiency of H2 oxidation catalysis. On the basis of Fourier transformed alternating current voltammetry measurements, we relate these changes in catalysis to a shift in the distal [Fe4S4]2+/1+ redox potential, a previously experimentally inaccessible parameter. Thus, metalloenzyme chemistry is shown to be tuned by the second coordination sphere of an electron transfer site distant from the catalytic center. PMID:28697596

  2. Connecting the plant vasculature to friend or foe.

    PubMed

    Melnyk, Charles W

    2017-03-01

    Contents 1611 I. 1611 II. 1612 III. 1612 IV. 1614 V. 1614 VI. 1614 VII. 1615 VIII. 1616 1616 References 1616 SUMMARY: The plant vasculature transports water, sugars, hormones, RNAs and proteins. Such critical functions need to be protected from attack by pests and pathogens or from damage by wounding. Plants have developed mechanisms to repair vasculature when such protections fail and to even initiate new vascular connections to tissues supporting symbionts. The developmental phenomena underlying vascular repair and rewiring are therefore critical for horticultural grafting, for plant infection and for mutualist associations with rhizosphere microbes. Despite the biological and economic interest, we are only beginning to understand how plants connect and reconnect their vasculature to a wide variety of organisms. Here, I discuss recent work and future prospects for this emerging field. © 2016 The Author. New Phytologist © 2016 New Phytologist Trust.

  3. Understanding Biological Regulation Through Synthetic Biology.

    PubMed

    Bashor, Caleb J; Collins, James J

    2018-05-20

    Engineering synthetic gene regulatory circuits proceeds through iterative cycles of design, building, and testing. Initial circuit designs must rely on often-incomplete models of regulation established by fields of reductive inquiry-biochemistry and molecular and systems biology. As differences in designed and experimentally observed circuit behavior are inevitably encountered, investigated, and resolved, each turn of the engineering cycle can force a resynthesis in understanding of natural network function. Here, we outline research that uses the process of gene circuit engineering to advance biological discovery. Synthetic gene circuit engineering research has not only refined our understanding of cellular regulation but furnished biologists with a toolkit that can be directed at natural systems to exact precision manipulation of network structure. As we discuss, using circuit engineering to predictively reorganize, rewire, and reconstruct cellular regulation serves as the ultimate means of testing and understanding how cellular phenotype emerges from systems-level network function.

  4. Microscopic Spin Model for the STOCK Market with Attractor Bubbling on Regular and Small-World Lattices

    NASA Astrophysics Data System (ADS)

    Krawiecki, A.

    A multi-agent spin model for changes of prices in the stock market based on the Ising-like cellular automaton with interactions between traders randomly varying in time is investigated by means of Monte Carlo simulations. The structure of interactions has topology of a small-world network obtained from regular two-dimensional square lattices with various coordination numbers by randomly cutting and rewiring edges. Simulations of the model on regular lattices do not yield time series of logarithmic price returns with statistical properties comparable with the empirical ones. In contrast, in the case of networks with a certain degree of randomness for a wide range of parameters the time series of the logarithmic price returns exhibit intermittent bursting typical of volatility clustering. Also the tails of distributions of returns obey a power scaling law with exponents comparable to those obtained from the empirical data.

  5. Allostery: Absence of a change in shape does not imply that allostery is not at play

    PubMed Central

    Tsai, Chung-Jung; Sol, Antonio del; Nussinov, Ruth

    2009-01-01

    Allostery is essential for controlled catalysis, signal transmission, receptor trafficking, turning genes on and off, and apoptosis. It governs the organism’s response to environmental and metabolic cues, dictating transient partner interactions in the cellular network. Textbooks taught us that allostery is a change of shape at one site on the protein surface brought about by ligand binding to another. For already several years it has been broadly accepted that the change of shape is not induced; rather, it is observed simply because a larger protein population presents it. Current data indicate that while side-chains can reorient and rewire, allostery may not even involve a change of (backbone) shape. Assuming that the enthalpy change does not reverse the free energy change due to the change in entropy, entropy is mainly responsible for binding. PMID:18353365

  6. Emergence of binocular functional properties in a monocular neural circuit

    PubMed Central

    Ramdya, Pavan; Engert, Florian

    2010-01-01

    Sensory circuits frequently integrate converging inputs while maintaining precise functional relationships between them. For example, in mammals with stereopsis, neurons at the first stages of binocular visual processing show a close alignment of receptive-field properties for each eye. Still, basic questions about the global wiring mechanisms that enable this functional alignment remain unanswered, including whether the addition of a second retinal input to an otherwise monocular neural circuit is sufficient for the emergence of these binocular properties. We addressed this question by inducing a de novo binocular retinal projection to the larval zebrafish optic tectum and examining recipient neuronal populations using in vivo two-photon calcium imaging. Notably, neurons in rewired tecta were predominantly binocular and showed matching direction selectivity for each eye. We found that a model based on local inhibitory circuitry that computes direction selectivity using the topographic structure of both retinal inputs can account for the emergence of this binocular feature. PMID:19160507

  7. Small Molecule Activation of PKM2 in Cancer Cells Induces Serine Auxotrophy

    PubMed Central

    Kung, Charles; Hixon, Jeff; Choe, Sung; Marks, Kevin; Gross, Stefan; Murphy, Erin; DeLaBarre, Byron; Cianchetta, Giovanni; Sethumadhavan, Shalini; Wang, Xiling; Yan, Shunqi; Gao, Yi; Fang, Cheng; Wei, Wentao; Jiang, Fan; Wang, Shaohui; Qian, Kevin; Saunders, Jeff; Driggers, Ed; Woo, Hin Koon; Kunii, Kaiko; Murray, Stuart; Yang, Hua; Yen, Katharine; Liu, Wei; Cantley, Lewis C.; Vander Heiden, Matthew G.; Su, Shinsan M.; Jin, Shengfang; Salituro, Francesco G.; Dang, Lenny

    2013-01-01

    SUMMARY Proliferating tumor cells use aerobic glycolysis to support their high metabolic demands. Paradoxically, increased glycolysis is often accompanied by expression of the lower activity PKM2 isoform, effectively constraining lower glycolysis. Here, we report the discovery of PKM2 activators with a unique allosteric binding mode. Characterization of how these compounds impact cancer cells revealed an unanticipated link between glucose and amino acid metabolism. PKM2 activation resulted in a metabolic rewiring of cancer cells manifested by a profound dependency on the nonessential amino acid serine for continued cell proliferation. Induction of serine auxotrophy by PKM2 activation was accompanied by reduced carbon flow into the serine biosynthetic pathway and increased expression of high affinity serine transporters. These data support the hypothesis that PKM2 expression confers metabolic flexibility to cancer cells that allows adaptation to nutrient stress. PMID:22999886

  8. An evolution-based strategy for engineering allosteric regulation

    NASA Astrophysics Data System (ADS)

    Pincus, David; Resnekov, Orna; Reynolds, Kimberly A.

    2017-04-01

    Allosteric regulation provides a way to control protein activity at the time scale of milliseconds to seconds inside the cell. An ability to engineer synthetic allosteric systems would be of practical utility for the development of novel biosensors, creation of synthetic cell signaling pathways, and design of small molecule pharmaceuticals with regulatory impact. To this end, we outline a general approach—termed rational engineering of allostery at conserved hotspots (REACH)—to introduce novel regulation into a protein of interest by exploiting latent allostery that has been hard-wired by evolution into its structure. REACH entails the use of statistical coupling analysis (SCA) to identify ‘allosteric hotspots’ on protein surfaces, the development and implementation of experimental assays to test hotspots for functionality, and a toolkit of allosteric modulators to impinge on endogenous cellular circuitry. REACH can be broadly applied to rewire cellular processes to respond to novel inputs.

  9. The TORC1-Regulated CPA Complex Rewires an RNA Processing Network to Drive Autophagy and Metabolic Reprogramming.

    PubMed

    Tang, Hong-Wen; Hu, Yanhui; Chen, Chiao-Lin; Xia, Baolong; Zirin, Jonathan; Yuan, Min; Asara, John M; Rabinow, Leonard; Perrimon, Norbert

    2018-05-01

    Nutrient deprivation induces autophagy through inhibiting TORC1 activity. We describe a novel mechanism in Drosophila by which TORC1 regulates RNA processing of Atg transcripts and alters ATG protein levels and activities via the cleavage and polyadenylation (CPA) complex. We show that TORC1 signaling inhibits CDK8 and DOA kinases, which directly phosphorylate CPSF6, a component of the CPA complex. These phosphorylation events regulate CPSF6 localization, RNA binding, and starvation-induced alternative RNA processing of transcripts involved in autophagy, nutrient, and energy metabolism, thereby controlling autophagosome formation and metabolism. Similarly, we find that mammalian CDK8 and CLK2, a DOA ortholog, phosphorylate CPSF6 to regulate autophagy and metabolic changes upon starvation, revealing an evolutionarily conserved mechanism linking TORC1 signaling with RNA processing, autophagy, and metabolism. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. The histone acetyltransferase MOF activates hypothalamic polysialylation to prevent diet-induced obesity in mice

    PubMed Central

    Brenachot, Xavier; Rigault, Caroline; Nédélec, Emmanuelle; Laderrière, Amélie; Khanam, Tasneem; Gouazé, Alexandra; Chaudy, Sylvie; Lemoine, Aleth; Datiche, Frédérique; Gascuel, Jean; Pénicaud, Luc; Benani, Alexandre

    2014-01-01

    Overfeeding causes rapid synaptic remodeling in hypothalamus feeding circuits. Polysialylation of cell surface molecules is a key step in this neuronal rewiring and allows normalization of food intake. Here we examined the role of hypothalamic polysialylation in the long-term maintenance of body weight, and deciphered the molecular sequence underlying its nutritional regulation. We found that upon high fat diet (HFD), reduced hypothalamic polysialylation exacerbated the diet-induced obese phenotype in mice. Upon HFD, the histone acetyltransferase MOF was rapidly recruited on the St8sia4 polysialyltransferase-encoding gene. Mof silencing in the mediobasal hypothalamus of adult mice prevented activation of the St8sia4 gene transcription, reduced polysialylation, altered the acute homeostatic feeding response to HFD and increased the body weight gain. These findings indicate that impaired hypothalamic polysialylation contribute to the development of obesity, and establish a role for MOF in the brain control of energy balance. PMID:25161885

  11. Engineering yeast metabolism for production of terpenoids for use as perfume ingredients, pharmaceuticals and biofuels.

    PubMed

    Zhang, Yueping; Nielsen, Jens; Liu, Zihe

    2017-12-01

    Terpenoids represent a large class of natural products with significant commercial applications. These chemicals are currently mainly obtained through extraction from plants and microbes or through chemical synthesis. However, these sources often face challenges of unsustainability and low productivity. In order to address these issues, Escherichia coli and yeast have been metabolic engineered to produce non-native terpenoids. With recent reports of engineering yeast metabolism to produce several terpenoids at high yields, it has become possible to establish commercial yeast production of terpenoids that find applications as perfume ingredients, pharmaceuticals and advanced biofuels. In this review, we describe the strategies to rewire the yeast pathway for terpenoid biosynthesis. Recent advances will be discussed together with challenges and perspectives of yeast as a cell factory to produce different terpenoids. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. The power and promise of "rewiring" the mitogen-activated protein kinase network in prostate cancer therapeutics.

    PubMed

    Papatsoris, Athanasios G; Karamouzis, Michalis V; Papavassiliou, Athanasios G

    2007-03-01

    Prostate cancer is the most frequently diagnosed cancer among men and the second leading cause of male cancer deaths. Initially, tumor growth is androgen dependent and thus responsive to pharmacologic androgen deprivation, but there is a high rate of treatment failure because the disease evolves in an androgen-independent state. Growing evidence suggests that the Ras/mitogen-activated protein kinase (MAPK) signaling cascade represents a pivotal molecular circuitry participating directly or indirectly in prostate cancer evolution. The crucial role of the protein elements comprising this complex signal transduction network makes them potential targets for pharmacologic interference. Here, we will delineate the current knowledge regarding the involvement of the Ras/MAPK pathway in prostate carcinogenesis, spotlight ongoing research concerning the development of novel targeted agents such as the Ras/MAPK inhibitors in prostate cancer, and discuss the future perspectives of their therapeutic efficacy.

  13. Foundations and Emerging Paradigms for Computing in Living Cells.

    PubMed

    Ma, Kevin C; Perli, Samuel D; Lu, Timothy K

    2016-02-27

    Genetic circuits, composed of complex networks of interacting molecular machines, enable living systems to sense their dynamic environments, perform computation on the inputs, and formulate appropriate outputs. By rewiring and expanding these circuits with novel parts and modules, synthetic biologists have adapted living systems into vibrant substrates for engineering. Diverse paradigms have emerged for designing, modeling, constructing, and characterizing such artificial genetic systems. In this paper, we first provide an overview of recent advances in the development of genetic parts and highlight key engineering approaches. We then review the assembly of these parts into synthetic circuits from the perspectives of digital and analog logic, systems biology, and metabolic engineering, three areas of particular theoretical and practical interest. Finally, we discuss notable challenges that the field of synthetic biology still faces in achieving reliable and predictable forward-engineering of artificial biological circuits. Copyright © 2016. Published by Elsevier Ltd.

  14. CD147: a small molecule transporter ancillary protein at the crossroad of multiple hallmarks of cancer and metabolic reprogramming

    PubMed Central

    Kendrick, Agnieszka A.; Schafer, Johnathon; Dzieciatkowska, Monika; Nemkov, Travis; D'Alessandro, Angelo; Neelakantan, Deepika; Ford, Heide L.; Pearson, Chad G.; Weekes, Colin D.; Hansen, Kirk C.; Eisenmesser, Elan Z.

    2017-01-01

    Increased expression of CD147 in pancreatic cancer has been proposed to play a critical role in cancer progression via CD147 chaperone function for lactate monocarboxylate transporters (MCTs). Here, we show for the first time that CD147 interacts with membrane transporters beyond MCTs and exhibits a protective role for several of its interacting partners. CD147 prevents its interacting partner's proteasome-dependent degradation and incorrect plasma membrane localization through the CD147 transmembrane (TM) region. The interactions with transmembrane small molecule and ion transporters identified here indicate a central role of CD147 in pancreatic cancer metabolic reprogramming, particularly with respect to amino acid anabolism and calcium signaling. Importantly, CD147 genetic ablation prevents pancreatic cancer cell proliferation and tumor growth in vitro and in vivo in conjunction with metabolic rewiring towards amino acid anabolism, thus paving the way for future combined pharmacological treatments. PMID:28039486

  15. CD147: a small molecule transporter ancillary protein at the crossroad of multiple hallmarks of cancer and metabolic reprogramming.

    PubMed

    Kendrick, Agnieszka A; Schafer, Johnathon; Dzieciatkowska, Monika; Nemkov, Travis; D'Alessandro, Angelo; Neelakantan, Deepika; Ford, Heide L; Pearson, Chad G; Weekes, Colin D; Hansen, Kirk C; Eisenmesser, Elan Z

    2017-01-24

    Increased expression of CD147 in pancreatic cancer has been proposed to play a critical role in cancer progression via CD147 chaperone function for lactate monocarboxylate transporters (MCTs). Here, we show for the first time that CD147 interacts with membrane transporters beyond MCTs and exhibits a protective role for several of its interacting partners. CD147 prevents its interacting partner's proteasome-dependent degradation and incorrect plasma membrane localization through the CD147 transmembrane (TM) region. The interactions with transmembrane small molecule and ion transporters identified here indicate a central role of CD147 in pancreatic cancer metabolic reprogramming, particularly with respect to amino acid anabolism and calcium signaling. Importantly, CD147 genetic ablation prevents pancreatic cancer cell proliferation and tumor growth in vitro and in vivo in conjunction with metabolic rewiring towards amino acid anabolism, thus paving the way for future combined pharmacological treatments.

  16. Virocell Metabolism: Metabolic Innovations During Host-Virus Interactions in the Ocean.

    PubMed

    Rosenwasser, Shilo; Ziv, Carmit; Creveld, Shiri Graff van; Vardi, Assaf

    2016-10-01

    Marine viruses are considered to be major ecological, evolutionary, and biogeochemical drivers of the marine environment, responsible for nutrient recycling and determining species composition. Viruses can re-shape their host's metabolic network during infection, generating the virocell-a unique metabolic state that supports their specific requirement. Here we discuss the concept of 'virocell metabolism' and its formation by rewiring of host-encoded metabolic networks, or by introducing virus-encoded auxiliary metabolic genes which provide the virocell with novel metabolic capabilities. The ecological role of marine viruses is commonly assessed by their relative abundance and phylogenetic diversity, lacking the ability to assess the dynamics of active viral infection. The new ability to define a unique metabolic state of the virocell will expand the current virion-centric approaches in order to quantify the impact of marine viruses on microbial food webs. Copyright © 2016. Published by Elsevier Ltd.

  17. Cache-Aware Asymptotically-Optimal Sampling-Based Motion Planning

    PubMed Central

    Ichnowski, Jeffrey; Prins, Jan F.; Alterovitz, Ron

    2014-01-01

    We present CARRT* (Cache-Aware Rapidly Exploring Random Tree*), an asymptotically optimal sampling-based motion planner that significantly reduces motion planning computation time by effectively utilizing the cache memory hierarchy of modern central processing units (CPUs). CARRT* can account for the CPU’s cache size in a manner that keeps its working dataset in the cache. The motion planner progressively subdivides the robot’s configuration space into smaller regions as the number of configuration samples rises. By focusing configuration exploration in a region for periods of time, nearest neighbor searching is accelerated since the working dataset is small enough to fit in the cache. CARRT* also rewires the motion planning graph in a manner that complements the cache-aware subdivision strategy to more quickly refine the motion planning graph toward optimality. We demonstrate the performance benefit of our cache-aware motion planning approach for scenarios involving a point robot as well as the Rethink Robotics Baxter robot. PMID:25419474

  18. Cache-Aware Asymptotically-Optimal Sampling-Based Motion Planning.

    PubMed

    Ichnowski, Jeffrey; Prins, Jan F; Alterovitz, Ron

    2014-05-01

    We present CARRT* (Cache-Aware Rapidly Exploring Random Tree*), an asymptotically optimal sampling-based motion planner that significantly reduces motion planning computation time by effectively utilizing the cache memory hierarchy of modern central processing units (CPUs). CARRT* can account for the CPU's cache size in a manner that keeps its working dataset in the cache. The motion planner progressively subdivides the robot's configuration space into smaller regions as the number of configuration samples rises. By focusing configuration exploration in a region for periods of time, nearest neighbor searching is accelerated since the working dataset is small enough to fit in the cache. CARRT* also rewires the motion planning graph in a manner that complements the cache-aware subdivision strategy to more quickly refine the motion planning graph toward optimality. We demonstrate the performance benefit of our cache-aware motion planning approach for scenarios involving a point robot as well as the Rethink Robotics Baxter robot.

  19. Regulation of signaling pathways by tanshinones in different cancers.

    PubMed

    Lin, X; Qureshi, M Z; Romero, M A; Khalid, S; Aras, A; Ozbey, U; Farooqi, A A

    2017-09-30

    Past several years have witnessed dramatic leaps in our understanding of rewiring of gene expression at the translation level during cancer developmentthat provides linchpin support to the transformed phenotype. Most recent and ground-breaking developments in the field of molecular oncology aredriven by an explosion in technological advancements and have started to reveal previously unimagined regulatory mechanisms and how they intricately co-ordinate to modulate cancer progression, loss of apoptosis and development of resistance against different therapeutics. However, the insights gained from work in this natural product research have far-reaching impact because of rapidly increasing repertoire of medicinally and biologically efficient phytochemicals. How Tanshinones mediate targeting of JAK-STAT, ER stress associated signaling cascade,PI3K/AKT/mTOR pathway,autophagy, TRAIL pathway and microRNAs are being discovered and will prove to be helpful in getting a step closer to personalized medicine.

  20. Rewiring the network. What helps an innovation to diffuse?

    NASA Astrophysics Data System (ADS)

    Sznajd-Weron, Katarzyna; Szwabiński, Janusz; Weron, Rafał; Weron, Tomasz

    2014-03-01

    A fundamental question related to innovation diffusion is how the structure of the social network influences the process. Empirical evidence regarding real-world networks of influence is very limited. On the other hand, agent-based modeling literature reports different, and at times seemingly contradictory, results. In this paper we study innovation diffusion processes for a range of Watts-Strogatz networks in an attempt to shed more light on this problem. Using the so-called Sznajd model as the backbone of opinion dynamics, we find that the published results are in fact consistent and allow us to predict the role of network topology in various situations. In particular, the diffusion of innovation is easier on more regular graphs, i.e. with a higher clustering coefficient. Moreover, in the case of uncertainty—which is particularly high for innovations connected to public health programs or ecological campaigns—a more clustered network will help the diffusion. On the other hand, when social influence is less important (i.e. in the case of perfect information), a shorter path will help the innovation to spread in the society and—as a result—the diffusion will be easiest on a random graph.

  1. 13C-Metabolic Flux Analysis: An Accurate Approach to Demystify Microbial Metabolism for Biochemical Production

    PubMed Central

    Guo, Weihua; Sheng, Jiayuan; Feng, Xueyang

    2015-01-01

    Metabolic engineering of various industrial microorganisms to produce chemicals, fuels, and drugs has raised interest since it is environmentally friendly, sustainable, and independent of nonrenewable resources. However, microbial metabolism is so complex that only a few metabolic engineering efforts have been able to achieve a satisfactory yield, titer or productivity of the target chemicals for industrial commercialization. In order to overcome this challenge, 13C Metabolic Flux Analysis (13C-MFA) has been continuously developed and widely applied to rigorously investigate cell metabolism and quantify the carbon flux distribution in central metabolic pathways. In the past decade, many 13C-MFA studies have been performed in academic labs and biotechnology industries to pinpoint key issues related to microbe-based chemical production. Insightful information about the metabolic rewiring has been provided to guide the development of the appropriate metabolic engineering strategies for improving the biochemical production. In this review, we will introduce the basics of 13C-MFA and illustrate how 13C-MFA has been applied via integration with metabolic engineering to identify and tackle the rate-limiting steps in biochemical production for various host microorganisms PMID:28952565

  2. Altered contralateral sensorimotor system organization after experimental hemispherectomy: a structural and functional connectivity study.

    PubMed

    Otte, Willem M; van der Marel, Kajo; van Meer, Maurits P A; van Rijen, Peter C; Gosselaar, Peter H; Braun, Kees P J; Dijkhuizen, Rick M

    2015-08-01

    Hemispherectomy is often followed by remarkable recovery of cognitive and motor functions. This reflects plastic capacities of the remaining hemisphere, involving large-scale structural and functional adaptations. Better understanding of these adaptations may (1) provide new insights in the neuronal configuration and rewiring that underlies sensorimotor outcome restoration, and (2) guide development of rehabilitation strategies to enhance recovery after hemispheric lesioning. We assessed brain structure and function in a hemispherectomy model. With MRI we mapped changes in white matter structural integrity and gray matter functional connectivity in eight hemispherectomized rats, compared with 12 controls. Behavioral testing involved sensorimotor performance scoring. Diffusion tensor imaging and resting-state functional magnetic resonance imaging were acquired 7 and 49 days post surgery. Hemispherectomy caused significant sensorimotor deficits that largely recovered within 2 weeks. During the recovery period, fractional anisotropy was maintained and white matter volume and axial diffusivity increased in the contralateral cerebral peduncle, suggestive of preserved or improved white matter integrity despite overall reduced white matter volume. This was accompanied by functional adaptations in the contralateral sensorimotor network. The observed white matter modifications and reorganization of functional network regions may provide handles for rehabilitation strategies improving functional recovery following large lesions.

  3. Effect of long-range interactions on the phase transition of Axelrod's model

    NASA Astrophysics Data System (ADS)

    Reia, Sandro M.; Fontanari, José F.

    2016-11-01

    Axelrod's model with F =2 cultural features, where each feature can assume k states drawn from a Poisson distribution of parameter q , exhibits a continuous nonequilibrium phase transition in the square lattice. Here we use extensive Monte Carlo simulations and finite-size scaling to study the critical behavior of the order parameter ρ , which is the fraction of sites that belong to the largest domain of an absorbing configuration averaged over many runs. We find that it vanishes as ρ ˜(qc0-q )β with β ≈0.25 at the critical point qc0≈3.10 and that the exponent that measures the width of the critical region is ν0≈2.1 . In addition, we find that introduction of long-range links by rewiring the nearest-neighbors links of the square lattice with probability p turns the transition discontinuous, with the critical point qcp increasing from 3.1 to 27.17, approximately, as p increases from 0 to 1. The sharpness of the threshold, as measured by the exponent νp≈1 for p >0 , increases with the square root of the number of nodes of the resulting small-world network.

  4. Cooperative behavior and phase transitions in co-evolving stag hunt game

    NASA Astrophysics Data System (ADS)

    Zhang, W.; Li, Y. S.; Xu, C.; Hui, P. M.

    2016-02-01

    Cooperative behavior and different phases in a co-evolving network dynamics based on the stag hunt game is studied. The dynamical processes are parameterized by a payoff r that tends to promote non-cooperative behavior and a probability q for a rewiring attempt that could isolate the non-cooperators. The interplay between the parameters leads to different phases. Detailed simulations and a mean field theory are employed to reveal the properties of different phases. For small r, the cooperators are the majority and form a connected cluster while the non-cooperators increase with q but remain isolated over the whole range of q, and it is a static phase. For sufficiently large r, cooperators disappear in an intermediate range qL ≤ q ≤qU and a dynamical all-non-cooperators phase results. For q >qU, a static phase results again. A mean field theory based on how the link densities change in time by the co-evolving dynamics is constructed. The theory gives a phase diagram in the q- r parameter space that is qualitatively in agreement with simulation results. The sources of discrepancies between theory and simulations are discussed.

  5. Tuning the overlap and the cross-layer correlations in two-layer networks: Application to a susceptible-infectious-recovered model with awareness dissemination

    NASA Astrophysics Data System (ADS)

    Juher, David; Saldaña, Joan

    2018-03-01

    We study the properties of the potential overlap between two networks A ,B sharing the same set of N nodes (a two-layer network) whose respective degree distributions pA(k ) ,pB(k ) are given. Defining the overlap coefficient α as the Jaccard index, we prove that α is very close to 0 when A and B are random and independently generated. We derive an upper bound αM for the maximum overlap coefficient permitted in terms of pA(k ) , pB(k ) , and N . Then we present an algorithm based on cross rewiring of links to obtain a two-layer network with any prescribed α inside the range (0 ,αM) . A refined version of the algorithm allows us to minimize the cross-layer correlations that unavoidably appear for values of α beyond a critical overlap αc<αM . Finally, we present a very simple example of a susceptible-infectious-recovered epidemic model with information dissemination and use the algorithms to determine the impact of the overlap on the final outbreak size predicted by the model.

  6. Nonconsensus opinion model on directed networks

    NASA Astrophysics Data System (ADS)

    Qu, Bo; Li, Qian; Havlin, Shlomo; Stanley, H. Eugene; Wang, Huijuan

    2014-11-01

    Dynamic social opinion models have been widely studied on undirected networks, and most of them are based on spin interaction models that produce a consensus. In reality, however, many networks such as Twitter and the World Wide Web are directed and are composed of both unidirectional and bidirectional links. Moreover, from choosing a coffee brand to deciding who to vote for in an election, two or more competing opinions often coexist. In response to this ubiquity of directed networks and the coexistence of two or more opinions in decision-making situations, we study a nonconsensus opinion model introduced by Shao et al. [Phys. Rev. Lett. 103, 018701 (2009), 10.1103/PhysRevLett.103.018701] on directed networks. We define directionality ξ as the percentage of unidirectional links in a network, and we use the linear correlation coefficient ρ between the in-degree and out-degree of a node to quantify the relation between the in-degree and out-degree. We introduce two degree-preserving rewiring approaches which allow us to construct directed networks that can have a broad range of possible combinations of directionality ξ and linear correlation coefficient ρ and to study how ξ and ρ impact opinion competitions. We find that, as the directionality ξ or the in-degree and out-degree correlation ρ increases, the majority opinion becomes more dominant and the minority opinion's ability to survive is lowered.

  7. ActiveDriverDB: human disease mutations and genome variation in post-translational modification sites of proteins

    PubMed Central

    Krassowski, Michal; Paczkowska, Marta; Cullion, Kim; Huang, Tina; Dzneladze, Irakli; Ouellette, B F Francis; Yamada, Joseph T; Fradet-Turcotte, Amelie

    2018-01-01

    Abstract Interpretation of genetic variation is needed for deciphering genotype-phenotype associations, mechanisms of inherited disease, and cancer driver mutations. Millions of single nucleotide variants (SNVs) in human genomes are known and thousands are associated with disease. An estimated 21% of disease-associated amino acid substitutions corresponding to missense SNVs are located in protein sites of post-translational modifications (PTMs), chemical modifications of amino acids that extend protein function. ActiveDriverDB is a comprehensive human proteo-genomics database that annotates disease mutations and population variants through the lens of PTMs. We integrated >385,000 published PTM sites with ∼3.6 million substitutions from The Cancer Genome Atlas (TCGA), the ClinVar database of disease genes, and human genome sequencing projects. The database includes site-specific interaction networks of proteins, upstream enzymes such as kinases, and drugs targeting these enzymes. We also predicted network-rewiring impact of mutations by analyzing gains and losses of kinase-bound sequence motifs. ActiveDriverDB provides detailed visualization, filtering, browsing and searching options for studying PTM-associated mutations. Users can upload mutation datasets interactively and use our application programming interface in pipelines. Integrative analysis of mutations and PTMs may help decipher molecular mechanisms of phenotypes and disease, as exemplified by case studies of TP53, BRCA2 and VHL. The open-source database is available at https://www.ActiveDriverDB.org. PMID:29126202

  8. Development of large-scale functional brain networks in children.

    PubMed

    Supekar, Kaustubh; Musen, Mark; Menon, Vinod

    2009-07-01

    The ontogeny of large-scale functional organization of the human brain is not well understood. Here we use network analysis of intrinsic functional connectivity to characterize the organization of brain networks in 23 children (ages 7-9 y) and 22 young-adults (ages 19-22 y). Comparison of network properties, including path-length, clustering-coefficient, hierarchy, and regional connectivity, revealed that although children and young-adults' brains have similar "small-world" organization at the global level, they differ significantly in hierarchical organization and interregional connectivity. We found that subcortical areas were more strongly connected with primary sensory, association, and paralimbic areas in children, whereas young-adults showed stronger cortico-cortical connectivity between paralimbic, limbic, and association areas. Further, combined analysis of functional connectivity with wiring distance measures derived from white-matter fiber tracking revealed that the development of large-scale brain networks is characterized by weakening of short-range functional connectivity and strengthening of long-range functional connectivity. Importantly, our findings show that the dynamic process of over-connectivity followed by pruning, which rewires connectivity at the neuronal level, also operates at the systems level, helping to reconfigure and rebalance subcortical and paralimbic connectivity in the developing brain. Our study demonstrates the usefulness of network analysis of brain connectivity to elucidate key principles underlying functional brain maturation, paving the way for novel studies of disrupted brain connectivity in neurodevelopmental disorders such as autism.

  9. Analyzing phase diagrams and phase transitions in networked competing populations

    NASA Astrophysics Data System (ADS)

    Ni, Y.-C.; Yin, H. P.; Xu, C.; Hui, P. M.

    2011-03-01

    Phase diagrams exhibiting the extent of cooperation in an evolutionary snowdrift game implemented in different networks are studied in detail. We invoke two independent payoff parameters, unlike a single payoff often used in most previous works that restricts the two payoffs to vary in a correlated way. In addition to the phase transition points when a single payoff parameter is used, phase boundaries separating homogeneous phases consisting of agents using the same strategy and a mixed phase consisting of agents using different strategies are found. Analytic expressions of the phase boundaries are obtained by invoking the ideas of the last surviving patterns and the relative alignments of the spectra of payoff values to agents using different strategies. In a Watts-Strogatz regular network, there exists a re-entrant phenomenon in which the system goes from a homogeneous phase into a mixed phase and re-enters the homogeneous phase as one of the two payoff parameters is varied. The non-trivial phase diagram accompanying this re-entrant phenomenon is quantitatively analyzed. The effects of noise and cooperation in randomly rewired Watts-Strogatz networks are also studied. The transition between a mixed phase and a homogeneous phase is identify to belong to the directed percolation universality class. The methods used in the present work are applicable to a wide range of problems in competing populations of networked agents.

  10. Development of Large-Scale Functional Brain Networks in Children

    PubMed Central

    Supekar, Kaustubh; Musen, Mark; Menon, Vinod

    2009-01-01

    The ontogeny of large-scale functional organization of the human brain is not well understood. Here we use network analysis of intrinsic functional connectivity to characterize the organization of brain networks in 23 children (ages 7–9 y) and 22 young-adults (ages 19–22 y). Comparison of network properties, including path-length, clustering-coefficient, hierarchy, and regional connectivity, revealed that although children and young-adults' brains have similar “small-world” organization at the global level, they differ significantly in hierarchical organization and interregional connectivity. We found that subcortical areas were more strongly connected with primary sensory, association, and paralimbic areas in children, whereas young-adults showed stronger cortico-cortical connectivity between paralimbic, limbic, and association areas. Further, combined analysis of functional connectivity with wiring distance measures derived from white-matter fiber tracking revealed that the development of large-scale brain networks is characterized by weakening of short-range functional connectivity and strengthening of long-range functional connectivity. Importantly, our findings show that the dynamic process of over-connectivity followed by pruning, which rewires connectivity at the neuronal level, also operates at the systems level, helping to reconfigure and rebalance subcortical and paralimbic connectivity in the developing brain. Our study demonstrates the usefulness of network analysis of brain connectivity to elucidate key principles underlying functional brain maturation, paving the way for novel studies of disrupted brain connectivity in neurodevelopmental disorders such as autism. PMID:19621066

  11. Epigenetic Mechanisms Regulating Adaptive Responses to Targeted Kinase Inhibitors in Cancer.

    PubMed

    Angus, Steven P; Zawistowski, Jon S; Johnson, Gary L

    2018-01-06

    Although targeted inhibition of oncogenic kinase drivers has achieved remarkable patient responses in many cancers, the development of resistance has remained a significant challenge. Numerous mechanisms have been identified, including the acquisition of gatekeeper mutations, activating pathway mutations, and copy number loss or gain of the driver or alternate nodes. These changes have prompted the development of kinase inhibitors with increased selectivity, use of second-line therapeutics to overcome primary resistance, and combination treatment to forestall resistance. In addition to genomic resistance mechanisms, adaptive transcriptional and signaling responses seen in tumors are gaining appreciation as alterations that lead to a phenotypic state change-often observed as an epithelial-to-mesenchymal shift or reversion to a cancer stem cell-like phenotype underpinned by remodeling of the epigenetic landscape. This epigenomic modulation driving cell state change is multifaceted and includes modulation of repressive and activating histone modifications, DNA methylation, enhancer remodeling, and noncoding RNA species. Consequently, the combination of kinase inhibitors with drugs targeting components of the transcriptional machinery and histone-modifying enzymes has shown promise in preclinical and clinical studies. Here, we review mechanisms of resistance to kinase inhibition in cancer, with special emphasis on the rewired kinome and transcriptional signaling networks and the potential vulnerabilities that may be exploited to overcome these adaptive signaling changes.

  12. P-body proteins regulate transcriptional rewiring to promote DNA replication stress resistance.

    PubMed

    Loll-Krippleber, Raphael; Brown, Grant W

    2017-09-15

    mRNA-processing (P-) bodies are cytoplasmic granules that form in eukaryotic cells in response to numerous stresses to serve as sites of degradation and storage of mRNAs. Functional P-bodies are critical for the DNA replication stress response in yeast, yet the repertoire of P-body targets and the mechanisms by which P-bodies promote replication stress resistance are unknown. In this study we identify the complete complement of mRNA targets of P-bodies during replication stress induced by hydroxyurea treatment. The key P-body protein Lsm1 controls the abundance of HHT1, ACF4, ARL3, TMA16, RRS1 and YOX1 mRNAs to prevent their toxic accumulation during replication stress. Accumulation of YOX1 mRNA causes aberrant downregulation of a network of genes critical for DNA replication stress resistance and leads to toxic acetaldehyde accumulation. Our data reveal the scope and the targets of regulation by P-body proteins during the DNA replication stress response.P-bodies form in response to stress and act as sites of mRNA storage and degradation. Here the authors identify the mRNA targets of P-bodies during DNA replication stress, and show that P-body proteins act to prevent toxic accumulation of these target transcripts.

  13. Critical behavior of the XY-rotor model on regular and small-world networks

    NASA Astrophysics Data System (ADS)

    De Nigris, Sarah; Leoncini, Xavier

    2013-07-01

    We study the XY rotors model on small networks whose number of links scales with the system size Nlinks˜Nγ, where 1≤γ≤2. We first focus on regular one-dimensional rings in the microcanonical ensemble. For γ<1.5 the model behaves like a short-range one and no phase transition occurs. For γ>1.5, the system equilibrium properties are found to be identical to the mean field, which displays a second-order phase transition at a critical energy density ɛ=E/N,ɛc=0.75. Moreover, for γc≃1.5 we find that a nontrivial state emerges, characterized by an infinite susceptibility. We then consider small-world networks, using the Watts-Strogatz mechanism on the regular networks parametrized by γ. We first analyze the topology and find that the small-world regime appears for rewiring probabilities which scale as pSW∝1/Nγ. Then considering the XY-rotors model on these networks, we find that a second-order phase transition occurs at a critical energy ɛc which logarithmically depends on the topological parameters p and γ. We also define a critical probability pMF, corresponding to the probability beyond which the mean field is quantitatively recovered, and we analyze its dependence on γ.

  14. Functional Reintegration of Sensory Neurons and Transitional Dendritic Reduction of Mitral/Tufted Cells during Injury-Induced Recovery of the Larval Xenopus Olfactory Circuit.

    PubMed

    Hawkins, Sara J; Weiss, Lukas; Offner, Thomas; Dittrich, Katarina; Hassenklöver, Thomas; Manzini, Ivan

    2017-01-01

    Understanding the mechanisms involved in maintaining lifelong neurogenesis has a clear biological and clinical interest. In the present study, we performed olfactory nerve transection on larval Xenopus to induce severe damage to the olfactory circuitry. We surveyed the timing of the degeneration, subsequent rewiring and functional regeneration of the olfactory system following injury. A range of structural labeling techniques and functional calcium imaging were performed on both tissue slices and whole brain preparations. Cell death of olfactory receptor neurons and proliferation of stem cells in the olfactory epithelium were immediately increased following lesion. New olfactory receptor neurons repopulated the olfactory epithelium and once again showed functional responses to natural odorants within 1 week after transection. Reinnervation of the olfactory bulb (OB) by newly formed olfactory receptor neuron axons also began at this time. Additionally, we observed a temporary increase in cell death in the OB and a subsequent loss in OB volume. Mitral/tufted cells, the second order neurons of the olfactory system, largely survived, but transiently lost dendritic tuft complexity. The first odorant-induced responses in the OB were observed 3 weeks after nerve transection and the olfactory network showed signs of major recovery, both structurally and functionally, after 7 weeks.

  15. Functional Reintegration of Sensory Neurons and Transitional Dendritic Reduction of Mitral/Tufted Cells during Injury-Induced Recovery of the Larval Xenopus Olfactory Circuit

    PubMed Central

    Hawkins, Sara J.; Weiss, Lukas; Offner, Thomas; Dittrich, Katarina; Hassenklöver, Thomas; Manzini, Ivan

    2017-01-01

    Understanding the mechanisms involved in maintaining lifelong neurogenesis has a clear biological and clinical interest. In the present study, we performed olfactory nerve transection on larval Xenopus to induce severe damage to the olfactory circuitry. We surveyed the timing of the degeneration, subsequent rewiring and functional regeneration of the olfactory system following injury. A range of structural labeling techniques and functional calcium imaging were performed on both tissue slices and whole brain preparations. Cell death of olfactory receptor neurons and proliferation of stem cells in the olfactory epithelium were immediately increased following lesion. New olfactory receptor neurons repopulated the olfactory epithelium and once again showed functional responses to natural odorants within 1 week after transection. Reinnervation of the olfactory bulb (OB) by newly formed olfactory receptor neuron axons also began at this time. Additionally, we observed a temporary increase in cell death in the OB and a subsequent loss in OB volume. Mitral/tufted cells, the second order neurons of the olfactory system, largely survived, but transiently lost dendritic tuft complexity. The first odorant-induced responses in the OB were observed 3 weeks after nerve transection and the olfactory network showed signs of major recovery, both structurally and functionally, after 7 weeks. PMID:29234276

  16. Reversible Burst of Transcriptional Changes during Induction of Crassulacean Acid Metabolism in Talinum triangulare1[OPEN

    PubMed Central

    Winter, Klaus

    2016-01-01

    Drought tolerance is a key factor for agriculture in the 21st century as it is a major determinant of plant survival in natural ecosystems as well as crop productivity. Plants have evolved a range of mechanisms to cope with drought, including a specialized type of photosynthesis termed Crassulacean acid metabolism (CAM). CAM is associated with stomatal closure during the day as atmospheric CO2 is assimilated primarily during the night, thus reducing transpirational water loss. The tropical herbaceous perennial species Talinum triangulare is capable of transitioning, in a facultative, reversible manner, from C3 photosynthesis to weakly expressed CAM in response to drought stress. The transcriptional regulation of this transition has been studied. Combining mRNA-Seq with targeted metabolite measurements, we found highly elevated levels of CAM-cycle enzyme transcripts and their metabolic products in T. triangulare leaves upon water deprivation. The carbohydrate metabolism is rewired to reduce the use of reserves for growth to support the CAM-cycle and the synthesis of compatible solutes. This large-scale expression dataset of drought-induced CAM demonstrates transcriptional regulation of the C3–CAM transition. We identified candidate transcription factors to mediate this photosynthetic plasticity, which may contribute in the future to the design of more drought-tolerant crops via engineered CAM. PMID:26530316

  17. Remote reprogramming of hepatic circadian transcriptome by breast cancer.

    PubMed

    Hojo, Hiroaki; Enya, Sora; Arai, Miki; Suzuki, Yutaka; Nojiri, Takashi; Kangawa, Kenji; Koyama, Shinsuke; Kawaoka, Shinpei

    2017-05-23

    Cancers adversely affect organismal physiology. To date, the genes within a patient responsible for systemically spreading cancer-induced physiological disruption remain elusive. To identify host genes responsible for transmitting disruptive, cancer-driven signals, we thoroughly analyzed the transcriptome of a suite of host organs from mice bearing 4T1 breast cancer, and discovered complexly rewired patterns of circadian gene expression in the liver. Our data revealed that 7 core clock transcription factors, represented by Rev-erba and Rorg, exhibited abnormal daily expression rhythm in the liver of 4T1-bearing mice. Accordingly, expression patterns of specific set of downstream circadian genes were compromised. Osgin1, a marker for oxidative stress, was an example. Specific downstream genes, including E2f8, a transcriptional repressor that controls cellular polyploidy, displayed a striking pattern of disruption, "day-night reversal." Meanwhile, we found that the liver of 4T1-bearing mice suffered from increased oxidative stress. The tetraploid hepatocytes population was concomitantly increased in 4T1-bearing mice, which has not been previously appreciated as a cancer-induced phenotype. In summary, the current study provides a comprehensive characterization of the 4T1-affected hepatic circadian transcriptome that possibly underlies cancer-induced physiological alteration in the liver.

  18. Stage-Specific Changes in Plasmodium Metabolism Required for Differentiation and Adaptation to Different Host and Vector Environments.

    PubMed

    Srivastava, Anubhav; Philip, Nisha; Hughes, Katie R; Georgiou, Konstantina; MacRae, James I; Barrett, Michael P; Creek, Darren J; McConville, Malcolm J; Waters, Andrew P

    2016-12-01

    Malaria parasites (Plasmodium spp.) encounter markedly different (nutritional) environments during their complex life cycles in the mosquito and human hosts. Adaptation to these different host niches is associated with a dramatic rewiring of metabolism, from a highly glycolytic metabolism in the asexual blood stages to increased dependence on tricarboxylic acid (TCA) metabolism in mosquito stages. Here we have used stable isotope labelling, targeted metabolomics and reverse genetics to map stage-specific changes in Plasmodium berghei carbon metabolism and determine the functional significance of these changes on parasite survival in the blood and mosquito stages. We show that glutamine serves as the predominant input into TCA metabolism in both asexual and sexual blood stages and is important for complete male gametogenesis. Glutamine catabolism, as well as key reactions in intermediary metabolism and CoA synthesis are also essential for ookinete to oocyst transition in the mosquito. These data extend our knowledge of Plasmodium metabolism and point towards possible targets for transmission-blocking intervention strategies. Furthermore, they highlight significant metabolic differences between Plasmodium species which are not easily anticipated based on genomics or transcriptomics studies and underline the importance of integration of metabolomics data with other platforms in order to better inform drug discovery and design.

  19. Stage-Specific Changes in Plasmodium Metabolism Required for Differentiation and Adaptation to Different Host and Vector Environments

    PubMed Central

    Srivastava, Anubhav; Philip, Nisha; Hughes, Katie R.; Georgiou, Konstantina; MacRae, James I.; Barrett, Michael P.; McConville, Malcolm J.

    2016-01-01

    Malaria parasites (Plasmodium spp.) encounter markedly different (nutritional) environments during their complex life cycles in the mosquito and human hosts. Adaptation to these different host niches is associated with a dramatic rewiring of metabolism, from a highly glycolytic metabolism in the asexual blood stages to increased dependence on tricarboxylic acid (TCA) metabolism in mosquito stages. Here we have used stable isotope labelling, targeted metabolomics and reverse genetics to map stage-specific changes in Plasmodium berghei carbon metabolism and determine the functional significance of these changes on parasite survival in the blood and mosquito stages. We show that glutamine serves as the predominant input into TCA metabolism in both asexual and sexual blood stages and is important for complete male gametogenesis. Glutamine catabolism, as well as key reactions in intermediary metabolism and CoA synthesis are also essential for ookinete to oocyst transition in the mosquito. These data extend our knowledge of Plasmodium metabolism and point towards possible targets for transmission-blocking intervention strategies. Furthermore, they highlight significant metabolic differences between Plasmodium species which are not easily anticipated based on genomics or transcriptomics studies and underline the importance of integration of metabolomics data with other platforms in order to better inform drug discovery and design. PMID:28027318

  20. Conserved and species-specific transcription factor co-binding patterns drive divergent gene regulation in human and mouse

    PubMed Central

    Diehl, Adam G

    2018-01-01

    Abstract The mouse is widely used as system to study human genetic mechanisms. However, extensive rewiring of transcriptional regulatory networks often confounds translation of findings between human and mouse. Site-specific gain and loss of individual transcription factor binding sites (TFBS) has caused functional divergence of orthologous regulatory loci, and so we must look beyond this positional conservation to understand common themes of regulatory control. Fortunately, transcription factor co-binding patterns shared across species often perform conserved regulatory functions. These can be compared to ‘regulatory sentences’ that retain the same meanings regardless of sequence and species context. By analyzing TFBS co-occupancy patterns observed in four human and mouse cell types, we learned a regulatory grammar: the rules by which TFBS are combined into meaningful regulatory sentences. Different parts of this grammar associate with specific sets of functional annotations regardless of sequence conservation and predict functional signatures more accurately than positional conservation. We further show that both species-specific and conserved portions of this grammar are involved in gene expression divergence and human disease risk. These findings expand our understanding of transcriptional regulatory mechanisms, suggesting that phenotypic divergence and disease risk are driven by a complex interplay between deeply conserved and species-specific transcriptional regulatory pathways. PMID:29361190

  1. Public Outreach at RAL: Engaging the Next Generation of Scientists and Engineers

    NASA Astrophysics Data System (ADS)

    Corbett, G.; Ryall, G.; Palmer, S.; Collier, I. P.; Adams, J.; Appleyard, R.

    2015-12-01

    The Rutherford Appleton Laboratory (RAL) is part of the UK's Science and Technology Facilities Council (STFC). As part of the Royal Charter that established the STFC, the organisation is required to generate public awareness and encourage public engagement and dialogue in relation to the science undertaken. The staff at RAL firmly support this activity as it is important to encourage the next generation of students to consider studying Science, Technology, Engineering, and Mathematics (STEM) subjects, providing the UK with a highly skilled work-force in the future. To this end, the STFC undertakes a variety of outreach activities. This paper will describe the outreach activities undertaken by RAL, particularly focussing on those of the Scientific Computing Department (SCD). These activities include: an Arduino based activity day for 12-14 year-olds to celebrate Ada Lovelace day; running a centre as part of the Young Rewired State - encouraging 11-18 year-olds to create web applications with open data; sponsoring a team in the Engineering Education Scheme - supporting a small team of 16-17 year-olds to solve a real world engineering problem; as well as the more traditional tours of facilities. These activities could serve as an example for other sites involved in scientific computing around the globe.

  2. Offdiagonal complexity: A computationally quick complexity measure for graphs and networks

    NASA Astrophysics Data System (ADS)

    Claussen, Jens Christian

    2007-02-01

    A vast variety of biological, social, and economical networks shows topologies drastically differing from random graphs; yet the quantitative characterization remains unsatisfactory from a conceptual point of view. Motivated from the discussion of small scale-free networks, a biased link distribution entropy is defined, which takes an extremum for a power-law distribution. This approach is extended to the node-node link cross-distribution, whose nondiagonal elements characterize the graph structure beyond link distribution, cluster coefficient and average path length. From here a simple (and computationally cheap) complexity measure can be defined. This offdiagonal complexity (OdC) is proposed as a novel measure to characterize the complexity of an undirected graph, or network. While both for regular lattices and fully connected networks OdC is zero, it takes a moderately low value for a random graph and shows high values for apparently complex structures as scale-free networks and hierarchical trees. The OdC approach is applied to the Helicobacter pylori protein interaction network and randomly rewired surrogates.

  3. Gene Expression Architecture of Mouse Dorsal and Tail Skin Reveals Functional Differences in Inflammation and Cancer.

    PubMed

    Quigley, David A; Kandyba, Eve; Huang, Phillips; Halliwill, Kyle D; Sjölund, Jonas; Pelorosso, Facundo; Wong, Christine E; Hirst, Gillian L; Wu, Di; Delrosario, Reyno; Kumar, Atul; Balmain, Allan

    2016-07-26

    Inherited germline polymorphisms can cause gene expression levels in normal tissues to differ substantially between individuals. We present an analysis of the genetic architecture of normal adult skin from 470 genetically unique mice, demonstrating the effect of germline variants, skin tissue location, and perturbation by exogenous inflammation or tumorigenesis on gene signaling pathways. Gene networks related to specific cell types and signaling pathways, including sonic hedgehog (Shh), Wnt, Lgr family stem cell markers, and keratins, differed at these tissue sites, suggesting mechanisms for the differential susceptibility of dorsal and tail skin to development of skin diseases and tumorigenesis. The Pten tumor suppressor gene network is rewired in premalignant tumors compared to normal tissue, but this response to perturbation is lost during malignant progression. We present a software package for expression quantitative trait loci (eQTL) network analysis and demonstrate how network analysis of whole tissues provides insights into interactions between cell compartments and signaling molecules. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  4. MEK-Dependent Negative Feedback Underlies BCR-ABL-Mediated Oncogene Addiction

    PubMed Central

    Asmussen, Jennifer; Lasater, Elisabeth A.; Tajon, Cheryl; Oses-Prieto, Juan; Jun, Young-wook; Taylor, Barry S.; Burlingame, Alma; Craik, Charles S.; Shah, Neil P.

    2014-01-01

    The clinical experience with BCR-ABL tyrosine kinase inhibitors (TKIs) for the treatment of chronic myeloid leukemia (CML) provides compelling evidence for oncogene addiction. Yet, the molecular basis of oncogene addiction remains elusive. Through unbiased quantitative phosphoproteomic analyses of CML cells transiently exposed to BCR-ABL TKI, we identified persistent downregulation of growth factor receptor (GF-R) signaling pathways. We then established and validated a tissue-relevant isogenic model of BCR-ABL-mediated addiction, and found evidence for myeloid GF-R signaling pathway rewiring that profoundly and persistently dampens physiologic pathway activation. We demonstrate that eventual restoration of ligand-mediated GF-R pathway activation is insufficient to fully rescue cells from a competing apoptotic fate. In contrast to previous work with BRAFV600E in melanoma cells, feedback inhibition following BCR-ABL TKI treatment is markedly prolonged, extending beyond the time required to initiate apoptosis. Mechanistically, BCR-ABL-mediated oncogene addiction is facilitated by persistent high levels of MEK-dependent negative feedback. PMID:24362263

  5. Epigenetic Reprogramming of the Type III Interferon Response Potentiates Antiviral Activity and Suppresses Tumor Growth

    PubMed Central

    Ding, Siyuan; Khoury-Hanold, William; Iwasaki, Akiko; Robek, Michael D.

    2014-01-01

    Type III interferon (IFN-λ) exhibits potent antiviral activity similar to IFN-α/β, but in contrast to the ubiquitous expression of the IFN-α/β receptor, the IFN-λ receptor is restricted to cells of epithelial origin. Despite the importance of IFN-λ in tissue-specific antiviral immunity, the molecular mechanisms responsible for this confined receptor expression remain elusive. Here, we demonstrate that the histone deacetylase (HDAC) repression machinery mediates transcriptional silencing of the unique IFN-λ receptor subunit (IFNLR1) in a cell-type-specific manner. Importantly, HDAC inhibitors elevate receptor expression and restore sensitivity to IFN-λ in previously nonresponsive cells, thereby enhancing protection against viral pathogens. In addition, blocking HDAC activity renders nonresponsive cell types susceptible to the pro-apoptotic activity of IFN-λ, revealing the combination of HDAC inhibitors and IFN-λ to be a potential antitumor strategy. These results demonstrate that the type III IFN response may be therapeutically harnessed by epigenetic rewiring of the IFN-λ receptor expression program. PMID:24409098

  6. The molecular and mathematical basis of Waddington's epigenetic landscape: a framework for post-Darwinian biology?

    PubMed

    Huang, Sui

    2012-02-01

    The Neo-Darwinian concept of natural selection is plausible when one assumes a straightforward causation of phenotype by genotype. However, such simple 1:1 mapping must now give place to the modern concepts of gene regulatory networks and gene expression noise. Both can, in the absence of genetic mutations, jointly generate a diversity of inheritable randomly occupied phenotypic states that could also serve as a substrate for natural selection. This form of epigenetic dynamics challenges Neo-Darwinism. It needs to incorporate the non-linear, stochastic dynamics of gene networks. A first step is to consider the mathematical correspondence between gene regulatory networks and Waddington's metaphoric 'epigenetic landscape', which actually represents the quasi-potential function of global network dynamics. It explains the coexistence of multiple stable phenotypes within one genotype. The landscape's topography with its attractors is shaped by evolution through mutational re-wiring of regulatory interactions - offering a link between genetic mutation and sudden, broad evolutionary changes. Copyright © 2012 WILEY Periodicals, Inc.

  7. Immunoadolescence: Neuroimmune development and adolescent behavior

    PubMed Central

    Brenhouse, Heather C.; Schwarz, Jaclyn M.

    2016-01-01

    The brain is increasingly appreciated to be a constantly rewired organ that yields age-specific behaviors and responses to the environment. Adolescence in particular is a unique period characterized by continued brain maturation, superimposed with transient needs of the organism to traverse a leap from parental dependence to independence. Here we describe how these needs require immune maturation, as well as brain maturation. Our immune system, which protects us from pathogens and regulates inflammation, is in constant communication with our nervous system. Together, neuro-immune signaling regulates our behavioral responses to the environment, making this interaction a likely substrate for adolescent development. We review here the identified as well as understudied components of neuro-immune interactions during adolescence. Synaptic pruning, neurite outgrowth, and neurotransmitter release during adolescence all regulate—and are regulated by—immune signals, which occur via blood-brain barrier dynamics and glial activity. We discuss these processes, as well as how immune signaling during this transitional period of development confers differential effects on behavior and vulnerability to mental illness. PMID:27260127

  8. Rewiring of jasmonate and phytochrome B signalling uncouples plant growth-defense tradeoffs

    PubMed Central

    Campos, Marcelo L.; Yoshida, Yuki; Major, Ian T.; de Oliveira Ferreira, Dalton; Weraduwage, Sarathi M.; Froehlich, John E.; Johnson, Brendan F.; Kramer, David M.; Jander, Georg; Sharkey, Thomas D.; Howe, Gregg A.

    2016-01-01

    Plants resist infection and herbivory with innate immune responses that are often associated with reduced growth. Despite the importance of growth-defense tradeoffs in shaping plant productivity in natural and agricultural ecosystems, the molecular mechanisms that link growth and immunity are poorly understood. Here, we demonstrate that growth-defense tradeoffs mediated by the hormone jasmonate are uncoupled in an Arabidopsis mutant (jazQ phyB) lacking a quintet of Jasmonate ZIM-domain transcriptional repressors and the photoreceptor phyB. Analysis of epistatic interactions between jazQ and phyB reveal that growth inhibition associated with enhanced anti-insect resistance is likely not caused by diversion of photoassimilates from growth to defense but rather by a conserved transcriptional network that is hardwired to attenuate growth upon activation of jasmonate signalling. The ability to unlock growth-defense tradeoffs through relief of transcription repression provides an approach to assemble functional plant traits in new and potentially useful ways. PMID:27573094

  9. Optimal topologies for maximizing network transmission capacity

    NASA Astrophysics Data System (ADS)

    Chen, Zhenhao; Wu, Jiajing; Rong, Zhihai; Tse, Chi K.

    2018-04-01

    It has been widely demonstrated that the structure of a network is a major factor that affects its traffic dynamics. In this work, we try to identify the optimal topologies for maximizing the network transmission capacity, as well as to build a clear relationship between structural features of a network and the transmission performance in terms of traffic delivery. We propose an approach for designing optimal network topologies against traffic congestion by link rewiring and apply them on the Barabási-Albert scale-free, static scale-free and Internet Autonomous System-level networks. Furthermore, we analyze the optimized networks using complex network parameters that characterize the structure of networks, and our simulation results suggest that an optimal network for traffic transmission is more likely to have a core-periphery structure. However, assortative mixing and the rich-club phenomenon may have negative impacts on network performance. Based on the observations of the optimized networks, we propose an efficient method to improve the transmission capacity of large-scale networks.

  10. Offering memorable patient experience through creative, dynamic marketing strategy

    PubMed Central

    Raţiu, M; Purcărea, T

    2008-01-01

    Creative, dynamic strategies are the ones that identify new and better ways of uniquely offering the target customers what they want or need. A business can achieve competitive advantage if it chooses a marketing strategy that sets the business apart from anyone else. Healthcare services companies have to understand that the customer should be placed in the centre of all specific marketing operations. The brand message should reflect the focus on the patient. Healthcare products and services offered must represent exactly the solutions that customers expect. The touchpoints with the patients must be well mastered in order to convince them to accept the proposed solutions. Healthcare service providers must be capable to look beyond customer's behaviour or product and healthcare service aquisition. This will demand proactive and far–reaching changes, including focusing specifically on customer preference, quality, and technological interfaces; rewiring strategy to find new value from existing and unfamiliar sources; disintegrating and radically reassembling operational processes; and restructuring the organization to accommodate new typess of work and skill. PMID:20108466

  11. Global reorganisation of cis-regulatory units upon lineage commitment of human embryonic stem cells

    PubMed Central

    Freire-Pritchett, Paula; Schoenfelder, Stefan; Várnai, Csilla; Wingett, Steven W; Cairns, Jonathan; Collier, Amanda J; García-Vílchez, Raquel; Furlan-Magaril, Mayra; Osborne, Cameron S; Fraser, Peter; Rugg-Gunn, Peter J; Spivakov, Mikhail

    2017-01-01

    Long-range cis-regulatory elements such as enhancers coordinate cell-specific transcriptional programmes by engaging in DNA looping interactions with target promoters. Deciphering the interplay between the promoter connectivity and activity of cis-regulatory elements during lineage commitment is crucial for understanding developmental transcriptional control. Here, we use Promoter Capture Hi-C to generate a high-resolution atlas of chromosomal interactions involving ~22,000 gene promoters in human pluripotent and lineage-committed cells, identifying putative target genes for known and predicted enhancer elements. We reveal extensive dynamics of cis-regulatory contacts upon lineage commitment, including the acquisition and loss of promoter interactions. This spatial rewiring occurs preferentially with predicted changes in the activity of cis-regulatory elements and is associated with changes in target gene expression. Our results provide a global and integrated view of promoter interactome dynamics during lineage commitment of human pluripotent cells. DOI: http://dx.doi.org/10.7554/eLife.21926.001 PMID:28332981

  12. Polymer physics predicts the effects of structural variants on chromatin architecture.

    PubMed

    Bianco, Simona; Lupiáñez, Darío G; Chiariello, Andrea M; Annunziatella, Carlo; Kraft, Katerina; Schöpflin, Robert; Wittler, Lars; Andrey, Guillaume; Vingron, Martin; Pombo, Ana; Mundlos, Stefan; Nicodemi, Mario

    2018-05-01

    Structural variants (SVs) can result in changes in gene expression due to abnormal chromatin folding and cause disease. However, the prediction of such effects remains a challenge. Here we present a polymer-physics-based approach (PRISMR) to model 3D chromatin folding and to predict enhancer-promoter contacts. PRISMR predicts higher-order chromatin structure from genome-wide chromosome conformation capture (Hi-C) data. Using the EPHA4 locus as a model, the effects of pathogenic SVs are predicted in silico and compared to Hi-C data generated from mouse limb buds and patient-derived fibroblasts. PRISMR deconvolves the folding complexity of the EPHA4 locus and identifies SV-induced ectopic contacts and alterations of 3D genome organization in homozygous or heterozygous states. We show that SVs can reconfigure topologically associating domains, thereby producing extensive rewiring of regulatory interactions and causing disease by gene misexpression. PRISMR can be used to predict interactions in silico, thereby providing a tool for analyzing the disease-causing potential of SVs.

  13. Offering memorable patient experience through creative, dynamic marketing strategy.

    PubMed

    Purcărea, Victor Lorín; Raţíu, Monica; Purcărea, Theodor; Davila, Carol

    2008-01-01

    Creative, dynamic strategies are the ones that identify new and better ways of uniquely offering the target customers what they want or need. A business can achieve competitive advantage if it chooses a marketing strategy that sets the business apart from anyone else. Healthcare services companies have to understand that the customer should be placed in the centre of all specific marketing operations. The brand message should reflect the focus on the patient. Healthcare products and services offered must represent exactly the solutions that customers expect. The touchpoints with the patients must be well mastered in order to convince them to accept the proposed solutions. Healthcare service providers must be capable to look beyond customer's behaviour or product and healthcare service aquisition. This will demand proactive and far-reaching changes, including focusing specifically on customer preference, quality, and technological interfaces; rewiring strategy to find new value from existing and unfamiliar sources: disintegrating and radically reassembling operational processes: and restructuring the organization to accommodate new types of work and skill.

  14. Existence of Inverted Profile in Chemically Responsive Molecular Pathways in the Zebrafish Liver

    PubMed Central

    Zhang, Xun; Li, Hu; Ma, Jing; Zhang, Louxin; Li, Baowen; Gong, Zhiyuan

    2011-01-01

    How a living organism maintains its healthy equilibrium in response to endless exposure of potentially harmful chemicals is an important question in current biology. By transcriptomic analysis of zebrafish livers treated by various chemicals, we defined hubs as molecular pathways that are frequently perturbed by chemicals and have high degree of functional connectivity to other pathways. Our network analysis revealed that these hubs were organized into two groups showing inverted functionality with each other. Intriguingly, the inverted activity profiles in these two groups of hubs were observed to associate only with toxicopathological states but not with physiological changes. Furthermore, these inverted profiles were also present in rat, mouse, and human under certain toxicopathological conditions. Thus, toxicopathological-associated anti-correlated profiles in hubs not only indicate their potential use in diagnosis but also development of systems-based therapeutics to modulate gene expression by chemical approach in order to rewire the deregulated activities of hubs back to normal physiology. PMID:22140468

  15. A secreted Ustilago maydis effector promotes virulence by targeting anthocyanin biosynthesis in maize

    PubMed Central

    Tanaka, Shigeyuki; Brefort, Thomas; Neidig, Nina; Djamei, Armin; Kahnt, Jörg; Vermerris, Wilfred; Koenig, Stefanie; Feussner, Kirstin; Feussner, Ivo; Kahmann, Regine

    2014-01-01

    The biotrophic fungus Ustilago maydis causes smut disease in maize with characteristic tumor formation and anthocyanin induction. Here, we show that anthocyanin biosynthesis is induced by the virulence promoting secreted effector protein Tin2. Tin2 protein functions inside plant cells where it interacts with maize protein kinase ZmTTK1. Tin2 masks a ubiquitin–proteasome degradation motif in ZmTTK1, thus stabilizing the active kinase. Active ZmTTK1 controls activation of genes in the anthocyanin biosynthesis pathway. Without Tin2, enhanced lignin biosynthesis is observed in infected tissue and vascular bundles show strong lignification. This is presumably limiting access of fungal hyphae to nutrients needed for massive proliferation. Consistent with this assertion, we observe that maize brown midrib mutants affected in lignin biosynthesis are hypersensitive to U. maydis infection. We speculate that Tin2 rewires metabolites into the anthocyanin pathway to lower their availability for other defense responses. DOI: http://dx.doi.org/10.7554/eLife.01355.001 PMID:24473076

  16. Homeostatic plasticity shapes cell-type-specific wiring in the retina

    PubMed Central

    Tien, Nai-Wen; Soto, Florentina; Kerschensteiner, Daniel

    2017-01-01

    SUMMARY Convergent input from different presynaptic partners shapes the responses of postsynaptic neurons. Whether developing postsynaptic neurons establish connections with each presynaptic partner independently, or balance inputs to attain specific responses is unclear. Retinal ganglion cells (RGCs) receive convergent input from bipolar cell types with different contrast responses and temporal tuning. Here, using optogenetic activation and pharmacogenetic silencing, we found that type 6 bipolar cells (B6) dominate excitatory input to ONα-RGCs. We generated mice in which B6 cells were selectively removed from developing circuits (B6-DTA). In B6-DTA mice, ONα-RGCs adjusted connectivity with other bipolar cells in a cell-type-specific manner. They recruited new partners, increased synapses with some existing partners, and maintained constant input from others. Patch clamp recordings revealed that anatomical rewiring precisely preserved contrast- and temporal frequency response functions of ONα-RGCs, indicating that homeostatic plasticity shapes cell-type-specific wiring in the developing retina to stabilize visual information sent to the brain. PMID:28457596

  17. The metabolic co-regulator PGC1α suppresses prostate cancer metastasis

    PubMed Central

    Cortazar, Ana Rosa; Liu, Xiaojing; Urosevic, Jelena; Castillo-Martin, Mireia; Fernández-Ruiz, Sonia; Morciano, Giampaolo; Caro-Maldonado, Alfredo; Guiu, Marc; Zúñiga-García, Patricia; Graupera, Mariona; Bellmunt, Anna; Pandya, Pahini; Lorente, Mar; Martín-Martín, Natalia; Sutherland, James David; Sanchez-Mosquera, Pilar; Bozal-Basterra, Laura; Zabala-Letona, Amaia; Arruabarrena-Aristorena, Amaia; Berenguer, Antonio; Embade, Nieves; Ugalde-Olano, Aitziber; Lacasa-Viscasillas, Isabel; Loizaga-Iriarte, Ana; Unda-Urzaiz, Miguel; Schultz, Nikolaus; Aransay, Ana Maria; Sanz-Moreno, Victoria; Barrio, Rosa; Velasco, Guillermo; Pinton, Paolo; Cordon-Cardo, Carlos; Carracedo, Arkaitz

    2016-01-01

    Cellular transformation and cancer progression is accompanied by changes in the metabolic landscape. Master co-regulators of metabolism orchestrate the modulation of multiple metabolic pathways through transcriptional programs, and hence constitute a probabilistically parsimonious mechanism for general metabolic rewiring. Here we show that the transcriptional co-activator PGC1α suppresses prostate cancer progression and metastasis. A metabolic co-regulator data mining analysis unveiled that PGC1α is down-regulated in prostate cancer and associated to disease progression. Using genetically engineered mouse models and xenografts, we demonstrated that PGC1α opposes prostate cancer progression and metastasis. Mechanistically, the use of integrative metabolomics and transcriptomics revealed that PGC1α activates an Oestrogen-related receptor alpha (ERRα)-dependent transcriptional program to elicit a catabolic state and metastasis suppression. Importantly, a signature based on the PGC1α-ERRα pathway exhibited prognostic potential in prostate cancer, thus uncovering the relevance of monitoring and manipulating this pathway for prostate cancer stratification and treatment. PMID:27214280

  18. Cell-surface engineering by a conjugation-and-release approach based on the formation and cleavage of oxime linkages upon mild electrochemical oxidation and reduction.

    PubMed

    Pulsipher, Abigail; Dutta, Debjit; Luo, Wei; Yousaf, Muhammad N

    2014-09-01

    We report a strategy to rewire cell surfaces for the dynamic control of ligand composition on cell membranes and the modulation of cell-cell interactions to generate three-dimensional (3D) tissue structures applied to stem-cell differentiation, cell-surface tailoring, and tissue engineering. We tailored cell surfaces with bioorthogonal chemical groups on the basis of a liposome-fusion and -delivery method to create dynamic, electroactive, and switchable cell-tissue assemblies through chemistry involving chemoselective conjugation and release. Each step to modify the cell surface: activation, conjugation, release, and regeneration, can be monitored and modulated by noninvasive, label-free analytical techniques. We demonstrate the utility of this methodology by the conjugation and release of small molecules to and from cell surfaces and by the generation of 3D coculture spheroids and multilayered cell tissues that can be programmed to undergo assembly and disassembly on demand. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. The glyoxylate shunt is essential for desiccation tolerance in C. elegans and budding yeast

    PubMed Central

    Erkut, Cihan; Gade, Vamshidhar R; Laxman, Sunil; Kurzchalia, Teymuras V

    2016-01-01

    Many organisms, including species from all kingdoms of life, can survive desiccation by entering a state with no detectable metabolism. To survive, C. elegans dauer larvae and stationary phase S. cerevisiae require elevated amounts of the disaccharide trehalose. We found that dauer larvae and stationary phase yeast switched into a gluconeogenic mode in which metabolism was reoriented toward production of sugars from non-carbohydrate sources. This mode depended on full activity of the glyoxylate shunt (GS), which enables synthesis of trehalose from acetate. The GS was especially critical during preparation of worms for harsh desiccation (preconditioning) and during the entry of yeast into stationary phase. Loss of the GS dramatically decreased desiccation tolerance in both organisms. Our results reveal a novel physiological role for the GS and elucidate a conserved metabolic rewiring that confers desiccation tolerance on organisms as diverse as worm and yeast. DOI: http://dx.doi.org/10.7554/eLife.13614.001 PMID:27090086

  20. Circadian Reprogramming in the Liver Identifies Metabolic Pathways of Aging.

    PubMed

    Sato, Shogo; Solanas, Guiomar; Peixoto, Francisca Oliveira; Bee, Leonardo; Symeonidi, Aikaterini; Schmidt, Mark S; Brenner, Charles; Masri, Selma; Benitah, Salvador Aznar; Sassone-Corsi, Paolo

    2017-08-10

    The process of aging and circadian rhythms are intimately intertwined, but how peripheral clocks involved in metabolic homeostasis contribute to aging remains unknown. Importantly, caloric restriction (CR) extends lifespan in several organisms and rewires circadian metabolism. Using young versus old mice, fed ad libitum or under CR, we reveal reprogramming of the circadian transcriptome in the liver. These age-dependent changes occur in a highly tissue-specific manner, as demonstrated by comparing circadian gene expression in the liver versus epidermal and skeletal muscle stem cells. Moreover, de novo oscillating genes under CR show an enrichment in SIRT1 targets in the liver. This is accompanied by distinct circadian hepatic signatures in NAD + -related metabolites and cyclic global protein acetylation. Strikingly, this oscillation in acetylation is absent in old mice while CR robustly rescues global protein acetylation. Our findings indicate that the clock operates at the crossroad between protein acetylation, liver metabolism, and aging. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Stochastic bifurcations in the nonlinear parallel Ising model.

    PubMed

    Bagnoli, Franco; Rechtman, Raúl

    2016-11-01

    We investigate the phase transitions of a nonlinear, parallel version of the Ising model, characterized by an antiferromagnetic linear coupling and ferromagnetic nonlinear one. This model arises in problems of opinion formation. The mean-field approximation shows chaotic oscillations, by changing the couplings or the connectivity. The spatial model shows bifurcations in the average magnetization, similar to that seen in the mean-field approximation, induced by the change of the topology, after rewiring short-range to long-range connection, as predicted by the small-world effect. These coherent periodic and chaotic oscillations of the magnetization reflect a certain degree of synchronization of the spins, induced by long-range couplings. Similar bifurcations may be induced in the randomly connected model by changing the couplings or the connectivity and also the dilution (degree of asynchronism) of the updating. We also examined the effects of inhomogeneity, mixing ferromagnetic and antiferromagnetic coupling, which induces an unexpected bifurcation diagram with a "bubbling" behavior, as also happens for dilution.

  2. Dynamic Re-wiring of Neural Circuits in the Motor Cortex in Mouse Models of Parkinson's Disease

    PubMed Central

    Lalchandani, Rupa R.; Cui, Yuting; Shu, Yu; Xu, Tonghui; Ding, Jun B.

    2015-01-01

    SUMMARY Dynamic adaptations in synaptic plasticity are critical for learning new motor skills and maintaining memory throughout life, which rapidly decline with Parkinson's disease (PD). Plasticity in the motor cortex is important for acquisition and maintenance of novel motor skills, but how the loss of dopamine in PD leads to disrupted structural and functional plasticity in the motor cortex is not well understood. Here, we utilized mouse models of PD and 2-photon imaging to show that dopamine depletion resulted in structural changes in the motor cortex. We further discovered that dopamine D1 and D2 receptor signaling were linked to selectively and distinctly regulating these aberrant changes in structural and functional plasticity. Our findings suggest that both D1 and D2 receptor signaling regulate motor cortex plasticity, and loss of dopamine results in atypical synaptic adaptations that may contribute to the impairment of motor performance and motor memory observed in PD. PMID:26237365

  3. Rewiring MAP kinases in Saccharomyces cerevisiae to regulate novel targets through ubiquitination.

    PubMed

    Groves, Benjamin; Khakhar, Arjun; Nadel, Cory M; Gardner, Richard G; Seelig, Georg

    2016-08-15

    Evolution has often copied and repurposed the mitogen-activated protein kinase (MAPK) signaling module. Understanding how connections form during evolution, in disease and across individuals requires knowledge of the basic tenets that govern kinase-substrate interactions. We identify criteria sufficient for establishing regulatory links between a MAPK and a non-native substrate. The yeast MAPK Fus3 and human MAPK ERK2 can be functionally redirected if only two conditions are met: the kinase and substrate contain matching interaction domains and the substrate includes a phospho-motif that can be phosphorylated by the kinase and recruit a downstream effector. We used a panel of interaction domains and phosphorylation-activated degradation motifs to demonstrate modular and scalable retargeting. We applied our approach to reshape the signaling behavior of an existing kinase pathway. Together, our results demonstrate that a MAPK can be largely defined by its interaction domains and compatible phospho-motifs and provide insight into how MAPK-substrate connections form.

  4. Generalized extracellular molecule sensor platform for programming cellular behavior.

    PubMed

    Scheller, Leo; Strittmatter, Tobias; Fuchs, David; Bojar, Daniel; Fussenegger, Martin

    2018-04-23

    Strategies for expanding the sensor space of designer receptors are urgently needed to tailor cell-based therapies to respond to any type of medically relevant molecules. Here, we describe a universal approach to designing receptor scaffolds that enables antibody-specific molecular input to activate JAK/STAT, MAPK, PLCG or PI3K/Akt signaling rewired to transgene expression driven by synthetic promoters. To demonstrate its scope, we equipped the GEMS (generalized extracellular molecule sensor) platform with antibody fragments targeting a synthetic azo dye, nicotine, a peptide tag and the PSA (prostate-specific antigen) biomarker, thereby covering inputs ranging from small molecules to proteins. These four GEMS devices provided robust signaling and transgene expression with high signal-to-noise ratios in response to their specific ligands. The sensitivity of the nicotine- and PSA-specific GEMS devices matched the clinically relevant concentration ranges, and PSA-specific GEMS were able to detect pathological PSA levels in the serum of patients diagnosed with prostate cancer.

  5. Designer cells programming quorum-sensing interference with microbes.

    PubMed

    Sedlmayer, Ferdinand; Hell, Dennis; Müller, Marius; Ausländer, David; Fussenegger, Martin

    2018-05-08

    Quorum sensing is a promising target for next-generation anti-infectives designed to address evolving bacterial drug resistance. The autoinducer-2 (AI-2) is a key quorum-sensing signal molecule which regulates bacterial group behaviors and is recognized by many Gram-negative and Gram-positive bacteria. Here we report a synthetic mammalian cell-based microbial-control device that detects microbial chemotactic formyl peptides through a formyl peptide sensor (FPS) and responds by releasing AI-2. The microbial-control device was designed by rewiring an artificial receptor-based signaling cascade to a modular biosynthetic AI-2 production platform. Mammalian cells equipped with the microbial-control gene circuit detect formyl peptides secreted from various microbes with high sensitivity and respond with robust AI-2 production, resulting in control of quorum sensing-related behavior of pathogenic Vibrio harveyi and attenuation of biofilm formation by the human pathogen Candida albicans. The ability to manipulate mixed microbial populations through fine-tuning of AI-2 levels may provide opportunities for future anti-infective strategies.

  6. Activity-induced histone modifications govern Neurexin-1 mRNA splicing and memory preservation.

    PubMed

    Ding, Xinlu; Liu, Sanxiong; Tian, Miaomiao; Zhang, Wenhao; Zhu, Tao; Li, Dongdong; Wu, Jiawei; Deng, HaiTeng; Jia, Yichang; Xie, Wei; Xie, Hong; Guan, Ji-Song

    2017-05-01

    Epigenetic mechanisms regulate the formation, consolidation and reconsolidation of memories. However, the signaling path from neuronal activation to epigenetic modifications within the memory-related brain circuit remains unknown. We report that learning induces long-lasting histone modifications in hippocampal memory-activated neurons to regulate memory stability. Neuronal activity triggers a late-onset shift in Nrxn1 splice isoform choice at splicing site 4 by accumulating a repressive histone marker, H3K9me3, to modulate the splicing process. Activity-dependent phosphorylation of p66α via AMP-activated protein kinase recruits HDAC2 and Suv39h1 to establish repressive histone markers and changes the connectivity of the activated neurons. Removal of Suv39h1 abolished the activity-dependent shift in Nrxn1 splice isoform choice and reduced the stability of established memories. We uncover a cell-autonomous process for memory preservation in which memory-related neurons initiate a late-onset reduction of their rewiring capacities through activity-induced histone modifications.

  7. Experience-Dependent Rewiring of Specific Inhibitory Connections in Adult Neocortex

    PubMed Central

    Kätzel, Dennis; Miesenböck, Gero

    2014-01-01

    Although neocortical connectivity is remarkably stereotyped, the abundance of some wiring motifs varies greatly between cortical areas. To examine if regional wiring differences represent functional adaptations, we have used optogenetic raster stimulation to map the laminar distribution of GABAergic interneurons providing inhibition to pyramidal cells in layer 2/3 (L2/3) of adult mouse barrel cortex during sensory deprivation and recovery. Whisker trimming caused large, motif-specific changes in inhibitory synaptic connectivity: ascending inhibition from deep layers 4 and 5 was attenuated to 20%–45% of baseline, whereas inhibition from superficial layers remained stable (L2/3) or increased moderately (L1). The principal mechanism of deprivation-induced plasticity was motif-specific changes in inhibitory-to-excitatory connection probabilities; the strengths of extant connections were left unaltered. Whisker regrowth restored the original balance of inhibition from deep and superficial layers. Targeted, reversible modifications of specific inhibitory wiring motifs thus contribute to the adaptive remodeling of cortical circuits. PMID:24586113

  8. Opinion diversity and community formation in adaptive networks

    NASA Astrophysics Data System (ADS)

    Yu, Y.; Xiao, G.; Li, G.; Tay, W. P.; Teoh, H. F.

    2017-10-01

    It is interesting and of significant importance to investigate how network structures co-evolve with opinions. In this article, we show that, a simple model integrating consensus formation, link rewiring, and opinion change allows complex system dynamics to emerge, driving the system into a dynamic equilibrium with the co-existence of diversified opinions. Specifically, similar opinion holders may form into communities yet with no strict community consensus; and rather than being separated into disconnected communities, different communities are connected by a non-trivial proportion of inter-community links. More importantly, we show that the complex dynamics may lead to different numbers of communities at the steady state with a given tolerance between different opinion holders. We construct a framework for theoretically analyzing the co-evolution process. Theoretical analysis and extensive simulation results reveal some useful insights into the complex co-evolution process, including the formation of dynamic equilibrium, the transition between different steady states with different numbers of communities, and the dynamics between opinion distribution and network modularity.

  9. Energy Metabolism Rewiring Precedes UVB-Induced Primary Skin Tumor Formation.

    PubMed

    Hosseini, Mohsen; Dousset, Léa; Mahfouf, Walid; Serrano-Sanchez, Martin; Redonnet-Vernhet, Isabelle; Mesli, Samir; Kasraian, Zeinab; Obre, Emilie; Bonneu, Marc; Claverol, Stephane; Vlaski, Marija; Ivanovic, Zoran; Rachidi, Walid; Douki, Thierry; Taieb, Alain; Bouzier-Sore, Anne-Karine; Rossignol, Rodrigue; Rezvani, Hamid Reza

    2018-06-19

    Although growing evidence indicates that bioenergetic metabolism plays an important role in the progression of tumorigenesis, little information is available on the contribution of reprogramming of energy metabolism in cancer initiation. By applying a quantitative proteomic approach and targeted metabolomics, we find that specific metabolic modifications precede primary skin tumor formation. Using a multistage model of ultraviolet B (UVB) radiation-induced skin cancer, we show that glycolysis, tricarboxylic acid (TCA) cycle, and fatty acid β-oxidation are decreased at a very early stage of photocarcinogenesis, while the distal part of the electron transport chain (ETC) is upregulated. Reductive glutamine metabolism and the activity of dihydroorotate dehydrogenase (DHODH) are both necessary for maintaining high ETC. Mice with decreased DHODH activity or impaired ETC failed to develop pre-malignant and malignant lesions. DHODH activity represents a major link between DNA repair efficiency and bioenergetic patterning during skin carcinogenesis. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  10. MYC-induced reprogramming of glutamine catabolism supports optimal virus replication

    PubMed Central

    Thai, Minh; Thaker, Shivani K.; Feng, Jun; Du, Yushen; Hu, Hailiang; Ting Wu, Ting; Graeber, Thomas G.; Braas, Daniel; Christofk, Heather R.

    2015-01-01

    Viruses rewire host cell glucose and glutamine metabolism to meet the bioenergetic and biosynthetic demands of viral propagation. However, the mechanism by which viruses reprogram glutamine metabolism and the metabolic fate of glutamine during adenovirus infection have remained elusive. Here, we show MYC activation is necessary for adenovirus-induced upregulation of host cell glutamine utilization and increased expression of glutamine transporters and glutamine catabolism enzymes. Adenovirus-induced MYC activation promotes increased glutamine uptake, increased use of glutamine in reductive carboxylation and increased use of glutamine in generating hexosamine pathway intermediates and specific amino acids. We identify glutaminase (GLS) as a critical enzyme for optimal adenovirus replication and demonstrate that GLS inhibition decreases replication of adenovirus, herpes simplex virus 1 and influenza A in cultured primary cells. Our findings show that adenovirus-induced reprogramming of glutamine metabolism through MYC activation promotes optimal progeny virion generation, and suggest that GLS inhibitors may be useful therapeutically to reduce replication of diverse viruses. PMID:26561297

  11. Rapidly Characterizing the Fast Dynamics of RNA Genetic Circuitry with Cell-Free Transcription–Translation (TX-TL) Systems

    PubMed Central

    2014-01-01

    RNA regulators are emerging as powerful tools to engineer synthetic genetic networks or rewire existing ones. A potential strength of RNA networks is that they may be able to propagate signals on time scales that are set by the fast degradation rates of RNAs. However, a current bottleneck to verifying this potential is the slow design-build-test cycle of evaluating these networks in vivo. Here, we adapt an Escherichia coli-based cell-free transcription-translation (TX-TL) system for rapidly prototyping RNA networks. We used this system to measure the response time of an RNA transcription cascade to be approximately five minutes per step of the cascade. We also show that this response time can be adjusted with temperature and regulator threshold tuning. Finally, we use TX-TL to prototype a new RNA network, an RNA single input module, and show that this network temporally stages the expression of two genes in vivo. PMID:24621257

  12. The plasticity of cyanobacterial carbon metabolism

    DOE PAGES

    Xiong, Wei; Cano, Melissa; Wang, Bo; ...

    2017-09-29

    This opinion article aims to raise awareness of a fundamental issue which governs sustainable production of biofuels and bio-chemicals from photosynthetic cyanobacteria. Discussed is the plasticity of carbon metabolism, by which the cyanobacterial cells flexibly distribute intracellular carbon fluxes towards target products and adapt to environmental/genetic alterations. This intrinsic feature in cyanobacterial metabolism is being understood through recent identification of new biochemical reactions and engineering on low-throughput pathways. We focus our discussion on new insights into the nature of metabolic plasticity in cyanobacteria and its impact on hydrocarbons (e.g. ethylene and isoprene) production. Here, we discuss approaches that need tomore » be developed to rationally rewire photosynthetic carbon fluxes throughout primary metabolism. We also outline open questions about the regulatory mechanisms of the metabolic network that remain to be answered, which might shed light on photosynthetic carbon metabolism and help optimize design principles in order to improve the production of fuels and chemicals in cyanobacteria.« less

  13. Hepatocellular carcinoma redirects to ketolysis for progression under nutrition deprivation stress

    PubMed Central

    Huang, De; Li, Tingting; Wang, Lin; Zhang, Long; Yan, Ronghui; Li, Kui; Xing, Songge; Wu, Gongwei; Hu, Lan; Jia, Weidong; Lin, Sheng-Cai; Dang, Chi V; Song, Libing; Gao, Ping; Zhang, Huafeng

    2016-01-01

    Cancer cells are known for their capacity to rewire metabolic pathways to support survival and proliferation under various stress conditions. Ketone bodies, though produced in the liver, are not consumed in normal adult liver cells. We find here that ketone catabolism or ketolysis is re-activated in hepatocellular carcinoma (HCC) cells under nutrition deprivation conditions. Mechanistically, 3-oxoacid CoA-transferase 1 (OXCT1), a rate-limiting ketolytic enzyme whose expression is suppressed in normal adult liver tissues, is re-induced by serum starvation-triggered mTORC2-AKT-SP1 signaling in HCC cells. Moreover, we observe that enhanced ketolysis in HCC is critical for repression of AMPK activation and protects HCC cells from excessive autophagy, thereby enhancing tumor growth. Importantly, analysis of clinical HCC samples reveals that increased OXCT1 expression predicts higher patient mortality. Taken together, we uncover here a novel metabolic adaptation by which nutrition-deprived HCC cells employ ketone bodies for energy supply and cancer progression. PMID:27644987

  14. Rewiring of jasmonate and phytochrome B signalling uncouples plant growth-defense tradeoffs

    DOE PAGES

    Campos, Marcelo L.; Yoshida, Yuki; Major, Ian T.; ...

    2016-08-30

    Plants resist infection and herbivory with innate immune responses that are often associated with reduced growth. Despite the importance of growth-defense tradeoffs in shaping plant productivity in natural and agricultural ecosystems, the molecular mechanisms that link growth and immunity are poorly understood. Here, we demonstrate that growth-defense tradeoffs mediated by the hormone jasmonate are uncoupled in an Arabidopsis mutant ( jazQ phyB) lacking a quintet of Jasmonate ZIM-domain transcriptional repressors and the photoreceptor phyB. Analysis of epistatic interactions between jazQ and phyB reveal that growth inhibition associated with enhanced anti-insect resistance is likely not caused by diversion of photoassimilates frommore » growth to defense but rather by a conserved transcriptional network that is hardwired to attenuate growth upon activation of jasmonate signalling. Furthermore, the ability to unlock growth-defense tradeoffs through relief of transcription repression provides an approach to assemble functional plant traits in new and potentially useful ways.« less

  15. Constraints and consequences of the emergence of amino acid repeats in eukaryotic proteins.

    PubMed

    Chavali, Sreenivas; Chavali, Pavithra L; Chalancon, Guilhem; de Groot, Natalia Sanchez; Gemayel, Rita; Latysheva, Natasha S; Ing-Simmons, Elizabeth; Verstrepen, Kevin J; Balaji, Santhanam; Babu, M Madan

    2017-09-01

    Proteins with amino acid homorepeats have the potential to be detrimental to cells and are often associated with human diseases. Why, then, are homorepeats prevalent in eukaryotic proteomes? In yeast, homorepeats are enriched in proteins that are essential and pleiotropic and that buffer environmental insults. The presence of homorepeats increases the functional versatility of proteins by mediating protein interactions and facilitating spatial organization in a repeat-dependent manner. During evolution, homorepeats are preferentially retained in proteins with stringent proteostasis, which might minimize repeat-associated detrimental effects such as unregulated phase separation and protein aggregation. Their presence facilitates rapid protein divergence through accumulation of amino acid substitutions, which often affect linear motifs and post-translational-modification sites. These substitutions may result in rewiring protein interaction and signaling networks. Thus, homorepeats are distinct modules that are often retained in stringently regulated proteins. Their presence facilitates rapid exploration of the genotype-phenotype landscape of a population, thereby contributing to adaptation and fitness.

  16. Metabolism in Fungal Pathogenesis

    PubMed Central

    Ene, Iuliana V.; Brunke, Sascha; Brown, Alistair J.P.; Hube, Bernhard

    2014-01-01

    Fungal pathogens must assimilate local nutrients to establish an infection in their mammalian host. We focus on carbon, nitrogen, and micronutrient assimilation mechanisms, discussing how these influence host–fungus interactions during infection. We highlight several emerging trends based on the available data. First, the perturbation of carbon, nitrogen, or micronutrient assimilation attenuates fungal pathogenicity. Second, the contrasting evolutionary pressures exerted on facultative versus obligatory pathogens have led to contemporary pathogenic fungal species that display differing degrees of metabolic flexibility. The evolutionarily ancient metabolic pathways are conserved in most fungal pathogen, but interesting gaps exist in some species (e.g., Candida glabrata). Third, metabolic flexibility is generally essential for fungal pathogenicity, and in particular, for the adaptation to contrasting host microenvironments such as the gastrointestinal tract, mucosal surfaces, bloodstream, and internal organs. Fourth, this metabolic flexibility relies on complex regulatory networks, some of which are conserved across lineages, whereas others have undergone significant evolutionary rewiring. Fifth, metabolic adaptation affects fungal susceptibility to antifungal drugs and also presents exciting opportunities for the development of novel therapies. PMID:25190251

  17. Rewiring of jasmonate and phytochrome B signalling uncouples plant growth-defense tradeoffs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campos, Marcelo L.; Yoshida, Yuki; Major, Ian T.

    Plants resist infection and herbivory with innate immune responses that are often associated with reduced growth. Despite the importance of growth-defense tradeoffs in shaping plant productivity in natural and agricultural ecosystems, the molecular mechanisms that link growth and immunity are poorly understood. Here, we demonstrate that growth-defense tradeoffs mediated by the hormone jasmonate are uncoupled in an Arabidopsis mutant ( jazQ phyB) lacking a quintet of Jasmonate ZIM-domain transcriptional repressors and the photoreceptor phyB. Analysis of epistatic interactions between jazQ and phyB reveal that growth inhibition associated with enhanced anti-insect resistance is likely not caused by diversion of photoassimilates frommore » growth to defense but rather by a conserved transcriptional network that is hardwired to attenuate growth upon activation of jasmonate signalling. Furthermore, the ability to unlock growth-defense tradeoffs through relief of transcription repression provides an approach to assemble functional plant traits in new and potentially useful ways.« less

  18. The plasticity of cyanobacterial carbon metabolism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiong, Wei; Cano, Melissa; Wang, Bo

    This opinion article aims to raise awareness of a fundamental issue which governs sustainable production of biofuels and bio-chemicals from photosynthetic cyanobacteria. Discussed is the plasticity of carbon metabolism, by which the cyanobacterial cells flexibly distribute intracellular carbon fluxes towards target products and adapt to environmental/genetic alterations. This intrinsic feature in cyanobacterial metabolism is being understood through recent identification of new biochemical reactions and engineering on low-throughput pathways. We focus our discussion on new insights into the nature of metabolic plasticity in cyanobacteria and its impact on hydrocarbons (e.g. ethylene and isoprene) production. Here, we discuss approaches that need tomore » be developed to rationally rewire photosynthetic carbon fluxes throughout primary metabolism. We also outline open questions about the regulatory mechanisms of the metabolic network that remain to be answered, which might shed light on photosynthetic carbon metabolism and help optimize design principles in order to improve the production of fuels and chemicals in cyanobacteria.« less

  19. Convergent evolution and mimicry of protein linear motifs in host-pathogen interactions.

    PubMed

    Chemes, Lucía Beatriz; de Prat-Gay, Gonzalo; Sánchez, Ignacio Enrique

    2015-06-01

    Pathogen linear motif mimics are highly evolvable elements that facilitate rewiring of host protein interaction networks. Host linear motifs and pathogen mimics differ in sequence, leading to thermodynamic and structural differences in the resulting protein-protein interactions. Moreover, the functional output of a mimic depends on the motif and domain repertoire of the pathogen protein. Regulatory evolution mediated by linear motifs can be understood by measuring evolutionary rates, quantifying positive and negative selection and performing phylogenetic reconstructions of linear motif natural history. Convergent evolution of linear motif mimics is widespread among unrelated proteins from viral, prokaryotic and eukaryotic pathogens and can also take place within individual protein phylogenies. Statistics, biochemistry and laboratory models of infection link pathogen linear motifs to phenotypic traits such as tropism, virulence and oncogenicity. In vitro evolution experiments and analysis of natural sequences suggest that changes in linear motif composition underlie pathogen adaptation to a changing environment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Synthetic Biology: Tools to Design, Build, and Optimize Cellular Processes

    PubMed Central

    Young, Eric; Alper, Hal

    2010-01-01

    The general central dogma frames the emergent properties of life, which make biology both necessary and difficult to engineer. In a process engineering paradigm, each biological process stream and process unit is heavily influenced by regulatory interactions and interactions with the surrounding environment. Synthetic biology is developing the tools and methods that will increase control over these interactions, eventually resulting in an integrative synthetic biology that will allow ground-up cellular optimization. In this review, we attempt to contextualize the areas of synthetic biology into three tiers: (1) the process units and associated streams of the central dogma, (2) the intrinsic regulatory mechanisms, and (3) the extrinsic physical and chemical environment. Efforts at each of these three tiers attempt to control cellular systems and take advantage of emerging tools and approaches. Ultimately, it will be possible to integrate these approaches and realize the vision of integrative synthetic biology when cells are completely rewired for biotechnological goals. This review will highlight progress towards this goal as well as areas requiring further research. PMID:20150964

  1. Metabolic engineering of Saccharomyces cerevisiae for production of very long chain fatty acid-derived chemicals.

    PubMed

    Yu, Tao; Zhou, Yongjin J; Wenning, Leonie; Liu, Quanli; Krivoruchko, Anastasia; Siewers, Verena; Nielsen, Jens; David, Florian

    2017-05-26

    Production of chemicals and biofuels through microbial fermentation is an economical and sustainable alternative for traditional chemical synthesis. Here we present the construction of a Saccharomyces cerevisiae platform strain for high-level production of very-long-chain fatty acid (VLCFA)-derived chemicals. Through rewiring the native fatty acid elongation system and implementing a heterologous Mycobacteria FAS I system, we establish an increased biosynthesis of VLCFAs in S. cerevisiae. VLCFAs can be selectively modified towards the fatty alcohol docosanol (C 22 H 46 O) by expressing a specific fatty acid reductase. Expression of this enzyme is shown to impair cell growth due to consumption of VLCFA-CoAs. We therefore implement a dynamic control strategy for separating cell growth from docosanol production. We successfully establish high-level and selective docosanol production of 83.5 mg l -1 in yeast. This approach will provide a universal strategy towards the production of similar high value chemicals in a more scalable, stable and sustainable manner.

  2. Rewiring a secondary metabolite pathway towards itaconic acid production in Aspergillus niger.

    PubMed

    Hossain, Abeer H; Li, An; Brickwedde, Anja; Wilms, Lars; Caspers, Martien; Overkamp, Karin; Punt, Peter J

    2016-07-28

    The industrially relevant filamentous fungus Aspergillus niger is widely used in industry for its secretion capabilities of enzymes and organic acids. Biotechnologically produced organic acids promise to be an attractive alternative for the chemical industry to replace petrochemicals. Itaconic acid (IA) has been identified as one of the top twelve building block chemicals which have high potential to be produced by biotechnological means. The IA biosynthesis cluster (cadA, mttA and mfsA) has been elucidated in its natural producer Aspergillus terreus and transferred to A. niger to enable IA production. Here we report the rewiring of a secondary metabolite pathway towards further improved IA production through the overexpression of a putative cytosolic citrate synthase citB in a A. niger strain carrying the IA biosynthesis cluster. We have previously shown that expression of cadA from A. terreus results in itaconic acid production in A. niger AB1.13, albeit at low levels. This low-level production is boosted fivefold by the overexpression of mttA and mfsA in itaconic acid producing AB1.13 CAD background strains. Controlled batch cultivations with AB1.13 CAD + MFS + MTT strains showed increased production of itaconic acid compared with AB1.13 CAD strain. Moreover, preliminary RNA-Seq analysis of an itaconic acid producing AB1.13 CAD strain has led to the identification of the putative cytosolic citrate synthase citB which was induced in an IA producing strain. We have overexpressed citB in a AB1.13 CAD + MFS + MTT strain and by doing so hypothesize to have targeted itaconic acid production to the cytosolic compartment. By overexpressing citB in AB1.13 CAD + MFS + MTT strains in controlled batch cultivations we have achieved highly increased titers of up to 26.2 g/L IA with a productivity of 0.35 g/L/h while no CA was produced. Expression of the IA biosynthesis cluster in Aspergillus niger AB1.13 strain enables IA production. Moreover, in the AB1.13 CAD strain IA production resulted in overexpression of a putative cytosolic citrate synthase citB. Upon overexpression of citB we have achieved titers of up to 26.2 g/L IA with a productivity of 0.35 g/L/h in controlled batch cultivations. By overexpressing citB we have also diminished side product formation and optimized the production pathway towards IA.

  3. Modulation of microRNA-mRNA Target Pairs by Human Papillomavirus 16 Oncoproteins

    PubMed Central

    Harden, Mallory E.; Prasad, Nripesh; Griffiths, Anthony

    2017-01-01

    ABSTRACT The E6 and E7 proteins are the major oncogenic drivers encoded by high-risk human papillomaviruses (HPVs). While many aspects of the transforming activities of these proteins have been extensively studied, there are fewer studies that have investigated how HPV E6/E7 expression affects the expression of cellular noncoding RNAs. The goal of our study was to investigate HPV16 E6/E7 modulation of cellular microRNA (miR) levels and to determine the potential consequences for cellular gene expression. We performed deep sequencing of small and large cellular RNAs in primary undifferentiated cultures of human foreskin keratinocytes (HFKs) with stable expression of HPV16 E6/E7 or a control vector. After integration of the two data sets, we identified 51 differentially expressed cellular miRs associated with the modulation of 1,456 potential target mRNAs in HPV16 E6/E7-expressing HFKs. We discovered that the degree of differential miR expression in HFKs expressing HPV16 E6/E7 was not necessarily predictive of the number of corresponding mRNA targets or the potential impact on gene expression. Additional analyses of the identified miR-mRNA pairs suggest modulation of specific biological activities and biochemical pathways. Overall, our study supports the model that perturbation of cellular miR expression by HPV16 E6/E7 importantly contributes to the rewiring of cellular regulatory circuits by the high-risk HPV E6 and E7 proteins that contribute to oncogenic transformation. PMID:28049151

  4. Improving Saccharomyces cerevisiae ethanol production and tolerance via RNA polymerase II subunit Rpb7.

    PubMed

    Qiu, Zilong; Jiang, Rongrong

    2017-01-01

    Classical strain engineering methods often have limitations in altering multigenetic cellular phenotypes. Here we try to improve Saccharomyces cerevisiae ethanol tolerance and productivity by reprogramming its transcription profile through rewiring its key transcription component RNA polymerase II (RNAP II), which plays a central role in synthesizing mRNAs. This is the first report on using directed evolution method to engineer RNAP II to alter S. cerevisiae strain phenotypes. Error-prone PCR was employed to engineer the subunit Rpb7 of RNAP II to improve yeast ethanol tolerance and production. Based on previous studies and the presumption that improved ethanol resistance would lead to enhanced ethanol production, we first isolated variant M1 with much improved resistance towards 8 and 10% ethanol. The ethanol titers of M1 was ~122 g/L (96.58% of the theoretical yield) under laboratory very high gravity (VHG) fermentation, 40% increase as compared to the control. DNA microarray assay showed that 369 genes had differential expression in M1 after 12 h VHG fermentation, which are involved in glycolysis, alcoholic fermentation, oxidative stress response, etc. This is the first study to demonstrate the possibility of engineering eukaryotic RNAP to alter global transcription profile and improve strain phenotypes. Targeting subunit Rpb7 of RNAP II was able to bring differential expression in hundreds of genes in S. cerevisiae , which finally led to improvement in yeast ethanol tolerance and production.

  5. Core networks and their reconfiguration patterns across cognitive loads.

    PubMed

    Zuo, Nianming; Yang, Zhengyi; Liu, Yong; Li, Jin; Jiang, Tianzi

    2018-04-20

    Different cognitively demanding tasks recruit globally distributed but functionally specific networks. However, the configuration of core networks and their reconfiguration patterns across cognitive loads remain unclear, as does whether these patterns are indicators for the performance of cognitive tasks. In this study, we analyzed functional magnetic resonance imaging data of a large cohort of 448 subjects, acquired with the brain at resting state and executing N-back working memory (WM) tasks. We discriminated core networks by functional interaction strength and connection flexibility. Results demonstrated that the frontoparietal network (FPN) and default mode network (DMN) were core networks, but each exhibited different patterns across cognitive loads. The FPN and DMN both showed strengthened internal connections at the low demand state (0-back) compared with the resting state (control level); whereas, from the low (0-back) to high demand state (2-back), some connections to the FPN weakened and were rewired to the DMN (whose connections all remained strong). Of note, more intensive reconfiguration of both the whole brain and core networks (but no other networks) across load levels indicated relatively poor cognitive performance. Collectively these findings indicate that the FPN and DMN have distinct roles and reconfiguration patterns across cognitively demanding loads. This study advances our understanding of the core networks and their reconfiguration patterns across cognitive loads and provides a new feature to evaluate and predict cognitive capability (e.g., WM performance) based on brain networks. © 2018 Wiley Periodicals, Inc.

  6. Prolyl hydroxylase regulates axonal rewiring and motor recovery after traumatic brain injury

    PubMed Central

    Miyake, S; Muramatsu, R; Hamaguchi, M; Yamashita, T

    2015-01-01

    Prolyl 4-hydroxylases (PHDs; PHD1, PHD2, and PHD3) are a component of cellular oxygen sensors that regulate the adaptive response depending on the oxygen concentration stabilized by hypoxia/stress-regulated genes transcription. In normoxic condition, PHD2 is required to stabilize hypoxia inducible factors. Silencing of PHD2 leads to the activation of intracellular signaling including RhoA and Rho-associated protein kinase (ROCK), which are key regulators of neurite growth. In this study, we determined that genetic or pharmacological inhibition of PHD2 in cultured cortical neurons prevents neurite elongation through a ROCK-dependent mechanism. We then explored the role of PHDs in axonal reorganization following a traumatic brain injury in adult mice. Unilateral destruction of motor cortex resulted in behavioral deficits due to disruption of the corticospinal tract (CST), a part of the descending motor pathway. In the spinal cord, sprouting of fibers from the intact side of the CST into the denervated side is thought to contribute to the recovery process following an injury. Intracortical infusion of PHD inhibitors into the intact side of the motor cortex abrogated spontaneous formation of CST collaterals and functional recovery after damage to the sensorimotor cortex. These findings suggest PHDs have an important role in the formation of compensatory axonal networks following an injury and may represent a new molecular target for the central nervous system disorders. PMID:25675298

  7. DNA repair deficiency sensitizes lung cancer cells to NAD+ biosynthesis blockade.

    PubMed

    Touat, Mehdi; Sourisseau, Tony; Dorvault, Nicolas; Chabanon, Roman M; Garrido, Marlène; Morel, Daphné; Krastev, Dragomir B; Bigot, Ludovic; Adam, Julien; Frankum, Jessica R; Durand, Sylvère; Pontoizeau, Clement; Souquère, Sylvie; Kuo, Mei-Shiue; Sauvaigo, Sylvie; Mardakheh, Faraz; Sarasin, Alain; Olaussen, Ken A; Friboulet, Luc; Bouillaud, Frédéric; Pierron, Gérard; Ashworth, Alan; Lombès, Anne; Lord, Christopher J; Soria, Jean-Charles; Postel-Vinay, Sophie

    2018-04-02

    Synthetic lethality is an efficient mechanism-based approach to selectively target DNA repair defects. Excision repair cross-complementation group 1 (ERCC1) deficiency is frequently found in non-small-cell lung cancer (NSCLC), making this DNA repair protein an attractive target for exploiting synthetic lethal approaches in the disease. Using unbiased proteomic and metabolic high-throughput profiling on a unique in-house-generated isogenic model of ERCC1 deficiency, we found marked metabolic rewiring of ERCC1-deficient populations, including decreased levels of the metabolite NAD+ and reduced expression of the rate-limiting NAD+ biosynthetic enzyme nicotinamide phosphoribosyltransferase (NAMPT). We also found reduced NAMPT expression in NSCLC samples with low levels of ERCC1. These metabolic alterations were a primary effect of ERCC1 deficiency, and caused selective exquisite sensitivity to small-molecule NAMPT inhibitors, both in vitro - ERCC1-deficient cells being approximately 1,000 times more sensitive than ERCC1-WT cells - and in vivo. Using transmission electronic microscopy and functional metabolic studies, we found that ERCC1-deficient cells harbor mitochondrial defects. We propose a model where NAD+ acts as a regulator of ERCC1-deficient NSCLC cell fitness. These findings open therapeutic opportunities that exploit a yet-undescribed nuclear-mitochondrial synthetic lethal relationship in NSCLC models, and highlight the potential for targeting DNA repair/metabolic crosstalks for cancer therapy.

  8. Leptin Modulates Mitochondrial Function, Dynamics and Biogenesis in MCF-7 Cells.

    PubMed

    Blanquer-Rosselló, M Mar; Santandreu, Francisca M; Oliver, Jordi; Roca, Pilar; Valle, Adamo

    2015-09-01

    The adipokine leptin, known for its key role in the control of energy metabolism, has been shown to be involved in both normal and tumoral mammary growth. One of the hallmarks of cancer is an alteration of tumor metabolism since cancerous cells must rewire metabolism to satisfy the demands of growth and proliferation. Considering the sensibility of breast cancer cells to leptin, the objective of this study was to explore the effects of this adipokine on their metabolism. To this aim, we treated the MCF-7 breast cancer cell line with 50 ng/mL leptin and analyzed several features related to cellular and mitochondrial metabolism. As a result, leptin increased cell proliferation, shifted ATP production from glycolysis to mitochondria and decreased the levels of the glycolytic end-product lactate. We observed an improvement in ADP-dependent oxygen consumption and an amelioration of oxidative stress without changes in total mitochondrial mass or specific oxidative phosphorylation (OXPHOS) complexes. Furthermore, RT-PCR and western blot showed an up-regulation for genes and proteins related to biogenesis and mitochondrial dynamics. This expression signature, together with an increased mitophagy observed by confocal microscopy suggests that leptin may improve mitochondrial quality and function. Taken together, our results propose that leptin may improve bioenergetic efficiency by avoiding the production of reactive oxygen species (ROS) and conferring benefits for growth and survival of MCF-7 breast cancer cells. © 2015 Wiley Periodicals, Inc.

  9. Rev7 and 53BP1/Crb2 prevent RecQ helicase-dependent hyper-resection of DNA double-strand breaks.

    PubMed

    Leland, Bryan A; Chen, Angela C; Zhao, Amy Y; Wharton, Robert C; King, Megan C

    2018-04-26

    Poly(ADP ribose) polymerase inhibitors (PARPi) target cancer cells deficient in homology-directed repair of DNA double-strand breaks (DSBs). In preclinical models, PARPi resistance is tied to altered nucleolytic processing (resection) at the 5' ends of a DSB. For example, loss of either 53BP1 or Rev7/MAD2L2/FANCV derepresses resection to drive PARPi resistance, although the mechanisms are poorly understood. Long-range resection can be catalyzed by two machineries: the exonuclease Exo1, or the combination of a RecQ helicase and Dna2. Here, we develop a single-cell microscopy assay that allows the distinct phases and machineries of resection to be interrogated simultaneously in living S. pombe cells. Using this assay, we find that the 53BP1 orthologue and Rev7 specifically repress long-range resection through the RecQ helicase-dependent pathway, thereby preventing hyper-resection. These results suggest that 'rewiring' of BRCA1-deficient cells to employ an Exo1-independent hyper-resection pathway is a driver of PARPi resistance. © 2018, Leland et al.

  10. Helping Video Games Rewire "Our Minds"

    NASA Technical Reports Server (NTRS)

    Pope, Alan T.; Palsson, Olafur S.

    2001-01-01

    Biofeedback-modulated video games are games that respond to physiological signals as well as mouse, joystick or game controller input; they embody the concept of improving physiological functioning by rewarding specific healthy body signals with success at playing a video game. The NASA patented biofeedback-modulated game method blends biofeedback into popular off-the- shelf video games in such a way that the games do not lose their entertainment value. This method uses physiological signals (e.g., electroencephalogram frequency band ratio) not simply to drive a biofeedback display directly, or periodically modify a task as in other systems, but to continuously modulate parameters (e.g., game character speed and mobility) of a game task in real time while the game task is being performed by other means (e.g., a game controller). Biofeedback-modulated video games represent a new generation of computer and video game environments that train valuable mental skills beyond eye-hand coordination. These psychophysiological training technologies are poised to exploit the revolution in interactive multimedia home entertainment for the personal improvement, not just the diversion, of the user.

  11. Methylphenidate administration determines enduring changes in neuroglial network in rats.

    PubMed

    Cavaliere, Carlo; Cirillo, Giovanni; Bianco, Maria Rosaria; Adriani, Walter; De Simone, Antonietta; Leo, Damiana; Perrone-Capano, Carla; Papa, Michele

    2012-01-01

    Repeated exposure to psychostimulant drugs induces complex molecular and structural modifications in discrete brain regions of the meso-cortico-limbic system. This structural remodeling is thought to underlie neurobehavioral adaptive responses. Administration to adolescent rats of methylphenidate (MPH), commonly used in attention deficit and hyperactivity disorder (ADHD), triggers alterations of reward-based behavior paralleled by persistent and plastic synaptic changes of neuronal and glial markers within key areas of the reward circuits. By immunohistochemistry, we observe a marked increase of glial fibrillary acidic protein (GFAP) and neuronal nitric oxide synthase (nNOS) expression and a down-regulation of glial glutamate transporter GLAST in dorso-lateral and ventro-medial striatum. Using electron microscopy, we find in the prefrontal cortex a significant reduction of the synaptic active zone length, paralleled by an increase of dendritic spines. We demonstrate that in limbic areas the MPH-induced reactive astrocytosis affects the glial glutamatergic uptake system that in turn could determine glutamate receptor sensitization. These processes could be sustained by NO production and synaptic rearrangement and contribute to MPH neuroglial induced rewiring. Copyright © 2011. Published by Elsevier B.V.

  12. Temporal fluxomics reveals oscillations in TCA cycle flux throughout the mammalian cell cycle.

    PubMed

    Ahn, Eunyong; Kumar, Praveen; Mukha, Dzmitry; Tzur, Amit; Shlomi, Tomer

    2017-11-06

    Cellular metabolic demands change throughout the cell cycle. Nevertheless, a characterization of how metabolic fluxes adapt to the changing demands throughout the cell cycle is lacking. Here, we developed a temporal-fluxomics approach to derive a comprehensive and quantitative view of alterations in metabolic fluxes throughout the mammalian cell cycle. This is achieved by combining pulse-chase LC-MS-based isotope tracing in synchronized cell populations with computational deconvolution and metabolic flux modeling. We find that TCA cycle fluxes are rewired as cells progress through the cell cycle with complementary oscillations of glucose versus glutamine-derived fluxes: Oxidation of glucose-derived flux peaks in late G1 phase, while oxidative and reductive glutamine metabolism dominates S phase. These complementary flux oscillations maintain a constant production rate of reducing equivalents and oxidative phosphorylation flux throughout the cell cycle. The shift from glucose to glutamine oxidation in S phase plays an important role in cell cycle progression and cell proliferation. © 2017 The Authors. Published under the terms of the CC BY 4.0 license.

  13. Engineering Yarrowia lipolytica as a platform for synthesis of drop-in transportation fuels and oleochemicals

    PubMed Central

    Xu, Peng; Qiao, Kangjian; Ahn, Woo Suk; Stephanopoulos, Gregory

    2016-01-01

    Harnessing lipogenic pathways and rewiring acyl-CoA and acyl-ACP (acyl carrier protein) metabolism in Yarrowia lipolytica hold great potential for cost-efficient production of diesel, gasoline-like fuels, and oleochemicals. Here we assessed various pathway engineering strategies in Y. lipolytica toward developing a yeast biorefinery platform for sustainable production of fuel-like molecules and oleochemicals. Specifically, acyl-CoA/acyl-ACP processing enzymes were targeted to the cytoplasm, peroxisome, or endoplasmic reticulum to generate fatty acid ethyl esters and fatty alkanes with tailored chain length. Activation of endogenous free fatty acids and the subsequent reduction of fatty acyl-CoAs enabled the efficient synthesis of fatty alcohols. Engineering a hybrid fatty acid synthase shifted the free fatty acids to a medium chain-length scale. Manipulation of alternative cytosolic acetyl-CoA pathways partially decoupled lipogenesis from nitrogen starvation and unleashed the lipogenic potential of Y. lipolytica. Taken together, the strategies reported here represent promising steps to develop a yeast biorefinery platform that potentially upgrades low-value carbons to high-value fuels and oleochemicals in a sustainable and environmentally friendly manner. PMID:27621436

  14. Final Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michael Laub

    2008-12-29

    Our team of investigators from MIT (Michael Laub) and Stanford (Harley McAdams and Lucy Shapiro) conducted a multi-faceted, systematic experimental analysis of the 106 Caulobacter two-component signal transduction system proteins (62 histidine kinases and 44 response regulators) to understand how they coordinate cell cycle progression, metabolism, and response to environmental changes. These two-component signaling proteins were characterized at the genetic, biochemical, and genomic levels. The results generated by our laboratories have provided numerous insights into how Caulobacter cells sense and respond to a myriad of signals. As nearly all bacteria use two-component signaling for cell regulation, the results from thismore » project help to deepen our general understanding of bacterial signal transduction. The tools and approaches developed can be applied to other bacteria. In particular, work from the Laub laboratory now enables the systematic, rational rewiring of two-component signaling proteins, a major advance that stands to impact synthetic biology and the development of biosensors and other designer molecular circuits. Results are summarized from our work. Each section lists publications and publicly-available resources which result from the work described.« less

  15. CSF1R+ Macrophages Sustain Pancreatic Tumor Growth through T Cell Suppression and Maintenance of Key Gene Programs that Define the Squamous Subtype.

    PubMed

    Candido, Juliana B; Morton, Jennifer P; Bailey, Peter; Campbell, Andrew D; Karim, Saadia A; Jamieson, Thomas; Lapienyte, Laura; Gopinathan, Aarthi; Clark, William; McGhee, Ewan J; Wang, Jun; Escorcio-Correia, Monica; Zollinger, Raphael; Roshani, Rozita; Drew, Lisa; Rishi, Loveena; Arkell, Rebecca; Evans, T R Jeffry; Nixon, Colin; Jodrell, Duncan I; Wilkinson, Robert W; Biankin, Andrew V; Barry, Simon T; Balkwill, Frances R; Sansom, Owen J

    2018-05-01

    Pancreatic ductal adenocarcinoma (PDAC) is resistant to most therapies including single-agent immunotherapy and has a dense desmoplastic stroma, and most patients present with advanced metastatic disease. We reveal that macrophages are the dominant leukocyte population both in human PDAC stroma and autochthonous models, with an important functional contribution to the squamous subtype of human PDAC. We targeted macrophages in a genetic PDAC model using AZD7507, a potent selective inhibitor of CSF1R. AZD7507 caused shrinkage of established tumors and increased mouse survival in this difficult-to-treat model. Malignant cell proliferation diminished, with increased cell death and an enhanced T cell immune response. Loss of macrophages rewired other features of the TME, with global changes in gene expression akin to switching PDAC subtypes. These changes were markedly different to those elicited when neutrophils were targeted via CXCR2. These results suggest targeting the myeloid cell axis may be particularly efficacious in PDAC, especially with CSF1R inhibitors. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  16. PhosphoSitePlus, 2014: mutations, PTMs and recalibrations

    PubMed Central

    Hornbeck, Peter V.; Zhang, Bin; Murray, Beth; Kornhauser, Jon M.; Latham, Vaughan; Skrzypek, Elzbieta

    2015-01-01

    PhosphoSitePlus® (PSP, http://www.phosphosite.org/), a knowledgebase dedicated to mammalian post-translational modifications (PTMs), contains over 330 000 non-redundant PTMs, including phospho, acetyl, ubiquityl and methyl groups. Over 95% of the sites are from mass spectrometry (MS) experiments. In order to improve data reliability, early MS data have been reanalyzed, applying a common standard of analysis across over 1 000 000 spectra. Site assignments with P > 0.05 were filtered out. Two new downloads are available from PSP. The ‘Regulatory sites’ dataset includes curated information about modification sites that regulate downstream cellular processes, molecular functions and protein-protein interactions. The ‘PTMVar’ dataset, an intersect of missense mutations and PTMs from PSP, identifies over 25 000 PTMVars (PTMs Impacted by Variants) that can rewire signaling pathways. The PTMVar data include missense mutations from UniPROTKB, TCGA and other sources that cause over 2000 diseases or syndromes (MIM) and polymorphisms, or are associated with hundreds of cancers. PTMVars include 18 548 phosphorlyation sites, 3412 ubiquitylation sites, 2316 acetylation sites, 685 methylation sites and 245 succinylation sites. PMID:25514926

  17. Nip the HPV encoded evil in the cancer bud: HPV reshapes TRAILs and signaling landscapes

    PubMed Central

    2013-01-01

    HPV encoded proteins can elicit ectopic protein–protein interactions that re-wire signaling pathways, in a mode that promotes malignancy. Moreover, accumulating data related to HPV is now providing compelling substantiation of a central role played by HPV in escaping immunosurveillance and impairment of apoptotic response. What emerges is an intricate network of Wnt, TGF, Notch signaling cascades that forms higher-order ligand–receptor complexes routing downstream signaling in HPV infected cells. These HPV infected cells are regulated both extracellularly by ligand receptor axis and intracellularly by HPV encoded proteins and impair TRAIL mediated apoptosis. We divide this review into different sections addressing how linear signaling pathways integrate to facilitate carcinogenesis and compounds that directly or indirectly reverse these aberrant interactions offer new possibilities for therapy in cancer. Although HPV encoded proteins mediated misrepresentation of pathways is difficult to target, improved drug-discovery platforms and new technologies have facilitated the discovery of agents that can target dysregulated pathways in HPV infected cervical cancer cells, thus setting the stage for preclinical models and clinical trials. PMID:23773282

  18. Collective dynamics of 'small-world' networks.

    PubMed

    Watts, D J; Strogatz, S H

    1998-06-04

    Networks of coupled dynamical systems have been used to model biological oscillators, Josephson junction arrays, excitable media, neural networks, spatial games, genetic control networks and many other self-organizing systems. Ordinarily, the connection topology is assumed to be either completely regular or completely random. But many biological, technological and social networks lie somewhere between these two extremes. Here we explore simple models of networks that can be tuned through this middle ground: regular networks 'rewired' to introduce increasing amounts of disorder. We find that these systems can be highly clustered, like regular lattices, yet have small characteristic path lengths, like random graphs. We call them 'small-world' networks, by analogy with the small-world phenomenon (popularly known as six degrees of separation. The neural network of the worm Caenorhabditis elegans, the power grid of the western United States, and the collaboration graph of film actors are shown to be small-world networks. Models of dynamical systems with small-world coupling display enhanced signal-propagation speed, computational power, and synchronizability. In particular, infectious diseases spread more easily in small-world networks than in regular lattices.

  19. Restoration of skilled locomotion by sprouting corticospinal axons induced by co-deletion of PTEN and SOCS3

    PubMed Central

    Jin, Duo; Liu, Yuanyuan; Sun, Fang; Wang, Xuhua; Liu, Xuefeng; He, Zhigang

    2015-01-01

    The limited rewiring of the corticospinal tract (CST) only partially compensates the lost functions after stroke, brain trauma and spinal cord injury. Therefore it is important to develop new therapies to enhance the compensatory circuitry mediated by spared CST axons. Here by using a unilateral pyramidotomy model, we find that deletion of cortical suppressor of cytokine signaling 3 (SOCS3), a negative regulator of cytokine-activated pathway, promotes sprouting of uninjured CST axons to the denervated spinal cord. A likely trigger of such sprouting is ciliary neurotrophic factor (CNTF) expressed in local spinal neurons. Such sprouting can be further enhanced by deletion of phosphatase and tensin homolog (PTEN), a mechanistic target of rapamycin (mTOR) negative regulator, resulting in significant recovery of skilled locomotion. Ablation of the corticospinal neurons with sprouting axons abolishes the improved behavioural performance. Furthermore, by optogenetics-based specific CST stimulation, we show a direct limb motor control by sprouting CST axons, providing direct evidence for the reformation of a functional circuit. PMID:26598325

  20. A synthetic multifunctional mammalian pH sensor and CO2 transgene-control device.

    PubMed

    Ausländer, David; Ausländer, Simon; Charpin-El Hamri, Ghislaine; Sedlmayer, Ferdinand; Müller, Marius; Frey, Olivier; Hierlemann, Andreas; Stelling, Jörg; Fussenegger, Martin

    2014-08-07

    All metabolic activities operate within a narrow pH range that is controlled by the CO2-bicarbonate buffering system. We hypothesized that pH could serve as surrogate signal to monitor and respond to the physiological state. By functionally rewiring the human proton-activated cell-surface receptor TDAG8 to chimeric promoters, we created a synthetic signaling cascade that precisely monitors extracellular pH within the physiological range. The synthetic pH sensor could be adjusted by organic acids as well as gaseous CO2 that shifts the CO2-bicarbonate balance toward hydrogen ions. This enabled the design of gas-programmable logic gates, provided remote control of cellular behavior inside microfluidic devices, and allowed for CO2-triggered production of biopharmaceuticals in standard bioreactors. When implanting cells containing the synthetic pH sensor linked to production of insulin into type 1 diabetic mice developing diabetic ketoacidosis, the prosthetic network automatically scored acidic pH and coordinated an insulin expression response that corrected ketoacidosis. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Self-assembled photosystem-I biophotovoltaics on nanostructured TiO(2 )and ZnO.

    PubMed

    Mershin, Andreas; Matsumoto, Kazuya; Kaiser, Liselotte; Yu, Daoyong; Vaughn, Michael; Nazeeruddin, Md K; Bruce, Barry D; Graetzel, Michael; Zhang, Shuguang

    2012-01-01

    The abundant pigment-protein membrane complex photosystem-I (PS-I) is at the heart of the Earth's energy cycle. It is the central molecule in the "Z-scheme" of photosynthesis, converting sunlight into the chemical energy of life. Commandeering this intricately organized photosynthetic nanocircuitry and re-wiring it to produce electricity carries the promise of inexpensive and environmentally friendly solar power. We here report that dry PS-I stabilized by surfactant peptides functioned as both the light-harvester and charge separator in solar cells self-assembled on nanostructured semiconductors. Contrary to previous attempts at biophotovoltaics requiring elaborate surface chemistries, thin film deposition, and illumination concentrated into narrow wavelength ranges the devices described here are straightforward and inexpensive to fabricate and perform well under standard sunlight yielding open circuit photovoltage of 0.5 V, fill factor of 71%, electrical power density of 81 µW/cm(2) and photocurrent density of 362 µA/cm(2), over four orders of magnitude higher than any photosystem-based biophotovoltaic to date.

  2. Self-assembled photosystem-I biophotovoltaics on nanostructured TiO2 and ZnO

    PubMed Central

    Mershin, Andreas; Matsumoto, Kazuya; Kaiser, Liselotte; Yu, Daoyong; Vaughn, Michael; Nazeeruddin, Md. K.; Bruce, Barry D.; Graetzel, Michael; Zhang, Shuguang

    2012-01-01

    The abundant pigment-protein membrane complex photosystem-I (PS-I) is at the heart of the Earth’s energy cycle. It is the central molecule in the “Z-scheme” of photosynthesis, converting sunlight into the chemical energy of life. Commandeering this intricately organized photosynthetic nanocircuitry and re-wiring it to produce electricity carries the promise of inexpensive and environmentally friendly solar power. We here report that dry PS-I stabilized by surfactant peptides functioned as both the light-harvester and charge separator in solar cells self-assembled on nanostructured semiconductors. Contrary to previous attempts at biophotovoltaics requiring elaborate surface chemistries, thin film deposition, and illumination concentrated into narrow wavelength ranges the devices described here are straightforward and inexpensive to fabricate and perform well under standard sunlight yielding open circuit photovoltage of 0.5 V, fill factor of 71%, electrical power density of 81 µW/cm2 and photocurrent density of 362 µA/cm2, over four orders of magnitude higher than any photosystem-based biophotovoltaic to date. PMID:22355747

  3. Quantitative system drift compensates for altered maternal inputs to the gap gene network of the scuttle fly Megaselia abdita

    PubMed Central

    Wotton, Karl R; Jiménez-Guri, Eva; Crombach, Anton; Janssens, Hilde; Alcaine-Colet, Anna; Lemke, Steffen; Schmidt-Ott, Urs; Jaeger, Johannes

    2015-01-01

    The segmentation gene network in insects can produce equivalent phenotypic outputs despite differences in upstream regulatory inputs between species. We investigate the mechanistic basis of this phenomenon through a systems-level analysis of the gap gene network in the scuttle fly Megaselia abdita (Phoridae). It combines quantification of gene expression at high spatio-temporal resolution with systematic knock-downs by RNA interference (RNAi). Initiation and dynamics of gap gene expression differ markedly between M. abdita and Drosophila melanogaster, while the output of the system converges to equivalent patterns at the end of the blastoderm stage. Although the qualitative structure of the gap gene network is conserved, there are differences in the strength of regulatory interactions between species. We term such network rewiring ‘quantitative system drift’. It provides a mechanistic explanation for the developmental hourglass model in the dipteran lineage. Quantitative system drift is likely to be a widespread mechanism for developmental evolution. DOI: http://dx.doi.org/10.7554/eLife.04785.001 PMID:25560971

  4. A time- and matrix-dependent TGFBR3–JUND–KRT5 regulatory circuit in single breast epithelial cells and basal-like premalignancies

    PubMed Central

    Wang, Chun-Chao; Bajikar, Sameer S.; Jamal, Leen; Atkins, Kristen A.; Janes, Kevin A.

    2014-01-01

    Basal-like breast carcinoma is characterized by poor prognosis and high intratumor heterogeneity. In an immortalized basal-like breast epithelial cell line, we identified two anti-correlated gene-expression programs that arise among single extracellular matrix (ECM)-attached cells during organotypic 3D culture. The first contains multiple TGFβ-related genes including TGFBR3, whereas the second contains JUND and the basal-like marker, KRT5. TGFBR3 and JUND interconnect through four negative-feedback loops to form a circuit that exhibits spontaneous damped oscillations in 3D culture. The TGFBR3–JUND circuit appears conserved in some premalignant lesions that heterogeneously express KRT5. The circuit depends on ECM engagement, as detachment causes a rewiring that is triggered by RPS6 dephosphorylation and maintained by juxtacrine tenascin C, which is critical for intraductal colonization of basal-like breast cancer cells in vivo. Intratumor heterogeneity need not stem from partial differentiation and could instead reflect dynamic toggling of cells between expression states that are not cell autonomous. PMID:24658685

  5. Rewiring of Glutamine Metabolism Is a Bioenergetic Adaptation of Human Cells with Mitochondrial DNA Mutations.

    PubMed

    Chen, Qiuying; Kirk, Kathryne; Shurubor, Yevgeniya I; Zhao, Dazhi; Arreguin, Andrea J; Shahi, Ifrah; Valsecchi, Federica; Primiano, Guido; Calder, Elizabeth L; Carelli, Valerio; Denton, Travis T; Beal, M Flint; Gross, Steven S; Manfredi, Giovanni; D'Aurelio, Marilena

    2018-05-01

    Using molecular, biochemical, and untargeted stable isotope tracing approaches, we identify a previously unappreciated glutamine-derived α-ketoglutarate (αKG) energy-generating anaplerotic flux to be critical in mitochondrial DNA (mtDNA) mutant cells that harbor human disease-associated oxidative phosphorylation defects. Stimulating this flux with αKG supplementation enables the survival of diverse mtDNA mutant cells under otherwise lethal obligatory oxidative conditions. Strikingly, we demonstrate that when residual mitochondrial respiration in mtDNA mutant cells exceeds 45% of control levels, αKG oxidative flux prevails over reductive carboxylation. Furthermore, in a mouse model of mitochondrial myopathy, we show that increased oxidative αKG flux in muscle arises from enhanced alanine synthesis and release into blood, concomitant with accelerated amino acid catabolism from protein breakdown. Importantly, in this mouse model of mitochondriopathy, muscle amino acid imbalance is normalized by αKG supplementation. Taken together, our findings provide a rationale for αKG supplementation as a therapeutic strategy for mitochondrial myopathies. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Mixed strategy and coevolution dynamics in social networks

    NASA Astrophysics Data System (ADS)

    Zhong, Weicai; Abbass, Hussein A.; Bender, Axel; Liu, Jing

    2011-01-01

    We investigate coevolution dynamics of both individual strategies and social ties as they adapt within the snowdrift game with mixed strategies. We propose a partner selection mechanism based on the concept of trust. Here trust is considered an instrument for an individual both selecting the right partners and being selected amongst other potential partners. Based on her local views of the system, the focal individual dismisses the link from the partner with the lowest trust and rewires to the partner’s partner with the highest trust. It is shown that such a trust-based partner switching mechanism favors the emergence of cooperators. Furthermore, when the number of an individual’s partners is restricted (which is a metaphor of limited capacities and capabilities of an individual in real environments), surprising assortative mixing patterns are formed in the emerging network and change the network’s degree distribution from a power-law distribution to an asymmetrically U-shaped distribution. This plays a leading role in preventing global avalanches triggered by perturbations acting on the state of the highly connected individuals.

  7. Synchrony-optimized networks of Kuramoto oscillators with inertia

    NASA Astrophysics Data System (ADS)

    Pinto, Rafael S.; Saa, Alberto

    2016-12-01

    We investigate synchronization in networks of Kuramoto oscillators with inertia. More specifically, we introduce a rewiring algorithm consisting basically in a hill climb scheme in which the edges of the network are swapped in order to enhance its synchronization capacity. We show that the synchrony-optimized networks generated by our algorithm have some interesting topological and dynamical properties. In particular, they typically exhibit an anticipation of the synchronization onset and are more robust against certain types of perturbations. We consider synthetic random networks and also a network with a topology based on an approximated model of the (high voltage) power grid of Spain, since networks of Kuramoto oscillators with inertia have been used recently as simplified models for power grids, for which synchronization is obviously a crucial issue. Despite the extreme simplifications adopted in these models, our results, among others recently obtained in the literature, may provide interesting principles to guide the future growth and development of real-world grids, specially in the case of a change of the current paradigm of centralized towards distributed generation power grids.

  8. Chemical Proteomics Identifies Druggable Vulnerabilities in a Genetically Defined Cancer.

    PubMed

    Bar-Peled, Liron; Kemper, Esther K; Suciu, Radu M; Vinogradova, Ekaterina V; Backus, Keriann M; Horning, Benjamin D; Paul, Thomas A; Ichu, Taka-Aki; Svensson, Robert U; Olucha, Jose; Chang, Max W; Kok, Bernard P; Zhu, Zhou; Ihle, Nathan T; Dix, Melissa M; Jiang, Ping; Hayward, Matthew M; Saez, Enrique; Shaw, Reuben J; Cravatt, Benjamin F

    2017-10-19

    The transcription factor NRF2 is a master regulator of the cellular antioxidant response, and it is often genetically activated in non-small-cell lung cancers (NSCLCs) by, for instance, mutations in the negative regulator KEAP1. While direct pharmacological inhibition of NRF2 has proven challenging, its aberrant activation rewires biochemical networks in cancer cells that may create special vulnerabilities. Here, we use chemical proteomics to map druggable proteins that are selectively expressed in KEAP1-mutant NSCLC cells. Principal among these is NR0B1, an atypical orphan nuclear receptor that we show engages in a multimeric protein complex to regulate the transcriptional output of KEAP1-mutant NSCLC cells. We further identify small molecules that covalently target a conserved cysteine within the NR0B1 protein interaction domain, and we demonstrate that these compounds disrupt NR0B1 complexes and impair the anchorage-independent growth of KEAP1-mutant cancer cells. Our findings designate NR0B1 as a druggable transcriptional regulator that supports NRF2-dependent lung cancers. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Substantial harm associated with failure of chronic paediatric central venous access devices.

    PubMed

    Ullman, Amanda J; Kleidon, Tricia; Cooke, Marie; Rickard, Claire M

    2017-07-06

    Central venous access devices (CVADs) form an important component of modern paediatric healthcare, especially for children with chronic health conditions such as cancer or gastrointestinal disorders. However device failure and complications rates are high.Over 2½ years, a child requiring parenteral nutrition and associated vascular access dependency due to 'short gut syndrome' (intestinal failure secondary to gastroschisis and resultant significant bowel resection) had ten CVADs inserted, with ninesubsequently failing. This resulted in multiple anaesthetics, invasive procedures, injuries, vascular depletion, interrupted nutrition, delayed treatment and substantial healthcare costs. A conservative estimate of the institutional costs for each insertion, or rewiring, of her tunnelled CVAD was $A10 253 (2016 Australian dollars).These complications and device failures had significant negative impact on the child and her family. Considering the commonality of conditions requiring prolonged vascular access, these failures also have a significant impact on international health service costs. © BMJ Publishing Group Ltd (unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  10. Credit allocation for research institutes

    NASA Astrophysics Data System (ADS)

    Wang, J.-P.; Guo, Q.; Yang, K.; Han, J.-T.; Liu, J.-G.

    2017-05-01

    It is a challenging work to assess research performance of multiple institutes. Considering that it is unfair to average the credit to the institutes which is in the different order from a paper, in this paper, we present a credit allocation method (CAM) with a weighted order coefficient for multiple institutes. The results for the APS dataset with 18987 institutes show that top-ranked institutes obtained by the CAM method correspond to well-known universities or research labs with high reputation in physics. Moreover, we evaluate the performance of the CAM method when citation links are added or rewired randomly quantified by the Kendall's Tau and Jaccard index. The experimental results indicate that the CAM method has better performance in robustness compared with the total number of citations (TC) method and Shen's method. Finally, we give the first 20 Chinese universities in physics obtained by the CAM method. However, this method is valid for any other branch of sciences, not just for physics. The proposed method also provides universities and policy makers an effective tool to quantify and balance the academic performance of university.

  11. KSC-06pd2878

    NASA Image and Video Library

    2006-12-22

    KENNEDY SPACE CENTER, FLA. -- Bill Gerstenmaier, NASA associate administrator for Space Operations; Sigmar Wittig, head of the DLR, the German Space Agency; Mike Griffin, NASA administrator; and Michel Tognini, head of the European Astronaut Center, examine the thermal protection system tiles beneath Space Shuttle Discovery following the landing of mission STS-116 on Runway 15 at NASA Kennedy Space Center's Shuttle Landing Facility. During the STS-116 mission, three spacewalks attached the P5 integrated truss structure to the station, and completed the rewiring of the orbiting laboratory's power system. A fourth spacewalk retracted a stubborn solar array. Main gear touchdown was at 5:32 p.m. EST. Nose gear touchdown was at 5:32:12 p.m. and wheel stop was at 5:32:52 p.m. At touchdown -- nominally about 2,500 ft. beyond the runway threshold -- the orbiter is traveling at a speed ranging from 213 to 226 mph. Discovery traveled 5,330,000 miles, landing on orbit 204. Mission elapsed time was 12 days, 20 hours, 44 minutes and 16 seconds. This is the 64th landing at KSC. Photo credit: NASA/Kim Shiflett

  12. KSC-06pd2879

    NASA Image and Video Library

    2006-12-22

    KENNEDY SPACE CENTER, FLA. -- Sigmar Wittig, head of the DLR, the German Space Agency; Bill Gerstenmaier, NASA associate administrator for Space Operations; Mike Griffin, NASA administrator; Michel Tognini, head of the European Astronaut Center; and Bill Parsons, Kennedy Space Center deputy director, examine the thermal protection system tiles beneath Space Shuttle Discovery following the landing of mission STS-116 on Runway 15 at NASA Kennedy Space Center's Shuttle Landing Facility. During the STS-116 mission, three spacewalks attached the P5 integrated truss structure to the station, and completed the rewiring of the orbiting laboratory's power system. A fourth spacewalk retracted a stubborn solar array. Main gear touchdown was at 5:32 p.m. EST. Nose gear touchdown was at 5:32:12 p.m. and wheel stop was at 5:32:52 p.m. At touchdown -- nominally about 2,500 ft. beyond the runway threshold -- the orbiter is traveling at a speed ranging from 213 to 226 mph. Discovery traveled 5,330,000 miles, landing on orbit 204. Mission elapsed time was 12 days, 20 hours, 44 minutes and 16 seconds. This is the 64th landing at KSC. Photo credit: NASA/Kim Shiflett

  13. Activity-Dependent NPAS4 Expression and the Regulation of Gene Programs Underlying Plasticity in the Central Nervous System

    PubMed Central

    2013-01-01

    The capability of the brain to change functionally in response to sensory experience is most active during early stages of development but it decreases later in life when major alterations of neuronal network structures no longer take place in response to experience. This view has been recently challenged by experimental strategies based on the enhancement of environmental stimulation levels, genetic manipulations, and pharmacological treatments, which all have demonstrated that the adult brain retains a degree of plasticity that allows for a rewiring of neuronal circuitries over the entire life course. A hot spot in the field of neuronal plasticity centres on gene programs that underlie plastic phenomena in adulthood. Here, I discuss the role of the recently discovered neuronal-specific and activity-dependent transcription factor NPAS4 as a critical mediator of plasticity in the nervous system. A better understanding of how modifications in the connectivity of neuronal networks occur may shed light on the treatment of pathological conditions such as brain damage or disease in adult life, some of which were once considered untreatable. PMID:24024041

  14. Cell Wall Remodeling by a Synthetic Analog Reveals Metabolic Adaptation in Vancomycin Resistant Enterococci.

    PubMed

    Pidgeon, Sean E; Pires, Marcos M

    2017-07-21

    Drug-resistant bacterial infections threaten to overburden our healthcare system and disrupt modern medicine. A large class of potent antibiotics, including vancomycin, operate by interfering with bacterial cell wall biosynthesis. Vancomycin-resistant enterococci (VRE) evade the blockage of cell wall biosynthesis by altering cell wall precursors, rendering them drug insensitive. Herein, we reveal the phenotypic plasticity and cell wall remodeling of VRE in response to vancomycin in live bacterial cells via a metabolic probe. A synthetic cell wall analog was designed and constructed to monitor cell wall structural alterations. Our results demonstrate that the biosynthetic pathway for vancomycin-resistant precursors can be hijacked by synthetic analogs to track the kinetics of phenotype induction. In addition, we leveraged this probe to interrogate the response of VRE cells to vancomycin analogs and a series of cell wall-targeted antibiotics. Finally, we describe a proof-of-principle strategy to visually inspect drug resistance induction. Based on our findings, we anticipate that our metabolic probe will play an important role in further elucidating the interplay among the enzymes involved in the VRE biosynthetic rewiring.

  15. Effects of the bipartite structure of a network on performance of recommenders

    NASA Astrophysics Data System (ADS)

    Wang, Qing-Xian; Li, Jian; Luo, Xin; Xu, Jian-Jun; Shang, Ming-Sheng

    2018-02-01

    Recommender systems aim to predict people's preferences for online items by analyzing their historical behaviors. A recommender can be modeled as a high-dimensional and sparse bipartite network, where the key issue is to understand the relation between the network structure and a recommender's performance. To address this issue, we choose three network characteristics, clustering coefficient, network density and user-item ratio, as the analyzing targets. For the cluster coefficient, we adopt the Degree-preserving rewiring algorithm to obtain a series of bipartite network with varying cluster coefficient, while the degree of user and item keep unchanged. Furthermore, five state-of-the-art recommenders are applied on two real datasets. The performances of recommenders are measured by both numerical and physical metrics. These results show that a recommender's performance is positively related to the clustering coefficient of a bipartite network. Meanwhile, higher density of a bipartite network can provide more accurate but less diverse or novel recommendations. Furthermore, the user-item ratio is positively correlated with the accuracy metrics but negatively correlated with the diverse and novel metrics.

  16. INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY: Dynamic Evolution with Limited Learning Information on a Small-World Network

    NASA Astrophysics Data System (ADS)

    Dong, Lin-Rong

    2010-09-01

    This paper investigates the dynamic evolution with limited learning information on a small-world network. In the system, the information among the interaction players is not very lucid, and the players are not allowed to inspect the profit collected by its neighbors, thus the focal player cannot choose randomly a neighbor or the wealthiest one and compare its payoff to copy its strategy. It is assumed that the information acquainted by the player declines in the form of the exponential with the geographical distance between the players, and a parameter V is introduced to denote the inspect-ability about the players. It is found that under the hospitable conditions, cooperation increases with the randomness and is inhibited by the large connectivity for the prisoner's dilemma; however, cooperation is maximal at the moderate rewiring probability and is chaos with the connectivity for the snowdrift game. For the two games, the acuminous sight is in favor of the cooperation under the hospitable conditions; whereas, the myopic eyes are advantageous to cooperation and cooperation increases with the randomness under the hostile condition.

  17. Naming game with biased assimilation over adaptive networks

    NASA Astrophysics Data System (ADS)

    Fu, Guiyuan; Zhang, Weidong

    2018-01-01

    The dynamics of two-word naming game incorporating the influence of biased assimilation over adaptive network is investigated in this paper. Firstly an extended naming game with biased assimilation (NGBA) is proposed. The hearer in NGBA accepts the received information in a biased manner, where he may refuse to accept the conveyed word from the speaker with a predefined probability, if the conveyed word is different from his current memory. Secondly, the adaptive network is formulated by rewiring the links. Theoretical analysis is developed to show that the population in NGBA will eventually reach global consensus on either A or B. Numerical simulation results show that the larger strength of biased assimilation on both words, the slower convergence speed, while larger strength of biased assimilation on only one word can slightly accelerate the convergence; larger population size can make the rate of convergence slower to a large extent when it increases from a relatively small size, while such effect becomes minor when the population size is large; the behavior of adaptively reconnecting the existing links can greatly accelerate the rate of convergence especially on the sparse connected network.

  18. BFDCA: A Comprehensive Tool of Using Bayes Factor for Differential Co-Expression Analysis.

    PubMed

    Wang, Duolin; Wang, Juexin; Jiang, Yuexu; Liang, Yanchun; Xu, Dong

    2017-02-03

    Comparing the gene-expression profiles between biological conditions is useful for understanding gene regulation underlying complex phenotypes. Along this line, analysis of differential co-expression (DC) has gained attention in the recent years, where genes under one condition have different co-expression patterns compared with another. We developed an R package Bayes Factor approach for Differential Co-expression Analysis (BFDCA) for DC analysis. BFDCA is unique in integrating various aspects of DC patterns (including Shift, Cross, and Re-wiring) into one uniform Bayes factor. We tested BFDCA using simulation data and experimental data. Simulation results indicate that BFDCA outperforms existing methods in accuracy and robustness of detecting DC pairs and DC modules. Results of using experimental data suggest that BFDCA can cluster disease-related genes into functional DC subunits and estimate the regulatory impact of disease-related genes well. BFDCA also achieves high accuracy in predicting case-control phenotypes by using significant DC gene pairs as markers. BFDCA is publicly available at http://dx.doi.org/10.17632/jdz4vtvnm3.1. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Rewiring the severe acute respiratory syndrome coronavirus (SARS-CoV) transcription circuit: Engineering a recombination-resistant genome

    NASA Astrophysics Data System (ADS)

    Yount, Boyd; Roberts, Rhonda S.; Lindesmith, Lisa; Baric, Ralph S.

    2006-08-01

    Live virus vaccines provide significant protection against many detrimental human and animal diseases, but reversion to virulence by mutation and recombination has reduced appeal. Using severe acute respiratory syndrome coronavirus as a model, we engineered a different transcription regulatory circuit and isolated recombinant viruses. The transcription network allowed for efficient expression of the viral transcripts and proteins, and the recombinant viruses replicated to WT levels. Recombinant genomes were then constructed that contained mixtures of the WT and mutant regulatory circuits, reflecting recombinant viruses that might occur in nature. Although viable viruses could readily be isolated from WT and recombinant genomes containing homogeneous transcription circuits, chimeras that contained mixed regulatory networks were invariantly lethal, because viable chimeric viruses were not isolated. Mechanistically, mixed regulatory circuits promoted inefficient subgenomic transcription from inappropriate start sites, resulting in truncated ORFs and effectively minimize viral structural protein expression. Engineering regulatory transcription circuits of intercommunicating alleles successfully introduces genetic traps into a viral genome that are lethal in RNA recombinant progeny viruses. regulation | systems biology | vaccine design

  20. Paradoxical resistance of multiple myeloma to proteasome inhibitors by decreased levels of 19S proteasomal subunits

    PubMed Central

    Acosta-Alvear, Diego; Cho, Min Y; Wild, Thomas; Buchholz, Tonia J; Lerner, Alana G; Simakova, Olga; Hahn, Jamie; Korde, Neha; Landgren, Ola; Maric, Irina; Choudhary, Chunaram; Walter, Peter; Weissman, Jonathan S; Kampmann, Martin

    2015-01-01

    Hallmarks of cancer, including rapid growth and aneuploidy, can result in non-oncogene addiction to the proteostasis network that can be exploited clinically. The defining example is the exquisite sensitivity of multiple myeloma (MM) to 20S proteasome inhibitors, such as carfilzomib. However, MM patients invariably acquire resistance to these drugs. Using a next-generation shRNA platform, we found that proteostasis factors, including chaperones and stress-response regulators, controlled the response to carfilzomib. Paradoxically, 19S proteasome regulator knockdown induced resistance to carfilzomib in MM and non-MM cells. 19S subunit knockdown did not affect the activity of the 20S subunits targeted by carfilzomib nor their inhibition by the drug, suggesting an alternative mechanism, such as the selective accumulation of protective factors. In MM patients, lower 19S levels predicted a diminished response to carfilzomib-based therapies. Together, our findings suggest that an understanding of network rewiring can inform development of new combination therapies to overcome drug resistance. DOI: http://dx.doi.org/10.7554/eLife.08153.001 PMID:26327694

Top