Sample records for study investigating brain

  1. Shadows of Music-Language Interaction on Low Frequency Brain Oscillatory Patterns

    ERIC Educational Resources Information Center

    Carrus, Elisa; Koelsch, Stefan; Bhattacharya, Joydeep

    2011-01-01

    Electrophysiological studies investigating similarities between music and language perception have relied exclusively on the signal averaging technique, which does not adequately represent oscillatory aspects of electrical brain activity that are relevant for higher cognition. The current study investigated the patterns of brain oscillations…

  2. Dance and the brain: a review.

    PubMed

    Karpati, Falisha J; Giacosa, Chiara; Foster, Nicholas E V; Penhune, Virginia B; Hyde, Krista L

    2015-03-01

    Dance is a universal form of human expression that offers a rich source for scientific study. Dance provides a unique opportunity to investigate brain plasticity and its interaction with behavior. Several studies have investigated the behavioral correlates of dance, but less is known about the brain basis of dance. Studies on dance observation suggest that long- and short-term dance training affect brain activity in the action observation and simulation networks. Despite methodological challenges, the feasibility of conducting neuroimaging while dancing has been demonstrated, and several brain regions have been implicated in dance execution. Preliminary work from our laboratory suggests that long-term dance training changes both gray and white matter structure. This article provides a critical summary of work investigating the neural correlates of dance. It covers functional neuroimaging studies of dance observation and performance as well as structural neuroimaging studies of expert dancers. To stimulate ongoing dialogue between dance and science, future directions in dance and brain research as well as implications are discussed. Research on the neuroscience of dance will lead to a better understanding of brain-behavior relationships and brain plasticity in experts and nonexperts and can be applied to the development of dance-based therapy programs. © 2014 New York Academy of Sciences.

  3. Fetal Magnetoencephalography--Achievements and Challenges in the Study of Prenatal and Early Postnatal Brain Responses: A Review

    ERIC Educational Resources Information Center

    Sheridan, Carolin J.; Matuz, Tamara; Draganova, Rossitza; Eswaran, Hari; Preissl, Hubert

    2010-01-01

    Fetal magnetoencephalography (fMEG) is the only non-invasive method for investigating evoked brain responses and spontaneous brain activity generated by the fetus "in utero". Fetal auditory as well as visual-evoked fields have been successfully recorded in basic stimulus-response studies. Moreover, paradigms investigating precursors for cognitive…

  4. Brain Stimulation in Addiction

    PubMed Central

    Salling, Michael C; Martinez, Diana

    2016-01-01

    Localized stimulation of the human brain to treat neuropsychiatric disorders has been in place for over 20 years. Although these methods have been used to a greater extent for mood and movement disorders, recent work has explored brain stimulation methods as potential treatments for addiction. The rationale behind stimulation therapy in addiction involves reestablishing normal brain function in target regions in an effort to dampen addictive behaviors. In this review, we present the rationale and studies investigating brain stimulation in addiction, including transcranial magnetic stimulation, transcranial direct current stimulation, and deep brain stimulation. Overall, these studies indicate that brain stimulation has an acute effect on craving for drugs and alcohol, but few studies have investigated the effect of brain stimulation on actual drug and alcohol use or relapse. Stimulation therapies may achieve their effect through direct or indirect modulation of brain regions involved in addiction, either acutely or through plastic changes in neuronal transmission. Although these mechanisms are not well understood, further identification of the underlying neurobiology of addiction and rigorous evaluation of brain stimulation methods has the potential for unlocking an effective, long-term treatment of addiction. PMID:27240657

  5. Brain development in the yellow fever mosquito Aedes aegypti: a comparative immunocytochemical analysis using cross-reacting antibodies from Drosophila melanogaster.

    PubMed

    Mysore, Keshava; Flister, Susanne; Müller, Pie; Rodrigues, Veronica; Reichert, Heinrich

    2011-12-01

    Considerable effort has been directed towards understanding the organization and function of peripheral and central nervous system of disease vector mosquitoes such as Aedes aegypti. To date, all of these investigations have been carried out on adults but none of the studies addressed the development of the nervous system during the larval and pupal stages in mosquitoes. Here, we first screen a set of 30 antibodies, which have been used to study brain development in Drosophila, and identify 13 of them cross-reacting and labeling epitopes in the developing brain of Aedes. We then use the identified antibodies in immunolabeling studies to characterize general neuroanatomical features of the developing brain and compare them with the well-studied model system, Drosophila melanogaster, in larval, pupal, and adult stages. Furthermore, we use immunolabeling to document the development of specific components of the Aedes brain, namely the optic lobes, the subesophageal neuropil, and serotonergic system of the subesophageal neuropil in more detail. Our study reveals prominent differences in the developing brain in the larval stage as compared to the pupal (and adult) stage of Aedes. The results also uncover interesting similarities and marked differences in brain development of Aedes as compared to Drosophila. Taken together, this investigation forms the basis for future cellular and molecular investigations of brain development in this important disease vector. © Springer-Verlag 2011

  6. Genetic influences on schizophrenia and subcortical brain volumes: large-scale proof-of-concept and roadmap for future studies

    PubMed Central

    Anttila, Verneri; Hibar, Derrek P; van Hulzen, Kimm J E; Arias-Vasquez, Alejandro; Smoller, Jordan W; Nichols, Thomas E; Neale, Michael C; McIntosh, Andrew M; Lee, Phil; McMahon, Francis J; Meyer-Lindenberg, Andreas; Mattheisen, Manuel; Andreassen, Ole A; Gruber, Oliver; Sachdev, Perminder S; Roiz-Santiañez, Roberto; Saykin, Andrew J; Ehrlich, Stefan; Mather, Karen A; Turner, Jessica A; Schwarz, Emanuel; Thalamuthu, Anbupalam; Shugart, Yin Yao; Ho, Yvonne YW; Martin, Nicholas G; Wright, Margaret J

    2016-01-01

    Schizophrenia is a devastating psychiatric illness with high heritability. Brain structure and function differ, on average, between schizophrenia cases and healthy individuals. As common genetic associations are emerging for both schizophrenia and brain imaging phenotypes, we can now use genome-wide data to investigate genetic overlap. Here we integrated results from common variant studies of schizophrenia (33,636 cases, 43,008 controls) and volumes of several (mainly subcortical) brain structures (11,840 subjects). We did not find evidence of genetic overlap between schizophrenia risk and subcortical volume measures either at the level of common variant genetic architecture or for single genetic markers. The current study provides proof-of-concept (albeit based on a limited set of structural brain measures), and defines a roadmap for future studies investigating the genetic covariance between structural/functional brain phenotypes and risk for psychiatric disorders. PMID:26854805

  7. The relationship between spatial configuration and functional connectivity of brain regions

    PubMed Central

    Woolrich, Mark W; Glasser, Matthew F; Robinson, Emma C; Beckmann, Christian F; Van Essen, David C

    2018-01-01

    Brain connectivity is often considered in terms of the communication between functionally distinct brain regions. Many studies have investigated the extent to which patterns of coupling strength between multiple neural populations relates to behaviour. For example, studies have used ‘functional connectivity fingerprints’ to characterise individuals' brain activity. Here, we investigate the extent to which the exact spatial arrangement of cortical regions interacts with measures of brain connectivity. We find that the shape and exact location of brain regions interact strongly with the modelling of brain connectivity, and present evidence that the spatial arrangement of functional regions is strongly predictive of non-imaging measures of behaviour and lifestyle. We believe that, in many cases, cross-subject variations in the spatial configuration of functional brain regions are being interpreted as changes in functional connectivity. Therefore, a better understanding of these effects is important when interpreting the relationship between functional imaging data and cognitive traits. PMID:29451491

  8. Genetic control of postnatal human brain growth

    PubMed Central

    van Dyck, Laura I.; Morrow, Eric M.

    2017-01-01

    Purpose of review Studies investigating postnatal brain growth disorders inform the biology underlying the development of human brain circuitry. This research is becoming increasingly important for the diagnosis and treatment of childhood neurodevelopmental disorders, including autism and related disorders. Here we review recent research on typical and abnormal postnatal brain growth and examine potential biological mechanisms. Recent findings Clinically, brain growth disorders are heralded by diverging head size for a given age and sex, but are more precisely characterized by brain imaging, postmortem analysis, and animal model studies. Recent neuroimaging and molecular biological studies on postnatal brain growth disorders have broadened our view of both typical and pathological postnatal neurodevelopment. Correlating gene and protein function with brain growth trajectories uncovers postnatal biological mechanisms, including neuronal arborization, synaptogenesis and pruning, and gliogenesis and myelination. Recent investigations of childhood neurodevelopmental and neurodegenerative disorders highlight the underlying genetic programming and experience-dependent remodeling of neural circuitry. Summary In order to understand typical and abnormal postnatal brain development, clinicians and researchers should characterize brain growth trajectories in the context of neurogenetic syndromes. Understanding mechanisms and trajectories of postnatal brain growth will aid in differentiating, diagnosing, and potentially treating neurodevelopmental disorders. PMID:27898583

  9. [(18)F]-fluorodeoxyglucose positron emission tomography of the cat brain: A feasibility study to investigate osteoarthritis-associated pain.

    PubMed

    Guillot, Martin; Chartrand, Gabriel; Chav, Ramnada; Rousseau, Jacques; Beaudoin, Jean-François; Martel-Pelletier, Johanne; Pelletier, Jean-Pierre; Lecomte, Roger; de Guise, Jacques A; Troncy, Eric

    2015-06-01

    The objective of this pilot study was to investigate central nervous system (CNS) changes related to osteoarthritis (OA)-associated chronic pain in cats using [(18)F]-fluorodeoxyglucose ((18)FDG) positron emission tomography (PET) imaging. The brains of five normal, healthy (non-OA) cats and seven cats with pain associated with naturally occurring OA were imaged using (18)FDG-PET during a standardized mild anesthesia protocol. The PET images were co-registered over a magnetic resonance image of a cat brain segmented into several regions of interest. Brain metabolism was assessed in these regions using standardized uptake values. The brain metabolism in the secondary somatosensory cortex, thalamus and periaqueductal gray matter was increased significantly (P ≤ 0.005) in OA cats compared with non-OA cats. This study indicates that (18)FDG-PET brain imaging in cats is feasible to investigate CNS changes related to chronic pain. The results also suggest that OA is associated with sustained nociceptive inputs and increased activity of the descending modulatory pathways. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Studying the Brain in a Dish: 3D Cell Culture Models of Human Brain Development and Disease.

    PubMed

    Brown, Juliana; Quadrato, Giorgia; Arlotta, Paola

    2018-01-01

    The study of the cellular and molecular processes of the developing human brain has been hindered by access to suitable models of living human brain tissue. Recently developed 3D cell culture models offer the promise of studying fundamental brain processes in the context of human genetic background and species-specific developmental mechanisms. Here, we review the current state of 3D human brain organoid models and consider their potential to enable investigation of complex aspects of human brain development and the underpinning of human neurological disease. © 2018 Elsevier Inc. All rights reserved.

  11. Towards child versus adult brain mechanical properties.

    PubMed

    Chatelin, S; Vappou, J; Roth, S; Raul, J S; Willinger, R

    2012-02-01

    The characterization of brain tissue mechanical properties is of crucial importance in the development of realistic numerical models of the human head. While the mechanical behavior of the adult brain has been extensively investigated in several studies, there is a considerable paucity of data concerning the influence of age on mechanical properties of the brain. Therefore, the implementation of child and infant head models often involves restrictive assumptions like properties scaling from adult or animal data. The present study presents a step towards the investigation of the effects of age on viscoelastic properties of human brain tissue from a first set of dynamic oscillatory shear experiments. Tests were also performed on three different locations of brain (corona radiata, thalamus and brainstem) in order to investigate regional differences. Despite the limited number of child brain samples a significant increase in both storage and loss moduli occurring between the age of 5 months and the age of 22 months was found, confirmed by statistical Student's t-tests (p=0.104,0.038 and 0.054 for respectively corona radiata, thalamus and brain stem samples locations respectively). The adult brain appears to be 3-4 times stiffer than the young child one. Moreover, the brainstem was found to be approximately 2-3 times stiffer than both gray and white matter from corona radiata and thalamus. As a tentative conclusion, this study provides the first rheological data on the human brain at different ages and brain regions. This data could be implemented in numerical models of the human head, especially in models concerning pediatric population. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Functional MRI during Hippocampal Deep Brain Stimulation in the Healthy Rat Brain.

    PubMed

    Van Den Berge, Nathalie; Vanhove, Christian; Descamps, Benedicte; Dauwe, Ine; van Mierlo, Pieter; Vonck, Kristl; Keereman, Vincent; Raedt, Robrecht; Boon, Paul; Van Holen, Roel

    2015-01-01

    Deep Brain Stimulation (DBS) is a promising treatment for neurological and psychiatric disorders. The mechanism of action and the effects of electrical fields administered to the brain by means of an electrode remain to be elucidated. The effects of DBS have been investigated primarily by electrophysiological and neurochemical studies, which lack the ability to investigate DBS-related responses on a whole-brain scale. Visualization of whole-brain effects of DBS requires functional imaging techniques such as functional Magnetic Resonance Imaging (fMRI), which reflects changes in blood oxygen level dependent (BOLD) responses throughout the entire brain volume. In order to visualize BOLD responses induced by DBS, we have developed an MRI-compatible electrode and an acquisition protocol to perform DBS during BOLD fMRI. In this study, we investigate whether DBS during fMRI is valuable to study local and whole-brain effects of hippocampal DBS and to investigate the changes induced by different stimulation intensities. Seven rats were stereotactically implanted with a custom-made MRI-compatible DBS-electrode in the right hippocampus. High frequency Poisson distributed stimulation was applied using a block-design paradigm. Data were processed by means of Independent Component Analysis. Clusters were considered significant when p-values were <0.05 after correction for multiple comparisons. Our data indicate that real-time hippocampal DBS evokes a bilateral BOLD response in hippocampal and other mesolimbic structures, depending on the applied stimulation intensity. We conclude that simultaneous DBS and fMRI can be used to detect local and whole-brain responses to circuit activation with different stimulation intensities, making this technique potentially powerful for exploration of cerebral changes in response to DBS for both preclinical and clinical DBS.

  13. Functional MRI during Hippocampal Deep Brain Stimulation in the Healthy Rat Brain

    PubMed Central

    Van Den Berge, Nathalie; Vanhove, Christian; Descamps, Benedicte; Dauwe, Ine; van Mierlo, Pieter; Vonck, Kristl; Keereman, Vincent; Raedt, Robrecht; Boon, Paul; Van Holen, Roel

    2015-01-01

    Deep Brain Stimulation (DBS) is a promising treatment for neurological and psychiatric disorders. The mechanism of action and the effects of electrical fields administered to the brain by means of an electrode remain to be elucidated. The effects of DBS have been investigated primarily by electrophysiological and neurochemical studies, which lack the ability to investigate DBS-related responses on a whole-brain scale. Visualization of whole-brain effects of DBS requires functional imaging techniques such as functional Magnetic Resonance Imaging (fMRI), which reflects changes in blood oxygen level dependent (BOLD) responses throughout the entire brain volume. In order to visualize BOLD responses induced by DBS, we have developed an MRI-compatible electrode and an acquisition protocol to perform DBS during BOLD fMRI. In this study, we investigate whether DBS during fMRI is valuable to study local and whole-brain effects of hippocampal DBS and to investigate the changes induced by different stimulation intensities. Seven rats were stereotactically implanted with a custom-made MRI-compatible DBS-electrode in the right hippocampus. High frequency Poisson distributed stimulation was applied using a block-design paradigm. Data were processed by means of Independent Component Analysis. Clusters were considered significant when p-values were <0.05 after correction for multiple comparisons. Our data indicate that real-time hippocampal DBS evokes a bilateral BOLD response in hippocampal and other mesolimbic structures, depending on the applied stimulation intensity. We conclude that simultaneous DBS and fMRI can be used to detect local and whole-brain responses to circuit activation with different stimulation intensities, making this technique potentially powerful for exploration of cerebral changes in response to DBS for both preclinical and clinical DBS. PMID:26193653

  14. The relationship between spatial configuration and functional connectivity of brain regions.

    PubMed

    Bijsterbosch, Janine Diane; Woolrich, Mark W; Glasser, Matthew F; Robinson, Emma C; Beckmann, Christian F; Van Essen, David C; Harrison, Samuel J; Smith, Stephen M

    2018-02-16

    Brain connectivity is often considered in terms of the communication between functionally distinct brain regions. Many studies have investigated the extent to which patterns of coupling strength between multiple neural populations relates to behaviour. For example, studies have used 'functional connectivity fingerprints' to characterise individuals' brain activity. Here, we investigate the extent to which the exact spatial arrangement of cortical regions interacts with measures of brain connectivity. We find that the shape and exact location of brain regions interact strongly with the modelling of brain connectivity, and present evidence that the spatial arrangement of functional regions is strongly predictive of non-imaging measures of behaviour and lifestyle. We believe that, in many cases, cross-subject variations in the spatial configuration of functional brain regions are being interpreted as changes in functional connectivity. Therefore, a better understanding of these effects is important when interpreting the relationship between functional imaging data and cognitive traits. © 2018, Bijsterbosch et al.

  15. INVESTIGATING DIFFERENCES IN BRAIN FUNCTIONAL NETWORKS USING HIERARCHICAL COVARIATE-ADJUSTED INDEPENDENT COMPONENT ANALYSIS.

    PubMed

    Shi, Ran; Guo, Ying

    2016-12-01

    Human brains perform tasks via complex functional networks consisting of separated brain regions. A popular approach to characterize brain functional networks in fMRI studies is independent component analysis (ICA), which is a powerful method to reconstruct latent source signals from their linear mixtures. In many fMRI studies, an important goal is to investigate how brain functional networks change according to specific clinical and demographic variabilities. Existing ICA methods, however, cannot directly incorporate covariate effects in ICA decomposition. Heuristic post-ICA analysis to address this need can be inaccurate and inefficient. In this paper, we propose a hierarchical covariate-adjusted ICA (hc-ICA) model that provides a formal statistical framework for estimating covariate effects and testing differences between brain functional networks. Our method provides a more reliable and powerful statistical tool for evaluating group differences in brain functional networks while appropriately controlling for potential confounding factors. We present an analytically tractable EM algorithm to obtain maximum likelihood estimates of our model. We also develop a subspace-based approximate EM that runs significantly faster while retaining high accuracy. To test the differences in functional networks, we introduce a voxel-wise approximate inference procedure which eliminates the need of computationally expensive covariance matrix estimation and inversion. We demonstrate the advantages of our methods over the existing method via simulation studies. We apply our method to an fMRI study to investigate differences in brain functional networks associated with post-traumatic stress disorder (PTSD).

  16. Medication Overuse Headache: Pathophysiological Insights from Structural and Functional Brain MRI Research.

    PubMed

    Schwedt, Todd J; Chong, Catherine D

    2017-07-01

    Research imaging of brain structure and function has helped to elucidate the pathophysiology of medication overuse headache (MOH). This is a narrative review of imaging research studies that have investigated brain structural and functional alterations associated with MOH. Studies included in this review have investigated abnormal structure and function of pain processing regions in people with MOH, functional patterns that might predispose individuals to development of MOH, similarity of brain functional patterns in patients with MOH to those found in people with addiction, brain structure that could predict headache improvement following discontinuation of the overused medication, and changes in brain structure and function after discontinuation of medication overuse. MOH is associated with atypical structure and function of brain regions responsible for pain processing as well as brain regions that are commonly implicated in addiction. Several studies have shown "normalization" of structure and function in pain processing regions following discontinuation of the overused medication and resolution of MOH. However, some of the abnormalities in regions also implicated in addiction tend to persist following discontinuation of the overused medication, suggesting that they are a brain trait that predisposes certain individuals to medication overuse and MOH. © 2017 American Headache Society.

  17. Anticipatory Processing in the Brain on the Perception of Müller-Lyer Illusionary Figures—A Brain Potential Study

    NASA Astrophysics Data System (ADS)

    Nomura, Shusaku; Sasaki, Shuntaro; Hirakawa, Masato; Hiwaki, Osamu

    2010-11-01

    We investigated the brain potential in relation with the recognition of Müller-Lyer (ML) illusionary figure, which was a famous optical illusion. Although it is frequently assumed that the ML illusionary effect could be derived from its geometrical construction, it derives the same length miss-estimation effect on the sense of touch; haptic illusion. Moreover it occurs in people who are blindfolded or congenital blind. Thus somehow higher information processing than the optical one within the brain could be expected to involve with the recognition of ML figure while few brain studies have demonstrated it. We then investigated the brain waves under subjects' perceiving ML illusionary figure. As a result the marked difference of the brain potential between ML and the control condition around the midline of parietal brain, where the multi-modal perception information was thought to associate within the brain, was observed. This result implies that the anticipatory processing on the perception of ML illusionary figures would be derived by integrating multi-sensory information.

  18. Atypical Laterality of Resting Gamma Oscillations in Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Maxwell, Christina R.; Villalobos, Michele E.; Schultz, Robert T.; Herpertz-Dahlmann, Beate; Konrad, Kerstin; Kohls, Gregor

    2015-01-01

    Abnormal brain oscillatory activity has been found in autism spectrum disorders (ASD) and proposed as a potential biomarker. While several studies have investigated gamma oscillations in ASD, none have examined resting gamma power across multiple brain regions. This study investigated resting gamma power using EEG in 15 boys with ASD and 18 age…

  19. Imaging brain development: the adolescent brain.

    PubMed

    Blakemore, Sarah-Jayne

    2012-06-01

    The past 15 years have seen a rapid expansion in the number of studies using neuroimaging techniques to investigate maturational changes in the human brain. In this paper, I review MRI studies on structural changes in the developing brain, and fMRI studies on functional changes in the social brain during adolescence. Both MRI and fMRI studies point to adolescence as a period of continued neural development. In the final section, I discuss a number of areas of research that are just beginning and may be the subject of developmental neuroimaging in the next twenty years. Future studies might focus on complex questions including the development of functional connectivity; how gender and puberty influence adolescent brain development; the effects of genes, environment and culture on the adolescent brain; development of the atypical adolescent brain; and implications for policy of the study of the adolescent brain. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Hemispheric Asymmetry of Human Brain Anatomical Network Revealed by Diffusion Tensor Tractography

    PubMed Central

    Liu, Yaou; Duan, Yunyun; Li, Kuncheng

    2015-01-01

    The topological architecture of the cerebral anatomical network reflects the structural organization of the human brain. Recently, topological measures based on graph theory have provided new approaches for quantifying large-scale anatomical networks. However, few studies have investigated the hemispheric asymmetries of the human brain from the perspective of the network model, and little is known about the asymmetries of the connection patterns of brain regions, which may reflect the functional integration and interaction between different regions. Here, we utilized diffusion tensor imaging to construct binary anatomical networks for 72 right-handed healthy adult subjects. We established the existence of structural connections between any pair of the 90 cortical and subcortical regions using deterministic tractography. To investigate the hemispheric asymmetries of the brain, statistical analyses were performed to reveal the brain regions with significant differences between bilateral topological properties, such as degree of connectivity, characteristic path length, and betweenness centrality. Furthermore, local structural connections were also investigated to examine the local asymmetries of some specific white matter tracts. From the perspective of both the global and local connection patterns, we identified the brain regions with hemispheric asymmetries. Combined with the previous studies, we suggested that the topological asymmetries in the anatomical network may reflect the functional lateralization of the human brain. PMID:26539535

  1. Mapping Language Function in the Brain: A Review of the Recent Literature.

    ERIC Educational Resources Information Center

    Crafton, Robert E.; Kido, Elissa

    2000-01-01

    Considers the potential importance of brain study for composition instruction, briefly describes functional imaging techniques, and reviews the findings of recent brain-mapping studies investigating the neurocognitive systems involved in language function. Presents a review of the recent literature and considers the possible implications of this…

  2. Brain Science of Ethics: Present Status and the Future

    ERIC Educational Resources Information Center

    Aoki, Ryuta; Funane, Tsukasa; Koizumi, Hideaki

    2010-01-01

    Recent advances in technologies for neuroscientific research enable us to investigate the neurobiological substrates of the human ethical sense. This article introduces several findings in "the brain science of ethics" obtained through "brain-observation" and "brain-manipulation" approaches. Studies over the past decade have revealed that several…

  3. Sign Language and the Brain: A Review

    ERIC Educational Resources Information Center

    Campbell, Ruth; MacSweeney, Mairead; Waters, Dafydd

    2008-01-01

    How are signed languages processed by the brain? This review briefly outlines some basic principles of brain structure and function and the methodological principles and techniques that have been used to investigate this question. We then summarize a number of different studies exploring brain activity associated with sign language processing…

  4. Time-resolved fluorescence spectroscopy of human brain tumors

    NASA Astrophysics Data System (ADS)

    Marcu, Laura; Thompson, Reid C.; Garde, Smita; Sedrak, Mark; Black, Keith L.; Yong, William H.

    2002-05-01

    Fluorescence spectroscopy of the endogenous emission of brain tumors has been researched as a potentially important method for the intraoperative localization of brain tumor margins. In this study, we investigate the use of time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) for demarcation of primary brain tumors by studying the time-resolved spectra of gliomas of different histologic grades. Time-resolved fluorescence (3 ns, 337 nm excitation) from excised human brain tumor show differences between the time-resolved emission of malignant glioma and normal brain tissue (gray and white matter). Our findings suggest that brain tumors can be differentiated from normal brain tissue based upon unique time-resolved fluorescence signature.

  5. The neurophysiology of language: Insights from non-invasive brain stimulation in the healthy human brain.

    PubMed

    Hartwigsen, Gesa

    2015-09-01

    With the advent of non-invasive brain stimulation (NIBS), a new decade in the study of language has started. NIBS allows for testing the functional relevance of language-related brain activation and enables the researcher to investigate how neural activation changes in response to focal perturbations. This review focuses on the application of NIBS in the healthy brain. First, some basic mechanisms will be introduced and the prerequisites for carrying out NIBS studies of language are addressed. The next section outlines how NIBS can be used to characterize the contribution of the stimulated area to a task. In this context, novel approaches such as multifocal transcranial magnetic stimulation and the condition-and-perturb approach are discussed. The third part addresses the combination of NIBS and neuroimaging in the study of plasticity. These approaches are particularly suited to investigate short-term reorganization in the healthy brain and may inform models of language recovery in post-stroke aphasia. Copyright © 2014 The Author. Published by Elsevier Inc. All rights reserved.

  6. Genetic influences on schizophrenia and subcortical brain volumes: large-scale proof of concept.

    PubMed

    Franke, Barbara; Stein, Jason L; Ripke, Stephan; Anttila, Verneri; Hibar, Derrek P; van Hulzen, Kimm J E; Arias-Vasquez, Alejandro; Smoller, Jordan W; Nichols, Thomas E; Neale, Michael C; McIntosh, Andrew M; Lee, Phil; McMahon, Francis J; Meyer-Lindenberg, Andreas; Mattheisen, Manuel; Andreassen, Ole A; Gruber, Oliver; Sachdev, Perminder S; Roiz-Santiañez, Roberto; Saykin, Andrew J; Ehrlich, Stefan; Mather, Karen A; Turner, Jessica A; Schwarz, Emanuel; Thalamuthu, Anbupalam; Shugart, Yin Yao; Ho, Yvonne Yw; Martin, Nicholas G; Wright, Margaret J; O'Donovan, Michael C; Thompson, Paul M; Neale, Benjamin M; Medland, Sarah E; Sullivan, Patrick F

    2016-03-01

    Schizophrenia is a devastating psychiatric illness with high heritability. Brain structure and function differ, on average, between people with schizophrenia and healthy individuals. As common genetic associations are emerging for both schizophrenia and brain imaging phenotypes, we can now use genome-wide data to investigate genetic overlap. Here we integrated results from common variant studies of schizophrenia (33,636 cases, 43,008 controls) and volumes of several (mainly subcortical) brain structures (11,840 subjects). We did not find evidence of genetic overlap between schizophrenia risk and subcortical volume measures either at the level of common variant genetic architecture or for single genetic markers. These results provide a proof of concept (albeit based on a limited set of structural brain measures) and define a roadmap for future studies investigating the genetic covariance between structural or functional brain phenotypes and risk for psychiatric disorders.

  7. Investigation of brain structure in the 1-month infant.

    PubMed

    Dean, Douglas C; Planalp, E M; Wooten, W; Schmidt, C K; Kecskemeti, S R; Frye, C; Schmidt, N L; Goldsmith, H H; Alexander, A L; Davidson, R J

    2018-05-01

    The developing brain undergoes systematic changes that occur at successive stages of maturation. Deviations from the typical neurodevelopmental trajectory are hypothesized to underlie many early childhood disorders; thus, characterizing the earliest patterns of normative brain development is essential. Recent neuroimaging research provides insight into brain structure during late childhood and adolescence; however, few studies have examined the infant brain, particularly in infants under 3 months of age. Using high-resolution structural MRI, we measured subcortical gray and white matter brain volumes in a cohort (N = 143) of 1-month infants and examined characteristics of these volumetric measures throughout this early period of neurodevelopment. We show that brain volumes undergo age-related changes during the first month of life, with the corresponding patterns of regional asymmetry and sexual dimorphism. Specifically, males have larger total brain volume and volumes differ by sex in regionally specific brain regions, after correcting for total brain volume. Consistent with findings from studies of later childhood and adolescence, subcortical regions appear more rightward asymmetric. Neither sex differences nor regional asymmetries changed with gestation-corrected age. Our results complement a growing body of work investigating the earliest neurobiological changes associated with development and suggest that asymmetry and sexual dimorphism are present at birth.

  8. Studying variability in human brain aging in a population-based German cohort-rationale and design of 1000BRAINS.

    PubMed

    Caspers, Svenja; Moebus, Susanne; Lux, Silke; Pundt, Noreen; Schütz, Holger; Mühleisen, Thomas W; Gras, Vincent; Eickhoff, Simon B; Romanzetti, Sandro; Stöcker, Tony; Stirnberg, Rüdiger; Kirlangic, Mehmet E; Minnerop, Martina; Pieperhoff, Peter; Mödder, Ulrich; Das, Samir; Evans, Alan C; Jöckel, Karl-Heinz; Erbel, Raimund; Cichon, Sven; Nöthen, Markus M; Sturma, Dieter; Bauer, Andreas; Jon Shah, N; Zilles, Karl; Amunts, Katrin

    2014-01-01

    The ongoing 1000 brains study (1000BRAINS) is an epidemiological and neuroscientific investigation of structural and functional variability in the human brain during aging. The two recruitment sources are the 10-year follow-up cohort of the German Heinz Nixdorf Recall (HNR) Study, and the HNR MultiGeneration Study cohort, which comprises spouses and offspring of HNR subjects. The HNR is a longitudinal epidemiological investigation of cardiovascular risk factors, with a comprehensive collection of clinical, laboratory, socioeconomic, and environmental data from population-based subjects aged 45-75 years on inclusion. HNR subjects underwent detailed assessments in 2000, 2006, and 2011, and completed annual postal questionnaires on health status. 1000BRAINS accesses these HNR data and applies a separate protocol comprising: neuropsychological tests of attention, memory, executive functions and language; examination of motor skills; ratings of personality, life quality, mood and daily activities; analysis of laboratory and genetic data; and state-of-the-art magnetic resonance imaging (MRI, 3 Tesla) of the brain. The latter includes (i) 3D-T1- and 3D-T2-weighted scans for structural analyses and myelin mapping; (ii) three diffusion imaging sequences optimized for diffusion tensor imaging, high-angular resolution diffusion imaging for detailed fiber tracking and for diffusion kurtosis imaging; (iii) resting-state and task-based functional MRI; and (iv) fluid-attenuated inversion recovery and MR angiography for the detection of vascular lesions and the mapping of white matter lesions. The unique design of 1000BRAINS allows: (i) comprehensive investigation of various influences including genetics, environment and health status on variability in brain structure and function during aging; and (ii) identification of the impact of selected influencing factors on specific cognitive subsystems and their anatomical correlates.

  9. Small-worldness and gender differences of large scale brain metabolic covariance networks in young adults: a FDG PET study of 400 subjects.

    PubMed

    Hu, Yuxiao; Xu, Qiang; Shen, Junkang; Li, Kai; Zhu, Hong; Zhang, Zhiqiang; Lu, Guangming

    2015-02-01

    Many studies have demonstrated the small-worldness of the human brain, and have revealed a sexual dimorphism in brain network properties. However, little is known about the gender effects on the topological organization of the brain metabolic covariance networks. To investigate the small-worldness and the gender differences in the topological architectures of human brain metabolic networks. FDG-PET data of 400 healthy right-handed subjects (200 women and 200 age-matched men) were involved in the present study. Metabolic networks of each gender were constructed by calculating the covariance of regional cerebral glucose metabolism (rCMglc) across subjects on the basis of AAL parcellation. Gender differences of network and nodal properties were investigated by using the graph theoretical approaches. Moreover, the gender-related difference of rCMglc in each brain region was tested for investigating the relationships between the hub regions and the brain regions showing significant gender-related differences in rCMglc. We found prominent small-world properties in the domain of metabolic networks in each gender. No significant gender difference in the global characteristics was found. Gender differences of nodal characteristic were observed in a few brain regions. We also found bilateral and lateralized distributions of network hubs in the females and males. Furthermore, we first reported that some hubs of a gender located in the brain regions showing weaker rCMglc in this gender than the other gender. The present study demonstrated that small-worldness was existed in metabolic networks, and revealed gender differences of organizational patterns in metabolic network. These results maybe provided insights into the understanding of the metabolic substrates underlying individual differences in cognition and behaviors. © The Foundation Acta Radiologica 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  10. Individual T1-weighted/T2-weighted ratio brain networks: Small-worldness, hubs and modular organization

    NASA Astrophysics Data System (ADS)

    Wu, Huijun; Wang, Hao; Lü, Linyuan

    Applying network science to investigate the complex systems has become a hot topic. In neuroscience, understanding the architectures of complex brain networks was a vital issue. An enormous amount of evidence had supported the brain was cost/efficiency trade-off with small-worldness, hubness and modular organization through the functional MRI and structural MRI investigations. However, the T1-weighted/T2-weighted (T1w/T2w) ratio brain networks were mostly unexplored. Here, we utilized a KL divergence-based method to construct large-scale individual T1w/T2w ratio brain networks and investigated the underlying topological attributes of these networks. Our results supported that the T1w/T2w ratio brain networks were comprised of small-worldness, an exponentially truncated power-law degree distribution, frontal-parietal hubs and modular organization. Besides, there were significant positive correlations between the network metrics and fluid intelligence. Thus, the T1w/T2w ratio brain networks open a new avenue to understand the human brain and are a necessary supplement for future MRI studies.

  11. Brain Potentials for Derivational Morphology: An ERP Study of Deadjectival Nominalizations in Spanish

    ERIC Educational Resources Information Center

    Havas, Viktoria; Rodriguez-Fornells, Antoni; Clahsen, Harald

    2012-01-01

    This study investigates brain potentials to derived word forms in Spanish. Two experiments were performed on derived nominals that differ in terms of their productivity and semantic properties but are otherwise similar, an acceptability judgment task and a reading experiment using event-related brain potentials (ERPs) in which correctly and…

  12. Musical training, neuroplasticity and cognition.

    PubMed

    Rodrigues, Ana Carolina; Loureiro, Maurício Alves; Caramelli, Paulo

    2010-01-01

    The influence of music on the human brain has been recently investigated in numerous studies. Several investigations have shown that structural and functional cerebral neuroplastic processes emerge as a result of long-term musical training, which in turn may produce cognitive differences between musicians and non-musicians. Musicians can be considered ideal cases for studies on brain adaptation, due to their unique and intensive training experiences. This article presents a review of recent findings showing positive effects of musical training on non-musical cognitive abilities, which probably reflect plastic changes in brains of musicians.

  13. Investigation of the Effects of Brain Teasers on Attention Spans of Pre-School Children

    ERIC Educational Resources Information Center

    Altun, Meryem; Hazar, Muhsin; Hazar, Zekihan

    2016-01-01

    The purpose of this study is to investigate the effects of brain teasers on attention spans of preschool children of age six. The study was conducted using an experimental design with a control group and pre-test/post-test. The sample of the study is children of age six selected via random appointment among ones who were enrolled in the Merkez…

  14. A review on neuroimaging studies of genetic and environmental influences on early brain development.

    PubMed

    Gao, Wei; Grewen, Karen; Knickmeyer, Rebecca C; Qiu, Anqi; Salzwedel, Andrew; Lin, Weili; Gilmore, John H

    2018-04-16

    The past decades witnessed a surge of interest in neuroimaging study of normal and abnormal early brain development. Structural and functional studies of normal early brain development revealed massive structural maturation as well as sequential, coordinated, and hierarchical emergence of functional networks during the infancy period, providing a great foundation for the investigation of abnormal early brain development mechanisms. Indeed, studies of altered brain development associated with either genetic or environmental risks emerged and thrived. In this paper, we will review selected studies of genetic and environmental risks that have been relatively more extensively investigated-familial risks, candidate risk genes, and genome-wide association studies (GWAS) on the genetic side; maternal mood disorders and prenatal drug exposures on the environmental side. Emerging studies on environment-gene interactions will also be reviewed. Our goal was not to perform an exhaustive review of all studies in the field but to leverage some representative ones to summarize the current state, point out potential limitations, and elicit discussions on important future directions. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Altered spontaneous brain activity in Cushing's disease: a resting-state functional MRI study.

    PubMed

    Jiang, Hong; He, Na-Ying; Sun, Yu-Hao; Jian, Fang-Fang; Bian, Liu-Guan; Shen, Jian-Kang; Yan, Fu-Hua; Pan, Si-Jian; Sun, Qing-Fang

    2017-03-01

    Cushing's disease (CD) provides a unique and naturalist model for studying the influence of hypercortisolism on the human brain and the reversibility of these effects after resolution of the condition. This cross-sectional study used resting-state fMRI (rs-fMRI) to investigate the altered spontaneous brain activity in CD patients and the trends for potential reversibility after the resolution of the hypercortisolism. We also aim to determine the relationship of these changes with clinical characteristics and cortisol levels. Active CD patients (n = 18), remitted CD patients (n = 14) and healthy control subjects (n = 22) were included in this study. Amplitude of low-frequency fluctuation (ALFF) and regional homogeneity (ReHo) values were calculated to represent spontaneous brain activity. Our study resulted in three major findings: (i) active CD patients showed significantly altered spontaneous brain activity in the posterior cingulate cortex (PCC)/precuneus (PCu), occipital lobe (OC)/cerebellum, thalamus, right postcentral gyrus (PoCG) and left prefrontal cortex (PFC); (ii) trends for partial restoration of altered spontaneous brain activity after the resolution hypercortisolism were found in several brain regions; and (iii) active CD patients showed a significant correlation between cortisol levels and ALFF/ReHo values in the PCC/PCu, a small cluster in the OC and the right IPL. This study provides a new approach to investigating brain function abnormalities in patients with CD and enhances our understanding of the effect of hypercortisolism on the human brain. Furthermore, our explorative potential reversibility study of patients with CD may facilitate the development of future longitudinal studies. © 2016 John Wiley & Sons Ltd.

  16. A Case Study on the Professional Development of Elementary Teachers Related to Brain Research and the Strategies Used to Help Struggling Readers

    ERIC Educational Resources Information Center

    Denton, Valerie R.

    2010-01-01

    This case study examined the impact of classroom interventions for struggling readers as changed/improved by teachers who participated in ongoing professional development on brain research studies. It investigated how teachers' knowledge of brain research impacted their instruction and the interventions they implemented in elementary classrooms.…

  17. Brain-Based Learning and Classroom Practice: A Study Investigating Instructional Methodologies of Urban School Teachers

    ERIC Educational Resources Information Center

    Morris, Lajuana Trezette

    2010-01-01

    The purpose of this study was to examine the implementation of brain-based instructional strategies by teachers serving at Title I elementary, middle, and high schools within the Memphis City School District. This study was designed to determine: (a) the extent to which Title I teachers applied brain-based strategies, (b) the differences in…

  18. Regional gray matter correlates of vocational interests

    PubMed Central

    2012-01-01

    Background Previous studies have identified brain areas related to cognitive abilities and personality, respectively. In this exploratory study, we extend the application of modern neuroimaging techniques to another area of individual differences, vocational interests, and relate the results to an earlier study of cognitive abilities salient for vocations. Findings First, we examined the psychometric relationships between vocational interests and abilities in a large sample. The primary relationships between those domains were between Investigative (scientific) interests and general intelligence and between Realistic (“blue-collar”) interests and spatial ability. Then, using MRI and voxel-based morphometry, we investigated the relationships between regional gray matter volume and vocational interests. Specific clusters of gray matter were found to be correlated with Investigative and Realistic interests. Overlap analyses indicated some common brain areas between the correlates of Investigative interests and general intelligence and between the correlates of Realistic interests and spatial ability. Conclusions Two of six vocational-interest scales show substantial relationships with regional gray matter volume. The overlap between the brain correlates of these scales and cognitive-ability factors suggest there are relationships between individual differences in brain structure and vocations. PMID:22591829

  19. Regional gray matter correlates of vocational interests.

    PubMed

    Schroeder, David H; Haier, Richard J; Tang, Cheuk Ying

    2012-05-16

    Previous studies have identified brain areas related to cognitive abilities and personality, respectively. In this exploratory study, we extend the application of modern neuroimaging techniques to another area of individual differences, vocational interests, and relate the results to an earlier study of cognitive abilities salient for vocations. First, we examined the psychometric relationships between vocational interests and abilities in a large sample. The primary relationships between those domains were between Investigative (scientific) interests and general intelligence and between Realistic ("blue-collar") interests and spatial ability. Then, using MRI and voxel-based morphometry, we investigated the relationships between regional gray matter volume and vocational interests. Specific clusters of gray matter were found to be correlated with Investigative and Realistic interests. Overlap analyses indicated some common brain areas between the correlates of Investigative interests and general intelligence and between the correlates of Realistic interests and spatial ability. Two of six vocational-interest scales show substantial relationships with regional gray matter volume. The overlap between the brain correlates of these scales and cognitive-ability factors suggest there are relationships between individual differences in brain structure and vocations.

  20. Changing Brain Networks Through Non-invasive Neuromodulation

    PubMed Central

    To, Wing Ting; De Ridder, Dirk; Hart Jr., John; Vanneste, Sven

    2018-01-01

    Background/Objective: Non-invasive neuromodulation techniques, such as repetitive Transcranial Magnetic Stimulation (rTMS) and transcranial Direct Current Stimulation (tDCS), have increasingly been investigated for their potential as treatments for neurological and psychiatric disorders. Despite widespread dissemination of these techniques, the underlying therapeutic mechanisms and the ideal stimulation site for a given disorder remain unknown. Increasing evidence support the possibility of non-invasive neuromodulation affecting a brain network rather than just the local stimulation target. In this article, we present evidence in a clinical setting to support the idea that non-invasive neuromodulation changes brain networks. Method: This article addresses the idea that non-invasive neuromodulation modulates brain networks, rather than just the local stimulation target, using neuromodulation studies in tinnitus and major depression as examples. We present studies that support this hypothesis from different perspectives. Main Results/Conclusion: Studies stimulating the same brain region, such as the dorsolateral prefrontal cortex (DLPFC), have shown to be effective for several disorders and studies using different stimulation sites for the same disorder have shown similar results. These findings, as well as results from studies investigating brain network connectivity on both macro and micro levels, suggest that non-invasive neuromodulation affects a brain network rather than just the local stimulation site targeted. We propose that non-invasive neuromodulation should be approached from a network perspective and emphasize the therapeutic potential of this approach through the modulation of targeted brain networks. PMID:29706876

  1. Changing Brain Networks Through Non-invasive Neuromodulation.

    PubMed

    To, Wing Ting; De Ridder, Dirk; Hart, John; Vanneste, Sven

    2018-01-01

    Background/Objective : Non-invasive neuromodulation techniques, such as repetitive Transcranial Magnetic Stimulation (rTMS) and transcranial Direct Current Stimulation (tDCS), have increasingly been investigated for their potential as treatments for neurological and psychiatric disorders. Despite widespread dissemination of these techniques, the underlying therapeutic mechanisms and the ideal stimulation site for a given disorder remain unknown. Increasing evidence support the possibility of non-invasive neuromodulation affecting a brain network rather than just the local stimulation target. In this article, we present evidence in a clinical setting to support the idea that non-invasive neuromodulation changes brain networks. Method : This article addresses the idea that non-invasive neuromodulation modulates brain networks, rather than just the local stimulation target, using neuromodulation studies in tinnitus and major depression as examples. We present studies that support this hypothesis from different perspectives. Main Results/Conclusion : Studies stimulating the same brain region, such as the dorsolateral prefrontal cortex (DLPFC), have shown to be effective for several disorders and studies using different stimulation sites for the same disorder have shown similar results. These findings, as well as results from studies investigating brain network connectivity on both macro and micro levels, suggest that non-invasive neuromodulation affects a brain network rather than just the local stimulation site targeted. We propose that non-invasive neuromodulation should be approached from a network perspective and emphasize the therapeutic potential of this approach through the modulation of targeted brain networks.

  2. [Factor structure of regional CBF and CMRglu values as a tool for the study of default mode of the brain].

    PubMed

    Kataev, G V; Korotkov, A D; Kireev, M V; Medvedev, S V

    2013-01-01

    In the present article it was shown that the functional connectivity of brain structures, revealed by factor analysis of resting PET CBF and rCMRglu data, is an adequate tool to study the default mode of the human brain. The identification of neuroanatomic systems of default mode (default mode network) during routine clinical PET investigations is important for further studying the functional organization of the normal brain and its reorganizations in pathological conditions.

  3. The two-brain approach: how can mutually interacting brains teach us something about social interaction?

    PubMed Central

    Konvalinka, Ivana; Roepstorff, Andreas

    2012-01-01

    Measuring brain activity simultaneously from two people interacting is intuitively appealing if one is interested in putative neural markers of social interaction. However, given the complex nature of interactions, it has proven difficult to carry out two-person brain imaging experiments in a methodologically feasible and conceptually relevant way. Only a small number of recent studies have put this into practice, using fMRI, EEG, or NIRS. Here, we review two main two-brain methodological approaches, each with two conceptual strategies. The first group has employed two-brain fMRI recordings, studying (1) turn-based interactions on the order of seconds, or (2) pseudo-interactive scenarios, where only one person is scanned at a time, investigating the flow of information between brains. The second group of studies has recorded dual EEG/NIRS from two people interacting, in (1) face-to-face turn-based interactions, investigating functional connectivity between theory-of-mind regions of interacting partners, or in (2) continuous mutual interactions on millisecond timescales, to measure coupling between the activity in one person's brain and the activity in the other's brain. We discuss the questions these approaches have addressed, and consider scenarios when simultaneous two-brain recordings are needed. Furthermore, we suggest that (1) quantification of inter-personal neural effects via measures of emergence, and (2) multivariate decoding models that generalize source-specific features of interaction, may provide novel tools to study brains in interaction. This may allow for a better understanding of social cognition as both representation and participation. PMID:22837744

  4. Language Development and Brain Magnetic Resonance Imaging Characteristics in Preschool Children with Cerebral Palsy

    ERIC Educational Resources Information Center

    Choi, Ja Young; Choi, Yoon Seong; Park, Eun Sook

    2017-01-01

    Purpose: The purpose of this study was to investigate characteristics of language development in relation to brain magnetic resonance imaging (MRI) characteristics and the other contributing factors to language development in children with cerebral palsy (CP). Method: The study included 172 children with CP who underwent brain MRI and language…

  5. Sex steroid hormones and brain function: PET imaging as a tool for research.

    PubMed

    Moraga-Amaro, R; van Waarde, A; Doorduin, J; de Vries, E F J

    2018-02-01

    Sex steroid hormones are major regulators of sexual characteristic among species. These hormones, however, are also produced in the brain. Steroidal hormone-mediated signalling via the corresponding hormone receptors can influence brain function at the cellular level and thus affect behaviour and higher brain functions. Altered steroid hormone signalling has been associated with psychiatric disorders, such as anxiety and depression. Neurosteroids are also considered to have a neuroprotective effect in neurodegenerative diseases. So far, the role of steroid hormone receptors in physiological and pathological conditions has mainly been investigated post mortem on animal or human brain tissues. To study the dynamic interplay between sex steroids, their receptors, brain function and behaviour in psychiatric and neurological disorders in a longitudinal manner, however, non-invasive techniques are needed. Positron emission tomography (PET) is a non-invasive imaging tool that is used to quantitatively investigate a variety of physiological and biochemical parameters in vivo. PET uses radiotracers aimed at a specific target (eg, receptor, enzyme, transporter) to visualise the processes of interest. In this review, we discuss the current status of the use of PET imaging for studying sex steroid hormones in the brain. So far, PET has mainly been investigated as a tool to measure (changes in) sex hormone receptor expression in the brain, to measure a key enzyme in the steroid synthesis pathway (aromatase) and to evaluate the effects of hormonal treatment by imaging specific downstream processes in the brain. Although validated radiotracers for a number of targets are still warranted, PET can already be a useful technique for steroid hormone research and facilitate the translation of interesting findings in animal studies to clinical trials in patients. © 2017 The Authors. Journal of Neuroendocrinology published by John Wiley & Sons Ltd on behalf of British Society for Neuroendocrinology.

  6. Impact of high iron intake on cognition and neurodegeneration in humans and in animal models: a systematic review

    PubMed Central

    Agrawal, Sonal; Berggren, Kiersten L.; Marks, Eileen; Fox, Jonathan H.

    2017-01-01

    Abstract Context Accumulation of brain iron is linked to aging and protein-misfolding neurodegenerative diseases. High iron intake may influence important brain health outcomes in later life. Objective The aim of this systematic review was to examine evidence from animal and human studies of the effects of high iron intake or peripheral iron status on adult cognition, brain aging, and neurodegeneration. Data Sources MEDLINE, Scopus, CAB Abstracts, the Cochrane Central Register of Clinical Trials, and OpenGrey databases were searched. Study Selection Studies investigating the effect of elevated iron intake at all postnatal life stages in mammalian models and humans on measures of adult brain health were included. Data Extraction Data were extracted and evaluated by two authors independently, with discrepancies resolved by discussion. Neurodegenerative disease diagnosis and/or behavioral/cognitive, biochemical, and brain morphologic findings were used to study the effects of iron intake or peripheral iron status on brain health. Risk of bias was assessed for animal and human studies. PRISMA guidelines for reporting systematic reviews were followed. Results Thirty-four preclinical and 14 clinical studies were identified from database searches. Thirty-three preclinical studies provided evidence supporting an adverse effect of nutritionally relevant high iron intake in neonates on brain-health-related outcomes in adults. Human studies varied considerably in design, quality, and findings; none investigated the effects of high iron intake in neonates/infants. Conclusions Human studies are needed to verify whether dietary iron intake levels used in neonates/infants to prevent iron deficiency have effects on brain aging and neurodegenerative disease outcomes. PMID:28505363

  7. An investigation into the induced electric fields from transcranial magnetic stimulation

    NASA Astrophysics Data System (ADS)

    Hadimani, Ravi; Lee, Erik; Duffy, Walter; Waris, Mohammed; Siddiqui, Waquar; Islam, Faisal; Rajamani, Mahesh; Nathan, Ryan; Jiles, David; David C Jiles Team; Walter Duffy Collaboration

    Transcranial magnetic stimulation (TMS) is a promising tool for noninvasive brain stimulation that has been approved by the FDA for the treatment of major depressive disorder. To stimulate the brain, TMS uses large, transient pulses of magnetic field to induce an electric field in the head. This transient magnetic field is large enough to cause the depolarization of cortical neurons and initiate a synaptic signal transmission. For this study, 50 unique head models were created from MRI images. Previous simulation studies have primarily used a single head model, and thus give a limited image of the induced electric field from TMS. This study uses finite element analysis simulations on 50 unique, heterogeneous head models to better investigate the relationship between TMS and the electric field induced in brain tissues. Results showed a significant variation in the strength of the induced electric field in the brain, which can be reasonably predicted by the distance from the TMS coil to the stimulated brain. Further, it was seen that some models had high electric field intensities in over five times as much brain volume as other models.

  8. Working Memory Training: Improving Intelligence--Changing Brain Activity

    ERIC Educational Resources Information Center

    Jausovec, Norbert; Jausovec, Ksenija

    2012-01-01

    The main objectives of the study were: to investigate whether training on working memory (WM) could improve fluid intelligence, and to investigate the effects WM training had on neuroelectric (electroencephalography--EEG) and hemodynamic (near-infrared spectroscopy--NIRS) patterns of brain activity. In a parallel group experimental design,…

  9. Agmatine Attenuates Brain Edema and Apoptotic Cell Death after Traumatic Brain Injury.

    PubMed

    Kim, Jae Young; Lee, Yong Woo; Kim, Jae Hwan; Lee, Won Taek; Park, Kyung Ah; Lee, Jong Eun

    2015-07-01

    Traumatic brain injury (TBI) is associated with poor neurological outcome, including necrosis and brain edema. In this study, we investigated whether agmatine treatment reduces edema and apoptotic cell death after TBI. TBI was produced by cold injury to the cerebral primary motor cortex of rats. Agmatine was administered 30 min after injury and once daily until the end of the experiment. Animals were sacrificed for analysis at 1, 2, or 7 days after the injury. Various neurological analyses were performed to investigate disruption of the blood-brain barrier (BBB) and neurological dysfunction after TBI. To examine the extent of brain edema after TBI, the expression of aquaporins (AQPs), phosphorylation of mitogen-activated protein kinases (MAPKs), and nuclear translocation of nuclear factor-κB (NF-κB) were investigated. Our findings demonstrated that agmatine treatment significantly reduces brain edema after TBI by suppressing the expression of AQP1, 4, and 9. In addition, agmatine treatment significantly reduced apoptotic cell death by suppressing the phosphorylation of MAPKs and by increasing the nuclear translocation of NF-κB after TBI. These results suggest that agmatine treatment may have therapeutic potential for brain edema and neural cell death in various central nervous system diseases.

  10. Blood pressure, brain structure, and cognition: opposite associations in men and women.

    PubMed

    Cherbuin, Nicolas; Mortby, Moyra E; Janke, Andrew L; Sachdev, Perminder S; Abhayaratna, Walter P; Anstey, Kaarin J

    2015-02-01

    Research on associations between blood pressure, brain structure, and cognitive function has produced somewhat inconsistent results. In part, this may be due to differences in age ranges studied and because of sex differences in physiology and/or exposure to risk factors, which may lead to different time course or patterns in cardiovascular disease progression. The aim of this study was to investigate the impact of sex on associations between blood pressure, regional cerebral volumes, and cognitive function in older individuals. In this cohort study, brachial blood pressure was measured twice at rest in 266 community-based individuals free of dementia aged 68-73 years who had also undergone a brain scan and a neuropsychological assessment. Associations between mean blood pressure (MAP), regional brain volumes, and cognition were investigated with voxel-wise regression analyses. Positive associations between MAP and regional volumes were detected in men, whereas negative associations were found in women. Similarly, there were sex differences in the brain-volume cognition relationship, with a positive relationship between regional brain volumes associated with MAP in men and a negative relationship in women. In this cohort of older individuals, higher MAP was associated with larger regional volume and better cognition in men, whereas opposite findings were demonstrated in women. These effects may be due to different lifetime risk exposure or because of physiological differences between men and women. Future studies investigating the relationship between blood pressure and brain structure or cognitive function should evaluate the potential for differential sex effects. © American Journal of Hypertension, Ltd 2014. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Quantifying familial influences on brain activation during the monetary incentive delay task: an adolescent monozygotic twin study.

    PubMed

    Silverman, Merav H; Krueger, Robert F; Iacono, William G; Malone, Stephen M; Hunt, Ruskin H; Thomas, Kathleen M

    2014-12-01

    Although altered brain activation during reward tasks has been found in a number of heritable psychiatric disorders and health outcomes, the familial nature of reward-related brain activation remains unexplored. In this study, we investigated the degree to which the magnitude of mesocorticolimbic reward system signal intensities in anticipation of reward during the monetary incentive delay (MID) task was similar within 46 pairs of adolescent, monozygotic twins. Significant within-pair correlations in brain activation during anticipation of gain were found in one third of the 18 reward-related regions investigated. These regions were the right nucleus accumbens, left and right posterior caudate, right anterior caudate, left insula, and anterior cingulate cortex. This serves as evidence for a shared familial contribution to individual differences in reward related brain activity in certain key reward processing regions. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Teachers' Awareness of the Learner-Teacher Interaction: Preliminary Communication of a Study Investigating the Teaching Brain

    ERIC Educational Resources Information Center

    Rodriguez, Vanessa; Solis, S. Lynneth

    2013-01-01

    A new phase of research on teaching is under way that seeks to understand the teaching brain. In this vein, this study investigated the cognitive processes employed by master teachers. Using an interview protocol influenced by microgenetic techniques, 23 master teachers used the Self-in-Relation-to-Teaching (SiR2T) tool to answer "What are…

  13. Gender Differences of Brain Glucose Metabolic Networks Revealed by FDG-PET: Evidence from a Large Cohort of 400 Young Adults

    PubMed Central

    Li, Kai; Zhu, Hong; Qi, Rongfeng; Zhang, Zhiqiang; Lu, Guangming

    2013-01-01

    Background Gender differences of the human brain are an important issue in neuroscience research. In recent years, an increasing amount of evidence has been gathered from noninvasive neuroimaging studies supporting a sexual dimorphism of the human brain. However, there is a lack of imaging studies on gender differences of brain metabolic networks based on a large population sample. Materials and Methods FDG PET data of 400 right-handed, healthy subjects, including 200 females (age: 25∼45 years, mean age±SD: 40.9±3.9 years) and 200 age-matched males were obtained and analyzed in the present study. We first investigated the regional differences of brain glucose metabolism between genders using a voxel-based two-sample t-test analysis. Subsequently, we investigated the gender differences of the metabolic networks. Sixteen metabolic covariance networks using seed-based correlation were analyzed. Seven regions showing significant regional metabolic differences between genders, and nine regions conventionally used in the resting-state network studies were selected as regions-of-interest. Permutation tests were used for comparing within- and between-network connectivity between genders. Results Compared with the males, females showed higher metabolism in the posterior part and lower metabolism in the anterior part of the brain. Moreover, there were widely distributed patterns of the metabolic networks in the human brain. In addition, significant gender differences within and between brain glucose metabolic networks were revealed in the present study. Conclusion This study provides solid data that reveal gender differences in regional brain glucose metabolism and brain glucose metabolic networks. These observations might contribute to the better understanding of the gender differences in human brain functions, and suggest that gender should be included as a covariate when designing experiments and explaining results of brain glucose metabolic networks in the control and experimental individuals or patients. PMID:24358312

  14. Gender differences of brain glucose metabolic networks revealed by FDG-PET: evidence from a large cohort of 400 young adults.

    PubMed

    Hu, Yuxiao; Xu, Qiang; Li, Kai; Zhu, Hong; Qi, Rongfeng; Zhang, Zhiqiang; Lu, Guangming

    2013-01-01

    Gender differences of the human brain are an important issue in neuroscience research. In recent years, an increasing amount of evidence has been gathered from noninvasive neuroimaging studies supporting a sexual dimorphism of the human brain. However, there is a lack of imaging studies on gender differences of brain metabolic networks based on a large population sample. FDG PET data of 400 right-handed, healthy subjects, including 200 females (age: 25:45 years, mean age ± SD: 40.9 ± 3.9 years) and 200 age-matched males were obtained and analyzed in the present study. We first investigated the regional differences of brain glucose metabolism between genders using a voxel-based two-sample t-test analysis. Subsequently, we investigated the gender differences of the metabolic networks. Sixteen metabolic covariance networks using seed-based correlation were analyzed. Seven regions showing significant regional metabolic differences between genders, and nine regions conventionally used in the resting-state network studies were selected as regions-of-interest. Permutation tests were used for comparing within- and between-network connectivity between genders. Compared with the males, females showed higher metabolism in the posterior part and lower metabolism in the anterior part of the brain. Moreover, there were widely distributed patterns of the metabolic networks in the human brain. In addition, significant gender differences within and between brain glucose metabolic networks were revealed in the present study. This study provides solid data that reveal gender differences in regional brain glucose metabolism and brain glucose metabolic networks. These observations might contribute to the better understanding of the gender differences in human brain functions, and suggest that gender should be included as a covariate when designing experiments and explaining results of brain glucose metabolic networks in the control and experimental individuals or patients.

  15. The Effect of 30% Oxygen on Visuospatial Performance and Brain Activation: An Fmri Study

    ERIC Educational Resources Information Center

    Chung, S.C.; Tack, G.R.; Lee, B.; Eom, G.M.; Lee, S.Y.; Sohn, J.H.

    2004-01-01

    This study aimed to investigate the hypothesis that administration of the air with 30% oxygen compared with normal air (21% oxygen) enhances cognitive functioning through increased activation in the brain. A visuospatial task was presented while brain images were scanned by a 3 T fMRI system. The results showed that there was an improvement in…

  16. "Celebration of the Neurons": The Application of Brain Based Learning in Classroom Environment

    ERIC Educational Resources Information Center

    Duman, Bilal

    2007-01-01

    The purpose of this study is to investigate approaches and techniques related to how brain based learning used in classroom atmosphere. This general purpose were answered following the questions: (1) What is the aim of brain based learning? (2) What are general approaches and techniques that brain based learning used? and (3) How should be used…

  17. Alterations of brain activity in fibromyalgia patients.

    PubMed

    Sawaddiruk, Passakorn; Paiboonworachat, Sahattaya; Chattipakorn, Nipon; Chattipakorn, Siriporn C

    2017-04-01

    Fibromyalgia is a chronic pain syndrome, characterized by widespread musculoskeletal pain with diffuse tenderness at multiple tender points. Despite intense investigations, the pathophysiology of fibromyalgia remains elusive. Evidence shows that it could be due to changes in either the peripheral or central nervous system (CNS). For the CNS changes, alterations in the high brain area of fibromyalgia patients have been investigated but the definite mechanisms are still unclear. Magnetic Resonance Imaging (MRI) and Functional Magnetic Resonance (fMRI) have been used to gather evidence regarding the changes of brain morphologies and activities in fibromyalgia patients. Nevertheless, due to few studies, limited knowledge for alterations in brain activities in fibromyalgia is currently available. In this review, the changes in brain activity in various brain areas obtained from reports in fibromyalgia patients are comprehensively summarized. Changes of the grey matter in multiple regions such as the superior temporal gyrus, posterior thalamus, amygdala, basal ganglia, cerebellum, cingulate cortex, SII, caudate and putamen from the MRI as well as the increase of brain activities in the cerebellum, prefrontal cortex, anterior cingulate cortex, thalamus, somatosensory cortex, insula in fMRI studies are presented and discussed. Moreover, evidence from pharmacological interventions offering benefits for fibromyalgia patients by reducing brain activity is presented. Because of limited knowledge regarding the roles of brain activity alterations in fibromyalgia, this summarized review will encourage more future studies to elucidate the underlying mechanisms involved in the brains of these patients. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. A study on the antioxidant effect of Coriolus versicolor polysaccharide in rat brain tissues.

    PubMed

    Chen, Jiayu; Jin, Xiaoyan; Zhang, Liting; Yang, Linjun

    2013-01-01

    The objective of the study was to investigate the antioxidant effect of Chinese medicine Coriolus versicolor polysaccharide on brain tissue and its mechanism in rats. SOD, MDA and GSH-Px levels in rat brain tissues were determined with SD rats as the animal model. The results showed that Coriolus versicolor polysaccharide can reduce the lipid peroxidation level in brain tissues during exhaustive exercise in rats, and can accelerate the removal of free radicals. The study concluded that its antioxidant effect is relatively apparent.

  19. A common brain network among state, trait, and pathological anxiety from whole-brain functional connectivity.

    PubMed

    Takagi, Yu; Sakai, Yuki; Abe, Yoshinari; Nishida, Seiji; Harrison, Ben J; Martínez-Zalacaín, Ignacio; Soriano-Mas, Carles; Narumoto, Jin; Tanaka, Saori C

    2018-05-15

    Anxiety is one of the most common mental states of humans. Although it drives us to avoid frightening situations and to achieve our goals, it may also impose significant suffering and burden if it becomes extreme. Because we experience anxiety in a variety of forms, previous studies investigated neural substrates of anxiety in a variety of ways. These studies revealed that individuals with high state, trait, or pathological anxiety showed altered neural substrates. However, no studies have directly investigated whether the different dimensions of anxiety share a common neural substrate, despite its theoretical and practical importance. Here, we investigated a brain network of anxiety shared by different dimensions of anxiety in a unified analytical framework using functional magnetic resonance imaging (fMRI). We analyzed different datasets in a single scale, which was defined by an anxiety-related brain network derived from whole brain. We first conducted the anxiety provocation task with healthy participants who tended to feel anxiety related to obsessive-compulsive disorder (OCD) in their daily life. We found a common state anxiety brain network across participants (1585 trials obtained from 10 participants). Then, using the resting-state fMRI in combination with the participants' behavioral trait anxiety scale scores (879 participants from the Human Connectome Project), we demonstrated that trait anxiety shared the same brain network as state anxiety. Furthermore, the brain network between common to state and trait anxiety could detect patients with OCD, which is characterized by pathological anxiety-driven behaviors (174 participants from multi-site datasets). Our findings provide direct evidence that different dimensions of anxiety have a substantial biological inter-relationship. Our results also provide a biologically defined dimension of anxiety, which may promote further investigation of various human characteristics, including psychiatric disorders, from the perspective of anxiety. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Event-Related Brain Potential Correlates of Emotional Face Processing

    ERIC Educational Resources Information Center

    Eimer, Martin; Holmes, Amanda

    2007-01-01

    Results from recent event-related brain potential (ERP) studies investigating brain processes involved in the detection and analysis of emotional facial expression are reviewed. In all experiments, emotional faces were found to trigger an increased ERP positivity relative to neutral faces. The onset of this emotional expression effect was…

  1. Assessment of Syntax after Adolescent Brain Injury: Effects of Memory on Test Performance.

    ERIC Educational Resources Information Center

    Turkstra, Lyn S.; Holland, Audrey L.

    1998-01-01

    This study of six adolescents with brain injuries, and six controls, investigated the influence of working memory load on performance of a task designed to measure receptive syntax ability. The performance of the adolescents with brain injuries was significantly worse than that of controls. (Author/CR)

  2. Intranasal mucoadhesive microemulsions of clonazepam: preliminary studies on brain targeting.

    PubMed

    Vyas, Tushar K; Babbar, A K; Sharma, R K; Singh, Shashi; Misra, Ambikanandan

    2006-03-01

    The aim of this investigation was to prepare clonazepam microemulsions (CME) for rapid drug delivery to the brain to treat acute status epileptic patients and to characterize and evaluate the performance of CME in vitro and in vivo in rats. The CME were prepared by the titration method and were characterized for globule size and size distribution, zeta potential, and drug content. CME was radiolabeled with (99m)Tc (technetium) and biodistribution of drug in the brain was studied in Swiss albino rats after intranasal and intravenous administrations. Brain scintigraphy imaging in rabbits was also performed to ascertain the uptake of the drug into the brain. Pre and postCME formulation treated human nasal mucosa was subjected to transmission electron microscopy to investigate the mechanism of drug uptake across the nasal mucosa. CME were transparent and stable with mean globule size of 15 +/- 10 nm and zeta potential of -30 mV to -40 mV. (99m)Tc-labeled clonazepam solution ((99m)Tc CS)/ clonazepam microemulsion (CME)/clonazepam mucoadhesive microemulsion (CMME) were found to be stable and suitable for in vivo studies. Brain/blood uptake ratios at 0.50 hour (h) following intranasal CMME, CME, clonazepam solution (CS), and intravenous CME administrations were found to be 0.67, 0.50, 0.48, and 0.13, respectively indicating more effective targeting with intranasal administration and best targeting of the brain with intranasal CMME. Brain/blood ratio at all sampling points up to 8 h following intranasal administration of CMME compared to intravenous was found to be twofold higher indicating larger extent of distribution of the drug in brain. Rabbit brain scintigraphy also showed higher intranasal uptake of the drug into the brain. Transmission electron microscopy revealed significant accretion of CMME within interstitial spaces and paracellular mode of transport due to stretching of the tight junctions present in the nasal mucosa. This investigation demonstrates a more rapid and larger extent of transport of clonazepam into the rat brain with intranasal CMME, which may prove useful in treating acute status epileptics. Copyright 2006 Wiley-Liss, Inc. and the American Pharmacists Association.

  3. Altered functional brain connectivity in children and young people with opsoclonus-myoclonus syndrome.

    PubMed

    Chekroud, Adam M; Anand, Geetha; Yong, Jean; Pike, Michael; Bridge, Holly

    2017-01-01

    Opsoclonus-myoclonus syndrome (OMS) is a rare, poorly understood condition that can result in long-term cognitive, behavioural, and motor sequelae. Several studies have investigated structural brain changes associated with this condition, but little is known about changes in function. This study aimed to investigate changes in brain functional connectivity in patients with OMS. Seven patients with OMS and 10 age-matched comparison participants underwent 3T magnetic resonance imaging (MRI) to acquire resting-state functional MRI data (whole-brain echo-planar images; 2mm isotropic voxels; multiband factor ×2) for a cross-sectional study. A seed-based analysis identified brain regions in which signal changes over time correlated with the cerebellum. Model-free analysis was used to determine brain networks showing altered connectivity. In patients with OMS, the motor cortex showed significantly reduced connectivity, and the occipito-parietal region significantly increased connectivity with the cerebellum relative to the comparison group. A model-free analysis also showed extensive connectivity within a visual network, including the cerebellum and basal ganglia, not present in the comparison group. No other networks showed any differences between groups. Patients with OMS showed reduced connectivity between the cerebellum and motor cortex, but increased connectivity with occipito-parietal regions. This pattern of change supports widespread brain involvement in OMS. © 2016 Mac Keith Press.

  4. Efficacy of icotinib versus traditional chemotherapy as first-line treatment for preventing brain metastasis from advanced lung adenocarcinoma in patients with epidermal growth factor receptor-sensitive mutation.

    PubMed

    Zhao, Xiao; Zhu, Guangqin; Chen, Huoming; Yang, Ping; Li, Fang; Du, Nan

    2016-01-01

    This study aimed to investigate the potential use of icotinib as first-line treatment to prevent brain metastasis from advanced lung adenocarcinoma. This investigation was designed as a retrospective nonrandomized controlled study. Enrolled patients received either icotinib or traditional chemotherapy as their first-line treatment. The therapeutic efficacy was compared among patients with advanced. (stages IIIB and IV) lung adenocarcinoma with epidermal growth factor receptor (EGFR)-sensitive mutation. The primary endpoint was the cumulative incidence of brain metastasis, whereas, the secondary endpoint was overall survival(OS). Death without brain metastasis was considered a competitive risk to calculate the cumulative risk of brain metastasis. Survival analysis was conducted using the Kaplan-Meier method and statistical significance was determined using the log-rank test. The present study included 396 patients with 131 in the icotinib group and 265 in the chemotherapy group. Among those with EGFR-sensitive mutation, the cumulative risk of brain metastasis was lower in the icotinib group than in the chemotherapy group. However, no significant difference in OS was observed between the two groups. Icotinib can effectively reduce the incidence of brain metastasis and therefore improve prognosis in advanced lung adenocarcinoma patients with EGFR.sensitive mutation.

  5. Efficacy of icotinib versus traditional chemotherapy as first-line treatment for preventing brain metastasis from advanced lung adenocarcinoma in patients with epidermal growth factor receptor-sensitive mutation.

    PubMed

    Zhao, Xiao; Zhu, Guangqin; Chen, Huoming; Yang, Ping; Li, Fang; Du, Nan

    2014-11-01

    This study aimed to investigate the potential use of icotinib as first-line treatment to prevent brain metastasis from advanced lung adenocarcinoma. This investigation was designed as a retrospective nonrandomized controlled study. Enrolled patients received either icotinib or traditional chemotherapy as their first-line treatment. The therapeutic efficacy was compared among patients with advanced (stages IIIB and IV) lung adenocarcinoma with epidermal growth factor receptor (EGFR)-sensitive mutation. The primary endpoint was the cumulative incidence of brain metastasis, whereas the secondary endpoint was overall survival (OS). Death without brain metastasis was considered a competitive risk to calculate the cumulative risk of brain metastasis. Survival analysis was conducted using the Kaplan-Meier method and statistical significance were determined using the log-rank test. The present study included 396 patients with 131 in the icotinib group and 265 in the chemotherapy group. Among those with EGFR-sensitive mutation, the cumulative risk of brain metastasis was lower in the icotinib group than in the chemotherapy group. However, no significant difference in OS was observed between the two groups. Icotinib can effectively reduce the incidence of brain metastasis and therefore improve prognosis in advanced lung adenocarcinoma patients with EGFR-sensitive mutation.

  6. Measuring speaker–listener neural coupling with functional near infrared spectroscopy

    PubMed Central

    Liu, Yichuan; Piazza, Elise A.; Simony, Erez; Shewokis, Patricia A.; Onaral, Banu; Hasson, Uri; Ayaz, Hasan

    2017-01-01

    The present study investigates brain-to-brain coupling, defined as inter-subject correlations in the hemodynamic response, during natural verbal communication. We used functional near-infrared spectroscopy (fNIRS) to record brain activity of 3 speakers telling stories and 15 listeners comprehending audio recordings of these stories. Listeners’ brain activity was significantly correlated with speakers’ with a delay. This between-brain correlation disappeared when verbal communication failed. We further compared the fNIRS and functional Magnetic Resonance Imaging (fMRI) recordings of listeners comprehending the same story and found a significant relationship between the fNIRS oxygenated-hemoglobin concentration changes and the fMRI BOLD in brain areas associated with speech comprehension. This correlation between fNIRS and fMRI was only present when data from the same story were compared between the two modalities and vanished when data from different stories were compared; this cross-modality consistency further highlights the reliability of the spatiotemporal brain activation pattern as a measure of story comprehension. Our findings suggest that fNIRS can be used for investigating brain-to-brain coupling during verbal communication in natural settings. PMID:28240295

  7. Demeclocycline as a contrast agent for detecting brain neoplasms using confocal microscopy

    NASA Astrophysics Data System (ADS)

    Wirth, Dennis; Smith, Thomas W.; Moser, Richard; Yaroslavsky, Anna N.

    2015-04-01

    Complete resection of brain tumors improves life expectancy and quality. Thus, there is a strong need for high-resolution detection and microscopically controlled removal of brain neoplasms. The goal of this study was to test demeclocycline as a contrast enhancer for the intraoperative detection of brain tumors. We have imaged benign and cancerous brain tumors using multimodal confocal microscopy. The tumors investigated included pituitary adenoma, meningiomas, glioblastomas, and metastatic brain cancers. Freshly excised brain tissues were stained in 0.75 mg ml-1 aqueous solution of demeclocyline. Reflectance images were acquired at 402 nm. Fluorescence signals were excited at 402 nm and registered between 500 and 540 nm. After imaging, histological sections were processed from the imaged specimens and compared to the optical images. Fluorescence images highlighted normal and cancerous brain cells, while reflectance images emphasized the morphology of connective tissue. The optical and histological images were in accordance with each other for all types of tumors investigated. Demeclocyline shows promise as a contrast agent for intraoperative detection of brain tumors.

  8. Impact of high iron intake on cognition and neurodegeneration in humans and in animal models: a systematic review.

    PubMed

    Agrawal, Sonal; Berggren, Kiersten L; Marks, Eileen; Fox, Jonathan H

    2017-06-01

    Accumulation of brain iron is linked to aging and protein-misfolding neurodegenerative diseases. High iron intake may influence important brain health outcomes in later life. The aim of this systematic review was to examine evidence from animal and human studies of the effects of high iron intake or peripheral iron status on adult cognition, brain aging, and neurodegeneration. MEDLINE, Scopus, CAB Abstracts, the Cochrane Central Register of Clinical Trials, and OpenGrey databases were searched. Studies investigating the effect of elevated iron intake at all postnatal life stages in mammalian models and humans on measures of adult brain health were included. Data were extracted and evaluated by two authors independently, with discrepancies resolved by discussion. Neurodegenerative disease diagnosis and/or behavioral/cognitive, biochemical, and brain morphologic findings were used to study the effects of iron intake or peripheral iron status on brain health. Risk of bias was assessed for animal and human studies. PRISMA guidelines for reporting systematic reviews were followed. Thirty-four preclinical and 14 clinical studies were identified from database searches. Thirty-three preclinical studies provided evidence supporting an adverse effect of nutritionally relevant high iron intake in neonates on brain-health-related outcomes in adults. Human studies varied considerably in design, quality, and findings; none investigated the effects of high iron intake in neonates/infants. Human studies are needed to verify whether dietary iron intake levels used in neonates/infants to prevent iron deficiency have effects on brain aging and neurodegenerative disease outcomes. © The Author(s) 2017. Published by Oxford University Press on behalf of the International Life Sciences Institute.

  9. Altered spontaneous brain activity pattern in patients with late monocular blindness in middle-age using amplitude of low-frequency fluctuation: a resting-state functional MRI study

    PubMed Central

    Li, Qing; Huang, Xin; Ye, Lei; Wei, Rong; Zhang, Ying; Zhong, Yu-Lin; Jiang, Nan; Shao, Yi

    2016-01-01

    Objective Previous reports have demonstrated significant brain activity changes in bilateral blindness, whereas brain activity changes in late monocular blindness (MB) at rest are not well studied. Our study aimed to investigate spontaneous brain activity in patients with late middle-aged MB using the amplitude of low-frequency fluctuation (ALFF) method and their relationship with clinical features. Methods A total of 32 patients with MB (25 males and 7 females) and 32 healthy control (HC) subjects (25 males and 7 females), similar in age, sex, and education, were recruited for the study. All subjects were performed with resting-state functional magnetic resonance imaging scanning. The ALFF method was applied to evaluate spontaneous brain activity. The relationships between the ALFF signal values in different brain regions and clinical features in MB patients were investigated using correlation analysis. Results Compared with HCs, the MB patients had marked lower ALFF values in the left cerebellum anterior lobe, right parahippocampal gyrus, right cuneus, left precentral gyrus, and left paracentral lobule, but higher ALFF values in the right middle frontal gyrus, left middle frontal gyrus, and left supramarginal gyrus. However, there was no linear correlation between the mean ALFF signal values in brain regions and clinical manifestations in MB patients. Conclusion There were abnormal spontaneous activities in many brain regions including vision and vision-related regions, which might indicate the neuropathologic mechanisms of vision loss in the MB patients. Meanwhile, these brain activity changes might be used as a useful clinical indicator for MB. PMID:27980398

  10. Altered spontaneous brain activity pattern in patients with late monocular blindness in middle-age using amplitude of low-frequency fluctuation: a resting-state functional MRI study.

    PubMed

    Li, Qing; Huang, Xin; Ye, Lei; Wei, Rong; Zhang, Ying; Zhong, Yu-Lin; Jiang, Nan; Shao, Yi

    2016-01-01

    Previous reports have demonstrated significant brain activity changes in bilateral blindness, whereas brain activity changes in late monocular blindness (MB) at rest are not well studied. Our study aimed to investigate spontaneous brain activity in patients with late middle-aged MB using the amplitude of low-frequency fluctuation (ALFF) method and their relationship with clinical features. A total of 32 patients with MB (25 males and 7 females) and 32 healthy control (HC) subjects (25 males and 7 females), similar in age, sex, and education, were recruited for the study. All subjects were performed with resting-state functional magnetic resonance imaging scanning. The ALFF method was applied to evaluate spontaneous brain activity. The relationships between the ALFF signal values in different brain regions and clinical features in MB patients were investigated using correlation analysis. Compared with HCs, the MB patients had marked lower ALFF values in the left cerebellum anterior lobe, right parahippocampal gyrus, right cuneus, left precentral gyrus, and left paracentral lobule, but higher ALFF values in the right middle frontal gyrus, left middle frontal gyrus, and left supramarginal gyrus. However, there was no linear correlation between the mean ALFF signal values in brain regions and clinical manifestations in MB patients. There were abnormal spontaneous activities in many brain regions including vision and vision-related regions, which might indicate the neuropathologic mechanisms of vision loss in the MB patients. Meanwhile, these brain activity changes might be used as a useful clinical indicator for MB.

  11. Music modulation of pain perception and pain-related activity in the brain, brain stem, and spinal cord: a functional magnetic resonance imaging study.

    PubMed

    Dobek, Christine E; Beynon, Michaela E; Bosma, Rachael L; Stroman, Patrick W

    2014-10-01

    The oldest known method for relieving pain is music, and yet, to date, the underlying neural mechanisms have not been studied. Here, we investigate these neural mechanisms by applying a well-defined painful stimulus while participants listened to their favorite music or to no music. Neural responses in the brain, brain stem, and spinal cord were mapped with functional magnetic resonance imaging spanning the cortex, brain stem, and spinal cord. Subjective pain ratings were observed to be significantly lower when pain was administered with music than without music. The pain stimulus without music elicited neural activity in brain regions that are consistent with previous studies. Brain regions associated with pleasurable music listening included limbic, frontal, and auditory regions, when comparing music to non-music pain conditions. In addition, regions demonstrated activity indicative of descending pain modulation when contrasting the 2 conditions. These regions include the dorsolateral prefrontal cortex, periaqueductal gray matter, rostral ventromedial medulla, and dorsal gray matter of the spinal cord. This is the first imaging study to characterize the neural response of pain and how pain is mitigated by music, and it provides new insights into the neural mechanism of music-induced analgesia within the central nervous system. This article presents the first investigation of neural processes underlying music analgesia in human participants. Music modulates pain responses in the brain, brain stem, and spinal cord, and neural activity changes are consistent with engagement of the descending analgesia system. Copyright © 2014 American Pain Society. Published by Elsevier Inc. All rights reserved.

  12. Brain metabolism in patients with vegetative state after post-resuscitated hypoxic-ischemic brain injury: statistical parametric mapping analysis of F-18 fluorodeoxyglucose positron emission tomography.

    PubMed

    Kim, Yong Wook; Kim, Hyoung Seop; An, Young-sil

    2013-03-01

    Hypoxic-ischemic brain injury (HIBI) after cardiopulmonary resuscitation is one of the most devastating neurological conditions that causing the impaired consciousness. However, there were few studies investigated the changes of brain metabolism in patients with vegetative state (VS) after post-resuscitated HIBI. This study aimed to analyze the change of overall brain metabolism and elucidated the brain area correlated with the level of consciousness (LOC) in patients with VS after post-resuscitated HIBI. We consecutively enrolled 17 patients with VS after HIBI, who experienced cardiopulmonary resuscitation. Overall brain metabolism was measured by F-18 fluorodeoxyglucose positron emission tomography (F-18 FDG PET) and we compared regional brain metabolic patterns from 17 patients with those from 15 normal controls using voxel-by-voxel based statistical parametric mapping analysis. Additionally, we correlated the LOC measured by the JFK-coma recovery scale-revised of each patient with brain metabolism by covariance analysis. Compared with normal controls, the patients with VS after post-resuscitated HIBI revealed significantly decreased brain metabolism in bilateral precuneus, bilateral posterior cingulate gyrus, bilateral middle frontal gyri, bilateral superior parietal gyri, bilateral middle occipital gyri, bilateral precentral gyri (PFEW correctecd < 0.0001), and increased brain metabolism in bilateral insula, bilateral cerebella, and the brainstem (PFEW correctecd < 0.0001). In covariance analysis, the LOC was significantly correlated with brain metabolism in bilateral fusiform and superior temporal gyri (Puncorrected < 0.005). Our study demonstrated that the precuneus, the posterior cingulate area and the frontoparietal cortex, which is a component of neural correlate for consciousness, may be relevant structure for impaired consciousness in patient with VS after post-resuscitated HIBI. In post-resuscitated HIBI, measurement of brain metabolism using PET images may be helpful for investigating the brain function that cannot be obtained by morphological imaging and can be used to assess the brain area responsible for consciousness.

  13. Functional connectivity in the mouse brain imaged by B-mode photoacoustic microscopy

    NASA Astrophysics Data System (ADS)

    Nasiriavanaki, Mohammadreza; Xing, Wenxin; Xia, Jun; Wang, Lihong V.

    2014-03-01

    The increasing use of mouse models for human brain disease studies, coupled with the fact that existing functional imaging modalities cannot be easily applied to mice, presents an emerging need for a new functional imaging modality. Utilizing acoustic-resolution photoacoustic microscopy (AR-PAM), we imaged spontaneous cerebral hemodynamic fluctuations and their associated functional connections in the mouse brain. The images were acquired noninvasively in B-scan mode with a fast frame rate, a large field of view, and a high spatial resolution. At a location relative to the bregma 0, correlations were investigated inter-hemispherically between bilaterally homologous regions, as well as intra-hemispherically within the same functional regions. The functional connectivity in different functional regions was studied. The locations of these regions agreed well with the Paxinos mouse brain atlas. The functional connectivity map obtained in this study can then be used in the investigation of brain disorders such as stroke, Alzheimer's, schizophrenia, multiple sclerosis, autism, and epilepsy. Our experiments show that photoacoustic microscopy is capable to detect connectivities between different functional regions in B-scan mode, promising a powerful functional imaging modality for future brain research.

  14. Surface shape analysis with an application to brain surface asymmetry in schizophrenia.

    PubMed

    Brignell, Christopher J; Dryden, Ian L; Gattone, S Antonio; Park, Bert; Leask, Stuart; Browne, William J; Flynn, Sean

    2010-10-01

    Some methods for the statistical analysis of surface shapes and asymmetry are introduced. We focus on a case study where magnetic resonance images of the brain are available from groups of 30 schizophrenia patients and 38 controls, and we investigate large-scale brain surface shape differences. Key aspects of shape analysis are to remove nuisance transformations by registration and to identify which parts of one object correspond with the parts of another object. We introduce maximum likelihood and Bayesian methods for registering brain images and providing large-scale correspondences of the brain surfaces. Brain surface size-and-shape analysis is considered using random field theory, and also dimension reduction is carried out using principal and independent components analysis. Some small but significant differences are observed between the the patient and control groups. We then investigate a particular type of asymmetry called torque. Differences in asymmetry are observed between the control and patient groups, which add strength to other observations in the literature. Further investigations of the midline plane location in the 2 groups and the fitting of nonplanar curved midlines are also considered.

  15. Brain Stimulation in Alzheimer's Disease.

    PubMed

    Chang, Chun-Hung; Lane, Hsien-Yuan; Lin, Chieh-Hsin

    2018-01-01

    Brain stimulation techniques can modulate cognitive functions in many neuropsychiatric diseases. Pilot studies have shown promising effects of brain stimulations on Alzheimer's disease (AD). Brain stimulations can be categorized into non-invasive brain stimulation (NIBS) and invasive brain stimulation (IBS). IBS includes deep brain stimulation (DBS), and invasive vagus nerve stimulation (VNS), whereas NIBS includes transcranial magnetic stimulation (TMS), transcranial direct current stimulation (tDCS), transcranial alternating current stimulation (tACS), electroconvulsive treatment (ECT), magnetic seizure therapy (MST), cranial electrostimulation (CES), and non-invasive VNS. We reviewed the cutting-edge research on these brain stimulation techniques and discussed their therapeutic effects on AD. Both IBS and NIBS may have potential to be developed as novel treatments for AD; however, mixed findings may result from different study designs, patients selection, population, or samples sizes. Therefore, the efficacy of NIBS and IBS in AD remains uncertain, and needs to be further investigated. Moreover, more standardized study designs with larger sample sizes and longitudinal follow-up are warranted for establishing a structural guide for future studies and clinical application.

  16. Experimental methods for testing the effects of neurotrophic peptide, ADNF-9, against alcohol-induced apoptosis during pregnancy in c57bl/6 mice.

    PubMed

    Sari, Youssef

    2013-04-24

    Experimental designs for investigating the effects of prenatal alcohol exposure during early embryonic stages in fetal brain growth are challenging. This is mostly due to the difficulty of microdissection of fetal brains and their sectioning for determination of apoptotic cells caused by prenatal exposure to alcohol. The experiments described here provide visualized techniques from mice breeding to the identification of cell death in fetal brain tissue. This study used C57BL/6 mice as the animal model for studying fetal alcohol exposure and the role of trophic peptide against alcohol-induced apoptosis. The breeding consists of a 2-hr matting window to determine the exact stage of embryonic age. An established fetal alcohol exposure model has been used in this study to determine the effects of prenatal alcohol exposure in fetal brains. This involves free access to alcohol or pair-fed liquid diets as the sole source of nutrients for the pregnant mice. The techniques involving dissection of fetuses and microdissection of fetal brains are described carefully, since the latter can be challenging. Microdissection requires a stereomicroscope and ultra-fine forceps. Step-by-step procedures for dissecting the fetal brains are provided visually. The fetal brains are dissected from the base of the primordium olfactory bulb to the base of the metencephalon. For investigating apoptosis, fetal brains are first embedded in gelatin using a peel-away mold to facilitate their sectioning with a vibratome apparatus. Fetal brains embedded and fixed in paraformaldehyde are easily sectioned, and the free floating sections can be mounted in superfrost plus slides for determination of apoptosis or cell death. TUNEL (TdT-mediated dUTP Nick End Labeling; TdT: terminal deoxynucleotidyl transferase) assay has been used to identify cell death or apoptotic cells. It is noteworthy that apoptosis and cell-mediated cytotoxicity are characterized by DNA fragmentation. Thus, the visualized TUNEL-positive cells are indicative of cell death or apoptotic cells. The experimental designs here provide information about the use of an established liquid diet for studying the effects of alcohol and the role of neurotrophic peptides during pregnancy in fetal brains. This involves breeding and feeding pregnant mice, microdissecting fetal brains, and determining apoptosis. Together, these visual and textual techniques might be a source for investigating prenatal exposure of harmful agents in fetal brains.

  17. Brain Functional Connectivity in Small Cell Lung Cancer Population after Chemotherapy Treatment: an ICA fMRI Study

    NASA Astrophysics Data System (ADS)

    Bromis, K.; Kakkos, I.; Gkiatis, K.; Karanasiou, I. S.; Matsopoulos, G. K.

    2017-11-01

    Previous neurocognitive assessments in Small Cell Lung Cancer (SCLC) population, highlight the presence of neurocognitive impairments (mainly in attention processing and executive functioning) in this type of cancer. The majority of these studies, associate these deficits with the Prophylactic Cranial Irradiation (PCI) that patients undergo in order to avoid brain metastasis. However, there is not much evidence exploring cognitive impairments induced by chemotherapy in SCLC patients. For this reason, we aimed to investigate the underlying processes that may potentially affect cognition by examining brain functional connectivity in nineteen SCLC patients after chemotherapy treatment, while additionally including fourteen healthy participants as control group. Independent Component Analysis (ICA) is a functional connectivity measure aiming to unravel the temporal correlation between brain regions, which are called brain networks. We focused on two brain networks related to the aforementioned cognitive functions, the Default Mode Network (DMN) and the Task-Positive Network (TPN). Permutation tests were performed between the two groups to assess the differences and control for familywise errors in the statistical parametric maps. ICA analysis showed functional connectivity disruptions within both of the investigated networks. These results, propose a detrimental effect of chemotherapy on brain functioning in the SCLC population.

  18. What Neuroscience Has Taught Us about Autism: Implications for Early Intervention

    ERIC Educational Resources Information Center

    Williams, Diane L.

    2008-01-01

    Investigation of the brain and brain function in living children and adults with autism has led to new information on the neurobiology of autism. Autism is characterized by early brain overgrowth and alterations in gray and white matter. Functional imaging studies suggest that individuals with autism have reduced synchronization between key brain…

  19. Sex Differences in Brain Activity Related to General and Emotional Intelligence

    ERIC Educational Resources Information Center

    Jausovec, Norbert; Jausovec, Ksenija

    2005-01-01

    The study investigated gender differences in resting EEG (in three individually determined narrow [alpha] frequency bands) related to the level of general and emotional intelligence. Brain activity of males decreased with the level of general intelligence, whereas an opposite pattern of brain activity was observed in females. This difference was…

  20. Perivascular Spaces--MRI Marker of Inflammatory Activity in the Brain?

    ERIC Educational Resources Information Center

    Wuerfel, Jens; Haertle, Mareile; Waiczies, Helmar; Tysiak, Eva; Bechmann, Ingo; Wernecke, Klaus D.; Zipp, Frauke; Paul, Friedemann

    2008-01-01

    The Virchow-Robin spaces (VRS), perivascular compartments surrounding small blood vessels as they penetrate the brain parenchyma, are increasingly recognized for their role in leucocyte trafficking as well as for their potential to modulate immune responses. In the present study, we investigated VRS numbers and volumes in different brain regions…

  1. Correlation of Students' Brain Types to Their Conceptions of Learning Science and Approaches to Learning Science

    ERIC Educational Resources Information Center

    Park, Jiyeon; Jeon, Dongryul

    2015-01-01

    The systemizing and empathizing brain type represent two contrasted students' characteristics. The present study investigated differences in the conceptions and approaches to learning science between the systemizing and empathizing brain type students. The instruments are questionnaires on the systematizing and empathizing, questionnaires on the…

  2. International veterinary epilepsy task force recommendations for systematic sampling and processing of brains from epileptic dogs and cats.

    PubMed

    Matiasek, Kaspar; Pumarola I Batlle, Martí; Rosati, Marco; Fernández-Flores, Francisco; Fischer, Andrea; Wagner, Eva; Berendt, Mette; Bhatti, Sofie F M; De Risio, Luisa; Farquhar, Robyn G; Long, Sam; Muñana, Karen; Patterson, Edward E; Pakozdy, Akos; Penderis, Jacques; Platt, Simon; Podell, Michael; Potschka, Heidrun; Rusbridge, Clare; Stein, Veronika M; Tipold, Andrea; Volk, Holger A

    2015-08-28

    Traditionally, histological investigations of the epileptic brain are required to identify epileptogenic brain lesions, to evaluate the impact of seizure activity, to search for mechanisms of drug-resistance and to look for comorbidities. For many instances, however, neuropathological studies fail to add substantial data on patients with complete clinical work-up. This may be due to sparse training in epilepsy pathology and or due to lack of neuropathological guidelines for companion animals.The protocols introduced herein shall facilitate systematic sampling and processing of epileptic brains and therefore increase the efficacy, reliability and reproducibility of morphological studies in animals suffering from seizures.Brain dissection protocols of two neuropathological centres with research focus in epilepsy have been optimised with regards to their diagnostic yield and accuracy, their practicability and their feasibility concerning clinical research requirements.The recommended guidelines allow for easy, standardised and ubiquitous collection of brain regions, relevant for seizure generation. Tissues harvested the prescribed way will increase the diagnostic efficacy and provide reliable material for scientific investigations.

  3. Subtle volume differences in brain parenchyma of children surviving medulloblastoma

    NASA Astrophysics Data System (ADS)

    Reddick, Wilburn E.; Mulhern, Raymond K.; Elkin, T. David; Glass, John O.; Langston, James W.

    1998-07-01

    The overriding incentive for accurate quantification of the functional status of children treated for brain tumors emerges from the clinician's desire to balance the efficacy and chronic toxicity of therapies used for the developing child. A hybrid combination of the Kohonen self-organizing map (SOM) for segmentation and a multilayer backpropagation (MLBP) neural network for classification removes observer variances to yield a reproducible and accurate identification of tissues. A group of 17 volunteers and 77 patients from a larger ongoing study of pediatric patients with brain tumors were used to investigate the sensitivity of segmented volumes to determine atrophy as measured by two radiologists. The atrophy study revealed a significant relationship for brain parenchyma, CSF and white matter volumes with atrophy while gray matter had no significant relationship. Brain parenchyma and subsequently white matter were found to be inversely proportional to increasing grades of atrophy. An additional study compared fifteen age-matched patients treated with irradiation and surgery with patients treated with surgery alone. The age-matched study of patients demonstrated that brain volumes in the irradiated patients were significantly decreased compared to those treated with surgery alone. Further investigation of this difference revealed that white matter was significantly reduced while gray matter was relatively unchanged.

  4. Is Traumatic and Non-Traumatic Neck Pain Associated with Brain Alterations? - A Systematic Review.

    PubMed

    DePauw, Robby; Coppieters, Iris; Meeus, Mira; Caeyenberghs, Karen; Danneels, Lieven; Cagnie, Barbara

    2017-05-01

    Chronic neck pain affects 50% - 85% of people who have experienced an acute episode. This transition and the persistence of chronic complaints are believed to be mediated by brain alterations among different central mechanisms. This study aimed to systematically review and critically appraise the current existing evidence regarding structural and functional brain alterations in patients with whiplash associated disorders (WAD) and idiopathic neck pain (INP). Additionally, associations between brain alterations and clinical symptoms reported in neck pain patients were evaluated. Systematic review. The present systematic review was performed according to the PRISMA guidelines. PubMed, Web of Science, and Cochrane databases were searched. First, the obtained articles were screened based on title and abstract. Secondly, the screening was based on the full text. Risk of bias in included studies was investigated. Twelve studies met the inclusion criteria. Alterations in brain morphology and function, including perfusion, neurotransmission, and blood oxygenation level dependent-signal, were demonstrated in chronic neck pain patients. There is some to moderate evidence for both structural and functional brain alterations in patients with chronic neck pain. In contrast, no evidence for structural brain alterations in acute neck pain patients was found. Only 12 articles were included, which allows only cautious conclusions to be drawn. Brain alterations were observed in both patients with chronic WAD and chronic INP. Furthermore, more evidence exists for brain alterations in chronic WAD, and different underlying mechanisms might be present in both pathologies. In addition, pain and disability were correlated with the observed brain alterations. Accordingly, morphological and functional brain alterations should be further investigated in patients with chronic WAD and chronic INP with newer and more sensitive techniques, and associative clinical measurements seem indispensable in future research.

  5. TSPO Expression and Brain Structure in the Psychosis Spectrum.

    PubMed

    Hafizi, Sina; Guma, Elisa; Koppel, Alex; Da Silva, Tania; Kiang, Michael; Houle, Sylvain; Wilson, Alan A; Rusjan, Pablo M; Chakravarty, M Mallar; Mizrahi, Romina

    2018-06-12

    Psychosis is associated with abnormal structural changes in the brain including decreased regional brain volumes and abnormal brain morphology. However, the underlying causes of these structural abnormalities are less understood. The immune system, including microglial activation, has been implicated in the pathophysiology of psychosis. Although previous studies have suggested a connection between peripheral proinflammatory cytokines and structural brain abnormalities in schizophrenia, no in-vivo studies have investigated whether microglial activation is also linked to brain structure alterations previously observed in schizophrenia and its putative prodrome. In this study, we investigated the link between mitochondrial 18kDa translocator protein (TSPO) and structural brain characteristics (i.e. regional brain volume, cortical thickness, and hippocampal shape) in key brain regions such as dorsolateral prefrontal cortex and hippocampus of a large group of participants (N = 90) including individuals at clinical high risk (CHR) for psychosis, first-episode psychosis (mostly antipsychotic naïve) patients, and healthy volunteers. The participants underwent structural brain MRI scan and [ 18 F]FEPPA positron emission tomography (PET) targeting TSPO. A significant [ 18 F]FEPPA binding-by-group interaction was observed in morphological measures across the left hippocampus. In first-episode psychosis, we observed associations between [ 18 F]FEPPA V T (total volume of distribution) and outward and inward morphological alterations, respectively, in the dorsal and ventro-medial portions of the left hippocampus. These associations were not significant in CHR or healthy volunteers. There was no association between [ 18 F]FEPPA V T and other structural brain characteristics. Our findings suggest a link between TSPO expression and alterations in hippocampal morphology in first-episode psychosis. Copyright © 2018. Published by Elsevier Inc.

  6. A coupled bimodal SPECT-CT imaging and brain kinetics studies of zolmitriptan-encapsulated nanostructured polymeric carriers.

    PubMed

    Mandlik, Satish K; Ranpise, Nisharani S; Mohanty, Bhabani S; Chaudhari, Pradip R

    2018-06-01

    The present investigation deals with preparation and characterization of anti-migraine zolmitriptan (ZMT) nanostructured polymeric carriers for nose to brain drug targeting. The drug-loaded colloidal nanocarriers of ZMT were prepared by modified ionic gelation of cationic chitosan with anionic sodium tripolyphosphate and characterized for particle size, zeta potential, and entrapment efficiency. Further, in order to investigate nose to brain drug targeting, biodistribution, and brain kinetics studies were performed using 99m technetium radiolabeled nanocarriers ( 99m Tc-ZMTNP) in Swiss albino mice. The results were compared with intranasal pure drug solution ( 99m Tc-ZMT) and intravenous nanocarriers ( 99m Tc-ZMTNP). A single photon emission computerized tomography (SPECT) radioimaging studies were also carried out to visualize and confirm brain uptake of nanocarriers. The optimized nanocarriers showed particle size of 161 nm, entrapment efficiency of 80.6%, and zeta potential of + 23.7 mV. The pharmacokinetic parameters, C max , and AUC 0-∞ values for ZMT concentration in the brain expressed as percent radioactivity per gram of brain in intranasal and intravenous route of administration were calculated. The brain C max and AUC 0-∞ values found in three groups, intranasal 99m Tc-ZMTNP, intranasal 99m Tc-ZMT, and intravenous 99m Tc-ZMTNP were (0.427 and 1.889), (0.272 and 0.7157), and (0.204 and 0.9333), respectively. The higher C max values of intranasal 99m Tc-ZMTNP suggests better brain uptake as compared to other routes of administration. The significant higher values of nose to brain targeting parameters namely, drug targeting index (5.57), drug targeting efficiency (557.08%), and nose to brain drug direct transport (82.05%) confirmed drug targeting to brain via nasal route. The coupled bimodal SPECT-CT scintigrams confirm the brain uptake of intranasal 99m Tc-ZMTNP demonstrating major radioactivity accumulation in brain. This study conclusively demonstrated the greater uptake of ZMT-loaded nanocarriers by nose to brain drug targeting, which proves promising drug delivery system.

  7. Identification of autism spectrum disorder using deep learning and the ABIDE dataset.

    PubMed

    Heinsfeld, Anibal Sólon; Franco, Alexandre Rosa; Craddock, R Cameron; Buchweitz, Augusto; Meneguzzi, Felipe

    2018-01-01

    The goal of the present study was to apply deep learning algorithms to identify autism spectrum disorder (ASD) patients from large brain imaging dataset, based solely on the patients brain activation patterns. We investigated ASD patients brain imaging data from a world-wide multi-site database known as ABIDE (Autism Brain Imaging Data Exchange). ASD is a brain-based disorder characterized by social deficits and repetitive behaviors. According to recent Centers for Disease Control data, ASD affects one in 68 children in the United States. We investigated patterns of functional connectivity that objectively identify ASD participants from functional brain imaging data, and attempted to unveil the neural patterns that emerged from the classification. The results improved the state-of-the-art by achieving 70% accuracy in identification of ASD versus control patients in the dataset. The patterns that emerged from the classification show an anticorrelation of brain function between anterior and posterior areas of the brain; the anticorrelation corroborates current empirical evidence of anterior-posterior disruption in brain connectivity in ASD. We present the results and identify the areas of the brain that contributed most to differentiating ASD from typically developing controls as per our deep learning model.

  8. Non-invasive brain stimulation to investigate language production in healthy speakers: A meta-analysis.

    PubMed

    Klaus, Jana; Schutter, Dennis J L G

    2018-06-01

    Non-invasive brain stimulation (NIBS) has become a common method to study the interrelations between the brain and language functioning. This meta-analysis examined the efficacy of transcranial magnetic stimulation (TMS) and direct current stimulation (tDCS) in the study of language production in healthy volunteers. Forty-five effect sizes from 30 studies which investigated the effects of NIBS on picture naming or verbal fluency in healthy participants were meta-analysed. Further sub-analyses investigated potential influences of stimulation type, control, target site, task, online vs. offline application, and current density of the target electrode. Random effects modelling showed a small, but reliable effect of NIBS on language production. Subsequent analyses indicated larger weighted mean effect sizes for TMS as compared to tDCS studies. No statistical differences for the other sub-analyses were observed. We conclude that NIBS is a useful method for neuroscientific studies on language production in healthy volunteers. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Cocaine-Induced Neurodevelopmental Deficits and Underlying Mechanisms

    PubMed Central

    Martin, Melissa M.; Graham, Devon L.; McCarthy, Deirdre M.; Bhide, Pradeep G.; Stanwood, Gregg D.

    2017-01-01

    Exposure to drugs early in life has complex and long-lasting implications for brain structure and function. This review summarizes work to date on the immediate and long-term effects of prenatal exposure to cocaine. In utero cocaine exposure produces disruptions in brain monoamines, particularly dopamine, during sensitive periods of brain development, and leads to permanent changes in specific brain circuits, molecules, and behavior. Here, we integrate clinical studies and significance with mechanistic preclinical studies, to define our current knowledge base and identify gaps for future investigation. PMID:27345015

  10. Effects of Soccer Heading on Brain Structure and Function

    PubMed Central

    Rodrigues, Ana Carolina; Lasmar, Rodrigo Pace; Caramelli, Paulo

    2016-01-01

    Soccer is the most popular sport in the world, with more than 265 million players worldwide, including professional and amateur ones. Soccer is unique in comparison to other sports, as it is the only sport in which participants purposely use their head to hit the ball. Heading is considered as an offensive or defensive move whereby the player’s unprotected head is used to deliberately impact the ball and direct it during play. A soccer player can be subjected to an average of 6–12 incidents of heading the ball per competitive game, where the ball reaches high velocities. Moreover, in practice sessions, heading training, which involves heading the ball repeatedly at low velocities, is common. Although the scientific community, as well as the media, has focused on the effects of concussions in contact sports, the role of subconcussive impacts, as it can occur during heading, has recently gained attention, considering that it may represent an additional mechanism of cumulative brain injury. The purpose of this study is to review the existing literature regarding the effects of soccer heading on brain structure and function. Only in the last years, some investigations have addressed the impact of heading on brain structure, by using neuroimaging techniques. Similarly, there have been some recent studies investigating biochemical markers of brain injury in soccer players. There is evidence of association between heading and abnormal brain structure, but the data are still preliminary. Also, some studies have suggested that subconcussive head impacts, as heading, could cause cognitive impairment, whereas others have not corroborated this finding. Questions persist as to whether or not heading is deleterious to cognitive functioning. Further studies, especially with longitudinal designs, are needed to clarify the clinical significance of heading as a cause of brain injury and to identify risk factors. Such investigations might contribute to the establishment of safety guidelines that could help to minimize the risk of possible adverse effects of soccer on brain structure and function. PMID:27047444

  11. Synthesis and evaluation of C-11, F-18 and I-125 small molecule radioligands for detecting oxytocin receptors

    PubMed Central

    Smith, Aaron L.; Freeman, Sara M.; Stehouwer, Jeffery S.; Inoue, Kiyoshi; Voll, Ronald J.; Young, Larry J.; Goodman, Mark M.

    2013-01-01

    Compounds 1–4 were synthesized and investigated for selectivity and potency for the oxytocin receptor (OTR) to determine their viability as radioactive ligands. Binding assays determined 1–4 to have high binding affinity for both the human and rodent OTR and also have high selectivity for the human OTR over human vasopressin V1a receptors (V1aR). Inadequate selectivity for OTR over V1aR was found for rodent receptors in all four compounds. The radioactive (C-11, F-18, and I-125) derivatives of 1–4 were synthesized and investigated for use as autoradiography and positron emission tomography (PET) ligands. Receptor autoradiography performed with [125I]1 and [125I]2 on rodent brain slices provided the first small molecule radioligand images of the OTR and V1aR. Biodistribution studies determined [125I]1 and [125I]2 were adequate for in vivo peripheral investigations, but not for central investigations due to low uptake within the brain. A biodistribution study with [18F]3 suggested brain uptake occurred slowly over time. PET imaging studies with [18F]3 and [11C]4 using a rat model provided insufficient uptake in the brain over a 90 and 45 min scan times respectively to merit further investigations in non-human primates. PMID:22425346

  12. Two hands, one brain, and aging.

    PubMed

    Maes, Celine; Gooijers, Jolien; Orban de Xivry, Jean-Jacques; Swinnen, Stephan P; Boisgontier, Matthieu P

    2017-04-01

    Many activities of daily living require moving both hands in an organized manner in space and time. Therefore, understanding the impact of aging on bimanual coordination is essential for prolonging functional independence and well-being in older adults. Here we investigated the behavioral and neural determinants of bimanual coordination in aging. The studies surveyed in this review reveal that aging is associated with cortical hyper-activity (but also subcortical hypo-activity) during performance of bimanual tasks. In addition to changes in activation in local areas, the interaction between distributed brain areas also exhibits age-related effects, i.e., functional connectivity is increased in the resting brain as well as during task performance. The mechanisms and triggers underlying these functional activation and connectivity changes remain to be investigated. This requires further research investment into the detailed study of interactions between brain structure, function and connectivity. This will also provide the foundation for interventional research programs towards preservation of brain health and behavioral performance by maximizing neuroplasticity potential in older adults. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. PET evaluation of the dopamine system of the human brain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Volkow, N.D.; Fowler, J.S.; Gatley, S.

    1996-07-01

    Dopamine plays a pivotal role in the regulation and control of movement, motivation and cognition. It also is closely linked to reward, reinforcement and addiction. Abnormalities in brain dopamine are associated with many neurological and psychiatric disorders including Parkinson`s disease, schizophrenia and substance abuse. This close association between dopamine and neurological and psychiatric diseases and with substance abuse make it an important topic in research in the neurosciences and an important molecular target in drug development. PET enables the direct measurement of components of the dopamine system in the living human brain. It relies on radiotracers which label dopamine receptors,more » dopamine transporters, precursors of dopamine or compounds which have specificity for the enzymes which degrade dopamine. Additionally, by using tracers that provide information on regional brain metabolism or blood flow as well as neurochemically specific pharmacological interventions, PET can be used to assess the functional consequences of change in brain dopamine activity. PET dopamine measurements have been used to investigate the normal human brain and its involvement in psychiatric and neurological diseases. It has also been used in psychopharmacological research to investigate dopamine drugs used in the treatment of Parkinson`s disease and of schizophrenia as well as to investigate the effects of drugs of abuse on the dopamine system. Since various functional and neurochemical parameters can be studied in the same subject, PET enables investigation of the functional integrity of the dopamine system in the human brain and investigation of the interactions of dopamine with other neurotransmitters. This paper summarizes the different tracers and experimental strategies developed to evaluate the various elements of the dopamine system in the human brain with PET and their applications to clinical research. 254 refs., 7 figs., 3 tabs.« less

  14. Neurofunctional maps of the 'maternal brain' and the effects of oxytocin: a multimodal voxel-based meta-analysis.

    PubMed

    Rocchetti, Matteo; Radua, Joaquim; Paloyelis, Yannis; Xenaki, Lida-Alkisti; Frascarelli, Marianna; Caverzasi, Edgardo; Politi, Pierluigi; Fusar-Poli, Paolo

    2014-10-01

    Several studies have tried to understand the possible neurobiological basis of mothering. The putative involvement of oxytocin, in this regard, has been deeply investigated. Performing a voxel-based meta-analysis, we aimed at testing the hypothesis of overlapping brain activation in functional magnetic resonance imaging (fMRI) studies investigating the mother-infant interaction and the oxytocin modulation of emotional stimuli in humans. We performed two systematic literature searches: fMRI studies investigating the neurofunctional correlates of the 'maternal brain' by employing mother-infant paradigms; and fMRI studies employing oxytocin during emotional tasks. A unimodal voxel-based meta-analysis was performed on each database, whereas a multimodal voxel-based meta-analytical tool was adopted to assess the hypothesis that the neurofunctional effects of oxytocin are detected in brain areas implicated in the 'maternal brain.' We found greater activation in the bilateral insula extending to the inferior frontal gyrus, basal ganglia and thalamus during mother-infant interaction and greater left insular activation associated with oxytocin administration versus placebo. Left insula extending to basal ganglia and frontotemporal gyri as well as bilateral thalamus and amygdala showed consistent activation across the two paradigms. Right insula also showed activation across the two paradigms, and dorsomedial frontal cortex activation in mothers but deactivation with oxytocin. Significant activation in areas involved in empathy, emotion regulation, motivation, social cognition and theory of mind emerged from our multimodal meta-analysis, supporting the need for further studies directly investigating the neurobiology of oxytocin in the mother-infant relationship. © 2014 The Authors. Psychiatry and Clinical Neurosciences © 2014 Japanese Society of Psychiatry and Neurology.

  15. New Zealand Teachers' Understanding of Childhood Mild Traumatic Brain Injury: Investigating and Enhancing Teacher Knowledge and Practice

    ERIC Educational Resources Information Center

    Case, Rosalind Jane Leamy; Starkey, Nicola J.; Jones, Kelly; Barker-Collo, Suzanne; Feigin, Valery

    2017-01-01

    This two-phase study investigated New Zealand primary school teachers' knowledge and perceptions of childhood mild Traumatic Brain Injury (mTBI), and evaluated the effectiveness of a professional development workshop for enhancing teacher knowledge regarding mTBI. In phase one, 19 teachers from schools in the Waikato and Bay of Plenty engaged in…

  16. Normalization of aberrant resting state functional connectivity in fibromyalgia patients following a three month physical exercise therapy

    PubMed Central

    Flodin, P.; Martinsen, S.; Mannerkorpi, K.; Löfgren, M.; Bileviciute-Ljungar, I.; Kosek, E.; Fransson, P.

    2015-01-01

    Physical exercise is one of the most efficient interventions to mitigate chronic pain symptoms in fibromyalgia (FM). However, little is known about the neurophysiological mechanisms mediating these effects. In this study we investigated resting-state connectivity using functional magnetic resonance imaging (fMRI) before and after a 15 week standardized exercise program supervised by physical therapists. Our aim was to gain an understanding of how physical exercise influences previously shown aberrant patterns of intrinsic brain activity in FM. Fourteen FM patients and eleven healthy controls successfully completed the physical exercise treatment. We investigated post- versus pre-treatment changes of brain connectivity, as well as changes in clinical symptoms in the patient group. FM patients reported improvements in symptom severity. Although several brain regions showed a treatment-related change in connectivity, only the connectivity between the right anterior insula and the left primary sensorimotor area was significantly more affected by the physical exercise among the fibromyalgia patients compared to healthy controls. Our results suggest that previously observed aberrant intrinsic brain connectivity patterns in FM are partly normalized by the physical exercise therapy. However, none of the observed normalizations in intrinsic brain connectivity were significantly correlated with symptom changes. Further studies conducted in larger cohorts are warranted to investigate the precise relationship between improvements in fibromyalgia symptoms and changes in intrinsic brain activity. PMID:26413476

  17. Normalization of aberrant resting state functional connectivity in fibromyalgia patients following a three month physical exercise therapy.

    PubMed

    Flodin, P; Martinsen, S; Mannerkorpi, K; Löfgren, M; Bileviciute-Ljungar, I; Kosek, E; Fransson, P

    2015-01-01

    Physical exercise is one of the most efficient interventions to mitigate chronic pain symptoms in fibromyalgia (FM). However, little is known about the neurophysiological mechanisms mediating these effects. In this study we investigated resting-state connectivity using functional magnetic resonance imaging (fMRI) before and after a 15 week standardized exercise program supervised by physical therapists. Our aim was to gain an understanding of how physical exercise influences previously shown aberrant patterns of intrinsic brain activity in FM. Fourteen FM patients and eleven healthy controls successfully completed the physical exercise treatment. We investigated post- versus pre-treatment changes of brain connectivity, as well as changes in clinical symptoms in the patient group. FM patients reported improvements in symptom severity. Although several brain regions showed a treatment-related change in connectivity, only the connectivity between the right anterior insula and the left primary sensorimotor area was significantly more affected by the physical exercise among the fibromyalgia patients compared to healthy controls. Our results suggest that previously observed aberrant intrinsic brain connectivity patterns in FM are partly normalized by the physical exercise therapy. However, none of the observed normalizations in intrinsic brain connectivity were significantly correlated with symptom changes. Further studies conducted in larger cohorts are warranted to investigate the precise relationship between improvements in fibromyalgia symptoms and changes in intrinsic brain activity.

  18. Structural Dissociation of Attentional Control and Memory in Adults with and without Mild Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Niogi, Sumit N.; Mukherjee, Pratik; Ghajar, Jamshid; Johnson, Carl E.; Kolster, Rachel; Lee, Hana; Suh, Minah; Zimmerman, Robert D.; Manley, Geoffrey T.; McCandliss, Bruce D.

    2008-01-01

    Memory and attentional control impairments are the two most common forms of dysfunction following mild traumatic brain injury (TBI) and lead to significant morbidity in patients, yet these functions are thought to be supported by different brain networks. This 3 T magnetic resonance diffusion tensor imaging (DTI) study investigates whether…

  19. The Relationship between Social Defiance, Vindictiveness, Anger, and Brain Morphology in Eight-Year-Old Boys and Girls

    ERIC Educational Resources Information Center

    Fahim, Cherine; Fiori, Marina; Evans, Alan C.; Perusse, Daniel

    2012-01-01

    The goal of this study is twofold: (1) to assess brain anatomical differences between children meeting diagnostic criteria for oppositional defiant disorder (ODD) and healthy controls, and (2) to investigate whether morphological brain characteristics associated with ODD differ in boys and girls. Eight-year-old participants (N = 38) were scanned…

  20. Grammatical Complexity in Letters Written by People with Acquired Brain Impairment

    ERIC Educational Resources Information Center

    Mortensen, Lynne

    2005-01-01

    This study investigated written language in the form of personal and formal letters written by 10 people who sustained a stroke and 10 people who sustained traumatic brain injury, and compared their performance with 15 non brain-damaged people. In order to explore the writing skills of these individuals from a sociocultural perspective, a…

  1. Association between Brain Hemisphericity, Learning Styles and Confidence in Using Graphics Calculator for Mathematics

    ERIC Educational Resources Information Center

    Ali, Rosihan M.; Kor, Liew Kee

    2007-01-01

    This paper presents the preliminary results of a study conducted to investigate the differences in brain hemisphericity and learning styles on students' confidence in using the graphics calculator (GC) to learn mathematics. Data were collected from a sample of 44 undergraduate mathematics students in Malaysia using Brain-Dominance Questionnaire,…

  2. Time Perception in Severe Traumatic Brain Injury Patients: A Study Comparing Different Methodologies

    ERIC Educational Resources Information Center

    Mioni, G.; Mattalia, G.; Stablum, F.

    2013-01-01

    In this study, we investigated time perception in patients with traumatic brain injury (TBI). Fifteen TBI patients and 15 matched healthy controls participated in the study. Participants were tested with durations above and below 1s on three different temporal tasks that involved time reproduction, production, and discrimination tasks. Data…

  3. Influence of gravity for optimal head positions in the treatment of head injury patients.

    PubMed

    Li, Xiaogai; von Holst, Hans; Kleiven, Svein

    2011-10-01

    Brain edema is a major neurological complication of traumatic brain injury (TBI), commonly including a pathologically increased intracranial pressure (ICP) associated with poor outcome. In this study, gravitational force is suggested to have a significant impact on the pressure of the edema zone in the brain tissue and the objective of the study was to investigate the significance of head position on edema at the posterior part of the brain using a finite element (FE) model. A detailed FE model including the meninges, brain tissue and a fully connected cerebrospinal fluid (CSF) system was used in this study. Brain tissue was modelled as a poroelastic material consisting of an elastic solid skeleton composed of neurons and neuroglia, permeated by interstitial fluid. The effect of head positions (supine and prone position) due to gravity was investigated for a localized brain edema at the posterior part of the brain. The water content increment at the edema zone remained nearly identical for both positions. However, the interstitial fluid pressure (IFP) inside the edema zone decreased around 15% by having the head in a prone position compared with a supine position. The decrease of IFP inside the edema zone by changing patient position from supine to prone has the potential to alleviate the damage to central nervous system nerves. These observations indicate that considering the patient's head position during intensive care and at rehabilitation might be of importance to the treatment of edematous regions in TBI patients.

  4. The Missing Link in the Pathophysiology of Vascular Cognitive Impairment: Design of the Heart-Brain Study

    PubMed Central

    Hooghiemstra, Astrid M.; Bertens, Anne Suzanne; Leeuwis, Anna E.; Bron, Esther E.; Bots, Michiel L.; Brunner-La Rocca, Hans-Peter; de Craen, Anton J.M.; van der Geest, Rob J.; Greving, Jacoba P.; Kappelle, L. Jaap; Niessen, Wiro J.; van Oostenbrugge, Robert J.; van Osch, Matthias J.P.; de Roos, Albert; van Rossum, Albert C.; Biessels, Geert Jan; van Buchem, Mark A.; Daemen, Mat J.A.P.; van der Flier, Wiesje M.

    2017-01-01

    Background Hemodynamic balance in the heart-brain axis is increasingly recognized as a crucial factor in maintaining functional and structural integrity of the brain and thereby cognitive functioning. Patients with heart failure (HF), carotid occlusive disease (COD), and vascular cognitive impairment (VCI) present themselves with complaints attributed to specific parts of the heart-brain axis, but hemodynamic changes often go beyond the part of the axis for which they primarily seek medical advice. The Heart-Brain Study hypothesizes that the hemodynamic status of the heart and the brain is an important but underestimated cause of VCI. We investigate this by studying to what extent hemodynamic changes contribute to VCI and what the mechanisms involved are. Here, we provide an overview of the design and protocol. Methods The Heart-Brain Study is a multicenter cohort study with a follow-up measurement after 2 years among 645 participants (175 VCI, 175 COD, 175 HF, and 120 controls). Enrollment criteria are the following: 1 of the 3 diseases diagnosed according to current guidelines, age ≥50 years, no magnetic resonance contraindications, ability to undergo cognitive testing, and independence in daily life. A core clinical dataset is collected including sociodemographic factors, cardiovascular risk factors, detailed neurologic, cardiac, and medical history, medication, and a physical examination. In addition, we perform standardized neuropsychological testing, cardiac, vascular and brain MRI, and blood sampling. In subsets of participants we assess Alz­heimer biomarkers in cerebrospinal fluid, and assess echocardiography and 24-hour blood pressure monitoring. Follow-up measurements after 2 years include neuropsychological testing, brain MRI, and blood samples for all participants. We use centralized state-of-the-art storage platforms for clinical and imaging data. Imaging data are processed centrally with automated standardized pipelines. Results and Conclusions The Heart-Brain Study investigates relationships between (cardio-)vascular factors, the hemodynamic status of the heart and the brain, and cognitive impairment. By studying the complete heart-brain axis in patient groups that represent components of this axis, we have the opportunity to assess a combination of clinical and subclinical manifestations of disorders of the heart, vascular system and brain, with hemodynamic status as a possible binding factor. PMID:29017156

  5. Gene expression in the aging human brain: an overview.

    PubMed

    Mohan, Adith; Mather, Karen A; Thalamuthu, Anbupalam; Baune, Bernhard T; Sachdev, Perminder S

    2016-03-01

    The review aims to provide a summary of recent developments in the study of gene expression in the aging human brain. Profiling differentially expressed genes or 'transcripts' in the human brain over the course of normal aging has provided valuable insights into the biological pathways that appear activated or suppressed in late life. Genes mediating neuroinflammation and immune system activation in particular, show significant age-related upregulation creating a state of vulnerability to neurodegenerative and neuropsychiatric disease in the aging brain. Cellular ionic dyshomeostasis and age-related decline in a host of molecular influences on synaptic efficacy may underlie neurocognitive decline in later life. Critically, these investigations have also shed light on the mobilization of protective genetic responses within the aging human brain that help determine health and disease trajectories in older age. There is growing interest in the study of pre and posttranscriptional regulators of gene expression, and the role of noncoding RNAs in particular, as mediators of the phenotypic diversity that characterizes human brain aging. Gene expression studies in healthy brain aging offer an opportunity to unravel the intricately regulated cellular underpinnings of neurocognitive aging as well as disease risk and resiliency in late life. In doing so, new avenues for early intervention in age-related neurodegenerative disease could be investigated with potentially significant implications for the development of disease-modifying therapies.

  6. Neuropathology of Cervical Dystonia

    PubMed Central

    Prudente, C.N.; Pardo, C.A.; Xiao, J.; Hanfelt, J.; Hess, E.J.; LeDoux, M.S.; Jinnah, H.A.

    2012-01-01

    The aim of this study was to search for neuropathological changes in postmortem brain tissue of individuals with cervical dystonia (CD). Multiple regions of formalin-preserved brains were collected from patients with CD and controls and examined with an extensive battery of histopathological stains in a two-stage study design. In stage one, 4 CD brains underwent a broad screening neuropathological examination. In stage two, these 4 CD brains were combined with 2 additional CD brains, and the subjective findings were quantified and compared to 16 age-matched controls. The initial subjective neuropathological assessment revealed only two regions with relatively consistent changes. The substantia nigra had frequent ubiquitin-positive intranuclear inclusions known as Marinesco bodies. Additionally, the cerebellum showed patchy loss of Purkinje cells, areas of focal gliosis and torpedo bodies. Other brain regions showed minor or inconsistent changes. In the second stage of the analysis, quantitative studies failed to reveal significant differences in the numbers of Marinesco bodies in CD versus controls, but confirmed a significantly lower Purkinje cell density in CD. Molecular investigations revealed 4 of the CD cases and 2 controls to harbor sequence variants in non-coding regions of THAP1, and these cases had lower Purkinje cell densities regardless of whether they had CD. The findings suggest that subtle neuropathological changes such as lower Purkinje cell density may be found in primary CD when relevant brain regions are investigated with appropriate methods. PMID:23195594

  7. Traumatic brain injury caused by laser-induced shock wave in rats: a novel laboratory model for studying blast-induced traumatic brain injury

    NASA Astrophysics Data System (ADS)

    Hatano, Ben; Matsumoto, Yoshihisa; Otani, Naoki; Saitoh, Daizoh; Tokuno, Shinichi; Satoh, Yasushi; Nawashiro, Hiroshi; Matsushita, Yoshitaro; Sato, Shunichi

    2011-03-01

    The detailed mechanism of blast-induced traumatic brain injury (bTBI) has not been revealed yet. Thus, reliable laboratory animal models for bTBI are needed to investigate the possible diagnosis and treatment for bTBI. In this study, we used laser-induced shock wave (LISW) to induce TBI in rats and investigated the histopathological similarities to actual bTBI. After craniotomy, the rat brain was exposed to a single shot of LISW with a diameter of 3 mm at various laser fluences. At 24 h after LISW exposure, perfusion fixation was performed and the extracted brain was sectioned; the sections were stained with hematoxylin-eosin. Evans blue (EB) staining was also used to evaluate disruption of the blood brain barrier. At certain laser fluence levels, neural cell injury and hemorrhagic lesions were observed in the cortex and subcortical region. However, injury was limited in the tissue region that interacted with the LISW. The severity of injury increased with increasing laser fluence and hence peak pressure of the LISW. Fluorescence originating from EB was diffusively observed in the injuries at high fluence levels. Due to the grade and spatial controllability of injuries and the histological observations similar to those in actual bTBI, brain injuries caused by LISWs would be useful models to study bTBI.

  8. Contribution of Neuroimaging Studies to Understanding Development of Human Cognitive Brain Functions

    PubMed Central

    Morita, Tomoyo; Asada, Minoru; Naito, Eiichi

    2016-01-01

    Humans experience significant physical and mental changes from birth to adulthood, and a variety of perceptual, cognitive and motor functions mature over the course of approximately 20 years following birth. To deeply understand such developmental processes, merely studying behavioral changes is not sufficient; simultaneous investigation of the development of the brain may lead us to a more comprehensive understanding. Recent advances in noninvasive neuroimaging technologies largely contribute to this understanding. Here, it is very important to consider the development of the brain from the perspectives of “structure” and “function” because both structure and function of the human brain mature slowly. In this review, we first discuss the process of structural brain development, i.e., how the structure of the brain, which is crucial when discussing functional brain development, changes with age. Second, we introduce some representative studies and the latest studies related to the functional development of the brain, particularly for visual, facial recognition, and social cognition functions, all of which are important for humans. Finally, we summarize how brain science can contribute to developmental study and discuss the challenges that neuroimaging should address in the future. PMID:27695409

  9. A Collection of Brain Sections of "Euthanasia" Victims: The Series H of Julius Hallervorden.

    PubMed

    Wässle, Heinz

    2017-12-01

    Julius Hallervorden, a distinguished German neuropathologist, admitted on several occasions that he had received some five hundred brains of "euthanasia" victims from the Nazi killing centres for the insane. He investigated the brains in the summer of 1942; however, their traces were subsequently lost. The present study shows, that the Series H, which was part of the Hallervorden collection of brain sections in the Max Planck Institute for Brain Research, comprises the brain sections of the above mentioned five hundred euthanasia victims. The provenance of 105 patients could be reconstructed and 84 are for sure euthanasia victims. Most of them were killed in Bernburg or in Sonnenstein-Pirna. Hallervorden used the brain sections of Series H until 1956 for his studies and never publicly regretted this abuse of the brains of euthanasia victims. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Investigating the Neural Correlates of Emotion–Cognition Interaction Using an Affective Stroop Task

    PubMed Central

    Raschle, Nora M.; Fehlbaum, Lynn V.; Menks, Willeke M.; Euler, Felix; Sterzer, Philipp; Stadler, Christina

    2017-01-01

    The human brain has the capacity to integrate various sources of information and continuously adapts our behavior according to situational needs in order to allow a healthy functioning. Emotion–cognition interactions are a key example for such integrative processing. However, the neuronal correlates investigating the effects of emotion on cognition remain to be explored and replication studies are needed. Previous neuroimaging studies have indicated an involvement of emotion and cognition related brain structures including parietal and prefrontal cortices and limbic brain regions. Here, we employed whole brain event-related functional magnetic resonance imaging (fMRI) during an affective number Stroop task and aimed at replicating previous findings using an adaptation of an existing task design in 30 healthy young adults. The Stroop task is an indicator of cognitive control and enables the quantification of interference in relation to variations in cognitive load. By the use of emotional primes (negative/neutral) prior to Stroop task performance, an emotional variation is added as well. Behavioral in-scanner data showed that negative primes delayed and disrupted cognitive processing. Trials with high cognitive demand furthermore negatively influenced cognitive control mechanisms. Neuronally, the emotional primes consistently activated emotion-related brain regions (e.g., amygdala, insula, and prefrontal brain regions) while Stroop task performance lead to activations in cognition networks of the brain (prefrontal cortices, superior temporal lobe, and insula). When assessing the effect of emotion on cognition, increased cognitive demand led to decreases in neural activation in response to emotional stimuli (negative > neutral) within prefrontal cortex, amygdala, and insular cortex. Overall, these results suggest that emotional primes significantly impact cognitive performance and increasing cognitive demand leads to reduced neuronal activation in emotion related brain regions, and therefore support previous findings investigating emotion–cognition interaction in healthy adults. Moreover, emotion and cognition seem to be tightly related to each other, as indicated by shared neural networks involved in both of these processes. Emotion processing, cognitive control, and their interaction are crucial for healthy functioning and a lack thereof is related to psychiatric disorders such as, disruptive behavior disorders. Future studies may investigate the neural characteristics of children and adolescents with disruptive behavior disorders. PMID:28919871

  11. Sexual differentiation of the adolescent rat brain: A longitudinal voxel-based morphometry study.

    PubMed

    Sumiyoshi, Akira; Nonaka, Hiroi; Kawashima, Ryuta

    2017-03-06

    The sexual differentiation of the rat brain during the adolescent period has been well documented in post-mortem histological studies. However, to further understand the morphological changes occurring in the entire brain, a noninvasive neuroimaging method allowing an unbiased, comprehensive, and longitudinal investigation of brain morphology should be used. In this study, we investigated the sexual differentiation of the rat brain during the adolescent period using longitudinal voxel-based morphometry (VBM) analysis. Male and female Wistar rats (n=12 of each) were scanned in a 7.0-T MRI scanner at five time points from 6 to 10 weeks of age. The T2-weighted MRI images were segmented using the rat brain tissue priors that have been published by our laboratory. At the global level, the results of the VBM analysis showed greater increases in total gray matter volume in the males during the adolescent period, although we did not find significant differences in total white matter volume. At the voxel level, we found significant increases in the regional gray matter volume of the occipital cortex, amygdala, hippocampal formation, and cerebellum. At the regional level, only the occipital cortex in the females exhibited decreases during the adolescent period. These results were, at least in part, consistent with those of previous longitudinal VBM studies in humans, thus providing translational evidence of the sexual differentiation of the developing brain between rodents and humans. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Introductory overview of research instruments for recording the electrical activity of neurons in the human brain

    NASA Astrophysics Data System (ADS)

    Garell, P. C.; Granner, M. A.; Noh, M. D.; Howard, M. A.; Volkov, I. O.; Gillies, G. T.

    1998-12-01

    Scientific advancement is often spurred by the development of new instruments for investigation. Over the last several decades, many new instruments have been produced to further our understanding of the physiology of the human brain. We present a partial overview of some of these instruments, paying particular attention to those which record the electrical activity of the human brain. We preface the review with a brief primer on neuroanatomy and physiology, followed by a discussion of the latest types of apparatus used to investigate various properties of the central nervous system. A special focus is on microelectrode investigations that employ both intracellular and extracellular methods of recording the electrical activity of single neurons; another is on the modern electroencephalographic, electrocorticographic, and magnetoencephalographic methods used to study the spontaneous and evoked field potentials of the brain. Some examples of clinical applications are included, where appropriate.

  13. Brain-to-Brain Synchrony Tracks Real-World Dynamic Group Interactions in the Classroom.

    PubMed

    Dikker, Suzanne; Wan, Lu; Davidesco, Ido; Kaggen, Lisa; Oostrik, Matthias; McClintock, James; Rowland, Jess; Michalareas, Georgios; Van Bavel, Jay J; Ding, Mingzhou; Poeppel, David

    2017-05-08

    The human brain has evolved for group living [1]. Yet we know so little about how it supports dynamic group interactions that the study of real-world social exchanges has been dubbed the "dark matter of social neuroscience" [2]. Recently, various studies have begun to approach this question by comparing brain responses of multiple individuals during a variety of (semi-naturalistic) tasks [3-15]. These experiments reveal how stimulus properties [13], individual differences [14], and contextual factors [15] may underpin similarities and differences in neural activity across people. However, most studies to date suffer from various limitations: they often lack direct face-to-face interaction between participants, are typically limited to dyads, do not investigate social dynamics across time, and, crucially, they rarely study social behavior under naturalistic circumstances. Here we extend such experimentation drastically, beyond dyads and beyond laboratory walls, to identify neural markers of group engagement during dynamic real-world group interactions. We used portable electroencephalogram (EEG) to simultaneously record brain activity from a class of 12 high school students over the course of a semester (11 classes) during regular classroom activities (Figures 1A-1C; Supplemental Experimental Procedures, section S1). A novel analysis technique to assess group-based neural coherence demonstrates that the extent to which brain activity is synchronized across students predicts both student class engagement and social dynamics. This suggests that brain-to-brain synchrony is a possible neural marker for dynamic social interactions, likely driven by shared attention mechanisms. This study validates a promising new method to investigate the neuroscience of group interactions in ecologically natural settings. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. The Use of Brain Stimulation in Dysphagia Management.

    PubMed

    Simons, Andre; Hamdy, Shaheen

    2017-04-01

    Dysphagia is common sequela of brain injury with as many as 50% of patients suffering from dysphagia following stroke. Currently, the majority of guidelines for clinical practice in the management of dysphagia focus on the prevention of complications while any natural recovery takes place. Recently, however, non-invasive brain stimulation (NIBS) techniques like transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS) have started to attract attention and are applied to investigate both the physiology of swallowing and influences on dysphagia. TMS allows for painless stimulation of the brain through an intact skull-an effect which would normally be impossible with electrical currents due to the high resistance of the skull. By comparison, tDCS involves passing a small electric current (usually under 2 mA) produced by a current generator over the scalp and cranium external to the brain. Initial studies used these techniques to better understand the physiological mechanisms of swallowing in healthy subjects. More recently, a number of studies have investigated the efficacy of these techniques in the management of neurogenic dysphagia with mixed results. Controversy still exists as to which site, strength and duration of stimulation yields the greatest improvement in dysphagia. And while multiple studies have suggested promising effects of NIBS, more randomised control trials with larger sample sizes are needed to investigate the short- and long-term effects of NIBS in neurogenic dysphagia.

  15. Changes in Brain Structural Networks and Cognitive Functions in Testicular Cancer Patients Receiving Cisplatin-Based Chemotherapy.

    PubMed

    Amidi, Ali; Hosseini, S M Hadi; Leemans, Alexander; Kesler, Shelli R; Agerbæk, Mads; Wu, Lisa M; Zachariae, Robert

    2017-12-01

    Cisplatin-based chemotherapy may have neurotoxic effects within the central nervous system. The aims of this study were 1) to longitudinally investigate the impact of cisplatin-based chemotherapy on whole-brain networks in testicular cancer patients undergoing treatment and 2) to explore whether possible changes are related to decline in cognitive functioning. Sixty-four newly orchiectomized TC patients underwent structural magnetic resonance imaging (T1-weighted and diffusion-weighted imaging) and cognitive testing at baseline prior to further treatment and again at a six-month follow-up. At follow-up, 22 participants had received cisplatin-based chemotherapy (CT) while 42 were in active surveillance (S). Brain structural networks were constructed for each participant, and network properties were investigated using graph theory and longitudinally compared across groups. Cognitive functioning was evaluated using standardized neuropsychological tests. All statistical tests were two-sided. Compared with the S group, the CT group demonstrated altered global and local brain network properties from baseline to follow-up as evidenced by decreases in important brain network properties such as small-worldness (P = .04), network clustering (P = .04), and local efficiency (P = .02). In the CT group, poorer overall cognitive performance was associated with decreased small-worldness (r = -0.46, P = .04) and local efficiency (r = -0.51, P = .02), and verbal fluency was associated with decreased local efficiency (r = -0.55, P = .008). Brain structural networks may be disrupted following treatment with cisplatin-based chemotherapy. Impaired brain networks may underlie poorer performance over time on both specific and nonspecific cognitive functions in patients undergoing chemotherapy. To the best of our knowledge, this is the first study to longitudinally investigate changes in structural brain networks in a cancer population, providing novel insights regarding the neurobiological mechanisms of cancer-related cognitive impairment.

  16. Willingness to Be a Brain Donor: A Survey of Research Volunteers From 4 Racial/Ethnic Groups.

    PubMed

    Boise, Linda; Hinton, Ladson; Rosen, Howard J; Ruhl, Mary C; Dodge, Hiroko; Mattek, Nora; Albert, Marilyn; Denny, Andrea; Grill, Joshua D; Hughes, Travonia; Lingler, Jennifer H; Morhardt, Darby; Parfitt, Francine; Peterson-Hazan, Susan; Pop, Viorela; Rose, Tara; Shah, Raj C

    2017-01-01

    Racial and ethnic groups are under-represented among research subjects who assent to brain donation in Alzheimer disease research studies. There has been little research on this important topic. Although there are some studies that have investigated the barriers to brain donation among African American study volunteers, there is no known research on the factors that influence whether or not Asians or Latinos are willing to donate their brains for research. African American, Caucasian, Asian, and Latino research volunteers were surveyed at 15 Alzheimer Disease Centers to identify predictors of willingness to assent to brain donation. Positive predictors included older age, Latino ethnicity, understanding of how the brain is used by researchers, and understanding of what participants need to do to ensure that their brain will be donated. Negative predictors included African/African American race, belief that the body should remain whole at burial, and concern that researchers might not be respectful of the body during autopsy. The predictive factors identified in this study may be useful for researchers seeking to increase participation of diverse ethnic groups in brain donation.

  17. Probiotics drive gut microbiome triggering emotional brain signatures.

    PubMed

    Bagga, Deepika; Reichert, Johanna Louise; Koschutnig, Karl; Aigner, Christoph Stefan; Holzer, Peter; Koskinen, Kaisa; Eichinger, Christine Moissl; Schöpf, Veronika

    2018-05-03

    Experimental manipulation of the gut microbiome was found to modify emotional and cognitive behavior, neurotransmitter expression and brain function in rodents, but corresponding human data remain scarce. The present double-blind, placebo-controlled randomised study aimed at investigating the effects of 4 weeks' probiotic administration on behavior, brain function and gut microbial composition in healthy volunteers. Forty-five healthy participants divided equally into three groups (probiotic, placebo and no intervention) underwent functional MRI (emotional decision-making and emotional recognition memory tasks). In addition, stool samples were collected to investigate the gut microbial composition. Probiotic administration for 4 weeks was associated with changes in brain activation patterns in response to emotional memory and emotional decision-making tasks, which were also accompanied by subtle shifts in gut microbiome profile. Microbiome composition mirrored self-reported behavioral measures and memory performance. This is the first study reporting a distinct influence of probiotic administration at behavioral, neural, and microbiome levels at the same time in healthy volunteers. The findings provide a basis for future investigations into the role of the gut microbiota and potential therapeutic application of probiotics.

  18. Extreme Mountain Ultra-Marathon Leads to Acute but Transient Increase in Cerebral Water Diffusivity and Plasma Biomarkers Levels Changes

    PubMed Central

    Zanchi, Davide; Viallon, Magalie; Le Goff, Caroline; Millet, Grégoire P.; Giardini, Guido; Croisille, Pierre; Haller, Sven

    2017-01-01

    Background: Pioneer studies demonstrate the impact of extreme sport load on the human brain, leading to threatening conditions for athlete's health such as cerebral edema. The investigation of brain water diffusivity, allowing the measurement of the intercellular water and the assessment of cerebral edema, can give a great contribution to the investigation of the effects of extreme sports on the brain. We therefore assessed the effect of supra-physiological effort (extreme distance and elevation changes) in mountain ultra-marathons (MUMs) athletes combining for the first time brain magnetic resonance imaging (MRI) and blood parameters. Methods:This longitudinal study included 19 volunteers (44.2 ± 9.5 years) finishing a MUM (330 km, elevation + 24000 m). Quantitative measurements of brain diffusion-weighted images (DWI) were performed at 3 time-points: Before the race, upon arrival and after 48 h. Multiple blood biomarkers were simultaneously investigated. Data analyses included brain apparent diffusion coefficient (ADC) and physiological data comparisons between three time-points. Results:The whole brain ADC significantly increased from baseline to arrival (p = 0.005) and then significantly decreased at recovery (p = 0.005) to lower values than at baseline (p = 0.005). While sodium, potassium, calcium, and chloride as well as hematocrit (HCT) changed over time, the serum osmolality remained constant. Significant correlations were found between whole brain ADC changes and osmolality (p = 0.01), cholesterol (p = 0.009), c-reactive protein (p = 0.04), sodium (p = 0.01), and chloride (p = 0.002) plasma level variations. Conclusions:These results suggest the relative increase of the inter-cellular volume upon arrival, and subsequently its reduction to lower values than at baseline, indicating that even after 48 h the brain has not fully recovered to its equilibrium state. Even though serum electrolytes may only indirectly indicate modifications at the brain level due to the blood brain barrier, the results concerning osmolality suggest that body water might directly influence the change in cerebral ADC. These findings establish therefore a direct link between general brain inter-cellular water content and physiological biomarkers modifications produced by extreme sport. PMID:28105018

  19. Extreme Mountain Ultra-Marathon Leads to Acute but Transient Increase in Cerebral Water Diffusivity and Plasma Biomarkers Levels Changes.

    PubMed

    Zanchi, Davide; Viallon, Magalie; Le Goff, Caroline; Millet, Grégoire P; Giardini, Guido; Croisille, Pierre; Haller, Sven

    2016-01-01

    Background: Pioneer studies demonstrate the impact of extreme sport load on the human brain, leading to threatening conditions for athlete's health such as cerebral edema. The investigation of brain water diffusivity, allowing the measurement of the intercellular water and the assessment of cerebral edema, can give a great contribution to the investigation of the effects of extreme sports on the brain. We therefore assessed the effect of supra-physiological effort (extreme distance and elevation changes) in mountain ultra-marathons (MUMs) athletes combining for the first time brain magnetic resonance imaging (MRI) and blood parameters. Methods: This longitudinal study included 19 volunteers (44.2 ± 9.5 years) finishing a MUM (330 km, elevation + 24000 m). Quantitative measurements of brain diffusion-weighted images (DWI) were performed at 3 time-points: Before the race, upon arrival and after 48 h. Multiple blood biomarkers were simultaneously investigated. Data analyses included brain apparent diffusion coefficient (ADC) and physiological data comparisons between three time-points. Results: The whole brain ADC significantly increased from baseline to arrival ( p = 0.005) and then significantly decreased at recovery ( p = 0.005) to lower values than at baseline ( p = 0.005). While sodium, potassium, calcium, and chloride as well as hematocrit (HCT) changed over time, the serum osmolality remained constant. Significant correlations were found between whole brain ADC changes and osmolality ( p = 0.01), cholesterol ( p = 0.009), c-reactive protein ( p = 0.04), sodium ( p = 0.01), and chloride ( p = 0.002) plasma level variations. Conclusions: These results suggest the relative increase of the inter-cellular volume upon arrival, and subsequently its reduction to lower values than at baseline, indicating that even after 48 h the brain has not fully recovered to its equilibrium state. Even though serum electrolytes may only indirectly indicate modifications at the brain level due to the blood brain barrier, the results concerning osmolality suggest that body water might directly influence the change in cerebral ADC. These findings establish therefore a direct link between general brain inter-cellular water content and physiological biomarkers modifications produced by extreme sport.

  20. Effect of Pilates Training on Alpha Rhythm

    PubMed Central

    Bian, Zhijie; Sun, Hongmin; Lu, Chengbiao; Yao, Li; Chen, Shengyong; Li, Xiaoli

    2013-01-01

    In this study, the effect of Pilates training on the brain function was investigated through five case studies. Alpha rhythm changes during the Pilates training over the different regions and the whole brain were mainly analyzed, including power spectral density and global synchronization index (GSI). It was found that the neural network of the brain was more active, and the synchronization strength reduced in the frontal and temporal regions due to the Pilates training. These results supported that the Pilates training is very beneficial for improving brain function or intelligence. These findings maybe give us some line evidence to suggest that the Pilates training is very helpful for the intervention of brain degenerative diseases and cogitative dysfunction rehabilitation. PMID:23861723

  1. Metabolomics Approach to Investigate Estrogen Receptor-Dependent and Independent Effects of o,p'-DDT in the Uterus and Brain of Immature Mice.

    PubMed

    Wang, Dezhen; Zhu, Wentao; Wang, Yao; Yan, Jin; Teng, Miaomiao; Miao, Jiyan; Zhou, Zhiqiang

    2017-05-10

    Previous studies have demonstrated the endocrine disruption of o,p'-DDT. In this study, we used a 1 H NMR based metabolomics approach to investigate the estrogenic effects of o,p'-DDT (300 mg/kg) on the uterus and brain after 3 days of oral gavage administration, and ethynylestradiol (EE, 100 μg/kg) was used as a positive control. A supervised statistical analysis (PLS-DA) indicated that o,p'-DDT exerted both estrogenic receptor-(ER)-dependent and independent effects on the uterus but mainly ER-independent effects on the brain at metabolome levels, which was verified by coexposing with the antiestrogenic ICI 182,780. Four changed metabolites-glycine, choline, fumarate, and phenylalanine-were identified as ER-independent alterations in the uterus, while more metabolites, including γ-aminobutyrate, N-acetyl aspartate, and some amino acids, were disturbed based on the ER-independent mechanism in the brain. Together with biological end points, metabolomics is a promising approach to study potential estrogenic chemicals.

  2. A simple physiologically based pharmacokinetic model evaluating the effect of anti-nicotine antibodies on nicotine disposition in the brains of rats and humans

    PubMed Central

    Saylor, Kyle; Zhang, Chenming

    2017-01-01

    Physiologically based pharmacokinetic (PBPK) modeling was applied to investigate the effects of anti-nicotine antibodies on nicotine disposition in the brains of rats and humans. Successful construction of both rat and human models was achieved by fitting model outputs to published nicotine concentration time course data in the blood and in the brain. Key parameters presumed to have the most effect on the ability of these antibodies to prevent nicotine from entering the brain were selected for investigation using the human model. These parameters, which included antibody affinity for nicotine, antibody cross-reactivity with cotinine, and antibody concentration, were broken down into different, clinically-derived in silico treatment levels and fed into the human PBPK model. Model predictions suggested that all three parameters, in addition to smoking status, have a sizable impact on anti-nicotine antibodies’ ability to prevent nicotine from entering the brain and that the antibodies elicited by current human vaccines do not have sufficient binding characteristics to reduce brain nicotine concentrations. If the antibody binding characteristics achieved in animal studies can similarly be achieved in human studies, however, nicotine vaccine efficacy in terms of brain nicotine concentration reduction is predicted to meet threshold values for alleviating nicotine dependence. PMID:27473014

  3. Disruptions of brain structural network in end-stage renal disease patients with long-term hemodialysis and normal-appearing brain tissues.

    PubMed

    Chou, Ming-Chung; Ko, Chih-Hung; Chang, Jer-Ming; Hsieh, Tsyh-Jyi

    2018-05-04

    End-stage renal disease (ESRD) patients on hemodialysis were demonstrated to exhibit silent and invisible white-matter alterations which would likely lead to disruptions of brain structural networks. Therefore, the purpose of this study was to investigate the disruptions of brain structural network in ESRD patients. Thiry-three ESRD patients with normal-appearing brain tissues and 29 age- and gender-matched healthy controls were enrolled in this study and underwent both cognitive ability screening instrument (CASI) assessment and diffusion tensor imaging (DTI) acquisition. Brain structural connectivity network was constructed using probabilistic tractography with automatic anatomical labeling template. Graph-theory analysis was performed to detect the alterations of node-strength, node-degree, node-local efficiency, and node-clustering coefficient in ESRD patients. Correlational analysis was performed to understand the relationship between network measures, CASI score, and dialysis duration. Structural connectivity, node-strength, node-degree, and node-local efficiency were significantly decreased, whereas node-clustering coefficient was significantly increased in ESRD patients as compared with healthy controls. The disrupted local structural networks were generally associated with common neurological complications of ESRD patients, but the correlational analysis did not reveal significant correlation between network measures, CASI score, and dialysis duration. Graph-theory analysis was helpful to investigate disruptions of brain structural network in ESRD patients with normal-appearing brain tissues. Copyright © 2018. Published by Elsevier Masson SAS.

  4. Cochlear Implant Outcomes and Genetic Mutations in Children with Ear and Brain Anomalies

    PubMed Central

    Busi, Micol; Rosignoli, Monica; Minazzi, Federica; Trevisi, Patrizia; Aimoni, Claudia; Calzolari, Ferdinando; Martini, Alessandro

    2015-01-01

    Background. Specific clinical conditions could compromise cochlear implantation outcomes and drastically reduce the chance of an acceptable development of perceptual and linguistic capabilities. These conditions should certainly include the presence of inner ear malformations or brain abnormalities. The aims of this work were to study the diagnostic value of high resolution computed tomography (HRCT) and magnetic resonance imaging (MRI) in children with sensorineural hearing loss who were candidates for cochlear implants and to analyse the anatomic abnormalities of the ear and brain in patients who underwent cochlear implantation. We also analysed the effects of ear malformations and brain anomalies on the CI outcomes, speculating on their potential role in the management of language developmental disorders. Methods. The present study is a retrospective observational review of cochlear implant outcomes among hearing-impaired children who presented ear and/or brain anomalies at neuroimaging investigations with MRI and HRCT. Furthermore, genetic results from molecular genetic investigations (GJB2/GJB6 and, additionally, in selected cases, SLC26A4 or mitochondrial-DNA mutations) on this study group were herein described. Longitudinal and cross-sectional analysis was conducted using statistical tests. Results. Between January 1, 1996 and April 1, 2012, at the ENT-Audiology Department of the University Hospital of Ferrara, 620 cochlear implantations were performed. There were 426 implanted children at the time of the present study (who were <18 years). Among these, 143 patients (64 females and 79 males) presented ear and/or brain anomalies/lesions/malformations at neuroimaging investigations with MRI and HRCT. The age of the main study group (143 implanted children) ranged from 9 months and 16 years (average = 4.4; median = 3.0). Conclusions. Good outcomes with cochlear implants are possible in patients who present with inner ear or brain abnormalities, even if central nervous system anomalies represent a negative prognostic factor that is made worse by the concomitant presence of cochlear malformations. Common cavity and stenosis of the internal auditory canal (less than 2 mm) are negative prognostic factors even if brain lesions are absent. PMID:26236732

  5. Cochlear Implant Outcomes and Genetic Mutations in Children with Ear and Brain Anomalies.

    PubMed

    Busi, Micol; Rosignoli, Monica; Castiglione, Alessandro; Minazzi, Federica; Trevisi, Patrizia; Aimoni, Claudia; Calzolari, Ferdinando; Granieri, Enrico; Martini, Alessandro

    2015-01-01

    Specific clinical conditions could compromise cochlear implantation outcomes and drastically reduce the chance of an acceptable development of perceptual and linguistic capabilities. These conditions should certainly include the presence of inner ear malformations or brain abnormalities. The aims of this work were to study the diagnostic value of high resolution computed tomography (HRCT) and magnetic resonance imaging (MRI) in children with sensorineural hearing loss who were candidates for cochlear implants and to analyse the anatomic abnormalities of the ear and brain in patients who underwent cochlear implantation. We also analysed the effects of ear malformations and brain anomalies on the CI outcomes, speculating on their potential role in the management of language developmental disorders. The present study is a retrospective observational review of cochlear implant outcomes among hearing-impaired children who presented ear and/or brain anomalies at neuroimaging investigations with MRI and HRCT. Furthermore, genetic results from molecular genetic investigations (GJB2/GJB6 and, additionally, in selected cases, SLC26A4 or mitochondrial-DNA mutations) on this study group were herein described. Longitudinal and cross-sectional analysis was conducted using statistical tests. Between January 1, 1996 and April 1, 2012, at the ENT-Audiology Department of the University Hospital of Ferrara, 620 cochlear implantations were performed. There were 426 implanted children at the time of the present study (who were <18 years). Among these, 143 patients (64 females and 79 males) presented ear and/or brain anomalies/lesions/malformations at neuroimaging investigations with MRI and HRCT. The age of the main study group (143 implanted children) ranged from 9 months and 16 years (average = 4.4; median = 3.0). Good outcomes with cochlear implants are possible in patients who present with inner ear or brain abnormalities, even if central nervous system anomalies represent a negative prognostic factor that is made worse by the concomitant presence of cochlear malformations. Common cavity and stenosis of the internal auditory canal (less than 2 mm) are negative prognostic factors even if brain lesions are absent.

  6. Safety and Efficacy of the BrainPort V100 Device in Individuals Blinded by Traumatic Injury

    DTIC Science & Technology

    2017-12-01

    study was to investigate the impact of the BrainPort V200 on real-world functional task performance in persons who are profoundly blind (no better than...16 6. Products 16 7. Participants & Other Collaborating Organizations 16 8. Special Reporting Requirements 18 9. Appendix...environment. The purpose of this study was to evaluate the safety and effectiveness of the BrainPort V200 in individuals who have been medically

  7. Emotion Recognition in Stroke Patients with Left and Right Hemispheric Lesion: Results with a New Instrument-The Feel Test

    ERIC Educational Resources Information Center

    Braun, M.; Traue, H.C.; Frisch, S.; Deighton, R.M.; Kessler, H.

    2005-01-01

    The aim of this study was to investigate the effect of a stroke event on people's ability to recognize basic emotions. In particular, the hypothesis that right brain-damaged (RBD) patients would show less of emotion recognition ability compared with left brain-damaged (LBD) patients and healthy controls, was tested. To investigate this the FEEL…

  8. Investigating structural brain changes of dehydration using voxel-based morphometry.

    PubMed

    Streitbürger, Daniel-Paolo; Möller, Harald E; Tittgemeyer, Marc; Hund-Georgiadis, Margret; Schroeter, Matthias L; Mueller, Karsten

    2012-01-01

    Dehydration can affect the volume of brain structures, which might imply a confound in volumetric and morphometric studies of normal or diseased brain. Six young, healthy volunteers were repeatedly investigated using three-dimensional T(1)-weighted magnetic resonance imaging during states of normal hydration, hyperhydration, and dehydration to assess volume changes in gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF). The datasets were analyzed using voxel-based morphometry (VBM), a widely used voxel-wise statistical analysis tool, FreeSurfer, a fully automated volumetric segmentation measure, and SIENAr a longitudinal brain-change detection algorithm. A significant decrease of GM and WM volume associated with dehydration was found in various brain regions, most prominently, in temporal and sub-gyral parietal areas, in the left inferior orbito-frontal region, and in the extra-nuclear region. Moreover, we found consistent increases in CSF, that is, an expansion of the ventricular system affecting both lateral ventricles, the third, and the fourth ventricle. Similar degrees of shrinkage in WM volume and increase of the ventricular system have been reported in studies of mild cognitive impairment or Alzheimer's disease during disease progression. Based on these findings, a potential confound in GM and WM or ventricular volume studies due to the subjects' hydration state cannot be excluded and should be appropriately addressed in morphometric studies of the brain.

  9. Investigating Structural Brain Changes of Dehydration Using Voxel-Based Morphometry

    PubMed Central

    Streitbürger, Daniel-Paolo; Möller, Harald E.; Tittgemeyer, Marc; Hund-Georgiadis, Margret; Schroeter, Matthias L.; Mueller, Karsten

    2012-01-01

    Dehydration can affect the volume of brain structures, which might imply a confound in volumetric and morphometric studies of normal or diseased brain. Six young, healthy volunteers were repeatedly investigated using three-dimensional T 1-weighted magnetic resonance imaging during states of normal hydration, hyperhydration, and dehydration to assess volume changes in gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF). The datasets were analyzed using voxel-based morphometry (VBM), a widely used voxel-wise statistical analysis tool, FreeSurfer, a fully automated volumetric segmentation measure, and SIENAr a longitudinal brain-change detection algorithm. A significant decrease of GM and WM volume associated with dehydration was found in various brain regions, most prominently, in temporal and sub-gyral parietal areas, in the left inferior orbito-frontal region, and in the extra-nuclear region. Moreover, we found consistent increases in CSF, that is, an expansion of the ventricular system affecting both lateral ventricles, the third, and the fourth ventricle. Similar degrees of shrinkage in WM volume and increase of the ventricular system have been reported in studies of mild cognitive impairment or Alzheime s disease during disease progression. Based on these findings, a potential confound in GM and WM or ventricular volume studies due to the subjects’ hydration state cannot be excluded and should be appropriately addressed in morphometric studies of the brain. PMID:22952926

  10. Analysis of the time-varying energy of brain responses to an oddball paradigm using short-term smoothed Wigner-Ville distribution.

    PubMed

    Tağluk, M E; Cakmak, E D; Karakaş, S

    2005-04-30

    Cognitive brain responses to external stimuli, as measured by event related potentials (ERPs), have been analyzed from a variety of perspectives to investigate brain dynamics. Here, the brain responses of healthy subjects to auditory oddball paradigms, standard and deviant stimuli, recorded on an Fz electrode site were studied using a short-term version of the smoothed Wigner-Ville distribution (STSW) method. A smoothing kernel was designed to preserve the auto energy of the signal with maximum time and frequency resolutions. Analysis was conducted mainly on the time-frequency distributions (TFDs) of sweeps recorded during successive trials including the TFD of averaged single sweeps as the evoked time-frequency (ETF) brain response and the average of TFDs of single sweeps as the time-frequency (TF) brain response. Also the power entropy and the phase angles of the signal at frequency f and time t locked to the stimulus onset were studied across single trials as the TF power-locked and the TF phase-locked brain responses, respectively. TFDs represented in this way demonstrated the ERP spectro-temporal characteristics from multiple perspectives. The time-varying energy of the individual components manifested interesting TF structures in the form of amplitude modulated (AM) and frequency modulated (FM) energy bursts. The TF power-locked and phase-locked brain responses provoked ERP energies in a manner modulated by cognitive functions, an observation requiring further investigation. These results may lead to a better understanding of integrative brain dynamics.

  11. Brain-computer interfaces in the continuum of consciousness.

    PubMed

    Kübler, Andrea; Kotchoubey, Boris

    2007-12-01

    To summarize recent developments and look at important future aspects of brain-computer interfaces. Recent brain-computer interface studies are largely targeted at helping severely or even completely paralysed patients. The former are only able to communicate yes or no via a single muscle twitch, and the latter are totally nonresponsive. Such patients can control brain-computer interfaces and use them to select letters, words or items on a computer screen, for neuroprosthesis control or for surfing the Internet. This condition of motor paralysis, in which cognition and consciousness appear to be unaffected, is traditionally opposed to nonresponsiveness due to disorders of consciousness. Although these groups of patients may appear to be very alike, numerous transition states between them are demonstrated by recent studies. All nonresponsive patients can be regarded on a continuum of consciousness which may vary even within short time periods. As overt behaviour is lacking, cognitive functions in such patients can only be investigated using neurophysiological methods. We suggest that brain-computer interfaces may provide a new tool to investigate cognition in disorders of consciousness, and propose a hierarchical procedure entailing passive stimulation, active instructions, volitional paradigms, and brain-computer interface operation.

  12. Event-related functional MRI: Past, present, and future

    PubMed Central

    Rosen, Bruce R.; Buckner, Randy L.; Dale, Anders M.

    1998-01-01

    The past two decades have seen an enormous growth in the field of human brain mapping. Investigators have extensively exploited techniques such as positron emission tomography and MRI to map patterns of brain activity based on changes in cerebral hemodynamics. However, until recently, most studies have investigated equilibrium changes in blood flow measured over time periods upward of 1 min. The advent of high-speed MRI methods, capable of imaging the entire brain with a temporal resolution of a few seconds, allows for brain mapping based on more transient aspects of the hemodynamic response. Today it is now possible to map changes in cerebrovascular parameters essentially in real time, conferring the ability to observe changes in brain state that occur over time periods of seconds. Furthermore, because robust hemodynamic alterations are detectable after neuronal stimuli lasting only a few tens of milliseconds, a new class of task paradigms designed to measure regional responses to single sensory or cognitive events can now be studied. Such “event related” functional MRI should provide for fundamentally new ways to interrogate brain function, and allow for the direct comparison and ultimately integration of data acquired by using more traditional behavioral and electrophysiological methods. PMID:9448240

  13. Childhood Brain Tumor Epidemiology: A Brain Tumor Epidemiology Consortium Review

    PubMed Central

    Johnson, Kimberly J.; Cullen, Jennifer; Barnholtz-Sloan, Jill S.; Ostrom, Quinn T.; Langer, Chelsea E.; Turner, Michelle C.; McKean-Cowdin, Roberta; Fisher, James L.; Lupo, Philip J.; Partap, Sonia; Schwartzbaum, Judith A.; Scheurer, Michael E.

    2014-01-01

    Childhood brain tumors are the most common pediatric solid tumor and include several histological subtypes. Although progress has been made in improving survival rates for some subtypes, understanding of risk factors for childhood brain tumors remains limited to a few genetic syndromes and ionizing radiation to the head and neck. In this report, we review descriptive and analytical epidemiology childhood brain tumor studies from the past decade and highlight priority areas for future epidemiology investigations and methodological work that is needed to advance our understanding of childhood brain tumor causes. Specifically, we summarize the results of a review of studies published since 2004 that have analyzed incidence and survival in different international regions and that have examined potential genetic, immune system, developmental and birth characteristics, and environmental risk factors. PMID:25192704

  14. The MOBI-Kids Study Protocol: Challenges in Assessing Childhood and Adolescent Exposure to Electromagnetic Fields from Wireless Telecommunication Technologies and Possible Association with Brain Tumor Risk

    PubMed Central

    Sadetzki, Siegal; Langer, Chelsea Eastman; Bruchim, Revital; Kundi, Michael; Merletti, Franco; Vermeulen, Roel; Kromhout, Hans; Lee, Ae-Kyoung; Maslanyj, Myron; Sim, Malcolm R.; Taki, Masao; Wiart, Joe; Armstrong, Bruce; Milne, Elizabeth; Benke, Geza; Schattner, Rosa; Hutter, Hans-Peter; Woehrer, Adelheid; Krewski, Daniel; Mohipp, Charmaine; Momoli, Franco; Ritvo, Paul; Spinelli, John; Lacour, Brigitte; Delmas, Dominique; Remen, Thomas; Radon, Katja; Weinmann, Tobias; Klostermann, Swaantje; Heinrich, Sabine; Petridou, Eleni; Bouka, Evdoxia; Panagopoulou, Paraskevi; Dikshit, Rajesh; Nagrani, Rajini; Even-Nir, Hadas; Chetrit, Angela; Maule, Milena; Migliore, Enrica; Filippini, Graziella; Miligi, Lucia; Mattioli, Stefano; Yamaguchi, Naohito; Kojimahara, Noriko; Ha, Mina; Choi, Kyung-Hwa; Mannetje, Andrea ’t; Eng, Amanda; Woodward, Alistair; Carretero, Gema; Alguacil, Juan; Aragones, Nuria; Suare-Varela, Maria Morales; Goedhart, Geertje; Schouten-van Meeteren, A. Antoinette Y. N.; Reedijk, A. Ardine M. J.; Cardis, Elisabeth

    2014-01-01

    The rapid increase in mobile phone use in young people has generated concern about possible health effects of exposure to radiofrequency (RF) and extremely low frequency (ELF) electromagnetic fields (EMF). MOBI-Kids, a multinational case–control study, investigates the potential effects of childhood and adolescent exposure to EMF from mobile communications technologies on brain tumor risk in 14 countries. The study, which aims to include approximately 1,000 brain tumor cases aged 10–24 years and two individually matched controls for each case, follows a common protocol and builds upon the methodological experience of the INTERPHONE study. The design and conduct of a study on EMF exposure and brain tumor risk in young people in a large number of countries is complex and poses methodological challenges. This manuscript discusses the design of MOBI-Kids and describes the challenges and approaches chosen to address them, including: (1) the choice of controls operated for suspected appendicitis, to reduce potential selection bias related to low response rates among population controls; (2) investigating a young study population spanning a relatively wide age range; (3) conducting a large, multinational epidemiological study, while adhering to increasingly stricter ethics requirements; (4) investigating a rare and potentially fatal disease; and (5) assessing exposure to EMF from communication technologies. Our experience in thus far developing and implementing the study protocol indicates that MOBI-Kids is feasible and will generate results that will contribute to the understanding of potential brain tumor risks associated with use of mobile phones and other wireless communications technologies among young people. PMID:25295243

  15. The MOBI-Kids Study Protocol: Challenges in Assessing Childhood and Adolescent Exposure to Electromagnetic Fields from Wireless Telecommunication Technologies and Possible Association with Brain Tumor Risk.

    PubMed

    Sadetzki, Siegal; Langer, Chelsea Eastman; Bruchim, Revital; Kundi, Michael; Merletti, Franco; Vermeulen, Roel; Kromhout, Hans; Lee, Ae-Kyoung; Maslanyj, Myron; Sim, Malcolm R; Taki, Masao; Wiart, Joe; Armstrong, Bruce; Milne, Elizabeth; Benke, Geza; Schattner, Rosa; Hutter, Hans-Peter; Woehrer, Adelheid; Krewski, Daniel; Mohipp, Charmaine; Momoli, Franco; Ritvo, Paul; Spinelli, John; Lacour, Brigitte; Delmas, Dominique; Remen, Thomas; Radon, Katja; Weinmann, Tobias; Klostermann, Swaantje; Heinrich, Sabine; Petridou, Eleni; Bouka, Evdoxia; Panagopoulou, Paraskevi; Dikshit, Rajesh; Nagrani, Rajini; Even-Nir, Hadas; Chetrit, Angela; Maule, Milena; Migliore, Enrica; Filippini, Graziella; Miligi, Lucia; Mattioli, Stefano; Yamaguchi, Naohito; Kojimahara, Noriko; Ha, Mina; Choi, Kyung-Hwa; Mannetje, Andrea 't; Eng, Amanda; Woodward, Alistair; Carretero, Gema; Alguacil, Juan; Aragones, Nuria; Suare-Varela, Maria Morales; Goedhart, Geertje; Schouten-van Meeteren, A Antoinette Y N; Reedijk, A Ardine M J; Cardis, Elisabeth

    2014-01-01

    The rapid increase in mobile phone use in young people has generated concern about possible health effects of exposure to radiofrequency (RF) and extremely low frequency (ELF) electromagnetic fields (EMF). MOBI-Kids, a multinational case-control study, investigates the potential effects of childhood and adolescent exposure to EMF from mobile communications technologies on brain tumor risk in 14 countries. The study, which aims to include approximately 1,000 brain tumor cases aged 10-24 years and two individually matched controls for each case, follows a common protocol and builds upon the methodological experience of the INTERPHONE study. The design and conduct of a study on EMF exposure and brain tumor risk in young people in a large number of countries is complex and poses methodological challenges. This manuscript discusses the design of MOBI-Kids and describes the challenges and approaches chosen to address them, including: (1) the choice of controls operated for suspected appendicitis, to reduce potential selection bias related to low response rates among population controls; (2) investigating a young study population spanning a relatively wide age range; (3) conducting a large, multinational epidemiological study, while adhering to increasingly stricter ethics requirements; (4) investigating a rare and potentially fatal disease; and (5) assessing exposure to EMF from communication technologies. Our experience in thus far developing and implementing the study protocol indicates that MOBI-Kids is feasible and will generate results that will contribute to the understanding of potential brain tumor risks associated with use of mobile phones and other wireless communications technologies among young people.

  16. Combined Therapy of Iron Chelator and Antioxidant Completely Restores Brain Dysfunction Induced by Iron Toxicity

    PubMed Central

    Sripetchwandee, Jirapas; Pipatpiboon, Noppamas; Chattipakorn, Nipon; Chattipakorn, Siriporn

    2014-01-01

    Background Excessive iron accumulation leads to iron toxicity in the brain; however the underlying mechanism is unclear. We investigated the effects of iron overload induced by high iron-diet consumption on brain mitochondrial function, brain synaptic plasticity and learning and memory. Iron chelator (deferiprone) and antioxidant (n-acetyl cysteine) effects on iron-overload brains were also studied. Methodology Male Wistar rats were fed either normal diet or high iron-diet consumption for 12 weeks, after which rats in each diet group were treated with vehicle or deferiprone (50 mg/kg) or n-acetyl cysteine (100 mg/kg) or both for another 4 weeks. High iron-diet consumption caused brain iron accumulation, brain mitochondrial dysfunction, impaired brain synaptic plasticity and cognition, blood-brain-barrier breakdown, and brain apoptosis. Although both iron chelator and antioxidant attenuated these deleterious effects, combined therapy provided more robust results. Conclusion In conclusion, this is the first study demonstrating that combined iron chelator and anti-oxidant therapy completely restored brain function impaired by iron overload. PMID:24400127

  17. Investigating the Intersession Reliability of Dynamic Brain-State Properties.

    PubMed

    Smith, Derek M; Zhao, Yrian; Keilholz, Shella D; Schumacher, Eric H

    2018-06-01

    Dynamic functional connectivity metrics have much to offer to the neuroscience of individual differences of cognition. Yet, despite the recent expansion in dynamic connectivity research, limited resources have been devoted to the study of the reliability of these connectivity measures. To address this, resting-state functional magnetic resonance imaging data from 100 Human Connectome Project subjects were compared across 2 scan days. Brain states (i.e., patterns of coactivity across regions) were identified by classifying each time frame using k means clustering. This was done with and without global signal regression (GSR). Multiple gauges of reliability indicated consistency in the brain-state properties across days and GSR attenuated the reliability of the brain states. Changes in the brain-state properties across the course of the scan were investigated as well. The results demonstrate that summary metrics describing the clustering of individual time frames have adequate test/retest reliability, and thus, these patterns of brain activation may hold promise for individual-difference research.

  18. Brain Responses to Dynamic Facial Expressions: A Normative Meta-Analysis.

    PubMed

    Zinchenko, Oksana; Yaple, Zachary A; Arsalidou, Marie

    2018-01-01

    Identifying facial expressions is crucial for social interactions. Functional neuroimaging studies show that a set of brain areas, such as the fusiform gyrus and amygdala, become active when viewing emotional facial expressions. The majority of functional magnetic resonance imaging (fMRI) studies investigating face perception typically employ static images of faces. However, studies that use dynamic facial expressions (e.g., videos) are accumulating and suggest that a dynamic presentation may be more sensitive and ecologically valid for investigating faces. By using quantitative fMRI meta-analysis the present study examined concordance of brain regions associated with viewing dynamic facial expressions. We analyzed data from 216 participants that participated in 14 studies, which reported coordinates for 28 experiments. Our analysis revealed bilateral fusiform and middle temporal gyri, left amygdala, left declive of the cerebellum and the right inferior frontal gyrus. These regions are discussed in terms of their relation to models of face processing.

  19. Microwave reflection, transmission, and absorption by human brain tissue

    NASA Astrophysics Data System (ADS)

    Ansari, M. A.; Akhlaghipour, N.; Zarei, M.; Niknam, A. R.

    2018-04-01

    These days, the biological effects of electromagnetic (EM) radiations on the brain, especially in the frequency range of mobile communications, have caught the attention of many scientists. Therefore, in this paper, the propagation of mobile phone electromagnetic waves in the brain tissues is investigated analytically and numerically. The brain is modeled by three layers consisting of skull, grey and white matter. First, we have analytically calculated the microwave reflection, transmission, and absorption coefficients using signal flow graph technique. The effect of microwave frequency and variations in the thickness of layers on the propagation of microwave through brain are studied. Then, the penetration of microwave in the layers is numerically investigated by Monte Carlo method. It is shown that the analytical results are in good agreement with those obtained by Monte Carlo method. Our results indicate the absorbed microwave energy depends on microwave frequency and thickness of brain layers, and the absorption coefficient is optimized at a number of frequencies. These findings can be used for comparing the microwave absorbed energy in a child's and adult's brain.

  20. [Forensic application of brainstem auditory evoked potential in patients with brain concussion].

    PubMed

    Zheng, Xing-Bin; Li, Sheng-Yan; Huang, Si-Xing; Ma, Ke-Xin

    2008-12-01

    To investigate changes of brainstem auditory evoked potential (BAEP) in patients with brain concussion. Nineteen patients with brain concussion were studied with BAEP examination. The data was compared to the healthy persons reported in literatures. The abnormal rate of BAEP for patients with brain concussion was 89.5%. There was a statistically significant difference between the abnormal rate of patients and that of healthy persons (P<0.05). The abnormal rate of BAEP in the brainstem pathway for patients with brain concussion was 73.7%, indicating dysfunction of the brainstem in those patients. BAEP might be helpful in forensic diagnosis of brain concussion.

  1. [Self-esteem Saves Brain and Health: Evidence from a Follow-up Investigation after the Great East Japan Earthquake].

    PubMed

    Sekiguchi, Atsushi

    2015-10-01

    Self-esteem plays a crucial role in mental health status. Past studies have revealed higher self-esteem as one of the most important traits of resilience in the context of stressful life events. In fact, our recent studies demonstrated that high self-esteem is a predicting factor for the recovery from brain volume reduction due to the post-earthquake distress. In this article, we introduce structural brain magnetic resonance imaging research with respect to self-esteem as well as past investigations about psychological and physiological backgrounds of tolerance to psycho-social stressors in individuals with high self-esteem. Finally, we discuss effective methods for improving self-esteem to manage unusual events like natural disaster.

  2. Gray matter changes in right superior temporal gyrus in criminal psychopaths. Evidence from voxel-based morphometry.

    PubMed

    Müller, Jürgen L; Gänssbauer, Susanne; Sommer, Monika; Döhnel, Katrin; Weber, Tatjana; Schmidt-Wilcke, Tobias; Hajak, Göran

    2008-08-30

    "Psychopathy" according to the PCL-R describes a specific subgroup of antisocial personality disorder with a high risk for criminal relapses. Lesion and imaging studies point towards frontal or temporal brain regions connected with disturbed social behavior, antisocial personality disorder (APD) and psychopathy. Morphologically, some studies described a reduced prefrontal brain volume, whereas others reported on temporal lobe atrophy. To further investigate whether participants with psychopathy according to the Psychopathy Checklist-Revised Version (PCL-R) show abnormalities in brain structure, we used voxel-based morphometry (VBM) to investigate region-specific changes in gray matter in 17 forensic male inpatients with high PCL-R scores (PCL-R>28) and 17 male control subjects with low PCL-R scores (PCL<10). We found significant gray matter reductions in frontal and temporal brain regions in psychopaths compared with controls. In particular, we found a highly significant volume loss in the right superior temporal gyrus. This is the first study to show that psychopathy is associated with a decrease in gray matter in both frontal and temporal brain regions, in particular in the right superior temporal gyrus, supporting the hypothesis that a disturbed frontotemporal network is critically involved in the pathogenesis of psychopathy.

  3. Brain Activations Related to Saccadic Response Conflict are not Sensitive to Time on Task.

    PubMed

    Beldzik, Ewa; Domagalik, Aleksandra; Oginska, Halszka; Marek, Tadeusz; Fafrowicz, Magdalena

    2015-01-01

    Establishing a role of the dorsal medial frontal cortex in the performance monitoring and cognitive control has been a challenge to neuroscientists for the past decade. In light of recent findings, the conflict monitoring hypothesis has been elaborated to an action-outcome predictor theory. One of the findings that led to this re-evaluation was the fMRI study in which conflict-related brain activity was investigated in terms of the so-called time on task effect, i.e., a linear increase of the BOLD signal with longer response times. The aim of this study was to investigate brain regions involved in the processing of saccadic response conflict and to account for the time on task effect. A modified spatial cueing task was implemented in the event-related fMRI study with oculomotor responses. The results revealed several brain regions which show higher activity for incongruent trials in comparison to the congruent ones, including pre-supplementary motor area together with the frontal and parietal regions. Further analysis accounting for the effect of response time provided evidence that these brain activations were not sensitive to time on task but reflected purely the congruency effect.

  4. Linking brain imaging and genomics in the study of Alzheimer's disease and aging.

    PubMed

    Reiman, Eric M

    2007-02-01

    My colleagues and I have been using positron emission tomography (PET) and magnetic resonance imaging (MRI) to detect and track the brain changes associated with Alzheimer's disease (AD) and normal brain aging in cognitively normal persons with two copies, one copy, and no copies of the apolipoprotein E (APOE) epsilon4 allele, a common AD susceptibility gene. In this review article, I consider how brain imaging techniques could be used to evaluate putative AD prevention therapies in cognitively normal APOE epsilon4 carriers and putative age-modifying therapies in cognitively normal APOE epsilon4 noncarriers, how they could help investigate the individual and aggregate effects of putative AD risk modifiers, and how they could help guide the investigation of a molecular mechanism associated with AD vulnerability and normal neurological aging. I suggest how high-resolution genome-wide genetic and transcriptomic studies could further help in the scientific understanding of AD, aging, and other common and genetically complex phenotypes, such as variation in normal human memory performance, and in the discovery and evaluation of promising treatments for these phenotypes. Finally, I illustrate the push-pull relationship between brain imaging, genomics research, and other neuroscientific research in the study of AD and aging.

  5. Investigating the effects of streamline-based fiber tractography on matrix scaling in brain connective network.

    PubMed

    Jan, Hengtai; Chao, Yi-Ping; Cho, Kuan-Hung; Kuo, Li-Wei

    2013-01-01

    Investigating the brain connective network using the modern graph theory has been widely applied in cognitive and clinical neuroscience research. In this study, we aimed to investigate the effects of streamline-based fiber tractography on the change of network properties and established a systematic framework to understand how an adequate network matrix scaling can be determined. The network properties, including degree, efficiency and betweenness centrality, show similar tendency in both left and right hemispheres. By employing the curve-fitting process with exponential law and measuring the residuals, the association between changes of network properties and threshold of track numbers is found and an adequate range of investigating the lateralization of brain network is suggested. The proposed approach can be further applied in clinical applications to improve the diagnostic sensitivity using network analysis with graph theory.

  6. Autistic Traits and Brain Activation during Face-to-Face Conversations in Typically Developed Adults

    PubMed Central

    Suda, Masashi; Takei, Yuichi; Aoyama, Yoshiyuki; Narita, Kosuke; Sakurai, Noriko; Fukuda, Masato; Mikuni, Masahiko

    2011-01-01

    Background Autism spectrum disorders (ASD) are characterized by impaired social interaction and communication, restricted interests, and repetitive behaviours. The severity of these characteristics is posited to lie on a continuum that extends into the general population. Brain substrates underlying ASD have been investigated through functional neuroimaging studies using functional magnetic resonance imaging (fMRI). However, fMRI has methodological constraints for studying brain mechanisms during social interactions (for example, noise, lying on a gantry during the procedure, etc.). In this study, we investigated whether variations in autism spectrum traits are associated with changes in patterns of brain activation in typically developed adults. We used near-infrared spectroscopy (NIRS), a recently developed functional neuroimaging technique that uses near-infrared light, to monitor brain activation in a natural setting that is suitable for studying brain functions during social interactions. Methodology We monitored regional cerebral blood volume changes using a 52-channel NIRS apparatus over the prefrontal cortex (PFC) and superior temporal sulcus (STS), 2 areas implicated in social cognition and the pathology of ASD, in 28 typically developed participants (14 male and 14 female) during face-to-face conversations. This task was designed to resemble a realistic social situation. We examined the correlations of these changes with autistic traits assessed using the Autism-Spectrum Quotient (AQ). Principal Findings Both the PFC and STS were significantly activated during face-to-face conversations. AQ scores were negatively correlated with regional cerebral blood volume increases in the left STS during face-to-face conversations, especially in males. Conclusions Our results demonstrate successful monitoring of brain function during realistic social interactions by NIRS as well as lesser brain activation in the left STS during face-to-face conversations in typically developed participants with higher levels of autistic traits. PMID:21637754

  7. Autistic traits and brain activation during face-to-face conversations in typically developed adults.

    PubMed

    Suda, Masashi; Takei, Yuichi; Aoyama, Yoshiyuki; Narita, Kosuke; Sakurai, Noriko; Fukuda, Masato; Mikuni, Masahiko

    2011-01-01

    Autism spectrum disorders (ASD) are characterized by impaired social interaction and communication, restricted interests, and repetitive behaviours. The severity of these characteristics is posited to lie on a continuum that extends into the general population. Brain substrates underlying ASD have been investigated through functional neuroimaging studies using functional magnetic resonance imaging (fMRI). However, fMRI has methodological constraints for studying brain mechanisms during social interactions (for example, noise, lying on a gantry during the procedure, etc.). In this study, we investigated whether variations in autism spectrum traits are associated with changes in patterns of brain activation in typically developed adults. We used near-infrared spectroscopy (NIRS), a recently developed functional neuroimaging technique that uses near-infrared light, to monitor brain activation in a natural setting that is suitable for studying brain functions during social interactions. We monitored regional cerebral blood volume changes using a 52-channel NIRS apparatus over the prefrontal cortex (PFC) and superior temporal sulcus (STS), 2 areas implicated in social cognition and the pathology of ASD, in 28 typically developed participants (14 male and 14 female) during face-to-face conversations. This task was designed to resemble a realistic social situation. We examined the correlations of these changes with autistic traits assessed using the Autism-Spectrum Quotient (AQ). Both the PFC and STS were significantly activated during face-to-face conversations. AQ scores were negatively correlated with regional cerebral blood volume increases in the left STS during face-to-face conversations, especially in males. Our results demonstrate successful monitoring of brain function during realistic social interactions by NIRS as well as lesser brain activation in the left STS during face-to-face conversations in typically developed participants with higher levels of autistic traits.

  8. Microstructure abnormalities in adolescents with internet addiction disorder.

    PubMed

    Yuan, Kai; Qin, Wei; Wang, Guihong; Zeng, Fang; Zhao, Liyan; Yang, Xuejuan; Liu, Peng; Liu, Jixin; Sun, Jinbo; von Deneen, Karen M; Gong, Qiyong; Liu, Yijun; Tian, Jie

    2011-01-01

    Recent studies suggest that internet addiction disorder (IAD) is associated with structural abnormalities in brain gray matter. However, few studies have investigated the effects of internet addiction on the microstructural integrity of major neuronal fiber pathways, and almost no studies have assessed the microstructural changes with the duration of internet addiction. We investigated the morphology of the brain in adolescents with IAD (N = 18) using an optimized voxel-based morphometry (VBM) technique, and studied the white matter fractional anisotropy (FA) changes using the diffusion tensor imaging (DTI) method, linking these brain structural measures to the duration of IAD. We provided evidences demonstrating the multiple structural changes of the brain in IAD subjects. VBM results indicated the decreased gray matter volume in the bilateral dorsolateral prefrontal cortex (DLPFC), the supplementary motor area (SMA), the orbitofrontal cortex (OFC), the cerebellum and the left rostral ACC (rACC). DTI analysis revealed the enhanced FA value of the left posterior limb of the internal capsule (PLIC) and reduced FA value in the white matter within the right parahippocampal gyrus (PHG). Gray matter volumes of the DLPFC, rACC, SMA, and white matter FA changes of the PLIC were significantly correlated with the duration of internet addiction in the adolescents with IAD. Our results suggested that long-term internet addiction would result in brain structural alterations, which probably contributed to chronic dysfunction in subjects with IAD. The current study may shed further light on the potential brain effects of IAD.

  9. Residual effects of cannabis use in adolescent and adult brains - A meta-analysis of fMRI studies.

    PubMed

    Blest-Hopley, Grace; Giampietro, Vincent; Bhattacharyya, Sagnik

    2018-05-01

    While numerous studies have investigated the residual effects of cannabis use on human brain function, results of these studies have been inconsistent. Using meta-analytic approaches we summarize the effects of prolonged cannabis exposure on human brain function as measured using task-based functional MRI (fMRI) across studies employing a range of cognitive activation tasks comparing regular cannabis users with non-users. Separate meta-analyses were carried out for studies investigating adult and adolescent cannabis users. Systematic literature search identified 20 manuscripts (13 adult and 7 adolescent studies) meeting study inclusion criteria. Adult analyses compared 530 cannabis users to 580 healthy controls while adolescent analyses compared 219 cannabis users to 224 healthy controls. In adult cannabis users brain activation was increased in the superior and posterior transverse temporal and inferior frontal gyri and decreased in the striate area, insula and middle temporal gyrus. In adolescent cannabis users, activation was increased in the inferior parietal gyrus and putamen compared to healthy controls. Functional alteration in these areas may reflect compensatory neuroadaptive changes in cannabis users. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Pharmacological characterization of CCKB receptors in human brain: no evidence for receptor heterogeneity.

    PubMed

    Kinze, S; Schöneberg, T; Meyer, R; Martin, H; Kaufmann, R

    1996-10-11

    In this paper, cholecystokinin (CCK) B-type binding sites were characterized with receptor binding studies in different human brain regions (various parts of cerebral cortex, basal ganglia, hippocampus, thalamus, cerebellar cortex) collected from 22 human postmortem brains. With the exception of the thalamus, where no specific CCK binding sites were found, a pharmacological characterization demonstrated a single class of high affinity CCK sites in all brain areas investigated. Receptor densities ranged from 0.5 fmol/mg protein (hippocampus) to 8.4 fmol/mg protein (nucleus caudatus). These CCK binding sites displayed a typical CCKA binding profile as shown in competition studies by using different CCK-related compounds and non peptide CCK antagonists discriminating between CCKA and CCKB sites. The rank order of agonist or antagonist potency in inhibiting specific sulphated [propionyl-3H]cholecystokinin octapeptide binding was similar and highly correlated for the brain regions investigated as demonstrated by a computer-assisted analysis. Therefore it is concluded that CCKB binding sites in human cerebral cortex, basal ganglia, cerebellar cortex share identical ligand binding characteristics.

  11. Neurobiological signatures associated with alcohol and drug use in the human adolescent brain

    PubMed Central

    Silveri, Marisa M.; Dager, Alecia D.; Cohen-Gilbert, Julia E.; Sneider, Jennifer T.

    2017-01-01

    Magnetic resonance (MR) techniques provide opportunities to non-invasively characterize neurobiological milestones of adolescent brain development. Juxtaposed to the critical finalization of brain development is initiation of alcohol and substance use, and increased frequency and quantity of use, patterns that can lead to abuse and addiction. This review provides a comprehensive overview of existing MR studies of adolescent alcohol and drug users. The most common alteration reported across substance used and MR modalities is in the frontal lobe (63% of published studies). This is not surprising, given that this is the last region to reach neurobiological adulthood. Comparatively, evidence is less consistent regarding alterations in regions that mature earlier (e.g., amygdala, hippocampus), however newer techniques now permit investigations beyond regional approaches that are uncovering network-level vulnerabilities. Regardless of whether neurobiological signatures exist prior to the initiation of use, this body of work provides important direction for ongoing prospective investigations of adolescent brain development, and the significant impact of alcohol and substance use on the brain during the second decade of life. PMID:27377691

  12. Neurobiological signatures associated with alcohol and drug use in the human adolescent brain.

    PubMed

    Silveri, Marisa M; Dager, Alecia D; Cohen-Gilbert, Julia E; Sneider, Jennifer T

    2016-11-01

    Magnetic resonance (MR) techniques provide opportunities to non-invasively characterize neurobiological milestones of adolescent brain development. Juxtaposed to the critical finalization of brain development is initiation of alcohol and substance use, and increased frequency and quantity of use, patterns that can lead to abuse and addiction. This review provides a comprehensive overview of existing MR studies of adolescent alcohol and drug users. The most common alterations reported across substance used and MR modalities are in the frontal lobe (63% of published studies). This is not surprising, given that this is the last region to reach neurobiological adulthood. Comparatively, evidence is less consistent regarding alterations in regions that mature earlier (e.g., amygdala, hippocampus), however newer techniques now permit investigations beyond regional approaches that are uncovering network-level vulnerabilities. Regardless of whether neurobiological signatures exist prior to the initiation of use, this body of work provides important direction for ongoing prospective investigations of adolescent brain development, and the significant impact of alcohol and substance use on the brain during the second decade of life. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. How Different Types of Conceptual Relations Modulate Brain Activation during Semantic Priming

    ERIC Educational Resources Information Center

    Sachs, Olga; Weis, Susanne; Zellagui, Nadia; Sass, Katharina; Huber, Walter; Zvyagintsev, Mikhail; Mathiak, Klaus; Kircher, Tilo

    2011-01-01

    Semantic priming, a well-established technique to study conceptual representation, has thus far produced variable fMRI results, both regarding the type of priming effects and their correlation with brain activation. The aims of the current study were (a) to investigate two types of semantic relations--categorical versus associative--under…

  14. Explaining Pragmatic Performance in Traumatic Brain Injury: A Process Perspective on Communicative Errors

    ERIC Educational Resources Information Center

    Bosco, Francesca M.; Angeleri, Romina; Sacco, Katiuscia; Bara, Bruno G.

    2015-01-01

    Background: The purpose of this study is to investigate the pragmatic abilities of individuals with traumatic brain injury (TBI). Several studies in the literature have previously reported communicative deficits in individuals with TBI, however such research has focused principally on communicative deficits in general, without providing an…

  15. The Effect of Temperature on Photoluminescence Enhancement of Quantum Dots in Brain Slices.

    PubMed

    Zhao, Fei; Kim, Jongsung

    2017-04-01

    In this paper, we investigated the effect of temperature on photoluminescence of quantum dots immobilized on the surface of an optical fiber in a rat brain slice. The optical fiber was silanized with 3-aminopropyl trimethoxysilane (APTMS), following which quantum dots with carboxyl functional group were immobilized on the optical fiber via amide bond formation. The effect of temperature on the fluorescence intensity of the quantum dots in rat brain slices was studied. This report shows that the fluorescence intensity of quantum dots increases with the increase of temperature of the brain slice. The fluorescence enhancement phenomenon appears to take place via electron transfer related to pH increase. With the gradual increase of temperature, the fluorescence intensity of quantum dots in solution decreased, while that in the brain slice increased. This enhanced thermal performance of QDs in brain slice makes suggestion for the study of QDs-based brain temperature sensors.

  16. A systematic review and meta-analysis of structural magnetic resonance imaging studies investigating cognitive and social activity levels in older adults.

    PubMed

    Anatürk, M; Demnitz, N; Ebmeier, K P; Sexton, C E

    2018-06-22

    Population aging has prompted considerable interest in identifying modifiable factors that may help protect the brain and its functions. Collectively, epidemiological studies show that leisure activities with high mental and social demands are linked with better cognition in old age. The extent to which socio-intellectual activities relate to the brain's structure is, however, not yet fully understood. This systematic review and meta-analysis summarizes magnetic resonance imaging studies that have investigated whether cognitive and social activities correlate with measures of gray and white matter volume, white matter microstructure and white matter lesions. Across eighteen included studies (total n = 8429), activity levels were associated with whole-brain white matter volume, white matter lesions and regional gray matter volume, although effect sizes were small. No associations were found for global gray matter volume and the evidence concerning white matter microstructure was inconclusive. While the causality of the reviewed associations needs to be established, our findings implicate socio-intellectual activity levels as promising targets for interventions aimed at promoting healthy brain aging. Copyright © 2018. Published by Elsevier Ltd.

  17. Neurocognitive mechanisms of mathematical giftedness: A literature review.

    PubMed

    Zhang, Li; Gan, John Q; Wang, Haixian

    2017-01-01

    Mathematically gifted children/adolescents have demonstrated exceptional abilities and traits in logical reasoning, mental imagery, and creative thinking. In the field of cognitive neuroscience, the past studies on mathematically gifted brains have concentrated on investigating event-related brain activation regions, cerebral laterality of cognitive functions, functional specialization that is uniquely dedicated for specific cognitive purposes, and functional interactions among discrete brain regions. From structural and functional perspectives, these studies have witnessed both "general" and "unique" neural characteristics of mathematically gifted brains. In this article, the theoretical background, empirical studies, and neurocognitive mechanisms of mathematically gifted children/adolescents are reviewed. Based on the integration of the findings, some potential directions for the future research are identified and discussed.

  18. Role of Interleukin-10 in Acute Brain Injuries

    PubMed Central

    Garcia, Joshua M.; Stillings, Stephanie A.; Leclerc, Jenna L.; Phillips, Harrison; Edwards, Nancy J.; Robicsek, Steven A.; Hoh, Brian L.; Blackburn, Spiros; Doré, Sylvain

    2017-01-01

    Interleukin-10 (IL-10) is an important anti-inflammatory cytokine expressed in response to brain injury, where it facilitates the resolution of inflammatory cascades, which if prolonged causes secondary brain damage. Here, we comprehensively review the current knowledge regarding the role of IL-10 in modulating outcomes following acute brain injury, including traumatic brain injury (TBI) and the various stroke subtypes. The vascular endothelium is closely tied to the pathophysiology of these neurological disorders and research has demonstrated clear vascular endothelial protective properties for IL-10. In vitro and in vivo models of ischemic stroke have convincingly directly and indirectly shown IL-10-mediated neuroprotection; although clinically, the role of IL-10 in predicting risk and outcomes is less clear. Comparatively, conclusive studies investigating the contribution of IL-10 in subarachnoid hemorrhage are lacking. Weak indirect evidence supporting the protective role of IL-10 in preclinical models of intracerebral hemorrhage exists; however, in the limited number of clinical studies, higher IL-10 levels seen post-ictus have been associated with worse outcomes. Similarly, preclinical TBI models have suggested a neuroprotective role for IL-10; although, controversy exists among the several clinical studies. In summary, while IL-10 is consistently elevated following acute brain injury, the effect of IL-10 appears to be pathology dependent, and preclinical and clinical studies often paradoxically yield opposite results. The pronounced and potent effects of IL-10 in the resolution of inflammation and inconsistency in the literature regarding the contribution of IL-10 in the setting of acute brain injury warrant further rigorously controlled and targeted investigation. PMID:28659854

  19. Relationship between symptom dimensions and brain morphology in obsessive-compulsive disorder.

    PubMed

    Hirose, Motohisa; Hirano, Yoshiyuki; Nemoto, Kiyotaka; Sutoh, Chihiro; Asano, Kenichi; Miyata, Haruko; Matsumoto, Junko; Nakazato, Michiko; Matsumoto, Koji; Masuda, Yoshitada; Iyo, Masaomi; Shimizu, Eiji; Nakagawa, Akiko

    2017-10-01

    Obsessive-compulsive disorder (OCD) is known as a clinically heterogeneous disorder characterized by symptom dimensions. Although substantial numbers of neuroimaging studies have demonstrated the presence of brain abnormalities in OCD, their results are controversial. The clinical heterogeneity of OCD could be one of the reasons for this. It has been hypothesized that certain brain regions contributed to the respective obsessive-compulsive dimensions. In this study, we investigated the relationship between symptom dimensions of OCD and brain morphology using voxel-based morphometry to discover the specific regions showing alterations in the respective dimensions of obsessive-compulsive symptoms. The severities of symptom dimensions in thirty-three patients with OCD were assessed using Obsessive-Compulsive Inventory-Revised (OCI-R). Along with numerous MRI studies pointing out brain abnormalities in autistic spectrum disorder (ASD) patients, a previous study reported a positive correlation between ASD traits and regional gray matter volume in the left dorsolateral prefrontal cortex and amygdala in OCD patients. We investigated the correlation between gray and white matter volumes at the whole brain level and each symptom dimension score, treating all remaining dimension scores, age, gender, and ASD traits as confounding covariates. Our results revealed a significant negative correlation between washing symptom dimension score and gray matter volume in the right thalamus and a significant negative correlation between hoarding symptom dimension score and white matter volume in the left angular gyrus. Although our result was preliminary, our findings indicated that there were specific brain regions in gray and white matter that contributed to symptom dimensions in OCD patients.

  20. Effect of chronic exposure to aspartame on oxidative stress in the brain of albino rats.

    PubMed

    Iyyaswamy, Ashok; Rathinasamy, Sheeladevi

    2012-09-01

    This study was aimed at investigating the chronic effect of the artificial sweetener aspartame on oxidative stress in brain regions of Wistar strain albino rats. Many controversial reports are available on the use of aspartame as it releases methanol as one of its metabolite during metabolism. The present study proposed to investigate whether chronic aspartame (75 mg/kg) administration could release methanol and induce oxidative stress in the rat brain. To mimic the human methanol metabolism, methotrexate (MTX)-treated rats were included to study the aspartame effects. Wistar strain male albino rats were administered with aspartame orally and studied along with controls and MTX-treated controls. The blood methanol level was estimated, the animal was sacrificed and the free radical changes were observed in brain discrete regions by assessing the scavenging enzymes, reduced glutathione, lipid peroxidation (LPO) and protein thiol levels. It was observed that there was a significant increase in LPO levels, superoxide dismutase (SOD) activity, GPx levels and CAT activity with a significant decrease in GSH and protein thiol. Moreover, the increases in some of these enzymes were region specific. Chronic exposure of aspartame resulted in detectable methanol in blood. Methanol per se and its metabolites may be responsible for the generation of oxidative stress in brain regions.

  1. Targeting Insulin Signaling for the Treatment of Alzheimer's Disease.

    PubMed

    Chen, Yanxing; Zhang, Jianfang; Zhang, Baorong; Gong, Cheng-Xin

    2016-01-01

    Sporadic Alzheimer's disease (AD) is caused by multiple etiological factors, among which impaired brain insulin signaling and decreased brain glucose metabolism are important metabolic factors. Contrary to previous belief that insulin would not act in the brain, studies in the last three decades have proven important roles of insulin and insulin signaling in various biological functions in the brain. Impaired brain insulin signaling or brain insulin resistance and its role in the molecular pathogenesis of sporadic AD have been demonstrated. Thus, targeting brain insulin signaling for the treatment of cognitive impairment and AD has now attracted much attention in the field of AD drug discovery. This article reviews recent studies that target brain insulin signaling, especially those investigations on intranasal insulin administration and drugs that improve insulin sensitivity, including incretins, dipeptidyl peptidase IV inhibitors, thiazolidinediones, and metformin. These drugs have been previously approved for the treatment of diabetes mellitus, which could expedite their development for the treatment of AD. Although larger clinical trials are needed for validating their efficacy for the treatment of cognitive impairment and AD, results of animal studies and clinical trials available to date are encouraging.

  2. Dye-enhanced multimodal confocal imaging as a novel approach to intraoperative diagnosis of brain tumors.

    PubMed

    Snuderl, Matija; Wirth, Dennis; Sheth, Sameer A; Bourne, Sarah K; Kwon, Churl-Su; Ancukiewicz, Marek; Curry, William T; Frosch, Matthew P; Yaroslavsky, Anna N

    2013-01-01

    Intraoperative diagnosis plays an important role in accurate sampling of brain tumors, limiting the number of biopsies required and improving the distinction between brain and tumor. The goal of this study was to evaluate dye-enhanced multimodal confocal imaging for discriminating gliomas from nonglial brain tumors and from normal brain tissue for diagnostic use. We investigated a total of 37 samples including glioma (13), meningioma (7), metastatic tumors (9) and normal brain removed for nontumoral indications (8). Tissue was stained in 0.05 mg/mL aqueous solution of methylene blue (MB) for 2-5 minutes and multimodal confocal images were acquired using a custom-built microscope. After imaging, tissue was formalin fixed and paraffin embedded for standard neuropathologic evaluation. Thirteen pathologists provided diagnoses based on the multimodal confocal images. The investigated tumor types exhibited distinctive and complimentary characteristics in both the reflectance and fluorescence responses. Images showed distinct morphological features similar to standard histology. Pathologists were able to distinguish gliomas from normal brain tissue and nonglial brain tumors, and to render diagnoses from the images in a manner comparable to haematoxylin and eosin (H&E) slides. These results confirm the feasibility of multimodal confocal imaging for intravital intraoperative diagnosis. © 2012 The Authors; Brain Pathology © 2012 International Society of Neuropathology.

  3. Altered functional connectivity in early Alzheimer's disease: a resting-state fMRI study.

    PubMed

    Wang, Kun; Liang, Meng; Wang, Liang; Tian, Lixia; Zhang, Xinqing; Li, Kuncheng; Jiang, Tianzi

    2007-10-01

    Previous studies have led to the proposal that patients with Alzheimer's disease (AD) may have disturbed functional connectivity between different brain regions. Furthermore, recent resting-state functional magnetic resonance imaging (fMRI) studies have also shown that low-frequency (<0.08 Hz) fluctuations (LFF) of the blood oxygenation level-dependent signals were abnormal in several brain areas of AD patients. However, few studies have investigated disturbed LFF connectivity in AD patients. By using resting-state fMRI, this study sought to investigate the abnormal functional connectivities throughout the entire brain of early AD patients, and analyze the global distribution of these abnormalities. For this purpose, the authors divided the whole brain into 116 regions and identified abnormal connectivities by comparing the correlation coefficients of each pair. Compared with healthy controls, AD patients had decreased positive correlations between the prefrontal and parietal lobes, but increased positive correlations within the prefrontal lobe, parietal lobe, and occipital lobe. The AD patients also had decreased negative correlations (closer to zero) between two intrinsically anti-correlated networks that had previously been found in the resting brain. By using resting-state fMRI, our results supported previous studies that have reported an anterior-posterior disconnection phenomenon and increased within-lobe functional connectivity in AD patients. In addition, the results also suggest that AD may disturb the correlation/anti-correlation effect in the two intrinsically anti-correlated networks. Wiley-Liss, Inc.

  4. Longitudinal study of neonatal brain tissue volumes in preterm infants and their ability to predict neurodevelopmental outcome.

    PubMed

    Gui, L; Loukas, S; Lazeyras, F; Hüppi, P S; Meskaldji, D E; Borradori Tolsa, C

    2018-06-14

    Premature birth has been associated with poor neurodevelopmental outcomes. However, the relation between such outcomes and brain growth in the neonatal period has not yet been fully elucidated. This study investigates longitudinal brain development between birth and term-equivalent age (TEA) by quantitative imaging in a cohort of premature infants born between 26 and 36 weeks gestational age (GA), to provide insight into the relation of brain growth with later neurodevelopmental outcomes. Longitudinal T2-weighted magnetic resonance images (MRI) of 84 prematurely born infants acquired shortly after birth and TEA were automatically segmented into cortical gray matter (CGM), unmyelinated white matter (UWM), subcortical gray matter (SGM), cerebellum (CB) and cerebrospinal fluid (CSF). General linear models and correlation analysis were used to study the relation between brain volumes and their growth, and perinatal variables. To investigate the ability of the brain volumes to predict children's neurodevelopmental outcome at 18-24 months and at 5 years of age, a linear discriminant analysis classifier was tested and several general linear models were fitted and compared by statistical tests. From birth to TEA, relative volumes of CGM, CB and CSF with respect to total intracranial volume increased, while relative volumes of UWM and SGM decreased. The fastest growing tissues between birth and TEA were found to be the CB and the CGM. Lower GA at birth was associated with lower growth rates of CGM, CB and total tissue. Among perinatal factors, persistent ductus arteriosus was associated with lower SGM, CB and IC growth rates, while sepsis was associated with lower CSF and intracranial volume growth rates. Model comparisons showed that brain tissue volumes at birth and at TEA contributed to the prediction of motor outcomes at 18-24 months, while volumes at TEA and volume growth rates contributed to the prediction of cognitive scores at 5 years of age. The family socio-economic status (SES) was not correlated with brain volumes at birth or at TEA, but was strongly associated with the cognitive outcomes at 18-24 months and 5 years of age. This study provides information about brain growth between birth and TEA in premature children with no focal brain lesions, and investigates their association with subsequent neurodevelopmental outcome. Parental SES was found to be a major determinant of neurodevelopmental outcome, unrelated to brain growth. However, further research is necessary in order to fully explain the variability of neurodevelopmental outcomes in this population. Copyright © 2018. Published by Elsevier Inc.

  5. MEASUREMENT OF SMALL MECHANICAL VIBRATIONS OF BRAIN TISSUE EXPOSED TO EXTREMELY-LOW-FREQUENCY ELECTRIC FIELDS

    EPA Science Inventory

    Electromagnetic fields can interact with biological tissue both electrically and mechanically. This study investigated the mechanical interaction between brain tissue and an extremely-low-frequency (ELF) electric field by measuring the resultant vibrational amplitude. The exposur...

  6. Misconceptions Regarding the Brain: The Neuromyths of Preservice Teachers

    ERIC Educational Resources Information Center

    Dündar, Sefa; Gündüz, Nazan

    2016-01-01

    Understanding preservice teachers' misconceptions regarding the brain and neuroscience (neuromyths) can provide information that helps teachers to apply neuroscience knowledge in an educational context. The objective of this study was to investigate these misconceptions. Following preliminary research, a questionnaire comprising 59 challenging…

  7. Doctor, Should I Use Computer Games to Prevent Dementia?

    PubMed

    O'Shea, Deirdre M; De Wit, Liselotte; Smith, Glenn E

    2017-08-23

    Commercial advertising of computerized "brain games" may result in clinicians being asked whether brain games prevent dementia. To address this question, we conducted a review of computerized cognitive training (CCT) interventions in older adults with Mild Cognitive Impairment (MCI). Studies were identified using a PubMed and PSYCinfo search for review articles. Within 11 review articles we identified 15 unique studies. Nine of these studies used commercially available "brain games" as their primary CCT intervention. Nine of 12 studies that examined the effect of CCT on episodic memory performance showed significant improvements in this domain. Furthermore, four of six studies that examined mood and or anxiety showed improvements in these domains following a CCT intervention. While more than double the amount of time was spent on the training that used commercially available "brain games" versus those designed by investigators, there were no differences in outcomes. Overall, it appears that "brain games" may modestly benefit aspects of cognition and aspects of mood in patients presenting with MCI. However, there is no direct evidence from the studies presented here that "brain games"/CCT can prevent dementia. We present recommendations to consider when discussing "brain games" with persons with MCI.

  8. Evidence for Conversion of Methanol to Formaldehyde in Nonhuman Primate Brain

    PubMed Central

    Zhai, Rongwei; Zheng, Na; Rizak, Joshua; Hu, Xintian

    2016-01-01

    Many studies have reported that methanol toxicity to primates is mainly associated with its metabolites, formaldehyde (FA) and formic acid. While methanol metabolism and toxicology have been best studied in peripheral organs, little study has focused on the brain and no study has reported experimental evidence that demonstrates transformation of methanol into FA in the primate brain. In this study, three rhesus macaques were given a single intracerebroventricular injection of methanol to investigate whether a metabolic process of methanol to FA occurs in nonhuman primate brain. Levels of FA in cerebrospinal fluid (CSF) were then assessed at different time points. A significant increase of FA levels was found at the 18th hour following a methanol injection. Moreover, the FA level returned to a normal physiological level at the 30th hour after the injection. These findings provide direct evidence that methanol is oxidized to FA in nonhuman primate brain and that a portion of the FA generated is released out of the brain cells. This study suggests that FA is produced from methanol metabolic processes in the nonhuman primate brain and that FA may play a significant role in methanol neurotoxicology. PMID:27066393

  9. Methylene Blue Protects Astrocytes against Glucose Oxygen Deprivation by Improving Cellular Respiration

    PubMed Central

    Roy Choudhury, Gourav; Winters, Ali; Rich, Ryan M.; Ryou, Myoung-Gwi; Gryczynski, Zygmunt; Yuan, Fang; Yang, Shao-Hua; Liu, Ran

    2015-01-01

    Astrocytes outnumber neurons and serve many metabolic and trophic functions in the mammalian brain. Preserving astrocytes is critical for normal brain function as well as for protecting the brain against various insults. Our previous studies have indicated that methylene blue (MB) functions as an alternative electron carrier and enhances brain metabolism. In addition, MB has been shown to be protective against neurodegeneration and brain injury. In the current study, we investigated the protective role of MB in astrocytes. Cell viability assays showed that MB treatment significantly protected primary astrocytes from oxygen-glucose deprivation (OGD) & reoxygenation induced cell death. We also studied the effect of MB on cellular oxygen and glucose metabolism in primary astrocytes following OGD-reoxygenation injury. MB treatment significantly increased cellular oxygen consumption, glucose uptake and ATP production in primary astrocytes. In conclusion our study demonstrated that MB protects astrocytes against OGD-reoxygenation injury by improving astrocyte cellular respiration. PMID:25848957

  10. Monitoring fractional anisotropy in developing rabbit brain using MR diffusion tensor imaging at 3T

    NASA Astrophysics Data System (ADS)

    Jao, Jo-Chi; Yang, Yu-Ting; Hsiao, Chia-Chi; Chen, Po-Chou

    2016-03-01

    The aim of this study was to investigate the factional anisotropy (FA) in various regions of developing rabbit brain using magnetic resonance diffusion tensor imaging (MR DTI) at 3 T. A whole-body clinical MR imaging (MRI) scanner with a 15-channel high resolution knee coil was used. An echo-planar-imaging (EPI)-DTI pulse sequence was performed. Five 5 week-old New Zealand white (NZW) rabbits underwent MRI once per week for 24 weeks. After scanning, FA maps were obtained. ROIs (regions of interests) in the frontal lobe, parietal & temporal lobe, and occipital lobe were measured. FA changes with time were evaluated with a linear regression analysis. The results show that the FA values in all lobes of the brain increased linearly with age. The ranking of FA values was FA(frontal lobe) < FA(parietal & temporal lobe) > FA(occipital lobe). There was significant difference (p < 0.05) among these lobes. FA values are associated with the nerve development and brain functions. The FA change rate could be a biomarker to monitor the brain development. Understanding the FA values of various lobes during development could provide helpful information to diagnosis the abnormal syndrome earlier and have a better treatment and prognosis. This study established a brain MR-DTI protocol for rabbits to investigate the brain anatomy during development using clinical MRI. This technique can be further applied to the pre-clinical diagnosis, treatment, prognosis and follow-up of brain lesions.

  11. Mobile phone use and risk of brain tumours: a systematic review of association between study quality, source of funding, and research outcomes.

    PubMed

    Prasad, Manya; Kathuria, Prachi; Nair, Pallavi; Kumar, Amit; Prasad, Kameshwar

    2017-05-01

    Mobile phones emit electromagnetic radiations that are classified as possibly carcinogenic to humans. Evidence for increased risk for brain tumours accumulated in parallel by epidemiologic investigations remains controversial. This paper aims to investigate whether methodological quality of studies and source of funding can explain the variation in results. PubMed and Cochrane CENTRAL searches were conducted from 1966 to December 2016, which was supplemented with relevant articles identified in the references. Twenty-two case control studies were included for systematic review. Meta-analysis of 14 case-control studies showed practically no increase in risk of brain tumour [OR 1.03 (95% CI 0.92-1.14)]. However, for mobile phone use of 10 years or longer (or >1640 h), the overall result of the meta-analysis showed a significant 1.33 times increase in risk. The summary estimate of government funded as well as phone industry funded studies showed 1.07 times increase in odds which was not significant, while mixed funded studies did not show any increase in risk of brain tumour. Metaregression analysis indicated that the association was significantly associated with methodological study quality (p < 0.019, 95% CI 0.009-0.09). Relationship between source of funding and log OR for each study was not statistically significant (p < 0.32, 95% CI 0.036-0.010). We found evidence linking mobile phone use and risk of brain tumours especially in long-term users (≥10 years). Studies with higher quality showed a trend towards high risk of brain tumour, while lower quality showed a trend towards lower risk/protection.

  12. Investigating Neuromagnetic Brain Responses against Chromatic Flickering Stimuli by Wavelet Entropies

    PubMed Central

    Bhagat, Mayank; Bhushan, Chitresh; Saha, Goutam; Shimjo, Shinsuke; Watanabe, Katsumi; Bhattacharya, Joydeep

    2009-01-01

    Background Photosensitive epilepsy is a type of reflexive epilepsy triggered by various visual stimuli including colourful ones. Despite the ubiquitous presence of colorful displays, brain responses against different colour combinations are not properly studied. Methodology/Principal Findings Here, we studied the photosensitivity of the human brain against three types of chromatic flickering stimuli by recording neuromagnetic brain responses (magnetoencephalogram, MEG) from nine adult controls, an unmedicated patient, a medicated patient, and two controls age-matched with patients. Dynamical complexities of MEG signals were investigated by a family of wavelet entropies. Wavelet entropy is a newly proposed measure to characterize large scale brain responses, which quantifies the degree of order/disorder associated with a multi-frequency signal response. In particular, we found that as compared to the unmedicated patient, controls showed significantly larger wavelet entropy values. We also found that Renyi entropy is the most powerful feature for the participant classification. Finally, we also demonstrated the effect of combinational chromatic sensitivity on the underlying order/disorder in MEG signals. Conclusions/Significance Our results suggest that when perturbed by potentially epileptic-triggering stimulus, healthy human brain manages to maintain a non-deterministic, possibly nonlinear state, with high degree of disorder, but an epileptic brain represents a highly ordered state which making it prone to hyper-excitation. Further, certain colour combination was found to be more threatening than other combinations. PMID:19779630

  13. Investigating neuromagnetic brain responses against chromatic flickering stimuli by wavelet entropies.

    PubMed

    Bhagat, Mayank; Bhushan, Chitresh; Saha, Goutam; Shimjo, Shinsuke; Watanabe, Katsumi; Bhattacharya, Joydeep

    2009-09-25

    Photosensitive epilepsy is a type of reflexive epilepsy triggered by various visual stimuli including colourful ones. Despite the ubiquitous presence of colorful displays, brain responses against different colour combinations are not properly studied. Here, we studied the photosensitivity of the human brain against three types of chromatic flickering stimuli by recording neuromagnetic brain responses (magnetoencephalogram, MEG) from nine adult controls, an unmedicated patient, a medicated patient, and two controls age-matched with patients. Dynamical complexities of MEG signals were investigated by a family of wavelet entropies. Wavelet entropy is a newly proposed measure to characterize large scale brain responses, which quantifies the degree of order/disorder associated with a multi-frequency signal response. In particular, we found that as compared to the unmedicated patient, controls showed significantly larger wavelet entropy values. We also found that Renyi entropy is the most powerful feature for the participant classification. Finally, we also demonstrated the effect of combinational chromatic sensitivity on the underlying order/disorder in MEG signals. Our results suggest that when perturbed by potentially epileptic-triggering stimulus, healthy human brain manages to maintain a non-deterministic, possibly nonlinear state, with high degree of disorder, but an epileptic brain represents a highly ordered state which making it prone to hyper-excitation. Further, certain colour combination was found to be more threatening than other combinations.

  14. Data-driven analysis of functional brain interactions during free listening to music and speech.

    PubMed

    Fang, Jun; Hu, Xintao; Han, Junwei; Jiang, Xi; Zhu, Dajiang; Guo, Lei; Liu, Tianming

    2015-06-01

    Natural stimulus functional magnetic resonance imaging (N-fMRI) such as fMRI acquired when participants were watching video streams or listening to audio streams has been increasingly used to investigate functional mechanisms of the human brain in recent years. One of the fundamental challenges in functional brain mapping based on N-fMRI is to model the brain's functional responses to continuous, naturalistic and dynamic natural stimuli. To address this challenge, in this paper we present a data-driven approach to exploring functional interactions in the human brain during free listening to music and speech streams. Specifically, we model the brain responses using N-fMRI by measuring the functional interactions on large-scale brain networks with intrinsically established structural correspondence, and perform music and speech classification tasks to guide the systematic identification of consistent and discriminative functional interactions when multiple subjects were listening music and speech in multiple categories. The underlying premise is that the functional interactions derived from N-fMRI data of multiple subjects should exhibit both consistency and discriminability. Our experimental results show that a variety of brain systems including attention, memory, auditory/language, emotion, and action networks are among the most relevant brain systems involved in classic music, pop music and speech differentiation. Our study provides an alternative approach to investigating the human brain's mechanism in comprehension of complex natural music and speech.

  15. Mannitol Improves Brain Tissue Oxygenation in a Model of Diffuse Traumatic Brain Injury.

    PubMed

    Schilte, Clotilde; Bouzat, Pierre; Millet, Anne; Boucheix, Perrine; Pernet-Gallay, Karin; Lemasson, Benjamin; Barbier, Emmanuel L; Payen, Jean-François

    2015-10-01

    Based on evidence supporting a potential relation between posttraumatic brain hypoxia and microcirculatory derangements with cell edema, we investigated the effects of the antiedematous agent mannitol on brain tissue oxygenation in a model of diffuse traumatic brain injury. Experimental study. Neurosciences and physiology laboratories. Adult male Wistar rats. Thirty minutes after diffuse traumatic brain injury (impact-acceleration model), rats were IV administered with either a saline solution (traumatic brain injury-saline group) or 20% mannitol (1 g/kg) (traumatic brain injury-mannitol group). Sham-saline and sham-mannitol groups received no insult. Two series of experiments were conducted 2 hours after traumatic brain injury (or equivalent) to investigate 1) the effect of mannitol on brain edema and oxygenation, using a multiparametric magnetic resonance-based approach (n = 10 rats per group) to measure the apparent diffusion coefficient, tissue oxygen saturation, mean transit time, and blood volume fraction in the cortex and caudoputamen; 2) the effect of mannitol on brain tissue PO2 and on venous oxygen saturation of the superior sagittal sinus (n = 5 rats per group); and 3) the cortical ultrastructural changes after treatment (n = 1 per group, taken from the first experiment). Compared with the sham-saline group, the traumatic brain injury-saline group had significantly lower tissue oxygen saturation, brain tissue PO2, and venous oxygen saturation of the superior sagittal sinus values concomitant with diffuse brain edema. These effects were associated with microcirculatory collapse due to astrocyte swelling. Treatment with mannitol after traumatic brain injury reversed all these effects. In the absence of traumatic brain injury, mannitol had no effect on brain oxygenation. Mean transit time and blood volume fraction were comparable between the four groups of rats. The development of posttraumatic brain edema can limit the oxygen utilization by brain tissue without evidence of brain ischemia. Our findings indicate that an antiedematous agent such as mannitol can improve brain tissue oxygenation, possibly by limiting astrocyte swelling and restoring capillary perfusion.

  16. Transferrin-modified liposome promotes α-mangostin to penetrate the blood-brain barrier.

    PubMed

    Chen, Zhi-Lan; Huang, Man; Wang, Xia-Rong; Fu, Jun; Han, Min; Shen, You-Qing; Xia, Zheng; Gao, Jian-Qing

    2016-02-01

    α-Mangostin (α-M) is a polyphenolic xanthone that protects and improves the survival of cerebral cortical neurons against Aβ oligomer-induced toxicity in rats. α-M is a potential candidate as a treatment for Alzheimer's disease (AD). However, the efficacy was limited by the poor penetration of the drug through the blood-brain barrier (BBB). In this study, we modified the α-M liposome with transferrin (Tf) and investigated the intracellular distribution of liposomes in bEnd3 cells. In addition, the transport of α-M across the BBB in the Tf(α-M) liposome group was examined. In vitro studies demonstrated that the Tf(α-M) liposome could cross the BBB in the form of an integrated liposome. Results of the in vivo studies on the α-M distribution in the brain demonstrated that the Tf(α-M) liposome improved the brain delivery of α-M. These results indicated that the Tf liposome is a potential carrier of α-M against AD. The use of α-Mangostin (α-M) as a potential agent to treat Alzheimer's disease (AD) has been reported. However, its use is limited by the poor penetration through the blood brain barrier. The delivery of this agent by transferrin-modified liposomes was investigated by the authors in this study. The positive results could point to a better drug delivery system for brain targeting. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Time-dependence of graph theory metrics in functional connectivity analysis

    PubMed Central

    Chiang, Sharon; Cassese, Alberto; Guindani, Michele; Vannucci, Marina; Yeh, Hsiang J.; Haneef, Zulfi; Stern, John M.

    2016-01-01

    Brain graphs provide a useful way to computationally model the network structure of the connectome, and this has led to increasing interest in the use of graph theory to quantitate and investigate the topological characteristics of the healthy brain and brain disorders on the network level. The majority of graph theory investigations of functional connectivity have relied on the assumption of temporal stationarity. However, recent evidence increasingly suggests that functional connectivity fluctuates over the length of the scan. In this study, we investigate the stationarity of brain network topology using a Bayesian hidden Markov model (HMM) approach that estimates the dynamic structure of graph theoretical measures of whole-brain functional connectivity. In addition to extracting the stationary distribution and transition probabilities of commonly employed graph theory measures, we propose two estimators of temporal stationarity: the S-index and N-index. These indexes can be used to quantify different aspects of the temporal stationarity of graph theory measures. We apply the method and proposed estimators to resting-state functional MRI data from healthy controls and patients with temporal lobe epilepsy. Our analysis shows that several graph theory measures, including small-world index, global integration measures, and betweenness centrality, may exhibit greater stationarity over time and therefore be more robust. Additionally, we demonstrate that accounting for subject-level differences in the level of temporal stationarity of network topology may increase discriminatory power in discriminating between disease states. Our results confirm and extend findings from other studies regarding the dynamic nature of functional connectivity, and suggest that using statistical models which explicitly account for the dynamic nature of functional connectivity in graph theory analyses may improve the sensitivity of investigations and consistency across investigations. PMID:26518632

  18. Time-dependence of graph theory metrics in functional connectivity analysis.

    PubMed

    Chiang, Sharon; Cassese, Alberto; Guindani, Michele; Vannucci, Marina; Yeh, Hsiang J; Haneef, Zulfi; Stern, John M

    2016-01-15

    Brain graphs provide a useful way to computationally model the network structure of the connectome, and this has led to increasing interest in the use of graph theory to quantitate and investigate the topological characteristics of the healthy brain and brain disorders on the network level. The majority of graph theory investigations of functional connectivity have relied on the assumption of temporal stationarity. However, recent evidence increasingly suggests that functional connectivity fluctuates over the length of the scan. In this study, we investigate the stationarity of brain network topology using a Bayesian hidden Markov model (HMM) approach that estimates the dynamic structure of graph theoretical measures of whole-brain functional connectivity. In addition to extracting the stationary distribution and transition probabilities of commonly employed graph theory measures, we propose two estimators of temporal stationarity: the S-index and N-index. These indexes can be used to quantify different aspects of the temporal stationarity of graph theory measures. We apply the method and proposed estimators to resting-state functional MRI data from healthy controls and patients with temporal lobe epilepsy. Our analysis shows that several graph theory measures, including small-world index, global integration measures, and betweenness centrality, may exhibit greater stationarity over time and therefore be more robust. Additionally, we demonstrate that accounting for subject-level differences in the level of temporal stationarity of network topology may increase discriminatory power in discriminating between disease states. Our results confirm and extend findings from other studies regarding the dynamic nature of functional connectivity, and suggest that using statistical models which explicitly account for the dynamic nature of functional connectivity in graph theory analyses may improve the sensitivity of investigations and consistency across investigations. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Seventh Graders' Academic Achievement, Creativity, and Ability to Construct a Cross-Domain Concept Map--A Brain Function Perspective

    ERIC Educational Resources Information Center

    Yeh, Yu-Chu

    2004-01-01

    This study proposes an interactive model of "cross-domain" concept mapping with an emphasis on brain functions, and it further investigates the relationships between academic achievement, creative thinking, and cross-domain concept mapping. Sixty-nine seventh graders participated in this study which employed two 50-minute instructional…

  20. How the Brain Responds to "Any": An MEG Study

    ERIC Educational Resources Information Center

    Tesan, Graciela; Johnson, Blake W.; Crain, Stephen

    2012-01-01

    The word "any" may appear in some sentences, but not in others. For example, "any" is permitted in sentences that contain the word "nobody", as in "Nobody ate any fruit". However, in a minimally different context "any" seems strikingly anomalous: *"Everybody ate any fruit". The aim of the present study was to investigate how the brain responds to…

  1. Intact blood-brain barrier transport of small molecular drugs in animal models of amyloid beta and alpha-synuclein pathology.

    PubMed

    Gustafsson, Sofia; Lindström, Veronica; Ingelsson, Martin; Hammarlund-Udenaes, Margareta; Syvänen, Stina

    2018-01-01

    Pathophysiological impairment of the neurovascular unit, including the integrity and dynamics of the blood-brain barrier (BBB), has been denoted both a cause and consequence of neurodegenerative diseases. Pathological impact on BBB drug delivery has also been debated. The aim of the present study was to investigate BBB drug transport, by determining the unbound brain-to-plasma concentration ratio (K p,uu,brain ), in aged AβPP-transgenic mice, α-synuclein transgenic mice, and wild type mice. Mice were dosed with a cassette of five compounds, including digoxin, levofloxacin (1 mg/kg, s.c.), paliperidone, oxycodone, and diazepam (0.25 mg/kg, s.c.). Brain and blood were collected at 0.5, 1, or 3 h after dosage. Drug concentrations were measured using LC-MS/MS. The total brain-to-plasma concentration ratio was calculated and equilibrium dialysis was used to determine the fraction of unbound drug in brain and plasma for all compounds. Together, these three measures were used to determine the K p,uu,brain value. Despite Aβ or α-synuclein pathology in the current animal models, no difference was observed in the extent of drug transport across the BBB compared to wild type animals for any of the compounds investigated. Hence, the present study shows that the concept of a leaking barrier within neurodegenerative conditions has to be interpreted with caution when estimating drug transport into the brain. The capability of the highly dynamic BBB to regulate brain drug exposure still seems to be intact despite the presence of pathology. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Pomegranate extract protects against cerebral ischemia/reperfusion injury and preserves brain DNA integrity in rats.

    PubMed

    Ahmed, Maha A E; El Morsy, Engy M; Ahmed, Amany A E

    2014-08-21

    Interruption to blood flow causes ischemia and infarction of brain tissues with consequent neuronal damage and brain dysfunction. Pomegranate extract is well tolerated, and safely consumed all over the world. Interestingly, pomegranate extract has shown remarkable antioxidant and anti-inflammatory effects in experimental models. Many investigators consider natural extracts as novel therapies for neurodegenerative disorders. Therefore, this study was carried out to investigate the protective effects of standardized pomegranate extract against cerebral ischemia/reperfusion-induced brain injury in rats. Adult male albino rats were randomly divided into sham-operated control group, ischemia/reperfusion (I/R) group, and two other groups that received standardized pomegranate extract at two dose levels (250, 500 mg/kg) for 15 days prior to ischemia/reperfusion (PMG250+I/R, and PMG500+I/R groups). After I/R or sham operation, all rats were sacrificed and brains were harvested for subsequent biochemical analysis. Results showed reduction in brain contents of MDA (malondialdehyde), and NO (nitric oxide), in addition to enhancement of SOD (superoxide dismutase), GPX (glutathione peroxidase), and GRD (glutathione reductase) activities in rats treated with pomegranate extract prior to cerebral I/R. Moreover, pomegranate extract decreased brain levels of NF-κB p65 (nuclear factor kappa B p65), TNF-α (tumor necrosis factor-alpha), caspase-3 and increased brain levels of IL-10 (interleukin-10), and cerebral ATP (adenosine triphosphate) production. Comet assay showed less brain DNA (deoxyribonucleic acid) damage in rats protected with pomegranate extract. The present study showed, for the first time, that pre-administration of pomegranate extract to rats, can offer a significant dose-dependent neuroprotective activity against cerebral I/R brain injury and DNA damage via antioxidant, anti-inflammatory, anti-apoptotic and ATP-replenishing effects. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Brivaracetam, a selective high-affinity synaptic vesicle protein 2A (SV2A) ligand with preclinical evidence of high brain permeability and fast onset of action.

    PubMed

    Nicolas, Jean-Marie; Hannestad, Jonas; Holden, Daniel; Kervyn, Sophie; Nabulsi, Nabeel; Tytgat, Dominique; Huang, Yiyun; Chanteux, Hugues; Staelens, Ludovicus; Matagne, Alain; Mathy, François-Xavier; Mercier, Joël; Stockis, Armel; Carson, Richard E; Klitgaard, Henrik

    2016-02-01

    Rapid distribution to the brain is a prerequisite for antiepileptic drugs used for treatment of acute seizures. The preclinical studies described here investigated the high-affinity synaptic vesicle glycoprotein 2A (SV2A) antiepileptic drug brivara-cetam (BRV) for its rate of brain penetration and its onset of action. BRV was compared with levetiracetam (LEV). In vitro permeation studies were performed using Caco-2 cells. Plasma and brain levels were measured over time after single oral dosing to audiogenic mice and were correlated with anticonvulsant activity. Tissue distribution was investigated after single dosing to rat (BRV and LEV) and dog (LEV only). Positron emission tomography (PET) displacement studies were performed in rhesus monkeys using the SV2A PET tracer [11C]UCB-J. The time course of PET tracer displacement was measured following single intravenous (IV) dosing with LEV or BRV. Rodent distribution data and physiologically based pharmacokinetic (PBPK) modeling were used to compute blood-brain barrier permeability (permeability surface area product, PS) values and then predict brain kinetics in man. In rodents, BRV consistently showed a faster entry into the brain than LEV; this correlated with a faster onset of action against seizures in audiogenic susceptible mice. The higher permeability of BRV was also demonstrated in human cells in vitro. PBPK modeling predicted that, following IV dosing to human subjects, BRV might distribute to the brain within a few minutes compared with approximately 1 h for LEV (PS of 0.315 and 0.015 ml/min/g for BRV and LEV, respectively). These data were supported by a nonhuman primate PET study showing faster SV2A occupancy by BRV compared with LEV. These preclinical data demonstrate that BRV has rapid brain entry and fast brain SV2A occupancy, consistent with the fast onset of action in the audiogenic seizure mice assay. The potential benefit of BRV for treatment of acute seizures remains to be confirmed in clinical studies. © 2015 The Authors. Epilepsia published by Wiley Periodicals, Inc. on behalf of International League Against Epilepsy.

  4. Aberrant brain stem morphometry associated with sleep disturbance in drug-naïve subjects with Alzheimer's disease.

    PubMed

    Lee, Ji Han; Jung, Won Sang; Choi, Woo Hee; Lim, Hyun Kook

    2016-01-01

    Among patients with Alzheimer's disease (AD), sleep disturbances are common and serious noncognitive symptoms. Previous studies of AD patients have identified deformations in the brain stem, which may play an important role in the regulation of sleep. The aim of this study was to further investigate the relationship between sleep disturbances and alterations in brain stem morphology in AD. In 44 patients with AD and 40 healthy elderly controls, sleep disturbances were measured using the Neuropsychiatry Inventory sleep subscale. We employed magnetic resonance imaging-based automated segmentation tools to examine the relationship between sleep disturbances and changes in brain stem morphology. Analyses of the data from AD subjects revealed significant correlations between the Neuropsychiatry Inventory sleep-subscale scores and structural alterations in the left posterior lateral region of the brain stem, as well as normalized brain stem volumes. In addition, significant group differences in posterior brain stem morphology were observed between the AD group and the control group. This study is the first to analyze an association between sleep disturbances and brain stem morphology in AD. In line with previous findings, this study lends support to the possibility that brain stem structural abnormalities might be important neurobiological mechanisms underlying sleep disturbances associated with AD. Further longitudinal research is needed to confirm these findings.

  5. Understanding and enhancing motor recovery after stroke using transcranial magnetic stimulation

    PubMed Central

    Hoyer, Erik H.; Celnik, Pablo A.

    2013-01-01

    Stroke is the leading cause of long-term disability. Understanding how people recover from stroke and other brain lesions remain one of the biggest conundrums in neuroscience. As a result, concerted efforts in recent years have focused on investigating the neurophysiological changes that occur in the brain after stroke, and in developing novel strategies to enhance motor recovery. In particular, transcranial magnetic stimulation (TMS) is a non-invasive tool that has been used to investigate the brain plasticity changes resulting from stroke and as a therapeutic modality to safely improve motor function. In this review, we discuss the contributions of TMS to understand how different motor areas, such as the ipsilesional hemisphere, secondary motor areas, and contralesional hemisphere are involved in motor recovery. We also consider recent studies using repetitive TMS (rTMS) in stroke patients to enhance upper extremity function. Although further studies are needed, these investigations provide an important starting point to understand the stimulation parameters and patient characteristics that may influence the optimal response to non-invasive brain stimulation. Future directions of rTMS are discussed in the context of post-stroke motor recovery. PMID:22124033

  6. Advances in PET Imaging of P-Glycoprotein Function at the Blood-Brain Barrier

    PubMed Central

    2012-01-01

    Efflux transporter P-glycoprotein (P-gp) at the blood-brain barrier (BBB) restricts substrate compounds from entering the brain and may thus contribute to pharmacoresistance observed in patient groups with refractory epilepsy and HIV. Altered P-gp function has also been implicated in neurodegenerative diseases such as Alzheimer’s and Parkinson’s disease. Positron emission tomography (PET), a molecular imaging modality, has become a promising method to study the role of P-gp at the BBB. The first PET study of P-gp function was conducted in 1998, and during the past 15 years two main categories of P-gp PET tracers have been investigated: tracers that are substrates of P-gp efflux and tracers that are inhibitors of P-gp function. PET, as a noninvasive imaging technique, allows translational research. Examples of this are preclinical investigations of P-gp function before and after administering P-gp modulating drugs, investigations in various animal and disease models, and clinical investigations regarding disease and aging. The objective of the present review is to give an overview of available PET radiotracers for studies of P-gp and to discuss how such studies can be designed. Further, the review summarizes results from PET studies of P-gp function in different central nervous system disorders. PMID:23421673

  7. Neurovascular coupling is brain region-dependent.

    PubMed

    Devonshire, Ian M; Papadakis, Nikos G; Port, Michael; Berwick, Jason; Kennerley, Aneurin J; Mayhew, John E W; Overton, Paul G

    2012-02-01

    Despite recent advances in alternative brain imaging technologies, functional magnetic resonance imaging (fMRI) remains the workhorse for both medical diagnosis and primary research. Indeed, the number of research articles that utilise fMRI have continued to rise unabated since its conception in 1991, despite the limitation that recorded signals originate from the cerebral vasculature rather than neural tissue. Consequently, understanding the relationship between brain activity and the resultant changes in metabolism and blood flow (neurovascular coupling) remains a vital area of research. In the past, technical constraints have restricted investigations of neurovascular coupling to cortical sites and have led to the assumption that coupling in non-cortical structures is the same as in the cortex, despite the lack of any evidence. The current study investigated neurovascular coupling in the rat using whole-brain blood oxygenation level-dependent (BOLD) fMRI and multi-channel electrophysiological recordings and measured the response to a sensory stimulus as it proceeded through brainstem, thalamic and cortical processing sites - the so-called whisker-to-barrel pathway. We found marked regional differences in the amplitude of BOLD activation in the pathway and non-linear neurovascular coupling relationships in non-cortical sites. The findings have important implications for studies that use functional brain imaging to investigate sub-cortical function and caution against the use of simple, linear mapping of imaging signals onto neural activity. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. The effect of brain size evolution on feeding propensity, digestive efficiency, and juvenile growth

    PubMed Central

    Kotrschal, Alexander; Corral‐Lopez, Alberto; Szidat, Sönke; Kolm, Niclas

    2015-01-01

    One key hypothesis in the study of brain size evolution is the expensive tissue hypothesis; the idea that increased investment into the brain should be compensated by decreased investment into other costly organs, for instance the gut. Although the hypothesis is supported by both comparative and experimental evidence, little is known about the potential changes in energetic requirements or digestive traits following such evolutionary shifts in brain and gut size. Organisms may meet the greater metabolic requirements of larger brains despite smaller guts via increased food intake or better digestion. But increased investment in the brain may also hamper somatic growth. To test these hypotheses we here used guppy (Poecilia reticulata) brain size selection lines with a pronounced negative association between brain and gut size and investigated feeding propensity, digestive efficiency (DE), and juvenile growth rate. We did not find any difference in feeding propensity or DE between large‐ and small‐brained individuals. Instead, we found that large‐brained females had slower growth during the first 10 weeks after birth. Our study provides experimental support that investment into larger brains at the expense of gut tissue carries costs that are not necessarily compensated by a more efficient digestive system. PMID:26420573

  9. The relationship between brain volumes and intelligence in bipolar disorder.

    PubMed

    Vreeker, Annabel; Abramovic, Lucija; Boks, Marco P M; Verkooijen, Sanne; van Bergen, Annet H; Ophoff, Roel A; Kahn, René S; van Haren, Neeltje E M

    2017-12-01

    Bipolar disorder type-I (BD-I) patients show a lower Intelligence Quotient (IQ) and smaller brain volumes as compared with healthy controls. Considering that in healthy individuals lower IQ is related to smaller total brain volume, it is of interest to investigate whether IQ deficits in BD-I patients are related to smaller brain volumes and to what extent smaller brain volumes can explain differences between premorbid IQ estimates and IQ after a diagnosis of BD-I. Magnetic resonance imaging brain scans, IQ and premorbid IQ scores were obtained from 195 BDI patients and 160 controls. We studied the relationship of (global, cortical and subcortical) brain volumes with IQ and IQ change. Additionally, we investigated the relationship between childhood trauma, lithium- and antipsychotic use and IQ. Total brain volume and IQ were positively correlated in the entire sample. This correlation did not differ between patients and controls. Although brain volumes mediated the relationship between BD-I and IQ in part, the direct relationship between the diagnosis and IQ remained significant. Childhood trauma and use of lithium and antipsychotic medication did not affect the relationship between brain volumes and IQ. However, current lithium use was related to lower IQ in patients. Our data suggest a similar relationship between brain volume and IQ in BD-I patients and controls. Smaller brain volumes only partially explain IQ deficits in patients. Therefore, our findings indicate that in addition to brain volumes and lithium use other disease factors play a role in IQ deficits in BD-I patients. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Legacy Clinical Data from the Epo TBI Trial

    DTIC Science & Technology

    2015-10-01

    Anemia in Traumatic Brain Injury (TBI)” which we will share with other investigators through the Federal Interagency Traumatic Brain Injury (FITBIR... Informatics System. This trial was funded by National Institute of Neurological Disorders and Stroke (NINDS) grant #P01-NS38660. The study began...Data Elements (CDEs) for TBI, and therefore requires work to convert the data to the format required by FITBIR. 2. KEYWORDS: Traumatic brain

  11. Transcriptomic configuration of mouse brain induced by adolescent exposure to 3,4-methylenedioxymethamphetamine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eun, Jung Woo; Kwack, Seung Jun; Noh, Ji Heon

    The amphetamine derivative ({+-})-3,4-methylenedioxymethamphetamine (MDMA or ecstasy) is a synthetic amphetamine analogue used recreationally to obtain an enhanced affiliative emotional response. MDMA is a potent monoaminergic neurotoxin with the potential to damage brain serotonin and/or dopamine neurons. As the majority of MDMA users are young adults, the risk that users may expose the fetus to MDMA is a concern. However, the majority of studies on MDMA have investigated the effects on adult animals. Here, we investigated whether long-term exposure to MDMA, especially in adolescence, could induce comprehensive transcriptional changes in mouse brain. Transcriptomic analysis of mouse brain regions demonstrated significantmore » gene expression changes in the cerebral cortex. Supervised analysis identified 1028 genes that were chronically dysregulated by long-term exposure to MDMA in adolescent mice. Functional categories most represented by this MDMA characteristic signature are intracellular molecular signaling pathways of neurotoxicity, such as, the MAPK signaling pathway, the Wnt signaling pathway, neuroactive ligand-receptor interaction, long-term potentiation, and the long-term depression signaling pathway. Although these resultant large-scale molecular changes remain to be studied associated with functional brain damage caused by MDMA, our observations delineate the possible neurotoxic effects of MDMA on brain function, and have therapeutic implications concerning neuro-pathological conditions associated with MDMA abuse.« less

  12. Altered regional homogeneity of spontaneous brain activity in idiopathic trigeminal neuralgia.

    PubMed

    Wang, Yanping; Zhang, Xiaoling; Guan, Qiaobing; Wan, Lihong; Yi, Yahui; Liu, Chun-Feng

    2015-01-01

    The pathophysiology of idiopathic trigeminal neuralgia (ITN) has conventionally been thought to be induced by neurovascular compression theory. Recent structural brain imaging evidence has suggested an additional central component for ITN pathophysiology. However, far less attention has been given to investigations of the basis of abnormal resting-state brain activity in these patients. The objective of this study was to investigate local brain activity in patients with ITN and its correlation with clinical variables of pain. Resting-state functional magnetic resonance imaging data from 17 patients with ITN and 19 age- and sex-matched healthy controls were analyzed using regional homogeneity (ReHo) analysis, which is a data-driven approach used to measure the regional synchronization of spontaneous brain activity. Patients with ITN had decreased ReHo in the left amygdala, right parahippocampal gyrus, and left cerebellum and increased ReHo in the right inferior temporal gyrus, right thalamus, right inferior parietal lobule, and left postcentral gyrus (corrected). Furthermore, the increase in ReHo in the left precentral gyrus was positively correlated with visual analog scale (r=0.54; P=0.002). Our study found abnormal functional homogeneity of intrinsic brain activity in several regions in ITN, suggesting the maladaptivity of the process of daily pain attacks and a central role for the pathophysiology of ITN.

  13. Estimated maximal and current brain volume predict cognitive ability in old age

    PubMed Central

    Royle, Natalie A.; Booth, Tom; Valdés Hernández, Maria C.; Penke, Lars; Murray, Catherine; Gow, Alan J.; Maniega, Susana Muñoz; Starr, John; Bastin, Mark E.; Deary, Ian J.; Wardlaw, Joanna M.

    2013-01-01

    Brain tissue deterioration is a significant contributor to lower cognitive ability in later life; however, few studies have appropriate data to establish how much influence prior brain volume and prior cognitive performance have on this association. We investigated the associations between structural brain imaging biomarkers, including an estimate of maximal brain volume, and detailed measures of cognitive ability at age 73 years in a large (N = 620), generally healthy, community-dwelling population. Cognitive ability data were available from age 11 years. We found positive associations (r) between general cognitive ability and estimated brain volume in youth (male, 0.28; females, 0.12), and in measured brain volume in later life (males, 0.27; females, 0.26). Our findings show that cognitive ability in youth is a strong predictor of estimated prior and measured current brain volume in old age but that these effects were the same for both white and gray matter. As 1 of the largest studies of associations between brain volume and cognitive ability with normal aging, this work contributes to the wider understanding of how some early-life factors influence cognitive aging. PMID:23850342

  14. Brain imaging and cognition in young narcoleptic patients.

    PubMed

    Huang, Yu-Shu; Liu, Feng-Yuan; Lin, Chin-Yang; Hsiao, Ing-Tsung; Guilleminault, Christian

    2016-08-01

    The relationship between functional brain images and performances in narcoleptic patients and controls is a new field of investigation. We studied 71 young, type 1 narcoleptic patients and 20 sex- and age-matched control individuals using brain positron emission tomography (PET) images and neurocognitive testing. Clinical investigation was carried out using sleep-wake evaluation questionnaires; a sleep-wake study was conducted with actigraphy, polysomnography, multiple sleep latency test (MSLT), and blood tests (with human leukocyte antigen typing). The continuous performance test (CPT) and Wisconsin card sorting test (WCST) were administered on the same day as the PET study. PET data were analyzed using Statistical Parametric Mapping (version 8) software. Correlation of brain imaging and neurocognitive function was performed by Pearson's correlation. Statistical analyses (Student's t-test) were conducted with SPSS version-18. Seventy-one narcoleptic patients (mean age: 16.15 years, 41 boys (57.7%)) and 20 controls (mean age: 15.1 years, 12 boys (60%)) were studied. Results from the CPT and WCST showed significantly worse scores in narcoleptic patients than in controls (P < 0.05). Compared to controls, narcoleptic patients presented with hypometabolism in the right mid-frontal lobe and angular gyrus (P < 0.05) and significant hypermetabolism in the olfactory lobe, hippocampus, parahippocampus, amygdala, fusiform, left inferior parietal lobe, left superior temporal lobe, striatum, basal ganglia and thalamus, right hypothalamus, and pons (P < 0.05) in the PET study. Changes in brain metabolic activity in narcoleptic patients were positively correlated with results from the sleepiness scales and performance tests. Young, type 1 narcoleptic patients face a continuous cognitive handicap. Our imaging cognitive test protocol can be useful for investigating the effects of treatment trials in these patients. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. The Effects of Brain-Based Learning on the Academic Achievement of Students with Different Learning Styles

    ERIC Educational Resources Information Center

    Duman, Bilal

    2010-01-01

    The purpose of the present study is to investigate the effects of Brain-based learning (BBL) on the academic achievement of students with different learning styles. The study group consists of students from the department of Social Sciences Teacher Education in the Faculty of Education at Mugla University (N=68). In the study, a pre-test-post-test…

  16. Regulation of the Adrenal Cortex Function During Stress

    NASA Technical Reports Server (NTRS)

    Soliman, K. F. A.

    1978-01-01

    A proposal to study the function of the adrenal gland in the rat during stress is presented. In the proposed project, three different phases of experimentation will be undertaken. The first phase includes establishment of the circadian rhythm of both brain amines and glucocoticoids, under normal conditions and under chronic and acute stressful conditions. The second phase includes the study of the pharmacokinetics of glucocorticoid binding under normal and stress conditions. The third phase includes brain uptake and binding under different experimental conditions. In the outlined experiments brain biogenic amines will be evaluated, adrenal functions will be measured and stress effect on those parameters will be studied. It is hoped that this investigation can explain some of the complex relationships between the brain neurotransmitter and adrenal function.

  17. Quantitative imaging of magnesium distribution at single-cell resolution in brain tumors and infiltrating tumor cells with secondary ion mass spectrometry (SIMS)

    PubMed Central

    Chandra, Subhash; Parker, Dylan J.; Barth, Rolf F.; Pannullo, Susan C.

    2016-01-01

    Glioblastoma multiforme (GBM) is one of the deadliest forms of human brain tumors. The infiltrative pattern of growth of these tumors includes the spread of individual and/or clusters of tumor cells at some distance from the main tumor mass in parts of the brain protected by an intact blood-brain-barrier. Pathophysiological studies of GBM could be greatly enhanced by analytical techniques capable of in situ single-cell resolution measurements of infiltrating tumor cells. Magnesium homeostasis is an area of active investigation in high grade gliomas. In the present study, we have used the F98 rat glioma as a model of human GBM and an elemental/isotopic imaging technique of secondary ion mass spectrometry (SIMS), a CAMECA IMS-3f ion microscope, for studying Mg distributions with single-cell resolution in freeze-dried brain tissue cryosections. Quantitative observations were made on tumor cells in the main tumor mass, contiguous brain tissue, and infiltrating tumor cells in adjacent normal brain. The brain tissue contained a significantly lower total Mg concentration of 4.70 ± 0.93 mmol/Kg wet weight (mean ± SD) in comparison to 11.64 ± 1.96 mmol/Kg wet weight in tumor cells of the main tumor mass and 10.72 ± 1.76 mmol/Kg wet weight in infiltrating tumor cells (p<0.05). The nucleus of individual tumor cells contained elevated levels of bound Mg. These observations demonstrate enhanced Mg-influx and increased binding of Mg in tumor cells and provide strong support for further investigation of GBMs for altered Mg homeostasis and activation of Mg-transporting channels as possible therapeutic targets. PMID:26703785

  18. Increased risk of brain cancer incidence in stroke patients: a clinical case series, population-based and longitudinal follow-up study.

    PubMed

    Chen, Chih-Wei; Cheng, Tain-Junn; Ho, Chung-Han; Wang, Jhi-Joung; Weng, Shih-Feng; Hou, Ya-Chin; Cheng, Hung-Chi; Chio, Chung-Ching; Shan, Yan-Shen; Chang, Wen-Tsan

    2017-12-12

    Stroke and brain cancer are two distinct diseases. However, the relationship between both diseases has rarely been examined. This study investigated the longitudinal risk for developing brain cancer in stroke patients. To study this, we first reviewed the malignant gliomas previously with or without stroke using brain magnetic resonance imaging (MRI) images and the past histories. Two ischemic stroke patients before the malignant glioma were identified and belonged to the glioblastoma mutiforme (GBM). Particularly, both GBM specimens displayed strong hypoxia-inducible factor 1α (HIF-1α) expression in immunohistochemical (IHC) staining. To elucidate the significance of this relationship, we then used a nationwide population-based cohort in Taiwan to investigate the risk for the incidence of brain cancer in patients previously with or without stroke. The incidence of all tumors in the stroke group was lower than that in the control group with an adjusted hazard ratio (HR) of 0.79 (95% confidence interval [CI]: 0.74-0.84) in both gender and age older than 60 years. But the stroke patients had higher risk of developing only brain cancer with an adjusted HR of 3.09 (95% CI: 1.80-5.30), and otherwise had lower risk of developing head and neck, digestive, respiratory, bone and skin, as well as other tumors, all with p<0.05. After stratification by gender and age, the female and aged 40-60 year old stroke patients had higher risk of developing brain cancer with an adjusted HR of 7.41 (95% CI: 3.30-16.64) and 16.34 (95% CI: 4.45-62.13), respectively, both with p<0.05. Patients with stroke, in particular female and age 40-60 years old, have an increased risk for developing brain cancer.

  19. Regional Homogeneity

    PubMed Central

    Jiang, Lili; Zuo, Xi-Nian

    2015-01-01

    Much effort has been made to understand the organizational principles of human brain function using functional magnetic resonance imaging (fMRI) methods, among which resting-state fMRI (rfMRI) is an increasingly recognized technique for measuring the intrinsic dynamics of the human brain. Functional connectivity (FC) with rfMRI is the most widely used method to describe remote or long-distance relationships in studies of cerebral cortex parcellation, interindividual variability, and brain disorders. In contrast, local or short-distance functional interactions, especially at a scale of millimeters, have rarely been investigated or systematically reviewed like remote FC, although some local FC algorithms have been developed and applied to the discovery of brain-based changes under neuropsychiatric conditions. To fill this gap between remote and local FC studies, this review will (1) briefly survey the history of studies on organizational principles of human brain function; (2) propose local functional homogeneity as a network centrality to characterize multimodal local features of the brain connectome; (3) render a neurobiological perspective on local functional homogeneity by linking its temporal, spatial, and individual variability to information processing, anatomical morphology, and brain development; and (4) discuss its role in performing connectome-wide association studies and identify relevant challenges, and recommend its use in future brain connectomics studies. PMID:26170004

  20. Iron in Multiple Sclerosis and Its Noninvasive Imaging with Quantitative Susceptibility Mapping

    PubMed Central

    Stüber, Carsten; Pitt, David; Wang, Yi

    2016-01-01

    Iron is considered to play a key role in the development and progression of Multiple Sclerosis (MS). In particular, iron that accumulates in myeloid cells after the blood-brain barrier (BBB) seals may contribute to chronic inflammation, oxidative stress and eventually neurodegeneration. Magnetic resonance imaging (MRI) is a well-established tool for the non-invasive study of MS. In recent years, an advanced MRI method, quantitative susceptibility mapping (QSM), has made it possible to study brain iron through in vivo imaging. Moreover, immunohistochemical investigations have helped defining the lesional and cellular distribution of iron in MS brain tissue. Imaging studies in MS patients and of brain tissue combined with histological studies have provided important insights into the role of iron in inflammation and neurodegeneration in MS. PMID:26784172

  1. Neurophotonics: optical methods to study and control the brain

    NASA Astrophysics Data System (ADS)

    Doronina-Amitonova, L. V.; Fedotov, I. V.; Fedotov, A. B.; Anokhin, K. V.; Zheltikov, A. M.

    2015-04-01

    Methods of optical physics offer unique opportunities for the investigation of brain and higher nervous activity. The integration of cutting-edge laser technologies and advanced neurobiology opens a new cross-disciplinary area of natural sciences - neurophotonics - focusing on the development of a vast arsenal of tools for functional brain diagnostics, stimulation of individual neurons and neural networks, and the molecular engineering of brain cells aimed at the diagnosis and therapy of neurodegenerative and psychic diseases. Optical fibers help to confront the most challenging problems in brain research, including the analysis of molecular-cellular mechanisms of the formation of memory and behavior. New generation optical fibers provide new solutions for the development of fundamentally new, unique tools for neurophotonics and laser neuroengineering - fiber-optic neuroendoscopes and neurointerfaces. These instruments broaden research horizons when investigating the most complex brain functions, enabling a long-term multiplex detection of fluorescent protein markers, as well as photostimulation of neuronal activity in deep brain areas in living, freely moving animals with an unprecedented spatial resolution and minimal invasiveness. This emerging technology opens new horizons for understanding learning and long-term memory through experiments with living, freely moving mammals. Here, we present a brief review of this rapidly growing field of research.

  2. Prevalence of Toxoplasma gondii infection in brain and heart by Immunohistochemistry in a hospital-based autopsy series in Durango, Mexico.

    PubMed

    Alvarado-Esquivel, Cosme; Sánchez-Anguiano, Luis Francisco; Mendoza-Larios, Alejandra; Hernández-Tinoco, Jesús; Pérez-Ochoa, José Francisco; Antuna-Salcido, Elizabeth Irasema; Rábago-Sánchez, Elizabeth; Liesenfeld, Oliver

    2015-06-01

    The presence of tissue cysts of Toxoplasma gondii has only poorly been investigated in autopsy series. We determined the presence of T. gondii cysts in a series of 51 autopsies in a public hospital using immunohistochemistry of brain and heart tissues. The association of tissue cysts with the general characteristics of the autopsy cases was also investigated. Of the 51 cases studied, five (9.8%) were positive by immunohistochemistry for T. gondii cysts in the brain. None of the heart specimens was positive for T. gondii cysts. The presence of T. gondii cysts in brains did not vary with age, sex, birthplace, residence, education, occupation, or the presence of pathology in the brain. In contrast, multivariate analysis showed that the presence of T. gondii cysts was associated with undernourishment (OR = 33.90; 95% CI: 2.82-406.32; P = 0.005). We demonstrated cerebral T. gondii cysts in an autopsy series in Durango City, Mexico. Results suggest that T. gondii can be more readily found in brain than in heart of infected individuals. This is the first report of an association between the presence of T. gondii in brains and undernourishment.

  3. Prevalence of Toxoplasma gondii infection in brain and heart by Immunohistochemistry in a hospital-based autopsy series in Durango, Mexico

    PubMed Central

    Alvarado-Esquivel, Cosme; Sánchez-Anguiano, Luis Francisco; Mendoza-Larios, Alejandra; Hernández-Tinoco, Jesús; Pérez-Ochoa, José Francisco; Antuna-Salcido, Elizabeth Irasema; Rábago-Sánchez, Elizabeth; Liesenfeld, Oliver

    2015-01-01

    The presence of tissue cysts of Toxoplasma gondii has only poorly been investigated in autopsy series. We determined the presence of T. gondii cysts in a series of 51 autopsies in a public hospital using immunohistochemistry of brain and heart tissues. The association of tissue cysts with the general characteristics of the autopsy cases was also investigated. Of the 51 cases studied, five (9.8%) were positive by immunohistochemistry for T. gondii cysts in the brain. None of the heart specimens was positive for T. gondii cysts. The presence of T. gondii cysts in brains did not vary with age, sex, birthplace, residence, education, occupation, or the presence of pathology in the brain. In contrast, multivariate analysis showed that the presence of T. gondii cysts was associated with undernourishment (OR = 33.90; 95% CI: 2.82–406.32; P = 0.005). We demonstrated cerebral T. gondii cysts in an autopsy series in Durango City, Mexico. Results suggest that T. gondii can be more readily found in brain than in heart of infected individuals. This is the first report of an association between the presence of T. gondii in brains and undernourishment. PMID:26185682

  4. Brain Volume as an Integrated Marker for the Risk of Death in a Community-Based Sample: Age Gene/Environment Susceptibility--Reykjavik Study.

    PubMed

    Van Elderen, Saskia S G C; Zhang, Qian; Sigurdsson, Sigudur; Haight, Thaddeus J; Lopez, Oscar; Eiriksdottir, Gudny; Jonsson, Palmi; de Jong, Laura; Harris, Tamara B; Garcia, Melissa; Gudnason, Vilmundar; van Buchem, Mark A; Launer, Lenore J

    2016-01-01

    Total brain volume is an integrated measure of health and may be an independent indicator of mortality risk independent of any one clinical or subclinical disease state. We investigate the association of brain volume to total and cause-specific mortality in a large nondemented stroke-free community-based cohort. The analysis includes 3,543 men and women (born 1907-1935) participating in the Age, Gene, Environment Susceptibility-Reykjavik Study. Participants with a known brain-related high risk for mortality (cognitive impairment or stroke) were excluded from these analyses. Quantitative estimates of total brain volume, white matter, white matter lesions, total gray matter (GM; cortical GM and subcortical GM separately), and focal cerebral vascular disease were generated from brain magnetic resonance imaging. Brain atrophy was expressed as brain tissue volume divided by total intracranial volume, yielding a percentage. Mean follow-up duration was 7.2 (0-10) years, with 647 deaths. Cox regression was used to analyze the association of mortality to brain atrophy, adjusting for demographics, cardiovascular risk factors, and cerebral vascular disease. Reduced risk of mortality was significantly associated with higher total brain volume (hazard ratio, 95% confidence interval = 0.71, 0.65-0.78), white matter (0.85, 0.78-0.93), total GM (0.74, 0.68-0.81), and cortical GM (0.78, 0.70-0.87). Overall, the associations were similar for cardiovascular and noncardiovascular-related deaths. Independent of multiple risk factors and cerebral vascular damage, global brain volume predicts mortality in a large nondemented stroke-free community-dwelling older cohort. Total brain volume may be an integrated measure reflecting a range of health and with further investigation could be a useful clinical tool when assessing risk for mortality. Published by Oxford University Press on behalf of the Gerontological Society of America 2014.

  5. Convection-enhanced delivery for the treatment of glioblastoma

    PubMed Central

    Vogelbaum, Michael A.; Aghi, Manish K.

    2015-01-01

    Effective treatment of glioblastoma (GBM) remains a formidable challenge. Survival rates remain poor despite decades of clinical trials of conventional and novel, biologically targeted therapeutics. There is considerable evidence that most of these therapeutics do not reach their targets in the brain when administered via conventional routes (intravenous or oral). Hence, direct delivery of therapeutics to the brain and to brain tumors is an active area of investigation. One of these techniques, convection-enhanced delivery (CED), involves the implantation of catheters through which conventional and novel therapeutic formulations can be delivered using continuous, low–positive-pressure bulk flow. Investigation in preclinical and clinical settings has demonstrated that CED can produce effective delivery of therapeutics to substantial volumes of brain and brain tumor. However, limitations in catheter technology and imaging of delivery have prevented this technique from being reliable and reproducible, and the only completed phase III study in GBM did not show a survival benefit for patients treated with an investigational therapeutic delivered via CED. Further development of CED is ongoing, with novel catheter designs and imaging approaches that may allow CED to become a more effective therapeutic delivery technique. PMID:25746090

  6. A comparative study of theoretical graph models for characterizing structural networks of human brain.

    PubMed

    Li, Xiaojin; Hu, Xintao; Jin, Changfeng; Han, Junwei; Liu, Tianming; Guo, Lei; Hao, Wei; Li, Lingjiang

    2013-01-01

    Previous studies have investigated both structural and functional brain networks via graph-theoretical methods. However, there is an important issue that has not been adequately discussed before: what is the optimal theoretical graph model for describing the structural networks of human brain? In this paper, we perform a comparative study to address this problem. Firstly, large-scale cortical regions of interest (ROIs) are localized by recently developed and validated brain reference system named Dense Individualized Common Connectivity-based Cortical Landmarks (DICCCOL) to address the limitations in the identification of the brain network ROIs in previous studies. Then, we construct structural brain networks based on diffusion tensor imaging (DTI) data. Afterwards, the global and local graph properties of the constructed structural brain networks are measured using the state-of-the-art graph analysis algorithms and tools and are further compared with seven popular theoretical graph models. In addition, we compare the topological properties between two graph models, namely, stickiness-index-based model (STICKY) and scale-free gene duplication model (SF-GD), that have higher similarity with the real structural brain networks in terms of global and local graph properties. Our experimental results suggest that among the seven theoretical graph models compared in this study, STICKY and SF-GD models have better performances in characterizing the structural human brain network.

  7. Brain morphology in school-aged children with prenatal opioid exposure: A structural MRI study.

    PubMed

    Sirnes, Eivind; Oltedal, Leif; Bartsch, Hauke; Eide, Geir Egil; Elgen, Irene B; Aukland, Stein Magnus

    Both animal and human studies have suggested that prenatal opioid exposure may be detrimental to the developing fetal brain. However, results are somewhat conflicting. Structural brain changes in children with prenatal opioid exposure have been reported in a few studies, and such changes may contribute to neuropsychological impairments observed in exposed children. To investigate the association between prenatal opioid exposure and brain morphology in school-aged children. A cross-sectional magnetic resonance imaging (MRI) study of prenatally opioid-exposed children and matched controls. A hospital-based sample (n=16) of children aged 10-14years with prenatal exposure to opioids and 1:1 sex- and age-matched unexposed controls. Automated brain volume measures obtained from T1-weighted MRI scans using FreeSurfer. Volumes of the basal ganglia, thalamus, and cerebellar white matter were reduced in the opioid-exposed group, whereas there were no statistically significant differences in global brain measures (total brain, cerebral cortex, and cerebral white matter volumes). In line with the limited findings reported in the literature to date, our study showed an association between prenatal opioid exposure and reduced regional brain volumes. Adverse effects of opioids on the developing fetal brain may explain this association. However, further research is needed to explore the causal nature and functional consequences of these findings. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Functional brain correlates of motor response inhibition in children with developmental coordination disorder and attention deficit/hyperactivity disorder.

    PubMed

    Thornton, Siobhan; Bray, Signe; Langevin, Lisa Marie; Dewey, Deborah

    2018-06-01

    Motor impairment is associated with developmental coordination disorder (DCD), and to a lesser extent with attention-deficit/hyperactivity disorder (ADHD). Previous functional imaging studies investigated children with DCD or ADHD only; however, these two disorders co-occur in up to 50% of cases, suggesting that similar neural correlates are associated with these disorders. This study compared functional brain activation in children and adolescents (age range 8-17, M = 11.73, SD = 2.88) with DCD (n = 9), ADHD (n = 20), co-occurring DCD and ADHD (n = 18) and typically developing (TD) controls (n = 20). When compared to TD controls, children with co-occurring DCD/ADHD showed decreased activation during response inhibition in primary motor and sensory cortices. These findings suggest that children with co-occurring DCD and ADHD display significant functional changes in brain activation that could interfere with inhibition of erroneous motor responses. In contrast to previous studies, significant alterations in brain activation relative to TD controls, were not found in children with isolated DCD or ADHD. These findings highlight the importance of considering co-occurring disorders when investigating brain function in children with neurodevelopmental disorders. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Creative females have larger white matter structures: Evidence from a large sample study.

    PubMed

    Takeuchi, Hikaru; Taki, Yasuyuki; Nouchi, Rui; Yokoyama, Ryoichi; Kotozaki, Yuka; Nakagawa, Seishu; Sekiguchi, Atsushi; Iizuka, Kunio; Yamamoto, Yuki; Hanawa, Sugiko; Araki, Tsuyoshi; Makoto Miyauchi, Carlos; Shinada, Takamitsu; Sakaki, Kohei; Sassa, Yuko; Nozawa, Takayuki; Ikeda, Shigeyuki; Yokota, Susumu; Daniele, Magistro; Kawashima, Ryuta

    2017-01-01

    The importance of brain connectivity for creativity has been theoretically suggested and empirically demonstrated. Studies have shown sex differences in creativity measured by divergent thinking (CMDT) as well as sex differences in the structural correlates of CMDT. However, the relationships between regional white matter volume (rWMV) and CMDT and associated sex differences have never been directly investigated. In addition, structural studies have shown poor replicability and inaccuracy of multiple comparisons over the whole brain. To address these issues, we used the data from a large sample of healthy young adults (776 males and 560 females; mean age: 20.8 years, SD = 0.8). We investigated the relationship between CMDT and WMV using the newest version of voxel-based morphometry (VBM). We corrected for multiple comparisons over whole brain using the permutation-based method, which is known to be quite accurate and robust. Significant positive correlations between rWMV and CMDT scores were observed in widespread areas below the neocortex specifically in females. These associations with CMDT were not observed in analyses of fractional anisotropy using diffusion tensor imaging. Using rigorous methods, our findings further supported the importance of brain connectivity for creativity as well as its female-specific association. Hum Brain Mapp 38:414-430, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  10. Brain serotonin and pituitary-adrenal functions

    NASA Technical Reports Server (NTRS)

    Vernikos-Danellis, J.; Berger, P.; Barchas, J. D.

    1973-01-01

    It had been concluded by Scapagnini et al. (1971) that brain serotonin (5-HT) was involved in the regulation of the diurnal rhythm of the pituitary-adrenal system but not in the stress response. A study was conducted to investigate these findings further by evaluating the effects of altering brain 5-HT levels on the daily fluctuation of plasma corticosterone and on the response of the pituitary-adrenal system to a stressful or noxious stimulus in the rat. In a number of experiments brain 5-HT synthesis was inhibited with parachlorophenylalanine. In other tests it was tried to raise the level of brain 5-HT with precursors.

  11. Brain cancer and nonoccupational risk factors: a case-control study among workers at two nuclear facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carpenter, A.V.; Flanders, W.D.; Frome, E.L.

    1987-09-01

    In a nested case-control study of nuclear workers, 82 brain cancer cases were compared with 328 matched controls to investigate the possible association with nonoccupational risk factors such as histories of epilepsy or head injury. We observed a moderately strong association between brain cancer occurrence and history of epilepsy (OR = 5.7, 95 per cent CI: 1.0, 32.1), but did not find a positive association with previous head injury (OR = 0.9, 95 per cent CI: 0.2, 4.2).

  12. Noninvasive Blood-Brain Barrier Opening in Live Mice

    NASA Astrophysics Data System (ADS)

    Choi, James J.; Pernot, Mathieu; Small, Scott; Konofagou, Elisa E.

    2006-05-01

    Most therapeutic agents cannot be delivered to the brain because of brain's natural defense: the Blood-Brain Barrier (BBB). It has recently been shown that Focused Ultrasound (FUS) can produce reversible and localized BBB opening in the brain when applied in the presence of ultrasound contrast agents post-craniotomy in rabbits [1]. However, a major limitation of ultrasound in the brain is the strong phase aberration and attenuation of the skull bone, and, as a result, no study of trans-cranial ultrasound-targeted drug treatment in the brain in vivo has been reported as of yet. In this study, the feasibility of BBB opening in the hippocampus of wildtype mice using FUS through the intact skull and skin was investigated. In order to investigate the effect of the skull, simulations of ultrasound wave propagation (1.5 MHz) through the skull using μCT data, and needle hydrophone measurements through an ex-vivo skull were made. The pressure field showed minimal attenuation (18% of the pressure amplitude) and a well-focused pattern through the left and right halves of the parietal bone. In experiments in vivo, the brains of four mice were sonicated through intact skull and skin. Ultrasound sonications (burst length: 20 ms; duty cycle: 20%; acoustic pressure range: 2.0 to 2.7 MPa) was applied 5 times for 30 s per shot with a 30 s delay between shots. Prior to sonication, ultrasound contrast agents (Optison; 10 μL) were injected intravenously. Contrast material enhanced high resolution MR Imaging (9.4 Tesla) was able to distinguish opening of large vessels in the region of the hippocampus. These results demonstrate the feasibility of locally opening the BBB in the mouse hippocampus using focused ultrasound through intact skull and skin. Future investigations will deal with optimization and reproducibility of the technique as well as application on Alzheimer's-model mice.

  13. Peptidomic analysis of the neurolysin-knockout mouse brain.

    PubMed

    Castro, Leandro M; Cavalcanti, Diogo M L P; Araujo, Christiane B; Rioli, Vanessa; Icimoto, Marcelo Y; Gozzo, Fábio C; Juliano, Maria; Juliano, Luiz; Oliveira, Vitor; Ferro, Emer S

    2014-12-05

    A large number of intracellular peptides are constantly produced following protein degradation by the proteasome. A few of these peptides function in cell signaling and regulate protein-protein interactions. Neurolysin (Nln) is a structurally defined and biochemically well-characterized endooligopeptidase, and its subcellular distribution and biological activity in the vertebrate brain have been previously investigated. However, the contribution of Nln to peptide metabolism in vivo is poorly understood. In this study, we used quantitative mass spectrometry to investigate the brain peptidome of Nln-knockout mice. An additional in vitro digestion assay with recombinant Nln was also performed to confirm the identification of the substrates and/or products of Nln. Altogether, the data presented suggest that Nln is a key enzyme in the in vivo degradation of only a few peptides derived from proenkephalin, such as Met-enkephalin and octapeptide. Nln was found to have only a minor contribution to the intracellular peptide metabolism in the entire mouse brain. However, further studies appear necessary to investigate the contribution of Nln to the peptide metabolism in specific areas of the murine brain. Neurolysin was first identified in the synaptic membranes of the rat brain in the middle 80's by Frederic Checler and colleagues. Neurolysin was well characterized biochemically, and its brain distribution has been confirmed by immunohistochemical methods. The neurolysin contribution to the central and peripheral neurotensin-mediated functions in vivo has been delineated through inhibitor-based pharmacological approaches, but its genuine contribution to the physiological inactivation of neuropeptides remains to be firmly established. As a result, the main significance of this work is the first characterization of the brain peptidome of the neurolysin-knockout mouse. This article is part of a Special Issue entitled: Proteomics, mass spectrometry and peptidomics, Cancun 2013. Guest Editors: César López-Camarillo, Victoria Pando-Robles and Bronwyn Jane Barkla. Copyright © 2014. Published by Elsevier B.V.

  14. Quantification of Load Dependent Brain Activity in Parametric N-Back Working Memory Tasks using Pseudo-continuous Arterial Spin Labeling (pCASL) Perfusion Imaging.

    PubMed

    Zou, Qihong; Gu, Hong; Wang, Danny J J; Gao, Jia-Hong; Yang, Yihong

    2011-04-01

    Brain activation and deactivation induced by N-back working memory tasks and their load effects have been extensively investigated using positron emission tomography (PET) and blood-oxygenation level dependent (BOLD) functional magnetic resonance imaging (fMRI). However, the underlying mechanisms of BOLD fMRI are still not completely understood and PET imaging requires injection of radioactive tracers. In this study, a pseudo-continuous arterial spin labeling (pCASL) perfusion imaging technique was used to quantify cerebral blood flow (CBF), a well understood physiological index reflective of cerebral metabolism, in N-back working memory tasks. Using pCASL, we systematically investigated brain activation and deactivation induced by the N-back working memory tasks and further studied the load effects on brain activity based on quantitative CBF. Our data show increased CBF in the fronto-parietal cortices, thalamus, caudate, and cerebellar regions, and decreased CBF in the posterior cingulate cortex and medial prefrontal cortex, during the working memory tasks. Most of the activated/deactivated brain regions show an approximately linear relationship between CBF and task loads (0, 1, 2 and 3 back), although several regions show non-linear relationships (quadratic and cubic). The CBF-based spatial patterns of brain activation/deactivation and load effects from this study agree well with those obtained from BOLD fMRI and PET techniques. These results demonstrate the feasibility of ASL techniques to quantify human brain activity during high cognitive tasks, suggesting its potential application to assessing the mechanisms of cognitive deficits in neuropsychiatric and neurological disorders.

  15. Inhibition of β2-adrenergic receptor reduces triple-negative breast cancer brain metastases: The potential benefit of perioperative β-blockade.

    PubMed

    Choy, Cecilia; Raytis, John L; Smith, David D; Duenas, Matthew; Neman, Josh; Jandial, Rahul; Lew, Michael W

    2016-06-01

    In response to recent studies, we investigated an association between perioperative β-blockade and breast cancer metastases. First, a retrospective study examining perioperative β-blocker use and cancer recurrence and metastases was conducted on 1,029 patients who underwent breast cancer surgery at the City of Hope Cancer Center between 2000 and 2010. We followed the clinical study and examined proliferation, migration, and invasion in vitro of primary and brain-metastatic breast cancer cells in response to β2-activation and inhibition. We also investigated in vivo the metastatic potential of propranolol-treated metastatic cells. For stage II breast cancer patients, perioperative β-blockade was associated with decreased cancer recurrence using Cox regression analysis (hazard's ratio =0.51; 95% CI: 0.23-0.97; p=0.041). Triple-negative (TN) brain-metastatic cells were found to have increased β2-adrenergic receptor mRNA and protein expression relative to TN primary cells. In response to β2-adrenergic receptor activation, TN brain-metastatic cells also exhibited increased cell proliferation and migration relative to the control. These effects were abrogated by propranolol. Propranolol decreased β2-adrenergic receptor-activated invasion. In vivo, propranolol treatment of TN brain-metastatic cells decreased establishment of brain metastases. Our results suggest that stress and corresponding β2-activation may promote the establishment of brain metastases of TN breast cancer cells. In addition, our data suggest a benefit to perioperative β-blockade during surgery-induced stress with respect to breast cancer recurrence and metastases.

  16. Inhibition of β2-adrenergic receptor reduces triple-negative breast cancer brain metastases: The potential benefit of perioperative β-blockade

    PubMed Central

    CHOY, CECILIA; RAYTIS, JOHN L.; SMITH, DAVID D.; DUENAS, MATTHEW; NEMAN, JOSH; JANDIAL, RAHUL; LEW, MICHAEL W.

    2016-01-01

    In response to recent studies, we investigated an association between perioperative β-blockade and breast cancer metastases. First, a retrospective study examining perioperative β-blocker use and cancer recurrence and metastases was conducted on 1,029 patients who underwent breast cancer surgery at the City of Hope Cancer Center between 2000 and 2010. We followed the clinical study and examined proliferation, migration, and invasion in vitro of primary and brain-metastatic breast cancer cells in response to β2-activation and inhibition. We also investigated in vivo the metastatic potential of propranolol-treated metastatic cells. For stage II breast cancer patients, perioperative β-blockade was associated with decreased cancer recurrence using Cox regression analysis (hazard's ratio =0.51; 95% CI: 0.23–0.97; p=0.041). Triple-negative (TN) brain-metastatic cells were found to have increased β2-adrenergic receptor mRNA and protein expression relative to TN primary cells. In response to β2-adrenergic receptor activation, TN brain-metastatic cells also exhibited increased cell proliferation and migration relative to the control. These effects were abrogated by propranolol. Propranolol decreased β2-adrenergic receptor-activated invasion. In vivo, propranolol treatment of TN brain-metastatic cells decreased establishment of brain metastases. Our results suggest that stress and corresponding β2-activation may promote the establishment of brain metastases of TN breast cancer cells. In addition, our data suggest a benefit to perioperative β-blockade during surgery-induced stress with respect to breast cancer recurrence and metastases. PMID:27035124

  17. Effects of peripubertal gonadotropin-releasing hormone agonist on brain development in sheep--a magnetic resonance imaging study.

    PubMed

    Nuruddin, Syed; Bruchhage, Muriel; Ropstad, Erik; Krogenæs, Anette; Evans, Neil P; Robinson, Jane E; Endestad, Tor; Westlye, Lars T; Madison, Cindee; Haraldsen, Ira Ronit Hebold

    2013-10-01

    In many species sexual dimorphisms in brain structures and functions have been documented. In ovine model, we have previously demonstrated that peri-pubertal pharmacological blockade of gonadotropin releasing hormone (GnRH) action increased sex-differences of executive emotional behavior. The structural substrate of this behavioral alteration however is unknown. In this magnetic resonance image (MRI) study on the same animals, we investigated the effects of GnRH agonist (GnRHa) treatment on the volume of total brain, hippocampus and amygdala. In total 41 brains (17 treated; 10 females and 7 males, and 24 controls; 11 females and 13 males) were included in the MRI study. Image acquisition was performed with 3-T MRI scanner. Segmentation of the amygdala and the hippocampus was done by manual tracing and total gray and white matter volumes were estimated by means of automated brain volume segmentation of the individual T2-weighted MRI volumes. Statistical comparisons were performed with general linear models. Highly significant GnRHa treatment effects were found on the volume of left and right amygdala, indicating larger amygdalae in treated animals. Significant sex differences were found for total gray matter and right amygdala, indicating larger volumes in male compared to female animals. Additionally, we observed a significant interaction between sex and treatment on left amygdala volume, indicating stronger effects of treatment in female compared to male animals. The effects of GnRHa treatment on amygdala volumes indicate that increasing GnRH concentration during puberty may have an important impact on normal brain development in mammals. These novel findings substantiate the need for further studies investigating potential neurobiological side effects of GnRHa treatment on the brains of young animals and humans. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Relationship between brain R(2) and liver and serum iron concentrations in elderly men.

    PubMed

    House, Michael J; St Pierre, Timothy G; Milward, Elizabeth A; Bruce, David G; Olynyk, John K

    2010-02-01

    Studies of iron overload in humans and animals suggest that brain iron concentrations may be related in a regionally specific way to body iron status. However, few quantitative studies have investigated the associations between peripheral and regional brain iron in a normal elderly cohort. To examine these relationships, we used MRI to measure the proton transverse relaxation rate (R(2)) in 13 gray and white matter brain regions in 18 elderly men (average age, 75.5 years) with normal cognition. Brain R(2) values were compared with liver iron concentrations measured using the FerriScan MRI technique and serum iron indices. R(2) values in high-iron gray matter regions were significantly correlated (positively) with liver iron concentrations (globus pallidus, ventral pallidum) and serum transferrin saturation (caudate nucleus, globus pallidus, putamen) measured concurrently with brain R(2), and with serum iron concentrations (caudate nucleus, globus pallidus) measured three years before the current study. Our results suggest that iron levels in specific gray matter brain regions are influenced by systemic iron status in elderly men.

  19. Hemispheric asymmetry of electroencephalography-based functional brain networks.

    PubMed

    Jalili, Mahdi

    2014-11-12

    Electroencephalography (EEG)-based functional brain networks have been investigated frequently in health and disease. It has been shown that a number of graph theory metrics are disrupted in brain disorders. EEG-based brain networks are often studied in the whole-brain framework, where all the nodes are grouped into a single network. In this study, we studied the brain networks in two hemispheres and assessed whether there are any hemispheric-specific patterns in the properties of the networks. To this end, resting state closed-eyes EEGs from 44 healthy individuals were processed and the network structures were extracted separately for each hemisphere. We examined neurophysiologically meaningful graph theory metrics: global and local efficiency measures. The global efficiency did not show any hemispheric asymmetry, whereas the local connectivity showed rightward asymmetry for a range of intermediate density values for the constructed networks. Furthermore, the age of the participants showed significant direct correlations with the global efficiency of the left hemisphere, but only in the right hemisphere, with local connectivity. These results suggest that only local connectivity of EEG-based functional networks is associated with brain hemispheres.

  20. The contribution of twins to the study of cognitive ageing and dementia: the Older Australian Twins Study.

    PubMed

    Sachdev, Perminder S; Lee, Teresa; Wen, Wei; Ames, David; Batouli, Amir H; Bowden, Jocelyn; Brodaty, Henry; Chong, Elizabeth; Crawford, John; Kang, Kristan; Mather, Karen; Lammel, Andrea; Slavin, Melissa J; Thalamuthu, Anbupalam; Trollor, Julian; Wright, Margie J

    2013-12-01

    The Older Australian Twins Study (OATS) is a major longitudinal study of twins, aged ≥ 65 years, to investigate genetic and environmental factors and their interactions in healthy brain ageing and neurocognitive disorders. The study collects psychiatric, neuropsychological, cardiovascular, metabolic, biochemical, neuroimaging, genomic and proteomic data, with two-yearly assessments, and is currently in its third wave. The initial cohort comprises 623 individuals (161 monozygotic and 124 dizygotic twin pairs; 1 MZ triplets; 27 single twins and 23 non-twin siblings), of whom 426 have had wave 2 assessment. A number of salient findings have emerged thus far which assist in the understanding of genetic contributions to cognitive functions such as processing speed, executive ability and episodic memory, and which support the brain reserve hypothesis. The heritability of brain structures, both cortical and subcortical, brain spectroscopic metabolites and markers of small vessel disease, such as lacunar infarction and white matter hyperintensities, have been examined and can inform future genetic investigations. Work on amyloid imaging and functional magnetic resonance imaging is proceeding and epigenetic studies are progressing. This internationally important study has the potential to inform research into cognitive ageing in the future, and offers an excellent resource for collaborative work.

  1. In vitro studies of the blood-brain barrier using isolated brain capillaries and cultured endothelial cells.

    PubMed

    Goldstein, G W; Betz, A L; Bowman, P D; Dorovini-Zis, K

    1986-01-01

    The endothelial cells in brain capillaries are the anatomic site of the blood-brain barrier. To learn more about the biology of these specialized cells, we developed methods to prepare suspensions of purified brain microvessels as well as primary cultures of endothelial cells in monolayer. These two preparations allow for direct investigation of the metabolism, transport properties, and receptor content of the brain capillary. We used isolated brain microvessels to study distribution of membrane carriers between the luminal and the abluminal plasma membrane of endothelial cells. We found that Na+K+-ATPase and the A-system amino-acid transport system are located predominantly on the abluminal surface of brain capillary endothelial cells. This distribution of transport carriers is consistent with the low permeability of potassium and small neutral amino acids in the blood-to-brain direction. It suggests, however, that both solutes can be actively transported across brain capillaries from the brain interstitial fluid to the blood. In tissue culture, the endothelial cells form continuous tight junctions with their neighbors. This results in a cellular layer impermeable to protein tracers. When exposed to hyperosmolar solutions, in an attempt to mimic the conditions that open the blood-brain barrier in vivo, we found a reversible separation of the tight junctions between contiguous endothelial cells. No indication of activation of pinocytosis was observed. In vitro systems provide a novel approach for studying the function of the blood-brain barrier and allow for observations not possible with intact animals.

  2. Altered structural connectivity of pain-related brain network in burning mouth syndrome-investigation by graph analysis of probabilistic tractography.

    PubMed

    Wada, Akihiko; Shizukuishi, Takashi; Kikuta, Junko; Yamada, Haruyasu; Watanabe, Yusuke; Imamura, Yoshiki; Shinozaki, Takahiro; Dezawa, Ko; Haradome, Hiroki; Abe, Osamu

    2017-05-01

    Burning mouth syndrome (BMS) is a chronic intraoral pain syndrome featuring idiopathic oral pain and burning discomfort despite clinically normal oral mucosa. The etiology of chronic pain syndrome is unclear, but preliminary neuroimaging research has suggested the alteration of volume, metabolism, blood flow, and diffusion at multiple brain regions. According to the neuromatrix theory of Melzack, pain sense is generated in the brain by the network of multiple pain-related brain regions. Therefore, the alteration of pain-related network is also assumed as an etiology of chronic pain. In this study, we investigated the brain network of BMS brain by using probabilistic tractography and graph analysis. Fourteen BMS patients and 14 age-matched healthy controls underwent 1.5T MRI. Structural connectivity was calculated in 83 anatomically defined regions with probabilistic tractography of 60-axis diffusion tensor imaging and 3D T1-weighted imaging. Graph theory network analysis was used to evaluate the brain network at local and global connectivity. In BMS brain, a significant difference of local brain connectivity was recognized at the bilateral rostral anterior cingulate cortex, right medial orbitofrontal cortex, and left pars orbitalis which belong to the medial pain system; however, no significant difference was recognized at the lateral system including the somatic sensory cortex. A strengthened connection of the anterior cingulate cortex and medial prefrontal cortex with the basal ganglia, thalamus, and brain stem was revealed. Structural brain network analysis revealed the alteration of the medial system of the pain-related brain network in chronic pain syndrome.

  3. Heuristics for connectivity-based brain parcellation of SMA/pre-SMA through force-directed graph layout.

    PubMed

    Crippa, Alessandro; Cerliani, Leonardo; Nanetti, Luca; Roerdink, Jos B T M

    2011-02-01

    We propose the use of force-directed graph layout as an explorative tool for connectivity-based brain parcellation studies. The method can be used as a heuristic to find the number of clusters intrinsically present in the data (if any) and to investigate their organisation. It provides an intuitive representation of the structure of the data and facilitates interactive exploration of properties of single seed voxels as well as relations among (groups of) voxels. We validate the method on synthetic data sets and we investigate the changes in connectivity in the supplementary motor cortex, a brain region whose parcellation has been previously investigated via connectivity studies. This region is supposed to present two easily distinguishable connectivity patterns, putatively denoted by SMA (supplementary motor area) and pre-SMA. Our method provides insights with respect to the connectivity patterns of the premotor cortex. These present a substantial variation among subjects, and their subdivision into two well-separated clusters is not always straightforward. Copyright © 2010 Elsevier Inc. All rights reserved.

  4. Structural bases for neurophysiological investigations of amygdaloid complex of the brain

    NASA Astrophysics Data System (ADS)

    Kalimullina, Liliya B.; Kalkamanov, Kh. A.; Akhmadeev, Azat V.; Zakharov, Vadim P.; Sharafullin, Ildus F.

    2015-11-01

    Amygdala (Am) as a part of limbic system of the brain defines such important functions as adaptive behavior of animals, formation of emotions and memory, regulation of endocrine and visceral functions. We worked out, with the help of mathematic modelling of the pattern recognition theory, principles for organization of neurophysiological and neuromorphological studies of Am nuclei, which take into account the existing heterogeneity of its formations and optimize, to a great extent, the protocol for carrying out of such investigations. The given scheme of studies of Am’s structural-functional organization at its highly-informative sections can be used as a guide for precise placement of electrodes’, cannulae’s and microsensors into particular Am nucleus in the brain with the registration not only the nucleus itself, but also its extensions. This information is also important for defining the number of slices covering specific Am nuclei which must be investigated to reveal the physiological role of a particular part of amygdaloid complex.

  5. Prediction of brain deformations and risk of traumatic brain injury due to closed-head impact: quantitative analysis of the effects of boundary conditions and brain tissue constitutive model.

    PubMed

    Wang, Fang; Han, Yong; Wang, Bingyu; Peng, Qian; Huang, Xiaoqun; Miller, Karol; Wittek, Adam

    2018-05-12

    In this study, we investigate the effects of modelling choices for the brain-skull interface (layers of tissues between the brain and skull that determine boundary conditions for the brain) and the constitutive model of brain parenchyma on the brain responses under violent impact as predicted using computational biomechanics model. We used the head/brain model from Total HUman Model for Safety (THUMS)-extensively validated finite element model of the human body that has been applied in numerous injury biomechanics studies. The computations were conducted using a well-established nonlinear explicit dynamics finite element code LS-DYNA. We employed four approaches for modelling the brain-skull interface and four constitutive models for the brain tissue in the numerical simulations of the experiments on post-mortem human subjects exposed to violent impacts reported in the literature. The brain-skull interface models included direct representation of the brain meninges and cerebrospinal fluid, outer brain surface rigidly attached to the skull, frictionless sliding contact between the brain and skull, and a layer of spring-type cohesive elements between the brain and skull. We considered Ogden hyperviscoelastic, Mooney-Rivlin hyperviscoelastic, neo-Hookean hyperviscoelastic and linear viscoelastic constitutive models of the brain tissue. Our study indicates that the predicted deformations within the brain and related brain injury criteria are strongly affected by both the approach of modelling the brain-skull interface and the constitutive model of the brain parenchyma tissues. The results suggest that accurate prediction of deformations within the brain and risk of brain injury due to violent impact using computational biomechanics models may require representation of the meninges and subarachnoidal space with cerebrospinal fluid in the model and application of hyperviscoelastic (preferably Ogden-type) constitutive model for the brain tissue.

  6. Chronic Effect of Aspartame on Ionic Homeostasis and Monoamine Neurotransmitters in the Rat Brain.

    PubMed

    Abhilash, M; Alex, Manju; Mathews, Varghese V; Nair, R Harikumaran

    2014-07-01

    Aspartame is one of the most widely used artificial sweeteners globally. Data concerning acute neurotoxicity of aspartame is controversial, and knowledge on its chronic effect is limited. In the current study, we investigated the chronic effects of aspartame on ionic homeostasis and regional monoamine neurotransmitter concentrations in the brain. Our results showed that aspartame at high dose caused a disturbance in ionic homeostasis and induced apoptosis in the brain. We also investigated the effects of aspartame on brain regional monoamine synthesis, and the results revealed that there was a significant decrease of dopamine in corpus striatum and cerebral cortex and of serotonin in corpus striatum. Moreover, aspartame treatment significantly alters the tyrosine hydroxylase activity and amino acids levels in the brain. Our data suggest that chronic use of aspartame may affect electrolyte homeostasis and monoamine neurotransmitter synthesis dose dependently, and this might have a possible effect on cognitive functions. © The Author(s) 2014.

  7. Brain lesion correlates of fatigue in individuals with traumatic brain injury.

    PubMed

    Schönberger, Michael; Reutens, David; Beare, Richard; O'Sullivan, Richard; Rajaratnam, Shantha M W; Ponsford, Jennie

    2017-10-01

    The purpose of this study was to investigate the neurological correlates of both subjective fatigue as well as objective fatigability in individuals with traumatic brain injury (TBI). The study has a cross-sectional design. Participants (N = 53) with TBI (77% male, mean age at injury 38 years, mean time since injury 1.8 years) underwent a structural magnetic resonance imaging (MRI) scan and completed the Fatigue Severity Scale (FSS), while a subsample (N = 36) was also tested with a vigilance task. While subjective fatigue (FSS) was not related to measures of brain lesions, multilevel analyses showed that a change in the participants' decision time was significantly predicted by grey matter (GM) lesions in the right frontal lobe. The time-dependent development of the participants' error rate was predicted by total brain white matter (WM) lesion volumes, as well as right temporal GM and WM lesion volumes. These findings could be explained by decreased functional connectivity of attentional networks, which results in accelerated exhaustion during cognitive task performance. The disparate nature of objectively measurable fatigability on the one hand and the subjective experience of fatigue on the other needs further investigation.

  8. [Aberrant topological properties of whole-brain functional network in chronic right-sided sensorineural hearing loss: a resting-state functional MRI study].

    PubMed

    Zhang, Lingling; Liu, Bin; Xu, Yangwen; Yang, Ming; Feng, Yuan; Huang, Yaqing; Huan, Zhichun; Hou, Zhaorui

    2015-02-03

    To investigate the topological properties of the functional brain network in unilateral sensorineural hearing loss patients. In this study, we acquired resting-state BOLD- fMRI data from 19 right-sided SNHL patients and 31 healthy controls with normal hearing and constructed their whole brain functional networks. Two-sample two-tailed t-tests were performed to investigate group differences in topological parameters between the USNHL patients and the controls. Partial correlation analysis was conducted to determine the relationships between the network metrics and USNHL-related variables. Both USNHL patients and controls exhibited small-word architecture in their brain functional networks within the range 0. 1 - 0. 2 of sparsity. Compared to the controls, USNHL patients showed significant increase in characteristic path length and normalized characteristic path length, but significant decrease in global efficiency. Clustering coefficient, local efficiency and normalized clustering coefficient demonstrated no significant difference. Furthermore, USNHL patients exhibited no significant association between the altered network metrics and the duration of USNHL or the severity of hearing loss. Our results indicated the altered topological properties of whole brain functional networks in USNHL patients, which may help us to understand pathophysiologic mechanism of USNHL patients.

  9. Hydrogen inhalation ameliorated mast cell-mediated brain injury after intracerebral hemorrhage in mice.

    PubMed

    Manaenko, Anatol; Lekic, Tim; Ma, Qingyi; Zhang, John H; Tang, Jiping

    2013-05-01

    Hydrogen inhalation was neuroprotective in several brain injury models. Its mechanisms are believed to be related to antioxidative stress. We investigated the potential neurovascular protective effect of hydrogen inhalation especially effect on mast cell activation in a mouse model of intracerebral hemorrhage. Controlled in vivo laboratory study. Animal research laboratory. One hundred seventy-one 8-week-old male CD-1 mice were used. Collagenase-induced intracerebral hemorrhage model in 8-week-old male CD-1 mice was used. Hydrogen was administrated via spontaneous inhalation. The blood-brain barrier permeability and neurologic deficits were investigated at 24 and 72 hours after intracerebral hemorrhage. Mast cell activation was evaluated by Western blot and immuno-staining. The effects of hydrogen inhalation on mast cell activation were confirmed in an autologous blood injection model intracerebral hemorrhage. At 24 and 72 hours post intracerebral hemorrhage, animals showed blood-brain barrier disruption, brain edema, and neurologic deficits, accompanied with phosphorylation of Lyn kinase and release of tryptase, indicating mast cell activation. Hydrogen treatment diminished phosphorylation of Lyn kinase and release of tryptase, decreased accumulation and degranulation of mast cells, attenuated blood-brain barrier disruption, and improved neurobehavioral function. Activation of mast cells following intracerebral hemorrhage contributed to increase of blood-brain barrier permeability and brain edema. Hydrogen inhalation preserved blood-brain barrier disruption by prevention of mast cell activation after intracerebral hemorrhage.

  10. Origin of hyperbolicity in brain-to-brain coordination networks

    NASA Astrophysics Data System (ADS)

    Tadić, Bosiljka; Andjelković, Miroslav; Šuvakov, Milovan

    2018-02-01

    Hyperbolicity or negative curvature of complex networks is the intrinsic geometric proximity of nodes in the graph metric space, which implies an improved network function. Here, we investigate hidden combinatorial geometries in brain-to-brain coordination networks arising through social communications. The networks originate from correlations among EEG signals previously recorded during spoken communications comprising of 14 individuals with 24 speaker-listener pairs. We find that the corresponding networks are delta-hyperbolic with delta_max=1 and the graph diameter D=3 in each brain. While the emergent hyperbolicity in the two-brain networks satisfies delta_max/D/2 < 1 and can be attributed to the topology of the subgraph formed around the cross-brains linking channels. We identify these subgraphs in each studied two-brain network and decompose their structure into simple geometric descriptors (triangles, tetrahedra and cliques of higher orders) that contribute to hyperbolicity. Considering topologies that exceed two separate brain networks as a measure of coordination synergy between the brains, we identify different neuronal correlation patterns ranging from weak coordination to super-brain structure. These topology features are in qualitative agreement with the listener’s self-reported ratings of own experience and quality of the speaker, suggesting that studies of the cross-brain connector networks can reveal new insight into the neural mechanisms underlying human social behavior.

  11. A SPECT study of language and brain reorganization three years after pediatric brain injury.

    PubMed

    Chiu Wong, Stephanie B; Chapman, Sandra B; Cook, Lois G; Anand, Raksha; Gamino, Jacquelyn F; Devous, Michael D

    2006-01-01

    Using single photon emission computed tomography (SPECT), we investigated brain plasticity in children 3 years after sustaining a severe traumatic brain injury (TBI). First, we assessed brain perfusion patterns (i.e., the extent of brain blood flow to regions of the brain) at rest in eight children who suffered severe TBI as compared to perfusion patterns in eight normally developing children. Second, we examined differences in perfusion between children with severe TBI who showed good versus poor recovery in complex discourse skills. Specifically, the children were asked to produce and abstract core meaning for two stories in the form of a lesson. Inconsistent with our predictions, children with severe TBI showed areas of increased perfusion as compared to normally developing controls. Adult studies have shown the reverse pattern with TBI associated with reduced perfusion. With regard to the second aim and consistent with previously identified brain-discourse relations, we found a strong positive association between perfusion in right frontal regions and discourse abstraction abilities, with higher perfusion linked to better discourse outcomes and lower perfusion linked to poorer discourse outcomes. Furthermore, brain-discourse patterns of increased perfusion in left frontal regions were associated with lower discourse abstraction ability. The results are discussed in terms of how brain changes may represent adaptive and maladaptive plasticity. The findings offer direction for future studies of brain plasticity in response to neurocognitive treatments.

  12. The effect of brain size evolution on feeding propensity, digestive efficiency, and juvenile growth.

    PubMed

    Kotrschal, Alexander; Corral-Lopez, Alberto; Szidat, Sönke; Kolm, Niclas

    2015-11-01

    One key hypothesis in the study of brain size evolution is the expensive tissue hypothesis; the idea that increased investment into the brain should be compensated by decreased investment into other costly organs, for instance the gut. Although the hypothesis is supported by both comparative and experimental evidence, little is known about the potential changes in energetic requirements or digestive traits following such evolutionary shifts in brain and gut size. Organisms may meet the greater metabolic requirements of larger brains despite smaller guts via increased food intake or better digestion. But increased investment in the brain may also hamper somatic growth. To test these hypotheses we here used guppy (Poecilia reticulata) brain size selection lines with a pronounced negative association between brain and gut size and investigated feeding propensity, digestive efficiency (DE), and juvenile growth rate. We did not find any difference in feeding propensity or DE between large- and small-brained individuals. Instead, we found that large-brained females had slower growth during the first 10 weeks after birth. Our study provides experimental support that investment into larger brains at the expense of gut tissue carries costs that are not necessarily compensated by a more efficient digestive system. © 2015 The Author(s). Evolution published by Wiley Periodicals, Inc. on behalf of The Society for the Study of Evolution.

  13. Diattenuation of brain tissue and its impact on 3D polarized light imaging

    PubMed Central

    Menzel, Miriam; Reckfort, Julia; Weigand, Daniel; Köse, Hasan; Amunts, Katrin; Axer, Markus

    2017-01-01

    3D-polarized light imaging (3D-PLI) reconstructs nerve fibers in histological brain sections by measuring their birefringence. This study investigates another effect caused by the optical anisotropy of brain tissue – diattenuation. Based on numerical and experimental studies and a complete analytical description of the optical system, the diattenuation was determined to be below 4 % in rat brain tissue. It was demonstrated that the diattenuation effect has negligible impact on the fiber orientations derived by 3D-PLI. The diattenuation signal, however, was found to highlight different anatomical structures that cannot be distinguished with current imaging techniques, which makes Diattenuation Imaging a promising extension to 3D-PLI. PMID:28717561

  14. A single acute hepatotoxic dose of CCl4 causes oxidative stress in the rat brain.

    PubMed

    Ritesh, K R; Suganya, A; Dileepkumar, H V; Rajashekar, Y; Shivanandappa, T

    2015-01-01

    Carbon tetrachloride (CCl 4 ), a hepatotoxic agent is widely used to study the toxic mechanisms in experimental animals. We have investigated whether oxidative stress is induced in the brain at a single hepatotoxic dosage (1 ml/kg bw) of CCl 4 . Increased lipid peroxidation (LPO), protein carbonyls (PC) content and glutathione (GSH) depletion were observed in the brain regions of rats treated with CCl 4 which was higher than that of liver. A drastic reduction in the activity of glutathione- S -transferase (GST) was seen in the brain regions which was higher than that of liver. Similarly, activities of glutathione peroxidase (GPx), glutathione reductase (GR), superoxide dismutase (SOD), catalase (CAT), NADH- and NADPH-dehydrogenase were reduced in the brain regions similar to that of liver. Higher induction of oxidative stress in the brain compared to that of liver implies vulnerability of the brain for CCl 4 neurotoxicity. Our study shows that a single hepatotoxic dose of CCl 4 is equally neurotoxic to rats.

  15. State-of-the-art considerations in small cell lung cancer brain metastases

    PubMed Central

    Lukas, Rimas V.; Gondi, Vinai; Kamson, David O.; Kumthekar, Priya; Salgia, Ravi

    2017-01-01

    Background Small cell lung cancer (SCLC) frequently leads to development of brain metastases. These unfortunately continue to be associated with short survival. Substantial advances have been made in our understanding of the underlying biology of disease. This understanding on the background of previously evaluated and currently utilized therapeutic treatments can help guide the next steps in investigations into this disease with the potential to influence future treatments. Design A comprehensive review of the literature covering epidemiology, pathophysiology, imaging characteristics, prognosis, and therapeutic management of SCLC brain metastases was performed. Results SCLC brain metastases continue to have a poor prognosis. Both unique aspects of SCLC brain metastases as well as features seen more universally across other solid tumor brain metastases are discussed. Systemic therapeutic studies and radiotherapeutic approaches are reviewed. Conclusions A clearer understanding of SCLC brain metastases will help lay the framework for studies which will hopefully translate into meaningful therapeutic options for these patients. PMID:29050358

  16. Brain alterations in paedophilia: a critical review.

    PubMed

    Mohnke, Sebastian; Müller, Sabine; Amelung, Till; Krüger, Tillmann H C; Ponseti, Jorge; Schiffer, Boris; Walter, Martin; Beier, Klaus M; Walter, Henrik

    2014-11-01

    Psychosocial and biological factors have been implicated in paedophilia, such as alterations in brain structure and function. The purpose of this paper is to review the expanding body of literature on this topic including brain abnormality case reports, as well as structural and functional neuroimaging studies. Case studies of men who have committed sexual offences against children implicate frontal and temporal abnormalities that may be associated with impaired impulse inhibition. Structural neuroimaging investigations show volume reductions in paedophilic men. Although the findings have been heterogeneous, smaller amygdala volume has been replicated repeatedly. Functional neuroimaging investigations demonstrate an overlap between paedophiles and teleiophiles during sexual arousal processing. While it is controversial among studies regarding group differences, reliable discrimination between paedophilic and teleiophilic men may be achieved using functional activation patterns. Nevertheless, the heterogeneous findings published so far suggest further research is necessary to disentangle the neurobiological mechanisms of paedophilic preference. A number of methodological confounds have been identified, which may account for the inconsistent results that could prove to be beneficial for future investigations. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. An investigation of fMRI time series stationarity during motor sequence learning foot tapping tasks.

    PubMed

    Muhei-aldin, Othman; VanSwearingen, Jessie; Karim, Helmet; Huppert, Theodore; Sparto, Patrick J; Erickson, Kirk I; Sejdić, Ervin

    2014-04-30

    Understanding complex brain networks using functional magnetic resonance imaging (fMRI) is of great interest to clinical and scientific communities. To utilize advanced analysis methods such as graph theory for these investigations, the stationarity of fMRI time series needs to be understood as it has important implications on the choice of appropriate approaches for the analysis of complex brain networks. In this paper, we investigated the stationarity of fMRI time series acquired from twelve healthy participants while they performed a motor (foot tapping sequence) learning task. Since prior studies have documented that learning is associated with systematic changes in brain activation, a sequence learning task is an optimal paradigm to assess the degree of non-stationarity in fMRI time-series in clinically relevant brain areas. We predicted that brain regions involved in a "learning network" would demonstrate non-stationarity and may violate assumptions associated with some advanced analysis approaches. Six blocks of learning, and six control blocks of a foot tapping sequence were performed in a fixed order. The reverse arrangement test was utilized to investigate the time series stationarity. Our analysis showed some non-stationary signals with a time varying first moment as a major source of non-stationarity. We also demonstrated a decreased number of non-stationarities in the third block as a result of priming and repetition. Most of the current literature does not examine stationarity prior to processing. The implication of our findings is that future investigations analyzing complex brain networks should utilize approaches robust to non-stationarities, as graph-theoretical approaches can be sensitive to non-stationarities present in data. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Towards mapping the brain connectome in depression: functional connectivity by perfusion SPECT.

    PubMed

    Gardner, Ann; Åstrand, Disa; Öberg, Johanna; Jacobsson, Hans; Jonsson, Cathrine; Larsson, Stig; Pagani, Marco

    2014-08-30

    Several studies have demonstrated altered brain functional connectivity in the resting state in depression. However, no study has investigated interregional networking in patients with persistent depressive disorder (PDD). The aim of this study was to assess differences in brain perfusion distribution and connectivity between large groups of patients and healthy controls. Participants comprised 91 patients with PDD and 65 age- and sex-matched healthy controls. Resting state perfusion was investigated by single photon emission computed tomography, and group differences were assessed by Statistical Parametric Mapping. Brain connectivity was explored through a voxel-wise interregional correlation analysis using as covariate of interest the normalized values of clusters of voxels in which perfusion differences were found in group analysis. Significantly increased regional brain perfusion distribution covering a large part of the cerebellum was observed in patients as compared with controls. Patients showed a significant negative functional connectivity between the cerebellar cluster and caudate, bilaterally. This study demonstrated inverse relative perfusion between the cerebellum and the caudate in PDD. Functional uncoupling may be associated with a dysregulation between the role of the cerebellum in action control and of the caudate in action selection, initiation and decision making in the patients. The potential impact of the resting state condition and the possibility of mitochondrial impairment are discussed. Copyright © 2014 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  19. Individual differences in brain structure and resting brain function underlie cognitive styles: evidence from the Embedded Figures Test.

    PubMed

    Hao, Xin; Wang, Kangcheng; Li, Wenfu; Yang, Wenjing; Wei, Dongtao; Qiu, Jiang; Zhang, Qinglin

    2013-01-01

    Cognitive styles can be characterized as individual differences in the way people perceive, think, solve problems, learn, and relate to others. Field dependence/independence (FDI) is an important and widely studied dimension of cognitive styles. Although functional imaging studies have investigated the brain activation of FDI cognitive styles, the combined structural and functional correlates with individual differences in a large sample have never been investigated. In the present study, we investigated the neural correlates of individual differences in FDI cognitive styles by analyzing the correlations between Embedded Figures Test (EFT) score and structural neuroimaging data [regional gray matter volume (rGMV) was assessed using voxel-based morphometry (VBM)]/functional neuroimaging data [resting-brain functions were measured by amplitude of low-frequency fluctuation (ALFF)] throughout the whole brain. Results showed that the increased rGMV in the left inferior parietal lobule (IPL) was associated with the EFT score, which might be the structural basis of effective local processing. Additionally, a significant positive correlation between ALFF and EFT score was found in the fronto-parietal network, including the left inferior parietal lobule (IPL) and the medial prefrontal cortex (mPFC). We speculated that the left IPL might be associated with superior feature identification, and mPFC might be related to cognitive inhibition of global processing bias. These results suggested that the underlying neuroanatomical and functional bases were linked to the individual differences in FDI cognitive styles and emphasized the important contribution of superior local processing ability and cognitive inhibition to field-independent style.

  20. Individual Differences in Brain Structure and Resting Brain Function Underlie Cognitive Styles: Evidence from the Embedded Figures Test

    PubMed Central

    Hao, Xin; Wang, Kangcheng; Li, Wenfu; Yang, Wenjing; Wei, Dongtao; Qiu, Jiang; Zhang, Qinglin

    2013-01-01

    Cognitive styles can be characterized as individual differences in the way people perceive, think, solve problems, learn, and relate to others. Field dependence/independence (FDI) is an important and widely studied dimension of cognitive styles. Although functional imaging studies have investigated the brain activation of FDI cognitive styles, the combined structural and functional correlates with individual differences in a large sample have never been investigated. In the present study, we investigated the neural correlates of individual differences in FDI cognitive styles by analyzing the correlations between Embedded Figures Test (EFT) score and structural neuroimaging data [regional gray matter volume (rGMV) was assessed using voxel-based morphometry (VBM)] / functional neuroimaging data [resting-brain functions were measured by amplitude of low-frequency fluctuation (ALFF)] throughout the whole brain. Results showed that the increased rGMV in the left inferior parietal lobule (IPL) was associated with the EFT score, which might be the structural basis of effective local processing. Additionally, a significant positive correlation between ALFF and EFT score was found in the fronto-parietal network, including the left inferior parietal lobule (IPL) and the medial prefrontal cortex (mPFC). We speculated that the left IPL might be associated with superior feature identification, and mPFC might be related to cognitive inhibition of global processing bias. These results suggested that the underlying neuroanatomical and functional bases were linked to the individual differences in FDI cognitive styles and emphasized the important contribution of superior local processing ability and cognitive inhibition to field-independent style. PMID:24348991

  1. Low-frequency transcranial magnetic stimulation is beneficial for enhancing synaptic plasticity in the aging brain.

    PubMed

    Zhang, Zhan-Chi; Luan, Feng; Xie, Chun-Yan; Geng, Dan-Dan; Wang, Yan-Yong; Ma, Jun

    2015-06-01

    In the aging brain, cognitive function gradually declines and causes a progressive reduction in the structural and functional plasticity of the hippocampus. Transcranial magnetic stimulation is an emerging and novel neurological and psychiatric tool used to investigate the neurobiology of cognitive function. Recent studies have demonstrated that low-frequency transcranial magnetic stimulation (≤1 Hz) ameliorates synaptic plasticity and spatial cognitive deficits in learning-impaired mice. However, the mechanisms by which this treatment improves these deficits during normal aging are still unknown. Therefore, the current study investigated the effects of transcranial magnetic stimulation on the brain-derived neurotrophic factor signal pathway, synaptic protein markers, and spatial memory behavior in the hippocampus of normal aged mice. The study also investigated the downstream regulator, Fyn kinase, and the downstream effectors, synaptophysin and growth-associated protein 43 (both synaptic markers), to determine the possible mechanisms by which transcranial magnetic stimulation regulates cognitive capacity. Transcranial magnetic stimulation with low intensity (110% average resting motor threshold intensity, 1 Hz) increased mRNA and protein levels of brain-derived neurotrophic factor, tropomyosin receptor kinase B, and Fyn in the hippocampus of aged mice. The treatment also upregulated the mRNA and protein expression of synaptophysin and growth-associated protein 43 in the hippocampus of these mice. In conclusion, brain-derived neurotrophic factor signaling may play an important role in sustaining and regulating structural synaptic plasticity induced by transcranial magnetic stimulation in the hippocampus of aging mice, and Fyn may be critical during this regulation. These responses may change the structural plasticity of the aging hippocampus, thereby improving cognitive function.

  2. Gender differences in the structural connectome of the teenage brain revealed by generalized q-sampling MRI.

    PubMed

    Tyan, Yeu-Sheng; Liao, Jan-Ray; Shen, Chao-Yu; Lin, Yu-Chieh; Weng, Jun-Cheng

    2017-01-01

    The question of whether there are biological differences between male and female brains is a fraught one, and political positions and prior expectations seem to have a strong influence on the interpretation of scientific data in this field. This question is relevant to issues of gender differences in the prevalence of psychiatric conditions, including autism, attention deficit hyperactivity disorder (ADHD), Tourette's syndrome, schizophrenia, dyslexia, depression, and eating disorders. Understanding how gender influences vulnerability to these conditions is significant. Diffusion magnetic resonance imaging (dMRI) provides a non-invasive method to investigate brain microstructure and the integrity of anatomical connectivity. Generalized q-sampling imaging (GQI) has been proposed to characterize complicated fiber patterns and distinguish fiber orientations, providing an opportunity for more accurate, higher-order descriptions through the water diffusion process. Therefore, we aimed to investigate differences in the brain's structural network between teenage males and females using GQI. This study included 59 (i.e., 33 males and 26 females) age- and education-matched subjects (age range: 13 to 14 years). The structural connectome was obtained by graph theoretical and network-based statistical (NBS) analyses. Our findings show that teenage male brains exhibit better intrahemispheric communication, and teenage female brains exhibit better interhemispheric communication. Our results also suggest that the network organization of teenage male brains is more local, more segregated, and more similar to small-world networks than teenage female brains. We conclude that the use of an MRI study with a GQI-based structural connectomic approach like ours presents novel insights into network-based systems of the brain and provides a new piece of the puzzle regarding gender differences.

  3. In vivo real time non invasive monitoring of brain penetration of chemicals with near-infrared spectroscopy: Concomitant PK/PD analysis.

    PubMed

    Crespi, Francesco; Cattini, Stefano; Donini, Maurizio; Bandera, Andrea; Rovati, Luigi

    2016-01-30

    Near-infrared spectroscopy (NIRS) is a non-invasive technique that monitors changes in oxygenation of haemoglobin. The absorption spectra of near-infrared light differ for the oxygenation-deoxygenation states of haemoglobin (oxygenate (HbO2) and deoxygenate (Hb), respectively) so that these two states can be directly monitored. Different methodologies report different basal values of HbO2 and Hb absolute concentrations in brain. Here, we attempt to calculate basal HbO2 levels in rat CNS via evaluation of the influence of exogenous oxygen or exogenous carbon dioxide on the NIRS parameters measured in vivo. Furthermore the possibility that changes of haemoglobin oxygenation in rat brain as measured by NIRS might be a useful index of brain penetration of chemical entities has been investigated. Different compounds from different chemical classes were selected on the basis of parallel ex vivo and in vivo pharmacokinetic (PK/PD) studies of brain penetration and overall pharmacokinetic profile. It appeared that NIRS might contribute to assess brain penetration of chemical entities, i.e. significant changes in NIRS signals could be related to brain exposure, conversely the lack of significant changes in relevant NIRS parameters could be indicative of low brain exposure. This work is proposing a further innovation on NIRS preclinical applications i.e. a "chemical" NIRS [chNIRS] approach for determining penetration of drugs in animal brain. Therefore, chNIRS could became a non invasive methodology for studies on neurobiological processes and psychiatric diseases in preclinical but also a translational strategy from preclinical to clinical investigations. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Intrinsic Brain Connectivity in Chronic Pain: A Resting-State fMRI Study in Patients with Rheumatoid Arthritis

    PubMed Central

    Flodin, Pär; Martinsen, Sofia; Altawil, Reem; Waldheim, Eva; Lampa, Jon; Kosek, Eva; Fransson, Peter

    2016-01-01

    Background: Rheumatoid arthritis (RA) is commonly accompanied by pain that is discordant with the degree of peripheral pathology. Very little is known about the cerebral processes involved in pain processing in RA. Here we investigated resting-state brain connectivity associated with prolonged pain in RA. Methods: 24 RA subjects and 19 matched controls were compared with regard to both behavioral measures of pain perception and resting-resting state fMRI data acquired subsequently to fMRI sessions involving pain stimuli. The resting-state fMRI brain connectivity was investigated using 159 seed regions located in cardinal pain processing brain regions. Additional principal component based multivariate pattern analysis of the whole brain connectivity pattern was carried out in a data driven analysis to localize group differences in functional connectivity. Results: When RA patients were compared to controls, we observed significantly lower pain resilience for pressure on the affected finger joints (i.e., P50-joint) and an overall heightened level of perceived global pain in RA patients. Relative to controls, RA patients displayed increased brain connectivity predominately for the supplementary motor areas, mid-cingulate cortex, and the primary sensorimotor cortex. Additionally, we observed an increase in brain connectivity between the insula and prefrontal cortex as well as between anterior cingulate cortex and occipital areas for RA patients. None of the group differences in brain connectivity were significantly correlated with behavioral parameters. Conclusion: Our study provides experimental evidence of increased connectivity between frontal midline regions that are implicated in affective pain processing and bilateral sensorimotor regions in RA patients. PMID:27014038

  5. Brain Tumor Epidemiology: Consensus from the Brain Tumor Epidemiology Consortium (BTEC)

    PubMed Central

    Bondy, Melissa L.; Scheurer, Michael E.; Malmer, Beatrice; Barnholtz-Sloan, Jill S.; Davis, Faith G.; Il’yasova, Dora; Kruchko, Carol; McCarthy, Bridget J.; Rajaraman, Preetha; Schwartzbaum, Judith A.; Sadetzki, Siegal; Schlehofer, Brigitte; Tihan, Tarik; Wiemels, Joseph L.; Wrensch, Margaret; Buffler, Patricia A.

    2010-01-01

    Epidemiologists in the Brain Tumor Epidemiology Consortium (BTEC) have prioritized areas for further research. Although many risk factors have been examined over the past several decades, there are few consistent findings possibly due to small sample sizes in individual studies and differences between studies in subjects, tumor types, and methods of classification. Individual studies have generally lacked sufficient sample size to examine interactions. A major priority based on available evidence and technologies includes expanding research in genetics and molecular epidemiology of brain tumors. BTEC has taken an active role in promoting understudied groups such as pediatric brain tumors, the etiology of rare glioma subtypes, such as oligodendroglioma, and meningioma, which not uncommon, has only recently been systematically registered in the US. There is also a pressing need to bring more researchers, especially junior investigators, to study brain tumor epidemiology. However, relatively poor funding for brain tumor research has made it difficult to encourage careers in this area. We review the group’s consensus on the current state of scientific findings and present a consensus on research priorities to identify the important areas the science should move to address. PMID:18798534

  6. [3H]N-METHYLSCOPOLAMINE BINDING TO HEART ATRIUM AND FOUR BRAIN REGIONS FROM THE MALLARD (ANAS PLATYRHNCHOS)

    EPA Science Inventory

    Neurotransmitter receptor research has blossomed in the past decade in the human health sciences. owever, little attention has been given to this line of investigation by environmental scientists. n this study, binding characteristics of membrane preparations from four brain regi...

  7. Anterior Temporal Lobe Connectivity Correlates with Functional Outcome after Aphasic Stroke

    ERIC Educational Resources Information Center

    Warren, Jane E.; Crinion, Jennifer T.; Ralph, Matthew A. Lambon; Wise, Richard J. S.

    2009-01-01

    Focal brain lesions are assumed to produce language deficits by two basic mechanisms: local cortical dysfunction at the lesion site, and remote cortical dysfunction due to disruption of the transfer and integration of information between connected brain regions. However, functional imaging studies investigating language outcome after aphasic…

  8. Some Current Findings on Brain Characteristics of the Mathematically Gifted Adolescent

    ERIC Educational Resources Information Center

    O'Boyle, Michael W.

    2005-01-01

    A number of studies investigating the brain characteristics of mathematically gifted youth indicate that they possess a unique functional organisation as compared to those of average math ability (O'Boyle, et al., 1995). Specifically, data from a variety of behavioural and psychophysiological experiments tend to suggest enhanced processing…

  9. The Neuroanatomy and Neuroendocrinology of Fragile X Syndrome

    ERIC Educational Resources Information Center

    Hessl, David; Rivera, Susan M.; Reiss, Allan L.

    2004-01-01

    Fragile X syndrome (FXS), caused by a single gene mutation on the X chromosome, offers a unique opportunity for investigation of gene-brain-behavior relationships. Recent advances in molecular genetics, human brain imaging, and behavioral studies have started to unravel the complex pathways leading to the cognitive, psychiatric, and physical…

  10. Identification of Genes Related to Learning and Memory in the Brain Transcriptome of the Mollusc, "Hermissenda Crassicornis"

    ERIC Educational Resources Information Center

    Tamvacakis, Arianna N.; Senatore, Adriano; Katz, Paul S.

    2015-01-01

    The sea slug "Hermissenda crassicornis" (Mollusca, Gastropoda, Nudibranchia) has been studied extensively in associative learning paradigms. However, lack of genetic information previously hindered molecular-level investigations. Here, the "Hermissenda" brain transcriptome was sequenced and assembled de novo, producing 165,743…

  11. The Effect of Deep Brain Stimulation on the Speech Motor System

    ERIC Educational Resources Information Center

    Mücke, Doris; Becker, Johannes; Barbe, Michael T.; Meister, Ingo; Liebhart, Lena; Roettger, Timo B.; Dembek, Till; Timmermann, Lars; Grice, Martine

    2014-01-01

    Purpose: Chronic deep brain stimulation of the nucleus ventralis intermedius is an effective treatment for individuals with medication-resistant essential tremor. However, these individuals report that stimulation has a deleterious effect on their speech. The present study investigates one important factor leading to these effects: the…

  12. Preterm Infant Hippocampal Volumes Correlate with Later Working Memory Deficits

    ERIC Educational Resources Information Center

    Beauchamp, Miriam H.; Thompson, Deanne K.; Howard, Kelly; Doyle, Lex W.; Egan, Gary F.; Inder, Terrie E.; Anderson, Peter J.

    2008-01-01

    Children born preterm exhibit working memory deficits. These deficits may be associated with structural brain changes observed in the neonatal period. In this study, the relationship between neonatal regional brain volumes and working memory deficits at age 2 years were investigated, with a particular interest in the dorsolateral prefrontal…

  13. Evolution of brain region volumes during artificial selection for relative brain size.

    PubMed

    Kotrschal, Alexander; Zeng, Hong-Li; van der Bijl, Wouter; Öhman-Mägi, Caroline; Kotrschal, Kurt; Pelckmans, Kristiaan; Kolm, Niclas

    2017-12-01

    The vertebrate brain shows an extremely conserved layout across taxa. Still, the relative sizes of separate brain regions vary markedly between species. One interesting pattern is that larger brains seem associated with increased relative sizes only of certain brain regions, for instance telencephalon and cerebellum. Till now, the evolutionary association between separate brain regions and overall brain size is based on comparative evidence and remains experimentally untested. Here, we test the evolutionary response of brain regions to directional selection on brain size in guppies (Poecilia reticulata) selected for large and small relative brain size. In these animals, artificial selection led to a fast response in relative brain size, while body size remained unchanged. We use microcomputer tomography to investigate how the volumes of 11 main brain regions respond to selection for larger versus smaller brains. We found no differences in relative brain region volumes between large- and small-brained animals and only minor sex-specific variation. Also, selection did not change allometric scaling between brain and brain region sizes. Our results suggest that brain regions respond similarly to strong directional selection on relative brain size, which indicates that brain anatomy variation in contemporary species most likely stem from direct selection on key regions. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  14. Nose-to-brain transport of melatonin from polymer gel suspensions: a microdialysis study in rats.

    PubMed

    Jayachandra Babu, R; Dayal, Pankaj Patrick; Pawar, Kasturi; Singh, Mandip

    2011-11-01

    Exogenous melatonin (MT) has significant neuroprotective roles in Alzheimer's and Parkinson's diseases. This study investigates the delivery MT to brain via nasal route as a polymeric gel suspension using central brain microdialysis in anesthetized rats. Micronized MT suspensions using polymers [carbopol, carboxymethyl cellulose (CMC)] and polyethylene glycol 400 (PEG400) were prepared and characterized for nasal administration. In vitro permeation of the formulations was measured across a three-dimensional tissue culture model EpiAirway(™). The central brain delivery into olfactory bulb of nasally administered MT gel suspensions was studied using brain microdialysis in male Wistar rats. The MT content of microdialysis samples was analyzed by high performance liquid chromatography (HPLC) using electrochemical detection. The nose-to-brain delivery of MT formulations was compared with intravenously administered MT solution. MT suspensions in carbopol and CMC vehicles have shown significantly higher permeability across Epiairway(™) as compared to control, PEG400 (P < 0.05). The brain (olfactory bulb) levels of MT after intranasal administration were 9.22, 6.77 and 4.04-fold higher for carbopol, CMC and PEG400, respectively, than that of intravenous MT in rats. In conclusion, microdialysis studies demonstrated increased brain levels of MT via nasal administration in rats.

  15. Nose-to-brain transport of melatonin from polymer gel suspensions: a microdialysis study in rats

    PubMed Central

    Babu, R. Jayachandra; Dayal, Pankaj Patrick; Pawar, Kasturi; Singh, Mandip

    2012-01-01

    Purpose Exogenous melatonin (MT) has significant neuroprotective roles in Alzheimer’s and Parkinson’s diseases. This study investigates the delivery MT to brain via nasal route as a polymeric gel suspension using central brain microdialysis in anesthetized rats. Methods Micronized MT suspensions using polymers [carbopol, carboxymethyl cellulose (CMC)] and polyethylene glycol 400 (PEG400) were prepared and characterized for nasal administration. In vitro permeation of the formulations was measured across a three-dimensional tissue culture model EpiAirway™. The central brain delivery into olfactory bulb of nasally administered MT gel suspensions was studied using brain microdialysis in male Wistar rats. The MT content of microdialysis samples was analyzed by high performance liquid chromatography (HPLC) using electrochemical detection. The nose-to-brain delivery of MT formulations was compared with intravenously administered MT solution. Results MT suspensions in carbopol and CMC vehicles have shown significantly higher permeability across Epiairway™ as compared to control, PEG400 (P < 0.05). The brain (olfactory bulb) levels of MT after intranasal administration were 9.22, 6.77 and 4.04-fold higher for carbopol, CMC and PEG400, respectively, than that of intravenous MT in rats. In conclusion, microdialysis studies demonstrated increased brain levels of MT via nasal administration in rats. PMID:21428693

  16. A New Disability-related Health Care Needs Assessment Tool for Persons With Brain Disorders

    PubMed Central

    Kim, Yoon; Eun, Sang June; Kim, Wan Ho; Lee, Bum-Suk; Leigh, Ja-Ho; Kim, Jung-Eun

    2013-01-01

    Objectives This study aimed to develop a health needs assessment (HNA) tool for persons with brain disorders and to assess the unmet needs of persons with brain disorders using the developed tool. Methods The authors used consensus methods to develop a HNA tool. Using a randomized stratified systematic sampling method adjusted for sex, age, and districts, 57 registered persons (27 severe and 30 mild cases) with brain disorders dwelling in Seoul, South Korea were chosen and medical specialists investigated all of the subjects with the developed tools. Results The HNA tool for brain disorders we developed included four categories: 1) medical interventions and operations, 2) assistive devices, 3) rehabilitation therapy, and 4) regular follow-up. This study also found that 71.9% of the subjects did not receive appropriate medical care, which implies that the severity of their disability is likely to be exacerbated and permanent, and the loss irrecoverable. Conclusions Our results showed that the HNA tool for persons with brain disorders based on unmet needs defined by physicians can be a useful method for evaluating the appropriateness and necessity of medical services offered to the disabled, and it can serve as the norm for providing health care services for disabled persons. Further studies should be undertaken to increase validity and reliability of the tool. Fundamental research investigating the factors generating or affecting the unmet needs is necessary; its results could serve as basis for developing policies to eliminate or alleviate these factors. PMID:24137530

  17. A new disability-related health care needs assessment tool for persons with brain disorders.

    PubMed

    Kim, Yoon; Eun, Sang June; Kim, Wan Ho; Lee, Bum-Suk; Leigh, Ja-Ho; Kim, Jung-Eun; Lee, Jin Yong

    2013-09-01

    This study aimed to develop a health needs assessment (HNA) tool for persons with brain disorders and to assess the unmet needs of persons with brain disorders using the developed tool. The authors used consensus methods to develop a HNA tool. Using a randomized stratified systematic sampling method adjusted for sex, age, and districts, 57 registered persons (27 severe and 30 mild cases) with brain disorders dwelling in Seoul, South Korea were chosen and medical specialists investigated all of the subjects with the developed tools. The HNA tool for brain disorders we developed included four categories: 1) medical interventions and operations, 2) assistive devices, 3) rehabilitation therapy, and 4) regular follow-up. This study also found that 71.9% of the subjects did not receive appropriate medical care, which implies that the severity of their disability is likely to be exacerbated and permanent, and the loss irrecoverable. Our results showed that the HNA tool for persons with brain disorders based on unmet needs defined by physicians can be a useful method for evaluating the appropriateness and necessity of medical services offered to the disabled, and it can serve as the norm for providing health care services for disabled persons. Further studies should be undertaken to increase validity and reliability of the tool. Fundamental research investigating the factors generating or affecting the unmet needs is necessary; its results could serve as basis for developing policies to eliminate or alleviate these factors.

  18. Selfish brain and selfish immune system interplay: A theoretical framework for metabolic comorbidities of mood disorders.

    PubMed

    Yamagata, Ana Sayuri; Mansur, Rodrigo Barbachan; Rizzo, Lucas Bortolotto; Rosenstock, Tatiana; McIntyre, Roger S; Brietzke, Elisa

    2017-01-01

    According to the "selfish brain" theory, the brain regulates its own energy supply influencing the peripheral metabolism and food intake according to its needs. The immune system has been likewise "selfish" due to independent energy consumption; and it may compete with the brain (another high energy-consumer) for glucose. In mood disorders, stress in mood episodes or physiological stress activate homeostasis mechanisms from the brain and the immune system to solve the imbalance. The interaction between the selfish brain and the selfish immune system may explain various conditions of medical impairment in mood disorders, such as Metabolic Syndrome (MetS), obesity, type 2 diabetes mellitus (T2DM) and immune dysregulation. The objective of this study is to comprehensively review the literature regarding the competition between the brain and the immune system for energy substrate. Targeting the energetic regulation of the brain and the immune system and their cross-talk open alternative treatments and a different approach in the study of general medical comorbidities in mood disorders, although more investigation is needed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Classifying social anxiety disorder using multivoxel pattern analyses of brain function and structure☆

    PubMed Central

    Frick, Andreas; Gingnell, Malin; Marquand, Andre F.; Howner, Katarina; Fischer, Håkan; Kristiansson, Marianne; Williams, Steven C.R.; Fredrikson, Mats; Furmark, Tomas

    2014-01-01

    Functional neuroimaging of social anxiety disorder (SAD) support altered neural activation to threat-provoking stimuli focally in the fear network, while structural differences are distributed over the temporal and frontal cortices as well as limbic structures. Previous neuroimaging studies have investigated the brain at the voxel level using mass-univariate methods which do not enable detection of more complex patterns of activity and structural alterations that may separate SAD from healthy individuals. Support vector machine (SVM) is a supervised machine learning method that capitalizes on brain activation and structural patterns to classify individuals. The aim of this study was to investigate if it is possible to discriminate SAD patients (n = 14) from healthy controls (n = 12) using SVM based on (1) functional magnetic resonance imaging during fearful face processing and (2) regional gray matter volume. Whole brain and region of interest (fear network) SVM analyses were performed for both modalities. For functional scans, significant classifications were obtained both at whole brain level and when restricting the analysis to the fear network while gray matter SVM analyses correctly classified participants only when using the whole brain search volume. These results support that SAD is characterized by aberrant neural activation to affective stimuli in the fear network, while disorder-related alterations in regional gray matter volume are more diffusely distributed over the whole brain. SVM may thus be useful for identifying imaging biomarkers of SAD. PMID:24239689

  20. Brain STAT5 signaling modulates learning and memory formation.

    PubMed

    Furigo, Isadora C; Melo, Helen M; Lyra E Silva, Natalia M; Ramos-Lobo, Angela M; Teixeira, Pryscila D S; Buonfiglio, Daniella C; Wasinski, Frederick; Lima, Eliana R; Higuti, Eliza; Peroni, Cibele N; Bartolini, Paolo; Soares, Carlos R J; Metzger, Martin; de Felice, Fernanda G; Donato, Jose

    2018-06-01

    The signal transducer and activator of transcription 5 (STAT5) is a transcription factor recruited by numerous cytokines. STAT5 is important for several physiological functions, including body and tissue growth, mammary gland development, immune system and lipid metabolism. However, the role of STAT5 signaling for brain functions is still poorly investigated, especially regarding cognitive aspects. Therefore, the objective of the present study was to investigate whether brain STAT5 signaling modulates learning and memory formation. For this purpose, brain-specific STAT5 knockout (STAT5 KO) mice were studied in well-established memory tests. Initially, we confirmed a robust reduction in STAT5a and STAT5b mRNA levels in different brain structures of STAT5 KO mice. STAT5 KO mice showed no significant alterations in metabolism, growth, somatotropic axis and spontaneous locomotor activity. In contrast, brain-specific STAT5 ablation impaired learning and memory formation in the novel object recognition, Barnes maze and contextual fear conditioning tests. To unravel possible mechanisms that might underlie the memory deficits of STAT5 KO mice, we assessed neurogenesis in the hippocampus, but no significant differences were observed between groups. On the other hand, reduced insulin-like growth factor-1 (IGF-1) mRNA expression was found in the hippocampus and hypothalamus of STAT5 KO mice. These findings collectively indicate that brain STAT5 signaling is required to attain normal learning and memory. Therefore, STAT5 is an important downstream cellular mechanism shared by several cytokines to regulate cognitive functions.

  1. Molecular pathology of brain matrix metalloproteases, claudin5, and aquaporins in forensic autopsy cases with special regard to methamphetamine intoxication.

    PubMed

    Wang, Qi; Ishikawa, Takaki; Michiue, Tomomi; Zhu, Bao-Li; Guan, Da-Wei; Maeda, Hitoshi

    2014-05-01

    Methamphetamine (METH) is a highly addictive drug of abuse and toxic to the brain. Recent studies indicated that besides direct damage to dopamine and 5-HT terminals, neurotoxicity of METH may also result from its ability to modify the structure of blood-brain barrier (BBB). The present study investigated the postmortem brain mRNA and immunohistochemical expressions of matrix metalloproteases (MMPs), claudin5 (CLDN5), and aquaporins (AQPs) in forensic autopsy cases of carbon monoxide (n = 14), METH (n = 21), and phenobarbital (n = 17) intoxication, compared with mechanical asphyxia (n = 15), brain injury (n = 11), non-brain injury (n = 21), and sharp instrument injury (n = 15) cases. Relative mRNA quantification using Taqman real-time PCR assay demonstrated higher expression of AQP4 and MMP9, lower expression of CLDN5 in METH intoxication cases and lower expression of MMP2 in phenobarbital intoxication cases. Immunostaining results showed substantial interindividual variations in each group, showing no evident differences in distribution or intensity among all the causes of death. These findings suggest that METH may increase BBB permeability by altering CLDN5 and MMP9, and the self-protective system maybe activated to eliminate accumulating water from the extracellular space of the brain by up-regulating AQP4. Systematic analysis of gene expressions using real-time PCR may be a useful procedure in forensic death investigation.

  2. 40 plus or minus 10, a new magical number: reply to Russell.

    PubMed

    Larrabee, Glenn J; Millis, Scott R; Meyers, John E

    2009-07-01

    Russell (2009 this issue) has criticized our recently published investigation (Larrabee, Millis, & Meyers, 2008) comparing the diagnostic discrimination of an ability-focused neuropsychological battery (AFB) to that of the Halstead Reitan Battery (HRB). He contended that our symptom validity test (SVT) screening excluding 43% of brain dysfunction and 15% of control patients using computations based on Digit Span inappropriately excluded patients with brain damage, due to the correlation of Digit Span with the Average Index Score (AIS). Our exclusion of 43% of brain dysfunction participants matches the frequency of invalid neuropsychological data of 40-50% or more reported by numerous studies for a wide range of settings with external incentive. Moreover, our study was not an investigation of malingering; rather, we screened our data to insure that only valid data remained, for the most meaningful comparison of the AFB to the HRB. Russell's argument that Digit Span is correlated with brain damage confounds the criterion, AIS (a composite cognitive score), with the predictor, Digit Span (another cognitive score), rather than employing a truly independent neurologic criterion. The fact that Digit Span is notoriously insensitive to brain dysfunction underscores the robustness of our findings, for if we inappropriately excluded brain-damaged patients for low Digit Span, as Russell claimed, this resulted in our sample reflecting more subtle degree of brain dysfunction, and the superiority of the AFB over the HRB was demonstrated under the most challenging of discriminative conditions.

  3. Whole-brain functional connectivity identification of functional dyspepsia.

    PubMed

    Nan, Jiaofen; Liu, Jixin; Li, Guoying; Xiong, Shiwei; Yan, Xuemei; Yin, Qing; Zeng, Fang; von Deneen, Karen M; Liang, Fanrong; Gong, Qiyong; Qin, Wei; Tian, Jie

    2013-01-01

    Recent neuroimaging studies have shown local brain aberrations in functional dyspepsia (FD) patients, yet little attention has been paid to the whole-brain resting-state functional network abnormalities. The purpose of this study was to investigate whether FD disrupts the patterns of whole-brain networks and the abnormal functional connectivity could reflect the severity of the disease. The dysfunctional interactions between brain regions at rest were investigated in FD patients as compared with 40 age- and gender- matched healthy controls. Multivariate pattern analysis was used to evaluate the discriminative power of our results for classifying patients from controls. In our findings, the abnormal brain functional connections were mainly situated within or across the limbic/paralimbic system, the prefrontal cortex, the tempo-parietal areas and the visual cortex. About 96% of the subjects among the original dataset were correctly classified by a leave one-out cross-validation approach, and 88% accuracy was also validated in a replication dataset. The classification features were significantly associated with the patients' dyspepsia symptoms, the self-rating depression scale and self-rating anxiety scale, but it was not correlated with duration of FD patients (p>0.05). Our results may indicate the effectiveness of the altered brain functional connections reflecting the disease pathophysiology underling FD. These dysfunctional connections may be the epiphenomena or causative agents of FD, which may be affected by clinical severity and its related emotional dimension of the disease rather than the clinical course.

  4. Inhibition of VEGF Signaling Reduces Diabetes-Exacerbated Brain Swelling, but Not Infarct Size, in Large Cerebral Infarction in Mice.

    PubMed

    Kim, Eunhee; Yang, Jiwon; Park, Keun Woo; Cho, Sunghee

    2017-12-30

    In light of repeated translational failures with preclinical neuroprotection-based strategies, this preclinical study reevaluates brain swelling as an important pathological event in diabetic stroke and investigates underlying mechanism of the comorbidity-enhanced brain edema formation. Type 2 (mild), type 1 (moderate), and mixed type 1/2 (severe) diabetic mice were subjected to transient focal ischemia. Infarct volume, brain swelling, and IgG extravasation were assessed at 3 days post-stroke. Expression of vascular endothelial growth factor (VEGF)-A, endothelial-specific molecule-1 (Esm1), and the VEGF receptor 2 (VEGFR2) was determined in the ischemic brain. Additionally, SU5416, a VEGFR2 inhibitor, was treated in the type 1/2 diabetic mice, and stroke outcomes were determined. All diabetic groups displayed bigger infarct volume and brain swelling compared to nondiabetic mice, and the increased swelling was disproportionately larger relative to infarct enlargement. Diabetic conditions significantly increased VEGF-A, Esm1, and VEGFR2 expressions in the ischemic brain compared to nondiabetic mice. Notably, in diabetic mice, VEGFR2 mRNA levels were positively correlated with brain swelling, but not with infarct volume. Treatment with SU5416 in diabetic mice significantly reduced brain swelling. The study shows that brain swelling is a predominant pathological event in diabetic stroke and that an underlying event for diabetes-enhanced brain swelling includes the activation of VEGF signaling. This study suggests consideration of stroke therapies aiming at primarily reducing brain swelling for subjects with diabetes.

  5. Brain-computer interface training combined with transcranial direct current stimulation in patients with chronic severe hemiparesis: Proof of concept study.

    PubMed

    Kasashima-Shindo, Yuko; Fujiwara, Toshiyuki; Ushiba, Junichi; Matsushika, Yayoi; Kamatani, Daiki; Oto, Misa; Ono, Takashi; Nishimoto, Atsuko; Shindo, Keiichiro; Kawakami, Michiyuki; Tsuji, Tetsuya; Liu, Meigen

    2015-04-01

    Brain-computer interface technology has been applied to stroke patients to improve their motor function. Event-related desynchronization during motor imagery, which is used as a brain-computer interface trigger, is sometimes difficult to detect in stroke patients. Anodal transcranial direct current stimulation (tDCS) is known to increase event-related desynchronization. This study investigated the adjunctive effect of anodal tDCS for brain-computer interface training in patients with severe hemiparesis. Eighteen patients with chronic stroke. A non-randomized controlled study. Subjects were divided between a brain-computer interface group and a tDCS- brain-computer interface group and participated in a 10-day brain-computer interface training. Event-related desynchronization was detected in the affected hemisphere during motor imagery of the affected fingers. The tDCS-brain-computer interface group received anodal tDCS before brain-computer interface training. Event-related desynchronization was evaluated before and after the intervention. The Fugl-Meyer Assessment upper extremity motor score (FM-U) was assessed before, immediately after, and 3 months after, the intervention. Event-related desynchronization was significantly increased in the tDCS- brain-computer interface group. The FM-U was significantly increased in both groups. The FM-U improvement was maintained at 3 months in the tDCS-brain-computer interface group. Anodal tDCS can be a conditioning tool for brain-computer interface training in patients with severe hemiparetic stroke.

  6. Autism BrainNet: A network of postmortem brain banks established to facilitate autism research.

    PubMed

    Amaral, David G; Anderson, Matthew P; Ansorge, Olaf; Chance, Steven; Hare, Carolyn; Hof, Patrick R; Miller, Melissa; Nagakura, Ikue; Pickett, Jane; Schumann, Cynthia; Tamminga, Carol

    2018-01-01

    Autism spectrum disorder (ASD or autism) is a neurodevelopmental condition that affects over 1% of the population worldwide. Developing effective preventions and treatments for autism will depend on understanding the genetic perturbations and underlying neuropathology of the disorder. While evidence from magnetic resonance imaging and other noninvasive techniques points to altered development and organization of the autistic brain, these tools lack the resolution for identifying the cellular and molecular underpinnings of the disorder. Postmortem studies of high-quality human brain tissue currently represent the only viable option to pursuing these types of studies. However, the availability of high-quality ASD brain tissue has been extremely limited. Here we describe the establishment of a privately funded tissue bank, Autism BrainNet, a network of brain collection sites that work in a coordinated fashion to develop an adequate library of human postmortem brain tissues. Autism BrainNet was initiated as a collaboration between the Simons Foundation and Autism Speaks, and is currently funded by the Simons Foundation Autism Research Initiative. Autism BrainNet has collection sites (nodes) in California, Texas, New York, and Massachusetts; an affiliated, international node is located in Oxford, England. All donations to this network become part of a consolidated pool of tissue that is distributed to qualified investigators worldwide to carry out autism research. An essential component of this program is a widespread outreach program that highlights the need for postmortem brain donations to families affected by autism, led by the Autism Science Foundation. Challenges include an outreach campaign that deals with a disorder beginning in early childhood, collecting an adequate number of donations to deal with the high level of biologic heterogeneity of autism, and preparing this limited resource for optimal distribution to the greatest number of investigators. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Exploration of the recurrence in radiation brain necrosis after bevacizumab discontinuation.

    PubMed

    Zhuang, Hongqing; Yuan, Xiangkun; Chang, Joe Y; Song, Yongchun; Wang, Junjie; Yuan, Zhiyong; Wang, Xiaoguang; Wang, Ping

    2016-07-26

    The aim of the paper was to investigate the recurrence and its causes of radiation brain necrosis following bevacizumab discontinuation. This study included 14 patients with radiation brain necrosis (confirmed through imaging) after stereotactic radiotherapy for a primary or metastatic brain tumor and who received bevacizumab treatment from June 2011 through December 2014. The patients received bevacizumab at 5 mg/kg, q3-4w, for at least 3 cycles. The T1 signal intensity from enhanced MRI images was used as the evaluation criteria for the brain necrosis treatment efficacy. brain necrosis improved in 13 of the 14 cases (92.9%). However, during follow-up, 10 of the 13 responsive patients (76.9%) exhibited a recurrence in brain necrosis, and a multiple linear regression analysis shows that brain necrosis recurrence was related to the follow-up time after the initial bevacizumab treatment discontinuation. bevacizumab produced good short-term effects for radiation brain necrosis; however, most of the patients would recurrence after bevacizumab is discontinued. Thus, brain necrosis was irreversible.

  8. Cranial irradiation increases tumor growth in experimental breast cancer brain metastasis.

    PubMed

    Hamilton, Amanda M; Wong, Suzanne M; Wong, Eugene; Foster, Paula J

    2018-05-01

    Whole-brain radiotherapy is the standard of care for patients with breast cancer with multiple brain metastases and, although this treatment has been essential in the management of existing brain tumors, there are many known negative consequences associated with the irradiation of normal brain tissue. In our study, we used in vivo magnetic resonance imaging analysis to investigate the influence of radiotherapy-induced damage of healthy brain on the arrest and growth of metastatic breast cancer cells in a mouse model of breast cancer brain metastasis. We observed that irradiated, but otherwise healthy, neural tissue had an increased propensity to support metastatic growth compared with never-irradiated controls. The elucidation of the impact of irradiation on normal neural tissue could have implications in clinical patient management, particularly in patients with residual systemic disease or with residual radio-resistant brain cancer. Copyright © 2018 John Wiley & Sons, Ltd.

  9. Connectome-harmonic decomposition of human brain activity reveals dynamical repertoire re-organization under LSD.

    PubMed

    Atasoy, Selen; Roseman, Leor; Kaelen, Mendel; Kringelbach, Morten L; Deco, Gustavo; Carhart-Harris, Robin L

    2017-12-15

    Recent studies have started to elucidate the effects of lysergic acid diethylamide (LSD) on the human brain but the underlying dynamics are not yet fully understood. Here we used 'connectome-harmonic decomposition', a novel method to investigate the dynamical changes in brain states. We found that LSD alters the energy and the power of individual harmonic brain states in a frequency-selective manner. Remarkably, this leads to an expansion of the repertoire of active brain states, suggestive of a general re-organization of brain dynamics given the non-random increase in co-activation across frequencies. Interestingly, the frequency distribution of the active repertoire of brain states under LSD closely follows power-laws indicating a re-organization of the dynamics at the edge of criticality. Beyond the present findings, these methods open up for a better understanding of the complex brain dynamics in health and disease.

  10. Brain metastasis detection by resonant Raman optical biopsy method

    NASA Astrophysics Data System (ADS)

    Zhou, Yan; Liu, Cheng-hui; Cheng, Gangge; Zhou, Lixin; Zhang, Chunyuan; Pu, Yang; Li, Zhongwu; Liu, Yulong; Li, Qingbo; Wang, Wei; Alfano, Robert R.

    2014-03-01

    Resonant Raman (RR) spectroscopy provides an effective way to enhance Raman signal from particular bonds associated with key molecules due to changes on a molecular level. In this study, RR is used for detection of human brain metastases of five kinds of primary organs of lung, breast, kidney, rectal and orbital in ex-vivo. The RR spectra of brain metastases cancerous tissues were measured and compared with those of normal brain tissues and the corresponding primary cancer tissues. The differences of five types of brain metastases tissues in key bio-components of carotene, tryptophan, lactate, alanine and methyl/methylene group were investigated. The SVM-KNN classifier was used to categorize a set of RR spectra data of brain metastasis of lung cancerous tissues from normal brain tissue, yielding diagnostic sensitivity and specificity at 100% and 75%, respectively. The RR spectroscopy may provide new moleculebased optical probe tools for diagnosis and classification of brain metastatic of cancers.

  11. Peripheral DNA methylation, cognitive decline and brain aging: pilot findings from the Whitehall II imaging study.

    PubMed

    Chouliaras, Leonidas; Pishva, Ehsan; Haapakoski, Rita; Zsoldos, Eniko; Mahmood, Abda; Filippini, Nicola; Burrage, Joe; Mill, Jonathan; Kivimäki, Mika; Lunnon, Katie; Ebmeier, Klaus P

    2018-05-01

    The present study investigated the link between peripheral DNA methylation (DNAm), cognitive impairment and brain aging. We tested the association between blood genome-wide DNAm profiles using the Illumina 450K arrays, cognitive dysfunction and brain MRI measures in selected participants of the Whitehall II imaging sub-study. Eight differentially methylated regions were associated with cognitive impairment. Accelerated aging based on the Hannum epigenetic clock was associated with mean diffusivity and global fractional anisotropy. We also identified modules of co-methylated loci associated with white matter hyperintensities. These co-methylation modules were enriched among pathways relevant to β-amyloid processing and glutamatergic signaling. Our data support the notion that blood DNAm changes may have utility as a biomarker for cognitive dysfunction and brain aging.

  12. Optical microangiography enabling visualization of change in meninges after traumatic brain injury in mice in vivo

    NASA Astrophysics Data System (ADS)

    Choi, Woo June; Qin, Wan; Qi, Xiaoli; Wang, Ruikang K.

    2016-03-01

    Traumatic brain injury (TBI) is a form of brain injury caused by sudden impact on brain by an external mechanical force. Following the damage caused at the moment of injury, TBI influences pathophysiology in the brain that takes place within the minutes or hours involving alterations in the brain tissue morphology, cerebral blood flow (CBF), and pressure within skull, which become important contributors to morbidity after TBI. While many studies for the TBI pathophysiology have been investigated with brain cortex, the effect of trauma on intracranial tissues has been poorly studied. Here, we report use of high-resolution optical microangiography (OMAG) to monitor the changes in cranial meninges beneath the skull of mouse after TBI. TBI is induced on a brain of anesthetized mouse by thinning the skull using a soft drill where a series of drilling exert mechanical stress on the brain through the skull, resulting in mild brain injury. Intracranial OMAG imaging of the injured mouse brain during post-TBI phase shows interesting pathophysiological findings in the meningeal layers such as widening of subdural space as well as vasodilation of subarachnoid vessels. These processes are acute and reversible within hours. The results indicate potential of OMAG to explore mechanism involved following TBI on small animals in vivo.

  13. Hierarchical functional modularity in the resting-state human brain.

    PubMed

    Ferrarini, Luca; Veer, Ilya M; Baerends, Evelinda; van Tol, Marie-José; Renken, Remco J; van der Wee, Nic J A; Veltman, Dirk J; Aleman, André; Zitman, Frans G; Penninx, Brenda W J H; van Buchem, Mark A; Reiber, Johan H C; Rombouts, Serge A R B; Milles, Julien

    2009-07-01

    Functional magnetic resonance imaging (fMRI) studies have shown that anatomically distinct brain regions are functionally connected during the resting state. Basic topological properties in the brain functional connectivity (BFC) map have highlighted the BFC's small-world topology. Modularity, a more advanced topological property, has been hypothesized to be evolutionary advantageous, contributing to adaptive aspects of anatomical and functional brain connectivity. However, current definitions of modularity for complex networks focus on nonoverlapping clusters, and are seriously limited by disregarding inclusive relationships. Therefore, BFC's modularity has been mainly qualitatively investigated. Here, we introduce a new definition of modularity, based on a recently improved clustering measurement, which overcomes limitations of previous definitions, and apply it to the study of BFC in resting state fMRI of 53 healthy subjects. Results show hierarchical functional modularity in the brain. Copyright 2009 Wiley-Liss, Inc

  14. Society for Neuro-Oncology 2014 annual meeting updates on central nervous system metastases.

    PubMed

    Lukas, Rimas V; Mehta, Minesh P; Lesniak, Maciej S

    2015-06-01

    The 19th Annual Meeting of the Society for Neuro-Oncology (SNO) took place in November of 2014. The focus of many abstracts, as well as the Education Day, was on recent advances in the study of central nervous system (CNS) metastases. Key studies evaluating the factors in tumors and their microenvironment associated with the development and growth of brain metastases are reviewed. Studies investigating the factors that independently influence survival in participants with brain metastases are presented. The Response Assessment for Neuro-Oncology criteria for brain metastases (RANO-BM) and the Neurological Assessment in Neuro-Oncology (NANO) criteria, which were both presented, are recapped. Studies are reviewed evaluating factors that influence survival outcomes in participants with brain metastases who were treated with radiotherapy. Studies investigating the potential risk of radiation necrosis with the combination of radiotherapy and immunotherapies are presented. Brain metastases-focused subset analyses from the ASCEND-1 trial for ALK-translocated non-small cell lung cancer are presented. Preclinical and clinical work on solid tumor leptomeningeal carcinomatosis is also covered. An overview is provided of treatment- related toxicities as well as important concepts that may influence strategies to protect against these toxicities. Key concepts regarding tumor biology, prognostication, response assessment, therapeutic management, and sequelae of treatment for CNS metastases are summarized. Advances in our understanding of the basic and clinical science of CNS metastases have the potential to improve outcomes for patients.

  15. Rehabilitation of discourse impairments after acquired brain injury

    PubMed Central

    Gindri, Gigiane; Pagliarin, Karina Carlesso; Casarin, Fabíola Schwengber; Branco, Laura Damiani; Ferré, Perrine; Joanette, Yves; Fonseca, Rochele Paz

    2014-01-01

    Language impairments in patients with acquired brain injury can have a negative impact on social life as well as on other cognitive domains. Discourse impairments are among the most commonly reported communication deficits among patients with acquired brain damage. Despite advances in the development of diagnostic tools for detecting such impairments, few studies have investigated interventions to rehabilitate patients presenting with these conditions. Objective The aim of this study was to present a systematic review of the methods used in the rehabilitation of discourse following acquired brain injury. Methods The PubMed database was searched for articles using the following keywords: "rehabilitation", "neurological injury", "communication" and "discursive abilities". Results A total of 162 abstracts were found, but only seven of these met criteria for inclusion in the review. Four studies involved samples of individuals with aphasia whereas three studies recruited samples of individuals with traumatic brain injury. Conclusion All but one article found that patient performance improved following participation in a discourse rehabilitation program. PMID:29213880

  16. Comparison of the brain development trajectory between Chinese and U.S. children and adolescents

    PubMed Central

    Xie, Wanze; Richards, John E.; Lei, Du; Lee, Kang; Gong, Qiyong

    2015-01-01

    This current study investigated brain development of Chinese and American children and adolescents from 8 to 16 years of age using structural magnetic resonance imaging (MRI) techniques. Analyses comparing Chinese and U.S. children brain/head MR images were performed to explore similarities and differences in the trajectory of brain development between these two groups. Our results revealed regional and age differences in both brain/head morphological and tissue level development between Chinese and U.S. children. Chinese children's brains and heads were shorter, wider, and taller than those of U.S. children. There were significant differences in the gray matter (GM) and white matter (WM) intensity between the two nationalities. Development trajectories for cerebral volume, GM, and several key brain structures were also distinct between these two populations. PMID:25698941

  17. Agmatine attenuates brain edema through reducing the expression of aquaporin-1 after cerebral ischemia

    PubMed Central

    Kim, Jae Hwan; Lee, Yong Woo; Park, Kyung Ah; Lee, Won Taek; Lee, Jong Eun

    2010-01-01

    Brain edema is frequently shown after cerebral ischemia. It is an expansion of brain volume because of increasing water content in brain. It causes to increase mortality after stroke. Agmatine, formed by the decarboxylation of -arginine by arginine decarboxylase, has been shown to be neuroprotective in trauma and ischemia models. The purpose of this study was to investigate the effect of agmatine for brain edema in ischemic brain damage and to evaluate the expression of aquaporins (AQPs). Results showed that agmatine significantly reduced brain swelling volume 22 h after 2 h middle cerebral artery occlusion in mice. Water content in brain tissue was clearly decreased 24 h after ischemic injury by agmatine treatment. Blood–brain barrier (BBB) disruption was diminished with agmatine than without. The expressions of AQPs-1 and -9 were well correlated with brain edema as water channels, were significantly decreased by agmatine treatment. It can thus be suggested that agmatine could attenuate brain edema by limitting BBB disruption and blocking the accumulation of brain water content through lessening the expression of AQP-1 after cerebral ischemia. PMID:20029450

  18. In Silico Investigation of Intracranial Blast Mitigation with Relevance to Military Traumatic Brain Injury

    DTIC Science & Technology

    2010-09-01

    how personal protective equipment affects the brain’s response to blasts. In this study we investigated the effect of the Advanced Combat...analyzing stress wave propagation, which is the main dynamic effect loading the brain tissue during a blast event. We consider two key metrics of stress ...Cauchy stress tensor, and sij ¼ σij − 13σkkδij are the compo- nents of the deviatoric stress tensor (24). Fig. 1 shows snapshots of the pressure

  19. Altered Brain Microstate Dynamics in Adolescents with Narcolepsy

    PubMed Central

    Drissi, Natasha M.; Szakács, Attila; Witt, Suzanne T.; Wretman, Anna; Ulander, Martin; Ståhlbrandt, Henriettae; Darin, Niklas; Hallböök, Tove; Landtblom, Anne-Marie; Engström, Maria

    2016-01-01

    Narcolepsy is a chronic sleep disorder caused by a loss of hypocretin-1 producing neurons in the hypothalamus. Previous neuroimaging studies have investigated brain function in narcolepsy during rest using positron emission tomography (PET) and single photon emission computed tomography (SPECT). In addition to hypothalamic and thalamic dysfunction they showed aberrant prefrontal perfusion and glucose metabolism in narcolepsy. Given these findings in brain structure and metabolism in narcolepsy, we anticipated that changes in functional magnetic resonance imaging (fMRI) resting state network (RSN) dynamics might also be apparent in patients with narcolepsy. The objective of this study was to investigate and describe brain microstate activity in adolescents with narcolepsy and correlate these to RSNs using simultaneous fMRI and electroencephalography (EEG). Sixteen adolescents (ages 13–20) with a confirmed diagnosis of narcolepsy were recruited and compared to age-matched healthy controls. Simultaneous EEG and fMRI data were collected during 10 min of wakeful rest. EEG data were analyzed for microstates, which are discrete epochs of stable global brain states obtained from topographical EEG analysis. Functional MRI data were analyzed for RSNs. Data showed that narcolepsy patients were less likely than controls to spend time in a microstate which we found to be related to the default mode network and may suggest a disruption of this network that is disease specific. We concluded that adolescents with narcolepsy have altered resting state brain dynamics. PMID:27536225

  20. Noninvasive imaging of brain oxygen metabolism in children with primary nocturnal enuresis during natural sleep.

    PubMed

    Yu, Bing; Huang, Mingzhu; Zhang, Xu; Ma, Hongwei; Peng, Miao; Guo, Qiyong

    2017-05-01

    A series of studies have revealed that nocturnal enuresis is closely related to hypoxia in children with primary nocturnal enuresis (PNE). However, brain oxygen metabolism of PNE children has not been investigated before. The purpose of this study was to investigate changes in whole-brain cerebral metabolic rate of oxygen (CMRO 2 ), cerebral blood flow (CBF), and oxygen extraction fraction (OEF) in children suffering from PNE. We used the newly developed T2-relaxation-under-spin-tagging (TRUST) magnetic resonance imaging technique. Neurological evaluation, structural imaging, phase-contrast, and the TRUST imaging method were applied in children with PNE (n = 37) and healthy age- and sex-matched control volunteers (n = 39) during natural sleep to assess whole-brain CMRO 2 , CBF, OEF, and arousal from sleep scores. Results showed that whole-brain CMRO 2 and OEF values of PNE children were higher in controls, while there was no significant difference in CBF. Consequently, OEF levels of PNE children were increased to maintain oxygen supply. The elevation of OEF was positively correlated with the difficulty of arousal. Our results provide the first evidence that high oxygen consumption and high OEF values could make PNE children more susceptible to hypoxia, which may induce cumulative arousal deficits and make them more prone to nocturnal enuresis. Hum Brain Mapp 38:2532-2539, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  1. Localized Down-regulation of P-glycoprotein by Focused Ultrasound and Microbubbles induced Blood-Brain Barrier Disruption in Rat Brain

    NASA Astrophysics Data System (ADS)

    Cho, Hongseok; Lee, Hwa-Youn; Han, Mun; Choi, Jong-Ryul; Ahn, Sanghyun; Lee, Taekwan; Chang, Yongmin; Park, Juyoung

    2016-08-01

    Multi-drug resistant efflux transporters found in Blood-Brain Barrier (BBB) acts as a functional barrier, by pumping out most of the drugs into the blood. Previous studies showed focused ultrasound (FUS) induced microbubble oscillation can disrupt the BBB by loosening the tight junctions in the brain endothelial cells; however, no study was performed to investigate its impact on the functional barrier of the BBB. In this study, the BBB in rat brains were disrupted using the MRI guided FUS and microbubbles. The immunofluorescence study evaluated the expression of the P-glycoprotein (P-gp), the most dominant multi-drug resistant protein found in the BBB. Intensity of the P-gp expression at the BBB disruption (BBBD) regions was significantly reduced (63.2 ± 18.4%) compared to the control area. The magnitude of the BBBD and the level of the P-gp down-regulation were significantly correlated. Both the immunofluorescence and histologic analysis at the BBBD regions revealed no apparent damage in the brain endothelial cells. The results demonstrate that the FUS and microbubbles can induce a localized down-regulation of P-gp expression in rat brain. The study suggests a clinically translation of this method to treat neural diseases through targeted delivery of the wide ranges of brain disorder related drugs.

  2. The Effect of Brain-Based Teaching on Young EFL Learners' Self-Efficacy

    ERIC Educational Resources Information Center

    Oghyanous, Parastoo Alizadeh

    2017-01-01

    The present study aimed to investigate the effect of brain-based teaching on the self-efficacy of young EFL learners. The initial participants of the study were 90 learners within the age range of 13-16 who were selected based on convenience sampling. Theses 90 young EFL learners were given a Flyers test the scores of which were used to choose 60…

  3. Modulation of thermal pain-related brain activity with virtual reality: evidence from fMRI.

    PubMed

    Hoffman, Hunter G; Richards, Todd L; Coda, Barbara; Bills, Aric R; Blough, David; Richards, Anne L; Sharar, Sam R

    2004-06-07

    This study investigated the neural correlates of virtual reality analgesia. Virtual reality significantly reduced subjective pain ratings (i.e. analgesia). Using fMRI, pain-related brain activity was measured for each participant during conditions of no virtual reality and during virtual reality (order randomized). As predicted, virtual reality significantly reduced pain-related brain activity in all five regions of interest; the anterior cingulate cortex, primary and secondary somatosensory cortex, insula, and thalamus (p<0.002, corrected). Results showed direct modulation of human brain pain responses by virtual reality distraction. Copyright 2004 Lippincott Williams and Wilkins

  4. Innate Immune Regulation by Toll-Like Receptors in the Brain

    PubMed Central

    Mallard, Carina

    2012-01-01

    The innate immune system plays an important role in cerebral health and disease. In recent years the role of innate immune regulation by toll-like receptors in the brain has been highlighted. In this paper the expression of toll-like receptors and endogenous toll-like receptor ligands in the brain and their role in cerebral ischemia will be discussed. Further, the ability of systemic toll-like receptor ligands to induce cerebral inflammation will be reviewed. Finally, the capacity of toll-like receptors to both increase (sensitization) and decrease (preconditioning/tolerance) the vulnerability of the brain to damage will be disclosed. Studies investigating the role of toll-like receptors in the developing brain will be emphasized. PMID:23097717

  5. Estimated maximal and current brain volume predict cognitive ability in old age.

    PubMed

    Royle, Natalie A; Booth, Tom; Valdés Hernández, Maria C; Penke, Lars; Murray, Catherine; Gow, Alan J; Maniega, Susana Muñoz; Starr, John; Bastin, Mark E; Deary, Ian J; Wardlaw, Joanna M

    2013-12-01

    Brain tissue deterioration is a significant contributor to lower cognitive ability in later life; however, few studies have appropriate data to establish how much influence prior brain volume and prior cognitive performance have on this association. We investigated the associations between structural brain imaging biomarkers, including an estimate of maximal brain volume, and detailed measures of cognitive ability at age 73 years in a large (N = 620), generally healthy, community-dwelling population. Cognitive ability data were available from age 11 years. We found positive associations (r) between general cognitive ability and estimated brain volume in youth (male, 0.28; females, 0.12), and in measured brain volume in later life (males, 0.27; females, 0.26). Our findings show that cognitive ability in youth is a strong predictor of estimated prior and measured current brain volume in old age but that these effects were the same for both white and gray matter. As 1 of the largest studies of associations between brain volume and cognitive ability with normal aging, this work contributes to the wider understanding of how some early-life factors influence cognitive aging. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Lifestyle-dependent brain change: a longitudinal cohort MRI study.

    PubMed

    Kim, Regina Ey; Yun, Chang-Ho; Thomas, Robert J; Oh, Jang-Hoon; Johnson, Hans J; Kim, Soriul; Lee, Seungku; Seo, Hyung Suk; Shin, Chol

    2018-05-07

    We investigated both independent and interconnected effects of 3 lifestyle factors on brain volume, measuring yearly changes using large-scale longitudinal magnetic resonance imaging, in middle-aged to older adults. We measured brain volumes in a cohort (n = 984, 49-79 years) from the Korean Genome and Epidemiology Study group, using baseline and follow-up estimates after 4 years. In our analysis, the accelerated brain atrophy in normal aging was observed across regions (e.g., brain tissue: -0.098 ± 0.01 mL/y, p < 0.001). An independent lifestyle-specific trend of brain atrophy across time was also evident in men, where smoking (p = 0.012) and physical activity (p = 0.014) showed the strongest association with the atrophy rate. Linear regression analysis of the interconnected effect revealed that brain atrophy is mitigated by intense physical activity in smoking males. Lifestyle factors did not show any significant effect on brain volume in women. These results provide important information regarding lifestyle factors that affect brain aging in mid-to-late adulthood. Our findings may aid in the identification of preventive measures against dementia. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Long-Term Cognitive Outcome and Brain Imaging in Adults After Extracorporeal Membrane Oxygenation.

    PubMed

    von Bahr, Viktor; Kalzén, Håkan; Hultman, Jan; Frenckner, Björn; Andersson, Christin; Mosskin, Mikael; Eksborg, Staffan; Holzgraefe, Bernhard

    2018-05-01

    To investigate the presence of cognitive dysfunction and brain lesions in long-term survivors after treatment with extracorporeal membrane oxygenation for severe respiratory failure, and to see whether patients with prolonged hypoxemia were at increased risk. A single-center retrospective cohort study. Tertiary referral center for extracorporeal membrane oxygenation in Sweden. Long-term survivors treated between 1995 and July 2009. Seven patients from a previously published study investigated with a similar protocol were included. Brain imaging, neurocognitive testing, interview. Thirty-eight patients (i.e., n = 31 + 7) were enrolled and investigated in median 9.0 years after discharge. Only memory tests were performed in 10 patients, mainly due to a lack of formal education necessary for the test results to be reliable. Median full-scale intelligence quotient, memory index, and executive index were 97, 101, and 104, respectively (normal, 100 ± 15). Cognitive function was not reduced in the group with prolonged hypoxemia. Brain imaging showed cerebrovascular lesions in 14 of 38 patients (37%), most commonly in the group treated with venoarterial extracorporeal membrane oxygenation (7/11, 64%). In this group, memory function and executive function were significantly reduced. Patients treated with extracorporeal membrane oxygenation for respiratory failure may have normal cognitive function years after treatment, if not affected by cerebrovascular lesions. Permissive hypoxemia was not correlated with long-term cognitive dysfunction in the present study. Further prospective studies with minimal loss to follow-up are direly needed to confirm our findings.

  8. Development of a high-throughput brain slice method for studying drug distribution in the central nervous system.

    PubMed

    Fridén, Markus; Ducrozet, Frederic; Middleton, Brian; Antonsson, Madeleine; Bredberg, Ulf; Hammarlund-Udenaes, Margareta

    2009-06-01

    New, more efficient methods of estimating unbound drug concentrations in the central nervous system (CNS) combine the amount of drug in whole brain tissue samples measured by conventional methods with in vitro estimates of the unbound brain volume of distribution (V(u,brain)). Although the brain slice method is the most reliable in vitro method for measuring V(u,brain), it has not previously been adapted for the needs of drug discovery research. The aim of this study was to increase the throughput and optimize the experimental conditions of this method. Equilibrium of drug between the buffer and the brain slice within the 4 to 5 h of incubation is a fundamental requirement. However, it is difficult to meet this requirement for many of the extensively binding, lipophilic compounds in drug discovery programs. In this study, the dimensions of the incubation vessel and mode of stirring influenced the equilibration time, as did the amount of brain tissue per unit of buffer volume. The use of cassette experiments for investigating V(u,brain) in a linear drug concentration range increased the throughput of the method. The V(u,brain) for the model compounds ranged from 4 to 3000 ml . g brain(-1), and the sources of variability are discussed. The optimized setup of the brain slice method allows precise, robust estimation of V(u,brain) for drugs with diverse properties, including highly lipophilic compounds. This is a critical step forward for the implementation of relevant measurements of CNS exposure in the drug discovery setting.

  9. Mapping the Critical Gestational Age at Birth that Alters Brain Development in Preterm-born Infants using Multi-Modal MRI

    PubMed Central

    Wu, Dan; Chang, Linda; Akazawa, Kentaro; Oishi, Kumiko; Skranes, Jon; Ernst, Thomas; Oishi, Kenichi

    2017-01-01

    Preterm birth adversely affects postnatal brain development. In order to investigate the critical gestational age at birth (GAB) that alters the developmental trajectory of gray and white matter structures in the brain, we investigated diffusion tensor and quantitative T2 mapping data in 43 term-born and 43 preterm-born infants. A novel multivariate linear model—the change point model, was applied to detect change points in fractional anisotropy, mean diffusivity, and T2 relaxation time. Change points captured the “critical” GAB value associated with a change in the linear relation between GAB and MRI measures. The analysis was performed in 126 regions across the whole brain using an atlas-based image quantification approach to investigate the spatial pattern of the critical GAB. Our results demonstrate that the critical GABs are region- and modality-specific, generally following a central-to-peripheral and bottom-to-top order of structural development. This study may offer unique insights into the postnatal neurological development associated with differential degrees of preterm birth. PMID:28111189

  10. Mapping the critical gestational age at birth that alters brain development in preterm-born infants using multi-modal MRI.

    PubMed

    Wu, Dan; Chang, Linda; Akazawa, Kentaro; Oishi, Kumiko; Skranes, Jon; Ernst, Thomas; Oishi, Kenichi

    2017-04-01

    Preterm birth adversely affects postnatal brain development. In order to investigate the critical gestational age at birth (GAB) that alters the developmental trajectory of gray and white matter structures in the brain, we investigated diffusion tensor and quantitative T2 mapping data in 43 term-born and 43 preterm-born infants. A novel multivariate linear model-the change point model, was applied to detect change points in fractional anisotropy, mean diffusivity, and T2 relaxation time. Change points captured the "critical" GAB value associated with a change in the linear relation between GAB and MRI measures. The analysis was performed in 126 regions across the whole brain using an atlas-based image quantification approach to investigate the spatial pattern of the critical GAB. Our results demonstrate that the critical GABs are region- and modality-specific, generally following a central-to-peripheral and bottom-to-top order of structural development. This study may offer unique insights into the postnatal neurological development associated with differential degrees of preterm birth. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Modeling Early Postnatal Brain Growth and Development with CT: Changes in the Brain Radiodensity Histogram from Birth to 2 Years.

    PubMed

    Cauley, K A; Hu, Y; Och, J; Yorks, P J; Fielden, S W

    2018-04-01

    The majority of brain growth and development occur in the first 2 years of life. This study investigated these changes by analysis of the brain radiodensity histogram of head CT scans from the clinical population, 0-2 years of age. One hundred twenty consecutive head CTs with normal findings meeting the inclusion criteria from children from birth to 2 years were retrospectively identified from 3 different CT scan platforms. Histogram analysis was performed on brain-extracted images, and histogram mean, mode, full width at half maximum, skewness, kurtosis, and SD were correlated with subject age. The effects of scan platform were investigated. Normative curves were fitted by polynomial regression analysis. Average total brain volume was 360 cm 3 at birth, 948 cm 3 at 1 year, and 1072 cm 3 at 2 years. Total brain tissue density showed an 11% increase in mean density at 1 year and 19% at 2 years. Brain radiodensity histogram skewness was positive at birth, declining logarithmically in the first 200 days of life. The histogram kurtosis also decreased in the first 200 days to approach a normal distribution. Direct segmentation of CT images showed that changes in brain radiodensity histogram skewness correlated with, and can be explained by, a relative increase in gray matter volume and an increase in gray and white matter tissue density that occurs during this period of brain maturation. Normative metrics of the brain radiodensity histogram derived from routine clinical head CT images can be used to develop a model of normal brain development. © 2018 by American Journal of Neuroradiology.

  12. The 'selfish brain' is regulated by aquaporins and autophagy under nutrient deprivation.

    PubMed

    Ye, Qiao; Wu, Yonghong; Gao, Yan; Li, Zhihui; Li, Weiguang; Zhang, Chenggang

    2016-05-01

    The brain maintains its mass and physiological functional capacity compared with other organs under harsh conditions such as starvation, a mechanism termed the 'selfish brain' theory. To further investigate this phenomenon, mice were examined following water and/or food deprivation. Although the body weights of the mice, the weight of the organs except the brain and blood glucose levels were significantly reduced in the absence of water and/or food, the brain weight maintained its original state. Furthermore, no significant differences in the water content of the brain or its energy balance were observed when the mice were subjected to water and/or food deprivation. To further investigate the mechanism underlying the brain maintenance of water and substance homeostasis, the expression levels of aquaporins (AQPs) and autophagy‑specific protein long‑chain protein 3 (LC3) were examined. During the process of water and food deprivation, no significant differences in the transcriptional levels of AQPs were observed. However, autophagy activity levels were initially stimulated, then suppressed in a time‑dependent manner. LC3 and AQPs have important roles for the survival of the brain under conditions of food and water deprivation, which provided further understanding of the mechanism underlying the 'selfish brain' phenomenon. Although not involved in the energy regulation of the 'selfish brain', AQPs were observed to have important roles in water and food deprivation, specifically with regards to the control of water content. Additionally, the brain exhibits an 'unselfish strategy' using autophagy during water and/or food deprivation. The present study furthered current understanding of the 'selfish brain' theory, and identified additional regulating target genes of AQPs and autophagy, with the aim of providing a basis for the prevention of nutrient shortage in humans and animals.

  13. The 'selfish brain' is regulated by aquaporins and autophagy under nutrient deprivation

    PubMed Central

    YE, QIAO; WU, YONGHONG; GAO, YAN; LI, ZHIHUI; LI, WEIGUANG; ZHANG, CHENGGANG

    2016-01-01

    The brain maintains its mass and physiological functional capacity compared with other organs under harsh conditions such as starvation, a mechanism termed the 'selfish brain' theory. To further investigate this phenomenon, mice were examined following water and/or food deprivation. Although the body weights of the mice, the weight of the organs except the brain and blood glucose levels were significantly reduced in the absence of water and/or food, the brain weight maintained its original state. Furthermore, no significant differences in the water content of the brain or its energy balance were observed when the mice were subjected to water and/or food deprivation. To further investigate the mechanism underlying the brain maintenance of water and substance homeostasis, the expression levels of aquaporins (AQPs) and autophagy-specific protein long-chain protein 3 (LC3) were examined. During the process of water and food deprivation, no significant differences in the transcriptional levels of AQPs were observed. However, autophagy activity levels were initially stimulated, then suppressed in a time-dependent manner. LC3 and AQPs have important roles for the survival of the brain under conditions of food and water deprivation, which provided further understanding of the mechanism underlying the 'selfish brain' phenomenon. Although not involved in the energy regulation of the 'selfish brain', AQPs were observed to have important roles in water and food deprivation, specifically with regards to the control of water content. Additionally, the brain exhibits an 'unselfish strategy' using autophagy during water and/or food deprivation. The present study furthered current understanding of the 'selfish brain' theory, and identified additional regulating target genes of AQPs and autophagy, with the aim of providing a basis for the prevention of nutrient shortage in humans and animals. PMID:26986971

  14. Altered Blood-Brain Barrier Permeability in Patients With Systemic Lupus Erythematosus: A Novel Imaging Approach.

    PubMed

    Gulati, Gaurav; Jones, Jordan T; Lee, Gregory; Altaye, Mekibib; Beebe, Dean W; Meyers-Eaton, Jamie; Wiley, Kasha; Brunner, Hermine I; DiFrancesco, Mark W

    2017-02-01

    To evaluate a safe, noninvasive magnetic resonance imaging (MRI) method to measure regional blood-brain barrier integrity and investigate its relationship with neurocognitive function and regional gray matter volume in juvenile-onset systemic lupus erythematosus (SLE). In this cross-sectional, case-control study, capillary permeability was measured as a marker of blood-brain barrier integrity in juvenile SLE patients and matched healthy controls, using a combination of arterial spin labeling and diffusion-weighted brain MRI. Regional gray matter volume was measured by voxel-based morphometry. Correlation analysis was done to investigate the relationship between regional capillary permeability and regional gray matter volume. Formal neurocognitive testing was completed (measuring attention, visuoconstructional ability, working memory, and psychomotor speed), and scores were regressed against regional blood-brain barrier integrity among juvenile SLE patients. Formal cognitive testing confirmed normal cognitive ability in all juvenile SLE subjects (n = 11) included in the analysis. Regional capillary permeability was negatively associated (P = 0.026) with neurocognitive performance concerning psychomotor speed in the juvenile SLE cohort. Compared with controls (n = 11), juvenile SLE patients had significantly greater capillary permeability involving Brodmann's areas 19, 28, 36, and 37 and caudate structures (P < 0.05 for all). There is imaging evidence of increased regional capillary permeability in juvenile SLE patients with normal cognitive performance using a novel noninvasive MRI technique. These blood-brain barrier outcomes appear consistent with functional neuronal network alterations and gray matter volume loss previously observed in juvenile SLE patients with overt neurocognitive deficits, supporting the notion that blood-brain barrier integrity loss precedes the loss of cognitive ability in juvenile SLE. Longitudinal studies are needed to confirm the findings of this pilot study. © 2016, American College of Rheumatology.

  15. Effects of Bisphenol A on glucose homeostasis and brain insulin signaling pathways in male mice.

    PubMed

    Fang, Fangfang; Chen, Donglong; Yu, Pan; Qian, Wenyi; Zhou, Jing; Liu, Jingli; Gao, Rong; Wang, Jun; Xiao, Hang

    2015-02-01

    The potential effects of Bisphenol A (BPA) on peripheral insulin resistance have recently gained more attention, however, its functions on brain insulin resistance are still unknown. The aim of the present study was to investigate the effects of BPA on insulin signaling and glucose transport in mouse brain. The male mice were administrated of 100 μg/kg/day BPA or vehicle for 15 days then challenged with glucose and insulin tolerance tests. The insulin levels were detected with radioimmunoassay (RIA), and the insulin signaling pathways were investigated by Western blot. Our results revealed that BPA significantly increased peripheral plasma insulin levels, and decreased the insulin signals including phosphorylated insulin receptor (p-IR), phosphorylated insulin receptor substrate 1 (p-IRS1), phosphorylated protein kinase B (p-AKT), phosphorylated glycogen synthase kinase 3β (p-GSK3β) and phosphorylated extracellular regulated protein kinases (p-ERK1/2) in the brain, though insulin expression in both hippocampus and profrontal cortex was increased. In parallel, BPA exposure might contribute to glucose transport disturbance in the brain since the expression of glucose transporters were markedly decreased. In conclusion, BPA exposure perturbs the insulin signaling and glucose transport in the brain, therefore, it might be a risk factor for brain insulin resistance. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Brain Imaging, Forward Inference, and Theories of Reasoning

    PubMed Central

    Heit, Evan

    2015-01-01

    This review focuses on the issue of how neuroimaging studies address theoretical accounts of reasoning, through the lens of the method of forward inference (Henson, 2005, 2006). After theories of deductive and inductive reasoning are briefly presented, the method of forward inference for distinguishing between psychological theories based on brain imaging evidence is critically reviewed. Brain imaging studies of reasoning, comparing deductive and inductive arguments, comparing meaningful versus non-meaningful material, investigating hemispheric localization, and comparing conditional and relational arguments, are assessed in light of the method of forward inference. Finally, conclusions are drawn with regard to future research opportunities. PMID:25620926

  17. Spectral fingerprints of large-scale neuronal interactions.

    PubMed

    Siegel, Markus; Donner, Tobias H; Engel, Andreas K

    2012-01-11

    Cognition results from interactions among functionally specialized but widely distributed brain regions; however, neuroscience has so far largely focused on characterizing the function of individual brain regions and neurons therein. Here we discuss recent studies that have instead investigated the interactions between brain regions during cognitive processes by assessing correlations between neuronal oscillations in different regions of the primate cerebral cortex. These studies have opened a new window onto the large-scale circuit mechanisms underlying sensorimotor decision-making and top-down attention. We propose that frequency-specific neuronal correlations in large-scale cortical networks may be 'fingerprints' of canonical neuronal computations underlying cognitive processes.

  18. Brain imaging, forward inference, and theories of reasoning.

    PubMed

    Heit, Evan

    2014-01-01

    This review focuses on the issue of how neuroimaging studies address theoretical accounts of reasoning, through the lens of the method of forward inference (Henson, 2005, 2006). After theories of deductive and inductive reasoning are briefly presented, the method of forward inference for distinguishing between psychological theories based on brain imaging evidence is critically reviewed. Brain imaging studies of reasoning, comparing deductive and inductive arguments, comparing meaningful versus non-meaningful material, investigating hemispheric localization, and comparing conditional and relational arguments, are assessed in light of the method of forward inference. Finally, conclusions are drawn with regard to future research opportunities.

  19. Effects of BDNF Val66Met polymorphism on brain metabolism in Alzheimer's disease.

    PubMed

    Xu, Cunlu; Wang, Zhenhua; Fan, Ming; Liu, Bing; Song, Ming; Zhen, Xiantong; Jiang, Tianzi

    2010-08-23

    Earlier studies showed that the Val66Met polymorphisms of the brain-derived neurotrophic factor differentially affect gray matter volume and brain region activities. This study used resting positron emission tomography to investigate the relationship between the polymorphisms of Val66Met and the regional cerebral metabolic rate in the brain. We analyzed the positron emission tomography images of 215 patients from the Alzheimer's Disease Neuroimaging Initiative and found significant differences in the parahippocampal gyrus, superior temporal gyrus, prefrontal cortex, and inferior parietal lobule when comparing Met carriers with noncarriers among both the normal controls and those with mild cognitive impairment. For those with Alzheimer's disease, we also found additional differences in the bilateral insula between the carriers and noncarriers.

  20. Magnetic resonance imaging for white matter degradation in fornix following mild traumatic brain injury

    NASA Astrophysics Data System (ADS)

    Zhan, Wang; Boreta, Lauren; Gauger, Grant

    2010-03-01

    The alterations of the fornix in mild traumatic brain injury (mTBI) were investigated using diffusion tensor imaging (DTI) and T1-weighetd anatomical imaging. The primary goal of this study was to test that hypothesis that the fornix might play a major role in the memory and learning dysfunctions in the post-concussion syndrome, which may related to the white matter (WM) degradations following mild traumatic brain injury. N=24 mTBI patients were longitudinally studied in two time points with 6-month intervals using a 4-Tesla MRI scanner to measure the WM integrity of fornix and the fornix-to-brain ratio (FBR), and compared with matched healthy controls. Our data show that the WM degradation in fornix onset in the acute stage after mild TBI when the post-injury time was less than 6 weeks, and that this WM degradation continued during the following 6-month period of recovery. In summary, using DTI and structural MRI together can effectively detect the fornix changes in both cross-sectional and longitudinal investigations. Further studies are warranted to exam the association between the fornix alterations and neurocognitive performance of TBI patients.

  1. Discovering transnosological molecular basis of human brain diseases using biclustering analysis of integrated gene expression data.

    PubMed

    Cha, Kihoon; Hwang, Taeho; Oh, Kimin; Yi, Gwan-Su

    2015-01-01

    It has been reported that several brain diseases can be treated as transnosological manner implicating possible common molecular basis under those diseases. However, molecular level commonality among those brain diseases has been largely unexplored. Gene expression analyses of human brain have been used to find genes associated with brain diseases but most of those studies were restricted either to an individual disease or to a couple of diseases. In addition, identifying significant genes in such brain diseases mostly failed when it used typical methods depending on differentially expressed genes. In this study, we used a correlation-based biclustering approach to find coexpressed gene sets in five neurodegenerative diseases and three psychiatric disorders. By using biclustering analysis, we could efficiently and fairly identified various gene sets expressed specifically in both single and multiple brain diseases. We could find 4,307 gene sets correlatively expressed in multiple brain diseases and 3,409 gene sets exclusively specified in individual brain diseases. The function enrichment analysis of those gene sets showed many new possible functional bases as well as neurological processes that are common or specific for those eight diseases. This study introduces possible common molecular bases for several brain diseases, which open the opportunity to clarify the transnosological perspective assumed in brain diseases. It also showed the advantages of correlation-based biclustering analysis and accompanying function enrichment analysis for gene expression data in this type of investigation.

  2. Discovering transnosological molecular basis of human brain diseases using biclustering analysis of integrated gene expression data

    PubMed Central

    2015-01-01

    Background It has been reported that several brain diseases can be treated as transnosological manner implicating possible common molecular basis under those diseases. However, molecular level commonality among those brain diseases has been largely unexplored. Gene expression analyses of human brain have been used to find genes associated with brain diseases but most of those studies were restricted either to an individual disease or to a couple of diseases. In addition, identifying significant genes in such brain diseases mostly failed when it used typical methods depending on differentially expressed genes. Results In this study, we used a correlation-based biclustering approach to find coexpressed gene sets in five neurodegenerative diseases and three psychiatric disorders. By using biclustering analysis, we could efficiently and fairly identified various gene sets expressed specifically in both single and multiple brain diseases. We could find 4,307 gene sets correlatively expressed in multiple brain diseases and 3,409 gene sets exclusively specified in individual brain diseases. The function enrichment analysis of those gene sets showed many new possible functional bases as well as neurological processes that are common or specific for those eight diseases. Conclusions This study introduces possible common molecular bases for several brain diseases, which open the opportunity to clarify the transnosological perspective assumed in brain diseases. It also showed the advantages of correlation-based biclustering analysis and accompanying function enrichment analysis for gene expression data in this type of investigation. PMID:26043779

  3. Abnormal Functional MRI BOLD Contrast in the Vegetative State after Severe Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Heelmann, Volker

    2010-01-01

    For the rehabilitation process, the treatment of patients surviving brain injury in a vegetative state is still a serious challenge. The aim of this study was to investigate patients exhibiting severely disturbed consciousness using functional magnetic resonance imaging. Five cases of posttraumatic vegetative state and one with minimal…

  4. Right-Hemispheric Cortical Contributions to Language Ability in Healthy Adults

    ERIC Educational Resources Information Center

    Van Ettinger-Veenstra, Helene; Ragnehed, Mattias; McAllister, Anita; Lundberg, Peter; Engstrom, Maria

    2012-01-01

    In this study we investigated the correlation between individual linguistic ability based on performance levels and their engagement of typical and atypical language areas in the brain. Eighteen healthy subjects between 21 and 64 years participated in language ability tests, and subsequent functional MRI scans measuring brain activity in response…

  5. The Brain Goes to School: Strengthening the Education-Neuroscience Connection

    ERIC Educational Resources Information Center

    Ansari, Daniel

    2008-01-01

    Investigations on the brain processes using a technology such as functional magnetic resonance imaging (fMRI) have led to the creation of a new field of research that bridges the gap between cognitive psychology and neuroscience: "cognitive neuroscience." Within this new field, studies examining the processes of learning and developing are…

  6. Dietary folate and choline status differentially affect lipid metabolism and behavior-mediated neurotransmitters in young rats

    USDA-ARS?s Scientific Manuscript database

    The relationship between choline and folate metabolisms is an important issue due to the essential role of these nutrients in brain plasticity and cognitive functions. Present study was designed to investigate whether modification of the dietary folate-choline status in young rats would affect brain...

  7. Mismatch Negativity Elicited by Tones and Speech Sounds: Changed Topographical Distribution in Aphasia

    ERIC Educational Resources Information Center

    Becker, Frank; Reinvang, Ivar

    2007-01-01

    This study used the event-related brain potential mismatch negativity (MMN) to investigate preconscious discrimination of harmonically rich tones (differing in duration) and consonant-vowel syllables (differing in the initial consonant) in aphasia. Eighteen Norwegian aphasic patients, examined on average 3 months after brain injury, were compared…

  8. Cognitive Impairment and Whole Brain Diffusion in Patients with Neuromyelitis Optica after Acute Relapse

    ERIC Educational Resources Information Center

    He, Diane; Wu, Qizhu; Chen, Xiuying; Zhao, Daidi; Gong, Qiyong; Zhou, Hongyu

    2011-01-01

    The objective of this study investigated cognitive impairments and their correlations with fractional anisotropy (FA) and mean diffusivity (MD) in patients with neuromyelitis optica (NMO) without visible lesions on conventional brain MRI during acute relapse. Twenty one patients with NMO and 21 normal control subjects received several cognitive…

  9. Optical Topography of Evoked Brain Activity during Mental Tasks Involving Whole Number Operations

    ERIC Educational Resources Information Center

    Ortiz, Enrique

    2014-01-01

    Students start to memorize arithmetic facts from early elementary school mathematics activities. Their fluency or lack of fluency with these facts could affect their efforts as they carry out mental calculations as adults. This study investigated participants' levels of brain activation and possible reasons for these levels as they solved…

  10. Combined Functional and Causal Connectivity Analyses of Language Networks in Children: A Feasibility Study

    ERIC Educational Resources Information Center

    Wilke, Marko; Lidzba, Karen; Krageloh-Mann, Ingeborg

    2009-01-01

    Instead of assessing activation in distinct brain regions, approaches to investigating the networks underlying distinct brain functions have come into the focus of neuroscience research. Here, we provide a completely data-driven framework for assessing functional and causal connectivity in functional magnetic resonance imaging (fMRI) data,…

  11. Long-term variability of importance of brain regions in evolving epileptic brain networks

    NASA Astrophysics Data System (ADS)

    Geier, Christian; Lehnertz, Klaus

    2017-04-01

    We investigate the temporal and spatial variability of the importance of brain regions in evolving epileptic brain networks. We construct these networks from multiday, multichannel electroencephalographic data recorded from 17 epilepsy patients and use centrality indices to assess the importance of brain regions. Time-resolved indications of highest importance fluctuate over time to a greater or lesser extent, however, with some periodic temporal structure that can mostly be attributed to phenomena unrelated to the disease. In contrast, relevant aspects of the epileptic process contribute only marginally. Indications of highest importance also exhibit pronounced alternations between various brain regions that are of relevance for studies aiming at an improved understanding of the epileptic process with graph-theoretical approaches. Nonetheless, these findings may guide new developments for individualized diagnosis, treatment, and control.

  12. Study of heart-brain interactions through EEG, ECG, and emotions

    NASA Astrophysics Data System (ADS)

    Ramasamy, Mouli; Varadan, Vijay K.

    2017-04-01

    Neurocardiology is the exploration of neurophysiological, neurological and neuroanatomical facets of neuroscience's influence in cardiology. The paraphernalia of emotions on the heart and brain are premeditated because of the interaction between the central and peripheral nervous system. This is an investigative attempt to study emotion based neurocardiology and the factors that influence this phenomenon. The factors include: interaction between sleep EEG (electroencephalogram) and ECG (electrocardiogram), relationship between emotion and music, psychophysiological coherence between the heart and brain, emotion recognition techniques, and biofeedback mechanisms. Emotions contribute vitally to the mundane life and are quintessential to a numerous biological and everyday-functional modality of a human being. Emotions are best represented through EEG signals, and to a certain extent, can be observed through ECG and body temperature. Confluence of medical and engineering science has enabled the monitoring and discrimination of emotions influenced by happiness, anxiety, distress, excitement and several other factors that influence the thinking patterns and the electrical activity of the brain. Similarly, HRV (Heart Rate Variability) widely investigated for its provision and discerning characteristics towards EEG and the perception in neurocardiology.

  13. Enrichment methods provide a feasible approach to comprehensive and adequately powered investigations of the brain methylome

    PubMed Central

    Chan, Robin F.; Shabalin, Andrey A.; Xie, Lin Y.; Adkins, Daniel E.; Zhao, Min; Turecki, Gustavo; Clark, Shaunna L.; Aberg, Karolina A.

    2017-01-01

    Abstract Methylome-wide association studies are typically performed using microarray technologies that only assay a very small fraction of the CG methylome and entirely miss two forms of methylation that are common in brain and likely of particular relevance for neuroscience and psychiatric disorders. The alternative is to use whole genome bisulfite (WGB) sequencing but this approach is not yet practically feasible with sample sizes required for adequate statistical power. We argue for revisiting methylation enrichment methods that, provided optimal protocols are used, enable comprehensive, adequately powered and cost-effective genome-wide investigations of the brain methylome. To support our claim we use data showing that enrichment methods approximate the sensitivity obtained with WGB methods and with slightly better specificity. However, this performance is achieved at <5% of the reagent costs. Furthermore, because many more samples can be sequenced simultaneously, projects can be completed about 15 times faster. Currently the only viable option available for comprehensive brain methylome studies, enrichment methods may be critical for moving the field forward. PMID:28334972

  14. PET imaging and quantitation of Internet-addicted patients and normal controls

    NASA Astrophysics Data System (ADS)

    Jeong, Ha-Kyu; Kim, Hee-Joung; Jung, Haijo; Son, Hye-Kyung; Kim, Dong-Hyeon; Yun, Mijin; Shin, Yee-Jin; Lee, Jong-Doo

    2002-04-01

    Internet addicted patients (IAPs) have widely been increased, as Internet games are becoming very popular in daily life. The purpose of this study was to investigate regional brain activation patterns associated with excessive use of Internet games in adolescents. Six normal controls (NCs) and eight IAPs who were classified as addiction group by adapted version of DSM-IV for pathologic gambling were participated. 18F-FDG PET studies were performed for all adolescents at their rest and activated condition after 20 minutes of each subject's favorite Internet game. To investigate quantitative metabolic differences in both groups, all possible combinations of group comparison were carried out using Statistical Parametric Mapping (SPM 99). Regional brain activation foci were identified on Talairach coordinate. SPM results showed increased metabolic activation in occipital lobes for both groups. Higher metabolisms were seen at resting condition in IAPs than that of in NCs. In comparison to both groups, IAPs showed different patterns of regional brain metabolic activation compared with that of NCs. It suggests that addictive use of Internet games may result in functional alteration of developing brain in adolescents.

  15. Dynamics of EEG functional connectivity during statistical learning.

    PubMed

    Tóth, Brigitta; Janacsek, Karolina; Takács, Ádám; Kóbor, Andrea; Zavecz, Zsófia; Nemeth, Dezso

    2017-10-01

    Statistical learning is a fundamental mechanism of the brain, which extracts and represents regularities of our environment. Statistical learning is crucial in predictive processing, and in the acquisition of perceptual, motor, cognitive, and social skills. Although previous studies have revealed competitive neurocognitive processes underlying statistical learning, the neural communication of the related brain regions (functional connectivity, FC) has not yet been investigated. The present study aimed to fill this gap by investigating FC networks that promote statistical learning in humans. Young adults (N=28) performed a statistical learning task while 128-channels EEG was acquired. The task involved probabilistic sequences, which enabled to measure incidental/implicit learning of conditional probabilities. Phase synchronization in seven frequency bands was used to quantify FC between cortical regions during the first, second, and third periods of the learning task, respectively. Here we show that statistical learning is negatively correlated with FC of the anterior brain regions in slow (theta) and fast (beta) oscillations. These negative correlations increased as the learning progressed. Our findings provide evidence that dynamic antagonist brain networks serve a hallmark of statistical learning. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Abdominal fat distribution and its relationship to brain changes: the differential effects of age on cerebellar structure and function: a cross-sectional, exploratory study

    PubMed Central

    Raschpichler, Matthias; Straatman, Kees; Schroeter, Matthias Leopold; Arelin, Katrin; Schlögl, Haiko; Fritzsch, Dominik; Mende, Meinhard; Pampel, André; Böttcher, Yvonne; Stumvoll, Michael; Villringer, Arno; Mueller, Karsten

    2013-01-01

    Objectives To investigate whether the metabolically important visceral adipose tissue (VAT) relates differently to structural and functional brain changes in comparison with body weight measured as body mass index (BMI). Moreover, we aimed to investigate whether these effects change with age. Design Cross-sectional, exploratory. Setting University Clinic, Integrative Research and Treatment Centre. Participants We included 100 (mean BMI=26.0 kg/m², 42 women) out of 202 volunteers randomly invited by the city's registration office, subdivided into two age groups: young-to-mid-age (n=51, 20–45 years of age, mean BMI=24.9, 24 women) versus old (n=49, 65–70 years of age, mean BMI=27.0, 18 women). Main outcome measures VAT, BMI, subcutaneous abdominal adipose tissue, brain structure (grey matter density), functional brain architecture (eigenvector centrality, EC). Results We discovered a loss of cerebellar structure with increasing VAT in the younger participants, most significantly in regions involved in motor processing. This negative correlation disappeared in the elderly. Investigating functional brain architecture showed again inverse VAT–cerebellum correlations, whereas now regions involved in cognitive and emotional processing were significant. Although we detected similar results for EC using BMI, significant age interaction for both brain structure and functional architecture was only found using VAT. Conclusions Visceral adiposity is associated with cerebellar changes of both structure and function, whereas the regions involved contribute to motor, cognitive and emotional processes. Furthermore, these associations seem to be age dependent, with younger adults’ brains being adversely affected. PMID:23355665

  17. Anti-cancer Antibody Trastuzumab-Melanotransferrin Conjugate (BT2111) for the Treatment of Metastatic HER2+ Breast Cancer Tumors in the Brain: an In-Vivo Study.

    PubMed

    Nounou, Mohamed Ismail; Adkins, Chris E; Rubinchik, Evelina; Terrell-Hall, Tori B; Afroz, Mohamed; Vitalis, Tim; Gabathuler, Reinhard; Tian, Mei Mei; Lockman, Paul R

    2016-12-01

    The ability of human melanotransferrin (hMTf) to carry a therapeutic concentration of trastuzumab (BTA) in the brain after conjugation (in the form of trastuzumab-melanotransferrin conjugate, BT2111 conjugate) was investigated by measuring the reduction of the number and size of metastatic human HER 2+ breast cancer tumors in a preclinical model of brain metastases of breast cancer. Human metastatic brain seeking breast cancer cells were injected in NuNu mice (n = 6-12 per group) which then developed experimental brain metastases. Drug uptake was analyzed in relation to metastasis size and blood-tumor barrier permeability. To investigate in-vivo activity against brain metastases, equimolar doses of the conjugate, and relevant controls (hMTf and BTA) in separate groups were administered biweekly after intracardiac injection of the metastatic cancer cells. The trastuzumab-melanotransferrin conjugate (BT2111) reduced the number of preclinical human HER 2+ breast cancer metastases in the brain by 68% compared to control groups. Tumors which remained after treatment were 46% smaller than the control groups. In contrast, BTA alone had no effect on reducing number of metastases, and was associated with only a minimal reduction in metastasis size. The results suggest the novel trastuzumab-melanotransferrin conjugate (BT2111) may have utility in treating brain metastasis and validate hMTf as a potential vector for antibody transport across the Blood Brain Barrier (BBB).

  18. Investigation of dental alginate and agar impression materials as a brain simulant for ballistic testing.

    PubMed

    Falland-Cheung, Lisa; Piccione, Neil; Zhao, Tianqi; Lazarjan, Milad Soltanipour; Hanlin, Suzanne; Jermy, Mark; Waddell, J Neil

    2016-06-01

    Routine forensic research into in vitro skin/skull/brain ballistic blood backspatter behavior has traditionally used gelatin at a 1:10 Water:Powder (W:P) ratio by volume as a brain simulant. A limitation of gelatin is its high elasticity compared to brain tissue. Therefore this study investigated the use of dental alginate and agar impression materials as a brain simulant for ballistic testing. Fresh deer brain, alginate (W:P ratio 91.5:8.5) and agar (W:P ratio 81:19) specimens (n=10) (11×22×33mm) were placed in transparent Perspex boxes of the same internal dimensions prior to shooting with a 0.22inch caliber high velocity air gun. Quantitative analysis to establish kinetic energy loss, vertical displacement elastic behavior and qualitative analysis to establish elasticity behavior was done via high-speed camera footage (SA5, Photron, Japan) using Photron Fastcam Viewer software (Version 3.5.1, Photron, Japan) and visual observation. Damage mechanisms and behavior were qualitatively established by observation of the materials during and after shooting. The qualitative analysis found that of the two simulant materials tested, agar behaved more like brain in terms of damage and showed similar mechanical response to brain during the passage of the projectile, in terms of energy absorption and vertical velocity displacement. In conclusion agar showed a mechanical and subsequent damage response that was similar to brain compared to alginate. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  19. SIRT1 activation by resveratrol reduces brain edema and neuronal apoptosis in an experimental rat subarachnoid hemorrhage model.

    PubMed

    Qian, Cong; Jin, Jianxiang; Chen, Jingyin; Li, Jianru; Yu, Xiaobo; Mo, Hangbo; Chen, Gao

    2017-12-01

    Early brain injury is considered to be a major risk that is related to the prognosis of subarachnoid hemorrhage (SAH). In SAH model rats, brain edema and apoptosis have been closely related with death rate and neurological function. Sirtuin 1 (SIRT1) was reported to be involved in apoptosis in cerebral ischemia and brain tumor formation through p53 deacetylation. The present study aimed to evaluate the role of SIRT1 in a rat endovascular perforation model of SAH. The SIRT1 activator resveratrol (RES) was administered 48 h prior to SAH induction and the SIRT1 inhibitor Sirtinol (SIR) was used to reverse the effects of RES on SIRT1 expression. Mortality rate, neurological function and brain water content were measured 24 h post‑SAH induction. Proteins associated with the blood brain barrier (BBB), apoptosis and SIRT1 in the cortex, such as zona occludens 1 (ZO‑1), occludin, claudin‑5, SIRT1, p53 and cleaved caspase3 were investigated. mRNA expression of the p53 downstream molecules including Bcl‑associated X protein, P53 upregulated modulator of apoptosis, Noxa and BH3 interacting‑domain death agonist were also investigated. Neuronal apoptosis was also investigated by immunofluorescence. RES pretreatment reduced the mortality rate and improved neurological function, which was consistent with reduced brain water content and neuronal apoptosis; these effects were partially reversed by co‑treatment with SIR. SIRT1 may reduce the brain water content by improvement of dysfunctional BBB permeability, and protein analysis revealed that both ZO‑1, occludin and claudin‑5 may be involved, and these effects were reversed by SIRT1 inhibition. SIRT1 may also affect apoptosis post‑SAH through p53 deacetylation, and the analysis of p53 related downstream pro‑apoptotic molecules supported this hypothesis. Localization of neuron specific apoptosis revealed that SIRT1 may regulate neuronal apoptosis following SAH. SIRT1 may also ease brain edema and neuronal protection through BBB improvement and p53 deacetylation. SIRT1 activators such as RES may have the potential to improve the prognosis of patients with SAH and clinical research should be investigated further.

  20. Convection-enhanced delivery for the treatment of glioblastoma.

    PubMed

    Vogelbaum, Michael A; Aghi, Manish K

    2015-03-01

    Effective treatment of glioblastoma (GBM) remains a formidable challenge. Survival rates remain poor despite decades of clinical trials of conventional and novel, biologically targeted therapeutics. There is considerable evidence that most of these therapeutics do not reach their targets in the brain when administered via conventional routes (intravenous or oral). Hence, direct delivery of therapeutics to the brain and to brain tumors is an active area of investigation. One of these techniques, convection-enhanced delivery (CED), involves the implantation of catheters through which conventional and novel therapeutic formulations can be delivered using continuous, low-positive-pressure bulk flow. Investigation in preclinical and clinical settings has demonstrated that CED can produce effective delivery of therapeutics to substantial volumes of brain and brain tumor. However, limitations in catheter technology and imaging of delivery have prevented this technique from being reliable and reproducible, and the only completed phase III study in GBM did not show a survival benefit for patients treated with an investigational therapeutic delivered via CED. Further development of CED is ongoing, with novel catheter designs and imaging approaches that may allow CED to become a more effective therapeutic delivery technique. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. Mild cognitive impairment and fMRI studies of brain functional connectivity: the state of the art

    PubMed Central

    Farràs-Permanyer, Laia; Guàrdia-Olmos, Joan; Peró-Cebollero, Maribel

    2015-01-01

    In the last 15 years, many articles have studied brain connectivity in Mild Cognitive Impairment patients with fMRI techniques, seemingly using different connectivity statistical models in each investigation to identify complex connectivity structures so as to recognize typical behavior in this type of patient. This diversity in statistical approaches may cause problems in results comparison. This paper seeks to describe how researchers approached the study of brain connectivity in MCI patients using fMRI techniques from 2002 to 2014. The focus is on the statistical analysis proposed by each research group in reference to the limitations and possibilities of those techniques to identify some recommendations to improve the study of functional connectivity. The included articles came from a search of Web of Science and PsycINFO using the following keywords: f MRI, MCI, and functional connectivity. Eighty-one papers were found, but two of them were discarded because of the lack of statistical analysis. Accordingly, 79 articles were included in this review. We summarized some parts of the articles, including the goal of every investigation, the cognitive paradigm and methods used, brain regions involved, use of ROI analysis and statistical analysis, emphasizing on the connectivity estimation model used in each investigation. The present analysis allowed us to confirm the remarkable variability of the statistical analysis methods found. Additionally, the study of brain connectivity in this type of population is not providing, at the moment, any significant information or results related to clinical aspects relevant for prediction and treatment. We propose to follow guidelines for publishing fMRI data that would be a good solution to the problem of study replication. The latter aspect could be important for future publications because a higher homogeneity would benefit the comparison between publications and the generalization of results. PMID:26300802

  2. Cerebral Glucose Metabolism and Sedation in Brain-injured Patients: A Microdialysis Study.

    PubMed

    Hertle, Daniel N; Santos, Edgar; Hagenston, Anna M; Jungk, Christine; Haux, Daniel; Unterberg, Andreas W; Sakowitz, Oliver W

    2015-07-01

    Disturbed brain metabolism is a signature of primary damage and/or precipitates secondary injury processes after severe brain injury. Sedatives and analgesics target electrophysiological functioning and are as such well-known modulators of brain energy metabolism. Still unclear, however, is how sedatives impact glucose metabolism and whether they differentially influence brain metabolism in normally active, healthy brain and critically impaired, injured brain. We therefore examined and compared the effects of anesthetic drugs under both critical (<1 mmol/L) and noncritical (>1 mmol/L) extracellular brain glucose levels. We performed an explorative, retrospective analysis of anesthetic drug administration and brain glucose concentrations, obtained by bedside microdialysis, in 19 brain-injured patients. Our investigations revealed an inverse linear correlation between brain glucose and both the concentration of extracellular glutamate (Pearson r=-0.58, P=0.01) and the lactate/glucose ratio (Pearson r=-0.55, P=0.01). For noncritical brain glucose levels, we observed a positive linear correlation between midazolam dose and brain glucose (P<0.05). For critical brain glucose levels, extracellular brain glucose was unaffected by any type of sedative. These findings suggest that the use of anesthetic drugs may be of limited value in attempts to influence brain glucose metabolism in injured brain tissue.

  3. Intranasal delivery of cyclobenzaprine hydrochloride-loaded thiolated chitosan nanoparticles for pain relief.

    PubMed

    Patel, Deepa; Naik, Sachin; Chuttani, Krishna; Mathur, Rashi; Mishra, Anil K; Misra, Ambikanandan

    2013-09-01

    The purpose of present investigation was to formulate and characterize the cyclobenzaprine HCl (CBZ)-loaded thiolated chitosan nanoparticles and assessment of in-vitro cell viability, trans-mucosal permeability on RPMI2650 cell monolayer, in-vivo pharmacokinetic and pharmacodynamic study of thiolated chitosan nanoparticles on Swiss albino mice after intranasal administration. A significant high permeation of drug was observed from thiolated chitosan nanoparticles with less toxicity on nasal epithelial cells. Brain uptake of the drug after (99m)Tc labeling was significantly enhanced after thiolation of chitosan. CBZ-loaded thiolated chitosan NPs significantly reverse the N-Methyl-.-Aspartate (NMDA)-induced hyperalgesia by intranasal administration than the CBZ solution. The studies of present investigation revealed that thiolation of chitosan significantly reduce trans-mucosal toxicity with enhanced trans-mucosal permeability via paracellular pathway and brain uptake of a hydrophilic drug (normally impermeable across blood brain barrier) and pain alleviation activity via intranasal route.

  4. Pedophilic brain potential responses to adult erotic stimuli.

    PubMed

    Knott, Verner; Impey, Danielle; Fisher, Derek; Delpero, Emily; Fedoroff, Paul

    2016-02-01

    Cognitive mechanisms associated with the relative lack of sexual interest in adults by pedophiles are poorly understood and may benefit from investigations examining how the brain processes adult erotic stimuli. The current study used event-related brain potentials (ERP) to investigate the time course of the explicit processing of erotic, emotional, and neutral pictures in 22 pedophilic patients and 22 healthy controls. Consistent with previous studies, early latency anterior ERP components were highly selective for erotic pictures. Although the ERPs elicited by emotional stimuli were similar in patients and controls, an early frontal positive (P2) component starting as early as 185 ms was significantly attenuated and slow to onset in pedophilia, and correlated with a clinical measure of cognitive distortions. Failure of rapid attentional capture by erotic stimuli suggests a relative reduction in early processing in pedophilic patients which may be associated with relatively diminished sexual interest in adults. Copyright © 2016. Published by Elsevier B.V.

  5. Immune involvement in the pathogenesis of schizophrenia: a meta-analysis on postmortem brain studies

    PubMed Central

    van Kesteren, C F M G; Gremmels, H; de Witte, L D; Hol, E M; Van Gool, A R; Falkai, P G; Kahn, R S; Sommer, I E C

    2017-01-01

    Although the precise pathogenesis of schizophrenia is unknown, genetic, biomarker and imaging studies suggest involvement of the immune system. In this study, we performed a systematic review and meta-analysis of studies investigating factors related to the immune system in postmortem brains of schizophrenia patients and healthy controls. Forty-one studies were included, reporting on 783 patients and 762 controls. We divided these studies into those investigating histological alterations of cellular composition and those assessing molecular parameters; meta-analyses were performed on both categories. Our pooled estimate on cellular level showed a significant increase in the density of microglia (P=0.0028) in the brains of schizophrenia patients compared with controls, albeit with substantial heterogeneity between studies. Meta-regression on brain regions demonstrated this increase was most consistently observed in the temporal cortex. Densities of macroglia (astrocytes and oligodendrocytes) did not differ significantly between schizophrenia patients and healthy controls. The results of postmortem histology are paralleled on the molecular level, where we observed an overall increase in expression of proinflammatory genes on transcript and protein level (P=0.0052) in patients, while anti-inflammatory gene expression levels were not different between schizophrenia and controls. The results of this meta-analysis strengthen the hypothesis that components of the immune system are involved in the pathogenesis of schizophrenia. PMID:28350400

  6. Development of structure and function in the infant brain: Implications for cognition, language and social behaviour

    PubMed Central

    Paterson, Sarah J.; Heim, Sabine; Friedman, Jennifer Thomas; Choudhury, Naseem; Benasich, April A.

    2007-01-01

    Recent advances in cognitive neuroscience have allowed us to begin investigating the development of both structure and function in the infant brain. However, despite the rapid evolution of technology, surprisingly few studies have examined the intersection between brain and behaviour over the first years of life. Even fewer have done so in the context of a particular research question. This paper aims to provide an overview of four domains that have been studied using techniques amenable to elucidating the brain/behaviour interface: language, face processing, object permanence, and joint attention, with particular emphasis on studies focusing on early development. The importance of the unique role of development and the interplay between structure and function is stressed throughout. It is hoped that this review will serve as a catalyst for further thinking about the substantial gaps in our understanding of the relationship between brain and behaviour across development. Further, our aim is to provide ideas about candidate brain areas that are likely to be implicated in particular behaviours or cognitive domains. PMID:16890291

  7. Molecular Imaging Provides Novel Insights on Estrogen Receptor Activity in Mouse Brain

    PubMed Central

    Stell, Alessia; Belcredito, Silvia; Ciana, Paolo; Maggi, Adriana

    2009-01-01

    Estrogen receptors have long been known to be expressed in several brain areas in addition to those directly involved in the control of reproductive functions. Investigations in humans and in animal models suggest a strong influence of estrogens on limbic and motor functions, yet the complexity and heterogeneity of neural tissue have limited our approaches to the full understanding of estrogen activity in the central nervous system. The aim of this study was to examine the transcriptional activity of estrogen receptors in the brain of male and female mice. Exploiting the ERE-Luc reporter mouse, we set up a novel, bioluminescence-based technique to study brain estrogen receptor transcriptional activity. Here we show, for the first time, that estrogen receptors are similarly active in male and female brains and that the estrous cycle affects estrogen receptor activity in regions of the central nervous system not known to be associated with reproductive functions. Because of its reproducibility and sensitivity, this novel bioluminescence application candidates as an innovative methodology for the study and development of drugs targeting brain estrogen receptors. PMID:19123998

  8. Molecular imaging provides novel insights on estrogen receptor activity in mouse brain.

    PubMed

    Stell, Alessia; Belcredito, Silvia; Ciana, Paolo; Maggi, Adriana

    2008-01-01

    Estrogen receptors have long been known to be expressed in several brain areas in addition to those directly involved in the control of reproductive functions. Investigations in humans and in animal models suggest a strong influence of estrogens on limbic and motor functions, yet the complexity and heterogeneity of neural tissue have limited our approaches to the full understanding of estrogen activity in the central nervous system. The aim of this study was to examine the transcriptional activity of estrogen receptors in the brain of male and female mice. Exploiting the ERE-Luc reporter mouse, we set up a novel, bioluminescence-based technique to study brain estrogen receptor transcriptional activity. Here we show, for the first time, that estrogen receptors are similarly active in male and female brains and that the estrous cycle affects estrogen receptor activity in regions of the central nervous system not known to be associated with reproductive functions. Because of its reproducibility and sensitivity, this novel bioluminescence application stands as a candidate as an innovative methodology for the study and development of drugs targeting brain estrogen receptors.

  9. Molecular, Cellular and Functional Effects of Radiation-Induced Brain Injury: A Review

    PubMed Central

    Balentova, Sona; Adamkov, Marian

    2015-01-01

    Radiation therapy is the most effective non-surgical treatment of primary brain tumors and metastases. Preclinical studies have provided valuable insights into pathogenesis of radiation-induced injury to the central nervous system. Radiation-induced brain injury can damage neuronal, glial and vascular compartments of the brain and may lead to molecular, cellular and functional changes. Given its central role in memory and adult neurogenesis, the majority of studies have focused on the hippocampus. These findings suggested that hippocampal avoidance in cranial radiotherapy prevents radiation-induced cognitive impairment of patients. However, multiple rodent studies have shown that this problem is more complex. As the radiation-induced cognitive impairment reflects hippocampal and non-hippocampal compartments, it is of critical importance to investigate molecular, cellular and functional modifications in various brain regions as well as their integration at clinically relevant doses and schedules. We here provide a literature overview, including our previously published results, in order to support the translation of preclinical findings to clinical practice, and improve the physical and mental status of patients with brain tumors. PMID:26610477

  10. The Brain as a Distributed Intelligent Processing System: An EEG Study

    PubMed Central

    da Rocha, Armando Freitas; Rocha, Fábio Theoto; Massad, Eduardo

    2011-01-01

    Background Various neuroimaging studies, both structural and functional, have provided support for the proposal that a distributed brain network is likely to be the neural basis of intelligence. The theory of Distributed Intelligent Processing Systems (DIPS), first developed in the field of Artificial Intelligence, was proposed to adequately model distributed neural intelligent processing. In addition, the neural efficiency hypothesis suggests that individuals with higher intelligence display more focused cortical activation during cognitive performance, resulting in lower total brain activation when compared with individuals who have lower intelligence. This may be understood as a property of the DIPS. Methodology and Principal Findings In our study, a new EEG brain mapping technique, based on the neural efficiency hypothesis and the notion of the brain as a Distributed Intelligence Processing System, was used to investigate the correlations between IQ evaluated with WAIS (Whechsler Adult Intelligence Scale) and WISC (Wechsler Intelligence Scale for Children), and the brain activity associated with visual and verbal processing, in order to test the validity of a distributed neural basis for intelligence. Conclusion The present results support these claims and the neural efficiency hypothesis. PMID:21423657

  11. A whole-brain computational modeling approach to explain the alterations in resting-state functional connectivity during progression of Alzheimer's disease.

    PubMed

    Demirtaş, Murat; Falcon, Carles; Tucholka, Alan; Gispert, Juan Domingo; Molinuevo, José Luis; Deco, Gustavo

    2017-01-01

    Alzheimer's disease (AD) is the most common dementia with dramatic consequences. The research in structural and functional neuroimaging showed altered brain connectivity in AD. In this study, we investigated the whole-brain resting state functional connectivity (FC) of the subjects with preclinical Alzheimer's disease (PAD), mild cognitive impairment due to AD (MCI) and mild dementia due to Alzheimer's disease (AD), the impact of APOE4 carriership, as well as in relation to variations in core AD CSF biomarkers. The synchronization in the whole-brain was monotonously decreasing during the course of the disease progression. Furthermore, in AD patients we found widespread significant decreases in functional connectivity (FC) strengths particularly in the brain regions with high global connectivity. We employed a whole-brain computational modeling approach to study the mechanisms underlying these alterations. To characterize the causal interactions between brain regions, we estimated the effective connectivity (EC) in the model. We found that the significant EC differences in AD were primarily located in left temporal lobe. Then, we systematically manipulated the underlying dynamics of the model to investigate simulated changes in FC based on the healthy control subjects. Furthermore, we found distinct patterns involving CSF biomarkers of amyloid-beta (Aβ1 - 42) total tau (t-tau) and phosphorylated tau (p-tau). CSF Aβ1 - 42 was associated to the contrast between healthy control subjects and clinical groups. Nevertheless, tau CSF biomarkers were associated to the variability in whole-brain synchronization and sensory integration regions. These associations were robust across clinical groups, unlike the associations that were found for CSF Aβ1 - 42. APOE4 carriership showed no significant correlations with the connectivity measures.

  12. Corticotropin-releasing factor-1 receptor activation mediates nicotine withdrawal-induced deficit in brain reward function and stress-induced relapse.

    PubMed

    Bruijnzeel, Adrie W; Prado, Melissa; Isaac, Shani

    2009-07-15

    Tobacco addiction is a chronic brain disorder that is characterized by a negative affective state upon smoking cessation and relapse after periods of abstinence. Previous research has shown that blockade of corticotropin-releasing factor (CRF) receptors with a nonspecific CRF1/CRF2 receptor antagonist prevents the deficit in brain reward function associated with nicotine withdrawal and stress-induced reinstatement of extinguished nicotine-seeking in rats. The aim of these studies was to investigate the role of CRF1 and CRF2 receptors in the deficit in brain reward function associated with precipitated nicotine withdrawal and stress-induced reinstatement of nicotine-seeking. The intracranial self-stimulation (ICSS) procedure was used to assess the negative affective state of nicotine withdrawal. Elevations in brain reward thresholds are indicative of a deficit in brain reward function. Stress-induced reinstatement of nicotine-seeking was investigated in animals in which responding for intravenously infused nicotine was extinguished by substituting saline for nicotine. In the ICSS experiments, the nicotinic receptor antagonist mecamylamine elevated the brain reward thresholds of the nicotine-dependent rats but not those of the control rats. The CRF1 receptor antagonist R278995/CRA0450 but not the CRF2 receptor antagonist astressin-2B prevented the elevations in brain reward thresholds associated with precipitated nicotine withdrawal. Furthermore, R278995/CRA0450 but not astressin-2B prevented stress-induced reinstatement of extinguished nicotine-seeking. Neither R278995/CRA0450 nor astressin-2B affected operant responding for chocolate-flavored food pellets. These studies indicate that CRF(1) receptors but not CRF(2) receptors play an important role in the anhedonic-state associated with acute nicotine withdrawal and stress-induced reinstatement of nicotine-seeking.

  13. CRF1 receptor activation mediates nicotine withdrawal-induced deficit in brain reward function and stress-induced relapse

    PubMed Central

    Bruijnzeel, Adrie W.; Prado, Melissa; Isaac, Shani

    2010-01-01

    Background Tobacco addiction is a chronic brain disorder that is characterized by a negative affective state upon smoking cessation and relapse after periods of abstinence. Previous research has shown that blockade of CRF receptors with a non-specific CRF1/CRF2 receptor antagonist prevents the deficit in brain reward function associated with nicotine withdrawal and stress-induced reinstatement of extinguished nicotine seeking in rats. The aim of these studies was to investigate the role of CRF1 and CRF2 receptors in the deficit in brain reward function associated with precipitated nicotine withdrawal and stress-induced reinstatement of nicotine seeking. Methods The intracranial self-stimulation (ICSS) procedure was used to assess the negative affective state of nicotine withdrawal. Elevations in brain reward thresholds are indicative of a deficit in brain reward function. Stress-induced reinstatement of nicotine seeking was investigated in animals in which responding for intravenously infused nicotine was extinguished by substituting saline for nicotine. Results In the ICSS experiments, the nicotinic receptor antagonist mecamylamine elevated the brain reward thresholds of the nicotine dependent rats but not those of the control rats. The CRF1 receptor antagonist R278995/CRA0450, but not the CRF2 receptor antagonist astressin-2B, prevented the elevations in brain reward thresholds associated with precipitated nicotine withdrawal. Furthermore, R278995/CRA0450, but not astressin-2B, prevented stress-induced reinstatement of extinguished nicotine seeking. Neither R278995/CRA0450 nor astressin-2B affected operant responding for chocolate-flavored food pellets. Conclusions These studies indicate that CRF1 receptors, but not CRF2 receptors, play an important role in the anhedonic-state associated with acute nicotine withdrawal and stress-induced reinstatement of nicotine seeking. PMID:19217073

  14. Immortalized endothelial cell lines for in vitro blood-brain barrier models: A systematic review.

    PubMed

    Rahman, Nurul Adhwa; Rasil, Alifah Nur'ain Haji Mat; Meyding-Lamade, Uta; Craemer, Eva Maria; Diah, Suwarni; Tuah, Ani Afiqah; Muharram, Siti Hanna

    2016-07-01

    Endothelial cells play the most important role in construction of the blood-brain barrier. Many studies have opted to use commercially available, easily transfected or immortalized endothelial cell lines as in vitro blood-brain barrier models. Numerous endothelial cell lines are available, but we do not currently have strong evidence for which cell lines are optimal for establishment of such models. This review aimed to investigate the application of immortalized endothelial cell lines as in vitro blood-brain barrier models. The databases used for this review were PubMed, OVID MEDLINE, ProQuest, ScienceDirect, and SpringerLink. A narrative systematic review was conducted and identified 155 studies. As a result, 36 immortalized endothelial cell lines of human, mouse, rat, porcine and bovine origins were found for the establishment of in vitro blood-brain barrier and brain endothelium models. This review provides a summary of immortalized endothelial cell lines as a guideline for future studies and improvements in the establishment of in vitro blood-brain barrier models. It is important to establish a good and reproducible model that has the potential for multiple applications, in particular a model of such a complex compartment such as the blood-brain barrier. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. In vitro and in vivo studies of Allium sativum extract against deltamethrin-induced oxidative stress in rats brain and kidney.

    PubMed

    Ncir, Marwa; Saoudi, Mongi; Sellami, Hanen; Rahmouni, Fatma; Lahyani, Amina; Makni Ayadi, Fatma; El Feki, Abdelfattah; Allagui, Mohamed Salah

    2017-09-18

    The present study investigated the in vitro and the in vivo antioxidant capacities of Allium sativum (garlic) extract against deltamethrin-induced oxidative damage in rat's brain and kidney. The in vitro result showed that highest extraction yield was achieved with methanol (20.08%). Among the tested extracts, the methanol extract exhibited the highest total phenolic, flavonoids contents and antioxidant activity. The in vivo results showed that deltamethrin treatment caused an increase of the acetylcholinesterase level (AChE) in brain and plasma, the brain and kidney conjugated dienes and lipid peroxidation (LPO) levels as compared to control group. The antioxidant enzymes results showed that deltamethrin treatment induced a significantly decrease (p < 0.01) in brain and kidney antioxidant enzymes as catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPx) to control group. The co-administration of garlic extract reduced the toxic effects in brain and kidney tissues induced by deltamethrin.

  16. Transcranial magnetic stimulation of mouse brain using high-resolution anatomical models

    NASA Astrophysics Data System (ADS)

    Crowther, L. J.; Hadimani, R. L.; Kanthasamy, A. G.; Jiles, D. C.

    2014-05-01

    Transcranial magnetic stimulation (TMS) offers the possibility of non-invasive treatment of brain disorders in humans. Studies on animals can allow rapid progress of the research including exploring a variety of different treatment conditions. Numerical calculations using animal models are needed to help design suitable TMS coils for use in animal experiments, in particular, to estimate the electric field induced in animal brains. In this paper, we have implemented a high-resolution anatomical MRI-derived mouse model consisting of 50 tissue types to accurately calculate induced electric field in the mouse brain. Magnetic field measurements have been performed on the surface of the coil and compared with the calculations in order to validate the calculated magnetic and induced electric fields in the brain. Results show how the induced electric field is distributed in a mouse brain and allow investigation of how this could be improved for TMS studies using mice. The findings have important implications in further preclinical development of TMS for treatment of human diseases.

  17. The interaction between maternal immune activation and alpha 7 nicotinic acetylcholine receptor in regulating behaviors in the offspring

    PubMed Central

    Wu, Wei-Li; Adams, Catherine E.; Stevens, Karen E.; Chow, Ke-Huan; Freedman, Robert; Patterson, Paul H.

    2015-01-01

    Mutation of human chromosome 15q13.3 increases the risk for autism and schizophrenia. One of the noteworthy genes in 15q13.3 is CHRNA7, which encodes the nicotinic acetylcholine receptor alpha 7 subunit (α7nAChR) associated with schizophrenia in clinical studies and rodent models. This study investigates the role of α7nAChR in maternal immune activation (MIA) mice model, a murine model of environmental risk factor for autism and schizophrenia. We provided choline, a selective α7nAChR agonist among its several developmental roles, in the diet of C57BL/6N wild-type dams throughout the gestation and lactation period and induced MIA at mid-gestation. The adult offspring behavior and gene expression profile in the maternal spleen-placenta-fetal brain axis at mid-gestation were investigated. We found that choline supplementation prevented several MIA-induced behavioral abnormalities in the wild-type offspring. Pro-inflammatory cytokine interleukin-6 (IL-6) and Chrna7 gene expression in the wild-type fetal brain were elevated by poly(I:C) injection and were suppressed by gestational choline supplementation. We further investigated the gene expression level of IL-6 in Chrna7 mutant mice. We found that the basal level of IL-6 was higher in Chrna7 mutant fetal brain, which suggests that α7nAChR may serve an anti-inflammatory role in the fetal brain during development. Lastly, we induced MIA in Chrna7+/− offspring. The Chrna7+/− offspring were more vulnerable to MIA, with increased behavioral abnormalities. Our study shows that α7nAChR modulates inflammatory response affecting the fetal brain and demonstrates its effects on offspring behavior development after MIA. PMID:25683697

  18. A review on functional and structural brain connectivity in numerical cognition

    PubMed Central

    Moeller, Korbinian; Willmes, Klaus; Klein, Elise

    2015-01-01

    Only recently has the complex anatomo-functional system underlying numerical cognition become accessible to evaluation in the living brain. We identified 27 studies investigating brain connectivity in numerical cognition. Despite considerable heterogeneity regarding methodological approaches, populations investigated, and assessment procedures implemented, the results provided largely converging evidence regarding the underlying brain connectivity involved in numerical cognition. Analyses of both functional/effective as well as structural connectivity have consistently corroborated the assumption that numerical cognition is subserved by a fronto-parietal network including (intra)parietal as well as (pre)frontal cortex sites. Evaluation of structural connectivity has indicated the involvement of fronto-parietal association fibers encompassing the superior longitudinal fasciculus dorsally and the external capsule/extreme capsule system ventrally. Additionally, commissural fibers seem to connect the bilateral intraparietal sulci when number magnitude information is processed. Finally, the identification of projection fibers such as the superior corona radiata indicates connections between cortex and basal ganglia as well as the thalamus in numerical cognition. Studies on functional/effective connectivity further indicated a specific role of the hippocampus. These specifications of brain connectivity augment the triple-code model of number processing and calculation with respect to how gray matter areas associated with specific number-related representations may work together. PMID:26029075

  19. Differences in Brain Function and Changes with Intervention in Children with Poor Spelling and Reading Abilities

    PubMed Central

    Gebauer, Daniela; Fink, Andreas; Kargl, Reinhard; Reishofer, Gernot; Koschutnig, Karl; Purgstaller, Christian; Fazekas, Franz; Enzinger, Christian

    2012-01-01

    Previous fMRI studies in English-speaking samples suggested that specific interventions may alter brain function in language-relevant networks in children with reading and spelling difficulties, but this research strongly focused on reading impaired individuals. Only few studies so far investigated characteristics of brain activation associated with poor spelling ability and whether a specific spelling intervention may also be associated with distinct changes in brain activity patterns. We here investigated such effects of a morpheme-based spelling intervention on brain function in 20 children with comparatively poor spelling and reading abilities using repeated fMRI. Relative to 10 matched controls, children with comparatively poor spelling and reading abilities showed increased activation in frontal medial and right hemispheric regions and decreased activation in left occipito-temporal regions prior to the intervention, during processing of a lexical decision task. After five weeks of intervention, spelling and reading comprehension significantly improved in the training group, along with increased activation in the left temporal, parahippocampal and hippocampal regions. Conversely, the waiting group showed increases in right posterior regions. Our findings could indicate an increased left temporal activation associated with the recollection of the new learnt morpheme-based strategy related to successful training. PMID:22693600

  20. Ex vivo micro-CT imaging of murine brain models using non-ionic iodinated contrast

    NASA Astrophysics Data System (ADS)

    Salas Bautista, N.; Martínez-Dávalos, A.; Rodríguez-Villafuerte, M.; Murrieta-Rodríguez, T.; Manjarrez-Marmolejo, J.; Franco-Pérez, J.; Calvillo-Velasco, M. E.

    2014-11-01

    Preclinical investigation of brain tumors is frequently carried out by means of intracranial implantation of brain tumor xenografts or allografts, with subsequent analysis of tumor growth using conventional histopathology. However, very little has been reported on the use contrast-enhanced techniques in micro-CT imaging for the study of malignant brain tumors in small animal models. The aim of this study has been to test a protocol for ex vivo imaging of murine brain models of glioblastoma multiforme (GBM) after treatment with non-ionic iodinated solution, using an in-house developed laboratory micro-CT. We have found that the best compromise between acquisition time and image quality is obtained using a 50 kVp, 0.5 mAs, 1° angular step on a 360 degree orbit acquisition protocol, with 70 μm reconstructed voxel size using the Feldkamp algorithm. With this parameters up to 4 murine brains can be scanned in tandem in less than 15 minutes. Image segmentation and analysis of three sample brains allowed identifying tumor volumes as small as 0.4 mm3.

  1. Brain tissue volumes in the general elderly population. The Rotterdam Scan Study.

    PubMed

    Ikram, M Arfan; Vrooman, Henri A; Vernooij, Meike W; van der Lijn, Fedde; Hofman, Albert; van der Lugt, Aad; Niessen, Wiro J; Breteler, Monique M B

    2008-06-01

    We investigated how volumes of cerebrospinal fluid (CSF), grey matter (GM) and white matter (WM) varied with age, sex, small vessel disease and cardiovascular risk factors in the Rotterdam Scan Study. Participants (n=490; 60-90 years) were non-demented and 51.0% had hypertension, 4.9% had diabetes mellitus, 17.8% were current smoker and 54.0% were former smoker. We segmented brain MR-images into GM, normal WM, white matter lesion (WML) and CSF. Brain infarcts were rated visually. Volumes were expressed as percentage of intra-cranial volume. With increasing age, volumes of total brain, normal WM and total WM decreased; that of GM remained unchanged; and that of WML increased, in both men and women. Excluding persons with infarcts did not alter these results. Persons with larger load of small vessel disease had smaller brain volume, especially normal WM volume. Diastolic blood pressure, diabetes mellitus and current smoking were also related to smaller brain volume. In the elderly, higher age, small vessel disease and cardiovascular risk factors are associated with smaller brain volume, especially WM volume.

  2. Does gender matter? Differences in social-emotional behavior among infants and toddlers before and after mild traumatic brain injury: a preliminary study.

    PubMed

    Kaldoja, Mari-Liis; Kolk, Anneli

    2015-06-01

    Traumatic brain injury is a common cause of acquired disability in childhood. While much is known about cognitive sequelae of brain trauma, gender-specific social-emotional problems in children with mild traumatic brain injury is far less understood. The aims of the study were to investigate gender differences in social-emotional behavior before and after mild traumatic brain injury. Thirty-five 3- to 65-month-old children with mild traumatic brain injury and 70 controls were assessed with Ages and Stages Questionnaires: Social-Emotional. Nine months later, 27 of 35 patients and 54 of 70 controls were reassessed. We found that before injury, boys had more self-regulation and autonomy difficulties and girls had problems with adaptive functioning. Nine months after injury, boys continued to struggle with self-regulation and autonomy and new difficulties with interaction had emerged, whereas in girls, problems in interaction had evolved. Even mild traumatic brain injury in early childhood disrupts normal social-emotional development having especially devastating influence on interaction skills. © The Author(s) 2014.

  3. A meta-analysis of sex differences in human brain structure☆

    PubMed Central

    Ruigrok, Amber N.V.; Salimi-Khorshidi, Gholamreza; Lai, Meng-Chuan; Baron-Cohen, Simon; Lombardo, Michael V.; Tait, Roger J.; Suckling, John

    2014-01-01

    The prevalence, age of onset, and symptomatology of many neuropsychiatric conditions differ between males and females. To understand the causes and consequences of sex differences it is important to establish where they occur in the human brain. We report the first meta-analysis of typical sex differences on global brain volume, a descriptive account of the breakdown of studies of each compartmental volume by six age categories, and whole-brain voxel-wise meta-analyses on brain volume and density. Gaussian-process regression coordinate-based meta-analysis was used to examine sex differences in voxel-based regional volume and density. On average, males have larger total brain volumes than females. Examination of the breakdown of studies providing total volumes by age categories indicated a bias towards the 18–59 year-old category. Regional sex differences in volume and tissue density include the amygdala, hippocampus and insula, areas known to be implicated in sex-biased neuropsychiatric conditions. Together, these results suggest candidate regions for investigating the asymmetric effect that sex has on the developing brain, and for understanding sex-biased neurological and psychiatric conditions. PMID:24374381

  4. Dynamic functional brain networks involved in simple visual discrimination learning.

    PubMed

    Fidalgo, Camino; Conejo, Nélida María; González-Pardo, Héctor; Arias, Jorge Luis

    2014-10-01

    Visual discrimination tasks have been widely used to evaluate many types of learning and memory processes. However, little is known about the brain regions involved at different stages of visual discrimination learning. We used cytochrome c oxidase histochemistry to evaluate changes in regional brain oxidative metabolism during visual discrimination learning in a water-T maze at different time points during training. As compared with control groups, the results of the present study reveal the gradual activation of cortical (prefrontal and temporal cortices) and subcortical brain regions (including the striatum and the hippocampus) associated to the mastery of a simple visual discrimination task. On the other hand, the brain regions involved and their functional interactions changed progressively over days of training. Regions associated with novelty, emotion, visuo-spatial orientation and motor aspects of the behavioral task seem to be relevant during the earlier phase of training, whereas a brain network comprising the prefrontal cortex was found along the whole learning process. This study highlights the relevance of functional interactions among brain regions to investigate learning and memory processes. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Categorization skills and recall in brain damaged children: a multiple case study.

    PubMed

    Mello, Claudia Berlim de; Muszkat, Mauro; Xavier, Gilberto Fernando; Bueno, Orlando Francisco Amodeo

    2009-09-01

    During development, children become capable of categorically associating stimuli and of using these relationships for memory recall. Brain damage in childhood can interfere with this development. This study investigated categorical association of stimuli and recall in four children with brain damages. The etiology, topography and timing of the lesions were diverse. Tasks included naming and immediate recall of 30 perceptually and semantically related figures, free sorting, delayed recall, and cued recall of the same material. Traditional neuropsychological tests were also employed. Two children with brain damage sustained in middle childhood relied on perceptual rather than on categorical associations in making associations between figures and showed deficits in delayed or cued recall, in contrast to those with perinatal lesions. One child exhibited normal performance in recall despite categorical association deficits. The present results suggest that brain damaged children show deficits in categorization and recall that are not usually identified in traditional neuropsychological tests.

  6. How Does Brain Activation Differ in Children with Unilateral Cerebral Palsy Compared to Typically Developing Children, during Active and Passive Movements, and Tactile Stimulation? An fMRI Study

    ERIC Educational Resources Information Center

    Van de Winckel, Ann; Klingels, Katrijn; Bruyninckx, Frans; Wenderoth, Nici; Peeters, Ron; Sunaert, Stefan; Van Hecke, Wim; De Cock, Paul; Eyssen, Maria; De Weerdt, Willy; Feys, Hilde

    2013-01-01

    The aim of the functional magnetic resonance imaging (fMRI) study was to investigate brain activation associated with active and passive movements, and tactile stimulation in 17 children with right-sided unilateral cerebral palsy (CP), compared to 19 typically developing children (TD). The active movements consisted of repetitive opening and…

  7. Investigating Children's Conceptions of the Brain: First Steps

    ERIC Educational Resources Information Center

    Bartoszeck, Amauri Betini; Bartoszeck, Flavio Kulevicz

    2012-01-01

    This paper reports data, part of a cross-sectional study about the use of pupil's drawings as a means of probing the development of 195 Brazilian pre-school children (4 to 6 year-olds) and 681 primary school pupils 1st Grade through 4th Grade (7 to 10 years of age) conceptions of the human brain. The aims of the present study is to analyze how the…

  8. Evaluating Dynamic Bivariate Correlations in Resting-state fMRI: A comparison study and a new approach

    PubMed Central

    Lindquist, Martin A.; Xu, Yuting; Nebel, Mary Beth; Caffo, Brain S.

    2014-01-01

    To date, most functional Magnetic Resonance Imaging (fMRI) studies have assumed that the functional connectivity (FC) between time series from distinct brain regions is constant across time. However, recently, there has been increased interest in quantifying possible dynamic changes in FC during fMRI experiments, as it is thought this may provide insight into the fundamental workings of brain networks. In this work we focus on the specific problem of estimating the dynamic behavior of pair-wise correlations between time courses extracted from two different regions of the brain. We critique the commonly used sliding-windows technique, and discuss some alternative methods used to model volatility in the finance literature that could also prove useful in the neuroimaging setting. In particular, we focus on the Dynamic Conditional Correlation (DCC) model, which provides a model-based approach towards estimating dynamic correlations. We investigate the properties of several techniques in a series of simulation studies and find that DCC achieves the best overall balance between sensitivity and specificity in detecting dynamic changes in correlations. We also investigate its scalability beyond the bivariate case to demonstrate its utility for studying dynamic correlations between more than two brain regions. Finally, we illustrate its performance in an application to test-retest resting state fMRI data. PMID:24993894

  9. Accumulation of polybrominated diphenyl ethers in the brain compared with the levels in other tissues among different vertebrates from an e-waste recycling site.

    PubMed

    Zhao, Yaxian; Li, Yuanyuan; Qin, Xiaofei; Lou, Qinqin; Qin, Zhanfen

    2016-11-01

    This study aimed to investigate the accumulation of polybrominated diphenyl ethers (PBDEs) in the brain compared with that in other tissues among different vertebrates. We collected mice, chickens, ducks, frogs, and fish from an e-waste recycling region in Taizhou, China, and measured PBDE concentrations in brain, liver and muscle tissues. The levels of PBDE in the tissues of mice, chickens, ducks, frogs and fish ranged 0.45-206, 0.06-18.8, 1.83-112, 2.75-108, and 0.02-32.0 ng/g wet weight, respectively. Preferential distribution in the liver and muscle relative to the brain was observed for PBDEs in mice, chickens, ducks and frogs. However, a high retention in the brain compared to the liver and muscle was observed in fish. Comparison of the brain/liver concentration (B/L) ratios revealed differences in PBDEs accumulation in the brain among these vertebrates. PBDEs accumulation in the brain was greatest in fish, followed by frogs, while the lowest accumulation occurred in the brains of mammals and birds. The findings apparently coincided with the evolution of the blood-brain barrier (BBB) across vertebrates, i.e. the BBB of fish might be less efficient than those of mammals, birds and amphibian. Low brominated congeners (such as BDE-28, BDE-47 and BDE-99) were predominant in the brains of investigated vertebrates, whereas BDE-209 was most abundant in liver and muscle tissues of mice, chickens and ducks. Significant differences in B/L ratios among PBDE congeners were found in both mice and chickens (p < 0.05). Particularly in mice, the B/L ratios of PBDE congeners presented a declining trend with increased bromine number. Our findings suggested that low brominated congeners might have a higher capacity to penetrate the BBB and accumulate in the brain, whereas high brominated congeners such as BDE-209 might have less potency to pass through the barrier. Further experimental studies are needed to confirm our findings. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. In vivo EPR pharmacokinetic evaluation of the redox status and the blood brain barrier permeability in the SOD1G93A ALS rat model.

    PubMed

    Stamenković, Stefan; Pavićević, Aleksandra; Mojović, Miloš; Popović-Bijelić, Ana; Selaković, Vesna; Andjus, Pavle; Bačić, Goran

    2017-07-01

    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder affecting the motor pathways of the central nervous system. Although a number of pathophysiological mechanisms have been described in the disease, post mortem and animal model studies indicate blood-brain barrier (BBB) disruption and elevated production of reactive oxygen species as major contributors to disease pathology. In this study, the BBB permeability and the brain tissue redox status of the SOD1 G93A ALS rat model in the presymptomatic (preALS) and symptomatic (ALS) stages of the disease were investigated by in vivo EPR spectroscopy using three aminoxyl radicals with different cell membrane and BBB permeabilities, Tempol, 3-carbamoyl proxyl (3CP), and 3-carboxy proxyl (3CxP). Additionally, the redox status of the two brain regions previously implicated in disease pathology, brainstem and hippocampus, was investigated by spectrophotometric biochemical assays. The EPR results indicated that among the three spin probes, 3CP is the most suitable for reporting the intracellular redox status changes, as Tempol was reduced in vivo within minutes (t 1/2 =2.0±0.5min), thus preventing reliable kinetic modeling, whereas 3CxP reduction kinetics gave divergent conclusions, most probably due to its membrane impermeability. It was observed that the reduction kinetics of 3CP in vivo, in the head of preALS and ALS SOD1 G93A rats was altered compared to the controls. Pharmacokinetic modeling of 3CP reduction in vivo, revealed elevated tissue distribution and tissue reduction rate constants indicating an altered brain tissue redox status, and possibly BBB disruption in these animals. The preALS and ALS brain tissue homogenates also showed increased nitrilation, superoxide production, lipid peroxidation and manganese superoxide dismutase activity, and a decreased copper-zinc superoxide dismutase activity. The present study highlights in vivo EPR spectroscopy as a reliable tool for the investigation of changes in BBB permeability and for the unprecedented in vivo monitoring of the brain tissue redox status, as early markers of ALS. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Long Term Running Biphasically Improves Methylglyoxal-Related Metabolism, Redox Homeostasis and Neurotrophic Support within Adult Mouse Brain Cortex

    PubMed Central

    Falone, Stefano; D'Alessandro, Antonella; Mirabilio, Alessandro; Petruccelli, Giacomo; Cacchio, Marisa; Di Ilio, Carmine; Di Loreto, Silvia; Amicarelli, Fernanda

    2012-01-01

    Oxidative stress and neurotrophic support decline seem to be crucially involved in brain aging. Emerging evidences indicate the pro-oxidant methylglyoxal (MG) as a key player in the age-related dicarbonyl stress and molecular damage within the central nervous system. Although exercise promotes the overproduction of reactive oxygen species, habitual exercise may retard cellular aging and reduce the age-dependent cognitive decline through hormetic adaptations, yet molecular mechanisms underlying beneficial effects of exercise are still largely unclear. In particular, whereas adaptive responses induced by exercise initiated in youth have been broadly investigated, the effects of chronic and moderate exercise begun in adult age on biochemical hallmarks of very early senescence in mammal brains have not been extensively studied. This research investigated whether a long-term, forced and moderate running initiated in adult age may affect the interplay between the redox-related profile and the oxidative-/MG-dependent molecular damage patterns in CD1 female mice cortices; as well, we investigated possible exercise-induced effects on the activity of the brain derived neurotrophic factor (BDNF)-dependent pathway. Our findings suggested that after a transient imbalance in almost all parameters investigated, the lately-initiated exercise regimen strongly reduced molecular damage profiles in brains of adult mice, by enhancing activities of the main ROS- and MG-targeting scavenging systems, as well as by preserving the BDNF-dependent signaling through the transition from adult to middle age. PMID:22347470

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robertson, Janeen Denise

    In a mortality study of white males who had worked at the Rocky Flats Nuclear Weapons Plant between 1952 and 1979, an increased number of deaths from benign and unspecified intracranial neoplasms was found. A case-control study nested within this cohort investigated the hypothesis that an association existed between brain tumor death and exposure to either internally deposited plutonium or external ionizing radiation. There was no statistically significant association found between estimated radiation exposure from internally deposited plutonium and the development of brain tumors. Exposure by job or work area showed no significant difference between the cohort and the controlmore » groups. An update of the study found elevated risk estimates for (1) all lymphopoietic neoplasms, and (2) all causes of death in employees with body burdens greater than or equal to two nanocuries of plutonium. There was an excess of brain tumors for the entire cohort. Similar cohort studies conducted on worker populations from other plutonium handling facilities have not yet shown any elevated risks for brain tumors. Historically, the Rocky Flats Nuclear Weapons Plant used large quantities of chemicals in their production operations. The use of solvents, particularly carbon tetrachloride, was unique to Rocky Flats. No investigation of the possible confounding effects of chemical exposures was done in the initial studies. The objectives of the present study are to (1) investigate the history of chemical use at the Rocky Flats facility; (2) locate and analyze chemical monitoring information in order to assess employee exposure to the chemicals that were used in the highest volume; and (3) determine the feasibility of establishing a chemical exposure assessment model that could be used in future epidemiology studies.« less

  13. Neuroprotection of dietary virgin olive oil on brain lipidomics during stroke.

    PubMed

    Rabiei, Zahra; Bigdeli, Mohammad Reza; Rasoulian, Bahram

    2013-08-01

    Recent studies suggest that dietary virgin olive oil reduces hypoxia-reoxygenation injury in rat brain. This study investigated the effect of pretreatment with different doses of dietary virgin olive oil on brain lipidomics during stroke. In this experimental trial, 60 male Wistar rats were studied in 5 groups of 12 each. The control group received distilled water while three treatment groups received oral virgin olive oil for 30 days (0.25, 0.5 and 0.75 ml/kg/day respectively). Also the sham group received distilled water. Two hours after the last dose, the animals divided two groups. The middle cerebral artery occlusion (MCAO) group subjected to 60 min of middle cerebral artery occlusion (MCAO) and intact groups for brain lipids analysis. The brain phosphatidylcholine, cholesterol ester and cholesterol levels increased significantly in doses of 0.5 and 0.75 ml/kg/day compare with control group. VOO in all three doses increased the brain triglyceride levels. VOO with dose 0.75 ml/kg increased the brain cerebroside levels when compared with control group. VOO pretreatment for 30 days decreased the brain ceramide levels in doses of 0.5 and 0.75 ml/kg/day (p<0.05). Although further studies are needed, the results indicate that the VOO pretreatment improved the injury of ischemia and reperfusion and might be beneficial in patients with these disorders and seems to partly exert their effects via change in brain lipid levels in rat.

  14. A simple physiologically based pharmacokinetic model evaluating the effect of anti-nicotine antibodies on nicotine disposition in the brains of rats and humans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saylor, Kyle, E-mail: saylor@vt.edu; Zhang, Chenmi

    Physiologically based pharmacokinetic (PBPK) modeling was applied to investigate the effects of anti-nicotine antibodies on nicotine disposition in the brains of rats and humans. Successful construction of both rat and human models was achieved by fitting model outputs to published nicotine concentration time course data in the blood and in the brain. Key parameters presumed to have the most effect on the ability of these antibodies to prevent nicotine from entering the brain were selected for investigation using the human model. These parameters, which included antibody affinity for nicotine, antibody cross-reactivity with cotinine, and antibody concentration, were broken down intomore » different, clinically-derived in silico treatment levels and fed into the human PBPK model. Model predictions suggested that all three parameters, in addition to smoking status, have a sizable impact on anti-nicotine antibodies' ability to prevent nicotine from entering the brain and that the antibodies elicited by current human vaccines do not have sufficient binding characteristics to reduce brain nicotine concentrations. If the antibody binding characteristics achieved in animal studies can similarly be achieved in human studies, however, nicotine vaccine efficacy in terms of brain nicotine concentration reduction is predicted to meet threshold values for alleviating nicotine dependence. - Highlights: • Modelling of nicotine disposition in the presence of anti-nicotine antibodies • Key vaccine efficacy factors are evaluated in silico in rats and in humans. • Model predicts insufficient antibody binding in past human nicotine vaccines. • Improving immunogenicity and antibody specificity may lead to vaccine success.« less

  15. Magnetic resonance elastography (MRE) of the human brain: technique, findings and clinical applications

    NASA Astrophysics Data System (ADS)

    Hiscox, Lucy V.; Johnson, Curtis L.; Barnhill, Eric; McGarry, Matt D. J.; Huston 3rd, John; van Beek, Edwin J. R.; Starr, John M.; Roberts, Neil

    2016-12-01

    Neurological disorders are one of the most important public health concerns in developed countries. Established brain imaging techniques such as magnetic resonance imaging (MRI) and x-ray computerised tomography (CT) have been essential in the identification and diagnosis of a wide range of disorders, although usually are insufficient in sensitivity for detecting subtle pathological alterations to the brain prior to the onset of clinical symptoms—at a time when prognosis for treatment is more favourable. The mechanical properties of biological tissue provide information related to the strength and integrity of the cellular microstructure. In recent years, mechanical properties of the brain have been visualised and measured non-invasively with magnetic resonance elastography (MRE), a particularly sensitive medical imaging technique that may increase the potential for early diagnosis. This review begins with an introduction to the various methods used for the acquisition and analysis of MRE data. A systematic literature search is then conducted to identify studies that have specifically utilised MRE to investigate the human brain. Through the conversion of MRE-derived measurements to shear stiffness (kPa) and, where possible, the loss tangent (rad), a summary of results for global brain tissue and grey and white matter across studies is provided for healthy participants, as potential baseline values to be used in future clinical investigations. In addition, the extent to which MRE has revealed significant alterations to the brain in patients with neurological disorders is assessed and discussed in terms of known pathophysiology. The review concludes by predicting the trends for future MRE research and applications in neuroscience.

  16. Loud Noise Exposure Produces DNA, Neurotransmitter and Morphological Damage within Specific Brain Areas.

    PubMed

    Frenzilli, Giada; Ryskalin, Larisa; Ferrucci, Michela; Cantafora, Emanuela; Chelazzi, Silvia; Giorgi, Filippo S; Lenzi, Paola; Scarcelli, Vittoria; Frati, Alessandro; Biagioni, Francesca; Gambardella, Stefano; Falleni, Alessandra; Fornai, Francesco

    2017-01-01

    Exposure to loud noise is a major environmental threat to public health. Loud noise exposure, apart from affecting the inner ear, is deleterious for cardiovascular, endocrine and nervous systems and it is associated with neuropsychiatric disorders. In this study we investigated DNA, neurotransmitters and immune-histochemical alterations induced by exposure to loud noise in three major brain areas (cerebellum, hippocampus, striatum) of Wistar rats. Rats were exposed to loud noise (100 dBA) for 12 h. The effects of noise on DNA integrity in all three brain areas were evaluated by using Comet assay. In parallel studies, brain monoamine levels and morphology of nigrostriatal pathways, hippocampus and cerebellum were analyzed at different time intervals (24 h and 7 days) after noise exposure. Loud noise produced a sudden increase in DNA damage in all the brain areas under investigation. Monoamine levels detected at 7 days following exposure were differently affected depending on the specific brain area. Namely, striatal but not hippocampal dopamine (DA) significantly decreased, whereas hippocampal and cerebellar noradrenaline (NA) was significantly reduced. This is in line with pathological findings within striatum and hippocampus consisting of a decrease in striatal tyrosine hydroxylase (TH) combined with increased Bax and glial fibrillary acidic protein (GFAP). Loud noise exposure lasting 12 h causes immediate DNA, and long-lasting neurotransmitter and immune-histochemical alterations within specific brain areas of the rat. These alterations may suggest an anatomical and functional link to explain the neurobiology of diseases which prevail in human subjects exposed to environmental noise.

  17. Moment-to-Moment BOLD Signal Variability Reflects Regional Changes in Neural Flexibility across the Lifespan.

    PubMed

    Nomi, Jason S; Bolt, Taylor S; Ezie, C E Chiemeka; Uddin, Lucina Q; Heller, Aaron S

    2017-05-31

    Variability of neuronal responses is thought to underlie flexible and optimal brain function. Because previous work investigating BOLD signal variability has been conducted within task-based fMRI contexts on adults and older individuals, very little is currently known regarding regional changes in spontaneous BOLD signal variability in the human brain across the lifespan. The current study used resting-state fMRI data from a large sample of male and female human participants covering a wide age range (6-85 years) across two different fMRI acquisition parameters (TR = 0.645 and 1.4 s). Variability in brain regions including a key node of the salience network (anterior insula) increased linearly across the lifespan across datasets. In contrast, variability in most other large-scale networks decreased linearly over the lifespan. These results demonstrate unique lifespan trajectories of BOLD variability related to specific regions of the brain and add to a growing literature demonstrating the importance of identifying normative trajectories of functional brain maturation. SIGNIFICANCE STATEMENT Although brain signal variability has traditionally been considered a source of unwanted noise, recent work demonstrates that variability in brain signals during task performance is related to brain maturation in old age as well as individual differences in behavioral performance. The current results demonstrate that intrinsic fluctuations in resting-state variability exhibit unique maturation trajectories in specific brain regions and systems, particularly those supporting salience detection. These results have implications for investigations of brain development and aging, as well as interpretations of brain function underlying behavioral changes across the lifespan. Copyright © 2017 the authors 0270-6474/17/375539-10$15.00/0.

  18. Regional gray matter volume increases following 7days of voluntary wheel running exercise: a longitudinal VBM study in rats.

    PubMed

    Sumiyoshi, Akira; Taki, Yasuyuki; Nonaka, Hiroi; Takeuchi, Hikaru; Kawashima, Ryuta

    2014-09-01

    The effects of physical exercise on brain morphology in rodents have been well documented in histological studies. However, to further understand when and where morphological changes occur in the whole brain, a noninvasive neuroimaging method allowing an unbiased, comprehensive, and longitudinal investigation of brain morphology should be used. In this study, we investigated the effects of 7days of voluntary wheel running exercise on regional gray matter volume (rGMV) using longitudinal voxel-based morphometry (VBM) in rats. Eighteen pairs of adult male naïve Wistar rats were randomized to the exercise or control condition (one rat for each condition from each pair). Each rat was scanned in a 7.0-T MRI scanner at three time points: before exercise, after 7days of exercise, and after 7days of follow-up. The T2-weighted MRI images were segmented using the rat brain tissue priors that were recently published by our laboratory, and the intra- and inter-subject template creation steps were followed. Longitudinal VBM analysis revealed significant increases in rGMV in the motor, somatosensory, association, and visual cortices in the exercise group. Among these brain regions, rGMV changes in the motor cortex were positively correlated with the total distance that was run during the 7days of exercise. In addition, the effects of 7days of exercise on rGMV persisted after 7days of follow-up. These results support the utility of a longitudinal VBM study in rats and provide new insights into experience-dependent structural brain plasticity in naïve adult animals. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Brain Activity During the Encoding, Retention, and Retrieval of Stimulus Representations

    PubMed Central

    de Zubicaray, Greig I.; McMahon, Katie; Wilson, Stephen J.; Muthiah, Santhi

    2001-01-01

    Studies of delayed nonmatching-to-sample (DNMS) performance following lesions of the monkey cortex have revealed a critical circuit of brain regions involved in forming memories and retaining and retrieving stimulus representations. Using event-related functional magnetic resonance imaging (fMRI), we measured brain activity in 10 healthy human participants during performance of a trial-unique visual DNMS task using novel barcode stimuli. The event-related design enabled the identification of activity during the different phases of the task (encoding, retention, and retrieval). Several brain regions identified by monkey studies as being important for successful DNMS performance showed selective activity during the different phases, including the mediodorsal thalamic nucleus (encoding), ventrolateral prefrontal cortex (retention), and perirhinal cortex (retrieval). Regions showing sustained activity within trials included the ventromedial and dorsal prefrontal cortices and occipital cortex. The present study shows the utility of investigating performance on tasks derived from animal models to assist in the identification of brain regions involved in human recognition memory. PMID:11584070

  20. Brain single-photon emission computed tomography in fetal alcohol syndrome: a case report and study implications.

    PubMed

    Codreanu, Ion; Yang, JiGang; Zhuang, Hongming

    2012-12-01

    The indications of brain single-photon emission computed tomography (SPECT) in fetal alcohol syndrome are not clearly defined, even though the condition is recognized as one of the most common causes of mental retardation. This article reports a case of a 9-year-old adopted girl with developmental delay, mildly dysmorphic facial features, and behavioral and cognitive abnormalities. Extensive investigations including genetic studies and brain magnetic resonance imaging (MRI) revealed no abnormalities, and a diagnosis of fetal alcohol syndrome was considered since official diagnostic criteria were met. A brain SPECT was requested and showed severely decreased tracer activity in the thalami, basal ganglia, and temporal lobes on both sides, the overall findings being consistent with the established diagnosis of fetal alcohol syndrome. With increasing availability of functional brain imaging, the study indications and possible ethical implications in suspected prenatal alcohol exposure or even before adoption need further consideration. In this patient, SPECT was the only test to yield positive results.

  1. Deconstructing brain-derived neurotrophic factor actions in adult brain circuits to bridge an existing informational gap in neuro-cell biology.

    PubMed

    Bowling, Heather; Bhattacharya, Aditi; Klann, Eric; Chao, Moses V

    2016-03-01

    Brain-derived neurotrophic factor (BDNF) plays an important role in neurodevelopment, synaptic plasticity, learning and memory, and in preventing neurodegeneration. Despite decades of investigations into downstream signaling cascades and changes in cellular processes, the mechanisms of how BDNF reshapes circuits in vivo remain unclear. This informational gap partly arises from the fact that the bulk of studies into the molecular actions of BDNF have been performed in dissociated neuronal cultures, while the majority of studies on synaptic plasticity, learning and memory were performed in acute brain slices or in vivo. A recent study by Bowling-Bhattacharya et al., measured the proteomic changes in acute adult hippocampal slices following treatment and reported changes in proteins of neuronal and non-neuronal origin that may in concert modulate synaptic release and secretion in the slice. In this paper, we place these findings into the context of existing literature and discuss how they impact our understanding of how BDNF can reshape the brain.

  2. The implications of brain connectivity in the neuropsychology of autism

    PubMed Central

    Maximo, Jose O.; Cadena, Elyse J.; Kana, Rajesh K.

    2014-01-01

    Autism is a neurodevelopmental disorder that has been associated with atypical brain functioning. Functional connectivity MRI (fcMRI) studies examining neural networks in autism have seen an exponential rise over the last decade. Such investigations have led to characterization of autism as a distributed neural systems disorder. Studies have found widespread cortical underconnectivity, local overconnectivity, and mixed results suggesting disrupted brain connectivity as a potential neural signature of autism. In this review, we summarize the findings of previous fcMRI studies in autism with a detailed examination of their methodology, in order to better understand its potential and to delineate the pitfalls. We also address how a multimodal neuroimaging approach (incorporating different measures of brain connectivity) may help characterize the complex neurobiology of autism at a global level. Finally, we also address the potential of neuroimaging-based markers in assisting neuropsychological assessment of autism. The quest for a biomarker for autism is still ongoing, yet new findings suggest that aberrant brain connectivity may be a promising candidate. PMID:24496901

  3. Brain activity associated with translation from a visual to a symbolic representation in algebra and geometry.

    PubMed

    Leikin, Mark; Waisman, Ilana; Shaul, Shelley; Leikin, Roza

    2014-03-01

    This paper presents a small part of a larger interdisciplinary study that investigates brain activity (using event related potential methodology) of male adolescents when solving mathematical problems of different types. The study design links mathematics education research with neurocognitive studies. In this paper we performed a comparative analysis of brain activity associated with the translation from visual to symbolic representations of mathematical objects in algebra and geometry. Algebraic tasks require translation from graphical to symbolic representation of a function, whereas tasks in geometry require translation from a drawing of a geometric figure to a symbolic representation of its property. The findings demonstrate that electrical activity associated with the performance of geometrical tasks is stronger than that associated with solving algebraic tasks. Additionally, we found different scalp topography of the brain activity associated with algebraic and geometric tasks. Based on these results, we argue that problem solving in algebra and geometry is associated with different patterns of brain activity.

  4. Steady-state visual evoked potential (SSVEP)-based communication: impact of harmonic frequency components

    NASA Astrophysics Data System (ADS)

    Müller-Putz, Gernot R.; Scherer, Reinhold; Brauneis, Christian; Pfurtscheller, Gert

    2005-12-01

    Brain-computer interfaces (BCIs) can be realized on the basis of steady-state evoked potentials (SSEPs). These types of brain signals resulting from repetitive stimulation have the same fundamental frequency as the stimulation but also include higher harmonics. This study investigated how the classification accuracy of a 4-class BCI system can be improved by incorporating visually evoked harmonic oscillations. The current study revealed that the use of three SSVEP harmonics yielded a significantly higher classification accuracy than was the case for one or two harmonics. During feedback experiments, the five subjects investigated reached a classification accuracy between 42.5% and 94.4%.

  5. Steady-state visual evoked potential (SSVEP)-based communication: impact of harmonic frequency components.

    PubMed

    Müller-Putz, Gernot R; Scherer, Reinhold; Brauneis, Christian; Pfurtscheller, Gert

    2005-12-01

    Brain-computer interfaces (BCIs) can be realized on the basis of steady-state evoked potentials (SSEPs). These types of brain signals resulting from repetitive stimulation have the same fundamental frequency as the stimulation but also include higher harmonics. This study investigated how the classification accuracy of a 4-class BCI system can be improved by incorporating visually evoked harmonic oscillations. The current study revealed that the use of three SSVEP harmonics yielded a significantly higher classification accuracy than was the case for one or two harmonics. During feedback experiments, the five subjects investigated reached a classification accuracy between 42.5% and 94.4%.

  6. The impact of hyperoxia on brain activity: A resting-state and task-evoked electroencephalography (EEG) study.

    PubMed

    Sheng, Min; Liu, Peiying; Mao, Deng; Ge, Yulin; Lu, Hanzhang

    2017-01-01

    A better understanding of the effect of oxygen on brain electrophysiological activity may provide a more mechanistic insight into clinical studies that use oxygen treatment in pathological conditions, as well as in studies that use oxygen to calibrate functional magnetic resonance imaging (fMRI) signals. This study applied electroencephalography (EEG) in healthy subjects and investigated how high a concentration of oxygen in inhaled air (i.e., normobaric hyperoxia) alters brain activity under resting-state and task-evoked conditions. Study 1 investigated its impact on resting EEG and revealed that hyperoxia suppressed α (8-13Hz) and β (14-35Hz) band power (by 15.6±2.3% and 14.1±3.1%, respectively), but did not change the δ (1-3Hz), θ (4-7Hz), and γ (36-75Hz) bands. Sham control experiments did not result in such changes. Study 2 reproduced these findings, and, furthermore, examined the effect of hyperoxia on visual stimulation event-related potentials (ERP). It was found that the main peaks of visual ERP, specifically N1 and P2, were both delayed during hyperoxia compared to normoxia (P = 0.04 and 0.02, respectively). In contrast, the amplitude of the peaks did not show a change. Our results suggest that hyperoxia has a pronounced effect on brain neural activity, for both resting-state and task-evoked potentials.

  7. The impact of hyperoxia on brain activity: A resting-state and task-evoked electroencephalography (EEG) study

    PubMed Central

    Sheng, Min; Liu, Peiying; Mao, Deng; Ge, Yulin

    2017-01-01

    A better understanding of the effect of oxygen on brain electrophysiological activity may provide a more mechanistic insight into clinical studies that use oxygen treatment in pathological conditions, as well as in studies that use oxygen to calibrate functional magnetic resonance imaging (fMRI) signals. This study applied electroencephalography (EEG) in healthy subjects and investigated how high a concentration of oxygen in inhaled air (i.e., normobaric hyperoxia) alters brain activity under resting-state and task-evoked conditions. Study 1 investigated its impact on resting EEG and revealed that hyperoxia suppressed α (8-13Hz) and β (14-35Hz) band power (by 15.6±2.3% and 14.1±3.1%, respectively), but did not change the δ (1-3Hz), θ (4-7Hz), and γ (36-75Hz) bands. Sham control experiments did not result in such changes. Study 2 reproduced these findings, and, furthermore, examined the effect of hyperoxia on visual stimulation event-related potentials (ERP). It was found that the main peaks of visual ERP, specifically N1 and P2, were both delayed during hyperoxia compared to normoxia (P = 0.04 and 0.02, respectively). In contrast, the amplitude of the peaks did not show a change. Our results suggest that hyperoxia has a pronounced effect on brain neural activity, for both resting-state and task-evoked potentials. PMID:28464001

  8. Diagnosing Developmental Dyscalculia on the Basis of Reliable Single Case FMRI Methods: Promises and Limitations

    PubMed Central

    Dinkel, Philipp Johannes; Willmes, Klaus; Krinzinger, Helga; Konrad, Kerstin; Koten Jr, Jan Willem

    2013-01-01

    FMRI-studies are mostly based on a group study approach, either analyzing one group or comparing multiple groups, or on approaches that correlate brain activation with clinically relevant criteria or behavioral measures. In this study we investigate the potential of fMRI-techniques focusing on individual differences in brain activation within a test-retest reliability context. We employ a single-case analysis approach, which contrasts dyscalculic children with a control group of typically developing children. In a second step, a support-vector machine analysis and cluster analysis techniques served to investigate similarities in multivariate brain activation patterns. Children were confronted with a non-symbolic number comparison and a non-symbolic exact calculation task during fMRI acquisition. Conventional second level group comparison analysis only showed small differences around the angular gyrus bilaterally and the left parieto-occipital sulcus. Analyses based on single-case statistical procedures revealed that developmental dyscalculia is characterized by individual differences predominantly in visual processing areas. Dyscalculic children seemed to compensate for relative under-activation in the primary visual cortex through an upregulation in higher visual areas. However, overlap in deviant activation was low for the dyscalculic children, indicating that developmental dyscalculia is a disorder characterized by heterogeneous brain activation differences. Using support vector machine analysis and cluster analysis, we tried to group dyscalculic and typically developing children according to brain activation. Fronto-parietal systems seem to qualify for a distinction between the two groups. However, this was only effective when reliable brain activations of both tasks were employed simultaneously. Results suggest that deficits in number representation in the visual-parietal cortex get compensated for through finger related aspects of number representation in fronto-parietal cortex. We conclude that dyscalculic children show large individual differences in brain activation patterns. Nonetheless, the majority of dyscalculic children can be differentiated from controls employing brain activation patterns when appropriate methods are used. PMID:24349547

  9. Diagnosing developmental dyscalculia on the basis of reliable single case FMRI methods: promises and limitations.

    PubMed

    Dinkel, Philipp Johannes; Willmes, Klaus; Krinzinger, Helga; Konrad, Kerstin; Koten, Jan Willem

    2013-01-01

    FMRI-studies are mostly based on a group study approach, either analyzing one group or comparing multiple groups, or on approaches that correlate brain activation with clinically relevant criteria or behavioral measures. In this study we investigate the potential of fMRI-techniques focusing on individual differences in brain activation within a test-retest reliability context. We employ a single-case analysis approach, which contrasts dyscalculic children with a control group of typically developing children. In a second step, a support-vector machine analysis and cluster analysis techniques served to investigate similarities in multivariate brain activation patterns. Children were confronted with a non-symbolic number comparison and a non-symbolic exact calculation task during fMRI acquisition. Conventional second level group comparison analysis only showed small differences around the angular gyrus bilaterally and the left parieto-occipital sulcus. Analyses based on single-case statistical procedures revealed that developmental dyscalculia is characterized by individual differences predominantly in visual processing areas. Dyscalculic children seemed to compensate for relative under-activation in the primary visual cortex through an upregulation in higher visual areas. However, overlap in deviant activation was low for the dyscalculic children, indicating that developmental dyscalculia is a disorder characterized by heterogeneous brain activation differences. Using support vector machine analysis and cluster analysis, we tried to group dyscalculic and typically developing children according to brain activation. Fronto-parietal systems seem to qualify for a distinction between the two groups. However, this was only effective when reliable brain activations of both tasks were employed simultaneously. Results suggest that deficits in number representation in the visual-parietal cortex get compensated for through finger related aspects of number representation in fronto-parietal cortex. We conclude that dyscalculic children show large individual differences in brain activation patterns. Nonetheless, the majority of dyscalculic children can be differentiated from controls employing brain activation patterns when appropriate methods are used.

  10. Support vector machine classification and characterization of age-related reorganization of functional brain networks

    PubMed Central

    Meier, Timothy B.; Desphande, Alok S.; Vergun, Svyatoslav; Nair, Veena A.; Song, Jie; Biswal, Bharat B.; Meyerand, Mary E.; Birn, Rasmus M.; Prabhakaran, Vivek

    2012-01-01

    Most of what is known about the reorganization of functional brain networks that accompanies normal aging is based on neuroimaging studies in which participants perform specific tasks. In these studies, reorganization is defined by the differences in task activation between young and old adults. However, task activation differences could be the result of differences in task performance, strategy, or motivation, and not necessarily reflect reorganization. Resting-state fMRI provides a method of investigating functional brain networks without such confounds. Here, a support vector machine (SVM) classifier was used in an attempt to differentiate older adults from younger adults based on their resting-state functional connectivity. In addition, the information used by the SVM was investigated to see what functional connections best differentiated younger adult brains from older adult brains. Three separate resting-state scans from 26 younger adults (18-35 yrs) and 26 older adults (55-85) were obtained from the International Consortium for Brain Mapping (ICBM) dataset made publically available in the 1000 Functional Connectomes project www.nitrc.org/projects/fcon_1000. 100 seed-regions from four functional networks with 5 mm3 radius were defined based on a recent study using machine learning classifiers on adolescent brains. Time-series for every seed-region were averaged and three matrices of z-transformed correlation coefficients were created for each subject corresponding to each individual’s three resting-state scans. SVM was then applied using leave-one-out cross-validation. The SVM classifier was 84% accurate in classifying older and younger adult brains. The majority of the connections used by the classifier to distinguish subjects by age came from seed-regions belonging to the sensorimotor and cingulo-opercular networks. These results suggest that age-related decreases in positive correlations within the cingulo-opercular and default networks, and decreases in negative correlations between the default and sensorimotor networks, are the distinguishing characteristics of age-related reorganization. PMID:22227886

  11. Support vector machine classification and characterization of age-related reorganization of functional brain networks.

    PubMed

    Meier, Timothy B; Desphande, Alok S; Vergun, Svyatoslav; Nair, Veena A; Song, Jie; Biswal, Bharat B; Meyerand, Mary E; Birn, Rasmus M; Prabhakaran, Vivek

    2012-03-01

    Most of what is known about the reorganization of functional brain networks that accompanies normal aging is based on neuroimaging studies in which participants perform specific tasks. In these studies, reorganization is defined by the differences in task activation between young and old adults. However, task activation differences could be the result of differences in task performance, strategy, or motivation, and not necessarily reflect reorganization. Resting-state fMRI provides a method of investigating functional brain networks without such confounds. Here, a support vector machine (SVM) classifier was used in an attempt to differentiate older adults from younger adults based on their resting-state functional connectivity. In addition, the information used by the SVM was investigated to see what functional connections best differentiated younger adult brains from older adult brains. Three separate resting-state scans from 26 younger adults (18-35 yrs) and 26 older adults (55-85) were obtained from the International Consortium for Brain Mapping (ICBM) dataset made publically available in the 1000 Functional Connectomes project www.nitrc.org/projects/fcon_1000. 100 seed-regions from four functional networks with 5mm(3) radius were defined based on a recent study using machine learning classifiers on adolescent brains. Time-series for every seed-region were averaged and three matrices of z-transformed correlation coefficients were created for each subject corresponding to each individual's three resting-state scans. SVM was then applied using leave-one-out cross-validation. The SVM classifier was 84% accurate in classifying older and younger adult brains. The majority of the connections used by the classifier to distinguish subjects by age came from seed-regions belonging to the sensorimotor and cingulo-opercular networks. These results suggest that age-related decreases in positive correlations within the cingulo-opercular and default networks, and decreases in negative correlations between the default and sensorimotor networks, are the distinguishing characteristics of age-related reorganization. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. NMR-based metabolomics approach to study the toxicity of lambda-cyhalothrin to goldfish (Carassius auratus).

    PubMed

    Li, Minghui; Wang, Junsong; Lu, Zhaoguang; Wei, Dandan; Yang, Minghua; Kong, Lingyi

    2014-01-01

    In this study, a (1)H nuclear magnetic resonance (NMR) based metabolomics approach was applied to investigate the toxicity of lambda-cyhalothrin (LCT) in goldfish (Carassius auratus). LCT showed tissue-specific damage to gill, heart, liver and kidney tissues of goldfish. NMR profiling combined with statistical methods such as orthogonal partial least squares discriminant analysis (OPLS-DA) and two-dimensional statistical total correlation spectroscopy (2D-STOCSY) was developed to discern metabolite changes occurring after one week LCT exposure in brain, heart and kidney tissues of goldfish. LCT exposure influenced levels of many metabolites (e.g., leucine, isoleucine and valine in brain and kidney; lactate in brain, heart and kidney; alanine in brain and kidney; choline in brain, heart and kidney; taurine in brain, heart and kidney; N-acetylaspartate in brain; myo-inositol in brain; phosphocreatine in brain and heart; 2-oxoglutarate in brain; cis-aconitate in brain, and etc.), and broke the balance of neurotransmitters and osmoregulators, evoked oxidative stress, disturbed metabolisms of energy and amino acids. The implication of glutamate-glutamine-gamma-aminobutyric axis in LCT induced toxicity was demonstrated for the first time. Our findings demonstrated the applicability and potential of metabolomics approach for the elucidation of toxicological effects of pesticides and the underlying mechanisms, and the discovery of biomarkers for pesticide pollution in aquatic environment. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Better diet quality relates to larger brain tissue volumes: The Rotterdam Study.

    PubMed

    Croll, Pauline H; Voortman, Trudy; Ikram, M Arfan; Franco, Oscar H; Schoufour, Josje D; Bos, Daniel; Vernooij, Meike W

    2018-05-16

    To investigate the relation of diet quality with structural brain tissue volumes and focal vascular lesions in a dementia-free population. From the population-based Rotterdam Study, 4,447 participants underwent dietary assessment and brain MRI scanning between 2005 and 2015. We excluded participants with an implausible energy intake, prevalent dementia, or cortical infarcts, leaving 4,213 participants for the current analysis. A diet quality score (0-14) was calculated reflecting adherence to Dutch dietary guidelines. Brain MRI was performed to obtain information on brain tissue volumes, white matter lesion volume, lacunes, and cerebral microbleeds. The associations of diet quality score and separate food groups with brain structures were assessed using multivariable linear and logistic regression. We found that better diet quality related to larger brain volume, gray matter volume, white matter volume, and hippocampal volume. Diet quality was not associated with white matter lesion volume, lacunes, or microbleeds. High intake of vegetables, fruit, whole grains, nuts, dairy, and fish and low intake of sugar-containing beverages were associated with larger brain volumes. A better diet quality is associated with larger brain tissue volumes. These results suggest that the effect of nutrition on neurodegeneration may act via brain structure. More research, in particular longitudinal research, is needed to unravel direct vs indirect effects between diet quality and brain health. © 2018 American Academy of Neurology.

  14. Lateralization of brain activation in fluent and non-fluent preschool children: a magnetoencephalographic study of picture-naming.

    PubMed

    Sowman, Paul F; Crain, Stephen; Harrison, Elisabeth; Johnson, Blake W

    2014-01-01

    The neural causes of stuttering remain unknown. One explanation comes from neuroimaging studies that have reported abnormal lateralization of activation in the brains of people who stutter. However, these findings are generally based on data from adults with a long history of stuttering, raising the possibility that the observed lateralization anomalies are compensatory rather than causal. The current study investigated lateralization of brain activity in language-related regions of interest in young children soon after the onset of stuttering. We tested 24 preschool-aged children, half of whom had a positive diagnosis of stuttering. All children participated in a picture-naming experiment whilst their brain activity was recorded by magnetoencephalography. Source analysis performed during an epoch prior to speech onset was used to assess lateralized activation in three regions of interest. Activation was significantly lateralized to the left hemisphere in both groups and not different between groups. This study shows for the first time that significant speech preparatory brain activation can be identified in young children during picture-naming and supports the contention that, in stutterers, aberrant lateralization of brain function may be the result of neuroplastic adaptation that occurs as the condition becomes chronic.

  15. Relationships between the resting-state network and the P3: Evidence from a scalp EEG study

    NASA Astrophysics Data System (ADS)

    Li, Fali; Liu, Tiejun; Wang, Fei; Li, He; Gong, Diankun; Zhang, Rui; Jiang, Yi; Tian, Yin; Guo, Daqing; Yao, Dezhong; Xu, Peng

    2015-10-01

    The P3 is an important event-related potential that can be used to identify neural activity related to the cognitive processes of the human brain. However, the relationships, especially the functional correlations, between resting-state brain activity and the P3 have not been well established. In this study, we investigated the relationships between P3 properties (i.e., amplitude and latency) and resting-state brain networks. The results indicated that P3 amplitude was significantly correlated with resting-state network topology, and in general, larger P3 amplitudes could be evoked when the resting-state brain network was more efficient. However, no significant relationships were found for the corresponding P3 latency. Additionally, the long-range connections between the prefrontal/frontal and parietal/occipital brain regions, which represent the synchronous activity of these areas, were functionally related to the P3 parameters, especially P3 amplitude. The findings of the current study may help us better understand inter-subject variation in the P3, which may be instructive for clinical diagnosis, cognitive neuroscience studies, and potential subject selection for brain-computer interface applications.

  16. Quercetin protects rat cortical neurons against traumatic brain injury.

    PubMed

    Du, Guoliang; Zhao, Zongmao; Chen, Yonghan; Li, Zonghao; Tian, Yaohui; Liu, Zhifeng; Liu, Bin; Song, Jianqiang

    2018-06-01

    Previous studies have demonstrated that traumatic brain injury (TBI) may cause neurological deficits and neuronal cell apoptosis. Quercetin, one of the most widely distributed flavonoids, possesses anti‑inflammatory, anti‑blood coagulation, anti‑ischemic and anti‑cancer activities, and neuroprotective effects in the context of brain injury. The purpose of the present study was to investigate the neuroprotective effects of quercetin in TBI. A total of 75 rats were randomly arranged into 3 groups as follows: Sham group (Sham); TBI group (TBI); and TBI + quercetin group (Que). Brain edema was evaluated by analysis of brain water content. The neurobehavioral status of the rats was evaluated by Neurological Severity Scoring. Immunohistochemical and western blot analyses were used to measure the expression of certain proteins. The results of the present study demonstrated that post‑TBI administration of quercetin may attenuate brain edema, in addition to improving motor function in rats. Additionally, quercetin caused a marked inhibition of extracellular signal‑regulated kinase 1/2 phosphorylation and activated Akt serine/threonine protein kinase phosphorylation, which may result in attenuation of neuronal apoptosis. The present study provided novel insights into the mechanism through which quercetin may exert its neuroprotective activity in a rat model of TBI.

  17. Copine1 regulates neural stem cell functions during brain development.

    PubMed

    Kim, Tae Hwan; Sung, Soo-Eun; Cheal Yoo, Jae; Park, Jae-Yong; Yi, Gwan-Su; Heo, Jun Young; Lee, Jae-Ran; Kim, Nam-Soon; Lee, Da Yong

    2018-01-01

    Copine 1 (CPNE1) is a well-known phospholipid binding protein in plasma membrane of various cell types. In brain cells, CPNE1 is closely associated with AKT signaling pathway, which is important for neural stem cell (NSC) functions during brain development. Here, we investigated the role of CPNE1 in the regulation of brain NSC functions during brain development and determined its underlying mechanism. In this study, abundant expression of CPNE1 was observed in neural lineage cells including NSCs and immature neurons in human. With mouse brain tissues in various developmental stages, we found that CPNE1 expression was higher at early embryonic stages compared to postnatal and adult stages. To model developing brain in vitro, we used primary NSCs derived from mouse embryonic hippocampus. Our in vitro study shows decreased proliferation and multi-lineage differentiation potential in CPNE1 deficient NSCs. Finally, we found that the deficiency of CPNE1 downregulated mTOR signaling in embryonic NSCs. These data demonstrate that CPNE1 plays a key role in the regulation of NSC functions through the activation of AKT-mTOR signaling pathway during brain development. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Molecular investigations of the brain of higher mammals using gyrencephalic carnivore ferrets.

    PubMed

    Kawasaki, Hiroshi

    2014-09-01

    The brains of mammals such as carnivores and primates contain developed structures not found in the brains of mice. Uncovering the physiological importance, developmental mechanisms and evolution of these structures using carnivores and primates would greatly contribute to our understanding of the human brain and its diseases. Although the anatomical and physiological properties of the brains of carnivores and primates have been intensively examined, molecular investigations are still limited. Recently, genetic techniques that can be applied to carnivores and primates have been explored, and molecules whose expression patterns correspond to these structures were reported. Furthermore, to investigate the functional importance of these molecules, rapid and efficient genetic manipulation methods were established by applying electroporation to gyrencephalic carnivore ferrets. In this article, I review recent advances in molecular investigations of the brains of carnivores and primates, mainly focusing on ferrets (Mustela putorius furo). Copyright © 2014 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

  19. Long-Term Monitoring of Brain Dopamine Metabolism In Vivo with Carbon Paste Electrodes

    PubMed Central

    O'Neill, Robert D.

    2005-01-01

    This review focuses on the stability of voltammetric signals recorded over periods of months with carbon paste electrodes (CPEs) implanted in the brain. The key interaction underlying this stability is between the pasting oil and brain lipids that are capable of inhibiting the fouling caused by proteins. In brain regions receiving a significant dopaminergic input, a peak due to the methylated metabolites of dopamine, principally homovanillic acid (HVA), is clearly resolved using slow sweep voltammetry. Although a number of factors limit the time resolution for monitoring brain HVA concentration dynamics, the stability of CPEs allows investigations of long-term effects of drugs, as well as behavioral studies, not possible using other in-vivo monitoring techniques.

  20. Brain endothelial adhesion molecule expression in experimental colitis.

    PubMed

    Sans, M; Kawachi, S; Soriano, A; Palacín, A; Morise, Z; Granger, D N; Piqué, J M; Grisham, M B; Panés, J

    2001-04-01

    1) To determine if endothelial expression of adhesion molecules involved in leukocyte recruitment is increased in the brain and other organs in four different models of experimental colitis, and 2) to investigate whether leukocyte infiltration occurs in the brain of colitic animals. Endothelial vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1) expression was quantified, using the dual radiolabeled antibody technique in rats with trinitrobenzenesulfonic acid (TNBS)-induced colitis, in mice with dextran sulfate sodium (DSS)-induced colitis, in SCID mice reconstituted with CD45RBhigh T-cells, and in IL-10-/- mice. Leukocyte infiltration in the brain of TNBS-induced colitic rats was assessed by myeloperoxidase activity and immunohistochemical staining with anti-CD45 monoclonal antibody. Marked upregulation of brain endothelial VCAM-1 (2- to 5.5-fold) was consistently found in colitic animals in the four models studied. Brain VCAM-1 strongly correlated with colon VCAM-1 and colon weight. By contrast, upregulation of brain ICAM-1 in colitic animals was only observed in the CD45RBhigh transfer (3-fold) and the TNBS-induced (1.5-fold models). Heart and muscle VCAM-1 and ICAM-1 were not upregulated in colitic animals in the majority of models studied. There was no leukocyte infiltration into the brain of TNBS-induced colitic rats. Our study demonstrates a marked and specific upregulation of endothelial VCAM-1 in the brain of colitic animals. This activation of cerebral endothelial cells was not associated with an infiltration of leukocytes into brain tissue.

  1. The pulsating brain: A review of experimental and clinical studies of intracranial pulsatility

    PubMed Central

    2011-01-01

    The maintenance of adequate blood flow to the brain is critical for normal brain function; cerebral blood flow, its regulation and the effect of alteration in this flow with disease have been studied extensively and are very well understood. This flow is not steady, however; the systolic increase in blood pressure over the cardiac cycle causes regular variations in blood flow into and throughout the brain that are synchronous with the heart beat. Because the brain is contained within the fixed skull, these pulsations in flow and pressure are in turn transferred into brain tissue and all of the fluids contained therein including cerebrospinal fluid. While intracranial pulsatility has not been a primary focus of the clinical community, considerable data have accrued over the last sixty years and new applications are emerging to this day. Investigators have found it a useful marker in certain diseases, particularly in hydrocephalus and traumatic brain injury where large changes in intracranial pressure and in the biomechanical properties of the brain can lead to significant changes in pressure and flow pulsatility. In this work, we review the history of intracranial pulsatility beginning with its discovery and early characterization, consider the specific technologies such as transcranial Doppler and phase contrast MRI used to assess various aspects of brain pulsations, and examine the experimental and clinical studies which have used pulsatility to better understand brain function in health and with disease. PMID:21349153

  2. Comprehension of Idioms in Turkish Aphasic Participants.

    PubMed

    Aydin, Burcu; Barin, Muzaffer; Yagiz, Oktay

    2017-12-01

    Brain damaged participants offer an opportunity to evaluate the cognitive and linguistic processes and make assumptions about how the brain works. Cognitive linguists have been investigating the underlying mechanisms of idiom comprehension to unravel the ongoing debate on hemispheric specialization in figurative language comprehension. The aim of this study is to evaluate and compare the comprehension of idiomatic expressions in left brain damaged (LBD) aphasic, right brain damaged (RBD) and healthy control participants. Idiom comprehension in eleven LBD aphasic participants, ten RBD participants and eleven healthy control participants were assessed with three tasks: String to Picture Matching Task, Literal Sentence Comprehension Task and Oral Idiom Definition Task. The results of the tasks showed that in overall idiom comprehension category, the left brain-damaged aphasic participants interpret idioms more literally compared to right brain-damaged participants. What is more, there is a significant difference in opaque idiom comprehension implying that left brain-damaged aphasic participants perform worse compared to right brain-damaged participants. On the other hand, there is no statistically significant difference in scores of transparent idiom comprehension between the left brain-damaged aphasic and right brain-damaged participants. This result also contribute to the idea that while figurative processing system is damaged in LBD aphasics, the literal comprehension mechanism is spared to some extent. The results of this study support the view that idiom comprehension sites are mainly left lateralized. Furthermore, the results of this study are in consistence with the Giora's Graded Salience Hypothesis.

  3. Expression of the ADHD candidate gene Diras2 in the brain.

    PubMed

    Grünewald, Lena; Becker, Nils; Camphausen, Annika; O'Leary, Aet; Lesch, Klaus-Peter; Freudenberg, Florian; Reif, Andreas

    2018-06-01

    The distinct subgroup of the Ras family member 2 (DIRAS2) gene has been found to be associated with attention-deficit/hyperactivity disorder (ADHD) in one of our previous studies. This gene is coding for a small Ras GTPase with unknown function. DIRAS2 is highly expressed in the brain. However, the exact neural expression pattern of this gene was unknown so far. Therefore, we investigated the expressional profile of DIRAS2 in the human and murine brain. In the present study, qPCR analyses in the human and in the developing mouse brain, immunocytological double staining on murine hippocampal primary cells and RNA in situ hybridization (ISH) on brain sections of C57BL/6J wild-type mice, have been used to reveal the expression pattern of DIRAS2 in the brain. We could show that DIRAS2 expression in the human brain is the highest in the hippocampus and the cerebral cortex, which is in line with the ISH results in the mouse brain. During mouse brain development, Diras2 levels strongly increase from prenatal to late postnatal stages. Co-expression studies indicate Diras2 expression in glutamatergic and catecholaminergic neurons. Our findings support the idea of DIRAS2 as a candidate gene for ADHD as the timeline of its expression as well as the brain regions and cell types that show Diras2 expression correspond to those assumed to underlie the pathomechanisms of the disease.

  4. High risk of brain tumors in military personnel: a case control study.

    PubMed

    Fallahi, P; Elia, G; Foddis, R; Cristaudo, A; Antonelli, A

    2017-01-01

    Scientific literature suggests a relationship between military occupation and the development of brain tumors, but no italian study has investigated on the impact of this job on the brain cancer morbidity. In this a study information were obtained from patients recruited in the Neurosurgical Department of the University-Hospital of Pisa, Italy, from 1990 to 1999. The study has been conducted as a case-control study. 161, newly diagnosed cases of brain tumors (glioma and meningiomas, histologically confirmed), were recruited, such as 483 controls (with other non tumoral neurologic diseases: trauma, hemorrhagic brain disorders, aneurism, etc), by matching cases and controls (1:3), for age (± 5 years) and gender. Cases and controls were interviewed in the Neurosurgical Department, University-Hospital of Pisa, Italy, and the occupational histories of cases and controls were compared. Cases and controls have showed a statistically significant difference, based on their occupation (military vs. non-military occupation). A statistically significant association was seen between brain tumors and military occupation among evaluated patients (p=0.013). Further studies regarding this population group are needed, to determine the causes for the increased risk of this cancer. Furthermore, a subsequent reevaluation in other patients collected in more recent years will be needed to evaluate the trend of this association.

  5. Topological Organization of Functional Brain Networks in Healthy Children: Differences in Relation to Age, Sex, and Intelligence

    PubMed Central

    Wu, Kai; Taki, Yasuyuki; Sato, Kazunori; Hashizume, Hiroshi; Sassa, Yuko; Takeuchi, Hikaru; Thyreau, Benjamin; He, Yong; Evans, Alan C.; Li, Xiaobo; Kawashima, Ryuta; Fukuda, Hiroshi

    2013-01-01

    Recent studies have demonstrated developmental changes of functional brain networks derived from functional connectivity using graph theoretical analysis, which has been rapidly translated to studies of brain network organization. However, little is known about sex- and IQ-related differences in the topological organization of functional brain networks during development. In this study, resting-state fMRI (rs-fMRI) was used to map the functional brain networks in 51 healthy children. We then investigated the effects of age, sex, and IQ on economic small-world properties and regional nodal properties of the functional brain networks. At a global level of whole networks, we found significant age-related increases in the small-worldness and local efficiency, significant higher values of the global efficiency in boys compared with girls, and no significant IQ-related difference. Age-related increases in the regional nodal properties were found predominately in the frontal brain regions, whereas the parietal, temporal, and occipital brain regions showed age-related decreases. Significant sex-related differences in the regional nodal properties were found in various brain regions, primarily related to the default mode, language, and vision systems. Positive correlations between IQ and the regional nodal properties were found in several brain regions related to the attention system, whereas negative correlations were found in various brain regions primarily involved in the default mode, emotion, and language systems. Together, our findings of the network topology of the functional brain networks in healthy children and its relationship with age, sex, and IQ bring new insights into the understanding of brain maturation and cognitive development during childhood and adolescence. PMID:23390528

  6. Topological organization of functional brain networks in healthy children: differences in relation to age, sex, and intelligence.

    PubMed

    Wu, Kai; Taki, Yasuyuki; Sato, Kazunori; Hashizume, Hiroshi; Sassa, Yuko; Takeuchi, Hikaru; Thyreau, Benjamin; He, Yong; Evans, Alan C; Li, Xiaobo; Kawashima, Ryuta; Fukuda, Hiroshi

    2013-01-01

    Recent studies have demonstrated developmental changes of functional brain networks derived from functional connectivity using graph theoretical analysis, which has been rapidly translated to studies of brain network organization. However, little is known about sex- and IQ-related differences in the topological organization of functional brain networks during development. In this study, resting-state fMRI (rs-fMRI) was used to map the functional brain networks in 51 healthy children. We then investigated the effects of age, sex, and IQ on economic small-world properties and regional nodal properties of the functional brain networks. At a global level of whole networks, we found significant age-related increases in the small-worldness and local efficiency, significant higher values of the global efficiency in boys compared with girls, and no significant IQ-related difference. Age-related increases in the regional nodal properties were found predominately in the frontal brain regions, whereas the parietal, temporal, and occipital brain regions showed age-related decreases. Significant sex-related differences in the regional nodal properties were found in various brain regions, primarily related to the default mode, language, and vision systems. Positive correlations between IQ and the regional nodal properties were found in several brain regions related to the attention system, whereas negative correlations were found in various brain regions primarily involved in the default mode, emotion, and language systems. Together, our findings of the network topology of the functional brain networks in healthy children and its relationship with age, sex, and IQ bring new insights into the understanding of brain maturation and cognitive development during childhood and adolescence.

  7. Exploration of the recurrence in radiation brain necrosis after bevacizumab discontinuation

    PubMed Central

    Zhuang, Hongqing; Yuan, Xiangkun; Chang, Joe Y.; Song, Yongchun; Wang, Junjie; Yuan, Zhiyong; Wang, Xiaoguang; Wang, Ping

    2016-01-01

    Objective: The aim of the paper was to investigate the recurrence and its causes of radiation brain necrosis following bevacizumab discontinuation. Methods: This study included 14 patients with radiation brain necrosis (confirmed through imaging) after stereotactic radiotherapy for a primary or metastatic brain tumor and who received bevacizumab treatment from June 2011 through December 2014. The patients received bevacizumab at 5 mg/kg, q3-4w, for at least 3 cycles. The T1 signal intensity from enhanced MRI images was used as the evaluation criteria for the brain necrosis treatment efficacy. Results: brain necrosis improved in 13 of the 14 cases (92.9%). However, during follow-up, 10 of the 13 responsive patients (76.9%) exhibited a recurrence in brain necrosis, and a multiple linear regression analysis shows that brain necrosis recurrence was related to the follow-up time after the initial bevacizumab treatment discontinuation. Conclusion: bevacizumab produced good short-term effects for radiation brain necrosis; however, most of the patients would recurrence after bevacizumab is discontinued. Thus, brain necrosis was irreversible. PMID:26934327

  8. Population based MRI and DTI templates of the adult ferret brain and tools for voxelwise analysis.

    PubMed

    Hutchinson, E B; Schwerin, S C; Radomski, K L; Sadeghi, N; Jenkins, J; Komlosh, M E; Irfanoglu, M O; Juliano, S L; Pierpaoli, C

    2017-05-15

    Non-invasive imaging has the potential to play a crucial role in the characterization and translation of experimental animal models to investigate human brain development and disorders, especially when employed to study animal models that more accurately represent features of human neuroanatomy. The purpose of this study was to build and make available MRI and DTI templates and analysis tools for the ferret brain as the ferret is a well-suited species for pre-clinical MRI studies with folded cortical surface, relatively high white matter volume and body dimensions that allow imaging with pre-clinical MRI scanners. Four ferret brain templates were built in this study - in-vivo MRI and DTI and ex-vivo MRI and DTI - using brain images across many ferrets and region of interest (ROI) masks corresponding to established ferret neuroanatomy were generated by semi-automatic and manual segmentation. The templates and ROI masks were used to create a web-based ferret brain viewing software for browsing the MRI and DTI volumes with annotations based on the ROI masks. A second objective of this study was to provide a careful description of the imaging methods used for acquisition, processing, registration and template building and to demonstrate several voxelwise analysis methods including Jacobian analysis of morphometry differences between the female and male brain and bias-free identification of DTI abnormalities in an injured ferret brain. The templates, tools and methodological optimization presented in this study are intended to advance non-invasive imaging approaches for human-similar animal species that will enable the use of pre-clinical MRI studies for understanding and treating brain disorders. Published by Elsevier Inc.

  9. Coffee and green tea consumption in relation to brain tumor risk in a Japanese population.

    PubMed

    Ogawa, Takahiro; Sawada, Norie; Iwasaki, Motoki; Budhathoki, Sanjeev; Hidaka, Akihisa; Yamaji, Taiki; Shimazu, Taichi; Sasazuki, Shizuka; Narita, Yoshitaka; Tsugane, Shoichiro

    2016-12-15

    Few prospective studies have investigated the etiology of brain tumor, especially among Asian populations. Both coffee and green tea are popular beverages, but their relation with brain tumor risk, particularly with glioma, has been inconsistent in epidemiological studies. In this study, we evaluated the association between coffee and greed tea intake and brain tumor risk in a Japanese population. We evaluated a cohort of 106,324 subjects (50,438 men and 55,886 women) in the Japan Public Health Center-Based Prospective Study (JPHC Study). Subjects were followed from 1990 for Cohort I and 1993 for Cohort II until December 31, 2012. One hundred and fifty-seven (70 men and 87 women) newly diagnosed cases of brain tumor were identified during the study period. Hazard ratio (HR) and 95% confidence intervals (95%CIs) for the association between coffee or green tea consumption and brain tumor risk were assessed using a Cox proportional hazards regression model. We found a significant inverse association between coffee consumption and brain tumor risk in both total subjects (≥3 cups/day; HR = 0.47, 95%CI = 0.22-0.98) and in women (≥3 cups/day; HR = 0.24, 95%CI = 0.06-0.99), although the number of cases in the highest category was small. Furthermore, glioma risk tended to decrease with higher coffee consumption (≥3 cups/day; HR = 0.54, 95%CI = 0.16-1.80). No association was seen between green tea and brain tumor risk. In conclusion, our study suggested that coffee consumption might reduce the risk of brain tumor, including that of glioma, in the Japanese population. © 2016 UICC.

  10. Time-dependent diffuse reflectance spectroscopy for in vivo characterization of pediatric epileptogenic brain lesions

    NASA Astrophysics Data System (ADS)

    Oh, Sanghoon; Ragheb, John; Bhatia, Sanjiv; Sandberg, David; Johnson, Mahlon; Fernald, Bradley; Lin, Wei-Chiang

    2008-02-01

    Optical spectroscopy for in vivo tissue diagnosis is performed traditionally in a static manner; a snap shot of the tissue biochemical and morphological characteristics is captured through the interaction between light and the tissue. This approach does not capture the dynamic nature of a living organ, which is critical to the studies of brain disorders such as epilepsy. Therefore, a time-dependent diffuse reflectance spectroscopy system with a fiber-optic probe was designed and developed. The system was designed to acquire broadband diffuse reflectance spectra (240 ~ 932 nm) at an acquisition rate of 33 Hz. The broadband spectral acquisition feature allows simultaneous monitoring of various physiological characteristics of tissues. The utility of such a system in guiding pediatric epilepsy surgery was tested in a pilot clinical study including 13 epilepsy patients and seven brain tumor patients. The control patients were children undergoing suregery for brain tumors in which measurements were taken from normal brain exposed during the surgery. Diffuse reflectance spectra were acquired for 12 seconds from various parts of the brain of the patients during surgery. Recorded spectra were processed and analyzed in both spectral and time domains to gain insights into the dynamic changes in, for example, hemodynamics of the investigated brain tissue. One finding from this pilot study is that unsynchronized alterations in local blood oxygenation and local blood volume were observed in epileptogenic cortex. These study results suggest the advantage of using a time-dependent diffuse reflectance spectroscopy system to study epileptogenic brain in vivo.

  11. Modulation of Memory Consolidation by the Basolateral Amygdala or Nucleus Accumbens Shell Requires Concurrent Dopamine Receptor Activation in Both Brain Regions

    ERIC Educational Resources Information Center

    LaLumiere, Ryan T.; Nawar, Erene M.; McGaugh, James L.

    2005-01-01

    Previous findings indicate that the basolateral amygdala (BLA) and the nucleus accumbens (NAc) interact in influencing memory consolidation. The current study investigated whether this interaction requires concurrent dopamine (DA) receptor activation in both brain regions. Unilateral, right-side cannulae were implanted into the BLA and the…

  12. Brain Activation during Semantic Processing in Autism Spectrum Disorders via Functional Magnetic Resonance Imaging

    ERIC Educational Resources Information Center

    Harris, Gordon J.; Chabris, Christopher F.; Clark, Jill; Urban, Trinity; Aharon, Itzhak; Steele, Shelley; McGrath, Lauren; Condouris, Karen; Tager-Flusberg, Helen

    2006-01-01

    Language and communication deficits are core features of autism spectrum disorders (ASD), even in high-functioning adults with ASD. This study investigated brain activation patterns using functional magnetic resonance imaging in right-handed adult males with ASD and a control group, matched on age, handedness, and verbal IQ. Semantic processing in…

  13. Brain Dynamics of Word Familiarization in 20-Month-Olds: Effects of Productive Vocabulary Size

    ERIC Educational Resources Information Center

    Torkildsen, Janne von Koss; Hansen, Hanna Friis; Svangstu, Janne Mari; Smith, Lars; Simonsen, Hanne Gram; Moen, Inger; Lindgren, Magnus

    2009-01-01

    The present study investigated the brain mechanisms involved during young children's receptive familiarization with new words, and whether the dynamics of these mechanisms are related to the child's productive vocabulary size. To this end, we recorded event-related potentials (ERPs) from 20-month-old children in a pseudoword repetition task.…

  14. Functional Connectivity between Brain Regions Involved in Learning Words of a New Language

    ERIC Educational Resources Information Center

    Veroude, Kim; Norris, David G.; Shumskaya, Elena; Gullberg, Marianne; Indefrey, Peter

    2010-01-01

    Previous studies have identified several brain regions that appear to be involved in the acquisition of novel word forms. Standard word-by-word presentation is often used although exposure to a new language normally occurs in a natural, real world situation. In the current experiment we investigated naturalistic language exposure and applied a…

  15. Brain Connectivity in Non-Reading Impaired Children and Children Diagnosed with Developmental Dyslexia

    ERIC Educational Resources Information Center

    Odegard, Timothy N.; Farris, Emily A.; Ring, Jeremiah; McColl, Roderick; Black, Jeffrey

    2009-01-01

    Diffusion Tensor Imaging (DTI) was used to investigate the relationship between white matter and reading abilities in reading impaired and non-reading impaired children. Seventeen children (7 non-reading impaired, 10 reading impaired) participated in this study. DTI was performed with 2 mm isotropic resolution to cover the entire brain along 30…

  16. Affective-Motivational Brain Responses to Direct Gaze in Children with Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Kylliainen, Anneli; Wallace, Simon; Coutanche, Marc N.; Leppanen, Jukka M.; Cusack, James; Bailey, Anthony J.; Hietanen, Jari K.

    2012-01-01

    Background: It is unclear why children with autism spectrum disorders (ASD) tend to be inattentive to, or even avoid eye contact. The goal of this study was to investigate affective-motivational brain responses to direct gaze in children with ASD. To this end, we combined two measurements: skin conductance responses (SCR), a robust arousal…

  17. Advanced Microscopic Imaging Methods to Investigate Cortical Development and the Etiology of Mental Retardation

    ERIC Educational Resources Information Center

    Haydar, Tarik F.

    2005-01-01

    Studies on human patients and animal models of disease have shown that disruptions in prenatal and early postnatal brain development are a root cause of mental retardation. Since proper brain development is achieved by a strict spatiotemporal control of neurogenesis, cell migration, and patterning of synapses, abnormalities in one or more of these…

  18. Encoding and Retrieving Faces and Places: Distinguishing Process- and Stimulus-Specific Differences in Brain Activity

    ERIC Educational Resources Information Center

    Prince, Steven E.; Dennis, Nancy A.; Cabeza, Roberto

    2009-01-01

    Among the most fundamental issues in cognitive neuroscience is how the brain may be organized into process-specific and stimulus-specific regions. In the episodic memory domain, most functional neuroimaging studies have focused on the former dimension, typically investigating the neural correlates of various memory processes. Thus, there is little…

  19. Where the Brain Appreciates the Final State of an Event: The Neural Correlates of Telicity

    ERIC Educational Resources Information Center

    Romagno, Domenica; Rota, Giuseppina; Ricciardi, Emiliano; Pietrini, Pietro

    2012-01-01

    In this study we investigated whether the human brain distinguishes between telic events that necessarily entail a specified endpoint (e.g., "reaching"), and atelic events with no delimitation or final state (e.g., "chasing"). We used functional magnetic resonance imaging to explore the patterns of neural response associated with verbs denoting…

  20. Functional Brain Activation Differences in Stuttering Identified with a Rapid fMRI Sequence

    ERIC Educational Resources Information Center

    Loucks, Torrey; Kraft, Shelly Jo; Choo, Ai Leen; Sharma, Harish; Ambrose, Nicoline G.

    2011-01-01

    The purpose of this study was to investigate whether brain activity related to the presence of stuttering can be identified with rapid functional MRI (fMRI) sequences that involved overt and covert speech processing tasks. The long-term goal is to develop sensitive fMRI approaches with developmentally appropriate tasks to identify deviant speech…

  1. Atypical Brain Responses to Reward Cues in Autism as Revealed by Event-Related Potentials

    ERIC Educational Resources Information Center

    Kohls, Gregor; Peltzer, Judith; Schulte-Ruther, Martin; Kamp-Becker, Inge; Remschmidt, Helmut; Herpertz-Dahlmann, Beate; Konrad, Kerstin

    2011-01-01

    Social motivation deficit theories suggest that children with autism do not properly anticipate and appreciate the pleasure of social stimuli. In this study, we investigated event-related brain potentials evoked by cues that triggered social versus monetary reward anticipation in children with autism. Children with autism showed attenuated P3…

  2. The birth of new neurons in the maternal brain: hormonal regulation and functional implications

    PubMed Central

    Leuner, Benedetta; Sabihi, Sara

    2016-01-01

    The maternal brain is remarkably plastic and exhibits multifaceted neural modifications. Neurogenesis has emerged as one of the mechanisms by which the maternal brain exhibits plasticity. This review highlights what is currently known about peripartum-associated changes in adult neurogenesis and the underlying hormonal mechanisms. We also consider the functional consequences of neurogenesis in the peripartum brain and extent to which this process may play a role in maternal care, cognitive function and postpartum mood. Finally, while most work investigating the effects of parenting on adult neurogenesis has focused on mothers, a few studies have examined fathers and these results are also discussed. PMID:26969795

  3. Effects of vinpocetine and ozagrel on behavioral recovery of rats after global brain ischemia.

    PubMed

    Jincai, Wang; Tingfang, Dong; Yongheng, Zhang; Zhongmin, Lu; Kaihua, Zhai; Xiaohong, Liu

    2014-04-01

    Brain ischemia leads to severe disruption of the nervous system and recovery is often prolonged. Rehabilitative post-ischemia pharmacological treatment may therefore be important for behavioral recovery, especially for cognition and motor behavior. The present study investigated the effects of combined vinpocetine and ozagrel administration on the behavioral recovery of rats from global brain ischemia. The results suggest that the combined treatment leads to significantly better improvement compared to single drug administration. We conclude that the combined use of vinpocetine and ozagrel may provide beneficial effects to patients suffering from brain ischemia. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Multimodal optical coherence tomography for in vivo imaging of brain tissue structure and microvascular network at glioblastoma

    NASA Astrophysics Data System (ADS)

    Yashin, Konstantin S.; Kiseleva, Elena B.; Gubarkova, Ekaterina V.; Matveev, Lev A.; Karabut, Maria M.; Elagin, Vadim V.; Sirotkina, Marina A.; Medyanik, Igor A.; Kravets, L. Y.; Gladkova, Natalia D.

    2017-02-01

    In the case of infiltrative brain tumors the surgeon faces difficulties in determining their boundaries to achieve total resection. The aim of the investigation was to evaluate the performance of multimodal OCT (MM OCT) for differential diagnostics of normal brain tissue and glioma using an experimental model of glioblastoma. The spectral domain OCT device that was used for the study provides simultaneously two modes: cross-polarization and microangiographic OCT. The comparative analysis of the both OCT modalities images from tumorous and normal brain tissue areas concurrently with histologic correlation shows certain difference between when accordingly to morphological and microvascular tissue features.

  5. Speech and language outcomes of very preterm infants.

    PubMed

    Vohr, Betty

    2014-04-01

    Speech and language impairments of both simple and complex language functions are common among former preterm infants. Risk factors include lower gestational age and increasing illness severity including severe brain injury. Even in the absence of brain injury, however, altered brain maturation and vulnerability imposed by premature entrance to the extrauterine environment is associated with brain structural and microstructural changes. These alterations are associated with language impairments with lasting effects in childhood and adolescence and increased needs for speech therapy and education supports. Studies are needed to investigate language interventions which begin in the neonatal intensive care unit. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Neural connectivity of the lateral geniculate body in the human brain: diffusion tensor imaging study.

    PubMed

    Kwon, Hyeok Gyu; Jang, Sung Ho

    2014-08-22

    A few studies have reported on the neural connectivity of some neural structures of the visual system in the human brain. However, little is known about the neural connectivity of the lateral geniculate body (LGB). In the current study, using diffusion tensor tractography (DTT), we attempted to investigate the neural connectivity of the LGB in normal subjects. A total of 52 healthy subjects were recruited for this study. A seed region of interest was placed on the LGB using the FMRIB Software Library which is a probabilistic tractography method based on a multi-fiber model. Connectivity was defined as the incidence of connection between the LGB and target brain areas at the threshold of 5, 25, and 50 streamlines. In addition, connectivity represented the percentage of connection in all hemispheres of 52 subjects. We found the following characteristics of connectivity of the LGB at the threshold of 5 streamline: (1) high connectivity to the corpus callosum (91.3%) and the contralateral temporal cortex (56.7%) via the corpus callosum, (2) high connectivity to the ipsilateral cerebral cortex: the temporal lobe (100%), primary visual cortex (95.2%), and visual association cortex (77.9%). The LGB appeared to have high connectivity to the corpus callosum and both temporal cortexes as well as the ipsilateral occipital cortex. We believe that the results of this study would be helpful in investigation of the neural network associated with the visual system and brain plasticity of the visual system after brain injury. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  7. Regulation of brain copper homeostasis by the brain barrier systems: Effects of Fe-overload and Fe-deficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Monnot, Andrew D.; Behl, Mamta; Ho, Sanna

    2011-11-15

    Maintaining brain Cu homeostasis is vital for normal brain function. The role of systemic Fe deficiency (FeD) or overload (FeO) due to metabolic diseases or environmental insults in Cu homeostasis in the cerebrospinal fluid (CSF) and brain tissues remains unknown. This study was designed to investigate how blood-brain barrier (BBB) and blood-SCF barrier (BCB) regulated Cu transport and how FeO or FeD altered brain Cu homeostasis. Rats received an Fe-enriched or Fe-depleted diet for 4 weeks. FeD and FeO treatment resulted in a significant increase (+ 55%) and decrease (- 56%) in CSF Cu levels (p < 0.05), respectively; however,more » neither treatment had any effect on CSF Fe levels. The FeD, but not FeO, led to significant increases in Cu levels in brain parenchyma and the choroid plexus. In situ brain perfusion studies demonstrated that the rate of Cu transport into the brain parenchyma was significantly faster in FeD rats (+ 92%) and significantly slower (- 53%) in FeO rats than in controls. In vitro two chamber Transwell transepithelial transport studies using primary choroidal epithelial cells revealed a predominant efflux of Cu from the CSF to blood compartment by the BCB. Further ventriculo-cisternal perfusion studies showed that Cu clearance by the choroid plexus in FeD animals was significantly greater than control (p < 0.05). Taken together, our results demonstrate that both the BBB and BCB contribute to maintain a stable Cu homeostasis in the brain and CSF. Cu appears to enter the brain primarily via the BBB and is subsequently removed from the CSF by the BCB. FeD has a more profound effect on brain Cu levels than FeO. FeD increases Cu transport at the brain barriers and prompts Cu overload in the CNS. The BCB plays a key role in removing the excess Cu from the CSF.« less

  8. On trans-parenchymal transport after blood brain barrier opening: pump-diffuse-pump hypothesis

    NASA Astrophysics Data System (ADS)

    Postnov, D. E.; Postnikov, E. B.; Karavaev, A. S.; Glushkovskaya-Semyachkina, O. V.

    2018-04-01

    Transparenchymal transport attracted the attention of many research groups after the discovery of glymphatic mechanism for the brain drainage in 2012. While the main facts of rapid transport of substances across the parenchyma are well established experimentally, specific mechanisms that drive this drainage are just hypothezised but not proved yed. Moreover, the number of modeling studies show that the pulse wave powered mechanism is unlikely able to perform pumping as suggested. Thus, the problem is still open. In addition, new data obtained under the conditions of intensionally opened blood brain barrier shows the presence of equally fast transport in opposite durection. In our study we investigate the possible physical mechanisms for rapid transport of substances after the opening of blood-brain barrier under the conditions of zero net flow.

  9. Real-time fMRI: a tool for local brain regulation.

    PubMed

    Caria, Andrea; Sitaram, Ranganatha; Birbaumer, Niels

    2012-10-01

    Real-time fMRI permits simultaneous measurement and observation of brain activity during an ongoing task. One of the most challenging applications of real-time fMRI in neuroscientific and clinical research is the possibility of acquiring volitional control of localized brain activity using real-time fMRI-based neurofeedback protocols. Real-time fMRI allows the experimenter to noninvasively manipulate brain activity as an independent variable to observe the effects on behavior. Real-time fMRI neurofeedback studies demonstrated that learned control of the local brain activity leads to specific changes in behavior. Here, the authors describe the implementation and application of real-time fMRI with particular emphasis on the self-regulation of local brain activity and the investigation of brain-function relationships. Real-time fMRI represents a promising new approach to cognitive neuroscience that could complement traditional neuroimaging techniques by providing more causal insights into the functional role of circumscribed brain regions in behavior.

  10. Neuroprotection by Caffeine in Hyperoxia-Induced Neonatal Brain Injury

    PubMed Central

    Endesfelder, Stefanie; Weichelt, Ulrike; Strauß, Evelyn; Schlör, Anja; Sifringer, Marco; Scheuer, Till; Bührer, Christoph; Schmitz, Thomas

    2017-01-01

    Sequelae of prematurity triggered by oxidative stress and free radical-mediated tissue damage have coined the term “oxygen radical disease of prematurity”. Caffeine, a potent free radical scavenger and adenosine receptor antagonist, reduces rates of brain damage in preterm infants. In the present study, we investigated the effects of caffeine on oxidative stress markers, anti-oxidative response, inflammation, redox-sensitive transcription factors, apoptosis, and extracellular matrix following the induction of hyperoxia in neonatal rats. The brain of a rat pups at postnatal Day 6 (P6) corresponds to that of a human fetal brain at 28–32 weeks gestation and the neonatal rat is an ideal model in which to investigate effects of oxidative stress and neuroprotection of caffeine on the developing brain. Six-day-old Wistar rats were pre-treated with caffeine and exposed to 80% oxygen for 24 and 48 h. Caffeine reduced oxidative stress marker (heme oxygenase-1, lipid peroxidation, hydrogen peroxide, and glutamate-cysteine ligase catalytic subunit (GCLC)), promoted anti-oxidative response (superoxide dismutase, peroxiredoxin 1, and sulfiredoxin 1), down-regulated pro-inflammatory cytokines, modulated redox-sensitive transcription factor expression (Nrf2/Keap1, and NFκB), reduced pro-apoptotic effectors (poly (ADP-ribose) polymerase-1 (PARP-1), apoptosis inducing factor (AIF), and caspase-3), and diminished extracellular matrix degeneration (matrix metalloproteinases (MMP) 2, and inhibitor of metalloproteinase (TIMP) 1/2). Our study affirms that caffeine is a pleiotropic neuroprotective drug in the developing brain due to its anti-oxidant, anti-inflammatory, and anti-apoptotic properties. PMID:28106777

  11. Neural predictors of chocolate intake following chocolate exposure.

    PubMed

    Frankort, Astrid; Roefs, Anne; Siep, Nicolette; Roebroeck, Alard; Havermans, Remco; Jansen, Anita

    2015-04-01

    Previous studies have shown that one's brain response to high-calorie food cues can predict long-term weight gain or weight loss. The neural correlates that predict food intake in the short term have, however, hardly been investigated. This study examined which brain regions' activation predicts chocolate intake after participants had been either exposed to real chocolate or to control stimuli during approximately one hour, with interruptions for fMRI measurements. Further we investigated whether the variance in chocolate intake could be better explained by activated brain regions than by self-reported craving. In total, five brain regions correlated with subsequent chocolate intake. The activation of two reward regions (the right caudate and the left frontopolar cortex) correlated positively with intake in the exposure group. The activation of two regions associated with cognitive control (the left dorsolateral and left mid-dorsolateral PFC) correlated negatively with intake in the control group. When the regression analysis was conducted with the exposure and the control group together, an additional region's activation (the right anterior PFC) correlated positively with chocolate intake. In all analyses, the intake variance explained by neural correlates was above and beyond the variance explained by self-reported craving. These results are in line with neuroimaging research showing that brain responses are a better predictor of subsequent intake than self-reported craving. Therefore, our findings might provide for a missing link by associating brain activation, previously shown to predict weight change, with short-term intake. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Neuroprotection by Caffeine in Hyperoxia-Induced Neonatal Brain Injury.

    PubMed

    Endesfelder, Stefanie; Weichelt, Ulrike; Strauß, Evelyn; Schlör, Anja; Sifringer, Marco; Scheuer, Till; Bührer, Christoph; Schmitz, Thomas

    2017-01-18

    Sequelae of prematurity triggered by oxidative stress and free radical-mediated tissue damage have coined the term "oxygen radical disease of prematurity". Caffeine, a potent free radical scavenger and adenosine receptor antagonist, reduces rates of brain damage in preterm infants. In the present study, we investigated the effects of caffeine on oxidative stress markers, anti-oxidative response, inflammation, redox-sensitive transcription factors, apoptosis, and extracellular matrix following the induction of hyperoxia in neonatal rats. The brain of a rat pups at postnatal Day 6 (P6) corresponds to that of a human fetal brain at 28-32 weeks gestation and the neonatal rat is an ideal model in which to investigate effects of oxidative stress and neuroprotection of caffeine on the developing brain. Six-day-old Wistar rats were pre-treated with caffeine and exposed to 80% oxygen for 24 and 48 h. Caffeine reduced oxidative stress marker (heme oxygenase-1, lipid peroxidation, hydrogen peroxide, and glutamate-cysteine ligase catalytic subunit (GCLC)), promoted anti-oxidative response (superoxide dismutase, peroxiredoxin 1, and sulfiredoxin 1), down-regulated pro-inflammatory cytokines, modulated redox-sensitive transcription factor expression (Nrf2/Keap1, and NFκB), reduced pro-apoptotic effectors (poly (ADP-ribose) polymerase-1 (PARP-1), apoptosis inducing factor (AIF), and caspase-3), and diminished extracellular matrix degeneration (matrix metalloproteinases (MMP) 2, and inhibitor of metalloproteinase (TIMP) 1/2). Our study affirms that caffeine is a pleiotropic neuroprotective drug in the developing brain due to its anti-oxidant, anti-inflammatory, and anti-apoptotic properties.

  13. Light-sensitive brain pathways and aging.

    PubMed

    Daneault, V; Dumont, M; Massé, É; Vandewalle, G; Carrier, J

    2016-03-15

    Notwithstanding its effects on the classical visual system allowing image formation, light acts upon several non-image-forming (NIF) functions including body temperature, hormonal secretions, sleep-wake cycle, alertness, and cognitive performance. Studies have shown that NIF functions are maximally sensitive to blue wavelengths (460-480 nm), in comparison to longer light wavelengths. Higher blue light sensitivity has been reported for melatonin suppression, pupillary constriction, vigilance, and performance improvement but also for modulation of cognitive brain functions. Studies investigating acute stimulating effects of light on brain activity during the execution of cognitive tasks have suggested that brain activations progress from subcortical regions involved in alertness, such as the thalamus, the hypothalamus, and the brainstem, before reaching cortical regions associated with the ongoing task. In the course of aging, lower blue light sensitivity of some NIF functions has been reported. Here, we first describe neural pathways underlying effects of light on NIF functions and we discuss eye and cerebral mechanisms associated with aging which may affect NIF light sensitivity. Thereafter, we report results of investigations on pupillary constriction and cognitive brain sensitivity to light in the course of aging. Whereas the impact of light on cognitive brain responses appears to decrease substantially, pupillary constriction seems to remain more intact over the lifespan. Altogether, these results demonstrate that aging research should take into account the diversity of the pathways underlying the effects of light on specific NIF functions which may explain their differences in light sensitivity.

  14. Ammonia causes decreased brain monoamines in fathead minnows (Pimephales promelas)

    USGS Publications Warehouse

    Ronan, Patrick J.; Gaikowski, Mark P.; Hamilton, Steven J.; Buhl, Kevin J.; Summers, Cliff H.

    2007-01-01

    Hyperammonemia, arising from variety of disorders, leads to severe neurological dysfunction. The mechanisms of ammonia toxicity in brain are not completely understood. This study investigated the effects of ammonia on monoaminergic systems in brains of fathead minnows (Pimephales promelas). Fish serve as a good model system to investigate hyperammonemic effects on brain function since no liver manipulations are necessary to increase endogenous ammonia concentrations. Using high performance liquid chromatography with electrochemical detection, monoamines and some associated metabolites were measured from whole brain homogenate. Adult males were exposed for 48 h to six different concentrations of ammonia (0.01–2.36 mg/l unionized) which bracketed the 96-h LC50 for this species. Ammonia concentration-dependent decreases were found for the catecholamines (norepinephrine and dopamine) and the indoleamine serotonin (5-HT). After an initial increase in the 5-HT precursor 5-hydroxytryptophan it too decreased with increasing ammonia concentrations. There were also significant increases in the 5-HIAA/5-HT and DOPAC/DA ratios, often used as measures of turnover. There were no changes in epinephrine (Epi) or monoamine catabolites (DOPAC, 5-HIAA) at any ammonia concentrations tested. Results suggest that ammonia causes decreased synthesis while also causing increased release and degradation. Increased release may underlie behavioral reactions to ammonia exposure in fish. This study adds weight to a growing body of evidence demonstrating that ammonia leads to dysfunctional monoaminergic systems in brain which may underlie neurological symptoms associated with human disorders such as hepatic encephalopathy.

  15. Pig Brain Mitochondria as a Biological Model for Study of Mitochondrial Respiration.

    PubMed

    Fišar, Z; Hroudová, J

    2016-01-01

    Oxidative phosphorylation is a key process of intracellular energy transfer by which mitochondria produce ATP. Isolated mitochondria serve as a biological model for understanding the mitochondrial respiration control, effects of various biologically active substances, and pathophysiology of mitochondrial diseases. The aim of our study was to evaluate pig brain mitochondria as a proper biological model for investigation of activity of the mitochondrial electron transport chain. Oxygen consumption rates of isolated pig brain mitochondria were measured using high-resolution respirometry. Mitochondrial respiration of crude mitochondrial fraction, mitochondria purified in sucrose gradient, and mitochondria purified in Percoll gradient were assayed as a function of storage time. Oxygen flux and various mitochondrial respiratory control ratios were not changed within two days of mitochondria storage on ice. Leak respiration was found higher and Complex I-linked respiration lower in purified mitochondria compared to the crude mitochondrial fraction. Damage to both outer and inner mitochondrial membrane caused by the isolation procedure was the greatest after purification in a sucrose gradient. We confirmed that pig brain mitochondria can serve as a biological model for investigation of mitochondrial respiration. The advantage of this biological model is the stability of respiratory parameters for more than 48 h and the possibility to isolate large amounts of mitochondria from specific brain areas without the need to kill laboratory animals. We suggest the use of high-resolution respirometry of pig brain mitochondria for research of the neuroprotective effects and/or mitochondrial toxicity of new medical drugs.

  16. Acetate transport and utilization in the rat brain.

    PubMed

    Deelchand, Dinesh K; Shestov, Alexander A; Koski, Dee M; Uğurbil, Kâmil; Henry, Pierre-Gilles

    2009-05-01

    Acetate, a glial-specific substrate, is an attractive alternative to glucose for the study of neuronal-glial interactions. The present study investigates the kinetics of acetate uptake and utilization in the rat brain in vivo during infusion of [2-13C]acetate using NMR spectroscopy. When plasma acetate concentration was increased, the rate of brain acetate utilization (CMR(ace)) increased progressively and reached close to saturation for plasma acetate concentration > 2-3 mM, whereas brain acetate concentration continued to increase. The Michaelis-Menten constant for brain acetate utilization (K(M)(util) = 0.01 +/- 0.14 mM) was much smaller than for acetate transport through the blood-brain barrier (BBB) (K(M)(t) = 4.18 +/- 0.83 mM). The maximum transport capacity of acetate through the BBB (V(max)(t) = 0.96 +/- 0.18 micromol/g/min) was nearly twofold higher than the maximum rate of brain acetate utilization (V(max)(util) = 0.50 +/- 0.08 micromol/g/min). We conclude that, under our experimental conditions, brain acetate utilization is saturated when plasma acetate concentrations increase above 2-3 mM. At such high plasma acetate concentration, the rate-limiting step for glial acetate metabolism is not the BBB, but occurs after entry of acetate into the brain.

  17. Brain region distribution and patterns of bioaccumulative perfluoroalkyl carboxylates and sulfonates in east greenland polar bears (Ursus maritimus).

    PubMed

    Greaves, Alana K; Letcher, Robert J; Sonne, Christian; Dietz, Rune

    2013-03-01

    The present study investigated the comparative accumulation of perfluoroalkyl acids (PFAAs) in eight brain regions of polar bears (Ursus maritimus, n = 19) collected in 2006 from Scoresby Sound, East Greenland. The PFAAs studied were perfluoroalkyl carboxylates (PFCAs, C(6) -C(15) chain lengths) and sulfonates (C(4) , C(6) , C(8) , and C(10) chain lengths) as well as selected precursors including perfluorooctane sulfonamide. On a wet-weight basis, blood-brain barrier transport of PFAAs occurred for all brain regions, although inner regions of the brain closer to incoming blood flow (pons/medulla, thalamus, and hypothalamus) contained consistently higher PFAA concentrations compared to outer brain regions (cerebellum, striatum, and frontal, occipital, and temporal cortices). For pons/medulla, thalamus, and hypothalamus, the most concentrated PFAAs were perfluorooctane sulfonate (PFOS), ranging from 47 to 58 ng/g wet weight, and perfluorotridecanoic acid, ranging from 43 to 49 ng/g wet weight. However, PFOS and the longer-chain PFCAs (C(10) -C(15) ) were significantly (p < 0.002) positively correlated with lipid content for all brain regions. Lipid-normalized PFOS and PFCA (C(10) -C(15) ) concentrations were not significantly (p > 0.05) different among brain regions. The burden of the sum of PFCAs, perfluoroalkyl sulfonates, and perfluorooctane sulfonamide in the brain (average mass, 392 g) was estimated to be 46 µg. The present study demonstrates that both PFCAs and perfluoroalkyl sulfonates cross the blood-brain barrier in polar bears and that wet-weight concentrations are brain region-specific. Copyright © 2012 SETAC.

  18. Studies of the brain cannabinoid system using positron emission tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gatley, S.J.; Volkow, N.D.

    Studies using radiolabeled psychoactive drugs in conjunction with positron emission tomography (PET) have permitted the imaging of binding sites in the human brain. Similar studies of marijuana have been hampered by the unsuitability of radiolabeled THC for PET studies, and the current unavailability of other in vivo imaging agents for cannabinoid receptors. Recent developments in medicinal chemistry suggest that a PET radiotracer for cannabinoid receptors will soon become available. This chapter briefly reviews these developments, together with the results of PET studies of the effects of marijuana and other abused drugs on brain metabolism. It also reviews PET studies ofmore » cocaine binding sites, to demonstrate the kind of investigations that will be possible when a cannabinoid receptor PET radioligand becomes available.« less

  19. White Matter Correlates of Mild Traumatic Brain Injuries in Women Subjected to Intimate-Partner Violence: A Preliminary Study.

    PubMed

    Valera, Eve; Cao, Aihua; Pasternak, Ofer; Shenton, Martha E; Kubicki, Marek; Makris, Nikos; Adra, Noor

    2018-06-06

    A large proportion (range of 44-75%) of women who experience intimate-partner violence (IPV) have been shown to sustain repetitive mild traumatic brain injuries (mTBIs) from their abusers. Further, despite requests for research on TBI-related health outcomes, there are currently only a handful of studies addressing this issue, and only one prior imaging study that has investigated the neural correlates of IPV-related TBIs. In response, we examined specific regions of white matter microstructure in 20 women with histories of IPV. Subjects were imaged on a 3-Tesla Siemens Magnetom TrioTim scanner using diffusion magnetic resonance imaging (MRI). We investigated the association between a score reflecting number and recency of IPV-related mTBIs and fractional anisotropy (FA) in the posterior and superior corona radiata as well as the posterior thalamic radiation, brain regions shown previously to be involved in mTBI. We also investigated the association between several cognitive measures, namely learning, memory, and cognitive flexibility, and FA in the white matter regions of interest (ROIs). We report a negative correlation between the brain injury score and FA in regions of the posterior and superior corona radiata. We failed to find an association between our cognitive measures and FA in these regions, but the interpretation of these results remains inconclusive due to possible power issues. Overall, these data build upon the very small but growing literature demonstrating potential consequences of mTBIs for women experiencing IPV, and further underscore the urgent need for larger and more comprehensive studies in this area.

  20. Implications of formulation design on lipid-based nanostructured carrier system for drug delivery to brain.

    PubMed

    Salunkhe, Sachin S; Bhatia, Neela M; Bhatia, Manish S

    2016-05-01

    The aim of present investigation was to formulate and develop lipid-based nanostructured carriers (NLCs) containing Idebenone (IDE) for delivery to brain. Attempts have been made to evaluate IDE NLCs for its pharmacokinetic and pharmacodynamic profile through the objective of enhancement in bioavailability and effectivity of drug. Nanoprecipitation technique was used for development of drug loaded NLCs. The components solid lipid Precirol ATO 5, oil Miglyol 840, surfactants Tween 80 and Labrasol have been screened out for formulation development by consideration of preformulation parameters including solubility, Required Hydrophilic lipophilic balance (HLB) of lipids and stability study. Developed IDE NLCs were subjected for particle size, zeta potential, entrapment efficiency (%EE), crystallographic investigation, transmission electron microscopy, in vitro drug release, pharmacokinetics, in vivo and stability study. Formulation under investigation has particle size 174.1 ± 2.6 nm, zeta potential -18.65 ± 1.13 mV and% EE 90.68 ± 2.90. Crystallographic studies exemplified for partial amorphization of IDE by molecularly dispersion within lipid crust. IDE NLCs showed drug release 93.56 ± 0.39% at end of 24 h by following Higuchi model which necessitates for appropriate drug delivery with enhancement in bioavailability of drug by 4.6-fold in plasma and 2.8-fold in brain over plain drug loaded aqueous dispersions. In vivo studies revealed that effect of drug was enhanced by prepared lipid nanocarriers. IDE lipid-based nanostructured carriers could have potential for efficient drug delivery to brain with enhancement in bioavailability of drug over the conventional formulations.

  1. Large scale serial two-photon microscopy to investigate local vascular changes in whole rodent brain models of Alzheimer's disease

    NASA Astrophysics Data System (ADS)

    Delafontaine-Martel, P.; Lefebvre, J.; Damseh, R.; Castonguay, A.; Tardif, P.; Lesage, F.

    2018-02-01

    In this study, an automated serial two-photon microscope was used to image a fluorescent gelatin filled rodent's brain in 3D. A method to compute vascular density using automatic segmentation was combined with coregistration techniques to build group-level vasculature metrics. By studying the medial prefrontal cortex and the hippocampal formation of 3 age groups (2, 4.5 and 8 months old), we compared vascular density for both WT and an Alzheimer model transgenic brain (APP/PS1). We observe a loss of vascular density caused by the ageing process and we propose further analysis to confirm our results.

  2. A functional magnetic resonance imaging investigation of episodic memory after traumatic brain injury.

    PubMed

    Russell, Kathryn C; Arenth, Patricia M; Scanlon, Joelle M; Kessler, Lauren J; Ricker, Joseph H

    2011-06-01

    Traumatic brain injury often negatively impacts episodic memory; however, studies of the neural substrates of this impairment have been limited. In this study, both encoding and recognition of visually presented stimuli were examined with functional magnetic resonance imaging. Twelve adults with chronic complicated mild, moderate, and severe injuries were compared with a matched group of 12 controls. Behavioral task performance did not differentiate the groups. During neuroimaging, however, the group of individuals with traumatic brain injury exhibited increased activation, as well as increased bilaterality and dispersion as compared to controls. Findings are discussed in terms of increased resource recruitment.

  3. [Effect of a new derivative of glutamic and apovincaminic acids on brain metabolism in post-ischemic period].

    PubMed

    Makarova, L M; Prikhod'ko, M A; Pogorelyĭ, V E; Skachilova, S Ia; Mirzoian, R S

    2014-01-01

    Neuroprotective properties of the new derivative of glutamic and apovincaminic acids, ethyl -(3-alpha,16-alpha)-eburnamenin-14-carbopxylate of 2-aminopentadionic acid (LHT 1-02) were studied on a model of acute brain ischemia in cats. LHT 1-02 has proved to be more effective than the reference drugs vinpocetin and glycine in preventing the reperfusive damage, which was manifested by decreased postischemic hyperglycemia, activated utilization of oxygen in the brain, and suppressed postischemic metabolic lactate acidosis. Thus, the results of this comparative study show expediency of further investigations of LHT 1 - 02 as a potential neuroprotective drug.

  4. Medical exposure to ionising radiation and the risk of brain tumours: Interphone study group, Germany.

    PubMed

    Blettner, Maria; Schlehofer, Brigitte; Samkange-Zeeb, Florence; Berg, Gabriele; Schlaefer, Klaus; Schüz, Joachim

    2007-09-01

    The role of exposure to low doses of ionising radiation in the aetiology of brain tumours has yet to be clarified. The objective of this study was to investigate the association between medically or occupationally related exposure to ionising radiation and brain tumours. We used self-reported medical and occupational data collected during the German part of a multinational case-control study on mobile phone use and the risk of brain tumours (Interphone study) for the analyses. For any exposure to medical ionising radiation we found odds ratios (ORs) of 0.63 (95% confidence interval (CI)=0.48-0.83), 1.08 (95% CI=0.80-1.45) and 0.97 (95% CI=0.54-1.75) for glioma, meningioma and acoustic neuroma, respectively. Elevated ORs were found for meningioma (OR 2.32, 95% CI: 0.90-5.96) and acoustic neuroma (OR 6.45, 95% CI: 0.62-67.16) for radiotherapy to the head and neck regions. We did not find any significant increased risk of brain tumours for exposure to medical ionising radiation.

  5. Cognitive-motor dual-task interference: A systematic review of neural correlates.

    PubMed

    Leone, Carmela; Feys, Peter; Moumdjian, Lousin; D'Amico, Emanuele; Zappia, Mario; Patti, Francesco

    2017-04-01

    Cognitive-motor interference refers to dual-tasking (DT) interference (DTi) occurring when the simultaneous performance of a cognitive and a motor task leads to a percentage change in one or both tasks. Several theories exist to explain DTi in humans: the capacity-sharing, the bottleneck and the cross-talk theories. Numerous studies investigating whether a specific brain locus is associated with cognitive-motor DTi have been conducted, but not systematically reviewed. We aimed to review the evidences on brain activity associated with the cognitive-motor DT, in order to better understand the neurological basis of the CMi. Results were reported according to the technique used to assess brain activity. Twenty-three articles met the inclusion criteria. Out of them, nine studies used functional magnetic resonance imaging to show an additive, under-additive, over- additive, or a mixed activation pattern of the brain. Seven studies used near-infrared spectroscopy, and seven neurophysiological instruments. Yet a specific DT locus in the brain cannot be concluded from the overall current literature. Future studies are warranted to overcome the shortcomings identified. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. A voxel based comparative analysis using magnetization transfer imaging and T1-weighted magnetic resonance imaging in progressive supranuclear palsy

    PubMed Central

    Sandhya, Mangalore; Saini, Jitender; Pasha, Shaik Afsar; Yadav, Ravi; Pal, Pramod Kumar

    2014-01-01

    Aims: In progressive supranuclear palsy (PSP) tissue damage occurs in specific cortical and subcortical regions. Voxel based analysis using T1-weighted images depict quantitative gray matter (GM) atrophy changes. Magnetization transfer (MT) imaging depicts qualitative changes in the brain parenchyma. The purpose of our study was to investigate whether MT imaging could indicate abnormalities in PSP. Settings and Design: A total of 10 patients with PSP (9 men and 1 woman) and 8 controls (5 men and 3 women) were studied with T1-weighted magnetic resonance imaging (MRI) and 3DMT imaging. Voxel based analysis of T1-weighted MRI was performed to investigate brain atrophy while MT was used to study qualitative abnormalities in the brain tissue. We used SPM8 to investigate group differences (with two sample t-test) using the GM and white matter (WM) segmented data. Results: T1-weighted imaging and MT are equally sensitive to detect changes in GM and WM in PSP. Magnetization transfer ratio images and magnetization-prepared rapid acquisition of gradient echo revealed extensive bilateral volume and qualitative changes in the orbitofrontal, prefrontal cortex and limbic lobe and sub cortical GM. The prefrontal structures involved were the rectal gyrus, medial, inferior frontal gyrus (IFG) and middle frontal gyrus (MFG). The anterior cingulate, cingulate gyrus and lingual gyrus of limbic lobe and subcortical structures such as caudate, thalamus, insula and claustrum were also involved. Cerebellar involvement mainly of anterior lobe was also noted. Conclusions: The findings suggest that voxel based MT imaging permits a whole brain unbiased investigation of central nervous system structural integrity in PSP. PMID:25024571

  7. Comparative study of neurologic effects of nano-TiO2 versus SiO2 after direct intracerebral exposure in mice

    NASA Astrophysics Data System (ADS)

    Balvay, A.; Thieriet, N.; Lakhdar, L.; Bencsik, A.

    2013-04-01

    Titanium and silicon dioxide nanoparticles (TiO2 and SiO2 NPs) are now in daily use in many commercial products of which food, sunscreens, toothpastes or cosmetics. However, their effects on human body, especially on the central nervous system, are still unclear. The aim of this study was to determine whether direct exposition of the brain to TiO2 and SiO2 NPs results in alternations in nervous system function. C57Bl6 mice were exposed to 5 and 10 μg doses of TiO2 and SiO2 NPs through intracerebroventricular administration using a stereotaxic approach. Then the neurologic effects were investigated using motor performance parameters, measured on a rotarod at 20 rpm or at an accelerating rod (from 4 to 40 rpm). Before and after injection, motor activity is registered individually for each mouse exposed, once a week, for 8 weeks. Besides, a group of 3 mice is culled at 1, 2, 3, 4 and 8 weeks after exposure in order to study the time dependant effect on the histopathology of the brain (gliosis, inflammatory process...). Both rotarod tests (accelerating and at 20 rpm) showed that TiO2 and SiO2 NPs exposure could significantly impair the motor performances, even several weeks after initial acute exposure. The first examination of the brain histopathology revealed microglial activation. As it appeared to grow throughout the brain in a time dependant manner this suggests the induction of a long lasting neuroinflammation. These primary findings indicated that exposure to TiO2 and SiO2 NPs could possibly impair the locomotor ability and this deficit may be possibly attributed at least to an inflammatory process maintained till 8 weeks after exposure in the mouse brain. To fully investigate the neurotoxicological consequences of TiO2 and SiO2 NPs exposure, brain contents in these NPs will be also investigated as well as other alterations like neurotransmitter levels. These preliminary data already underline the necessity of more in vivo studies to better characterize TiO2 and SiO2 NPs exposure effects especially on human brain for long-term and low-dose treatment.

  8. The association between regular cannabis exposure and alterations of human brain morphology: an updated review of the literature.

    PubMed

    Lorenzetti, Valentina; Solowij, Nadia; Fornito, Alex; Lubman, Dan Ian; Yucel, Murat

    2014-01-01

    Cannabis is the most widely used illicit drug worldwide, though it is unclear whether its regular use is associated with persistent alterations in brain morphology. This review examines evidence from human structural neuroimaging investigations of regular cannabis users and focuses on achieving three main objectives. These include examining whether the literature to date provides evidence that alteration of brain morphology in regular cannabis users: i) is apparent, compared to non-cannabis using controls; ii) is associated with patterns of cannabis use; and with iii) measures of psychopathology and neurocognitive performance. The published findings indicate that regular cannabis use is associated with alterations in medial temporal, frontal and cerebellar brain regions. Greater brain morphological alterations were evident among samples that used at higher doses for longer periods. However, the evidence for an association between brain morphology and cannabis use parameters was mixed. Further, there is poor evidence for an association between measures of brain morphology and of psychopathology symptoms/neurocognitive performance. Overall, numerous methodological issues characterize the literature to date. These include investigation of small sample sizes, heterogeneity across studies in sample characteristics (e.g., sex, comorbidity) and in employed imaging techniques, as well as the examination of only a limited number of brain regions. These factors make it difficult to draw firm conclusions from the existing findings. Nevertheless, this review supports the notion that regular cannabis use is associated with alterations of brain morphology, and highlights the need to consider particular methodological issues when planning future cannabis research.

  9. Using Brain–Computer Interfaces and Brain-State Dependent Stimulation as Tools in Cognitive Neuroscience

    PubMed Central

    Jensen, Ole; Bahramisharif, Ali; Oostenveld, Robert; Klanke, Stefan; Hadjipapas, Avgis; Okazaki, Yuka O.; van Gerven, Marcel A. J.

    2011-01-01

    Large efforts are currently being made to develop and improve online analysis of brain activity which can be used, e.g., for brain–computer interfacing (BCI). A BCI allows a subject to control a device by willfully changing his/her own brain activity. BCI therefore holds the promise as a tool for aiding the disabled and for augmenting human performance. While technical developments obviously are important, we will here argue that new insight gained from cognitive neuroscience can be used to identify signatures of neural activation which reliably can be modulated by the subject at will. This review will focus mainly on oscillatory activity in the alpha band which is strongly modulated by changes in covert attention. Besides developing BCIs for their traditional purpose, they might also be used as a research tool for cognitive neuroscience. There is currently a strong interest in how brain-state fluctuations impact cognition. These state fluctuations are partly reflected by ongoing oscillatory activity. The functional role of the brain state can be investigated by introducing stimuli in real-time to subjects depending on the actual state of the brain. This principle of brain-state dependent stimulation may also be used as a practical tool for augmenting human behavior. In conclusion, new approaches based on online analysis of ongoing brain activity are currently in rapid development. These approaches are amongst others informed by new insight gained from electroencephalography/magnetoencephalography studies in cognitive neuroscience and hold the promise of providing new ways for investigating the brain at work. PMID:21687463

  10. Large-Scale Mass Spectrometry Imaging Investigation of Consequences of Cortical Spreading Depression in a Transgenic Mouse Model of Migraine

    NASA Astrophysics Data System (ADS)

    Carreira, Ricardo J.; Shyti, Reinald; Balluff, Benjamin; Abdelmoula, Walid M.; van Heiningen, Sandra H.; van Zeijl, Rene J.; Dijkstra, Jouke; Ferrari, Michel D.; Tolner, Else A.; McDonnell, Liam A.; van den Maagdenberg, Arn M. J. M.

    2015-06-01

    Cortical spreading depression (CSD) is the electrophysiological correlate of migraine aura. Transgenic mice carrying the R192Q missense mutation in the Cacna1a gene, which in patients causes familial hemiplegic migraine type 1 (FHM1), exhibit increased propensity to CSD. Herein, mass spectrometry imaging (MSI) was applied for the first time to an animal cohort of transgenic and wild type mice to study the biomolecular changes following CSD in the brain. Ninety-six coronal brain sections from 32 mice were analyzed by MALDI-MSI. All MSI datasets were registered to the Allen Brain Atlas reference atlas of the mouse brain so that the molecular signatures of distinct brain regions could be compared. A number of metabolites and peptides showed substantial changes in the brain associated with CSD. Among those, different mass spectral features showed significant ( t-test, P < 0.05) changes in the cortex, 146 and 377 Da, and in the thalamus, 1820 and 1834 Da, of the CSD-affected hemisphere of FHM1 R192Q mice. Our findings reveal CSD- and genotype-specific molecular changes in the brain of FHM1 transgenic mice that may further our understanding about the role of CSD in migraine pathophysiology. The results also demonstrate the utility of aligning MSI datasets to a common reference atlas for large-scale MSI investigations.

  11. Distribution of Non-Persistent Endocrine Disruptors in Two Different Regions of the Human Brain

    PubMed Central

    van der Meer, Thomas P.; Artacho-Cordón, Francisco; Swaab, Dick F.; Struik, Dicky; Makris, Konstantinos C.; Wolffenbuttel, Bruce H. R.; Frederiksen, Hanne; van Vliet-Ostaptchouk, Jana V.

    2017-01-01

    Non-persistent endocrine disrupting chemicals (npEDCs) can affect multiple organs and systems in the body. Whether npEDCs can accumulate in the human brain is largely unknown. The major aim of this pilot study was to examine the presence of environmental phenols and parabens in two distinct brain regions: the hypothalamus and white-matter tissue. In addition, a potential association between these npEDCs concentrations and obesity was investigated. Post-mortem brain material was obtained from 24 individuals, made up of 12 obese and 12 normal-weight subjects (defined as body mass index (BMI) > 30 and BMI < 25 kg/m2, respectively). Nine phenols and seven parabens were measured by isotope dilution TurboFlow-LC-MS/MS. In the hypothalamus, seven suspect npEDCs (bisphenol A, triclosan, triclocarban and methyl-, ethyl-, n-propyl-, and benzyl paraben) were detected, while five npEDCs (bisphenol A, benzophenone-3, triclocarban, methyl-, and n-propyl paraben) were found in the white-matter brain tissue. We observed higher levels of methylparaben (MeP) in the hypothalamic tissue of obese subjects as compared to controls (p = 0.008). Our findings indicate that some suspected npEDCs are able to cross the blood–brain barrier. Whether the presence of npEDCs can adversely affect brain function and to which extent the detected concentrations are physiologically relevant needs to be further investigated. PMID:28902174

  12. MR connectomics: a conceptual framework for studying the developing brain

    PubMed Central

    Hagmann, Patric; Grant, Patricia E.; Fair, Damien A.

    2012-01-01

    The combination of advanced neuroimaging techniques and major developments in complex network science, have given birth to a new framework for studying the brain: “connectomics.” This framework provides the ability to describe and study the brain as a dynamic network and to explore how the coordination and integration of information processing may occur. In recent years this framework has been used to investigate the developing brain and has shed light on many dynamic changes occurring from infancy through adulthood. The aim of this article is to review this work and to discuss what we have learned from it. We will also use this body of work to highlight key technical aspects that are necessary in general for successful connectome analysis using today's advanced neuroimaging techniques. We look to identify current limitations of such approaches, what can be improved, and how these points generalize to other topics in connectome research. PMID:22707934

  13. BDNF Expression in Larval and Adult Zebrafish Brain: Distribution and Cell Identification

    PubMed Central

    Cacialli, Pietro; Gueguen, Marie-Madeleine; Coumailleau, Pascal; D’Angelo, Livia; Kah, Olivier; Lucini, Carla; Pellegrini, Elisabeth

    2016-01-01

    Brain-derived neurotrophic factor (BDNF), a member of the neurotrophin family, has emerged as an active mediator in many essential functions in the central nervous system of mammals. BDNF plays significant roles in neurogenesis, neuronal maturation and/or synaptic plasticity and is involved in cognitive functions such as learning and memory. Despite the vast literature present in mammals, studies devoted to BDNF in the brain of other animal models are scarse. Zebrafish is a teleost fish widely known for developmental genetic studies and is emerging as model for translational neuroscience research. In addition, its brain shows many sites of adult neurogenesis allowing higher regenerative properties after traumatic injuries. To add further knowledge on neurotrophic factors in vertebrate brain models, we decided to determine the distribution of bdnf mRNAs in the larval and adult zebrafish brain and to characterize the phenotype of cells expressing bdnf mRNAs by means of double staining studies. Our results showed that bdnf mRNAs were widely expressed in the brain of 7 days old larvae and throughout the whole brain of mature female and male zebrafish. In adults, bdnf mRNAs were mainly observed in the dorsal telencephalon, preoptic area, dorsal thalamus, posterior tuberculum, hypothalamus, synencephalon, optic tectum and medulla oblongata. By combining immunohistochemistry with in situ hybridization, we showed that bdnf mRNAs were never expressed by radial glial cells or proliferating cells. By contrast, bdnf transcripts were expressed in cells with neuronal phenotype in all brain regions investigated. Our results provide the first demonstration that the brain of zebrafish expresses bdnf mRNAs in neurons and open new fields of research on the role of the BDNF factor in brain mechanisms in normal and brain repairs situations. PMID:27336917

  14. Brain bank of the Brazilian aging brain study group - a milestone reached and more than 1,600 collected brains.

    PubMed

    Grinberg, Lea Tenenholz; Ferretti, Renata Eloah de Lucena; Farfel, José Marcelo; Leite, Renata; Pasqualucci, Carlos Augusto; Rosemberg, Sérgio; Nitrini, Ricardo; Saldiva, Paulo Hilário Nascimento; Filho, Wilson Jacob

    2007-01-01

    Brain banking remains a necessity for the study of aging brain processes and related neurodegenerative diseases. In the present paper, we report the methods applied at and the first results of the Brain Bank of the Brazilian Aging Brain Study Group (BBBABSG) which has two main aims: (1) To collect a large number of brains of elderly comprising non-demented subjects and a large spectrum of pathologies related to aging brain processes, (2) To provide quality material to a multidisciplinar research network unraveling multiple aspects of aging brain processes and related neurodegenerative diseases. The subjects are selected from the Sao Paulo Autopsy Service. Brain parts are frozen and fixated. CSF, carotids, kidney, heart and blood are also collected and DNA is extracted. The neuropathological examinations are carried out based on accepted criteria, using immunohistochemistry. Functional status are assessed through a collateral source based on a clinical protocol. Protocols are approved by the local ethics committee and a written informed consent form is obtained. During the first 21 months, 1,602 samples were collected and were classified by Clinical Dementia Rating as CDR0: 65.7%; CDR0.5:12.6%, CDR1:8.2%, CDR2:5.4%, and CDR3:8.1%. On average, the cost for the processing each case stood at 400 US dollars. To date, 14 laboratories have been benefited by the BBBABSG. The high percentage of non- demented subjects and the ethnic diversity of this series may be significantly contributive toward aging brain processes and related neurodegenerative diseases understanding since BBBABSG outcomes may provide investigators the answers to some additional questions.

  15. An audit of clinical practice, referral patterns, and appropriateness of clinical indications for brain MRI examinations: A single-centre study in Ghana.

    PubMed

    Piersson, A D; Nunoo, G; Gorleku, P N

    2018-05-01

    The aim of this study was to investigate current brain MRI practice, pattern of brain MRI requests, and their appropriateness using the American College of Radiology (ACR) Appropriateness Criteria. We used direct observation and questionnaires to obtain data concerning routine brain MRI practice. We then retrospectively analyzed (i) demographic characteristics, (ii) clinical history, and (iii) appropriateness of brain MRI requests against published criteria. All patients were administered the screening questionnaire; however, no reviews were undertaken directly with patients, and no signature of the radiographer was recorded. Apart from routine brain protocol, there were dedicated protocols for epilepsy and stroke. Brain MRI images from 161 patients (85 Males; 76 Females) were analyzed. The age group with most brain MRI requests were from 26 to 45 year olds. The commonest four clinical indications for imaging were brain tumour, headache, seizure, and stroke. Using the ACR Appropriateness Criteria, almost 43% of the brain MRI scans analyzed were found to be "usually appropriate", 38% were "maybe appropriate" and 19% were categorized as "usually not appropriate". There was knowledge gap with regards to MRI safety in local practice, thus there is the utmost need for MRI safety training. Data on the commonest indications for performing brain MRI in this study should be used to inform local neuroradiological practice. Dedicated stroke and epilepsy MRI protocols require additional sequences i.e. MRA and 3D T1 volume acquisition, respectively. The ACR Appropriateness Criteria is recommended for use by the referring practitioners to improve appropriateness of brain MRI requests. Copyright © 2017 The College of Radiographers. Published by Elsevier Ltd. All rights reserved.

  16. Mobile phone use and the risk for malignant brain tumors: a case-control study on deceased cases and controls.

    PubMed

    Hardell, Lennart; Carlberg, Michael; Hansson Mild, Kjell

    2010-08-01

    We investigated the use of mobile or cordless phones and the risk for malignant brain tumors in a group of deceased cases. Most previous studies have either left out deceased cases of brain tumors or matched them to living controls and therefore a study matching deceased cases to deceased controls is warranted. Recall error is one issue since it has been claimed that increased risks reported in some studies could be due to cases blaming mobile phones as a cause of the disease. This should be of less importance for deceased cases and if cancer controls are used. In this study brain tumor cases aged 20-80 years diagnosed during 1997-2003 that had died before inclusion in our previous studies on the same topic were included. Two control groups were used: one with controls that had died from another type of cancer than brain tumor and one with controls that had died from other diseases. Exposure was assessed by a questionnaire sent to the next-of-kin for both cases and controls. Replies were obtained for 346 (75%) cases, 343 (74%) cancer controls and 276 (60%) controls with other diseases. Use of mobile phones gave an increased risk, highest in the >10 years' latency group yielding odds ratio (OR) = 2.4, and 95% confidence interval (CI) = 1.4-4.1. The risk increased with cumulative number of lifetime hours for use, and was highest in the >2,000 h group (OR = 3.4, 95% CI = 1.6-7.1). No clear association was found for use of cordless phones, although OR = 1.7, 95% CI = 0.8-3.4 was found in the group with >2,000 h of cumulative use. This investigation confirmed our previous results of an association between mobile phone use and malignant brain tumors. Copyright 2010 S. Karger AG, Basel.

  17. Principal States of Dynamic Functional Connectivity Reveal the Link Between Resting-State and Task-State Brain: An fMRI Study.

    PubMed

    Cheng, Lin; Zhu, Yang; Sun, Junfeng; Deng, Lifu; He, Naying; Yang, Yang; Ling, Huawei; Ayaz, Hasan; Fu, Yi; Tong, Shanbao

    2018-01-25

    Task-related reorganization of functional connectivity (FC) has been widely investigated. Under classic static FC analysis, brain networks under task and rest have been demonstrated a general similarity. However, brain activity and cognitive process are believed to be dynamic and adaptive. Since static FC inherently ignores the distinct temporal patterns between rest and task, dynamic FC may be more a suitable technique to characterize the brain's dynamic and adaptive activities. In this study, we adopted [Formula: see text]-means clustering to investigate task-related spatiotemporal reorganization of dynamic brain networks and hypothesized that dynamic FC would be able to reveal the link between resting-state and task-state brain organization, including broadly similar spatial patterns but distinct temporal patterns. In order to test this hypothesis, this study examined the dynamic FC in default-mode network (DMN) and motor-related network (MN) using Blood-Oxygenation-Level-Dependent (BOLD)-fMRI data from 26 healthy subjects during rest (REST) and a hand closing-and-opening (HCO) task. Two principal FC states in REST and one principal FC state in HCO were identified. The first principal FC state in REST was found similar to that in HCO, which appeared to represent intrinsic network architecture and validated the broadly similar spatial patterns between REST and HCO. However, the second FC principal state in REST with much shorter "dwell time" implied the transient functional relationship between DMN and MN during REST. In addition, a more frequent shifting between two principal FC states indicated that brain network dynamically maintained a "default mode" in the motor system during REST, whereas the presence of a single principal FC state and reduced FC variability implied a more temporally stable connectivity during HCO, validating the distinct temporal patterns between REST and HCO. Our results further demonstrated that dynamic FC analysis could offer unique insights in understanding how the brain reorganizes itself during rest and task states, and the ways in which the brain adaptively responds to the cognitive requirements of tasks.

  18. Investigation of cis-4-[18F]Fluoro-D-Proline Uptake in Human Brain Tumors After Multimodal Treatment.

    PubMed

    Verger, Antoine; Stoffels, Gabriele; Galldiks, Norbert; Lohmann, Philipp; Willuweit, Antje; Neumaier, Bernd; Geisler, Stefanie; Langen, Karl-Josef

    2018-04-23

    Cis-4-[ 18 F]fluoro-D-proline (D-cis-[ 18 F]FPro) has been shown to pass the intact blood-brain barrier and to accumulate in areas of secondary neurodegeneration and necrosis in the rat brain while uptake in experimental brain tumors is low. This pilot study explores the uptake behavior of D-cis-[ 18 F]FPro in human brain tumors after multimodal treatment. In a prospective study, 27 patients with suspected recurrent brain tumor after treatment with surgery, radiotherapy, and/or chemotherapy (SRC) were investigated by dynamic positron emission tomography (PET) using D-cis-[ 18 F]FPro (22 high-grade gliomas, one unspecified glioma, and 4 metastases). Furthermore, two patients with untreated lesions were included (one glioblastoma, one reactive astrogliosis). Data were compared with the results of PET using O-(2-[ 18 F]fluoroethyl)-L-tyrosine ([ 18 F]FET) which detects viable tumor tissue. Tracer distribution, mean and maximum lesion-to-brain ratios (LBR mean , LBR max ), and time-to-peak (TTP) of the time activity curve (TAC) of tracer uptake were evaluated. Final diagnosis was determined by histology (n = 9), clinical follow-up (n = 10), or by [ 18 F]FET PET (n = 10). D-cis-[ 18 F]FPro showed high uptake in both recurrent brain tumors (n = 11) and lesions classified as treatment-related changes (TRC) only (n = 16) (LBR mean 2.2 ± 0.7 and 2.1 ± 0.6, n.s.; LBR max 3.4 ± 1.2 and 3.2 ± 1.3, n.s.). The untreated glioblastoma and the lesion showing reactive astrogliosis exhibited low D-cis-[ 18 F]FPro uptake. Distribution of [ 18 F]FET and D-cis-[ 18 F]FPro uptake was discordant in 21/29 cases indicating that the uptake mechanisms are different. The high accumulation of D-cis-[ 18 F]FPro in pretreated brain tumors and TRC supports the hypothesis that tracer uptake is related to cell death. Further studies before and after therapy are needed to assess the potential of D-cis-[ 18 F]FPro for treatment monitoring.

  19. Inhibition of type I insulin-like growth factor receptor signaling attenuates the development of breast cancer brain metastasis.

    PubMed

    Saldana, Sandra M; Lee, Heng-Huan; Lowery, Frank J; Khotskaya, Yekaterina B; Xia, Weiya; Zhang, Chenyu; Chang, Shih-Shin; Chou, Chao-Kai; Steeg, Patricia S; Yu, Dihua; Hung, Mien-Chie

    2013-01-01

    Brain metastasis is a common cause of mortality in cancer patients, yet potential therapeutic targets remain largely unknown. The type I insulin-like growth factor receptor (IGF-IR) is known to play a role in the progression of breast cancer and is currently being investigated in the clinical setting for various types of cancer. The present study demonstrates that IGF-IR is constitutively autophosphorylated in brain-seeking breast cancer sublines. Knockdown of IGF-IR results in a decrease of phospho-AKT and phospho-p70s6k, as well as decreased migration and invasion of MDA-MB-231Br brain-seeking cells. In addition, transient ablation of IGFBP3, which is overexpressed in brain-seeking cells, blocks IGF-IR activation. Using an in vivo experimental brain metastasis model, we show that IGF-IR knockdown brain-seeking cells have reduced potential to establish brain metastases. Finally, we demonstrate that the malignancy of brain-seeking cells is attenuated by pharmacological inhibition with picropodophyllin, an IGF-IR-specific tyrosine kinase inhibitor. Together, our data suggest that the IGF-IR is an important mediator of brain metastasis and its ablation delays the onset of brain metastases in our model system.

  20. From nociception to pain perception: imaging the spinal and supraspinal pathways

    PubMed Central

    Brooks, Jonathan; Tracey, Irene

    2005-01-01

    Functional imaging techniques have allowed researchers to look within the brain, and revealed the cortical representation of pain. Initial experiments, performed in the early 1990s, revolutionized pain research, as they demonstrated that pain was not processed in a single cortical area, but in several distributed brain regions. Over the last decade, the roles of these pain centres have been investigated and a clearer picture has emerged of the medial and lateral pain system. In this brief article, we review the imaging literature to date that has allowed these advances to be made, and examine the new frontiers for pain imaging research: imaging the brainstem and other structures involved in the descending control of pain; functional and anatomical connectivity studies of pain processing brain regions; imaging models of neuropathic pain-like states; and going beyond the brain to image spinal function. The ultimate goal of such research is to take these new techniques into the clinic, to investigate and provide new remedies for chronic pain sufferers. PMID:16011543

  1. Fluid and flexible minds: Intelligence reflects synchrony in the brain’s intrinsic network architecture

    PubMed Central

    Ferguson, Michael A.; Anderson, Jeffrey S.; Spreng, R. Nathan

    2017-01-01

    Human intelligence has been conceptualized as a complex system of dissociable cognitive processes, yet studies investigating the neural basis of intelligence have typically emphasized the contributions of discrete brain regions or, more recently, of specific networks of functionally connected regions. Here we take a broader, systems perspective in order to investigate whether intelligence is an emergent property of synchrony within the brain’s intrinsic network architecture. Using a large sample of resting-state fMRI and cognitive data (n = 830), we report that the synchrony of functional interactions within and across distributed brain networks reliably predicts fluid and flexible intellectual functioning. By adopting a whole-brain, systems-level approach, we were able to reliably predict individual differences in human intelligence by characterizing features of the brain’s intrinsic network architecture. These findings hold promise for the eventual development of neural markers to predict changes in intellectual function that are associated with neurodevelopment, normal aging, and brain disease.

  2. Rostro-caudal and dorso-ventral gradients in medial and lateral prefrontal cortex during cognitive control of affective and cognitive interference.

    PubMed

    Rahm, Christoffer; Liberg, Benny; Wiberg-Kristoffersen, Maria; Aspelin, Peter; Msghina, Mussie

    2013-04-01

    Characterizing the anatomical substrates of major brain functions such as cognition and emotion is of utmost importance to the ongoing efforts of understanding the nature of psychiatric ailments and their potential treatment. The aim of our study was to investigate how the brain handles affective and cognitive interferences on cognitive processes. Functional magnetic resonance imaging investigation was performed on healthy individuals, comparing the brain oxygenation level dependent activation patterns during affective and cognitive counting Stroop tasks. The affective Stroop task activated rostral parts of medial prefrontal cortex (PFC) and rostral and ventral parts of lateral PFC, while cognitive Stroop activated caudal parts of medial PFC and caudal and dorsal parts of lateral PFC. Our findings suggest that the brain may handle affective and cognitive interference on cognitive processes differentially, with affective interference preferentially activating rostral and ventral PFC networks and cognitive interference activating caudal and dorsal PFC networks. © 2013 The Authors. Scandinavian Journal of Psychology © 2013 The Scandinavian Psychological Associations.

  3. Poloxamer-188 and citicoline provide neuronal membrane integrity and protect membrane stability in cortical spreading depression.

    PubMed

    Yıldırım, Timur; Eylen, Alpaslan; Lule, Sevda; Erdener, Sefik Evren; Vural, Atay; Karatas, Hulya; Ozveren, Mehmet Faik; Dalkara, Turgay; Gursoy-Ozdemir, Yasemin

    2015-01-01

    Under pathological conditions such as brain trauma, subarachnoid hemorrhage and stroke, cortical spreading depression (CSD) or peri-infarct depolarizations contribute to brain damage in animal models of neurological disorders as well as in human neurological diseases. CSD causes transient megachannel opening on the neuronal membrane, which may compromise neuronal survival under pathological conditions. Poloxamer-188 (P-188) and citicoline are neuroprotectants with membrane sealing properties. The aim of this study is to investigate the effect of P-188 and citicoline on the neuronal megachannel opening induced by CSD in the mouse brain. We have monitored megachannel opening with propidium iodide, a membrane impermeable fluorescent dye and, demonstrate that P-188 and citicoline strikingly decreased CSD-induced neuronal PI influx in cortex and hippocampal dentate gyrus. Therefore, these agents may be providing neuroprotection by blocking megachannel opening, which may be related to their membrane sealing action and warrant further investigation for treatment of traumatic brain injury and ischemic stroke.

  4. Drinking hydrogen water ameliorated cognitive impairment in senescence-accelerated mice.

    PubMed

    Gu, Yeunhwa; Huang, Chien-Sheng; Inoue, Tota; Yamashita, Takenori; Ishida, Torao; Kang, Ki-Mun; Nakao, Atsunori

    2010-05-01

    Hydrogen has been reported to have neuron protective effects due to its antioxidant properties, but the effects of hydrogen on cognitive impairment due to senescence-related brain alterations and the underlying mechanisms have not been characterized. In this study, we investigated the efficacies of drinking hydrogen water for prevention of spatial memory decline and age-related brain alterations using senescence-accelerated prone mouse 8 (SAMP8), which exhibits early aging syndromes including declining learning ability and memory. However, treatment with hydrogen water for 30 days prevented age-related declines in cognitive ability seen in SAMP8 as assessed by a water maze test and was associated with increased brain serotonin levels and elevated serum antioxidant activity. In addition, drinking hydrogen water for 18 weeks inhibited neurodegeneration in hippocampus, while marked loss of neurons was noted in control, aged brains of mice receiving regular water. On the basis of our results, hydrogen water merits further investigation for possible therapeutic/preventative use for age-related cognitive disorders.

  5. Dorsal and ventral stream contributions to form-from-motion perception in a patient with form-from motion deficit: a case report.

    PubMed

    Mercier, Manuel R; Schwartz, Sophie; Spinelli, Laurent; Michel, Christoph M; Blanke, Olaf

    2017-03-01

    The main model of visual processing in primates proposes an anatomo-functional distinction between the dorsal stream, specialized in spatio-temporal information, and the ventral stream, processing essentially form information. However, these two pathways also communicate to share much visual information. These dorso-ventral interactions have been studied using form-from-motion (FfM) stimuli, revealing that FfM perception first activates dorsal regions (e.g., MT+/V5), followed by successive activations of ventral regions (e.g., LOC). However, relatively little is known about the implications of focal brain damage of visual areas on these dorso-ventral interactions. In the present case report, we investigated the dynamics of dorsal and ventral activations related to FfM perception (using topographical ERP analysis and electrical source imaging) in a patient suffering from a deficit in FfM perception due to right extrastriate brain damage in the ventral stream. Despite the patient's FfM impairment, both successful (observed for the highest level of FfM signal) and absent/failed FfM perception evoked the same temporal sequence of three processing states observed previously in healthy subjects. During the first period, brain source localization revealed cortical activations along the dorsal stream, currently associated with preserved elementary motion processing. During the latter two periods, the patterns of activity differed from normal subjects: activations were observed in the ventral stream (as reported for normal subjects), but also in the dorsal pathway, with the strongest and most sustained activity localized in the parieto-occipital regions. On the other hand, absent/failed FfM perception was characterized by weaker brain activity, restricted to the more lateral regions. This study shows that in the present case report, successful FfM perception, while following the same temporal sequence of processing steps as in normal subjects, evoked different patterns of brain activity. By revealing a brain circuit involving the most rostral part of the dorsal pathway, this study provides further support for neuro-imaging studies and brain lesion investigations that have suggested the existence of different brain circuits associated with different profiles of interaction between the dorsal and the ventral streams.

  6. An Investigation of Individual Variability in Brain Activity During Episodic Encoding and Retrieval

    DTIC Science & Technology

    2008-12-01

    variability in mnemonic strategy use is, at least in part, related to the extensive variability observed in brain activity patterns. While a number of...1 AN INVESTIGATION OF INDIVIDUAL VARIABILITY IN BRAIN ACTIVITY DURING EPISODIC ENCODING AND RETRIEVAL C.L. Donovan*, and M.B. Miller Department of...strategy measures for predicting differences in brain activity patterns during a learning and memory task and to compare their predictive value to other

  7. Numerical Investigation on Head and Brain Injuries Caused by Windshield Impact on Riders Using Electric Self-Balancing Scooters

    PubMed Central

    Zheng, Yanting; Shen, Ming; Yang, Xianfeng

    2018-01-01

    To investigate head-brain injuries caused by windshield impact on riders using electric self-balancing scooters (ESS). Numerical vehicle ESS crash scenarios are constructed by combining the finite element (FE) vehicle model and multibody scooter/rider models. Impact kinematic postures of the head-windshield contact under various impact conditions are captured. Then, the processes during head-windshield contact are reconstructed using validated FE head/laminated windshield models to assess the severity of brain injury caused by the head-windshield contact. Governing factors, such as vehicle speed, ESS speed, and the initial orientation of ESS rider, have nontrivial influences over the severity of a rider's brain injuries. Results also show positive correlations between vehicle speed and head-windshield impact speeds (linear and angular). Meanwhile, the time of head-windshield contact happens earlier when the vehicle speed is faster. According to the intensive study, windshield-head contact speed (linear and angular), impact location on the windshield, and head collision area are found to be direct factors on ESS riders' brain injuries during an impact. The von Mises stress and shear stress rise when relative contact speed of head-windshield increases. Brain injury indices vary widely when the head impacting the windshield from center to the edge or impacting with different areas. PMID:29770161

  8. Focused Ultrasound-Induced Blood–Brain Barrier Opening to Enhance Temozolomide Delivery for Glioblastoma Treatment: A Preclinical Study

    PubMed Central

    Wei, Kuo-Chen; Chu, Po-Chun; Wang, Hay-Yan Jack; Huang, Chiung-Yin; Chen, Pin-Yuan; Tsai, Hong-Chieh; Lu, Yu-Jen; Lee, Pei-Yun; Tseng, I-Chou; Feng, Li-Ying; Hsu, Peng-Wei; Yen, Tzu-Chen; Liu, Hao-Li

    2013-01-01

    The purpose of this study is to assess the preclinical therapeutic efficacy of magnetic resonance imaging (MRI)-monitored focused ultrasound (FUS)-induced blood-brain barrier (BBB) disruption to enhance Temozolomide (TMZ) delivery for improving Glioblastoma Multiforme (GBM) treatment. MRI-monitored FUS with microbubbles was used to transcranially disrupt the BBB in brains of Fisher rats implanted with 9L glioma cells. FUS-BBB opening was spectrophotometrically determined by leakage of dyes into the brain, and TMZ was quantitated in cerebrospinal fluid (CSF) and plasma by LC-MS\\MS. The effects of treatment on tumor progression (by MRI), animal survival and brain tissue histology were investigated. Results demonstrated that FUS-BBB opening increased the local accumulation of dyes in brain parenchyma by 3.8-/2.1-fold in normal/tumor tissues. Compared to TMZ alone, combined FUS treatment increased the TMZ CSF/plasma ratio from 22.7% to 38.6%, reduced the 7-day tumor progression ratio from 24.03 to 5.06, and extended the median survival from 20 to 23 days. In conclusion, this study provided preclinical evidence that FUS BBB-opening increased the local concentration of TMZ to improve the control of tumor progression and animal survival, suggesting its clinical potential for improving current brain tumor treatment. PMID:23527068

  9. Mother-infant interactions and regional brain volumes in infancy: an MRI study.

    PubMed

    Sethna, Vaheshta; Pote, Inês; Wang, Siying; Gudbrandsen, Maria; Blasi, Anna; McCusker, Caroline; Daly, Eileen; Perry, Emily; Adams, Kerrie P H; Kuklisova-Murgasova, Maria; Busuulwa, Paula; Lloyd-Fox, Sarah; Murray, Lynne; Johnson, Mark H; Williams, Steven C R; Murphy, Declan G M; Craig, Michael C; McAlonan, Grainne M

    2017-07-01

    It is generally agreed that the human brain is responsive to environmental influences, and that the male brain may be particularly sensitive to early adversity. However, this is largely based on retrospective studies of older children and adolescents exposed to extreme environments in childhood. Less is understood about how normative variations in parent-child interactions are associated with the development of the infant brain in typical settings. To address this, we used magnetic resonance imaging to investigate the relationship between observational measures of mother-infant interactions and regional brain volumes in a community sample of 3- to 6-month-old infants (N = 39). In addition, we examined whether this relationship differed in male and female infants. We found that lower maternal sensitivity was correlated with smaller subcortical grey matter volumes in the whole sample, and that this was similar in both sexes. However, male infants who showed greater levels of positive communication and engagement during early interactions had smaller cerebellar volumes. These preliminary findings suggest that variations in mother-infant interaction dimensions are associated with differences in infant brain development. Although the study is cross-sectional and causation cannot be inferred, the findings reveal a dynamic interaction between brain and environment that may be important when considering interventions to optimize infant outcomes.

  10. Further In-vitro Characterization of an Implantable Biosensor for Ethanol Monitoring in the Brain

    PubMed Central

    Secchi, Ottavio; Zinellu, Manuel; Spissu, Ylenia; Pirisinu, Marco; Bazzu, Gianfranco; Migheli, Rossana; Desole, Maria Speranza; O′Neill, Robert D.; Serra, Pier Andrea; Rocchitta, Gaia

    2013-01-01

    Ethyl alcohol may be considered one of the most widespread central nervous system (CNS) depressants in Western countries. Because of its toxicological and neurobiological implications, the detection of ethanol in brain extracellular fluid (ECF) is of great importance. In a previous study, we described the development and characterization of an implantable biosensor successfully used for the real-time detection of ethanol in the brain of freely-moving rats. The implanted biosensor, integrated in a low-cost telemetry system, was demonstrated to be a reliable device for the short-time monitoring of exogenous ethanol in brain ECF. In this paper we describe a further in-vitro characterization of the above-mentioned biosensor in terms of oxygen, pH and temperature dependence in order to complete its validation. With the aim of enhancing ethanol biosensor performance, different enzyme loadings were investigated in terms of apparent ethanol Michaelis-Menten kinetic parameters, viz. IMAX, KM and linear region slope, as well as ascorbic acid interference shielding. The responses of biosensors were studied over a period of 28 days. The overall findings of the present study confirm the original biosensor configuration to be the best of those investigated for in-vivo applications up to one week after implantation. PMID:23881145

  11. Melanoma Brain Metastasis: Mechanisms, Models, and Medicine

    PubMed Central

    Kircher, David A.; Silvis, Mark R.; Cho, Joseph H.; Holmen, Sheri L.

    2016-01-01

    The development of brain metastases in patients with advanced stage melanoma is common, but the molecular mechanisms responsible for their development are poorly understood. Melanoma brain metastases cause significant morbidity and mortality and confer a poor prognosis; traditional therapies including whole brain radiation, stereotactic radiotherapy, or chemotherapy yield only modest increases in overall survival (OS) for these patients. While recently approved therapies have significantly improved OS in melanoma patients, only a small number of studies have investigated their efficacy in patients with brain metastases. Preliminary data suggest that some responses have been observed in intracranial lesions, which has sparked new clinical trials designed to evaluate the efficacy in melanoma patients with brain metastases. Simultaneously, recent advances in our understanding of the mechanisms of melanoma cell dissemination to the brain have revealed novel and potentially therapeutic targets. In this review, we provide an overview of newly discovered mechanisms of melanoma spread to the brain, discuss preclinical models that are being used to further our understanding of this deadly disease and provide an update of the current clinical trials for melanoma patients with brain metastases. PMID:27598148

  12. Ganoderma Lucidum Protects Rat Brain Tissue Against Trauma-Induced Oxidative Stress.

    PubMed

    Özevren, Hüseyin; İrtegün, Sevgi; Deveci, Engin; Aşır, Fırat; Pektanç, Gülsüm; Deveci, Şenay

    2017-10-01

    Traumatic brain injury causes tissue damage, breakdown of cerebral blood flow and metabolic regulation. This study aims to investigate the protective influence of antioxidant Ganoderma lucidum ( G. lucidum ) polysaccharides (GLPs) on brain injury in brain-traumatized rats. Sprague-Dawley conducted a head-traumatized method on rats by dropping off 300 g weight from 1 m height. Groups were categorized as control, G. lucidum , trauma, trauma+ G. lucidum (20 mL/kg per day via gastric gavage). Brain tissues were dissected from anesthetized rats 7 days after injury. For biochemical analysis, malondialdehyde, glutathione and myeloperoxidase values were measured. In histopathological examination, neuronal damage in brain cortex and changes in blood brain barrier were observed. In the analysis of immunohistochemical and western blot, p38 mitogen-activated protein kinase, vascular endothelial growth factor and cluster of differentiation 68 expression levels were shown. These analyzes demonstrated the beneficial effects of GLPs on brain injury. We propose that GLPs treatment after brain injury could be an alternative treatment to decraseing inflammation and edema, preventing neuronal and glial cells degeneration if given in appropriate dosage and in particular time intervals.

  13. Brain metastasis in lung cancer: Building a molecular and systems-level understanding to improve outcomes.

    PubMed

    Ebben, Johnathan D; You, Ming

    2016-09-01

    Lung cancer is a clinically difficult disease with rising disease burden around the world. Unfortunately, most lung cancers present at a clinically advanced stage. Of these cancers, many also present with brain metastasis which complicates the clinical picture. This review summarizes current knowledge on the molecular basis of lung cancer brain metastases. We start from the clinical perspective, aiming to provide a clinical context for a significant problem that requires much deeper scientific investigation. We review new research governing the metastatic process, including tumor cell signaling, establishment of a receptive tumor niches in the brain and evaluate potential new therapeutic options that take advantage of these new scientific advances. Lung cancer remains the largest single cause of cancer mortality in the United States (Siegel et al., 2015). This continues to be the clinical picture despite significant advances in therapy, including the advent of targeted molecular therapies and newly adopted immunotherapies for certain subtypes of lung cancer. In the vast majority of cases, lung cancer presents as advanced disease; in many instances, this advanced disease state is intimately associated with micro and macrometastatic disease (Goldberg et al., 2015). For both non-small cell lung cancer and small cell lung cancer patients, the predominant metastatic site is the brain, with up to 68% of patients with mediastinal lymph node metastasis eventually demonstrating brain metastasis (Wang et al., 2009).The frequency (incidence) of brain metastasis is highest in lung cancers, relative to other common epithelial malignancies (Schouten et al., 2002). Other studies have attempted to predict the risk of brain metastasis in the setting of previously non-metastatic disease. One of the largest studies to do this, analyzing historical data from 1973 to 2011 using the SEER database revealed a 9% risk of patients with previously non-metastatic NSCLC developing brain metastasis over the course of their disease, while 18% of small cell lung cancer patients without previous metastasis went on to develop brain metastasis as their disease progressed (Goncalves et al., 2016).The reasons underlying this predilection for the central nervous system, as well as the recent increase in the frequency of brain metastasis identified in patients remain important questions for both clinicians and basic scientists. More than ever, the question of how brain metastasis develop and how they can be treated and managed requires the involvement of interdisciplinary teams-and more importantly-scientists who are capable of thinking like clinicians and clinicians who are capable of thinking like scientists. This review aims to present a translational perspective on brain metastasis. We will investigate the scope of the problem of brain metastasis and the current management of the metastatic disease process in lung cancer. From this clinical starting point, we will investigate the literature surrounding the molecular underpinnings of lung tumor metastasis and seek to understand the process from a biological perspective to generate new hypotheses. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Compensatory brain activation in children with attention deficit/hyperactivity disorder during a simplified Go/No-go task.

    PubMed

    Ma, Jun; Lei, Du; Jin, Xingming; Du, Xiaoxia; Jiang, Fan; Li, Fei; Zhang, Yiwen; Shen, Xiaoming

    2012-05-01

    Given that a number of recent studies have shown attenuated brain activation in prefrontal regions in children with ADHD, it has been recognized as a disorder in executive function. However, fewer studies have focused exclusively on the compensatory brain activation in ADHD. The present study objective was to investigate the compensatory brain activation patterns during response inhibition (RI) processing in ADHD children. In this study, 15 ADHD children and 15 sex-, age-, and IQ-matched control children were scanned with a 3-T MRI equipment while performing a simplified letter Go/No-go task. The results showed more brain activation in the ADHD group compared with the control group, whereas the accuracy and reaction time of behavioral performance were the same. Children with ADHD did not activate the normal RI brain circuits, which are thought to be predominantly located in the right middle/inferior frontal gyrus (BA46/44), right inferior parietal regions (BA40), and pre-SMA(BA6), but instead, activated brain regions, such as the left inferior frontal cortex, the right inferior temporal cortex, the right precentral gyrus, the left postcentral gyrus, the inferior occipital cortex, the middle occipital cortex, the right calcarine, the right hippocampus, the right midbrain, and the cerebellum. Our conclusion is that children with ADHD tend to compensatorily use more posterior and diffusive brain regions to sustain normal RI function. © Springer-Verlag 2011

  15. Adolescent Cannabis Use: What is the Evidence for Functional Brain Alteration?

    PubMed

    Lorenzetti, Valentina; Alonso-Lana, Silvia; Youssef, George J; Verdejo-Garcia, Antonio; Suo, Chao; Cousijn, Janna; Takagi, Michael; Yücel, Murat; Solowij, Nadia

    2016-01-01

    Cannabis use typically commences during adolescence, a period during which the brain undergoes profound remodeling in areas that are high in cannabinoid receptors and that mediate cognitive control and emotion regulation. It is therefore important to determine the impact of adolescent cannabis use on brain function. We investigate the impact of adolescent cannabis use on brain function by reviewing the functional magnetic resonance imaging studies in adolescent samples. We systematically reviewed the literature and identified 13 functional neuroimaging studies in adolescent cannabis users (aged 13 to 18 years) performing working memory, inhibition and reward processing tasks. The majority of the studies found altered brain function, but intact behavioural task performance in adolescent cannabis users versus controls. The most consistently reported differences were in the frontal-parietal network, which mediates cognitive control. Heavier use was associated with abnormal brain function in most samples. A minority of studies controlled for the influence of confounders that can also undermine brain function, such as tobacco and alcohol use, psychopathology symptoms, family history of psychiatric disorders and substance use. Emerging evidence shows abnormal frontal-parietal network activity in adolescent cannabis users, particularly in heavier users. Brain functional alterations may reflect a compensatory neural mechanism that enables normal behavioural performance. It remains unclear if cannabis exposure drives these alterations, as substance use and mental health confounders have not been systematically examined. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  16. An investigation into the factors effective in the consent of families with brain-dead patients candidates for organ donation in Isfahan, Iran in 2012-13

    PubMed Central

    Khajooei, Maryam Khalifehsoltani; Zamani, Fereshteh; Mehr, Asieh Maghami

    2016-01-01

    Background: Studies have shown that, with regard to social, cultural, and institutional contexts, several factors affect family decision-making on organ donation. This study aimed to investigate the effective factors in organ donation by family members with brain-dead patients. Materials and Methods: This was a descriptive-comparative study in which a researcher-made questionnaire was used to collect data. The reliability of the questionnaire was obtained as 0.81 using Cronbach's alpha. The study sample consisted of 85 members of families with brain-dead patients in Isfahan, Iran in 2012–13. The collected data were analyzed using the Statistical Package for the Social Sciences version 20.0, and the level of significance was considered as <0.05. Results: The obtained results indicated that factors such as age, marital status, level of education, and cause of brain death did not have any effect on their families consent, whereas factors such as gender, duration of hospitalization, having an organ donation card, personal view of the brain-dead patient, and the number of patient's children had a significant relationship with the consent on organ donation. In addition, the care and treatment team were effective in family decisions regarding organ donation. Conclusions: In general, the necessary culture and increasing the population awareness and their knowledge can be a positive step in this regard and may bring about an easy and rapid acceptance of organ donation by the involved families. PMID:28194201

  17. Structural imaging of the brain reveals decreased total brain and total gray matter volumes in obese but not in lean women with polycystic ovary syndrome compared to body mass index-matched counterparts.

    PubMed

    Ozgen Saydam, Basak; Has, Arzu Ceylan; Bozdag, Gurkan; Oguz, Kader Karli; Yildiz, Bulent Okan

    2017-07-01

    To detect differences in global brain volumes and identify relations between brain volume and appetite-related hormones in women with polycystic ovary syndrome (PCOS) compared to body mass index-matched controls. Forty subjects participated in this study. Cranial magnetic resonance imaging and measurements of fasting ghrelin, leptin and glucagon-like peptide 1 (GLP-1), as well as GLP-1 levels during mixed-meal tolerance test (MTT), were performed. Total brain volume and total gray matter volume (GMV) were decreased in obese PCOS compared to obese controls (p < 0.05 for both) whereas lean PCOS and controls did not show a significant difference. Secondary analyses of regional brain volumes showed decreases in GMV of the caudate nucleus, ventral diencephalon and hippocampus in obese PCOS compared to obese controls (p < 0.05 for all), whereas lean patients with PCOS had lower GMV in the amygdala than lean controls (p < 0.05). No significant relations were detected between structural differences and measured hormone levels at baseline or during MTT. This study, investigating structural brain alterations in PCOS, suggests volumetric reductions in global brain areas in obese women with PCOS. Functional studies with larger sample size are needed to determine physiopathological roles of these changes and potential effects of long-term medical management on brain structure of PCOS.

  18. Long-Term Ability to Interpret Facial Expression after Traumatic Brain Injury and Its Relation to Social Integration

    ERIC Educational Resources Information Center

    Knox, Lucy; Douglas, Jacinta

    2009-01-01

    There is considerable evidence that individuals with traumatic brain injury (TBI) experience problems interpreting the emotional state of others. However, the functional implications of these changes have not been fully investigated. A study of 13 individuals with severe TBI and an equal number of matched controls found that TBI participants had…

  19. Hand Function in Relation to Brain Lesions and Corticomotor-Projection Pattern in Children with Unilateral Cerebral Palsy

    ERIC Educational Resources Information Center

    Holmstrom, Linda; Vollmer, Brigitte; Tedroff, Kristina; Islam, Mominul; Persson, Jonas Ke; Kits, Annika; Forssberg, Hans; Eliasson, Ann-Christin

    2010-01-01

    Aim: To investigate relationships between hand function, brain lesions, and corticomotor projections in children with unilateral cerebral palsy (CP). Method: The study included 17 children (nine males, eight females; mean age 11.4 [SD 2.4] range 7-16y), with unilateral CP at Gross Motor Function Classification System level I and Manual Ability…

  20. Longitudinal Associations between the Quality of Mother-Infant Interactions and Brain Development across Infancy

    ERIC Educational Resources Information Center

    Bernier, Annie; Calkins, Susan D.; Bell, Martha Ann

    2016-01-01

    The aim of this study was to investigate if normative variations in parenting relate to brain development among typically developing children. A sample of 352 mother-infant dyads came to the laboratory when infants were 5, 10, and 24 months of age (final N = 215). At each visit, child resting electroencephalography (EEG) was recorded.…

  1. The Effect of Herrmann Whole Brain Teaching Method on Students' Understanding of Simple Electric Circuits

    ERIC Educational Resources Information Center

    Bawaneh, Ali Khalid Ali; Nurulazam Md Zain, Ahmad; Salmiza, Saleh

    2011-01-01

    The purpose of this study was to investigate the effect of Herrmann Whole Brain Teaching Method over conventional teaching method on eight graders in their understanding of simple electric circuits in Jordan. Participants (N = 273 students; M = 139, F = 134) were randomly selected from Bani Kenanah region-North of Jordan and randomly assigned to…

  2. Asymmetrical Brain Activity Induced by Voluntary Spatial Attention Depends on the Visual Hemifield: A Functional Near-Infrared Spectroscopy Study

    ERIC Educational Resources Information Center

    Harasawa, Masamitsu; Shioiri, Satoshi

    2011-01-01

    The effect of the visual hemifield to which spatial attention was oriented on the activities of the posterior parietal and occipital visual cortices was examined using functional near-infrared spectroscopy in order to investigate the neural substrates of voluntary visuospatial attention. Our brain imaging data support the theory put forth in a…

  3. Encoding of physics concepts: concreteness and presentation modality reflected by human brain dynamics.

    PubMed

    Lai, Kevin; She, Hsiao-Ching; Chen, Sheng-Chang; Chou, Wen-Chi; Huang, Li-Yu; Jung, Tzyy-Ping; Gramann, Klaus

    2012-01-01

    Previous research into working memory has focused on activations in different brain areas accompanying either different presentation modalities (verbal vs. non-verbal) or concreteness (abstract vs. concrete) of non-science concepts. Less research has been conducted investigating how scientific concepts are learned and further processed in working memory. To bridge this gap, the present study investigated human brain dynamics associated with encoding of physics concepts, taking both presentation modality and concreteness into account. Results of this study revealed greater theta and low-beta synchronization in the anterior cingulate cortex (ACC) during encoding of concrete pictures as compared to the encoding of both high and low imageable words. In visual brain areas, greater theta activity accompanying stimulus onsets was observed for words as compared to pictures while stronger alpha suppression was observed in responses to pictures as compared to words. In general, the EEG oscillation patterns for encoding words of different levels of abstractness were comparable but differed significantly from encoding of pictures. These results provide insights into the effects of modality of presentation on human encoding of scientific concepts and thus might help in developing new ways to better teach scientific concepts in class.

  4. Sex differences in interactions between nucleus accumbens and visual cortex by explicit visual erotic stimuli: an fMRI study.

    PubMed

    Lee, S W; Jeong, B S; Choi, J; Kim, J-W

    2015-01-01

    Men tend to have greater positive responses than women to explicit visual erotic stimuli (EVES). However, it remains unclear, which brain network makes men more sensitive to EVES and which factors contribute to the brain network activity. In this study, we aimed to assess the effect of sex difference on brain connectivity patterns by EVES. We also investigated the association of testosterone with brain connection that showed the effects of sex difference. During functional magnetic resonance imaging scans, 14 males and 14 females were asked to see alternating blocks of pictures that were either erotic or non-erotic. Psychophysiological interaction analysis was performed to investigate the functional connectivity of the nucleus accumbens (NA) as it related to EVES. Men showed significantly greater EVES-specific functional connection between the right NA and the right lateral occipital cortex (LOC). In addition, the right NA and the right LOC network activity was positively correlated with the plasma testosterone level in men. Our results suggest that the reason men are sensitive to EVES is the increased interaction in the visual reward networks, which is modulated by their plasma testosterone level.

  5. Delta Opioid Pharmacology in Relation to Alcohol Behaviors

    PubMed Central

    Alongkronrusmee, Doungkamol; Chiang, Terrance

    2016-01-01

    Delta opioid receptors (DORs) are heavily involved in alcohol-mediated processes in the brain. In this chapter we provide an overview of studies investigating how alcohol directly impacts DOR pharmacology and of early studies indicating DOR modulation of alcohol behavior. We will offer a brief summary of the different animal species used in alcohol studies investigating DORs followed by a broader overview of the types of alcohol behaviors modulated by DORs. We will highlight a small set of studies investigating the relationship between alcohol and DORs in analgesia. We will then provide an anatomical overview linking DOR expression in specific brain regions to different alcohol behaviors. In this section, we will provide two models that try to explain how endogenous opioids acting at DORs may influence alcohol behaviors. Next, we will provide an overview of studies investigating certain new aspects of DOR pharmacology, including the formation of heteromers and biased signaling. Finally, we provide a short overview of the genetics of the DORs in relation to alcohol use disorders (AUDs) and a short statement on the potential of using DOR-based therapeutics for treatment of AUDs. PMID:27316912

  6. Getting comfortable with near death experiences. Out of one's mind or beyond the brain? The challenge of interpreting near-death experiences.

    PubMed

    Radin, Dean

    2014-01-01

    With one exception, near-death experiences (NDEs) may be interpreted as unusual forms of hallucinations associated with the injured or dying brain. The exception involves perceptions described from vantage points outside the body that are later confirmed to be correct and could not have been inferred. Over a century of laboratory studies have investigated whether it is possible in principle for the mind to transcend the physical boundaries of the brain. The cumulative experimental database strongly indicates that it can. It is not clear that this implies the mind is separate from the brain, but it does suggest that a comprehensive explanation for NDEs will require revisions to present scientific assumptions about the brain-mind relationship.

  7. A wireless beta-microprobe based on pixelated silicon for in vivo brain studies in freely moving rats

    NASA Astrophysics Data System (ADS)

    Märk, J.; Benoit, D.; Balasse, L.; Benoit, M.; Clémens, J. C.; Fieux, S.; Fougeron, D.; Graber-Bolis, J.; Janvier, B.; Jevaud, M.; Genoux, A.; Gisquet-Verrier, P.; Menouni, M.; Pain, F.; Pinot, L.; Tourvielle, C.; Zimmer, L.; Morel, C.; Laniece, P.

    2013-07-01

    The investigation of neurophysiological mechanisms underlying the functional specificity of brain regions requires the development of technologies that are well adjusted to in vivo studies in small animals. An exciting challenge remains the combination of brain imaging and behavioural studies, which associates molecular processes of neuronal communications to their related actions. A pixelated intracerebral probe (PIXSIC) presents a novel strategy using a submillimetric probe for beta+ radiotracer detection based on a pixelated silicon diode that can be stereotaxically implanted in the brain region of interest. This fully autonomous detection system permits time-resolved high sensitivity measurements of radiotracers with additional imaging features in freely moving rats. An application-specific integrated circuit (ASIC) allows for parallel signal processing of each pixel and enables the wireless operation. All components of the detector were tested and characterized. The beta+ sensitivity of the system was determined with the probe dipped into radiotracer solutions. Monte Carlo simulations served to validate the experimental values and assess the contribution of gamma noise. Preliminary implantation tests on anaesthetized rats proved PIXSIC's functionality in brain tissue. High spatial resolution allows for the visualization of radiotracer concentration in different brain regions with high temporal resolution.

  8. Brain regions that retain the spatial layout of tactile stimuli during working memory - A 'tactospatial sketchpad'?

    PubMed

    Schmidt, Timo Torsten; Blankenburg, Felix

    2018-05-31

    Working memory (WM) studies have been essential for ascertaining how the brain flexibly handles mentally represented information in the absence of sensory stimulation. Most studies on the memory of sensory stimulus features have focused, however, on the visual domain. Here, we report a human WM study in the tactile modality where participants had to memorize the spatial layout of patterned Braille-like stimuli presented to the index finger. We used a whole-brain searchlight approach in combination with multi-voxel pattern analysis (MVPA) to investigate tactile WM representations without a priori assumptions about which brain regions code tactospatial information. Our analysis revealed that posterior and parietal cortices, as well as premotor regions, retained information across the twelve-second delay phase. Interestingly, parts of this brain network were previously shown to also contain information of visuospatial WM. Also, by specifically testing somatosensory regions for WM representations, we observed content-specific activation patterns in primary somatosensory cortex (SI). Our findings demonstrate that tactile WM depends on a distributed network of brain regions in analogy to the representation of visuospatial information. Copyright © 2018. Published by Elsevier Inc.

  9. Task vs. rest-different network configurations between the coactivation and the resting-state brain networks.

    PubMed

    Di, Xin; Gohel, Suril; Kim, Eun H; Biswal, Bharat B

    2013-01-01

    There is a growing interest in studies of human brain networks using resting-state functional magnetic resonance imaging (fMRI). However, it is unclear whether and how brain networks measured during the resting-state exhibit comparable properties to brain networks during task performance. In the present study, we investigated meta-analytic coactivation patterns among brain regions based upon published neuroimaging studies, and compared the coactivation network configurations with those in the resting-state network. The strength of resting-state functional connectivity between two regions were strongly correlated with the coactivation strength. However, the coactivation network showed greater global efficiency, smaller mean clustering coefficient, and lower modularity compared with the resting-state network, which suggest a more efficient global information transmission and between system integrations during task performing. Hub shifts were also observed within the thalamus and the left inferior temporal cortex. The thalamus and the left inferior temporal cortex exhibited higher and lower degrees, respectively in the coactivation network compared with the resting-state network. These results shed light regarding the reconfiguration of the brain networks between task and resting-state conditions, and highlight the role of the thalamus in change of network configurations in task vs. rest.

  10. Task vs. rest—different network configurations between the coactivation and the resting-state brain networks

    PubMed Central

    Di, Xin; Gohel, Suril; Kim, Eun H.; Biswal, Bharat B.

    2013-01-01

    There is a growing interest in studies of human brain networks using resting-state functional magnetic resonance imaging (fMRI). However, it is unclear whether and how brain networks measured during the resting-state exhibit comparable properties to brain networks during task performance. In the present study, we investigated meta-analytic coactivation patterns among brain regions based upon published neuroimaging studies, and compared the coactivation network configurations with those in the resting-state network. The strength of resting-state functional connectivity between two regions were strongly correlated with the coactivation strength. However, the coactivation network showed greater global efficiency, smaller mean clustering coefficient, and lower modularity compared with the resting-state network, which suggest a more efficient global information transmission and between system integrations during task performing. Hub shifts were also observed within the thalamus and the left inferior temporal cortex. The thalamus and the left inferior temporal cortex exhibited higher and lower degrees, respectively in the coactivation network compared with the resting-state network. These results shed light regarding the reconfiguration of the brain networks between task and resting-state conditions, and highlight the role of the thalamus in change of network configurations in task vs. rest. PMID:24062654

  11. Atlas-guided volumetric diffuse optical tomography enhanced by generalized linear model analysis to image risk decision-making responses in young adults.

    PubMed

    Lin, Zi-Jing; Li, Lin; Cazzell, Mary; Liu, Hanli

    2014-08-01

    Diffuse optical tomography (DOT) is a variant of functional near infrared spectroscopy and has the capability of mapping or reconstructing three dimensional (3D) hemodynamic changes due to brain activity. Common methods used in DOT image analysis to define brain activation have limitations because the selection of activation period is relatively subjective. General linear model (GLM)-based analysis can overcome this limitation. In this study, we combine the atlas-guided 3D DOT image reconstruction with GLM-based analysis (i.e., voxel-wise GLM analysis) to investigate the brain activity that is associated with risk decision-making processes. Risk decision-making is an important cognitive process and thus is an essential topic in the field of neuroscience. The Balloon Analog Risk Task (BART) is a valid experimental model and has been commonly used to assess human risk-taking actions and tendencies while facing risks. We have used the BART paradigm with a blocked design to investigate brain activations in the prefrontal and frontal cortical areas during decision-making from 37 human participants (22 males and 15 females). Voxel-wise GLM analysis was performed after a human brain atlas template and a depth compensation algorithm were combined to form atlas-guided DOT images. In this work, we wish to demonstrate the excellence of using voxel-wise GLM analysis with DOT to image and study cognitive functions in response to risk decision-making. Results have shown significant hemodynamic changes in the dorsal lateral prefrontal cortex (DLPFC) during the active-choice mode and a different activation pattern between genders; these findings correlate well with published literature in functional magnetic resonance imaging (fMRI) and fNIRS studies. Copyright © 2014 The Authors. Human Brain Mapping Published by Wiley Periodicals, Inc.

  12. Voxel-based statistical analysis of cerebral glucose metabolism in patients with permanent vegetative state after acquired brain injury.

    PubMed

    Kim, Yong Wook; Kim, Hyoung Seop; An, Young-Sil; Im, Sang Hee

    2010-10-01

    Permanent vegetative state is defined as the impaired level of consciousness longer than 12 months after traumatic causes and 3 months after non-traumatic causes of brain injury. Although many studies assessed the cerebral metabolism in patients with acute and persistent vegetative state after brain injury, few studies investigated the cerebral metabolism in patients with permanent vegetative state. In this study, we performed the voxel-based analysis of cerebral glucose metabolism and investigated the relationship between regional cerebral glucose metabolism and the severity of impaired consciousness in patients with permanent vegetative state after acquired brain injury. We compared the regional cerebral glucose metabolism as demonstrated by F-18 fluorodeoxyglucose positron emission tomography from 12 patients with permanent vegetative state after acquired brain injury with those from 12 control subjects. Additionally, covariance analysis was performed to identify regions where decreased changes in regional cerebral glucose metabolism significantly correlated with a decrease of level of consciousness measured by JFK-coma recovery scale. Statistical analysis was performed using statistical parametric mapping. Compared with controls, patients with permanent vegetative state demonstrated decreased cerebral glucose metabolism in the left precuneus, both posterior cingulate cortices, the left superior parietal lobule (P(corrected) < 0.001), and increased cerebral glucose metabolism in the both cerebellum and the right supramarginal cortices (P(corrected) < 0.001). In the covariance analysis, a decrease in the level of consciousness was significantly correlated with decreased cerebral glucose metabolism in the both posterior cingulate cortices (P(uncorrected) < 0.005). Our findings suggest that the posteromedial parietal cortex, which are part of neural network for consciousness, may be relevant structure for pathophysiological mechanism in patients with permanent vegetative state after acquired brain injury.

  13. Impact of head morphology on local brain specific absorption rate from exposure to mobile phone radiation.

    PubMed

    Adibzadeh, Fatemeh; Bakker, Jurriaan F; Paulides, Margarethus M; Verhaart, René F; van Rhoon, Gerard C

    2015-01-01

    Among various possible health effects of mobile phone radiation, the risk of inducing cancer has the strongest interest of laymen and health organizations. Recently, the Interphone epidemiological study investigated the association between the estimated Radio Frequency (RF) dose from mobile phones and the risk of developing a brain tumor. Their dosimetric analysis included over 100 phone models but only two homogeneous head phantoms. So, the potential impact of individual morphological features on global and local RF absorption in the brain was not investigated. In this study, we performed detailed dosimetric simulations for 20 head models and quantified the variation of RF dose in different brain regions as a function of head morphology. Head models were exposed to RF fields from generic mobile phones at 835 and 1900 MHz in the "tilted" and "cheek" positions. To evaluate the local RF dose variation, we used and compared two different post-processing methods, that is, averaging specific absorption rate (SAR) over Talairach regions and over sixteen predefined 1 cm(3) cube-shaped field-sensors. The results show that the variation in the averaged SAR among the heads can reach up to 16.4 dB at a 1 cm(3) cube inside the brain (field-sensor method) and alternatively up to 15.8 dB in the medulla region (Talairach method). In conclusion, we show head morphology as an important uncertainty source for dosimetric studies of mobile phones. Therefore, any dosimetric analysis dealing with RF dose at a specific region in the brain (e.g., tumor risk analysis) should be based upon real morphology. © 2014 Wiley Periodicals, Inc.

  14. Inter-hemispheric language functional reorganization in low-grade glioma patients after tumour surgery.

    PubMed

    Kristo, Gert; Raemaekers, Mathijs; Rutten, Geert-Jan; de Gelder, Beatrice; Ramsey, Nick F

    2015-03-01

    Despite many claims of functional reorganization following tumour surgery, empirical studies that investigate changes in functional activation patterns are rare. This study investigates whether functional recovery following surgical treatment in patients with a low-grade glioma in the left hemisphere is linked to inter-hemispheric reorganization. Based on literature, we hypothesized that reorganization would induce changes in the spatial pattern of activation specifically in tumour homologue brain areas in the healthy right hemisphere. An experimental group (EG) of 14 patients with a glioma in the left hemisphere near language related brain areas, and a control group of 6 patients with a glioma in the right, non-language dominant hemisphere were scanned before and after resection. In addition, an age and gender matched second control group of 18 healthy volunteers was scanned twice. A verb generation task was used to map language related areas and a novel technique was used for data analysis. Contrary to our hypothesis, we found that functional recovery following surgery of low-grade gliomas cannot be linked to functional reorganization in language homologue brain areas in the healthy, right hemisphere. Although elevated changes in the activation pattern were found in patients after surgery, these were largest in brain areas in proximity to the surgical resection, and were very similar to the spatial pattern of the brain shift following surgery. This suggests that the apparent perilesional functional reorganization is mostly caused by the brain shift as a consequence of surgery. Perilesional functional reorganization can however not be excluded. The study suggests that language recovery after transient post-surgical language deficits involves recovery of functioning of the presurgical language system. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Positron Spectroscopy Investigation of Normal Brain Section and Brain Section with Glioma Derived from a Rat Glioma Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, SH.; Ballmann, C.; Quarles, C. A.

    2009-03-10

    The application of positron annihilation lifetime spectroscopy (PALS) and Doppler broadening spectroscopy (DBS) to the study of animal or human tissue has only recently been reported [G. Liu, et al. phys. stat. sol. (C) 4, Nos. 10, 3912-3915 (2007)]. We have initiated a study of normal brain section and brain section with glioma derived from a rat glioma model. For the rat glioma model, 200,000 C6 cells were implanted in the basal ganglion of adult Sprague Dawley rats. The rats were sacrificed at 21 days after implantation. The brains were harvested, sliced into 2 mm thick coronal sections, and fixedmore » in 4% formalin. PALS lifetime runs were made with the samples soaked in formalin, and there was not significant evaporation of formalin during the runs. The lifetime spectra were analyzed into two lifetime components. While early results suggested a small decrease in ortho-Positronium (o-Ps) pickoff lifetime between the normal brain section and brain section with glioma, further runs with additional samples have showed no statistically significant difference between the normal and tumor tissue for this type of tumor. The o-Ps lifetime in formalin alone was lower than either the normal tissue or glioma sample. So annihilation in the formalin absorbed in the samples would lower the o-Ps lifetime and this may have masked any difference due to the glioma itself. DBS was also used to investigate the difference in positronium formation between tumor and normal tissue. Tissue samples are heterogeneous and this needs to be carefully considered if PALS and DBS are to become useful tools in distinguishing tissue samples.« less

  16. Berberine Protects against Neuronal Damage via Suppression of Glia-Mediated Inflammation in Traumatic Brain Injury

    PubMed Central

    Lee, Chao Yu; Wang, Liang-Fei; Wu, Chun-Hu; Ke, Chia-Hua; Chen, Szu-Fu

    2014-01-01

    Traumatic brain injury (TBI) triggers a series of neuroinflammatory processes that contribute to evolution of neuronal injury. The present study investigated the neuroprotective effects and anti-inflammatory actions of berberine, an isoquinoline alkaloid, in both in vitro and in vivo TBI models. Mice subjected to controlled cortical impact injury were injected with berberine (10 mg·kg−1) or vehicle 10 min after injury. In addition to behavioral studies and histology analysis, blood-brain barrier (BBB) permeability and brain water content were determined. Expression of PI3K/Akt and Erk signaling and inflammatory mediators were also analyzed. The protective effect of berberine was also investigated in cultured neurons either subjected to stretch injury or exposed to conditioned media with activated microglia. Berberine significantly attenuated functional deficits and brain damage associated with TBI up to day 28 post-injury. Berberine also reduced neuronal death, apoptosis, BBB permeability, and brain edema at day 1 post-injury. These changes coincided with a marked reduction in leukocyte infiltration, microglial activation, matrix metalloproteinase-9 activity, and expression of inflammatory mediators. Berberine had no effect on Akt or Erk 1/2 phosphorylation. In mixed glial cultures, berberine reduced TLR4/MyD88/NF-κB signaling. Berberine also attenuated neuronal death induced by microglial conditioned media; however, it did not directly protect cultured neurons subjected to stretch injury. Moreover, administration of berberine at 3 h post-injury also reduced TBI-induced neuronal damage, apoptosis and inflammation in vivo. Berberine reduces TBI-induced brain damage by limiting the production of inflammatory mediators by glial cells, rather than by a direct neuroprotective effect. PMID:25546475

  17. Deep brain stimulation for the treatment of Alzheimer disease and dementias.

    PubMed

    Laxton, Adrian W; Lozano, Andres M

    2013-01-01

    To review the use of deep brain stimulation (DBS) for treatment of dementia. A PubMed literature search was conducted to identify all studies that have investigated the use of DBS for treatment of dementia. Three studies examined the use of DBS for dementia. One study involved fornix DBS for Alzheimer disease (AD), and two studies involved DBS of the nucleus basalis of Meynert, one to treat AD and one to treat Parkinson disease dementia. Evidence for the use of DBS to treat dementia is preliminary and limited. Fornix and nucleus basalis of Meynert DBS can influence activity in the pathologic neural circuits that underlie AD and Parkinson disease dementia. Further investigation into the potential clinical effects of DBS for dementia is warranted. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Investigating Metacognition, Cognition, and Behavioral Deficits of College Students with Acute Traumatic Brain Injuries

    ERIC Educational Resources Information Center

    Martinez, Sarah; Davalos, Deana

    2016-01-01

    Objective: Executive dysfunction in college students who have had an acute traumatic brain injury (TBI) was investigated. The cognitive, behavioral, and metacognitive effects on college students who endorsed experiencing a brain injury were specifically explored. Participants: Participants were 121 college students who endorsed a mild TBI, and 121…

  19. Realistic modeling of neurons and networks: towards brain simulation.

    PubMed

    D'Angelo, Egidio; Solinas, Sergio; Garrido, Jesus; Casellato, Claudia; Pedrocchi, Alessandra; Mapelli, Jonathan; Gandolfi, Daniela; Prestori, Francesca

    2013-01-01

    Realistic modeling is a new advanced methodology for investigating brain functions. Realistic modeling is based on a detailed biophysical description of neurons and synapses, which can be integrated into microcircuits. The latter can, in turn, be further integrated to form large-scale brain networks and eventually to reconstruct complex brain systems. Here we provide a review of the realistic simulation strategy and use the cerebellar network as an example. This network has been carefully investigated at molecular and cellular level and has been the object of intense theoretical investigation. The cerebellum is thought to lie at the core of the forward controller operations of the brain and to implement timing and sensory prediction functions. The cerebellum is well described and provides a challenging field in which one of the most advanced realistic microcircuit models has been generated. We illustrate how these models can be elaborated and embedded into robotic control systems to gain insight into how the cellular properties of cerebellar neurons emerge in integrated behaviors. Realistic network modeling opens up new perspectives for the investigation of brain pathologies and for the neurorobotic field.

  20. Realistic modeling of neurons and networks: towards brain simulation

    PubMed Central

    D’Angelo, Egidio; Solinas, Sergio; Garrido, Jesus; Casellato, Claudia; Pedrocchi, Alessandra; Mapelli, Jonathan; Gandolfi, Daniela; Prestori, Francesca

    Summary Realistic modeling is a new advanced methodology for investigating brain functions. Realistic modeling is based on a detailed biophysical description of neurons and synapses, which can be integrated into microcircuits. The latter can, in turn, be further integrated to form large-scale brain networks and eventually to reconstruct complex brain systems. Here we provide a review of the realistic simulation strategy and use the cerebellar network as an example. This network has been carefully investigated at molecular and cellular level and has been the object of intense theoretical investigation. The cerebellum is thought to lie at the core of the forward controller operations of the brain and to implement timing and sensory prediction functions. The cerebellum is well described and provides a challenging field in which one of the most advanced realistic microcircuit models has been generated. We illustrate how these models can be elaborated and embedded into robotic control systems to gain insight into how the cellular properties of cerebellar neurons emerge in integrated behaviors. Realistic network modeling opens up new perspectives for the investigation of brain pathologies and for the neurorobotic field. PMID:24139652

  1. Brain talk: power and negotiation in children’s discourse about self, brain and behaviour

    PubMed Central

    Singh, Ilina

    2013-01-01

    This article examines children’s discourse about self, brain and behaviour, focusing on the dynamics of power, knowledge and responsibility articulated by children. The empirical data discussed in this article are drawn from the study of Voices on Identity, Childhood, Ethics and Stimulants, which included interviews with 151 US and UK children, a subset of whom had a diagnosis of attention deficit/hyperactivity disorder. Despite their contact with psychiatric explanations and psychotropic drugs for their behaviour, children’s discursive engagements with the brain show significant evidence of agency and negotiated responsibility. These engagements suggest the limitations of current concepts that describe a collapse of the self into the brain in an age of neurocentrism. Empirical investigation is needed in order to develop agent-centred conceptual and theoretical frameworks that describe and evaluate the harms and benefits of treating children with psychotropic drugs and other brain-based technologies. PMID:23094965

  2. Brain regions involved in observing and trying to interpret dog behaviour.

    PubMed

    Desmet, Charlotte; van der Wiel, Alko; Brass, Marcel

    2017-01-01

    Humans and dogs have interacted for millennia. As a result, humans (and especially dog owners) sometimes try to interpret dog behaviour. While there is extensive research on the brain regions that are involved in mentalizing about other peoples' behaviour, surprisingly little is known of whether we use these same brain regions to mentalize about animal behaviour. In this fMRI study we investigate whether brain regions involved in mentalizing about human behaviour are also engaged when observing dog behaviour. Here we show that these brain regions are more engaged when observing dog behaviour that is difficult to interpret compared to dog behaviour that is easy to interpret. Interestingly, these results were not only obtained when participants were instructed to infer reasons for the behaviour but also when they passively viewed the behaviour, indicating that these brain regions are activated by spontaneous mentalizing processes.

  3. Brain regions involved in observing and trying to interpret dog behaviour

    PubMed Central

    Desmet, Charlotte; van der Wiel, Alko; Brass, Marcel

    2017-01-01

    Humans and dogs have interacted for millennia. As a result, humans (and especially dog owners) sometimes try to interpret dog behaviour. While there is extensive research on the brain regions that are involved in mentalizing about other peoples’ behaviour, surprisingly little is known of whether we use these same brain regions to mentalize about animal behaviour. In this fMRI study we investigate whether brain regions involved in mentalizing about human behaviour are also engaged when observing dog behaviour. Here we show that these brain regions are more engaged when observing dog behaviour that is difficult to interpret compared to dog behaviour that is easy to interpret. Interestingly, these results were not only obtained when participants were instructed to infer reasons for the behaviour but also when they passively viewed the behaviour, indicating that these brain regions are activated by spontaneous mentalizing processes. PMID:28931030

  4. Simultaneous two-voxel localized 1H-observed 13C-edited spectroscopy for in vivo MRS on rat brain at 9.4 T: Application to the investigation of excitotoxic lesions

    NASA Astrophysics Data System (ADS)

    Doan, Bich-Thuy; Autret, Gwennhael; Mispelter, Joël; Méric, Philippe; Même, William; Montécot-Dubourg, Céline; Corrèze, Jean-Loup; Szeremeta, Frédéric; Gillet, Brigitte; Beloeil, Jean-Claude

    2009-05-01

    13C spectroscopy combined with the injection of 13C-labeled substrates is a powerful method for the study of brain metabolism in vivo. Since highly localized measurements are required in a heterogeneous organ such as the brain, it is of interest to augment the sensitivity of 13C spectroscopy by proton acquisition. Furthermore, as focal cerebral lesions are often encountered in animal models of disorders in which the two brain hemispheres are compared, we wished to develop a bi-voxel localized sequence for the simultaneous bilateral investigation of rat brain metabolism, with no need for external additional references. Two sequences were developed at 9.4 T: a bi-voxel 1H-( 13C) STEAM-POCE (Proton Observed Carbon Edited) sequence and a bi-voxel 1H-( 13C) PRESS-POCE adiabatically decoupled sequence with Hadamard encoding. Hadamard encoding allows both voxels to be recorded simultaneously, with the same acquisition time as that required for a single voxel. The method was validated in a biological investigation into the neuronal damage and the effect on the Tri Carboxylic Acid cycle in localized excitotoxic lesions. Following an excitotoxic quinolinate-induced localized lesion in the rat cortex and the infusion of U- 13C glucose, two 1H-( 13C) spectra of distinct (4 × 4 × 4 mm 3) voxels, one centred on the injured hemisphere and the other on the contralateral hemisphere, were recorded simultaneously. Two 1H bi-voxel spectra were also recorded and showed a significant decrease in N-acetyl aspartate, and an accumulation of lactate in the ipsilateral hemisphere. The 1H-( 13C) spectra could be recorded dynamically as a function of time, and showed a fall in the glutamate/glutamine ratio and the presence of a stable glutamine pool, with a permanent increase of lactate in the ipsilateral hemisphere. This bi-voxel 1H-( 13C) method can be used to investigate simultaneously both brain hemispheres, and to perform dynamic studies. We report here the neuronal damage and the effect on the Tri Carboxylic Acid cycle in localized excitotoxic lesions.

  5. Content matters: neuroimaging investigation of brain and behavioral impact of televised anti-tobacco public service announcements

    PubMed Central

    Wang, An-Li; Ruparel, Kosha; Loughead, James W.; Strasser, Andrew A.; Blady, Shira J.; Lynch, Kevin G.; Romer, Dan; Cappella, Joseph N.; Lerman, Caryn; Langleben, Daniel D.

    2013-01-01

    Public service announcements (PSAs) are televised ads that are a key component of public health campaigns against smoking. Understanding the neurophysiological correlates of anti-tobacco ads is an important step towards novel objective methods of their evaluation and design. In the present study, we used Functional Magnetic Resonance Imaging (fMRI) to investigate the brain and behavioral effects of the interaction between content (“argument strength”) and format (“message sensation value”) of anti-smoking ads in human. Seventy-one non-treatment seeking smokers viewed a sequence of sixteen high or 16 low argument strength ads during a fMRI scan. Dependent variables were brain fMRI signal, the immediate recall of the ads, immediate change in Intentions to Quit Smoking and the urine levels of a major nicotine metabolite cotinine at a one-month follow-up. Whole brain ANOVA revealed that argument strength and message sensation value interacted in the inferior frontal, inferior parietal and fusiform gyri, the precuneus and the dorsomedial prefrontal cortex (dMPFC). Regression analysis showed that the activation in the dMPFC predicted lower cotinine levels a month later. These results characterize the key brain regions engaged in the processing of persuasive communications and suggest that brain fMRI response to anti-smoking ads could predict subsequent smoking severity in non-treatment seeking smokers. Our findings demonstrate the importance of the quality of ad content for objective ad outcomes and suggest that fMRI investigation may aid the pre-release evaluation of televised public health announcements. PMID:23616548

  6. Variations of the Functional Brain Network Efficiency in a Young Clinical Sample within the Autism Spectrum: A fNIRS Investigation.

    PubMed

    Li, Yanwei; Yu, Dongchuan

    2018-01-01

    Autism is a neurodevelopmental disorder with dimensional behavioral symptoms and various damages in the structural and functional brain. Previous neuroimaging studies focused on exploring the differences of brain development between individuals with and without autism spectrum disorders (ASD). However, few of them have attempted to investigate the individual differences of the brain features among subjects within the Autism spectrum. Our main goal was to explore the individual differences of neurodevelopment in young children with Autism by testing for the association between the functional network efficiency and levels of autistic behaviors, as well as the association between the functional network efficiency and age. Forty-six children with Autism (ages 2.0-8.9 years old) participated in the current study, with levels of autistic behaviors evaluated by their parents. The network efficiency (global and local network efficiency) were obtained from the functional networks based on the oxy-, deoxy-, and total-Hemoglobin series, respectively. Results indicated that the network efficiency decreased with age in young children with Autism in the deoxy- and total-Hemoglobin-based-networks, and children with a relatively higher level of autistic behaviors showed decreased network efficiency in the oxy-hemoglobin-based network. Results suggest individual differences of brain development in young children within the Autism spectrum, providing new insights into the psychopathology of ASD.

  7. Abnormal resting-state connectivity of motor and cognitive networks in early manifest Huntington's disease.

    PubMed

    Wolf, R C; Sambataro, F; Vasic, N; Depping, M S; Thomann, P A; Landwehrmeyer, G B; Süssmuth, S D; Orth, M

    2014-11-01

    Functional magnetic resonance imaging (fMRI) of multiple neural networks during the brain's 'resting state' could facilitate biomarker development in patients with Huntington's disease (HD) and may provide new insights into the relationship between neural dysfunction and clinical symptoms. To date, however, very few studies have examined the functional integrity of multiple resting state networks (RSNs) in manifest HD, and even less is known about whether concomitant brain atrophy affects neural activity in patients. Using MRI, we investigated brain structure and RSN function in patients with early HD (n = 20) and healthy controls (n = 20). For resting-state fMRI data a group-independent component analysis identified spatiotemporally distinct patterns of motor and prefrontal RSNs of interest. We used voxel-based morphometry to assess regional brain atrophy, and 'biological parametric mapping' analyses to investigate the impact of atrophy on neural activity. Compared with controls, patients showed connectivity changes within distinct neural systems including lateral prefrontal, supplementary motor, thalamic, cingulate, temporal and parietal regions. In patients, supplementary motor area and cingulate cortex connectivity indices were associated with measures of motor function, whereas lateral prefrontal connectivity was associated with cognition. This study provides evidence for aberrant connectivity of RSNs associated with motor function and cognition in early manifest HD when controlling for brain atrophy. This suggests clinically relevant changes of RSN activity in the presence of HD-associated cortical and subcortical structural abnormalities.

  8. Verbal Memory in Parkinson’s Disease: A Combined DTI and fMRI Study

    PubMed Central

    Lucas-Jiménez, Olaia; Díez-Cirarda, María; Ojeda, Natalia; Peña, Javier; Cabrera-Zubizarreta, Alberto; Ibarretxe-Bilbao, Naroa

    2015-01-01

    Background: While significant progress has been made to determine the functional role of specific gray matter areas underlying verbal memory in Parkinson’s disease (PD), very little is known about the relationship between these regions and their underlying white matter structures. Objective: The objectives of this study were (1) to investigate verbal memory, fractional anisotropy and brain activation differences between PD patients and healthy controls (HC), (2) to explore the neuroanatomical and neurofunctional correlates of verbal memory in PD, and (3) to investigate the relationship between these neuroanatomical and neurofunctional verbal memory correlates in PD. Methods: Functional magnetic resonance imaging (fMRI) while performing a verbal memory paradigm and diffusion tensor imaging data (DTI), were acquired in 37 PD patients and 15 age-, sex-, and education-matched HC. Results: PD patients showed verbal recognition memory impairment, lower fractional anisotropy in the anterior cingulate tract, and lower brain activation in the inferior orbitofrontal cortex compared to HC. Brain activation in the inferior orbitofrontal cortex correlated significantly with verbal recognition memory impairment in PD patients. In addition, a relationship between brain activation in the inferior orbitofrontal cortex and fractional anisotropy of the uncinate fasciculus was found in PD. Conclusions: These results reveal that deficits in verbal memory in PD are accompanied by functional brain activation changes, but also have specific structural correlates related to white matter microstructural integrity. PMID:27070003

  9. Brain Injury as the Result of Violence: A Systematic Scoping Review.

    PubMed

    Bates, Annerley; Matthews, Sarah; Simpson, Grahame; Bates, Lyndel

    2016-01-01

    This scoping review investigated risk factors, impacts, outcomes, and service implications of violence-related traumatic brain injury (TBI) for individuals and their informal caregivers. A systematic search (Web of Science, PubMed, PsycInfo, ProQuest, Medline, Informit; 1990-2015) identified 17 studies meeting the inclusion and exclusion criteria. Violence was the cause of between 3% and 26% of all TBIs. Males, a non-White racial background, preinjury unemployment, and preinjury substance abuse problems all elevated the risk for sustaining a violence-related TBI compared to other-cause TBI. However, few differences were observed in 12 months postinjury outcomes. No studies investigated the impact of violence-related TBI on informal caregivers.

  10. A centric/non-centric impact protocol and finite element model methodology for the evaluation of American football helmets to evaluate risk of concussion.

    PubMed

    Post, Andrew; Oeur, Anna; Walsh, Evan; Hoshizaki, Blaine; Gilchrist, Michael D

    2014-01-01

    American football reports high incidences of head injuries, in particular, concussion. Research has described concussion as primarily a rotation dominant injury affecting the diffuse areas of brain tissue. Current standards do not measure how helmets manage rotational acceleration or how acceleration loading curves influence brain deformation from an impact and thus are missing important information in terms of how concussions occur. The purpose of this study was to investigate a proposed three-dimensional impact protocol for use in evaluating football helmets. The dynamic responses resulting from centric and non-centric impact conditions were examined to ascertain the influence they have on brain deformations in different functional regions of the brain that are linked to concussive symptoms. A centric and non-centric protocol was used to impact an American football helmet; the resulting dynamic response data was used in conjunction with a three-dimensional finite element analysis of the human brain to calculate brain tissue deformation. The direction of impact created unique loading conditions, resulting in peaks in different regions of the brain associated with concussive symptoms. The linear and rotational accelerations were not predictive of the brain deformation metrics used in this study. In conclusion, the test protocol used in this study revealed that impact conditions influences the region of loading in functional regions of brain tissue that are associated with the symptoms of concussion. The protocol also demonstrated that using brain deformation metrics may be more appropriate when evaluating risk of concussion than using dynamic response data alone.

  11. Increased risk of brain metastases in women with breast cancer and p16 expression in metastatic lymph-nodes.

    PubMed

    Furet, Elise; El Bouchtaoui, Morad; Feugeas, Jean-Paul; Miquel, Catherine; Leboeuf, Christophe; Beytout, Clémentine; Bertheau, Philippe; Le Rhun, Emilie; Bonneterre, Jacques; Janin, Anne; Bousquet, Guilhem

    2017-06-06

    Metastatic breast cancer is a leading cause of mortality in women, partly on account of brain metastases. However, the mechanisms by which cancer cells cross the blood-brain barrier remain undeciphered. Most molecular studies predicting metastatic risk have been performed on primary breast cancer samples. Here we studied metastatic lymph-nodes from patients with breast cancers to identify markers associated with the occurrence of brain metastases. Transcriptomic analyses identified CDKN2A/p16 as a gene potentially associated with brain metastases. Fifty-two patients with HER2-overexpressing or triple-negative breast carcinoma with lymph nodes and distant metastases were included in this study. Transcriptomic analyses were performed on laser-microdissected tumor cells from 28 metastatic lymph-nodes. Supervised analyses compared the transcriptomic profiles of women who developed brain metastases and those who did not. As a validation series, we studied metastatic lymph-nodes from 24 other patients.Immunohistochemistry investigations showed that p16 mean scores were significantly higher in patients with brain metastases than in patients without (7.4 vs. 1.7 respectively, p < 0.01). This result was confirmed on the validation series. Multivariate analyses showed that the p16 score was the only variable positively associated with the risk of brain metastases (p = 0.01).With the same threshold of 5 for p16 scores using a Cox model, overall survival was shorter in women with a p16 score over 5 in both series. The risk of brain metastases in women with HER2-overexpressing or triple-negative breast cancer could be better assessed by studying p16 protein expression on surgically removed axillary lymph-nodes.

  12. Induction of specific micro RNA (miRNA) species by ROS-generating metal sulfates in primary human brain cells

    PubMed Central

    Lukiw, Walter J.; Pogue, Aileen I.

    2007-01-01

    Iron- and aluminum-sulfate together, at nanomolar concentrations, trigger the production of reactive oxygen species (ROS) in cultures of human brain cells. Previous studies have shown that following ROS induction, a family of pathogenic brain genes that promote inflammatory signalling, cellular apoptosis and brain cell death is significantly over-expressed. Notably, iron- and aluminum-sulfate induce genes in cultured human brain cells that exhibit expression patterns similar to those observed to be up-regulated in moderate- to late-stage Alzheimer's disease (AD). In this study we have extended our investigations to analyze the expression of micro RNA (miRNA) populations in iron- and aluminum-sulfate treated human neural cells in primary culture. The main finding was that these ROS-generating neurotoxic metal sulfates also up-regulate a specific set of miRNAs that includes miR-9, miR-125b and miR-128. Notably, these same miRNAs are up-regulated in AD brain. These findings further support the idea that iron- and aluminum-sulfates induce genotoxicity via a ROS-mediated up-regulation of specific regulatory elements and pathogenic genes that redirect brain cell fate towards progressive dysfunction and apoptotic cell death. PMID:17629564

  13. Uptake Mechanism of ApoE-Modified Nanoparticles on Brain Capillary Endothelial Cells as a Blood-Brain Barrier Model

    PubMed Central

    Wagner, Sylvia; Zensi, Anja; Wien, Sascha L.; Tschickardt, Sabrina E.; Maier, Wladislaw; Vogel, Tikva; Worek, Franz; Pietrzik, Claus U.; Kreuter, Jörg; von Briesen, Hagen

    2012-01-01

    Background The blood-brain barrier (BBB) represents an insurmountable obstacle for most drugs thus obstructing an effective treatment of many brain diseases. One solution for overcoming this barrier is a transport by binding of these drugs to surface-modified nanoparticles. Especially apolipoprotein E (ApoE) appears to play a major role in the nanoparticle-mediated drug transport across the BBB. However, at present the underlying mechanism is incompletely understood. Methodology/Principal Findings In this study, the uptake of the ApoE-modified nanoparticles into the brain capillary endothelial cells was investigated to differentiate between active and passive uptake mechanism by flow cytometry and confocal laser scanning microscopy. Furthermore, different in vitro co-incubation experiments were performed with competing ligands of the respective receptor. Conclusions/Significance This study confirms an active endocytotic uptake mechanism and shows the involvement of low density lipoprotein receptor family members, notably the low density lipoprotein receptor related protein, on the uptake of the ApoE-modified nanoparticles into the brain capillary endothelial cells. This knowledge of the uptake mechanism of ApoE-modified nanoparticles enables future developments to rationally create very specific and effective carriers to overcome the blood-brain barrier. PMID:22396775

  14. Metabolic fate of glucose in the brain of APP/PS1 transgenic mice at 10 months of age: a 13C NMR metabolomic study.

    PubMed

    Zhou, Qi; Zheng, Hong; Chen, Jiuxia; Li, Chen; Du, Yao; Xia, Huanhuan; Gao, Hongchang

    2018-06-26

    Alzheimer's disease (AD) has been associated with the disturbance of brain glucose metabolism. The present study investigates brain glucose metabolism using 13 C NMR metabolomics in combination with intravenous [1- 13 C]-glucose infusion in APP/PS1 transgenic mouse model of amyloid pathology at 10 months of age. We found that brain glucose was significantly accumulated in APP/PS1 mice relative to wild-type (WT) mice. Reductions in 13 C fluxes into the specific carbon sites of tricarboxylic acid (TCA) intermediate (succinate) as well as neurotransmitters (glutamate, glutamine, γ-aminobutyric acid and aspartate) from [1- 13 C]-glucose were also detected in the brain of APP/PS1 mice. In addition, our results reveal that the 13 C-enrichments of the C3 of alanine were significantly lower and the C3 of lactate have a tendency to be lower in the brain of APP/PS1 mice than WT mice. Taken together, the development of amyloid pathology could cause a reduction in glucose utilization and further result in decreases in energy and neurotransmitter metabolism as well as the lactate-alanine shuttle in the brain.

  15. Uptake mechanism of ApoE-modified nanoparticles on brain capillary endothelial cells as a blood-brain barrier model.

    PubMed

    Wagner, Sylvia; Zensi, Anja; Wien, Sascha L; Tschickardt, Sabrina E; Maier, Wladislaw; Vogel, Tikva; Worek, Franz; Pietrzik, Claus U; Kreuter, Jörg; von Briesen, Hagen

    2012-01-01

    The blood-brain barrier (BBB) represents an insurmountable obstacle for most drugs thus obstructing an effective treatment of many brain diseases. One solution for overcoming this barrier is a transport by binding of these drugs to surface-modified nanoparticles. Especially apolipoprotein E (ApoE) appears to play a major role in the nanoparticle-mediated drug transport across the BBB. However, at present the underlying mechanism is incompletely understood. In this study, the uptake of the ApoE-modified nanoparticles into the brain capillary endothelial cells was investigated to differentiate between active and passive uptake mechanism by flow cytometry and confocal laser scanning microscopy. Furthermore, different in vitro co-incubation experiments were performed with competing ligands of the respective receptor. This study confirms an active endocytotic uptake mechanism and shows the involvement of low density lipoprotein receptor family members, notably the low density lipoprotein receptor related protein, on the uptake of the ApoE-modified nanoparticles into the brain capillary endothelial cells. This knowledge of the uptake mechanism of ApoE-modified nanoparticles enables future developments to rationally create very specific and effective carriers to overcome the blood-brain barrier.

  16. A meta-analysis of sex differences in human brain structure.

    PubMed

    Ruigrok, Amber N V; Salimi-Khorshidi, Gholamreza; Lai, Meng-Chuan; Baron-Cohen, Simon; Lombardo, Michael V; Tait, Roger J; Suckling, John

    2014-02-01

    The prevalence, age of onset, and symptomatology of many neuropsychiatric conditions differ between males and females. To understand the causes and consequences of sex differences it is important to establish where they occur in the human brain. We report the first meta-analysis of typical sex differences on global brain volume, a descriptive account of the breakdown of studies of each compartmental volume by six age categories, and whole-brain voxel-wise meta-analyses on brain volume and density. Gaussian-process regression coordinate-based meta-analysis was used to examine sex differences in voxel-based regional volume and density. On average, males have larger total brain volumes than females. Examination of the breakdown of studies providing total volumes by age categories indicated a bias towards the 18-59 year-old category. Regional sex differences in volume and tissue density include the amygdala, hippocampus and insula, areas known to be implicated in sex-biased neuropsychiatric conditions. Together, these results suggest candidate regions for investigating the asymmetric effect that sex has on the developing brain, and for understanding sex-biased neurological and psychiatric conditions. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. Effect of Transcranial Magnetic Stimulation on Neuronal Networks

    NASA Astrophysics Data System (ADS)

    Unsal, Ahmet; Hadimani, Ravi; Jiles, David

    2013-03-01

    The human brain contains around 100 billion nerve cells controlling our day to day activities. Consequently, brain disorders often result in impairments such as paralysis, loss of coordination and seizure. It has been said that 1 in 5 Americans suffer some diagnosable mental disorder. There is an urgent need to understand the disorders, prevent them and if possible, develop permanent cure for them. As a result, a significant amount of research activities is being directed towards brain research. Transcranial Magnetic Stimulation (TMS) is a promising tool for diagnosing and treating brain disorders. It is a non-invasive treatment method that produces a current flow in the brain which excites the neurons. Even though TMS has been verified to have advantageous effects on various brain related disorders, there have not been enough studies on the impact of TMS on cells. In this study, we are investigating the electrophysiological effects of TMS on one dimensional neuronal culture grown in a circular pathway. Electrical currents are produced on the neuronal networks depending on the directionality of the applied field. This aids in understanding how neuronal networks react under TMS treatment.

  18. Brain Activation for Language Dual-Tasking: Listening to Two People Speak at the Same Time and a Change in Network Timing

    PubMed Central

    Buchweitz, Augusto; Keller, Timothy A.; Meyler, Ann; Just, Marcel Adam

    2011-01-01

    The study used fMRI to investigate brain activation in participants who were able to listen to and successfully comprehend two people speaking at the same time (dual-tasking). The study identified brain mechanisms associated with high-level, concurrent dual-tasking, as compared to comprehending a single message. Results showed an increase in the functional connectivity among areas of the language network in the dual task. The increase in synchronization of brain activation for dual-tasking was brought about primarily by a change in the timing of left inferior frontal gyrus (LIFG) activation relative to posterior temporal activation, bringing the LIFG activation into closer correspondence with temporal activation. The results show that the change in LIFG timing was greater in participants with lower working memory capacity, and that recruitment of additional activation in the dual-task occurred only in the areas adjacent to the language network that was activated in the single task. The shift in LIFG activation may be a brain marker of how the brain adapts to high-level dual-tasking. PMID:21618666

  19. Alterations in Normal Aging Revealed by Cortical Brain Network Constructed Using IBASPM.

    PubMed

    Li, Wan; Yang, Chunlan; Shi, Feng; Wang, Qun; Wu, Shuicai; Lu, Wangsheng; Li, Shaowu; Nie, Yingnan; Zhang, Xin

    2018-04-16

    Normal aging has been linked with the decline of cognitive functions, such as memory and executive skills. One of the prominent approaches to investigate the age-related alterations in the brain is by examining the cortical brain connectome. IBASPM is a toolkit to realize individual atlas-based volume measurement. Hence, this study seeks to determine what further alterations can be revealed by cortical brain networks formed by IBASPM-extracted regional gray matter volumes. We found the reduced strength of connections between the superior temporal pole and middle temporal pole in the right hemisphere, global hubs as the left fusiform gyrus and right Rolandic operculum in the young and aging groups, respectively, and significantly reduced inter-module connection of one module in the aging group. These new findings are consistent with the phenomenon of normal aging mentioned in previous studies and suggest that brain network built with the IBASPM could provide supplementary information to some extent. The individualization of morphometric features extraction deserved to be given more attention in future cortical brain network research.

  20. Neural Signatures of Autism Spectrum Disorders: Insights into Brain Network Dynamics

    PubMed Central

    Hernandez, Leanna M; Rudie, Jeffrey D; Green, Shulamite A; Bookheimer, Susan; Dapretto, Mirella

    2015-01-01

    Neuroimaging investigations of autism spectrum disorders (ASDs) have advanced our understanding of atypical brain function and structure, and have recently converged on a model of altered network-level connectivity. Traditional task-based functional magnetic resonance imaging (MRI) and volume-based structural MRI studies have identified widespread atypicalities in brain regions involved in social behavior and other core ASD-related behavioral deficits. More recent advances in MR-neuroimaging methods allow for quantification of brain connectivity using diffusion tensor imaging, functional connectivity, and graph theoretic methods. These newer techniques have moved the field toward a systems-level understanding of ASD etiology, integrating functional and structural measures across distal brain regions. Neuroimaging findings in ASD as a whole have been mixed and at times contradictory, likely due to the vast genetic and phenotypic heterogeneity characteristic of the disorder. Future longitudinal studies of brain development will be crucial to yield insights into mechanisms of disease etiology in ASD sub-populations. Advances in neuroimaging methods and large-scale collaborations will also allow for an integrated approach linking neuroimaging, genetics, and phenotypic data. PMID:25011468

Top