NASA Astrophysics Data System (ADS)
Choi, N.; Lee, M. I.; Lim, Y. K.; Kim, K. M.
2017-12-01
Heatwave is an extreme hot weather event which accompanies fatal damage to human health. The heatwave has a strong relationship with the large-scale atmospheric teleconnection patterns. In this study, we examine the spatial pattern of heatwave in East Asia by using the EOF analysis and the relationship between heatwave frequency and large-scale atmospheric teleconnection patterns. We also separate the time scale of heatwave frequency as the time scale longer than a decade and the interannual time scale. The long-term variation of heatwave frequency in East Asia shows a linkage with the sea surface temperature (SST) variability over the North Atlantic with a decadal time scale (a.k.a. the Atlantic Multidecadal Oscillation; AMO). On the other hands, the interannual variation of heatwave frequency is linked with the two dominant spatial patterns associated with the large-scale teleconnection patterns mimicking the Scandinavian teleconnection (SCAND-like) pattern and the circumglobal teleconnection (CGT-like) pattern, respectively. It is highlighted that the interannual variation of heatwave frequency in East Asia shows a remarkable change after mid-1990s. While the heatwave frequency was mainly associated with the CGT-like pattern before mid-1990s, the SCAND-like pattern becomes the most dominant one after mid-1990s, making the CGT-like pattern as the second. This study implies that the large-scale atmospheric teleconnection patterns play a key role in developing heatwave events in East Asia. This study further discusses possible mechanisms for the decadal change in the linkage between heatwave frequency and the large-scale teleconnection patterns in East Asia such as early melting of snow cover and/or weakening of East Asian jet stream due to global warming.
Behavioral self-organization underlies the resilience of a coastal ecosystem.
de Paoli, Hélène; van der Heide, Tjisse; van den Berg, Aniek; Silliman, Brian R; Herman, Peter M J; van de Koppel, Johan
2017-07-25
Self-organized spatial patterns occur in many terrestrial, aquatic, and marine ecosystems. Theoretical models and observational studies suggest self-organization, the formation of patterns due to ecological interactions, is critical for enhanced ecosystem resilience. However, experimental tests of this cross-ecosystem theory are lacking. In this study, we experimentally test the hypothesis that self-organized pattern formation improves the persistence of mussel beds ( Mytilus edulis ) on intertidal flats. In natural beds, mussels generate self-organized patterns at two different spatial scales: regularly spaced clusters of mussels at centimeter scale driven by behavioral aggregation and large-scale, regularly spaced bands at meter scale driven by ecological feedback mechanisms. To test for the relative importance of these two spatial scales of self-organization on mussel bed persistence, we conducted field manipulations in which we factorially constructed small-scale and/or large-scale patterns. Our results revealed that both forms of self-organization enhanced the persistence of the constructed mussel beds in comparison to nonorganized beds. Small-scale, behaviorally driven cluster patterns were found to be crucial for persistence, and thus resistance to wave disturbance, whereas large-scale, self-organized patterns facilitated reformation of small-scale patterns if mussels were dislodged. This study provides experimental evidence that self-organization can be paramount to enhancing ecosystem persistence. We conclude that ecosystems with self-organized spatial patterns are likely to benefit greatly from conservation and restoration actions that use the emergent effects of self-organization to increase ecosystem resistance to disturbance.
Behavioral self-organization underlies the resilience of a coastal ecosystem
de Paoli, Hélène; van der Heide, Tjisse; van den Berg, Aniek; Silliman, Brian R.; Herman, Peter M. J.
2017-01-01
Self-organized spatial patterns occur in many terrestrial, aquatic, and marine ecosystems. Theoretical models and observational studies suggest self-organization, the formation of patterns due to ecological interactions, is critical for enhanced ecosystem resilience. However, experimental tests of this cross-ecosystem theory are lacking. In this study, we experimentally test the hypothesis that self-organized pattern formation improves the persistence of mussel beds (Mytilus edulis) on intertidal flats. In natural beds, mussels generate self-organized patterns at two different spatial scales: regularly spaced clusters of mussels at centimeter scale driven by behavioral aggregation and large-scale, regularly spaced bands at meter scale driven by ecological feedback mechanisms. To test for the relative importance of these two spatial scales of self-organization on mussel bed persistence, we conducted field manipulations in which we factorially constructed small-scale and/or large-scale patterns. Our results revealed that both forms of self-organization enhanced the persistence of the constructed mussel beds in comparison to nonorganized beds. Small-scale, behaviorally driven cluster patterns were found to be crucial for persistence, and thus resistance to wave disturbance, whereas large-scale, self-organized patterns facilitated reformation of small-scale patterns if mussels were dislodged. This study provides experimental evidence that self-organization can be paramount to enhancing ecosystem persistence. We conclude that ecosystems with self-organized spatial patterns are likely to benefit greatly from conservation and restoration actions that use the emergent effects of self-organization to increase ecosystem resistance to disturbance. PMID:28696313
Large-Scale Constraint-Based Pattern Mining
ERIC Educational Resources Information Center
Zhu, Feida
2009-01-01
We studied the problem of constraint-based pattern mining for three different data formats, item-set, sequence and graph, and focused on mining patterns of large sizes. Colossal patterns in each data formats are studied to discover pruning properties that are useful for direct mining of these patterns. For item-set data, we observed robustness of…
NASA Astrophysics Data System (ADS)
Verdon-Kidd, D.; Kiem, A. S.
2008-10-01
In this paper regional (synoptic) and large-scale climate drivers of rainfall are investigated for Victoria, Australia. A non-linear classification methodology known as self-organizing maps (SOM) is used to identify 20 key regional synoptic patterns, which are shown to capture a range of significant synoptic features known to influence the climate of the region. Rainfall distributions are assigned to each of the 20 patterns for nine rainfall stations located across Victoria, resulting in a clear distinction between wet and dry synoptic types at each station. The influence of large-scale climate modes on the frequency and timing of the regional synoptic patterns is also investigated. This analysis revealed that phase changes in the El Niño Southern Oscillation (ENSO), the Southern Annular Mode (SAM) and/or Indian Ocean Dipole (IOD) are associated with a shift in the relative frequency of wet and dry synoptic types. Importantly, these results highlight the potential to utilise the link between the regional synoptic patterns derived in this study and large-scale climate modes to improve rainfall forecasting for Victoria, both in the short- (i.e. seasonal) and long-term (i.e. decadal/multi-decadal scale). In addition, the regional and large-scale climate drivers identified in this study provide a benchmark by which the performance of Global Climate Models (GCMs) may be assessed.
NASA Astrophysics Data System (ADS)
Alexander, L.; Hupp, C. R.; Forman, R. T.
2002-12-01
Many geodisturbances occur across large spatial scales, spanning entire landscapes and creating ecological phenomena in their wake. Ecological study at large scales poses special problems: (1) large-scale studies require large-scale resources, and (2) sampling is not always feasible at the appropriate scale, and researchers rely on data collected at smaller scales to interpret patterns across broad regions. A criticism of landscape ecology is that findings at small spatial scales are "scaled up" and applied indiscriminately across larger spatial scales. In this research, landscape scaling is addressed through process-pattern relationships between hydrogeomorphic processes and patterns of plant diversity in forested wetlands. The research addresses: (1) whether patterns and relationships between hydrogeomorphic, vegetation, and spatial variables can transcend scale; and (2) whether data collected at small spatial scales can be used to describe patterns and relationships across larger spatial scales. Field measurements of hydrologic, geomorphic, spatial, and vegetation data were collected or calculated for 15- 1-ha sites on forested floodplains of six (6) Chesapeake Bay Coastal Plain streams over a total area of about 20,000 km2. Hydroperiod (day/yr), floodplain surface elevation range (m), discharge (m3/s), stream power (kg-m/s2), sediment deposition (mm/yr), relative position downstream and other variables were used in multivariate analyses to explain differences in species richness, tree diversity (Shannon-Wiener Diversity Index H'), and plant community composition at four spatial scales. Data collected at the plot (400-m2) and site- (c. 1-ha) scales are applied to and tested at the river watershed and regional spatial scales. Results indicate that plant species richness and tree diversity (Shannon-Wiener diversity index H') can be described by hydrogeomorphic conditions at all scales, but are best described at the site scale. Data collected at plot and site scales are tested for spatial heterogeneity across the Chesapeake Bay Coastal Plain using a geostatistical variogram, and multiple regression analysis is used to relate plant diversity, spatial, and hydrogeomorphic variables across Coastal Plain regions and hydrologic regimes. Results indicate that relationships between hydrogeomorphic processes and patterns of plant diversity at finer scales can proxy relationships at coarser scales in some, not all, cases. Findings also suggest that data collected at small scales can be used to describe trends across broader scales under limited conditions.
Large-scale Meteorological Patterns Associated with Extreme Precipitation Events over Portland, OR
NASA Astrophysics Data System (ADS)
Aragon, C.; Loikith, P. C.; Lintner, B. R.; Pike, M.
2017-12-01
Extreme precipitation events can have profound impacts on human life and infrastructure, with broad implications across a range of stakeholders. Changes to extreme precipitation events are a projected outcome of climate change that warrants further study, especially at regional- to local-scales. While global climate models are generally capable of simulating mean climate at global-to-regional scales with reasonable skill, resiliency and adaptation decisions are made at local-scales where most state-of-the-art climate models are limited by coarse resolution. Characterization of large-scale meteorological patterns associated with extreme precipitation events at local-scales can provide climatic information without this scale limitation, thus facilitating stakeholder decision-making. This research will use synoptic climatology as a tool by which to characterize the key large-scale meteorological patterns associated with extreme precipitation events in the Portland, Oregon metro region. Composite analysis of meteorological patterns associated with extreme precipitation days, and associated watershed-specific flooding, is employed to enhance understanding of the climatic drivers behind such events. The self-organizing maps approach is then used to characterize the within-composite variability of the large-scale meteorological patterns associated with extreme precipitation events, allowing us to better understand the different types of meteorological conditions that lead to high-impact precipitation events and associated hydrologic impacts. A more comprehensive understanding of the meteorological drivers of extremes will aid in evaluation of the ability of climate models to capture key patterns associated with extreme precipitation over Portland and to better interpret projections of future climate at impact-relevant scales.
NASA Astrophysics Data System (ADS)
Verdon-Kidd, D. C.; Kiem, A. S.
2009-04-01
In this paper regional (synoptic) and large-scale climate drivers of rainfall are investigated for Victoria, Australia. A non-linear classification methodology known as self-organizing maps (SOM) is used to identify 20 key regional synoptic patterns, which are shown to capture a range of significant synoptic features known to influence the climate of the region. Rainfall distributions are assigned to each of the 20 patterns for nine rainfall stations located across Victoria, resulting in a clear distinction between wet and dry synoptic types at each station. The influence of large-scale climate modes on the frequency and timing of the regional synoptic patterns is also investigated. This analysis revealed that phase changes in the El Niño Southern Oscillation (ENSO), the Indian Ocean Dipole (IOD) and/or the Southern Annular Mode (SAM) are associated with a shift in the relative frequency of wet and dry synoptic types on an annual to inter-annual timescale. In addition, the relative frequency of synoptic types is shown to vary on a multi-decadal timescale, associated with changes in the Inter-decadal Pacific Oscillation (IPO). Importantly, these results highlight the potential to utilise the link between the regional synoptic patterns derived in this study and large-scale climate modes to improve rainfall forecasting for Victoria, both in the short- (i.e. seasonal) and long-term (i.e. decadal/multi-decadal scale). In addition, the regional and large-scale climate drivers identified in this study provide a benchmark by which the performance of Global Climate Models (GCMs) may be assessed.
NASA Astrophysics Data System (ADS)
Nyitrai, Daniel; Martinho, Filipe; Dolbeth, Marina; Rito, João; Pardal, Miguel A.
2013-12-01
Large-scale and local climate patterns are known to influence several aspects of the life cycle of marine fish. In this paper, we used a 9-year database (2003-2011) to analyse the populations of two estuarine resident fishes, Pomatoschistus microps and Pomatoschistus minutus, in order to determine their relationships with varying environmental stressors operating over local and large scales. This study was performed in the Mondego estuary, Portugal. Firstly, the variations in abundance, growth, population structure and secondary production were evaluated. These species appeared in high densities in the beginning of the study period, with subsequent occasional high annual density peaks, while their secondary production was lower in dry years. The relationships between yearly fish abundance and the environmental variables were evaluated separately for both species using Spearman correlation analysis, considering the yearly abundance peaks for the whole population, juveniles and adults. Among the local climate patterns, precipitation, river runoff, salinity and temperature were used in the analyses, and North Atlantic Oscillation (NAO) index and sea surface temperature (SST) were tested as large-scale factors. For P. microps, precipitation and NAO were the significant factors explaining abundance of the whole population, the adults and the juveniles as well. Regarding P. minutus, for the whole population, juveniles and adults river runoff was the significant predictor. The results for both species suggest a differential influence of climate patterns on the various life cycle stages, confirming also the importance of estuarine resident fishes as indicators of changes in local and large-scale climate patterns, related to global climate change.
Patterns and Variation in Benthic Biodiversity in a Large Marine Ecosystem.
Piacenza, Susan E; Barner, Allison K; Benkwitt, Cassandra E; Boersma, Kate S; Cerny-Chipman, Elizabeth B; Ingeman, Kurt E; Kindinger, Tye L; Lee, Jonathan D; Lindsley, Amy J; Reimer, Jessica N; Rowe, Jennifer C; Shen, Chenchen; Thompson, Kevin A; Thurman, Lindsey L; Heppell, Selina S
2015-01-01
While there is a persistent inverse relationship between latitude and species diversity across many taxa and ecosystems, deviations from this norm offer an opportunity to understand the conditions that contribute to large-scale diversity patterns. Marine systems, in particular, provide such an opportunity, as marine diversity does not always follow a strict latitudinal gradient, perhaps because several hypothesized drivers of the latitudinal diversity gradient are uncorrelated in marine systems. We used a large scale public monitoring dataset collected over an eight year period to examine benthic marine faunal biodiversity patterns for the continental shelf (55-183 m depth) and slope habitats (184-1280 m depth) off the US West Coast (47°20'N-32°40'N). We specifically asked whether marine biodiversity followed a strict latitudinal gradient, and if these latitudinal patterns varied across depth, in different benthic substrates, and over ecological time scales. Further, we subdivided our study area into three smaller regions to test whether coast-wide patterns of biodiversity held at regional scales, where local oceanographic processes tend to influence community structure and function. Overall, we found complex patterns of biodiversity on both the coast-wide and regional scales that differed by taxonomic group. Importantly, marine biodiversity was not always highest at low latitudes. We found that latitude, depth, substrate, and year were all important descriptors of fish and invertebrate diversity. Invertebrate richness and taxonomic diversity were highest at high latitudes and in deeper waters. Fish richness also increased with latitude, but exhibited a hump-shaped relationship with depth, increasing with depth up to the continental shelf break, ~200 m depth, and then decreasing in deeper waters. We found relationships between fish taxonomic and functional diversity and latitude, depth, substrate, and time at the regional scale, but not at the coast-wide scale, suggesting that coast-wide patterns can obscure important correlates at smaller scales. Our study provides insight into complex diversity patterns of the deep water soft substrate benthic ecosystems off the US West Coast.
NASA Astrophysics Data System (ADS)
Lee, Donghoon; Ward, Philip; Block, Paul
2018-02-01
Flood-related fatalities and impacts on society surpass those from all other natural disasters globally. While the inclusion of large-scale climate drivers in streamflow (or high-flow) prediction has been widely studied, an explicit link to global-scale long-lead prediction is lacking, which can lead to an improved understanding of potential flood propensity. Here we attribute seasonal peak-flow to large-scale climate patterns, including the El Niño Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), North Atlantic Oscillation (NAO), and Atlantic Multidecadal Oscillation (AMO), using streamflow station observations and simulations from PCR-GLOBWB, a global-scale hydrologic model. Statistically significantly correlated climate patterns and streamflow autocorrelation are subsequently applied as predictors to build a global-scale season-ahead prediction model, with prediction performance evaluated by the mean squared error skill score (MSESS) and the categorical Gerrity skill score (GSS). Globally, fair-to-good prediction skill (20% ≤ MSESS and 0.2 ≤ GSS) is evident for a number of locations (28% of stations and 29% of land area), most notably in data-poor regions (e.g., West and Central Africa). The persistence of such relevant climate patterns can improve understanding of the propensity for floods at the seasonal scale. The prediction approach developed here lays the groundwork for further improving local-scale seasonal peak-flow prediction by identifying relevant global-scale climate patterns. This is especially attractive for regions with limited observations and or little capacity to develop flood early warning systems.
USDA-ARS?s Scientific Manuscript database
The objective of this paper is to study shedding patterns of cows infected with Mycobacterium avium subsp. paratuberculosis (MAP). While multiple single farm studies of MAP dynamics were reported, there is not large-scale meta-analysis of both natural and experimental infections. Large difference...
Colizza, Vittoria; Barrat, Alain; Barthélemy, Marc; Vespignani, Alessandro
2006-02-14
The systematic study of large-scale networks has unveiled the ubiquitous presence of connectivity patterns characterized by large-scale heterogeneities and unbounded statistical fluctuations. These features affect dramatically the behavior of the diffusion processes occurring on networks, determining the ensuing statistical properties of their evolution pattern and dynamics. In this article, we present a stochastic computational framework for the forecast of global epidemics that considers the complete worldwide air travel infrastructure complemented with census population data. We address two basic issues in global epidemic modeling: (i) we study the role of the large scale properties of the airline transportation network in determining the global diffusion pattern of emerging diseases; and (ii) we evaluate the reliability of forecasts and outbreak scenarios with respect to the intrinsic stochasticity of disease transmission and traffic flows. To address these issues we define a set of quantitative measures able to characterize the level of heterogeneity and predictability of the epidemic pattern. These measures may be used for the analysis of containment policies and epidemic risk assessment.
Patterns and Variation in Benthic Biodiversity in a Large Marine Ecosystem
Lee, Jonathan D.
2015-01-01
While there is a persistent inverse relationship between latitude and species diversity across many taxa and ecosystems, deviations from this norm offer an opportunity to understand the conditions that contribute to large-scale diversity patterns. Marine systems, in particular, provide such an opportunity, as marine diversity does not always follow a strict latitudinal gradient, perhaps because several hypothesized drivers of the latitudinal diversity gradient are uncorrelated in marine systems. We used a large scale public monitoring dataset collected over an eight year period to examine benthic marine faunal biodiversity patterns for the continental shelf (55–183 m depth) and slope habitats (184–1280 m depth) off the US West Coast (47°20′N—32°40′N). We specifically asked whether marine biodiversity followed a strict latitudinal gradient, and if these latitudinal patterns varied across depth, in different benthic substrates, and over ecological time scales. Further, we subdivided our study area into three smaller regions to test whether coast-wide patterns of biodiversity held at regional scales, where local oceanographic processes tend to influence community structure and function. Overall, we found complex patterns of biodiversity on both the coast-wide and regional scales that differed by taxonomic group. Importantly, marine biodiversity was not always highest at low latitudes. We found that latitude, depth, substrate, and year were all important descriptors of fish and invertebrate diversity. Invertebrate richness and taxonomic diversity were highest at high latitudes and in deeper waters. Fish richness also increased with latitude, but exhibited a hump-shaped relationship with depth, increasing with depth up to the continental shelf break, ~200 m depth, and then decreasing in deeper waters. We found relationships between fish taxonomic and functional diversity and latitude, depth, substrate, and time at the regional scale, but not at the coast-wide scale, suggesting that coast-wide patterns can obscure important correlates at smaller scales. Our study provides insight into complex diversity patterns of the deep water soft substrate benthic ecosystems off the US West Coast. PMID:26308521
Links between large-scale circulation patterns and streamflow in Central Europe: A review
NASA Astrophysics Data System (ADS)
Steirou, Eva; Gerlitz, Lars; Apel, Heiko; Merz, Bruno
2017-06-01
We disentangle the relationships between streamflow and large-scale atmospheric circulation in Central Europe (CE), an area affected by climatic influences from different origins (Atlantic, Mediterranean and Continental) and characterized by diverse topography and flow regimes. Our literature review examines in detail the links between mean, high and low flows in CE and large-scale circulation patterns, with focus on two closely related phenomena, the North Atlantic Oscillation (NAO) and the Western-zonal circulation (WC). For both patterns, significant relations, consistent between different studies, are found for large parts of CE. The strongest links are found for the winter season, forming a dipole-like pattern with positive relationships with streamflow north of the Alps and the Carpathians for both indices and negative relationships for the NAO in the south. An influence of winter NAO is also detected in the amplitude and timing of snowmelt flows later in the year. Discharge in CE has further been linked to other large-scale climatic modes such as the Scandinavia pattern (SCA), the East Atlantic/West Russian pattern (EA/WR), the El Niño-Southern Oscillation (ENSO) and synoptic weather patterns such as the Vb weather regime. Different mechanisms suggested in the literature to modulate links between streamflow and the NAO are combined with topographical characteristics of the target area in order to explain the divergent NAO/WC influence on streamflow in different parts of CE. In particular, a precipitation mechanism seems to regulate winter flows in North-Western Germany, an area with short duration of snow cover and with rainfall-generated floods. The precipitation mechanism is also likely in Southern CE, where correlations between the NAO and temperature are low. Finally, in the rest of the study area (Northern CE, Alpine region), a joint precipitation-snow mechanism influences floods not only in winter, but also in the spring/snowmelt period, providing some possibilities for flood forecasting.
NASA Astrophysics Data System (ADS)
Pevtsov, A.
Solar magnetic fields exhibit hemispheric preference for negative (pos- itive) helicity in northern (southern) hemisphere. The hemispheric he- licity rule, however, is not very strong, - the patterns of opposite sign helicity were observed on different spatial scales in each hemisphere. For instance, many individual sunspots exhibit patches of opposite he- licity inside the single polarity field. There are also helicity patterns on scales larger than the size of typical active region. Such patterns were observed in distribution of active regions with abnormal (for a give hemisphere) helicity, in large-scale photospheric magnetic fields and coronal flux systems. We will review the observations of large-scale pat- terns of helicity in solar atmosphere and their possible relationship with (sub-)photospheric processes. The emphasis will be on large-scale pho- tospheric magnetic field and solar corona.
NASA Astrophysics Data System (ADS)
Liu, Zhenchen; Lu, Guihua; He, Hai; Wu, Zhiyong; He, Jian
2017-11-01
Seasonal pluvial-drought transition processes are unique natural phenomena. To explore possible mechanisms, we considered Southwest China (SWC) as the study region and comprehensively investigated the temporal evolution or spatial patterns of large-scale and regional atmospheric variables with the simple method of Standardized Anomalies (SA). Some key procedures and results include the following: (1) Because regional atmospheric variables are more directly responsible for the transition processes, we investigate it in detail. The temporal evolution of net vertical integral water vapor flux (net VIWVF) across SWC, together with vertical SA-based patterns of regional horizontal divergence (D) and vertical motion (ω), coincides well with pluvial-drought transition processes. (2) With respect to large-scale circulation patterns, a well-organized Eurasian (EU) Pattern is one important feature during the pluvial-drought transitions over SWC. (3) Based on these large-scale and regional atmospheric anomalous features, relevant SA-based indices were built, to explore the possibility of simulating drought development using previous pluvial anomalies. As a whole, simulated drought development only with SA-based indices of large-scale circulation patterns does not perform well. Further, it can be improved a lot when SA-based indices of regional D and net VIWVF are introduced. (4) In addition, the potential drought prediction using pluvial anomalies, together with the deep understanding of physical mechanisms responsible for pluvial-drought transitions, need to be further explored.
Decoupling processes and scales of shoreline morphodynamics
Hapke, Cheryl J.; Plant, Nathaniel G.; Henderson, Rachel E.; Schwab, William C.; Nelson, Timothy R.
2016-01-01
Behavior of coastal systems on time scales ranging from single storm events to years and decades is controlled by both small-scale sediment transport processes and large-scale geologic, oceanographic, and morphologic processes. Improved understanding of coastal behavior at multiple time scales is required for refining models that predict potential erosion hazards and for coastal management planning and decision-making. Here we investigate the primary controls on shoreline response along a geologically-variable barrier island on time scales resolving extreme storms and decadal variations over a period of nearly one century. An empirical orthogonal function analysis is applied to a time series of shoreline positions at Fire Island, NY to identify patterns of shoreline variance along the length of the island. We establish that there are separable patterns of shoreline behavior that represent response to oceanographic forcing as well as patterns that are not explained by this forcing. The dominant shoreline behavior occurs over large length scales in the form of alternating episodes of shoreline retreat and advance, presumably in response to storms cycles. Two secondary responses include long-term response that is correlated to known geologic variations of the island and the other reflects geomorphic patterns with medium length scale. Our study also includes the response to Hurricane Sandy and a period of post-storm recovery. It was expected that the impacts from Hurricane Sandy would disrupt long-term trends and spatial patterns. We found that the response to Sandy at Fire Island is not notable or distinguishable from several other large storms of the prior decade.
NASA Astrophysics Data System (ADS)
Kane, V. R.; McGaughey, R. J.; Asner, G. P.; Kane, J. T.; Churchill, D.; Vaughn, N.
2016-12-01
Most natural forests are structured as mosaics of tree clumps and openings. These mosaics reflect both the underlying patterns of the biophysical environment and the finer scale patterns of disturbance and regrowth. We have developed methods to quantify and map patterns of tree clumps and openings at scales from within stands to landscapes using airborne LiDAR. While many studies have used LiDAR data to identify individual trees, we also identify clumps as adjacent trees with similar heights within a stand that likely established at a similar time following a disturbance. We characterize openings by both size class and shape complexity. Spatial statistics are used to identify patterns of tree clumps and openings at the local (0.81 ha) scale, and these patterns are then mapped across entire landscapes. We use LiDAR data acquired over Sequoia National Park, California, USA, to show how forest structure varies with patterns of productivity driven by the biophysical environment. We then show how clump and opening patterns vary with different fire histories and how recent drought mortality correlates with different tree clump and opening structural mosaics. We also demonstrate that nesting sites for the California spotted owl, a species of concern, are associated with clumps of large (>32 and especially >48 m) trees but that the surrounding foraging areas consist of a heterogeneous pattern of forest structure. These methods are especially useful for studying clumps of large trees, which dominate above ground forest biomass, and the effects of disturbance on the abundance and pattern of large trees as key forest structures.
NASA Astrophysics Data System (ADS)
Liu, Z.; LU, G.; He, H.; Wu, Z.; He, J.
2017-12-01
Seasonal pluvial-drought transition processes are unique natural phenomena. To explore possible mechanisms, we considered Southwest China (SWC) as the study region and comprehensively investigated the temporal evolution of large-scale and regional atmospheric variables with the simple method of Standardized Anomalies (SA). Some key results include: (1) The net vertical integral of water vapour flux (VIWVF) across the four boundaries may be a feasible indicator of pluvial-drought transition processes over SWC, because its SA-based index is almost consistent with process development. (2) The vertical SA-based patterns of regional horizontal divergence (D) and vertical motion (ω) also coincides with the pluvial-drought transition processes well, and the SA-based index of regional D show relatively high correlation with the identified processes over SWC. (3) With respect to large-scale anomalies of circulation patterns, a well-organized Eurasian Pattern is one important feature during the pluvial-drought transition over SWC. (4) To explore the possibility of simulating drought development using previous pluvial anomalies, large-scale and regional atmospheric SA-based indices were used. As a whole, when SA-based indices of regional dynamic and water-vapor variables are introduced, simulated drought development only with large-scale anomalies can be improved a lot. (5) Eventually, pluvial-drought transition processes and associated regional atmospheric anomalies over nine Chinese drought study regions were investigated. With respect to regional D, vertically single or double "upper-positive-lower-negative" and "upper-negative-lower-positive" patterns are the most common vertical SA-based patterns during the pluvial and drought parts of transition processes, respectively.
NASA Astrophysics Data System (ADS)
Lewis, Q. W.; Rhoads, B. L.
2017-12-01
The merging of rivers at confluences results in complex three-dimensional flow patterns that influence sediment transport, bed morphology, downstream mixing, and physical habitat conditions. The capacity to characterize comprehensively flow at confluences using traditional sensors, such as acoustic Doppler velocimeters and profiles, is limited by the restricted spatial resolution of these sensors and difficulties in measuring velocities simultaneously at many locations within a confluence. This study assesses two-dimensional surficial patterns of flow structure at a small stream confluence in Illinois, USA, using large scale particle image velocimetry (LSPIV) derived from videos captured by unmanned aerial systems (UAS). The method captures surface velocity patterns at high spatial and temporal resolution over multiple scales, ranging from the entire confluence to details of flow within the confluence mixing interface. Flow patterns at high momentum ratio are compared to flow patterns when the two incoming flows have nearly equal momentum flux. Mean surface flow patterns during the two types of events provide details on mean patterns of surface flow in different hydrodynamic regions of the confluence and on changes in these patterns with changing momentum flux ratio. LSPIV data derived from the highest resolution imagery also reveal general characteristics of large-scale vortices that form along the shear layer between the flows during the high-momentum ratio event. The results indicate that the use of LSPIV and UAS is well-suited for capturing in detail mean surface patterns of flow at small confluences, but that characterization of evolving turbulent structures is limited by scale considerations related to structure size, image resolution, and camera instability. Complementary methods, including camera platforms mounted at fixed positions close to the water surface, provide opportunities to accurately characterize evolving turbulent flow structures in confluences.
Large-scale diversity of slope fishes: pattern inconsistency between multiple diversity indices.
Gaertner, Jean-Claude; Maiorano, Porzia; Mérigot, Bastien; Colloca, Francesco; Politou, Chrissi-Yianna; Gil De Sola, Luis; Bertrand, Jacques A; Murenu, Matteo; Durbec, Jean-Pierre; Kallianiotis, Argyris; Mannini, Alessandro
2013-01-01
Large-scale studies focused on the diversity of continental slope ecosystems are still rare, usually restricted to a limited number of diversity indices and mainly based on the empirical comparison of heterogeneous local data sets. In contrast, we investigate large-scale fish diversity on the basis of multiple diversity indices and using 1454 standardized trawl hauls collected throughout the upper and middle slope of the whole northern Mediterranean Sea (36°3'- 45°7' N; 5°3'W - 28°E). We have analyzed (1) the empirical relationships between a set of 11 diversity indices in order to assess their degree of complementarity/redundancy and (2) the consistency of spatial patterns exhibited by each of the complementary groups of indices. Regarding species richness, our results contrasted both the traditional view based on the hump-shaped theory for bathymetric pattern and the commonly-admitted hypothesis of a large-scale decreasing trend correlated with a similar gradient of primary production in the Mediterranean Sea. More generally, we found that the components of slope fish diversity we analyzed did not always show a consistent pattern of distribution according either to depth or to spatial areas, suggesting that they are not driven by the same factors. These results, which stress the need to extend the number of indices traditionally considered in diversity monitoring networks, could provide a basis for rethinking not only the methodological approach used in monitoring systems, but also the definition of priority zones for protection. Finally, our results call into question the feasibility of properly investigating large-scale diversity patterns using a widespread approach in ecology, which is based on the compilation of pre-existing heterogeneous and disparate data sets, in particular when focusing on indices that are very sensitive to sampling design standardization, such as species richness.
Convergence of microclimate in residential landscapes across diverse cities in the United States
Sharon J. Hall; J. Learned; B. Ruddell; K.L. Larson; J. Cavender-Bares; N. Bettez; P.M. Groffman; Morgan Grove; J.B. Heffernan; S.E. Hobbie; J.L. Morse; C. Neill; K.C. Nelson; Jarlath O' Neil-Dunne; L. Ogden; D.E. Pataki; W.D. Pearse; C. Polsky; R. Roy Chowdhury; M.K. Steele; T.L.E. Trammell
2016-01-01
The urban heat island (UHI) is a well-documented pattern of warming in cities relative to rural areas. Most UHI research utilizes remote sensing methods at large scales, or climate sensors in single cities surrounded by standardized land cover. Relatively few studies have explored continental-scale climatic patterns within common urban microenvironments such as...
Macroecological patterns of phytoplankton in the northwestern North Atlantic Ocean.
Li, W K W
2002-09-12
Many issues in biological oceanography are regional or global in scope; however, there are not many data sets of extensive areal coverage for marine plankton. In microbial ecology, a fruitful approach to large-scale questions is comparative analysis wherein statistical data patterns are sought from different ecosystems, frequently assembled from unrelated studies. A more recent approach termed macroecology characterizes phenomena emerging from large numbers of biological units by emphasizing the shapes and boundaries of statistical distributions, because these reflect the constraints on variation. Here, I use a set of flow cytometric measurements to provide macroecological perspectives on North Atlantic phytoplankton communities. Distinct trends of abundance in picophytoplankton and both small and large nanophytoplankton underlaid two patterns. First, total abundance of the three groups was related to assemblage mean-cell size according to the 3/4 power law of allometric scaling in biology. Second, cytometric diversity (an ataxonomic measure of assemblage entropy) was maximal at intermediate levels of water column stratification. Here, intermediate disturbance shapes diversity through an equitable distribution of cells in size classes, from which arises a high overall biomass. By subsuming local fluctuations, macroecology reveals meaningful patterns of phytoplankton at large scales.
In this paper we develop a conceptual framework for selecting stressor data and anlyzing their relationship to geographic patterns of species richness at large spatial scales. Aspects of climate and topography, which are not stressors per se, have been most strongly linked with g...
Urban area thermal monitoring: Liepaja case study using satellite and aerial thermal data
NASA Astrophysics Data System (ADS)
Gulbe, Linda; Caune, Vairis; Korats, Gundars
2017-12-01
The aim of this study is to explore large (60 m/pixel) and small scale (individual building level) temperature distribution patterns from thermal remote sensing data and to conclude what kind of information could be extracted from thermal remote sensing on regular basis. Landsat program provides frequent large scale thermal images useful for analysis of city temperature patterns. During the study correlation between temperature patterns and vegetation content based on NDVI and building coverage based on OpenStreetMap data was studied. Landsat based temperature patterns were independent from the season, negatively correlated with vegetation content and positively correlated with building coverage. Small scale analysis included spatial and raster descriptor analysis for polygons corresponding to roofs of individual buildings for evaluating insulation of roofs. Remote sensing and spatial descriptors are poorly related to heat consumption data, however, thermal aerial data median and entropy can help to identify poorly insulated roofs. Automated quantitative roof analysis has high potential for acquiring city wide information about roof insulation, but quality is limited by reference data quality and information on building types, and roof materials would be crucial for further studies.
Linking crop yield anomalies to large-scale atmospheric circulation in Europe.
Ceglar, Andrej; Turco, Marco; Toreti, Andrea; Doblas-Reyes, Francisco J
2017-06-15
Understanding the effects of climate variability and extremes on crop growth and development represents a necessary step to assess the resilience of agricultural systems to changing climate conditions. This study investigates the links between the large-scale atmospheric circulation and crop yields in Europe, providing the basis to develop seasonal crop yield forecasting and thus enabling a more effective and dynamic adaptation to climate variability and change. Four dominant modes of large-scale atmospheric variability have been used: North Atlantic Oscillation, Eastern Atlantic, Scandinavian and Eastern Atlantic-Western Russia patterns. Large-scale atmospheric circulation explains on average 43% of inter-annual winter wheat yield variability, ranging between 20% and 70% across countries. As for grain maize, the average explained variability is 38%, ranging between 20% and 58%. Spatially, the skill of the developed statistical models strongly depends on the large-scale atmospheric variability impact on weather at the regional level, especially during the most sensitive growth stages of flowering and grain filling. Our results also suggest that preceding atmospheric conditions might provide an important source of predictability especially for maize yields in south-eastern Europe. Since the seasonal predictability of large-scale atmospheric patterns is generally higher than the one of surface weather variables (e.g. precipitation) in Europe, seasonal crop yield prediction could benefit from the integration of derived statistical models exploiting the dynamical seasonal forecast of large-scale atmospheric circulation.
Large-Scale Spatial Distribution Patterns of Gastropod Assemblages in Rocky Shores
Miloslavich, Patricia; Cruz-Motta, Juan José; Klein, Eduardo; Iken, Katrin; Weinberger, Vanessa; Konar, Brenda; Trott, Tom; Pohle, Gerhard; Bigatti, Gregorio; Benedetti-Cecchi, Lisandro; Shirayama, Yoshihisa; Mead, Angela; Palomo, Gabriela; Ortiz, Manuel; Gobin, Judith; Sardi, Adriana; Díaz, Juan Manuel; Knowlton, Ann; Wong, Melisa; Peralta, Ana C.
2013-01-01
Gastropod assemblages from nearshore rocky habitats were studied over large spatial scales to (1) describe broad-scale patterns in assemblage composition, including patterns by feeding modes, (2) identify latitudinal pattern of biodiversity, i.e., richness and abundance of gastropods and/or regional hotspots, and (3) identify potential environmental and anthropogenic drivers of these assemblages. Gastropods were sampled from 45 sites distributed within 12 Large Marine Ecosystem regions (LME) following the NaGISA (Natural Geography in Shore Areas) standard protocol (www.nagisa.coml.org). A total of 393 gastropod taxa from 87 families were collected. Eight of these families (9.2%) appeared in four or more different LMEs. Among these, the Littorinidae was the most widely distributed (8 LMEs) followed by the Trochidae and the Columbellidae (6 LMEs). In all regions, assemblages were dominated by few species, the most diverse and abundant of which were herbivores. No latitudinal gradients were evident in relation to species richness or densities among sampling sites. Highest diversity was found in the Mediterranean and in the Gulf of Alaska, while highest densities were found at different latitudes and represented by few species within one genus (e.g. Afrolittorina in the Agulhas Current, Littorina in the Scotian Shelf, and Lacuna in the Gulf of Alaska). No significant correlation was found between species composition and environmental variables (r≤0.355, p>0.05). Contributing variables to this low correlation included invasive species, inorganic pollution, SST anomalies, and chlorophyll-a anomalies. Despite data limitations in this study which restrict conclusions in a global context, this work represents the first effort to sample gastropod biodiversity on rocky shores using a standardized protocol across a wide scale. Our results will generate more work to build global databases allowing for large-scale diversity comparisons of rocky intertidal assemblages. PMID:23967204
A Multiscale Survival Process for Modeling Human Activity Patterns.
Zhang, Tianyang; Cui, Peng; Song, Chaoming; Zhu, Wenwu; Yang, Shiqiang
2016-01-01
Human activity plays a central role in understanding large-scale social dynamics. It is well documented that individual activity pattern follows bursty dynamics characterized by heavy-tailed interevent time distributions. Here we study a large-scale online chatting dataset consisting of 5,549,570 users, finding that individual activity pattern varies with timescales whereas existing models only approximate empirical observations within a limited timescale. We propose a novel approach that models the intensity rate of an individual triggering an activity. We demonstrate that the model precisely captures corresponding human dynamics across multiple timescales over five orders of magnitudes. Our model also allows extracting the population heterogeneity of activity patterns, characterized by a set of individual-specific ingredients. Integrating our approach with social interactions leads to a wide range of implications.
Cruz-Motta, Juan José; Miloslavich, Patricia; Palomo, Gabriela; Iken, Katrin; Konar, Brenda; Pohle, Gerhard; Trott, Tom; Benedetti-Cecchi, Lisandro; Herrera, César; Hernández, Alejandra; Sardi, Adriana; Bueno, Andrea; Castillo, Julio; Klein, Eduardo; Guerra-Castro, Edlin; Gobin, Judith; Gómez, Diana Isabel; Riosmena-Rodríguez, Rafael; Mead, Angela; Bigatti, Gregorio; Knowlton, Ann; Shirayama, Yoshihisa
2010-01-01
Assemblages associated with intertidal rocky shores were examined for large scale distribution patterns with specific emphasis on identifying latitudinal trends of species richness and taxonomic distinctiveness. Seventy-two sites distributed around the globe were evaluated following the standardized sampling protocol of the Census of Marine Life NaGISA project (www.nagisa.coml.org). There were no clear patterns of standardized estimators of species richness along latitudinal gradients or among Large Marine Ecosystems (LMEs); however, a strong latitudinal gradient in taxonomic composition (i.e., proportion of different taxonomic groups in a given sample) was observed. Environmental variables related to natural influences were strongly related to the distribution patterns of the assemblages on the LME scale, particularly photoperiod, sea surface temperature (SST) and rainfall. In contrast, no environmental variables directly associated with human influences (with the exception of the inorganic pollution index) were related to assemblage patterns among LMEs. Correlations of the natural assemblages with either latitudinal gradients or environmental variables were equally strong suggesting that neither neutral models nor models based solely on environmental variables sufficiently explain spatial variation of these assemblages at a global scale. Despite the data shortcomings in this study (e.g., unbalanced sample distribution), we show the importance of generating biological global databases for the use in large-scale diversity comparisons of rocky intertidal assemblages to stimulate continued sampling and analyses. PMID:21179546
NASA Astrophysics Data System (ADS)
Loikith, P. C.; Broccoli, A. J.; Waliser, D. E.; Lintner, B. R.; Neelin, J. D.
2015-12-01
Anomalous large-scale circulation patterns often play a key role in the occurrence of temperature extremes. For example, large-scale circulation can drive horizontal temperature advection or influence local processes that lead to extreme temperatures, such as by inhibiting moderating sea breezes, promoting downslope adiabatic warming, and affecting the development of cloud cover. Additionally, large-scale circulation can influence the shape of temperature distribution tails, with important implications for the magnitude of future changes in extremes. As a result of the prominent role these patterns play in the occurrence and character of extremes, the way in which temperature extremes change in the future will be highly influenced by if and how these patterns change. It is therefore critical to identify and understand the key patterns associated with extremes at local to regional scales in the current climate and to use this foundation as a target for climate model validation. This presentation provides an overview of recent and ongoing work aimed at developing and applying novel approaches to identifying and describing the large-scale circulation patterns associated with temperature extremes in observations and using this foundation to evaluate state-of-the-art global and regional climate models. Emphasis is given to anomalies in sea level pressure and 500 hPa geopotential height over North America using several methods to identify circulation patterns, including self-organizing maps and composite analysis. Overall, evaluation results suggest that models are able to reproduce observed patterns associated with temperature extremes with reasonable fidelity in many cases. Model skill is often highest when and where synoptic-scale processes are the dominant mechanisms for extremes, and lower where sub-grid scale processes (such as those related to topography) are important. Where model skill in reproducing these patterns is high, it can be inferred that extremes are being simulated for plausible physical reasons, boosting confidence in future projections of temperature extremes. Conversely, where model skill is identified to be lower, caution should be exercised in interpreting future projections.
Identifying the scale-dependent motifs in atmospheric surface layer by ordinal pattern analysis
NASA Astrophysics Data System (ADS)
Li, Qinglei; Fu, Zuntao
2018-07-01
Ramp-like structures in various atmospheric surface layer time series have been long studied, but the presence of motifs with the finer scale embedded within larger scale ramp-like structures has largely been overlooked in the reported literature. Here a novel, objective and well-adapted methodology, the ordinal pattern analysis, is adopted to study the finer-scaled motifs in atmospheric boundary-layer (ABL) time series. The studies show that the motifs represented by different ordinal patterns take clustering properties and 6 dominated motifs out of the whole 24 motifs account for about 45% of the time series under particular scales, which indicates the higher contribution of motifs with the finer scale to the series. Further studies indicate that motif statistics are similar for both stable conditions and unstable conditions at larger scales, but large discrepancies are found at smaller scales, and the frequencies of motifs "1234" and/or "4321" are a bit higher under stable conditions than unstable conditions. Under stable conditions, there are great changes for the occurrence frequencies of motifs "1234" and "4321", where the occurrence frequencies of motif "1234" decrease from nearly 24% to 4.5% with the scale factor increasing, and the occurrence frequencies of motif "4321" change nonlinearly with the scale increasing. These great differences of dominated motifs change with scale can be taken as an indicator to quantify the flow structure changes under different stability conditions, and motif entropy can be defined just by only 6 dominated motifs to quantify this time-scale independent property of the motifs. All these results suggest that the defined scale of motifs with the finer scale should be carefully taken into consideration in the interpretation of turbulence coherent structures.
CROSS-SCALE CORRELATIONS AND THE DESIGN AND ANALYSIS OF AVIAN HABITAT SELECTION STUDIES
It has long been suggested that birds select habitat hierarchically, progressing from coarser to finer spatial scales. This hypothesis, in conjunction with the realization that many organisms likely respond to environmental patterns at multiple spatial scales, has led to a large ...
NASA Astrophysics Data System (ADS)
Kashid, Satishkumar S.; Maity, Rajib
2012-08-01
SummaryPrediction of Indian Summer Monsoon Rainfall (ISMR) is of vital importance for Indian economy, and it has been remained a great challenge for hydro-meteorologists due to inherent complexities in the climatic systems. The Large-scale atmospheric circulation patterns from tropical Pacific Ocean (ENSO) and those from tropical Indian Ocean (EQUINOO) are established to influence the Indian Summer Monsoon Rainfall. The information of these two large scale atmospheric circulation patterns in terms of their indices is used to model the complex relationship between Indian Summer Monsoon Rainfall and the ENSO as well as EQUINOO indices. However, extracting the signal from such large-scale indices for modeling such complex systems is significantly difficult. Rainfall predictions have been done for 'All India' as one unit, as well as for five 'homogeneous monsoon regions of India', defined by Indian Institute of Tropical Meteorology. Recent 'Artificial Intelligence' tool 'Genetic Programming' (GP) has been employed for modeling such problem. The Genetic Programming approach is found to capture the complex relationship between the monthly Indian Summer Monsoon Rainfall and large scale atmospheric circulation pattern indices - ENSO and EQUINOO. Research findings of this study indicate that GP-derived monthly rainfall forecasting models, that use large-scale atmospheric circulation information are successful in prediction of All India Summer Monsoon Rainfall with correlation coefficient as good as 0.866, which may appears attractive for such a complex system. A separate analysis is carried out for All India Summer Monsoon rainfall for India as one unit, and five homogeneous monsoon regions, based on ENSO and EQUINOO indices of months of March, April and May only, performed at end of month of May. In this case, All India Summer Monsoon Rainfall could be predicted with 0.70 as correlation coefficient with somewhat lesser Correlation Coefficient (C.C.) values for different 'homogeneous monsoon regions'.
Argentina, Jane E.; Angermeier, Paul L.; Hallerman, Eric M.; Welsh, Stuart A.
2018-01-01
Connectivity among stream fish populations allows for exchange of genetic material and helps maintain genetic diversity, adaptive potential and population stability over time. Changes in species demographics and population connectivity have the potential to permanently alter the genetic patterns of stream fish, although these changes through space and time are variable and understudied in small‐bodied freshwater fish.As a spatially widespread, common species of benthic freshwater fish, the variegate darter (Etheostoma variatum) is a model species for documenting how patterns of genetic structure and diversity respond to increasing isolation due to large dams and how scale of study may shape our understanding of these patterns. We sampled variegate darters from 34 sites across their range in the North American Ohio River basin and examined how patterns of genetic structure and diversity within and between populations responded to historical population changes and dams within and between populations.Spatial scale and configuration of genetic structure varied across the eight identified populations, from tributaries within a watershed, to a single watershed, to multiple watersheds that encompass Ohio River mainstem habitats. This multiwatershed pattern of population structuring suggests genetic dispersal across large distances was and may continue to be common, although some populations remain isolated despite no apparent structural dispersal barriers. Populations with low effective population sizes and evidence of past population bottlenecks showed low allelic richness, but diversity patterns were not related to watershed size, a surrogate for habitat availability. Pairwise genetic differentiation (FST) increased with fluvial distance and was related to both historic and contemporary processes. Genetic diversity changes were influenced by underlying population size and stability, and while instream barriers were not strong determinants of genetic structuring or loss of genetic diversity, they reduce population connectivity and may impact long‐term population persistence.The broad spatial scale of this study demonstrated the large spatial extent of some variegate darter populations and indicated that dispersal is more extensive than expected given the movement patterns typically observed for small‐bodied, benthic fish. Dam impacts depended on underlying population size and stability, with larger populations more resilient to genetic drift and allelic richness loss than smaller populations.Other darters that inhabit large river habitats may show similar patterns in landscape‐scale studies, and large river barriers may impact populations of small‐bodied fish more than previously expected. Estimation of dispersal rates and behaviours is critical to conservation of imperilled riverine species such as darters.
Synoptic-scale circulation patterns during summer derived from tree rings in mid-latitude Asia
NASA Astrophysics Data System (ADS)
Seim, Andrea; Schultz, Johannes A.; Leland, Caroline; Davi, Nicole; Byambasuren, Oyunsanaa; Liang, Eryuan; Wang, Xiaochun; Beck, Christoph; Linderholm, Hans W.; Pederson, Neil
2017-09-01
Understanding past and recent climate and atmospheric circulation variability is vital for regions that are affected by climate extremes. In mid-latitude Asia, however, the synoptic climatology is complex and not yet fully understood. The aim of this study was to investigate dominant synoptic-scale circulation patterns during the summer season using a multi-species tree-ring width (TRW) network comprising 78 sites from mid-latitude Asia. For each TRW chronology, we calculated an atmospheric circulation tree-ring index (ACTI), based on 1000 hPa geopotential height data, to directly link tree growth to 13 summertime weather types and their associated local climate conditions for the period 1871-1993. Using the ACTI, three groups of similarly responding tree-ring sites can be associated with distinct large-scale atmospheric circulation patterns: 1. growth of drought sensitive trees is positively affected by a cyclone over northern Russia; 2. temperature sensitive trees show positive associations to a cyclone over northwestern Russia and an anticyclone over Mongolia; 3. trees at two high elevation sites show positive relations to a zonal cyclone extending from mid-latitude Eurasia to the West Pacific. The identified synoptic-scale circulation patterns showed spatiotemporal variability in their intensity and position, causing temporally varying climate conditions in mid-latitude Asia. Our results highlight that for regions with less pronounced atmospheric action centers during summer such as the occurrence of large-scale cyclones and anticyclones, synoptic-scale circulation patterns can be extracted and linked to the Northern Hemisphere circulation system. Thus, we provide a new and solid envelope for climate studies covering the past to the future.
Large-Scale Diversity of Slope Fishes: Pattern Inconsistency between Multiple Diversity Indices
Gaertner, Jean-Claude; Colloca, Francesco; Politou, Chrissi-Yianna; Gil De Sola, Luis; Bertrand, Jacques A.; Murenu, Matteo; Durbec, Jean-Pierre; Kallianiotis, Argyris; Mannini, Alessandro
2013-01-01
Large-scale studies focused on the diversity of continental slope ecosystems are still rare, usually restricted to a limited number of diversity indices and mainly based on the empirical comparison of heterogeneous local data sets. In contrast, we investigate large-scale fish diversity on the basis of multiple diversity indices and using 1454 standardized trawl hauls collected throughout the upper and middle slope of the whole northern Mediterranean Sea (36°3′- 45°7′ N; 5°3′W - 28°E). We have analyzed (1) the empirical relationships between a set of 11 diversity indices in order to assess their degree of complementarity/redundancy and (2) the consistency of spatial patterns exhibited by each of the complementary groups of indices. Regarding species richness, our results contrasted both the traditional view based on the hump-shaped theory for bathymetric pattern and the commonly-admitted hypothesis of a large-scale decreasing trend correlated with a similar gradient of primary production in the Mediterranean Sea. More generally, we found that the components of slope fish diversity we analyzed did not always show a consistent pattern of distribution according either to depth or to spatial areas, suggesting that they are not driven by the same factors. These results, which stress the need to extend the number of indices traditionally considered in diversity monitoring networks, could provide a basis for rethinking not only the methodological approach used in monitoring systems, but also the definition of priority zones for protection. Finally, our results call into question the feasibility of properly investigating large-scale diversity patterns using a widespread approach in ecology, which is based on the compilation of pre-existing heterogeneous and disparate data sets, in particular when focusing on indices that are very sensitive to sampling design standardization, such as species richness. PMID:23843962
NASA Astrophysics Data System (ADS)
Rimbu, Norel; Ionita, Monica; Swierczynski, Tina; Brauer, Achim; Kämpf, Lucas; Czymzik, Markus
2017-04-01
Flood triggered detrital layers in varved sediments of Lake Mondsee, located at the northern fringe of the European Alps (47°48'N,13°23'E), provide an important archive of regional hydroclimatic variability during the mid- to late Holocene. To improve the interpretation of the flood layer record in terms of large-scale climate variability, we investigate the relationships between observational hydrological records from the region, like the Mondsee lake level, the runoff of the lake's main inflow Griesler Ache, with observed precipitation and global climate patterns. The lake level shows a strong positive linear trend during the observational period in all seasons. Additionally, lake level presents important interannual to multidecadal variations. These variations are associated with distinct seasonal atmospheric circulation patterns. A pronounced anomalous anticyclonic center over the Iberian Peninsula is associated with high lake levels values during winter. This center moves southwestward during spring, summer and autumn. In the same time, a cyclonic anomaly center is recorded over central and western Europe. This anomalous circulation extends southwestward from winter to autumn. Similar atmospheric circulation patterns are associated with river runoff and precipitation variability from the region. High lake levels are associated with positive local precipitation anomalies in all seasons as well as with negative local temperature anomalies during spring, summer and autumn. A correlation analysis reveals that lake level, runoff and precipitation variability is related to large-scale sea surface temperature anomaly patterns in all seasons suggesting a possible impact of large-scale climatic modes, like the North Atlantic Oscillation and Atlantic Multidecadal Oscillation on hydroclimatic variability in the Lake Mondsee region. The results presented in this study can be used for a more robust interpretation of the long flood layer record from Lake Mondsee sediments in terms of regional and large-scale climate variability during the past.
Turbulent Superstructures in Rayleigh-Bénard convection at different Prandtl number
NASA Astrophysics Data System (ADS)
Schumacher, Jörg; Pandey, Ambrish; Ender, Martin; Westermann, Rüdiger; Scheel, Janet D.
2017-11-01
Large-scale patterns of the temperature and velocity field in horizontally extended cells can be considered as turbulent superstructures in Rayleigh-Bénard convection (RBC). These structures are obtained once the turbulent fluctuations are removed by a finite-time average. Their existence has been reported for example in Bailon-Cuba et al.. This large-scale order obeys a strong similarity with the well-studied patterns from the weakly nonlinear regime at lower Rayleigh number in RBC. In the present work we analyze the superstructures of RBC at different Prandtl number for Prandtl values between Pr = 0.005 for liquid sodium and 7 for water. The characteristic evolution time scales, the typical spatial extension of the rolls and the properties of the defects of the resulting superstructure patterns are analyzed. Data are obtained from well-resolved spectral element direct numerical simulations. The work is supported by the Priority Programme SPP 1881 of the Deutsche Forschungsgemeinschaft.
Extracellular matrix motion and early morphogenesis
Loganathan, Rajprasad; Rongish, Brenda J.; Smith, Christopher M.; Filla, Michael B.; Czirok, Andras; Bénazéraf, Bertrand
2016-01-01
For over a century, embryologists who studied cellular motion in early amniotes generally assumed that morphogenetic movement reflected migration relative to a static extracellular matrix (ECM) scaffold. However, as we discuss in this Review, recent investigations reveal that the ECM is also moving during morphogenesis. Time-lapse studies show how convective tissue displacement patterns, as visualized by ECM markers, contribute to morphogenesis and organogenesis. Computational image analysis distinguishes between cell-autonomous (active) displacements and convection caused by large-scale (composite) tissue movements. Modern quantification of large-scale ‘total’ cellular motion and the accompanying ECM motion in the embryo demonstrates that a dynamic ECM is required for generation of the emergent motion patterns that drive amniote morphogenesis. PMID:27302396
Pattern formation in individual-based systems with time-varying parameters
NASA Astrophysics Data System (ADS)
Ashcroft, Peter; Galla, Tobias
2013-12-01
We study the patterns generated in finite-time sweeps across symmetry-breaking bifurcations in individual-based models. Similar to the well-known Kibble-Zurek scenario of defect formation, large-scale patterns are generated when model parameters are varied slowly, whereas fast sweeps produce a large number of small domains. The symmetry breaking is triggered by intrinsic noise, originating from the discrete dynamics at the microlevel. Based on a linear-noise approximation, we calculate the characteristic length scale of these patterns. We demonstrate the applicability of this approach in a simple model of opinion dynamics, a model in evolutionary game theory with a time-dependent fitness structure, and a model of cell differentiation. Our theoretical estimates are confirmed in simulations. In further numerical work, we observe a similar phenomenon when the symmetry-breaking bifurcation is triggered by population growth.
Large-Scale Meteorological Patterns Associated with Extreme Precipitation in the US Northeast
NASA Astrophysics Data System (ADS)
Agel, L. A.; Barlow, M. A.
2016-12-01
Patterns of daily large-scale circulation associated with Northeast US extreme precipitation are identified using both k-means clustering (KMC) and Self-Organizing Maps (SOM) applied to tropopause height. Tropopause height provides a compact representation of large-scale circulation patterns, as it is linked to mid-level circulation, low-level thermal contrasts and low-level diabatic heating. Extreme precipitation is defined as the top 1% of daily wet-day observations at 35 Northeast stations, 1979-2008. KMC is applied on extreme precipitation days only, while the SOM algorithm is applied to all days in order to place the extreme results into a larger context. Six tropopause patterns are identified on extreme days: a summertime tropopause ridge, a summertime shallow trough/ridge, a summertime shallow eastern US trough, a deeper wintertime eastern US trough, and two versions of a deep cold-weather trough located across the east-central US. Thirty SOM patterns for all days are identified. Results for all days show that 6 SOM patterns account for almost half of the extreme days, although extreme precipitation occurs in all SOM patterns. The same SOM patterns associated with extreme precipitation also routinely produce non-extreme precipitation; however, on extreme precipitation days the troughs, on average, are deeper and the downstream ridges more pronounced. Analysis of other fields associated with the large-scale patterns show various degrees of anomalously strong upward motion during, and moisture transport preceding, extreme precipitation events.
Kinematic dynamo action in square and hexagonal patterns.
Favier, B; Proctor, M R E
2013-11-01
We consider kinematic dynamo action in rapidly rotating Boussinesq convection just above onset. The velocity is constrained to have either a square or a hexagonal pattern. For the square pattern, large-scale dynamo action is observed at onset, with most of the magnetic energy being contained in the horizontally averaged component. As the magnetic Reynolds number increases, small-scale dynamo action becomes possible, reducing the overall growth rate of the dynamo. For the hexagonal pattern, the breaking of symmetry between up and down flows results in an effective pumping velocity. For intermediate rotation rates, this additional effect can prevent the growth of any mean-field dynamo, so that only a small-scale dynamo is eventually possible at large enough magnetic Reynolds number. For very large rotation rates, this pumping term becomes negligible, and the dynamo properties of square and hexagonal patterns are qualitatively similar. These results hold for both perfectly conducting and infinite magnetic permeability boundary conditions.
Nematode Spatial and Ecological Patterns from Tropical and Temperate Rainforests
Porazinska, Dorota L.; Giblin-Davis, Robin M.; Powers, Thomas O.; Thomas, W. Kelley
2012-01-01
Large scale diversity patterns are well established for terrestrial macrobiota (e.g. plants and vertebrates), but not for microscopic organisms (e.g. nematodes). Due to small size, high abundance, and extensive dispersal, microbiota are assumed to exhibit cosmopolitan distributions with no biogeographical patterns. This assumption has been extrapolated from local spatial scale studies of a few taxonomic groups utilizing morphological approaches. Recent molecularly-based studies, however, suggest something quite opposite. Nematodes are the most abundant metazoans on earth, but their diversity patterns are largely unknown. We conducted a survey of nematode diversity within three vertical strata (soil, litter, and canopy) of rainforests at two contrasting latitudes in the North American meridian (temperate: the Olympic National Forest, WA, U.S.A and tropical: La Selva Biological Station, Costa Rica) using standardized sampling designs and sample processing protocols. To describe nematode diversity, we applied an ecometagenetic approach using 454 pyrosequencing. We observed that: 1) nematode communities were unique without even a single common species between the two rainforests, 2) nematode communities were unique among habitats in both rainforests, 3) total species richness was 300% more in the tropical than in the temperate rainforest, 4) 80% of the species in the temperate rainforest resided in the soil, whereas only 20% in the tropics, 5) more than 90% of identified species were novel. Overall, our data provided no support for cosmopolitanism at both local (habitats) and large (rainforests) spatial scales. In addition, our data indicated that biogeographical patterns typical of macrobiota also exist for microbiota. PMID:22984536
Yitbarek, Senay; Vandermeer, John H; Allen, David
2011-10-01
Spatial patterns observed in ecosystems have traditionally been attributed to exogenous processes. Recently, ecologists have found that endogenous processes also have the potential to create spatial patterns. Yet, relatively few studies have attempted to examine the combined effects of exogenous and endogenous processes on the distribution of organisms across spatial and temporal scales. Here we aim to do this, by investigating whether spatial patterns of under-story tree species at a large spatial scale (18 ha) influences the spatial patterns of ground foraging ant species at a much smaller spatial scale (20 m by 20 m). At the regional scale, exogenous processes (under-story tree community) had a strong effect on the spatial patterns in the ground-foraging ant community. We found significantly more Camponotus noveboracensis, Formica subsericae, and Lasius alienus species in black cherry (Prunis serotine Ehrh.) habitats. In witch-hazel (Hamamelis virginiana L.) habitats, we similarly found significantly more Myrmica americana, Formica fusca, and Formica subsericae. At smaller spatial scales, we observed the emergence of mosaic ant patches changing rapidly in space and time. Our study reveals that spatial patterns are the result of both exogenous and endogenous forces, operating at distinct scales.
Infraslow Electroencephalographic and Dynamic Resting State Network Activity.
Grooms, Joshua K; Thompson, Garth J; Pan, Wen-Ju; Billings, Jacob; Schumacher, Eric H; Epstein, Charles M; Keilholz, Shella D
2017-06-01
A number of studies have linked the blood oxygenation level dependent (BOLD) signal to electroencephalographic (EEG) signals in traditional frequency bands (δ, θ, α, β, and γ), but the relationship between BOLD and its direct frequency correlates in the infraslow band (<1 Hz) has been little studied. Previously, work in rodents showed that infraslow local field potentials play a role in functional connectivity, particularly in the dynamic organization of large-scale networks. To examine the relationship between infraslow activity and network dynamics in humans, direct current (DC) EEG and resting state magnetic resonance imaging data were acquired simultaneously. The DC EEG signals were correlated with the BOLD signal in patterns that resembled resting state networks. Subsequent dynamic analysis showed that the correlation between DC EEG and the BOLD signal varied substantially over time, even within individual subjects. The variation in DC EEG appears to reflect the time-varying contribution of different resting state networks. Furthermore, some of the patterns of DC EEG and BOLD correlation are consistent with previous work demonstrating quasiperiodic spatiotemporal patterns of large-scale network activity in resting state. These findings demonstrate that infraslow electrical activity is linked to BOLD fluctuations in humans and that it may provide a basis for large-scale organization comparable to that observed in animal studies.
Infraslow Electroencephalographic and Dynamic Resting State Network Activity
Grooms, Joshua K.; Thompson, Garth J.; Pan, Wen-Ju; Billings, Jacob; Schumacher, Eric H.; Epstein, Charles M.
2017-01-01
Abstract A number of studies have linked the blood oxygenation level dependent (BOLD) signal to electroencephalographic (EEG) signals in traditional frequency bands (δ, θ, α, β, and γ), but the relationship between BOLD and its direct frequency correlates in the infraslow band (<1 Hz) has been little studied. Previously, work in rodents showed that infraslow local field potentials play a role in functional connectivity, particularly in the dynamic organization of large-scale networks. To examine the relationship between infraslow activity and network dynamics in humans, direct current (DC) EEG and resting state magnetic resonance imaging data were acquired simultaneously. The DC EEG signals were correlated with the BOLD signal in patterns that resembled resting state networks. Subsequent dynamic analysis showed that the correlation between DC EEG and the BOLD signal varied substantially over time, even within individual subjects. The variation in DC EEG appears to reflect the time-varying contribution of different resting state networks. Furthermore, some of the patterns of DC EEG and BOLD correlation are consistent with previous work demonstrating quasiperiodic spatiotemporal patterns of large-scale network activity in resting state. These findings demonstrate that infraslow electrical activity is linked to BOLD fluctuations in humans and that it may provide a basis for large-scale organization comparable to that observed in animal studies. PMID:28462586
Fault Tolerant Frequent Pattern Mining
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shohdy, Sameh; Vishnu, Abhinav; Agrawal, Gagan
FP-Growth algorithm is a Frequent Pattern Mining (FPM) algorithm that has been extensively used to study correlations and patterns in large scale datasets. While several researchers have designed distributed memory FP-Growth algorithms, it is pivotal to consider fault tolerant FP-Growth, which can address the increasing fault rates in large scale systems. In this work, we propose a novel parallel, algorithm-level fault-tolerant FP-Growth algorithm. We leverage algorithmic properties and MPI advanced features to guarantee an O(1) space complexity, achieved by using the dataset memory space itself for checkpointing. We also propose a recovery algorithm that can use in-memory and disk-based checkpointing,more » though in many cases the recovery can be completed without any disk access, and incurring no memory overhead for checkpointing. We evaluate our FT algorithm on a large scale InfiniBand cluster with several large datasets using up to 2K cores. Our evaluation demonstrates excellent efficiency for checkpointing and recovery in comparison to the disk-based approach. We have also observed 20x average speed-up in comparison to Spark, establishing that a well designed algorithm can easily outperform a solution based on a general fault-tolerant programming model.« less
A Cross-Cultural Comparison of Student Learning Patterns in Higher Education
ERIC Educational Resources Information Center
Marambe, Kosala N.; Vermunt, Jan D.; Boshuizen, Henny P. A.
2012-01-01
The aim of this study was to compare student learning patterns in higher education across different cultures. A meta-analysis was performed on three large-scale studies that had used the same research instrument: the Inventory of learning Styles (ILS). The studies were conducted in the two Asian countries Sri Lanka and Indonesia and the European…
Yurk, Brian P
2018-07-01
Animal movement behaviors vary spatially in response to environmental heterogeneity. An important problem in spatial ecology is to determine how large-scale population growth and dispersal patterns emerge within highly variable landscapes. We apply the method of homogenization to study the large-scale behavior of a reaction-diffusion-advection model of population growth and dispersal. Our model includes small-scale variation in the directed and random components of movement and growth rates, as well as large-scale drift. Using the homogenized model we derive simple approximate formulas for persistence conditions and asymptotic invasion speeds, which are interpreted in terms of residence index. The homogenization results show good agreement with numerical solutions for environments with a high degree of fragmentation, both with and without periodicity at the fast scale. The simplicity of the formulas, and their connection to residence index make them appealing for studying the large-scale effects of a variety of small-scale movement behaviors.
Linkages between large-scale climate patterns and the dynamics of Alaskan caribou populations
Kyle Joly; David R. Klein; David L. Verbyla; T. Scott Rupp; F. Stuart Chapin
2011-01-01
Recent research has linked climate warming to global declines in caribou and reindeer (both Rangifer tarandus) populations. We hypothesize large-scale climate patterns are a contributing factor explaining why these declines are not universal. To test our hypothesis for such relationships among Alaska caribou herds, we calculated the population growth...
Pattern-based, multi-scale segmentation and regionalization of EOSD land cover
NASA Astrophysics Data System (ADS)
Niesterowicz, Jacek; Stepinski, Tomasz F.
2017-10-01
The Earth Observation for Sustainable Development of Forests (EOSD) map is a 25 m resolution thematic map of Canadian forests. Because of its large spatial extent and relatively high resolution the EOSD is difficult to analyze using standard GIS methods. In this paper we propose multi-scale segmentation and regionalization of EOSD as new methods for analyzing EOSD on large spatial scales. Segments, which we refer to as forest land units (FLUs), are delineated as tracts of forest characterized by cohesive patterns of EOSD categories; we delineated from 727 to 91,885 FLUs within the spatial extent of EOSD depending on the selected scale of a pattern. Pattern of EOSD's categories within each FLU is described by 1037 landscape metrics. A shapefile containing boundaries of all FLUs together with an attribute table listing landscape metrics make up an SQL-searchable spatial database providing detailed information on composition and pattern of land cover types in Canadian forest. Shapefile format and extensive attribute table pertaining to the entire legend of EOSD are designed to facilitate broad range of investigations in which assessment of composition and pattern of forest over large areas is needed. We calculated four such databases using different spatial scales of pattern. We illustrate the use of FLU database for producing forest regionalization maps of two Canadian provinces, Quebec and Ontario. Such maps capture the broad scale variability of forest at the spatial scale of the entire province. We also demonstrate how FLU database can be used to map variability of landscape metrics, and thus the character of landscape, over the entire Canada.
NASA Astrophysics Data System (ADS)
Barberis, Lucas; Peruani, Fernando
2016-12-01
We study a minimal cognitive flocking model, which assumes that the moving entities navigate using the available instantaneous visual information exclusively. The model consists of active particles, with no memory, that interact by a short-ranged, position-based, attractive force, which acts inside a vision cone (VC), and lack velocity-velocity alignment. We show that this active system can exhibit—due to the VC that breaks Newton's third law—various complex, large-scale, self-organized patterns. Depending on parameter values, we observe the emergence of aggregates or millinglike patterns, the formation of moving—locally polar—files with particles at the front of these structures acting as effective leaders, and the self-organization of particles into macroscopic nematic structures leading to long-ranged nematic order. Combining simulations and nonlinear field equations, we show that position-based active models, as the one analyzed here, represent a new class of active systems fundamentally different from other active systems, including velocity-alignment-based flocking systems. The reported results are of prime importance in the study, interpretation, and modeling of collective motion patterns in living and nonliving active systems.
Barberis, Lucas; Peruani, Fernando
2016-12-09
We study a minimal cognitive flocking model, which assumes that the moving entities navigate using the available instantaneous visual information exclusively. The model consists of active particles, with no memory, that interact by a short-ranged, position-based, attractive force, which acts inside a vision cone (VC), and lack velocity-velocity alignment. We show that this active system can exhibit-due to the VC that breaks Newton's third law-various complex, large-scale, self-organized patterns. Depending on parameter values, we observe the emergence of aggregates or millinglike patterns, the formation of moving-locally polar-files with particles at the front of these structures acting as effective leaders, and the self-organization of particles into macroscopic nematic structures leading to long-ranged nematic order. Combining simulations and nonlinear field equations, we show that position-based active models, as the one analyzed here, represent a new class of active systems fundamentally different from other active systems, including velocity-alignment-based flocking systems. The reported results are of prime importance in the study, interpretation, and modeling of collective motion patterns in living and nonliving active systems.
SCALE PROBLEMS IN REPORTING LANDSCAPE PATTERN AT THE REGIONAL SCALE
Remotely sensed data for Southeastern United States (Standard Federal Region 4) are used to examine the scale problems involved in reporting landscape pattern for a large, heterogeneous region. Frequency distributions of landscape indices illustrate problems associated with the g...
Application of hierarchical clustering method to classify of space-time rainfall patterns
NASA Astrophysics Data System (ADS)
Yu, Hwa-Lung; Chang, Tu-Je
2010-05-01
Understanding the local precipitation patterns is essential to the water resources management and flooding mitigation. The precipitation patterns can vary in space and time depending upon the factors from different spatial scales such as local topological changes and macroscopic atmospheric circulation. The spatiotemporal variation of precipitation in Taiwan is significant due to its complex terrain and its location at west pacific and subtropical area, where is the boundary between the pacific ocean and Asia continent with the complex interactions among the climatic processes. This study characterizes local-scale precipitation patterns by classifying the historical space-time precipitation records. We applied the hierarchical ascending clustering method to analyze the precipitation records from 1960 to 2008 at the six rainfall stations located in Lan-yang catchment at the northeast of the island. Our results identify the four primary space-time precipitation types which may result from distinct driving forces from the changes of atmospheric variables and topology at different space-time scales. This study also presents an important application of the statistical downscaling to combine large-scale upper-air circulation with local space-time precipitation patterns.
Extracellular matrix motion and early morphogenesis.
Loganathan, Rajprasad; Rongish, Brenda J; Smith, Christopher M; Filla, Michael B; Czirok, Andras; Bénazéraf, Bertrand; Little, Charles D
2016-06-15
For over a century, embryologists who studied cellular motion in early amniotes generally assumed that morphogenetic movement reflected migration relative to a static extracellular matrix (ECM) scaffold. However, as we discuss in this Review, recent investigations reveal that the ECM is also moving during morphogenesis. Time-lapse studies show how convective tissue displacement patterns, as visualized by ECM markers, contribute to morphogenesis and organogenesis. Computational image analysis distinguishes between cell-autonomous (active) displacements and convection caused by large-scale (composite) tissue movements. Modern quantification of large-scale 'total' cellular motion and the accompanying ECM motion in the embryo demonstrates that a dynamic ECM is required for generation of the emergent motion patterns that drive amniote morphogenesis. © 2016. Published by The Company of Biologists Ltd.
Density dependence, spatial scale and patterning in sessile biota.
Gascoigne, Joanna C; Beadman, Helen A; Saurel, Camille; Kaiser, Michel J
2005-09-01
Sessile biota can compete with or facilitate each other, and the interaction of facilitation and competition at different spatial scales is key to developing spatial patchiness and patterning. We examined density and scale dependence in a patterned, soft sediment mussel bed. We followed mussel growth and density at two spatial scales separated by four orders of magnitude. In summer, competition was important at both scales. In winter, there was net facilitation at the small scale with no evidence of density dependence at the large scale. The mechanism for facilitation is probably density dependent protection from wave dislodgement. Intraspecific interactions in soft sediment mussel beds thus vary both temporally and spatially. Our data support the idea that pattern formation in ecological systems arises from competition at large scales and facilitation at smaller scales, so far only shown in vegetation systems. The data, and a simple, heuristic model, also suggest that facilitative interactions in sessile biota are mediated by physical stress, and that interactions change in strength and sign along a spatial or temporal gradient of physical stress.
Extreme Temperature Regimes during the Cool Season and their Associated Large-Scale Circulations
NASA Astrophysics Data System (ADS)
Xie, Z.
2015-12-01
In the cool season (November-March), extreme temperature events (ETEs) always hit the continental United States (US) and provide significant societal impacts. According to the anomalous amplitudes of the surface air temperature (SAT), there are two typical types of ETEs, e.g. cold waves (CWs) and warm waves (WWs). This study used cluster analysis to categorize both CWs and WWs into four distinct regimes respectively and investigated their associated large-scale circulations on intra-seasonal time scale. Most of the CW regimes have large areal impact over the continental US. However, the distribution of cold SAT anomalies varies apparently in four regimes. In the sea level, the four CW regimes are characterized by anomalous high pressure over North America (near and to west of cold anomaly) with different extension and orientation. As a result, anomalous northerlies along east flank of anomalous high pressure convey cold air into the continental US. To the middle troposphere, the leading two groups feature large-scale and zonally-elongated circulation anomaly pattern, while the other two regimes exhibit synoptic wavetrain pattern with meridionally elongated features. As for the WW regimes, there are some patterns symmetry and anti-symmetry with respect to CW regimes. The WW regimes are characterized by anomalous low pressure and southerlies wind over North America. The first and fourth groups are affected by remote forcing emanating from North Pacific, while the others appear mainly locally forced.
Patterns of resting state connectivity in human primary visual cortical areas: a 7T fMRI study.
Raemaekers, Mathijs; Schellekens, Wouter; van Wezel, Richard J A; Petridou, Natalia; Kristo, Gert; Ramsey, Nick F
2014-01-01
The nature and origin of fMRI resting state fluctuations and connectivity are still not fully known. More detailed knowledge on the relationship between resting state patterns and brain function may help to elucidate this matter. We therefore performed an in depth study of how resting state fluctuations map to the well known architecture of the visual system. We investigated resting state connectivity at both a fine and large scale within and across visual areas V1, V2 and V3 in ten human subjects using a 7Tesla scanner. We found evidence for several coexisting and overlapping connectivity structures at different spatial scales. At the fine-scale level we found enhanced connectivity between the same topographic locations in the fieldmaps of V1, V2 and V3, enhanced connectivity to the contralateral functional homologue, and to a lesser extent enhanced connectivity between iso-eccentric locations within the same visual area. However, by far the largest proportion of the resting state fluctuations occurred within large-scale bilateral networks. These large-scale networks mapped to some extent onto the architecture of the visual system and could thereby obscure fine-scale connectivity. In fact, most of the fine-scale connectivity only became apparent after the large-scale network fluctuations were filtered from the timeseries. We conclude that fMRI resting state fluctuations in the visual cortex may in fact be a composite signal of different overlapping sources. Isolating the different sources could enhance correlations between BOLD and electrophysiological correlates of resting state activity. © 2013 Elsevier Inc. All rights reserved.
Predicting the effect of fire on large-scale vegetation patterns in North America.
Donald McKenzie; David L. Peterson; Ernesto. Alvarado
1996-01-01
Changes in fire regimes are expected across North America in response to anticipated global climatic changes. Potential changes in large-scale vegetation patterns are predicted as a result of altered fire frequencies. A new vegetation classification was developed by condensing Kuchler potential natural vegetation types into aggregated types that are relatively...
Large-scale solar magnetic fields and H-alpha patterns
NASA Technical Reports Server (NTRS)
Mcintosh, P. S.
1972-01-01
Coronal and interplanetary magnetic fields computed from measurements of large-scale photospheric magnetic fields suffer from interruptions in day-to-day observations and the limitation of using only measurements made near the solar central meridian. Procedures were devised for inferring the lines of polarity reversal from H-alpha solar patrol photographs that map the same large-scale features found on Mt. Wilson magnetograms. These features may be monitored without interruption by combining observations from the global network of observatories associated with NOAA's Space Environment Services Center. The patterns of inferred magnetic fields may be followed accurately as far as 60 deg from central meridian. Such patterns will be used to improve predictions of coronal features during the next solar eclipse.
A dynamical systems approach to studying midlatitude weather extremes
NASA Astrophysics Data System (ADS)
Messori, Gabriele; Caballero, Rodrigo; Faranda, Davide
2017-04-01
Extreme weather occurrences carry enormous social and economic costs and routinely garner widespread scientific and media coverage. The ability to predict these events is therefore a topic of crucial importance. Here we propose a novel predictability pathway for extreme events, by building upon recent advances in dynamical systems theory. We show that simple dynamical systems metrics can be used to identify sets of large-scale atmospheric flow patterns with similar spatial structure and temporal evolution on time scales of several days to a week. In regions where these patterns favor extreme weather, they afford a particularly good predictability of the extremes. We specifically test this technique on the atmospheric circulation in the North Atlantic region, where it provides predictability of large-scale wintertime surface temperature extremes in Europe up to 1 week in advance.
NASA Astrophysics Data System (ADS)
Korres, W.; Reichenau, T. G.; Schneider, K.
2013-08-01
Soil moisture is a key variable in hydrology, meteorology and agriculture. Soil moisture, and surface soil moisture in particular, is highly variable in space and time. Its spatial and temporal patterns in agricultural landscapes are affected by multiple natural (precipitation, soil, topography, etc.) and agro-economic (soil management, fertilization, etc.) factors, making it difficult to identify unequivocal cause and effect relationships between soil moisture and its driving variables. The goal of this study is to characterize and analyze the spatial and temporal patterns of surface soil moisture (top 20 cm) in an intensively used agricultural landscape (1100 km2 northern part of the Rur catchment, Western Germany) and to determine the dominant factors and underlying processes controlling these patterns. A second goal is to analyze the scaling behavior of surface soil moisture patterns in order to investigate how spatial scale affects spatial patterns. To achieve these goals, a dynamically coupled, process-based and spatially distributed ecohydrological model was used to analyze the key processes as well as their interactions and feedbacks. The model was validated for two growing seasons for the three main crops in the investigation area: Winter wheat, sugar beet, and maize. This yielded RMSE values for surface soil moisture between 1.8 and 7.8 vol.% and average RMSE values for all three crops of 0.27 kg m-2 for total aboveground biomass and 0.93 for green LAI. Large deviations of measured and modeled soil moisture can be explained by a change of the infiltration properties towards the end of the growing season, especially in maize fields. The validated model was used to generate daily surface soil moisture maps, serving as a basis for an autocorrelation analysis of spatial patterns and scale. Outside of the growing season, surface soil moisture patterns at all spatial scales depend mainly upon soil properties. Within the main growing season, larger scale patterns that are induced by soil properties are superimposed by the small scale land use pattern and the resulting small scale variability of evapotranspiration. However, this influence decreases at larger spatial scales. Most precipitation events cause temporarily higher surface soil moisture autocorrelation lengths at all spatial scales for a short time even beyond the autocorrelation lengths induced by soil properties. The relation of daily spatial variance to the spatial scale of the analysis fits a power law scaling function, with negative values of the scaling exponent, indicating a decrease in spatial variability with increasing spatial resolution. High evapotranspiration rates cause an increase in the small scale soil moisture variability, thus leading to large negative values of the scaling exponent. Utilizing a multiple regression analysis, we found that 53% of the variance of the scaling exponent can be explained by a combination of an independent LAI parameter and the antecedent precipitation.
NASA Astrophysics Data System (ADS)
Zhang, Jingyong; Wu, Lingyun; Huang, Gang; Notaro, Michael
2011-02-01
In this study, we focus on a deciduous forest in central Massachusetts and investigate the relationships between global climate indices and CO2 exchange using eddy-covariance flux measurements from 1992 to 2007. Results suggest that large-scale circulation patterns influence the annual CO2 exchange in the forest through their effects on the local surface climate. Annual gross ecosystem exchange (GEE) in the forest is closely associated with spring El Niño-Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO), previous fall Atlantic Multidecadal Oscillation (AMO), and previous winter East Pacific-North Pacific (EP-NP) pattern. Annual net ecosystem exchange (NEE) responds to previous fall AMO and PDO, while annual respiration (R) is impacted by previous fall ENSO and Pacific/North American Oscillation (PNA). Regressions based on these relationships are developed to simulate the annual GEE, NEE, and R. To avoid problems of multicollinearity, we compute a "Composite Index for GEE (CIGEE)" based on a linear combination of spring ENSO and PDO, fall AMO, and winter EP-NP and a "Composite Index for R (CIR)" based on a linear combination of fall ENSO and PNA. CIGEE, CIR, and fall AMO and PDO can explain 41, 27, and 40% of the variance of the annual GEE, R, and NEE, respectively. We further apply the methodology to two other northern midlatitude forests and find that interannual variabilities in NEE of the two forests are largely controlled by large-scale circulation patterns. This study suggests that global climate indices provide the potential for predicting CO2 exchange variability in the northern midlatitude forests.
NASA Technical Reports Server (NTRS)
Schmetz, Johannes; Menzel, W. Paul; Velden, Christopher; Wu, Xiangqian; Vandeberg, Leo; Nieman, Steve; Hayden, Christopher; Holmlund, Kenneth; Geijo, Carlos
1995-01-01
This paper describes the results from a collaborative study between the European Space Operations Center, the European Organization for the Exploitation of Meteorological Satellites, the National Oceanic and Atmospheric Administration, and the Cooperative Institute for Meteorological Satellite Studies investigating the relationship between satellite-derived monthly mean fields of wind and humidity in the upper troposphere for March 1994. Three geostationary meteorological satellites GOES-7, Meteosat-3, and Meteosat-5 are used to cover an area from roughly 160 deg W to 50 deg E. The wind fields are derived from tracking features in successive images of upper-tropospheric water vapor (WV) as depicted in the 6.5-micron absorption band. The upper-tropospheric relative humidity (UTH) is inferred from measured water vapor radiances with a physical retrieval scheme based on radiative forward calculations. Quantitative information on large-scale circulation patterns in the upper-troposphere is possible with the dense spatial coverage of the WV wind vectors. The monthly mean wind field is used to estimate the large-scale divergence; values range between about-5 x 10(exp -6) and 5 x 10(exp 6)/s when averaged over a scale length of about 1000-2000 km. The spatial patterns of the UTH field and the divergence of the wind field closely resemble one another, suggesting that UTH patterns are principally determined by the large-scale circulation. Since the upper-tropospheric humidity absorbs upwelling radiation from lower-tropospheric levels and therefore contributes significantly to the atmospheric greenhouse effect, this work implies that studies on the climate relevance of water vapor should include three-dimensional modeling of the atmospheric dynamics. The fields of UTH and WV winds are useful parameters for a climate-monitoring system based on satellite data. The results from this 1-month analysis suggest the desirability of further GOES and Meteosat studies to characterize the changes in the upper-tropospheric moisture sources and sinks over the past decade.
ERIC Educational Resources Information Center
Fleisch, Brahm; Shindler, Jennifer
2009-01-01
This monograph looks at patterns and prevalence of initial school enrolment, late entry, attainment promotion, and repetition in urban South Africa. The paper pays special attention to the particular gender nature of the patterns of school participation. The study analyses data generated in the genuine representative cohort study, Birth-to-Twenty…
NASA Astrophysics Data System (ADS)
Crasemann, Berit; Handorf, Dörthe; Jaiser, Ralf; Dethloff, Klaus; Nakamura, Tetsu; Ukita, Jinro; Yamazaki, Koji
2017-12-01
In the framework of atmospheric circulation regimes, we study whether the recent Arctic sea ice loss and Arctic Amplification are associated with changes in the frequency of occurrence of preferred atmospheric circulation patterns during the extended winter season from December to March. To determine regimes we applied a cluster analysis to sea-level pressure fields from reanalysis data and output from an atmospheric general circulation model. The specific set up of the two analyzed model simulations for low and high ice conditions allows for attributing differences between the simulations to the prescribed sea ice changes only. The reanalysis data revealed two circulation patterns that occur more frequently for low Arctic sea ice conditions: a Scandinavian blocking in December and January and a negative North Atlantic Oscillation pattern in February and March. An analysis of related patterns of synoptic-scale activity and 2 m temperatures provides a synoptic interpretation of the corresponding large-scale regimes. The regimes that occur more frequently for low sea ice conditions are resembled reasonably well by the model simulations. Based on those results we conclude that the detected changes in the frequency of occurrence of large-scale circulation patterns can be associated with changes in Arctic sea ice conditions.
Mouse Activity across Time Scales: Fractal Scenarios
Lima, G. Z. dos Santos; Lobão-Soares, B.; do Nascimento, G. C.; França, Arthur S. C.; Muratori, L.; Ribeiro, S.; Corso, G.
2014-01-01
In this work we devise a classification of mouse activity patterns based on accelerometer data using Detrended Fluctuation Analysis. We use two characteristic mouse behavioural states as benchmarks in this study: waking in free activity and slow-wave sleep (SWS). In both situations we find roughly the same pattern: for short time intervals we observe high correlation in activity - a typical 1/f complex pattern - while for large time intervals there is anti-correlation. High correlation of short intervals ( to : waking state and to : SWS) is related to highly coordinated muscle activity. In the waking state we associate high correlation both to muscle activity and to mouse stereotyped movements (grooming, waking, etc.). On the other side, the observed anti-correlation over large time scales ( to : waking state and to : SWS) during SWS appears related to a feedback autonomic response. The transition from correlated regime at short scales to an anti-correlated regime at large scales during SWS is given by the respiratory cycle interval, while during the waking state this transition occurs at the time scale corresponding to the duration of the stereotyped mouse movements. Furthermore, we find that the waking state is characterized by longer time scales than SWS and by a softer transition from correlation to anti-correlation. Moreover, this soft transition in the waking state encompass a behavioural time scale window that gives rise to a multifractal pattern. We believe that the observed multifractality in mouse activity is formed by the integration of several stereotyped movements each one with a characteristic time correlation. Finally, we compare scaling properties of body acceleration fluctuation time series during sleep and wake periods for healthy mice. Interestingly, differences between sleep and wake in the scaling exponents are comparable to previous works regarding human heartbeat. Complementarily, the nature of these sleep-wake dynamics could lead to a better understanding of neuroautonomic regulation mechanisms. PMID:25275515
NASA Astrophysics Data System (ADS)
Walz, M. A.; Donat, M.; Leckebusch, G. C.
2017-12-01
As extreme wind speeds are responsible for large socio-economic losses in Europe, a skillful prediction would be of great benefit for disaster prevention as well as for the actuarial community. Here we evaluate patterns of large-scale atmospheric variability and the seasonal predictability of extreme wind speeds (e.g. >95th percentile) in the European domain in the dynamical seasonal forecast system ECMWF System 4, and compare to the predictability based on a statistical prediction model. The dominant patterns of atmospheric variability show distinct differences between reanalysis and ECMWF System 4, with most patterns in System 4 extended downstream in comparison to ERA-Interim. The dissimilar manifestations of the patterns within the two models lead to substantially different drivers associated with the occurrence of extreme winds in the respective model. While the ECMWF System 4 is shown to provide some predictive power over Scandinavia and the eastern Atlantic, only very few grid cells in the European domain have significant correlations for extreme wind speeds in System 4 compared to ERA-Interim. In contrast, a statistical model predicts extreme wind speeds during boreal winter in better agreement with the observations. Our results suggest that System 4 does not seem to capture the potential predictability of extreme winds that exists in the real world, and therefore fails to provide reliable seasonal predictions for lead months 2-4. This is likely related to the unrealistic representation of large-scale patterns of atmospheric variability. Hence our study points to potential improvements of dynamical prediction skill by improving the simulation of large-scale atmospheric dynamics.
NASA Astrophysics Data System (ADS)
Chen, Xinchi; Zhang, Liping; Zou, Lei; Shan, Lijie; She, Dunxian
2018-02-01
The middle and lower reaches of the Yangtze River Basin (MLYR) are greatly affected by frequent drought/flooding events and abrupt alternations of these events in China. The purpose of this study is to analyze the spatial and temporal variability of dryness/wetness based on the data obtained from 75 meteorological stations in the MLYR for the period 1960-2015 and investigate the correlations between dryness/wetness and atmospheric circulation factors. The empirical orthogonal function method was applied in this study based on the monthly Standardized Precipitation Index at a 12-month time scale. The first leading pattern captured the same characteristics of dryness/wetness over the entire MLYR area and accounted for 40.87% of the total variance. Both the second and third leading patterns manifested as regional features of variability over the entire MLYR. The cross-wavelet transform method was applied to explore the potential relationship between the three leading patterns and the large-scale climate factors, and finally the relationships between drought/wetness events and climate factors were also analyzed. Our results indicated that the main patterns of dryness/wetness were primarily associated with the Niño 3.4, Indian Ocean Dipole, Southern Oscillation Index and Northern Oscillation Index, with the first pattern exhibiting noticeable periods and remarkable changes in phase with the indices.
NASA Technical Reports Server (NTRS)
Strub, P. Ted; James, Corinne; Thomas, Andrew C.; Abbott, Mark R.
1990-01-01
The large-scale patterns of satellite-derived surface pigment concentration off the west coast of North America are presented and are averaged into monthly mean surface wind fields over the California Current system (CCS) for the July 1979 to June 1986 period. The patterns are discussed in terms of both seasonal and nonseasonal variability for the indicated time period. The large-scale seasonal characteristics of the California Current are summarized. The data and methods used are described, and the problems known to affect the satellite-derived pigment concentrations and the wind data used in the study are discussed. The statistical analysis results are then presented and discussed in light of past observations and theory. Details of the CZCS data processing are described, and details of the principal estimator pattern methodology used here are given.
NASA Technical Reports Server (NTRS)
Mcginnies, W. G.; Haase, E. F. (Principal Investigator); Musick, H. B. (Compiler)
1973-01-01
The author has identified the following significant results. Ground truth spectral signature data for various types of scenes, including ground with and without annuals, and various shrubs, were collected. When these signature data are plotted with infrared (MSS band 6 or 7) reflectivity on one axis and red (MSS band 5) reflectivity on the other axis, clusters of data from the various types of scenes are distinct. This method of expressing spectral signature data appears to be more useful for distinguishing types of scenes than a simple infrared to red reflectivity ration. Large areas of varnished desert pavement are visible and mappable on ERTS-1 and high altitude aircraft imagery. A large scale vegetation pattern was found to be correlated with the presence of the desert pavement. The large scale correlation was used in mapping the vegetation of the area. It was found that a distinctive soil type was associated with the presence of the varnished desert pavement. The high salinity and exchangeable sodium percentage of this soil type provide a basis for the explanation of both the large scale and small scale vegetation pattern.
A Framework for Spatial Interaction Analysis Based on Large-Scale Mobile Phone Data
Li, Weifeng; Cheng, Xiaoyun; Guo, Gaohua
2014-01-01
The overall understanding of spatial interaction and the exact knowledge of its dynamic evolution are required in the urban planning and transportation planning. This study aimed to analyze the spatial interaction based on the large-scale mobile phone data. The newly arisen mass dataset required a new methodology which was compatible with its peculiar characteristics. A three-stage framework was proposed in this paper, including data preprocessing, critical activity identification, and spatial interaction measurement. The proposed framework introduced the frequent pattern mining and measured the spatial interaction by the obtained association. A case study of three communities in Shanghai was carried out as verification of proposed method and demonstration of its practical application. The spatial interaction patterns and the representative features proved the rationality of the proposed framework. PMID:25435865
Analyzing animal movement patterns using potential functions
H. K. Preisler; A. A. Ager; M. J. Wisdom
2013-01-01
The advent of GPS technology has made it possible to study human-wildlife interactions on large landscapes and quantify behavioral responses to recreation and other anthropogenic disturbances at increasingly fine scales. Of particular interest are the potential impacts on habitat use patterns, energetics, and cascading impacts on fecundity and other life history traits...
Large-scale patterns of benthic marine communities in the Brazilian Province.
Aued, Anaide W; Smith, Franz; Quimbayo, Juan P; Cândido, Davi V; Longo, Guilherme O; Ferreira, Carlos E L; Witman, Jon D; Floeter, Sergio R; Segal, Bárbara
2018-01-01
As marine ecosystems are influenced by global and regional processes, standardized information on community structure has become crucial for assessing broad-scale responses to natural and anthropogenic disturbances. Extensive biogeographic provinces, such as the Brazilian Province in the southwest Atlantic, present numerous theoretical and methodological challenges for understanding community patterns on a macroecological scale. In particular, the Brazilian Province is composed of a complex system of heterogeneous reefs and a few offshore islands, with contrasting histories and geophysical-chemical environments. Despite the large extent of the Brazilian Province (almost 8,000 kilometers), most studies of shallow benthic communities are qualitative surveys and/or have been geographically restricted. We quantified community structure of shallow reef habitats from 0° to 27°S latitude using a standard photographic quadrat technique. Percent cover data indicated that benthic communities of Brazilian reefs were dominated by algal turfs and frondose macroalgae, with low percent cover of reef-building corals. Community composition differed significantly among localities, mostly because of their macroalgal abundance, despite reef type or geographic region, with no evident latitudinal pattern. Benthic diversity was lower in the tropics, contrary to the general latitudinal diversity gradient pattern. Richness peaked at mid-latitudes, between 20°S to 23°S, where it was ~3.5-fold higher than localities with the lowest richness. This study provides the first large-scale description of benthic communities along the southwestern Atlantic, providing a baseline for macroecological comparisons and evaluation of future impacts. Moreover, the new understanding of richness distribution along Brazilian reefs will contribute to conservation planning efforts, such as management strategies and the spatial prioritization for the creation of new marine protected areas.
Large-scale patterns of benthic marine communities in the Brazilian Province
Smith, Franz; Quimbayo, Juan P.; Cândido, Davi V.; Longo, Guilherme O.; Ferreira, Carlos E. L.; Witman, Jon D.; Floeter, Sergio R.; Segal, Bárbara
2018-01-01
As marine ecosystems are influenced by global and regional processes, standardized information on community structure has become crucial for assessing broad-scale responses to natural and anthropogenic disturbances. Extensive biogeographic provinces, such as the Brazilian Province in the southwest Atlantic, present numerous theoretical and methodological challenges for understanding community patterns on a macroecological scale. In particular, the Brazilian Province is composed of a complex system of heterogeneous reefs and a few offshore islands, with contrasting histories and geophysical-chemical environments. Despite the large extent of the Brazilian Province (almost 8,000 kilometers), most studies of shallow benthic communities are qualitative surveys and/or have been geographically restricted. We quantified community structure of shallow reef habitats from 0° to 27°S latitude using a standard photographic quadrat technique. Percent cover data indicated that benthic communities of Brazilian reefs were dominated by algal turfs and frondose macroalgae, with low percent cover of reef-building corals. Community composition differed significantly among localities, mostly because of their macroalgal abundance, despite reef type or geographic region, with no evident latitudinal pattern. Benthic diversity was lower in the tropics, contrary to the general latitudinal diversity gradient pattern. Richness peaked at mid-latitudes, between 20°S to 23°S, where it was ~3.5-fold higher than localities with the lowest richness. This study provides the first large-scale description of benthic communities along the southwestern Atlantic, providing a baseline for macroecological comparisons and evaluation of future impacts. Moreover, the new understanding of richness distribution along Brazilian reefs will contribute to conservation planning efforts, such as management strategies and the spatial prioritization for the creation of new marine protected areas. PMID:29883496
Macroecology of unicellular organisms - patterns and processes.
Soininen, Janne
2012-02-01
Macroecology examines the relationship between organisms and their environment at large spatial (and temporal) scales. Typically, macroecologists explain the large-scale patterns of abundance, distribution and diversity. Despite the difficulties in sampling and characterizing microbial diversity, macroecologists have recently also been interested in unicellular organisms. Here, I review the current advances made in microbial macroecology, as well as discuss related ecosystem functions. Overall, it seems that microorganisms suit surprisingly well to known species abundance distributions and show positive relationship between distribution and adundance. Microbial species-area and distance-decay relationships tend to be weaker than for macroorganisms, but nonetheless significant. Few findings on altitudinal gradients in unicellular taxa seem to differ greatly from corresponding findings for larger taxa, whereas latitudinal gradients among microorganisms have either been clearly evident or absent depending on the context. Literature also strongly emphasizes the role of spatial scale for the patterns of diversity and suggests that patterns are affected by species traits as well as ecosystem characteristics. Finally, I discuss the large role of local biotic and abiotic variables driving the community assembly in unicellular taxa and eventually dictating how multiple ecosystem processes are performed. Present review highlights the fact that most microorganisms may not differ fundamentally from larger taxa in their large-scale distribution patterns. Yet, review also shows that many aspects of microbial macroecology are still relatively poorly understood and specific patterns depend on focal taxa and ecosystem concerned. © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.
Connecting the large- and the small-scale magnetic fields of solar-like stars
NASA Astrophysics Data System (ADS)
Lehmann, L. T.; Jardine, M. M.; Mackay, D. H.; Vidotto, A. A.
2018-05-01
A key question in understanding the observed magnetic field topologies of cool stars is the link between the small- and the large-scale magnetic field and the influence of the stellar parameters on the magnetic field topology. We examine various simulated stars to connect the small-scale with the observable large-scale field. The highly resolved 3D simulations we used couple a flux transport model with a non-potential coronal model using a magnetofrictional technique. The surface magnetic field of these simulations is decomposed into spherical harmonics which enables us to analyse the magnetic field topologies on a wide range of length scales and to filter the large-scale magnetic field for a direct comparison with the observations. We show that the large-scale field of the self-consistent simulations fits the observed solar-like stars and is mainly set up by the global dipolar field and the large-scale properties of the flux pattern, e.g. the averaged latitudinal position of the emerging small-scale field and its global polarity pattern. The stellar parameters flux emergence rate, differential rotation and meridional flow affect the large-scale magnetic field topology. An increased flux emergence rate increases the magnetic flux in all field components and an increased differential rotation increases the toroidal field fraction by decreasing the poloidal field. The meridional flow affects the distribution of the magnetic energy across the spherical harmonic modes.
Mapping spatial patterns of denitrifiers at large scales (Invited)
NASA Astrophysics Data System (ADS)
Philippot, L.; Ramette, A.; Saby, N.; Bru, D.; Dequiedt, S.; Ranjard, L.; Jolivet, C.; Arrouays, D.
2010-12-01
Little information is available regarding the landscape-scale distribution of microbial communities and its environmental determinants. Here we combined molecular approaches and geostatistical modeling to explore spatial patterns of the denitrifying community at large scales. The distribution of denitrifrying community was investigated over 107 sites in Burgundy, a 31 500 km2 region of France, using a 16 X 16 km sampling grid. At each sampling site, the abundances of denitrifiers and 42 soil physico-chemical properties were measured. The relative contributions of land use, spatial distance, climatic conditions, time and soil physico-chemical properties to the denitrifier spatial distribution were analyzed by canonical variation partitioning. Our results indicate that 43% to 85% of the spatial variation in community abundances could be explained by the measured environmental parameters, with soil chemical properties (mostly pH) being the main driver. We found spatial autocorrelation up to 739 km and used geostatistical modelling to generate predictive maps of the distribution of denitrifiers at the landscape scale. Studying the distribution of the denitrifiers at large scale can help closing the artificial gap between the investigation of microbial processes and microbial community ecology, therefore facilitating our understanding of the relationships between the ecology of denitrifiers and N-fluxes by denitrification.
A new way to protect privacy in large-scale genome-wide association studies.
Kamm, Liina; Bogdanov, Dan; Laur, Sven; Vilo, Jaak
2013-04-01
Increased availability of various genotyping techniques has initiated a race for finding genetic markers that can be used in diagnostics and personalized medicine. Although many genetic risk factors are known, key causes of common diseases with complex heritage patterns are still unknown. Identification of such complex traits requires a targeted study over a large collection of data. Ideally, such studies bring together data from many biobanks. However, data aggregation on such a large scale raises many privacy issues. We show how to conduct such studies without violating privacy of individual donors and without leaking the data to third parties. The presented solution has provable security guarantees. Supplementary data are available at Bioinformatics online.
He, Xueqin; Chen, Longjian; Han, Lujia; Liu, Ning; Cui, Ruxiu; Yin, Hongjie; Huang, Guangqun
2017-12-01
This study investigated the effects of biochar powder on oxygen supply efficiency and global warming potential (GWP) in the large-scale aerobic composting pattern which includes cyclical forced-turning with aeration at the bottom of composting tanks in China. A 55-day large-scale aerobic composting experiment was conducted in two different groups without and with 10% biochar powder addition (by weight). The results show that biochar powder improves the holding ability of oxygen, and the duration time (O 2 >5%) is around 80%. The composting process with above pattern significantly reduce CH 4 and N 2 O emissions compared to the static or turning-only styles. Considering the average GWP of the BC group was 19.82% lower than that of the CK group, it suggests that rational addition of biochar powder has the potential to reduce the energy consumption of turning, improve effectiveness of the oxygen supply, and reduce comprehensive greenhouse effects. Copyright © 2017. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Massei, Nicolas; Dieppois, Bastien; Fritier, Nicolas; Laignel, Benoit; Debret, Maxime; Lavers, David; Hannah, David
2015-04-01
In the present context of global changes, considerable efforts have been deployed by the hydrological scientific community to improve our understanding of the impacts of climate fluctuations on water resources. Both observational and modeling studies have been extensively employed to characterize hydrological changes and trends, assess the impact of climate variability or provide future scenarios of water resources. In the aim of a better understanding of hydrological changes, it is of crucial importance to determine how and to what extent trends and long-term oscillations detectable in hydrological variables are linked to global climate oscillations. In this work, we develop an approach associating large-scale/local-scale correlation, enmpirical statistical downscaling and wavelet multiresolution decomposition of monthly precipitation and streamflow over the Seine river watershed, and the North Atlantic sea level pressure (SLP) in order to gain additional insights on the atmospheric patterns associated with the regional hydrology. We hypothesized that: i) atmospheric patterns may change according to the different temporal wavelengths defining the variability of the signals; and ii) definition of those hydrological/circulation relationships for each temporal wavelength may improve the determination of large-scale predictors of local variations. The results showed that the large-scale/local-scale links were not necessarily constant according to time-scale (i.e. for the different frequencies characterizing the signals), resulting in changing spatial patterns across scales. This was then taken into account by developing an empirical statistical downscaling (ESD) modeling approach which integrated discrete wavelet multiresolution analysis for reconstructing local hydrometeorological processes (predictand : precipitation and streamflow on the Seine river catchment) based on a large-scale predictor (SLP over the Euro-Atlantic sector) on a monthly time-step. This approach basically consisted in 1- decomposing both signals (SLP field and precipitation or streamflow) using discrete wavelet multiresolution analysis and synthesis, 2- generating one statistical downscaling model per time-scale, 3- summing up all scale-dependent models in order to obtain a final reconstruction of the predictand. The results obtained revealed a significant improvement of the reconstructions for both precipitation and streamflow when using the multiresolution ESD model instead of basic ESD ; in addition, the scale-dependent spatial patterns associated to the model matched quite well those obtained from scale-dependent composite analysis. In particular, the multiresolution ESD model handled very well the significant changes in variance through time observed in either prepciptation or streamflow. For instance, the post-1980 period, which had been characterized by particularly high amplitudes in interannual-to-interdecadal variability associated with flood and extremely low-flow/drought periods (e.g., winter 2001, summer 2003), could not be reconstructed without integrating wavelet multiresolution analysis into the model. Further investigations would be required to address the issue of the stationarity of the large-scale/local-scale relationships and to test the capability of the multiresolution ESD model for interannual-to-interdecadal forecasting. In terms of methodological approach, further investigations may concern a fully comprehensive sensitivity analysis of the modeling to the parameter of the multiresolution approach (different families of scaling and wavelet functions used, number of coefficients/degree of smoothness, etc.).
NASA Astrophysics Data System (ADS)
Allen, Rob
2016-09-01
Structures within molecules and nuclei have relationships to astronomical patterns. The COBE cosmic scale plots, and large scale surveys of galaxy clusters have patterns also repeating and well known at atomic scales. The Induction, Strong Force, and Nuclear Binding Energy Periods within the Big Bang are revealed to have played roles in the formation of these large scale distributions. Equations related to the enormous patterns also model chemical bonds and likely nucleus and nucleon substructures. ratios of the forces that include gravity are accurately calculated from the distributions and shapes. In addition, particle masses and a great many physical constants can be derived with precision and accuracy from astrophysical shapes. A few very basic numbers can do modelling from nucleon internals to molecules to super novae, and up to the Visible Universe. Equations are also provided along with possible structural configurations for some Cold Dark Matter and Dark Energy.
NASA Astrophysics Data System (ADS)
Lamb, Derek A.
2016-10-01
While sunspots follow a well-defined pattern of emergence in space and time, small-scale flux emergence is assumed to occur randomly at all times in the quiet Sun. HMI's full-disk coverage, high cadence, spatial resolution, and duty cycle allow us to probe that basic assumption. Some case studies of emergence suggest that temporal clustering on spatial scales of 50-150 Mm may occur. If clustering is present, it could serve as a diagnostic of large-scale subsurface magnetic field structures. We present the results of a manual survey of small-scale flux emergence events over a short time period, and a statistical analysis addressing the question of whether these events show spatio-temporal behavior that is anything other than random.
A Life-Cycle Model of Human Social Groups Produces a U-Shaped Distribution in Group Size.
Salali, Gul Deniz; Whitehouse, Harvey; Hochberg, Michael E
2015-01-01
One of the central puzzles in the study of sociocultural evolution is how and why transitions from small-scale human groups to large-scale, hierarchically more complex ones occurred. Here we develop a spatially explicit agent-based model as a first step towards understanding the ecological dynamics of small and large-scale human groups. By analogy with the interactions between single-celled and multicellular organisms, we build a theory of group lifecycles as an emergent property of single cell demographic and expansion behaviours. We find that once the transition from small-scale to large-scale groups occurs, a few large-scale groups continue expanding while small-scale groups gradually become scarcer, and large-scale groups become larger in size and fewer in number over time. Demographic and expansion behaviours of groups are largely influenced by the distribution and availability of resources. Our results conform to a pattern of human political change in which religions and nation states come to be represented by a few large units and many smaller ones. Future enhancements of the model should include decision-making rules and probabilities of fragmentation for large-scale societies. We suggest that the synthesis of population ecology and social evolution will generate increasingly plausible models of human group dynamics.
A Life-Cycle Model of Human Social Groups Produces a U-Shaped Distribution in Group Size
Salali, Gul Deniz; Whitehouse, Harvey; Hochberg, Michael E.
2015-01-01
One of the central puzzles in the study of sociocultural evolution is how and why transitions from small-scale human groups to large-scale, hierarchically more complex ones occurred. Here we develop a spatially explicit agent-based model as a first step towards understanding the ecological dynamics of small and large-scale human groups. By analogy with the interactions between single-celled and multicellular organisms, we build a theory of group lifecycles as an emergent property of single cell demographic and expansion behaviours. We find that once the transition from small-scale to large-scale groups occurs, a few large-scale groups continue expanding while small-scale groups gradually become scarcer, and large-scale groups become larger in size and fewer in number over time. Demographic and expansion behaviours of groups are largely influenced by the distribution and availability of resources. Our results conform to a pattern of human political change in which religions and nation states come to be represented by a few large units and many smaller ones. Future enhancements of the model should include decision-making rules and probabilities of fragmentation for large-scale societies. We suggest that the synthesis of population ecology and social evolution will generate increasingly plausible models of human group dynamics. PMID:26381745
Moon, Hankyu; Lu, Tsai-Ching
2015-01-01
Critical events in society or biological systems can be understood as large-scale self-emergent phenomena due to deteriorating stability. We often observe peculiar patterns preceding these events, posing a question of—how to interpret the self-organized patterns to know more about the imminent crisis. We start with a very general description — of interacting population giving rise to large-scale emergent behaviors that constitute critical events. Then we pose a key question: is there a quantifiable relation between the network of interactions and the emergent patterns? Our investigation leads to a fundamental understanding to: 1. Detect the system's transition based on the principal mode of the pattern dynamics; 2. Identify its evolving structure based on the observed patterns. The main finding of this study is that while the pattern is distorted by the network of interactions, its principal mode is invariant to the distortion even when the network constantly evolves. Our analysis on real-world markets show common self-organized behavior near the critical transitions, such as housing market collapse and stock market crashes, thus detection of critical events before they are in full effect is possible. PMID:25822423
NASA Astrophysics Data System (ADS)
Moon, Hankyu; Lu, Tsai-Ching
2015-03-01
Critical events in society or biological systems can be understood as large-scale self-emergent phenomena due to deteriorating stability. We often observe peculiar patterns preceding these events, posing a question of--how to interpret the self-organized patterns to know more about the imminent crisis. We start with a very general description -- of interacting population giving rise to large-scale emergent behaviors that constitute critical events. Then we pose a key question: is there a quantifiable relation between the network of interactions and the emergent patterns? Our investigation leads to a fundamental understanding to: 1. Detect the system's transition based on the principal mode of the pattern dynamics; 2. Identify its evolving structure based on the observed patterns. The main finding of this study is that while the pattern is distorted by the network of interactions, its principal mode is invariant to the distortion even when the network constantly evolves. Our analysis on real-world markets show common self-organized behavior near the critical transitions, such as housing market collapse and stock market crashes, thus detection of critical events before they are in full effect is possible.
Structural and electron diffraction scaling of twisted graphene bilayers
NASA Astrophysics Data System (ADS)
Zhang, Kuan; Tadmor, Ellad B.
2018-03-01
Multiscale simulations are used to study the structural relaxation in twisted graphene bilayers and the associated electron diffraction patterns. The initial twist forms an incommensurate moiré pattern that relaxes to a commensurate microstructure comprised of a repeating pattern of alternating low-energy AB and BA domains surrounding a high-energy AA domain. The simulations show that the relaxation mechanism involves a localized rotation and shrinking of the AA domains that scales in two regimes with the imposed twist. For small twisting angles, the localized rotation tends to a constant; for large twist, the rotation scales linearly with it. This behavior is tied to the inverse scaling of the moiré pattern size with twist angle and is explained theoretically using a linear elasticity model. The results are validated experimentally through a simulated electron diffraction analysis of the relaxed structures. A complex electron diffraction pattern involving the appearance of weak satellite peaks is predicted for the small twist regime. This new diffraction pattern is explained using an analytical model in which the relaxation kinematics are described as an exponentially-decaying (Gaussian) rotation field centered on the AA domains. Both the angle-dependent scaling and diffraction patterns are in quantitative agreement with experimental observations. A Matlab program for extracting the Gaussian model parameters accompanies this paper.
Reynolds number trend of hierarchies and scale interactions in turbulent boundary layers.
Baars, W J; Hutchins, N; Marusic, I
2017-03-13
Small-scale velocity fluctuations in turbulent boundary layers are often coupled with the larger-scale motions. Studying the nature and extent of this scale interaction allows for a statistically representative description of the small scales over a time scale of the larger, coherent scales. In this study, we consider temporal data from hot-wire anemometry at Reynolds numbers ranging from Re τ ≈2800 to 22 800, in order to reveal how the scale interaction varies with Reynolds number. Large-scale conditional views of the representative amplitude and frequency of the small-scale turbulence, relative to the large-scale features, complement the existing consensus on large-scale modulation of the small-scale dynamics in the near-wall region. Modulation is a type of scale interaction, where the amplitude of the small-scale fluctuations is continuously proportional to the near-wall footprint of the large-scale velocity fluctuations. Aside from this amplitude modulation phenomenon, we reveal the influence of the large-scale motions on the characteristic frequency of the small scales, known as frequency modulation. From the wall-normal trends in the conditional averages of the small-scale properties, it is revealed how the near-wall modulation transitions to an intermittent-type scale arrangement in the log-region. On average, the amplitude of the small-scale velocity fluctuations only deviates from its mean value in a confined temporal domain, the duration of which is fixed in terms of the local Taylor time scale. These concentrated temporal regions are centred on the internal shear layers of the large-scale uniform momentum zones, which exhibit regions of positive and negative streamwise velocity fluctuations. With an increasing scale separation at high Reynolds numbers, this interaction pattern encompasses the features found in studies on internal shear layers and concentrated vorticity fluctuations in high-Reynolds-number wall turbulence.This article is part of the themed issue 'Toward the development of high-fidelity models of wall turbulence at large Reynolds number'. © 2017 The Author(s).
Small-scale topography modulates elevational α-, β- and γ-diversity of Andean leaf beetles.
Thormann, Birthe; Ahrens, Dirk; Espinosa, Carlos Iván; Armijos, Diego Marín; Wagner, Thomas; Wägele, Johann W; Peters, Marcell K
2018-05-01
Elevational diversity gradients are typically studied without considering the complex small-scale topography of large mountains, which generates habitats of strongly different environmental conditions within the same elevational zones. Here we analyzed the importance of small-scale topography for elevational diversity patterns of hyperdiverse tropical leaf beetles (Coleoptera: Chrysomelidae). We compared patterns of elevational diversity and species composition of beetles in two types of forests (on mountain ridges and in valleys) and analyzed whether differences in the rate of species turnover among forest habitats lead to shifts in patterns of elevational diversity when scaling up from the local study site to the elevational belt level. We sampled beetle assemblages at 36 sites in the Podocarpus National Park, Ecuador, which were equally distributed over two forest habitats and three elevational levels. DNA barcoding and Poisson tree processes modelling were used to delimitate putative species. On average, local leaf beetle diversity showed a clear hump-shaped pattern. However, only diversity in forests on mountain ridges peaked at mid-elevation, while beetle diversity in valleys was similarly high at low- and mid-elevation and only declined at highest elevations. A higher turnover of species assemblages at lower than at mid-elevations caused a shift from a hump-shaped diversity pattern found at the local level to a low-elevation plateau pattern (with similar species numbers at low and mid-elevation) at the elevational belt level. Our study reveals an important role of small-scale topography and spatial scale for the inference on gradients of elevational species diversity.
Blanco Gonzalez, Enrique; Aritaki, Masato; Knutsen, Halvor; Taniguchi, Nobuhiko
2015-01-01
Large-scale hatchery releases are carried out for many marine fish species worldwide; nevertheless, the long-term effects of this practice on the genetic structure of natural populations remains unclear. The lack of knowledge is especially evident when independent stock enhancement programs are conducted simultaneously on the same species at different geographical locations, as occurs with red sea bream (Pagrus major, Temminck et Schlegel) in Japan. In this study, we examined the putative effects of intensive offspring releases on the genetic structure of red sea bream populations along the Japanese archipelago by genotyping 848 fish at fifteen microsatellite loci. Our results suggests weak but consistent patterns of genetic divergence (F(ST) = 0.002, p < 0.001). Red sea bream in Japan appeared spatially structured with several patches of distinct allelic composition, which corresponded to areas receiving an important influx of fish of hatchery origin, either released intentionally or from unintentional escapees from aquaculture operations. In addition to impacts upon local populations inhabiting semi-enclosed embayments, large-scale releases (either intentionally or from unintentional escapes) appeared also to have perturbed genetic structure in open areas. Hence, results of the present study suggest that independent large-scale marine stock enhancement programs conducted simultaneously on one species at different geographical locations may compromise native genetic structure and lead to patchy patterns in population genetic structure.
NASA Astrophysics Data System (ADS)
Pan, Zhenying; Yu, Ye Feng; Valuckas, Vytautas; Yap, Sherry L. K.; Vienne, Guillaume G.; Kuznetsov, Arseniy I.
2018-05-01
Cheap large-scale fabrication of ordered nanostructures is important for multiple applications in photonics and biomedicine including optical filters, solar cells, plasmonic biosensors, and DNA sequencing. Existing methods are either expensive or have strict limitations on the feature size and fabrication complexity. Here, we present a laser-based technique, plasmonic nanoparticle lithography, which is capable of rapid fabrication of large-scale arrays of sub-50 nm holes on various substrates. It is based on near-field enhancement and melting induced under ordered arrays of plasmonic nanoparticles, which are brought into contact or in close proximity to a desired material and acting as optical near-field lenses. The nanoparticles are arranged in ordered patterns on a flexible substrate and can be attached and removed from the patterned sample surface. At optimized laser fluence, the nanohole patterning process does not create any observable changes to the nanoparticles and they have been applied multiple times as reusable near-field masks. This resist-free nanolithography technique provides a simple and cheap solution for large-scale nanofabrication.
Using landscape ecology to test hypotheses about large-scale abundance patterns in migratory birds
Flather, C.H.; Sauer, J.R.
1996-01-01
The hypothesis that Neotropical migrant birds may be undergoing widespread declines due to land use activities on the breeding grounds has been examined primarily by synthesizing results from local studies. Growing concern for the cumulative influence of land use activities on ecological systems has heightened the need for large-scale studies to complement what has been observed at local scales. We investigated possible landscape effects on Neotropical migrant bird populations for the eastern United States by linking two large-scale inventories designed to monitor breeding-bird abundances and land use patterns. The null hypothesis of no relation between landscape structure and Neotropical migrant abundance was tested by correlating measures of landscape structure with bird abundance, while controlling for the geographic distance among samples. Neotropical migrants as a group were more 'sensitive' to landscape structure than either temperate migrants or permanent residents. Neotropical migrants tended to be more abundant in landscapes with a greater proportion of forest and wetland habitats, fewer edge habitats, large forest patches, and with forest habitats well dispersed throughout the scene. Permanent residents showed few correlations with landscape structure and temperate migrants were associated with habitat diversity and edge attributes rather than with the amount, size, and dispersion of forest habitats. The association between Neotropical migrant abundance and forest fragmentation differed among physiographic strata, suggesting that land-scape context affects observed relations between bird abundance and landscape structure. Finally, associations between landscape structure and temporal trends in Neotropical migrant abundance were negatively correlated with forest habitats. These results suggest that extrapolation of patterns observed in some landscapes is not likely to hold regionally, and that conservation policies must consider the variation in landscape structure associations observed among different types of bird species and in physiographic strata with varying land use histories.
Spatio-temporal dynamics of a tree-killing beetle and its predator
Aaron S. Weed; Matthew P. Ayres; Andrew M. Liebhold; Ronald F. Billings
2016-01-01
Resolving linkages between local-scale processes and regional-scale patterns in abundance of interacting species is important for understanding long-term population stability across spatial scales. Landscape patterning in consumer population dynamics may be largely the result of interactions between consumers and their predators, or driven by spatial variation in basal...
NASA Astrophysics Data System (ADS)
Detzer, J.; Loikith, P. C.; Mechoso, C. R.; Barkhordarian, A.; Lee, H.
2017-12-01
South America's climate varies considerably owing to its large geographic range and diverse topographical features. Spanning the tropics to the mid-latitudes and from high peaks to tropical rainforest, the continent experiences an array of climate and weather patterns. Due to this considerable spatial extent, assessing temperature variability at the continent scale is particularly challenging. It is well documented in the literature that temperatures have been increasing across portions of South America in recent decades, and while there have been many studies that have focused on precipitation variability and change, temperature has received less scientific attention. Therefore, a more thorough understanding of the drivers of temperature variability is critical for interpreting future change. First, k-means cluster analysis is used to identify four primary modes of temperature variability across the continent, stratified by season. Next, composites of large scale meteorological patterns (LSMPs) are calculated for months assigned to each cluster. Initial results suggest that LSMPs, defined using meteorological variables such as sea level pressure (SLP), geopotential height, and wind, are able to identify synoptic scale mechanisms important for driving temperature variability at the monthly scale. Some LSMPs indicate a relationship with known recurrent modes of climate variability. For example, composites of geopotential height suggest that the Southern Annular Mode is an important, but not necessarily dominant, component of temperature variability over southern South America. This work will be extended to assess the drivers of temperature extremes across South America.
NASA Astrophysics Data System (ADS)
Ramu, Dandi A.; Chowdary, Jasti S.; Ramakrishna, S. S. V. S.; Kumar, O. S. R. U. B.
2018-04-01
Realistic simulation of large-scale circulation patterns associated with El Niño-Southern Oscillation (ENSO) is vital in coupled models in order to represent teleconnections to different regions of globe. The diversity in representing large-scale circulation patterns associated with ENSO-Indian summer monsoon (ISM) teleconnections in 23 Coupled Model Intercomparison Project Phase 5 (CMIP5) models is examined. CMIP5 models have been classified into three groups based on the correlation between Niño3.4 sea surface temperature (SST) index and ISM rainfall anomalies, models in group 1 (G1) overestimated El Niño-ISM teleconections and group 3 (G3) models underestimated it, whereas these teleconnections are better represented in group 2 (G2) models. Results show that in G1 models, El Niño-induced Tropical Indian Ocean (TIO) SST anomalies are not well represented. Anomalous low-level anticyclonic circulation anomalies over the southeastern TIO and western subtropical northwest Pacific (WSNP) cyclonic circulation are shifted too far west to 60° E and 120° E, respectively. This bias in circulation patterns implies dry wind advection from extratropics/midlatitudes to Indian subcontinent. In addition to this, large-scale upper level convergence together with lower level divergence over ISM region corresponding to El Niño are stronger in G1 models than in observations. Thus, unrealistic shift in low-level circulation centers corroborated by upper level circulation changes are responsible for overestimation of ENSO-ISM teleconnections in G1 models. Warm Pacific SST anomalies associated with El Niño are shifted too far west in many G3 models unlike in the observations. Further large-scale circulation anomalies over the Pacific and ISM region are misrepresented during El Niño years in G3 models. Too strong upper-level convergence away from Indian subcontinent and too weak WSNP cyclonic circulation are prominent in most of G3 models in which ENSO-ISM teleconnections are underestimated. On the other hand, many G2 models are able to represent most of large-scale circulation over Indo-Pacific region associated with El Niño and hence provide more realistic ENSO-ISM teleconnections. Therefore, this study advocates the importance of representation/simulation of large-scale circulation patterns during El Niño years in coupled models in order to capture El Niño-monsoon teleconnections well.
Response of wheat yield in Spain to large-scale patterns
NASA Astrophysics Data System (ADS)
Hernandez-Barrera, Sara; Rodriguez-Puebla, Concepcion
2016-04-01
Crops are vulnerable to extreme climate conditions as drought, heat stress and frost risk. In previous study we have quantified the influence of these climate conditions for winter wheat in Spain (Hernandez-Barrera et al. 2015). The climate extremes respond to large-scale atmospheric and oceanic patterns. Therefore, a question emerges in our investigation: How large-scale patterns affect wheat yield? Obtaining and understanding these relationships require different approaches. In this study, we first obtained the leading mode of observed wheat yield variability to characterize the common variability over different provinces in Spain. Then, the wheat variability is related to different modes of mean sea level pressure, jet stream and sea surface temperature by using Partial Least-Squares, which captures the relevant climate drivers accounting for variations in wheat yield from sowing to harvesting. We used the ERA-Interim reanalysis data and the Extended Reconstructed Sea Surface Temperature (SST) (ERSST v3b). The derived model provides insight about the teleconnections between wheat yield and atmospheric and oceanic circulations, which is considered to project the wheat yield trend under global warming using outputs of twelve climate models corresponding to the Coupled Models Intercomparison Project phase 5 (CMIP5). Hernandez-Barrera S., C. Rodríguez-Puebla and A.J. Challinor. Effects of diurnal temperature range and drought on wheat yield in Spain. Theoretical and Applied Climatology (submitted)
Exploring Entrainment Patterns of Human Emotion in Social Media
Luo, Chuan; Zhang, Zhu
2016-01-01
Emotion entrainment, which is generally defined as the synchronous convergence of human emotions, performs many important social functions. However, what the specific mechanisms of emotion entrainment are beyond in-person interactions, and how human emotions evolve under different entrainment patterns in large-scale social communities, are still unknown. In this paper, we aim to examine the massive emotion entrainment patterns and understand the underlying mechanisms in the context of social media. As modeling emotion dynamics on a large scale is often challenging, we elaborate a pragmatic framework to characterize and quantify the entrainment phenomenon. By applying this framework on the datasets from two large-scale social media platforms, we find that the emotions of online users entrain through social networks. We further uncover that online users often form their relations via dual entrainment, while maintain it through single entrainment. Remarkably, the emotions of online users are more convergent in nonreciprocal entrainment. Building on these findings, we develop an entrainment augmented model for emotion prediction. Experimental results suggest that entrainment patterns inform emotion proximity in dyads, and encoding their associations promotes emotion prediction. This work can further help us to understand the underlying dynamic process of large-scale online interactions and make more reasonable decisions regarding emergency situations, epidemic diseases, and political campaigns in cyberspace. PMID:26953692
Exploring Entrainment Patterns of Human Emotion in Social Media.
He, Saike; Zheng, Xiaolong; Zeng, Daniel; Luo, Chuan; Zhang, Zhu
2016-01-01
Emotion entrainment, which is generally defined as the synchronous convergence of human emotions, performs many important social functions. However, what the specific mechanisms of emotion entrainment are beyond in-person interactions, and how human emotions evolve under different entrainment patterns in large-scale social communities, are still unknown. In this paper, we aim to examine the massive emotion entrainment patterns and understand the underlying mechanisms in the context of social media. As modeling emotion dynamics on a large scale is often challenging, we elaborate a pragmatic framework to characterize and quantify the entrainment phenomenon. By applying this framework on the datasets from two large-scale social media platforms, we find that the emotions of online users entrain through social networks. We further uncover that online users often form their relations via dual entrainment, while maintain it through single entrainment. Remarkably, the emotions of online users are more convergent in nonreciprocal entrainment. Building on these findings, we develop an entrainment augmented model for emotion prediction. Experimental results suggest that entrainment patterns inform emotion proximity in dyads, and encoding their associations promotes emotion prediction. This work can further help us to understand the underlying dynamic process of large-scale online interactions and make more reasonable decisions regarding emergency situations, epidemic diseases, and political campaigns in cyberspace.
NASA Technical Reports Server (NTRS)
Alexandrov, Mikhail Dmitrievic; Geogdzhayev, Igor V.; Tsigaridis, Konstantinos; Marshak, Alexander; Levy, Robert; Cairns, Brian
2016-01-01
A novel model for the variability in aerosol optical thickness (AOT) is presented. This model is based on the consideration of AOT fields as realizations of a stochastic process, that is the exponent of an underlying Gaussian process with a specific autocorrelation function. In this approach AOT fields have lognormal PDFs and structure functions having the correct asymptotic behavior at large scales. The latter is an advantage compared with fractal (scale-invariant) approaches. The simple analytical form of the structure function in the proposed model facilitates its use for the parameterization of AOT statistics derived from remote sensing data. The new approach is illustrated using a month-long global MODIS AOT dataset (over ocean) with 10 km resolution. It was used to compute AOT statistics for sample cells forming a grid with 5deg spacing. The observed shapes of the structure functions indicated that in a large number of cases the AOT variability is split into two regimes that exhibit different patterns of behavior: small-scale stationary processes and trends reflecting variations at larger scales. The small-scale patterns are suggested to be generated by local aerosols within the marine boundary layer, while the large-scale trends are indicative of elevated aerosols transported from remote continental sources. This assumption is evaluated by comparison of the geographical distributions of these patterns derived from MODIS data with those obtained from the GISS GCM. This study shows considerable potential to enhance comparisons between remote sensing datasets and climate models beyond regional mean AOTs.
NASA Astrophysics Data System (ADS)
Yang, Lei; Chen, Liding; Wei, Wei
2017-04-01
Soil water stored below rainfall infiltration depth is a reliable water resource for plant growth in arid and semi-arid regions. For decreasing serious soil erosion, large-scale human-introduced vegetation restoration was initiated in Chinese Loess Plateau in late 1990s. However, these activities may result in excessive water consumption and soil water deficit if no appropriate scientific guidance were offered. This in turn impacts the regional ecological restoration and sustainable management of water resources. In this study, soil water content data in depth of 0-5 m was obtained by long-term field observation and geostatistical method in 6 small watersheds covered with different land use pattern. Profile characteristics and spatial-temporal patterns of soil water were compared between different land use types, hillslopes, and watersheds. The results showed that: (1) Introduced vegetation consumed excessive amount of water when compared with native grassland and farmland, and induced temporally stable soil desiccation in depth of 0-5 m. The introduced vegetation decreased soil water content to levels lower than the reference value representing no human impact in all soil layers. (2) The analysis of differences in soil water at hillslope and watershed scales indicated that land use determined the spatial and temporal variability of soil water. Soil water at watershed scale increased with the increasing area of farmland, and decreased with increasing percentage of introduced vegetation. Land use structure determined the soil water condition and land use pattern determined the spatial-temporal variability of soil water at watershed scale. (3) Large-scale revegetation with introduced vegetation diminished the spatial heterogeneity of soil water at different scales. Land use pattern adjustment could be used to improve the water resources management and maintain the sustainability of vegetation restoration.
USDA-ARS?s Scientific Manuscript database
In the Rio Grande Plains of southern Texas, subtropical savanna vegetation is characterized by a two-phase pattern consisting of discrete woody patches embedded within a C4 grassland matrix. Prior trench transect studies have suggested that, on upland portions of the landscape, large woody patches (...
Rine, Kristin M.; Wipfli, Mark S.; Schoen, Erik R.; Nightengale, Timothy L.; Stricker, Craig A.
2016-01-01
Contributions of terrestrial-, freshwater-, and marine-derived prey resources to stream fishes vary over time and space, altering the energy pathways that regulate production. In this study, we determined large-scale use of these resources by juvenile Chinook and coho salmon (Oncorhynchus tshawytscha and Oncorhynchus kisutch, respectively) in the glacial Susitna River, Alaska. We resolved spatial and temporal trophic patterns among multiple macrohabitat types along a 97 km segment of the river corridor via stable isotope and stomach content analyses. Juvenile salmon were supported primarily by freshwater-derived resources and secondarily by marine and terrestrial sources. The relative contribution of marine-derived prey to rearing salmon was greatest in the fall within off-channel macrohabitats, whereas the contributions of terrestrial invertebrate prey were generally greatest during midsummer, across all macrohabitats. No longitudinal (upstream–downstream) diet pattern was discernable. These results highlight large-scale spatial and seasonal patterns of energy flow and the dynamic interplay of pulsed marine and terrestrial prey subsidies to juvenile Chinook and coho salmon in a large, complex, and relatively pristine glacial river.
NASA Astrophysics Data System (ADS)
Trujillo, E.; Giometto, M. G.; Leonard, K. C.; Maksym, T. L.; Meneveau, C. V.; Parlange, M. B.; Lehning, M.
2014-12-01
Sea ice-atmosphere interactions are major drivers of patterns of sea ice drift and deformations in the Polar regions, and affect snow erosion and deposition at the surface. Here, we combine analyses of sea ice surface topography at very high-resolutions (1-10 cm), and Large Eddy Simulations (LES) to study surface drag and snow erosion and deposition patterns from process scales to floe scales (1 cm - 100 m). The snow/ice elevations were obtained using a Terrestrial Laser Scanner during the SIPEX II (Sea Ice Physics and Ecosystem eXperiment II) research voyage to East Antarctica (September-November 2012). LES are performed on a regular domain adopting a mixed pseudo-spectral/finite difference spatial discretization. A scale-dependent dynamic subgrid-scale model based on Lagrangian time averaging is adopted to determine the eddy-viscosity in the bulk of the flow. Effects of larger-scale features of the surface on wind flows (those features that can be resolved in the LES) are accounted for through an immersed boundary method. Conversely, drag forces caused by subgrid-scale features of the surface should be accounted for through a parameterization. However, the effective aerodynamic roughness parameter z0 for snow/ice is not known. Hence, a novel dynamic approach is utilized, in which z0 is determined using the constraint that the total momentum flux (drag) must be independent on grid-filter scale. We focus on three ice floe surfaces. The first of these surfaces (October 6, 2012) is used to test the performance of the model, validate the algorithm, and study the spatial distributed fields of resolved and modeled stress components. The following two surfaces, scanned at the same location before and after a snow storm event (October 20/23, 2012), are used to propose an application to study how spatially resolved mean flow and turbulence relates to observed patterns of snow erosion and deposition. We show how erosion and deposition patterns are correlated with the computed stresses, with modeled stresses having higher explanatory power. Deposition is mainly occurring in wake regions of specific ridges that strongly affect wind flow patterns. These larger ridges also lock in place elongated streaks of relatively high speeds with axes along the stream-wise direction, and which are largely responsible for the observed erosion.
Liang, Yin; Liu, Baolin; Li, Xianglin; Wang, Peiyuan
2018-01-01
It is an important question how human beings achieve efficient recognition of others' facial expressions in cognitive neuroscience, and it has been identified that specific cortical regions show preferential activation to facial expressions in previous studies. However, the potential contributions of the connectivity patterns in the processing of facial expressions remained unclear. The present functional magnetic resonance imaging (fMRI) study explored whether facial expressions could be decoded from the functional connectivity (FC) patterns using multivariate pattern analysis combined with machine learning algorithms (fcMVPA). We employed a block design experiment and collected neural activities while participants viewed facial expressions of six basic emotions (anger, disgust, fear, joy, sadness, and surprise). Both static and dynamic expression stimuli were included in our study. A behavioral experiment after scanning confirmed the validity of the facial stimuli presented during the fMRI experiment with classification accuracies and emotional intensities. We obtained whole-brain FC patterns for each facial expression and found that both static and dynamic facial expressions could be successfully decoded from the FC patterns. Moreover, we identified the expression-discriminative networks for the static and dynamic facial expressions, which span beyond the conventional face-selective areas. Overall, these results reveal that large-scale FC patterns may also contain rich expression information to accurately decode facial expressions, suggesting a novel mechanism, which includes general interactions between distributed brain regions, and that contributes to the human facial expression recognition.
Liang, Yin; Liu, Baolin; Li, Xianglin; Wang, Peiyuan
2018-01-01
It is an important question how human beings achieve efficient recognition of others’ facial expressions in cognitive neuroscience, and it has been identified that specific cortical regions show preferential activation to facial expressions in previous studies. However, the potential contributions of the connectivity patterns in the processing of facial expressions remained unclear. The present functional magnetic resonance imaging (fMRI) study explored whether facial expressions could be decoded from the functional connectivity (FC) patterns using multivariate pattern analysis combined with machine learning algorithms (fcMVPA). We employed a block design experiment and collected neural activities while participants viewed facial expressions of six basic emotions (anger, disgust, fear, joy, sadness, and surprise). Both static and dynamic expression stimuli were included in our study. A behavioral experiment after scanning confirmed the validity of the facial stimuli presented during the fMRI experiment with classification accuracies and emotional intensities. We obtained whole-brain FC patterns for each facial expression and found that both static and dynamic facial expressions could be successfully decoded from the FC patterns. Moreover, we identified the expression-discriminative networks for the static and dynamic facial expressions, which span beyond the conventional face-selective areas. Overall, these results reveal that large-scale FC patterns may also contain rich expression information to accurately decode facial expressions, suggesting a novel mechanism, which includes general interactions between distributed brain regions, and that contributes to the human facial expression recognition. PMID:29615882
Spatial-temporal-spectral EEG patterns of BOLD functional network connectivity dynamics
NASA Astrophysics Data System (ADS)
Lamoš, Martin; Mareček, Radek; Slavíček, Tomáš; Mikl, Michal; Rektor, Ivan; Jan, Jiří
2018-06-01
Objective. Growing interest in the examination of large-scale brain network functional connectivity dynamics is accompanied by an effort to find the electrophysiological correlates. The commonly used constraints applied to spatial and spectral domains during electroencephalogram (EEG) data analysis may leave part of the neural activity unrecognized. We propose an approach that blindly reveals multimodal EEG spectral patterns that are related to the dynamics of the BOLD functional network connectivity. Approach. The blind decomposition of EEG spectrogram by parallel factor analysis has been shown to be a useful technique for uncovering patterns of neural activity. The simultaneously acquired BOLD fMRI data were decomposed by independent component analysis. Dynamic functional connectivity was computed on the component’s time series using a sliding window correlation, and between-network connectivity states were then defined based on the values of the correlation coefficients. ANOVA tests were performed to assess the relationships between the dynamics of between-network connectivity states and the fluctuations of EEG spectral patterns. Main results. We found three patterns related to the dynamics of between-network connectivity states. The first pattern has dominant peaks in the alpha, beta, and gamma bands and is related to the dynamics between the auditory, sensorimotor, and attentional networks. The second pattern, with dominant peaks in the theta and low alpha bands, is related to the visual and default mode network. The third pattern, also with peaks in the theta and low alpha bands, is related to the auditory and frontal network. Significance. Our previous findings revealed a relationship between EEG spectral pattern fluctuations and the hemodynamics of large-scale brain networks. In this study, we suggest that the relationship also exists at the level of functional connectivity dynamics among large-scale brain networks when no standard spatial and spectral constraints are applied on the EEG data.
Measuring happiness in large population
NASA Astrophysics Data System (ADS)
Wenas, Annabelle; Sjahputri, Smita; Takwin, Bagus; Primaldhi, Alfindra; Muhamad, Roby
2016-01-01
The ability to know emotional states for large number of people is important, for example, to ensure the effectiveness of public policies. In this study, we propose a measure of happiness that can be used in large scale population that is based on the analysis of Indonesian language lexicons. Here, we incorporate human assessment of Indonesian words, then quantify happiness on large-scale of texts gathered from twitter conversations. We used two psychological constructs to measure happiness: valence and arousal. We found that Indonesian words have tendency towards positive emotions. We also identified several happiness patterns during days of the week, hours of the day, and selected conversation topics.
Scale problems in reporting landscape pattern at the regional scale
R.V. O' Neill; C.T. Hunsaker; S.P. Timmins; B.L. Jackson; K.B. Jones; Kurt H. Riitters; James D. Wickham
1996-01-01
Remotely sensed data for Southeastern United States (Standard Federal Region 4) are used to examine the scale problems involved in reporting landscape pattern for a large, heterogeneous region. Frequency distribu-tions of landscape indices illustrate problems associated with the grain or resolution of the data. Grain should be 2 to 5 times smaller than the...
Magnetic intermittency of solar wind turbulence in the dissipation range
NASA Astrophysics Data System (ADS)
Pei, Zhongtian; He, Jiansen; Tu, Chuanyi; Marsch, Eckart; Wang, Linghua
2016-04-01
The feature, nature, and fate of intermittency in the dissipation range are an interesting topic in the solar wind turbulence. We calculate the distribution of flatness for the magnetic field fluctuations as a functionof angle and scale. The flatness distribution shows a "butterfly" pattern, with two wings located at angles parallel/anti-parallel to local mean magnetic field direction and main body located at angles perpendicular to local B0. This "butterfly" pattern illustrates that the flatness profile in (anti-) parallel direction approaches to the maximum value at larger scale and drops faster than that in perpendicular direction. The contours for probability distribution functions at different scales illustrate a "vase" pattern, more clear in parallel direction, which confirms the scale-variation of flatness and indicates the intermittency generation and dissipation. The angular distribution of structure function in the dissipation range shows an anisotropic pattern. The quasi-mono-fractal scaling of structure function in the dissipation range is also illustrated and investigated with the mathematical model for inhomogeneous cascading (extended p-model). Different from the inertial range, the extended p-model for the dissipation range results in approximate uniform fragmentation measure. However, more complete mathematicaland physical model involving both non-uniform cascading and dissipation is needed. The nature of intermittency may be strong structures or large amplitude fluctuations, which may be tested with magnetic helicity. In one case study, we find the heating effect in terms of entropy for large amplitude fluctuations seems to be more obvious than strong structures.
Jung, Yushin; Lee, Howon; Park, Tae-Joon; Kim, Sungsik; Kwon, Sunghoon
2015-10-22
The demand for patterning functional materials precisely on surfaces of stimuli-responsive devices has increased in many research fields. In situ polymerization technology is one of the most convenient ways to place the functional materials on a desired location with micron-scale accuracy. To fabricate stimuli-responsive surfaces, controlling concentration of the functional material is much as important as micropatterning them. However, patterning and controlling concentration of the functional materials simultaneously requires an additional process, such as preparing multiple co-flow microfluidic structures and numbers of solutions with various concentrations. Despite applying these processes, fabricating heterogeneous patterns in large scale (millimeter scale) is still impossible. In this study, we propose an advanced in situ polymerization technique to pattern the surface in micron scale in a concentration-controlled manner. Because the concentration of the functional materials is manipulated by self-assembly on the surface, a complex pattern could be easily fabricated without any additional procedure. The complex pattern is pre-designed with absorption amount of the functional material, which is pre-determined by the duration of UV exposure. We show that the resolution reaches up to 2.5 μm and demonstrate mm-scale objects, maintaining the same resolution. We also fabricated Multi-bit barcoded micro particles verify the flexibility of our system.
Understanding metropolitan patterns of daily encounters.
Sun, Lijun; Axhausen, Kay W; Lee, Der-Horng; Huang, Xianfeng
2013-08-20
Understanding of the mechanisms driving our daily face-to-face encounters is still limited; the field lacks large-scale datasets describing both individual behaviors and their collective interactions. However, here, with the help of travel smart card data, we uncover such encounter mechanisms and structures by constructing a time-resolved in-vehicle social encounter network on public buses in a city (about 5 million residents). Using a population scale dataset, we find physical encounters display reproducible temporal patterns, indicating that repeated encounters are regular and identical. On an individual scale, we find that collective regularities dominate distinct encounters' bounded nature. An individual's encounter capability is rooted in his/her daily behavioral regularity, explaining the emergence of "familiar strangers" in daily life. Strikingly, we find individuals with repeated encounters are not grouped into small communities, but become strongly connected over time, resulting in a large, but imperceptible, small-world contact network or "structure of co-presence" across the whole metropolitan area. Revealing the encounter pattern and identifying this large-scale contact network are crucial to understanding the dynamics in patterns of social acquaintances, collective human behaviors, and--particularly--disclosing the impact of human behavior on various diffusion/spreading processes.
Understanding metropolitan patterns of daily encounters
Sun, Lijun; Axhausen, Kay W.; Lee, Der-Horng; Huang, Xianfeng
2013-01-01
Understanding of the mechanisms driving our daily face-to-face encounters is still limited; the field lacks large-scale datasets describing both individual behaviors and their collective interactions. However, here, with the help of travel smart card data, we uncover such encounter mechanisms and structures by constructing a time-resolved in-vehicle social encounter network on public buses in a city (about 5 million residents). Using a population scale dataset, we find physical encounters display reproducible temporal patterns, indicating that repeated encounters are regular and identical. On an individual scale, we find that collective regularities dominate distinct encounters’ bounded nature. An individual’s encounter capability is rooted in his/her daily behavioral regularity, explaining the emergence of “familiar strangers” in daily life. Strikingly, we find individuals with repeated encounters are not grouped into small communities, but become strongly connected over time, resulting in a large, but imperceptible, small-world contact network or “structure of co-presence” across the whole metropolitan area. Revealing the encounter pattern and identifying this large-scale contact network are crucial to understanding the dynamics in patterns of social acquaintances, collective human behaviors, and—particularly—disclosing the impact of human behavior on various diffusion/spreading processes. PMID:23918373
A Polytomous Item Response Theory Analysis of Social Physique Anxiety Scale
ERIC Educational Resources Information Center
Fletcher, Richard B.; Crocker, Peter
2014-01-01
The present study investigated the social physique anxiety scale's factor structure and item properties using confirmatory factor analysis and item response theory. An additional aim was to identify differences in response patterns between groups (gender). A large sample of high school students aged 11-15 years (N = 1,529) consisting of n =…
Large Scale Processes and Extreme Floods in Brazil
NASA Astrophysics Data System (ADS)
Ribeiro Lima, C. H.; AghaKouchak, A.; Lall, U.
2016-12-01
Persistent large scale anomalies in the atmospheric circulation and ocean state have been associated with heavy rainfall and extreme floods in water basins of different sizes across the world. Such studies have emerged in the last years as a new tool to improve the traditional, stationary based approach in flood frequency analysis and flood prediction. Here we seek to advance previous studies by evaluating the dominance of large scale processes (e.g. atmospheric rivers/moisture transport) over local processes (e.g. local convection) in producing floods. We consider flood-prone regions in Brazil as case studies and the role of large scale climate processes in generating extreme floods in such regions is explored by means of observed streamflow, reanalysis data and machine learning methods. The dynamics of the large scale atmospheric circulation in the days prior to the flood events are evaluated based on the vertically integrated moisture flux and its divergence field, which are interpreted in a low-dimensional space as obtained by machine learning techniques, particularly supervised kernel principal component analysis. In such reduced dimensional space, clusters are obtained in order to better understand the role of regional moisture recycling or teleconnected moisture in producing floods of a given magnitude. The convective available potential energy (CAPE) is also used as a measure of local convection activities. We investigate for individual sites the exceedance probability in which large scale atmospheric fluxes dominate the flood process. Finally, we analyze regional patterns of floods and how the scaling law of floods with drainage area responds to changes in the climate forcing mechanisms (e.g. local vs large scale).
Tetzlaff, Christian; Kolodziejski, Christoph; Timme, Marc; Wörgötter, Florentin
2011-01-01
Synaptic scaling is a slow process that modifies synapses, keeping the firing rate of neural circuits in specific regimes. Together with other processes, such as conventional synaptic plasticity in the form of long term depression and potentiation, synaptic scaling changes the synaptic patterns in a network, ensuring diverse, functionally relevant, stable, and input-dependent connectivity. How synaptic patterns are generated and stabilized, however, is largely unknown. Here we formally describe and analyze synaptic scaling based on results from experimental studies and demonstrate that the combination of different conventional plasticity mechanisms and synaptic scaling provides a powerful general framework for regulating network connectivity. In addition, we design several simple models that reproduce experimentally observed synaptic distributions as well as the observed synaptic modifications during sustained activity changes. These models predict that the combination of plasticity with scaling generates globally stable, input-controlled synaptic patterns, also in recurrent networks. Thus, in combination with other forms of plasticity, synaptic scaling can robustly yield neuronal circuits with high synaptic diversity, which potentially enables robust dynamic storage of complex activation patterns. This mechanism is even more pronounced when considering networks with a realistic degree of inhibition. Synaptic scaling combined with plasticity could thus be the basis for learning structured behavior even in initially random networks. PMID:22203799
Iris indexing based on local intensity order pattern
NASA Astrophysics Data System (ADS)
Emerich, Simina; Malutan, Raul; Crisan, Septimiu; Lefkovits, Laszlo
2017-03-01
In recent years, iris biometric systems have increased in popularity and have been proven that are capable of handling large-scale databases. The main advantage of these systems is accuracy and reliability. A proper iris patterns classification is expected to reduce the matching time in huge databases. This paper presents an iris indexing technique based on Local Intensity Order Pattern. The performance of the present approach is evaluated on UPOL database and is compared with other recent systems designed for iris indexing. The results illustrate the potential of the proposed method for large scale iris identification.
ERIC Educational Resources Information Center
Aßmann, Christian; Würbach, Ariane; Goßmann, Solange; Geissler, Ferdinand; Bela, Anika
2017-01-01
Large-scale surveys typically exhibit data structures characterized by rich mutual dependencies between surveyed variables and individual-specific skip patterns. Despite high efforts in fieldwork and questionnaire design, missing values inevitably occur. One approach for handling missing values is to provide multiply imputed data sets, thus…
Steed, Chad A.; Halsey, William; Dehoff, Ryan; ...
2017-02-16
Flexible visual analysis of long, high-resolution, and irregularly sampled time series data from multiple sensor streams is a challenge in several domains. In the field of additive manufacturing, this capability is critical for realizing the full potential of large-scale 3D printers. Here, we propose a visual analytics approach that helps additive manufacturing researchers acquire a deep understanding of patterns in log and imagery data collected by 3D printers. Our specific goals include discovering patterns related to defects and system performance issues, optimizing build configurations to avoid defects, and increasing production efficiency. We introduce Falcon, a new visual analytics system thatmore » allows users to interactively explore large, time-oriented data sets from multiple linked perspectives. Falcon provides overviews, detailed views, and unique segmented time series visualizations, all with adjustable scale options. To illustrate the effectiveness of Falcon at providing thorough and efficient knowledge discovery, we present a practical case study involving experts in additive manufacturing and data from a large-scale 3D printer. The techniques described are applicable to the analysis of any quantitative time series, though the focus of this paper is on additive manufacturing.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steed, Chad A.; Halsey, William; Dehoff, Ryan
Flexible visual analysis of long, high-resolution, and irregularly sampled time series data from multiple sensor streams is a challenge in several domains. In the field of additive manufacturing, this capability is critical for realizing the full potential of large-scale 3D printers. Here, we propose a visual analytics approach that helps additive manufacturing researchers acquire a deep understanding of patterns in log and imagery data collected by 3D printers. Our specific goals include discovering patterns related to defects and system performance issues, optimizing build configurations to avoid defects, and increasing production efficiency. We introduce Falcon, a new visual analytics system thatmore » allows users to interactively explore large, time-oriented data sets from multiple linked perspectives. Falcon provides overviews, detailed views, and unique segmented time series visualizations, all with adjustable scale options. To illustrate the effectiveness of Falcon at providing thorough and efficient knowledge discovery, we present a practical case study involving experts in additive manufacturing and data from a large-scale 3D printer. The techniques described are applicable to the analysis of any quantitative time series, though the focus of this paper is on additive manufacturing.« less
Production regimes in four eastern boundary current systems
NASA Technical Reports Server (NTRS)
Carr, M. E.; Kearns, E. J.
2003-01-01
High productivity (maxima 3 g C m(sup -2)day(sup -1)) of the Eastern Boundary Currents (EBCs), i.e. the California, Peru-Humboldt, Canary and Benguela Currents, is driven by a combination of local forcing and large-scale circulation. The characteristics of the deep water brought to the surface by upwelling favorable winds depend on the large-scale circulation patterns. Here we use a new hydrographic and nutrient climatology together with satellite measurements ofthe wind vector, sea-surface temperature (SST), chlorophyll concentration, and primary production modeled from ocean color to quantify the meridional and seasonal patterns of upwelling dynamics and biological response. The unprecedented combination of data sets allows us to describe objectively the variability for small regions within each current and to characterize the governing factors for biological production. The temporal and spatial environmental variability was due in most regions to large-scale circulation, alone or in combination with offshore transport (local forcing). The observed meridional and seasonal patterns of biomass and primary production were most highlycorrelated to components representing large-scale circulation. The biomass sustained by a given nutrient concentration in the Atlantic EBCs was twice as large as that of the Pacific EBCs. This apparent greater efficiency may be due toavailability of iron, physical retention, or differences in planktonic community structure.
Wang, Yi-Feng; Long, Zhiliang; Cui, Qian; Liu, Feng; Jing, Xiu-Juan; Chen, Heng; Guo, Xiao-Nan; Yan, Jin H; Chen, Hua-Fu
2016-01-01
Neural oscillations are essential for brain functions. Research has suggested that the frequency of neural oscillations is lower for more integrative and remote communications. In this vein, some resting-state studies have suggested that large scale networks function in the very low frequency range (<1 Hz). However, it is difficult to determine the frequency characteristics of brain networks because both resting-state studies and conventional frequency tagging approaches cannot simultaneously capture multiple large scale networks in controllable cognitive activities. In this preliminary study, we aimed to examine whether large scale networks can be modulated by task-induced low frequency steady-state brain responses (lfSSBRs) in a frequency-specific pattern. In a revised attention network test, the lfSSBRs were evoked in the triple network system and sensory-motor system, indicating that large scale networks can be modulated in a frequency tagging way. Furthermore, the inter- and intranetwork synchronizations as well as coherence were increased at the fundamental frequency and the first harmonic rather than at other frequency bands, indicating a frequency-specific modulation of information communication. However, there was no difference among attention conditions, indicating that lfSSBRs modulate the general attention state much stronger than distinguishing attention conditions. This study provides insights into the advantage and mechanism of lfSSBRs. More importantly, it paves a new way to investigate frequency-specific large scale brain activities. © 2015 Wiley Periodicals, Inc.
A global traveling wave on Venus
NASA Technical Reports Server (NTRS)
Smith, Michael D.; Gierasch, Peter J.; Schinder, Paul J.
1993-01-01
The dominant large-scale pattern in the clouds of Venus has been described as a 'Y' or 'Psi' and tentatively identified by earlier workers as a Kelvin wave. A detailed calculation of linear wave modes in the Venus atmosphere verifies this identification. Cloud feedback by infrared heating fluctuations is a plausible excitation mechanism. Modulation of the large-scale pattern by the wave is a possible explanation for the Y. Momentum transfer by the wave could contribute to sustaining the general circulation.
An integrated network of Arabidopsis growth regulators and its use for gene prioritization.
Sabaghian, Ehsan; Drebert, Zuzanna; Inzé, Dirk; Saeys, Yvan
2015-12-01
Elucidating the molecular mechanisms that govern plant growth has been an important topic in plant research, and current advances in large-scale data generation call for computational tools that efficiently combine these different data sources to generate novel hypotheses. In this work, we present a novel, integrated network that combines multiple large-scale data sources to characterize growth regulatory genes in Arabidopsis, one of the main plant model organisms. The contributions of this work are twofold: first, we characterized a set of carefully selected growth regulators with respect to their connectivity patterns in the integrated network, and, subsequently, we explored to which extent these connectivity patterns can be used to suggest new growth regulators. Using a large-scale comparative study, we designed new supervised machine learning methods to prioritize growth regulators. Our results show that these methods significantly improve current state-of-the-art prioritization techniques, and are able to suggest meaningful new growth regulators. In addition, the integrated network is made available to the scientific community, providing a rich data source that will be useful for many biological processes, not necessarily restricted to plant growth.
A new model for extinction and recolonization in two dimensions: quantifying phylogeography.
Barton, Nicholas H; Kelleher, Jerome; Etheridge, Alison M
2010-09-01
Classical models of gene flow fail in three ways: they cannot explain large-scale patterns; they predict much more genetic diversity than is observed; and they assume that loosely linked genetic loci evolve independently. We propose a new model that deals with these problems. Extinction events kill some fraction of individuals in a region. These are replaced by offspring from a small number of parents, drawn from the preexisting population. This model of evolution forwards in time corresponds to a backwards model, in which ancestral lineages jump to a new location if they are hit by an event, and may coalesce with other lineages that are hit by the same event. We derive an expression for the identity in allelic state, and show that, over scales much larger than the largest event, this converges to the classical value derived by Wright and Malécot. However, rare events that cover large areas cause low genetic diversity, large-scale patterns, and correlations in ancestry between unlinked loci. © 2010 The Author(s). Journal compilation © 2010 The Society for the Study of Evolution.
2013-01-01
Large-scale nanopatterned sapphire substrates were fabricated by annealing of patterned Al thin films. Patterned Al thin films were obtained by soft UV-nanoimprint lithography and reactive ion etching. The soft mold with 550-nm-wide lines separated by 250-nm space was composed of the toluene-diluted polydimethylsiloxane (PDMS) layer supported by the soft PDMS. Patterned Al thin films were subsequently subjected to dual-stage annealing due to the melting temperature of Al thin films (660°C). The first comprised a low-temperature oxidation anneal at 450°C for 24 h. This was followed by a high-temperature annealing in the range of 1,000°C and 1,200°C for 1 h to induce growth of the underlying sapphire single crystal to consume the oxide layer. The SEM results indicate that the patterns were retained on sapphire substrates after high-temperature annealing at less than 1,200°C. Finally, large-scale nanopatterned sapphire substrates were successfully fabricated by annealing of patterned Al thin films for 24 h at 450°C and 1 h at 1,000°C by soft UV-nanoimprint lithography. PMID:24215718
NASA Astrophysics Data System (ADS)
Agel, Laurie; Barlow, Mathew; Feldstein, Steven B.; Gutowski, William J.
2018-03-01
Patterns of daily large-scale circulation associated with Northeast US extreme precipitation are identified using both k-means clustering (KMC) and Self-Organizing Maps (SOM) applied to tropopause height. The tropopause height provides a compact representation of the upper-tropospheric potential vorticity, which is closely related to the overall evolution and intensity of weather systems. Extreme precipitation is defined as the top 1% of daily wet-day observations at 35 Northeast stations, 1979-2008. KMC is applied on extreme precipitation days only, while the SOM algorithm is applied to all days in order to place the extreme results into the overall context of patterns for all days. Six tropopause patterns are identified through KMC for extreme day precipitation: a summertime tropopause ridge, a summertime shallow trough/ridge, a summertime shallow eastern US trough, a deeper wintertime eastern US trough, and two versions of a deep cold-weather trough located across the east-central US. Thirty SOM patterns for all days are identified. Results for all days show that 6 SOM patterns account for almost half of the extreme days, although extreme precipitation occurs in all SOM patterns. The same SOM patterns associated with extreme precipitation also routinely produce non-extreme precipitation; however, on extreme precipitation days the troughs, on average, are deeper and the downstream ridges more pronounced. Analysis of other fields associated with the large-scale patterns show various degrees of anomalously strong moisture transport preceding, and upward motion during, extreme precipitation events.
Wang, Guiming; Hobbs, N Thompson; Galbraith, Hector; Giesen, Kenneth M
2002-09-01
Global climate change may impact wildlife populations by affecting local weather patterns, which, in turn, can impact a variety of ecological processes. However, it is not clear that local variations in ecological processes can be explained by large-scale patterns of climate. The North Atlantic oscillation (NAO) is a large-scale climate phenomenon that has been shown to influence the population dynamics of some animals. Although effects of the NAO on vertebrate population dynamics have been studied, it remains uncertain whether it broadly predicts the impact of weather on species. We examined the ability of local weather data and the NAO to explain the annual variation in population dynamics of white-tailed ptarmigan ( Lagopus leucurus) in Rocky Mountain National Park, USA. We performed canonical correlation analysis on the demographic subspace of ptarmigan and local-climate subspace defined by the empirical orthogonal function (EOF) using data from 1975 to 1999. We found that two subspaces were significantly correlated on the first canonical variable. The Pearson correlation coefficient of the first EOF values of the demographic and local-climate subspaces was significant. The population density and the first EOF of local-climate subspace influenced the ptarmigan population with 1-year lags in the Gompertz model. However, the NAO index was neither related to the first two EOF of local-climate subspace nor to the first EOF of the demographic subspace of ptarmigan. Moreover, the NAO index was not a significant term in the Gompertz model for the ptarmigan population. Therefore, local climate had stronger signature on the demography of ptarmigan than did a large-scale index, i.e., the NAO index. We conclude that local responses of wildlife populations to changing climate may not be adequately explained by models that project large-scale climatic patterns.
Kocabas, Coskun; Hur, Seung-Hyun; Gaur, Anshu; Meitl, Matthew A; Shim, Moonsub; Rogers, John A
2005-11-01
A convenient process for generating large-scale, horizontally aligned arrays of pristine, single-walled carbon nanotubes (SWNTs) is described. The approach uses guided growth, by chemical vapor deposition (CVD), of SWNTs on miscut single-crystal quartz substrates. Studies of the growth reveal important relationships between the density and alignment of the tubes, the CVD conditions, and the morphology of the quartz. Electrodes and dielectrics patterned on top of these arrays yield thin-film transistors that use the SWNTs as effective thin-film semiconductors. The ability to build high-performance devices of this type suggests significant promise for large-scale aligned arrays of SWNTs in electronics, sensors, and other applications.
Pattern formation--A missing link in the study of ecosystem response to environmental changes.
Meron, Ehud
2016-01-01
Environmental changes can affect the functioning of an ecosystem directly, through the response of individual life forms, or indirectly, through interspecific interactions and community dynamics. The feasibility of a community-level response has motivated numerous studies aimed at understanding the mutual relationships between three elements of ecosystem dynamics: the abiotic environment, biodiversity and ecosystem function. Since ecosystems are inherently nonlinear and spatially extended, environmental changes can also induce pattern-forming instabilities that result in spatial self-organization of life forms and resources. This, in turn, can affect the relationships between these three elements, and make the response of ecosystems to environmental changes far more complex. Responses of this kind can be expected in dryland ecosystems, which show a variety of self-organizing vegetation patterns along the rainfall gradient. This paper describes the progress that has been made in understanding vegetation patterning in dryland ecosystems, and the roles it plays in ecosystem response to environmental variability. The progress has been achieved by modeling pattern-forming feedbacks at small spatial scales and up-scaling their effects to large scales through model studies. This approach sets the basis for integrating pattern formation theory into the study of ecosystem dynamics and addressing ecologically significant questions such as the dynamics of desertification, restoration of degraded landscapes, biodiversity changes along environmental gradients, and shrubland-grassland transitions. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Chang, Wen-Li
2010-01-01
We investigate the influence of blurred ways on pattern recognition of a Barabási-Albert scale-free Hopfield neural network (SFHN) with a small amount of errors. Pattern recognition is an important function of information processing in brain. Due to heterogeneous degree of scale-free network, different blurred ways have different influences on pattern recognition with same errors. Simulation shows that among partial recognition, the larger loading ratio (the number of patterns to average degree P/langlekrangle) is, the smaller the overlap of SFHN is. The influence of directed (large) way is largest and the directed (small) way is smallest while random way is intermediate between them. Under the ratio of the numbers of stored patterns to the size of the network P/N is less than 0. 1 conditions, there are three families curves of the overlap corresponding to directed (small), random and directed (large) blurred ways of patterns and these curves are not associated with the size of network and the number of patterns. This phenomenon only occurs in the SFHN. These conclusions are benefit for understanding the relation between neural network structure and brain function.
Remm, Jaanus; Hanski, Ilpo K; Tuominen, Sakari; Selonen, Vesa
2017-10-01
Animals use and select habitat at multiple hierarchical levels and at different spatial scales within each level. Still, there is little knowledge on the scale effects at different spatial levels of species occupancy patterns. The objective of this study was to examine nonlinear effects and optimal-scale landscape characteristics that affect occupancy of the Siberian flying squirrel, Pteromys volans , in South- and Mid-Finland. We used presence-absence data ( n = 10,032 plots of 9 ha) and novel approach to separate the effects on site-, landscape-, and regional-level occupancy patterns. Our main results were: landscape variables predicted the placement of population patches at least twice as well as they predicted the occupancy of particular sites; the clear optimal value of preferred habitat cover for species landscape-level abundance is a surprisingly low value (10% within a 4 km buffer); landscape metrics exert different effects on species occupancy and abundance in high versus low population density regions of our study area. We conclude that knowledge of regional variation in landscape utilization will be essential for successful conservation of the species. The results also support the view that large-scale landscape variables have high predictive power in explaining species abundance. Our study demonstrates the complex response of species occurrence at different levels of population configuration on landscape structure. The study also highlights the need for data in large spatial scale to increase the precision of biodiversity mapping and prediction of future trends.
Links between teleconnection patterns and mean temperature in Spain
NASA Astrophysics Data System (ADS)
Ríos-Cornejo, David; Penas, Ángel; Álvarez-Esteban, Ramón; del Río, Sara
2015-10-01
This work describes the relationships between Spanish temperature and four teleconnection patterns with influence on the Iberian Peninsula on monthly, seasonal and annual time scales, using data from 144 meteorological stations. Partial correlation analyses were carried out using Spearman test, and spatial distribution maps of the correlation coefficients were produced with geostatistical interpolation techniques. We regionalize the study area based on homogeneous areas containing weather stations with a similar response of temperatures to the same patterns. The links between the temperature and the patterns are mainly positive; only the correlations with Western Mediterranean Oscillation (WeMO) in the north and west are negative, indicating that WeMO plays an opposed role in temperature behaviour in Spain. In general terms, the four modes exert considerable influence on temperature in February, May and September. The East Atlantic (EA) is the pattern with the strongest influence on temperature in Spain—mainly in the north—except in June. Generally, on the seasonal and annual scales, large significant areas were only observed for the EA. EA and WeMO best account for the mean temperature on the Mediterranean fringe and in northern Spain, while EA and North Atlantic Oscillation largely explain the temperature in the rest of Spain.
The use of large scale datasets for understanding traffic network state.
DOT National Transportation Integrated Search
2013-09-01
The goal of this proposal is to develop novel modeling techniques to infer individual activity patterns from the large scale cell phone : datasets and taxi data from NYC. As such this research offers a paradigm shift from traditional transportation m...
NASA Astrophysics Data System (ADS)
Massei, N.; Dieppois, B.; Hannah, D. M.; Lavers, D. A.; Fossa, M.; Laignel, B.; Debret, M.
2017-03-01
In the present context of global changes, considerable efforts have been deployed by the hydrological scientific community to improve our understanding of the impacts of climate fluctuations on water resources. Both observational and modeling studies have been extensively employed to characterize hydrological changes and trends, assess the impact of climate variability or provide future scenarios of water resources. In the aim of a better understanding of hydrological changes, it is of crucial importance to determine how and to what extent trends and long-term oscillations detectable in hydrological variables are linked to global climate oscillations. In this work, we develop an approach associating correlation between large and local scales, empirical statistical downscaling and wavelet multiresolution decomposition of monthly precipitation and streamflow over the Seine river watershed, and the North Atlantic sea level pressure (SLP) in order to gain additional insights on the atmospheric patterns associated with the regional hydrology. We hypothesized that: (i) atmospheric patterns may change according to the different temporal wavelengths defining the variability of the signals; and (ii) definition of those hydrological/circulation relationships for each temporal wavelength may improve the determination of large-scale predictors of local variations. The results showed that the links between large and local scales were not necessarily constant according to time-scale (i.e. for the different frequencies characterizing the signals), resulting in changing spatial patterns across scales. This was then taken into account by developing an empirical statistical downscaling (ESD) modeling approach, which integrated discrete wavelet multiresolution analysis for reconstructing monthly regional hydrometeorological processes (predictand: precipitation and streamflow on the Seine river catchment) based on a large-scale predictor (SLP over the Euro-Atlantic sector). This approach basically consisted in three steps: 1 - decomposing large-scale climate and hydrological signals (SLP field, precipitation or streamflow) using discrete wavelet multiresolution analysis, 2 - generating a statistical downscaling model per time-scale, 3 - summing up all scale-dependent models in order to obtain a final reconstruction of the predictand. The results obtained revealed a significant improvement of the reconstructions for both precipitation and streamflow when using the multiresolution ESD model instead of basic ESD. In particular, the multiresolution ESD model handled very well the significant changes in variance through time observed in either precipitation or streamflow. For instance, the post-1980 period, which had been characterized by particularly high amplitudes in interannual-to-interdecadal variability associated with alternating flood and extremely low-flow/drought periods (e.g., winter/spring 2001, summer 2003), could not be reconstructed without integrating wavelet multiresolution analysis into the model. In accordance with previous studies, the wavelet components detected in SLP, precipitation and streamflow on interannual to interdecadal time-scales could be interpreted in terms of influence of the Gulf-Stream oceanic front on atmospheric circulation.
Magnetic pattern at supergranulation scale: the void size distribution
NASA Astrophysics Data System (ADS)
Berrilli, F.; Scardigli, S.; Del Moro, D.
2014-08-01
The large-scale magnetic pattern observed in the photosphere of the quiet Sun is dominated by the magnetic network. This network, created by photospheric magnetic fields swept into convective downflows, delineates the boundaries of large-scale cells of overturning plasma and exhibits "voids" in magnetic organization. These voids include internetwork fields, which are mixed-polarity sparse magnetic fields that populate the inner part of network cells. To single out voids and to quantify their intrinsic pattern we applied a fast circle-packing-based algorithm to 511 SOHO/MDI high-resolution magnetograms acquired during the unusually long solar activity minimum between cycles 23 and 24. The computed void distribution function shows a quasi-exponential decay behavior in the range 10-60 Mm. The lack of distinct flow scales in this range corroborates the hypothesis of multi-scale motion flows at the solar surface. In addition to the quasi-exponential decay, we have found that the voids depart from a simple exponential decay at about 35 Mm.
Buckley, Hannah L; Rafat, Arash; Ridden, Johnathon D; Cruickshank, Robert H; Ridgway, Hayley J; Paterson, Adrian M
2014-01-01
The role of species' interactions in structuring biological communities remains unclear. Mutualistic symbioses, involving close positive interactions between two distinct organismal lineages, provide an excellent means to explore the roles of both evolutionary and ecological processes in determining how positive interactions affect community structure. In this study, we investigate patterns of co-diversification between fungi and algae for a range of New Zealand lichens at the community, genus, and species levels and explore explanations for possible patterns related to spatial scale and pattern, taxonomic diversity of the lichens considered, and the level sampling replication. We assembled six independent datasets to compare patterns in phylogenetic congruence with varied spatial extent of sampling, taxonomic diversity and level of specimen replication. For each dataset, we used the DNA sequences from the ITS regions of both the fungal and algal genomes from lichen specimens to produce genetic distance matrices. Phylogenetic congruence between fungi and algae was quantified using distance-based redundancy analysis and we used geographic distance matrices in Moran's eigenvector mapping and variance partitioning to evaluate the effects of spatial variation on the quantification of phylogenetic congruence. Phylogenetic congruence was highly significant for all datasets and a large proportion of variance in both algal and fungal genetic distances was explained by partner genetic variation. Spatial variables, primarily at large and intermediate scales, were also important for explaining genetic diversity patterns in all datasets. Interestingly, spatial structuring was stronger for fungal than algal genetic variation. As the spatial extent of the samples increased, so too did the proportion of explained variation that was shared between the spatial variables and the partners' genetic variation. Different lichen taxa showed some variation in their phylogenetic congruence and spatial genetic patterns and where greater sample replication was used, the amount of variation explained by partner genetic variation increased. Our results suggest that the phylogenetic congruence pattern, at least at small spatial scales, is likely due to reciprocal co-adaptation or co-dispersal. However, the detection of these patterns varies among different lichen taxa, across spatial scales and with different levels of sample replication. This work provides insight into the complexities faced in determining how evolutionary and ecological processes may interact to generate diversity in symbiotic association patterns at the population and community levels. Further, it highlights the critical importance of considering sample replication, taxonomic diversity and spatial scale in designing studies of co-diversification.
A combinatorial code for pattern formation in Drosophila oogenesis.
Yakoby, Nir; Bristow, Christopher A; Gong, Danielle; Schafer, Xenia; Lembong, Jessica; Zartman, Jeremiah J; Halfon, Marc S; Schüpbach, Trudi; Shvartsman, Stanislav Y
2008-11-01
Two-dimensional patterning of the follicular epithelium in Drosophila oogenesis is required for the formation of three-dimensional eggshell structures. Our analysis of a large number of published gene expression patterns in the follicle cells suggests that they follow a simple combinatorial code based on six spatial building blocks and the operations of union, difference, intersection, and addition. The building blocks are related to the distribution of inductive signals, provided by the highly conserved epidermal growth factor receptor and bone morphogenetic protein signaling pathways. We demonstrate the validity of the code by testing it against a set of patterns obtained in a large-scale transcriptional profiling experiment. Using the proposed code, we distinguish 36 distinct patterns for 81 genes expressed in the follicular epithelium and characterize their joint dynamics over four stages of oogenesis. The proposed combinatorial framework allows systematic analysis of the diversity and dynamics of two-dimensional transcriptional patterns and guides future studies of gene regulation.
A case study of the Santa Ana winds in the San Gabriel mountains
Michael A. Fosberg
1965-01-01
Santa Ana wind structure varies between the high main ridges, the foothills, and the canyon bottoms. In each of these regions, a typical pattern characterizes the Santa Ana. Strong steady wind, at the high levels are determined almost completely by the large scale weather patterns. lntermediate canyons and ridges are affected by Santa Ana winds only when the foehn is...
ERIC Educational Resources Information Center
Wang, Cheng-Lung; Liou, Pey-Yan
2018-01-01
The purpose of this study was to examine the pattern of the relationships among motivational beliefs and science achievement of 8th grade Taiwanese students, given that the students in Taiwan have high science academic achievement but low motivational beliefs in science learning on a series of international large-scale assessments. Three…
Stability and Change in Interests: A Longitudinal Study of Adolescents from Grades 8 through 12
ERIC Educational Resources Information Center
Tracey, Terence J. G.; Robbins, Steven B.; Hofsess, Christy D.
2005-01-01
The pattern of RIASEC interests and academic skills were assessed longitudinally from a large-scale national database at three time points: eight grade, 10th grade, and 12th grade. Validation and cross-validation samples of 1000 males and 1000 females in each set were used to test the pattern of these scores over time relative to mean changes,…
Brown, Jessi L.; Bedrosian, Bryan; Bell, Douglas A.; Braham, Melissa A.; Cooper, Jeff; Crandall, Ross H.; DiDonato, Joe; Domenech, Robert; Duerr, Adam E.; Katzner, Todd; Lanzone, Michael J.; LaPlante, David W.; McIntyre, Carol L.; Miller, Tricia A.; Murphy, Robert K.; Shreading, Adam; Slater, Steven J.; Smith, Jeff P.; Smith, Brian W.; Watson, James W.; Woodbridge, Brian
2017-01-01
Conserving wide-ranging animals requires knowledge about their year-round movements and resource use. Golden Eagles (Aquila chrysaetos) exhibit a wide range of movement patterns across North America. We combined tracking data from 571 Golden Eagles from multiple independent satellite-telemetry projects from North America to provide a comprehensive look at the magnitude and extent of these movements on a continental scale. We compared patterns of use relative to four alternative administrative and ecological mapping systems, namely Bird Conservation Regions (BCRs), U.S. administrative migratory bird flyways, Migratory Bird Joint Ventures, and Landscape Conservation Cooperatives. Our analyses suggested that eagles initially captured in eastern North America used space differently than those captured in western North America. Other groups of eagles that exhibited distinct patterns in space use included long-distance migrants from northern latitudes, and southwestern and Californian desert residents. There were also several groupings of eagles in the Intermountain West. Using this collaborative approach, we have identified large-scale movement patterns that may not have been possible with individual studies. These results will support landscape-scale conservation measures for Golden Eagles across North America.
The geographical distribution of underweight children in Africa.
Nubé, Maarten; Sonneveld, Benjamin G. J. S.
2005-01-01
OBJECTIVE: To study geographical patterns of underweight children in Africa by combining information on prevalence with headcounts at a subnational level. METHODS: We used large-scale, nationally representative nutrition surveys, in particular the Demographic and Health Surveys and the Multiple Indicator Cluster Surveys, which have been designed, analysed and presented according to largely similar protocols, and which report at the national and subnational levels. FINDINGS: We found distinct geographical patterns in the occurrence of underweight children, which could be linked to factors such as agronomic and climatic conditions, population density and economic integration. CONCLUSION: Patterns of underweight children cross national borders suggesting that regional characteristics and interactions need to be considered when addressing malnutrition. PMID:16283053
Harrison, Charlotte; Jackson, Jade; Oh, Seung-Mock; Zeringyte, Vaida
2016-01-01
Multivariate pattern analysis of functional magnetic resonance imaging (fMRI) data is widely used, yet the spatial scales and origin of neurovascular signals underlying such analyses remain unclear. We compared decoding performance for stimulus orientation and eye of origin from fMRI measurements in human visual cortex with predictions based on the columnar organization of each feature and estimated the spatial scales of patterns driving decoding. Both orientation and eye of origin could be decoded significantly above chance in early visual areas (V1–V3). Contrary to predictions based on a columnar origin of response biases, decoding performance for eye of origin in V2 and V3 was not significantly lower than that in V1, nor did decoding performance for orientation and eye of origin differ significantly. Instead, response biases for both features showed large-scale organization, evident as a radial bias for orientation, and a nasotemporal bias for eye preference. To determine whether these patterns could drive classification, we quantified the effect on classification performance of binning voxels according to visual field position. Consistent with large-scale biases driving classification, binning by polar angle yielded significantly better decoding performance for orientation than random binning in V1–V3. Similarly, binning by hemifield significantly improved decoding performance for eye of origin. Patterns of orientation and eye preference bias in V2 and V3 showed a substantial degree of spatial correlation with the corresponding patterns in V1, suggesting that response biases in these areas originate in V1. Together, these findings indicate that multivariate classification results need not reflect the underlying columnar organization of neuronal response selectivities in early visual areas. NEW & NOTEWORTHY Large-scale response biases can account for decoding of orientation and eye of origin in human early visual areas V1–V3. For eye of origin this pattern is a nasotemporal bias; for orientation it is a radial bias. Differences in decoding performance across areas and stimulus features are not well predicted by differences in columnar-scale organization of each feature. Large-scale biases in extrastriate areas are spatially correlated with those in V1, suggesting biases originate in primary visual cortex. PMID:27903637
Ávila, Sérgio P; Cordeiro, Ricardo; Madeira, Patrícia; Silva, Luís; Medeiros, António; Rebelo, Ana C; Melo, Carlos; Neto, Ana I; Haroun, Ricardo; Monteiro, António; Rijsdijk, Kenneth; Johnson, Markes E
2018-01-01
Past climate changes provide important clues for advancement of studies on current global change biology. We have tested large-scale biogeographic patterns through four marine groups from twelve Atlantic Ocean archipelagos and searched for patterns between species richness/endemism and littoral area, age, isolation, latitude and mean annual sea-surface temperatures. Species richness is strongly correlated with littoral area. Two reinforcing effects take place during glacial episodes: i) species richness is expected to decrease (in comparison with interglacial periods) due to the local disappearance of sandy/muddy-associated species; ii) because littoral area is minimal during glacial episodes, area per se induces a decrease on species richness (by extirpation/extinction of marine species) as well as affecting speciation rates. Maximum speciation rates are expected to occur during the interglacial periods, whereas immigration rates are expected to be higher at the LGM. Finally, sea-level changes are a paramount factor influencing marine biodiversity of animals and plants living on oceanic islands. Copyright © 2017 Elsevier Ltd. All rights reserved.
Browne, Mark Anthony; Chapman, M Gee; Thompson, Richard C; Amaral Zettler, Linda A; Jambeck, Jenna; Mallos, Nicholas J
2015-06-16
Floating and stranded marine debris is widespread. Increasing sea levels and altered rainfall, solar radiation, wind speed, waves, and oceanic currents associated with climatic change are likely to transfer more debris from coastal cities into marine and coastal habitats. Marine debris causes economic and ecological impacts, but understanding the scope of these requires quantitative information on spatial patterns and trends in the amounts and types of debris at a global scale. There are very few large-scale programs to measure debris, but many peer-reviewed and published scientific studies of marine debris describe local patterns. Unfortunately, methods of defining debris, sampling, and interpreting patterns in space or time vary considerably among studies, yet if data could be synthesized across studies, a global picture of the problem may be avaliable. We analyzed 104 published scientific papers on marine debris in order to determine how to evaluate this. Although many studies were well designed to answer specific questions, definitions of what constitutes marine debris, the methods used to measure, and the scale of the scope of the studies means that no general picture can emerge from this wealth of data. These problems are detailed to guide future studies and guidelines provided to enable the collection of more comparable data to better manage this growing problem.
Multiscale analysis of the fracture pattern in granite, example of Tamariu's granite, Catalunya.
NASA Astrophysics Data System (ADS)
Bertrand, L.; LeGarzic, E.; Géraud, Y.; Diraison, M.
2012-04-01
Crystalline rocks can be the host of important fluid flow and therefore they can provide a good reservoir potential. In this kind of rocks, the matrice porosity is in general low and a large part of the permeability is governed by the fracture pattern. Thus, they are the first interest of studies in order to characterize and model the fluid flows. Actual reservoirs are underground, and the only access to the fracture pattern is with boreholes and seismic lines. Those methods are investigating different scales and dimensions: seismic is in 3D at a global scale whereas boreholes are 1D at a localized scale. To make the link between the different data, it is necessary to study field analogues where such fractured rocks are outcropping. Tamariu's granite, in Catalunya, has recently been studied as a field analogue of a fractured reservoir. The previous studies have lead to define structural blocks at different scales, linked to the regional deformation. This study's aim is to characterize the internal fracturation of a single structural block with a statistical analysis. We used one dimension scan lines at the scale of a block and 2 dimensions mapping at a more precise scale until the grain scale. The data highlighted that the fracture and fault lengths have a power law relation in 8 orders of scales. So this power law is stretching between seismic and borehole scales. Therefore, the data fit with a very good trust in the power law exponent, which is very well defined. The link between the reservoir scale faults and the internal block fracturation has also been defined in term of the structures orientation. Finally, a comparison between the 1D and 2D measurement could be done. The 1D scan lines show correctly the different fractures families but samples incompletely a part the fracture pattern, whereas the 2D maps which show more the global trends of the fractures and could lose some minor trends orientations.
Life cycles of persistent anomalies. I - Evolution of 500 mb height fields
NASA Technical Reports Server (NTRS)
Dole, Randall M.
1989-01-01
The life cycles of persistent anomalies of the extratropical Northern Hemisphere wintertime circulation are studied, focusing on the typical characteristics of the 500 mb height anomaly and flow patterns accompanying the development and breakdown of large-scale flow anomalies in the eastern North Atlantic and the northern Soviet Union. Following onset, anomaly centers develop and intensify in sequence downstream from the main center, forming a quasi-stationary wavetrain pattern. From development through decay, corresponding positive and negative patterns have similar evolutions.
Identifying, characterizing and predicting spatial patterns of lacustrine groundwater discharge
NASA Astrophysics Data System (ADS)
Tecklenburg, Christina; Blume, Theresa
2017-10-01
Lacustrine groundwater discharge (LGD) can significantly affect lake water balances and lake water quality. However, quantifying LGD and its spatial patterns is challenging because of the large spatial extent of the aquifer-lake interface and pronounced spatial variability. This is the first experimental study to specifically study these larger-scale patterns with sufficient spatial resolution to systematically investigate how landscape and local characteristics affect the spatial variability in LGD. We measured vertical temperature profiles around a 0.49 km2 lake in northeastern Germany with a needle thermistor, which has the advantage of allowing for rapid (manual) measurements and thus, when used in a survey, high spatial coverage and resolution. Groundwater inflow rates were then estimated using the heat transport equation. These near-shore temperature profiles were complemented with sediment temperature measurements with a fibre-optic cable along six transects from shoreline to shoreline and radon measurements of lake water samples to qualitatively identify LGD patterns in the offshore part of the lake. As the hydrogeology of the catchment is sufficiently homogeneous (sandy sediments of a glacial outwash plain; no bedrock control) to avoid patterns being dominated by geological discontinuities, we were able to test the common assumptions that spatial patterns of LGD are mainly controlled by sediment characteristics and the groundwater flow field. We also tested the assumption that topographic gradients can be used as a proxy for gradients of the groundwater flow field. Thanks to the extensive data set, these tests could be carried out in a nested design, considering both small- and large-scale variability in LGD. We found that LGD was concentrated in the near-shore area, but alongshore variability was high, with specific regions of higher rates and higher spatial variability. Median inflow rates were 44 L m-2 d-1 with maximum rates in certain locations going up to 169 L m-2 d-1. Offshore LGD was negligible except for two local hotspots on steep steps in the lake bed topography. Large-scale groundwater inflow patterns were correlated with topography and the groundwater flow field, whereas small-scale patterns correlated with grain size distributions of the lake sediment. These findings confirm results and assumptions of theoretical and modelling studies more systematically than was previously possible with coarser sampling designs. However, we also found that a significant fraction of the variance in LGD could not be explained by these controls alone and that additional processes need to be considered. While regression models using these controls as explanatory variables had limited power to predict LGD rates, the results nevertheless encourage the use of topographic indices and sediment heterogeneity as an aid for targeted campaigns in future studies of groundwater discharge to lakes.
NASA Astrophysics Data System (ADS)
Austin, Kemen G.; González-Roglich, Mariano; Schaffer-Smith, Danica; Schwantes, Amanda M.; Swenson, Jennifer J.
2017-05-01
Deforestation continues across the tropics at alarming rates, with repercussions for ecosystem processes, carbon storage and long term sustainability. Taking advantage of recent fine-scale measurement of deforestation, this analysis aims to improve our understanding of the scale of deforestation drivers in the tropics. We examined trends in forest clearings of different sizes from 2000-2012 by country, region and development level. As tropical deforestation increased from approximately 6900 kha yr-1 in the first half of the study period, to >7900 kha yr-1 in the second half of the study period, >50% of this increase was attributable to the proliferation of medium and large clearings (>10 ha). This trend was most pronounced in Southeast Asia and in South America. Outside of Brazil >60% of the observed increase in deforestation in South America was due to an upsurge in medium- and large-scale clearings; Brazil had a divergent trend of decreasing deforestation, >90% of which was attributable to a reduction in medium and large clearings. The emerging prominence of large-scale drivers of forest loss in many regions and countries suggests the growing need for policy interventions which target industrial-scale agricultural commodity producers. The experience in Brazil suggests that there are promising policy solutions to mitigate large-scale deforestation, but that these policy initiatives do not adequately address small-scale drivers. By providing up-to-date and spatially explicit information on the scale of deforestation, and the trends in these patterns over time, this study contributes valuable information for monitoring, and designing effective interventions to address deforestation.
NASA Astrophysics Data System (ADS)
Pozzoli, Luca; Dobricic, Srdan; Russo, Simone; Vignati, Elisabetta
2017-10-01
Winter warming and sea-ice retreat observed in the Arctic in the last decades may be related to changes of large-scale atmospheric circulation pattern, which may impact the transport of black carbon (BC) to the Arctic and its deposition on the sea ice, with possible feedbacks on the regional and global climate forcing. In this study we developed and applied a statistical algorithm, based on the maximum likelihood estimate approach, to determine how the changes of three large-scale weather patterns associated with increasing temperatures in winter and sea-ice retreat in the Arctic impact the transport of BC to the Arctic and its deposition. We found that two atmospheric patterns together determine a decreasing winter deposition trend of BC between 1980 and 2015 in the eastern Arctic while they increase BC deposition in the western Arctic. The increasing BC trend is mainly due to a pattern characterized by a high-pressure anomaly near Scandinavia favouring the transport in the lower troposphere of BC from Europe and North Atlantic directly into to the Arctic. Another pattern with a high-pressure anomaly over the Arctic and low-pressure anomaly over the North Atlantic Ocean has a smaller impact on BC deposition but determines an increasing BC atmospheric load over the entire Arctic Ocean with increasing BC concentrations in the upper troposphere. The results show that changes in atmospheric circulation due to polar atmospheric warming and reduced winter sea ice significantly impacted BC transport and deposition. The anthropogenic emission reductions applied in the last decades were, therefore, crucial to counterbalance the most likely trend of increasing BC pollution in the Arctic.
Putting Beta-Diversity on the Map: Broad-Scale Congruence and Coincidence in the Extremes
McKnight, Meghan W; White, Peter S; McDonald, Robert I; Lamoreux, John F; Sechrest, Wes; Ridgely, Robert S; Stuart, Simon N
2007-01-01
Beta-diversity, the change in species composition between places, is a critical but poorly understood component of biological diversity. Patterns of beta-diversity provide information central to many ecological and evolutionary questions, as well as to conservation planning. Yet beta-diversity is rarely studied across large extents, and the degree of similarity of patterns among taxa at such scales remains untested. To our knowledge, this is the first broad-scale analysis of cross-taxon congruence in beta-diversity, and introduces a new method to map beta-diversity continuously across regions. Congruence between amphibian, bird, and mammal beta-diversity in the Western Hemisphere varies with both geographic location and spatial extent. We demonstrate that areas of high beta-diversity for the three taxa largely coincide, but areas of low beta-diversity exhibit little overlap. These findings suggest that similar processes lead to high levels of differentiation in amphibian, bird, and mammal assemblages, while the ecological and biogeographic factors influencing homogeneity in vertebrate assemblages vary. Knowledge of beta-diversity congruence can help formulate hypotheses about the mechanisms governing regional diversity patterns and should inform conservation, especially as threat from global climate change increases. PMID:17927449
True polar wander on Europa from global-scale small-circle depressions.
Schenk, Paul; Matsuyama, Isamu; Nimmo, Francis
2008-05-15
The tectonic patterns and stress history of Europa are exceedingly complex and many large-scale features remain unexplained. True polar wander, involving reorientation of Europa's floating outer ice shell about the tidal axis with Jupiter, has been proposed as a possible explanation for some of the features. This mechanism is possible if the icy shell is latitudinally variable in thickness and decoupled from the rocky interior. It would impose high stress levels on the shell, leading to predictable fracture patterns. No satisfactory match to global-scale features has hitherto been found for polar wander stress patterns. Here we describe broad arcuate troughs and depressions on Europa that do not fit other proposed stress mechanisms in their current position. Using imaging from three spacecraft, we have mapped two global-scale organized concentric antipodal sets of arcuate troughs up to hundreds of kilometres long and 300 m to approximately 1.5 km deep. An excellent match to these features is found with stresses caused by an episode of approximately 80 degrees true polar wander. These depressions also appear to be geographically related to other large-scale bright and dark lineaments, suggesting that many of Europa's tectonic patterns may also be related to true polar wander.
Soil organic carbon - a large scale paired catchment assessment
NASA Astrophysics Data System (ADS)
Kunkel, V.; Hancock, G. R.; Wells, T.
2016-12-01
Soil organic carbon (SOC) concentration can vary both spatially and temporally driven by differences in soil properties, topography and climate. However most studies have focused on point scale data sets with a paucity of studies examining larger scale catchments. Here we examine the spatial and temporal distribution of SOC for two large catchments. The Krui (575 km2) and Merriwa River (675km2) catchments (New South Wales, Australia). Both have similar shape, soils, topography and orientation. We show that SOC distribution is very similar for both catchments and that elevation (and associated increase in soil moisture) is a major influence on SOC. We also show that there is little change in SOC from the initial assessment in 2006 to 2015 despite a major drought from 2003 to 2010 and extreme rainfall events in 2007 and 2010 -therefore SOC concentration appears robust. However, we found significant relationships between erosion and deposition patterns (as quantified using 137Cs) and SOC for both catchments again demonstrating a strong geomorphic relationship. Vegetation across the catchments was assessed using remote sensing (Landsat and MODIS). Vegetation patterns were temporally consistent with above ground biomass increasing with elevation. SOC could be predicted using both these low and high resolution remote sensing platforms. Results indicate that, although moderate resolution (250 m) allows for reasonable prediction of the spatial distribution of SOC, the higher resolution (30 m) improved the strength of the SOC-NDVI relationship. The relationship between SOC and 137Cs, as a surrogate for the erosion and deposition of SOC, suggested that sediment transport and deposition influences the distribution of SOC within the catchment. The findings demonstrate that over the large catchment scale and at the decadal time scale that SOC is relatively constant and can largely be predicted by topography.
Ramírez, Alonso; Pringle, Catherine M.
2018-01-01
Understanding how environmental variables influence the distribution and density of organisms over relatively long temporal scales is a central question in ecology given increased climatic variability (e.g., precipitation, ENSO events). The primary goal of our study was to evaluate long-term (15y time span) patterns of climate, as well as environmental parameters in two Neotropical streams in lowland Costa Rica, to assess potential effects on aquatic macroinvertebrates. We also examined the relative effects of an 8y whole-stream P-enrichment experiment on macroinvertebrate assemblages against the backdrop of this long-term study. Climate, environmental variables and macroinvertebrate samples were measured monthly for 7y and then quarterly for an additional 8y in each stream. Temporal patterns in climatic and environmental variables showed high variability over time, without clear inter-annual or intra-annual patterns. Macroinvertebrate richness and abundance decreased with increasing discharge and was positively related to the number of days since the last high discharge event. Findings show that fluctuations in stream physicochemistry and macroinvertebrate assemblage structure are ultimately the result of large-scale climatic phenomena, such as ENSO events, while the 8y P-enrichment did not appear to affect macroinvertebrates. Our study demonstrates that Neotropical lowland streams are highly dynamic and not as stable as is commonly presumed, with high intra- and inter-annual variability in environmental parameters that change the structure and composition of freshwater macroinvertebrate assemblages. PMID:29420548
Suzuki, Tomoko; Miyaki, Koichi; Tsutsumi, Akizumi; Hashimoto, Hideki; Kawakami, Norito; Takahashi, Masaya; Shimazu, Akihito; Inoue, Akiomi; Kurioka, Sumiko; Kakehashi, Masayuki; Sasaki, Yasuharu; Shimbo, Takuro
2013-09-05
This study examined the association between traditional Japanese dietary pattern and depressive symptoms in Japanese workers, employing large-scale samples, considering socioeconomic status (SES) and job stress factors. A cross-sectional study of 2266 Japanese employees aged 21-65 years from all areas of Japan was conducted as part of the Japanese Study of Health, Occupation and Psychosocial factors related Equity (J-HOPE). Habitual diet was assessed by FFQ (BDHQ). The depression degree and job stress factors (job demand, job control, and worksite support) were measured by K6 and Job Content Questionnaire. Participants with high scores for the balanced Japanese dietary pattern were significantly less likely to show probable mood/anxiety disorders (K6≥9) with multivariate adjustment including SES and job stress factors (odds ratio=0.66 [0.51-0.86], trend P=0.002). Other dietary patterns were not associated with depressive symptoms. Even after stratification by job stress factors, the Japanese dietary pattern was consistently protective against depressive symptoms. Furthermore, a highly significant difference between the first and third tertiles of the dietary pattern was observed in participants with active strain (high demand and high control) with low worksite supports (8.5 vs. 5.2, P=0.011). Female participant sample was relatively small. Japanese dietary pattern consistently related to low depressive symptoms in this large-scale cohort of Japanese workers, even after adjusting for SES and job stress factors. The protective impact is especially strong for workers with active strain and low support. Making better use of traditional dietary patterns may facilitate reducing social disparities in mental health. Copyright © 2013 Elsevier B.V. All rights reserved.
A comparative analysis of rawinsonde and NIMBUS 6 and TIROS N satellite profile data
NASA Technical Reports Server (NTRS)
Scoggins, J. R.; Carle, W. E.; Knight, K.; Moyer, V.; Cheng, N. M.
1981-01-01
Comparisons are made between rawinsonde and satellite profiles in seven areas for a wide range of surface and weather conditions. Variables considered include temperature, dewpoint temperature, thickness, precipitable water, lapse rate of temperature, stability, geopotential height, mixing ratio, wind direction, wind speed, and kinematic parameters, including vorticity and the advection of vorticity and temperature. In addition, comparisons are made in the form of cross sections and synoptic fields for selected variables. Sounding data from the NIMBUS 6 and TIROS N satellites were used. Geostrophic wind computed from smoothed geopotential heights provided large scale flow patterns that agreed well with the rawinsonde wind fields. Surface wind patterns as well as magnitudes computed by use of the log law to extrapolate wind to a height of 10 m agreed with observations. Results of this study demonstrate rather conclusively that satellite profile data can be used to determine characteristics of large scale systems but that small scale features, such as frontal zones, cannot yet be resolved.
Sandy beaches: state of the art of nematode ecology.
Maria, Tatiana F; Vanaverbeke, Jan; Vanreusel, Ann; Esteves, André M
2016-01-01
In this review, we summarize existing knowledge of the ecology of sandy-beach nematodes, in relation to spatial distribution, food webs, pollution and climate change. We attempt to discuss spatial scale patterns (macro-, meso- and microscale) according to their degree of importance in structuring sandy-beach nematode assemblages. This review will provide a substantial background on current knowledge of sandy-beach nematodes, and can be used as a starting point to delineate further investigations in this field. Over decades, sandy beaches have been the scene of studies focusing on community and population ecology, both related to morphodynamic models. The combination of physical factors (e.g. grain size, tidal exposure) and biological interactions (e.g. trophic relationships) is responsible for the spatial distribution of nematodes. In other words, the physical factors are more important in structuring nematodes communities over large scale of distribution while biological interactions are largely important in finer-scale distributions. It has been accepted that biological interactions are assumed to be of minor importance because physical factors overshadow the biological interactions in sandy beach sediments; however, the most recent results from in-situ and ex-situ experimental investigations on behavior and biological factors on a microscale have shown promise for understanding the mechanisms underlying larger-scale patterns and processes. Besides nematodes are very promising organisms used to understand the effects of pollution and climate changes although these subjects are less studied in sandy beaches than distribution patterns.
Multiscale recurrence quantification analysis of order recurrence plots
NASA Astrophysics Data System (ADS)
Xu, Mengjia; Shang, Pengjian; Lin, Aijing
2017-03-01
In this paper, we propose a new method of multiscale recurrence quantification analysis (MSRQA) to analyze the structure of order recurrence plots. The MSRQA is based on order patterns over a range of time scales. Compared with conventional recurrence quantification analysis (RQA), the MSRQA can show richer and more recognizable information on the local characteristics of diverse systems which successfully describes their recurrence properties. Both synthetic series and stock market indexes exhibit their properties of recurrence at large time scales that quite differ from those at a single time scale. Some systems present more accurate recurrence patterns under large time scales. It demonstrates that the new approach is effective for distinguishing three similar stock market systems and showing some inherent differences.
The origin of the structure of large-scale magnetic fields in disc galaxies
NASA Astrophysics Data System (ADS)
Nixon, C. J.; Hands, T. O.; King, A. R.; Pringle, J. E.
2018-07-01
The large-scale magnetic fields observed in spiral disc galaxies are often thought to result from dynamo action in the disc plane. However, the increasing importance of Faraday depolarization along any line of sight towards the galactic plane suggests that the strongest polarization signal may come from well above (˜0.3-1 kpc) this plane, from the vicinity of the warm interstellar medium (WIM)/halo interface. We propose (see also Henriksen & Irwin 2016) that the observed spiral fields (polarization patterns) result from the action of vertical shear on an initially poloidal field. We show that this simple model accounts for the main observed properties of large-scale fields. We speculate as to how current models of optical spiral structure may generate the observed arm/interarm spiral polarization patterns.
Multiresolution comparison of precipitation datasets for large-scale models
NASA Astrophysics Data System (ADS)
Chun, K. P.; Sapriza Azuri, G.; Davison, B.; DeBeer, C. M.; Wheater, H. S.
2014-12-01
Gridded precipitation datasets are crucial for driving large-scale models which are related to weather forecast and climate research. However, the quality of precipitation products is usually validated individually. Comparisons between gridded precipitation products along with ground observations provide another avenue for investigating how the precipitation uncertainty would affect the performance of large-scale models. In this study, using data from a set of precipitation gauges over British Columbia and Alberta, we evaluate several widely used North America gridded products including the Canadian Gridded Precipitation Anomalies (CANGRD), the National Center for Environmental Prediction (NCEP) reanalysis, the Water and Global Change (WATCH) project, the thin plate spline smoothing algorithms (ANUSPLIN) and Canadian Precipitation Analysis (CaPA). Based on verification criteria for various temporal and spatial scales, results provide an assessment of possible applications for various precipitation datasets. For long-term climate variation studies (~100 years), CANGRD, NCEP, WATCH and ANUSPLIN have different comparative advantages in terms of their resolution and accuracy. For synoptic and mesoscale precipitation patterns, CaPA provides appealing performance of spatial coherence. In addition to the products comparison, various downscaling methods are also surveyed to explore new verification and bias-reduction methods for improving gridded precipitation outputs for large-scale models.
Large-scale microwave anisotropy from gravitating seeds
NASA Technical Reports Server (NTRS)
Veeraraghavan, Shoba; Stebbins, Albert
1992-01-01
Topological defects could have seeded primordial inhomogeneities in cosmological matter. We examine the horizon-scale matter and geometry perturbations generated by such seeds in an expanding homogeneous and isotropic universe. Evolving particle horizons generally lead to perturbations around motionless seeds, even when there are compensating initial underdensities in the matter. We describe the pattern of the resulting large angular scale microwave anisotropy.
NASA Technical Reports Server (NTRS)
Lim, Young-Kwon; Stefanova, Lydia B.; Chan, Steven C.; Schubert, Siegfried D.; OBrien, James J.
2010-01-01
This study assesses the regional-scale summer precipitation produced by the dynamical downscaling of analyzed large-scale fields. The main goal of this study is to investigate how much the regional model adds smaller scale precipitation information that the large-scale fields do not resolve. The modeling region for this study covers the southeastern United States (Florida, Georgia, Alabama, South Carolina, and North Carolina) where the summer climate is subtropical in nature, with a heavy influence of regional-scale convection. The coarse resolution (2.5deg latitude/longitude) large-scale atmospheric variables from the National Center for Environmental Prediction (NCEP)/DOE reanalysis (R2) are downscaled using the NCEP Environmental Climate Prediction Center regional spectral model (RSM) to produce precipitation at 20 km resolution for 16 summer seasons (19902005). The RSM produces realistic details in the regional summer precipitation at 20 km resolution. Compared to R2, the RSM-produced monthly precipitation shows better agreement with observations. There is a reduced wet bias and a more realistic spatial pattern of the precipitation climatology compared with the interpolated R2 values. The root mean square errors of the monthly R2 precipitation are reduced over 93 (1,697) of all the grid points in the five states (1,821). The temporal correlation also improves over 92 (1,675) of all grid points such that the domain-averaged correlation increases from 0.38 (R2) to 0.55 (RSM). The RSM accurately reproduces the first two observed eigenmodes, compared with the R2 product for which the second mode is not properly reproduced. The spatial patterns for wet versus dry summer years are also successfully simulated in RSM. For shorter time scales, the RSM resolves heavy rainfall events and their frequency better than R2. Correlation and categorical classification (above/near/below average) for the monthly frequency of heavy precipitation days is also significantly improved by the RSM.
Investigating Sexual Abuse: Findings of a 15-Year Longitudinal Study
ERIC Educational Resources Information Center
McCormack, Bob; Kavanagh, Denise; Caffrey, Shay; Power, Anne
2005-01-01
Background: There is a lack of longitudinal large-scale studies of sexual abuse in intellectual disability services. Such studies offer opportunities to examine patterns in disclosure, investigation and outcomes, and to report on incidence and trends. Methods: All allegations of sexual abuse (n = 250) involving service users as victims or…
Developmental Transcriptome of Aplysia californica
HEYLAND, ANDREAS; VUE, ZER; VOOLSTRA, CHRISTIAN R.; MEDINA, MÓNICA; MOROZ, LEONID L.
2014-01-01
Genome-wide transcriptional changes in development provide important insight into mechanisms underlying growth, differentiation, and patterning. However, such large-scale developmental studies have been limited to a few representatives of Ecdysozoans and Chordates. Here, we characterize transcriptomes of embryonic, larval, and metamorphic development in the marine mollusc Aplysia californica and reveal novel molecular components associated with life history transitions. Specifically, we identify more than 20 signal peptides, putative hormones, and transcription factors in association with early development and metamorphic stages—many of which seem to be evolutionarily conserved elements of signal transduction pathways. We also characterize genes related to biomineralization—a critical process of molluscan development. In summary, our experiment provides the first large-scale survey of gene expression in mollusc development, and complements previous studies on the regulatory mechanisms underlying body plan patterning and the formation of larval and juvenile structures. This study serves as a resource for further functional annotation of transcripts and genes in Aplysia, specifically and molluscs in general. A comparison of the Aplysia developmental transcriptome with similar studies in the zebra fish Danio rerio, the fruit fly Drosophila melanogaster, the nematode Caenorhabditis elegans, and other studies on molluscs suggests an overall highly divergent pattern of gene regulatory mechanisms that are likely a consequence of the different developmental modes of these organisms. PMID:21328528
Using selection bias to explain the observed structure of Internet diffusions
Golub, Benjamin; Jackson, Matthew O.
2010-01-01
Recently, large datasets stored on the Internet have enabled the analysis of processes, such as large-scale diffusions of information, at new levels of detail. In a recent study, Liben-Nowell and Kleinberg [(2008) Proc Natl Acad Sci USA 105:4633–4638] observed that the flow of information on the Internet exhibits surprising patterns whereby a chain letter reaches its typical recipient through long paths of hundreds of intermediaries. We show that a basic Galton–Watson epidemic model combined with the selection bias of observing only large diffusions suffices to explain these patterns. Thus, selection biases of which data we observe can radically change the estimation of classical diffusion processes. PMID:20534439
Patterns and controlling factors of species diversity in the Arctic Ocean
Yasuhara, Moriaki; Hunt, Gene; van Dijken, Gert; Arrigo, Kevin R.; Cronin, Thomas M.; Wollenburg, Jutta E.
2012-01-01
Aim The Arctic Ocean is one of the last near-pristine regions on Earth, and, although human activities are expected to impact on Arctic ecosystems, we know very little about baseline patterns of Arctic Ocean biodiversity. This paper aims to describe Arctic Ocean-wide patterns of benthic biodiversity and to explore factors related to the large-scale species diversity patterns.Location Arctic Ocean.Methods We used large ostracode and foraminiferal datasets to describe the biodiversity patterns and applied comprehensive ecological modelling to test the degree to which these patterns are potentially governed by environmental factors, such as temperature, productivity, seasonality, ice cover and others. To test environmental control of the observed diversity patterns, subsets of samples for which all environmental parameters were available were analysed with multiple regression and model averaging.Results Well-known negative latitudinal species diversity gradients (LSDGs) were found in metazoan Ostracoda, but the LSDGs were unimodal with an intermediate maximum with respect to latitude in protozoan foraminifera. Depth species diversity gradients were unimodal, with peaks in diversity shallower than those in other oceans. Our modelling results showed that several factors are significant predictors of diversity, but the significant predictors were different among shallow marine ostracodes, deep-sea ostracodes and deep-sea foraminifera.Main conclusions On the basis of these Arctic Ocean-wide comprehensive datasets, we document large-scale diversity patterns with respect to latitude and depth. Our modelling results suggest that the underlying mechanisms causing these species diversity patterns are unexpectedly complex. The environmental parameters of temperature, surface productivity, seasonality of productivity, salinity and ice cover can all play a role in shaping large-scale diversity patterns, but their relative importance may depend on the ecological preferences of taxa and the oceanographic context of regions. These results suggest that a multiplicity of variables appear to be related to community structure in this system.
Tau, amyloid, and cascading network failure across the Alzheimer's disease spectrum.
Jones, David T; Graff-Radford, Jonathan; Lowe, Val J; Wiste, Heather J; Gunter, Jeffrey L; Senjem, Matthew L; Botha, Hugo; Kantarci, Kejal; Boeve, Bradley F; Knopman, David S; Petersen, Ronald C; Jack, Clifford R
2017-12-01
Functionally related brain regions are selectively vulnerable to Alzheimer's disease pathophysiology. However, molecular markers of this pathophysiology (i.e., beta-amyloid and tau aggregates) have discrepant spatial and temporal patterns of progression within these selectively vulnerable brain regions. Existing reductionist pathophysiologic models cannot account for these large-scale spatiotemporal inconsistencies. Within the framework of the recently proposed cascading network failure model of Alzheimer's disease, however, these large-scale patterns are to be expected. This model postulates the following: 1) a tau-associated, circumscribed network disruption occurs in brain regions specific to a given phenotype in clinically normal individuals; 2) this disruption can trigger phenotype independent, stereotypic, and amyloid-associated compensatory brain network changes indexed by changes in the default mode network; 3) amyloid deposition marks a saturation of functional compensation and portends an acceleration of the inciting phenotype specific, and tau-associated, network failure. With the advent of in vivo molecular imaging of tau pathology, combined with amyloid and functional network imaging, it is now possible to investigate the relationship between functional brain networks, tau, and amyloid across the disease spectrum within these selectively vulnerable brain regions. In a large cohort (n = 218) spanning the Alzheimer's disease spectrum from young, amyloid negative, cognitively normal subjects to Alzheimer's disease dementia, we found several distinct spatial patterns of tau deposition, including 'Braak-like' and 'non-Braak-like', across functionally related brain regions. Rather than arising focally and spreading sequentially, elevated tau signal seems to occur system-wide based on inferences made from multiple cross-sectional analyses we conducted looking at regional patterns of tau signal. Younger age-of-disease-onset was associated with 'non-Braak-like' patterns of tau, suggesting an association with atypical clinical phenotypes. As predicted by the cascading network failure model of Alzheimer's disease, we found that amyloid is a partial mediator of the relationship between functional network failure and tau deposition in functionally connected brain regions. This study implicates large-scale brain networks in the pathophysiology of tau deposition and offers support to models incorporating large-scale network physiology into disease models linking tau and amyloid, such as the cascading network failure model of Alzheimer's disease. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Wavelet Analysis for RADARSAT Exploitation: Demonstration of Algorithms for Maritime Surveillance
2007-02-01
this study , we demonstrate wavelet analysis for exploitation of RADARSAT ocean imagery, including wind direction estimation, oceanic and atmospheric ...of image striations that can arise as a texture pattern caused by turbulent coherent structures in the marine atmospheric boundary layer. The image...associated change in the pattern texture (i.e., the nature of the turbulent atmospheric structures) across the front. Due to the large spatial scale of
Airborne antenna polarization study for the microwave landing system
NASA Technical Reports Server (NTRS)
Gilreath, M. C.
1976-01-01
The feasibility of the microwave landing system (MLS) airborne antenna pattern coverage requirements are investigated for a large commercial aircraft using a single omnidirectional antenna. Omnidirectional antennas having vertical and horizontal polarizations were evaluated at several different station locations on a one-eleventh scale model Boeing 737 aircraft. The results obtained during this experimental program are presented which include principal plane antenna patterns and complete volumetric coverage plots.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramanathan, Arvind; Pullum, Laura L.; Hobson, Tanner C.
Here, we describe a data-driven unsupervised machine learning approach to extract geo-temporal co-occurrence patterns of asthma and the flu from large-scale electronic healthcare reimbursement claims (eHRC) datasets. Specifically, we examine the eHRC data from 2009 to 2010 pandemic H1N1 influenza season and analyze whether different geographic regions within the United States (US) showed an increase in co-occurrence patterns of the flu and asthma. Our analyses reveal that the temporal patterns extracted from the eHRC data show a distinct lag time between the peak incidence of the asthma and the flu. While the increased occurrence of asthma contributed to increased flumore » incidence during the pandemic, this co-occurrence is predominant for female patients. The geo-temporal patterns reveal that the co-occurrence of the flu and asthma are typically concentrated within the south-east US. Further, in agreement with previous studies, large urban areas (such as New York, Miami, and Los Angeles) exhibit co-occurrence patterns that suggest a peak incidence of asthma and flu significantly early in the spring and winter seasons. Together, our data-analytic approach, integrated within the Oak Ridge Bio-surveillance Toolkit platform, demonstrates how eHRC data can provide novel insights into co-occurring disease patterns.« less
Ramanathan, Arvind; Pullum, Laura L.; Hobson, Tanner C.; ...
2015-08-03
Here, we describe a data-driven unsupervised machine learning approach to extract geo-temporal co-occurrence patterns of asthma and the flu from large-scale electronic healthcare reimbursement claims (eHRC) datasets. Specifically, we examine the eHRC data from 2009 to 2010 pandemic H1N1 influenza season and analyze whether different geographic regions within the United States (US) showed an increase in co-occurrence patterns of the flu and asthma. Our analyses reveal that the temporal patterns extracted from the eHRC data show a distinct lag time between the peak incidence of the asthma and the flu. While the increased occurrence of asthma contributed to increased flumore » incidence during the pandemic, this co-occurrence is predominant for female patients. The geo-temporal patterns reveal that the co-occurrence of the flu and asthma are typically concentrated within the south-east US. Further, in agreement with previous studies, large urban areas (such as New York, Miami, and Los Angeles) exhibit co-occurrence patterns that suggest a peak incidence of asthma and flu significantly early in the spring and winter seasons. Together, our data-analytic approach, integrated within the Oak Ridge Bio-surveillance Toolkit platform, demonstrates how eHRC data can provide novel insights into co-occurring disease patterns.« less
Yang, Haishui; Zang, Yanyan; Yuan, Yongge; Tang, Jianjun; Chen, Xin
2012-04-12
Arbuscular mycorrhizal fungi (AMF) can form obligate symbioses with the vast majority of land plants, and AMF distribution patterns have received increasing attention from researchers. At the local scale, the distribution of AMF is well documented. Studies at large scales, however, are limited because intensive sampling is difficult. Here, we used ITS rDNA sequence metadata obtained from public databases to study the distribution of AMF at continental and global scales. We also used these sequence metadata to investigate whether host plant is the main factor that affects the distribution of AMF at large scales. We defined 305 ITS virtual taxa (ITS-VTs) among all sequences of the Glomeromycota by using a comprehensive maximum likelihood phylogenetic analysis. Each host taxonomic order averaged about 53% specific ITS-VTs, and approximately 60% of the ITS-VTs were host specific. Those ITS-VTs with wide host range showed wide geographic distribution. Most ITS-VTs occurred in only one type of host functional group. The distributions of most ITS-VTs were limited across ecosystem, across continent, across biogeographical realm, and across climatic zone. Non-metric multidimensional scaling analysis (NMDS) showed that AMF community composition differed among functional groups of hosts, and among ecosystem, continent, biogeographical realm, and climatic zone. The Mantel test showed that AMF community composition was significantly correlated with plant community composition among ecosystem, among continent, among biogeographical realm, and among climatic zone. The structural equation modeling (SEM) showed that the effects of ecosystem, continent, biogeographical realm, and climatic zone were mainly indirect on AMF distribution, but plant had strongly direct effects on AMF. The distribution of AMF as indicated by ITS rDNA sequences showed a pattern of high endemism at large scales. This pattern indicates high specificity of AMF for host at different scales (plant taxonomic order and functional group) and high selectivity from host plants for AMF. The effects of ecosystemic, biogeographical, continental and climatic factors on AMF distribution might be mediated by host plants.
Modelling Fine Scale Movement Corridors for the Tricarinate Hill Turtle
NASA Astrophysics Data System (ADS)
Mondal, I.; Kumar, R. S.; Habib, B.; Talukdar, G.
2016-06-01
Habitat loss and the destruction of habitat connectivity can lead to species extinction by isolation of population. Identifying important habitat corridors to enhance habitat connectivity is imperative for species conservation by preserving dispersal pattern to maintain genetic diversity. Circuit theory is a novel tool to model habitat connectivity as it considers habitat as an electronic circuit board and species movement as a certain amount of current moving around through different resistors in the circuit. Most studies involving circuit theory have been carried out at small scales on large ranging animals like wolves or pumas, and more recently on tigers. This calls for a study that tests circuit theory at a large scale to model micro-scale habitat connectivity. The present study on a small South-Asian geoemydid, the Tricarinate Hill-turtle (Melanochelys tricarinata), focuses on habitat connectivity at a very fine scale. The Tricarinate has a small body size (carapace length: 127-175 mm) and home range (8000-15000 m2), with very specific habitat requirements and movement patterns. We used very high resolution Worldview satellite data and extensive field observations to derive a model of landscape permeability at 1 : 2,000 scale to suit the target species. Circuit theory was applied to model potential corridors between core habitat patches for the Tricarinate Hill-turtle. The modelled corridors were validated by extensive ground tracking data collected using thread spool technique and found to be functional. Therefore, circuit theory is a promising tool for accurately identifying corridors, to aid in habitat studies of small species.
A stochastic two-scale model for pressure-driven flow between rough surfaces
Larsson, Roland; Lundström, Staffan; Wall, Peter; Almqvist, Andreas
2016-01-01
Seal surface topography typically consists of global-scale geometric features as well as local-scale roughness details and homogenization-based approaches are, therefore, readily applied. These provide for resolving the global scale (large domain) with a relatively coarse mesh, while resolving the local scale (small domain) in high detail. As the total flow decreases, however, the flow pattern becomes tortuous and this requires a larger local-scale domain to obtain a converged solution. Therefore, a classical homogenization-based approach might not be feasible for simulation of very small flows. In order to study small flows, a model allowing feasibly-sized local domains, for really small flow rates, is developed. Realization was made possible by coupling the two scales with a stochastic element. Results from numerical experiments, show that the present model is in better agreement with the direct deterministic one than the conventional homogenization type of model, both quantitatively in terms of flow rate and qualitatively in reflecting the flow pattern. PMID:27436975
NASA Astrophysics Data System (ADS)
Arfai, Jashar; Lutz, Rüdiger; Franke, Dieter; Gaedicke, Christoph; Kley, Jonas
2016-04-01
The architecture of intra-chalk deposits in the `Entenschnabel' area of the German North Sea is studied based on 3D seismic data. Adapted from seismic reflection characteristics, four types of mass-transport deposits (MTDs) are distinguished, i.e. slumps, slides, channels and frontal splay deposits. The development of these systems can be linked to inversion tectonics and halotectonic movements of Zechstein salt. Tectonic uplift is interpreted to have caused repeated tilting of the sea floor. This triggered large-scale slump deposition during Turonian-Santonian times. Slump deposits are characterised by chaotic reflection patterns interpreted to result from significant stratal distortion. The south-eastern study area is characterised by a large-scale frontal splay complex. This comprises a network of shallow channel systems arranged in a distributive pattern. Several slide complexes are observed near the Top Chalk in Maastrichtian and Danian sediments. These slides are commonly associated with large incisions into the sediments below. Best reservoir properties with high producible porosities are found in the reworked chalk strata, e.g. Danish North Sea, therefore MTDs detected in the study area are regarded as potential hydrocarbon reservoirs and considered as exploration targets.
Leventakou, Vasiliki; Roumeliotaki, Theano; Sarri, Katerina; Koutra, Katerina; Kampouri, Mariza; Kyriklaki, Andriani; Vassilaki, Maria; Kogevinas, Manolis; Chatzi, Leda
2016-04-01
Early-life nutrition is critical for optimal brain development; however, few studies have evaluated the impact of diet as a whole in early childhood on neurological development with inconsistent results. The present analysis is a cross-sectional study nested within an ongoing prospective birth cohort, the Rhea study, and aims to examine the association of dietary patterns with cognitive and psychomotor development in 804 preschool (mean age 4·2 years) children. Parents completed a validated FFQ, and dietary patterns were identified using principal component analysis. Child cognitive and psychomotor development was assessed by the McCarthy Scales of Children's Abilities (MSCA). Multivariable linear regression models were used to investigate the associations of dietary patterns with the MSCA scales. After adjustment for a large number of confounding factors, the 'Snacky' pattern (potatoes and other starchy roots, salty snacks, sugar products and eggs) was negatively associated with the scales of verbal ability (β=-1·31; 95 % CI -2·47, -0·16), general cognitive ability (β=-1·13; 95 % CI -2·25, -0·02) and cognitive functions of the posterior cortex (β=-1·20; 95 % CI -2·34, -0·07). Further adjustment for maternal intelligence, folic acid supplementation and alcohol use during pregnancy attenuated the observed associations, but effect estimates remained at the same direction. The 'Western' and the 'Mediterranean' patterns were not associated with child neurodevelopmental scales. The present findings suggest that poorer food choices at preschool age characterised by foods high in fat, salt and sugar are associated with reduced scores in verbal and cognitive ability.
Regional gradient analysis and spatial pattern of woody plant communities in Oregon forests.
J.L. Ohmann; T.A. Spies
1998-01-01
Knowledge of regional-scale patterns of ecological community structure, and of factors that control them, is largely conceptual. Regional- and local-scale factors associated with regional variation in community composition have not been quantified. We analyzed data on woody plant species abundance from 2443 field plots across natural and seminatural forests and...
Spatial scaling of non-native fish richness across the United States
Qinfeng Guo; Julian D. Olden
2014-01-01
A major goal and challenge of invasion ecology is to describe and interpret spatial and temporal patterns of species invasions. Here, we examined fish invasion patterns at four spatially structured and hierarchically nested scales across the contiguous United States (i.e., from large to small: region, basin, watershed, and sub-watershed). All spatial relationships in...
Oldekop, Johan A.; Bebbington, Anthony J.; Truelove, Nathan K.; Tysklind, Niklas; Villamarín, Santiago; Preziosi, Richard F.
2012-01-01
Indicator taxa are commonly used to identify priority areas for conservation or to measure biological responses to environmental change. Despite their widespread use, there is no general consensus about the ability of indicator taxa to predict wider trends in biodiversity. Many studies have focused on large-scale patterns of species co-occurrence to identify areas of high biodiversity, threat or endemism, but there is much less information about patterns of species co-occurrence at local scales. In this study, we assess fine-scale co-occurrence patterns of three indicator taxa (epiphytic ferns, leaf litter frogs and dung beetles) across a remotely sensed gradient of human disturbance in the Ecuadorian Amazon. We measure the relative contribution of rare and common species to patterns of total richness in each taxon and determine the ability of common and rare species to act as surrogate measures of human disturbance and each other. We find that the species richness of indicator taxa changed across the human disturbance gradient but that the response differed among taxa, and between rare and common species. Although we find several patterns of co-occurrence, these patterns differed between common and rare species. Despite showing complex patterns of species co-occurrence, our results suggest that species or taxa can act as reliable indicators of each other but that this relationship must be established and not assumed. PMID:22701730
Hele-Shaw scaling properties of low-contrast Saffman-Taylor flows
DOE Office of Scientific and Technical Information (OSTI.GOV)
DiFrancesco, M. W.; Maher, J. V.
1989-07-01
We have measured variations of Saffman-Taylor flows by changingdimensionless surface tension /ital B/ alone and by changing /ital B/ inconjunction with changes in dimensionless viscosity contrast /ital A/. Ourlow-aspect-ratio cell permits close study of the linear- and earlynonlinear-flow regimes. Our critical binary-liquid sample allows study of verylow values of /ital A/. The predictions of linear stability analysis work wellfor predicting which length scales are important, but discrepancies areobserved for growth rates. We observe an empirical scaling law for growth ofthe Fourier modes of the patterns in the linear regime. The observed frontpropagation velocity for side-wall disturbances is constantly 2+-1in dimensionlessmore » units, a value consistent with the predictions of Langer andof van Saarloos. Patterns in both the linear and nonlinear regimes collapseimpressively under the scaling suggested by the Hele-Shaw equations. Violationsof scaling due to wetting phenomena are not evident here, presumably becausethe wetting properties of the two phases of the critical binary liquid are sosimilar; thus direct comparison with large-scale Hele-Shaw simulations shouldbe meaningful.« less
Spatial correlations, clustering and percolation-like transitions in homicide crimes
NASA Astrophysics Data System (ADS)
Alves, L. G. A.; Lenzi, E. K.; Mendes, R. S.; Ribeiro, H. V.
2015-07-01
The spatial dynamics of criminal activities has been recently studied through statistical physics methods; however, models and results have been focusing on local scales (city level) and much less is known about these patterns at larger scales, e.g. at a country level. Here we report on a characterization of the spatial dynamics of the homicide crimes along the Brazilian territory using data from all cities (˜5000) in a period of more than thirty years. Our results show that the spatial correlation function in the per capita homicides decays exponentially with the distance between cities and that the characteristic correlation length displays an acute increasing trend in the latest years. We also investigate the formation of spatial clusters of cities via a percolation-like analysis, where clustering of cities and a phase-transition-like behavior describing the size of the largest cluster as a function of a homicide threshold are observed. This transition-like behavior presents evolutive features characterized by an increasing in the homicide threshold (where the transitions occur) and by a decreasing in the transition magnitudes (length of the jumps in the cluster size). We believe that our work sheds new light on the spatial patterns of criminal activities at large scales, which may contribute for better political decisions and resources allocation as well as opens new possibilities for modeling criminal activities by setting up fundamental empirical patterns at large scales.
NASA Astrophysics Data System (ADS)
Singh, A.; Tejedor, A.; Grimaud, J. L.; Zaliapin, I. V.; Foufoula-Georgiou, E.
2016-12-01
Knowledge of the dynamics of evolving landscapes in terms of their geomorphic and topologic re-organization in response to changing climatic or tectonic forcing is of scientific and practical interest. Although several studies have addressed the large-scale response (e.g., change in mean relief), studies on the smaller-scale drainage pattern re-organization and quantification of landscape vulnerability to the timing, magnitude, and frequency of changing forcing are lacking. The reason is the absence of data for such an analysis. To that goal, a series of controlled laboratory experiments were conducted at the St. Anthony Falls laboratory of the University of Minnesota to study the effect of changing precipitation patterns on landscape evolution at the short and long-time scales. High resolution digital elevation (DEM) both in space and time were measured for a range of rainfall patterns and uplift rates. Results from our study show a distinct signature of the precipitation increase on the probabilistic and geometrical structure of landscape features, evident in widening and deepening of channels and valleys, change in drainage patterns within sub-basins and change in the space-time structure of erosional and depositional events. A spatially explicit analysis of the locus of these erosional and depositional events suggests a regime shift, during the onset of the transient state, from supply-limited to transport-limited fluvial channels. We document a characteristic scale-dependent signature of erosion at steady state (which we term the "E50-area curve") and show that during reorganization, its evolving shape reflects process and scales of geomorphic change. Finally, we document changes in the longitudinal river profiles, in response to increased precipitation rate, with the formation of abrupt gradient (knickpoints) that migrate upstream as time proceeds.
Patterns and multi-scale drivers of phytoplankton species richness in temperate peri-urban lakes.
Catherine, Arnaud; Selma, Maloufi; Mouillot, David; Troussellier, Marc; Bernard, Cécile
2016-07-15
Local species richness (SR) is a key characteristic affecting ecosystem functioning. Yet, the mechanisms regulating phytoplankton diversity in freshwater ecosystems are not fully understood, especially in peri-urban environments where anthropogenic pressures strongly impact the quality of aquatic ecosystems. To address this issue, we sampled the phytoplankton communities of 50 lakes in the Paris area (France) characterized by a large gradient of physico-chemical and catchment-scale characteristics. We used large phytoplankton datasets to describe phytoplankton diversity patterns and applied a machine-learning algorithm to test the degree to which species richness patterns are potentially controlled by environmental factors. Selected environmental factors were studied at two scales: the lake-scale (e.g. nutrients concentrations, water temperature, lake depth) and the catchment-scale (e.g. catchment, landscape and climate variables). Then, we used a variance partitioning approach to evaluate the interaction between lake-scale and catchment-scale variables in explaining local species richness. Finally, we analysed the residuals of predictive models to identify potential vectors of improvement of phytoplankton species richness predictive models. Lake-scale and catchment-scale drivers provided similar predictive accuracy of local species richness (R(2)=0.458 and 0.424, respectively). Both models suggested that seasonal temperature variations and nutrient supply strongly modulate local species richness. Integrating lake- and catchment-scale predictors in a single predictive model did not provide increased predictive accuracy; therefore suggesting that the catchment-scale model probably explains observed species richness variations through the impact of catchment-scale variables on in-lake water quality characteristics. Models based on catchment characteristics, which include simple and easy to obtain variables, provide a meaningful way of predicting phytoplankton species richness in temperate lakes. This approach may prove useful and cost-effective for the management and conservation of aquatic ecosystems. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Sun, Y.
2017-09-01
In development of sustainable transportation and green city, policymakers encourage people to commute by cycling and walking instead of motor vehicles in cities. One the one hand, cycling and walking enables decrease in air pollution emissions. On the other hand, cycling and walking offer health benefits by increasing people's physical activity. Earlier studies on investigating spatial patterns of active travel (cycling and walking) are limited by lacks of spatially fine-grained data. In recent years, with the development of information and communications technology, GPS-enabled devices are popular and portable. With smart phones or smart watches, people are able to record their cycling or walking GPS traces when they are moving. A large number of cyclists and pedestrians upload their GPS traces to sport social media to share their historical traces with other people. Those sport social media thus become a potential source for spatially fine-grained cycling and walking data. Very recently, Strava Metro offer aggregated cycling and walking data with high spatial granularity. Strava Metro aggregated a large amount of cycling and walking GPS traces of Strava users to streets or intersections across a city. Accordingly, as a kind of crowdsourced geographic information, the aggregated data is useful for investigating spatial patterns of cycling and walking activities, and thus is of high potential in understanding cycling or walking behavior at a large spatial scale. This study is a start of demonstrating usefulness of Strava Metro data for exploring cycling or walking patterns at a large scale.
The circuit architecture of whole brains at the mesoscopic scale.
Mitra, Partha P
2014-09-17
Vertebrate brains of even moderate size are composed of astronomically large numbers of neurons and show a great degree of individual variability at the microscopic scale. This variation is presumably the result of phenotypic plasticity and individual experience. At a larger scale, however, relatively stable species-typical spatial patterns are observed in neuronal architecture, e.g., the spatial distributions of somata and axonal projection patterns, probably the result of a genetically encoded developmental program. The mesoscopic scale of analysis of brain architecture is the transitional point between a microscopic scale where individual variation is prominent and the macroscopic level where a stable, species-typical neural architecture is observed. The empirical existence of this scale, implicit in neuroanatomical atlases, combined with advances in computational resources, makes studying the circuit architecture of entire brains a practical task. A methodology has previously been proposed that employs a shotgun-like grid-based approach to systematically cover entire brain volumes with injections of neuronal tracers. This methodology is being employed to obtain mesoscale circuit maps in mouse and should be applicable to other vertebrate taxa. The resulting large data sets raise issues of data representation, analysis, and interpretation, which must be resolved. Even for data representation the challenges are nontrivial: the conventional approach using regional connectivity matrices fails to capture the collateral branching patterns of projection neurons. Future success of this promising research enterprise depends on the integration of previous neuroanatomical knowledge, partly through the development of suitable computational tools that encapsulate such expertise. Copyright © 2014 Elsevier Inc. All rights reserved.
Dynamical systems proxies of atmospheric predictability and mid-latitude extremes
NASA Astrophysics Data System (ADS)
Messori, Gabriele; Faranda, Davide; Caballero, Rodrigo; Yiou, Pascal
2017-04-01
Extreme weather ocurrences carry enormous social and economic costs and routinely garner widespread scientific and media coverage. Many extremes (for e.g. storms, heatwaves, cold spells, heavy precipitation) are tied to specific patterns of midlatitude atmospheric circulation. The ability to identify these patterns and use them to enhance the predictability of the extremes is therefore a topic of crucial societal and economic value. We propose a novel predictability pathway for extreme events, by building upon recent advances in dynamical systems theory. We use two simple dynamical systems metrics - local dimension and persistence - to identify sets of similar large-scale atmospheric flow patterns which present a coherent temporal evolution. When these patterns correspond to weather extremes, they therefore afford a particularly good forward predictability. We specifically test this technique on European winter temperatures, whose variability largely depends on the atmospheric circulation in the North Atlantic region. We find that our dynamical systems approach provides predictability of large-scale temperature extremes up to one week in advance.
NASA Astrophysics Data System (ADS)
Stagličić, N.; Matić-Skoko, S.; Pallaoro, A.; Grgičević, R.; Kraljević, M.; Tutman, P.; Dragičević, B.; Dulčić, J.
2011-09-01
Long-term interannual changes in abundance, biomass, diversity and structure of littoral fish assemblages were examined between 1993 and 2009 by experimental trammel net fishing up to six times per year, within the warm period - May to September, at multiple areas along the eastern Adriatic coast with the aim of testing for the consistency of patterns of change across a large spatial scale (˜600 km). The results revealed spatially consistent increasing trends of total fish abundance and biomass growing at an average rate of 15 and 14% per year, respectively. Of the diversity indices analysed, the same pattern of variability was observed for Shannon diversity, while Pielou evenness and average taxonomic distinctness measures Δ ∗ and Δ + showed spatial variability with no obvious temporal trends. Multivariate fish assemblage structure underwent a directional change displaying a similar pattern through time for all the areas. The structural change in fish assemblages generally involved most of the species present in trammel net catches. A large pool of fish species responsible for producing the temporal pattern of assemblage change was relatively different in each of the areas reflecting a large geographic range covered by the study. An analysis of 4 fish species ( Symphodus tinca, Pagellus erythrinus, Mullus surmuletus, Scorpaena porcus) common to each of the study areas as the ones driving the temporal change indicated that there were clear increasing trends of their mean catches across the years at all the study areas. A common pattern among time trajectories across the spatial scale studied implies that the factor affecting the littoral fish assemblages is not localised but regional in nature. As an underlying factor having the potential to induce such widespread and consistent improvements in littoral fish assemblages, a more restrictive artisanal fishery management that has progressively been put in place during the study period, is suggested and discussed.
NASA Astrophysics Data System (ADS)
Ravindranath, A.; Devineni, N.
2017-12-01
Studies have shown that streamflow behavior and dynamics have a significant link with climate and climate variability. Patterns of persistent regime behavior from extended streamflow records in many watersheds justify investigating large-scale climate mechanisms as potential drivers of hydrologic regime behavior and streamflow variability. Understanding such streamflow-climate relationships is crucial to forecasting/simulation systems and the planning and management of water resources. In this study, hidden Markov models are used with reconstructed streamflow to detect regime-like behaviors - the hidden states - and state transition phenomena. Individual extreme events and their spatial variability across the basin are then verified with the identified states. Wavelet analysis is performed to examine the signals over time in the streamflow records. Joint analyses of the climatic data in the 20th century and the identified states are undertaken to better understand the hydroclimatic connections within the basin as well as important teleconnections that influence water supply. Compositing techniques are used to identify atmospheric circulation patterns associated with identified states of streamflow. The grouping of such synoptic patterns and their frequency are then examined. Sliding time-window correlation analysis and cross-wavelet spectral analysis are performed to establish the synchronicity of basin flows to the identified synoptic and teleconnection patterns. The Missouri River Basin (MRB) is examined in this study, both as a means of better understanding the synoptic climate controls in this important watershed and as a case study for the techniques developed here. Initial wavelet analyses of reconstructed streamflow at major gauges in the MRB show multidecadal cycles in regime behavior.
Local Helioseismology of Emerging Active Regions: A Case Study
NASA Astrophysics Data System (ADS)
Kosovichev, Alexander G.; Zhao, Junwei; Ilonidis, Stathis
2018-04-01
Local helioseismology provides a unique opportunity to investigate the subsurface structure and dynamics of active regions and their effect on the large-scale flows and global circulation of the Sun. We use measurements of plasma flows in the upper convection zone, provided by the Time-Distance Helioseismology Pipeline developed for analysis of solar oscillation data obtained by Helioseismic and Magnetic Imager (HMI) on Solar Dynamics Observatory (SDO), to investigate the subsurface dynamics of emerging active region NOAA 11726. The active region emergence was detected in deep layers of the convection zone about 12 hours before the first bipolar magnetic structure appeared on the surface, and 2 days before the emergence of most of the magnetic flux. The speed of emergence determined by tracking the flow divergence with depth is about 1.4 km/s, very close to the emergence speed in the deep layers. As the emerging magnetic flux becomes concentrated in sunspots local converging flows are observed beneath the forming sunspots. These flows are most prominent in the depth range 1-3 Mm, and remain converging after the formation process is completed. On the larger scale converging flows around active region appear as a diversion of the zonal shearing flows towards the active region, accompanied by formation of a large-scale vortex structure. This process occurs when a substantial amount of the magnetic flux emerged on the surface, and the converging flow pattern remains stable during the following evolution of the active region. The Carrington synoptic flow maps show that the large-scale subsurface inflows are typical for active regions. In the deeper layers (10-13 Mm) the flows become diverging, and surprisingly strong beneath some active regions. In addition, the synoptic maps reveal a complex evolving pattern of large-scale flows on the scale much larger than supergranulation
NASA Astrophysics Data System (ADS)
Papritz, L.; Grams, C. M.
2018-03-01
The regional variability of wintertime marine cold air outbreaks (CAOs) in the northeastern North Atlantic is studied focusing on the role of weather regimes in modulating the large-scale circulation. Each regime is characterized by a typical CAO frequency anomaly pattern and a corresponding imprint in air-sea heat fluxes. Cyclonically dominated regimes, Greenland blocking and the Atlantic ridge regime are found to provide favorable conditions for CAO formation in at least one major sea of the study region; CAO occurrence is suppressed, however, by blocked regimes whose associated anticyclones are centered over northern Europe (European / Scandinavian blocking). Kinematic trajectories reveal that strength and location of the storm tracks are closely linked to the pathways of CAO air masses and, thus, CAO occurrence. Finally, CAO frequencies are also linked to the strength of the stratospheric polar vortex, which is understood in terms of associated variations in the frequency of weather regimes.
Large Scale Meteorological Pattern of Extreme Rainfall in Indonesia
NASA Astrophysics Data System (ADS)
Kuswanto, Heri; Grotjahn, Richard; Rachmi, Arinda; Suhermi, Novri; Oktania, Erma; Wijaya, Yosep
2014-05-01
Extreme Weather Events (EWEs) cause negative impacts socially, economically, and environmentally. Considering these facts, forecasting EWEs is crucial work. Indonesia has been identified as being among the countries most vulnerable to the risk of natural disasters, such as floods, heat waves, and droughts. Current forecasting of extreme events in Indonesia is carried out by interpreting synoptic maps for several fields without taking into account the link between the observed events in the 'target' area with remote conditions. This situation may cause misidentification of the event leading to an inaccurate prediction. Grotjahn and Faure (2008) compute composite maps from extreme events (including heat waves and intense rainfall) to help forecasters identify such events in model output. The composite maps show large scale meteorological patterns (LSMP) that occurred during historical EWEs. Some vital information about the EWEs can be acquired from studying such maps, in addition to providing forecaster guidance. Such maps have robust mid-latitude meteorological patterns (for Sacramento and California Central Valley, USA EWEs). We study the performance of the composite approach for tropical weather condition such as Indonesia. Initially, the composite maps are developed to identify and forecast the extreme weather events in Indramayu district- West Java, the main producer of rice in Indonesia and contributes to about 60% of the national total rice production. Studying extreme weather events happening in Indramayu is important since EWEs there affect national agricultural and fisheries activities. During a recent EWE more than a thousand houses in Indramayu suffered from serious flooding with each home more than one meter underwater. The flood also destroyed a thousand hectares of rice plantings in 5 regencies. Identifying the dates of extreme events is one of the most important steps and has to be carried out carefully. An approach has been applied to identify the dates involving observations from multiple sites (rain gauges). The approach combines the POT (Peaks Over Threshold) with 'declustering' of the data to approximate independence based on the autocorrelation structure of each rainfall series. The cross correlation among sites is considered also to develop the event's criteria yielding a rational choice of the extreme dates given the 'spotty' nature of the intense convection. Based on the identified dates, we are developing a supporting tool for forecasting extreme rainfall based on the corresponding large-scale meteorological patterns (LSMPs). The LSMPs methodology focuses on the larger-scale patterns that the model are better able to forecast, as those larger-scale patterns create the conditions fostering the local EWE. Bootstrap resampling method is applied to highlight the key features that statistically significant with the extreme events. Grotjahn, R., and G. Faure. 2008: Composite Predictor Maps of Extraordinary Weather Events in the Sacramento California Region. Weather and Forecasting. 23: 313-335.
Income inequality and income segregation.
Reardon, Sean F; Bischoff, Kendra
2011-01-01
This article investigates how the growth in income inequality from 1970 to 2000 affected patterns of income segregation along three dimensions: the spatial segregation of poverty and affluence, race-specific patterns of income segregation, and the geographic scale of income segregation. The evidence reveals a robust relationship between income inequality and income segregation, an effect that is larger for black families than for white families. In addition, income inequality affects income segregation primarily through its effect on the large-scale spatial segregation of affluence rather than by affecting the spatial segregation of poverty or by altering small-scale patterns of income segregation.
Student Employment: Social Differentials and Field-Specific Developments in Higher Education
ERIC Educational Resources Information Center
Jacob, Marita; Gerth, Maria; Weiss, Felix
2018-01-01
In this article, we examine social origin differences in employment patterns across different stages of higher education and compare these differences between vocational and academic fields of study. Using data from a large-scale German student survey, we study the development of inequality, according to social origins, in student employment from…
ERIC Educational Resources Information Center
Jonson-Reid, Melissa; Presnall, Ned; Drake, Brett; Fox, Louis; Bierut, Laura; Reich, Wendy; Kane, Phyllis; Todd, Richard D.; Constantino, John N.
2010-01-01
Objective: Evidence is steadily accumulating that a preventable environmental hazard, child maltreatment, exerts causal influences on the development of long-standing patterns of antisocial behavior in humans. The relationship between child maltreatment and antisocial outcome, however, has never previously been tested in a large-scale study in…
ERIC Educational Resources Information Center
Wei, Youhua; Low, Albert
2017-01-01
In most large-scale programs of tests that aid in making high-stakes decisions, such as the "TOEIC"® family of products and service, it is not unusual for a significant portion of test takers to retake the test at multiple times.The study reported here used multilevel growth modeling to explore the score change patterns of nearly 20,000…
The predictability of consumer visitation patterns
NASA Astrophysics Data System (ADS)
Krumme, Coco; Llorente, Alejandro; Cebrian, Manuel; Pentland, Alex ("Sandy"); Moro, Esteban
2013-04-01
We consider hundreds of thousands of individual economic transactions to ask: how predictable are consumers in their merchant visitation patterns? Our results suggest that, in the long-run, much of our seemingly elective activity is actually highly predictable. Notwithstanding a wide range of individual preferences, shoppers share regularities in how they visit merchant locations over time. Yet while aggregate behavior is largely predictable, the interleaving of shopping events introduces important stochastic elements at short time scales. These short- and long-scale patterns suggest a theoretical upper bound on predictability, and describe the accuracy of a Markov model in predicting a person's next location. We incorporate population-level transition probabilities in the predictive models, and find that in many cases these improve accuracy. While our results point to the elusiveness of precise predictions about where a person will go next, they suggest the existence, at large time-scales, of regularities across the population.
The predictability of consumer visitation patterns
Krumme, Coco; Llorente, Alejandro; Cebrian, Manuel; Pentland, Alex ("Sandy"); Moro, Esteban
2013-01-01
We consider hundreds of thousands of individual economic transactions to ask: how predictable are consumers in their merchant visitation patterns? Our results suggest that, in the long-run, much of our seemingly elective activity is actually highly predictable. Notwithstanding a wide range of individual preferences, shoppers share regularities in how they visit merchant locations over time. Yet while aggregate behavior is largely predictable, the interleaving of shopping events introduces important stochastic elements at short time scales. These short- and long-scale patterns suggest a theoretical upper bound on predictability, and describe the accuracy of a Markov model in predicting a person's next location. We incorporate population-level transition probabilities in the predictive models, and find that in many cases these improve accuracy. While our results point to the elusiveness of precise predictions about where a person will go next, they suggest the existence, at large time-scales, of regularities across the population. PMID:23598917
NASA Astrophysics Data System (ADS)
Huisman, J. A.; Brogi, C.; Pätzold, S.; Weihermueller, L.; von Hebel, C.; Van Der Kruk, J.; Vereecken, H.
2017-12-01
Subsurface structures of the vadose zone can play a key role in crop yield potential, especially during water stress periods. Geophysical techniques like electromagnetic induction EMI can provide information about dominant shallow subsurface features. However, previous studies with EMI have typically not reached beyond the field scale. We used high-resolution large-scale multi-configuration EMI measurements to characterize patterns of soil structural organization (layering and texture) and their impact on crop productivity at the km2 scale. We collected EMI data on an agricultural area of 1 km2 (102 ha) near Selhausen (NRW, Germany). The area consists of 51 agricultural fields cropped in rotation. Therefore, measurements were collected between April and December 2016, preferably within few days after the harvest. EMI data were automatically filtered, temperature corrected, and interpolated onto a common grid of 1 m resolution. Inspecting the ECa maps, we identified three main sub-areas with different subsurface heterogeneity. We also identified small-scale geomorphological structures as well as anthropogenic activities such as soil management and buried drainage networks. To identify areas with similar subsurface structures, we applied image classification techniques. We fused ECa maps obtained with different coil distances in a multiband image and applied supervised and unsupervised classification methodologies. Both showed good results in reconstructing observed patterns in plant productivity and the subsurface structures associated with them. However, the supervised methodology proved more efficient in classifying the whole study area. In a second step, we selected hundred locations within the study area and obtained a soil profile description with type, depth, and thickness of the soil horizons. Using this ground truth data it was possible to assign a typical soil profile to each of the main classes obtained from the classification. The proposed methodology was effective in producing a high resolution subsurface model in a large and complex study area that extends well beyond the field scale.
2013-01-01
Background A large-scale, highly accurate, machine-understandable drug-disease treatment relationship knowledge base is important for computational approaches to drug repurposing. The large body of published biomedical research articles and clinical case reports available on MEDLINE is a rich source of FDA-approved drug-disease indication as well as drug-repurposing knowledge that is crucial for applying FDA-approved drugs for new diseases. However, much of this information is buried in free text and not captured in any existing databases. The goal of this study is to extract a large number of accurate drug-disease treatment pairs from published literature. Results In this study, we developed a simple but highly accurate pattern-learning approach to extract treatment-specific drug-disease pairs from 20 million biomedical abstracts available on MEDLINE. We extracted a total of 34,305 unique drug-disease treatment pairs, the majority of which are not included in existing structured databases. Our algorithm achieved a precision of 0.904 and a recall of 0.131 in extracting all pairs, and a precision of 0.904 and a recall of 0.842 in extracting frequent pairs. In addition, we have shown that the extracted pairs strongly correlate with both drug target genes and therapeutic classes, therefore may have high potential in drug discovery. Conclusions We demonstrated that our simple pattern-learning relationship extraction algorithm is able to accurately extract many drug-disease pairs from the free text of biomedical literature that are not captured in structured databases. The large-scale, accurate, machine-understandable drug-disease treatment knowledge base that is resultant of our study, in combination with pairs from structured databases, will have high potential in computational drug repurposing tasks. PMID:23742147
Griffis, Joseph C.; Elkhetali, Abdurahman S.; Burge, Wesley K.; Chen, Richard H.; Bowman, Anthony D.; Szaflarski, Jerzy P.; Visscher, Kristina M.
2016-01-01
Psychophysical and neurobiological evidence suggests that central and peripheral vision are specialized for different functions. This specialization of function might be expected to lead to differences in the large-scale functional interactions of early cortical areas that represent central and peripheral visual space. Here, we characterize differences in whole-brain functional connectivity among sectors in primary visual cortex (V1) corresponding to central, near-peripheral, and far-peripheral vision during resting fixation. Importantly, our analyses reveal that eccentricity sectors in V1 have different functional connectivity with non-visual areas associated with large-scale brain networks. Regions associated with the fronto-parietal control network are most strongly connected with central sectors of V1, regions associated with the cingulo-opercular control network are most strongly connected with near-peripheral sectors of V1, and regions associated with the default mode and auditory networks are most strongly connected with far-peripheral sectors of V1. Additional analyses suggest that similar patterns are present during eyes-closed rest. These results suggest that different types of visual information may be prioritized by large-scale brain networks with distinct functional profiles, and provide insights into how the small-scale functional specialization within early visual regions such as V1 relates to the large-scale organization of functionally distinct whole-brain networks. PMID:27554527
Tracking and visualization of space-time activities for a micro-scale flu transmission study.
Qi, Feng; Du, Fei
2013-02-07
Infectious diseases pose increasing threats to public health with increasing population density and more and more sophisticated social networks. While efforts continue in studying the large scale dissemination of contagious diseases, individual-based activity and behaviour study benefits not only disease transmission modelling but also the control, containment, and prevention decision making at the local scale. The potential for using tracking technologies to capture detailed space-time trajectories and model individual behaviour is increasing rapidly, as technological advances enable the manufacture of small, lightweight, highly sensitive, and affordable receivers and the routine use of location-aware devices has become widespread (e.g., smart cellular phones). The use of low-cost tracking devices in medical research has also been proved effective by more and more studies. This study describes the use of tracking devices to collect data of space-time trajectories and the spatiotemporal processing of such data to facilitate micro-scale flu transmission study. We also reports preliminary findings on activity patterns related to chances of influenza infection in a pilot study. Specifically, this study employed A-GPS tracking devices to collect data on a university campus. Spatiotemporal processing was conducted for data cleaning and segmentation. Processed data was validated with traditional activity diaries. The A-GPS data set was then used for visual explorations including density surface visualization and connection analysis to examine space-time activity patterns in relation to chances of influenza infection. When compared to diary data, the segmented tracking data demonstrated to be an effective alternative and showed greater accuracies in time as well as the details of routes taken by participants. A comparison of space-time activity patterns between participants who caught seasonal influenza and those who did not revealed interesting patterns. This study proved that tracking technology an effective technique for obtaining data for micro-scale influenza transmission research. The findings revealed micro-scale transmission hotspots on a university campus and provided insights for local control and prevention strategies.
NASA Astrophysics Data System (ADS)
Wehner, Michael; Pall, Pardeep; Zarzycki, Colin; Stone, Daithi
2016-04-01
Probabilistic extreme event attribution is especially difficult for weather events that are caused by extremely rare large-scale meteorological patterns. Traditional modeling techniques have involved using ensembles of climate models, either fully coupled or with prescribed ocean and sea ice. Ensemble sizes for the latter case ranges from several 100 to tens of thousand. However, even if the simulations are constrained by the observed ocean state, the requisite large-scale meteorological pattern may not occur frequently enough or even at all in free running climate model simulations. We present a method to ensure that simulated events similar to the observed event are modeled with enough fidelity that robust statistics can be determined given the large scale meteorological conditions. By initializing suitably constrained short term ensemble hindcasts of both the actual weather system and a counterfactual weather system where the human interference in the climate system is removed, the human contribution to the magnitude of the event can be determined. However, the change (if any) in the probability of an event of the observed magnitude is conditional not only on the state of the ocean/sea ice system but also on the prescribed initial conditions determined by the causal large scale meteorological pattern. We will discuss the implications of this technique through two examples; the 2013 Colorado flood and the 2014 Typhoon Haiyan.
David R. Houston; David R. Houston
1972-01-01
This paper discusses the use of aerial color photography to discern symptoms of the disease as it developed over time, the factors contributing to disease development, and the patterns of disease development.
Akkaynak, Derya; Siemann, Liese A.; Barbosa, Alexandra
2017-01-01
Flounder change colour and pattern for camouflage. We used a spectrometer to measure reflectance spectra and a digital camera to capture body patterns of two flounder species camouflaged on four natural backgrounds of different spatial scale (sand, small gravel, large gravel and rocks). We quantified the degree of spectral match between flounder and background relative to the situation of perfect camouflage in which flounder and background were assumed to have identical spectral distribution. Computations were carried out for three biologically relevant observers: monochromatic squid, dichromatic crab and trichromatic guitarfish. Our computations present a new approach to analysing datasets with multiple spectra that have large variance. Furthermore, to investigate the spatial match between flounder and background, images of flounder patterns were analysed using a custom program originally developed to study cuttlefish camouflage. Our results show that all flounder and background spectra fall within the same colour gamut and that, in terms of different observer visual systems, flounder matched most substrates in luminance and colour contrast. Flounder matched the spatial scales of all substrates except for rocks. We discuss findings in terms of flounder biology; furthermore, we discuss our methodology in light of hyperspectral technologies that combine high-resolution spectral and spatial imaging. PMID:28405370
Moral parochialism and contextual contingency across seven societies
Fessler, Daniel M. T.; Barrett, H. Clark; Kanovsky, Martin; Stich, Stephen; Holbrook, Colin; Henrich, Joseph; Bolyanatz, Alexander H.; Gervais, Matthew M.; Gurven, Michael; Kushnick, Geoff; Pisor, Anne C.; von Rueden, Christopher; Laurence, Stephen
2015-01-01
Human moral judgement may have evolved to maximize the individual's welfare given parochial culturally constructed moral systems. If so, then moral condemnation should be more severe when transgressions are recent and local, and should be sensitive to the pronouncements of authority figures (who are often arbiters of moral norms), as the fitness pay-offs of moral disapproval will primarily derive from the ramifications of condemning actions that occur within the immediate social arena. Correspondingly, moral transgressions should be viewed as less objectionable if they occur in other places or times, or if local authorities deem them acceptable. These predictions contrast markedly with those derived from prevailing non-evolutionary perspectives on moral judgement. Both classes of theories predict purportedly species-typical patterns, yet to our knowledge, no study to date has investigated moral judgement across a diverse set of societies, including a range of small-scale communities that differ substantially from large highly urbanized nations. We tested these predictions in five small-scale societies and two large-scale societies, finding substantial evidence of moral parochialism and contextual contingency in adults' moral judgements. Results reveal an overarching pattern in which moral condemnation reflects a concern with immediate local considerations, a pattern consistent with a variety of evolutionary accounts of moral judgement. PMID:26246545
Moral parochialism and contextual contingency across seven societies.
Fessler, Daniel M T; Barrett, H Clark; Kanovsky, Martin; Stich, Stephen; Holbrook, Colin; Henrich, Joseph; Bolyanatz, Alexander H; Gervais, Matthew M; Gurven, Michael; Kushnick, Geoff; Pisor, Anne C; von Rueden, Christopher; Laurence, Stephen
2015-08-22
Human moral judgement may have evolved to maximize the individual's welfare given parochial culturally constructed moral systems. If so, then moral condemnation should be more severe when transgressions are recent and local, and should be sensitive to the pronouncements of authority figures (who are often arbiters of moral norms), as the fitness pay-offs of moral disapproval will primarily derive from the ramifications of condemning actions that occur within the immediate social arena. Correspondingly, moral transgressions should be viewed as less objectionable if they occur in other places or times, or if local authorities deem them acceptable. These predictions contrast markedly with those derived from prevailing non-evolutionary perspectives on moral judgement. Both classes of theories predict purportedly species-typical patterns, yet to our knowledge, no study to date has investigated moral judgement across a diverse set of societies, including a range of small-scale communities that differ substantially from large highly urbanized nations. We tested these predictions in five small-scale societies and two large-scale societies, finding substantial evidence of moral parochialism and contextual contingency in adults' moral judgements. Results reveal an overarching pattern in which moral condemnation reflects a concern with immediate local considerations, a pattern consistent with a variety of evolutionary accounts of moral judgement. © 2015 The Authors.
Akkaynak, Derya; Siemann, Liese A; Barbosa, Alexandra; Mäthger, Lydia M
2017-03-01
Flounder change colour and pattern for camouflage. We used a spectrometer to measure reflectance spectra and a digital camera to capture body patterns of two flounder species camouflaged on four natural backgrounds of different spatial scale (sand, small gravel, large gravel and rocks). We quantified the degree of spectral match between flounder and background relative to the situation of perfect camouflage in which flounder and background were assumed to have identical spectral distribution. Computations were carried out for three biologically relevant observers: monochromatic squid, dichromatic crab and trichromatic guitarfish. Our computations present a new approach to analysing datasets with multiple spectra that have large variance. Furthermore, to investigate the spatial match between flounder and background, images of flounder patterns were analysed using a custom program originally developed to study cuttlefish camouflage. Our results show that all flounder and background spectra fall within the same colour gamut and that, in terms of different observer visual systems, flounder matched most substrates in luminance and colour contrast. Flounder matched the spatial scales of all substrates except for rocks. We discuss findings in terms of flounder biology; furthermore, we discuss our methodology in light of hyperspectral technologies that combine high-resolution spectral and spatial imaging.
The Multi-Scale Network Landscape of Collaboration.
Bae, Arram; Park, Doheum; Ahn, Yong-Yeol; Park, Juyong
2016-01-01
Propelled by the increasing availability of large-scale high-quality data, advanced data modeling and analysis techniques are enabling many novel and significant scientific understanding of a wide range of complex social, natural, and technological systems. These developments also provide opportunities for studying cultural systems and phenomena--which can be said to refer to all products of human creativity and way of life. An important characteristic of a cultural product is that it does not exist in isolation from others, but forms an intricate web of connections on many levels. In the creation and dissemination of cultural products and artworks in particular, collaboration and communication of ideas play an essential role, which can be captured in the heterogeneous network of the creators and practitioners of art. In this paper we propose novel methods to analyze and uncover meaningful patterns from such a network using the network of western classical musicians constructed from a large-scale comprehensive Compact Disc recordings data. We characterize the complex patterns in the network landscape of collaboration between musicians across multiple scales ranging from the macroscopic to the mesoscopic and microscopic that represent the diversity of cultural styles and the individuality of the artists.
The Multi-Scale Network Landscape of Collaboration
Ahn, Yong-Yeol; Park, Juyong
2016-01-01
Propelled by the increasing availability of large-scale high-quality data, advanced data modeling and analysis techniques are enabling many novel and significant scientific understanding of a wide range of complex social, natural, and technological systems. These developments also provide opportunities for studying cultural systems and phenomena—which can be said to refer to all products of human creativity and way of life. An important characteristic of a cultural product is that it does not exist in isolation from others, but forms an intricate web of connections on many levels. In the creation and dissemination of cultural products and artworks in particular, collaboration and communication of ideas play an essential role, which can be captured in the heterogeneous network of the creators and practitioners of art. In this paper we propose novel methods to analyze and uncover meaningful patterns from such a network using the network of western classical musicians constructed from a large-scale comprehensive Compact Disc recordings data. We characterize the complex patterns in the network landscape of collaboration between musicians across multiple scales ranging from the macroscopic to the mesoscopic and microscopic that represent the diversity of cultural styles and the individuality of the artists. PMID:26990088
NASA Astrophysics Data System (ADS)
Cowan, James J.
1984-05-01
A unique type of holographic imagery and its large scale replication are described. The "Newport Button", which was designed as an advertising premium item for the Newport Corporation, incorporates a complex overlay of holographic diffraction gratings surrounding a three-dimensional holographic image of a real object. The combined pattern is recorded onto a photosensitive medium from which a metal master is made. The master is subsequently used to repeatedly emboss the pattern into a thin plastic sheet. Individual patterns are then die cut from the metallized plastic and mounted onto buttons. A discussion is given of the diffraction efficiencies of holograms made in this particular fashion and of the special requirements of the replication process.
Large Scale Relationship between Aquatic Insect Traits and Climate.
Bhowmik, Avit Kumar; Schäfer, Ralf B
2015-01-01
Climate is the predominant environmental driver of freshwater assemblage pattern on large spatial scales, and traits of freshwater organisms have shown considerable potential to identify impacts of climate change. Although several studies suggest traits that may indicate vulnerability to climate change, the empirical relationship between freshwater assemblage trait composition and climate has been rarely examined on large scales. We compared the responses of the assumed climate-associated traits from six grouping features to 35 bioclimatic indices (~18 km resolution) for five insect orders (Diptera, Ephemeroptera, Odonata, Plecoptera and Trichoptera), evaluated their potential for changing distribution pattern under future climate change and identified the most influential bioclimatic indices. The data comprised 782 species and 395 genera sampled in 4,752 stream sites during 2006 and 2007 in Germany (~357,000 km² spatial extent). We quantified the variability and spatial autocorrelation in the traits and orders that are associated with the combined and individual bioclimatic indices. Traits of temperature preference grouping feature that are the products of several other underlying climate-associated traits, and the insect order Ephemeroptera exhibited the strongest response to the bioclimatic indices as well as the highest potential for changing distribution pattern. Regarding individual traits, insects in general and ephemeropterans preferring very cold temperature showed the highest response, and the insects preferring cold and trichopterans preferring moderate temperature showed the highest potential for changing distribution. We showed that the seasonal radiation and moisture are the most influential bioclimatic aspects, and thus changes in these aspects may affect the most responsive traits and orders and drive a change in their spatial distribution pattern. Our findings support the development of trait-based metrics to predict and detect climate-related changes of freshwater assemblages.
Patterns of streamflow variability are likely to be a major organizing feature of the habitat template for stream fishes. Functional organization of stream communities has been linked to streamflow, especially to patterns of flow variability that describe the physical disturbanc...
Patterns of streamflow variability are likely to be a major organizing feature of the habitat template for stream fishes. Ecological organization of stream communities has been linked to streamflow, especially to patterns of flow variability that describe the physical disturbanc...
Fajardo, Alex
2016-05-01
The study of scaling examines the relative dimensions of diverse organismal traits. Understanding whether global scaling patterns are paralleled within species is key to identify causal factors of universal scaling. I examined whether the foliage-stem (Corner's rules), the leaf size-number, and the leaf mass-leaf area scaling relationships remained invariant and isometric with elevation in a wide-distributed treeline species in the southern Chilean Andes. Mean leaf area, leaf mass, leafing intensity, and twig cross-sectional area were determined for 1-2 twigs of 8-15 Nothofagus pumilio individuals across four elevations (including treeline elevation) and four locations (from central Chile at 36°S to Tierra del Fuego at 54°S). Mixed effects models were fitted to test whether the interaction term between traits and elevation was nonsignificant (invariant). The leaf-twig cross-sectional area and the leaf mass-leaf area scaling relationships were isometric (slope = 1) and remained invariant with elevation, whereas the leaf size-number (i.e., leafing intensity) scaling was allometric (slope ≠ -1) and showed no variation with elevation. Leaf area and leaf number were consistently negatively correlated across elevation. The scaling relationships examined in the current study parallel those seen across species. It is plausible that the explanation of intraspecific scaling relationships, as trait combinations favored by natural selection, is the same as those invoked to explain across species patterns. Thus, it is very likely that the global interspecific Corner's rules and other leaf-leaf scaling relationships emerge as the aggregate of largely parallel intraspecific patterns. © 2016 Botanical Society of America.
Li, Guo Chun; Song, Hua Dong; Li, Qi; Bu, Shu Hai
2017-11-01
In Abies fargesii forests of the giant panda's habitats in Mt. Taibai, the spatial distribution patterns and interspecific associations of main tree species and their spatial associations with the understory flowering Fargesia qinlingensis were analyzed at multiple scales by univariate and bivaria-te O-ring function in point pattern analysis. The results showed that in the A. fargesii forest, the number of A. fargesii was largest but its population structure was in decline. The population of Betula platyphylla was relatively young, with a stable population structure, while the population of B. albo-sinensis declined. The three populations showed aggregated distributions at small scales and gradually showed random distributions with increasing spatial scales. Spatial associations among tree species were mainly showed at small scales and gradually became not spatially associated with increasing scale. A. fargesii and B. platyphylla were positively associated with flowering F. qinlingensis at large and medium scales, whereas B. albo-sinensis showed negatively associated with flowering F. qinlingensis at large and medium scales. The interaction between trees and F. qinlingensis in the habitats of giant panda promoted the dynamic succession and development of forests, which changed the environment of giant panda's habitats in Qinling.
NASA Astrophysics Data System (ADS)
Harvey, J. E.; Smith, D. J.
2016-12-01
We investigated the influence of climate variability on forest fire occurrence in west central British Columbia (BC), Canada, between AD 1600 and 1900. Fire history was reconstructed at 8 sites in the Cariboo-Chilcotin region and we identified 46 local (fires that affected 1 site) and 16 moderate (fires that affected 2 sites) fires. Preexisting fire history data collected from nearby sites was incorporated to identify 17 regionally synchronous fire years (fires that affected ³ 3 sites). Interannual and multidecadal relationships between fire occurrence and the Palmer Drought Severity Index (PDSI), El Nino Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO) and the Pacific North American (PNA) pattern were examined, in addition to the effects of phase interactions between ENSO and PDO. We examined multiple reconstructions of PDO and ENSO and utilized three methodological approaches to characterize climate-fire relationships. We found that the influence of interannual climate expressed as PDSI, increasingly synchronized the occurrence of of fires from local to regional fires. Regional fires were associated with anomalously dry, warm conditions in the year of the fire and in years preceding the fire. We also identified an association between local fires and antecedent moisture conditions, where wetter and cooler conditions persisted 2-3 years prior to fire. This finding suggests that moisture-driven fine fuel development and proximity to grasslands could function as key determinants of local (small-scale) fire history parameters. The relationships we identified between regional fires and ENSO, PDO and PNA suggest that large-scale patterns of climate variability exert a weak and/or inconsistent influence over fire activity in west central BC between AD 1600-1900. The strongest relationships between regional fires and large-scale climate patterns were identified when ENSO and PDO were both in positive phases. We also documented a relationship between regional fires and positive years of the PNA pattern. Our findings suggest that long-term fire planning using predictions of large scale climate patterns may be limited in west central BC, however, the consideration of additive phases of ENSO and PDO, and the PNA pattern, may be effective and has been suggested by others in the inland Pacific Northwest.
NASA Astrophysics Data System (ADS)
Matsumoto, Kengo; Kato, Kuranoshin; Otani, Kazuo
2017-04-01
In East Asia the significant subtropical frontal zone called the Meiyu (in China) / Baiu (in Japan) appears in early summer (just before the midsummer) and the huge rainfall is brought due to the frequent appearance of the "heavy rainfall days" (referred to as HRDs hereafter) mainly in that western part. On the other hand, large-scale fields around the front in eastern Japan is rather different from that in western Japan but the total precipitation in the eastern Japan is still considerable compared to that in the other midlatitude regions. Thus, it is also interesting to examine how the rainfall characteristics and large-scale atmospheric fields on HRDs (with more than 50 mm/day) in the eastern Japan in the mature stage of the Baiu season (16 June 15 July), together with those in midsummer (1 31 August). Based on such scientific background, further analyses were performed in this study mainly with the daily and the hourly precipitation data and the NCEP/NCAR re-analysis date from 1971 to 2010, succeeding to our previous results (e.g., EGU2015). As reported at EGU2014 and 2015, about half of HRDs at Tokyo (eastern Japan) were related to the typhoon even in the Baiu season. Interestingly, half of HRDs were characterized by the large contribution of moderate rain less than 10 mm/h. While, the precipitation on HRDs at Tokyo in midsummer was mainly brought by the intense rainfall with more than 10 mm/h, in association with the typhoons. In the present study, we examined the composite meridional structure of the rainfall area along 140E. In the pattern only associated with a typhoons in the Baiu season (Pattern A), the heavy rainfall area (more than 50 mm/day) with large contribution of the intense rain (stronger than 10 mm/h) showed rather wide meridional extension. The area was characterized by the duration of the intermittent enhancement of the rainfall. In the pattern associated with a typhoon and a front (Pattern B), while the contribution ratio of the rainfall more than 10mm/h was large in the southern half of the heavy rainfall area, moderate rain with less than 10 mm/h contributed greatly to the total rainfall in the northern half. In Patter B, that heavy rainfall area was located just in the area with strong low-level warm advection around the Baiu front to the east of the typhoon. The warm advection near the heavy rainfall area was also found in Pattern A, the heavy rainfall occurred just on the southwest of the large advection. It is noted that, although the very warm humid air can intrude northward by the strong S-ly wind to the east of the typhoon in both Pattern A and B, the low-level baroclinicity around the eastern Japan was stronger in Pattern B. In midsummer, the similar situations to while the "Pattern B"-like situation was not seen. This might be greatly reflected by the seasonal change in the southern boundary of the Okhotsk air mass from the Baiu to midsummer and we will also examine that in the future.
AA9int: SNP Interaction Pattern Search Using Non-Hierarchical Additive Model Set.
Lin, Hui-Yi; Huang, Po-Yu; Chen, Dung-Tsa; Tung, Heng-Yuan; Sellers, Thomas A; Pow-Sang, Julio; Eeles, Rosalind; Easton, Doug; Kote-Jarai, Zsofia; Amin Al Olama, Ali; Benlloch, Sara; Muir, Kenneth; Giles, Graham G; Wiklund, Fredrik; Gronberg, Henrik; Haiman, Christopher A; Schleutker, Johanna; Nordestgaard, Børge G; Travis, Ruth C; Hamdy, Freddie; Neal, David E; Pashayan, Nora; Khaw, Kay-Tee; Stanford, Janet L; Blot, William J; Thibodeau, Stephen N; Maier, Christiane; Kibel, Adam S; Cybulski, Cezary; Cannon-Albright, Lisa; Brenner, Hermann; Kaneva, Radka; Batra, Jyotsna; Teixeira, Manuel R; Pandha, Hardev; Lu, Yong-Jie; Park, Jong Y
2018-06-07
The use of single nucleotide polymorphism (SNP) interactions to predict complex diseases is getting more attention during the past decade, but related statistical methods are still immature. We previously proposed the SNP Interaction Pattern Identifier (SIPI) approach to evaluate 45 SNP interaction patterns/patterns. SIPI is statistically powerful but suffers from a large computation burden. For large-scale studies, it is necessary to use a powerful and computation-efficient method. The objective of this study is to develop an evidence-based mini-version of SIPI as the screening tool or solitary use and to evaluate the impact of inheritance mode and model structure on detecting SNP-SNP interactions. We tested two candidate approaches: the 'Five-Full' and 'AA9int' method. The Five-Full approach is composed of the five full interaction models considering three inheritance modes (additive, dominant and recessive). The AA9int approach is composed of nine interaction models by considering non-hierarchical model structure and the additive mode. Our simulation results show that AA9int has similar statistical power compared to SIPI and is superior to the Five-Full approach, and the impact of the non-hierarchical model structure is greater than that of the inheritance mode in detecting SNP-SNP interactions. In summary, it is recommended that AA9int is a powerful tool to be used either alone or as the screening stage of a two-stage approach (AA9int+SIPI) for detecting SNP-SNP interactions in large-scale studies. The 'AA9int' and 'parAA9int' functions (standard and parallel computing version) are added in the SIPI R package, which is freely available at https://linhuiyi.github.io/LinHY_Software/. hlin1@lsuhsc.edu. Supplementary data are available at Bioinformatics online.
NASA Astrophysics Data System (ADS)
Venegas-González, Alejandro; Chagas, Matheus Peres; Anholetto Júnior, Claudio Roberto; Alvares, Clayton Alcarde; Roig, Fidel Alejandro; Tomazello Filho, Mario
2016-01-01
We explored the relationship between tree growth in two tropical species and local and large-scale climate variability in Southeastern Brazil. Tree ring width chronologies of Tectona grandis (teak) and Pinus caribaea (Caribbean pine) trees were compared with local (Water Requirement Satisfaction Index—WRSI, Standardized Precipitation Index—SPI, and Palmer Drought Severity Index—PDSI) and large-scale climate indices that analyze the equatorial pacific sea surface temperature (Trans-Niño Index-TNI and Niño-3.4-N3.4) and atmospheric circulation variations in the Southern Hemisphere (Antarctic Oscillation-AAO). Teak trees showed positive correlation with three indices in the current summer and fall. A significant correlation between WRSI index and Caribbean pine was observed in the dry season preceding tree ring formation. The influence of large-scale climate patterns was observed only for TNI and AAO, where there was a radial growth reduction in months preceding the growing season with positive values of the TNI in teak trees and radial growth increase (decrease) during December (March) to February (May) of the previous (current) growing season with positive phase of the AAO in teak (Caribbean pine) trees. The development of a new dendroclimatological study in Southeastern Brazil sheds light to local and large-scale climate influence on tree growth in recent decades, contributing in future climate change studies.
Pincebourde, Sylvain; Murdock, Courtney C; Vickers, Mathew; Sears, Michael W
2016-07-01
When predicting the response of organisms to global change, models use measures of climate at a coarse resolution from general circulation models or from downscaled regional models. Organisms, however, do not experience climate at such large scales. The climate heterogeneity over a landscape and how much of that landscape an organism can sample will determine ultimately the microclimates experienced by organisms. This past few decades has seen an important increase in the number of studies reporting microclimatic patterns at small scales. This synthesis intends to unify studies reporting microclimatic heterogeneity (mostly temperature) at various spatial scales, to infer any emerging trends, and to discuss the causes and consequences of such heterogeneity for organismal performance and with respect to changing land use patterns and climate. First, we identify the environmental drivers of heterogeneity across the various spatial scales that are pertinent to ectotherms. The thermal heterogeneity at the local and micro-scales is mostly generated by the architecture or the geometrical features of the microhabitat. Then, the thermal heterogeneity experienced by individuals is modulated by behavior. Second, we survey the literature to quantify thermal heterogeneity from the micro-scale up to the scale of a landscape in natural habitats. Despite difficulties in compiling studies that differ much in their design and aims, we found that there is as much thermal heterogeneity across micro-, local and landscape scales, and that the temperature range is large in general (>9 °C on average, and up to 26 °C). Third, we examine the extent to which urban habitats can be used to infer the microclimatic patterns of the future. Urban areas generate globally drier and warmer microclimatic patterns and recent evidence suggest that thermal traits of ectotherms are adapted to them. Fourth, we explore the interplay between microclimate heterogeneity and the behavioral thermoregulatory abilities of ectotherms in setting their overall performance. We used a random walk framework to show that the thermal heterogeneity allows a more precise behavioral thermoregulation and a narrower temperature distribution of the ectotherm compared to less heterogeneous microhabitats. Finally, we discuss the potential impacts of global change on the fine scale mosaics of microclimates. The amplitude of change may differ between spatial scales. In heterogeneous microhabitats, the amplitude of change at micro-scale, caused by atmospheric warming, can be substantial while it can be limited at the local and landscape scales. We suggest that the warming signal will influence species performance and biotic interactions by modulating the mosaic of microclimates. © The Author 2016. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.
Large-Scale Circulation and Climate Variability. Chapter 5
NASA Technical Reports Server (NTRS)
Perlwitz, J.; Knutson, T.; Kossin, J. P.; LeGrande, A. N.
2017-01-01
The causes of regional climate trends cannot be understood without considering the impact of variations in large-scale atmospheric circulation and an assessment of the role of internally generated climate variability. There are contributions to regional climate trends from changes in large-scale latitudinal circulation, which is generally organized into three cells in each hemisphere-Hadley cell, Ferrell cell and Polar cell-and which determines the location of subtropical dry zones and midlatitude jet streams. These circulation cells are expected to shift poleward during warmer periods, which could result in poleward shifts in precipitation patterns, affecting natural ecosystems, agriculture, and water resources. In addition, regional climate can be strongly affected by non-local responses to recurring patterns (or modes) of variability of the atmospheric circulation or the coupled atmosphere-ocean system. These modes of variability represent preferred spatial patterns and their temporal variation. They account for gross features in variance and for teleconnections which describe climate links between geographically separated regions. Modes of variability are often described as a product of a spatial climate pattern and an associated climate index time series that are identified based on statistical methods like Principal Component Analysis (PC analysis), which is also called Empirical Orthogonal Function Analysis (EOF analysis), and cluster analysis.
Spatial structures of stream and hillslope drainage networks following gully erosion after wildfire
Moody, J.A.; Kinner, D.A.
2006-01-01
The drainage networks of catchment areas burned by wildfire were analysed at several scales. The smallest scale (1-1000 m2) representative of hillslopes, and the small scale (1000 m2 to 1 km2), representative of small catchments, were characterized by the analysis of field measurements. The large scale (1-1000 km2), representative of perennial stream networks, was derived from a 30-m digital elevation model and analysed by computer analysis. Scaling laws used to describe large-scale drainage networks could be extrapolated to the small scale but could not describe the smallest scale of drainage structures observed in the hillslope region. The hillslope drainage network appears to have a second-order effect that reduces the number of order 1 and order 2 streams predicted by the large-scale channel structure. This network comprises two spatial patterns of rills with width-to-depth ratios typically less than 10. One pattern is parallel rills draining nearly planar hillslope surfaces, and the other pattern is three to six converging rills draining the critical source area uphill from an order 1 channel head. The magnitude of this critical area depends on infiltration, hillslope roughness and critical shear stress for erosion of sediment, all of which can be substantially altered by wildfire. Order 1 and 2 streams were found to constitute the interface region, which is altered by a disturbance, like wildfire, from subtle unchannelized drainages in unburned catchments to incised drainages. These drainages are characterized by gullies also with width-to-depth ratios typically less than 10 in burned catchments. The regions (hillslope, interface and chanel) had different drainage network structures to collect and transfer water and sediment. Copyright ?? 2005 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Fiener, P.; Auerswald, K.; van Oost, K.
2009-04-01
In many landscapes, land use creates a complex pattern in addition to the patterns resulting from soil, topography and rain. Despite the static layout of fields, a spatio-temporally highly variable situation regarding the surface runoff and erosion processes results from the asynchronous seasonal variation associated with different land uses. While the behaviour of individual land-uses and their seasonal variation is analyzed in many studies, the spatio-temporal interaction related to this pattern is rarely studied despite its crucial influence on hydrological and geomorphic response of catchments. The difficulty in studying such interactions mainly results from the fact that it is impossible to set up a replicated experiment on the landscape scale. The purpose of this review is to present the advances made thus far in quantifying the effects of patchiness of land use and management on surface runoff response in agricultural catchments. We will focus on the effects of spatio-temporal patterns in land use patches on hydraulic connectivity between patches and within catchments. This will include the temporal patterns in land management affecting infiltration, surface roughness and hence runoff concentration within single fields or land use patches insofar as these effects must be known to evaluate the combined effect of patch behaviour in space and time on catchment connectivity and surface runoff. Surface runoff effects of patchiness and connectivity between patches or within a catchment, can either be addressed by modelling studies or by comprehensive catchment field measurements, e.g. paired-watershed experiments or landscape scale studies on different scales. This limits our review to studies at the scale of small catchments < 10 km², where the time constant of the network (i.e. travel time through it) is smaller than the infiltration phase. Despite this limitation, these small catchments are important as they constitute 2/3 of the total surface of large water drainage networks.
NASA Astrophysics Data System (ADS)
Bedford, D.
2012-12-01
We studied the effects of small-scale roughness on overland flow/runoff and the spatial pattern of infiltration. Our semi-arid sites include a grassland and shrubland in Central New Mexico and a shrubland in the Eastern Mojave Desert. Vegetation exerts strong controls on small-scale surface roughness in the form of plant mounds and other microtopography such as depressions and rills. We quantified the effects of densely measured soil surface heterogeneity using model simulations of runoff and infiltration. Microtopographic roughness associated with vegetation patterns, on the scale of mm-cm's in height, has a larger effect on runoff and infiltration than spatially correlated saturated conductivity. The magnitude and pattern of the effect of roughness largely depends on the vegetation and landform type, and rainfall depth and intensity. In all cases, runoff and infiltration amount and patterns were most strongly affected by depression storage. In the grassland we studied in central New Mexico, soil surface roughness had a large effect on runoff and infiltration where vegetation mounds coalesced, forming large storage volumes that require filling and overtopping in order for overland flow to concentrate into runoff. Total discharge over rough surfaces was reduced 100-200% compared to simulations in which no surface roughness was accounted for. For shrublands, total discharge was reduced 30-40% by microtopography on gently sloping alluvial fans and only 10-20% on steep hillslopes. This difference is largely due to the lack of storage elements on steep slopes. For our sites, we found that overland flow can increase infiltration by up to 2.5 times the total rainfall by filling depressions. The redistribution of water via overland flow can affect up to 20% of an area but varies with vegetation type and landform. This infiltration augmentation by overland flow tends to occur near the edges of vegetation canopies where overland flow depths are deep and infiltration rates are moderate. Infiltration augmentation is greatest in microtopographic depressions and flow threads. These results show that some vegetation-landform settings are efficient at trapping and concentrating the primary limiting resource, and demonstrate the importance of micro-scale soil characteristics for the ecohydrologic function of semi-arid environments. Since other essential attributes for plant ecosystems, such as nutrients, likely co-vary with water availability, further research is needed to elucidate ecosystem dynamics that may lead to self-organized behavior and determine thresholds for ecosystem stability.
NASA Astrophysics Data System (ADS)
Kruhl, J. H.; Vernon, R. H.
2009-05-01
The calc-alcaline granitoids of the Hercynian Corsica Batholith show a large-scale magmatic flow pattern, outlined by the alignment of large (mm-cm) euhedral feldspar crystals. The trend of the steep magmatic foliation is generally N-S in the northern part of the island, swings to approximately E-W orientation in the central part of the Batholith and back again to approximately N-S orientation in the southern part. This pattern is intensified by large-scale magmatic layering, mainly kilometer long lenses and layers of mafic and intermediate intrusions into the granitoids. On the macro- to micro-scale, magma mingling and mixing are present, reflecting the complex intrusion history and the compositional variability of the Corsica Batholith on different scales. Around the Golf of Valinco, a steep, sinistral magmatic shear zone is represented by E-W trending magmatic layering in mingled dioritic, tonalitic, and granitic magmas - previously misleadingly interpreted as migmatites - and by a magmatic flow foliation formed by the alignment of platy feldspar crystals, as well as amphibole and biotite. Characteristic magmatic structures include multiple thin layering, boudinage, monoclinic folding, melt-injected micro shear zones, and fragmenting and back- veining of dioritic enclaves. The intensity of grain alignment roughly correlates with the thickness of layers. It is low in thick and short boudins and high in cm-thin and cm-m long layers. The monoclinic folds refold the magmatic layering. Flat faces of amphibole and biotite grains are aligned in the axial planes of the folds. The feldspar crystals are locally recrystallized to a few large polygonal grains (up to 1 mm across), and quartz commonly shows chessboard subgrain patterns. No further indications of solid-state deformation are present. Field observations, as well as pattern quantification on variably oriented rock surfaces, indicate variations of crystal alignment and fabric anisotropy in cm- to more than 100m-wide bands parallel to the E-W oriented layering, and various stages of melt-present fragmentation. These variations are interpreted as variations of flow intensity and possibly strain-rate variation. The observations on the macro- as well as the micro-scale point to repeated injection of mafic to felsic magma and crystallization in the presence of a regional stress field. The resulting km-scale sinistral, sub-horizontal synmagmatic shear zone reflects large-scale movements during late-Hercynian crustal reorganization and represents an excellent example of localization of deformation into magma-enriched parts of the continental crust.
Survey of decentralized control methods. [for large scale dynamic systems
NASA Technical Reports Server (NTRS)
Athans, M.
1975-01-01
An overview is presented of the types of problems that are being considered by control theorists in the area of dynamic large scale systems with emphasis on decentralized control strategies. Approaches that deal directly with decentralized decision making for large scale systems are discussed. It is shown that future advances in decentralized system theory are intimately connected with advances in the stochastic control problem with nonclassical information pattern. The basic assumptions and mathematical tools associated with the latter are summarized, and recommendations concerning future research are presented.
Neuromorphic Hardware Architecture Using the Neural Engineering Framework for Pattern Recognition.
Wang, Runchun; Thakur, Chetan Singh; Cohen, Gregory; Hamilton, Tara Julia; Tapson, Jonathan; van Schaik, Andre
2017-06-01
We present a hardware architecture that uses the neural engineering framework (NEF) to implement large-scale neural networks on field programmable gate arrays (FPGAs) for performing massively parallel real-time pattern recognition. NEF is a framework that is capable of synthesising large-scale cognitive systems from subnetworks and we have previously presented an FPGA implementation of the NEF that successfully performs nonlinear mathematical computations. That work was developed based on a compact digital neural core, which consists of 64 neurons that are instantiated by a single physical neuron using a time-multiplexing approach. We have now scaled this approach up to build a pattern recognition system by combining identical neural cores together. As a proof of concept, we have developed a handwritten digit recognition system using the MNIST database and achieved a recognition rate of 96.55%. The system is implemented on a state-of-the-art FPGA and can process 5.12 million digits per second. The architecture and hardware optimisations presented offer high-speed and resource-efficient means for performing high-speed, neuromorphic, and massively parallel pattern recognition and classification tasks.
Exploring precipitation pattern scaling methodologies and robustness among CMIP5 models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kravitz, Ben; Lynch, Cary; Hartin, Corinne
Pattern scaling is a well-established method for approximating modeled spatial distributions of changes in temperature by assuming a time-invariant pattern that scales with changes in global mean temperature. We compare two methods of pattern scaling for annual mean precipitation (regression and epoch difference) and evaluate which method is better in particular circumstances by quantifying their robustness to interpolation/extrapolation in time, inter-model variations, and inter-scenario variations. Both the regression and epoch-difference methods (the two most commonly used methods of pattern scaling) have good absolute performance in reconstructing the climate model output, measured as an area-weighted root mean square error. We decomposemore » the precipitation response in the RCP8.5 scenario into a CO 2 portion and a non-CO 2 portion. Extrapolating RCP8.5 patterns to reconstruct precipitation change in the RCP2.6 scenario results in large errors due to violations of pattern scaling assumptions when this CO 2-/non-CO 2-forcing decomposition is applied. As a result, the methodologies discussed in this paper can help provide precipitation fields to be utilized in other models (including integrated assessment models or impacts assessment models) for a wide variety of scenarios of future climate change.« less
Exploring precipitation pattern scaling methodologies and robustness among CMIP5 models
Kravitz, Ben; Lynch, Cary; Hartin, Corinne; ...
2017-05-12
Pattern scaling is a well-established method for approximating modeled spatial distributions of changes in temperature by assuming a time-invariant pattern that scales with changes in global mean temperature. We compare two methods of pattern scaling for annual mean precipitation (regression and epoch difference) and evaluate which method is better in particular circumstances by quantifying their robustness to interpolation/extrapolation in time, inter-model variations, and inter-scenario variations. Both the regression and epoch-difference methods (the two most commonly used methods of pattern scaling) have good absolute performance in reconstructing the climate model output, measured as an area-weighted root mean square error. We decomposemore » the precipitation response in the RCP8.5 scenario into a CO 2 portion and a non-CO 2 portion. Extrapolating RCP8.5 patterns to reconstruct precipitation change in the RCP2.6 scenario results in large errors due to violations of pattern scaling assumptions when this CO 2-/non-CO 2-forcing decomposition is applied. As a result, the methodologies discussed in this paper can help provide precipitation fields to be utilized in other models (including integrated assessment models or impacts assessment models) for a wide variety of scenarios of future climate change.« less
Anderson, R.N.; Boulanger, A.; Bagdonas, E.P.; Xu, L.; He, W.
1996-12-17
The invention utilizes 3-D and 4-D seismic surveys as a means of deriving information useful in petroleum exploration and reservoir management. The methods use both single seismic surveys (3-D) and multiple seismic surveys separated in time (4-D) of a region of interest to determine large scale migration pathways within sedimentary basins, and fine scale drainage structure and oil-water-gas regions within individual petroleum producing reservoirs. Such structure is identified using pattern recognition tools which define the regions of interest. The 4-D seismic data sets may be used for data completion for large scale structure where time intervals between surveys do not allow for dynamic evolution. The 4-D seismic data sets also may be used to find variations over time of small scale structure within individual reservoirs which may be used to identify petroleum drainage pathways, oil-water-gas regions and, hence, attractive drilling targets. After spatial orientation, and amplitude and frequency matching of the multiple seismic data sets, High Amplitude Event (HAE) regions consistent with the presence of petroleum are identified using seismic attribute analysis. High Amplitude Regions are grown and interconnected to establish plumbing networks on the large scale and reservoir structure on the small scale. Small scale variations over time between seismic surveys within individual reservoirs are identified and used to identify drainage patterns and bypassed petroleum to be recovered. The location of such drainage patterns and bypassed petroleum may be used to site wells. 22 figs.
Anderson, Roger N.; Boulanger, Albert; Bagdonas, Edward P.; Xu, Liqing; He, Wei
1996-01-01
The invention utilizes 3-D and 4-D seismic surveys as a means of deriving information useful in petroleum exploration and reservoir management. The methods use both single seismic surveys (3-D) and multiple seismic surveys separated in time (4-D) of a region of interest to determine large scale migration pathways within sedimentary basins, and fine scale drainage structure and oil-water-gas regions within individual petroleum producing reservoirs. Such structure is identified using pattern recognition tools which define the regions of interest. The 4-D seismic data sets may be used for data completion for large scale structure where time intervals between surveys do not allow for dynamic evolution. The 4-D seismic data sets also may be used to find variations over time of small scale structure within individual reservoirs which may be used to identify petroleum drainage pathways, oil-water-gas regions and, hence, attractive drilling targets. After spatial orientation, and amplitude and frequency matching of the multiple seismic data sets, High Amplitude Event (HAE) regions consistent with the presence of petroleum are identified using seismic attribute analysis. High Amplitude Regions are grown and interconnected to establish plumbing networks on the large scale and reservoir structure on the small scale. Small scale variations over time between seismic surveys within individual reservoirs are identified and used to identify drainage patterns and bypassed petroleum to be recovered. The location of such drainage patterns and bypassed petroleum may be used to site wells.
The impact of large-scale circulation patterns on summer crop yields in IP
NASA Astrophysics Data System (ADS)
Capa Morocho, Mirian; Rodríguez Fonseca, Belén; Ruiz Ramos, Margarita
2014-05-01
Large-scale circulations patterns (ENSO, NAO) have been shown to have a significant impact on seasonal weather, and therefore on crop yield over many parts of the world(Garnett and Khandekar, 1992; Aasa et al., 2004; Rozas and Garcia-Gonzalez, 2012). In this study, we analyze the influence of large-scale circulation patterns and regional climate on the principal components of maize yield variability in Iberian Peninsula (IP) using reanalysis datasets. Additionally, we investigate the modulation of these relationships by multidecadal patterns. This study is performed analyzing long time series of maize yield, only climate dependent, computed with the crop model CERES-maize (Jones and Kiniry, 1986) included in Decision Support System for Agrotechnology Transfer (DSSAT v.4.5). To simulate yields, reanalysis daily data of radiation, maximum and minimum temperature and precipitation were used. The reanalysis climate data were obtained from National Center for Environmental Prediction (20th Century and NCEP) and European Centre for Medium-Range Weather Forecasts (ECMWF) data server (ERA 40 and ERA Interim). Simulations were run at five locations: Lugo (northwestern), Lerida (NE), Madrid (central), Albacete (southeastern) and Córdoba (S IP) (Gabaldón et al., 2013). From these time series standardized anomalies were calculated. Afterwards, time series were time filtered to focus on the interannual-to-multiannual variability, splitting up in two components: low frequency (LF) and high frequency (HF) time scales. The principal components of HF yield anomalies in IP were compared with a set of documented patterns. These relationships were compared with multidecadal patterns, as Atlanctic Multidecadal Oscillations (AMO) and Interdecadal Pacific Oscillations (IPO). The results of this study have important implications in crop forecasting. In this way, it may have a positive impact on both public (agricultural planning) and private (decision support to farmers, insurance companies) sectors, to take advantage of favorable conditions or reduce the effect of adverse conditions. Acknowledgements Research by M. Capa-Morocho has been partly supported by a PICATA predoctoral fellowship of the Moncloa Campus of International Excellence (UCM-UPM) and MULCLIVAR project (CGL2012-38923-C02-02) References Aasa, A., Jaagus, J., Ahas, R. and Sepp, M. 2004. The influence of atmospheric circulation on plant phenological phases in central and eastern Europe. International Journal of Climatology 24, 1551-1564. Gabaldón, C. et al. 2013. Evaluation of local strategies to climate change of maize crop in Andalusia for the first half of 21st century. European Geosciences Union - General Assembly2013 Vol. 15 (Vienna - Austria, 2013). Garnett, E. R. and Khandekar, M. L. 1992. The impact of large-scale atmospheric circulations and anomalies on Indian monsoon droughts and floods and on world grain yields-a statistical analysis. Agricultural and Forest Meteorology 61, 113-128. Jones, C. and Kiniry, J. 1986. CERES-Maize: A Simulation Model of Maize Growth and Development. Texas A&M University Press, 194. Rozas, V. and Garcia-Gonzalez, I. 2012. Non-stationary influence of El Nino-Southern Oscillation and winter temperature on oak latewood growth in NW Iberian Peninsula. Int J Biometeorol 56, 787-800.
Allometric scaling of UK urban emissions: interpretation and implications for air quality management
NASA Astrophysics Data System (ADS)
MacKenzie, Rob; Barnes, Matt; Whyatt, Duncan; Hewitt, Nick
2016-04-01
Allometry uncovers structures and patterns by relating the characteristics of complex systems to a measure of scale. We present an allometric analysis of air quality for UK urban settlements, beginning with emissions and moving on to consider air concentrations. We consider both airshed-average 'urban background' concentrations (cf. those derived from satellites for NO2) and local pollution 'hotspots'. We show that there is a strong and robust scaling (with respect to population) of the non-point-source emissions of the greenhouse gases carbon dioxide and methane, as well as the toxic pollutants nitrogen dioxide, PM2.5, and 1,3-butadiene. The scaling of traffic-related emissions is not simply a reflection of road length, but rather results from the socio-economic patterning of road-use. The recent controversy regarding diesel vehicle emissions is germane to our study but does not affect our overall conclusions. We next develop an hypothesis for the population-scaling of airshed-average air concentrations, with which we demonstrate that, although average air quality is expected to be worse in large urban centres compared to small urban centres, the overall effect is an economy of scale (i.e., large cities reduce the overall burden of emissions compared to the same population spread over many smaller urban settlements). Our hypothesis explains satellite-derived observations of airshed-average urban NO2 concentrations. The theory derived also explains which properties of nature-based solutions (urban greening) can make a significant contribution at city scale, and points to a hitherto unforeseen opportunity to make large cities cleaner than smaller cities in absolute terms with respect to their airshed-average pollutant concentration.
Effect of ploidy on scale-cover pattern in linear ornamental (koi) common carp Cyprinus carpio.
Gomelsky, B; Schneider, K J; Glennon, R P; Plouffe, D A
2012-09-01
The effect of ploidy on scale-cover pattern in linear ornamental (koi) common carp Cyprinus carpio was investigated. To obtain diploid and triploid linear fish, eggs taken from a leather C. carpio female (genotype ssNn) and sperm taken from a scaled C. carpio male (genotype SSnn) were used for the production of control (no shock) and heat-shocked progeny. In heat-shocked progeny, the 2 min heat shock (40° C) was applied 6 min after insemination. Diploid linear fish (genotype SsNn) demonstrated a scale-cover pattern typical for this category with one even row of scales along lateral line and few scales located near operculum and at bases of fins. The majority (97%) of triploid linear fish (genotype SssNnn) exhibited non-typical scale patterns which were characterized by the appearance of additional scales on the body. The extent of additional scales in triploid linear fish was variable; some fish had large scales, which covered almost the entire body. Apparently, the observed difference in scale-cover pattern between triploid and diploid linear fish was caused by different phenotypic expression of gene N/n. Due to incomplete dominance of allele N, triploids Nnn demonstrate less profound reduction of scale cover compared with diploids Nn. © 2012 The Authors. Journal of Fish Biology © 2012 The Fisheries Society of the British Isles.
Pazos, Florencio; Chagoyen, Monica
2018-01-16
Daily work in molecular biology presently depends on a large number of computational tools. An in-depth, large-scale study of that 'ecosystem' of Web tools, its characteristics, interconnectivity, patterns of usage/citation, temporal evolution and rate of decay is crucial for understanding the forces that shape it and for informing initiatives aimed at its funding, long-term maintenance and improvement. In particular, the long-term maintenance of these tools is compromised because of their specific development model. Hundreds of published studies become irreproducible de facto, as the software tools used to conduct them become unavailable. In this study, we present a large-scale survey of >5400 publications describing Web servers within the two main bibliographic resources for disseminating new software developments in molecular biology. For all these servers, we studied their citation patterns, the subjects they address, their citation networks and the temporal evolution of these factors. We also analysed how these factors affect the availability of these servers (whether they are alive). Our results show that this ecosystem of tools is highly interconnected and adapts to the 'trendy' subjects in every moment. The servers present characteristic temporal patterns of citation/usage, and there is a worrying rate of server 'death', which is influenced by factors such as the server popularity and the institutions that hosts it. These results can inform initiatives aimed at the long-term maintenance of these resources. © The Author(s) 2018. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Hakkenberg, C R; Zhu, K; Peet, R K; Song, C
2018-02-01
The central role of floristic diversity in maintaining habitat integrity and ecosystem function has propelled efforts to map and monitor its distribution across forest landscapes. While biodiversity studies have traditionally relied largely on ground-based observations, the immensity of the task of generating accurate, repeatable, and spatially-continuous data on biodiversity patterns at large scales has stimulated the development of remote-sensing methods for scaling up from field plot measurements. One such approach is through integrated LiDAR and hyperspectral remote-sensing. However, despite their efficiencies in cost and effort, LiDAR-hyperspectral sensors are still highly constrained in structurally- and taxonomically-heterogeneous forests - especially when species' cover is smaller than the image resolution, intertwined with neighboring taxa, or otherwise obscured by overlapping canopy strata. In light of these challenges, this study goes beyond the remote characterization of upper canopy diversity to instead model total vascular plant species richness in a continuous-cover North Carolina Piedmont forest landscape. We focus on two related, but parallel, tasks. First, we demonstrate an application of predictive biodiversity mapping, using nonparametric models trained with spatially-nested field plots and aerial LiDAR-hyperspectral data, to predict spatially-explicit landscape patterns in floristic diversity across seven spatial scales between 0.01-900 m 2 . Second, we employ bivariate parametric models to test the significance of individual, remotely-sensed predictors of plant richness to determine how parameter estimates vary with scale. Cross-validated results indicate that predictive models were able to account for 15-70% of variance in plant richness, with LiDAR-derived estimates of topography and forest structural complexity, as well as spectral variance in hyperspectral imagery explaining the largest portion of variance in diversity levels. Importantly, bivariate tests provide evidence of scale-dependence among predictors, such that remotely-sensed variables significantly predict plant richness only at spatial scales that sufficiently subsume geolocational imprecision between remotely-sensed and field data, and best align with stand components including plant size and density, as well as canopy gaps and understory growth patterns. Beyond their insights into the scale-dependent patterns and drivers of plant diversity in Piedmont forests, these results highlight the potential of remotely-sensible essential biodiversity variables for mapping and monitoring landscape floristic diversity from air- and space-borne platforms. © 2017 by the Ecological Society of America.
Deliano, Matthias; Scheich, Henning; Ohl, Frank W
2009-12-16
Several studies have shown that animals can learn to make specific use of intracortical microstimulation (ICMS) of sensory cortex within behavioral tasks. Here, we investigate how the focal, artificial activation by ICMS leads to a meaningful, behaviorally interpretable signal. In natural learning, this involves large-scale activity patterns in widespread brain-networks. We therefore trained gerbils to discriminate closely neighboring ICMS sites within primary auditory cortex producing evoked responses largely overlapping in space. In parallel, during training, we recorded electrocorticograms (ECoGs) at high spatial resolution. Applying a multivariate classification procedure, we identified late spatial patterns that emerged with discrimination learning from the ongoing poststimulus ECoG. These patterns contained information about the preceding conditioned stimulus, and were associated with a subsequent correct behavioral response by the animal. Thereby, relevant pattern information was mainly carried by neuron populations outside the range of the lateral spatial spread of ICMS-evoked cortical activation (approximately 1.2 mm). This demonstrates that the stimulated cortical area not only encoded information about the stimulation sites by its focal, stimulus-driven activation, but also provided meaningful signals in its ongoing activity related to the interpretation of ICMS learned by the animal. This involved the stimulated area as a whole, and apparently required large-scale integration in the brain. However, ICMS locally interfered with the ongoing cortical dynamics by suppressing pattern formation near the stimulation sites. The interaction between ICMS and ongoing cortical activity has several implications for the design of ICMS protocols and cortical neuroprostheses, since the meaningful interpretation of ICMS depends on this interaction.
Interactions between Antarctic sea ice and large-scale atmospheric modes in CMIP5 models
NASA Astrophysics Data System (ADS)
Schroeter, Serena; Hobbs, Will; Bindoff, Nathaniel L.
2017-03-01
The response of Antarctic sea ice to large-scale patterns of atmospheric variability varies according to sea ice sector and season. In this study, interannual atmosphere-sea ice interactions were explored using observations and reanalysis data, and compared with simulated interactions by models in the Coupled Model Intercomparison Project Phase 5 (CMIP5). Simulated relationships between atmospheric variability and sea ice variability generally reproduced the observed relationships, though more closely during the season of sea ice advance than the season of sea ice retreat. Atmospheric influence on sea ice is known to be strongest during advance, and it appears that models are able to capture the dominance of the atmosphere during advance. Simulations of ocean-atmosphere-sea ice interactions during retreat, however, require further investigation. A large proportion of model ensemble members overestimated the relative importance of the Southern Annular Mode (SAM) compared with other modes of high southern latitude climate, while the influence of tropical forcing was underestimated. This result emerged particularly strongly during the season of sea ice retreat. The zonal patterns of the SAM in many models and its exaggerated influence on sea ice overwhelm the comparatively underestimated meridional influence, suggesting that simulated sea ice variability would become more zonally symmetric as a result. Across the seasons of sea ice advance and retreat, three of the five sectors did not reveal a strong relationship with a pattern of large-scale atmospheric variability in one or both seasons, indicating that sea ice in these sectors may be influenced more strongly by atmospheric variability unexplained by the major atmospheric modes, or by heat exchange in the ocean.
Jiang, Zhenhong; He, Fei; Zhang, Ziding
2017-07-01
Through large-scale transcriptional data analyses, we highlighted the importance of plant metabolism in plant immunity and identified 26 metabolic pathways that were frequently influenced by the infection of 14 different pathogens. Reprogramming of plant metabolism is a common phenomenon in plant defense responses. Currently, a large number of transcriptional profiles of infected tissues in Arabidopsis (Arabidopsis thaliana) have been deposited in public databases, which provides a great opportunity to understand the expression patterns of metabolic pathways during plant defense responses at the systems level. Here, we performed a large-scale transcriptome analysis based on 135 previously published expression samples, including 14 different pathogens, to explore the expression pattern of Arabidopsis metabolic pathways. Overall, metabolic genes are significantly changed in expression during plant defense responses. Upregulated metabolic genes are enriched on defense responses, and downregulated genes are enriched on photosynthesis, fatty acid and lipid metabolic processes. Gene set enrichment analysis (GSEA) identifies 26 frequently differentially expressed metabolic pathways (FreDE_Paths) that are differentially expressed in more than 60% of infected samples. These pathways are involved in the generation of energy, fatty acid and lipid metabolism as well as secondary metabolite biosynthesis. Clustering analysis based on the expression levels of these 26 metabolic pathways clearly distinguishes infected and control samples, further suggesting the importance of these metabolic pathways in plant defense responses. By comparing with FreDE_Paths from abiotic stresses, we find that the expression patterns of 26 FreDE_Paths from biotic stresses are more consistent across different infected samples. By investigating the expression correlation between transcriptional factors (TFs) and FreDE_Paths, we identify several notable relationships. Collectively, the current study will deepen our understanding of plant metabolism in plant immunity and provide new insights into disease-resistant crop improvement.
Dying like rabbits: general determinants of spatio-temporal variability in survival.
Tablado, Zulima; Revilla, Eloy; Palomares, Francisco
2012-01-01
1. Identifying general patterns of how and why survival rates vary across space and time is necessary to truly understand population dynamics of a species. However, this is not an easy task given the complexity and interactions of processes involved, and the interpopulation differences in main survival determinants. 2. Here, using European rabbits (Oryctolagus cuniculus) as a model and information from local studies, we investigated whether we could make inferences about trends and drivers of survival of a species that are generalizable to large spatio-temporal scales. To do this, we first focused on overall survival and then examined cause-specific mortalities, mainly predation and diseases, which may lead to those patterns. 3. Our results show that within the large-scale variability in rabbit survival, there exist general patterns that are explained by the integration of factors previously known to be important at the local level (i.e. age, climate, diseases, predation or density dependence). We found that both inter- and intrastudy survival rates increased in magnitude and decreased in variability as rabbits grow old, although this tendency was less pronounced in populations with epidemic diseases. Some causes leading to these higher mortalities in young rabbits could be the stronger effect of rainfall at those ages, as well as, other death sources like malnutrition or infanticide. 4. Predation is also greater for newborns and juveniles, especially in population without diseases. Apart from the effect of diseases, predation patterns also depended on factors, such as, density, season, and type and density of predators. Finally, we observed that infectious diseases also showed general relationships with climate, breeding (i.e. new susceptible rabbits) and age, although the association type varied between myxomatosis and rabbit haemorrhagic disease. 5. In conclusion, large-scale patterns of spatio-temporal variability in rabbit survival emerge from the combination of different factors that interrelate both directly and through density dependence. This highlights the importance of performing more comprehensive studies to reveal combined effects and complex relationships that help us to better understand the mechanisms underlying population dynamics. © 2011 The Authors. Journal of Animal Ecology © 2011 British Ecological Society.
Large area nanoimprint by substrate conformal imprint lithography (SCIL)
NASA Astrophysics Data System (ADS)
Verschuuren, Marc A.; Megens, Mischa; Ni, Yongfeng; van Sprang, Hans; Polman, Albert
2017-06-01
Releasing the potential of advanced material properties by controlled structuring materials on sub-100-nm length scales for applications such as integrated circuits, nano-photonics, (bio-)sensors, lasers, optical security, etc. requires new technology to fabricate nano-patterns on large areas (from cm2 to 200 mm up to display sizes) in a cost-effective manner. Conventional high-end optical lithography such as stepper/scanners is highly capital intensive and not flexible towards substrate types. Nanoimprint has had the potential for over 20 years to bring a cost-effective, flexible method for large area nano-patterning. Over the last 3-4 years, nanoimprint has made great progress towards volume production. The main accelerator has been the switch from rigid- to wafer-scale soft stamps and tool improvements for step and repeat patterning. In this paper, we discuss substrate conformal imprint lithography (SCIL), which combines nanometer resolution, low patterns distortion, and overlay alignment, traditionally reserved for rigid stamps, with the flexibility and robustness of soft stamps. This was made possible by a combination of a new soft stamp material, an inorganic resist, combined with an innovative imprint method. Finally, a volume production solution will be presented, which can pattern up to 60 wafers per hour.
Muller, Lyle; Piantoni, Giovanni; Koller, Dominik; Cash, Sydney S; Halgren, Eric; Sejnowski, Terrence J
2016-01-01
During sleep, the thalamus generates a characteristic pattern of transient, 11-15 Hz sleep spindle oscillations, which synchronize the cortex through large-scale thalamocortical loops. Spindles have been increasingly demonstrated to be critical for sleep-dependent consolidation of memory, but the specific neural mechanism for this process remains unclear. We show here that cortical spindles are spatiotemporally organized into circular wave-like patterns, organizing neuronal activity over tens of milliseconds, within the timescale for storing memories in large-scale networks across the cortex via spike-time dependent plasticity. These circular patterns repeat over hours of sleep with millisecond temporal precision, allowing reinforcement of the activity patterns through hundreds of reverberations. These results provide a novel mechanistic account for how global sleep oscillations and synaptic plasticity could strengthen networks distributed across the cortex to store coherent and integrated memories. DOI: http://dx.doi.org/10.7554/eLife.17267.001 PMID:27855061
The effect of aerosols on northern hemisphere wintertime stationary waves
NASA Astrophysics Data System (ADS)
Lewinschal, Anna; Ekman, Annica M. L.
2010-05-01
Aerosol particles have a considerable impact on the energy budget of the atmosphere because of their ability to scatter and absorb incoming solar radiation. Since the beginning of the industrialisation a large increase has been seen mainly in the concentrations of sulphate and black carbon as a result of combustion of fossil fuel and biomass burning. Aerosol particles have a relatively short residence time in the atmosphere why the aerosol concentration shows a large variation spatially as well as in time where high concentrations are found close to emission sources. This leads to a highly varying radiative forcing pattern which modifies temperature gradients which in turn can alter the pressure distribution and lead to changes in the circulation in the atmosphere. In this study, the effect on the wintertime planetary scale waves on the northern hemisphere is specifically considered together with the regional climate impact due to changes in the stationary waves. To investigate the effect of aerosols on the circulation a global general circulation model based on the ECMWF operational forecast model is used (EC-Earth). The aerosol description in EC-Earth consists of prescribed monthly mean mass concentration fields of five different types of aerosols: sulphate, black carbon, organic carbon, dust and sea salt. Only the direct radiative effect is considered and the different aerosol types are treated as external mixtures. Changes in the stationary wave pattern are determined by comparing model simulations using present-day and pre-industrial concentrations of aerosol particles. Since the planetary scale waves largely influence the storm tracks and are an important part of the meridional heat transport, changes in the wave pattern may have substantial impact on the climate globally and locally. By looking at changes in the model simulations globally it can be found that the aerosol radiative forcing has the potential to change the stationary wave pattern. Furthermore, it shows that regional changes in the climate occur also where the radiative forcing from aerosol particles is not particularly strong, which would indicate that the large scale dynamical response to aerosol forcing can induce changes in temperature, precipitation and wind patterns outside the region where the forcing is initially located.
NASA Technical Reports Server (NTRS)
Grotjahn, Richard; Black, Robert; Leung, Ruby; Wehner, Michael F.; Barlow, Mathew; Bosilovich, Michael G.; Gershunov, Alexander; Gutowski, William J., Jr.; Gyakum, John R.; Katz, Richard W.;
2015-01-01
The objective of this paper is to review statistical methods, dynamics, modeling efforts, and trends related to temperature extremes, with a focus upon extreme events of short duration that affect parts of North America. These events are associated with large scale meteorological patterns (LSMPs). The statistics, dynamics, and modeling sections of this paper are written to be autonomous and so can be read separately. Methods to define extreme events statistics and to identify and connect LSMPs to extreme temperature events are presented. Recent advances in statistical techniques connect LSMPs to extreme temperatures through appropriately defined covariates that supplement more straightforward analyses. Various LSMPs, ranging from synoptic to planetary scale structures, are associated with extreme temperature events. Current knowledge about the synoptics and the dynamical mechanisms leading to the associated LSMPs is incomplete. Systematic studies of: the physics of LSMP life cycles, comprehensive model assessment of LSMP-extreme temperature event linkages, and LSMP properties are needed. Generally, climate models capture observed properties of heat waves and cold air outbreaks with some fidelity. However they overestimate warm wave frequency and underestimate cold air outbreak frequency, and underestimate the collective influence of low-frequency modes on temperature extremes. Modeling studies have identified the impact of large-scale circulation anomalies and landatmosphere interactions on changes in extreme temperatures. However, few studies have examined changes in LSMPs to more specifically understand the role of LSMPs on past and future extreme temperature changes. Even though LSMPs are resolvable by global and regional climate models, they are not necessarily well simulated. The paper concludes with unresolved issues and research questions.
Paleobiology, community ecology, and scales of ecological pattern.
Jablonski, D; Sepkoski, J J
1996-07-01
The fossil record provides a wealth of data on the role of regional processes and historical events in shaping biological communities over a variety of time scales. The Quaternary record with its evidence of repeated climatic change shows that both terrestrial and marine species shifted independently rather than as cohesive assemblages over scales of thousands of years. Larger scale patterns also show a strong individualistic component to taxon dynamics; assemblage stability, when it occurs, is difficult to separate from shared responses to low rates of environmental change. Nevertheless, the fossil record does suggest that some biotic interactions influence large-scale ecological and evolutionary patterns, albeit in more diffuse and protracted fashions than those generally studied by community ecologists. These include: (1) the resistance by incumbents to the establishment of new or invading taxa, with episodes of explosive diversification often appearing contingent on the removal of incumbents at extinction events; (2) steady states of within-habitat and global diversity at longer time scales (10(7)-l0(8) yr), despite enormous turnover of taxa; and (3) morphological and biogeographic responses to increased intensities of predation and substratum disturbance over similarly long time scales. The behavior of species and communities over the array of temporal and spatial scales in the fossil record takes on additional significance for framing conservation strategies, and for understanding recovery of species, lineages, and communities from environmental changes.
Paleobiology, community ecology, and scales of ecological pattern
NASA Technical Reports Server (NTRS)
Jablonski, D.; Sepkoski, J. J. Jr; Sepkoski JJ, J. r. (Principal Investigator)
1996-01-01
The fossil record provides a wealth of data on the role of regional processes and historical events in shaping biological communities over a variety of time scales. The Quaternary record with its evidence of repeated climatic change shows that both terrestrial and marine species shifted independently rather than as cohesive assemblages over scales of thousands of years. Larger scale patterns also show a strong individualistic component to taxon dynamics; assemblage stability, when it occurs, is difficult to separate from shared responses to low rates of environmental change. Nevertheless, the fossil record does suggest that some biotic interactions influence large-scale ecological and evolutionary patterns, albeit in more diffuse and protracted fashions than those generally studied by community ecologists. These include: (1) the resistance by incumbents to the establishment of new or invading taxa, with episodes of explosive diversification often appearing contingent on the removal of incumbents at extinction events; (2) steady states of within-habitat and global diversity at longer time scales (10(7)-l0(8) yr), despite enormous turnover of taxa; and (3) morphological and biogeographic responses to increased intensities of predation and substratum disturbance over similarly long time scales. The behavior of species and communities over the array of temporal and spatial scales in the fossil record takes on additional significance for framing conservation strategies, and for understanding recovery of species, lineages, and communities from environmental changes.
Guidetti, P; Dulcić, J
2007-03-01
Previous studies conducted on a local scale emphasised the potential of trophic cascades in Mediterranean rocky reefs (involving predatory fish, sea urchins and macroalgae) in affecting the transition between benthic communities dominated by erected macroalgae and barrens (i.e., bare rock with partial cover of encrusting algae). Distribution patterns of fish predators of sea urchins (Diplodus sargus sargus, Diplodus vulgaris, Coris julis and Thalassoma pavo), sea urchins (Paracentrotus lividus and Arbacia lixula) and barrens, and fish predation rates upon sea urchins, were assessed in shallow (3-6m depth) sublittoral rocky reefs in the northern, central and southern sectors of the eastern Adriatic Sea, i.e., on a large spatial scale of hundreds of kilometres. No dramatic differences were observed in predatory fish density across latitude, except for a lower density of small D. sargus sargus in the northern Adriatic and an increasing density of T. pavo from north to south. P. lividus did not show any significant difference across latitude, whereas A. lixula was more abundant in the southern than in the central Adriatic. Barrens were more extended in the southern than in the central and northern sectors, and were related with sea urchin density. Fish predation upon adult sea urchins did not change on a large scale, whereas it was slightly higher in the southern sector for juveniles when predation rates of both urchins were pooled. Results show that: (1) assemblages of predatory fish and sea urchins, and barren extent change across latitude in the eastern Adriatic Sea, (2) the weak relations between predatory fish density and predation rates on urchins reveal that factors other than top-down control can be important over large scale (with the caveat that the study was conducted in fished areas) and (3) patterns of interaction among strongly interacting taxa could change on large spatial scales and the number of species involved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sangeetha, C. R.; Rajaguru, S. P., E-mail: crsangeetha@iiap.res.in
We derive horizontal fluid motions on the solar surface over large areas covering the quiet-Sun magnetic network from local correlation tracking of convective granules imaged in continuum intensity and Doppler velocity by the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory . From these we calculate the horizontal divergence, the vertical component of vorticity, and the kinetic helicity of fluid motions. We study the correlations between fluid divergence and vorticity, and between vorticity (kinetic helicity) and the magnetic field. We find that the vorticity (kinetic helicity) around small-scale fields exhibits a hemispherical pattern (in sign) similar tomore » that followed by the magnetic helicity of large-scale active regions (containing sunspots). We identify this pattern to be a result of the Coriolis force acting on supergranular-scale flows (both the outflows and inflows), consistent with earlier studies using local helioseismology. Furthermore, we show that the magnetic fields cause transfer of vorticity from supergranular inflow regions to outflow regions, and that they tend to suppress the vortical motions around them when magnetic flux densities exceed about 300 G (from HMI). We also show that such an action of the magnetic fields leads to marked changes in the correlations between fluid divergence and vorticity. These results are speculated to be of importance to local dynamo action (if present) and to the dynamical evolution of magnetic helicity at the small-scale.« less
Retrieving cosmological signal using cosmic flows
NASA Astrophysics Data System (ADS)
Bouillot, V.; Alimi, J.-M.
2011-12-01
To understand the origin of the anomalously high bulk flow at large scales, we use very large simulations in various cosmological models. To disentangle between cosmological and environmental effects, we select samples with bulk flow profiles similar to the observational data Watkins et al. (2009) which exhibit a maximum in the bulk flow at 53 h^{-1} Mpc. The estimation of the cosmological parameters Ω_M and σ_8, done on those samples, is correct from the rms mass fluctuation whereas this estimation gives completely false values when done on bulk flow measurements, hence showing a dependance of velocity fields on larger scales. By drawing a clear link between velocity fields at 53 h^{-1} Mpc and asymmetric patterns of the density field at 85 h^{-1} Mpc, we show that the bulk flow can depend largely on the environment. The retrieving of the cosmological signal is achieved by studying the convergence of the bulk flow towards the linear prediction at very large scale (˜ 150 h^{-1} Mpc).
Rolling up of Large-scale Laminar Vortex Ring from Synthetic Jet Impinging onto a Wall
NASA Astrophysics Data System (ADS)
Xu, Yang; Pan, Chong; Wang, Jinjun; Flow Control Lab Team
2015-11-01
Vortex ring impinging onto a wall exhibits a wide range of interesting behaviors. The present work devotes to an experimental investigation of a series of small-scale vortex rings impinging onto a wall. These laminar vortex rings were generated by a piston-cylinder driven synthetic jet in a water tank. Laser Induced Fluorescence (LIF) and Particle Image Velocimetry (PIV) were used for flow visualization/quantification. A special scenario of vortical dynamic was found for the first time: a large-scale laminar vortex ring is formed above the wall, on the outboard side of the jet. This large-scale structure is stable in topology pattern, and continuously grows in strength and size along time, thus dominating dynamics of near wall flow. To quantify its spatial/temporal characteristics, Finite-Time Lyapunov Exponent (FTLE) fields were calculated from PIV velocity fields. It is shown that the flow pattern revealed by FTLE fields is similar to the visualization. The size of this large-scale vortex ring can be up to one-order larger than the jet vortices, and its rolling-up speed and entrainment strength was correlated to constant vorticity flux issued from the jet. This work was supported by the National Natural Science Foundation of China (Grants No.11202015 and 11327202).
Tommasin, Silvia; Mascali, Daniele; Moraschi, Marta; Gili, Tommaso; Assan, Ibrahim Eid; Fratini, Michela; DiNuzzo, Mauro; Wise, Richard G; Mangia, Silvia; Macaluso, Emiliano; Giove, Federico
2018-06-14
Brain activity at rest is characterized by widely distributed and spatially specific patterns of synchronized low-frequency blood-oxygenation level-dependent (BOLD) fluctuations, which correspond to physiologically relevant brain networks. This network behaviour is known to persist also during task execution, yet the details underlying task-associated modulations of within- and between-network connectivity are largely unknown. In this study we exploited a multi-parametric and multi-scale approach to investigate how low-frequency fluctuations adapt to a sustained n-back working memory task. We found that the transition from the resting state to the task state involves a behaviourally relevant and scale-invariant modulation of synchronization patterns within both task-positive and default mode networks. Specifically, decreases of connectivity within networks are accompanied by increases of connectivity between networks. In spite of large and widespread changes of connectivity strength, the overall topology of brain networks is remarkably preserved. We show that these findings are strongly influenced by connectivity at rest, suggesting that the absolute change of connectivity (i.e., disregarding the baseline) may be not the most suitable metric to study dynamic modulations of functional connectivity. Our results indicate that a task can evoke scale-invariant, distributed changes of BOLD fluctuations, further confirming that low frequency BOLD oscillations show a specialized response and are tightly bound to task-evoked activation. Copyright © 2018. Published by Elsevier Inc.
Shi, Xuesong; Li, Xin; Jiang, Lan; Qu, Liangti; Zhao, Yang; Ran, Peng; Wang, Qingsong; Cao, Qiang; Ma, Tianbao; Lu, Yongfeng
2015-01-01
We developed a simple, scalable and high-throughput method for fabrication of large-area three-dimensional rose-like microflowers with controlled size, shape and density on graphene films by femtosecond laser micromachining. The novel biomimetic microflower that composed of numerous turnup graphene nanoflakes can be fabricated by only a single femtosecond laser pulse, which is efficient enough for large-area patterning. The graphene films were composed of layer-by-layer graphene nanosheets separated by nanogaps (~10–50 nm), and graphene monolayers with an interlayer spacing of ~0.37 nm constituted each of the graphene nanosheets. This unique hierarchical layering structure of graphene films provides great possibilities for generation of tensile stress during femtosecond laser ablation to roll up the nanoflakes, which contributes to the formation of microflowers. By a simple scanning technique, patterned surfaces with controllable densities of flower patterns were obtained, which can exhibit adhesive superhydrophobicity. More importantly, this technique enables fabrication of the large-area patterned surfaces at centimeter scales in a simple and efficient way. This study not only presents new insights of ultrafast laser processing of novel graphene-based materials but also shows great promise of designing new materials combined with ultrafast laser surface patterning for future applications in functional coatings, sensors, actuators and microfluidics. PMID:26615800
NASA Astrophysics Data System (ADS)
Hartin, C.; Lynch, C.; Kravitz, B.; Link, R. P.; Bond-Lamberty, B. P.
2017-12-01
Typically, uncertainty quantification of internal variability relies on large ensembles of climate model runs under multiple forcing scenarios or perturbations in a parameter space. Computationally efficient, standard pattern scaling techniques only generate one realization and do not capture the complicated dynamics of the climate system (i.e., stochastic variations with a frequency-domain structure). In this study, we generate large ensembles of climate data with spatially and temporally coherent variability across a subselection of Coupled Model Intercomparison Project Phase 5 (CMIP5) models. First, for each CMIP5 model we apply a pattern emulation approach to derive the model response to external forcing. We take all the spatial and temporal variability that isn't explained by the emulator and decompose it into non-physically based structures through use of empirical orthogonal functions (EOFs). Then, we perform a Fourier decomposition of the EOF projection coefficients to capture the input fields' temporal autocorrelation so that our new emulated patterns reproduce the proper timescales of climate response and "memory" in the climate system. Through this 3-step process, we derive computationally efficient climate projections consistent with CMIP5 model trends and modes of variability, which address a number of deficiencies inherent in the ability of pattern scaling to reproduce complex climate model behavior.
NASA Astrophysics Data System (ADS)
Tsvetkova, Milena; García-Gavilanes, Ruth; Yasseri, Taha
2016-11-01
Disagreement and conflict are a fact of social life. However, negative interactions are rarely explicitly declared and recorded and this makes them hard for scientists to study. In an attempt to understand the structural and temporal features of negative interactions in the community, we use complex network methods to analyze patterns in the timing and configuration of reverts of article edits to Wikipedia. We investigate how often and how fast pairs of reverts occur compared to a null model in order to control for patterns that are natural to the content production or are due to the internal rules of Wikipedia. Our results suggest that Wikipedia editors systematically revert the same person, revert back their reverter, and come to defend a reverted editor. We further relate these interactions to the status of the involved editors. Even though the individual reverts might not necessarily be negative social interactions, our analysis points to the existence of certain patterns of negative social dynamics within the community of editors. Some of these patterns have not been previously explored and carry implications for the knowledge collection practice conducted on Wikipedia. Our method can be applied to other large-scale temporal collaboration networks to identify the existence of negative social interactions and other social processes.
Hald, Gert Martin; Štulhofer, Aleksandar
2016-09-01
Previous research on exposure to different types of pornography has primarily relied on analyses of millions of search terms and histories or on user exposure patterns within a given time period rather than the self-reported frequency of consumption. Further, previous research has almost exclusively relied on theoretical or ad hoc overarching categorizations of different types of pornography, when investigating patterns of pornography exposure, rather than latent structure analyses of these exposure patterns. In contrast, using a large sample of 18- to 40-year-old heterosexual and nonheterosexual Croatian men and women, this study investigated the self-reported frequency of using 27 different types of pornography and statistically explored their latent structures. The results showed substantial differences in consumption patterns across gender and sexual orientation. However, latent structure analyses of the 27 different types of pornography assessed suggested that although several categories of consumption were gender and sexual orientation specific, common categories across the different types of pornography could be established. Based on this finding, a five-item scale was proposed to indicate the use of nonmainstream (paraphilic) pornographic content, as this type of pornography has often been targeted in previous research. To the best of our knowledge, no similar measurement tool has been proposed before.
A large-scale perspective on stress-induced alterations in resting-state networks
NASA Astrophysics Data System (ADS)
Maron-Katz, Adi; Vaisvaser, Sharon; Lin, Tamar; Hendler, Talma; Shamir, Ron
2016-02-01
Stress is known to induce large-scale neural modulations. However, its neural effect once the stressor is removed and how it relates to subjective experience are not fully understood. Here we used a statistically sound data-driven approach to investigate alterations in large-scale resting-state functional connectivity (rsFC) induced by acute social stress. We compared rsfMRI profiles of 57 healthy male subjects before and after stress induction. Using a parcellation-based univariate statistical analysis, we identified a large-scale rsFC change, involving 490 parcel-pairs. Aiming to characterize this change, we employed statistical enrichment analysis, identifying anatomic structures that were significantly interconnected by these pairs. This analysis revealed strengthening of thalamo-cortical connectivity and weakening of cross-hemispheral parieto-temporal connectivity. These alterations were further found to be associated with change in subjective stress reports. Integrating report-based information on stress sustainment 20 minutes post induction, revealed a single significant rsFC change between the right amygdala and the precuneus, which inversely correlated with the level of subjective recovery. Our study demonstrates the value of enrichment analysis for exploring large-scale network reorganization patterns, and provides new insight on stress-induced neural modulations and their relation to subjective experience.
Techniques for spatio-temporal analysis of vegetation fires in the topical belt of Africa
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brivio, P.A.; Ober, G.; Koffi, B.
1995-12-31
Biomass burning of forests and savannas is a phenomenon of continental or even global proportions, capable of causing large scale environmental changes. Satellite space observations, in particular from NOAA-AVHRR GAC data, are the only source of information allowing one to document burning patterns at regional and continental scale and over long periods of time. This paper presents some techniques, such as clustering and rose-diagram, useful in the spatial-temporal analysis of satellite derived fires maps to characterize the evolution of spatial patterns of vegetation fires at regional scale. An automatic clustering approach is presented which enables one to describe and parameterizemore » spatial distribution of fire patterns at different scales. The problem of geographical distribution of vegetation fires with respect to some location of interest, point or line, is also considered and presented. In particular rose-diagrams are used to relate fires patterns to some reference point, as experimental sites of tropospheric chemistry measurements. Different temporal data-sets in the tropical belt of Africa, covering both Northern and Southern Hemisphere dry seasons, using these techniques were analyzed and showed very promising results when compared with data from rain chemistry studies at different sampling sites in the equatorial forest.« less
Expanding protein universe and its origin from the biological Big Bang.
Dokholyan, Nikolay V; Shakhnovich, Boris; Shakhnovich, Eugene I
2002-10-29
The bottom-up approach to understanding the evolution of organisms is by studying molecular evolution. With the large number of protein structures identified in the past decades, we have discovered peculiar patterns that nature imprints on protein structural space in the course of evolution. In particular, we have discovered that the universe of protein structures is organized hierarchically into a scale-free network. By understanding the cause of these patterns, we attempt to glance at the very origin of life.
Geographic techniques and recent applications of remote sensing to landscape-water quality studies
Griffith, J.A.
2002-01-01
This article overviews recent advances in studies of landscape-water quality relationships using remote sensing techniques. With the increasing feasibility of using remotely-sensed data, landscape-water quality studies can now be more easily performed on regional, multi-state scales. The traditional method of relating land use and land cover to water quality has been extended to include landscape pattern and other landscape information derived from satellite data. Three items are focused on in this article: 1) the increasing recognition of the importance of larger-scale studies of regional water quality that require a landscape perspective; 2) the increasing importance of remotely sensed data, such as the imagery-derived normalized difference vegetation index (NDVI) and vegetation phenological metrics derived from time-series NDVI data; and 3) landscape pattern. In some studies, using landscape pattern metrics explained some of the variation in water quality not explained by land use/cover. However, in some other studies, the NDVI metrics were even more highly correlated to certain water quality parameters than either landscape pattern metrics or land use/cover proportions. Although studies relating landscape pattern metrics to water quality have had mixed results, this recent body of work applying these landscape measures and satellite-derived metrics to water quality analysis has demonstrated their potential usefulness in monitoring watershed conditions across large regions.
NASA Astrophysics Data System (ADS)
Granger, Victoria; Fromentin, Jean-Marc; Bez, Nicolas; Relini, Giulio; Meynard, Christine N.; Gaertner, Jean-Claude; Maiorano, Porzia; Garcia Ruiz, Cristina; Follesa, Cristina; Gristina, Michele; Peristeraki, Panagiota; Brind'Amour, Anik; Carbonara, Pierluigi; Charilaou, Charis; Esteban, Antonio; Jadaud, Angélique; Joksimovic, Aleksandar; Kallianiotis, Argyris; Kolitari, Jerina; Manfredi, Chiara; Massuti, Enric; Mifsud, Roberta; Quetglas, Antoni; Refes, Wahid; Sbrana, Mario; Vrgoc, Nedo; Spedicato, Maria Teresa; Mérigot, Bastien
2015-01-01
Increasing human pressures and global environmental change may severely affect the diversity of species assemblages and associated ecosystem services. Despite the recent interest in phylogenetic and functional diversity, our knowledge on large spatio-temporal patterns of demersal fish diversity sampled by trawling remains still incomplete, notably in the Mediterranean Sea, one of the most threatened marine regions of the world. We investigated large spatio-temporal diversity patterns by analysing a dataset of 19,886 hauls from 10 to 800 m depth performed annually during the last two decades by standardised scientific bottom trawl field surveys across the Mediterranean Sea, within the MEDITS program. A multi-component (eight diversity indices) and multi-scale (local assemblages, biogeographic regions to basins) approach indicates that only the two most traditional components (species richness and evenness) were sufficient to reflect patterns in taxonomic, phylogenetic or functional richness and divergence. We also put into question the use of widely computed indices that allow comparing directly taxonomic, phylogenetic and functional diversity within a unique mathematical framework. In addition, demersal fish assemblages sampled by trawl do not follow a continuous decreasing longitudinal/latitudinal diversity gradients (spatial effects explained up to 70.6% of deviance in regression tree and generalised linear models), for any of the indices and spatial scales analysed. Indeed, at both local and regional scales species richness was relatively high in the Iberian region, Malta, the Eastern Ionian and Aegean seas, meanwhile the Adriatic Sea and Cyprus showed a relatively low level. In contrast, evenness as well as taxonomic, phylogenetic and functional divergences did not show regional hotspots. All studied diversity components remained stable over the last two decades. Overall, our results highlight the need to use complementary diversity indices through different spatial scales when developing conservation strategies and defining delimitations for protected areas.
Beyond theories of plant invasions: Lessons from natural landscapes
Stohlgren, Thomas J.
2002-01-01
There are a growing number of contrasting theories about plant invasions, but most are only weakly supported by small-scale field experiments, observational studies, and mathematical models. Among the most contentious theories is that species-rich habitats should be less vulnerable to plant invasion than species-poor sites, stemming from earlier theories that competition is a major force in structuring plant communities. Early ecologists such as Charles Darwin (1859) and Charles Elton (1958) suggested that a lack of intense interspecific competition on islands made these low-diversity habitats vulnerable to invasion. Small-scale field experiments have supported and contradicted this theory, as have various mathematical models. In contrast, many large-scale observational studies and detailed vegetation surveys in continental areas often report that species-rich areas are more heavily invaded than species-poor areas, but there are exceptions here as well. In this article, I show how these seemingly contrasting patterns converge once appropriate spatial and temporal scales are considered in complex natural environments. I suggest ways in which small-scale experiments, mathematical models, and large- scale observational studies can be improved and better integrated to advance a theoretically based understanding of plant invasions.
Giotto, Nina; Gerard, Jean-François; Ziv, Alon; Bouskila, Amos; Bar-David, Shirli
2015-01-01
The way in which animals move and use the landscape is influenced by the spatial distribution of resources, and is of importance when considering species conservation. We aimed at exploring how landscape-related factors affect a large herbivore's space-use patterns by using a combined approach, integrating movement (displacement and recursions) and habitat selection analyses. We studied the endangered Asiatic wild ass (Equus hemionus) in the Negev Desert, Israel, using GPS monitoring and direct observation. We found that the main landscape-related factors affecting the species' space-use patterns, on a daily and seasonal basis, were vegetation cover, water sources and topography. Two main habitat types were selected: high-elevation sites during the day (specific microclimate: windy on warm summer days) and streambed surroundings during the night (coupled with high vegetation when the animals were active in summer). Distribution of recursion times (duration between visits) revealed a 24-hour periodicity, a pattern that could be widespread among large herbivores. Characterizing frequently revisited sites suggested that recursion movements were mainly driven by a few landscape features (water sources, vegetation patches, high-elevation points), but also by social factors, such as territoriality, which should be further explored. This study provided complementary insights into the space-use patterns of E. hemionus. Understanding of the species' space-use patterns, at both large and fine spatial scale, is required for developing appropriate conservation protocols. Our approach could be further applied for studying the space-use patterns of other species in heterogeneous landscapes.
Giotto, Nina; Gerard, Jean-François; Ziv, Alon; Bouskila, Amos; Bar-David, Shirli
2015-01-01
The way in which animals move and use the landscape is influenced by the spatial distribution of resources, and is of importance when considering species conservation. We aimed at exploring how landscape-related factors affect a large herbivore’s space-use patterns by using a combined approach, integrating movement (displacement and recursions) and habitat selection analyses. We studied the endangered Asiatic wild ass (Equus hemionus) in the Negev Desert, Israel, using GPS monitoring and direct observation. We found that the main landscape-related factors affecting the species’ space-use patterns, on a daily and seasonal basis, were vegetation cover, water sources and topography. Two main habitat types were selected: high-elevation sites during the day (specific microclimate: windy on warm summer days) and streambed surroundings during the night (coupled with high vegetation when the animals were active in summer). Distribution of recursion times (duration between visits) revealed a 24-hour periodicity, a pattern that could be widespread among large herbivores. Characterizing frequently revisited sites suggested that recursion movements were mainly driven by a few landscape features (water sources, vegetation patches, high-elevation points), but also by social factors, such as territoriality, which should be further explored. This study provided complementary insights into the space-use patterns of E. hemionus. Understanding of the species’ space-use patterns, at both large and fine spatial scale, is required for developing appropriate conservation protocols. Our approach could be further applied for studying the space-use patterns of other species in heterogeneous landscapes. PMID:26630393
Bai, Ling; Mai, Van Cuong; Lim, Yun; Hou, Shuai; Möhwald, Helmuth; Duan, Hongwei
2018-03-01
Structural colors originating from interaction of light with intricately arranged micro-/nanostructures have stimulated considerable interest because of their inherent photostability and energy efficiency. In particular, noniridescent structural color with wide viewing angle has been receiving increasing attention recently. However, no method is yet available for rapid and large-scale fabrication of full-spectrum structural color patterns with wide viewing angles. Here, infiltration-driven nonequilibrium assembly of colloidal particles on liquid-permeable and particle-excluding substrates is demonstrated to direct the particles to form amorphous colloidal arrays (ACAs) within milliseconds. The infiltration-assisted (IFAST) colloidal assembly opens new possibilities for rapid manufacture of noniridescent structural colors of ACAs and straightforward structural color mixing. Full-spectrum noniridescent structural colors are successfully produced by mixing primary structural colors of red, blue, and yellow using a commercial office inkjet printer. Rapid fabrication of large-scale structural color patterns with sophisticated color combination/layout by IFAST printing is realized. The IFAST technology is versatile for developing structural color patterns with wide viewing angles, as colloidal particles, inks, and substrates are flexibly designable for diverse applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Direction of information flow in large-scale resting-state networks is frequency-dependent.
Hillebrand, Arjan; Tewarie, Prejaas; van Dellen, Edwin; Yu, Meichen; Carbo, Ellen W S; Douw, Linda; Gouw, Alida A; van Straaten, Elisabeth C W; Stam, Cornelis J
2016-04-05
Normal brain function requires interactions between spatially separated, and functionally specialized, macroscopic regions, yet the directionality of these interactions in large-scale functional networks is unknown. Magnetoencephalography was used to determine the directionality of these interactions, where directionality was inferred from time series of beamformer-reconstructed estimates of neuronal activation, using a recently proposed measure of phase transfer entropy. We observed well-organized posterior-to-anterior patterns of information flow in the higher-frequency bands (alpha1, alpha2, and beta band), dominated by regions in the visual cortex and posterior default mode network. Opposite patterns of anterior-to-posterior flow were found in the theta band, involving mainly regions in the frontal lobe that were sending information to a more distributed network. Many strong information senders in the theta band were also frequent receivers in the alpha2 band, and vice versa. Our results provide evidence that large-scale resting-state patterns of information flow in the human brain form frequency-dependent reentry loops that are dominated by flow from parieto-occipital cortex to integrative frontal areas in the higher-frequency bands, which is mirrored by a theta band anterior-to-posterior flow.
Dimensions of biodiversity in the Earth mycobiome.
Peay, Kabir G; Kennedy, Peter G; Talbot, Jennifer M
2016-07-01
Fungi represent a large proportion of the genetic diversity on Earth and fungal activity influences the structure of plant and animal communities, as well as rates of ecosystem processes. Large-scale DNA-sequencing datasets are beginning to reveal the dimensions of fungal biodiversity, which seem to be fundamentally different to bacteria, plants and animals. In this Review, we describe the patterns of fungal biodiversity that have been revealed by molecular-based studies. Furthermore, we consider the evidence that supports the roles of different candidate drivers of fungal diversity at a range of spatial scales, as well as the role of dispersal limitation in maintaining regional endemism and influencing local community assembly. Finally, we discuss the ecological mechanisms that are likely to be responsible for the high heterogeneity that is observed in fungal communities at local scales.
How Large Scale Flows in the Solar Convection Zone may Influence Solar Activity
NASA Technical Reports Server (NTRS)
Hathaway, D. H.
2004-01-01
Large scale flows within the solar convection zone are the primary drivers of the Sun s magnetic activity cycle. Differential rotation can amplify the magnetic field and convert poloidal fields into toroidal fields. Poleward meridional flow near the surface can carry magnetic flux that reverses the magnetic poles and can convert toroidal fields into poloidal fields. The deeper, equatorward meridional flow can carry magnetic flux toward the equator where it can reconnect with oppositely directed fields in the other hemisphere. These axisymmetric flows are themselves driven by large scale convective motions. The effects of the Sun s rotation on convection produce velocity correlations that can maintain the differential rotation and meridional circulation. These convective motions can influence solar activity themselves by shaping the large-scale magnetic field pattern. While considerable theoretical advances have been made toward understanding these large scale flows, outstanding problems in matching theory to observations still remain.
Rieucau, G; Kiszka, J J; Castillo, J C; Mourier, J; Boswell, K M; Heithaus, M R
2018-06-01
A novel image analysis-based technique applied to unmanned aerial vehicle (UAV) survey data is described to detect and locate individual free-ranging sharks within aggregations. The method allows rapid collection of data and quantification of fine-scale swimming and collective patterns of sharks. We demonstrate the usefulness of this technique in a small-scale case study exploring the shoaling tendencies of blacktip reef sharks Carcharhinus melanopterus in a large lagoon within Moorea, French Polynesia. Using our approach, we found that C. melanopterus displayed increased alignment with shoal companions when distributed over a sandflat where they are regularly fed for ecotourism purposes as compared with when they shoaled in a deeper adjacent channel. Our case study highlights the potential of a relatively low-cost method that combines UAV survey data and image analysis to detect differences in shoaling patterns of free-ranging sharks in shallow habitats. This approach offers an alternative to current techniques commonly used in controlled settings that require time-consuming post-processing effort. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
ERIC Educational Resources Information Center
Dewaele, Jean-Marc; Li, Wei
2014-01-01
The present study is a large-scale quantitative analysis of intra-individual variation (linked to type of interlocutor) and inter-individual variation (linked to multilingualism, sociobiographical variables and three personality traits) in self-reported frequency of code-switching (CS) among 2116 multilinguals. We found a significant effect of…
Global Patterns in Students' Views of Science and Interest in Science
ERIC Educational Resources Information Center
van Griethuijsen, Ralf A. L. F.; van Eijck, Michiel W.; Haste, Helen; den Brok, Perry J.; Skinner, Nigel C.; Mansour, Nasser; Savran Gencer, Ayse; BouJaoude, Saouma
2015-01-01
International studies have shown that interest in science and technology among primary and secondary school students in Western European countries is low and seems to be decreasing. In many countries outside Europe, and especially in developing countries, interest in science and technology remains strong. As part of the large-scale European Union…
Approaches for advancing scientific understanding of macrosystems
Levy, Ofir; Ball, Becky A.; Bond-Lamberty, Ben; Cheruvelil, Kendra S.; Finley, Andrew O.; Lottig, Noah R.; Surangi W. Punyasena,; Xiao, Jingfeng; Zhou, Jizhong; Buckley, Lauren B.; Filstrup, Christopher T.; Keitt, Tim H.; Kellner, James R.; Knapp, Alan K.; Richardson, Andrew D.; Tcheng, David; Toomey, Michael; Vargas, Rodrigo; Voordeckers, James W.; Wagner, Tyler; Williams, John W.
2014-01-01
The emergence of macrosystems ecology (MSE), which focuses on regional- to continental-scale ecological patterns and processes, builds upon a history of long-term and broad-scale studies in ecology. Scientists face the difficulty of integrating the many elements that make up macrosystems, which consist of hierarchical processes at interacting spatial and temporal scales. Researchers must also identify the most relevant scales and variables to be considered, the required data resources, and the appropriate study design to provide the proper inferences. The large volumes of multi-thematic data often associated with macrosystem studies typically require validation, standardization, and assimilation. Finally, analytical approaches need to describe how cross-scale and hierarchical dynamics and interactions relate to macroscale phenomena. Here, we elaborate on some key methodological challenges of MSE research and discuss existing and novel approaches to meet them.
Optical properties of electrohydrodynamic convection patterns: rigorous and approximate methods.
Bohley, Christian; Heuer, Jana; Stannarius, Ralf
2005-12-01
We analyze the optical behavior of two-dimensionally periodic structures that occur in electrohydrodynamic convection (EHC) patterns in nematic sandwich cells. These structures are anisotropic, locally uniaxial, and periodic on the scale of micrometers. For the first time, the optics of these structures is investigated with a rigorous method. The method used for the description of the electromagnetic waves interacting with EHC director patterns is a numerical approach that discretizes directly the Maxwell equations. It works as a space-grid-time-domain method and computes electric and magnetic fields in time steps. This so-called finite-difference-time-domain (FDTD) method is able to generate the fields with arbitrary accuracy. We compare this rigorous method with earlier attempts based on ray-tracing and analytical approximations. Results of optical studies of EHC structures made earlier based on ray-tracing methods are confirmed for thin cells, when the spatial periods of the pattern are sufficiently large. For the treatment of small-scale convection structures, the FDTD method is without alternatives.
The structure and large-scale organization of extreme cold waves over the conterminous United States
NASA Astrophysics Data System (ADS)
Xie, Zuowei; Black, Robert X.; Deng, Yi
2017-12-01
Extreme cold waves (ECWs) occurring over the conterminous United States (US) are studied through a systematic identification and documentation of their local synoptic structures, associated large-scale meteorological patterns (LMPs), and forcing mechanisms external to the US. Focusing on the boreal cool season (November-March) for 1950‒2005, a hierarchical cluster analysis identifies three ECW patterns, respectively characterized by cold surface air temperature anomalies over the upper midwest (UM), northwestern (NW), and southeastern (SE) US. Locally, ECWs are synoptically organized by anomalous high pressure and northerly flow. At larger scales, the UM LMP features a zonal dipole in the mid-tropospheric height field over North America, while the NW and SE LMPs each include a zonal wave train extending from the North Pacific across North America into the North Atlantic. The Community Climate System Model version 4 (CCSM4) in general simulates the three ECW patterns quite well and successfully reproduces the observed enhancements in the frequency of their associated LMPs. La Niña and the cool phase of the Pacific Decadal Oscillation (PDO) favor the occurrence of NW ECWs, while the warm PDO phase, low Arctic sea ice extent and high Eurasian snow cover extent (SCE) are associated with elevated SE-ECW frequency. Additionally, high Eurasian SCE is linked to increases in the occurrence likelihood of UM ECWs.
Albert, David M; Schoen, John W
2013-08-01
The forests of southeastern Alaska remain largely intact and contain a substantial proportion of Earth's remaining old-growth temperate rainforest. Nonetheless, industrial-scale logging has occurred since the 1950s within a relatively narrow range of forest types that has never been quantified at a regional scale. We analyzed historical patterns of logging from 1954 through 2004 and compared the relative rates of change among forest types, landform associations, and biogeographic provinces. We found a consistent pattern of disproportionate logging at multiple scales, including large-tree stands and landscapes with contiguous productive old-growth forests. The highest rates of change were among landform associations and biogeographic provinces that originally contained the largest concentrations of productive old growth (i.e., timber volume >46.6 m³/ha). Although only 11.9% of productive old-growth forests have been logged region wide, large-tree stands have been reduced by at least 28.1%, karst forests by 37%, and landscapes with the highest volume of contiguous old growth by 66.5%. Within some island biogeographic provinces, loss of rare forest types may place local viability of species dependent on old growth at risk of extirpation. Examination of historical patterns of change among ecological forest types can facilitate planning for conservation of biodiversity and sustainable use of forest resources. © 2013 Society for Conservation Biology.
Estimation of Fractional Plant Lifeform Cover Using Landsat and Airborne LiDAR/hyperspectral Data
NASA Astrophysics Data System (ADS)
Parra, A. S.; Xu, Q.; Dilts, T.; Weisberg, P.; Greenberg, J. A.
2017-12-01
Land-cover change has generally been understood as the result of local, landscape or regional-scale processes with most studies focusing on case-study landscapes or smaller regions. However, as we observe similar types of land-cover change occurring across different biomes worldwide, it becomes clear that global-scale processes such as climate change and CO2 fertilization, in interaction with local influences, are underlying drivers in land-cover change patterns. Prior studies on global land-cover change may not have had a suitable spatial, temporal and thematic resolution for allowing the identification of such patterns. Furthermore, the lack of globally consistent spatial data products also constitutes a limiting factor in evaluating both proximate and ultimate causes of land-cover change. In this study, we derived a global model for broadleaf tree, needleleaf tree, shrub, herbaceous, and "other" fractional cover using Landsat imagery. Combined LiDAR/hyperspectral data sets were used for calibration and validation of the Landsat-derived products. Spatially explicit uncertainties were also created as part of the data products. Our results highlight the potential for large-scale studies that model local and global influences on land-cover transition types and rates at fine thematic, spatial, and temporal resolutions. These spatial data products are relevant for identifying patterns in land-cover change due to underlying global-scale processes and can provide valuable insights into climatic and land-use factors determining vegetation distributions.
Pattern Informatics Approach to Earthquake Forecasting in 3D
NASA Astrophysics Data System (ADS)
Toya, Y.; Tiampo, K. F.; Rundle, J. B.; Chen, C.; Li, H.; Klein, W.
2009-05-01
Natural seismicity is correlated across multiple spatial and temporal scales, but correlations in seismicity prior to a large earthquake are locally subtle (e.g. seismic quiescence) and often prominent in broad scale (e.g., seismic activation), resulting in local and regional seismicity patterns, e.g. a Mogi's donut. Recognizing that patterns in seismicity rate are reflecting the regional dynamics of the directly unobservable crustal stresses, the Pattern Informatics (PI) approach was introduced by Tiampo et al. in 2002 [Europhys. Lett., 60 (3), 481-487,] Rundle et al., 2002 [PNAS 99, suppl. 1, 2514-2521.] In this study, we expand the PI approach to forecasting earthquakes into the third, or vertical dimension, and illustrate its further improvement in the forecasting performance through case studies of both natural and synthetic data. The PI characterizes rapidly evolving spatio-temporal seismicity patterns as angular drifts of a unit state vector in a high dimensional correlation space, and systematically identifies anomalous shifts in seismic activity with respect to the regional background. 3D PI analysis is particularly advantageous over 2D analysis in resolving vertically overlapped seismicity anomalies in a highly complex tectonic environment. Case studies will help to illustrate some important properties of the PI forecasting tool. [Submitted to: Concurrency and Computation: Practice and Experience, Wiley, Special Issue: ACES2008.
Gautrot, Julien E.; Trappmann, Britta; Oceguera-Yanez, Fabian; Connelly, John; He, Ximin; Watt, Fiona M.; Huck, Wilhelm T.S.
2010-01-01
The control of the cell microenvironment on model patterned substrates allows the systematic study of cell biology in well defined conditions, potentially using automated systems. The extreme protein resistance of poly(oligo(ethylene glycol methacrylate)) (POEGMA) brushes is exploited to achieve high fidelity patterning of single cells. These coatings can be patterned by soft lithography on large areas (a microscope slide) and scale (substrates were typically prepared in batches of 200). The present protocol relies on the adsorption of extra-cellular matrix (ECM) proteins on unprotected areas using simple incubation and washing steps. The stability of POEGMA brushes, as examined via ellipsometry and SPR, is found to be excellent, both during storage and cell culture. The impact of substrate treatment, brush thickness and incubation protocol on ECM deposition, both for ultra-thin gold and glass substrates, is investigated via fluorescence microscopy and AFM. Optimised conditions result in high quality ECM patterns at the micron scale, even on glass substrates, that are suitable for controlling cell spreading and polarisation. These patterns are compatible with state-of-the-art technologies (fluorescence microscopy, FRET) used for live cell imaging. This technology, combined with single cell analysis methods, provides a platform for exploring the mechanisms that regulate cell behaviour. PMID:20347135
Brennan, Angela K.; Cross, Paul C.; Higgs, Megan D.; Edwards, W. Henry; Scurlock, Brandon M.; Creel, Scott
2014-01-01
Understanding how animal density is related to pathogen transmission is important to develop effective disease control strategies, but requires measuring density at a scale relevant to transmission. However, this is not straightforward or well-studied among large mammals with group sizes that range several orders of magnitude or aggregation patterns that vary across space and time. To address this issue, we examined spatial variation in elk (Cervus canadensis) aggregation patterns and brucellosis across 10 regions in the Greater Yellowstone Area where previous studies suggest the disease may be increasing. We hypothesized that rates of increasing brucellosis would be better related to the frequency of large groups than mean group size or population density, but we examined whether other measures of density would also explain rising seroprevalence. To do this, we measured wintering elk density and group size across multiple spatial and temporal scales from monthly aerial surveys. We used Bayesian hierarchical models and 20 years of serologic data to estimate rates of increase in brucellosis within the 10 regions, and to examine the linear relationships between these estimated rates of increase and multiple measures of aggregation. Brucellosis seroprevalence increased over time in eight regions (one region showed an estimated increase from 0.015 in 1991 to 0.26 in 2011), and these rates of increase were positively related to all measures of aggregation. The relationships were weaker when the analysis was restricted to areas where brucellosis was present for at least two years, potentially because aggregation was related to disease-establishment within a population. Our findings suggest that (1) group size did not explain brucellosis increases any better than population density and (2) some elk populations may have high densities with small groups or lower densities with large groups, but brucellosis is likely to increase in either scenario. In this case, any one control method such as reducing population density or group size may not be sufficient to reduce transmission. This study highlights the importance of examining the density-transmission relationship at multiple scales and across populations before broadly applying disease control strategies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kraus, Michaela; Nickeler, Dieter H.; Liimets, Tiina
The Galactic object MWC 137 has been suggested to belong to the group of B[e] supergiants. However, with its large-scale optical bipolar ring nebula and high-velocity jet and knots, it is a rather atypical representative of this class. We performed multiwavelength observations spreading from the optical to the radio regimes. Based on optical imaging and long-slit spectroscopic data, we found that the northern parts of the large-scale nebula are predominantly blueshifted, while the southern regions appear mostly redshifted. We developed a geometrical model consisting of two double cones. Although various observational features can be approximated with such a scenario, themore » observed velocity pattern is more complex. Using near-infrared integral-field unit spectroscopy, we studied the hot molecular gas in the vicinity of the star. The emission from the hot CO gas arises in a small-scale disk revolving around the star on Keplerian orbits. Although the disk itself cannot be spatially resolved, its emission is reflected by the dust arranged in arc-like structures and the clumps surrounding MWC 137 on small scales. In the radio regime, we mapped the cold molecular gas in the outskirts of the optical nebula. We found that large amounts of cool molecular gas and warm dust embrace the optical nebula in the east, south, and west. No cold gas or dust was detected in the north and northwestern regions. Despite the new insights into the nebula kinematics gained from our studies, the real formation scenario of the large-scale nebula remains an open issue.« less
NASA Astrophysics Data System (ADS)
Pierre Auger Collaboration; Abreu, P.; Aglietta, M.; Ahn, E. J.; Albuquerque, I. F. M.; Allard, D.; Allekotte, I.; Allen, J.; Allison, P.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Antičić, T.; Anzalone, A.; Aramo, C.; Arganda, E.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Bäcker, T.; Balzer, M.; Barber, K. B.; Barbosa, A. F.; Bardenet, R.; Barroso, S. L. C.; Baughman, B.; Bäuml, J.; Beatty, J. J.; Becker, B. R.; Becker, K. H.; Bellétoile, A.; Bellido, J. A.; BenZvi, S.; Berat, C.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanco, F.; Blanco, M.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brogueira, P.; Brown, W. C.; Bruijn, R.; Buchholz, P.; Bueno, A.; Burton, R. E.; Caballero-Mora, K. S.; Caramete, L.; Caruso, R.; Castellina, A.; Catalano, O.; Cataldi, G.; Cazon, L.; Cester, R.; Chauvin, J.; Cheng, S. H.; Chiavassa, A.; Chinellato, J. A.; Chou, A.; Chudoba, J.; Clay, R. W.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cook, H.; Cooper, M. J.; Coppens, J.; Cordier, A.; Coutu, S.; Covault, C. E.; Creusot, A.; Criss, A.; Cronin, J.; Curutiu, A.; Dagoret-Campagne, S.; Dallier, R.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; De Donato, C.; de Jong, S. J.; De La Vega, G.; de Mello Junior, W. J. M.; de Mello Neto, J. R. T.; De Mitri, I.; de Souza, V.; de Vries, K. D.; Decerprit, G.; del Peral, L.; del Río, M.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Diaz, J. C.; Díaz Castro, M. L.; Diep, P. N.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dong, P. N.; Dorofeev, A.; dos Anjos, J. C.; Dova, M. T.; D'Urso, D.; Dutan, I.; Ebr, J.; Engel, R.; Erdmann, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Facal San Luis, P.; Fajardo Tapia, I.; Falcke, H.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Ferrero, A.; Fick, B.; Filevich, A.; Filipčič, A.; Fliescher, S.; Fracchiolla, C. E.; Fraenkel, E. D.; Fröhlich, U.; Fuchs, B.; Gaior, R.; Gamarra, R. F.; Gambetta, S.; García, B.; García Gámez, D.; Garcia-Pinto, D.; Gascon, A.; Gemmeke, H.; Gesterling, K.; Ghia, P. L.; Giaccari, U.; Giller, M.; Glass, H.; Gold, M. S.; Golup, G.; Gomez Albarracin, F.; Gómez Berisso, M.; Gonçalves, P.; Gonzalez, D.; Gonzalez, J. G.; Gookin, B.; Góra, D.; Gorgi, A.; Gouffon, P.; Gozzini, S. R.; Grashorn, E.; Grebe, S.; Griffith, N.; Grigat, M.; Grillo, A. F.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Guzman, A.; Hague, J. D.; Hansen, P.; Harari, D.; Harmsma, S.; Harrison, T. A.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Herve, A. E.; Hojvat, C.; Hollon, N.; Holmes, V. C.; Homola, P.; Hörandel, J. R.; Horneffer, A.; Horvath, P.; Hrabovský, M.; Huege, T.; Insolia, A.; Ionita, F.; Italiano, A.; Jarne, C.; Jiraskova, S.; Josebachuili, M.; Kadija, K.; Kampert, K. H.; Karhan, P.; Kasper, P.; Kégl, B.; Keilhauer, B.; Keivani, A.; Kelley, J. L.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Knapp, J.; Koang, D.-H.; Kotera, K.; Krohm, N.; Krömer, O.; Kruppke-Hansen, D.; Kuehn, F.; Kuempel, D.; Kulbartz, J. K.; Kunka, N.; La Rosa, G.; Lachaud, C.; Lautridou, P.; Leão, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Lemiere, A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; López, R.; Lopez Agüera, A.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Lyberis, H.; Maccarone, M. C.; Macolino, C.; Maldera, S.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, J.; Marin, V.; Maris, I. C.; Marquez Falcon, H. R.; Marsella, G.; Martello, D.; Martin, L.; Martinez, H.; Martínez Bravo, O.; Mathes, H. J.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurizio, D.; Mazur, P. O.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menichetti, E.; Menshikov, A.; Mertsch, P.; Meurer, C.; Mićanović, S.; Micheletti, M. I.; Miller, W.; Miramonti, L.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morales, B.; Morello, C.; Moreno, E.; Moreno, J. C.; Morris, C.; Mostafá, M.; Moura, C. A.; Mueller, S.; Muller, M. A.; Müller, G.; Münchmeyer, M.; Mussa, R.; Navarra, G.; Navarro, J. L.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Nhung, P. T.; Niemietz, L.; Nierstenhoefer, N.; Nitz, D.; Nosek, D.; Nožka, L.; Nyklicek, M.; Oehlschläger, J.; Olinto, A.; Oliva, P.; Olmos-Gilbaja, V. M.; Ortiz, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Parente, G.; Parizot, E.; Parra, A.; Parsons, R. D.; Pastor, S.; Paul, T.; Pech, M.; Pękala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Pesce, R.; Petermann, E.; Petrera, S.; Petrinca, P.; Petrolini, A.; Petrov, Y.; Petrovic, J.; Pfendner, C.; Phan, N.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Ponce, V. H.; Pontz, M.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rivera, H.; Rizi, V.; Roberts, J.; Robledo, C.; Rodrigues de Carvalho, W.; Rodriguez, G.; Rodriguez Martino, J.; Rodriguez Rojo, J.; Rodriguez-Cabo, I.; Rodríguez-Frías, M. D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Rouillé-d'Orfeuil, B.; Roulet, E.; Rovero, A. C.; Rühle, C.; Salamida, F.; Salazar, H.; Salesa Greus, F.; Salina, G.; Sánchez, F.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarkar, S.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, A.; Schmidt, F.; Scholten, O.; Schoorlemmer, H.; Schovancova, J.; Schovánek, P.; Schröder, F.; Schulte, S.; Schuster, D.; Sciutto, S. J.; Scuderi, M.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Silva Lopez, H. H.; Śacute; Smiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Spinka, H.; Squartini, R.; Stanic, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Strazzeri, E.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Šuša, T.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Tamashiro, A.; Tapia, A.; Tartare, M.; Taşąu, O.; Tavera Ruiz, C. G.; Tcaciuc, R.; Tegolo, D.; Thao, N. T.; Thomas, D.; Tiffenberg, J.; Timmermans, C.; Tiwari, D. K.; Tkaczyk, W.; Todero Peixoto, C. J.; Tomé, B.; Tonachini, A.; Travnicek, P.; Tridapalli, D. B.; Tristram, G.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van den Berg, A. M.; Varela, E.; Vargas Cárdenas, B.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Videla, M.; Villaseñor, L.; Wahlberg, H.; Wahrlich, P.; Wainberg, O.; Walz, D.; Warner, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Westerhoff, S.; Whelan, B. J.; Wieczorek, G.; Wiencke, L.; Wilczyńska, B.; Wilczyński, H.; Will, M.; Williams, C.; Winchen, T.; Winnick, M. G.; Wommer, M.; Wundheiler, B.; Yamamoto, T.; Yapici, T.; Younk, P.; Yuan, G.; Yushkov, A.; Zamorano, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Zimbres Silva, M.; Ziolkowski, M.
2011-11-01
We present a comprehensive study of the influence of the geomagnetic field on the energy estimation of extensive air showers with a zenith angle smaller than 60°, detected at the Pierre Auger Observatory. The geomagnetic field induces an azimuthal modulation of the estimated energy of cosmic rays up to the ~ 2% level at large zenith angles. We present a method to account for this modulation of the reconstructed energy. We analyse the effect of the modulation on large scale anisotropy searches in the arrival direction distributions of cosmic rays. At a given energy, the geomagnetic effect is shown to induce a pseudo-dipolar pattern at the percent level in the declination distribution that needs to be accounted for.
Macroecology: A Primer for Biological Oceanography
NASA Astrophysics Data System (ADS)
Li, W. K. W.
2016-02-01
Macroecology is the study of ecological patterns discerned at a spatial, temporal, or organization scale higher than that at which the focal entities interact. Such patterns are statistical or emergent manifestations arising from the ensemble of component entities. Although macroecology is a neologism largely based in terrestrial and avian ecology, macroscopic patterns have long been recognised in biological oceanography. Familiar examples include Redfield elemental stoichiometry, Elton trophic pyramids, Sheldon biomass spectrum, and Margalef life-forms mandala. Macroecological regularities can often be found along various continua, such as along body size in power-law scaling or along habitat temperature in metabolic theory. Uniquely in oceanography, a partition of the world ocean continuum into Longhurst biogeochemical provinces provides a spatial organization well-suited for macroecological investigations. In this rational discrete approach, fundamental processes in physical and biological oceanography that differentiate a set of non-overlapping ocean regions also appear to shape the macroecological structure of phytoplankton communities.
NASA Astrophysics Data System (ADS)
Kokkalas, S.; Jones, R. R.; Long, J. J.; Zampos, M.; Wilkinson, M. W.; Gilment, S.
2017-12-01
The formation of folds and their associated fracture patterns plays an important role in controlling the migration and concentration of fluids within the upper crust. Prediction of fracture patterns from various fold shapes and kinematics still remains poorly understood in terms of spatial and temporal distribution of fracture sets. Thus, a more detailed field-based multi scale approach is required to better constrain 3D models of fold-fracture relationships, which are critical for reservoir characterization studies. In order to generate reservoir-scale fracture models representative fracture properties across a wider range of scales are needed. For this reason we applied modern geospatial technologies, including terrestrial LiDAR, photogrammetry and satellite images in the asymmetric, east verging, four-way closure Jebel Hafit anticline, in the eastern part of the United Arab Emirates. The excellent surface outcrops allowed the rapid acquisition of extensive areas of fracture data from both limbs and fold hinge area of the anticline, even from large areas of steep exposure that are practically inaccessible on foot. The digital outcrops provide longer 1D transects, and 2D or 3D surface datasets and give more robust data, particularly for fracture heights, lengths, spacing, clustering, termination and connectivity. The fracture patterns across the folded structure are more complex than those predicted from conceptual models and geomechanical fracture modeling. Mechanical layering, pre-existing structures and sedimentation during fold growth seem to exert a critical influence in the development of fracture systems within Jebel Hafit anticline and directly affect fracture orientations, spacing/intensity, segmentation and connectivity. Seismic and borehole data provide additional constraints on the sub-surface fold geometry and existence of large-scale thrusting in the core of the anticline. The complexity of the relationship between fold geometry and fracture intensity is presented and the implications for prediction of fracture networks in naturally fractured reservoirs are discussed.
Large-scale dark diversity estimates: new perspectives with combined methods.
Ronk, Argo; de Bello, Francesco; Fibich, Pavel; Pärtel, Meelis
2016-09-01
Large-scale biodiversity studies can be more informative if observed diversity in a study site is accompanied by dark diversity, the set of absent although ecologically suitable species. Dark diversity methodology is still being developed and a comparison of different approaches is needed. We used plant data at two different scales (European and seven large regions) and compared dark diversity estimates from two mathematical methods: species co-occurrence (SCO) and species distribution modeling (SDM). We used plant distribution data from the Atlas Florae Europaeae (50 × 50 km grid cells) and seven different European regions (10 × 10 km grid cells). Dark diversity was estimated by SCO and SDM for both datasets. We examined the relationship between the dark diversity sizes (type II regression) and the overlap in species composition (overlap coefficient). We tested the overlap probability according to the hypergeometric distribution. We combined the estimates of the two methods to determine consensus dark diversity and composite dark diversity. We tested whether dark diversity and completeness of site diversity (log ratio of observed and dark diversity) are related to various natural and anthropogenic factors differently than simple observed diversity. Both methods provided similar dark diversity sizes and distribution patterns; dark diversity is greater in southern Europe. The regression line, however, deviated from a 1:1 relationship. The species composition overlap of two methods was about 75%, which is much greater than expected by chance. Both consensus and composite dark diversity estimates showed similar distribution patterns. Both dark diversity and completeness measures exhibit relationships to natural and anthropogenic factors different than those exhibited by observed richness. In summary, dark diversity revealed new biodiversity patterns which were not evident when only observed diversity was examined. A new perspective in dark diversity studies can incorporate a combination of methods.
Large-scale protein/antibody patterning with limiting unspecific adsorption
NASA Astrophysics Data System (ADS)
Fedorenko, Viktoriia; Bechelany, Mikhael; Janot, Jean-Marc; Smyntyna, Valentyn; Balme, Sebastien
2017-10-01
A simple synthetic route based on nanosphere lithography has been developed in order to design a large-scale nanoarray for specific control of protein anchoring. This technique based on two-dimensional (2D) colloidal crystals composed of polystyrene spheres allows the easy and inexpensive fabrication of large arrays (up to several centimeters) by reducing the cost. A silicon wafer coated with a thin adhesion layer of chromium (15 nm) and a layer of gold (50 nm) is used as a substrate. PS spheres are deposited on the gold surface using the floating-transferring technique. The PS spheres were then functionalized with PEG-biotin and the defects by self-assembly monolayer (SAM) PEG to prevent unspecific adsorption. Using epifluorescence microscopy, we show that after immersion of sample on target protein (avidin and anti-avidin) solution, the latter are specifically located on polystyrene spheres. Thus, these results are meaningful for exploration of devices based on a large-scale nanoarray of PS spheres and can be used for detection of target proteins or simply to pattern a surface with specific proteins.
NASA Astrophysics Data System (ADS)
Piazzi, L.; Bonaviri, C.; Castelli, A.; Ceccherelli, G.; Costa, G.; Curini-Galletti, M.; Langeneck, J.; Manconi, R.; Montefalcone, M.; Pipitone, C.; Rosso, A.; Pinna, S.
2018-07-01
In the Mediterranean Sea, Cystoseira species are the most important canopy-forming algae in shallow rocky bottoms, hosting high biodiverse sessile and mobile communities. A large-scale study has been carried out to investigate the structure of the Cystoseira-dominated assemblages at different spatial scales and to test the hypotheses that alpha and beta diversity of the assemblages, the abundance and the structure of epiphytic macroalgae, epilithic macroalgae, sessile macroinvertebrates and mobile macroinvertebrates associated to Cystoseira beds changed among scales. A hierarchical sampling design in a total of five sites across the Mediterranean Sea (Croatia, Montenegro, Sardinia, Tuscany and Balearic Islands) was used. A total of 597 taxa associated to Cystoseira beds were identified with a mean number per sample ranging between 141.1 ± 6.6 (Tuscany) and 173.9 ± 8.5(Sardinia). A high variability at small (among samples) and large (among sites) scale was generally highlighted, but the studied assemblages showed different patterns of spatial variability. The relative importance of the different scales of spatial variability should be considered to optimize sampling designs and propose monitoring plans of this habitat.
How large is large enough for insects? Forest fragmentation effects at three spatial scales
NASA Astrophysics Data System (ADS)
Ribas, C. R.; Sobrinho, T. G.; Schoereder, J. H.; Sperber, C. F.; Lopes-Andrade, C.; Soares, S. M.
2005-02-01
Several mechanisms may lead to species loss in fragmented habitats, such as edge and shape effects, loss of habitat and heterogeneity. Ants and crickets were sampled in 18 forest remnants in south-eastern Brazil, to test whether a group of small remnants maintains the same insect species richness as similar sized large remnants, at three spatial scales. We tested hypotheses about alpha and gamma diversity to explain the results. Groups of remnants conserve as many species of ants as a single one. Crickets, however, showed a scale-dependent pattern: at small scales there was no significant or important difference between groups of remnants and a single one, while at the larger scale the group of remnants maintained more species. Alpha diversity (local species richness) was similar in a group of remnants and in a single one, at the three spatial scales, both for ants and crickets. Gamma diversity, however, varied both with taxa (ants and crickets) and spatial scale, which may be linked to insect mobility, remnant isolation, and habitat heterogeneity. Biological characteristics of the organisms involved have to be considered when studying fragmentation effects, as well as spatial scale at which it operates. Mobility of the organisms influences fragmentation effects, and consequently conservation strategies.
Baumann, Zofia; Mason, Robert P.; Conover, David O.; Balcom, Prentiss; Chen, Celia Y.; Buckman, Kate L.; Fisher, Nicholas S.; Baumann, Hannes
2016-01-01
Human exposure to the neurotoxic methylmercury (MeHg) occurs primarily via the consumption of marine fish, but the processes underlying large-scale spatial variations in fish MeHg concentrations [MeHg], which influence human exposure, are not sufficiently understood. We used the Atlantic silverside (Menidia menidia), an extensively studied model species and important forage fish, to examine latitudinal patterns in total Hg [Hg] and [MeHg]. Both [Hg] and [MeHg] significantly increased with latitude (0.014 and 0.048 μg MeHg g−1 dw per degree of latitude in juveniles and adults, respectively). Four known latitudinal trends in silverside traits help explain these patterns: latitudinal increase in MeHg assimilation efficiency, latitudinal decrease in MeHg efflux, latitudinal increase in weight loss due to longer and more severe winters, and latitudinal increase in food consumption as an adaptation to decreasing length of the growing season. Given the absence of a latitudinal pattern in particulate MeHg, a diet proxy for zooplanktivorous fish, we conclude that large-scale spatial variation in growth is the primary control of Hg bioaccumulation in this and potentially other fish species. PMID:28701819
Fast and fuel efficient? Optimal use of wind by flying albatrosses.
Weimerskirch, H; Guionnet, T; Martin, J; Shaffer, S A; Costa, D P
2000-09-22
The influence of wind patterns on behaviour and effort of free-ranging male wandering albatrosses (Diomedea exulans) was studied with miniaturized external heart-rate recorders in conjunction with satellite transmitters and activity recorders. Heart rate was used as an instantaneous index of energy expenditure. When cruising with favourable tail or side winds, wandering albatrosses can achieve high flight speeds while expending little more energy than birds resting on land. In contrast, heart rate increases concomitantly with increasing head winds, and flight speeds decrease. Our results show that effort is greatest when albatrosses take off from or land on the water. On a larger scale, we show that in order for birds to have the highest probability of experiencing favourable winds, wandering albatrosses use predictable weather systems to engage in a stereotypical flight pattern of large looping tracks. When heading north, albatrosses fly in anticlockwise loops, and to the south, movements are in a clockwise direction. Thus, the capacity to integrate instantaneous eco-physiological measures with records of large-scale flight and wind patterns allows us to understand better the complex interplay between the evolution of morphological, physiological and behavioural adaptations of albatrosses in the windiest place on earth.
Geometry-dependent viscosity reduction in sheared active fluids
NASA Astrophysics Data System (ADS)
Słomka, Jonasz; Dunkel, Jörn
2017-04-01
We investigate flow pattern formation and viscosity reduction mechanisms in active fluids by studying a generalized Navier-Stokes model that captures the experimentally observed bulk vortex dynamics in microbial suspensions. We present exact analytical solutions including stress-free vortex lattices and introduce a computational framework that allows the efficient treatment of higher-order shear boundary conditions. Large-scale parameter scans identify the conditions for spontaneous flow symmetry breaking, geometry-dependent viscosity reduction, and negative-viscosity states amenable to energy harvesting in confined suspensions. The theory uses only generic assumptions about the symmetries and long-wavelength structure of active stress tensors, suggesting that inviscid phases may be achievable in a broad class of nonequilibrium fluids by tuning confinement geometry and pattern scale selection.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michaud, G.; Bergeron, P.; Wesemael, F.
The abundance anomalies generated by diffusion in the envelopes of hot, hydrogen-rich subdwarfs are studied. It is shown that unimpeded diffusion cannot lead to the large silicon underabundance observed in those stars at effective temperatures above 30,000 K. Calculations of diffusion of heavy elements in the presence of mass loss are also performed. For a mass-loss rate of 2.5 x 10 to the -15th solar masses/year, the observed abundance patterns of C, N, and Si are reproduced on a time scale of about 100,000 yr. Lower mass-loss rates would necessitate longer time scales. The pattern of abundance anomalies may eventuallymore » be used to constrain both the mass-loss rate and the stellar lifetime in the sdB evolutionary phase. 12 references.« less
Badgley, Brian D; Ferguson, John; Vanden Heuvel, Amy; Kleinheinz, Gregory T; McDermott, Colleen M; Sandrin, Todd R; Kinzelman, Julie; Junion, Emily A; Byappanahalli, Muruleedhara N; Whitman, Richard L; Sadowsky, Michael J
2011-01-01
High concentrations of Escherichia coli in mats of Cladophora in the Great Lakes have raised concern over the continued use of this bacterium as an indicator of microbial water quality. Determining the impacts of these environmentally abundant E. coli, however, necessitates a better understanding of their ecology. In this study, the population structure of 4285 Cladophora-borne E. coli isolates, obtained over multiple three day periods from Lake Michigan Cladophora mats in 2007-2009, was examined by using DNA fingerprint analyses. In contrast to previous studies that have been done using isolates from attached Cladophora obtained over large time scales and distances, the extensive sampling done here on free-floating mats over successive days at multiple sites provided a large dataset that allowed for a detailed examination of changes in population structure over a wide range of spatial and temporal scales. While Cladophora-borne E. coli populations were highly diverse and consisted of many unique isolates, multiple clonal groups were also present and accounted for approximately 33% of all isolates examined. Patterns in population structure were also evident. At the broadest scales, E. coli populations showed some temporal clustering when examined by year, but did not show good spatial distinction among sites. E. coli population structure also showed significant patterns at much finer temporal scales. Populations were distinct on an individual mat basis at a given site, and on individual days within a single mat. Results of these studies indicate that Cladophora-borne E. coli populations consist of a mixture of stable, and possibly naturalized, strains that persist during the life of the mat, and more unique, transient strains that can change over rapid time scales. It is clear that further study of microbial processes at fine spatial and temporal scales is needed, and that caution must be taken when interpolating short term microbial dynamics from results obtained from weekly or monthly samples. Copyright © 2010 Elsevier Ltd. All rights reserved.
Badgley, B.D.; Ferguson, J.; Heuvel, A.V.; Kleinheinz, G.T.; McDermott, C.M.; Sandrin, T.R.; Kinzelman, J.; Junion, E.A.; Byappanahalli, M.N.; Whitman, R.L.; Sadowsky, M.J.
2011-01-01
High concentrations of Escherichia coli in mats of Cladophora in the Great Lakes have raised concern over the continued use of this bacterium as an indicator of microbial water quality. Determining the impacts of these environmentally abundant E. coli, however, necessitates a better understanding of their ecology. In this study, the population structure of 4285 Cladophora-borne E. coli isolates, obtained over multiple three day periods from Lake Michigan Cladophora mats in 2007-2009, was examined by using DNA fingerprint analyses. In contrast to previous studies that have been done using isolates from attached Cladophora obtained over large time scales and distances, the extensive sampling done here on free-floating mats over successive days at multiple sites provided a large dataset that allowed for a detailed examination of changes in population structure over a wide range of spatial and temporal scales. While Cladophora-borne E. coli populations were highly diverse and consisted of many unique isolates, multiple clonal groups were also present and accounted for approximately 33% of all isolates examined. Patterns in population structure were also evident. At the broadest scales, E. coli populations showed some temporal clustering when examined by year, but did not show good spatial distinction among sites. E. coli population structure also showed significant patterns at much finer temporal scales. Populations were distinct on an individual mat basis at a given site, and on individual days within a single mat. Results of these studies indicate that Cladophora-borne E. coli populations consist of a mixture of stable, and possibly naturalized, strains that persist during the life of the mat, and more unique, transient strains that can change over rapid time scales. It is clear that further study of microbial processes at fine spatial and temporal scales is needed, and that caution must be taken when interpolating short term microbial dynamics from results obtained from weekly or monthly samples.
The Genetics of Mexico Recapitulates Native American Substructure and Affects Biomedical Traits
Moreno-Estrada, Andrés; Gignoux, Christopher R.; Fernández-López, Juan Carlos; Zakharia, Fouad; Sikora, Martin; Contreras, Alejandra V.; Acuña-Alonzo, Victor; Sandoval, Karla; Eng, Celeste; Romero-Hidalgo, Sandra; Ortiz-Tello, Patricia; Robles, Victoria; Kenny, Eimear E.; Nuño-Arana, Ismael; Barquera-Lozano, Rodrigo; Macín-Pérez, Gastón; Granados-Arriola, Julio; Huntsman, Scott; Galanter, Joshua M.; Via, Marc; Ford, Jean G.; Chapela, Rocío; Rodriguez-Cintron, William; Rodríguez-Santana, Jose R.; Romieu, Isabelle; Sienra-Monge, Juan José; Navarro, Blanca del Rio; London, Stephanie J.; Ruiz-Linares, Andrés; Garcia-Herrera, Rodrigo; Estrada, Karol; Hidalgo-Miranda, Alfredo; Jimenez-Sanchez, Gerardo; Carnevale, Alessandra; Soberón, Xavier; Canizales-Quinteros, Samuel; Rangel-Villalobos, Héctor; Silva-Zolezzi, Irma; Burchard, Esteban Gonzalez; Bustamante, Carlos D.
2014-01-01
Mexico harbors great cultural and ethnic diversity, yet fine-scale patterns of human genome-wide variation from this region remain largely uncharacterized. We studied genomic variation within Mexico from over 1,000 individuals representing 20 indigenous and 11 mestizo populations. We found striking genetic stratification among indigenous populations within Mexico at varying degrees of geographic isolation. Some groups were as differentiated as Europeans are from East Asians. Pre-Columbian genetic substructure is recapitulated in the indigenous ancestry of admixed mestizo individuals across the country. Furthermore, two independently phenotyped cohorts of Mexicans and Mexican Americans showed a significant association between sub-continental ancestry and lung function. Thus, accounting for fine-scale ancestry patterns is critical for medical and population genetic studies within Mexico, in Mexican-descent populations, and likely in many other populations worldwide. PMID:24926019
Choice with frequently changing food rates and food ratios.
Baum, William M; Davison, Michael
2014-03-01
In studies of operant choice, when one schedule of a concurrent pair is varied while the other is held constant, the constancy of the constant schedule may exert discriminative control over performance. In our earlier experiments, schedules varied reciprocally across components within sessions, so that while food ratio varied food rate remained constant. In the present experiment, we held one variable-interval (VI) schedule constant while varying the concurrent VI schedule within sessions. We studied five conditions, each with a different constant left VI schedule. On the right key, seven different VI schedules were presented in seven different unsignaled components. We analyzed performances at several different time scales. At the longest time scale, across conditions, behavior ratios varied with food ratios as would be expected from the generalized matching law. At shorter time scales, effects due to holding the left VI constant became more and more apparent, the shorter the time scale. In choice relations across components, preference for the left key leveled off as the right key became leaner. Interfood choice approximated strict matching for the varied right key, whereas interfood choice hardly varied at all for the constant left key. At the shortest time scale, visit patterns differed for the left and right keys. Much evidence indicated the development of a fix-and-sample pattern. In sum, the procedural difference made a large difference to performance, except for choice at the longest time scale and the fix-and-sample pattern at the shortest time scale. © Society for the Experimental Analysis of Behavior.
NASA Astrophysics Data System (ADS)
Bridel-Bertomeu, Thibault; Gicquel, L. Y. M.; Staffelbach, G.
2017-06-01
Rotating cavity flows are essential components of industrial applications but their dynamics are still not fully understood when it comes to the relation between the fluid organization and monitored pressure fluctuations. From computer hard-drives to turbo-pumps of space launchers, designed devices often produce flow oscillations that can either destroy the component prematurely or produce too much noise. In such a context, large scale dynamics of high Reynolds number rotor/stator cavities need better understanding especially at the flow limit-cycle or associated statistically stationary state. In particular, the influence of curvature as well as cavity aspect ratio on the large scale organization and flow stability at a fixed rotating disc Reynolds number is fundamental. To probe such flows, wall-resolved large eddy simulation is applied to two different rotor/stator cylindrical cavities and one annular cavity. Validation of the predictions proves the method to be suited and to capture the disc boundary layer patterns reported in the literature. It is then shown that in complement to these disc boundary layer analyses, at the limit-cycle the rotating flows exhibit characteristic patterns at mid-height in the homogeneous core pointing the importance of large scale features. Indeed, dynamic modal decomposition reveals that the entire flow dynamics are driven by only a handful of atomic modes whose combination links the oscillatory patterns observed in the boundary layers as well as in the core of the cavity. These fluctuations form macro-structures, born in the unstable stator boundary layer and extending through the homogeneous inviscid core to the rotating disc boundary layer, causing its instability under some conditions. More importantly, the macro-structures significantly differ depending on the configuration pointing the need for deeper understanding of the influence of geometrical parameters as well as operating conditions.
Methods, caveats and the future of large-scale microelectrode recordings in the non-human primate
Dotson, Nicholas M.; Goodell, Baldwin; Salazar, Rodrigo F.; Hoffman, Steven J.; Gray, Charles M.
2015-01-01
Cognitive processes play out on massive brain-wide networks, which produce widely distributed patterns of activity. Capturing these activity patterns requires tools that are able to simultaneously measure activity from many distributed sites with high spatiotemporal resolution. Unfortunately, current techniques with adequate coverage do not provide the requisite spatiotemporal resolution. Large-scale microelectrode recording devices, with dozens to hundreds of microelectrodes capable of simultaneously recording from nearly as many cortical and subcortical areas, provide a potential way to minimize these tradeoffs. However, placing hundreds of microelectrodes into a behaving animal is a highly risky and technically challenging endeavor that has only been pursued by a few groups. Recording activity from multiple electrodes simultaneously also introduces several statistical and conceptual dilemmas, such as the multiple comparisons problem and the uncontrolled stimulus response problem. In this perspective article, we discuss some of the techniques that we, and others, have developed for collecting and analyzing large-scale data sets, and address the future of this emerging field. PMID:26578906
Paleoclimate diagnostics: consistent large-scale temperature responses in warm and cold climates
NASA Astrophysics Data System (ADS)
Izumi, Kenji; Bartlein, Patrick; Harrison, Sandy
2015-04-01
The CMIP5 model simulations of the large-scale temperature responses to increased raditative forcing include enhanced land-ocean contrast, stronger response at higher latitudes than in the tropics, and differential responses in warm and cool season climates to uniform forcing. Here we show that these patterns are also characteristic of CMIP5 model simulations of past climates. The differences in the responses over land as opposed to over the ocean, between high and low latitudes, and between summer and winter are remarkably consistent (proportional and nearly linear) across simulations of both cold and warm climates. Similar patterns also appear in historical observations and paleoclimatic reconstructions, implying that such responses are characteristic features of the climate system and not simple model artifacts, thereby increasing our confidence in the ability of climate models to correctly simulate different climatic states. We also show the possibility that a small set of common mechanisms control these large-scale responses of the climate system across multiple states.
Effects of the Pacific Decadal Oscillation and global warming on drought in the US Southwest
NASA Astrophysics Data System (ADS)
Grossmann, I.
2012-12-01
Droughts are among the most expensive weather related disasters in the US. In the semi-arid regions of the US Southwest, where average annual rainfall is already very low, multiyear droughts can have large economic, societal and ecological impacts. The US Southwest relies on annual precipitation maxima during winter and the North American Monsoon (NAM), both of which undergo considerable interannual variability associated with large-scale climate patterns, in particular ENSO, the Pacific Decadal Oscillation (PDO) and the Atlantic Multidecadal Oscillation (AMO). The region is also part of the subtropical belt projected to become more arid in a warming climate. These impacts have not been combined and compared with projections of long-term variations due to natural climate patterns. This study addresses this need by deriving future projections of rainfall departures for Arizona and New Mexico with the PDO and AMO and combining these with projected global warming impacts. Depending on the precipitation dataset used, the impacts for the ongoing negative PDO phase are projected to be between 1-1.6 times as large as the multi-model means projection of precipitation minus evaporation during 2020-2040 in the IPCC A1B Scenario. The projected precipitation impacts of a combined negative PDO and positive AMO phase are between 1-2 times as large as the A1B Scenario projection. The study also advances earlier work by addressing problems in detecting the effect of the PDO on precipitation. Given the different mechanisms with which the PDO affects precipitation during winter and the NAM season, precipitation impacts are here investigated on a monthly scale. The impacts of the PDO also vary with other climate patterns. This can be partly addressed by investigating precipitation departures in dependence on other patterns. It is further found that the long-term effect of the PDO can be more clearly separated from short-term variability by considering return periods of multi-year drought measures rather than return periods of simple drought measures.
On the scaling of the slip velocity in turbulent flows over superhydrophobic surfaces
NASA Astrophysics Data System (ADS)
Seo, Jongmin; Mani, Ali
2016-02-01
Superhydrophobic surfaces can significantly reduce hydrodynamic skin drag by accommodating large slip velocity near the surface due to entrapment of air bubbles within their micro-scale roughness elements. While there are many Stokes flow solutions for flows near superhydrophobic surfaces that describe the relation between effective slip length and surface geometry, such relations are not fully known in the turbulent flow limit. In this work, we present a phenomenological model for the kinematics of flow near a superhydrophobic surface with periodic post-patterns at high Reynolds numbers. The model predicts an inverse square root scaling with solid fraction, and a cube root scaling of the slip length with pattern size, which is different from the reported scaling in the Stokes flow limit. A mixed model is then proposed that recovers both Stokes flow solution and the presented scaling, respectively, in the small and large texture size limits. This model is validated using direct numerical simulations of turbulent flows over superhydrophobic posts over a wide range of texture sizes from L+ ≈ 6 to 310 and solid fractions from ϕs = 1/9 to 1/64. Our report also embarks on the extension of friction laws of turbulent wall-bounded flows to superhydrophobic surfaces. To this end, we present a review of a simplified model for the mean velocity profile, which we call the shifted-turbulent boundary layer model, and address two previous shortcomings regarding the closure and accuracy of this model. Furthermore, we address the process of homogenization of the texture effect to an effective slip length by investigating correlations between slip velocity and shear over pattern-averaged data for streamwise and spanwise directions. For L+ of up to O(10), shear stress and slip velocity are perfectly correlated and well described by a homogenized slip length consistent with Stokes flow solutions. In contrast, in the limit of large L+, the pattern-averaged shear stress and slip velocity become uncorrelated and thus the homogenized boundary condition is unable to capture the bulk behavior of the patterned surface.
Deckard, Anastasia; Anafi, Ron C.; Hogenesch, John B.; Haase, Steven B.; Harer, John
2013-01-01
Motivation: To discover and study periodic processes in biological systems, we sought to identify periodic patterns in their gene expression data. We surveyed a large number of available methods for identifying periodicity in time series data and chose representatives of different mathematical perspectives that performed well on both synthetic data and biological data. Synthetic data were used to evaluate how each algorithm responds to different curve shapes, periods, phase shifts, noise levels and sampling rates. The biological datasets we tested represent a variety of periodic processes from different organisms, including the cell cycle and metabolic cycle in Saccharomyces cerevisiae, circadian rhythms in Mus musculus and the root clock in Arabidopsis thaliana. Results: From these results, we discovered that each algorithm had different strengths. Based on our findings, we make recommendations for selecting and applying these methods depending on the nature of the data and the periodic patterns of interest. Additionally, these results can also be used to inform the design of large-scale biological rhythm experiments so that the resulting data can be used with these algorithms to detect periodic signals more effectively. Contact: anastasia.deckard@duke.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:24058056
NASA Technical Reports Server (NTRS)
Vincent, Dayton G.; Robertson, Franklin
1993-01-01
The research sponsored by this grant is a continuation and an extension of the work conducted under a previous contract, 'South Pacific Convergence Zone and Global-Scale Circulations'. In the prior work, we conducted a detailed investigation of the South Pacific convergence zone (SPCZ), and documented many of its significant features and characteristics. We also conducted studies of its interaction with global-scale circulation features through the use of both observational and modeling studies. The latter was accomplished toward the end of the contract when Dr. James Hurrell, then a Ph.D. candidate, successfully ported the NASA GLA general circulation model (GCM) to Purdue University. In our present grant, we have expanded our previous research to include studies of other convectively-driven circulation systems in the tropics besides the SPCZ. Furthermore, we have continued to examine the relationship between these convective systems and global-scale circulation patterns. Our recent research efforts have focused on three objectives: (1) determining the periodicity of large-scale bands of organized convection in the tropics, primarily synoptic to intraseasonal time scales in the Southern Hemisphere; (2) examining the relative importance of tropical versus mid-latitude forcing for Southern Hemisphere summertime subtropical jets, particularly over the Pacific Ocean; and (3) estimating tropical precipitation, especially over oceans, using observational and budget methods. A summary list of our most significant accomplishments in the past year is given.
Jorde, Per Erik; Søvik, Guldborg; Westgaard, Jon-Ivar; Albretsen, Jon; André, Carl; Hvingel, Carsten; Johansen, Torild; Sandvik, Anne Dagrun; Kingsley, Michael; Jørstad, Knut Eirik
2015-04-01
The large-scale population genetic structure of northern shrimp, Pandalus borealis, was investigated over the species' range in the North Atlantic, identifying multiple genetically distinct groups. Genetic divergence among sample localities varied among 10 microsatellite loci (range: FST = -0.0002 to 0.0475) with a highly significant average (FST = 0.0149; P < 0.0001). In contrast, little or no genetic differences were observed among temporal replicates from the same localities (FST = 0.0004; P = 0.33). Spatial genetic patterns were compared to geographic distances, patterns of larval drift obtained through oceanographic modelling, and temperature differences, within a multiple linear regression framework. The best-fit model included all three factors and explained approximately 29% of all spatial genetic divergence. However, geographic distance and larval drift alone had only minor effects (2.5-4.7%) on large-scale genetic differentiation patterns, whereas bottom temperature differences explained most (26%). Larval drift was found to promote genetic homogeneity in parts of the study area with strong currents, but appeared ineffective across large temperature gradients. These findings highlight the breakdown of gene flow in a species with a long pelagic larval phase (up to 3 months) and indicate a role for local adaptation to temperature conditions in promoting evolutionary diversification and speciation in the marine environment. © 2015 John Wiley & Sons Ltd.
Discovering Cortical Folding Patterns in Neonatal Cortical Surfaces Using Large-Scale Dataset
Meng, Yu; Li, Gang; Wang, Li; Lin, Weili; Gilmore, John H.
2017-01-01
The cortical folding of the human brain is highly complex and variable across individuals. Mining the major patterns of cortical folding from modern large-scale neuroimaging datasets is of great importance in advancing techniques for neuroimaging analysis and understanding the inter-individual variations of cortical folding and its relationship with cognitive function and disorders. As the primary cortical folding is genetically influenced and has been established at term birth, neonates with the minimal exposure to the complicated postnatal environmental influence are the ideal candidates for understanding the major patterns of cortical folding. In this paper, for the first time, we propose a novel method for discovering the major patterns of cortical folding in a large-scale dataset of neonatal brain MR images (N = 677). In our method, first, cortical folding is characterized by the distribution of sulcal pits, which are the locally deepest points in cortical sulci. Because deep sulcal pits are genetically related, relatively consistent across individuals, and also stable during brain development, they are well suitable for representing and characterizing cortical folding. Then, the similarities between sulcal pit distributions of any two subjects are measured from spatial, geometrical, and topological points of view. Next, these different measurements are adaptively fused together using a similarity network fusion technique, to preserve their common information and also catch their complementary information. Finally, leveraging the fused similarity measurements, a hierarchical affinity propagation algorithm is used to group similar sulcal folding patterns together. The proposed method has been applied to 677 neonatal brains (the largest neonatal dataset to our knowledge) in the central sulcus, superior temporal sulcus, and cingulate sulcus, and revealed multiple distinct and meaningful folding patterns in each region. PMID:28229131
The beaming of subhalo accretion
NASA Astrophysics Data System (ADS)
Libeskind, Noam I.
2016-10-01
We examine the infall pattern of subhaloes onto hosts in the context of the large-scale structure. We find that the infall pattern is essentially driven by the shear tensor of the ambient velocity field. Dark matter subhaloes are preferentially accreted along the principal axis of the shear tensor which corresponds to the direction of weakest collapse. We examine the dependence of this preferential infall on subhalo mass, host halo mass and redshift. Although strongest for the most massive hosts and the most massive subhaloes at high redshift, the preferential infall of subhaloes is effectively universal in the sense that its always aligned with the axis of weakest collapse of the velocity shear tensor. It is the same shear tensor that dictates the structure of the cosmic web and hence the shear field emerges as the key factor that governs the local anisotropic pattern of structure formation. Since the small (sub-Mpc) scale is strongly correlated with the mid-range (~ 10 Mpc) scale - a scale accessible by current surveys of peculiar velocities - it follows that findings presented here open a new window into the relation between the observed large scale structure unveiled by current surveys of peculiar velocities and the preferential infall direction of the Local Group. This may shed light on the unexpected alignments of dwarf galaxies seen in the Local Group.
Desert bird associations with broad-scale boundary length: Applications in avian conservation
Gutzwiller, K.J.; Barrow, W.C.
2008-01-01
1. Current understanding regarding the effects of boundaries on bird communities has originated largely from studies of forest-non-forest boundaries in mesic systems. To assess whether broad-scale boundary length can affect bird community structure in deserts, and to identify patterns and predictors of species' associations useful in avian conservation, we studied relations between birds and boundary-length variables in Chihuahuan Desert landscapes. Operationally, a boundary was the border between two adjoining land covers, and broad-scale boundary length was the total length of such borders in a large area. 2. Within 2-km radius areas, we measured six boundary-length variables. We analysed bird-boundary relations for 26 species, tested for assemblage-level patterns in species' associations with boundary-length variables, and assessed whether body size, dispersal ability and cowbird-host status were correlates of these associations. 3. The abundances or occurrences of a significant majority of species were associated with boundary-length variables, and similar numbers of species were related positively and negatively to boundary-length variables. 4. Disproportionately small numbers of species were correlated with total boundary length, land-cover boundary length and shrubland-grassland boundary length (variables responsible for large proportions of boundary length). Disproportionately large numbers of species were correlated with roadside boundary length and riparian vegetation-grassland boundary length (variables responsible for small proportions of boundary length). Roadside boundary length was associated (positively and negatively) with the most species. 5. Species' associations with boundary-length variables were not correlated with body size, dispersal ability or cowbird-host status. 6. Synthesis and applications. For the species we studied, conservationists can use the regressions we report as working models to anticipate influences of boundary-length changes on bird abundance and occurrence, and to assess avifaunal composition for areas under consideration for protection. Boundary-length variables associated with a disproportionate or large number of species can be used as foci for landscape management. Assessing the underlying causes of bird-boundary relations may improve the prediction accuracy of associated models. We therefore advocate local- and broad-scale manipulative experiments involving the boundary types with which species were correlated, as indicated by the regressions. ?? 2008 The Authors.
Spatial Pattern of Standing Timber Value across the Brazilian Amazon
Ahmed, Sadia E.; Ewers, Robert M.
2012-01-01
The Amazon is a globally important system, providing a host of ecosystem services from climate regulation to food sources. It is also home to a quarter of all global diversity. Large swathes of forest are removed each year, and many models have attempted to predict the spatial patterns of this forest loss. The spatial patterns of deforestation are determined largely by the patterns of roads that open access to frontier areas and expansion of the road network in the Amazon is largely determined by profit seeking logging activities. Here we present predictions for the spatial distribution of standing value of timber across the Amazon. We show that the patterns of timber value reflect large-scale ecological gradients, determining the spatial distribution of functional traits of trees which are, in turn, correlated with timber values. We expect that understanding the spatial patterns of timber value across the Amazon will aid predictions of logging movements and thus predictions of potential future road developments. These predictions in turn will be of great use in estimating the spatial patterns of deforestation in this globally important biome. PMID:22590520
Polar continental margins: Studies off East Greenland
NASA Astrophysics Data System (ADS)
Mienert, J.; Thiede, J.; Kenyon, N. H.; Hollender, F.-J.
The passive continental margin off east Greenland has been shaped by tectonic and sedimentary processes, and typical physiographic patterns have evolved over the past few million years under the influence of the late Cenozoic Northern Hemisphere glaciations. The Greenland ice shield has been particularly affected.GLORIA (Geological Long Range Inclined Asdic), the Institute of Oceanographic Sciences' (IOS) long-range, side-scan sonar, was used on a 1992 RV Livonia cruise to map large-scale changes in sedimentary patterns along the east Greenland continental margin. The overall objective of this research program was to determine the variety of large-scale seafloor processes to improve our understanding of the interaction between ice sheets, current regimes, and sedimentary processes. In cooperation with IOS and the RV Livonia, a high-quality set of seafloor data has been produced. GLORIA'S first survey of east Greenland's continental margin covered several 1000- × 50-km-wide swaths (Figure 1) and yielded an impressive sidescan sonar image of the complete Greenland Basin and margin (about 250,000 km2). A mosaic of the data was made at a scale of 1:375,000. The base map was prepared with a polar stereographic projection having a standard parallel of 71°.
Impact of the 1997-1998 El-Nino of Regional Hydrology
NASA Technical Reports Server (NTRS)
Lakshmi, Venkataraman; Susskind, Joel
1998-01-01
The 1997-1998 El-Nino brought with it a range of severe local-regional hydrological phenomena. Record high temperatures and extremely dry soil conditions in Texas is an example of this regional effect. The El-Nino and La-Nina change the continental weather patterns considerably. However, connections between continental weather anomalies and regional or local anomalies have not been established to a high degree of confidence. There are several unique features of the recent El-Nino and La-Nina. Due to the recognition of the present El-Nino well in advance, there have been several coupled model studies on global and regional scales. Secondly, there is a near real-time monitoring of the situation using data from satellite sensors, namely, SeaWIFS, TOVS, AVHRR and GOES. Both observations and modeling characterize the large scale features of this El-Nino fairly well. However the connection to the local and regional hydrological phenomenon still needs to be made. This paper will use satellite observations and analysis data to establish a relation between local hydrology and large scale weather patterns. This will be the first step in using satellite data to perform regional hydrological simulations of surface temperature and soil moisture.
Dafforn, Katherine A; Kelaher, Brendan P; Simpson, Stuart L; Coleman, Melinda A; Hutchings, Pat A; Clark, Graeme F; Knott, Nathan A; Doblin, Martina A; Johnston, Emma L
2013-01-01
Ecological communities are increasingly exposed to multiple chemical and physical stressors, but distinguishing anthropogenic impacts from other environmental drivers remains challenging. Rarely are multiple stressors investigated in replicated studies over large spatial scales (>1000 kms) or supported with manipulations that are necessary to interpret ecological patterns. We measured the composition of sediment infaunal communities in relation to anthropogenic and natural stressors at multiple sites within seven estuaries. We observed increases in the richness and abundance of polychaete worms in heavily modified estuaries with severe metal contamination, but no changes in the diversity or abundance of other taxa. Estuaries in which toxic contaminants were elevated also showed evidence of organic enrichment. We hypothesised that the observed response of polychaetes was not a 'positive' response to toxic contamination or a reduction in biotic competition, but due to high levels of nutrients in heavily modified estuaries driving productivity in the water column and enriching the sediment over large spatial scales. We deployed defaunated field-collected sediments from the surveyed estuaries in a small scale experiment, but observed no effects of sediment characteristics (toxic or enriching). Furthermore, invertebrate recruitment instead reflected the low diversity and abundance observed during field surveys of this relatively 'pristine' estuary. This suggests that differences observed in the survey are not a direct consequence of sediment characteristics (even severe metal contamination) but are related to parameters that covary with estuary modification such as enhanced productivity from nutrient inputs and the diversity of the local species pool. This has implications for the interpretation of diversity measures in large-scale monitoring studies in which the observed patterns may be strongly influenced by many factors that covary with anthropogenic modification.
Dafforn, Katherine A.; Kelaher, Brendan P.; Simpson, Stuart L.; Coleman, Melinda A.; Hutchings, Pat A.; Clark, Graeme F.; Knott, Nathan A.; Doblin, Martina A.; Johnston, Emma L.
2013-01-01
Ecological communities are increasingly exposed to multiple chemical and physical stressors, but distinguishing anthropogenic impacts from other environmental drivers remains challenging. Rarely are multiple stressors investigated in replicated studies over large spatial scales (>1000 kms) or supported with manipulations that are necessary to interpret ecological patterns. We measured the composition of sediment infaunal communities in relation to anthropogenic and natural stressors at multiple sites within seven estuaries. We observed increases in the richness and abundance of polychaete worms in heavily modified estuaries with severe metal contamination, but no changes in the diversity or abundance of other taxa. Estuaries in which toxic contaminants were elevated also showed evidence of organic enrichment. We hypothesised that the observed response of polychaetes was not a ‘positive’ response to toxic contamination or a reduction in biotic competition, but due to high levels of nutrients in heavily modified estuaries driving productivity in the water column and enriching the sediment over large spatial scales. We deployed defaunated field-collected sediments from the surveyed estuaries in a small scale experiment, but observed no effects of sediment characteristics (toxic or enriching). Furthermore, invertebrate recruitment instead reflected the low diversity and abundance observed during field surveys of this relatively ‘pristine’ estuary. This suggests that differences observed in the survey are not a direct consequence of sediment characteristics (even severe metal contamination) but are related to parameters that covary with estuary modification such as enhanced productivity from nutrient inputs and the diversity of the local species pool. This has implications for the interpretation of diversity measures in large-scale monitoring studies in which the observed patterns may be strongly influenced by many factors that covary with anthropogenic modification. PMID:24098816
Enhancing multiple-point geostatistical modeling: 1. Graph theory and pattern adjustment
NASA Astrophysics Data System (ADS)
Tahmasebi, Pejman; Sahimi, Muhammad
2016-03-01
In recent years, higher-order geostatistical methods have been used for modeling of a wide variety of large-scale porous media, such as groundwater aquifers and oil reservoirs. Their popularity stems from their ability to account for qualitative data and the great flexibility that they offer for conditioning the models to hard (quantitative) data, which endow them with the capability for generating realistic realizations of porous formations with very complex channels, as well as features that are mainly a barrier to fluid flow. One group of such models consists of pattern-based methods that use a set of data points for generating stochastic realizations by which the large-scale structure and highly-connected features are reproduced accurately. The cross correlation-based simulation (CCSIM) algorithm, proposed previously by the authors, is a member of this group that has been shown to be capable of simulating multimillion cell models in a matter of a few CPU seconds. The method is, however, sensitive to pattern's specifications, such as boundaries and the number of replicates. In this paper the original CCSIM algorithm is reconsidered and two significant improvements are proposed for accurately reproducing large-scale patterns of heterogeneities in porous media. First, an effective boundary-correction method based on the graph theory is presented by which one identifies the optimal cutting path/surface for removing the patchiness and discontinuities in the realization of a porous medium. Next, a new pattern adjustment method is proposed that automatically transfers the features in a pattern to one that seamlessly matches the surrounding patterns. The original CCSIM algorithm is then combined with the two methods and is tested using various complex two- and three-dimensional examples. It should, however, be emphasized that the methods that we propose in this paper are applicable to other pattern-based geostatistical simulation methods.
Afolayan, A A
1985-09-01
"The paper sets out to test whether or not the movement pattern of people in Nigeria is step-wise. It examines the spatial order in the country and the movement pattern of people. It then analyzes the survey data and tests for the validity of step-wise migration in the country. The findings show that step-wise migration cannot adequately describe all the patterns observed." The presence of large-scale circulatory migration between rural and urban areas is noted. Ways to decrease the pressure on Lagos by developing intermediate urban areas are considered. excerpt
NASA Astrophysics Data System (ADS)
Roverso, Davide
2003-08-01
Many-class learning is the problem of training a classifier to discriminate among a large number of target classes. Together with the problem of dealing with high-dimensional patterns (i.e. a high-dimensional input space), the many class problem (i.e. a high-dimensional output space) is a major obstacle to be faced when scaling-up classifier systems and algorithms from small pilot applications to large full-scale applications. The Autonomous Recursive Task Decomposition (ARTD) algorithm is here proposed as a solution to the problem of many-class learning. Example applications of ARTD to neural classifier training are also presented. In these examples, improvements in training time are shown to range from 4-fold to more than 30-fold in pattern classification tasks of both static and dynamic character.
Ströher, Patrícia R.; Firkowski, Carina R.; Freire, Andrea S.; Pie, Marcio R.
2011-01-01
The decapod Grapsus grapsus is commonly found on oceanic islands of the Pacific and Atlantic coasts of the Americas. In this study, a simple, quick and reliable method for detecting its larvae in plankton samples is described, which makes it ideal for large-scale studies of larval dispersal patterns in the species. PMID:21931530
Bathymetric comparisons adjacent to the Louisiana barrier islands: Processes of large-scale change
List, J.H.; Jaffe, B.E.; Sallenger, A.H.; Hansen, M.E.
1997-01-01
This paper summarizes the results of a comparative bathymetric study encompassing 150 km of the Louisiana barrier-island coast. Bathymetric data surrounding the islands and extending to 12 m water depth were processed from three survey periods: the 1880s, the 1930s, and the 1980s. Digital comparisons between surveys show large-scale, coherent patterns of sea-floor erosion and accretion related to the rapid erosion and disintegration of the islands. Analysis of the sea-floor data reveals two primary processes driving this change: massive longshore transport, in the littoral zone and at shoreface depths; and increased sediment storage in ebb-tidal deltas. Relative sea-level rise, although extraordinarily high in the study area, is shown to be an indirect factor in causing the area's rapid shoreline retreat rates.
Designing large-scale conservation corridors for pattern and process.
Rouget, Mathieu; Cowling, Richard M; Lombard, Amanda T; Knight, Andrew T; Kerley, Graham I H
2006-04-01
A major challenge for conservation assessments is to identify priority areas that incorporate biological patterns and processes. Because large-scale processes are mostly oriented along environmental gradients, we propose to accommodate them by designing regional-scale corridors to capture these gradients. Based on systematic conservation planning principles such as representation and persistence, we identified large tracts of untransformed land (i.e., conservation corridors) for conservation that would achieve biodiversity targets for pattern and process in the Subtropical Thicket Biome of South Africa. We combined least-cost path analysis with a target-driven algorithm to identify the best option for capturing key environmental gradients while considering biodiversity targets and conservation opportunities and constraints. We identified seven conservation corridors on the basis of subtropical thicket representation, habitat transformation and degradation, wildlife suitability, irreplaceability of vegetation types, protected area networks, and future land-use pressures. These conservation corridors covered 21.1% of the planning region (ranging from 600 to 5200 km2) and successfully achieved targets for biological processes and to a lesser extent for vegetation types. The corridors we identified are intended to promote the persistence of ecological processes (gradients and fixed processes) and fulfill half of the biodiversity pattern target. We compared the conservation corridors with a simplified corridor design consisting of a fixed-width buffer along major rivers. Conservation corridors outperformed river buffers in seven out of eight criteria. Our corridor design can provide a tool for quantifying trade-offs between various criteria (biodiversity pattern and process, implementation constraints and opportunities). A land-use management model was developed to facilitate implementation of conservation actions within these corridors.
NASA Astrophysics Data System (ADS)
von Ruette, J.; Lehmann, P.; Or, D.
2014-10-01
The occurrence of shallow landslides is often associated with intense and prolonged rainfall events, where infiltrating water reduces soil strength and may lead to abrupt mass release. Despite general understanding of the role of rainfall water in slope stability, the prediction of rainfall-induced landslides remains a challenge due to natural heterogeneity that affect hydrologic loading patterns and the largely unobservable internal progressive failures. An often overlooked and potentially important factor is the role of rainfall variability in space and time on landslide triggering that is often obscured by coarse information (e.g., hourly radar data at spatial resolution of a few kilometers). To quantify potential effects of rainfall variability on failure dynamics, spatial patterns, landslide numbers and volumes, we employed a physically based "Catchment-scale Hydromechanical Landslide Triggering" (CHLT) model for a study area where a summer storm in 2002 triggered 51 shallow landslides. In numerical experiments based on the CHLT model, we applied the measured rainfall amount of 53 mm in different artificial spatiotemporal rainfall patterns, resulting in between 30 and 100 landslides and total released soil volumes between 3000 and 60,000 m3 for the various scenarios. Results indicate that low intensity rainfall below soil's infiltration capacity resulted in the largest mechanical perturbation. This study illustrates how small-scale rainfall variability that is often overlooked by present operational rainfall data may play a key role in shaping landslide patterns.
Jordan, Peter; O'Neill, Sean
2010-01-01
Many recent studies of cultural inheritance have focused on small-scale craft traditions practised by single individuals, which do not require coordinated participation by larger social collectives. In this paper, we address this gap in the cultural transmission literature by investigating diversity in the vernacular architecture of the Pacific northwest coast, where communities of hunter–fisher–gatherers constructed immense wooden long-houses at their main winter villages. Quantitative analyses of long-house styles along the coastline draw on a range of models and methods from the biological sciences and are employed to test hypotheses relating to basic patterns of macro-scale cultural diversification, and the degree to which the transmission of housing traits has been constrained by the region's numerous linguistic boundaries. The results indicate relatively strong branching patterns of cultural inheritance and also close associations between regional language history and housing styles, pointing to the potentially crucial role played by language boundaries in structuring large-scale patterns of cultural diversification, especially in relation to ‘collective’ cultural traditions like housing that require substantial inputs of coordinated labour. PMID:21041212
A unified model explains commonness and rarity on coral reefs.
Connolly, Sean R; Hughes, Terry P; Bellwood, David R
2017-04-01
Abundance patterns in ecological communities have important implications for biodiversity maintenance and ecosystem functioning. However, ecological theory has been largely unsuccessful at capturing multiple macroecological abundance patterns simultaneously. Here, we propose a parsimonious model that unifies widespread ecological relationships involving local aggregation, species-abundance distributions, and species associations, and we test this model against the metacommunity structure of reef-building corals and coral reef fishes across the western and central Pacific. For both corals and fishes, the unified model simultaneously captures extremely well local species-abundance distributions, interspecific variation in the strength of spatial aggregation, patterns of community similarity, species accumulation, and regional species richness, performing far better than alternative models also examined here and in previous work on coral reefs. Our approach contributes to the development of synthetic theory for large-scale patterns of community structure in nature, and to addressing ongoing challenges in biodiversity conservation at macroecological scales. © 2017 The Authors. Ecology Letters published by CNRS and John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Dai, LongGui; Yang, Fan; Yue, Gen; Jiang, Yang; Jia, Haiqiang; Wang, Wenxin; Chen, Hong
2014-11-01
Generally, nano-scale patterned sapphire substrate (NPSS) has better performance than micro-scale patterned sapphire substrate (MPSS) in improving the light extraction efficiency of LEDs. Laser interference lithography (LIL) is one of the powerful fabrication methods for periodic nanostructures without photo-masks for different designs. However, Lloyd's mirror LIL system has the disadvantage that fabricated patterns are inevitably distorted, especially for large-area twodimensional (2D) periodic nanostructures. Herein, we introduce two-beam LIL system to fabricate consistent large-area NPSS. Quantitative analysis and characterization indicate that the high uniformity of the photoresist arrays is achieved. Through the combination of dry etching and wet etching techniques, the well-defined NPSS with period of 460 nm were prepared on the whole sapphire substrate. The deviation is 4.34% for the bottom width of the triangle truncated pyramid arrays on the whole 2-inch sapphire substrate, which is suitable for the application in industrial production of NPSS.
NASA Astrophysics Data System (ADS)
Chan, Duo; Zhang, Yang; Wu, Qigang
2013-04-01
East Asian Jet Stream (EASJ) is charactered by obvious interannual variability in strength and position (latitude), with wide impacts on East Asian climate in all seasons. In this study, two indices are established to measure the interannual variability in intensity and position of EAJS. Possible causing factors, including both local signals and non-local large-scale circulation, are examined using NCAP-NCAR reanalysis data to investigate their relations with jet variation. Our analysis shows that the relationship between the interannual variations of EASJ and these factors depends on seasons. In the summer, both the intensity and position of EASJ are closely related to the meridional gradient of local surface temperature, but display no apparent relationship with the larg-scale circulation. In cold seasons (autumn, winter and spring), both the local factor and the large-scale circulation, i.e. the Pacific/North American teleconnection pattern (PNA), play important roles in the interannual variability of the jet intensity. The variability in the jet position, however, is more correlated to the Arctic Oscillation (AO), especially in winter. Diagnostic analysis indicates that transient eddy activity plays an important role in connecting the interannual variability of EASJ position with AO.
Fish scale terrace GaInN/GaN light-emitting diodes with enhanced light extraction
NASA Astrophysics Data System (ADS)
Stark, Christoph J. M.; Detchprohm, Theeradetch; Zhao, Liang; Paskova, Tanya; Preble, Edward A.; Wetzel, Christian
2012-12-01
Non-planar GaInN/GaN light-emitting diodes were epitaxially grown to exhibit steps for enhanced light emission. By means of a large off-cut of the epitaxial growth plane from the c-plane (0.06° to 2.24°), surface morphologies of steps and inclined terraces that resemble fish scale patterns could controllably be achieved. These patterns penetrate the active region without deteriorating the electrical device performance. We find conditions leading to a large increase in light-output power over the virtually on-axis device and over planar sapphire references. The process is found suitable to enhance light extraction even without post-growth processing.
Dealing with Big Numbers: Representation and Understanding of Magnitudes outside of Human Experience
ERIC Educational Resources Information Center
Resnick, Ilyse; Newcombe, Nora S.; Shipley, Thomas F.
2017-01-01
Being able to estimate quantity is important in everyday life and for success in the STEM disciplines. However, people have difficulty reasoning about magnitudes outside of human perception (e.g., nanoseconds, geologic time). This study examines patterns of estimation errors across temporal and spatial magnitudes at large scales. We evaluated the…
Modeling the spreading of large-scale wildland fires
Mohamed Drissi
2015-01-01
The objective of the present study is twofold. First, the last developments and validation results of a hybrid model designed to simulate fire patterns in heterogeneous landscapes are presented. The model combines the features of a stochastic small-world network model with those of a deterministic semi-physical model of the interaction between burning and non-burning...
Agricultural landscapes: Can they support healthy bird populations as well as farm products?
Peterjohn, B.G.
2003-01-01
At the beginning of the twentieth century, prospects for bird populations occupying farmlands were promising. Agricultural expansion and the resulting deforestation produced wholesale changes to the landscape of eastern North America (Trautman 1977, Zeranski and Baptist 1990, Nicholson 1997). Regional avifaunas were transformed as Horned Larks (Eremophila alpestris), Dickcissels (Spiza americana), and other farmland birds undertook range expansions (Hurley and Franks 1976, Askins 1999). Those farmland birds became conspicuous, frequently in numbers that are hard to imagine today (Trautman 1940).One hundred years later, many of those once plentiful species experienced dramatic population declines (Askins 1993, Peterjohn and Sauer 1999). Those trends were evident for many decades, although pre-1965 trends were largely based on anecdotal accounts and were frequently attributed to changing regional landscapes due to urban expansion, farm abandonment resulting in increased forest cover, and the more intensive use of remaining agricultural fields (Trautman 1940, Herkert 1991, Askins 2000). However, numerous specific factors were implicated in local declines of individual species (Kantrud 1981, Bollinger et al. 1990, Lymn and Temple 1991, Bowen and Kruse 1993, Herkert 1994, Houston and Schmutz 1999, Blackwell and Dolbeer 2001).Understanding factors responsible for population changes can be approached at various geographic scales. Local studies identify specific factors influencing small populations, but the applicability of those results across broad geographic areas is often uncertain. Studies conducted at large geographic scales identify broad patterns of change, but those patterns frequently involve interrelated factors that may be only loosely related to the actual causes of population change. However, correlations between broad patterns of changes in bird populations and land-use characteristics provide a basis for directing future studies conducted at smaller geographic scales.
Catastrophic flooding origin of shelf valley systems in the English Channel.
Gupta, Sanjeev; Collier, Jenny S; Palmer-Felgate, Andy; Potter, Graeme
2007-07-19
Megaflood events involving sudden discharges of exceptionally large volumes of water are rare, but can significantly affect landscape evolution, continental-scale drainage patterns and climate change. It has been proposed that a significant flood event eroded a network of large ancient valleys on the floor of the English Channel-the narrow seaway between England and France. This hypothesis has remained untested through lack of direct evidence, and alternative non-catastrophist ideas have been entertained for valley formation. Here we analyse a new regional bathymetric map of part of the English Channel derived from high-resolution sonar data, which shows the morphology of the valley in unprecedented detail. We observe a large bedrock-floored valley that contains a distinct assemblage of landforms, including streamlined islands and longitudinal erosional grooves, which are indicative of large-scale subaerial erosion by high-magnitude water discharges. Our observations support the megaflood model, in which breaching of a rock dam at the Dover Strait instigated catastrophic drainage of a large pro-glacial lake in the southern North Sea basin. We suggest that megaflooding provides an explanation for the permanent isolation of Britain from mainland Europe during interglacial high-sea-level stands, and consequently for patterns of early human colonisation of Britain together with the large-scale reorganization of palaeodrainage in northwest Europe.
Rotation and scale change invariant point pattern relaxation matching by the Hopfield neural network
NASA Astrophysics Data System (ADS)
Sang, Nong; Zhang, Tianxu
1997-12-01
Relaxation matching is one of the most relevant methods for image matching. The original relaxation matching technique using point patterns is sensitive to rotations and scale changes. We improve the original point pattern relaxation matching technique to be invariant to rotations and scale changes. A method that makes the Hopfield neural network perform this matching process is discussed. An advantage of this is that the relaxation matching process can be performed in real time with the neural network's massively parallel capability to process information. Experimental results with large simulated images demonstrate the effectiveness and feasibility of the method to perform point patten relaxation matching invariant to rotations and scale changes and the method to perform this matching by the Hopfield neural network. In addition, we show that the method presented can be tolerant to small random error.
Kelly, Shaina A; Torres-Verdín, Carlos; Balhoff, Matthew T
2016-08-07
Micro/nanofluidic experiments in synthetic representations of tight porous media, often referred to as "reservoir-on-a-chip" devices, are an emerging approach to researching anomalous fluid transport trends in energy-bearing and fluid-sequestering geologic porous media. We detail, for the first time, the construction of dual-scale micro/nanofluidic devices that are relatively large-scale, two-dimensional network representations of granular and fractured nanoporous media. The fabrication scheme used in the development of the networks on quartz substrates (master patterns) is facile and replicable: transmission electron microscopy (TEM) grids with lacey carbon support film were used as shadow masks in thermal evaporation/deposition and reactive ion etch (RIE) was used for hardmask pattern transfer. The reported nanoscale network geometries are heterogeneous and composed of hydraulically resistive paths (throats) meeting at junctures (pores) to mimic the low topological connectivity of nanoporous sedimentary rocks such as shale. The geometry also includes homogenous microscale grid patterns that border the nanoscale networks and represent microfracture pathways. Master patterns were successfully replicated with a sequence of polydimethylsiloxane (PDMS) and Norland Optical Adhesive (NOA) 63 polymers. The functionality of the fabricated quartz and polymer nanofluidic devices was validated with aqueous imbibition experiments and differential interference contrast microscopy. These dual-scale fluidic devices are promising predictive tools for hypothesis testing and calibration against bulk fluid measurements in tight geologic, biologic, and synthetic porous material of similar dual-scale pore structure. Applications to shale/mudrock transport studies in particular are focused on herein.
NASA Astrophysics Data System (ADS)
Papadimitriou, Constantinos; Donner, Reik V.; Stolbova, Veronika; Balasis, Georgios; Kurths, Jürgen
2015-04-01
Indian Summer monsoon is one of the most anticipated and important weather events with vast environmental, economical and social effects. Predictability of the Indian Summer Monsoon strength is crucial question for life and prosperity of the Indian population. In this study, we are attempting to uncover the relationship between the spatial complexity of Indian Summer Monsoon rainfall patterns, and the monsoon strength, in an effort to qualitatively determine how spatial organization of the rainfall patterns differs between strong and weak instances of the Indian Summer Monsoon. Here, we use observational satellite data from 1998 to 2012 from the Tropical Rainfall Measuring Mission (TRMM 3B42V7) and reanalysis gridded daily rainfall data for a time period of 57 years (1951-2007) (Asian Precipitation Highly Resolved Observational Data Integration Towards the Evaluation of Water Resources, APHRODITE). In order to capture different aspects of the system's dynamics, first, we convert rainfall time series to binary symbolic sequences, exploring various thresholding criteria. Second, we apply the Shannon entropy formulation (in a block-entropy sense) using different measures of normalization of the resulting entropy values. Finally, we examine the effect of various large-scale climate modes such as El-Niño-Southern Oscillation, North Atlantic Oscillation, and Indian Ocean Dipole, on the emerging complexity patterns, and discuss the possibility for the utilization of such pattern maps in the forecasting of the spatial variability and strength of the Indian Summer Monsoon.
Cao, Peng; Wang, Jun-Tao; Hu, Hang-Wei; Zheng, Yuan-Ming; Ge, Yuan; Shen, Ju-Pei; He, Ji-Zheng
2016-07-01
Despite the utmost importance of microorganisms in maintaining ecosystem functioning and their ubiquitous distribution, our knowledge of the large-scale pattern of microbial diversity is limited, particularly in grassland soils. In this study, the microbial communities of 99 soil samples spanning over 3000 km across grassland ecosystems in northern China were investigated using high-throughput sequencing to analyze the beta diversity pattern and the underlying ecological processes. The microbial communities were dominated by Proteobacteria, Actinobacteria, Acidobacteria, Chloroflexi, and Planctomycetes across all the soil samples. Spearman's correlation analysis indicated that climatic factors and soil pH were significantly correlated with the dominant microbial taxa, while soil microbial richness was positively linked to annual precipitation. The environmental divergence-dissimilarity relationship was significantly positive, suggesting the importance of environmental filtering processes in shaping soil microbial communities. Structural equation modeling found that the deterministic process played a more important role than the stochastic process on the pattern of soil microbial beta diversity, which supported the predictions of niche theory. Partial mantel test analysis have showed that the contribution of independent environmental variables has a significant effect on beta diversity, while independent spatial distance has no such relationship, confirming that the deterministic process was dominant in structuring soil microbial communities. Overall, environmental filtering process has more important roles than dispersal limitation in shaping microbial beta diversity patterns in the grassland soils.
NASA Astrophysics Data System (ADS)
Agel, Laurie; Barlow, Mathew; Colby, Frank; Binder, Hanin; Catto, Jennifer L.; Hoell, Andrew; Cohen, Judah
2018-05-01
Previous work has identified six large-scale meteorological patterns (LSMPs) of dynamic tropopause height associated with extreme precipitation over the Northeast US, with extreme precipitation defined as the top 1% of daily station precipitation. Here, we examine the three-dimensional structure of the tropopause LSMPs in terms of circulation and factors relevant to precipitation, including moisture, stability, and synoptic mechanisms associated with lifting. Within each pattern, the link between the different factors and extreme precipitation is further investigated by comparing the relative strength of the factors between days with and without the occurrence of extreme precipitation. The six tropopause LSMPs include two ridge patterns, two eastern US troughs, and two troughs centered over the Ohio Valley, with a strong seasonality associated with each pattern. Extreme precipitation in the ridge patterns is associated with both convective mechanisms (instability combined with moisture transport from the Great Lakes and Western Atlantic) and synoptic forcing related to Great Lakes storm tracks and embedded shortwaves. Extreme precipitation associated with eastern US troughs involves intense southerly moisture transport and strong quasi-geostrophic forcing of vertical velocity. Ohio Valley troughs are associated with warm fronts and intense warm conveyor belts that deliver large amounts of moisture ahead of storms, but little direct quasi-geostrophic forcing. Factors that show the largest difference between days with and without extreme precipitation include integrated moisture transport, low-level moisture convergence, warm conveyor belts, and quasi-geostrophic forcing, with the relative importance varying between patterns.
Forced Imbibition in Porous Media: A Fourfold Scenario
NASA Astrophysics Data System (ADS)
Odier, Céleste; Levaché, Bertrand; Santanach-Carreras, Enric; Bartolo, Denis
2017-11-01
We establish a comprehensive description of the patterns formed when a wetting liquid displaces a viscous fluid confined in a porous medium. Building on model microfluidic experiments, we evidence four imbibition scenarios all yielding different large-scale morphologies. Combining high-resolution imaging and confocal microscopy, we show that they originate from two liquid-entrainment transitions and a Rayleigh-Plateau instability at the pore scale. Finally, we demonstrate and explain the long-time coarsening of the resulting patterns.
Cross-indexing of binary SIFT codes for large-scale image search.
Liu, Zhen; Li, Houqiang; Zhang, Liyan; Zhou, Wengang; Tian, Qi
2014-05-01
In recent years, there has been growing interest in mapping visual features into compact binary codes for applications on large-scale image collections. Encoding high-dimensional data as compact binary codes reduces the memory cost for storage. Besides, it benefits the computational efficiency since the computation of similarity can be efficiently measured by Hamming distance. In this paper, we propose a novel flexible scale invariant feature transform (SIFT) binarization (FSB) algorithm for large-scale image search. The FSB algorithm explores the magnitude patterns of SIFT descriptor. It is unsupervised and the generated binary codes are demonstrated to be dispreserving. Besides, we propose a new searching strategy to find target features based on the cross-indexing in the binary SIFT space and original SIFT space. We evaluate our approach on two publicly released data sets. The experiments on large-scale partial duplicate image retrieval system demonstrate the effectiveness and efficiency of the proposed algorithm.
The importance of antipersistence for traffic jams
NASA Astrophysics Data System (ADS)
Krause, Sebastian M.; Habel, Lars; Guhr, Thomas; Schreckenberg, Michael
2017-05-01
Universal characteristics of road networks and traffic patterns can help to forecast and control traffic congestion. The antipersistence of traffic flow time series has been found for many data sets, but its relevance for congestion has been overseen. Based on empirical data from motorways in Germany, we study how antipersistence of traffic flow time-series impacts the duration of traffic congestion on a wide range of time scales. We find a large number of short-lasting traffic jams, which implies a large risk for rear-end collisions.
Phage-bacteria infection networks: From nestedness to modularity
NASA Astrophysics Data System (ADS)
Flores, Cesar O.; Valverde, Sergi; Weitz, Joshua S.
2013-03-01
Bacteriophages (viruses that infect bacteria) are the most abundant biological life-forms on Earth. However, very little is known regarding the structure of phage-bacteria infections. In a recent study we re-evaluated 38 prior studies and demonstrated that phage-bacteria infection networks tend to be statistically nested in small scale communities (Flores et al 2011). Nestedness is consistent with a hierarchy of infection and resistance within phages and bacteria, respectively. However, we predicted that at large scales, phage-bacteria infection networks should be typified by a modular structure. We evaluate and confirm this hypothesis using the most extensive study of phage-bacteria infections (Moebus and Nattkemper 1981). In this study, cross-infections were evaluated between 215 marine phages and 286 marine bacteria. We develop a novel multi-scale network analysis and find that the Moebus and Nattkemper (1981) study, is highly modular (at the whole network scale), yet also exhibits nestedness and modularity at the within-module scale. We examine the role of geography in driving these modular patterns and find evidence that phage-bacteria interactions can exhibit strong similarity despite large distances between sites. CFG acknowledges the support of CONACyT Foundation. JSW holds a Career Award at the Scientific Interface from the Burroughs Wellcome Fund and acknowledges the support of the James S. McDonnell Foundation
NASA Astrophysics Data System (ADS)
Masrur, Arif; Petrov, Andrey N.; DeGroote, John
2018-01-01
Recent years have seen an increased frequency of wildfire events in different parts of Arctic tundra ecosystems. Contemporary studies have largely attributed these wildfire events to the Arctic’s rapidly changing climate and increased atmospheric disturbances (i.e. thunderstorms). However, existing research has primarily examined the wildfire-climate dynamics of individual large wildfire events. No studies have investigated wildfire activity, including climatic drivers, for the entire tundra biome across multiple years, i.e. at the planetary scale. To address this limitation, this paper provides a planetary/circumpolar scale analyses of space-time patterns of tundra wildfire occurrence and climatic association in the Arctic over a 15 year period (2001-2015). In doing so, we have leveraged and analyzed NASA Terra’s MODIS active fire and MERRA climate reanalysis products at multiple temporal scales (decadal, seasonal and monthly). Our exploratory spatial data analysis found that tundra wildfire occurrence was spatially clustered and fire intensity was spatially autocorrelated across the Arctic regions. Most of the wildfire events occurred in the peak summer months (June-August). Our multi-temporal (decadal, seasonal and monthly) scale analyses provide further support to the link between climate variability and wildfire activity. Specifically, we found that warm and dry conditions in the late spring to mid-summer influenced tundra wildfire occurrence, spatio-temporal distribution, and fire intensity. Additionally, reduced average surface precipitation and soil moisture levels in the winter-spring period were associated with increased fire intensity in the following summer. These findings enrich contemporary knowledge on tundra wildfire’s spatial and seasonal patterns, and shed new light on tundra wildfire-climate relationships in the circumpolar context. Furthermore, this first pan-Arctic analysis provides a strong incentive and direction for future studies which integrate multiple datasets (i.e. climate, fuels, topography, and ignition sources) to accurately estimate carbon emission from tundra burning and its global climate feedbacks in coming decades.
Three-dimensional orientation of iris in an ocular prosthesis using a customized scale.
Gupta, Lokendra; Aparna, I N; Dhanasekar, B; Prabhu, Nayana; Malla, Nirjalla; Agarwal, Priyanka
2014-04-01
The success of an ocular prosthesis depends largely on the correct orientation of the iris disk. Various methods have been put forth to achieve this. This article emphasizes one such simplified method, wherein a customized scale has been used to orient the iris disk mediolaterally, superoinferiorly, and anteroposteriorly in an ocular prosthesis. A scleral wax pattern was fabricated. The customized scale was used to measure the dimension and orientation of the natural iris. These measurements were then transferred to the scleral wax pattern with the customized scale. An iris disk was fabricated using black crayon on the scleral wax pattern according to the measurements. The scleral wax pattern, including the iris disk, was then placed in the eye socket to verify its dimension and orientation. A prefabricated iris disk was modified according to the measured dimensions and transferred to the final scleral wax pattern. The transfer of these dimensions to the definitive prosthesis was achieved successfully, ultimately improving the patient's social and psychological well being. © 2013 by the American College of Prosthodontists.
The role of complex emotions in inconsistent diagnoses of schizophrenia.
Gara, Michael A; Vega, William A; Lesser, Ira; Escamilla, Michael; Lawson, William B; Wilson, Daniel R; Fleck, David E; Strakowski, Stephen M
2010-09-01
In the case of large-scale epidemiological studies, there is evidence of substantial disagreement when lay diagnoses of schizophrenia based on structured interviews are compared with expert diagnoses of the same patients. Reasons for this level of disagreement are investigated in the current study, which made use of advances in text-mining techniques and associated structural representations of language expressions. Specifically, the current study examined whether content analyses of transcribed diagnostic interviews obtained from 150 persons with serious psychiatric disorders yielded any discernable patterns that correlated with diagnostic inconsistencies of schizophrenia. In summary, it was found that the patterning or structure of spontaneous self-reports of emotion states in the diagnostic interview was associated with diagnostic inconsistencies of schizophrenia, irrespective of confounders; i.e., age of patient, gender, or ethnicity. In particular, complex emotion patterns were associated with greater disagreement between experts and trained lay interviewers than were simpler patterns.
Patrick, Peter D; Mabry, Jennifer L; Gurka, Matthew J; Buck, Marcia L; Boatwright, Evelyn; Blackman, James A
2007-01-01
To explore the relationship between location and pattern of brain injury identified on MRI and prolonged low response state in children post-traumatic brain injury (TBI). This observational study compared 15 children who spontaneously recovered within 30 days post-TBI to 17 who remained in a prolonged low response state. 92.9% of children with brain stem injury were in the low response group. The predicted probability was 0.81 for brain stem injury alone, increasing to 0.95 with a regional pattern of injury to the brain stem, basal ganglia, and thalamus. Low response state in children post-TBI is strongly correlated with two distinctive regions of injury: the brain stem alone, and an injury pattern to the brain stem, basal ganglia, and thalamus. This study demonstrates the need for large-scale clinical studies using MRI as a tool for outcome assessment in children and adolescents following severe TBI.
NASA Astrophysics Data System (ADS)
Willson, C. S.
2011-12-01
Over the past several thousand years the Mississippi River has formed one of the world's largest deltas and much of the Louisiana coast. However, in the last 100 years or so, anthropogenic controls have been placed on the system to maintain important navigation routes and for flood control resulting in the loss of the natural channel shifting necessary for replenishment of the deltaic coast with fresh sediment and resources. In addition, the high relative sea level rise in the lowermost portion of the river is causing a change in the distributary flow patterns of the river and deposition center. River and sediment diversions are being proposed as way to re-create some of the historical distribution of river water and sediments into the delta region. In response to a need for improving the understanding of the potential for medium- and large-scale river and sediment diversions, the state of Louisiana funded the construction of a small-scale physical model (SSPM) of the lower ~76 river miles (RM). The SSPM is a 1:12,000 horizontal, 1:500 vertical, highly-distorted, movable bed physical model designed to provide qualitative and semi-quantitative results regarding bulk noncohesive sediment transport characteristics in the river and through medium- and large-scale diversion structures. The SSPM was designed based on Froude similarity for the hydraulics and Shields similarity for sand transport and has a sediment time scale of 1 year prototype to 30 minutes model allowing for decadal length studies of the land building potential of diversions. Annual flow and sediment hydrographs were developed from historical records and a uniform relative sea level rise of 3 feet in 100 years is used to account for the combined effects of eustatic sea level rise and subsidence. Data collected during the experiments include river stages, dredging amounts and high-resolution video of transport patterns within the main channel and photographs of the sand deposition patterns in the diversion receiving areas. First, the similarity analysis that went into the model design along with a discussion of the resulting limitations will be presented. Next, calibration and validation results will be shown demonstrating the ability of the SSPM to capture the general lower Mississippi River sediment transport trends and deposition patterns. Third, results from a series of diversion experiments will be presented to semi-quantitatively show the effectiveness of diversion locations, sizes, and operating strategies on the quantities of sand diverted from the main river and the changes in main channel dredging volumes. These results will are then correlated with recent field and numerical studies of the study area. This talk will then close with a brief discussion of a new and improved physical model that will cover a larger domain and be designed to provide more quantitative results.
The Footprint of Continental-Scale Ocean Currents on the Biogeography of Seaweeds
Wernberg, Thomas; Thomsen, Mads S.; Connell, Sean D.; Russell, Bayden D.; Waters, Jonathan M.; Zuccarello, Giuseppe C.; Kraft, Gerald T.; Sanderson, Craig; West, John A.; Gurgel, Carlos F. D.
2013-01-01
Explaining spatial patterns of biological organisation remains a central challenge for biogeographic studies. In marine systems, large-scale ocean currents can modify broad-scale biological patterns by simultaneously connecting environmental (e.g. temperature, salinity and nutrients) and biological (e.g. amounts and types of dispersed propagules) properties of adjacent and distant regions. For example, steep environmental gradients and highly variable, disrupted flow should lead to heterogeneity in regional communities and high species turnover. In this study, we investigated the possible imprint of the Leeuwin (LC) and East Australia (EAC) Currents on seaweed communities across ~7,000 km of coastline in temperate Australia. These currents flow poleward along the west and east coasts of Australia, respectively, but have markedly different characteristics. We tested the hypothesis that, regional seaweed communities show serial change in the direction of current flow and that, because the LC is characterised by a weaker temperature gradient and more un-interrupted along-shore flow compared to the EAC, then coasts influenced by the LC have less variable seaweed communities and lower species turnover across regions than the EAC. This hypothesis was supported. We suggest that this pattern is likely caused by a combination of seaweed temperature tolerances and current-driven dispersal. In conclusion, our findings support the idea that the characteristics of continental-scale currents can influence regional community organisation, and that the coupling of ocean currents and marine biological structure is a general feature that transcends taxa and spatial scales. PMID:24260352
Cloud/climate sensitivity experiments
NASA Technical Reports Server (NTRS)
Roads, J. O.; Vallis, G. K.; Remer, L.
1982-01-01
A study of the relationships between large-scale cloud fields and large scale circulation patterns is presented. The basic tool is a multi-level numerical model comprising conservation equations for temperature, water vapor and cloud water and appropriate parameterizations for evaporation, condensation, precipitation and radiative feedbacks. Incorporating an equation for cloud water in a large-scale model is somewhat novel and allows the formation and advection of clouds to be treated explicitly. The model is run on a two-dimensional, vertical-horizontal grid with constant winds. It is shown that cloud cover increases with decreased eddy vertical velocity, decreased horizontal advection, decreased atmospheric temperature, increased surface temperature, and decreased precipitation efficiency. The cloud field is found to be well correlated with the relative humidity field except at the highest levels. When radiative feedbacks are incorporated and the temperature increased by increasing CO2 content, cloud amounts decrease at upper-levels or equivalently cloud top height falls. This reduces the temperature response, especially at upper levels, compared with an experiment in which cloud cover is fixed.
States of mind: Emotions, body feelings, and thoughts share distributed neural networks
Oosterwijk, Suzanne; Lindquist, Kristen A.; Anderson, Eric; Dautoff, Rebecca; Moriguchi, Yoshiya; Barrett, Lisa Feldman
2012-01-01
Scientists have traditionally assumed that different kinds of mental states (e.g., fear, disgust, love, memory, planning, concentration, etc.) correspond to different psychological faculties that have domain-specific correlates in the brain. Yet, growing evidence points to the constructionist hypothesis that mental states emerge from the combination of domain-general psychological processes that map to large-scale distributed brain networks. In this paper, we report a novel study testing a constructionist model of the mind in which participants generated three kinds of mental states (emotions, body feelings, or thoughts) while we measured activity within large-scale distributed brain networks using fMRI. We examined the similarity and differences in the pattern of network activity across these three classes of mental states. Consistent with a constructionist hypothesis, a combination of large-scale distributed networks contributed to emotions, thoughts, and body feelings, although these mental states differed in the relative contribution of those networks. Implications for a constructionist functional architecture of diverse mental states are discussed. PMID:22677148
Deciphering Dynamical Patterns of Growth Processes
ERIC Educational Resources Information Center
Kolakowska, A.
2009-01-01
Large systems of statistical physics often display properties that are independent of particulars that characterize their microscopic components. Universal dynamical patterns are manifested by the presence of scaling laws, which provides a common insight into governing physics of processes as vastly diverse as, e.g., growth of geological…
Reardon, Sean F.; Farrell, Chad R.; Matthews, Stephen A.; O'Sullivan, David; Bischoff, Kendra; Firebaugh, Glenn
2014-01-01
We use newly developed methods of measuring spatial segregation across a range of spatial scales to assess changes in racial residential segregation patterns in the 100 largest U.S. metropolitan areas from 1990 to 2000. Our results point to three notable trends in segregation from 1990 to 2000: 1) Hispanic-white and Asian-white segregation levels increased at both micro- and macro-scales; 2) black-white segregation declined at a micro-scale, but was unchanged at a macro-scale; and 3) for all three racial groups and for almost all metropolitan areas, macro-scale segregation accounted for more of the total metropolitan area segregation in 2000 than in 1990. Our examination of the variation in these trends among the metropolitan areas suggests that Hispanic-white and Asian-white segregation changes have been driven largely by increases in macro-scale segregation resulting from the rapid growth of the Hispanic and Asian populations in central cities. The changes in black-white segregation, in contrast, appear to be driven by the continuation of a 30-year trend in declining micro-segregation, coupled with persistent and largely stable patterns of macro-segregation. PMID:19569292
NASA Astrophysics Data System (ADS)
Pérez, Lara F.; Nielsen, Tove; Knutz, Paul C.; Kuijpers, Antoon; Damm, Volkmar
2018-04-01
The continental shelf of central-east Greenland is shaped by several glacially carved transverse troughs that form the oceanward extension of the major fjord systems. The evolution of these troughs through time, and their relation with the large-scale glaciation of the Northern Hemisphere, is poorly understood. In this study seismostratigraphic analyses have been carried out to determine the morphological and structural development of this important sector of the East Greenland glaciated margin. The age of major stratigraphic discontinuities has been constrained by a direct tie to ODP site 987 drilled in the Greenland Sea basin plain off Scoresby Sund fan system. The areal distribution and internal facies of the identified seismic units reveal the large-scale depositional pattern formed by ice-streams draining a major part of the central-east Greenland ice sheet. Initial sedimentation along the margin was, however, mainly controlled by tectonic processes related to the margin construction, continental uplift, and fluvial processes. From late Miocene to present, progradational and erosional patterns point to repeated glacial advances across the shelf. The evolution of depo-centres suggests that ice sheet advances over the continental shelf have occurred since late Miocene, about 2 Myr earlier than previously assumed. This cross-shelf glaciation is more pronounced during late Miocene and early Pliocene along Blosseville Kyst and around the Pliocene/Pleistocene boundary off Scoresby Sund; indicating a northward migration of the glacial advance. The two main periods of glaciation were separated by a major retreat of the ice sheet to an inland position during middle Pliocene. Mounded-wavy deposits interpreted as current-related deposits suggest the presence of changing along-slope current dynamics in concert with the development of the modern North Atlantic oceanographic pattern.
Snow depth spatial structure from hillslope to basin scale
NASA Astrophysics Data System (ADS)
Deems, J. S.
2017-12-01
Knowledge of spatial patterns of snow accumulation is required for understanding the hydrology, climatology, and ecology of mountain regions. Spatial structure in snow accumulation patterns changes with the scale of observation, a feature that has been characterized using fractal dimensions calculated from lidar-derived snow depth maps: fractal scaling structure at short length scales, with a `scale break' transition to more stochastic patterns at longer separation distances. Previous work has shown that this fractal structure of snow depth distributions differs between sites with different vegetation and terrain characteristics. Forested areas showed a transition to a nearly random spatial distribution at a much shorter lag distance than do unforested sites, enabling a statistical characterization. Alpine areas, however, showed strong spatial structure for a much wider scale range, and were the source of the dominant spatial pattern observable over a wider area. These spatial structure characteristics suggest that the choice of measurement or model resolution (satellite sensor, DEM, field survey point spacing, etc.) will strongly affect the estimates of snow volume or mass, as well as the magnitude of spatial variability. These prior efforts used data sets that were high resolution ( 1 m laser point spacing) but of limited extent ( 1 km2), constraining detection of scale features such as fractal dimension or scale breaks to areas of relatively similar characteristics and to lag distances of under 500 m. New datasets available from the NASA JPL Airborne Snow Observatory (ASO) provide similar resolution but over large areas, enabling assessment of snow spatial structure across an entire watershed, or in similar vegetation or physiography but in different parts of the basin. Additionally, the multi-year ASO time series allows an investigation into the temporal stability of these scale characteristics, within a single snow season and between seasons of strongly varying accumulation totals and patterns. This presentation will explore initial results from this study, using data from the Tuolumne River Basin in California, USA. Fractal scaling characteristics derived from ASO lidar snow depth measurements are examined at the basin scale, as well as in varying topographic and forest cover environments.
Biological hierarchies and the nature of extinction.
Congreve, Curtis R; Falk, Amanda R; Lamsdell, James C
2018-05-01
Hierarchy theory recognises that ecological and evolutionary units occur in a nested and interconnected hierarchical system, with cascading effects occurring between hierarchical levels. Different biological disciplines have routinely come into conflict over the primacy of different forcing mechanisms behind evolutionary and ecological change. These disconnects arise partly from differences in perspective (with some researchers favouring ecological forcing mechanisms while others favour developmental/historical mechanisms), as well as differences in the temporal framework in which workers operate. In particular, long-term palaeontological data often show that large-scale (macro) patterns of evolution are predominantly dictated by shifts in the abiotic environment, while short-term (micro) modern biological studies stress the importance of biotic interactions. We propose that thinking about ecological and evolutionary interactions in a hierarchical framework is a fruitful way to resolve these conflicts. Hierarchy theory suggests that changes occurring at lower hierarchical levels can have unexpected, complex effects at higher scales due to emergent interactions between simple systems. In this way, patterns occurring on short- and long-term time scales are equally valid, as changes that are driven from lower levels will manifest in different forms at higher levels. We propose that the dual hierarchy framework fits well with our current understanding of evolutionary and ecological theory. Furthermore, we describe how this framework can be used to understand major extinction events better. Multi-generational attritional loss of reproductive fitness (MALF) has recently been proposed as the primary mechanism behind extinction events, whereby extinction is explainable solely through processes that result in extirpation of populations through a shutdown of reproduction. While not necessarily explicit, the push to explain extinction through solely population-level dynamics could be used to suggest that environmentally mediated patterns of extinction or slowed speciation across geological time are largely artefacts of poor preservation or a coarse temporal scale. We demonstrate how MALF fits into a hierarchical framework, showing that MALF can be a primary forcing mechanism at lower scales that still results in differential survivorship patterns at the species and clade level which vary depending upon the initial environmental forcing mechanism. Thus, even if MALF is the primary mechanism of extinction across all mass extinction events, the primary environmental cause of these events will still affect the system and result in differential responses. Therefore, patterns at both temporal scales are relevant. © 2017 Cambridge Philosophical Society.
Global-scale patterns of forest fragmentation
Kurt H. Riitters; James D. Wickham; R. O' Neill; B. Jones; E. Smith
2000-01-01
We report an analysis of forest fragmentation based on 1-km resolution land-cover maps for the globe. Measurements in analysis windows from 81 km 2 (9 x 9 pixels, "small" scale) to 59,049 km 2 (243 x 243 pixels, "large" scale) were used to characterize the fragmentation around each forested pixel. We identified six categories of fragmentation (...
Inferring personal economic status from social network location
NASA Astrophysics Data System (ADS)
Luo, Shaojun; Morone, Flaviano; Sarraute, Carlos; Travizano, Matías; Makse, Hernán A.
2017-05-01
It is commonly believed that patterns of social ties affect individuals' economic status. Here we translate this concept into an operational definition at the network level, which allows us to infer the economic well-being of individuals through a measure of their location and influence in the social network. We analyse two large-scale sources: telecommunications and financial data of a whole country's population. Our results show that an individual's location, measured as the optimal collective influence to the structural integrity of the social network, is highly correlated with personal economic status. The observed social network patterns of influence mimic the patterns of economic inequality. For pragmatic use and validation, we carry out a marketing campaign that shows a threefold increase in response rate by targeting individuals identified by our social network metrics as compared to random targeting. Our strategy can also be useful in maximizing the effects of large-scale economic stimulus policies.
Inferring personal economic status from social network location.
Luo, Shaojun; Morone, Flaviano; Sarraute, Carlos; Travizano, Matías; Makse, Hernán A
2017-05-16
It is commonly believed that patterns of social ties affect individuals' economic status. Here we translate this concept into an operational definition at the network level, which allows us to infer the economic well-being of individuals through a measure of their location and influence in the social network. We analyse two large-scale sources: telecommunications and financial data of a whole country's population. Our results show that an individual's location, measured as the optimal collective influence to the structural integrity of the social network, is highly correlated with personal economic status. The observed social network patterns of influence mimic the patterns of economic inequality. For pragmatic use and validation, we carry out a marketing campaign that shows a threefold increase in response rate by targeting individuals identified by our social network metrics as compared to random targeting. Our strategy can also be useful in maximizing the effects of large-scale economic stimulus policies.
Basin-scale heterogeneity in Antarctic precipitation and its impact on surface mass variability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fyke, Jeremy; Lenaerts, Jan T. M.; Wang, Hailong
Annually averaged precipitation in the form of snow, the dominant term of the Antarctic Ice Sheet surface mass balance, displays large spatial and temporal variability. Here we present an analysis of spatial patterns of regional Antarctic precipitation variability and their impact on integrated Antarctic surface mass balance variability simulated as part of a preindustrial 1800-year global, fully coupled Community Earth System Model simulation. Correlation and composite analyses based on this output allow for a robust exploration of Antarctic precipitation variability. We identify statistically significant relationships between precipitation patterns across Antarctica that are corroborated by climate reanalyses, regional modeling and icemore » core records. These patterns are driven by variability in large-scale atmospheric moisture transport, which itself is characterized by decadal- to centennial-scale oscillations around the long-term mean. We suggest that this heterogeneity in Antarctic precipitation variability has a dampening effect on overall Antarctic surface mass balance variability, with implications for regulation of Antarctic-sourced sea level variability, detection of an emergent anthropogenic signal in Antarctic mass trends and identification of Antarctic mass loss accelerations.« less
Basin-scale heterogeneity in Antarctic precipitation and its impact on surface mass variability
Fyke, Jeremy; Lenaerts, Jan T. M.; Wang, Hailong
2017-11-15
Annually averaged precipitation in the form of snow, the dominant term of the Antarctic Ice Sheet surface mass balance, displays large spatial and temporal variability. Here we present an analysis of spatial patterns of regional Antarctic precipitation variability and their impact on integrated Antarctic surface mass balance variability simulated as part of a preindustrial 1800-year global, fully coupled Community Earth System Model simulation. Correlation and composite analyses based on this output allow for a robust exploration of Antarctic precipitation variability. We identify statistically significant relationships between precipitation patterns across Antarctica that are corroborated by climate reanalyses, regional modeling and icemore » core records. These patterns are driven by variability in large-scale atmospheric moisture transport, which itself is characterized by decadal- to centennial-scale oscillations around the long-term mean. We suggest that this heterogeneity in Antarctic precipitation variability has a dampening effect on overall Antarctic surface mass balance variability, with implications for regulation of Antarctic-sourced sea level variability, detection of an emergent anthropogenic signal in Antarctic mass trends and identification of Antarctic mass loss accelerations.« less
Corn rootworms (Coleoptera: Chrysomelidae) in space and time
NASA Astrophysics Data System (ADS)
Park, Yong-Lak
Spatial dispersion is a main characteristic of insect populations. Dispersion pattern provides useful information for developing effective sampling and scouting programs because it affects sampling accuracy, efficiency, and precision. Insect dispersion, however, is dynamic in space and time and largely dependent upon interactions among insect, plant and environmental factors. This study investigated the spatial and temporal dynamics of corn rootworm dispersion at different spatial scales by using the global positioning system, the geographic information system, and geostatistics. Egg dispersion pattern was random or uniform in 8-ha cornfields, but could be aggregated at a smaller scale. Larval dispersion pattern was aggregated regardless of spatial scales used in this study. Soil moisture positively affected corn rootworm egg and larval dispersions. Adult dispersion tended to be aggregated during peak population period and random or uniform early and late in the season and corn plant phenology was a major factor to determine dispersion patterns. The dispersion pattern of root injury by corn rootworm larval feeding was aggregated and the degree of aggregation increased as the root injury increased within the range of root injury observed in microscale study. Between-year relationships in dispersion among eggs, larvae, adult, and environment provided a strategy that could predict potential root damage the subsequent year. The best prediction map for the subsequent year's potential root damage was the dispersion maps of adults during population peaked in the cornfield. The prediction map was used to develop site-specific pest management that can reduce chemical input and increase control efficiency by controlling pests only where management is needed. This study demonstrated the spatio-temporal dynamics of insect population and spatial interactions among insects, plants, and environment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jinqiang; Li, Jun; Xia, Xiangao
In this study, long-term (10 years) radiosonde-based cloud data are compared with the ground-based active remote sensing product under six prevailing large-scale synoptic patterns, i.e., cyclonic center (CC), weak pressure pattern (WP), the southeast bottom of cyclonic center (CB), cold front (CF), anticyclone edge (AE) and anticyclone center (AC) over the Southern Great Plains (SGP) site. The synoptic patterns are generated by applying the self-organizing map weather classification method to the daily National Centers for Environmental Protection mean sea level pressure records from the North American Regional Reanalysis. It reveals that the large-scale synoptic circulations can strongly influence the regionalmore » cloud formation, and thereby have impact on the consistency of cloud retrievals from the radiosonde and ground-based cloud product. The total cloud cover at the SGP site is characterized by the least in AC and the most in CF. The minimum and maximum differences between the two cloud methods are 10.3% for CC and 13.3% for WP. Compared to the synoptic patterns characterized by scattered cloudy and clear skies (AE and AC), the agreement of collocated cloud boundaries between the two cloud approaches tends to be better under the synoptic patterns dominated by overcast and cloudy skies (CC, WP and CB). The rainy and windy weather conditions in CF synoptic pattern influence the consistency of the two cloud retrieval methods associated with the limited capabilities inherent to the instruments. As a result, the cloud thickness distribution from the two cloud datasets compares favorably with each other in all synoptic patterns, with relative discrepancy of ≤0.3 km.« less
Zhang, Jinqiang; Li, Jun; Xia, Xiangao; ...
2016-11-28
In this study, long-term (10 years) radiosonde-based cloud data are compared with the ground-based active remote sensing product under six prevailing large-scale synoptic patterns, i.e., cyclonic center (CC), weak pressure pattern (WP), the southeast bottom of cyclonic center (CB), cold front (CF), anticyclone edge (AE) and anticyclone center (AC) over the Southern Great Plains (SGP) site. The synoptic patterns are generated by applying the self-organizing map weather classification method to the daily National Centers for Environmental Protection mean sea level pressure records from the North American Regional Reanalysis. It reveals that the large-scale synoptic circulations can strongly influence the regionalmore » cloud formation, and thereby have impact on the consistency of cloud retrievals from the radiosonde and ground-based cloud product. The total cloud cover at the SGP site is characterized by the least in AC and the most in CF. The minimum and maximum differences between the two cloud methods are 10.3% for CC and 13.3% for WP. Compared to the synoptic patterns characterized by scattered cloudy and clear skies (AE and AC), the agreement of collocated cloud boundaries between the two cloud approaches tends to be better under the synoptic patterns dominated by overcast and cloudy skies (CC, WP and CB). The rainy and windy weather conditions in CF synoptic pattern influence the consistency of the two cloud retrieval methods associated with the limited capabilities inherent to the instruments. As a result, the cloud thickness distribution from the two cloud datasets compares favorably with each other in all synoptic patterns, with relative discrepancy of ≤0.3 km.« less
New well pattern optimization methodology in mature low-permeability anisotropic reservoirs
NASA Astrophysics Data System (ADS)
Qin, Jiazheng; Liu, Yuetian; Feng, Yueli; Ding, Yao; Liu, Liu; He, Youwei
2018-02-01
In China, lots of well patterns were designed before people knew the principal permeability direction in low-permeability anisotropic reservoirs. After several years’ production, it turns out that well line direction is unparallel with principal permeability direction. However, traditional well location optimization methods (in terms of the objective function such as net present value and/or ultimate recovery) are inapplicable, since wells are not free to move around in a mature oilfield. Thus, the well pattern optimization (WPO) of mature low-permeability anisotropic reservoirs is a significant but challenging task, since the original well pattern (WP) will be distorted and reconstructed due to permeability anisotropy. In this paper, we investigate the destruction and reconstruction of WP when the principal permeability direction and well line direction are unparallel. A new methodology was developed to quantitatively optimize the well locations of mature large-scale WP through a WPO algorithm on the basis of coordinate transformation (i.e. rotating and stretching). For a mature oilfield, large-scale WP has settled, so it is not economically viable to carry out further infill drilling. This paper circumvents this difficulty by combining the WPO algorithm with the well status (open or shut-in) and schedule adjustment. Finally, this methodology is applied to an example. Cumulative oil production rates of the optimized WP are higher, and water-cut is lower, which highlights the potential of the WPO methodology application in mature large-scale field development projects.
How plume-ridge interaction shapes the crustal thickness pattern of the Réunion hotspot track
NASA Astrophysics Data System (ADS)
Bredow, Eva; Steinberger, Bernhard; Gassmöller, Rene; Dannberg, Juliane
2017-08-01
The Réunion mantle plume has shaped a large area of the Earth's surface over the past 65 million years: from the Deccan Traps in India along the hotspot track comprising the island chains of the Laccadives, Maldives, and Chagos Bank on the Indian plate and the Mascarene Plateau on the African plate up to the currently active volcanism at La Réunion Island. This study addresses the question how the Réunion plume, especially in interaction with the Central Indian Ridge, created the complex crustal thickness pattern of the hotspot track. For this purpose, the mantle convection code ASPECT was used to design three-dimensional numerical models, which consider the specific location of the plume underneath moving plates and surrounded by large-scale mantle flow. The results show the crustal thickness pattern produced by the plume, which altogether agrees well with topographic maps. Especially two features are consistently reproduced by the models: the distinctive gap in the hotspot track between the Maldives and Chagos is created by the combination of the ridge geometry and plume-ridge interaction; and the Rodrigues Ridge, a narrow crustal structure which connects the hotspot track and the Central Indian Ridge, appears as the surface expression of a long-distance sublithospheric flow channel. This study therefore provides further insight how small-scale surface features are generated by the complex interplay between mantle and lithospheric processes.
Gosme, Marie; Lucas, Philippe
2009-07-01
Spatial patterns of both the host and the disease influence disease spread and crop losses. Therefore, the manipulation of these patterns might help improve control strategies. Considering disease spread across multiple scales in a spatial hierarchy allows one to capture important features of epidemics developing in space without using explicitly spatialized variables. Thus, if the system under study is composed of roots, plants, and planting hills, the effect of host spatial pattern can be studied by varying the number of plants per planting hill. A simulation model based on hierarchy theory was used to simulate the effects of large versus small planting hills, low versus high level of initial infections, and aggregated versus uniform distribution of initial infections. The results showed that aggregating the initially infected plants always resulted in slower epidemics than spreading out the initial infections uniformly. Simulation results also showed that, in most cases, disease epidemics were slower in the case of large host aggregates (100 plants/hill) than with smaller aggregates (25 plants/hill), except when the initially infected plants were both numerous and spread out uniformly. The optimal strategy for disease control depends on several factors, including initial conditions. More importantly, the model offers a framework to account for the interplay between the spatial characteristics of the system, rates of infection, and aggregation of the disease.
NASA Astrophysics Data System (ADS)
Choi, Jonathan W.; Li, Zhaodong; Black, Charles T.; Sweat, Daniel P.; Wang, Xudong; Gopalan, Padma
2016-06-01
In this work, we demonstrate the use of self-assembled thin films of the cylinder-forming block copolymer poly(4-tert-butylstyrene-block-2-vinylpyridine) to pattern high density features at the 10 nm length scale. This material's large interaction parameter facilitates pattern formation in single-digit nanometer dimensions. This block copolymer's accessible order-disorder transition temperature allows thermal annealing to drive the assembly of ordered 2-vinylpyridine cylinders that can be selectively complexed with the organometallic precursor trimethylaluminum. This unique chemistry converts organic 2-vinylpyridine cylinders into alumina nanowires with diameters ranging from 8 to 11 nm, depending on the copolymer molecular weight. Graphoepitaxy of this block copolymer aligns and registers sub-12 nm diameter nanowires to larger-scale rectangular, curved, and circular features patterned by optical lithography. The alumina nanowires function as a robust hard mask to withstand the conditions required for patterning the underlying silicon by plasma etching. We conclude with a discussion of some of the challenges that arise with using block copolymers for patterning at sub-10 nm feature sizes.In this work, we demonstrate the use of self-assembled thin films of the cylinder-forming block copolymer poly(4-tert-butylstyrene-block-2-vinylpyridine) to pattern high density features at the 10 nm length scale. This material's large interaction parameter facilitates pattern formation in single-digit nanometer dimensions. This block copolymer's accessible order-disorder transition temperature allows thermal annealing to drive the assembly of ordered 2-vinylpyridine cylinders that can be selectively complexed with the organometallic precursor trimethylaluminum. This unique chemistry converts organic 2-vinylpyridine cylinders into alumina nanowires with diameters ranging from 8 to 11 nm, depending on the copolymer molecular weight. Graphoepitaxy of this block copolymer aligns and registers sub-12 nm diameter nanowires to larger-scale rectangular, curved, and circular features patterned by optical lithography. The alumina nanowires function as a robust hard mask to withstand the conditions required for patterning the underlying silicon by plasma etching. We conclude with a discussion of some of the challenges that arise with using block copolymers for patterning at sub-10 nm feature sizes. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr01409g
Sedimentary Framework of an Inner Continental Shelf Sand-Ridge System, West-Central Florida
NASA Astrophysics Data System (ADS)
Locker, S. D.; Hine, A. C.; Wright, A. K.; Duncan, D. S.
2002-12-01
The west-central Florida inner continental shelf is a dynamic environment subject to current flows on a variety of temporal and spatial scales. A site survey program, undertaken in support of the Office of Naval Research's Mine Burial prediction program, is focused on the sedimentary framework and sediment accumulation patterns in 10-18 meters water depth. Our specific goals are to image the shallow subsurface and to monitor changes in bedform distribution patterns that coincide with physical processes studies ongoing in the area. Methods of study include side-scan sonar imaging, boomer and chirp subbottom profiling, and sedimentary facies analysis using surface sediment sampling and vibracoring. A well-defined sand-ridge system was imaged, trending oblique to the west-Florida coastline. The side-scan clearly shows that there is extensive three-dimensional structure within these large-scale NW-SE trending sedimentary bedforms. The sand ridges commonly are approximately 1 km wide and 4-8 km in length. The characteristics of these ridges are distinctly different than the sand ridges in < 8 m water that we have previously studied. Ridges in the offshore area tend to be thicker, have a flatter morphology, and exhibit fewer smaller-scale sand waves. Sand-ridge thickness ranges 2-3 meters, and typically consists of fining upward medium to fine quartz sand facies with occasional centimeter-scale coarser-grained carbonate-rich intervals. Time series investigations tracking the shift in position of the sand ridge margins have found undetectable net annual movement. However significant resuspension and bedform development accompanies high-energy events such as winter cold front passage. Thus the large-scale bedforms (sand ridges) are in a state of dynamic equilibrium with the average annual hydrodynamic regime. Repeated field surveys will focus on monitoring small-scale sedimentological and stratal framework changes that will be integrated with the quantitative process studies.
Massie, Danielle L.; Smith, Geoffrey; Bonvechio, Timothy F.; Bunch, Aaron J.; Lucchesi, David O.; Wagner, Tyler
2018-01-01
Quantifying spatial variability in fish growth and identifying large‐scale drivers of growth are fundamental to many conservation and management decisions. Although fish growth studies often focus on a single population, it is becoming increasingly clear that large‐scale studies are likely needed for addressing transboundary management needs. This is particularly true for species with high recreational value and for those with negative ecological consequences when introduced outside of their native range, such as the Flathead Catfish Pylodictis olivaris. This study quantified growth variability of the Flathead Catfish across a large portion of its contemporary range to determine whether growth differences existed between habitat types (i.e., reservoirs and rivers) and between native and introduced populations. Additionally, we investigated whether growth parameters varied as a function of latitude and time since introduction (for introduced populations). Length‐at‐age data from 26 populations across 11 states in the USA were modeled using a Bayesian hierarchical von Bertalanffy growth model. Population‐specific growth trajectories revealed large variation in Flathead Catfish growth and relatively high uncertainty in growth parameters for some populations. Relatively high uncertainty was also evident when comparing populations and when quantifying large‐scale patterns. Growth parameters (Brody growth coefficient [K] and theoretical maximum average length [L∞]) were not different (based on overlapping 90% credible intervals) between habitat types or between native and introduced populations. For populations within the introduced range of Flathead Catfish, latitude was negatively correlated with K. For native populations, we estimated an 85% probability that L∞ estimates were negatively correlated with latitude. Contrary to predictions, time since introduction was not correlated with growth parameters in introduced populations of Flathead Catfish. Results of this study suggest that Flathead Catfish growth patterns are likely shaped more strongly by finer‐scale processes (e.g., exploitation or prey abundances) as opposed to macro‐scale drivers.
Evaluating the Large-Scale Environment of Extreme Events Using Reanalyses
NASA Astrophysics Data System (ADS)
Bosilovich, M. G.; Schubert, S. D.; Koster, R. D.; da Silva, A. M., Jr.; Eichmann, A.
2014-12-01
Extreme conditions and events have always been a long standing concern in weather forecasting and national security. While some evidence indicates extreme weather will increase in global change scenarios, extremes are often related to the large scale atmospheric circulation, but also occurring infrequently. Reanalyses assimilate substantial amounts of weather data and a primary strength of reanalysis data is the representation of the large-scale atmospheric environment. In this effort, we link the occurrences of extreme events or climate indicators to the underlying regional and global weather patterns. Now, with greater than 3o years of data, reanalyses can include multiple cases of extreme events, and thereby identify commonality among the weather to better characterize the large-scale to global environment linked to the indicator or extreme event. Since these features are certainly regionally dependent, and also, the indicators of climate are continually being developed, we outline various methods to analyze the reanalysis data and the development of tools to support regional evaluation of the data. Here, we provide some examples of both individual case studies and composite studies of similar events. For example, we will compare the large scale environment for Northeastern US extreme precipitation with that of highest mean precipitation seasons. Likewise, southerly winds can shown to be a major contributor to very warm days in the Northeast winter. While most of our development has involved NASA's MERRA reanalysis, we are also looking forward to MERRA-2 which includes several new features that greatly improve the representation of weather and climate, especially for the regions and sectors involved in the National Climate Assessment.
An Eulerian time filtering technique to study large-scale transient flow phenomena
NASA Astrophysics Data System (ADS)
Vanierschot, Maarten; Persoons, Tim; van den Bulck, Eric
2009-10-01
Unsteady fluctuating velocity fields can contain large-scale periodic motions with frequencies well separated from those of turbulence. Examples are the wake behind a cylinder or the processing vortex core in a swirling jet. These turbulent flow fields contain large-scale, low-frequency oscillations, which are obscured by turbulence, making it impossible to identify them. In this paper, we present an Eulerian time filtering (ETF) technique to extract the large-scale motions from unsteady statistical non-stationary velocity fields or flow fields with multiple phenomena that have sufficiently separated spectral content. The ETF method is based on non-causal time filtering of the velocity records in each point of the flow field. It is shown that the ETF technique gives good results, similar to the ones obtained by the phase-averaging method. In this paper, not only the influence of the temporal filter is checked, but also parameters such as the cut-off frequency and sampling frequency of the data are investigated. The technique is validated on a selected set of time-resolved stereoscopic particle image velocimetry measurements such as the initial region of an annular jet and the transition between flow patterns in an annular jet. The major advantage of the ETF method in the extraction of large scales is that it is computationally less expensive and it requires less measurement time compared to other extraction methods. Therefore, the technique is suitable in the startup phase of an experiment or in a measurement campaign where several experiments are needed such as parametric studies.
Forest Connectivity Regions of Canada Using Circuit Theory and Image Analysis
Pelletier, David; Lapointe, Marc-Élie; Wulder, Michael A.; White, Joanne C.; Cardille, Jeffrey A.
2017-01-01
Ecological processes are increasingly well understood over smaller areas, yet information regarding interconnections and the hierarchical nature of ecosystems remains less studied and understood. Information on connectivity over large areas with high resolution source information provides for both local detail and regional context. The emerging capacity to apply circuit theory to create maps of omnidirectional connectivity provides an opportunity for improved and quantitative depictions of forest connectivity, supporting the formation and testing of hypotheses about the density of animal movement, ecosystem structure, and related links to natural and anthropogenic forces. In this research, our goal was to delineate regions where connectivity regimes are similar across the boreal region of Canada using new quantitative analyses for characterizing connectivity over large areas (e.g., millions of hectares). Utilizing the Earth Observation for Sustainable Development of forests (EOSD) circa 2000 Landsat-derived land-cover map, we created and analyzed a national-scale map of omnidirectional forest connectivity at 25m resolution over 10000 tiles of 625 km2 each, spanning the forested regions of Canada. Using image recognition software to detect corridors, pinch points, and barriers to movements at multiple spatial scales in each tile, we developed a simple measure of the structural complexity of connectivity patterns in omnidirectional connectivity maps. We then mapped the Circuitscape resistance distance measure and used it in conjunction with the complexity data to study connectivity characteristics in each forested ecozone. Ecozone boundaries masked substantial systematic patterns in connectivity characteristics that are uncovered using a new classification of connectivity patterns that revealed six clear groups of forest connectivity patterns found in Canada. The resulting maps allow exploration of omnidirectional forest connectivity patterns at full resolution while permitting quantitative analyses of connectivity over broad areas, informing modeling, planning and monitoring efforts. PMID:28146573
Study on Controls of Fluids in Nanochannel via Hybrid Surface
NASA Astrophysics Data System (ADS)
Ye, Ziran
This thesis contributes to the investigation of controls of nanofluidic fluids by utilizing hybrid surface patterns in nanochannel. Nanofluidics is a core and interdisciplinary research field which manipulates, controls and analyzes fluids in nanoscale and develop potential bio/chemical applications. This thesis studies the surface-induced phenomena in nanofluidics, we use surface decoration on nanochannel walls to investigate the influences on fluid motion and further explore the fundamental physical principle of this behavior. To begin with, we designed and fabricated the nanofluidic mixer for the first time, which comprised hybrid surface patterns with different wettabilities on both top and bottom walls of nanochannel. Although microfluidic mixers have been intensively investigated, nanofluidic mixer has never been reported. Without any inside geometric structure of nanochannel, the mixing phenomenon can be achieved by the surface patterns and the mixing length can be significantly shortened comparing with micromixer. We attribute this achievement to the chaotic flows of two fluids induced by the patterned surface. The surface-related phenomena may not be so prominent on large scale, however, it is pronounced when the scale shrinks down to nanometer due to the large surface-to-volume ratio in nanochannel. In the second part of this work, based on the technology of nanofabrication and similar principle, we built up another novel method to control the speed of capillary flow in nanochannel in a quantitative manner. Surface patterns were fabricated on the nanochannel walls to slow down the capillary flow. The flow speed can be precisely controlled by modifying hydrophobicity ratio. Under the extreme surface-to-volume ratio in nanochannel, the significant surface effect on the fluid effectively reduced the speed of capillary flow without any external energy source and equipment. Such approach may be adopted for a wide variety of nanofluidicsbased biochemical analysis systems.
Instability mechanisms in microfluidics and nanomaterials
NASA Astrophysics Data System (ADS)
Thamida, Sunil Kumar
Recent scientific advances in chemical engineering are leading to synthesis of micro-scale and nano-scale functional devices and materials. However, optimal design and performance of these devices and materials requires a fundamental under standing of the interfacial phenomena at micro-scale and nano-scale. Due to new physical forces unique to small scales, new phenomena appear that are unexpected at large scales. A study of new interfacial patterns that arise from various interfacial instabilities at these scales is carried out in this dissertation. Nevertheless, interfacial patterns ranging from micro to macro scale are ubiquitous in multiphase systems and material synthesis involving a surface reaction. Fractal break up of a thin viscous oil film dewetting between two separating plates is studied experimentally. Unlike the classical patterns of pores and dendrites, it forms a fractal pattern like a branching tree with its origin at the center of the circular film. Lubrication theory is extended to such a fractal geometry, which is unlike the circular geometry of a classical dewetting problem. A power law scaling is obtained for the radial air finger length distribution to construct an idealized Cayley fractal structure. Our theory yields a result that the plate detach time decreases by half in the limit of a fully fractal pattern that is confirmed experimentally. Nanopore formation in anodized alumina is also found to bear similarities to the interfacial pattern formation of the dewetting film between two separating plates. The oxide layer formed on the aluminum during the initial stages of anodizing is found to be unstable to perturbations on the scale of a few nanometers and hence it leads to the nanopore formation. A linear stability analysis of the dual interfacial dynamics followed by a leading mode projection produces a single evolution equation for the pores. Numerical simulations of the nonlinear model reveals the hexagonal packing and self-organization dynamics of the pores. In microfluidic devices, electrokinetic flow produces spiral vortices and corner aggregation of particles and proteins at an inner corner of a channel turn that is unexplained by the short ranged DLVO forces. Field leakage effect due to the non perfectly insulating wall reveals a nonlinear singular and ejecting slip velocity condition at an acute angled sharp corner. The complete flow streamlines, vortices and the corner entrainment are revealed by conformal mapping, harmonic analysis and numerical simulation using Lattice-Boltzmann-Method (LBM). The method of hodograph transform developed for the earlier projects to solve the Laplace equation is also applied to find optimum shapes of dispersion free turns for electro-osmotic microfluidic channels.
The Universe at Moderate Redshift
NASA Technical Reports Server (NTRS)
Cen, Renyue; Ostriker, Jeremiah P.
1997-01-01
The report covers the work done in the past year and a wide range of fields including properties of clusters of galaxies; topological properties of galaxy distributions in terms of galaxy types; patterns of gravitational nonlinear clustering process; development of a ray tracing algorithm to study the gravitational lensing phenomenon by galaxies, clusters and large-scale structure, one of whose applications being the effects of weak gravitational lensing by large-scale structure on the determination of q(0); the origin of magnetic fields on the galactic and cluster scales; the topological properties of Ly(alpha) clouds the Ly(alpha) optical depth distribution; clustering properties of Ly(alpha) clouds; and a determination (lower bound) of Omega(b) based on the observed Ly(alpha) forest flux distribution. In the coming year, we plan to continue the investigation of Ly(alpha) clouds using larger dynamic range (about a factor of two) and better simulations (with more input physics included) than what we have now. We will study the properties of galaxies on 1 - 100h(sup -1) Mpc scales using our state-of-the-art large scale galaxy formation simulations of various cosmological models, which will have a resolution about a factor of 5 (in each dimension) better than our current, best simulations. We will plan to study the properties of X-ray clusters using unprecedented, very high dynamic range (20,000) simulations which will enable us to resolve the cores of clusters while keeping the simulation volume sufficiently large to ensure a statistically fair sample of the objects of interest. The details of the last year's works are now described.
NASA Astrophysics Data System (ADS)
Lee, J.; Zhang, Y.; Klein, S. A.
2017-12-01
The triggering of the land breeze, and hence the development of deep convection over heterogeneous land should be understood as a consequence of the complex processes involving various factors from land surface and atmosphere simultaneously. That is a sub-grid scale process that many large-scale models have difficulty incorporating it into the parameterization scheme partly due to lack of our understanding. Thus, it is imperative that we approach the problem using a high-resolution modeling framework. In this study, we use SAM-SLM (Lee and Khairoutdinov, 2015), a large-eddy simulation model coupled to a land model, to explore the cloud effect such as cold pool, the cloud shading and the soil moisture memory on the land breeze structure and the further development of cloud and precipitation over a heterogeneous land surface. The atmospheric large scale forcing and the initial sounding are taken from the new composite case study of the fair-weather, non-precipitating shallow cumuli at ARM SGP (Zhang et al., 2017). We model the land surface as a chess board pattern with alternating leaf area index (LAI). The patch contrast of the LAI is adjusted to encompass the weak to strong heterogeneity amplitude. The surface sensible- and latent heat fluxes are computed according to the given LAI representing the differential surface heating over a heterogeneous land surface. Separate from the surface forcing imposed from the originally modeled surface, the cases that transition into the moist convection can induce another layer of the surface heterogeneity from the 1) radiation shading by clouds, 2) adjusted soil moisture pattern by the rain, 3) spreading cold pool. First, we assess and quantifies the individual cloud effect on the land breeze and the moist convection under the weak wind to simplify the feedback processes. And then, the same set of experiments is repeated under sheared background wind with low level jet, a typical summer time wind pattern at ARM SGP site, to account for more realistic situations. Our goal is to assist answering the question: "Do the sub-grid scale land surface heterogeneity matter for the weather and climate modeling?" This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS- 736011.
NASA Astrophysics Data System (ADS)
Shao, Yaping; Liu, Shaofeng; Schween, Jan H.; Crewell, Susanne
2013-08-01
A model is developed for the large-eddy simulation (LES) of heterogeneous atmosphere and land-surface processes. This couples a LES model with a land-surface scheme. New developments are made to the land-surface scheme to ensure the adequate representation of atmosphere-land-surface transfers on the large-eddy scale. These include, (1) a multi-layer canopy scheme; (2) a method for flux estimates consistent with the large-eddy subgrid closure; and (3) an appropriate soil-layer configuration. The model is then applied to a heterogeneous region with 60-m horizontal resolution and the results are compared with ground-based and airborne measurements. The simulated sensible and latent heat fluxes are found to agree well with the eddy-correlation measurements. Good agreement is also found in the modelled and observed net radiation, ground heat flux, soil temperature and moisture. Based on the model results, we study the patterns of the sensible and latent heat fluxes, how such patterns come into existence, and how large eddies propagate and destroy land-surface signals in the atmosphere. Near the surface, the flux and land-use patterns are found to be closely correlated. In the lower boundary layer, small eddies bearing land-surface signals organize and develop into larger eddies, which carry the signals to considerably higher levels. As a result, the instantaneous flux patterns appear to be unrelated to the land-use patterns, but on average, the correlation between them is significant and persistent up to about 650 m. For a given land-surface type, the scatter of the fluxes amounts to several hundred W { m }^{-2}, due to (1) large-eddy randomness; (2) rapid large-eddy and surface feedback; and (3) local advection related to surface heterogeneity.
Geng, Yan; Wang, Yonghui; Yang, Kuo; Wang, Shaopeng; Zeng, Hui; Baumann, Frank; Kuehn, Peter; Scholten, Thomas; He, Jin-Sheng
2012-01-01
The Tibetan Plateau is an essential area to study the potential feedback effects of soils to climate change due to the rapid rise in its air temperature in the past several decades and the large amounts of soil organic carbon (SOC) stocks, particularly in the permafrost. Yet it is one of the most under-investigated regions in soil respiration (Rs) studies. Here, Rs rates were measured at 42 sites in alpine grasslands (including alpine steppes and meadows) along a transect across the Tibetan Plateau during the peak growing season of 2006 and 2007 in order to test whether: (1) belowground biomass (BGB) is most closely related to spatial variation in Rs due to high root biomass density, and (2) soil temperature significantly influences spatial pattern of Rs owing to metabolic limitation from the low temperature in cold, high-altitude ecosystems. The average daily mean Rs of the alpine grasslands at peak growing season was 3.92 µmol CO2 m−2 s−1, ranging from 0.39 to 12.88 µmol CO2 m−2 s−1, with average daily mean Rs of 2.01 and 5.49 µmol CO2 m−2 s−1 for steppes and meadows, respectively. By regression tree analysis, BGB, aboveground biomass (AGB), SOC, soil moisture (SM), and vegetation type were selected out of 15 variables examined, as the factors influencing large-scale variation in Rs. With a structural equation modelling approach, we found only BGB and SM had direct effects on Rs, while other factors indirectly affecting Rs through BGB or SM. Most (80%) of the variation in Rs could be attributed to the difference in BGB among sites. BGB and SM together accounted for the majority (82%) of spatial patterns of Rs. Our results only support the first hypothesis, suggesting that models incorporating BGB and SM can improve Rs estimation at regional scale. PMID:22509373
High density circuit technology, part 2
NASA Technical Reports Server (NTRS)
Wade, T. E.
1982-01-01
A multilevel metal interconnection system for very large scale integration (VLSI) systems utilizing polyimides as the interlayer dielectric material is described. A complete characterization of polyimide materials is given as well as experimental methods accomplished using a double level metal test pattern. A low temperature, double exposure polyimide patterning procedure is also presented.
Stocking rate effects on spatial heterogeneity in vegetation cover in a grazing-resistant grassland
USDA-ARS?s Scientific Manuscript database
Spatial patterns in rangeland vegetation serve as indicators of rangeland condition and are an important component of wildlife habitat. We illustrate the use of very-large-scale aerial photography (VLSA) to quantify spatial patterns in bare soil of the northeastern Colorado shortgrass steppe. Using ...
Grazing intensity and spatial heterogeneity in bare soil in a grazing-resistant grassland
USDA-ARS?s Scientific Manuscript database
Spatial patterns in rangeland vegetation serve as indicators of rangeland condition and are an important component of wildlife habitat. We illustrate the use of very-large-scale aerial photography (VLSA) to quantify spatial patterns in bare soil of the northeastern Colorado shortgrass steppe. Using ...
Correlation between large-scale atmospheric fields and the olive pollen season in Central Italy
NASA Astrophysics Data System (ADS)
Avolio, E.; Pasqualoni, L.; Federico, S.; Fornaciari, M.; Bonofiglio, T.; Orlandi, F.; Bellecci, C.; Romano, B.
2008-11-01
Olives are one of the largest crops in the Mediterranean and in central and southern Italy. This work investigates the correlation of the Olea europaea L. pollen season in Perugia, the capital city of the region of Umbria in central Italy, with atmospheric parameters. The aim of the study is twofold. First, we study the correlation between the pollen season and the surface air temperature of the spring and late spring in Perugia. Second, the correlation between the pollen season and large-scale atmospheric patterns is investigated. The average surface temperature in the spring and late spring has a clear impact on the pollen season in Perugia. Years with higher average temperatures have an earlier onset of the pollen season. In particular, a 1°C higher (lower) average surface temperature corresponds to an earlier (later) start of the pollen season of about 1 week. The correlation between the pollen season and large-scale atmospheric patterns of sea level pressure and 500-hPa geopotential height shows that the cyclonic activity in the Mediterranean is unequivocally tied to the pollen season in Perugia. A larger than average cyclonic activity in the Mediterranean Basin corresponds to a later than average pollen season. Larger than average cyclonic activity in Northern Europe and Siberia corresponds to an earlier than average pollen season. A possible explanation of this correlation, that needs further investigation to be proven, is given. These results can have a practical application by using the seasonal forecast of atmospheric general circulation models.
Measurement of Thunderstorm Cloud-Top Parameters Using High-Frequency Satellite Imagery
1978-01-01
short wave was present well to the south of this system approximately 2000 ka west of Baja California. Two distinct flow patterns were present, one...view can be observed in near real time whereas radar observations, although excellent for local purposes, involve substantial errors when composited...on a large scale. The time delay in such large scale compositing is critical when attempting to monitor convective cloud systems for a potential
NASA Astrophysics Data System (ADS)
Giese, M.; Reimann, T.; Bailly-Comte, V.; Maréchal, J.-C.; Sauter, M.; Geyer, T.
2018-03-01
Due to the duality in terms of (1) the groundwater flow field and (2) the discharge conditions, flow patterns of karst aquifer systems are complex. Estimated aquifer parameters may differ by several orders of magnitude from local (borehole) to regional (catchment) scale because of the large contrast in hydraulic parameters between matrix and conduit, their heterogeneity and anisotropy. One approach to deal with the scale effect problem in the estimation of hydraulic parameters of karst aquifers is the application of large-scale experiments such as long-term high-abstraction conduit pumping tests, stimulating measurable groundwater drawdown in both, the karst conduit system as well as the fractured matrix. The numerical discrete conduit-continuum modeling approach MODFLOW-2005 Conduit Flow Process Mode 1 (CFPM1) is employed to simulate laminar and nonlaminar conduit flow, induced by large-scale experiments, in combination with Darcian matrix flow. Effects of large-scale experiments were simulated for idealized settings. Subsequently, diagnostic plots and analyses of different fluxes are applied to interpret differences in the simulated conduit drawdown and general flow patterns. The main focus is set on the question to which extent different conduit flow regimes will affect the drawdown in conduit and matrix depending on the hydraulic properties of the conduit system, i.e., conduit diameter and relative roughness. In this context, CFPM1 is applied to investigate the importance of considering turbulent conditions for the simulation of karst conduit flow. This work quantifies the relative error that results from assuming laminar conduit flow for the interpretation of a synthetic large-scale pumping test in karst.
NASA Astrophysics Data System (ADS)
Wang, Weijian; Guo, Shu-Yuan; Wang, Zhi-Gang
2016-04-01
In this paper, we study the cofactor 2 zero neutrino mass matrices with the Fritzsch-type structure in charged lepton mass matrix (CLMM). In the numerical analysis, we perform a scan over the parameter space of all the 15 possible patterns to get a large sample of viable scattering points. Among the 15 possible patterns, three of them can accommodate the latest lepton mixing and neutrino mass data. We compare the predictions of the allowed patterns with their counterparts with diagonal CLMM. In this case, the severe cosmology bound on the neutrino mass set a strong constraint on the parameter space, rendering two patterns only marginally allowed. The Fritzsch-type CLMM will have impact on the viable parameter space and give rise to different phenomenological predictions. Each allowed pattern predicts the strong correlations between physical variables, which is essential for model selection and can be probed in future experiments. It is found that under the no-diagonal CLMM, the cofactor zeros structure in neutrino mass matrix is unstable as the running of renormalization group (RG) from seesaw scale to the electroweak scale. A way out of the problem is to propose the flavor symmetry under the models with a TeV seesaw scale. The inverse seesaw model and a loop-induced model are given as two examples.
Probing Intrinsic Resting-State Networks in the Infant Rat Brain
Bajic, Dusica; Craig, Michael M.; Borsook, David; Becerra, Lino
2016-01-01
Resting-state functional magnetic resonance imaging (rs-fMRI) measures spontaneous fluctuations in blood oxygenation level-dependent (BOLD) signal in the absence of external stimuli. It has become a powerful tool for mapping large-scale brain networks in humans and animal models. Several rs-fMRI studies have been conducted in anesthetized and awake adult rats, reporting consistent patterns of brain activity at the systems level. However, the evolution to adult patterns of resting-state activity has not yet been evaluated and quantified in the developing rat brain. In this study, we hypothesized that large-scale intrinsic networks would be easily detectable but not fully established as specific patterns of activity in lightly anesthetized 2-week-old rats (N = 11). Independent component analysis (ICA) identified 8 networks in 2-week-old-rats. These included Default mode, Sensory (Exteroceptive), Salience (Interoceptive), Basal Ganglia-Thalamic-Hippocampal, Basal Ganglia, Autonomic, Cerebellar, as well as Thalamic-Brainstem networks. Many of these networks consisted of more than one component, possibly indicative of immature, underdeveloped networks at this early time point. Except for the Autonomic network, infant rat networks showed reduced connectivity with subcortical structures in comparison to previously published adult networks. Reported slow fluctuations in the BOLD signal that correspond to functionally relevant resting-state networks in 2-week-old rats can serve as an important tool for future studies of brain development in the settings of different pharmacological applications or disease. PMID:27803653
Dynamical origin of complex motor patterns
NASA Astrophysics Data System (ADS)
Alonso, L. M.; Alliende, J. A.; Mindlin, G. B.
2010-11-01
Behavior emerges as the nervous system generates motor patterns in charge of driving a peripheral biomechanical device. For several cases in the animal kingdom, it has been identified that the motor patterns used in order to accomplish a diversity of tasks are the different solutions of a simple, low dimensional nonlinear dynamical system. Yet, motor patterns emerge from the interaction of an enormous number of individual dynamical units. In this work, we study the dynamics of the average activity of a large set of coupled excitable units which are periodically forced. We show that low dimensional, yet non trivial dynamics emerges. As a case study, we analyze the air sac pressure patterns used by domestic canaries during song, which consists of a succession of repetitions of different syllable types. We show that the pressure patterns used to generate different syllables can be approximated by the solutions of the investigated model. In this way, we are capable of integrating different description scales of our problem.
Torné-Noguera, Anna; Rodrigo, Anselm; Arnan, Xavier; Osorio, Sergio; Barril-Graells, Helena; da Rocha-Filho, Léo Correia; Bosch, Jordi
2014-01-01
Understanding biodiversity distribution is a primary goal of community ecology. At a landscape scale, bee communities are affected by habitat composition, anthropogenic land use, and fragmentation. However, little information is available on local-scale spatial distribution of bee communities within habitats that are uniform at the landscape scale. We studied a bee community along with floral and nesting resources over a 32 km2 area of uninterrupted Mediterranean scrubland. Our objectives were (i) to analyze floral and nesting resource composition at the habitat scale. We ask whether these resources follow a geographical pattern across the scrubland at bee-foraging relevant distances; (ii) to analyze the distribution of bee composition across the scrubland. Bees being highly mobile organisms, we ask whether bee composition shows a homogeneous distribution or else varies spatially. If so, we ask whether this variation is irregular or follows a geographical pattern and whether bees respond primarily to flower or to nesting resources; and (iii) to establish whether body size influences the response to local resource availability and ultimately spatial distribution. We obtained 6580 specimens belonging to 98 species. Despite bee mobility and the absence of environmental barriers, our bee community shows a clear geographical pattern. This pattern is mostly attributable to heterogeneous distribution of small (<55 mg) species (with presumed smaller foraging ranges), and is mostly explained by flower resources rather than nesting substrates. Even then, a large proportion (54.8%) of spatial variability remains unexplained by flower or nesting resources. We conclude that bee communities are strongly conditioned by local effects and may exhibit spatial heterogeneity patterns at a scale as low as 500–1000 m in patches of homogeneous habitat. These results have important implications for local pollination dynamics and spatial variation of plant-pollinator networks. PMID:24824445
Torné-Noguera, Anna; Rodrigo, Anselm; Arnan, Xavier; Osorio, Sergio; Barril-Graells, Helena; da Rocha-Filho, Léo Correia; Bosch, Jordi
2014-01-01
Understanding biodiversity distribution is a primary goal of community ecology. At a landscape scale, bee communities are affected by habitat composition, anthropogenic land use, and fragmentation. However, little information is available on local-scale spatial distribution of bee communities within habitats that are uniform at the landscape scale. We studied a bee community along with floral and nesting resources over a 32 km2 area of uninterrupted Mediterranean scrubland. Our objectives were (i) to analyze floral and nesting resource composition at the habitat scale. We ask whether these resources follow a geographical pattern across the scrubland at bee-foraging relevant distances; (ii) to analyze the distribution of bee composition across the scrubland. Bees being highly mobile organisms, we ask whether bee composition shows a homogeneous distribution or else varies spatially. If so, we ask whether this variation is irregular or follows a geographical pattern and whether bees respond primarily to flower or to nesting resources; and (iii) to establish whether body size influences the response to local resource availability and ultimately spatial distribution. We obtained 6580 specimens belonging to 98 species. Despite bee mobility and the absence of environmental barriers, our bee community shows a clear geographical pattern. This pattern is mostly attributable to heterogeneous distribution of small (<55 mg) species (with presumed smaller foraging ranges), and is mostly explained by flower resources rather than nesting substrates. Even then, a large proportion (54.8%) of spatial variability remains unexplained by flower or nesting resources. We conclude that bee communities are strongly conditioned by local effects and may exhibit spatial heterogeneity patterns at a scale as low as 500-1000 m in patches of homogeneous habitat. These results have important implications for local pollination dynamics and spatial variation of plant-pollinator networks.
Hadrava, Jiří; Albrecht, Tomáš; Tryjanowski, Piotr
2018-01-01
Birds sitting or feeding on live large African herbivorous mammals are a visible, yet quite neglected, type of commensalistic–mutualistic association. Here, we investigate general patterns in such relationships at large spatial and taxonomic scales. To obtain large-scale data, an extensive internet-based search for photos was carried out on Google Images. To characterize patterns of the structural organization of commensalistic–mutualistic associations between African birds and herbivorous mammals, we used a network analysis approach. We then employed phylogenetically-informed comparative analysis to explore whether features of bird visitation of mammals, i.e., their mean number, mass and species richness per mammal species, are shaped by a combination of host mammal (body mass and herd size) and environmental (habitat openness) characteristics. We found that the association web structure was only weakly nested for commensalistic as well as for mutualistic birds (oxpeckers Buphagus spp.) and African mammals. Moreover, except for oxpeckers, nestedness did not differ significantly from a null model indicating that birds do not prefer mammal species which are visited by a large number of bird species. In oxpeckers, however, a nested structure suggests a non-random assignment of birds to their mammal hosts. We also identified some new or rare associations between birds and mammals, but we failed to find several previously described associations. Furthermore, we found that mammal body mass positively influenced the number and mass of birds observed sitting on them in the full set of species (i.e., taking oxpeckers together with other bird species). We also found a positive correlation between mammal body mass and mass of non-oxpecker species as well as oxpeckers. Mammal herd size was associated with a higher mass of birds in the full set of species as well as in non-oxpecker species, and mammal species living in larger herds also attracted more bird species in the full set of species. Habitat openness influenced the mass of birds sitting on mammals as well as the number of species recorded sitting on mammals in the full set of species. In non-oxpecker species habitat openness was correlated with the bird number, mass and species richness. Our results provide evidence that patterns of bird–mammal associations can be linked to mammal and environmental characteristics and highlight the potential role of information technologies and new media in further studies of ecology and evolution. However, further study is needed to get a proper insight into the biological and methodological processes underlying the observed patterns. PMID:29576981
Etherington, L.L.; Eggleston, D.B.
2003-01-01
We assessed determinants and consequences of multistage dispersal on spatial recruitment of the blue crab, Callinectes sapidus, within the Croatan, Albemarle, Pamlico Estuarine System (CAPES), North Carolina, U.S.A. Large-scale sampling of early juvenile crabs over 4 years indicated that spatial abundance patterns were size-dependent and resulted from primary post-larval dispersal (pre-settlement) and secondary juvenile dispersal (early post-settlement). In general, primary dispersal led to high abundances within more seaward habitats, whereas secondary dispersal (which was relatively consistent) expanded the distribution of juveniles, potentially increasing the estuarine nursery capacity. There were strong relationships between juvenile crab density and specific wind characteristics; however, these patterns were spatially explicit. Various physical processes (e.g., seasonal wind events, timing and magnitude of tropical cyclones) interacted to influence dispersal during multiple stages and determined crab recruitment patterns. Our results suggest that the nursery value of different habitats is highly dependent on the dispersal potential (primary and secondary dispersal) to and from these areas, which is largely determined by the relative position of habitats within the estuarine landscape.
Metal stack optimization for low-power and high-density for N7-N5
NASA Astrophysics Data System (ADS)
Raghavan, P.; Firouzi, F.; Matti, L.; Debacker, P.; Baert, R.; Sherazi, S. M. Y.; Trivkovic, D.; Gerousis, V.; Dusa, M.; Ryckaert, J.; Tokei, Z.; Verkest, D.; McIntyre, G.; Ronse, K.
2016-03-01
One of the key challenges while scaling logic down to N7 and N5 is the requirement of self-aligned multiple patterning for the metal stack. This comes with a large cost of the backend cost and therefore a careful stack optimization is required. Various layers in the stack have different purposes and therefore their choice of pitch and number of layers is critical. Furthermore, when in ultra scaled dimensions of N7 or N5, the number of patterning options are also much larger ranging from multiple LE, EUV to SADP/SAQP. The right choice of these are also needed patterning techniques that use a full grating of wires like SADP/SAQP techniques introduce high level of metal dummies into the design. This implies a large capacitance penalty to the design therefore having large performance and power penalties. This is often mitigated with extra masking strategies. This paper discusses a holistic view of metal stack optimization from standard cell level all the way to routing and the corresponding trade-off that exist for this space.
[Development and application of morphological analysis method in Aspergillus niger fermentation].
Tang, Wenjun; Xia, Jianye; Chu, Ju; Zhuang, Yingping; Zhang, Siliang
2015-02-01
Filamentous fungi are widely used in industrial fermentation. Particular fungal morphology acts as a critical index for a successful fermentation. To break the bottleneck of morphological analysis, we have developed a reliable method for fungal morphological analysis. By this method, we can prepare hundreds of pellet samples simultaneously and obtain quantitative morphological information at large scale quickly. This method can largely increase the accuracy and reliability of morphological analysis result. Based on that, the studies of Aspergillus niger morphology under different oxygen supply conditions and shear rate conditions were carried out. As a result, the morphological responding patterns of A. niger morphology to these conditions were quantitatively demonstrated, which laid a solid foundation for the further scale-up.
Robustness of serial clustering of extra-tropical cyclones to the choice of tracking method
NASA Astrophysics Data System (ADS)
Pinto, Joaquim G.; Ulbrich, Sven; Karremann, Melanie K.; Stephenson, David B.; Economou, Theodoros; Shaffrey, Len C.
2016-04-01
Cyclone families are a frequent synoptic weather feature in the Euro-Atlantic area in winter. Given appropriate large-scale conditions, the occurrence of such series (clusters) of storms may lead to large socio-economic impacts and cumulative losses. Recent studies analyzing Reanalysis data using single cyclone tracking methods have shown that serial clustering of cyclones occurs on both flanks and downstream regions of the North Atlantic storm track. This study explores the sensitivity of serial clustering to the choice of tracking method. With this aim, the IMILAST cyclone track database based on ERA-interim data is analysed. Clustering is estimated by the dispersion (ratio of variance to mean) of winter (DJF) cyclones passages near each grid point over the Euro-Atlantic area. Results indicate that while the general pattern of clustering is identified for all methods, there are considerable differences in detail. This can primarily be attributed to the differences in the variance of cyclone counts between the methods, which range up to one order of magnitude. Nevertheless, clustering over the Eastern North Atlantic and Western Europe can be identified for all methods and can thus be generally considered as a robust feature. The statistical links between large-scale patterns like the NAO and clustering are obtained for all methods, though with different magnitudes. We conclude that the occurrence of cyclone clustering over the Eastern North Atlantic and Western Europe is largely independent from the choice of tracking method and hence from the definition of a cyclone.
Hu, Hang-Wei; Wang, Jun-Tao; Singh, Brajesh K; Liu, Yu-Rong; Chen, Yong-Liang; Zhang, Yu-Jing; He, Ji-Zheng
2018-04-24
Antibiotic resistance is ancient and prevalent in natural ecosystems and evolved long before the utilization of synthetic antibiotics started, but factors influencing the large-scale distribution patterns of natural antibiotic resistance genes (ARGs) remain largely unknown. Here, a large-scale investigation over 4000 km was performed to profile soil ARGs, plant communities and bacterial communities from 300 quadrats across five forest biomes with minimal human impact. We detected diverse and abundant ARGs in forests, including over 160 genes conferring resistance to eight major categories of antibiotics. The diversity of ARGs was strongly and positively correlated with the diversity of bacteria, herbaceous plants and mobile genetic elements (MGEs). The ARG composition was strongly correlated with the taxonomic structure of bacteria and herbs. Consistent with this strong correlation, structural equation modelling demonstrated that the positive effects of bacterial and herb communities on ARG patterns were maintained even when simultaneously accounting for multiple drivers (climate, spatial predictors and edaphic factors). These findings suggest a paradigm that the interactions between aboveground and belowground communities shape the large-scale distribution of soil resistomes, providing new knowledge for tackling the emerging environmental antibiotic resistance. © 2018 Society for Applied Microbiology and John Wiley & Sons Ltd.
ERIC Educational Resources Information Center
Smith, Nathaniel J.
2011-01-01
This dissertation contains several projects, each addressing different questions with different techniques. In chapter 1, I argue that they are unified thematically by their goal of "scaling up psycholinguistics"; they are all aimed at analyzing large data-sets using tools that reveal patterns to propose and test mechanism-neutral hypotheses about…
EPA'S LANDSCAPE SCIENCES RESEARCH: NUTRIENT POLLUTION, FLOODING, AND HABITAT
There is a growing need to understand the pattern of landscape change at regional scales and to determine how such changes affect environmental values. Key to conducting these assessments is the development of land-cover databases that permit large-scale analyses, such as an exam...
Cisternas, D; Scheerens, C; Omari, T; Monrroy, H; Hani, A; Leguizamo, A; Bilder, C; Ditaranto, A; Ruiz de León, A; Pérez de la Serna, J; Valdovinos, M A; Coello, R; Abrahao, L; Remes-Troche, J; Meixueiro, A; Zavala, M A; Marin, I; Serra, J
2017-09-01
Previous studies have not been able to correlate manometry findings with bolus perception. The aim of this study was to evaluate correlation of different variables, including traditional manometric variables (at diagnostic and extreme thresholds), esophageal shortening, bolus transit, automated impedance manometry (AIM) metrics and mood with bolus passage perception in a large cohort of asymptomatic individuals. High resolution manometry (HRM) was performed in healthy individuals from nine centers. Perception was evaluated using a 5-point Likert scale. Anxiety was evaluated using Hospitalized Anxiety and Depression scale (HAD). Subgroup analysis was also performed classifying studies into normal, hypotensive, vigorous, and obstructive patterns. One hundred fifteen studies were analyzed (69 using HRM and 46 using high resolution impedance manometry (HRIM); 3.5% swallows in 9.6% of volunteers were perceived. There was no correlation of any of the traditional HRM variables, esophageal shortening, AIM metrics nor bolus transit with perception scores. There was no HRM variable showing difference in perception when comparing normal vs extreme values (percentile 1 or 99). Anxiety but not depression was correlated with perception. Among hypotensive pattern, anxiety was a strong predictor of variance in perception (R 2 up to .70). Bolus perception is less common than abnormal motility among healthy individuals. Neither esophageal motor function nor bolus dynamics evaluated with several techniques seems to explain differences in bolus perception. Different mechanisms seem to be relevant in different manometric patterns. Anxiety is a significant predictor of bolus perception in the context of hypotensive motility. © 2017 John Wiley & Sons Ltd.
Kim, Taehyong; Dreher, Kate; Nilo-Poyanco, Ricardo; Lee, Insuk; Fiehn, Oliver; Lange, Bernd Markus; Nikolau, Basil J.; Sumner, Lloyd; Welti, Ruth; Wurtele, Eve S.; Rhee, Seung Y.
2015-01-01
Metabolomics enables quantitative evaluation of metabolic changes caused by genetic or environmental perturbations. However, little is known about how perturbing a single gene changes the metabolic system as a whole and which network and functional properties are involved in this response. To answer this question, we investigated the metabolite profiles from 136 mutants with single gene perturbations of functionally diverse Arabidopsis (Arabidopsis thaliana) genes. Fewer than 10 metabolites were changed significantly relative to the wild type in most of the mutants, indicating that the metabolic network was robust to perturbations of single metabolic genes. These changed metabolites were closer to each other in a genome-scale metabolic network than expected by chance, supporting the notion that the genetic perturbations changed the network more locally than globally. Surprisingly, the changed metabolites were close to the perturbed reactions in only 30% of the mutants of the well-characterized genes. To determine the factors that contributed to the distance between the observed metabolic changes and the perturbation site in the network, we examined nine network and functional properties of the perturbed genes. Only the isozyme number affected the distance between the perturbed reactions and changed metabolites. This study revealed patterns of metabolic changes from large-scale gene perturbations and relationships between characteristics of the perturbed genes and metabolic changes. PMID:25670818
Pluess, Andrea R; Frank, Aline; Heiri, Caroline; Lalagüe, Hadrien; Vendramin, Giovanni G; Oddou-Muratorio, Sylvie
2016-04-01
The evolutionary potential of long-lived species, such as forest trees, is fundamental for their local persistence under climate change (CC). Genome-environment association (GEA) analyses reveal if species in heterogeneous environments at the regional scale are under differential selection resulting in populations with potential preadaptation to CC within this area. In 79 natural Fagus sylvatica populations, neutral genetic patterns were characterized using 12 simple sequence repeat (SSR) markers, and genomic variation (144 single nucleotide polymorphisms (SNPs) out of 52 candidate genes) was related to 87 environmental predictors in the latent factor mixed model, logistic regressions and isolation by distance/environmental (IBD/IBE) tests. SSR diversity revealed relatedness at up to 150 m intertree distance but an absence of large-scale spatial genetic structure and IBE. In the GEA analyses, 16 SNPs in 10 genes responded to one or several environmental predictors and IBE, corrected for IBD, was confirmed. The GEA often reflected the proposed gene functions, including indications for adaptation to water availability and temperature. Genomic divergence and the lack of large-scale neutral genetic patterns suggest that gene flow allows the spread of advantageous alleles in adaptive genes. Thereby, adaptation processes are likely to take place in species occurring in heterogeneous environments, which might reduce their regional extinction risk under CC. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
Gravity versus radiation models: on the importance of scale and heterogeneity in commuting flows.
Masucci, A Paolo; Serras, Joan; Johansson, Anders; Batty, Michael
2013-08-01
We test the recently introduced radiation model against the gravity model for the system composed of England and Wales, both for commuting patterns and for public transportation flows. The analysis is performed both at macroscopic scales, i.e., at the national scale, and at microscopic scales, i.e., at the city level. It is shown that the thermodynamic limit assumption for the original radiation model significantly underestimates the commuting flows for large cities. We then generalize the radiation model, introducing the correct normalization factor for finite systems. We show that even if the gravity model has a better overall performance the parameter-free radiation model gives competitive results, especially for large scales.
Mark W. Chynoweth; Christopher A. Lepczyk; Creighton M. Litton; Steven C. Hess; James R. Kellner; Susan Cordell; Lalit Kumar
2015-01-01
Advances in wildlife telemetry and remote sensing technology facilitate studies of broad-scale movements of ungulates in relation to phenological shifts in vegetation. In tropical island dry landscapes, home range use and movements of non-native feral goats (Capra hircus) are largely unknown, yet this information is important to help guide the...
Ecological effects of variable retention harvests in the northwestern United States: the DEMO study.
Keith B. Aubry; Charles B. Halpern; Douglas A. Maguire
2004-01-01
The retention of trees in harvest units is an integral part of forest management practices on federal lands in the northwestern United States (U.S.), yet the ecological benefits that result from various levels or patterns of retained trees remain speculative. Large scale and long term silviculture experiments are needed to evaluate the effects of alternative forest...
ERIC Educational Resources Information Center
Burt, S. Alexandra
2010-01-01
A recent large-scale meta-analysis of twin and adoption studies indicated that shared environmental influences make important contributions to most forms of child and adolescent psychopathology (Burt, 2009b). The sole exception to this robust pattern of results was observed for attention-deficit/hyperactivity disorder (ADHD), which appeared to be…
Kellie A. Uyeda; Douglas A. Stow; Dar A. Roberts; Philip J. Riggan
2017-01-01
Multi-temporal satellite imagery can provide valuable information on the patterns of vegetation growth over large spatial extents and long time periods, but corresponding ground-referenced biomass information is often difficult to acquire, especially at an annual scale. In this study, we test the relationship between annual biomass estimated using shrub growth rings...
Martin P. Schilling; Paul G. Wolf; Aaron M. Duffy; Hardeep S. Rai; Carol A. Rowe; Bryce A. Richardson; Karen E. Mock
2014-01-01
Continuing advances in nucleotide sequencing technology are inspiring a suite of genomic approaches in studies of natural populations. Researchers are faced with data management and analytical scales that are increasing by orders of magnitude. With such dramatic advances comes a need to understand biases and error rates, which can be propagated and magnified in large-...
Effects of Spatial Structure on Movement Patterns of the Hispid Cotton Rat
David R. Bowne; John D. Peles; Gary W. Barrett
1999-01-01
A large-scale experimental landscape study was conducted to examine the use of corridors and the forest matrix habitat by the hispid cotton rat (Sigmodon hispidus). The role of micro-habitat selection by S. hispidus in influencing routes of movement was also investigated. The experimental landscape consisted of ten 1.64-ha patches (each 128 x...
Peter T. Wolter; Philip A. Townsend; Brian R. Sturtevant; Clayton C. Kingdon
2008-01-01
Insects and disease affect large areas of forest in the U.S. and Canada. Understanding ecosystem impacts of such disturbances requires knowledge of host species distribution patterns on the landscape. In this study, we mapped the distribution and abundance of host species for the spruce budworm (Choristoneura fumiferana) to facilitate landscape scale...
W.L. Silver; S.J. Hall; Grizelle Gonzalez
2014-01-01
Humid tropical forests have the highest rates of litterfall production globally, which fuels rapid nutrient recycling and high net ecosystem production. Severe storm events significantly alter patterns in litterfall mass and nutrient dynamics through a combination of canopy disturbance and litter deposition. In this study, we used a large-scale long-term manipulation...
Christopher Potter; Tan Pang-Ning; Vipin Kumar; Chris Kucharik; Steven Klooster; Vanessa Genovese; Warren Cohen; Sean Healey
2005-01-01
Ecosystem structure and function are strongly affected by disturbance events, many of which in North America are associated with seasonal temperature extremes, wildfires, and tropical storms. This study was conducted to evaluate patterns in a 19-year record of global satellite observations of vegetation phenology from the advanced very high resolution radiometer (AVHRR...
Azmy, Muna Maryam; Hashim, Mazlan; Numata, Shinya; Hosaka, Tetsuro; Noor, Nur Supardi Md.; Fletcher, Christine
2016-01-01
General flowering (GF) is a unique phenomenon wherein, at irregular intervals, taxonomically diverse trees in Southeast Asian dipterocarp forests synchronize their reproduction at the community level. Triggers of GF, including drought and low minimum temperatures a few months previously has been limitedly observed across large regional scales due to lack of meteorological stations. Here, we aim to identify the climatic conditions that trigger large-scale GF in Peninsular Malaysia using satellite sensors, Tropical Rainfall Measuring Mission (TRMM) and Moderate Resolution Imaging Spectroradiometer (MODIS), to evaluate the climatic conditions of focal forests. We observed antecedent drought, low temperature and high photosynthetic radiation conditions before large-scale GF events, suggesting that large-scale GF events could be triggered by these factors. In contrast, we found higher-magnitude GF in forests where lower precipitation preceded large-scale GF events. GF magnitude was also negatively influenced by land surface temperature (LST) for a large-scale GF event. Therefore, we suggest that spatial extent of drought may be related to that of GF forests, and that the spatial pattern of LST may be related to that of GF occurrence. With significant new findings and other results that were consistent with previous research we clarified complicated environmental correlates with the GF phenomenon. PMID:27561887
Azmy, Muna Maryam; Hashim, Mazlan; Numata, Shinya; Hosaka, Tetsuro; Noor, Nur Supardi Md; Fletcher, Christine
2016-08-26
General flowering (GF) is a unique phenomenon wherein, at irregular intervals, taxonomically diverse trees in Southeast Asian dipterocarp forests synchronize their reproduction at the community level. Triggers of GF, including drought and low minimum temperatures a few months previously has been limitedly observed across large regional scales due to lack of meteorological stations. Here, we aim to identify the climatic conditions that trigger large-scale GF in Peninsular Malaysia using satellite sensors, Tropical Rainfall Measuring Mission (TRMM) and Moderate Resolution Imaging Spectroradiometer (MODIS), to evaluate the climatic conditions of focal forests. We observed antecedent drought, low temperature and high photosynthetic radiation conditions before large-scale GF events, suggesting that large-scale GF events could be triggered by these factors. In contrast, we found higher-magnitude GF in forests where lower precipitation preceded large-scale GF events. GF magnitude was also negatively influenced by land surface temperature (LST) for a large-scale GF event. Therefore, we suggest that spatial extent of drought may be related to that of GF forests, and that the spatial pattern of LST may be related to that of GF occurrence. With significant new findings and other results that were consistent with previous research we clarified complicated environmental correlates with the GF phenomenon.
NASA Astrophysics Data System (ADS)
Aldea, Cristian; Olabarria, Celia; Troncoso, Jesús S.
2008-03-01
Depth-related zonation and diversity patterns are important topics in the study of deep-sea fauna, at both species and assemblage levels. These patterns may be attributed to complex and combined physical and/or biological factors. The lack of information about the West Antarctic deep sea is an important handicap to understanding the global-scale benthic diversity patterns. Detailed studies of the bathymetric distributions and diversity of deep-sea species in the Antarctic are needed to elucidate the factors contributing to global-scale benthic patterns. This study, based on a large data set, examined the bathymetric distribution, patterns of zonation and diversity-depth trends of gastropods and bivalves in West Antarctica, from the South Shetland Islands to the Bellingshausen Sea, a very poorly known area. A total of 647 individuals of gastropods belonging to 82 species and a total of 2934 individuals of bivalves belonging to 52 species were collected. Most gastropods showed discrete depth distributions, whereas most bivalves showed broader depth ranges. Replacement of species with depth was more gradual for bivalves than gastropods. Nevertheless, three bathymetric boundaries could be recognized: (1) a continental shelf zone from 0 to 400 m with a gradual rate of succession, (2) an upper slope zone from 400 to 800 m and (3) a lower slope zone from 800 to 2000 m, extending to 3300 m for bivalves. Diversity patterns were complex for both groups with no significant trends with depth.
Remote sensing of physiographic soil units of Bennett County, South Dakota
NASA Technical Reports Server (NTRS)
Frazee, C. J.; Gropper, J. L.; Westin, F. C.
1973-01-01
A study was conducted in Bennett County, South Dakota, to establish a rangeland test site for evaluating the usefulness of ERTS data for mapping soil resources in rangeland areas. Photographic imagery obtained in October, 1970, was analyzed to determine which type of imagery is best for mapping drainage and land use patterns. Imagery of scales ranging from 1:1,000,000 to 1.20,000 was used to delineate soil-vegetative physiographic units. The photo characteristics used to define physiographic units were texture, drainage pattern, tone pattern, land use pattern and tone. These units will be used as test data for evaluating ERTS data. The physiographic units were categorized into a land classification system. The various categories which were delineated at the different scales of imagery were designed to be useful for different levels of land use planning. The land systems are adequate only for planning of large areas for general uses. The lowest category separated was the facet. The facets have a definite soil composition and represent different soil landscapes. These units are thought to be useful for providing natural resource information needed for local planning.
The Future of Wind Energy in California: Future Projections in Variable-Resolution CESM
NASA Astrophysics Data System (ADS)
Wang, M.; Ullrich, P. A.; Millstein, D.; Collier, C.
2017-12-01
This study focuses on the wind energy characterization and future projection at five primary wind turbine sites in California. Historical (1980-2000) and mid-century (2030-2050) simulations were produced using the Variable-Resolution Community Earth System Model (VR-CESM) to analyze the trends and variations in wind energy under climate change. Datasets from Det Norske Veritas Germanischer Llyod (DNV GL), MERRA-2, CFSR, NARR, as well as surface observational data were used for model validation and comparison. Significant seasonal wind speed changes under RCP8.5 were detected from several wind farm sites. Large-scale patterns were then investigated to analyze the synoptic-scale impact on localized wind change. The agglomerative clustering method was applied to analyze and group different wind patterns. The associated meteorological background of each cluster was investigated to analyze the drivers of different wind patterns. This study improves the characterization of uncertainty around the magnitude and variability in space and time of California's wind resources in the near future, and also enhances understanding of the physical mechanisms related to the trends in wind resource variability.
Grotjahn, Richard; Black, Robert; Leung, Ruby; ...
2015-05-22
This paper reviews research approaches and open questions regarding data, statistical analyses, dynamics, modeling efforts, and trends in relation to temperature extremes. Our specific focus is upon extreme events of short duration (roughly less than 5 days) that affect parts of North America. These events are associated with large scale meteorological patterns (LSMPs). Methods used to define extreme events statistics and to identify and connect LSMPs to extreme temperatures are presented. Recent advances in statistical techniques can connect LSMPs to extreme temperatures through appropriately defined covariates that supplements more straightforward analyses. A wide array of LSMPs, ranging from synoptic tomore » planetary scale phenomena, have been implicated as contributors to extreme temperature events. Current knowledge about the physical nature of these contributions and the dynamical mechanisms leading to the implicated LSMPs is incomplete. There is a pressing need for (a) systematic study of the physics of LSMPs life cycles and (b) comprehensive model assessment of LSMP-extreme temperature event linkages and LSMP behavior. Generally, climate models capture the observed heat waves and cold air outbreaks with some fidelity. However they overestimate warm wave frequency and underestimate cold air outbreaks frequency, and underestimate the collective influence of low-frequency modes on temperature extremes. Climate models have been used to investigate past changes and project future trends in extreme temperatures. Overall, modeling studies have identified important mechanisms such as the effects of large-scale circulation anomalies and land-atmosphere interactions on changes in extreme temperatures. However, few studies have examined changes in LSMPs more specifically to understand the role of LSMPs on past and future extreme temperature changes. Even though LSMPs are resolvable by global and regional climate models, they are not necessarily well simulated so more research is needed to understand the limitations of climate models and improve model skill in simulating extreme temperatures and their associated LSMPs. Furthermore, the paper concludes with unresolved issues and research questions.« less
NASA Astrophysics Data System (ADS)
Torgersen, C. E.; Fullerton, A.; Lawler, J. J.; Ebersole, J. L.; Leibowitz, S. G.; Steel, E. A.; Beechie, T. J.; Faux, R.
2016-12-01
Understanding spatial patterns in water temperature will be essential for evaluating vulnerability of aquatic biota to future climate and for identifying and protecting diverse thermal habitats. We used high-resolution remotely sensed water temperature data for over 16,000 km of 2nd to 7th-order rivers throughout the Pacific Northwest and California to evaluate spatial patterns of summertime water temperature at multiple spatial scales. We found a diverse and geographically distributed suite of whole-river patterns. About half of rivers warmed asymptotically in a downstream direction, whereas the rest exhibited complex and unique spatial patterns. Patterns were associated with both broad-scale hydroclimatic variables as well as characteristics unique to each basin. Within-river thermal heterogeneity patterns were highly river-specific; across rivers, median size and spacing of cool patches <15 °C were around 250 m. Patches of this size are large enough for juvenile salmon rearing and for resting during migration, and the distance between patches is well within the movement capabilities of both juvenile and adult salmon. We found considerable thermal heterogeneity at fine spatial scales that may be important to fish that would be missed if data were analyzed at coarser scales. We estimated future thermal heterogeneity and concluded that climate change will cause warmer temperatures overall, but that thermal heterogeneity patterns may remain similar in the future for many rivers. We demonstrated considerable spatial complexity in both current and future water temperature, and resolved spatial patterns that could not have been perceived without spatially continuous data.
NASA Astrophysics Data System (ADS)
Duro, Javier; Iglesias, Rubén; Blanco, Pablo; Albiol, David; Koudogbo, Fifamè
2015-04-01
The Wide Area Product (WAP) is a new interferometric product developed to provide measurement over large regions. Persistent Scatterers Interferometry (PSI) has largely proved their robust and precise performance in measuring ground surface deformation in different application domains. In this context, however, the accurate displacement estimation over large-scale areas (more than 10.000 km2) characterized by low magnitude motion gradients (3-5 mm/year), such as the ones induced by inter-seismic or Earth tidal effects, still remains an open issue. The main reason for that is the inclusion of low quality and more distant persistent scatterers in order to bridge low-quality areas, such as water bodies, crop areas and forested regions. This fact yields to spatial propagation errors on PSI integration process, poor estimation and compensation of the Atmospheric Phase Screen (APS) and the difficult to face residual long-wavelength phase patterns originated by orbit state vectors inaccuracies. Research work for generating a Wide Area Product of ground motion in preparation for the Sentinel-1 mission has been conducted in the last stages of Terrafirma as well as in other research programs. These developments propose technological updates for keeping the precision over large scale PSI analysis. Some of the updates are based on the use of external information, like meteorological models, and the employment of GNSS data for an improved calibration of large measurements. Usually, covering wide regions implies the processing over areas with a land use which is chiefly focused on livestock, horticulture, urbanization and forest. This represents an important challenge for providing continuous InSAR measurements and the application of advanced phase filtering strategies to enhance the coherence. The advanced PSI processing has been performed out over several areas, allowing a large scale analysis of tectonic patterns, and motion caused by multi-hazards as volcanic, landslide and flood. Several examples of the application of the PSI WAP to wide regions for measuring ground displacements related to different types of hazards, natural and human induced will be presented. The InSAR processing approach to measure accurate movements at local and large scales for allowing multi-hazard interpretation studies will also be discussed. The test areas will show deformations related to active faults systems, landslides in mountains slopes, ground compaction over underneath aquifers and movements in volcanic areas.
NASA Astrophysics Data System (ADS)
Zhuang, Yuanhuang; Zhang, Jingyong; Wang, Lin
2018-05-01
Cold temperature anomalies and extremes have profound effects on the society, the economy, and the environment of northeastern China (NEC). In this study, we define the cold season as the months from October to April, and investigate the variability of cold season surface air temperature (CSAT) over NEC and its relationships with large-scale atmospheric circulation patterns for the period 1981-2014. The empirical orthogonal function (EOF) analysis shows that the first EOF mode of the CSAT over NEC is characterized by a homogeneous structure that describes 92.2% of the total variance. The regionally averaged CSAT over NEC is closely linked with the Arctic Oscillation ( r = 0.62, 99% confidence level) and also has a statistically significant relation with the Polar/Eurasian pattern in the cold season. The positive phases of the Arctic Oscillation and the Polar/Eurasian pattern tend to result in a positive geopotential height anomaly over NEC and a weakened East Asian winter monsoon, which subsequently increase the CSAT over NEC by enhancing the downward solar radiation, strengthening the subsidence warming and warm air advection. Conversely, the negative phases of these two climate indices result in opposite regional atmospheric circulation anomalies and decrease the CSAT over NEC.
Flow Scales of Influence on the Settling Velocities of Particles with Varying Characteristics
Jacobs, Corrine N.; Merchant, Wilmot; Jendrassak, Marek; Limpasuvan, Varavut; Gurka, Roi; Hackett, Erin E.
2016-01-01
The settling velocities of natural, synthetic, and industrial particles were measured in a grid turbulence facility using optical measurement techniques. Particle image velocimetry and 2D particle tracking were used to measure the instantaneous velocities of the flow and the particles’ trajectories simultaneously. We find that for particles examined in this study (Rep = 0.4–123), settling velocity is either enhanced or unchanged relative to stagnant flow for the range of investigated turbulence conditions. The smallest particles’ normalized settling velocities exhibited the most consistent trends when plotted versus the Kolmogorov-based Stokes numbers suggesting that the dissipative scales influence their dynamics. In contrast, the mid-sized particles were better characterized with a Stokes number based on the integral time scale. The largest particles were largely unaffected by the flow conditions. Using proper orthogonal decomposition (POD), the flow pattern scales are compared to particle trajectory curvature to complement results obtained through dimensional analysis using Stokes numbers. The smallest particles are found to have trajectories with curvatures of similar scale as the small flow scales (higher POD modes) whilst mid-sized particle trajectories had curvatures that were similar to the larger flow patterns (lower POD modes). The curvature trajectories of the largest particles did not correspond to any particular flow pattern scale suggesting that their trajectories were more random. These results provide experimental evidence of the “fast tracking” theory of settling velocity enhancement in turbulence and demonstrate that particles align themselves with flow scales in proportion to their size. PMID:27513958
Large-scale recording of neuronal ensembles.
Buzsáki, György
2004-05-01
How does the brain orchestrate perceptions, thoughts and actions from the spiking activity of its neurons? Early single-neuron recording research treated spike pattern variability as noise that needed to be averaged out to reveal the brain's representation of invariant input. Another view is that variability of spikes is centrally coordinated and that this brain-generated ensemble pattern in cortical structures is itself a potential source of cognition. Large-scale recordings from neuronal ensembles now offer the opportunity to test these competing theoretical frameworks. Currently, wire and micro-machined silicon electrode arrays can record from large numbers of neurons and monitor local neural circuits at work. Achieving the full potential of massively parallel neuronal recordings, however, will require further development of the neuron-electrode interface, automated and efficient spike-sorting algorithms for effective isolation and identification of single neurons, and new mathematical insights for the analysis of network properties.
Using NDVI to assess vegetative land cover change in central Puget Sound.
Morawitz, Dana F; Blewett, Tina M; Cohen, Alex; Alberti, Marina
2006-03-01
We used the Normalized Difference Vegetation Index (NDVI) in the rapidly growing Puget Sound region over three 5-year time blocks between 1986-1999 at three spatial scales in 42 Watershed Administrative Units (WAUs) to assess changes in the amounts and patterns of green vegetation. On average, approximately 20% of the area in each WAU experienced significant NDVI change over each 5-year time block. Cumulative NDVI change over 15 years (summing change over each 5-year time block) was an average of approximately 60% of each WAU, but was as high as 100% in some. At the regional scale, seasonal weather patterns and green-up from logging were the primary drivers of observed increases in NDVI values. At the WAU scale, anthropogenic factors were important drivers of both positive and negative NDVI change. For example, population density was highly correlated with negative NDVI change over 15 years (r = 0.66, P < 0.01), as was road density (r = 0.71, P < 0.01). At the smallest scale (within 3 case study WAUs) land use differences such as preserving versus harvesting forest lands drove vegetation change. We conclude that large areas within most watersheds are continually and heavily impacted by the high levels of human use and development over short time periods. Our results indicate that varying patterns and processes can be detected at multiple scales using changes in NDVIa values.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hong, Sung Ju; Park, Min; Kang, Hojin
We report the fabrication of a patterned polymer electrolyte for a two-dimensional (2D) semiconductor, few-layer tungsten diselenide (WSe{sub 2}) field-effect transistor (FET). We expose an electron-beam in a desirable region to form the patterned structure. The WSe{sub 2} FET acts as a p-type semiconductor in both bare and polymer-covered devices. We observe a highly efficient gating effect in the polymer-patterned device with independent gate control. The patterned polymer gate operates successfully in a molybdenum disulfide (MoS{sub 2}) FET, indicating the potential for general applications to 2D semiconductors. The results of this study can contribute to large-scale integration and better flexibilitymore » in transition metal dichalcogenide (TMD)-based electronics.« less
Differential scaling patterns of vertebrae and the evolution of neck length in mammals.
Arnold, Patrick; Amson, Eli; Fischer, Martin S
2017-06-01
Almost all mammals have seven vertebrae in their cervical spines. This consistency represents one of the most prominent examples of morphological stasis in vertebrae evolution. Hence, the requirements associated with evolutionary modifications of neck length have to be met with a fixed number of vertebrae. It has not been clear whether body size influences the overall length of the cervical spine and its inner organization (i.e., if the mammalian neck is subject to allometry). Here, we provide the first large-scale analysis of the scaling patterns of the cervical spine and its constituting cervical vertebrae. Our findings reveal that the opposite allometric scaling of C1 and C2-C7 accommodate the increase of neck bending moment with body size. The internal organization of the neck skeleton exhibits surprisingly uniformity in the vast majority of mammals. Deviations from this general pattern only occur under extreme loading regimes associated with particular functional and allometric demands. Our results indicate that the main source of variation in the mammalian neck stems from the disparity of overall cervical spine length. The mammalian neck reveals how evolutionary disparity manifests itself in a structure that is otherwise highly restricted by meristic constraints. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.
Small-scale societies exhibit fundamental variation in the role of intentions in moral judgment
Barrett, H. Clark; Bolyanatz, Alexander; Crittenden, Alyssa N.; Fessler, Daniel M. T.; Fitzpatrick, Simon; Gurven, Michael; Henrich, Joseph; Kanovsky, Martin; Kushnick, Geoff; Pisor, Anne; Scelza, Brooke A.; Stich, Stephen; von Rueden, Chris; Zhao, Wanying; Laurence, Stephen
2016-01-01
Intent and mitigating circumstances play a central role in moral and legal assessments in large-scale industrialized societies. Although these features of moral assessment are widely assumed to be universal, to date, they have only been studied in a narrow range of societies. We show that there is substantial cross-cultural variation among eight traditional small-scale societies (ranging from hunter-gatherer to pastoralist to horticulturalist) and two Western societies (one urban, one rural) in the extent to which intent and mitigating circumstances influence moral judgments. Although participants in all societies took such factors into account to some degree, they did so to very different extents, varying in both the types of considerations taken into account and the types of violations to which such considerations were applied. The particular patterns of assessment characteristic of large-scale industrialized societies may thus reflect relatively recently culturally evolved norms rather than inherent features of human moral judgment. PMID:27035959
Size dependent fragmentation of argon clusters in the soft x-ray ionization regime
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gisselbrecht, Mathieu; Lindgren, Andreas; Burmeister, Florian
Photofragmentation of argon clusters of average size ranging from 10 up to 1000 atoms is studied using soft x-ray radiation below the 2p threshold and multicoincidence mass spectroscopy technique. For small clusters (
Small-scale societies exhibit fundamental variation in the role of intentions in moral judgment.
Barrett, H Clark; Bolyanatz, Alexander; Crittenden, Alyssa N; Fessler, Daniel M T; Fitzpatrick, Simon; Gurven, Michael; Henrich, Joseph; Kanovsky, Martin; Kushnick, Geoff; Pisor, Anne; Scelza, Brooke A; Stich, Stephen; von Rueden, Chris; Zhao, Wanying; Laurence, Stephen
2016-04-26
Intent and mitigating circumstances play a central role in moral and legal assessments in large-scale industrialized societies. Although these features of moral assessment are widely assumed to be universal, to date, they have only been studied in a narrow range of societies. We show that there is substantial cross-cultural variation among eight traditional small-scale societies (ranging from hunter-gatherer to pastoralist to horticulturalist) and two Western societies (one urban, one rural) in the extent to which intent and mitigating circumstances influence moral judgments. Although participants in all societies took such factors into account to some degree, they did so to very different extents, varying in both the types of considerations taken into account and the types of violations to which such considerations were applied. The particular patterns of assessment characteristic of large-scale industrialized societies may thus reflect relatively recently culturally evolved norms rather than inherent features of human moral judgment.
Field-aligned currents and large-scale magnetospheric electric fields
NASA Technical Reports Server (NTRS)
Dangelo, N.
1979-01-01
The existence of field-aligned currents (FAC) at northern and southern high latitudes was confirmed by a number of observations, most clearly by experiments on the TRIAD and ISIS 2 satellites. The high-latitude FAC system is used to relate what is presently known about the large-scale pattern of high-latitude ionospheric electric fields and their relation to solar wind parameters. Recently a simplified model was presented for polar cap electric fields. The model is of considerable help in visualizing the large-scale features of FAC systems. A summary of the FAC observations is given. The simplified model is used to visualize how the FAC systems are driven by their generators.
Coarse-scale movement patterns of a small-bodied fish inhabiting a desert stream
Dzul, M.C.; Quist, M.C.; Dinsmore, S.J.; Gaines, D.B.; Bower, M.R.
2013-01-01
Located on the floor of Death Valley (CA, USA), Salt Creek harbors a single fish species, the Salt Creek pupfish, Cyprinodon salinus salinus, which has adapted to this extremely harsh environment. Salt Creek is fed by an underground spring and is comprised of numerous pools, runs, and marshes that exhibit substantial variability in temperature, salinity, and dissolved oxygen concentrations. In addition, the wetted area of Salt Creek is reduced throughout the summer months due to high rates of evaporation, with some reaches drying completely. Therefore, it seems logical that short- and long-term movement patterns may play an important role in Salt Creek pupfish population dynamics. The objective of this study was to describe coarse-scale movements of Salt Creek pupfish in Salt Creek during their breeding season from March to May. Sex ratios and length–frequency distributions varied spatially within Salt Creek, suggesting population segregation during the breeding season. Long-distance movements were generally rare, although two fish moved more than 1.2 km. Movement in upstream reaches was rare or absent, in contrast to the greater movement observed in downstream reaches (29% of recaptures). Temporal trends and demographic patterns in movement were not observed. Because the two most downstream habitats dry up in the summer, our results indicate that coarse-scale movements that re-populate downstream reaches likely occur during other times of year. Consequently, the importance of small- and large-scale movements is influenced by season. Further assessment of Salt Creek movement patterns conducted during other times of year may better illuminate long-distance movement patterns and source-sink dynamics.
Karl, Herman A.; Carlson, P.R.
1987-01-01
Samples of total suspended matter (TSM) were collected at the surface over the northern outer continental margin of the Bering Sea during the summers of 1980 and 1981. Volume concentrations of surface TSM averaged 0.6 and 1.1 mg l-1 for 1980 and 1981, respectively. Organic matter, largely plankton, made up about 65% of the near-surface TSM for both years. Distributions of TSM suggested that shelf circulation patterns were characterized either by meso- and large- scale eddies or by cross-shelf components of flow superimposed on a general northwesterly net drift. These patterns may be caused by large submarine canyons which dominate the physiography of this part of the Bering Sea continental margin. ?? 1987.
Annual Review of Research Under the Joint Service Electronics Program.
1979-10-01
Contents: Quadratic Optimization Problems; Nonlinear Control; Nonlinear Fault Analysis; Qualitative Analysis of Large Scale Systems; Multidimensional System Theory ; Optical Noise; and Pattern Recognition.
USDA-ARS?s Scientific Manuscript database
Climate models predict increased variability in precipitation regimes, which will likely increase frequency/duration of drought. Reductions in soil moisture affect physical and chemical characteristics of the soil habitat and can influence soil organisms such as mites and nematodes. These organisms ...
NASA Astrophysics Data System (ADS)
Guojun, He; Lin, Guo; Zhicheng, Yu; Xiaojun, Zhu; Lei, Wang; Zhiqiang, Zhao
2017-03-01
In order to reduce the stochastic volatility of supply and demand, and maintain the electric power system's stability after large scale stochastic renewable energy sources connected to grid, the development and consumption should be promoted by marketing means. Bilateral contract transaction model of large users' direct power purchase conforms to the actual situation of our country. Trading pattern of large users' direct power purchase is analyzed in this paper, characteristics of each power generation are summed up, and centralized matching mode is mainly introduced. Through the establishment of power generation enterprises' priority evaluation index system and the analysis of power generation enterprises' priority based on fuzzy clustering, the sorting method of power generation enterprises' priority in trading patterns of large users' direct power purchase is put forward. Suggestions for trading mechanism of large users' direct power purchase are offered by this method, which is good for expand the promotion of large users' direct power purchase further.
Downscaling large-scale circulation to local winter climate using neural network techniques
NASA Astrophysics Data System (ADS)
Cavazos Perez, Maria Tereza
1998-12-01
The severe impacts of climate variability on society reveal the increasing need for improving regional-scale climate diagnosis. A new downscaling approach for climate diagnosis is developed here. It is based on neural network techniques that derive transfer functions from the large-scale atmospheric controls to the local winter climate in northeastern Mexico and southeastern Texas during the 1985-93 period. A first neural network (NN) model employs time-lagged component scores from a rotated principal component analysis of SLP, 500-hPa heights, and 1000-500 hPa thickness as predictors of daily precipitation. The model is able to reproduce the phase and, to some decree, the amplitude of large rainfall events, reflecting the influence of the large-scale circulation. Large errors are found over the Sierra Madre, over the Gulf of Mexico, and during El Nino events, suggesting an increase in the importance of meso-scale rainfall processes. However, errors are also due to the lack of randomization of the input data and the absence of local atmospheric predictors such as moisture. Thus, a second NN model uses time-lagged specific humidity at the Earth's surface and at the 700 hPa level, SLP tendency, and 700-500 hPa thickness as input to a self-organizing map (SOM) that pre-classifies the atmospheric fields into different patterns. The results from the SOM classification document that negative (positive) anomalies of winter precipitation over the region are associated with: (1) weaker (stronger) Aleutian low; (2) stronger (weaker) North Pacific high; (3) negative (positive) phase of the Pacific North American pattern; and (4) La Nina (El Nino) events. The SOM atmospheric patterns are then used as input to a feed-forward NN that captures over 60% of the daily rainfall variance and 94% of the daily minimum temperature variance over the region. This demonstrates the ability of artificial neural network models to simulate realistic relationships on daily time scales. The results of this research also reveal that the SOM pre-classification of days with similar atmospheric conditions succeeded in emphasizing the differences of the atmospheric variance conducive to extreme events. This resulted in a downscaling NN model that is highly sensitive to local-scale weather anomalies associated with El Nino and extreme cold events.
Lara-Ramírez, Edgar E.; Salazar, Ma Isabel; López-López, María de Jesús; Salas-Benito, Juan Santiago; Sánchez-Varela, Alejandro
2014-01-01
The increasing number of dengue virus (DENV) genome sequences available allows identifying the contributing factors to DENV evolution. In the present study, the codon usage in serotypes 1–4 (DENV1–4) has been explored for 3047 sequenced genomes using different statistics methods. The correlation analysis of total GC content (GC) with GC content at the three nucleotide positions of codons (GC1, GC2, and GC3) as well as the effective number of codons (ENC, ENCp) versus GC3 plots revealed mutational bias and purifying selection pressures as the major forces influencing the codon usage, but with distinct pressure on specific nucleotide position in the codon. The correspondence analysis (CA) and clustering analysis on relative synonymous codon usage (RSCU) within each serotype showed similar clustering patterns to the phylogenetic analysis of nucleotide sequences for DENV1–4. These clustering patterns are strongly related to the virus geographic origin. The phylogenetic dependence analysis also suggests that stabilizing selection acts on the codon usage bias. Our analysis of a large scale reveals new feature on DENV genomic evolution. PMID:25136631
Large-scale patterns of turnover and Basal area change in Andean forests.
Báez, Selene; Malizia, Agustina; Carilla, Julieta; Blundo, Cecilia; Aguilar, Manuel; Aguirre, Nikolay; Aquirre, Zhofre; Álvarez, Esteban; Cuesta, Francisco; Duque, Álvaro; Farfán-Ríos, William; García-Cabrera, Karina; Grau, Ricardo; Homeier, Jürgen; Linares-Palomino, Reynaldo; Malizia, Lucio R; Cruz, Omar Melo; Osinaga, Oriana; Phillips, Oliver L; Reynel, Carlos; Silman, Miles R; Feeley, Kenneth J
2015-01-01
General patterns of forest dynamics and productivity in the Andes Mountains are poorly characterized. Here we present the first large-scale study of Andean forest dynamics using a set of 63 permanent forest plots assembled over the past two decades. In the North-Central Andes tree turnover (mortality and recruitment) and tree growth declined with increasing elevation and decreasing temperature. In addition, basal area increased in Lower Montane Moist Forests but did not change in Higher Montane Humid Forests. However, at higher elevations the lack of net basal area change and excess of mortality over recruitment suggests negative environmental impacts. In North-Western Argentina, forest dynamics appear to be influenced by land use history in addition to environmental variation. Taken together, our results indicate that combinations of abiotic and biotic factors that vary across elevation gradients are important determinants of tree turnover and productivity in the Andes. More extensive and longer-term monitoring and analyses of forest dynamics in permanent plots will be necessary to understand how demographic processes and woody biomass are responding to changing environmental conditions along elevation gradients through this century.
Large-Scale Patterns of Turnover and Basal Area Change in Andean Forests
Blundo, Cecilia; Aguilar, Manuel; Aguirre, Nikolay; Aquirre, Zhofre; Álvarez, Esteban; Cuesta, Francisco; Farfán-Ríos, William; García-Cabrera, Karina; Grau, Ricardo; Linares-Palomino, Reynaldo; Malizia, Lucio R.; Cruz, Omar Melo; Osinaga, Oriana; Reynel, Carlos; Silman, Miles R.
2015-01-01
General patterns of forest dynamics and productivity in the Andes Mountains are poorly characterized. Here we present the first large-scale study of Andean forest dynamics using a set of 63 permanent forest plots assembled over the past two decades. In the North-Central Andes tree turnover (mortality and recruitment) and tree growth declined with increasing elevation and decreasing temperature. In addition, basal area increased in Lower Montane Moist Forests but did not change in Higher Montane Humid Forests. However, at higher elevations the lack of net basal area change and excess of mortality over recruitment suggests negative environmental impacts. In North-Western Argentina, forest dynamics appear to be influenced by land use history in addition to environmental variation. Taken together, our results indicate that combinations of abiotic and biotic factors that vary across elevation gradients are important determinants of tree turnover and productivity in the Andes. More extensive and longer-term monitoring and analyses of forest dynamics in permanent plots will be necessary to understand how demographic processes and woody biomass are responding to changing environmental conditions along elevation gradients through this century. PMID:25973977
Assessment of TRMM 3B43 product for drought monitoring in Singapore
NASA Astrophysics Data System (ADS)
Tan, Mou Leong; Chua, Vivien P.; Tan, Kok Chooi; Brindha, K.
2017-10-01
Drought is one of the most hazardous natural disasters for human beings and the environment. Using only rain gauge is insufficient to monitor the drought pattern effectively as it impacts large areas. This situation is more critical on small island countries, with limited rain gauges for monitoring drought pattern over the ocean regions. This study aims to assess the capability of Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA) 3B43 product in monitoring drought in Singapore from 1998 to 2014. The Standardized Precipitation Index (SPI) at various time-scales is used for identifying drought patterns. Results show moderate to good correlations between TMPA- 3B43 and rain gauges in the SPI estimations. Besides that, TMPA-3B43 exhibits a similar temporal drought behavior as the rain gauges. These findings indicate the TMPA 3B43 product as a very useful tool to study drought pattern over Singapore.
Spaceborne imaging radar - Geologic and oceanographic applications
NASA Technical Reports Server (NTRS)
Elachi, C.
1980-01-01
Synoptic, large-area radar images of the earth's land and ocean surface, obtained from the Seasat orbiting spacecraft, show the potential for geologic mapping and for monitoring of ocean surface patterns. Structural and topographic features such as lineaments, anticlines, folds and domes, drainage patterns, stratification, and roughness units can be mapped. Ocean surface waves, internal waves, current boundaries, and large-scale eddies have been observed in numerous images taken by the Seasat imaging radar. This article gives an illustrated overview of these applications.
NASA Astrophysics Data System (ADS)
Ordway, E.; Lambin, E.; Asner, G. P.
2015-12-01
The changing structure of demand for commodities associated with food security and energy has had a startling impact on land use change in tropical forests in recent decades. Yet, the composition of conversion in the Congo basin remains a major uncertainty, particularly with regards to the scale of drivers of change. Owing to rapid expansion of production globally and longstanding historical production locally in the Congo basin, oil palm offers a lens through which to evaluate local land use decisions across a spectrum of small- to large-scales of production as well as interactions with regional and global supply chains. We examined the effect of global commodity crop expansion on land use change in Southwest Cameroon using a mixed-methods approach to integrate remote sensing, field surveys and socioeconomic data. Southwest Cameroon (2.5 Mha) has a long history of large- and small-scale agriculture, ranging from mixed crop subsistence agriculture to large monocrop plantations of oil palm, cocoa, and rubber. Trends and spatial patterns of forest conversion and agricultural transitions were analyzed from 2000-2015 using satellite imagery. We used economic, demographic and field survey datasets to assess how regional and global market factors and local commodity crop decisions affect land use patterns. Our results show that oil palm is a major commodity crop expanding in this region, and that conversion is occurring primarily through expansion by medium-scale producers and local elites. Results also indicate that global and regional supply chain dynamics influence local land use decision making. This research contributes new information on land use patterns and dynamics in the Congo basin, an understudied region. More specifically, results from this research contribute information on recent trends of oil palm expansion in Cameroon that will be used in national land use planning strategies.
Using radiocarbon to investigate soil respiration impacts on atmospheric CO2
NASA Astrophysics Data System (ADS)
Phillips, C. L.; LaFranchi, B. W.; McFarlane, K. J.; Desai, A. R.
2013-12-01
While soil respiration is believed to represent the largest single source of CO2 emissions on a global scale, there are few tools available to measure soil emissions at large spatial scales. We investigated whether radiocarbon (14C) abundance in CO2 could be used to detect and characterize soil emissions in the atmosphere, taking advantage of the fact that 14C abundance in soil carbon is elevated compared to the background atmosphere, a result of thermonuclear weapons testing during the mid-20th Century (i.e. bomb-C). Working in a temperate hardwood forest in Northern Wisconsin during 2011-12, we made semi-high-frequency measurements of CO2 at nested spatial scales from the soil subsurface to 150 m above ground level. These measurements were used to investigate seasonal patterns in respired C sources, and to evaluate whether variability in soil-respired Δ14C could also be detected in atmospheric measurements. In our ground-level measurements we found large seasonal variation in soil-respired 14CO2 that correlated with soil moisture, which was likely related to root activity. Atmospheric measurements of 14CO2 in the forest canopy (2 to 30m) were used to construct Keeling plots, and these provided larger spatial-scale estimates of respired 14CO2 that largely agreed with the soil-level measurements. In collaboration with the NOAA we also examined temporal patterns of 14CO2 at the Park Falls tall-tower (150m), and found elevated 14CO2 levels during summer months that likely resulted from increased respiration from heterotrophic sources. These results demonstrate that a fingerprint from soil-respired CO2 can be detected in the seasonal patterns of atmospheric 14CO2, even at a regionally-integrating spatial scale far from the soil surface.
Quantifying patterns of research interest evolution
NASA Astrophysics Data System (ADS)
Jia, Tao; Wang, Dashun; Szymanski, Boleslaw
Changing and shifting research interest is an integral part of a scientific career. Despite extensive investigations of various factors that influence a scientist's choice of research topics, quantitative assessments of mechanisms that give rise to macroscopic patterns characterizing research interest evolution of individual scientists remain limited. Here we perform a large-scale analysis of extensive publication records, finding that research interest change follows a reproducible pattern characterized by an exponential distribution. We identify three fundamental features responsible for the observed exponential distribution, which arise from a subtle interplay between exploitation and exploration in research interest evolution. We develop a random walk based model, which adequately reproduces our empirical observations. Our study presents one of the first quantitative analyses of macroscopic patterns governing research interest change, documenting a high degree of regularity underlying scientific research and individual careers.
NASA Astrophysics Data System (ADS)
Tan, Xianyu; Showman, Adam
2016-10-01
Observational evidence have suggested active meteorology in the atmospheres of brown dwarfs (BDs) and directly imaged extrasolar giant planets (EGPs). In particular, a number of surveys for brown dwarfs showed that near-IR brightness variability is common for L and T dwarfs. Directly imaged EGPs share similar observations, and can be viewed as low-gravity versions of BDs. Clouds are believed to play the major role in shaping the thermal structure, dynamics and near-IR flux of these atmospheres. So far, only a few studies have been devoted to atmospheric circulation and the implications for observations of BDs and directly EGPs, and yet no global model includes a self-consistent active cloud formation. Here we present preliminary results from the first global circulation model applied to BDs and directly imaged EGPs that can properly treat absorption and scattering of radiation by cloud particles. Our results suggest that horizontal temperature differences on isobars can reach up to a few hundred Kelvins, with typical horizontal length scale of the temperature and cloud patterns much smaller than the radius of the object. The combination of temperature anomaly and cloud pattern can result in moderate disk-integrated near-IR flux variability. Wind speeds can reach several hundred meters per second in cloud forming layers. Unlike Jupiter and Saturn, we do not observe stable zonal jet/banded patterns in our simulations. Instead, our simulated atmospheres are typically turbulent and dominated by transient vortices. The circulation is sensitive to the parameterized cloud microphysics. Under some parameter combinations, global-scale atmospheric waves can be triggered and maintained. These waves induce global-scale temperature anomalies and cloud patterns, causing large (up to several percent) disk-integrated near-IR flux variability. Our results demonstrate that the commonly observed near-IR brightness variability for BDs and directly imaged EGPs can be explained by the typical cloud-induced turbulent circulation, and in particular, the large flux variability for some objects can be attributed to the global-scale patterns of temperature anomaly and cloud formation caused by atmospheric waves.
Relationship between Musical Characteristics and Temporal Breathing Pattern in Piano Performance
Sakaguchi, Yutaka; Aiba, Eriko
2016-01-01
Although there is growing evidence that breathing is modulated by various motor and cognitive activities, the nature of breathing in musical performance has been little explored. The present study examined the temporal breath pattern in piano performance, aiming to elucidate how breath timing is related to musical organization/events and performance. In the experiments, the respiration of 15 professional and amateur pianists, playing 10 music excerpts in total (from four-octave C major scale, Hanon's exercise, J. S. Bach's Invention, Mozart's Sonatas, and Debussy's Clair de lune), was monitored by capnography. The relationship between breathing and musical characteristics was analyzed. Five major results were obtained. (1) Mean breath interval was shortened for excerpts in faster tempi. (2) Fluctuation of breath intervals was reduced for the pieces for finger exercise and those in faster tempi. Pianists showing large within-trial fluctuation also exhibited large inter-excerpt difference. (3) Inter-trial consistency of the breath patterns depended on the excerpts. Consistency was generally reduced for the excerpts that could be performed mechanically (i.e., pieces for finger exercise), but interestingly, one third of the participant showed consistent patterns for the simple scale, correlated with the ascending/descending sequences. (4) Pianists tended to exhale just after the music onsets, inhale at the rests, and inhibit inhale during the slur parts. There was correlation between breathing pattern and two-voice polyphonic structure for several participants. (5) Respiratory patterns were notably different among the pianists. Every pianist showed his or her own characteristic features commonly for various musical works. These findings suggest that breathing in piano performance depends not only on musical parameters and organization written in the score but also some pianist-dependent factors which might be ingrained to individual pianists. PMID:27516736
Relationship between Musical Characteristics and Temporal Breathing Pattern in Piano Performance.
Sakaguchi, Yutaka; Aiba, Eriko
2016-01-01
Although there is growing evidence that breathing is modulated by various motor and cognitive activities, the nature of breathing in musical performance has been little explored. The present study examined the temporal breath pattern in piano performance, aiming to elucidate how breath timing is related to musical organization/events and performance. In the experiments, the respiration of 15 professional and amateur pianists, playing 10 music excerpts in total (from four-octave C major scale, Hanon's exercise, J. S. Bach's Invention, Mozart's Sonatas, and Debussy's Clair de lune), was monitored by capnography. The relationship between breathing and musical characteristics was analyzed. Five major results were obtained. (1) Mean breath interval was shortened for excerpts in faster tempi. (2) Fluctuation of breath intervals was reduced for the pieces for finger exercise and those in faster tempi. Pianists showing large within-trial fluctuation also exhibited large inter-excerpt difference. (3) Inter-trial consistency of the breath patterns depended on the excerpts. Consistency was generally reduced for the excerpts that could be performed mechanically (i.e., pieces for finger exercise), but interestingly, one third of the participant showed consistent patterns for the simple scale, correlated with the ascending/descending sequences. (4) Pianists tended to exhale just after the music onsets, inhale at the rests, and inhibit inhale during the slur parts. There was correlation between breathing pattern and two-voice polyphonic structure for several participants. (5) Respiratory patterns were notably different among the pianists. Every pianist showed his or her own characteristic features commonly for various musical works. These findings suggest that breathing in piano performance depends not only on musical parameters and organization written in the score but also some pianist-dependent factors which might be ingrained to individual pianists.
FracPaQ: a MATLAB™ Toolbox for the Quantification of Fracture Patterns
NASA Astrophysics Data System (ADS)
Healy, D.; Rizzo, R. E.; Cornwell, D. G.; Timms, N.; Farrell, N. J.; Watkins, H.; Gomez-Rivas, E.; Smith, M.
2016-12-01
The patterns of fractures in deformed rocks are rarely uniform or random. Fracture orientations, sizes, shapes and spatial distributions often exhibit some kind of order. In detail, there may be relationships among the different fracture attributes e.g. small fractures dominated by one orientation, larger fractures by another. These relationships are important because the mechanical (e.g. strength, anisotropy) and transport (e.g. fluids, heat) properties of rock depend on these fracture patterns and fracture attributes. This presentation describes an open source toolbox to quantify fracture patterns, including distributions in fracture attributes and their spatial variation. Software has been developed to quantify fracture patterns from 2-D digital images, such as thin section micrographs, geological maps, outcrop or aerial photographs or satellite images. The toolbox comprises a suite of MATLAB™ scripts based on published quantitative methods for the analysis of fracture attributes: orientations, lengths, intensity, density and connectivity. An estimate of permeability in 2-D is made using a parallel plate model. The software provides an objective and consistent methodology for quantifying fracture patterns and their variations in 2-D across a wide range of length scales. Our current focus for the application of the software is on quantifying the fracture patterns in and around fault zones. There is a large body of published work on the quantification of relatively simple joint patterns, but fault zones present a bigger, and arguably more important, challenge. The method presented is inherently scale independent, and a key task will be to analyse and integrate quantitative fracture pattern data from micro- to macro-scales. Planned future releases will incorporate multi-scale analyses based on a wavelet method to look for scale transitions, and combining fracture traces from multiple 2-D images to derive the statistically equivalent 3-D fracture pattern.
Usage Patterns of Open Genomic Data
ERIC Educational Resources Information Center
Xia, Jingfeng; Liu, Ying
2013-01-01
This paper uses Genome Expression Omnibus (GEO), a data repository in biomedical sciences, to examine the usage patterns of open data repositories. It attempts to identify the degree of recognition of data reuse value and understand how e-science has impacted a large-scale scholarship. By analyzing a list of 1,211 publications that cite GEO data…
Characterizing dispersal patterns in a threatened seabird with limited genetic structure
Laurie A. Hall; Per J. Palsboll; Steven R. Beissinger; James T. Harvey; Martine Berube; Martin G. Raphael; Kim Nelson; Richard T. Golightly; Laura McFarlane-Tranquilla; Scott H. Newman; M. Zachariah Peery
2009-01-01
Genetic assignment methods provide an appealing approach for characterizing dispersal patterns on ecological time scales, but require sufficient genetic differentiation to accurately identify migrants and a large enough sample size of migrants to, for example, compare dispersal between sexes or age classes. We demonstrate that assignment methods can be rigorously used...
NASA Astrophysics Data System (ADS)
Dodson, Z.; Ward, D.
2017-12-01
Topographic roughness is an essential control on the basal movement of temperate glaciers. Glaciers move by regelation over small-scale roughness and by enhanced ice deformation over large-scale roughness. There is a transitional wavelength of 0.1 to 1 m that has the most resistance to basal sliding. Preexisting fractures in bedrock are known to affect the rate and spatial pattern of glacial erosion. However, few studies have quantified the relationship between fractures and bed roughness at various scales or shown how these features change downvalley and on different bedrock types. Here, we present results that relate fracture pattern and micro-roughness of glaciated surfaces in the Teton Range of Wyoming. The study area includes Alaska Basin and Darby Canyon, which are adjacent valleys on the western side of the range. The valley floor of Alaska Basin is quartz monzonite, while that of Darby Canyon is dolomite. Both exhibit regional fractures, however, unlike the quartz monzonite, the dolomite has joints associated with bedding planes that dip roughly parallel to the valley floor. In satellite imagery, it is evident that the large-scale roughness in the valleys differ, with Darby Canyon having a smooth bed relative to the bumpy bed in Alaska Basin. Our aim is to quantify the small-scale roughness at cm-level resolution using Structure-from-Motion (SfM) photogrammetry. Our hypothesis is that the roughness will differ between the valleys and be related to fracture spacing within each rock type. We will test this using a Fourier spectral analysis of high-resolution DEMs made by SfM to identify the dominant wavelengths present in the previously glaciated surfaces, paired with field measurements of fracture spacing and orientation. If rock type is the main control in bed roughness, we predict that the dominant low-frequency wavelength will be similar to the spacing of major regional fractures, and the high-frequency spectral modes will be similar to the spacing of smaller local fractures. Alternatively, if the results show that the dominant wavelengths differ from the pattern of fractures or change with position downvalley in one or both of the valleys, then this implies that the glacier properties, such as flow rate and thickness, are what modulate bedrock erosion and fractures are less significant to morphology evolution.
Hurks, P P M; Hendriksen, J G M; Dek, J E; Kooij, A P
2013-01-01
Intelligence tests are included in millions of assessments of children and adults each year (Watkins, Glutting, & Lei, 2007a , Applied Neuropsychology, 14, 13). Clinicians often interpret large amounts of subtest scatter, or large differences between the highest and lowest scaled subtest scores, on an intelligence test battery as an index for abnormality or cognitive impairment. The purpose of the present study is to characterize "normal" patterns of variability among subtests of the Dutch Wechsler Preschool and Primary Scale of Intelligence - Third Edition (WPPSI-III-NL; Wechsler, 2010 ). Therefore, the frequencies of WPPSI-III-NL scaled subtest scatter were reported for 1039 healthy children aged 4:0-7:11 years. Results indicated that large differences between highest and lowest scaled subtest scores (or subtest scatter) were common in this sample. Furthermore, degree of subtest scatter was related to: (a) the magnitude of the highest scaled subtest score, i.e., more scatter was seen in children with the highest WPPSI-III-NL scaled subtest scores, (b) Full Scale IQ (FSIQ) scores, i.e., higher FSIQ scores were associated with an increase in subtest scatter, and (c) sex differences, with boys showing a tendency to display more scatter than girls. In conclusion, viewing subtest scatter as an index for abnormality in WPPSI-III-NL scores is an oversimplification as this fails to recognize disparate subtest heterogeneity that occurs within a population of healthy children aged 4:0-7:11 years.
NASA Astrophysics Data System (ADS)
Mosby, Matthew; Matouš, Karel
2015-12-01
Three-dimensional simulations capable of resolving the large range of spatial scales, from the failure-zone thickness up to the size of the representative unit cell, in damage mechanics problems of particle reinforced adhesives are presented. We show that resolving this wide range of scales in complex three-dimensional heterogeneous morphologies is essential in order to apprehend fracture characteristics, such as strength, fracture toughness and shape of the softening profile. Moreover, we show that computations that resolve essential physical length scales capture the particle size-effect in fracture toughness, for example. In the vein of image-based computational materials science, we construct statistically optimal unit cells containing hundreds to thousands of particles. We show that these statistically representative unit cells are capable of capturing the first- and second-order probability functions of a given data-source with better accuracy than traditional inclusion packing techniques. In order to accomplish these large computations, we use a parallel multiscale cohesive formulation and extend it to finite strains including damage mechanics. The high-performance parallel computational framework is executed on up to 1024 processing cores. A mesh convergence and a representative unit cell study are performed. Quantifying the complex damage patterns in simulations consisting of tens of millions of computational cells and millions of highly nonlinear equations requires data-mining the parallel simulations, and we propose two damage metrics to quantify the damage patterns. A detailed study of volume fraction and filler size on the macroscopic traction-separation response of heterogeneous adhesives is presented.
Cumming, Brian F.; Laird, Kathleen R.; Bennett, Joseph R.; Smol, John P.; Salomon, Anne K.
2002-01-01
Inferences of past climatic conditions from a sedimentary record from Big Lake, British Columbia, Canada, over the past 5,500 years show strong millennial-scale patterns, which oscillate between periods of wet and drier climatic conditions. Higher frequency decadal- to centennial-scale fluctuations also occur within the dominant millennial-scale patterns. These changes in climatic conditions are based on estimates of changes in lake depth and salinity inferred from diatom assemblages in a well dated sediment core. After periods of relative stability, abrupt shifts in diatom assemblages and inferred climatic conditions occur approximately every 1,220 years. The correspondence of these shifts to millennial-scale variations in records of glacial expansion/recession and ice-rafting events in the Atlantic suggest that abrupt millennial-scale shifts are important to understanding climatic variability in North America during the mid- to late Holocene. Unfortunately, the spatial patterns and mechanisms behind these large and abrupt swings are poorly understood. Similar abrupt and prolonged changes in climatic conditions today could pose major societal challenges for many regions. PMID:12461174
Cumming, Brian F; Laird, Kathleen R; Bennett, Joseph R; Smol, John P; Salomon, Anne K
2002-12-10
Inferences of past climatic conditions from a sedimentary record from Big Lake, British Columbia, Canada, over the past 5,500 years show strong millennial-scale patterns, which oscillate between periods of wet and drier climatic conditions. Higher frequency decadal- to centennial-scale fluctuations also occur within the dominant millennial-scale patterns. These changes in climatic conditions are based on estimates of changes in lake depth and salinity inferred from diatom assemblages in a well dated sediment core. After periods of relative stability, abrupt shifts in diatom assemblages and inferred climatic conditions occur approximately every 1,220 years. The correspondence of these shifts to millennial-scale variations in records of glacial expansionrecession and ice-rafting events in the Atlantic suggest that abrupt millennial-scale shifts are important to understanding climatic variability in North America during the mid- to late Holocene. Unfortunately, the spatial patterns and mechanisms behind these large and abrupt swings are poorly understood. Similar abrupt and prolonged changes in climatic conditions today could pose major societal challenges for many regions.
Grid cells form a global representation of connected environments.
Carpenter, Francis; Manson, Daniel; Jeffery, Kate; Burgess, Neil; Barry, Caswell
2015-05-04
The firing patterns of grid cells in medial entorhinal cortex (mEC) and associated brain areas form triangular arrays that tessellate the environment [1, 2] and maintain constant spatial offsets to each other between environments [3, 4]. These cells are thought to provide an efficient metric for navigation in large-scale space [5-8]. However, an accurate and universal metric requires grid cell firing patterns to uniformly cover the space to be navigated, in contrast to recent demonstrations that environmental features such as boundaries can distort [9-11] and fragment [12] grid patterns. To establish whether grid firing is determined by local environmental cues, or provides a coherent global representation, we recorded mEC grid cells in rats foraging in an environment containing two perceptually identical compartments connected via a corridor. During initial exposures to the multicompartment environment, grid firing patterns were dominated by local environmental cues, replicating between the two compartments. However, with prolonged experience, grid cell firing patterns formed a single, continuous representation that spanned both compartments. Thus, we provide the first evidence that in a complex environment, grid cell firing can form the coherent global pattern necessary for them to act as a metric capable of supporting large-scale spatial navigation. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Grid Cells Form a Global Representation of Connected Environments
Carpenter, Francis; Manson, Daniel; Jeffery, Kate; Burgess, Neil; Barry, Caswell
2015-01-01
Summary The firing patterns of grid cells in medial entorhinal cortex (mEC) and associated brain areas form triangular arrays that tessellate the environment [1, 2] and maintain constant spatial offsets to each other between environments [3, 4]. These cells are thought to provide an efficient metric for navigation in large-scale space [5–8]. However, an accurate and universal metric requires grid cell firing patterns to uniformly cover the space to be navigated, in contrast to recent demonstrations that environmental features such as boundaries can distort [9–11] and fragment [12] grid patterns. To establish whether grid firing is determined by local environmental cues, or provides a coherent global representation, we recorded mEC grid cells in rats foraging in an environment containing two perceptually identical compartments connected via a corridor. During initial exposures to the multicompartment environment, grid firing patterns were dominated by local environmental cues, replicating between the two compartments. However, with prolonged experience, grid cell firing patterns formed a single, continuous representation that spanned both compartments. Thus, we provide the first evidence that in a complex environment, grid cell firing can form the coherent global pattern necessary for them to act as a metric capable of supporting large-scale spatial navigation. PMID:25913404
Mandák, Bohumil; Hadincová, Věroslava; Mahelka, Václav; Wildová, Radka
2013-01-01
Background North American Pinus strobus is a highly invasive tree species in Central Europe. Using ten polymorphic microsatellite loci we compared various aspects of the large-scale genetic diversity of individuals from 30 sites in the native distribution range with those from 30 sites in the European adventive distribution range. To investigate the ascertained pattern of genetic diversity of this intercontinental comparison further, we surveyed fine-scale genetic diversity patterns and changes over time within four highly invasive populations in the adventive range. Results Our data show that at the large scale the genetic diversity found within the relatively small adventive range in Central Europe, surprisingly, equals the diversity found within the sampled area in the native range, which is about thirty times larger. Bayesian assignment grouped individuals into two genetic clusters separating North American native populations from the European, non-native populations, without any strong genetic structure shown over either range. In the case of the fine scale, our comparison of genetic diversity parameters among the localities and age classes yielded no evidence of genetic diversity increase over time. We found that SGS differed across age classes within the populations under study. Old trees in general completely lacked any SGS, which increased over time and reached its maximum in the sapling stage. Conclusions Based on (1) the absence of difference in genetic diversity between the native and adventive ranges, together with the lack of structure in the native range, and (2) the lack of any evidence of any temporal increase in genetic diversity at four highly invasive populations in the adventive range, we conclude that population amalgamation probably first happened in the native range, prior to introduction. In such case, there would have been no need for multiple introductions from previously isolated populations, but only several introductions from genetically diverse populations. PMID:23874648
Shen, Lu; Mickley, Loretta J
2017-03-07
We develop a statistical model to predict June-July-August (JJA) daily maximum 8-h average (MDA8) ozone concentrations in the eastern United States based on large-scale climate patterns during the previous spring. We find that anomalously high JJA ozone in the East is correlated with these springtime patterns: warm tropical Atlantic and cold northeast Pacific sea surface temperatures (SSTs), as well as positive sea level pressure (SLP) anomalies over Hawaii and negative SLP anomalies over the Atlantic and North America. We then develop a linear regression model to predict JJA MDA8 ozone from 1980 to 2013, using the identified SST and SLP patterns from the previous spring. The model explains ∼45% of the variability in JJA MDA8 ozone concentrations and ∼30% variability in the number of JJA ozone episodes (>70 ppbv) when averaged over the eastern United States. This seasonal predictability results from large-scale ocean-atmosphere interactions. Warm tropical Atlantic SSTs can trigger diabatic heating in the atmosphere and influence the extratropical climate through stationary wave propagation, leading to greater subsidence, less precipitation, and higher temperatures in the East, which increases surface ozone concentrations there. Cooler SSTs in the northeast Pacific are also associated with more summertime heatwaves and high ozone in the East. On average, models participating in the Atmospheric Model Intercomparison Project fail to capture the influence of this ocean-atmosphere interaction on temperatures in the eastern United States, implying that such models would have difficulty simulating the interannual variability of surface ozone in this region.
Mickley, Loretta J.
2017-01-01
We develop a statistical model to predict June–July–August (JJA) daily maximum 8-h average (MDA8) ozone concentrations in the eastern United States based on large-scale climate patterns during the previous spring. We find that anomalously high JJA ozone in the East is correlated with these springtime patterns: warm tropical Atlantic and cold northeast Pacific sea surface temperatures (SSTs), as well as positive sea level pressure (SLP) anomalies over Hawaii and negative SLP anomalies over the Atlantic and North America. We then develop a linear regression model to predict JJA MDA8 ozone from 1980 to 2013, using the identified SST and SLP patterns from the previous spring. The model explains ∼45% of the variability in JJA MDA8 ozone concentrations and ∼30% variability in the number of JJA ozone episodes (>70 ppbv) when averaged over the eastern United States. This seasonal predictability results from large-scale ocean–atmosphere interactions. Warm tropical Atlantic SSTs can trigger diabatic heating in the atmosphere and influence the extratropical climate through stationary wave propagation, leading to greater subsidence, less precipitation, and higher temperatures in the East, which increases surface ozone concentrations there. Cooler SSTs in the northeast Pacific are also associated with more summertime heatwaves and high ozone in the East. On average, models participating in the Atmospheric Model Intercomparison Project fail to capture the influence of this ocean–atmosphere interaction on temperatures in the eastern United States, implying that such models would have difficulty simulating the interannual variability of surface ozone in this region. PMID:28223483
DOE Office of Scientific and Technical Information (OSTI.GOV)
Witzke, B.J.
1993-03-01
Four large-scale (2--8 Ma) T-R sedimentary sequences of M. Ord. age (late Chaz.-Sherm.) were delimited by Witzke Kolata (1980) in the Iowa area, each bounded by local to regional unconformity/disconformity surfaces. These encompass both siliciclastic and carbonate intervals, in ascending order: (1) St. Peter-Glenwood fms., (2) Platteville Fm., (3) Decorah Fm., (4) Dunleith/upper Decorah fms. Finer-scale resolution of depth-related depositional features has led to regional recognition of smaller-scale shallowing-upward cyclicity contained within each large-scale sequence. Such smaller-scale cyclicity encompasses stratigraphic intervals of 1--10 m thickness, with estimated durations of 0.5--1.5 Ma. The St. Peter Sandst. has long been regarded asmore » a classic transgressive sheet sand. However, four discrete shallowing-upward packages characterize the St. Peter-Glenwood interval regionally (IA, MN, NB, KS), including western facies displaying coarsening-upward sandstone packages with condensed conodont-rich brown shale and phosphatic sediments in their lower part (local oolitic ironstone), commonly above pyritic hardgrounds. Regional continuity of small-scale cyclic patterns in M. Ord. strata of the Iowa area may suggest eustatic controls; this can be tested through inter-regional comparisons.« less
Multi-scale chromatin state annotation using a hierarchical hidden Markov model
NASA Astrophysics Data System (ADS)
Marco, Eugenio; Meuleman, Wouter; Huang, Jialiang; Glass, Kimberly; Pinello, Luca; Wang, Jianrong; Kellis, Manolis; Yuan, Guo-Cheng
2017-04-01
Chromatin-state analysis is widely applied in the studies of development and diseases. However, existing methods operate at a single length scale, and therefore cannot distinguish large domains from isolated elements of the same type. To overcome this limitation, we present a hierarchical hidden Markov model, diHMM, to systematically annotate chromatin states at multiple length scales. We apply diHMM to analyse a public ChIP-seq data set. diHMM not only accurately captures nucleosome-level information, but identifies domain-level states that vary in nucleosome-level state composition, spatial distribution and functionality. The domain-level states recapitulate known patterns such as super-enhancers, bivalent promoters and Polycomb repressed regions, and identify additional patterns whose biological functions are not yet characterized. By integrating chromatin-state information with gene expression and Hi-C data, we identify context-dependent functions of nucleosome-level states. Thus, diHMM provides a powerful tool for investigating the role of higher-order chromatin structure in gene regulation.
Nassar, H; Lebée, A; Monasse, L
2017-01-01
Origami tessellations are particular textured morphing shell structures. Their unique folding and unfolding mechanisms on a local scale aggregate and bring on large changes in shape, curvature and elongation on a global scale. The existence of these global deformation modes allows for origami tessellations to fit non-trivial surfaces thus inspiring applications across a wide range of domains including structural engineering, architectural design and aerospace engineering. The present paper suggests a homogenization-type two-scale asymptotic method which, combined with standard tools from differential geometry of surfaces, yields a macroscopic continuous characterization of the global deformation modes of origami tessellations and other similar periodic pin-jointed trusses. The outcome of the method is a set of nonlinear differential equations governing the parametrization, metric and curvature of surfaces that the initially discrete structure can fit. The theory is presented through a case study of a fairly generic example: the eggbox pattern. The proposed continuous model predicts correctly the existence of various fittings that are subsequently constructed and illustrated.
NASA Astrophysics Data System (ADS)
Nassar, H.; Lebée, A.; Monasse, L.
2017-01-01
Origami tessellations are particular textured morphing shell structures. Their unique folding and unfolding mechanisms on a local scale aggregate and bring on large changes in shape, curvature and elongation on a global scale. The existence of these global deformation modes allows for origami tessellations to fit non-trivial surfaces thus inspiring applications across a wide range of domains including structural engineering, architectural design and aerospace engineering. The present paper suggests a homogenization-type two-scale asymptotic method which, combined with standard tools from differential geometry of surfaces, yields a macroscopic continuous characterization of the global deformation modes of origami tessellations and other similar periodic pin-jointed trusses. The outcome of the method is a set of nonlinear differential equations governing the parametrization, metric and curvature of surfaces that the initially discrete structure can fit. The theory is presented through a case study of a fairly generic example: the eggbox pattern. The proposed continuous model predicts correctly the existence of various fittings that are subsequently constructed and illustrated.
A kinetic energy study of the meso beta-scale storm environment during AVE-SESAME 5 (20-21 May 1979)
NASA Technical Reports Server (NTRS)
Printy, M. F.; Fuelberg, H. E.
1984-01-01
Kinetic energy of the near storm environment was analyzed by meso beta scale data. It was found that horizontal winds in the 400 to 150 mb layer strengthen rapidly north of the developing convection. Peak values then decrease such that the maximum disappears 6 h later. Southeast of the storms, wind speeds above 300 mb decrease nearly 50% during the 3 h period of most intense thunderstorm activity. When the convection dissipates, wind patterns return to prestorm conditions. The mesoscale storm environment of AVE-SESAME 5 is characterized by large values of cross contour generation of kinetic energy, transfers of energy to nonresolvable scales of motion, and horizontal flux divergence. These processes are maximized within the upper troposphere and are greatest during times of strongest convection. It is shown that patterns agree with observed weather features. The southeast area of the network is examined to determine causes for vertical wind variations.
Large-scale transportation network congestion evolution prediction using deep learning theory.
Ma, Xiaolei; Yu, Haiyang; Wang, Yunpeng; Wang, Yinhai
2015-01-01
Understanding how congestion at one location can cause ripples throughout large-scale transportation network is vital for transportation researchers and practitioners to pinpoint traffic bottlenecks for congestion mitigation. Traditional studies rely on either mathematical equations or simulation techniques to model traffic congestion dynamics. However, most of the approaches have limitations, largely due to unrealistic assumptions and cumbersome parameter calibration process. With the development of Intelligent Transportation Systems (ITS) and Internet of Things (IoT), transportation data become more and more ubiquitous. This triggers a series of data-driven research to investigate transportation phenomena. Among them, deep learning theory is considered one of the most promising techniques to tackle tremendous high-dimensional data. This study attempts to extend deep learning theory into large-scale transportation network analysis. A deep Restricted Boltzmann Machine and Recurrent Neural Network architecture is utilized to model and predict traffic congestion evolution based on Global Positioning System (GPS) data from taxi. A numerical study in Ningbo, China is conducted to validate the effectiveness and efficiency of the proposed method. Results show that the prediction accuracy can achieve as high as 88% within less than 6 minutes when the model is implemented in a Graphic Processing Unit (GPU)-based parallel computing environment. The predicted congestion evolution patterns can be visualized temporally and spatially through a map-based platform to identify the vulnerable links for proactive congestion mitigation.
Large-Scale Transportation Network Congestion Evolution Prediction Using Deep Learning Theory
Ma, Xiaolei; Yu, Haiyang; Wang, Yunpeng; Wang, Yinhai
2015-01-01
Understanding how congestion at one location can cause ripples throughout large-scale transportation network is vital for transportation researchers and practitioners to pinpoint traffic bottlenecks for congestion mitigation. Traditional studies rely on either mathematical equations or simulation techniques to model traffic congestion dynamics. However, most of the approaches have limitations, largely due to unrealistic assumptions and cumbersome parameter calibration process. With the development of Intelligent Transportation Systems (ITS) and Internet of Things (IoT), transportation data become more and more ubiquitous. This triggers a series of data-driven research to investigate transportation phenomena. Among them, deep learning theory is considered one of the most promising techniques to tackle tremendous high-dimensional data. This study attempts to extend deep learning theory into large-scale transportation network analysis. A deep Restricted Boltzmann Machine and Recurrent Neural Network architecture is utilized to model and predict traffic congestion evolution based on Global Positioning System (GPS) data from taxi. A numerical study in Ningbo, China is conducted to validate the effectiveness and efficiency of the proposed method. Results show that the prediction accuracy can achieve as high as 88% within less than 6 minutes when the model is implemented in a Graphic Processing Unit (GPU)-based parallel computing environment. The predicted congestion evolution patterns can be visualized temporally and spatially through a map-based platform to identify the vulnerable links for proactive congestion mitigation. PMID:25780910
NASA Technical Reports Server (NTRS)
Huang, Jingfeng; Hsu, N. Christina; Tsay, Si-Chee; Zhang, Chidong; Jeong, Myeong Jae; Gautam, Ritesh; Bettenhausen, Corey; Sayer, Andrew M.; Hansell, Richard A.; Liu, Xiaohong;
2012-01-01
One of the seven scientific areas of interests of the 7-SEAS field campaign is to evaluate the impact of aerosol on cloud and precipitation (http://7-seas.gsfc.nasa.gov). However, large-scale covariability between aerosol, cloud and precipitation is complicated not only by ambient environment and a variety of aerosol effects, but also by effects from rain washout and climate factors. This study characterizes large-scale aerosol-cloud-precipitation covariability through synergy of long-term multi ]sensor satellite observations with model simulations over the 7-SEAS region [10S-30N, 95E-130E]. Results show that climate factors such as ENSO significantly modulate aerosol and precipitation over the region simultaneously. After removal of climate factor effects, aerosol and precipitation are significantly anti-correlated over the southern part of the region, where high aerosols loading is associated with overall reduced total precipitation with intensified rain rates and decreased rain frequency, decreased tropospheric latent heating, suppressed cloud top height and increased outgoing longwave radiation, enhanced clear-sky shortwave TOA flux but reduced all-sky shortwave TOA flux in deep convective regimes; but such covariability becomes less notable over the northern counterpart of the region where low ]level stratus are found. Using CO as a proxy of biomass burning aerosols to minimize the washout effect, large-scale covariability between CO and precipitation was also investigated and similar large-scale covariability observed. Model simulations with NCAR CAM5 were found to show similar effects to observations in the spatio-temporal patterns. Results from both observations and simulations are valuable for improving our understanding of this region's meteorological system and the roles of aerosol within it. Key words: aerosol; precipitation; large-scale covariability; aerosol effects; washout; climate factors; 7- SEAS; CO; CAM5
Maguire, Elizabeth M; Bokhour, Barbara G; Wagner, Todd H; Asch, Steven M; Gifford, Allen L; Gallagher, Thomas H; Durfee, Janet M; Martinello, Richard A; Elwy, A Rani
2016-11-11
Many healthcare organizations have developed disclosure policies for large-scale adverse events, including the Veterans Health Administration (VA). This study evaluated VA's national large-scale disclosure policy and identifies gaps and successes in its implementation. Semi-structured qualitative interviews were conducted with leaders, hospital employees, and patients at nine sites to elicit their perceptions of recent large-scale adverse events notifications and the national disclosure policy. Data were coded using the constructs of the Consolidated Framework for Implementation Research (CFIR). We conducted 97 interviews. Insights included how to handle the communication of large-scale disclosures through multiple levels of a large healthcare organization and manage ongoing communications about the event with employees. Of the 5 CFIR constructs and 26 sub-constructs assessed, seven were prominent in interviews. Leaders and employees specifically mentioned key problem areas involving 1) networks and communications during disclosure, 2) organizational culture, 3) engagement of external change agents during disclosure, and 4) a need for reflecting on and evaluating the policy implementation and disclosure itself. Patients shared 5) preferences for personal outreach by phone in place of the current use of certified letters. All interviewees discussed 6) issues with execution and 7) costs of the disclosure. CFIR analysis reveals key problem areas that need to be addresses during disclosure, including: timely communication patterns throughout the organization, establishing a supportive culture prior to implementation, using patient-approved, effective communications strategies during disclosures; providing follow-up support for employees and patients, and sharing lessons learned.
Homogenization techniques for population dynamics in strongly heterogeneous landscapes.
Yurk, Brian P; Cobbold, Christina A
2018-12-01
An important problem in spatial ecology is to understand how population-scale patterns emerge from individual-level birth, death, and movement processes. These processes, which depend on local landscape characteristics, vary spatially and may exhibit sharp transitions through behavioural responses to habitat edges, leading to discontinuous population densities. Such systems can be modelled using reaction-diffusion equations with interface conditions that capture local behaviour at patch boundaries. In this work we develop a novel homogenization technique to approximate the large-scale dynamics of the system. We illustrate our approach, which also generalizes to multiple species, with an example of logistic growth within a periodic environment. We find that population persistence and the large-scale population carrying capacity is influenced by patch residence times that depend on patch preference, as well as movement rates in adjacent patches. The forms of the homogenized coefficients yield key theoretical insights into how large-scale dynamics arise from the small-scale features.
Intensive agriculture erodes β-diversity at large scales.
Karp, Daniel S; Rominger, Andrew J; Zook, Jim; Ranganathan, Jai; Ehrlich, Paul R; Daily, Gretchen C
2012-09-01
Biodiversity is declining from unprecedented land conversions that replace diverse, low-intensity agriculture with vast expanses under homogeneous, intensive production. Despite documented losses of species richness, consequences for β-diversity, changes in community composition between sites, are largely unknown, especially in the tropics. Using a 10-year data set on Costa Rican birds, we find that low-intensity agriculture sustained β-diversity across large scales on a par with forest. In high-intensity agriculture, low local (α) diversity inflated β-diversity as a statistical artefact. Therefore, at small spatial scales, intensive agriculture appeared to retain β-diversity. Unlike in forest or low-intensity systems, however, high-intensity agriculture also homogenised vegetation structure over large distances, thereby decoupling the fundamental ecological pattern of bird communities changing with geographical distance. This ~40% decline in species turnover indicates a significant decline in β-diversity at large spatial scales. These findings point the way towards multi-functional agricultural systems that maintain agricultural productivity while simultaneously conserving biodiversity. © 2012 Blackwell Publishing Ltd/CNRS.
Current challenges in quantifying preferential flow through the vadose zone
NASA Astrophysics Data System (ADS)
Koestel, John; Larsbo, Mats; Jarvis, Nick
2017-04-01
In this presentation, we give an overview of current challenges in quantifying preferential flow through the vadose zone. A review of the literature suggests that current generation models do not fully reflect the present state of process understanding and empirical knowledge of preferential flow. We believe that the development of improved models will be stimulated by the increasingly widespread application of novel imaging technologies as well as future advances in computational power and numerical techniques. One of the main challenges in this respect is to bridge the large gap between the scales at which preferential flow occurs (pore to Darcy scales) and the scale of interest for management (fields, catchments, regions). Studies at the pore scale are being supported by the development of 3-D non-invasive imaging and numerical simulation techniques. These studies are leading to a better understanding of how macropore network topology and initial/boundary conditions control key state variables like matric potential and thus the strength of preferential flow. Extrapolation of this knowledge to larger scales would require support from theoretical frameworks such as key concepts from percolation and network theory, since we lack measurement technologies to quantify macropore networks at these large scales. Linked hydro-geophysical measurement techniques that produce highly spatially and temporally resolved data enable investigation of the larger-scale heterogeneities that can generate preferential flow patterns at pedon, hillslope and field scales. At larger regional and global scales, improved methods of data-mining and analyses of large datasets (machine learning) may help in parameterizing models as well as lead to new insights into the relationships between soil susceptibility to preferential flow and site attributes (climate, land uses, soil types).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Devos, Nicolas; Szövényi, Péter; Weston, David J.
In this study, the goal of this research was to investigate whether there has been a whole-genome duplication (WGD) in the ancestry of Sphagnum (peatmoss) or the class Sphagnopsida, and to determine if the timing of any such duplication(s) and patterns of paralog retention could help explain the rapid radiation and current ecological dominance of peatmosses.
Devos, Nicolas; Szövényi, Péter; Weston, David J.; ...
2016-02-22
In this study, the goal of this research was to investigate whether there has been a whole-genome duplication (WGD) in the ancestry of Sphagnum (peatmoss) or the class Sphagnopsida, and to determine if the timing of any such duplication(s) and patterns of paralog retention could help explain the rapid radiation and current ecological dominance of peatmosses.
Spiral crack patterns observed for melt-grown spherulites of poly(L-lactic acid) upon quenching.
Matsuda, Futoshi; Sobajima, Takamasa; Irie, Satoshi; Sasaki, Takashi
2016-04-01
In this paper, we demonstrate the characteristic spiral cracking that appears on the surface of melt-grown poly(L-lactic acid) (PLLA) spherulites with relatively large sizes (greater than 0.4mm in diameter). The crack occurs via thermal shrinkage upon quenching after crystallization. Although concentric cracks on polymer spherulites have been found to occur in quite a few studies, spiral crack patterns have never been reported so far. The present spiral crack was observed for thick spherulites (> 10 μm), whereas the concentric crack pattern was frequently observed for thin spherulites (typically 5 μm). The present PLLA spherulites exhibited a non-banded structure with no apparent structural periodicity at least on the scale of the spiral pitch, and thus no direct correlation between the crack pattern and the spherulitic structure was suggested. The spiral was revealed to be largely Archimedean of which the spiral pitch increases with an increase in the thickness of the spherulite. This may be interpreted in terms of a classical mechanical model for a thin layer with no delamination from the substrate.
Large patternable metal nanoparticle sheets by photo/e-beam lithography
NASA Astrophysics Data System (ADS)
Saito, Noboru; Wang, Pangpang; Okamoto, Koichi; Ryuzaki, Sou; Tamada, Kaoru
2017-10-01
Techniques for micro/nano-scale patterning of large metal nanoparticle sheets can potentially be used to realize high-performance photoelectronic devices because the sheets provide greatly enhanced electrical fields around the nanoparticles due to localized surface plasmon resonances. However, no single metal nanoparticle sheet currently exists with sufficient durability for conventional lithographical processes. Here, we report large photo and/or e-beam lithographic patternable metal nanoparticle sheets with improved durability by incorporating molecular cross-linked structures between nanoparticles. The cross-linked structures were easily formed by a one-step chemical reaction; immersing a single nanoparticle sheet consisting of core metals, to which capping molecules ionically bond, in a dithiol ethanol solution. The ligand exchange reaction processes were discussed in detail, and we demonstrated 20 μm wide line and space patterns, and a 170 nm wide line of the silver nanoparticle sheets.
NASA Astrophysics Data System (ADS)
Moore, B. J.; Bosart, L. F.; Keyser, D.
2013-12-01
During late October 2007, the interaction between a deep polar trough and Tropical Cyclone (TC) Kajiki off the eastern Asian coast perturbed the North Pacific jet stream and resulted in the development of a high-amplitude Rossby wave train extending into North America, contributing to three concurrent high-impact weather events in North America: wildfires in southern California associated with strong Santa Ana winds, a cold surge into eastern Mexico, and widespread heavy rainfall (~150 mm) in the south-central United States. Observational analysis indicates that these high-impact weather events were all dynamically linked with the development of a major high-latitude ridge over the eastern North Pacific and western North America and a deep trough over central North America. In this study, global operational ensemble forecasts from the European Centre for Medium-Range Weather Forecasts (ECMWF) obtained from The Observing System Research and Predictability Experiment (THORPEX) Interactive Grand Global Ensemble (TIGGE) archive are used to characterize the medium-range predictability of the large-scale flow pattern associated with the three events and to diagnose the large-scale atmospheric processes favorable, or unfavorable, for the occurrence of the three events. Examination of the ECMWF forecasts leading up to the time period of the three high-impact weather events (~23-25 October 2007) indicates that ensemble spread (i.e., uncertainty) in the 500-hPa geopotential height field develops in connection with downstream baroclinic development (DBD) across the North Pacific, associated with the interaction between TC Kajiki and the polar trough along the eastern Asian coast, and subsequently moves downstream into North America, yielding considerable uncertainty with respect to the structure, amplitude, and position of the ridge-trough pattern over North America. Ensemble sensitivity analysis conducted for key sensible weather parameters corresponding to the three high-impact weather events, including relative humidity, temperature, and precipitation, demonstrates quantitatively that all three high-impact weather events are closely linked with the development of the ridge-trough pattern over North America. Moreover, results of this analysis indicate that the development of the ridge-trough pattern is modulated by DBD and cyclogenesis upstream over the central and eastern North Pacific. Specifically, ensemble members exhibiting less intense cyclogenesis and a more poleward cyclone track over the central and eastern North Pacific feature the development of a poleward-displaced ridge over the eastern North Pacific and western North America and a cut-off low over the Intermountain West, an unfavorable scenario for the occurrence the three high-impact weather events. Conversely, ensemble members exhibiting more intense cyclogenesis and a less poleward cyclone track feature persistent ridging along the western coast of North America and trough development over central North America, establishing a favorable flow pattern for the three high-impact weather events. Results demonstrate that relatively small initial differences in the large-scale flow pattern over the North Pacific among ensemble members can result in large uncertainty in the forecast downstream flow response over North America.
More Reasons to be Straightforward: Findings and Norms for Two Scales Relevant to Social Anxiety
Rodebaugh, Thomas L.; Heimberg, Richard G.; Brown, Patrick J.; Fernandez, Katya C.; Blanco, Carlos; Schneier, Franklin R.; Liebowitz, Michael R.
2011-01-01
The validity of both the Social Interaction Anxiety Scale and Brief Fear of Negative Evaluation scale has been well-supported, yet the scales have a small number of reverse-scored items that may detract from the validity of their total scores. The current study investigates two characteristics of participants that may be associated with compromised validity of these items: higher age and lower levels of education. In community and clinical samples, the validity of each scale's reverse-scored items was moderated by age, years of education, or both. The straightforward items did not show this pattern. To encourage the use of the straightforward items of these scales, we provide normative data from the same samples as well as two large student samples. We contend that although response bias can be a substantial problem, the reverse-scored questions of these scales do not solve that problem and instead decrease overall validity. PMID:21388781
NASA Astrophysics Data System (ADS)
Chen, Guoxiong; Cheng, Qiuming
2016-02-01
Multi-resolution and scale-invariance have been increasingly recognized as two closely related intrinsic properties endowed in geofields such as geochemical and geophysical anomalies, and they are commonly investigated by using multiscale- and scaling-analysis methods. In this paper, the wavelet-based multiscale decomposition (WMD) method was proposed to investigate the multiscale natures of geochemical pattern from large scale to small scale. In the light of the wavelet transformation of fractal measures, we demonstrated that the wavelet approximation operator provides a generalization of box-counting method for scaling analysis of geochemical patterns. Specifically, the approximation coefficient acts as the generalized density-value in density-area fractal modeling of singular geochemical distributions. Accordingly, we presented a novel local singularity analysis (LSA) using the WMD algorithm which extends the conventional moving averaging to a kernel-based operator for implementing LSA. Finally, the novel LSA was validated using a case study dealing with geochemical data (Fe2O3) in stream sediments for mineral exploration in Inner Mongolia, China. In comparison with the LSA implemented using the moving averaging method the novel LSA using WMD identified improved weak geochemical anomalies associated with mineralization in covered area.
Estimating planktonic diversity through spatial dominance patterns in a model ocean.
Soccodato, Alice; d'Ovidio, Francesco; Lévy, Marina; Jahn, Oliver; Follows, Michael J; De Monte, Silvia
2016-10-01
In the open ocean, the observation and quantification of biodiversity patterns is challenging. Marine ecosystems are indeed largely composed by microbial planktonic communities whose niches are affected by highly dynamical physico-chemical conditions, and whose observation requires advanced methods for morphological and molecular classification. Optical remote sensing offers an appealing complement to these in-situ techniques. Global-scale coverage at high spatiotemporal resolution is however achieved at the cost of restrained information on the local assemblage. Here, we use a coupled physical and ecological model ocean simulation to explore one possible metrics for comparing measures performed on such different scales. We show that a large part of the local diversity of the virtual plankton ecosystem - corresponding to what accessible by genomic methods - can be inferred from crude, but spatially extended, information - as conveyed by remote sensing. Shannon diversity of the local community is indeed highly correlated to a 'seascape' index, which quantifies the surrounding spatial heterogeneity of the most abundant functional group. The error implied in drastically reducing the resolution of the plankton community is shown to be smaller in frontal regions as well as in regions of intermediate turbulent energy. On the spatial scale of hundreds of kms, patterns of virtual plankton diversity are thus largely sustained by mixing communities that occupy adjacent niches. We provide a proof of principle that in the open ocean information on spatial variability of communities can compensate for limited local knowledge, suggesting the possibility of integrating in-situ and satellite observations to monitor biodiversity distribution at the global scale. Copyright © 2016 Elsevier B.V. All rights reserved.
Silicone elastomers capable of large isotropic dimensional change
Lewicki, James; Worsley, Marcus A.
2017-07-18
Described herein is a highly effective route towards the controlled and isotropic reduction in size-scale, of complex 3D structures using silicone network polymer chemistry. In particular, a class of silicone structures were developed that once patterned and cured can `shrink` micron scale additive manufactured and lithographically patterned structures by as much as 1 order of magnitude while preserving the dimensions and integrity of these parts. This class of silicone materials is compatible with existing additive manufacture and soft lithographic fabrication processes and will allow access to a hitherto unobtainable dimensionality of fabrication.
Mapping the distribution of the denitrifier community at large scales (Invited)
NASA Astrophysics Data System (ADS)
Philippot, L.; Bru, D.; Ramette, A.; Dequiedt, S.; Ranjard, L.; Jolivet, C.; Arrouays, D.
2010-12-01
Little information is available regarding the landscape-scale distribution of microbial communities and its environmental determinants. Here we combined molecular approaches and geostatistical modeling to explore spatial patterns of the denitrifying community at large scales. The distribution of denitrifrying community was investigated over 107 sites in Burgundy, a 31 500 km2 region of France, using a 16 X 16 km sampling grid. At each sampling site, the abundances of denitrifiers and 42 soil physico-chemical properties were measured. The relative contributions of land use, spatial distance, climatic conditions, time and soil physico-chemical properties to the denitrifier spatial distribution were analyzed by canonical variation partitioning. Our results indicate that 43% to 85% of the spatial variation in community abundances could be explained by the measured environmental parameters, with soil chemical properties (mostly pH) being the main driver. We found spatial autocorrelation up to 740 km and used geostatistical modelling to generate predictive maps of the distribution of denitrifiers at the landscape scale. Studying the distribution of the denitrifiers at large scale can help closing the artificial gap between the investigation of microbial processes and microbial community ecology, therefore facilitating our understanding of the relationships between the ecology of denitrifiers and N-fluxes by denitrification.
Long-term variability of wind patterns at hub-height over Texas
NASA Astrophysics Data System (ADS)
Jung, J.; Jeon, W.; Choi, Y.; Souri, A.
2017-12-01
Wind energy is getting more attention because of its environmentally friendly attributes. Texas is a state with significant capacity and number of wind turbines. Wind power generation is significantly affected by wind patterns, and it is important to understand this seasonal and decadal variability for long-term power generation from wind turbines. This study focused on the trends of changes in wind pattern and its strength at two hub-heights (80 m and 110 m) over 30-years (1986 to 2015). We only analyzed summer data(June to September) because of concentrated electricity usage in Texas. We extracted hub-height wind data (U and V components) from the three-hourly National Centers for Environmental Prediction-North American Regional Reanalysis (NCEP-NARR) and classified wind patterns properly by using nonhierarchical K-means method. Hub-height wind patterns in summer seasons of 1986 to 2015 were classified in six classes at day and seven classes at night. Mean wind speed was 4.6 ms-1 at day and 5.4 ms-1 at night, but showed large variability in time and space. We combined each cluster's frequencies and wind speed tendencies with large scale atmospheric circulation features and quantified the amount of wind power generation.
NASA Technical Reports Server (NTRS)
Howard, R.
1972-01-01
Knowledge on the nature of magnetic fields on the solar surface is reviewed. At least a large part of the magnetic flux in the solar surface is confined to small bundles of lines of force within which the field strength is of the order of 500 gauss. Magnetic fields are closely associated with all types of solar activity. Magnetic flux appears at the surface at the clearly defined birth or regeneration of activity of an active region. As the region ages, the magnetic flux migrates to form large-scale patterns and the polar fields. Some manifestations of the large-scale distribution are discussed.
Continental-scale patterns of canopy tree composition and function across Amazonia.
ter Steege, Hans; Pitman, Nigel C A; Phillips, Oliver L; Chave, Jerome; Sabatier, Daniel; Duque, Alvaro; Molino, Jean-François; Prévost, Marie-Françoise; Spichiger, Rodolphe; Castellanos, Hernán; von Hildebrand, Patricio; Vásquez, Rodolfo
2006-09-28
The world's greatest terrestrial stores of biodiversity and carbon are found in the forests of northern South America, where large-scale biogeographic patterns and processes have recently begun to be described. Seven of the nine countries with territory in the Amazon basin and the Guiana shield have carried out large-scale forest inventories, but such massive data sets have been little exploited by tropical plant ecologists. Although forest inventories often lack the species-level identifications favoured by tropical plant ecologists, their consistency of measurement and vast spatial coverage make them ideally suited for numerical analyses at large scales, and a valuable resource to describe the still poorly understood spatial variation of biomass, diversity, community composition and forest functioning across the South American tropics. Here we show, by using the seven forest inventories complemented with trait and inventory data collected elsewhere, two dominant gradients in tree composition and function across the Amazon, one paralleling a major gradient in soil fertility and the other paralleling a gradient in dry season length. The data set also indicates that the dominance of Fabaceae in the Guiana shield is not necessarily the result of root adaptations to poor soils (nodulation or ectomycorrhizal associations) but perhaps also the result of their remarkably high seed mass there as a potential adaptation to low rates of disturbance.
Continental-scale patterns of canopy tree composition and function across Amazonia
NASA Astrophysics Data System (ADS)
Ter Steege, Hans; Pitman, Nigel C. A.; Phillips, Oliver L.; Chave, Jerome; Sabatier, Daniel; Duque, Alvaro; Molino, Jean-François; Prévost, Marie-Françoise; Spichiger, Rodolphe; Castellanos, Hernán; von Hildebrand, Patricio; Vásquez, Rodolfo
2006-09-01
The world's greatest terrestrial stores of biodiversity and carbon are found in the forests of northern South America, where large-scale biogeographic patterns and processes have recently begun to be described. Seven of the nine countries with territory in the Amazon basin and the Guiana shield have carried out large-scale forest inventories, but such massive data sets have been little exploited by tropical plant ecologists. Although forest inventories often lack the species-level identifications favoured by tropical plant ecologists, their consistency of measurement and vast spatial coverage make them ideally suited for numerical analyses at large scales, and a valuable resource to describe the still poorly understood spatial variation of biomass, diversity, community composition and forest functioning across the South American tropics. Here we show, by using the seven forest inventories complemented with trait and inventory data collected elsewhere, two dominant gradients in tree composition and function across the Amazon, one paralleling a major gradient in soil fertility and the other paralleling a gradient in dry season length. The data set also indicates that the dominance of Fabaceae in the Guiana shield is not necessarily the result of root adaptations to poor soils (nodulation or ectomycorrhizal associations) but perhaps also the result of their remarkably high seed mass there as a potential adaptation to low rates of disturbance.
NASA Astrophysics Data System (ADS)
Schoch, Anna; Blöthe, Jan; Hoffmann, Thomas; Schrott, Lothar
2016-04-01
A large number of sediment budgets have been compiled on different temporal and spatial scales in alpine regions. Detailed sediment budgets based on the quantification of a number of sediment storages (e.g. talus cones, moraine deposits) exist only for a few small scale drainage basins (up to 10² km²). In contrast, large scale sediment budgets (> 10³ km²) consider only long term sediment sinks such as valley fills and lakes. Until now, these studies often neglect small scale sediment storages in the headwaters. However, the significance of these sediment storages have been reported. A quantitative verification whether headwaters function as sediment source regions is lacking. Despite substantial transport energy in mountain environments due to steep gradients and high relief, sediment flux in large river systems is frequently disconnected from alpine headwaters. This leads to significant storage of coarse-grained sediment along the flow path from rockwall source regions to large sedimentary sinks in major alpine valleys. To improve the knowledge on sediment budgets in large scale alpine catchments and to bridge the gap between small and large scale sediment budgets, we apply a multi-method approach comprising investigations on different spatial scales in the Upper Rhone Basin (URB). The URB is the largest inneralpine basin in the European Alps with a size of > 5400 km². It is a closed system with Lake Geneva acting as an ultimate sediment sink for suspended and clastic sediment. We examine the spatial pattern and volumes of sediment storages as well as the morphometry on the local and catchment-wide scale. We mapped sediment storages and bedrock in five sub-regions of the study area (Goms, Lötschen valley, Val d'Illiez, Vallée de la Liène, Turtmann valley) in the field and from high-resolution remote sensing imagery to investigate the spatial distribution of different sediment storage types (e.g. talus deposits, debris flow cones, alluvial fans). These sub-regions cover all three litho-tectonic units of the URB (Helvetic nappes, Penninic nappes, External massifs) and different catchment sizes to capture the inherent variability. Different parameters characterizing topography, surface characteristics, and vegetation cover are analyzed for each storage type. The data is then used in geostatistical models (PCA, stepwise logistic regression) to predict the spatial distribution of sediment storage for the whole URB. We further conduct morphometric analyses of the URB to gain information on the varying degree of glacial imprint and postglacial landscape evolution and their control on the spatial distribution of sediment storage in a large scale drainage basin. Geophysical methods (ground penetrating radar and electrical resistivity tomography) are applied on different sediment storage types on the local scale to estimate mean thicknesses. Additional data from published studies are used to complement our dataset. We integrate the local data in the statistical model on the spatial distribution of sediment storages for the whole URB. Hence, we can extrapolate the stored sediment volumes to the regional scale in order to bridge the gap between small and large scale studies.
Tonkin, Jonathan D.; Shah, Deep Narayan; Kuemmerlen, Mathias; Li, Fengqing; Cai, Qinghua; Haase, Peter; Jähnig, Sonja C.
2015-01-01
Little work has been done on large-scale patterns of stream insect richness in China. We explored the influence of climatic and catchment-scale factors on stream insect (Ephemeroptera, Plecoptera, Trichoptera; EPT) richness across mid-latitude China. We assessed the predictive ability of climatic, catchment land cover and physical structure variables on genus richness of EPT, both individually and combined, in 80 mid-latitude Chinese streams, spanning a 3899-m altitudinal gradient. We performed analyses using boosted regression trees and explored the nature of their influence on richness patterns. The relative importance of climate, land cover, and physical factors on stream insect richness varied considerably between the three orders, and while important for Ephemeroptera and Plecoptera, latitude did not improve model fit for any of the groups. EPT richness was linked with areas comprising high forest cover, elevation and slope, large catchments and low temperatures. Ephemeroptera favoured areas with high forest cover, medium-to-large catchment sizes, high temperature seasonality, and low potential evapotranspiration. Plecoptera richness was linked with low temperature seasonality and annual mean, and high slope, elevation and warm-season rainfall. Finally, Trichoptera favoured high elevation areas, with high forest cover, and low mean annual temperature, seasonality and aridity. Our findings highlight the variable role that catchment land cover, physical properties and climatic influences have on stream insect richness. This is one of the first studies of its kind in Chinese streams, thus we set the scene for more in-depth assessments of stream insect richness across broader spatial scales in China, but stress the importance of improving data availability and consistency through time. PMID:25909190
Andrew P. Kinziger; Rodney J. Nakamoto; Bret C. Harvey
2014-01-01
Given the general pattern of invasions with severe ecological consequences commonly resulting from multiple introductions of large numbers of individuals on the intercontinental scale, we explored an example of a highly successful, ecologically significant invader introduced over a short distance, possibly via minimal propagule pressure. The Sacramento pikeminnow (
K. E. Mock; B. J. Bentz; E. M. O' Neill; J. P. Chong; J. Orwin; M. E. Pfrender
2007-01-01
The mountain pine beetle Dendroctonus ponderosae is a native species currently experiencing large-scale outbreaks in western North American pine forests. We sought to describe the pattern of genetic variation across the range of this species, to determine whether there were detectable genetic differences between D. ponderosae...
Bro-Jørgensen, Jakob; Brown, Molly E; Pettorelli, Nathalie
2008-11-01
Lek-breeding species are characterized by a negative association between territorial resource availability and male mating success; however, the impact of resources on the overall distribution patterns of the two sexes in lek systems is not clear. The normalized difference vegetation index (NDVI) has recently emerged as a powerful proxy measure for primary productivity, allowing the links between the distributions of animals and resources to be explored. Using NDVI at four spatial resolutions, we here investigate how the distribution of the two sexes in a lek-breeding population of topi antelopes relates to resource abundance before and during the rut. We found that in the dry season preceding the rut, topi density correlated positively with NDVI at the large, but not the fine, scale. This suggests that before the rut, when resources were relatively scant, topi preferred pastures where green grass was widely abundant. The pattern was less pronounced in males, suggesting that the need for territorial attendance prevents males from tracking resources as freely as females do. During the rut, which occurs in the wet season, both male and female densities correlated negatively with NDVI at the fine scale. At this time, resources were generally plentiful and the results suggest that, rather than by resource maximization, distribution during the rut was determined by benefits of aggregating on relatively resource-poor leks for mating, and possibly antipredator, purposes. At the large scale, no correlation between density and NDVI was found during the rut in either sex, which can be explained by leks covering areas too small to be reflected at this resolution. The study illustrates that when investigating spatial organization, it is important: (1) to choose the appropriate analytic scale, and (2) to consider behavioural as well as strictly ecological factors.
Dudek, Jozef J.; Edwards, Robert G.
2012-03-21
In this study, we present the first comprehensive study of hybrid baryons using lattice QCD methods. Using a large basis of composite QCD interpolating fields we extract an extensive spectrum of baryon states and isolate those of hybrid character using their relatively large overlap onto operators which sample gluonic excitations. We consider the spectrum of Nucleon and Delta states at several quark masses finding a set of positive parity hybrid baryons with quantum numbersmore » $$N_{1/2^+},\\,N_{1/2^+},\\,N_{3/2^+},\\, N_{3/2^+},\\,N_{5/2^+},\\,$$ and $$\\Delta_{1/2^+},\\, \\Delta_{3/2^+}$$ at an energy scale above the first band of `conventional' excited positive parity baryons. This pattern of states is compatible with a color octet gluonic excitation having $$J^{P}=1^{+}$$ as previously reported in the hybrid meson sector and with a comparable energy scale for the excitation, suggesting a common bound-state construction for hybrid mesons and baryons.« less
Strain Pattern in Supercooled Liquids
NASA Astrophysics Data System (ADS)
Illing, Bernd; Fritschi, Sebastian; Hajnal, David; Klix, Christian; Keim, Peter; Fuchs, Matthias
2016-11-01
Investigations of strain correlations at the glass transition reveal unexpected phenomena. The shear strain fluctuations show an Eshelby-strain pattern [˜cos (4 θ ) /r2 ], characteristic of elastic response, even in liquids, at long times. We address this using a mode-coupling theory for the strain fluctuations in supercooled liquids and data from both video microscopy of a two-dimensional colloidal glass former and simulations of Brownian hard disks. We show that the long-ranged and long-lived strain signatures follow a scaling law valid close to the glass transition. For large enough viscosities, the Eshelby-strain pattern is visible even on time scales longer than the structural relaxation time τ and after the shear modulus has relaxed to zero.
Mueller, Thomas; Olson, K.A.; Dressler, G.; Leimgruber, Peter; Fuller, Todd K.; Nicholson, Craig; Novaro, A.J.; Bolgeri, M.J.; Wattles, David W.; DeStefano, Stephen; Calabrese, J.M.; Fagan, William F.
2011-01-01
Aim To demonstrate how the interrelations of individual movements form large-scale population-level movement patterns and how these patterns are associated with the underlying landscape dynamics by comparing ungulate movements across species.Locations Arctic tundra in Alaska and Canada, temperate forests in Massachusetts, Patagonian Steppes in Argentina, Eastern Steppes in Mongolia.Methods We used relocation data from four ungulate species (barren-ground caribou, Mongolian gazelle, guanaco and moose) to examine individual movements and the interrelation of movements among individuals. We applied and developed a suite of spatial metrics that measure variation in movement among individuals as population dispersion, movement coordination and realized mobility. Taken together, these metrics allowed us to quantify and distinguish among different large-scale population-level movement patterns such as migration, range residency and nomadism. We then related the population-level movement patterns to the underlying landscape vegetation dynamics via long-term remote sensing measurements of the temporal variability, spatial variability and unpredictability of vegetation productivity.Results Moose, which remained in sedentary home ranges, and guanacos, which were partially migratory, exhibited relatively short annual movements associated with landscapes having very little broad-scale variability in vegetation. Caribou and gazelle performed extreme long-distance movements that were associated with broad-scale variability in vegetation productivity during the peak of the growing season. Caribou exhibited regular seasonal migration in which individuals were clustered for most of the year and exhibited coordinated movements. In contrast, gazelle were nomadic, as individuals were independently distributed and moved in an uncoordinated manner that relates to the comparatively unpredictable (yet broad-scale) vegetation dynamics of their landscape.Main conclusions We show how broad-scale landscape unpredictability may lead to nomadism, an understudied type of long-distance movement. In contrast to classical migration where landscapes may vary at broad scales but in a predictable manner, long-distance movements of nomadic individuals are uncoordinated and independent from other such individuals. Landscapes with little broad-scale variability in vegetation productivity feature smaller-scale movements and allow for range residency. Nomadism requires distinct integrative conservation strategies that facilitate long-distance movements across the entire landscape and are not limited to certain migration corridors.
Mueller, T.; Olson, K.A.; Dressler, G.; Leimgruber, P.; Fuller, T.K.; Nicolson, C.; Novaro, A.J.; Bolgeri, M.J.; Wattles, David W.; DeStefano, S.; Calabrese, J.M.; Fagan, W.F.
2011-01-01
Aim To demonstrate how the interrelations of individual movements form large-scale population-level movement patterns and how these patterns are associated with the underlying landscape dynamics by comparing ungulate movements across species. Locations Arctic tundra in Alaska and Canada, temperate forests in Massachusetts, Patagonian Steppes in Argentina, Eastern Steppes in Mongolia. Methods We used relocation data from four ungulate species (barren-ground caribou, Mongolian gazelle, guanaco and moose) to examine individual movements and the interrelation of movements among individuals. We applied and developed a suite of spatial metrics that measure variation in movement among individuals as population dispersion, movement coordination and realized mobility. Taken together, these metrics allowed us to quantify and distinguish among different large-scale population-level movement patterns such as migration, range residency and nomadism. We then related the population-level movement patterns to the underlying landscape vegetation dynamics via long-term remote sensing measurements of the temporal variability, spatial variability and unpredictability of vegetation productivity. Results Moose, which remained in sedentary home ranges, and guanacos, which were partially migratory, exhibited relatively short annual movements associated with landscapes having very little broad-scale variability in vegetation. Caribou and gazelle performed extreme long-distance movements that were associated with broad-scale variability in vegetation productivity during the peak of the growing season. Caribou exhibited regular seasonal migration in which individuals were clustered for most of the year and exhibited coordinated movements. In contrast, gazelle were nomadic, as individuals were independently distributed and moved in an uncoordinated manner that relates to the comparatively unpredictable (yet broad-scale) vegetation dynamics of their landscape. Main conclusions We show how broad-scale landscape unpredictability may lead to nomadism, an understudied type of long-distance movement. In contrast to classical migration where landscapes may vary at broad scales but in a predictable manner, long-distance movements of nomadic individuals are uncoordinated and independent from other such individuals. Landscapes with little broad-scale variability in vegetation productivity feature smaller-scale movements and allow for range residency. Nomadism requires distinct integrative conservation strategies that facilitate long-distance movements across the entire landscape and are not limited to certain migration corridors. ?? 2011 Blackwell Publishing Ltd.
Template-guided highly aligned, nano-scale wrinkle structure on a large-area
NASA Astrophysics Data System (ADS)
Lim, Jongcheon; Kim, Pilnam
This study presents a novel technique to induce aligned, nano-scale wrinkle on a polysiloxane-based UV curable resin. There have been studies on generating randomized sub-micron wrinkle using oxygen plasma treatment which causes equibiaxial compressive stress on the film surface. Few works have been reported on how to control the surface wrinkle orientation. Currently available approaches for regulating the wrinkle pattern typically require polydimethylsiloxane (PDMS)-based bilayer system under uniaxial stress condition which hampers various technological applications. Here, we demonstrate a method to generate aligned wrinkle with UV curable polymers. Highly regular array of nanoscale wrinkles were formed by elastic buckling of bilayered UV curable resin, resulting from a combination of confinement effect and anchor-guided propagation of structure. The wrinkle tends to align uniformly lateral to the template pattern as the resin filled in the pattern forms more convex meniscus. The wavelength of the wrinkle was controlled by UV exposure time yielding as small as 170nm. From our results, we suggest the confinement provided by the template pattern may have affected the direction of thin film's expansion yielding unidirectional compressive stress. This work was supported by Samsung Research Funding Center of Samsung Electronics under Project Number SRFC-IT1402-02.
The scale-dependent market trend: Empirical evidences using the lagged DFA method
NASA Astrophysics Data System (ADS)
Li, Daye; Kou, Zhun; Sun, Qiankun
2015-09-01
In this paper we make an empirical research and test the efficiency of 44 important market indexes in multiple scales. A modified method based on the lagged detrended fluctuation analysis is utilized to maximize the information of long-term correlations from the non-zero lags and keep the margin of errors small when measuring the local Hurst exponent. Our empirical result illustrates that a common pattern can be found in the majority of the measured market indexes which tend to be persistent (with the local Hurst exponent > 0.5) in the small time scale, whereas it displays significant anti-persistent characteristics in large time scales. Moreover, not only the stock markets but also the foreign exchange markets share this pattern. Considering that the exchange markets are only weakly synchronized with the economic cycles, it can be concluded that the economic cycles can cause anti-persistence in the large time scale but there are also other factors at work. The empirical result supports the view that financial markets are multi-fractal and it indicates that deviations from efficiency and the type of model to describe the trend of market price are dependent on the forecasting horizon.
States of mind: emotions, body feelings, and thoughts share distributed neural networks.
Oosterwijk, Suzanne; Lindquist, Kristen A; Anderson, Eric; Dautoff, Rebecca; Moriguchi, Yoshiya; Barrett, Lisa Feldman
2012-09-01
Scientists have traditionally assumed that different kinds of mental states (e.g., fear, disgust, love, memory, planning, concentration, etc.) correspond to different psychological faculties that have domain-specific correlates in the brain. Yet, growing evidence points to the constructionist hypothesis that mental states emerge from the combination of domain-general psychological processes that map to large-scale distributed brain networks. In this paper, we report a novel study testing a constructionist model of the mind in which participants generated three kinds of mental states (emotions, body feelings, or thoughts) while we measured activity within large-scale distributed brain networks using fMRI. We examined the similarity and differences in the pattern of network activity across these three classes of mental states. Consistent with a constructionist hypothesis, a combination of large-scale distributed networks contributed to emotions, thoughts, and body feelings, although these mental states differed in the relative contribution of those networks. Implications for a constructionist functional architecture of diverse mental states are discussed. Copyright © 2012 Elsevier Inc. All rights reserved.
Large-scale distribution patterns of mangrove nematodes: A global meta-analysis.
Brustolin, Marco C; Nagelkerken, Ivan; Fonseca, Gustavo
2018-05-01
Mangroves harbor diverse invertebrate communities, suggesting that macroecological distribution patterns of habitat-forming foundation species drive the associated faunal distribution. Whether these are driven by mangrove biogeography is still ambiguous. For small-bodied taxa, local factors and landscape metrics might be as important as macroecology. We performed a meta-analysis to address the following questions: (1) can richness of mangrove trees explain macroecological patterns of nematode richness? and (2) do local landscape attributes have equal or higher importance than biogeography in structuring nematode richness? Mangrove areas of Caribbean-Southwest Atlantic, Western Indian, Central Indo-Pacific, and Southwest Pacific biogeographic regions. We used random-effects meta-analyses based on natural logarithm of the response ratio (lnRR) to assess the importance of macroecology (i.e., biogeographic regions, latitude, longitude), local factors (i.e., aboveground mangrove biomass and tree richness), and landscape metrics (forest area and shape) in structuring nematode richness from 34 mangroves sites around the world. Latitude, mangrove forest area, and forest shape index explained 19% of the heterogeneity across studies. Richness was higher at low latitudes, closer to the equator. At local scales, richness increased slightly with landscape complexity and decreased with forest shape index. Our results contrast with biogeographic diversity patterns of mangrove-associated taxa. Global-scale nematode diversity may have evolved independently of mangrove tree richness, and diversity of small-bodied metazoans is probably more closely driven by latitude and associated climates, rather than local, landscape, or global biogeographic patterns.
Meibom; Desch; Krot; Cuzzi; Petaev; Wilson; Keil
2000-05-05
Chemical zoning patterns in some iron, nickel metal grains from CH carbonaceous chondrites imply formation at temperatures from 1370 to 1270 kelvin by condensation from a solar nebular gas cooling at a rate of approximately 0.2 kelvin per hour. This cooling rate requires a large-scale thermal event in the nebula, in contrast to the localized, transient heating events inferred for chondrule formation. In our model, mass accretion through the protoplanetary disk caused large-scale evaporation of precursor dust near its midplane inside of a few astronomical units. Gas convectively moved from the midplane to cooler regions above it, and the metal grains condensed in these parcels of rising gas.
Can cosmic shear shed light on low cosmic microwave background multipoles?
Kesden, Michael; Kamionkowski, Marc; Cooray, Asantha
2003-11-28
The lowest multipole moments of the cosmic microwave background (CMB) are smaller than expected for a scale-invariant power spectrum. One possible explanation is a cutoff in the primordial power spectrum below a comoving scale of k(c) approximately equal to 5.0 x 10(-4) Mpc(-1). Such a cutoff would increase significantly the cross correlation between the large-angle CMB and cosmic-shear patterns. The cross correlation may be detectable at >2sigma which, combined with the low CMB moments, may tilt the balance between a 2sigma result and a firm detection of a large-scale power-spectrum cutoff. The cutoff also increases the large-angle cross correlation between the CMB and the low-redshift tracers of the mass distribution.
NASA Astrophysics Data System (ADS)
Barbero, Renaud; Abatzoglou, John T.; Fowler, Hayley J.
2018-02-01
Midlatitude synoptic weather regimes account for a substantial portion of annual precipitation accumulation as well as multi-day precipitation extremes across parts of the United States (US). However, little attention has been devoted to understanding how synoptic-scale patterns contribute to hourly precipitation extremes. A majority of 1-h annual maximum precipitation (AMP) across the western US were found to be linked to two coherent midlatitude synoptic patterns: disturbances propagating along the jet stream, and cutoff upper-level lows. The influence of these two patterns on 1-h AMP varies geographically. Over 95% of 1-h AMP along the western coastal US were coincident with progressive midlatitude waves embedded within the jet stream, while over 30% of 1-h AMP across the interior western US were coincident with cutoff lows. Between 30-60% of 1-h AMP were coincident with the jet stream across the Ohio River Valley and southeastern US, whereas a a majority of 1-h AMP over the rest of central and eastern US were not found to be associated with either midlatitude synoptic features. Composite analyses for 1-h AMP days coincident to cutoff lows and jet stream show that an anomalous moisture flux and upper-level dynamics are responsible for initiating instability and setting up an environment conducive to 1-h AMP events. While hourly precipitation extremes are generally thought to be purely convective in nature, this study shows that large-scale dynamics and baroclinic disturbances may also contribute to precipitation extremes on sub-daily timescales.
Ulrich, Werner; Piwczyński, Marcin; Zaplata, Markus Klemens; Winter, Susanne; Schaaf, Wolfgang; Fischer, Anton
2014-07-01
During early plant succession, the phylogenetic structure of a community changes in response to important environmental filters and emerging species interactions. We traced the development of temperate-zone plant communities during the first 7 years of primary succession on catchment soils to explore patterns of initial species assembly. We found pronounced small-scale differences in the phylogenetic composition of neighbouring plant assemblages and a large-scale trend towards phylogenetic evenness. This small-scale variability appears to be mediated by soil properties, particularly carbonate content. Therefore, abiotic environmental conditions might counteract or even supersede the effects of interspecific competition among closely related species, which are usually predicted to exhibit patterns of phylogenetic evenness. We conclude that theories on phylogenetic community composition need to incorporate effects of small-scale variability of environmental factors.
Strecker, Angela L; Casselman, John M; Fortin, Marie-Josée; Jackson, Donald A; Ridgway, Mark S; Abrams, Peter A; Shuter, Brian J
2011-07-01
Species present in communities are affected by the prevailing environmental conditions, and the traits that these species display may be sensitive indicators of community responses to environmental change. However, interpretation of community responses may be confounded by environmental variation at different spatial scales. Using a hierarchical approach, we assessed the spatial and temporal variation of traits in coastal fish communities in Lake Huron over a 5-year time period (2001-2005) in response to biotic and abiotic environmental factors. The association of environmental and spatial variables with trophic, life-history, and thermal traits at two spatial scales (regional basin-scale, local site-scale) was quantified using multivariate statistics and variation partitioning. We defined these two scales (regional, local) on which to measure variation and then applied this measurement framework identically in all 5 study years. With this framework, we found that there was no change in the spatial scales of fish community traits over the course of the study, although there were small inter-annual shifts in the importance of regional basin- and local site-scale variables in determining community trait composition (e.g., life-history, trophic, and thermal). The overriding effects of regional-scale variables may be related to inter-annual variation in average summer temperature. Additionally, drivers of fish community traits were highly variable among study years, with some years dominated by environmental variation and others dominated by spatially structured variation. The influence of spatial factors on trait composition was dynamic, which suggests that spatial patterns in fish communities over large landscapes are transient. Air temperature and vegetation were significant variables in most years, underscoring the importance of future climate change and shoreline development as drivers of fish community structure. Overall, a trait-based hierarchical framework may be a useful conservation tool, as it highlights the multi-scaled interactive effect of variables over a large landscape.
ERIC Educational Resources Information Center
Vincent, Jack E.
Part of a large scale research project to test various theories with regard to their ability to analyze international relations, this monograph presents data on the application of distance theory to patterns of cooperation among nations. Distance theory implies that international relations systems (nations, organizations, individuals, etc.) can be…
Development of Instrumental Techniques for Color Assessment of Camouflage Patterns
ERIC Educational Resources Information Center
Fang, Gang
2012-01-01
Camouflage fabrics are produced on a large scale for use in the US military and other applications. One of the highest volume camouflage fabrics is known as the Universal Camouflage Pattern (UCP) which is produced for the US Department of Defense. At present, no standard measurement-based color quality control method exists for camouflage…